LETTER TO THE EDITOR: Two-centre exchange integrals for complex exponent Slater orbitals
NASA Astrophysics Data System (ADS)
Kuang, Jiyun; Lin, C. D.
1996-12-01
The one-dimensional integral representation for the Fourier transform of a two-centre product of B functions (finite linear combinations of Slater orbitals) with real parameters is generalized to include B functions with complex parameters. This one-dimensional integral representation allows for an efficient method of calculating two-centre exchange integrals with plane-wave electronic translational factors (ETF) over Slater orbitals of real/complex exponents. This method is a significant improvement on the previous two-dimensional quadrature method of the integrals. A new basis set of the form 0953-4075/29/24/005/img1 is proposed to improve the description of pseudo-continuum states in the close-coupling treatment of ion - atom collisions.
Solution of multi-center molecular integrals of Slater-type orbitals
NASA Technical Reports Server (NTRS)
Tai, H.
1989-01-01
The troublesome multi-center molecular integrals of Slater-type orbitals (STO) in molecular physics calculations can be evaluated by using the Fourier transform and proper coupling of the two center exchange integrals. A numerical integration procedure is then readily rendered to the final expression in which the integrand consists of well known special functions of arguments containing the geometrical arrangement of the nuclear centers and the exponents of the atomic orbitals. A practical procedure was devised for the calculation of a general multi-center molecular integrals coupling arbitrary Slater-type orbitals. Symmetry relations and asymptotic conditions are discussed. Explicit expressions of three-center one-electron nuclear-attraction integrals and four-center two-electron repulsion integrals for STO of principal quantum number n=2 are listed. A few numerical results are given for the purpose of comparison.
NASA Technical Reports Server (NTRS)
Jones, H. W.
1984-01-01
The computer-assisted C-matrix, Loewdin-alpha-function, single-center expansion method in spherical harmonics has been applied to the three-center nuclear-attraction integral (potential due to the product of separated Slater-type orbitals). Exact formulas are produced for 13 terms of an infinite series that permits evaluation to ten decimal digits of an example using 1s orbitals.
Guseinov, Israfil I; Görgün, Nurşen Seçkin
2011-06-01
The electric field induced within a molecule by its electrons determines a whole series of important physical properties of the molecule. In particular, the values of the gradient of this field at the nuclei determine the interaction of their quadrupole moments with the electrons. Using unsymmetrical one-range addition theorems introduced by one of the authors, the sets of series expansion relations for multicenter electric field gradient integrals over Slater-type orbitals in terms of multicenter charge density expansion coefficients and two-center basic integrals are presented. The convergence of the series is tested by calculating concrete cases for different values of quantum numbers, parameters and locations of orbitals.
Rosenhan revisited: the scientific credibility of Lauren Slater's pseudopatient diagnosis study.
Spitzer, Robert L; Lilienfeld, Scott O; Miller, Michael B
2005-11-01
In a recent and widely publicized book, psychologist Lauren Slater reported an attempt to test David Rosenhan's hypothesis that psychiatric diagnoses are influenced primarily by situational context rather than by patients' signs and symptoms. Slater presented herself to nine psychiatric emergency rooms with the lone complaint of an isolated auditory hallucination (hearing the word "thud"). In almost all cases, she reported receiving the diagnosis of psychotic depression and prescriptions for antidepressants and antipsychotics. Slater concluded that psychiatric diagnoses are largely arbitrary and driven by a "zeal to prescribe." Our goal was to examine the scientific credibility of Slater's findings using a vignette methodology. We presented a sample of emergency room psychiatrists (N = 74) with a detailed case vignette derived from the clinical description in Slater's book, and asked them a series of questions regarding diagnosis and treatment recommendations. In sharp contrast to what Slater reported, we found that only three psychiatrists offered a diagnosis of psychotic depression. Moreover, only one third recommended medication. Our study raises questions regarding Slater's results and conclusions, and provides scant support for the claim that psychiatric diagnoses are mostly products of fashion or fad, as claimed by Slater.
NASA Astrophysics Data System (ADS)
Lesiuk, Michał; Moszynski, Robert
2014-12-01
In this paper we consider the calculation of two-center exchange integrals over Slater-type orbitals (STOs). We apply the Neumann expansion of the Coulomb interaction potential and consider calculation of all basic quantities which appear in the resulting expression. Analytical closed-form equations for all auxiliary quantities have already been known but they suffer from large digital erosion when some of the parameters are large or small. We derive two differential equations which are obeyed by the most difficult basic integrals. Taking them as a starting point, useful series expansions for small parameter values or asymptotic expansions for large parameter values are systematically derived. The resulting expansions replace the corresponding analytical expressions when the latter introduce significant cancellations. Additionally, we reconsider numerical integration of some necessary quantities and present a new way to calculate the integrand with a controlled precision. All proposed methods are combined to lead to a general, stable algorithm. We perform extensive numerical tests of the introduced expressions to verify their validity and usefulness. Advances reported here provide methodology to compute two-electron exchange integrals over STOs for a broad range of the nonlinear parameters and large angular momenta.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-29
... made by the Slater Museum of Natural History and Burke Museum professional staff in consultation with....R50000] Notice of Inventory Completion: Slater Museum of Natural History, University of Puget Sound, Tacoma, WA AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The Slater Museum of Natural...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-21
... Museum of Natural History, University of Puget Sound, Tacoma, WA AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The Slater Museum of Natural History, University of Puget Sound has completed an... contact the Slater Museum of Natural History, University of Puget Sound. Disposition of the human remains...
Using the Screened Coulomb Potential to Illustrate the Variational Method
ERIC Educational Resources Information Center
Zuniga, Jose; Bastida, Adolfo; Requena, Alberto
2012-01-01
The screened Coulomb potential, or Yukawa potential, is used to illustrate the application of the single and linear variational methods. The trial variational functions are expressed in terms of Slater-type functions, for which the integrals needed to carry out the variational calculations are easily evaluated in closed form. The variational…
Restricted Closed Shell Hartree Fock Roothaan Matrix Method Applied to Helium Atom Using Mathematica
ERIC Educational Resources Information Center
Acosta, César R.; Tapia, J. Alejandro; Cab, César
2014-01-01
Slater type orbitals were used to construct the overlap and the Hamiltonian core matrices; we also found the values of the bi-electron repulsion integrals. The Hartree Fock Roothaan approximation process starts with setting an initial guess value for the elements of the density matrix; with these matrices we constructed the initial Fock matrix.…
Exact exchange potential for slabs: Asymptotic behavior of the Krieger-Li-Iafrate approximation
NASA Astrophysics Data System (ADS)
Engel, Eberhard
2018-02-01
The Krieger-Li-Iafrate (KLI) approximation for the exact exchange (EXX) potential of density functional theory is investigated far outside the surface of slabs. For large z the Slater component of the EXX/KLI potential falls off as -1 /z , where z is the distance to the surface of a slab parallel to the x y plane. The Slater potential thus reproduces the behavior of the exact EXX potential. Here it is demonstrated that the second component of the EXX/KLI potential, often called the orbital-shift term, is also proportional to 1 /z for large z , at least in general. This result is obtained by an analytical evaluation of the Brillouin zone integrals involved, relying on the exponential decay of the states into the vacuum. Several situations need to be distinguished in the Brillouin zone integration, depending on the band structure of the slab. In all standard situations, including such prominent cases as graphene and Si(111) slabs, however, a 1 /z dependence of the orbital-shift potential is obtained to leading order. The complete EXX/KLI potential therefore does not reproduce the asymptotic behavior of the exact EXX potential.
Substitutional impurity in single-layer graphene: The Koster–Slater and Anderson models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davydov, S. Yu., E-mail: sergei-davydov@mail.ru
The Koster–Slater and Anderson models are used to consider substitutional impurities in free-standing single-layer graphene. The density of states of graphene is described using a model (the M model). For the nitrogen and boron impurities, the occupation numbers and the parameter η which defines the fraction of delocalized electrons of the impurity are determined. In this case, experimental data are used for both determination of the model parameters and comparison with the results of theoretical estimations. The general features of the Koster–Slater and Anderson models and the differences between the two models are discussed. Specifically, it is shown that themore » band contributions to the occupation numbers of a nitrogen atom in both models are comparable, whereas the local contributions are substantially different: the local contributions are decisive in the Koster–Slater model and negligible in the Anderson model. The asymptotic behavior of the wave functions of a defect is considered in the Koster–Slater model, and the electron states of impurity dimers are considered in the Anderson model.« less
Guseinov, Israfil
2004-02-01
In this study, using complete orthonormal sets of Psi(alpha)-ETOs (where alpha=1, 0, -1, -2, ...) introduced by the author, a large number of series expansion formulae for the multicenter electronic attraction (EA), electric field (EF) and electric field gradient (EFG) integrals of the Yukawa-like screened Coulomb potentials (SCPs) is presented through the new central and noncentral potentials and the overlap integrals with the same screening constants. The final results obtained are valid for arbitrary locations of STOs and their parameters.
Analytic Wave Functions for the Half-Filled Lowest Landau Level
NASA Astrophysics Data System (ADS)
Ciftja, Orion
We consider a two-dimensional strongly correlated electronic system in a strong perpendicular magnetic field at half-filling of the lowest Landau level (LLL). We seek to build a wave function that, by construction, lies entirely in the Hilbert space of the LLL. Quite generally, a wave function of this nature can be built as a linear combination of all possible Slater determinants formed by using the complete set of single-electron states that belong to the LLL. However, due to the vast number of Slater determinant states required to form such basis functions, the expansion is impractical for any but the smallest systems. Thus, in practice, the expansion must be truncated to a small number of Slater determinants. Among many possible LLL Slater determinant states, we note a particular special class of such wave functions in which electrons occupy either only even, or only odd angular momentum states. We focus on such a class of wave functions and obtain analytic expressions for various quantities of interest. Results seem to suggest that these special wave functions, while interesting and physically appealing, are unlikely to be a very good approximation for the exact ground state at half-filling factor. The overall quality of the description can be improved by including other additional LLL Slater determinant states. It is during this process that we identify another special family of suitable LLL Slater determinant states to be used in an enlarged expansion.
Best Practices For Improving The Air Travel Experience
DOT National Transportation Integrated Search
2000-10-01
On August 21, 2000 Secretary Rodney Slater convened a meeting of aviation industry leaders from around the country to focus the industry's efforts on "putting people first" in dealing with air travel delays. Following the meeting, Secretary Slater fo...
Exact formulas for multipole moments using Slater-type molecular orbitals
NASA Technical Reports Server (NTRS)
Jones, H. W.
1986-01-01
A triple infinite sum of formulas expressed as an expansion in Legendre polynomials is generated by use of computer algebra to represent the potential from the midpoint of two Slater-type orbitals; the charge density that determines the potential is given as the product of the two orbitals. An example using 1s orbitals shows that only a few terms are needed to obtain four-figure accuracy. Exact formulas are obtained for multipole moments by means of a careful study of expanded formulas, allowing an 'extrapolation to infinity'. This Loewdin alpha-function approach augmented by using a C matrix to characterize Slater-type orbitals can be readily generalized to all cases.
A Systematic Approach for Understanding Slater-Gaussian Functions in Computational Chemistry
ERIC Educational Resources Information Center
Stewart, Brianna; Hylton, Derrick J.; Ravi, Natarajan
2013-01-01
A systematic way to understand the intricacies of quantum mechanical computations done by a software package known as "Gaussian" is undertaken via an undergraduate research project. These computations involve the evaluation of key parameters in a fitting procedure to express a Slater-type orbital (STO) function in terms of the linear…
Gaussian-Type Orbitals versus Slater-Type Orbitals: A Comparison
ERIC Educational Resources Information Center
Magalha~es, Alexandre L.
2014-01-01
The advantages of Gaussian-type orbitals (GTO) over Slater-type orbitals (STO) in quantum chemistry calculations are clarified here by means of a holistic approach. The popular Microsoft Office Excel program was used to create an interactive application with which students are able to explore the features of GTO, including automatic calculations…
Kinetic-energy matrix elements for atomic Hylleraas-CI wave functions.
Harris, Frank E
2016-05-28
Hylleraas-CI is a superposition-of-configurations method in which each configuration is constructed from a Slater-type orbital (STO) product to which is appended (linearly) at most one interelectron distance rij. Computations of the kinetic energy for atoms by this method have been difficult due to the lack of formulas expressing these matrix elements for general angular momentum in terms of overlap and potential-energy integrals. It is shown here that a strategic application of angular-momentum theory, including the use of vector spherical harmonics, enables the reduction of all atomic kinetic-energy integrals to overlap and potential-energy matrix elements. The new formulas are validated by showing that they yield correct results for a large number of integrals published by other investigators.
Geography and Powerful Knowledge: A Contribution to the Debate
ERIC Educational Resources Information Center
Maude, Alaric
2018-01-01
This paper is a contribution to the debate on powerful knowledge in geography that began in a 2015 issue of IRGEE and was continued by Frances Slater and Norman Graves in 2016. It addresses some of the questions raised by Slater and Graves. First, it suggests an alternative way of describing and identifying powerful knowledge than the one in their…
ERIC Educational Resources Information Center
Pye, Cory C.; Mercer, Colin J.
2012-01-01
The symbolic algebra program Maple and the spreadsheet Microsoft Excel were used in an attempt to reproduce the Gaussian fits to a Slater-type orbital, required to construct the popular STO-NG basis sets. The successes and pitfalls encountered in such an approach are chronicled. (Contains 1 table and 3 figures.)
Kinetic-energy matrix elements for atomic Hylleraas-CI wave functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, Frank E., E-mail: harris@qtp.ufl.edu
Hylleraas-CI is a superposition-of-configurations method in which each configuration is constructed from a Slater-type orbital (STO) product to which is appended (linearly) at most one interelectron distance r{sub ij}. Computations of the kinetic energy for atoms by this method have been difficult due to the lack of formulas expressing these matrix elements for general angular momentum in terms of overlap and potential-energy integrals. It is shown here that a strategic application of angular-momentum theory, including the use of vector spherical harmonics, enables the reduction of all atomic kinetic-energy integrals to overlap and potential-energy matrix elements. The new formulas are validatedmore » by showing that they yield correct results for a large number of integrals published by other investigators.« less
Time-dependent density functional theory beyond Kohn-Sham Slater determinants.
Fuks, Johanna I; Nielsen, Søren E B; Ruggenthaler, Michael; Maitra, Neepa T
2016-08-03
When running time-dependent density functional theory (TDDFT) calculations for real-time simulations of non-equilibrium dynamics, the user has a choice of initial Kohn-Sham state, and typically a Slater determinant is used. We explore the impact of this choice on the exchange-correlation potential when the physical system begins in a 50 : 50 superposition of the ground and first-excited state of the system. We investigate the possibility of judiciously choosing a Kohn-Sham initial state that minimizes errors when adiabatic functionals are used. We find that if the Kohn-Sham state is chosen to have a configuration matching the one that dominates the interacting state, this can be achieved for a finite time duration for some but not all such choices. When the Kohn-Sham system does not begin in a Slater determinant, we further argue that the conventional splitting of the exchange-correlation potential into exchange and correlation parts has limited value, and instead propose a decomposition into a "single-particle" contribution that we denote v, and a remainder. The single-particle contribution can be readily computed as an explicit orbital-functional, reduces to exchange in the Slater determinant case, and offers an alternative to the adiabatic approximation as a starting point for TDDFT approximations.
Kevin T. Smith
2012-01-01
The recent article "Towards a new model of branch attachment" by D. Slater and C. Harbinson (Arboricultural Journal (2010), 33, pp. 95-105) criticises strongly the model of branch attachment described by Dr Alex Shigo in 1985. As I recall, my first glimpse of Shigo's model was literally drawn on the back of an airline cocktail napkin. He rushed into the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Vleet, Mary J.; Misquitta, Alston J.; Stone, Anthony J.
Short-range repulsion within inter-molecular force fields is conventionally described by either Lennard-Jones or Born-Mayer forms. Despite their widespread use, these simple functional forms are often unable to describe the interaction energy accurately over a broad range of inter-molecular distances, thus creating challenges in the development of ab initio force fields and potentially leading to decreased accuracy and transferability. Herein, we derive a novel short-range functional form based on a simple Slater-like model of overlapping atomic densities and an iterated stockholder atom (ISA) partitioning of the molecular electron density. We demonstrate that this Slater-ISA methodology yields a more accurate, transferable, andmore » robust description of the short-range interactions at minimal additional computational cost compared to standard Lennard-Jones or Born-Mayer approaches. Lastly, we show how this methodology can be adapted to yield the standard Born-Mayer functional form while still retaining many of the advantages of the Slater-ISA approach.« less
Petruzielo, F R; Toulouse, Julien; Umrigar, C J
2011-02-14
A simple yet general method for constructing basis sets for molecular electronic structure calculations is presented. These basis sets consist of atomic natural orbitals from a multiconfigurational self-consistent field calculation supplemented with primitive functions, chosen such that the asymptotics are appropriate for the potential of the system. Primitives are optimized for the homonuclear diatomic molecule to produce a balanced basis set. Two general features that facilitate this basis construction are demonstrated. First, weak coupling exists between the optimal exponents of primitives with different angular momenta. Second, the optimal primitive exponents for a chosen system depend weakly on the particular level of theory employed for optimization. The explicit case considered here is a basis set appropriate for the Burkatzki-Filippi-Dolg pseudopotentials. Since these pseudopotentials are finite at nuclei and have a Coulomb tail, the recently proposed Gauss-Slater functions are the appropriate primitives. Double- and triple-zeta bases are developed for elements hydrogen through argon. These new bases offer significant gains over the corresponding Burkatzki-Filippi-Dolg bases at various levels of theory. Using a Gaussian expansion of the basis functions, these bases can be employed in any electronic structure method. Quantum Monte Carlo provides an added benefit: expansions are unnecessary since the integrals are evaluated numerically.
Measuring market orientation: further evidence on Narver and Slater's three-component scale.
Chakrabarty, Subhra; Rogé, Joseph N
2003-12-01
A mail survey of a national random sample of 2,000 marketing managers was conducted. The data provided by 222 respondents were analyzed to assess the dimensionality of Narver and Slater's 15-item measure of market orientation. A confirmatory factor analysis, using LISREL 8.53, provided support for each of the separate dimensions of customer orientation, competitor orientation, and interfunctional coordination. However, a combined 3-factor model of market orientation was not supported. Directions for research are suggested.
NASA Astrophysics Data System (ADS)
Quan, Ya-Min; Liu, Da-Yong; Lin, Hai-Qing; Zou, Liang-Jian
2018-06-01
We present the modulation of magnetic order on the orbital selective Mott phases (OSMP) and the metal-insulator transitions (MIT) of multi-orbital Hubbard models by employing the rotationally invariant slave-boson methods. We show that at half filling, the well-known paramagnetic (PM) OSMP is completely covered by an antiferromagnetic (AFM) Slater insulator, and the PM Mott phase by an AFM Mott insulator when electron correlation strength varies from intermediate to strong both in two- and three-orbitals Hubbard systems. Away from half-filling, we find that a partial-polarized AFM orbital-selective Slater phase appears in the intermediate correlation regime, and an almost full-polarized AFM OSMP fully covers the paramagnetic OSMP. In addition, the ferromagnetic phase in the three-orbital case is more robust than that in the two-orbital case. These results demonstrate that the modulation of magnetic correlation to the quasiparticle spectra leads to much rich and more interesting MIT scenario in multiorbital correlated systems.
Beyond Born-Mayer: Improved models for short-range repulsion in ab initio force fields
Van Vleet, Mary J.; Misquitta, Alston J.; Stone, Anthony J.; ...
2016-06-23
Short-range repulsion within inter-molecular force fields is conventionally described by either Lennard-Jones or Born-Mayer forms. Despite their widespread use, these simple functional forms are often unable to describe the interaction energy accurately over a broad range of inter-molecular distances, thus creating challenges in the development of ab initio force fields and potentially leading to decreased accuracy and transferability. Herein, we derive a novel short-range functional form based on a simple Slater-like model of overlapping atomic densities and an iterated stockholder atom (ISA) partitioning of the molecular electron density. We demonstrate that this Slater-ISA methodology yields a more accurate, transferable, andmore » robust description of the short-range interactions at minimal additional computational cost compared to standard Lennard-Jones or Born-Mayer approaches. Lastly, we show how this methodology can be adapted to yield the standard Born-Mayer functional form while still retaining many of the advantages of the Slater-ISA approach.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Messud, J.; Dinh, P. M.; Suraud, Eric
2009-10-15
We propose a simplification of the time-dependent self-interaction correction (TD-SIC) method using two sets of orbitals, applying the optimized effective potential (OEP) method. The resulting scheme is called time-dependent 'generalized SIC-OEP'. A straightforward approximation, using the spatial localization of one set of orbitals, leads to the 'generalized SIC-Slater' formalism. We show that it represents a great improvement compared to the traditional SIC-Slater and Krieger-Li-Iafrate formalisms.
Höfener, Sebastian; Bischoff, Florian A; Glöss, Andreas; Klopper, Wim
2008-06-21
In the recent years, Slater-type geminals (STGs) have been used with great success to expand the first-order wave function in an explicitly-correlated perturbation theory. The present work reports on this theory's implementation in the framework of the Turbomole suite of programs. A formalism is presented for evaluating all of the necessary molecular two-electron integrals by means of the Obara-Saika recurrence relations, which can be applied when the STG is expressed as a linear combination of a small number (n) of Gaussians (STG-nG geminal basis). In the Turbomole implementation of the theory, density fitting is employed and a complementary auxiliary basis set (CABS) is used for the resolution-of-the-identity (RI) approximation of explicitly-correlated theory. By virtue of this RI approximation, the calculation of molecular three- and four-electron integrals is avoided. An approximation is invoked to avoid the two-electron integrals over the commutator between the operators of kinetic energy and the STG. This approximation consists of computing commutators between matrices in place of operators. Integrals over commutators between operators would have occurred if the theory had been formulated and implemented as proposed originally. The new implementation in Turbomole was tested by performing a series of calculations on rotational conformers of the alkanols n-propanol through n-pentanol. Basis-set requirements concerning the orbital basis, the auxiliary basis set for density fitting and the CABS were investigated. Furthermore, various (constrained) optimizations of the amplitudes of the explicitly-correlated double excitations were studied. These amplitudes can be optimized in orbital-variant and orbital-invariant manners, or they can be kept fixed at the values governed by the rational generator approach, that is, by the electron cusp conditions. Electron-correlation effects beyond the level of second-order perturbation theory were accounted for by conventional coupled-cluster calculations with single, double and perturbative triple excitations [CCSD(T)]. The explicitly-correlated perturbation theory results were combined with CCSD(T) results and compared with literature data obtained by basis-set extrapolation.
Hyperspherical Slater determinant approach to few-body fractional quantum Hall states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Bin, E-mail: yanbin@purdue.edu; Wooten, Rachel E.; Daily, Kevin M.
2017-05-15
In a recent study (Daily et al., 2015), a hyperspherical approach has been developed to study few-body fractional quantum Hall states. This method has been successfully applied to the exploration of few boson and fermion problems in the quantum Hall region, as well as the study of inter-Landau level collective excitations (Rittenhouse et al., 2016; Wooten et al., 2016). However, the hyperspherical method as it is normally implemented requires a subsidiary (anti-)symmetrization process, which limits its computational effectiveness. The present work overcomes these difficulties and extends the power of this method by implementing a representation of the hyperspherical many-body basismore » space in terms of Slater determinants of single particle eigenfunctions. A clear connection between the hyperspherical representation and the conventional single particle picture is presented, along with a compact operator representation of the theoretical framework. - Highlights: • A hyperspherical method has been implemented to study the quantum Hall effect. • The hyperspherical many-body basis space is represented with Slater determinants. • Example numerical studies of the 4- and 8-electron systems are presented.« less
Radial integrals
Petrov, D; Angelov, B
2014-01-24
The radial expectation values
Recurrence formulas for fully exponentially correlated four-body wave functions
NASA Astrophysics Data System (ADS)
Harris, Frank E.
2009-03-01
Formulas are presented for the recursive generation of four-body integrals in which the integrand consists of arbitrary integer powers (≥-1) of all the interparticle distances rij , multiplied by an exponential containing an arbitrary linear combination of all the rij . These integrals are generalizations of those encountered using Hylleraas basis functions and include all that are needed to make energy computations on the Li atom and other four-body systems with a fully exponentially correlated Slater-type basis of arbitrary quantum numbers. The only quantities needed to start the recursion are the basic four-body integral first evaluated by Fromm and Hill plus some easily evaluated three-body “boundary” integrals. The computational labor in constructing integral sets for practical computations is less than when the integrals are generated using explicit formulas obtained by differentiating the basic integral with respect to its parameters. Computations are facilitated by using a symbolic algebra program (MAPLE) to compute array index pointers and present syntactically correct FORTRAN source code as output; in this way it is possible to obtain error-free high-speed evaluations with minimal effort. The work can be checked by verifying sum rules the integrals must satisfy.
Generalized Slater--Pauling curve and the role of metalloids in Fe-based amorphous alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sostarich, M.
1990-05-01
A modification of the generalized Slater--Pauling curve so as to consider the concentration dependence of the number of majority-spin {ital sp} electrons per average atom is proposed for amorphous iron-metalloid alloys. In this way an improved matching of the measured magnetic moment dependence on composition is achieved for Fe alloys with B and/or P as metalloids. Comparison of theory with experiment shows that amorphous Fe-P alloys tend to be magnetically rather strong, whereas their Fe-B counterparts are weak itinerant ferromagnets in almost the entire range of compositions.
Angular distribution of photoelectrons from atomic oxygen, nitrogen and carbon. [in upper atmosphere
NASA Technical Reports Server (NTRS)
Manson, S. J.; Kennedy, D. J.; Starace, A. F.; Dill, D.
1974-01-01
The angular distributions of photoelectrons from atomic oxygen, nitrogen, and carbon are calculated. Both Hartree-Fock and Hartree-Slater (Herman-Skillman) wave functions are used for oxygen, and the agreement is excellent; thus only Hartree-Slater functions are used for carbon and nitrogen. The pitch-angle distribution of photoelectrons is discussed, and it is shown that previous approximations of energy-independent isotropic or sin squared theta distributions are at odds with the authors' results, which vary with energy. This variation with energy is discussed, as is the reliability of these calculations.
NASA Technical Reports Server (NTRS)
Green, T. J.
1973-01-01
Computer programs were used to calculate the total electron excitation cross-section for atoms and the partial ionization cross-section. The approximations to the scattering amplitude used are as follows: (1) Born, Bethe, and Modified Bethe for non-exchange excitation; (2) Ochkur for exchange excitation; and (3) Coulomb-Born of non-exchange ionization. The amplitudes are related to the differential cross-sections which are integrated to give the total excitation (or partial ionization) cross-section for the collision. The atomic wave functions used are Hartree-Fock-Slater functions for bound states and the coulomb wave function for the continuum. The programs are presented and the results are examined.
One-range addition theorems for derivatives of Slater-type orbitals.
Guseinov, Israfil
2004-06-01
Using addition theorems for STOs introduced by the author with the help of complete orthonormal sets of psi(alpha)-ETOs (Guseinov II (2003) J Mol Model 9:190-194), where alpha=1, 0, -1, -2, ..., a large number of one-range addition theorems for first and second derivatives of STOs are established. These addition theorems are especially useful for computation of multicenter-multielectron integrals over STOs that arise in the Hartree-Fock-Roothaan approximation and also in the Hylleraas function method, which play a significant role for the study of electronic structure and electron-nuclei interaction properties of atoms, molecules, and solids. The relationships obtained are valid for arbitrary quantum numbers, screening constants and location of STOs.
Theoretical L-shell Coster-Kronig energies 11 or equal to z or equal to 103
NASA Technical Reports Server (NTRS)
Chen, M. H.; Crasemann, B.; Huang, K. N.; Aoyagi, M.; Mark, H.
1976-01-01
Relativistic relaxed-orbital calculations of L-shell Coster-Kronig transition energies have been performed for all possible transitions in atoms with atomic numbers. Hartree-Fock-Slater wave functions served as zeroth-order eigenfunctions to compute the expectation of the total Hamiltonian. A first-order approximation to the local approximation was thus included. Quantum-electrodynamic corrections were made. Each transition energy was computed as the difference between results of separate self-consistent-field calculations for the initial, singly ionized state and the final two-hole state. The following quantities are listed: total transition energy, 'electric' (Dirac-Hartree-Fock-Slater) contribution, magnetic and retardation contributions, and contributions due to vacuum polarization and self energy.
NASA Astrophysics Data System (ADS)
Kaur, Gurpreet; Gupta, Sheenu; Tiwari, M. K.; Mittal, Raj
2014-02-01
M sub shell X-ray emission cross sections of Pt, Au, Hg, Pb, Th and U at 8 and 10 keV photon energies have been determined with linearly polarized photon beam from Indus-2 synchrotron source. The measured cross sections have been reported for the first time and were used to check the available theoretical Dirac-Hartree-Slater (DHS) and Dirac-Fock (DF) values reported in literature and also the presently derived Non Relativistic Hartree-Slater (NRHS), DF and DHS values for Mξ, Mδ, Mα, Mβ, Mγ, Mm1 and Mm2 group of X-rays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clay, Raymond C.; Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550; Morales, Miguel A., E-mail: moralessilva2@llnl.gov
2015-06-21
Multideterminant wavefunctions, while having a long history in quantum chemistry, are increasingly being used in highly accurate quantum Monte Carlo calculations. Since the accuracy of QMC is ultimately limited by the quality of the trial wavefunction, multi-Slater determinants wavefunctions offer an attractive alternative to Slater-Jastrow and more sophisticated wavefunction ansatz for several reasons. They can be efficiently calculated, straightforwardly optimized, and systematically improved by increasing the number of included determinants. In spite of their potential, however, the convergence properties of multi-Slater determinant wavefunctions with respect to orbital set choice and excited determinant selection are poorly understood, which hinders the applicationmore » of these wavefunctions to large systems and solids. In this paper, by performing QMC calculations on the equilibrium and stretched carbon dimer, we find that convergence of the recovered correlation energy with respect to number of determinants can depend quite strongly on basis set and determinant selection methods, especially where there is strong correlation. We demonstrate that properly chosen orbital sets and determinant selection techniques from quantum chemistry methods can dramatically reduce the required number of determinants (and thus the computational cost) to reach a given accuracy, which we argue shows clear need for an automatic QMC-only method for selecting determinants and generating optimal orbital sets.« less
Insulating phase in Sr2IrO4: An investigation using critical analysis and magnetocaloric effect
NASA Astrophysics Data System (ADS)
Bhatti, Imtiaz Noor; Pramanik, A. K.
2017-01-01
The nature of insulating phase in 5d based Sr2IrO4 is quite debated as the theoretical as well as experimental investigations have put forward evidences in favor of both magnetically driven Slater-type and interaction driven Mott-type insulator. To understand this insulating behavior, we have investigated the nature of magnetic state in Sr2IrO4 through studying critical exponents, low temperature thermal demagnetization and magnetocaloric effect. The estimated critical exponents do not exactly match with any universality class, however, the values obey the scaling behavior. The exponent values suggest that spin interaction in present material is close to mean-field model. The analysis of low temperature thermal demagnetization data, however, shows dual presence of localized- and itinerant-type of magnetic interaction. Moreover, field dependent change in magnetic entropy indicates magnetic interaction is close to mean-field type. While this material shows an insulating behavior across the magnetic transition, yet a distinct change in slope in resistivity is observed around Tc. We infer that though the insulating phase in Sr2IrO4 is more close to be Slater-type but the simultaneous presence of both Slater- and Mott-type is the likely scenario for this material.
NASA Astrophysics Data System (ADS)
Şimşek, Ö.; Karagöz, D.; Ertugrul, M.
2003-10-01
The K to L shell vacancy transfer probabilities for nine elements in the atomic region 46≤ Z≤55 were determined by measuring the L X-ray yields from targets excited by 5.96 and 59.5 keV photons and using the theoretical K and L shell photoionization cross-sections. The L X-rays from different targets were detected with an Ultra-LEGe detector with very thin polymer window. Present experimental results were compared with the semi empirical values tabulated by Rao et al. [Atomic vacancy distributions product by inner shellionization, Phys. Rev. A 5 (1972) 997-1002] and theoretically calculated values using radiative and radiationless transitions. The radiative transitions of these elements were observed from the relativistic Hartree-Slater model, which was proposed by Scofield [Relativistic Hartree-Slater values for K and L shell X-ray emission rates, At. Data Nucl. Data Tables 14 (1974) 121-137]. The radiationless transitions were observed from the Dirac-Hartree-Slater model, which was proposed by Chen et al. [Relativistic radiationless transition probabilities for atomic K- and L-shells, At. Data Nucl. Data Tables 24 (1979) 13-37]. To the best of our knowledge, these vacancy transfer probabilities are reported for the first time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Xiaoyao; Hall, Randall W.; Löffler, Frank
The Sign Learning Kink (SiLK) based Quantum Monte Carlo (QMC) method is used to calculate the ab initio ground state energies for multiple geometries of the H2O, N2, and F2 molecules. The method is based on Feynman’s path integral formulation of quantum mechanics and has two stages. The first stage is called the learning stage and reduces the well-known QMC minus sign problem by optimizing the linear combinations of Slater determinants which are used in the second stage, a conventional QMC simulation. The method is tested using different vector spaces and compared to the results of other quantum chemical methodsmore » and to exact diagonalization. Our findings demonstrate that the SiLK method is accurate and reduces or eliminates the minus sign problem.« less
Zimmermann, Patric; Green, Robert J; Haverkort, Maurits W; de Groot, Frank M F
2018-05-01
Some initial instructions for the Quanty4RIXS program written in MATLAB ® are provided. The program assists in the calculation of 1s 2p RIXS and 1s 2p RIXS-MCD spectra using Quanty. Furthermore, 1s XAS and 2p 3d RIXS calculations in different symmetries can also be performed. It includes the Hartree-Fock values for the Slater integrals and spin-orbit interactions for several 3d transition metal ions that are required to create the .lua scripts containing all necessary parameters and quantum mechanical definitions for the calculations. The program can be used free of charge and is designed to allow for further adjustments of the scripts. open access.
Quantum Monte Carlo calculations of van der Waals interactions between aromatic benzene rings
NASA Astrophysics Data System (ADS)
Azadi, Sam; Kühne, T. D.
2018-05-01
The magnitude of finite-size effects and Coulomb interactions in quantum Monte Carlo simulations of van der Waals interactions between weakly bonded benzene molecules are investigated. To that extent, two trial wave functions of the Slater-Jastrow and Backflow-Slater-Jastrow types are employed to calculate the energy-volume equation of state. We assess the impact of the backflow coordinate transformation on the nonlocal correlation energy. We found that the effect of finite-size errors in quantum Monte Carlo calculations on energy differences is particularly large and may even be more important than the employed trial wave function. In addition to the cohesive energy, the singlet excitonic energy gap and the energy gap renormalization of crystalline benzene at different densities are computed.
Implementation of Slater Boundary Condition into OVERFLOW
NASA Astrophysics Data System (ADS)
Duncan, Sean
Bleed is one of the primary methods of controlling the flow within a mixed compression inlet. In this work the Slater boundary condition, first applied in WindUS, is implemented in OVERFLOW. Further, a simulation using discrete holes is run in order to show the differences between use of the boundary condition and use of the bleed hole geometry. Recent tests at Wright Patterson Air Force Base seek to provide a baseline for study of mixed compression inlets. The inlet used by the Air Force Research Laboratory is simulated in the modified OVERFLOW. The results from the experiment are compared to the CFD to qualitatively assess the accuracy of the simulations. The boundary condition is shown to be robust and viable in studying bleed.
Interpretation of the silver L X-ray spectrum
NASA Technical Reports Server (NTRS)
Chen, M. H.; Crasemann, B.; Aoyagi, M.; Mark, H.
1977-01-01
Silver L X-ray energies were calculated using theoretical binding energies from relaxed orbital relativistic Hartree-Fock-Slater calculations. Theoretical X-ray energies are compared with experimental results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bunge, C.F.; Barrientos, J.A.; Bunge, A.V.
1993-01-01
Roothaan-Hartree-Fock orbitals expressed in a Slater-type basis are reported for the ground states of He through Xe. Energy accuracy ranges between 8 and 10 significant figures, reducing by between 21 and 2,770 times the energy errors of the previous such compilation (E. Clementi and C. Roetti, Atomic Data and Nuclear Data Tables 14, 177, 1974). For each atom, the total energy, kinetic energy, potential energy, virial ratio, electron density at the nucleus, and the Kato cusp are given together with radial expectation values [l angle]r[sup n][r angle] with n from [minus]3 to 2 for each orbital, orbital energies, and orbitalmore » expansion coefficients. 29 refs., 1 tab.« less
Amorphous Slater-Pauling like behaviour in magnetic nanoparticles alloys synthesized in liquids
NASA Astrophysics Data System (ADS)
Boyer, Paul; Ménard, David; Meunier, Michel
2012-09-01
Nanoparticles of Fe, Co, Ni, and their alloys, with an average diameter of 12 nm were synthesized in liquids using a laser. Their saturation magnetization exhibited a Slater-Pauling-like behaviour with two main differences compared to that expected in bulk materials. First, the amplitude of the magnetization was found to be roughly 5 times smaller. Second, the disappearance of the ferromagnetic (FM) behaviour occurred at Ni instead of the expected Ni0.6Cu0.4. The behaviour can be explained by the presence of non-magnetic oxidized shells which reduced the fraction of ferromagnetic atoms and induce through strain an amorphous structure in the metallic core. Annealing at 500 K leads to some crystallization of the particles and thus to a partial recovery of the expected magnetization.
NASA Technical Reports Server (NTRS)
Simsic, P. L.
1974-01-01
Excitation of neutral atoms by inelastic scattering of incident electrons in gaseous nebulae were investigated using Slater Wave functions to describe the initial and final states of the atom. Total cross sections using the Born Approximation are calculated for: Li(2s yields 2p), Na(3s yields 4p), k(4s yields 4p). The intensity of emitted radiation from gaseous nebulae is also calculated, and Maxwell distribution is employed to average the kinetic energy of electrons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Xiaoyao; Hall, Randall W.; Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803
The Sign Learning Kink (SiLK) based Quantum Monte Carlo (QMC) method is used to calculate the ab initio ground state energies for multiple geometries of the H{sub 2}O, N{sub 2}, and F{sub 2} molecules. The method is based on Feynman’s path integral formulation of quantum mechanics and has two stages. The first stage is called the learning stage and reduces the well-known QMC minus sign problem by optimizing the linear combinations of Slater determinants which are used in the second stage, a conventional QMC simulation. The method is tested using different vector spaces and compared to the results of othermore » quantum chemical methods and to exact diagonalization. Our findings demonstrate that the SiLK method is accurate and reduces or eliminates the minus sign problem.« less
Nephelauxetic effect and 〈r(k)〉₄f radial integrals of Tm³⁺ in crystals.
Petrov, Dimitar
2015-12-05
Bonding and covalency parameters have been evaluated from the nephelauxetic ratios βk=Fk (crystal)/Fk (free ion), with k=2, 4, 6, for 24 halide and chalcogenide crystals containing Tm(3+) ions. The radial expectation values for 4f electrons 〈r(k)〉4f of Tm(3+) ion in certain complex oxides, fluorides, and a sulfide have been determined by means of experimental Slater parameter shifts ΔFk relative to the Fk values for the free ion Tm IV. The 〈r(k)〉1f values derived in the dielectric screening model have been compared with those computed by different types of 4f wave functions as well as with other estimates. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Feng; Pang, Wenning; Duffy, Patrick
2012-12-01
Performance of a number of commonly used density functional methods in chemistry (B3LYP, Bhandh, BP86, PW91, VWN, LB94, PBe0, SAOP and X3LYP and the Hartree-Fock (HF) method) has been assessed using orbital momentum distributions of the 7σ orbital of nitrous oxide (NNO), which models electron behaviour in a chemically significant region. The density functional methods are combined with a number of Gaussian basis sets (Pople's 6-31G*, 6-311G**, DGauss TZVP and Dunning's aug-cc-pVTZ as well as even-tempered Slater basis sets, namely, et-DZPp, et-QZ3P, et-QZ+5P and et-pVQZ). Orbital momentum distributions of the 7σ orbital in the ground electronic state of NNO, which are obtained from a Fourier transform into momentum space from single point electronic calculations employing the above models, are compared with experimental measurement of the same orbital from electron momentum spectroscopy (EMS). The present study reveals information on performance of (a) the density functional methods, (b) Gaussian and Slater basis sets, (c) combinations of the density functional methods and basis sets, that is, the models, (d) orbital momentum distributions, rather than a group of specific molecular properties and (e) the entire region of chemical significance of the orbital. It is found that discrepancies of this orbital between the measured and the calculated occur in the small momentum region (i.e. large r region). In general, Slater basis sets achieve better overall performance than the Gaussian basis sets. Performance of the Gaussian basis sets varies noticeably when combining with different Vxc functionals, but Dunning's augcc-pVTZ basis set achieves the best performance for the momentum distributions of this orbital. The overall performance of the B3LYP and BP86 models is similar to newer models such as X3LYP and SAOP. The present study also demonstrates that the combinations of the density functional methods and the basis sets indeed make a difference in the quality of the calculated orbitals.
Band structure and orbital character of monolayer MoS2 with eleven-band tight-binding model
NASA Astrophysics Data System (ADS)
Shahriari, Majid; Ghalambor Dezfuli, Abdolmohammad; Sabaeian, Mohammad
2018-02-01
In this paper, based on a tight-binding (TB) model, first we present the calculations of eigenvalues as band structure and then present the eigenvectors as probability amplitude for finding electron in atomic orbitals for monolayer MoS2 in the first Brillouin zone. In these calculations we are considering hopping processes between the nearest-neighbor Mo-S, the next nearest-neighbor in-plan Mo-Mo, and the next nearest-neighbor in-plan and out-of-plan S-S atoms in a three-atom based unit cell of two-dimensional rhombic MoS2. The hopping integrals have been solved in terms of Slater-Koster and crystal field parameters. These parameters are calculated by comparing TB model with the density function theory (DFT) in the high-symmetry k-points (i.e. the K- and Γ-points). In our TB model all the 4d Mo orbitals and the 3p S orbitals are considered and detailed analysis of the orbital character of each energy level at the main high-symmetry points of the Brillouin zone is described. In comparison with DFT calculations, our results of TB model show a very good agreement for bands near the Fermi level. However for other bands which are far from the Fermi level, some discrepancies between our TB model and DFT calculations are observed. Upon the accuracy of Slater-Koster and crystal field parameters, on the contrary of DFT, our model provide enough accuracy to calculate all allowed transitions between energy bands that are very crucial for investigating the linear and nonlinear optical properties of monolayer MoS2.
DOT National Transportation Integrated Search
1999-06-24
On June 24 and 25, 1999, Secretary of Transportation Rodney Slater brought together nearly 400 leaders from the transportation and technology communities to explore these questions at The Spirit of Innovation in Transportation conference at the Depar...
Cybertechnology and transportation
DOT National Transportation Integrated Search
1999-06-24
On June 24 and 25, 1999, Secretary of Transportation Rodney Slater brought together nearly 400 leaders from the transportation and technology communities to explore these questions at The Spirit of Innovation in Transportation conference at the Depar...
... last 20 years, there has been a remarkable transformation in allergy treatments,” says Slater. “Kids used to ... Emergency Preparedness International Programs News & Events Training & Continuing Education Inspections & Compliance Federal, State & Local Officials Consumers Health ...
Wigner molecules: the strong-correlation limit of the three-electron harmonium.
Cioslowski, Jerzy; Pernal, Katarzyna
2006-08-14
At the strong-correlation limit, electronic states of the three-electron harmonium atom are described by asymptotically exact wave functions given by products of distinct Slater determinants and a common Gaussian factor that involves interelectron distances and the center-of-mass position. The Slater determinants specify the angular dependence and the permutational symmetry of the wave functions. As the confinement strength becomes infinitesimally small, the states of different spin multiplicities become degenerate, their limiting energy reflecting harmonic vibrations of the electrons about their equilibrium positions. The corresponding electron densities are given by products of angular factors and a Gaussian function centered at the radius proportional to the interelectron distance at equilibrium. Thanks to the availability of both the energy and the electron density, the strong-correlation limit of the three-electron harmonium is well suited for testing of density functionals.
NASA Astrophysics Data System (ADS)
Pedro, S. S.; Caraballo Vivas, R. J.; Andrade, V. M.; Cruz, C.; Paixão, L. S.; Contreras, C.; Costa-Soares, T.; Caldeira, L.; Coelho, A. A.; Carvalho, A. Magnus G.; Rocco, D. L.; Reis, M. S.
2015-01-01
The so-called half-metallic magnets have been proposed as good candidates for spintronic applications due to the feature of exhibiting a hundred percent spin polarization at the Fermi level. Such materials follow the Slater-Pauling rule, which relates the magnetic moment with the valence electrons in the system. In this paper, we study the bulk polycrystalline half-metallic Fe2MnSi Heusler compound replacing Si by Ga to determine how the Ga addition changes the magnetic, the structural, and the half-metal properties of this compound. The material does not follow the Slater-Pauling rule, probably due to a minor structural disorder degree in the system, but a linear dependence on the magnetic transition temperature with the valence electron number points to the half-metallic behavior of this compound.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnapriyan, A.; Yang, P.; Niklasson, A. M. N.
New parametrizations for semiempirical density functional tight binding (DFTB) theory have been developed by the numerical optimization of adjustable parameters to minimize errors in the atomization energy and interatomic forces with respect to ab initio calculated data. Initial guesses for the radial dependences of the Slater- Koster bond integrals and overlap integrals were obtained from minimum basis density functional theory calculations. The radial dependences of the pair potentials and the bond and overlap integrals were represented by simple analytic functions. The adjustable parameters in these functions were optimized by simulated annealing and steepest descent algorithms to minimize the value ofmore » an objective function that quantifies the error between the DFTB model and ab initio calculated data. The accuracy and transferability of the resulting DFTB models for the C, H, N, and O system were assessed by comparing the predicted atomization energies and equilibrium molecular geometries of small molecules that were not included in the training data from DFTB to ab initio data. The DFTB models provide accurate predictions of the properties of hydrocarbons and more complex molecules containing C, H, N, and O.« less
Krishnapriyan, A.; Yang, P.; Niklasson, A. M. N.; ...
2017-10-17
New parametrizations for semiempirical density functional tight binding (DFTB) theory have been developed by the numerical optimization of adjustable parameters to minimize errors in the atomization energy and interatomic forces with respect to ab initio calculated data. Initial guesses for the radial dependences of the Slater- Koster bond integrals and overlap integrals were obtained from minimum basis density functional theory calculations. The radial dependences of the pair potentials and the bond and overlap integrals were represented by simple analytic functions. The adjustable parameters in these functions were optimized by simulated annealing and steepest descent algorithms to minimize the value ofmore » an objective function that quantifies the error between the DFTB model and ab initio calculated data. The accuracy and transferability of the resulting DFTB models for the C, H, N, and O system were assessed by comparing the predicted atomization energies and equilibrium molecular geometries of small molecules that were not included in the training data from DFTB to ab initio data. The DFTB models provide accurate predictions of the properties of hydrocarbons and more complex molecules containing C, H, N, and O.« less
Nanotechnology and its potential impact on transportation
DOT National Transportation Integrated Search
1999-06-24
On June 24 and 25, 1999, Secretary of Transportation Rodney Slater brought together nearly 400 leaders from the transportation and technology communities to explore these questions at The Spirit of Innovation in Transportation conference at the Depar...
NASA Technical Reports Server (NTRS)
Huang, K.-N.; Aoyagi, M.; Mark, H.; Chen, M. H.; Crasemann, B.
1976-01-01
Electron binding energies in neutral atoms have been calculated relativistically, with the requirement of complete relaxation. Hartree-Fock-Slater wave functions served as zeroth-order eigenfunctions to compute the expectation of the total Hamiltonian. A first-order correction to the local approximation was thus included. Quantum-electrodynamic corrections were made. For all elements with atomic numbers ranging from 2 to 106, the following quantities are listed: total energies, electron kinetic energies, electron-nucleus potential energies, electron-electron potential energies consisting of electrostatic and Breit interaction (magnetic and retardation) terms, and vacuum polarization energies. Binding energies including relaxation are listed for all electrons in all atoms over the indicated range of atomic numbers. A self-energy correction is included for the 1s, 2s, and 2p(1/2) levels. Results for selected atoms are compared with energies calculated by other methods and with experimental values.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaur, Rajnish; Shehla,; Kumar, Anil
2015-08-28
The X-ray production cross sections for the M{sub k} (k= ξ, δ, α, β, ζ, γ, m{sub 1}, m{sub 2}) groups of X-rays have been evaluated at incident photon energies across the M{sub i} (i =1-5) edges of {sub 90}Th using the relativistic Hartree-Fock-Slater model based photoionisation cross sections and recently reported values of the M-shell X-ray emission rates, fluorescence and Coster Kronig yields. Further, the energies of the prominent (M{sub i}-S{sub j}) (S{sub j}=N{sub j}, O{sub j} and i =1-3, j =1-7) resonant Raman scattered (RRS) peaks at different incident photon energies have also been evaluated using the neutral-atommore » electron binding energies (E{sub sj}) based on the relaxed orbital relativistic Hartree-Fock-Slater model.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pedro, S. S., E-mail: sandrapedro@uerj.br; Caraballo Vivas, R. J.; Andrade, V. M.
2015-01-07
The so-called half-metallic magnets have been proposed as good candidates for spintronic applications due to the feature of exhibiting a hundred percent spin polarization at the Fermi level. Such materials follow the Slater-Pauling rule, which relates the magnetic moment with the valence electrons in the system. In this paper, we study the bulk polycrystalline half-metallic Fe{sub 2}MnSi Heusler compound replacing Si by Ga to determine how the Ga addition changes the magnetic, the structural, and the half-metal properties of this compound. The material does not follow the Slater-Pauling rule, probably due to a minor structural disorder degree in the system,more » but a linear dependence on the magnetic transition temperature with the valence electron number points to the half-metallic behavior of this compound.« less
Entropic Origin of Pseudogap Physics and a Mott-Slater Transition in Cuprates
Markiewicz, R. S.; Buda, I. G.; Mistark, P.; ...
2017-03-22
Here, we propose a new approach to understand the origin of the pseudogap in the cuprates, in terms of bosonic entropy. The near-simultaneous softening of a large number of different q-bosons yields an extended range of short-range order, wherein the growth of magnetic correlations with decreasing temperature T is anomalously slow. These entropic effects cause the spectral weight associated with the Van Hove singularity (VHS) to shift rapidly and nearly linearly toward half filling at higher T, consistent with a picture of the VHS driving the pseudogap transition at a temperature ~T*. As a byproduct, we develop an order-parameter classificationmore » scheme that predicts supertransitions between families of order parameters. As one example, we find that by tuning the hopping parameters, it is possible to drive the cuprates across a transition between Mott and Slater physics, where a spin-frustrated state emerges at the crossover.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olsen, Jeppe, E-mail: jeppe@chem.au.dk
2014-07-21
A novel algorithm is introduced for the transformation of wave functions between the bases of Slater determinants (SD) and configuration state functions (CSF) in the genealogical coupling scheme. By modifying the expansion coefficients as each electron is spin-coupled, rather than performing a single many-electron transformation, the large transformation matrix that plagues previous approaches is avoided and the required number of operations is drastically reduced. As an example of the efficiency of the algorithm, the transformation for a configuration with 30 unpaired electrons and singlet spin is discussed. For this case, the 10 × 10{sup 6} coefficients in the CSF basismore » is obtained from the 150 × 10{sup 6} coefficients in the SD basis in 1 min, which should be compared with the seven years that the previously employed method is estimated to require.« less
NASA Astrophysics Data System (ADS)
Puri, Sanjiv
2015-08-01
The X-ray production (XRP) cross sections, σLk (k = l, η, α, β6, β1, β3, β4, β9,10, γ1,5, γ2,3) have been evaluated at incident photon energies across the Li(i=1-3) absorption edge energies of 35Br using theoretical data sets of different physical parameters, namely, the Li(i=1-3) sub-shell the X-ray emission rates based on the Dirac-Fock (DF) model, the fluorescence and Coster Kronig yields based on the Dirac-Hartree-Slater (DHS) model, and two sets of the photoionisation cross sections based on the relativistic Hartree-Fock-Slater (RHFS) model and the Dirac-Fock (DF) model, in order to highlight the importance of electron exchange effects at photon energies in vicinity of absorption edge energies.
Modeling of full-Heusler alloys within tight-binding approximation: Case study of Fe2MnAl
NASA Astrophysics Data System (ADS)
Azhar, A.; Majidi, M. A.; Nanto, D.
2017-07-01
Heusler alloys have been known for about a century, and predictions of magnetic moment values using Slater-Pauling rule have been successful for many such materials. However, such a simple counting rule has been found not to always work for all Heusler alloys. For instance, Fe2CuAl has been found to have magnetic moment of 3.30 µB per formula unit although the Slater-Pauling rule suggests the value of 2 µB. On the other hand, a recent experiment shows that a non-stoichiometric Heusler compound Fe2Mn0.5Cu0.5Al possesses magnetic moment of 4 µB, closer to the Slater-Pauling prediction for the stoichiometric compound. Such discrepancies signify that the theory to predict the magnetic moment of Heusler alloys in general is still far from being complete. Motivated by this issue, we propose to do a theoretical study on a full-Heusler alloy Fe2MnAl to understand the formation of magnetic moment microscopically. We model the system by constructing a density-functional-theory-based tight-binding Hamiltonian and incorporating Hubbard repulsive as well as spin-spin interactions for the electrons occupying the d-orbitals. Then, we solve the model using Green's function approach, and treat the interaction terms within the mean-field approximation. At this stage, we aim to formulate the computational algorithm for the overall calculation process. Our final goal is to compute the total magnetic moment per unit cell of this system and compare it with the experimental data.
Use of NDE to Evaluate Reflection Cracking in Airfield Pavements
1985-11-01
8217 ............................................................................ 71. Mudjacking - Slabjacking - Timejacking - Subsealing, Maintenance Aid Digest, MAD 2...Record No. 11, Highway Research Board Washington, D.C., 1963. 73. Slater, D., "Washington’s Shoulder Mudjacking Rescues Depressed Pave- ments," Rural and
Transportation workforce for the 21st century - a challenge to education
DOT National Transportation Integrated Search
1999-06-24
On June 24 and 25, 1999, Secretary of Transportation Rodney Slater brought together nearly 400 leaders from the transportation and technology communities to explore these questions at The Spirit of Innovation in Transportation conference at the Depar...
NASA Astrophysics Data System (ADS)
Di Rocco, Héctor O.; Raineri, Mónica; Reyna-Almandos, Jorge G.
2016-11-01
The consistency of the energy levels published for configurations 4p2, 5p2 and 5s5f belonging to Zn and Cd isoelectronic sequences is studied. Different semiempirical approaches considering the linearity of the Slater integrals for large Zc, the smoothness of the sF screening parameters, the energy values in terms of Z (or Zc), and the differences of the Ecalc - Eexp values are used, where Ecalc values are energies calculated with a Hartree-Hock method with relativistic corrections and superposition of configurations (HFR-SOC), and Eexp are the experimental values. For the np2 configurations both LS and relativistic jj expressions are considered. Configuration 5s5f is also analyzed taking into account the Landé's interval rule.
Report on The U.S./Africa Roundtable on Trade and Investment
DOT National Transportation Integrated Search
1997-10-08
Following the Fourth Annual African-African American Summit in Harare, Zimbabwe, U.S. Secretary of Transportation Rodney E. Slater pledged to continue his engagement with Africa and to follow-up on the issues and concerns addressed there. On October ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayhurst, Thomas Laine
1980-08-06
Techniques for applying ab-initio calculations to the is of atomic spectra are investigated, along with the relationship between the semi-empirical and ab-initio forms of Slater-Condon theory. Slater-Condon theory is reviewed with a focus on the essential features that lead to the effective Hamiltonians associated with the semi-empirical form of the theory. Ab-initio spectroscopic parameters are calculated from wavefunctions obtained via self-consistent field methods, while multi-configuration Hamiltonian matrices are constructed and diagonalized with computer codes written by Robert Cowan of Los Alamos Scientific Laboratory. Group theoretical analysis demonstrates that wavefunctions more general than Slater determinants (i.e. wavefunctions with radial correlations betweenmore » electrons) lead to essentially the same parameterization of effective Hamiltonians. In the spirit of this analysis, a strategy is developed for adjusting ab-initio values of the spectroscopic parameters, reproducing parameters obtained by fitting the corresponding effective Hamiltonian. Secondary parameters are used to "screen" the calculated (primary) spectroscopic parameters, their values determined by least squares. Extrapolations of the secondary parameters determined from analyzed spectra are attempted to correct calculations of atoms and ions without experimental levels. The adjustment strategy and extrapolations are tested on the K I sequence from K 0+ through Fe 7+, fitting to experimental levels for V 4+, and Cr 5+; unobserved levels and spectra are predicted for several members of the sequence. A related problem is also discussed: Energy levels of the Uranium hexahalide complexes, (UX 6) 2- for X= F, Cl, Br, and I, are fit to an effective Hamiltonian (the f 2 configuration in O h symmetry) with corrections proposed by Brian Judd.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-20
...), including the endangered fountain darter (Etheostoma fonticola), threatened San Marcos salamander (Eurycea nana), endangered San Marcos gambusia (Gambusia georgei), endangered Texas blind salamander...), Comal Springs salamander (Eurycea sp.), and Texas troglobitic water slater (Lirceolus smithii) in case...
DOT National Transportation Integrated Search
1999-06-24
On June 24 and 25, 1999, Secretary of Transportation Rodney Slater brought together nearly 400 leaders from the transportation and technology communities to explore these questions at The Spirit of Innovation in Transportation conference at the Depar...
Hendry, Robin Findlay
2003-05-01
The emergence of quantum chemistry in the early twentieth century was an international as well as an interdisciplinary affair, involving dialogue between physicists and chemists in Germany, the United States, and Britain. Historians of science have recently documented both the causes and effects of this internationalism and interdisciplinarity. Chemists and physicists involved in the development of quantum chemistry in its first few decades tended to argue for opposing views on acceptable standards of explanation in their field, although the debate did not divide along disciplinary lines. The purpose of this paper is to investigate these different positions, through the methodological reflections of John Clarke Slater, Linus Pauling, and Charles Coulson. Slater tended to argue for quantum-mechanical rigor and the application of fundamental principles as the values guiding models of molecular bonding. Although they were on different sides of the debate between the valence-bond and molecular-orbital approaches, Pauling and Coulson both emphasized the recovery of traditional chemical explanations and systematic explanatory power within chemistry.
Semi-stochastic full configuration interaction quantum Monte Carlo
NASA Astrophysics Data System (ADS)
Holmes, Adam; Petruzielo, Frank; Khadilkar, Mihir; Changlani, Hitesh; Nightingale, M. P.; Umrigar, C. J.
2012-02-01
In the recently proposed full configuration interaction quantum Monte Carlo (FCIQMC) [1,2], the ground state is projected out stochastically, using a population of walkers each of which represents a basis state in the Hilbert space spanned by Slater determinants. The infamous fermion sign problem manifests itself in the fact that walkers of either sign can be spawned on a given determinant. We propose an improvement on this method in the form of a hybrid stochastic/deterministic technique, which we expect will improve the efficiency of the algorithm by ameliorating the sign problem. We test the method on atoms and molecules, e.g., carbon, carbon dimer, N2 molecule, and stretched N2. [4pt] [1] Fermion Monte Carlo without fixed nodes: a Game of Life, death and annihilation in Slater Determinant space. George Booth, Alex Thom, Ali Alavi. J Chem Phys 131, 050106, (2009).[0pt] [2] Survival of the fittest: Accelerating convergence in full configuration-interaction quantum Monte Carlo. Deidre Cleland, George Booth, and Ali Alavi. J Chem Phys 132, 041103 (2010).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puri, Sanjiv
The X-ray production (XRP) cross sections, σ{sub Lk} (k = l, η, α, β{sub 6}, β{sub 1}, β{sub 3}, β{sub 4}, β{sub 9,10}, γ{sub 1,5}, γ{sub 2,3}) have been evaluated at incident photon energies across the L{sub i}(i=1-3) absorption edge energies of {sub 35}Br using theoretical data sets of different physical parameters, namely, the L{sub i}(i=1-3) sub-shell the X-ray emission rates based on the Dirac-Fock (DF) model, the fluorescence and Coster Kronig yields based on the Dirac-Hartree-Slater (DHS) model, and two sets of the photoionisation cross sections based on the relativistic Hartree-Fock-Slater (RHFS) model and the Dirac-Fock (DF) model, inmore » order to highlight the importance of electron exchange effects at photon energies in vicinity of absorption edge energies.« less
ERIC Educational Resources Information Center
Ludlow, Barbara L.; Foshay, John D.
2003-01-01
This column describes several commercial Web sites seen to be helpful in special education and disability services programs and personnel preparation. These include sites of the Laureate Learning Company, the Slater Software Company, the Intellitools Company, the Attainment Company, and the Don Johnston Company. Potential uses for these sites are…
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKemmish, Laura K., E-mail: laura.mckemmish@gmail.com; Research School of Chemistry, Australian National University, Canberra
Algorithms for the efficient calculation of two-electron integrals in the newly developed mixed ramp-Gaussian basis sets are presented, alongside a Fortran90 implementation of these algorithms, RAMPITUP. These new basis sets have significant potential to (1) give some speed-up (estimated at up to 20% for large molecules in fully optimised code) to general-purpose Hartree-Fock (HF) and density functional theory quantum chemistry calculations, replacing all-Gaussian basis sets, and (2) give very large speed-ups for calculations of core-dependent properties, such as electron density at the nucleus, NMR parameters, relativistic corrections, and total energies, replacing the current use of Slater basis functions or verymore » large specialised all-Gaussian basis sets for these purposes. This initial implementation already demonstrates roughly 10% speed-ups in HF/R-31G calculations compared to HF/6-31G calculations for large linear molecules, demonstrating the promise of this methodology, particularly for the second application. As well as the reduction in the total primitive number in R-31G compared to 6-31G, this timing advantage can be attributed to the significant reduction in the number of mathematically complex intermediate integrals after modelling each ramp-Gaussian basis-function-pair as a sum of ramps on a single atomic centre.« less
Threshold Corrosion Fatigue of Welded Shipbuilding Steels.
1992-01-01
8. J. C. Walter, E. Olbjorn, 0. Allstad and G. Elde, "Safety Against Corrosion Fatigue Offshore," Publication No. 94, Det Norske Ventas , Horik...Offshore. Publication No;. 94;, Det Norske Ventas , Horik, Norway, April 1976. 18. C. E. Jaske, D. Broek, J. E. Slater, W. E. Anderson. Corrosion Fatigue
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-15
... fonticola) Texas blind salamander (Eurycea [=Typhlomolge] rathbuni) San Marcos gambusia (Gambusia georgei) Threatened San Marcos salamander (Eurycea nana) Non-listed Species Texas cave diving beetle (Haideoporus texanus) Texas troglobitic water slater (Lirceolus smithii) Comal Springs salamander (Eurycea sp.) Take of...
2007-05-01
Paper presented at VII Encontro Portugues de Computacao Grafica, Eurographics, Monte de Caparica, Portugal, February. Slater, M., Usoh, M., and Steed...window? An experimental comparison of immersive and non-immersive walkthroughs. Paper presented at VII Encontro Portugues de Computacao Grafica
Molecular Dynamics Simulations of the Hydrogen Peroxyl Radical
2014-05-01
Pasta , and Ulam10 (FPU) on the equipartion of energy in a one-dimensional anharmonic chain of oscillators yielded results that surprised the...Slater, Proc. Camb. Phil. Soc. 35, 56 (1939). 9 R. A. Marcus, J. Chem. Phys. 20, 359 (1952). 10 E. Fermi, J. R. Pasta , and S. M. Ulam, Los Alamos
Mechanical and Ballistic Properties of Composites of Polypyrrole-Coated S-2 Glass Fabrics
1999-10-01
JPS Glass, PO Box 260, Slater, SC 29683. t Lydall-Manning, 2800Turnpike Drive, Hatboro, PA 19040. + Owens - Corning Fiberglas, 2790 Columbus Road...Route 16, Granville, OH 43023-1210. § Alpha Owens Corning , 2552 Industrial Drive, Valparaiso, IN 46383-9510. •• Uniroyal Chemical Company, Benson Road
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-08
... Museum of Natural History, University of Puget Sound professional staff in consultation with... museum staff that it does not exhibit the darker coloration usually found on remains removed from burials... period, museum staff consider the coloration of the remain to suggest an origin east of the Cascades...
Nature of the insulating ground state of the 5d postperovskite CaIrO 3
Kim, Sun -Woo; Liu, Chen; Kim, Hyun -Jung; ...
2015-08-26
In this study, the insulating ground state of the 5d transition metal oxide CaIrO 3 has been classified as a Mott-type insulator. Based on a systematic density functional theory (DFT) study with local, semilocal, and hybrid exchange-correlation functionals, we reveal that the Ir t 2g states exhibit large splittings and one-dimensional electronic states along the c axis due to a tetragonal crystal field. Our hybrid DFT calculation adequately describes the antiferromagnetic (AFM) order along the c direction via a superexchange interaction between Ir 4+ spins. Furthermore, the spin-orbit coupling (SOC) hybridizes the t 2g states to open an insulating gap.more » These results indicate that CaIrO 3 can be represented as a spin-orbit Slater insulator, driven by the interplay between a long-range AFM order and the SOC. Such a Slater mechanism for the gap formation is also demonstrated by the DFT + dynamical mean field theory calculation, where the metal-insulator transition and the paramagnetic to AFM phase transition are concomitant with each other.« less
Low-energy proton induced M X-ray production cross sections for 70Yb, 81Tl and 82Pb
NASA Astrophysics Data System (ADS)
Shehla; Mandal, A.; Kumar, Ajay; Roy Chowdhury, M.; Puri, Sanjiv; Tribedi, L. C.
2018-07-01
The cross sections for production of Mk (k = Mξ, Mαβ, Mγ, Mm1) X-rays of 70Yb, 81Tl and 82Pb induced by 50-250 keV protons have been measured in the present work. The experimental cross sections have been compared with the earlier reported values and those calculated using the ionization cross sections based on the ECPSSR (Perturbed (P) stationary(S) state(S), incident ion energy (E) loss, Coulomb (C) deflection and relativistic (R) correction) model, the X-ray emission rates based on the Dirac-Fock model, the fluorescence and Coster-Kronig yields based on the Dirac-Hartree-Slater (DHS) model. In addition, the present measured proton induced X-ray production cross sections have also been compared with those calculated using the Dirac-Hartree-Slater (DHS) model based ionization cross sections and those based on the Plane wave Born Approximation (PWBA). The measured M X-ray production cross sections are, in general, found to be higher than the ECPSSR and DHS model based values and lower than the PWBA model based cross sections.
Birth order in girls with gender identity disorder.
Zucker, K J; Lightbody, S; Pecore, K; Bradley, S J; Blanchard, R
1998-03-01
This study examined the birth order of girls with gender identity disorder (N = 22). Each proband was matched to 3-7 clinical control girls for age at assessment and number of siblings (the mode number of controls per proband was 7) (total N = 147). The number of older brothers, older sisters, younger brothers, and younger sisters was recorded. Slater's birth order index showed that the probands were significantly more likely to be early born than were the controls. A modified Slater's index also compared the birth order of the probands and the controls only to their brothers (when they had one or more) and only to their sisters (when they had one or more). Compared to the controls, the probands were born early compared to their sisters, but not to their brothers. These findings are the inverse of two previous studies of boys with gender identity disorder, who were later born relative to clinical control boys, an effect that appeared to be accounted for primarily by being born later relative to older brothers, but not to older sisters.
Band structure of the quaternary Heusler alloys ScMnFeSn and ScFeCoAl
NASA Astrophysics Data System (ADS)
Shanthi, N.; Teja, Y. N.; Shaji, Shephine M.; Hosamani, Shashikala; Divya, H. S.
2018-04-01
In our quest for materials with specific applications, a theoretical study plays an important role in predicting the properties of compounds. Heusler alloys or compounds are the most studied in this context. More recently, a lot of quaternary Heusler compounds are investigated for potential applications in fields like Spintronics. We report here our preliminary study of the alloys ScMnFeSn and ScFeCoAl, using the ab-initio linear muffin-tin orbital method within the atomic sphere approximation (LMTO-ASA). The alloy ScMnFeSn shows perfect half-metallicity, namely, one of the spins shows a metallic behaviour and the other spin shows semi-conducting behaviour. Such materials find application in devices such as the spin-transfer torque random access memory (STT-MRAM). In addition, the alloy ScMnFeSn is found to have an integral magnetic moment of 4 µB, as predicted by the Slater-Pauling rule. The alloy ScFeCoAl does not show half-metallicity.
Aspects of English for Specific Purposes. Occasional Papers, No. 22.
ERIC Educational Resources Information Center
Chambers, Fred, Ed.; McDonough, Jo, Ed.
The following papers on English for special purposes are collected here: (1) "An Investigation of Some of the English Language Problems of Overseas Students at the National College of Agricultural Engineering, Silsoe" by M. Keech; (2) "The Organization of Pre-sessional Courses, with Special Reference to Seminar Skills" by S.R. Slater; (3) "Notes…
75 FR 48359 - Blackstone River Valley National Heritage Corridor Commission: Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-10
... Corridor Commission: Notice of Meeting Notice is hereby given in accordance with Section 552b of Title 5... Corridor Commission will be held on Thursday, September 16, 2010. The Commission was established pursuant... waters within the Corridor. The meeting will convene on September 16, 2010 at 9 a.m. at Slater Mill...
Jazz Leader Helps a Band Take Giant Steps
ERIC Educational Resources Information Center
Kelderman, Eric
2008-01-01
This article profiles Neil Slater, the longtime leader of the jazz program at the University of North Texas who encouraged both musical perfection and artistic freedom among his star pupils. Standards are high at North Texas, which has become a Camelot where aspiring jazz musicians have come to hone their skills since 1947, when it offered one of…
Introduction to Density Functional Theory: Calculations by Hand on the Helium Atom
ERIC Educational Resources Information Center
Baseden, Kyle A.; Tye, Jesse W.
2014-01-01
Density functional theory (DFT) is a type of electronic structure calculation that has rapidly gained popularity. In this article, we provide a step-by-step demonstration of a DFT calculation by hand on the helium atom using Slater's X-Alpha exchange functional on a single Gaussian-type orbital to represent the atomic wave function. This DFT…
ERIC Educational Resources Information Center
Ross, Mitchell; Grace, Debra; Shao, Wei
2013-01-01
This paper investigates higher education (HE) student recruitment practices from the standpoint of market orientation. By adopting the well-established market orientation framework of Narver and Slater [1990, The effect of a market orientation on a business profitability. "Journal of Marketing" 54, no. 4: 20-35], we examine the extent to…
NASA Astrophysics Data System (ADS)
Zhang, Yi; Vishwanath, Ashvin
2013-04-01
We use entanglement entropy signatures to establish non-Abelian topological order in projected Chern-insulator wave functions. The simplest instance is obtained by Gutzwiller projecting a filled band with Chern number C=2, whose wave function may also be viewed as the square of the Slater determinant of a band insulator. We demonstrate that this wave function is captured by the SU(2)2 Chern-Simons theory coupled to fermions. This is established most persuasively by calculating the modular S-matrix from the candidate ground-state wave functions, following a recent entanglement-entropy-based approach. This directly demonstrates the peculiar non-Abelian braiding statistics of Majorana fermion quasiparticles in this state. We also provide microscopic evidence for the field theoretic generalization, that the Nth power of a Chern number C Slater determinant realizes the topological order of the SU(N)C Chern-Simons theory coupled to fermions, by studying the SU(2)3 (Read-Rezayi-type state) and the SU(3)2 wave functions. An advantage of our projected Chern-insulator wave functions is the relative ease with which physical properties, such as entanglement entropy and modular S-matrix, can be numerically calculated using Monte Carlo techniques.
Delayed Slater determinant update algorithms for high efficiency quantum Monte Carlo
McDaniel, Tyler; D’Azevedo, Ed F.; Li, Ying Wai; ...
2017-11-07
Within ab initio Quantum Monte Carlo simulations, the leading numerical cost for large systems is the computation of the values of the Slater determinants in the trial wavefunction. Each Monte Carlo step requires finding the determinant of a dense matrix. This is most commonly iteratively evaluated using a rank-1 Sherman-Morrison updating scheme to avoid repeated explicit calculation of the inverse. The overall computational cost is therefore formally cubic in the number of electrons or matrix size. To improve the numerical efficiency of this procedure, we propose a novel multiple rank delayed update scheme. This strategy enables probability evaluation with applicationmore » of accepted moves to the matrices delayed until after a predetermined number of moves, K. The accepted events are then applied to the matrices en bloc with enhanced arithmetic intensity and computational efficiency via matrix-matrix operations instead of matrix-vector operations. Here this procedure does not change the underlying Monte Carlo sampling or its statistical efficiency. For calculations on large systems and algorithms such as diffusion Monte Carlo where the acceptance ratio is high, order of magnitude improvements in the update time can be obtained on both multi- core CPUs and GPUs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burghaus, Jens; Dronskowski, Richard, E-mail: drons@HAL9000.ac.rwth-aachen.d; Miller, Gordon J.
2009-10-15
First-principles, density-functional studies of several intermetallic borides of the general type M{sub 2}M'Ru{sub 5-n}Rh{sub n}B{sub 2} (n=0-5; M=Sc, Ti, Nb; M'=Fe, Co) show that the variation in saturation magnetic moment with valence-electron count follows a Slater-Pauling curve, with a maximum moment occurring typically at 66 valence electrons. The magnetic moments in these compounds occur primarily from the 3d electrons of the magnetically active M' sites, with some contribution from the Ru/Rh sites via magnetic polarization. Electronic DOS curves reveal that a rigid-band approach is a reasonable approximation for the estimation of saturation moments and the analysis of orbital interactions inmore » this family of complex borides. COHP analyses of the M'-M' orbital interactions indicate optimized interactions in the minority spin states for Co-containing phases, but strong bonding interactions remaining in Fe-containing phases. - Graphical abstract: Theoretically determined (spin-polarized LMTO-GGA) local magnetic moments as a function of the chemical valence Z for various intermetallic borides.« less
Delayed Slater determinant update algorithms for high efficiency quantum Monte Carlo
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDaniel, Tyler; D’Azevedo, Ed F.; Li, Ying Wai
Within ab initio Quantum Monte Carlo simulations, the leading numerical cost for large systems is the computation of the values of the Slater determinants in the trial wavefunction. Each Monte Carlo step requires finding the determinant of a dense matrix. This is most commonly iteratively evaluated using a rank-1 Sherman-Morrison updating scheme to avoid repeated explicit calculation of the inverse. The overall computational cost is therefore formally cubic in the number of electrons or matrix size. To improve the numerical efficiency of this procedure, we propose a novel multiple rank delayed update scheme. This strategy enables probability evaluation with applicationmore » of accepted moves to the matrices delayed until after a predetermined number of moves, K. The accepted events are then applied to the matrices en bloc with enhanced arithmetic intensity and computational efficiency via matrix-matrix operations instead of matrix-vector operations. Here this procedure does not change the underlying Monte Carlo sampling or its statistical efficiency. For calculations on large systems and algorithms such as diffusion Monte Carlo where the acceptance ratio is high, order of magnitude improvements in the update time can be obtained on both multi- core CPUs and GPUs.« less
Magnetically driven metal-insulator transition in NaOsO3
NASA Astrophysics Data System (ADS)
Calder, Stuart
2013-03-01
The metal-insulator transition (MIT) is one of the most dramatic manifestations of electron correlations in materials, enjoying interest both for its fundamental nature and technological application. Various mechanisms producing MITs have been extensively considered over the years, including the Mott (electron localization via Coulomb repulsion), Anderson (localization via disorder) and Peierls (localization via distortion of a periodic one-dimensional lattice). One additional route to a MIT proposed by Slater in 1951, in which long-range magnetic order in a three dimensional system drives the MIT, has received relatively little attention, particularly from an experimental viewpoint. Using neutron and x-ray scattering we have shown that the MIT in NaOsO3 is coincident with the onset of long-range commensurate magnetic order at 410 K. Whilst candidate materials have been suggested, our experimental methodology allows the first definitive demonstration of the long predicted Slater MIT. We discuss our results in light of recent work on other 5d systems that contrastingly have been predicted to host a Mott spin-orbit insulating state. Work was supported by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy (DOE).
Delayed Slater determinant update algorithms for high efficiency quantum Monte Carlo.
McDaniel, T; D'Azevedo, E F; Li, Y W; Wong, K; Kent, P R C
2017-11-07
Within ab initio Quantum Monte Carlo simulations, the leading numerical cost for large systems is the computation of the values of the Slater determinants in the trial wavefunction. Each Monte Carlo step requires finding the determinant of a dense matrix. This is most commonly iteratively evaluated using a rank-1 Sherman-Morrison updating scheme to avoid repeated explicit calculation of the inverse. The overall computational cost is, therefore, formally cubic in the number of electrons or matrix size. To improve the numerical efficiency of this procedure, we propose a novel multiple rank delayed update scheme. This strategy enables probability evaluation with an application of accepted moves to the matrices delayed until after a predetermined number of moves, K. The accepted events are then applied to the matrices en bloc with enhanced arithmetic intensity and computational efficiency via matrix-matrix operations instead of matrix-vector operations. This procedure does not change the underlying Monte Carlo sampling or its statistical efficiency. For calculations on large systems and algorithms such as diffusion Monte Carlo, where the acceptance ratio is high, order of magnitude improvements in the update time can be obtained on both multi-core central processing units and graphical processing units.
Delayed Slater determinant update algorithms for high efficiency quantum Monte Carlo
NASA Astrophysics Data System (ADS)
McDaniel, T.; D'Azevedo, E. F.; Li, Y. W.; Wong, K.; Kent, P. R. C.
2017-11-01
Within ab initio Quantum Monte Carlo simulations, the leading numerical cost for large systems is the computation of the values of the Slater determinants in the trial wavefunction. Each Monte Carlo step requires finding the determinant of a dense matrix. This is most commonly iteratively evaluated using a rank-1 Sherman-Morrison updating scheme to avoid repeated explicit calculation of the inverse. The overall computational cost is, therefore, formally cubic in the number of electrons or matrix size. To improve the numerical efficiency of this procedure, we propose a novel multiple rank delayed update scheme. This strategy enables probability evaluation with an application of accepted moves to the matrices delayed until after a predetermined number of moves, K. The accepted events are then applied to the matrices en bloc with enhanced arithmetic intensity and computational efficiency via matrix-matrix operations instead of matrix-vector operations. This procedure does not change the underlying Monte Carlo sampling or its statistical efficiency. For calculations on large systems and algorithms such as diffusion Monte Carlo, where the acceptance ratio is high, order of magnitude improvements in the update time can be obtained on both multi-core central processing units and graphical processing units.
Effect of exact Coulomb-exchange calculations on band-head spectra of odd-proton nuclei
NASA Astrophysics Data System (ADS)
Koh, Meng-Hock; Nurhafiza, Mohamad Nor
2017-10-01
Previous calculations of band-head energy spectra of odd-mass heavy nuclei in the Hartree-Fock-plus-Bardeen-Cooper-Schrieffer (HF-BCS) framework showed that the agreement with data is better for odd-neutron as compared to odd-proton nuclei. The reason for a poorer agreement with data for the latter have been ascribed to the possible usage of the Slater approximation in calculating the Coulomb-exchange term. In this work, we report the effect of exact Coulomb-exchange calculations on band-head energy spectra of two odd-proton nuclei (namely 237Np and 241Am) as compared to the results obtained using the Slater approximation. We performed self-consistent blocking calculations while taking the breaking of time-reversal symmetry at the mean-field level into account due to the unpaired nucleon. The SkM* and SIII parametrizations of the Skyrme interaction have been employed to approximate the effective nucleon-nucleon interaction while a seniority force is used for the pairing channel. Contrary to what was expected, our preliminary results show no improvement on the band-head spectra as compared to data when the Coulomb-exchange term is calculated exactly.
Birth order and ratio of brothers to sisters in Spanish transsexuals.
Gómez-Gil, Esther; Esteva, Isabel; Carrasco, Rocío; Almaraz, M Cruz; Pasaro, Eduardo; Salamero, Manel; Guillamon, Antonio
2011-06-01
Three Western studies have shown that male-to-female (MF) homosexual transsexuals tend to be born later than their siblings and to come from sibships with more brothers than sisters. The objective of this study was to determine whether these variables would be replicated in 530 MF and female-to-male (FM) Spanish transsexuals according to sexual orientation. The results showed that MF homosexual transsexuals had significantly more older brothers than the non-homosexual MF group. Compared with the expected rates in the general population, birth order was significantly higher in both MF (Slater's Index = 0.59; Fraternal Index = 0.61; Sororal Index = 0.58) and FM homosexual transsexuals (Slater's Index = 0.65; Fraternal Index = 0.68; Sororal Index = 0.67), and sibling sex ratio was significantly higher than expected in homosexual MF (sex ratio = 0.55) but not in homosexual FM transsexuals. No significant differences were found in the non-homosexual subgroups. The replication of the later birth order and sibling sex-ratio effect in MF homosexual transsexuals corroborates previous findings in a variety of groups from different cultures and may suggest a common mechanism underlying the etiology of transsexualism.
State-specific transport properties of electronically excited Ar and C
NASA Astrophysics Data System (ADS)
Istomin, V. A.; Kustova, E. V.
2018-05-01
In the present study, a theoretical model of state-resolved transport properties in electronically excited atomic species developed earlier is applied to argon and carbon atomic species. It is shown that for Ar and C, similarly to the case of atomic nitrogen and oxygen, the Slater-like models can be applied to calculate diameters of electronically excited atoms. Using the Slater-like model it is shown that for half-filled N (2 px1py1pz1) and full-filled Ar (3 px2py2pz2) electronic shells the growth of atomic radius goes slowly compared to C (2 px1py1) and O (2 px2py1pz1). The effect of collision diameters on the transport properties of Ar and C is evaluated. The influence of accounted number of electronic levels on the transport coefficients is examined for the case of Boltzmann distributions over electronic energy levels. It is emphasized that in the temperature range 1000-14000 K, for Boltzmann-like distributions over electronic states the number of accounted electronic levels do not influence the transport coefficients. Contrary to this, for higher temperatures T > 14000 K this effect becomes of importance, especially for argon.
NASA Astrophysics Data System (ADS)
Chauhan, Yogeshwar; Tiwari, M. K.; Puri, Sanjiv
2008-01-01
The L k ( k = l, α, β 1,4, β 3,6, β 2,15,9,10,7, γ 1,5 and γ 2,3,4) X-ray production (XRP) cross sections have been measured for six elements with 56 ⩽ Z ⩽ 68 at 22.6 keV incident photon energy using the EDXRF spectrometer. The incident photon intensity, detector efficiency and geometrical factors have been determined from the K X-ray yields emitted from elemental targets with 22 ⩽ Z ⩽ 42 in the same geometrical setup and from knowledge of the K XRP cross sections. The L 1 and L 2 subshell fluorescence yields have been deduced from the present measured L k XRP cross sections using the relativistic Hartree-Fock-Slater (HFS) model based photoionization cross sections. The present deduced ω1 (exp) values have been found to be, on an average, higher by 15% and 20% than those based on the Dirac-Hartree-Slater (DHS) model and the semi-empirical values compiled by Krause, respectively, for elements with 60 ⩽ Z ⩽ 68.
NASA Astrophysics Data System (ADS)
Sharma, Manju; Sharma, Veena; Kumar, Sanjeev; Puri, S.; Singh, Nirmal
2006-11-01
The M ξ, M αβ, M γ and M m X-ray production (XRP) cross-sections have been measured for the elements with 71⩽ Z⩽92 at 5.96 keV incident photon energy satisfying EM1< Einc< EL3, where EM1(L3) is the M 1(L 3) subshell binding energy. These XRP cross-sections have been calculated using photoionization cross-sections based on the relativistic Dirac-Hartree-Slater (RDHS) model with three sets of X-ray emission rates, fluorescence, Coster-Kronig and super Coster-Kronig yields based on (i) the non-relativistic Hartree-Slater (NRHS) potential model, (ii) the RDHS model and (iii) the relativistic Dirac-Fock (RDF) model. For the third set, the M i ( i=1-5) subshell fluorescence yields have been calculated using the RDF model-based X-ray emission rates and total widths reevaluated to incorporate the RDF model-based radiative widths. The measured cross-sections have been compared with the calculated values to check the applicability of the physical parameters based on different models.
NASA Astrophysics Data System (ADS)
Slater, Paul B.
2018-04-01
We begin by investigating relationships between two forms of Hilbert-Schmidt two-rebit and two-qubit "separability functions"—those recently advanced by Lovas and Andai (J Phys A Math Theor 50(29):295303, 2017), and those earlier presented by Slater (J Phys A 40(47):14279, 2007). In the Lovas-Andai framework, the independent variable ɛ \\in [0,1] is the ratio σ (V) of the singular values of the 2 × 2 matrix V=D_2^{1/2} D_1^{-1/2} formed from the two 2 × 2 diagonal blocks (D_1, D_2) of a 4 × 4 density matrix D= ||ρ _{ij}||. In the Slater setting, the independent variable μ is the diagonal-entry ratio √{ρ _{11} ρ _ {44}/ρ _ {22 ρ _ {33}}}—with, of central importance, μ =ɛ or μ =1/ɛ when both D_1 and D_2 are themselves diagonal. Lovas and Andai established that their two-rebit "separability function" \\tilde{χ }_1 (ɛ ) (≈ ɛ ) yields the previously conjectured Hilbert-Schmidt separability probability of 29/64. We are able, in the Slater framework (using cylindrical algebraic decompositions [CAD] to enforce positivity constraints), to reproduce this result. Further, we newly find its two-qubit, two-quater[nionic]-bit and "two-octo[nionic]-bit" counterparts, \\tilde{χ _2}(ɛ ) =1/3 ɛ ^2 ( 4-ɛ ^2) , \\tilde{χ _4}(ɛ ) =1/35 ɛ ^4 ( 15 ɛ ^4-64 ɛ ^2+84) and \\tilde{χ _8} (ɛ )= 1/1287ɛ ^8 ( 1155 ɛ ^8-7680 ɛ ^6+20160 ɛ ^4-25088 ɛ ^2+12740) . These immediately lead to predictions of Hilbert-Schmidt separability/PPT-probabilities of 8/33, 26/323 and 44482/4091349, in full agreement with those of the "concise formula" (Slater in J Phys A 46:445302, 2013), and, additionally, of a "specialized induced measure" formula. Then, we find a Lovas-Andai "master formula," \\tilde{χ _d}(ɛ )= ɛ ^d Γ (d+1)^3 _3\\tilde{F}_2( -{d/2,d/2,d;d/2+1,3 d/2+1;ɛ ^2) }/{Γ ( d/2+1) ^2}, encompassing both even and odd values of d. Remarkably, we are able to obtain the \\tilde{χ _d}(ɛ ) formulas, d=1,2,4, applicable to full (9-, 15-, 27-) dimensional sets of density matrices, by analyzing (6-, 9, 15-) dimensional sets, with not only diagonal D_1 and D_2, but also an additional pair of nullified entries. Nullification of a further pair still leads to X-matrices, for which a distinctly different, simple Dyson-index phenomenon is noted. C. Koutschan, then, using his HolonomicFunctions program, develops an order-4 recurrence satisfied by the predictions of the several formulas, establishing their equivalence. A two-qubit separability probability of 1-256/27 π ^2 is obtained based on the operator monotone function √{x}, with the use of \\tilde{χ _2}(ɛ ).
ERIC Educational Resources Information Center
Association for Education in Journalism and Mass Communication.
The Minorities and Communication section of the proceedings contains the following 10 papers: "A Content Analysis of Advertising Techniques in Mass Market and African-American Magazine Advertisements" (Jan S. Slater and others); "Political and Racial Adversaries: Southern Black Elected Officials and the Press" (Daniel Riffe and…
NASA Astrophysics Data System (ADS)
McConnell, Sean; Fritzsche, Stephan; Surzhykov, Andrey
2010-03-01
During recent years, the DIRAC package has proved to be an efficient tool for studying the structural properties and dynamic behavior of hydrogen-like ions. Originally designed as a set of MAPLE procedures, this package provides interactive access to the wave and Green's functions in the non-relativistic and relativistic frameworks and supports analytical evaluation of a large number of radial integrals that are required for the construction of transition amplitudes and interaction cross sections. We provide here a new version of the DIRAC program which is developed within the framework of MATHEMATICA (version 6.0). This new version aims to cater to a wider community of researchers that use the MATHEMATICA platform and to take advantage of the generally faster processing times therein. Moreover, the addition of new procedures, a more convenient and detailed help system, as well as source code revisions to overcome identified shortcomings should ensure expanded use of the new DIRAC program over its predecessor. New version program summaryProgram title: DIRAC Catalogue identifier: ADUQ_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUQ_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 45 073 No. of bytes in distributed program, including test data, etc.: 285 828 Distribution format: tar.gz Programming language: Mathematica 6.0 or higher Computer: All computers with a license for the computer algebra package Mathematica (version 6.0 or higher) Operating system: Mathematica is O/S independent Classification: 2.1 Catalogue identifier of previous version: ADUQ_v1_0 Journal reference of previous version: Comput. Phys. Comm. 165 (2005) 139 Does the new version supersede the previous version?: Yes Nature of problem: Since the early days of quantum mechanics, the "hydrogen atom" has served as one of the key models for studying the structure and dynamics of various quantum systems. Its analytic solutions are frequently used in case studies in atomic and molecular physics, quantum optics, plasma physics, or even in the field of quantum information and computation. Fast and reliable access to functions and properties of the hydrogenic systems are frequently required, in both the non-relativistic and relativistic frameworks. Despite all the knowledge about one-electron ions, providing such an access is not a simple task, owing to the rather complicated mathematical structure of the Schrödinger and especially Dirac equations. Moreover, for analyzing experimental results as well as for performing advanced theoretical studies one often needs (apart from the detailed information on atomic wave- and Green's functions) to be able to calculate a number of integrals involving these functions. Although for many types of transition operators these integrals can be evaluated analytically in terms of special mathematical functions, such an evaluation is usually rather involved and prone to mistakes. Solution method: A set of Mathematica procedures is developed which provides both the non-relativistic and relativistic solutions of the "Hydrogen atom model". It facilitates, moreover, the symbolic evaluation of integrals involved in the calculations of cross sections and transition amplitudes. These procedures are based on a large number of relations among special mathematical functions, information about their integral representations, recurrence formulae and series expansions. Based on this knowledge, the DIRAC tools provide a fast and reliable algebraic (and if necessary, numeric) manipulation of functions and properties of one-electron systems, thus helping to obtain further insight into the behavior of quantum physical systems. Reasons for new version: The original version of the DIRAC program was developed as a toolbox of Maple procedures and was submitted to the CPC library in 2004 (cf. Ref. [1]). Since then DIRAC has found its niche in advanced theoretical studies carried out in realm of heavy ion physics. With the help of this program detailed analysis has been performed, in particular, for the various excitation and ionization processes occurring in relativistic ion-atom collisions [2], the polarization of the characteristic X-ray radiation following radiative electron capture [3], the correlation properties of the two-photon emission from few-electron heavy ions [4], the spin entanglement phenomena in atomic photoionization [5] and even for exploring the vibrational excitations of the heavy nuclei [6]. Although these studies have conclusively proven the potential of the program, they have also illuminated routes for its further enhancement. Apart from certain source code revisions, demand has grown for a new version of DIRAC compatible with the Mathematica platform. The version presented here includes a wider ranging and more user friendly interactive help system, a number of new procedures and reprogramming for greater computational efficiency. Summary of revisions: The most important new capabilities of the DIRAC program since the previous version are: The utilization of the Mathematica (version 6.0) platform. The addition of a number of new procedures. Since the complete list of the new (and updated) procedures can be found in the interactive help library of the program, we mention here only the most important ones: DiracGlobal[] - Displays a list of the current global settings which specify the framework, nuclear charge and the units which are to be used by the DIRAC program. DiracRadialOrbitalMomentum[] - Returns a non-relativistic radial orbital in momentum space for both, the bound and free electron states. DiracSlaterRadial[] - Evaluates the radial Slater integral both, with the non-relativistic and relativistic wavefunctions. In the previous version of the program this procedure was restricted to the non-relativistic framework only. DiracGreensIntegralRadial[] - Evaluates the two-dimensional radial integrals with the wave- and Green's functions both in non-relativistic and relativistic frameworks. DiracAngularMatrixElement[] - Calculates the angular matrix elements for various irreducible tensor operators. The elimination of some redundant procedures. In particular, the previous version supported evaluation of the spherical Bessel functions, Wigner 3j symbols, Clebsch-Gordan coefficients and spherical harmonics functions. These tools are now superseded by in-built procedures of Mathematica. The development of a full featured interactive help system which follows the style of the Mathematica Help Pages. Extensive revision of the source code in order to correct a number of bugs and inconsistencies that have been identified during use of the previous version of Dirac. The DIRAC package is distributed as a compressed tar file from which the DIRAC root directory can be (re-)generated. The root directory contains the source code and help libraries, a "Readme" file, Dirac_Installation_Instructions, as well as the notebook DemonstrationNotebook.nb that includes a number of test cases to illustrate the use of the program. These test cases, which concern the theoretical analysis of wavefunctions and the fine-structure of hydrogen-like ions, has already been discussed in detail in Ref. [1] and are provided here in order to underline the continuity between the previous (Maple) and new (Mathematica) versions of the DIRAC program. Unusual features: Even though all basic features of the previous Maple version have been retained in as close to the original form as possible, some small syntax changes became necessary in the new version of DIRAC in order to follow Mathematica standards. First of all, these changes concern naming conventions for DIRAC's procedures. As was discussed in Ref. [1], previously rather long names were employed in which each word was separated by an underscore. For example, when running the Maple version of the program one had to call the procedure Dirac_Slater_radial() in order to evaluate the Slater integral. Such a naming convention however, cannot be used in the Mathematica framework where the underscore character is reserved to represent Blank, a built-in symbol. In the new version of DIRAC we therefore follow the Mathematica convention of delimiting each word in a procedure's name by capitalization. Evaluation of the Slater determinant can be accomplished now simply by entering DiracSlaterRadial[]. Besides procedure names, a new convention is introduced to represent fundamental physical constants. In this version of DIRAC the group of (preset) global variables has changed to resemble their conventional symbols, specifically α, a, e, m, c and ℏ, being the fine structure constant, Bohr radius, electron charge, electron mass, speed of light and the Planck constant respectively. If the numerical evaluator N is wrapped around any of these constants, their numerical values are returned. Running time: Although the program replies promptly upon most requests, the running time also depends on the particular task. For example, computation of (radial) matrix elements involving components of relativistic wavefunctions might require a few seconds of a runtime. A number of test calculations performed regarding this and other tasks clearly indicate that the new version of Dirac requires up to 90% less evaluation time compared to its predecessor. References:A. Surzhykov, P. Koval, S. Fritzsche, Comput. Phys. Comm. 165 (2005) 139. H. Ogawa, et al., Phys. Rev. A 75 (2007) 1. A.V. Maiorova, et al., J. Phys. B: At. Mol. Opt. Phys. 42 (2009) 125003. L. Borowska, A. Surzhykov, Th. Stöhlker, S. Fritzsche, Phys. Rev. A 74 (2006) 062516. T. Radtke, S. Fritzsche, A. Surzhykov, Phys. Rev. A 74 (2006) 032709. A. Pálffy, Z. Harman, A. Surzhykov, U.D. Jentschura, Phys. Rev. A 75 (2007) 012712.
9Be scattering with microscopic wave functions and the continuum-discretized coupled-channel method
NASA Astrophysics Data System (ADS)
Descouvemont, P.; Itagaki, N.
2018-01-01
We use microscopic 9Be wave functions defined in a α +α +n multicluster model to compute 9Be+target scattering cross sections. The parameter sets describing 9Be are generated in the spirit of the stochastic variational method, and the optimal solution is obtained by superposing Slater determinants and by diagonalizing the Hamiltonian. The 9Be three-body continuum is approximated by square-integral wave functions. The 9Be microscopic wave functions are then used in a continuum-discretized coupled-channel (CDCC) calculation of 9Be+208Pb and of 9Be+27Al elastic scattering. Without any parameter fitting, we obtain a fair agreement with experiment. For a heavy target, the influence of 9Be breakup is important, while it is weaker for light targets. This result confirms previous nonmicroscopic CDCC calculations. One of the main advantages of the microscopic CDCC is that it is based on nucleon-target interactions only; there is no adjustable parameter. The present work represents a first step towards more ambitious calculations involving heavier Be isotopes.
Magnetic states, correlation effects and metal-insulator transition in FCC lattice
NASA Astrophysics Data System (ADS)
Timirgazin, M. A.; Igoshev, P. A.; Arzhnikov, A. K.; Irkhin, V. Yu
2016-12-01
The ground-state magnetic phase diagram (including collinear and spiral states) of the single-band Hubbard model for the face-centered cubic lattice and related metal-insulator transition (MIT) are investigated within the slave-boson approach by Kotliar and Ruckenstein. The correlation-induced electron spectrum narrowing and a comparison with a generalized Hartree-Fock approximation allow one to estimate the strength of correlation effects. This, as well as the MIT scenario, depends dramatically on the ratio of the next-nearest and nearest electron hopping integrals {{t}\\prime}/t . In contrast with metallic state, possessing substantial band narrowing, insulator one is only weakly correlated. The magnetic (Slater) scenario of MIT is found to be superior over the Mott one. Unlike simple and body-centered cubic lattices, MIT is the first order transition (discontinuous) for most {{t}\\prime}/t . The insulator state is type-II or type-III antiferromagnet, and the metallic state is spin-spiral, collinear antiferromagnet or paramagnet depending on {{t}\\prime}/t . The picture of magnetic ordering is compared with that in the standard localized-electron (Heisenberg) model.
Charge-Transfer Analysis of 2p3d Resonant Inelastic X-ray Scattering of Cobalt Sulfide and Halides
2017-01-01
We show that with 2p3d resonant inelastic X-ray scattering (RIXS) we can accurately determine the charge-transfer parameters of CoF2, CoCl2, CoBr2, and CoS. The 160 meV resolution RIXS results are compared with charge-transfer multiplet calculations. The improved resolution and the direct observation of the crystal field and charge-transfer excitations allow the determination of more accurate parameters than could be derived from X-ray absorption and X-ray photoemission, both limited in resolution by their lifetime broadening. We derive the crystal field and charge-transfer parameters of the Co2+ ions, which provides the nature of the ground state of the Co2+ ions with respect to symmetry and hybridization. In addition, the increased spectral resolution allows the more accurate determination of the atomic Slater integrals. The results show that the crystal field energy decreases with increasing ligand covalency. The L2 edge RIXS spectra show that the intensity of the (Coster–Kronig induced) nonresonant X-ray emission is a measure of ligand covalency. PMID:29170686
Sasaki, Akira; Kojo, Masashi; Hirose, Kikuji; Goto, Hidekazu
2011-11-02
The path-integral renormalization group and direct energy minimization method of practical first-principles electronic structure calculations for multi-body systems within the framework of the real-space finite-difference scheme are introduced. These two methods can handle higher dimensional systems with consideration of the correlation effect. Furthermore, they can be easily extended to the multicomponent quantum systems which contain more than two kinds of quantum particles. The key to the present methods is employing linear combinations of nonorthogonal Slater determinants (SDs) as multi-body wavefunctions. As one of the noticeable results, the same accuracy as the variational Monte Carlo method is achieved with a few SDs. This enables us to study the entire ground state consisting of electrons and nuclei without the need to use the Born-Oppenheimer approximation. Recent activities on methodological developments aiming towards practical calculations such as the implementation of auxiliary field for Coulombic interaction, the treatment of the kinetic operator in imaginary-time evolutions, the time-saving double-grid technique for bare-Coulomb atomic potentials and the optimization scheme for minimizing the total-energy functional are also introduced. As test examples, the total energy of the hydrogen molecule, the atomic configuration of the methylene and the electronic structures of two-dimensional quantum dots are calculated, and the accuracy, availability and possibility of the present methods are demonstrated.
Joint Program on Molecular Biology of Marine Organisms
1992-08-20
and lateral flagella formation in a marine vibrio (Belas and Colwell, 1982). Upon contact with a surface, the polar flagella of Vibrio ... parahemolyticus ceased to function. Shortl’ thereafter, lateral flagella formed around the cells, apparently mediating the "irreversible" attachment process. Pilus...Colwell. 1982. Adsorption kinetics of 18 Slaterally and polarly flagellated Vibrio . J. Bacteriol. 151:1568-1580. S-- Brown, C.M., D.C. Ellwood, and
NASA Technical Reports Server (NTRS)
Friedmann, Peretz P.; Johnson, Wayne; Scully, Michael P.
2011-01-01
Rene H. Miller (May 19, 1916 January 28, 2003), Emeritus H. N. Slater Professor of Flight Transportation, was one of the most influential pioneers in rotary wing aeromechanics as well as a visionary whose dream was the development of a tilt-rotor based short haul air transportation system. This paper pays a long overdue tribute to his memory and to his extraordinary contributions.
2012-09-01
Feasibility (MT Modeling ) a. Continuum of mixture distributions interpolated b. Mixture infeasibilities calculated for each pixel c. Valid detections...Visible/Infrared Imaging Spectrometer BRDF Bidirectional Reflectance Distribution Function CASI Compact Airborne Spectrographic Imager CCD...filtering (MTMF), and was designed by Healey and Slater (1999) to use “a physical model to generate the set of sensor spectra for a target that will be
Quantum-Mechanical Definition of Atoms and Chemical Bonds in Molecules
2015-01-01
properties into atomic and bonding contributions, continue to be a focus of considerable attention, dating from early studies of Slater [12], Van Vleck [13...theory employing (Eisenschitz-London) spectral products of atomic eigenstates, familiar from early combined studies of covalent and van der Waals...of atoms and bonds in molecules provided by the present study , rather than to report highly accurate potential curves for the H3 molecule obtained
(Short articles on energy conservation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodges, L.
1985-01-01
The following short articles are reprinted after being published in the Tri-County Times, Slater, Iowa, by Laurent Hodges of the Iowa State University Energy Extension Service: water power; small hydroelectric plants; condensation problems (three parts); energy quiz and answers; the airtight drywall approach; benefits of natural lighting; energy and Iowa's building code; heating, water heating and cooling costs in Iowa; the cost of keeping cool; and reducing the cost of keeping cool. (DLC)
NASA Astrophysics Data System (ADS)
Bansal, Himani; Tiwari, M. K.; Mittal, Raj
2018-01-01
M sub-shell X-ray fluorescence cross-sections of elements Pt, Au, Hg, Pb, Th and U have been measured with linearly polarized photon beams from Indus-II synchrotron source at Raja Ramanna Centre for Advanced Technology (RRCAT), India at tuned 5, 7 and 9 keV energies less than the L3 edge energy of elements. Measurements at present energies and elements are not available in literature. Therefore, measured cross-sections for Mξ, Mδ, Mα, Mβ, Mγ, Mm1 and Mm2 group of X-rays were compared with calculated theoretical values based upon Non Relativistic Hartree-Slater (NRHS) and relativistic Dirac-Fork (DF) and Dirac-Hartree-Slater (DHS) models. The measured cross-sections along with our earlier quoted measurements at 8 and 10 keV by Kaur et al. [Nucl. Instrum. Meth. B, 2014; 320: 37] are found in good agreement with DF and DHS values around 20% deviations and are highly deviated from NRHS values. Most of the spots of observed high deviations in measured and theoretical cross-sections are found to coincide with the presence of crisscrosses/sharp variations in contributing physical parameters photo-ionization cross-sections σMi's and Coster-Kronig yields fij's with Zs.
Geminal embedding scheme for optimal atomic basis set construction in correlated calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorella, S., E-mail: sorella@sissa.it; Devaux, N.; Dagrada, M., E-mail: mario.dagrada@impmc.upmc.fr
2015-12-28
We introduce an efficient method to construct optimal and system adaptive basis sets for use in electronic structure and quantum Monte Carlo calculations. The method is based on an embedding scheme in which a reference atom is singled out from its environment, while the entire system (atom and environment) is described by a Slater determinant or its antisymmetrized geminal power (AGP) extension. The embedding procedure described here allows for the systematic and consistent contraction of the primitive basis set into geminal embedded orbitals (GEOs), with a dramatic reduction of the number of variational parameters necessary to represent the many-body wavemore » function, for a chosen target accuracy. Within the variational Monte Carlo method, the Slater or AGP part is determined by a variational minimization of the energy of the whole system in presence of a flexible and accurate Jastrow factor, representing most of the dynamical electronic correlation. The resulting GEO basis set opens the way for a fully controlled optimization of many-body wave functions in electronic structure calculation of bulk materials, namely, containing a large number of electrons and atoms. We present applications on the water molecule, the volume collapse transition in cerium, and the high-pressure liquid hydrogen.« less
NASA Astrophysics Data System (ADS)
Menezes, Marcos; Capaz, Rodrigo
Black Phosphorus (BP) is a promising material for applications in electronics, especially due to the tuning of its band gap by increasing the number of layers. In single-layer BP, also called Phosphorene, the P atoms form two staggered chains bonded by sp3 hybridization, while neighboring layers are bonded by Van-der-Waals interactions. In this work, we present a Tight-Binding (TB) parametrization of the electronic structure of single and few-layer BP, based on the Slater-Koster model within the two-center approximation. Our model includes all 3s and 3p orbitals, which makes this problem more complex than that of graphene, where only 2pz orbitals are needed for most purposes. The TB parameters are obtained from a least-squares fit of DFT calculations carried on the SIESTA code. We compare the results for different basis-sets used to expand the ab-initio wavefunctions and discuss their applicability. Our model can fit a larger number of bands than previously reported calculations based on Wannier functions. Moreover, our parameters have a clear physical interpretation based on chemical bonding. As such, we expect our results to be useful in a further understanding of multilayer BP and other 2D-materials characterized by strong sp3 hybridization. CNPq, FAPERJ, INCT-Nanomateriais de Carbono.
NASA Astrophysics Data System (ADS)
Singh, P.; Sharma, M.; Shahi, J. S.; Mehta, D.; Singh, N.
2003-09-01
The L i ( i=1,2,3) subshell X-ray production (XRP) cross-sections were measured for 77Ir, 78Pt, 82Pb and 83Bi following direct ionization in the L i ( i=1,2,3) subshells by the 59.54 keV γ-rays and the L 3 subshell by the Br/Rb/Sr/Y K X-rays. The photon sources consisting of an 241Am source in (i) the direct excitation mode and (ii) the secondary excitation mode together with the KBr/RbNO 3/SrCO 3 /Y secondary exciter and an Si(Li) detector were used. The L i ( i=1,2,3) subshell fluorescence yields ( ωi) for these elements were deduced using the measured XRP cross-sections and the L i subshell photoionization cross-sections based on the Hartree-Fock-Slater model. The measured ω1 values are found to be higher upto 50% than those based on the relativistic Dirac-Hartree-Slater (RDHS) calculations, while the ω2 and ω3 values exhibit good agreement. The predicted jump in the RDHS based ω1 values from 77Ir to 78Pt due to onset of intense L 1-L 3M 4 CK transition is not observed.
Mode Competition in the Quasioptical Gyrotron
1990-05-30
dvid Jd n J C nH ]d. v1 dCl v-1 J dC4 vm M Jd ;v M_ &(vl- v1 ) 6(vn - vn °) & r- vm ). (B18) It is clear from (B16)-( BI8 ) that r, G and D depend...AZ 85721 Attn: Dr. Willis E. Lamb, Jr. 1 copy Physical Sciences, Inc. 635 Slaters Lane #G101 Alexandria, VA 22314-1112 ATTN: Dr. M.E. Read 1 copy
NASA Technical Reports Server (NTRS)
Andrew, K. H.
1975-01-01
The relationship between the Slater-Condon theory and the conditions within the atom as revealed by experimental data was investigated. The first spectrum of Si, Rb, Cl, Br, I, Ne, Ar, and Xe-136 and the second spectrum of As, Cu, and P were determined. Methods for assessing the phase stability of fringe counting interferometers and the design of an autoranging scanning system for digitizing the output of an infrared spectrometer and recording it on magnetic tape are described.
Change in the Magnitude of River Flooding in the United States, 1965-2015
This figure shows changes in the size and frequency of flooding events in rivers and streams in the United States between 1965 and 2015. Blue upward-pointing symbols show locations where floods have become larger; brown downward-pointing symbols show locations where floods have become smaller. Data were analyzed by Louise Slater and Gabriele Villarini at the University of Iowa. For more information: www.epa.gov/climatechange/science/indicators
Relativistic Calculations and Measurements of Energies, Auger Rates, and Lifetimes.
1982-12-01
Research and Industry, Denton, Texas, 8-10 November 1982. 7. B. Crasemann: "Efectos Relativ’sticos y de QED Sobre las Transiciones Rayos - X y Auger Entre...INNER-SHELL IONIZATION BY PROTONS X -RAY EMISSION BREIT INTERACTION AUGER TRANSITIONS DIRAC-HARTREE-SLATER COMPUTATIONS SYNCHROTRON RADIATION RESONANT...computations, including relativistic and quantum- electrodynamic effects, of atomic energy levels and of x -ray and Auger transitions in atoms with one or
Charge-density-shear-moduli relationships in aluminum-lithium alloys.
Eberhart, M
2001-11-12
Using the first principles full-potential linear-augmented-Slater-type orbital technique, the energies and charge densities of aluminum and aluminum-lithium supercells have been computed. The experimentally observed increase in aluminum's shear moduli upon alloying with lithium is argued to be the result of predictable changes to aluminum's total charge density, suggesting that simple rules may allow the alloy designer to predict the effects of dilute substitutional elements on alloy elastic response.
2012-02-20
Ohio Space Grant Consortium (OSGC) Director Gary Slater talks during the NASA Future Forum Inspiration and Education Panel at The Ohio State University on Monday, Feb. 20, 2012, in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)
High Rate Performing Li-ion Battery
2015-02-09
this storage capacity is known so far the highest among all phosphate-based cathode materials. Unlike olivine LiFePO4 with inherent low lithium ion...1 ). 24 However, similar to LiFePO4 , the main drawback of LVP is its intrinsic poor electronic conductivity (10 −8 Scm −1 ) 25 which can hinder...Fisher, C. A. J. & Slater, P. R. Atomic-scale Investigation of Defects, Dopants, and Lithium Transport in the LiFePO4 Olivine-type Battery
1981-08-01
stretch: The Berkeley Industrial Park at Martin Street with 80 acres in the flood plain, the Owens - Corning Fiberglas Company at Ashton, and the...River, Ashton, RI 8/2Z/55 Owens Corning Fiberglas Plant lower right. Lonsdale Area, Cumnberland, RI 8/22/55 Al4 * raw Old Slater Mill, Cumberland, RI...area, the Owens - Corning Fiberglas Corporation industrial concern may be subject to damages. The industry has implemented nonstructural floodproofing
Dielectric behavior of semiconductors at microwave frequencies
NASA Technical Reports Server (NTRS)
Dahiya, Jai N.
1992-01-01
A cylindrical microwave resonant cavity in TE(011) (Transverse Electric) mode is used to study the dielectric relaxation in germanium and silicon. The samples of these semiconductors are used to perturb the electric field in the cavity, and Slater's perturbation equations are used to calculate the real and imaginary parts of the dielectric constant. The dielectric loss of germanium and silicon is studied at different temperatures, and Debye's equations are used to calculate the relaxation time at these temperatures.
1984-12-01
Koolhaas, Jan. Organization Dissonance and Change. New York: Wiley, 1982. Kotler , Philip . Marketing Management: Analysis. Plannin2. and Control. 5th...Employment Relationship." Econometrica, 1951, 19, 293-305. Slater, Philip E. "Some Social Consequences of Temporary Systems." in W.G. Bennis and P.E...and Philip W. Yetton. Leadershin and Decision Making. Pittsburgh: University of Pittsburgh Press, 1973. Walker, James W. Human Resource Planning. New
Excited states from quantum Monte Carlo in the basis of Slater determinants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humeniuk, Alexander; Mitrić, Roland, E-mail: roland.mitric@uni-wuerzburg.de
2014-11-21
Building on the full configuration interaction quantum Monte Carlo (FCIQMC) algorithm introduced recently by Booth et al. [J. Chem. Phys. 131, 054106 (2009)] to compute the ground state of correlated many-electron systems, an extension to the computation of excited states (exFCIQMC) is presented. The Hilbert space is divided into a large part consisting of pure Slater determinants and a much smaller orthogonal part (the size of which is controlled by a cut-off threshold), from which the lowest eigenstates can be removed efficiently. In this way, the quantum Monte Carlo algorithm is restricted to the orthogonal complement of the lower excitedmore » states and projects out the next highest excited state. Starting from the ground state, higher excited states can be found one after the other. The Schrödinger equation in imaginary time is solved by the same population dynamics as in the ground state algorithm with modified probabilities and matrix elements, for which working formulae are provided. As a proof of principle, the method is applied to lithium hydride in the 3-21G basis set and to the helium dimer in the aug-cc-pVDZ basis set. It is shown to give the correct electronic structure for all bond lengths. Much more testing will be required before the applicability of this method to electron correlation problems of interesting size can be assessed.« less
Slater Insulator in Iridate Perovskites with Strong Spin-Orbit Coupling.
Cui, Q; Cheng, J-G; Fan, W; Taylor, A E; Calder, S; McGuire, M A; Yan, J-Q; Meyers, D; Li, X; Cai, Y Q; Jiao, Y Y; Choi, Y; Haskel, D; Gotou, H; Uwatoko, Y; Chakhalian, J; Christianson, A D; Yunoki, S; Goodenough, J B; Zhou, J-S
2016-10-21
The perovskite SrIrO_{3} is an exotic narrow-band metal owing to a confluence of the strengths of the spin-orbit coupling (SOC) and the electron-electron correlations. It has been proposed that topological and magnetic insulating phases can be achieved by tuning the SOC, Hubbard interactions, and/or lattice symmetry. Here, we report that the substitution of nonmagnetic, isovalent Sn^{4+} for Ir^{4+} in the SrIr_{1-x}Sn_{x}O_{3} perovskites synthesized under high pressure leads to a metal-insulator transition to an antiferromagnetic (AF) phase at T_{N}≥225 K. The continuous change of the cell volume as detected by x-ray diffraction and the λ-shape transition of the specific heat on cooling through T_{N} demonstrate that the metal-insulator transition is of second order. Neutron powder diffraction results indicate that the Sn substitution enlarges an octahedral-site distortion that reduces the SOC relative to the spin-spin exchange interaction and results in the type-G AF spin ordering below T_{N}. Measurement of high-temperature magnetic susceptibility shows the evolution of magnetic coupling in the paramagnetic phase typical of weak itinerant-electron magnetism in the Sn-substituted samples. A reduced structural symmetry in the magnetically ordered phase leads to an electron gap opening at the Brillouin zone boundary below T_{N} in the same way as proposed by Slater.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellis, D.E.; Gubanov, V.A.; Rosen, A.
The electronic structure of actinide monoxides AcO and dioxides AcO/sub 2/, where Ac = Th, U, Np, Pu, Am, Cm and Bk has been studied by molecular cluster methods based on the first-principles one-electron local density theory. Molecular orbitals for nearest neighbor clusters AcO/sup 10 -//sub 6/ and AcO/sup 12 -//sub 8/ representative of monoxide and dioxide lattices were obtained using non-relativistic spin-restricted and spin-polarized Hartree-Fock-Slater models for the entire series. Fully relativistic Dirac-Slater calculations were performed for ThO, UO and NpO in order to explore magnitude of spin-orbit splittings and level shifts in valence structure. Self-consistent iterations were carriedmore » out for NpO, in which the NpO/sub 6/ cluster was embedded in the molecular field of the solid. Finally, a ''moment polarized'' model which combines both spin-polarization and relativistic effects in a consistent fashion was applied to the NpO system. Covalent mixing of oxygen 2p and Ac 5f orbitals was found to increase rapidly across the actinide series; metal s,p,d covalency was found to be nearly constant. Mulliken atomic population analysis of cluster eigenvectors shows that free-ion crystal field models are unreliable, except for the light actinides. X-ray photoelectron line shapes have been calculated and are found to compare rather well with experimental data on the dioxides.« less
NASA Astrophysics Data System (ADS)
Khandy, Shakeel Ahmad; Gupta, Dinesh C.
2017-10-01
An extensive study of rare-earth perovskite BaPaO3 and BaNpO3 has been performed by first-principles tactics based on density functional theory (DFT), because the delocalized f-electrons play an important role in the band structure formation, to reveal their impact on the overall physical and chemical properties; it has turned out to be an interesting theme. Along with critical radii and thermoelectric properties, two different theories are employed to calculate the structural properties. The DFT and empirically calculated lattice constants are in rational accord with the experimental results. The critical radius calculations show that the BaPaO3 lattice has a smaller oxygen migration activation energy than the BaNpO3. In addition, we discuss the band profile and magnetic moments for these materials, which demonstrate the half-metallic ferromagnetism with a direct energy gap of 3.91 eV for BaPaO3 and an indirect gap of 3.79 eV for BaNpO3. More interestingly, the integral magnetic moments are in accordance with the Slater-Pauling rule.
Monte Carlo explicitly correlated second-order many-body perturbation theory
NASA Astrophysics Data System (ADS)
Johnson, Cole M.; Doran, Alexander E.; Zhang, Jinmei; Valeev, Edward F.; Hirata, So
2016-10-01
A stochastic algorithm is proposed and implemented that computes a basis-set-incompleteness (F12) correction to an ab initio second-order many-body perturbation energy as a short sum of 6- to 15-dimensional integrals of Gaussian-type orbitals, an explicit function of the electron-electron distance (geminal), and its associated excitation amplitudes held fixed at the values suggested by Ten-no. The integrals are directly evaluated (without a resolution-of-the-identity approximation or an auxiliary basis set) by the Metropolis Monte Carlo method. Applications of this method to 17 molecular correlation energies and 12 gas-phase reaction energies reveal that both the nonvariational and variational formulas for the correction give reliable correlation energies (98% or higher) and reaction energies (within 2 kJ mol-1 with a smaller statistical uncertainty) near the complete-basis-set limits by using just the aug-cc-pVDZ basis set. The nonvariational formula is found to be 2-10 times less expensive to evaluate than the variational one, though the latter yields energies that are bounded from below and is, therefore, slightly but systematically more accurate for energy differences. Being capable of using virtually any geminal form, the method confirms the best overall performance of the Slater-type geminal among 6 forms satisfying the same cusp conditions. Not having to precompute lower-dimensional integrals analytically, to store them on disk, or to transform them in a nonscalable dense-matrix-multiplication algorithm, the method scales favorably with both system size and computer size; the cost increases only as O(n4) with the number of orbitals (n), and its parallel efficiency reaches 99.9% of the ideal case on going from 16 to 4096 computer processors.
Analogies Among Chemical Properties of Metal Surfaces, Organometallic Molecules, and Enzymes.
1978-07-14
definition of electronegativity given in Eg. (4). This follows from a simple geometric theorem which relates the slope of the chord ot I parabola to...the slope of the parabola at its midpoint. The same type of argument applied to SCF-Xa Orbitals leads to Slater’s transition-state concept, whereby...that it can realistically represent transition-metal comple\\ es of the typo (e.g., M » Pt, Ir, Rh; L = PtuP • triphe^ylphosphine) which dissociat1vely
Measurement of Kα and Kβ fluorescence cross sections for elements in the range 44<=Z<=68 at 59.5 keV
NASA Astrophysics Data System (ADS)
Budak, G.; Karabulut, A.; Demir, L.; Sahin, Y.
1999-09-01
The Kα and Kβ x-ray fluorescence cross sections have been measured for elements in the range 44<=Z<=68 at an excitation energy of 59.5-keV γ ray from 241Am radioisotope with a Si(Li) detector. A reasonable agreement is found between the present experimental results and the theoretically calculated values based on photoionization cross sections by Scofield using Hartree-Slater and Hartree-Fock central potential theory.
NASA Astrophysics Data System (ADS)
Tabakovic, Ibro; Venkatasamy, Venkatram
2018-04-01
The results of reverse pulse electrodeposition of CoFeNi films with ultra-high magnetic saturation, i.e. Bs values between 2.4 and 2.59 T, are presented in this work. Based on valence-bond theory (Hund's rule) it was assumed that the electronic configuration of MOH obtained by one electron reduction of electroactive intermediate (MOH+ads + e → MOHads) or oxidation of metal (M - e + HOH → MOH + H+) would result with larger number of spins per atom for each of transition metals in MOH-precipitated in CoFeNi deposit- with one more spin than their respective neutral metal in the order: Fe > Co > Ni. The experimental results showed that the increase of Bs value above Slater-Pauling curve was not observed for CoFe alloys, thus FeOH and CoOH compounds were not present in deposit. However, the increase of the Bs values above the Slater-Pauling curve (Bs = 2.4-2.59 T) was observed, for CoFeNi films obtained by reverse pulse electrodeposition. Therefore, NiOH as a stable compound is probably formed in a one-electron oxidation step during anodic pulse oxidation reaction precipitated presumably at the grain boundaries, giving rise to the ultra-high magnetic saturation of CoFeNi films. The effects of experimental conditions on elemental composition, magnetic properties, crystal structure, and thermal stability of CoFeNi films were studied.
Tapping the Power of an Online Course to Allow for Differentiated Introductory Astronomy Instruction
NASA Astrophysics Data System (ADS)
Gelderman, Richard
2011-01-01
Online classes are here to stay. This appears to be true regardless of whether or not student performance in online environments is really comparable to performance levels in comparable face-to-face instruction (e.g., Ury & Ury 2005, Slater & Jones 2004, Brown & Liedholm 2002). This report avoids that unwieldy question and instead concentrates on the opportunities for online courses to build on their potential to improve upon standard classroom settings. An introductory astronomy course has been designed that utilizes MasteringAstronomy and Blackboard to provide a course structure that varies depending on the results of pre-tests and quizzes. Software flags unlock additional tutorials and formative assessments for students who perform poorly on the pre-tests and gatekeeper quizzes. This "long track” involves no grade penalty, but does require additional time on task. While some students withdraw in frustration, the majority of students who find themselves on the "long track” express appreciation at being encouraged to finally learn the material. Meanwhile, the high performing students proceed quickly toward the unit exams, completing their work fairly quickly but tending to spend more time interacting within the Discussion Forums. Overall, this ability to provide differentiated instruction is a meaningful improvement over instructional approaches that can be implemented in a large enrollment face-to-face classroom. Brown, B. & Liedholm, C., 2002, Am. Economic Review, 92, 444 Slater, T. & Jones L., 2004 Astronomy Education Review, 3(1) Ury, G. & Ury, C., 2005, Proc ISECON, 22
Slater insulator in iridate perovskites with strong spin-orbit coupling
Cui, Q.; Cheng, J. -G.; Fan, W.; ...
2016-10-20
The perovskite SrIrO 3 is an exotic narrow-band metal owing to a confluence of the strengths of the spin-orbit coupling (SOC) and the electron-electron correlations. It has been proposed that topological and magnetic insulating phases can be achieved by tuning the SOC, Hubbard interactions, and/or lattice symmetry. Here, we report that the substitution of nonmagnetic, isovalent Sn 4+ for Ir 4+ in the SrIr 1–xSn xO 3 perovskites synthesized under high pressure leads to a metal-insulator transition to an antiferromagnetic (AF) phase at T N ≥ 225 K. The continuous change of the cell volume as detected by x-ray diffractionmore » and the λ-shape transition of the specific heat on cooling through T N demonstrate that the metal-insulator transition is of second order. Neutron powder diffraction results indicate that the Sn substitution enlarges an octahedral-site distortion that reduces the SOC relative to the spin-spin exchange interaction and results in the type- G AF spin ordering below T N. Measurement of high-temperature magnetic susceptibility shows the evolution of magnetic coupling in the paramagnetic phase typical of weak itinerant-electron magnetism in the Sn-substituted samples. Furthermore, a reduced structural symmetry in the magnetically ordered phase leads to an electron gap opening at the Brillouin zone boundary below T N in the same way as proposed by Slater.« less
Slater revisited: 6 year follow up study of patients with medically unexplained motor symptoms.
Crimlisk, H L; Bhatia, K; Cope, H; David, A; Marsden, C D; Ron, M A
1998-02-21
To investigate psychiatric and neurological morbidity, diagnostic stability, and indicators of prognosis in patients previously identified as having medically unexplained motor symptoms. Follow up study. National Hospital for Neurology and Neurosurgery, London--a secondary and tertiary referral hospital for neurological disorders. 73 patients with medically unexplained motor symptoms admitted consecutively in 1989-91. 35 (48%) patients had absence of motor function (for example, hemiplegia) and 38 (52%) had abnormal motor activity (for example, tremor, dystonia, or ataxia). Neurological clinical diagnosis at face to face reassessment by a neurologist and a psychiatric diagnosis after a standardised assessment interview--the schedule for affective disorders and schizophrenia--conducted by a psychiatrist. Good follow up data were available for 64 subjects (88%). Only three subjects had new organic neurological disorders at follow up that fully or partly explained their previous symptoms. 44/59 (75%) subjects had had psychiatric disorders; in 33 (75%) patients, the psychiatric diagnosis coincided with their unexplained motor symptoms. 31/59 (45%) patients had a personality disorder. Three subjects had developed new psychiatric illnesses at follow up, but in only one did the diagnosis account for the previous motor symptoms. Resolution of physical symptoms was associated with short length of symptoms, comorbid psychiatric disorder, and a change in marital status during follow up. Unlike Slater's study of 1965, a low incidence of physical or psychiatric diagnoses which explained these patients' symptoms or disability was found. However, a high level of psychiatric comorbidity existed.
Anisotropy in layered half-metallic Heusler alloy superlattices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azadani, Javad G.; Munira, Kamaram; Sivakumar, Chockalingam
2016-01-28
We show that when two Heusler alloys are layered in the [001], [110], or [111] directions for various thicknesses to form a superlattice, the Slater-Pauling rule may still be satisfied and the resulting superlattice is often half-metallic with gaps comparable to or larger than those of its constituents. In addition, uniaxial magnetocrystalline anisotropy is induced because of the differences in the electronic structure of the two Heuslers in the superlattice. Various full-full, full-half, and half-half Heusler superlattices are studied, and potential half-metallic superlattices with perpendicular magnetocrystalline anisotropy are identified.
The electronic and magnetic properties of quaternary Heusler alloy CoFeMnGe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seema, K.
2016-05-23
We present study of quaternary Heusler alloy CoFeMnGe using density functional theory. The compound is half-metallic with half-metallic gap of 0.13 eV. The total magnetic moment of this compound is 3.96 μ{sub B} which is in close agreement with Slater-Pauling rule. The effect of lattice compression and expansion shows the robustness of half-metallicity. A large value of half-metallic gap and 100% spin-polarization makes this material interesting for spin dependent applications.
Transition probability functions for applications of inelastic electron scattering
Löffler, Stefan; Schattschneider, Peter
2012-01-01
In this work, the transition matrix elements for inelastic electron scattering are investigated which are the central quantity for interpreting experiments. The angular part is given by spherical harmonics. For the weighted radial wave function overlap, analytic expressions are derived in the Slater-type and the hydrogen-like orbital models. These expressions are shown to be composed of a finite sum of polynomials and elementary trigonometric functions. Hence, they are easy to use, require little computation time, and are significantly more accurate than commonly used approximations. PMID:22560709
NASA Astrophysics Data System (ADS)
Messud, J.; Dinh, P. M.; Reinhard, P.-G.; Suraud, Eric
2009-10-01
We propose a simplification of the time-dependent self-interaction correction (TD-SIC) method using two sets of orbitals, applying the optimized effective potential (OEP) method. The resulting scheme is called time-dependent “generalized SIC-OEP.” A straightforward approximation, using the spatial localization of one set of orbitals, leads to the “generalized SIC-Slater” formalism. We show that it represents a great improvement compared to the traditional SIC-Slater and Krieger-Li-Iafrate formalisms.
Relativistic scattered wave calculations on UF6
NASA Technical Reports Server (NTRS)
Case, D. A.; Yang, C. Y.
1980-01-01
Self-consistent Dirac-Slater multiple scattering calculations are presented for UF6. The results are compared critically to other relativistic calculations, showing that the results of all molecular orbital calculations are in qualitative agreement, as measured by energy levels, population analyses, and spin-orbit splittings. A detailed comparison is made to the relativistic X alpha(RX alpha) method of Wood and Boring, which also uses multiple scattering theory, but incorporates relativistic effects in a more approximate fashion. For the most part, the RX alpha results are in agreement with the present results.
1977-01-01
An s extended summary of the theoretical and ex- perimental work on Si02 is to be found in that paper. The tight-binding basis con- sists of the four... theoretical and experimental works contained therein. 4. B. Fischer, R. A. Pollak, T. H. Distefano and W. D. Grobman, "Electronic Structure of SiO 2, SixGe 1 x...and GeO 2 from Photoemission Spectroscopy," Phys. Rev. BI5, 3193 (1977), and references to earlier works therein. 5. J. H. Scofield , "Hartree-Slater
Mean-field theory of baryonic matter for QCD in the large Nc and heavy quark mass limits
NASA Astrophysics Data System (ADS)
Adhikari, Prabal; Cohen, Thomas D.
2013-11-01
We discuss theoretical issues pertaining to baryonic matter in the combined heavy-quark and large Nc limits of QCD. Witten's classic argument that baryons and interacting systems of baryons can be described in a mean-field approximation with each of the quarks moving in an average potential due to the remaining quarks is heuristic. It is important to justify this heuristic description for the case of baryonic matter since systems of interacting baryons are intrinsically more complicated than single baryons due to the possibility of hidden color states—states in which the subsystems making up the entire baryon crystal are not color-singlet nucleons but rather colorful states coupled together to make a color-singlet state. In this work, we provide a formal justification of this heuristic prescription. In order to do this, we start by taking the heavy quark limit, thus effectively reducing the problem to a many-body quantum mechanical system. This problem can be formulated in terms of integrals over coherent states, which for this problem are simple Slater determinants. We show that for the many-body problem, the support region for these integrals becomes narrow at large Nc, yielding an energy which is well approximated by a single coherent state—that is a mean-field description. Corrections to the energy are of relative order 1/Nc. While hidden color states are present in the exact state of the heavy quark system, they only influence the interaction energy below leading order in 1/Nc.
Self-consistent average-atom scheme for electronic structure of hot and dense plasmas of mixture.
Yuan, Jianmin
2002-10-01
An average-atom model is proposed to treat the electronic structures of hot and dense plasmas of mixture. It is assumed that the electron density consists of two parts. The first one is a uniform distribution with a constant value, which is equal to the electron density at the boundaries between the atoms. The second one is the total electron density minus the first constant distribution. The volume of each kind of atom is proportional to the sum of the charges of the second electron part and of the nucleus within each atomic sphere. By this way, one can make sure that electrical neutrality is satisfied within each atomic sphere. Because the integration of the electron charge within each atom needs the size of that atom in advance, the calculation is carried out in a usual self-consistent way. The occupation numbers of electron on the orbitals of each kind of atom are determined by the Fermi-Dirac distribution with the same chemical potential for all kinds of atoms. The wave functions and the orbital energies are calculated with the Dirac-Slater equations. As examples, the electronic structures of the mixture of Au and Cd, water (H2O), and CO2 at a few temperatures and densities are presented.
At-edge minima in elastic photon scattering amplitudes for dilute aqueous ions
NASA Astrophysics Data System (ADS)
Bradley, D. A.; Hugtenburg, R. P.; Yusoff, A. L.
2006-11-01
Elastic photon scattering and absorption in the vicinity of core atomic orbital energies give rise to resonances in the elastic photon scattering cross-section. Of interest is whether a dilute-ion aqueous system provides an environment suitable for testing independent particle approximation (IPA) predictions. Predictions of the energy of these resonances have been determined for a Dirac-Slater exchange potential with a Latter tail. At BM28 (ESRF), tuneable X-rays were obtained at eV resolution using a 1 1 1 Si monochromator. From target systems including Cu 2+ and Zn 2+, the X-rays were scattered through high angle from an aqueous medium contained in a thin Perspex cell provided with 8 μm kaplan windows. An energy resolution of ˜500 eV from the HPGe detector was adequate to separate the elastic scattering signal from K α radiation but not from Compton or K β contributions. The Compton contribution from the medium was removed assuming validity of the relativistic impulse approximation. The contribution due to K β fluorescence and the resonant X-ray Raman scattering process were handled by assuming the branching ratio for K α and K β contributions to be constant and to be accurately described by fluorescent yields measured above edge. At ionic concentrations ranging from 0.01 to 0.1 mol/l, resonance structures accord with predictions of elastic scattering cross-sections calculated within IPA. Amplitudes calculated using modified form-factors and anomalous scatter factors computed from a Dirac-Slater exchange potential were convolved with a Lorentzian of several eV (FWHM).
X-alpha calculation of transition energies in multiply ionized atoms
NASA Technical Reports Server (NTRS)
Ringers, D. A.; Chen, M. H.
1974-01-01
It is shown that the accuracy of calculations can be improved if appropriate (different) values of alpha are used for each configuration. Alternatively, the Slater Transition state can be used, wherein a total energy difference is related to a difference in single electron eigenvalues. By a series expansion, the value of alpha for an excited configuration can be related to its value for the ground state configuration. The terms Delta alpha (delta Epsilon/delta alpha) exhibit a similar dependence on atomic number as the ground state values of alpha. Results of sample calculations are reported and compared with experiment.
NASA Astrophysics Data System (ADS)
Hourahine, B.; Aradi, B.; Frauenheim, T.
2010-07-01
DFTB+ is a recent general purpose implementation of density-functional based tight binding. One of the early motivators to develop this code was to investigate lanthanide impurities in nitride semiconductors, leading to a series of successful studies into structure and electrical properties of these systems. Here we describe our general framework to treat the physical effects needed for these problematic impurities within a tight-binding formalism, additionally discussing forces and stresses in DFTB. We also present an approach to evaluate the general case of Slater-Koster transforms and all of their derivatives in Cartesian coordinates. These developments are illustrated by simulating isolated Gd impurities in GaN.
ERIC Educational Resources Information Center
Lindsay, Beverly; Poindexter, Maria T.
2003-01-01
Reviews three books that address the relations between technology, race, and education, and illuminate the realistic impact that the Internet has had on persons of African descent in the United States and Trinidad. Discusses the digital divide among U.S. racial/ethnic groups and across countries and the social and political implications of the…
Theoretical dissociation energies for the alkali and alkaline-earth monofluorides and monochlorides
NASA Technical Reports Server (NTRS)
Langhoff, S. R.; Bauschlicher, C. W., Jr.; Partridge, H.
1986-01-01
Spectroscopic parameters are accurately determined for the alkali and alkaline-earth monofluorides and monochlorides by means of ab initio self-consistent field and correlated wave function calculations. Numerical Hartree-Fock calculations are performed on selected systems to ensure that the extended Slater basis sets employed are near the Hartree-Fock limit. Since the bonding is predominantly electrostatic in origin, a strong correlation exists between the dissociation energy (to ions) and the spectroscopic parameter r(e). By dissociating to the ionic limits, most of the differential correlation effects can be embedded in the accurate experimental electron affinities and ionization potentials.
Blunt, Nick S.; Neuscamman, Eric
2017-11-16
We present a simple and efficient wave function ansatz for the treatment of excited charge-transfer states in real-space quantum Monte Carlo methods. Using the recently-introduced variation-after-response method, this ansatz allows a crucial orbital optimization step to be performed beyond a configuration interaction singles expansion, while only requiring calculation of two Slater determinant objects. As a result, we demonstrate this ansatz for the illustrative example of the stretched LiF molecule, for a range of excited states of formaldehyde, and finally for the more challenging ethylene-tetrafluoroethylene molecule.
Tight-binding model for borophene and borophane
NASA Astrophysics Data System (ADS)
Nakhaee, M.; Ketabi, S. A.; Peeters, F. M.
2018-03-01
Starting from the simplified linear combination of atomic orbitals method in combination with first-principles calculations, we construct a tight-binding (TB) model in the two-centre approximation for borophene and hydrogenated borophene (borophane). The Slater and Koster approach is applied to calculate the TB Hamiltonian of these systems. We obtain expressions for the Hamiltonian and overlap matrix elements between different orbitals for the different atoms and present the SK coefficients in a nonorthogonal basis set. An anisotropic Dirac cone is found in the band structure of borophane. We derive a Dirac low-energy Hamiltonian and compare the Fermi velocities with that of graphene.
The Development of the Planet Formation Concept Inventory: A Preliminary Analysis of Version 1
NASA Astrophysics Data System (ADS)
Simon, Molly; Impey, Chris David; Buxner, Sanlyn
2018-01-01
The topic of planet formation is poorly represented in the educational literature, especially at the college level. As recently as 2014, when developing the Test of Astronomy Standards (TOAST), Slater (2014) noted that for two topics (formation of the Solar System and cosmology), “high quality test items that reflect our current understanding of students’ conceptions were not available [in the literature]” (Slater,2014, p. 8). Furthermore, nearly half of ASTR 101 enrollments are at 2 year/community colleges where both instructors and students have little access to current research and models of planet formation. In response, we administered six student replied response (SSR) short answer questions on the topic of planet formation to n = 1,050 students enrolled in introductory astronomy and planetary science courses at The University of Arizona in the Fall 2016 and Spring 2017 semesters. After analyzing and coding the data from the SSR questions, we developed a preliminary version of the Planet Formation Concept Inventory (PFCI). The PFCI is a multiple-choice instrument with 20 planet formation-related questions, and 4 demographic-related questions. We administered version 1 of the PFCI to six introductory astronomy and planetary science courses (n ~ 700 students) during the Fall 2017 semester. We provided students with 7-8 multiple-choice with explanation of reasoning (MCER) questions from the PFCI. Students selected an answer (similar to a traditional multiple-choice test), and then briefly explained why they chose the answer they did. We also conducted interviews with ~15 students to receive feedback on the quality of the questions and clarity of the instrument. We will present an analysis of the MCER responses and student interviews, and discuss any modifications that will be made to the instrument as a result.
Matsuzaki, Rei; Yabushita, Satoshi
2017-05-05
The complex basis function (CBF) method applied to various atomic and molecular photoionization problems can be interpreted as an L2 method to solve the driven-type (inhomogeneous) Schrödinger equation, whose driven term being dipole operator times the initial state wave function. However, efficient basis functions for representing the solution have not fully been studied. Moreover, the relation between their solution and that of the ordinary Schrödinger equation has been unclear. For these reasons, most previous applications have been limited to total cross sections. To examine the applicability of the CBF method to differential cross sections and asymmetry parameters, we show that the complex valued solution to the driven-type Schrödinger equation can be variationally obtained by optimizing the complex trial functions for the frequency dependent polarizability. In the test calculations made for the hydrogen photoionization problem with five or six complex Slater-type orbitals (cSTOs), their complex valued expansion coefficients and the orbital exponents have been optimized with the analytic derivative method. Both the real and imaginary parts of the solution have been obtained accurately in a wide region covering typical molecular regions. Their phase shifts and asymmetry parameters are successfully obtained by extrapolating the CBF solution from the inner matching region to the asymptotic region using WKB method. The distribution of the optimized orbital exponents in the complex plane is explained based on the close connection between the CBF method and the driven-type equation method. The obtained information is essential to constructing the appropriate basis sets in future molecular applications. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Carlson, Rebecca K; Li Manni, Giovanni; Sonnenberger, Andrew L; Truhlar, Donald G; Gagliardi, Laura
2015-01-13
Kohn-Sham density functional theory, resting on the representation of the electronic density and kinetic energy by a single Slater determinant, has revolutionized chemistry, but for open-shell systems, the Kohn-Sham Slater determinant has the wrong symmetry properties as compared to an accurate wave function. We have recently proposed a theory, called multiconfiguration pair-density functional theory (MC-PDFT), in which the electronic kinetic energy and classical Coulomb energy are calculated from a multiconfiguration wave function with the correct symmetry properties, and the rest of the energy is calculated from a density functional, called the on-top density functional, that depends on the density and the on-top pair density calculated from this wave function. We also proposed a simple way to approximate the on-top density functional by translation of Kohn-Sham exchange-correlation functionals. The method is much less expensive than other post-SCF methods for calculating the dynamical correlation energy starting with a multiconfiguration self-consistent-field wave function as the reference wave function, and initial tests of the theory were quite encouraging. Here, we provide a broader test of the theory by applying it to bond energies of main-group molecules and transition metal complexes, barrier heights and reaction energies for diverse chemical reactions, proton affinities, and the water dimerization energy. Averaged over 56 data points, the mean unsigned error is 3.2 kcal/mol for MC-PDFT, as compared to 6.9 kcal/mol for Kohn-Sham theory with a comparable density functional. MC-PDFT is more accurate on average than complete active space second-order perturbation theory (CASPT2) for main-group small-molecule bond energies, alkyl bond dissociation energies, transition-metal-ligand bond energies, proton affinities, and the water dimerization energy.
NASA Astrophysics Data System (ADS)
Sibbernsen, Kendra J.
One of the long-standing general undergraduate education requirements common to many colleges and universities is a science course with a laboratory experience component. One of the objectives frequently included in the description of most of these courses is that a student will understand the nature and processes of scientific inquiry. However, recent research has shown that learners in traditional undergraduate science laboratory environments are not developing a sufficiently meaningful understanding of scientific inquiry. Recently, astronomy laboratory activities have been developed that intentionally scaffold a student from guided activities to open inquiry ones and preliminary results show that these laboratories are successful for supporting students to understand the nature of scientific inquiry (Slater, S., Slater, T. F., & Shaner, 2008). This mixed-method quasi-experimental study was designed to determine how students in an undergraduate astronomy laboratory increase their understanding of inquiry working in relative isolation compared to working in small collaborative learning groups. The introductory astronomy laboratory students in the study generally increased their understanding of scientific inquiry over the course of the semester and this held true similarly for students working in groups and students working individually in the laboratories. This was determined by the examining the change in responses from the pretest to the posttest administration of the Views of Scientific Inquiry (VOSI) survey, the increase in scores on laboratory exercises, and observations from the instructor. Because the study was successful in determining that individuals in the astronomy laboratory do as well at understanding inquiry as those who complete their exercises in small groups, it would be appropriate to offer these inquiry-based exercises in an online format.
NASA Astrophysics Data System (ADS)
Kaur, Rajnish; Kumar, Anil; Osan, Janos; Czyzycki, M.; Karydas, A. G.; Puri, Sanjiv
2017-07-01
The absolute values of the mass attenuation coefficients have been measured at sixty two photon energies across the Li (i=1-3) sub-shell absorption edges of 66Dy covering the region 7.6-14.0 keV in order to investigate the influence of near-edge processes on the attenuation coefficients. The present measured attenuation coefficients are found to be higher by up to 10% than the theoretical values evaluated from the computer code XCOM (Berger et al., 2010) and the self-consistent Dirac-Hartree-Slater (DHS) model based values tabulated by Chantler (1995) over the energy region 7.6-14.0 keV, except at energies in vicinity (few eV) of the Li (i=1-3) sub-shell absorption edge energies where the measured values are significantly higher (up to 37%) than both the sets of theoretical values. Further, the Li (i=1-3) sub-shell photoionization cross sections, (σLiP)exp, deduced from the present measured mass attenuation coefficients are compared with the non-relativistic Hartree-Fock-Slater (HFS) model based values tabulated by Scofield (1973) and those evaluated from the theoretical total photoionization attenuation coefficients tabulated by Chantler (1995). The deduced (σLiP)exp(i=1-3) values are found to be in better agreement with those evaluated from the tabulations given by Chantler (1995) than the values given by Scofield (1973) over the energy region 7.8 - 14.0 keV included in this study. However, at photon energies up to few eV above the Li edges, the deduced (σLiP)exp(i=1-3) values are found to be significantly higher (up to 32%) than both the sets of theoretical values.
Formal expressions and corresponding expansions for the exact Kohn-Sham exchange potential
NASA Astrophysics Data System (ADS)
Bulat, Felipe A.; Levy, Mel
2009-11-01
Formal expressions and their corresponding expansions in terms of Kohn-Sham (KS) orbitals are deduced for the exchange potential vx(r) . After an alternative derivation of the basic optimized effective potential integrodifferential equations is given through a Hartree-Fock adiabatic connection perturbation theory, we present an exact infinite expansion for vx(r) that is particularly simple in structure. It contains the very same occupied-virtual quantities that appear in the well-known optimized effective potential integral equation, but in this new expression vx(r) is isolated on one side of the equation. An orbital-energy modified Slater potential is its leading term which gives encouraging numerical results. Along different lines, while the earlier Krieger-Li-Iafrate approximation truncates completely the necessary first-order perturbation orbitals, we observe that the improved localized Hartree-Fock (LHF) potential, or common energy denominator potential (CEDA), or effective local potential (ELP), incorporates the part of each first-order orbital that consists of the occupied KS orbitals. With this in mind, the exact correction to the LHF, CEDA, or ELP potential (they are all equivalent) is deduced and displayed in terms of the virtual portions of the first-order orbitals. We close by observing that the newly derived exact formal expressions and corresponding expansions apply as well for obtaining the correlation potential from an orbital-dependent correlation energy functional.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-01-01
There are 12 members on the Brookings Panel on Economic Activity. The panel convenes three times per year, at which time pertinent economic subjects are discussed and ideas exchanged. The searching debates are part of a unique process that generates the nation's leading journal of applied macroeconomics, Brookings Papers on Economic Activity. With this publication, it is felt that years are cut from the loop that links scholars to the government and industry leaders that need their output. The process, the timeliness of the information, and its impacts are discussed. The journal ''fills a gap between economic research and policymore » activity,'' Courtenay Slater says. (MCW)« less
Dane, Markus; Gonis, Antonios
2016-07-05
Based on a computational procedure for determining the functional derivative with respect to the density of any antisymmetric N-particle wave function for a non-interacting system that leads to the density, we devise a test as to whether or not a wave function known to lead to a given density corresponds to a solution of a Schrödinger equation for some potential. We examine explicitly the case of non-interacting systems described by Slater determinants. Here, numerical examples for the cases of a one-dimensional square-well potential with infinite walls and the harmonic oscillator potential illustrate the formalism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bajaj, Annu, E-mail: annu.bajaj11@gmail.com; Jain, Sushma
2016-05-06
The present investigation is concerened with the studies on electronic spectral parameters viz. Oscillator strength (P), Judd-Ofelt T{sub λ} (λ=2,4,6), Slater-Condon(F{sub K}),Lande(ζ{sub 4F}),Nephelauxetic ratio(β), Bonding parameter (b{sup 1/2}) and Percent covalency parameter (δ%) for Nd(III) ion complexes with the ligands having Nitrogen,Oxygen Sulphur donor sites.The variation in the values of oscillator strength explicitly shows the relative sensitivities of the 4f-4f transition as well as the specific correlation between ligand structures and nature of Nd(III) ligand interaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGlynn, S.P.
1976-05-15
Lists of titles published, symposia attended, laboratory guests, departing personnel, and equipment purchased are presented in the first part of this report. It is to be emphasized that completed work already published is mentioned only by title. Reports are provided for research recently completed or in progress in the following areas: Rydberg spectroscopy, intermediate-coupling model for linear molecules, atomic correlation lines, electronic structure of dicarbonyl compounds, absorption and emission characteristics of highly polar aromatics, valence-bond description of metal--anion interaction, and matrix elements of mono-excited Slater determinants constructed from axial spin-orbitals. (RWR)
Carbon Cycling in Northern Peatlands
NASA Astrophysics Data System (ADS)
Schultz, Colin
2010-11-01
Northern peatlands span only 3 million square kilometers, about 3% of the terrestrial area of the globe, yet they represent a significant terrestrial sink for carbon dioxide. They are also important emitters of methane, an even more potent greenhouse gas. Despite their substantial role in the global carbon cycle, peatlands are not typically incorporated into global climate models. The AGU Monograph Carbon Cycling in Northern Peatlands, edited by Andrew J. Baird, Lisa R. Belyea, Xavier Comas, A. S. Reeve, and Lee D. Slater, looks at the disproportionate role peatlands play in the global carbon budget. In this interview, Eos talks with Andy Baird, University of Leeds, Leeds, United Kingdom.
Ferromagnetism in half-metallic quaternary FeVTiAl Heusler compound
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhat, Tahir Mohiuddin; Bhat, Idris Hamid; Yousuf, Saleem
The electronic structure and magnetic properties of FeVTiAl quaternary Heusler alloy have been investigated within the density functional theory framework. The material was found completely spin-polarized half-metallic Ferromagnet in the ground state with F-43m structure. The structural stability was further confirmed by calculating different elastic constants in the cubic phase. Present study predicts an energy band gap of 0.72 eV calculated in localized minority spin channel at an equilibrium lattice parameter of 6.0Å. The calculated total spin magnetic moment of 2 µ{sub B}/f.u. is in agreement with the Slater-Pauling rule for full Heusler alloys.
N = 2 supersymmetry and Bailey pairs
NASA Astrophysics Data System (ADS)
Berkovich, Alexander; McCoy, Barry M.; Schilling, Anne
1996-02-01
We demonstrate that the Bailey pair formulation of Rogers-Ramanujan identities unifies the calculations of the characters of N = 1 and N = 2 supersymmetric conformal field theories with the counterpart theory with no supersymmetry. We illustrate this construction for the M(3,4) (Ising) model where the Bailey pairs have been given by Slater. We then present the general unitary case. We demonstrate that the model M( p,p + 1) is derived from M( p - 1, p) by a Bailey renormalization flow and conclude by obtaining the N = 1 model SM( p,p + 2) and the unitary N = 2 model with central charge c = 3(1 - 2/ p).
Grid-free density functional calculations on periodic systems.
Varga, Stefan
2007-09-21
Density fitting scheme is applied to the exchange part of the Kohn-Sham potential matrix in a grid-free local density approximation for infinite systems with translational periodicity. It is shown that within this approach the computational demands for the exchange part scale in the same way as for the Coulomb part. The efficiency of the scheme is demonstrated on a model infinite polymer chain. For simplicity, the implementation with Dirac-Slater Xalpha exchange functional is presented only. Several choices of auxiliary basis set expansion coefficients were tested with both Coulomb and overlap metric. Their effectiveness is discussed also in terms of robustness and norm preservation.
Grid-free density functional calculations on periodic systems
NASA Astrophysics Data System (ADS)
Varga, Štefan
2007-09-01
Density fitting scheme is applied to the exchange part of the Kohn-Sham potential matrix in a grid-free local density approximation for infinite systems with translational periodicity. It is shown that within this approach the computational demands for the exchange part scale in the same way as for the Coulomb part. The efficiency of the scheme is demonstrated on a model infinite polymer chain. For simplicity, the implementation with Dirac-Slater Xα exchange functional is presented only. Several choices of auxiliary basis set expansion coefficients were tested with both Coulomb and overlap metric. Their effectiveness is discussed also in terms of robustness and norm preservation.
Ab initio calculation of one-nucleon halo states
NASA Astrophysics Data System (ADS)
Rodkin, D. M.; Tchuvil'sky, Yu M.
2018-02-01
We develop an approach to microscopic and ab initio description of clustered systems, states with halo nucleon and one-nucleon resonances. For these purposes a basis combining ordinary shell-model components and cluster-channel terms is built up. The transformation of clustered wave functions to the uniform Slater-determinant type is performed using the concept of cluster coefficients. The resulting basis of orthonormalized wave functions is used for calculating the eigenvalues and the eigenvectors of Hamiltonians built in the framework of ab initio approaches. Calculations of resonance and halo states of 5He, 9Be and 9B nuclei demonstrate that the approach is workable and labor-saving.
Electronic absorption spectral studies of Pr(III) chelates with some amino acids
NASA Astrophysics Data System (ADS)
Kachhawa, Chanchal; Solanki, Kanika; Bhandari, H. S.
2018-05-01
Investigations on Pr(III) systems with 1:1 metal-ligand stoichiometric ratio have been carried out in different solvents. β - Alanine, Taurine and anthranilic acid have been opted as ligands for the investigations. The Study is based on doped crystal phenomenon. The Slater-Condon, spin-orbit, nephelauxetic, bonding, Racah and Judd-Ofelt parameters have been explored during the study. Four bands for Pr(III) have been observed and recorded in the region 350 nm to 900nm. Partial regression method has been used for calculations. Use of computational chemistry has been explored in order to develop better and easier methods of calculations.
NASA Astrophysics Data System (ADS)
Sinurat, E. N.; Yudiarsah, E.
2017-07-01
The charge transport properties of DNA aperiodic molecule has been studied by considering various interbase hopping parameter on Watson-Crick base pair. 32 base pairs long double-stranded DNA aperiodic model with sequence GCTAGTACGTGACGTAGCTAGGATATGCCTGA on one chain and its complement on the other chain is used. Transfer matrix method has been used to calculate transmission probabilities, for determining I-V characteristic using Landauer Büttiker formula. DNA molecule is modeled using tight binding hamiltonian combined with the theory of Slater-Koster. The result show, the increment of Watson-Crick hopping value leads to the transmission probabilities and current of DNA aperiodic molecule increases.
Structural and magnetic properties of Co{sub 2}Ti{sub 1−x}Fe{sub x}Al (0 ≤ x ≤ 0.5) alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pal, Lakhan, E-mail: lakhanbainsla@gmail.com; Gupta, Sachin, E-mail: lakhanbainsla@gmail.com; Suresh, K. G., E-mail: lakhanbainsla@gmail.com
2014-04-24
In this work we studied the effect of partial Fe substitution for Ti on the structural and magnetic properties of the Co{sub 2}TiAl. X-ray diffraction analysis indicates the presence of B2 type disorder for x > 0, (111) reflections are absent for x > 0 which is the characteristic of B2 type disorder. XRD analysis also shows presence of second phase. Magnetization measurements also confirm the presence of dual phase. Curie temperature of the alloys increases with increase in Fe concentration. Saturation magnetic moments agree very well with those calculated by Slater-Pauling rule.
Communication: Three-fold covariance imaging of laser-induced Coulomb explosions
NASA Astrophysics Data System (ADS)
Pickering, James D.; Amini, Kasra; Brouard, Mark; Burt, Michael; Bush, Ian J.; Christensen, Lauge; Lauer, Alexandra; Nielsen, Jens H.; Slater, Craig S.; Stapelfeldt, Henrik
2016-04-01
We apply a three-fold covariance imaging method to analyse previously acquired data [C. S. Slater et al., Phys. Rev. A 89, 011401(R) (2014)] on the femtosecond laser-induced Coulomb explosion of spatially pre-aligned 3,5-dibromo-3',5'-difluoro-4'-cyanobiphenyl molecules. The data were acquired using the "Pixel Imaging Mass Spectrometry" camera. We show how three-fold covariance imaging of ionic photofragment recoil trajectories can be used to provide new information about the parent ion's molecular structure prior to its Coulomb explosion. In particular, we show how the analysis may be used to obtain information about molecular conformation and provide an alternative route for enantiomer determination.
Topological crystalline magnets: Symmetry-protected topological phases of fermions
Watanabe, Haruki; Fu, Liang
2017-02-27
Here, we introduce a novel class of interaction-enabled topological crystalline insulators in two- and three-dimensional electronic systems, which we call “topological crystalline magnet.” It is protected by the product of the time-reversal symmetry T and a mirror symmetry or a rotation symmetry R. A topological crystalline magnet exhibits two intriguing features: (i) it cannot be adiabatically connected to any Slater insulator and (ii) the edge state is robust against coupling electrons to the edge. These features are protected by the anomalous symmetry transformation property ( RT) 2 = -1 of the edge state. Finally, an anisotropic response to the externalmore » magnetic field can be an experimental signature.« less
Anisotropic dielectric properties of two-dimensional matrix in pseudo-spin ferroelectric system
NASA Astrophysics Data System (ADS)
Kim, Se-Hun
2016-10-01
The anisotropic dielectric properties of a two-dimensional (2D) ferroelectric system were studied using the statistical calculation of the pseudo-spin Ising Hamiltonian model. It is necessary to delay the time for measurements of the observable and the independence of the new spin configuration under Monte Carlo sampling, in which the thermal equilibrium state depends on the temperature and size of the system. The autocorrelation time constants of the normalized relaxation function were determined by taking temperature and 2D lattice size into account. We discuss the dielectric constants of a two-dimensional ferroelectric system by using the Metropolis method in view of the Slater-Takagi defect energies.
Topological crystalline magnets: Symmetry-protected topological phases of fermions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, Haruki; Fu, Liang
Here, we introduce a novel class of interaction-enabled topological crystalline insulators in two- and three-dimensional electronic systems, which we call “topological crystalline magnet.” It is protected by the product of the time-reversal symmetry T and a mirror symmetry or a rotation symmetry R. A topological crystalline magnet exhibits two intriguing features: (i) it cannot be adiabatically connected to any Slater insulator and (ii) the edge state is robust against coupling electrons to the edge. These features are protected by the anomalous symmetry transformation property ( RT) 2 = -1 of the edge state. Finally, an anisotropic response to the externalmore » magnetic field can be an experimental signature.« less
Itinerant ferromagnetism in ultracold Fermi gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heiselberg, H.
2011-05-15
Itinerant ferromagnetism in cold Fermi gases with repulsive interactions is studied applying the Jastrow-Slater approximation generalized to finite polarization and temperature. For two components at zero temperature, a second-order transition is found at ak{sub F}{approx_equal}0.90 compatible with results of quantum-Monte-Carlo (QMC) calculations. Thermodynamic functions and observables, such as the compressibility and spin susceptibility and the resulting fluctuations in number and spin, are calculated. For trapped gases, the resulting cloud radii and kinetic energies are calculated and compared to recent experiments. Spin-polarized systems are recommended for effective separation of large ferromagnetic domains. Collective modes are predicted and tricritical points are calculatedmore » for multicomponent systems.« less
NASA Astrophysics Data System (ADS)
Martínez-Sánchez, Michael-Adán; Aquino, Norberto; Vargas, Rubicelia; Garza, Jorge
2017-12-01
The Schrödinger equation associated to the hydrogen atom confined by a dielectric continuum is solved exactly and suggests the appropriate basis set to be used when an atom is immersed in a dielectric continuum. Exact results show that this kind of confinement spread the electron density, which is confirmed through the Shannon entropy. The basis set suggested by the exact results is similar to Slater type orbitals and it was applied on two-electron atoms, where the H- ion ejects one electron for moderate confinements for distances much larger than those commonly used to generate cavities in solvent models.
Atomic electron energies including relativistic effects and quantum electrodynamic corrections
NASA Technical Reports Server (NTRS)
Aoyagi, M.; Chen, M. H.; Crasemann, B.; Huang, K. N.; Mark, H.
1977-01-01
Atomic electron energies have been calculated relativistically. Hartree-Fock-Slater wave functions served as zeroth-order eigenfunctions to compute the expectation of the total Hamiltonian. A first order correction to the local approximation was thus included. Quantum-electrodynamic corrections were made. For all orbitals in all atoms with 2 less than or equal to Z less than or equal to 106, the following quantities are listed: total energies, electron kinetic energies, electron-nucleus potential energies, electron-electron potential energies consisting of electrostatic and Breit interaction (magnetic and retardation) terms, and vacuum polarization energies. These results will serve for detailed comparison of calculations based on other approaches. The magnitude of quantum electrodynamic corrections is exhibited quantitatively for each state.
Stability of half-metallic behavior with lattice variation for Fe2-xCoxMnAl Heusler alloy
NASA Astrophysics Data System (ADS)
Jain, Vivek Kumar; Lakshmi, N.; Jain, Rakesh
2018-04-01
The electronic structure and magnetic properties with variation of lattice constant for Fe2-xCoxMnAl Heusler alloys have been studied. Total magnetic moments predicted by the Slater Pauling rule is maintained over a wide range of lattice variation for the series. Half metallic ferromagnetic nature with 100% spin polarization is observed for a lattice range from 5.40-5.70 Å, 5.35-5.55 Å, 5.30-5.60 Å and 5.25-5.55 Å respectively for x = 0.5, 1.0 1.5, 2.0. Due to the stability of half metallic character for a wide range of lattice parameters, these alloys are promising, robust materials suitable for spintronics device applications.
Theory of inhomogeneous quantum systems. III. Variational wave functions for Fermi fluids
NASA Astrophysics Data System (ADS)
Krotscheck, E.
1985-04-01
We develop a general variational theory for inhomogeneous Fermi systems such as the electron gas in a metal surface, the surface of liquid 3He, or simple models of heavy nuclei. The ground-state wave function is expressed in terms of two-body correlations, a one-body attenuation factor, and a model-system Slater determinant. Massive partial summations of cluster expansions are performed by means of Born-Green-Yvon and hypernetted-chain techniques. An optimal single-particle basis is generated by a generalized Hartree-Fock equation in which the two-body correlations screen the bare interparticle interaction. The optimization of the pair correlations leads to a state-averaged random-phase-approximation equation and a strictly microscopic determination of the particle-hole interaction.
Spectra for the reemission of attosecond and shorter electromagnetic pulses by multielectron atoms
NASA Astrophysics Data System (ADS)
Makarov, D. N.; Matveev, V. I.
2017-08-01
Based on the analytical solution of the Schrödinger equation, we have considered the reemission of attosecond and shorter electromagnetic pulses by multielectron atoms in the sudden perturbation approximation. We have developed a technique of calculating the spectra for the reemission of attosecond and shorter electromagnetic pulses by neutral multielectron atoms with nuclear charges from 1 to 92. The results are presented in the form of analytical formulas dependent on several coefficients and screening parameters tabulated for all of the atoms whose electron densities are described by the well-known Dirac-Hartree-Fock-Slater model. As examples we have calculated the spectra for the reemission by lithium, carbon, calcium, and iron atoms for two types of incident pulse: Gaussian and "sombrero."
Alcohol advertising and youth.
Martin, Susan E; Snyder, Leslie B; Hamilton, Mark; Fleming-Milici, Fran; Slater, Michael D; Stacy, Alan; Chen, Meng-Jinn; Grube, Joel W
2002-06-01
This article presents the proceedings of a symposium at the 2001 Research Society on Alcoholism meeting in Montreal, Canada. The symposium was organized and chaired by Joel W. Grube. The presentations and presenters were (1) Introduction and background, by Susan E. Martin; (2) The effect of alcohol ads on youth 15-26 years old, by Leslie Snyder, Mark Hamilton, Fran Fleming-Milici, and Michael D. Slater; (3) A comparison of exposure to alcohol advertising and drinking behavior in elementary versus middle school children, by Phyllis L. Ellickson and Rebecca L. Collins; (4) USC health and advertising project: assessment study on alcohol advertisement memory and exposure, by Alan Stacy; and (5) TV beer and soft drink advertising: what young people like and what effects? by Meng-Jinn Chen and Joel W. Grube.
NASA Astrophysics Data System (ADS)
Du, Jiangtao; Dong, Shengjie; Zhou, Baozeng; Zhao, Hui; Feng, Liefeng
2017-04-01
The reports previously issued predominantly paid attention to the d-block magnetic elements δ-doped digital magnetic materials. In this work, GaN δ-doped with non-magnetic main group s-block elements K and Ca as digital magnetic heterostructures were purposed and explored theoretically. We found that K- and Ca-embedded GaN digital alloys exhibit spin-gapless and half-metallic ferromagnetic characteristics, respectively. All compounds obey the Slater-Pauling rule with diverse electronic and magnetic properties. For these digital ferromagnetic heterostructures, spin polarization occurs in nitrogen within a confined space around the δ-doped layer, demonstrating a hole-mediated two-dimensional magnetic phenomenon.
Simple formalism for efficient derivatives and multi-determinant expansions in quantum Monte Carlo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filippi, Claudia, E-mail: c.filippi@utwente.nl; Assaraf, Roland, E-mail: assaraf@lct.jussieu.fr; Moroni, Saverio, E-mail: moroni@democritos.it
2016-05-21
We present a simple and general formalism to compute efficiently the derivatives of a multi-determinant Jastrow-Slater wave function, the local energy, the interatomic forces, and similar quantities needed in quantum Monte Carlo. Through a straightforward manipulation of matrices evaluated on the occupied and virtual orbitals, we obtain an efficiency equivalent to algorithmic differentiation in the computation of the interatomic forces and the optimization of the orbital parameters. Furthermore, for a large multi-determinant expansion, the significant computational gain afforded by a recently introduced table method is here extended to the local value of any one-body operator and to its derivatives, inmore » both all-electron and pseudopotential calculations.« less
2015-04-01
In issue 21.1 three of the DOIs were printed incorrectly, please see below for the correct information. Andrea Giorgianni, et al. Flow-diverter stenting of post-traumatic bilateral anterior cerebral artery pseudoaneurysm: A case report. Doi: 10.15274/INR-2014-10059 Correct: Doi: 10.1177/1591019915575441 Lee-Anne Slater, et al. Effect of flow diversion with silk on aneurysm size: A single center experience. Doi: 10.15274/INR-2014-10062 Correct DOI: 10.1177/1591019915576433 Robert J McDonald, et al. Periprocedural safety of Pipeline therapy for unruptured cerebral aneurysms: Analysis of 279 Patients in a multihospital database. Doi: 10.15274/INR-2014-10074 Correct DOI: 10.1177/1591019915576289. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Motta, Mario; Zhang, Shiwei
2017-11-14
We address the computation of ground-state properties of chemical systems and realistic materials within the auxiliary-field quantum Monte Carlo method. The phase constraint to control the Fermion phase problem requires the random walks in Slater determinant space to be open-ended with branching. This in turn makes it necessary to use back-propagation (BP) to compute averages and correlation functions of operators that do not commute with the Hamiltonian. Several BP schemes are investigated, and their optimization with respect to the phaseless constraint is considered. We propose a modified BP method for the computation of observables in electronic systems, discuss its numerical stability and computational complexity, and assess its performance by computing ground-state properties in several molecular systems, including small organic molecules.
Calculated dipole moment and energy in collision of a hydrogen molecule and a hydrogen atom
NASA Technical Reports Server (NTRS)
Patch, R. W.
1973-01-01
Calculations were carried out using three Slater-type 1s orbitals in the orthogonalized valencebond theory of McWeeny. Each orbital exponent was optimized, the H2 internuclear distance was varied from 7.416 x 10 to the -11th power to 7.673 x 10 to the -11th power m (1.401 to 1.450 bohrs). The intermolecular distance was varied from 1 to 4 bohrs (0.5292 to 2.117 x 10 to the 10th power). Linear, scalene, and isosceles configurations were used. A weighted average of the interaction energies was taken for each intermolecular distance. Although energies are tabulated, the principal purpose was to calculate the electric dipole moment and its derivative with respect to H2 internuclear distance.
Generalized description of few-electron quantum dots at zero and nonzero magnetic fields
NASA Astrophysics Data System (ADS)
Ciftja, Orion
2007-01-01
We introduce a generalized ground state variational wavefunction for parabolically confined two-dimensional quantum dots that equally applies to both cases of weak (or zero) and strong magnetic field. The wavefunction has a Laughlin-like form in the limit of infinite magnetic field, but transforms into a Jastrow-Slater wavefunction at zero magnetic field. At intermediate magnetic fields (where a fraction of electrons is spin-reversed) it resembles Halperin's spin-reversed wavefunction for the fractional quantum Hall effect. The properties of this variational wavefunction are illustrated for the case of two-dimensional quantum dot helium (a system of two interacting electrons in a parabolic confinement potential) where we find the description to be an excellent representation of the true ground state for the whole range of magnetic fields.
Semi-empirical model for stopping cross sections of p, α and Li ions
NASA Astrophysics Data System (ADS)
Alfaz Uddin, M.; Fazlul Haque, A. K.; Talukder, Tanvir I.; Basak, Arun K.; Saha, Bidhan C.; Malik, Fary B.
2013-10-01
Absolute magnitudes of stopping cross sections (SCS) for H+, He2+ and Li3+ in various stopping media with atomic numbers Z 2 = 2 to 100 are calculated using atomic density functions from Dirac-Hartree-Fock-Slater wave functions in the Lindhard-Schraff theory [J. Lindhard, M. Scharff, Kgl. Danske Videnskab. Selskab. Mat. Fys. Medd. 27, 15 (1953)]. The newly proposed formula, characterizing projectile-specific parameters in the incident energy range considered herein, describes satisfactorily the experimental and SRIM-simulated SCS data from low energies, with projectile velocities nearing v = Z 1 v 0 (with Z 1 as the projectile’s atomic number, v 0 = c / 137, the Bohr velocity and c, the speed of light in vacuum), to high energies up to about 2.5 MeV/u.
NASA Astrophysics Data System (ADS)
Demir, D.; Sahin, Y.
2007-03-01
L x-ray intensity ratios Lell/Lγ, Lα/Lγ and Lβ/Lγ for 92U and 90Th are measured by using 59.5 keV incident photon energy at 110° and 125° scattering angles. The samples are located in the external magnetic field of intensities ±0.15T, ±0.30T, ±0.45T, ±0.60T and ±0.75T. The experimental results obtained for B = 0 are compared with the theoretical values calculated using Scofield's tables based on the Hartree-Slater theory. The contribution to the alignment of the external magnetic field is discussed. It is observed that the L x-ray intensity ratios decrease with the increasing magnetic field intensity.
Abstracts from Dietetic Research Event: June 09-11, 2016.
2016-09-01
Winnipeg, Manitoba was the host city of the 2016 Dietitians of Canada Annual Conference. Through the support of Dietitians of Canada and CFDR, the 2016 event was both an exciting and informative exchange of research and experience-sharing efforts that inspired attendees. The submissions for this year's Canadian Foundation for Dietetic Research (CFDR) event represented the diversity of dietetic research conducted within Canada. The topics highlighted from this year's abstracts include Community Based Nutritional Care, Wellness & Public Health, Determinants of Food Choice, Dietary Intake, Nutrition Health & Education, Dietetic Practice & Education, Clinical Research & Patient Service, and Nutrition Social Media & the Web. Each presenter provided an 11-minute oral presentation (8 minutes for presenting and 3 minutes for questions). This allowed for meaningful interaction between the presenters and those attending the sessions. This year there were professional and student oral research presentations on each day of the conference. These presentations offered the newest insights into important research findings that apply to dietetic practice. This research event would not be possible without the commitment and dedication of many people. On behalf of Dietitians of Canada and CFDR, I would like to extend a special thank you to the 2016 Abstract Review Committee who represented research, clinical nutrition, community nutrition, and education: Masha Jessri (Ph.D Candidate, University of Toronto), Joyce Slater (Associate Professor, University of Manitoba) and Miyoung Suh (Associate Professor, University of Manitoba). We would also like to thank all of our moderators who assisted during the conference to keep our research presentation sessions on time: Marcia Cooper, Miyoung Suh, Andrea Buchholz, Dawna Royall, Paul Fieldhouse, Joyce Slater, Isabelle Giroux, and Bethany Hopkins. Finally, a special thank you to Michelle Naraine and Greg Sarney at CFDR for their assistance and support throughout the review process. I enjoyed interacting with many of you at the oral research presentations as we highlighted the findings from our dietetic colleagues across our country! Christina Lengyel, PhD, RD Chair, 2016 Abstracts Review Committee Associate Professor Director of the Dietetics Program Human Nutritional Sciences University of Manitoba.
Constraint, Intelligence, and Control Hierarchy in Virtual Environments. Chapter 1
NASA Technical Reports Server (NTRS)
Sheridan, Thomas B.
2007-01-01
This paper seeks to deal directly with the question of what makes virtual actors and objects that are experienced in virtual environments seem real. (The term virtual reality, while more common in public usage, is an oxymoron; therefore virtual environment is the preferred term in this paper). Reality is difficult topic, treated for centuries in those sub-fields of philosophy called ontology- "of or relating to being or existence" and epistemology- "the study of the method and grounds of knowledge, especially with reference to its limits and validity" (both from Webster s, 1965). Advances in recent decades in the technologies of computers, sensors and graphics software have permitted human users to feel present or experience immersion in computer-generated virtual environments. This has motivated a keen interest in probing this phenomenon of presence and immersion not only philosophically but also psychologically and physiologically in terms of the parameters of the senses and sensory stimulation that correlate with the experience (Ellis, 1991). The pages of the journal Presence: Teleoperators and Virtual Environments have seen much discussion of what makes virtual environments seem real (see, e.g., Slater, 1999; Slater et al. 1994; Sheridan, 1992, 2000). Stephen Ellis, when organizing the meeting that motivated this paper, suggested to invited authors that "We may adopt as an organizing principle for the meeting that the genesis of apparently intelligent interaction arises from an upwelling of constraints determined by a hierarchy of lower levels of behavioral interaction. "My first reaction was "huh?" and my second was "yeah, that seems to make sense." Accordingly the paper seeks to explain from the author s viewpoint, why Ellis s hypothesis makes sense. What is the connection of "presence" or "immersion" of an observer in a virtual environment, to "constraints" and what types of constraints. What of "intelligent interaction," and is it the intelligence of the observer or the intelligence of the environment (whatever the latter may mean) that is salient? And finally, what might be relevant about "upwelling" of constraints as determined by a hierarchy of levels of interaction?
Sherry, B A; Alava, G; Tracey, K J; Martiney, J; Cerami, A; Slater, A F
1995-01-01
A characteristic feature of malaria infection is the occurrence of periodic bouts of fever. Experimental and clinical studies have strongly implicated inflammatory cytokines, like tumour necrosis factor (TNF), in the induction of these intermittent fevers [Clark et al., Infect Immunol 32:1058-1066, 1981; Clark et al., Am J Pathol 129:192-199, 1987; Karunaweera et al., Proc Natl Acad Sci USA 89:3200-3203, 1992], but the malaria-specific metabolite(s) which induce the production of such endogenous pyrogens have not yet been fully characterized. It is well known that during the course of malaria infection, a unique schizont component, alternatively referred to as "malaria pigment" or hemozoin, is released along with merozoites as the host erythrocyte bursts [Urquhart, Clin Infect Dis 19:117-131, 1994]. We have recently determined that the core structure of hemozoin comprises a novel insoluble polymer of heme units linked by iron-carboxylate bonds [Slater et al., Proc Natl Acad Sci USA 88:325-329, 1991; Slater et al., Nature 355:167-169, 1992]. We now report that purified native, as well as chemically synthesized, hemozoin crystals potently induce the release of several pyrogenic cytokines, including TNF, MIP-1 alpha, and MIP-1 beta, from murine macrophages and human peripheral blood monocytes in vitro. Also, intravenous administration of chemically synthesized preparations of hemozoin to anaesthetized rats results in a marked drop in body temperature. A similar drop in body temperature is observed following the intravenous injection of other well-characterized pyrogenic cytokines (e.g., TNF) which are known to induce a fever response in awake animals, and is thought to reflect the inability of rats to appropriately regulate their body temperature while anaesthetized. As a consequence of its ability to induce pyrogenic cytokines in vitro, and thermal dysregulation in vivo, we propose that this unique parasite metabolite is an important pyrogen released by malaria parasites at schizogomy, which acts by eliciting the production of a group of potent endogenous pyrogens, which include MIP-1 alpha and MIP-1 beta, as well as TNF, in macrophages.
Comparative study of DFT+U functionals for non-collinear magnetism
NASA Astrophysics Data System (ADS)
Ryee, Siheon; Han, Myung Joon
2018-07-01
We performed comparative analysis for DFT+U functionals to better understand their applicability to non-collinear magnetism. Taking LiNiPO4 and Sr2IrO4 as examples, we investigated the results out of two formalisms based on charge-only density and spin density functional plus U calculations. Our results show that the ground state spin order in terms of tilting angle is strongly dependent on Hund J. In particular, the opposite behavior of canting angles as a function of J is found for LiNiPO4. The dependence on the other physical parameters such as Hubbard U and Slater parameterization is investigated. We also discuss the formal aspects of these functional dependences as well as parameter dependences. The current study provides useful information and important intuition for the first-principles calculation of non-collinear magnetic materials.
Disentangling the Mn moments on different sublattices in the half-metallic ferrimagnet Mn3?xCoxGa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klaer, P.; Jenkins, C.A.; Alijani, V.
2011-05-03
Ferrimagnetic Mn{sub 3-x}Co{sub x}Ga compounds have been investigated by magnetic circular dichroism in x-ray absorption (XMCD). Compounds with x > 0.5 crystallize in the CuHg{sub 2}Ti structure. A tetragonal distortion of the cubic structure occurs for x {le} 0.5. For the cubic phase, magnetometry reveals a linearly increasing magnetization of 2x Bohr magnetons per formula unit obeying the generalized Slater-Pauling rule. XMCD confirms the ferrimagnetic character with Mn atoms occupying two different sublattices with antiparallel spin orientation and different degrees of spin localization and identifies the region 0.6 < x {le} 0.8 as most promising for a high spin polarizationmore » at the Fermi level. Individual Mn moments on inequivalent sites are compared to theoretical predictions.« less
Hartree and Exchange in Ensemble Density Functional Theory: Avoiding the Nonuniqueness Disaster.
Gould, Tim; Pittalis, Stefano
2017-12-15
Ensemble density functional theory is a promising method for the efficient and accurate calculation of excitations of quantum systems, at least if useful functionals can be developed to broaden its domain of practical applicability. Here, we introduce a guaranteed single-valued "Hartree-exchange" ensemble density functional, E_{Hx}[n], in terms of the right derivative of the universal ensemble density functional with respect to the coupling constant at vanishing interaction. We show that E_{Hx}[n] is straightforwardly expressible using block eigenvalues of a simple matrix [Eq. (14)]. Specialized expressions for E_{Hx}[n] from the literature, including those involving superpositions of Slater determinants, can now be regarded as originating from the unifying picture presented here. We thus establish a clear and practical description for Hartree and exchange in ensemble systems.
NASA Astrophysics Data System (ADS)
Vitali, Ettore; Shi, Hao; Qin, Mingpu; Zhang, Shiwei
2017-12-01
Experiments with ultracold atoms provide a highly controllable laboratory setting with many unique opportunities for precision exploration of quantum many-body phenomena. The nature of such systems, with strong interaction and quantum entanglement, makes reliable theoretical calculations challenging. Especially difficult are excitation and dynamical properties, which are often the most directly relevant to experiment. We carry out exact numerical calculations, by Monte Carlo sampling of imaginary-time propagation of Slater determinants, to compute the pairing gap in the two-dimensional Fermi gas from first principles. Applying state-of-the-art analytic continuation techniques, we obtain the spectral function and the density and spin structure factors providing unique tools to visualize the BEC-BCS crossover. These quantities will allow for a direct comparison with experiments.
Effect of wave function on the proton induced L XRP cross sections for 62Sm and 74W
NASA Astrophysics Data System (ADS)
Shehla, Kaur, Rajnish; Kumar, Anil; Puri, Sanjiv
2015-08-01
The Lk(k= 1, α, β, γ) X-ray production cross sections have been calculated for 74W and 62Sm at different incident proton energies ranging 1-5 MeV using theoretical data sets of different physical parameters, namely, the Li(i=1-3) sub-shell X-ray emission rates based on the Dirac-Fork (DF) model, the fluorescence and Coster Kronig yields based on the Dirac- Hartree-Slater (DHS) model and two sets the proton ionization cross sections based on the DHS model and the ECPSSR in order to assess the influence of the wave function on the XRP cross sections. The calculated cross sections have been compared with the measured cross sections reported in the recent compilation to check the reliability of the calculated values.
Voltage dependency of transmission probability of aperiodic DNA molecule
NASA Astrophysics Data System (ADS)
Wiliyanti, V.; Yudiarsah, E.
2017-07-01
Characteristics of electron transports in aperiodic DNA molecules have been studied. Double stranded DNA model with the sequences of bases, GCTAGTACGTGACGTAGCTAGGATATGCCTGA, in one chain and its complements on the other chains has been used. Tight binding Hamiltonian is used to model DNA molecules. In the model, we consider that on-site energy of the basis has a linearly dependency on the applied electric field. Slater-Koster scheme is used to model electron hopping constant between bases. The transmission probability of electron from one electrode to the next electrode is calculated using a transfer matrix technique and scattering matrix method simultaneously. The results show that, generally, higher voltage gives a slightly larger value of the transmission probability. The applied voltage seems to shift extended states to lower energy. Meanwhile, the value of the transmission increases with twisting motion frequency increment.
Specific features of nonvalent interactions in orthorhombic perovskites
NASA Astrophysics Data System (ADS)
Serezhkin, V. N.; Pushkin, D. V.; Serezhkina, L. B.
2014-07-01
It is established that isostructural orthorhombic perovskites ABO3 (sp. gr. Pnma in different systems, no. 62, Z = 4), depending on the specificity of nonvalent interactions (which determine the combinatorial-topological type of the Voronoi-Dirichlet polyhedra (VDPs) of four basis atoms), are divided into ten different stereotypes. It is shown by the example of 259 perovskites belonging to the DyCrO3 stereotype that VDP characteristics can be used to quantitatively estimate the distortion of BO6 octahedra, including that caused by the Jahn-Teller effect. It is found that one of the causes of the distortion of the coordination polyhedra of atoms in the structure of orthorhombic perovskites is heteroatomic metal-metal interactions, for which the interatomic distances are much shorter than the sum of the Slater radii of A and B atoms.
Extended screened exchange functional derived from transcorrelated density functional theory.
Umezawa, Naoto
2017-09-14
We propose a new formulation of the correlation energy functional derived from the transcorrelated method in use in density functional theory (TC-DFT). An effective Hamiltonian, H TC , is introduced by a similarity transformation of a many-body Hamiltonian, H, with respect to a complex function F: H TC =1FHF. It is proved that an expectation value of H TC for a normalized single Slater determinant, D n , corresponds to the total energy: E[n] = ⟨Ψ n |H|Ψ n ⟩/⟨Ψ n |Ψ n ⟩ = ⟨D n |H TC |D n ⟩ under the two assumptions: (1) The electron density nr associated with a trial wave function Ψ n = D n F is v-representable and (2) Ψ n and D n give rise to the same electron density nr. This formulation, therefore, provides an alternative expression of the total energy that is useful for the development of novel correlation energy functionals. By substituting a specific function for F, we successfully derived a model correlation energy functional, which resembles the functional form of the screened exchange method. The proposed functional, named the extended screened exchange (ESX) functional, is described within two-body integrals and is parametrized for a numerically exact correlation energy of the homogeneous electron gas. The ESX functional does not contain any ingredients of (semi-)local functionals and thus is totally free from self-interactions. The computational cost for solving the self-consistent-field equation is comparable to that of the Hartree-Fock method. We apply the ESX functional to electronic structure calculations for a solid silicon, H - ion, and small atoms. The results demonstrate that the TC-DFT formulation is promising for the systematic improvement of the correlation energy functional.
NASA Astrophysics Data System (ADS)
Guo, R. K.; Liu, G. D.; Lin, T. T.; Wang, W.; Wang, L. Y.; Dai, X. F.
2018-02-01
It is predicted that the ZrCrCoZ(Z=B, Al, Ga, In) compounds with LiMnPbSn-type structure are half-metallic ferrimagnets with a large half-metallic gap by the first-principles calculations. The half-metallicity of the ZrCrCoZ(Z=B, Al, Ga, In) compounds are quite robust to the axial and uniaxial strain. The total magnetic moments in per unit cell are 4 μB for the ZrCrCoZ(Z=B, Al, Ga, In) compounds and follow the Slater-Pauling rule, which can be attributed to the great spin-splitting. The calculated formation energies are negative for all the ZrCrCoZ(Z=B, Al, Ga, In) compounds, which indicates that those compounds are in the thermodynamic stability and the possibility of synthesis in experiment.
Theoretical dissociation energies for ionic molecules
NASA Technical Reports Server (NTRS)
Langhoff, S. R.; Bauschlicher, C. W., Jr.; Partridge, H.
1986-01-01
Ab initio calculations at the self-consistent-field and singles plus doubles configuration-interaction level are used to determine accurate spectroscopic parameters for most of the alkali and alkaline-earth fluorides, chlorides, oxides, sulfides, hydroxides, and isocyanides. Numerical Hartree-Fock (NHF) calculations are performed on selected systems to ensure that the extended Slater basis sets employed for the diatomic systems are near the Hartree-Fock limit. Extended Gaussian basis sets of at least triple-zeta plus double polarization equality are employed for the triatomic system. With this model, correlation effects are relatively small, but invariably increase the theoretical dissociation energies. The importance of correlating the electrons on both the anion and the metal is discussed. The theoretical dissociation energies are critically compared with the literature to rule out disparate experimental values. Theoretical (sup 2)Pi - (sup 2)Sigma (sup +) energy separations are presented for the alkali oxides and sulfides.
Atomic structure data based on average-atom model for opacity calculations in astrophysical plasmas
NASA Astrophysics Data System (ADS)
Trzhaskovskaya, M. B.; Nikulin, V. K.
2018-03-01
Influence of the plasmas parameters on the electron structure of ions in astrophysical plasmas is studied on the basis of the average-atom model in the local thermodynamic equilibrium approximation. The relativistic Dirac-Slater method is used for the electron density estimation. The emphasis is on the investigation of an impact of the plasmas temperature and density on the ionization stages required for calculations of the plasmas opacities. The level population distributions and level energy spectra are calculated and analyzed for all ions with 6 ≤ Z ≤ 32 occurring in astrophysical plasmas. The plasma temperature range 2 - 200 eV and the density range 2 - 100 mg/cm3 are considered. The validity of the method used is supported by good agreement between our values of ionization stages for a number of ions, from oxygen up to uranium, and results obtained earlier by various methods among which are more complicated procedures.
NASA Technical Reports Server (NTRS)
Bauschlicher, C. W., Jr.; Jaffe, R. L.; Langhoff, S. R.; Partridge, H.; Mascarello, F. G.
1985-01-01
Theoretical calculations of selected excitation energies and oscillator strengths for Ba are presented that overcome the difficulties of previous theoretical treatments. A relativistic effective-core potential treatment is used to account for the relativistic core contraction, but the outermost ten electrons are treated explicitly. Core-valence correlation can be included in this procedure in a rigorous and systematic way through a configuration-interaction calculation. Insight is gained into the importance of relativistic effects by repeating many of the calculations using an all-electron nonrelativistic treatment employing an extended Slater basis set. It is found that the intensity of the intercombination line 3P1-1S0 is accurately determined by accounting for the deviation from LS coupling through spin-orbit mixing with the 1P1 state, and that deviations from the Lande interval rule provide an accurate measure of the degree of mixing.
Comment on atomic independent-particle models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doda, D.D.; Gravey, R.H.; Green, A.E.S.
1975-08-01
The Hartree-Fock-Slater (HFS) independent-particle model in the form developed by Hermann and Skillman (HS) and the Green, Sellin, and Zachor (GSZ) analytic independent-particle model are being used for many types of applications of atomic theory to avoid cumbersome, albeit more rigorous, many-body calculations. The single-electron eigenvalues obtained with these models are examined and it is found that the GSZ model is capable of yielding energy eigenvalues for valence electrons which are substantially closer to experimental values than are the results of HS-HFS calculations. With the aid of an analytic representation of the equivalent HS-HFS screening function, the difficulty with thismore » model is identified as a weakness of the potential in the neighborhood of the valence shell. Accurate representations of valence states are important in most atomic applications of the independent-particle model. (auth)« less
Quantum Monte Carlo calculations of NiO
NASA Astrophysics Data System (ADS)
Maezono, Ryo; Towler, Mike D.; Needs, Richard. J.
2008-03-01
We describe variational and diffusion quantum Monte Carlo (VMC and DMC) calculations [1] of NiO using a 1024-electron simulation cell. We have used a smooth, norm-conserving, Dirac-Fock pseudopotential [2] in our work. Our trial wave functions were of Slater-Jastrow form, containing orbitals generated in Gaussian-basis UHF periodic calculations. Jastrow factor is optimized using variance minimization with optimized cutoff lengths using the same scheme as our previous work. [4] We apply the lattice regulated scheme [5] to evaluate non-local pseudopotentials in DMC and find the scheme improves the smoothness of the energy-volume curve. [1] CASINO ver.2.1 User Manual, University of Cambridge (2007). [2] J.R. Trail et.al., J. Chem. Phys. 122, 014112 (2005). [3] CRYSTAL98 User's Manual, University of Torino (1998). [4] Ryo Maezono et.al., Phys. Rev. Lett., 98, 025701 (2007). [5] Michele Casula, Phys. Rev. B 74, 161102R (2006).
Half-metallicity and tetragonal distortion in semi-Heusler alloy FeCrSe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, H. M., E-mail: smilehhm@163.com; Luo, S. J.; Yao, K. L.
2014-01-28
Full-potential linearized augmented plane wave methods are carried out to investigate the electronic structures and magnetic properties in semi-Heusler alloy FeCrSe. Results show that FeCrSe is half-metallic ferromagnet with the half-metallic gap 0.31 eV at equilibrium lattice constant. Calculated total magnetic moment of 2.00μ{sub B} per formula unit follows the Slater-Pauling rule quite well. Two kinds of structural changes are used to investigate the sensitivity of half-metallicity. It is found that the half-metallicity can be retained when lattice constant is changed by −4.56% to 3.52%, and the results of tetragonal distortion indicate the half-metallicity can be kept at the range ofmore » c/a ratio from 0.85 to 1.20. The Curie temperature, cohesive energy, and heat of formations of FeCrSe are also discussed.« less
High spin polarization in CoFeMnGe equiatomic quaternary Heusler alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bainsla, Lakhan; Magnetic Materials Unit, National Institute for Materials Science, Tsukuba 305-0047; Suresh, K. G., E-mail: suresh@phy.iitb.ac.in
2014-11-28
We report the structure, magnetic property, and spin polarization of CoFeMnGe equiatomic quaternary Heusler alloy. The alloy was found to crystallize in the cubic Heusler structure (prototype LiMgPdSn) with considerable amount of DO{sub 3} disorder. Thermal analysis result indicated the Curie temperature is about 750 K without any other phase transformation up to melting temperature. The magnetization value was close to that predicted by the Slater-Pauling curve. Current spin polarization of P = 0.70 ± 0.01 was deduced using point contact andreev reflection measurements. The temperature dependence of electrical resistivity has been fitted in the temperature range of 5–300 K in order to check for themore » half metallic behavior. Considering the high spin polarization and Curie temperature, this material appears to be promising for spintronic applications.« less
Variational Dirac-Hartree-Fock calculation of the Breit interaction
NASA Astrophysics Data System (ADS)
Goldman, S. P.
1988-04-01
The calculation of the retarded version of the Breit interaction in the context of the VDHF method is discussed. With the use of Slater-type basis functions, all the terms involved can be calculated in closed form. The results are expressed as an expansion in powers of one-electron energy differences and linear combinations of hypergeometric functions. Convergence is fast and high accuracy is obtained with a small number of terms in the expansion even for high values of the nuclear charge. An added advantage is that the lowest order cancellations occurring in the retardation terms are accounted for exactly a priori. A comparison of the number of terms in the total expansion needed for an accuracy of 12 significant digits in the total energy, as well as a comparison of the results with an without retardation and in the local potential approximation, are presented for the carbon isoelectronic sequence.
A Mössbauer effect study of the bonding in several organoiron carbonyl clusters
NASA Astrophysics Data System (ADS)
Long, Gary J.; O'Brien, James F.
1988-02-01
After a brief review of the applications of the Mössbauer effect to cyclopentadienyl containing compounds, the chemistry and spectral properties of the various iron carbonyl complexes are described. The electronic properties of a series of trinuclear and tetranuclear organoiron clusters have been investigated through Fenske-Hall self-consistent field molecular orbital calculations, and the results are compared with the Mössbauer effect isomer shifts. A linear correlation is found between the Slater effective nuclear charge, as calculated from the Fenske-Hall partial orbital occupancy factors, and the isomer shift. In these compounds the 4s orbital populations are rather constant. However, the cis and trans isomers of [CpFe(CO)2]2 have a significantly lower 4s orbital populations. In this case, the reduced 4s population must be accounted for by adding it to the effective nuclear charge to obtain a good correlation with the isomer shift.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markiewicz, R. S.; Buda, I. G.; Mistark, P.
Here, we propose a new approach to understand the origin of the pseudogap in the cuprates, in terms of bosonic entropy. The near-simultaneous softening of a large number of different q-bosons yields an extended range of short-range order, wherein the growth of magnetic correlations with decreasing temperature T is anomalously slow. These entropic effects cause the spectral weight associated with the Van Hove singularity (VHS) to shift rapidly and nearly linearly toward half filling at higher T, consistent with a picture of the VHS driving the pseudogap transition at a temperature ~T*. As a byproduct, we develop an order-parameter classificationmore » scheme that predicts supertransitions between families of order parameters. As one example, we find that by tuning the hopping parameters, it is possible to drive the cuprates across a transition between Mott and Slater physics, where a spin-frustrated state emerges at the crossover.« less
Large moments in bcc FexCoyMnz ternary alloy thin films
NASA Astrophysics Data System (ADS)
Snow, R. J.; Bhatkar, H.; N'Diaye, A. T.; Arenholz, E.; Idzerda, Y. U.
2018-02-01
The elemental magnetic moments and the average atomic moment of 10-20 nm thick single crystal bcc (bct) FexCoyMnz films deposited on MgO(001) have been determined as a function of a broad range of compositions. Thin film epitaxy stabilized the bcc structure for 80% of the available ternary compositional space compared to only a 23% stability region for the bulk. The films that display ferromagnetism represent 60% of the available compositional possibilities compared to 25% for the bulk. A maximum average atomic moment of 3.25 ± 0.3 μB/atom was observed for a bcc Fe9Co62Mn29 film (well above the limit of the Slater-Pauling binary alloy curve of 2.45 μB/atom). The FexCoyMnz ternary alloys that exhibit high moments can only be synthesized as ultrathin films since the bcc structure is not stable in the bulk for those compositions.
Excitonic structure of the optical conductivity in MoS2 monolayers
NASA Astrophysics Data System (ADS)
Ridolfi, Emilia; Lewenkopf, Caio H.; Pereira, Vitor M.
2018-05-01
We investigate the excitonic spectrum of MoS2 monolayers and calculate its optical absorption properties over a wide range of energies. Our approach takes into account the anomalous screening in two dimensions and the presence of a substrate, both cast by a suitable effective Keldysh potential. We solve the Bethe-Salpeter equation using as a basis a Slater-Koster tight-binding model parameterized to fit the ab initio MoS2 band structure calculations. The resulting optical conductivity is in good quantitative agreement with existing measurements up to ultraviolet energies. We establish that the electronic contributions to the C excitons arise not from states at the Γ point, but from a set of k points over extended portions of the Brillouin zone. Our results reinforce the advantages of approaches based on effective models to expeditiously explore the properties and tunability of excitons in TMD systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Luning; Neuscamman, Eric
We present a modification to variational Monte Carlo’s linear method optimization scheme that addresses a critical memory bottleneck while maintaining compatibility with both the traditional ground state variational principle and our recently-introduced variational principle for excited states. For wave function ansatzes with tens of thousands of variables, our modification reduces the required memory per parallel process from tens of gigabytes to hundreds of megabytes, making the methodology a much better fit for modern supercomputer architectures in which data communication and per-process memory consumption are primary concerns. We verify the efficacy of the new optimization scheme in small molecule tests involvingmore » both the Hilbert space Jastrow antisymmetric geminal power ansatz and real space multi-Slater Jastrow expansions. Satisfied with its performance, we have added the optimizer to the QMCPACK software package, with which we demonstrate on a hydrogen ring a prototype approach for making systematically convergent, non-perturbative predictions of Mott-insulators’ optical band gaps.« less
Sugisaki, Kenji; Yamamoto, Satoru; Nakazawa, Shigeaki; Toyota, Kazuo; Sato, Kazunobu; Shiomi, Daisuke; Takui, Takeji
2016-08-18
Quantum computers are capable to efficiently perform full configuration interaction (FCI) calculations of atoms and molecules by using the quantum phase estimation (QPE) algorithm. Because the success probability of the QPE depends on the overlap between approximate and exact wave functions, efficient methods to prepare accurate initial guess wave functions enough to have sufficiently large overlap with the exact ones are highly desired. Here, we propose a quantum algorithm to construct the wave function consisting of one configuration state function, which is suitable for the initial guess wave function in QPE-based FCI calculations of open-shell molecules, based on the addition theorem of angular momentum. The proposed quantum algorithm enables us to prepare the wave function consisting of an exponential number of Slater determinants only by a polynomial number of quantum operations.
Theoretical study of the diatomic alkali and alkaline-earth oxides
NASA Technical Reports Server (NTRS)
Langhoff, S. R.; Bauschlicher, C. W., Jr.; Partridge, H.
1986-01-01
Theoretical dissociation energies for the ground states of the alkali and alkaline earth oxides are presented that are believed to be accurate to 0.1 eV. The 2 Pi - 2 Sigma + separations for the alkali oxides are found to be more sensitive to basis set than to electron correlation. Predicted 2 Pi ground states for LiO and NaO and 2 Sigma + ground states for RbO and CsO are found to be in agreement with previous theoretical and experimental work. For KO, a 2 Sigma + state is found at both the numerical Hartree-Fock (NHF) level and at the singles plus doubles configuration interaction level using a Slater basis set that is within 0.02 eV of the NHF limit. It is found that an accurate balanced treatment of the two states requires correlating the electrons on both the metal and oxide ion.
NASA Astrophysics Data System (ADS)
Levin, Alan R.; Zhang, Deyin; Polizzi, Eric
2012-11-01
In a recent article Polizzi (2009) [15], the FEAST algorithm has been presented as a general purpose eigenvalue solver which is ideally suited for addressing the numerical challenges in electronic structure calculations. Here, FEAST is presented beyond the “black-box” solver as a fundamental modeling framework which can naturally address the original numerical complexity of the electronic structure problem as formulated by Slater in 1937 [3]. The non-linear eigenvalue problem arising from the muffin-tin decomposition of the real-space domain is first derived and then reformulated to be solved exactly within the FEAST framework. This new framework is presented as a fundamental and practical solution for performing both accurate and scalable electronic structure calculations, bypassing the various issues of using traditional approaches such as linearization and pseudopotential techniques. A finite element implementation of this FEAST framework along with simulation results for various molecular systems is also presented and discussed.
NASA Technical Reports Server (NTRS)
Cooper, D. M.
1981-01-01
Electronic transition moments and their variation with internuclear separation are calculated for the Ballik-Ramsay (b 3 Sigma g - a 3 Pi u), Fox-Herzberg (e 3 Pi g-a 3 Pi u) and Swan (d 3 Pi g-a 3 Pi u) band systems of C2, which appear in a variety of terrestrial and astrophysical sources. Electronic wave functions of the a 3 Pi u, b 2 Sigma g -, d 3 Pi g and e 3 Pi g states of C2 are obtained by means of a self-consistent field plus configuration interaction calculation using an atomic basis of 46 Slater-type orbitals, and theoretical potential energy curves and spectroscopic constants for the four electronic states were computed. The results obtained for both the potential energy curves and electronic transition moments are found to be in good agreement with experimental data.
A theoretical study of the electronic transition moment for the C2 Swan band system
NASA Technical Reports Server (NTRS)
Arnold, J. O.; Langhoff, S. R.
1978-01-01
Large-scale self-consistent-field plus configuration-interaction calculations have been performed for the a 3Pi u and d 3Pi g states of C2. The theoretical potential curves are in good agreement with those found by a Klein-Dunham analysis of measured molecular constants in terms of shape and excitation energy. The sum of the squares of the theoretical transition moments between the states at 2.44 bohr is 4.12 a.u. which agrees with the results of shock tube measurements. The variation in the sum of the squares of the theoretical moments with internuclear separation agrees with the values of Danylewych and Nicholls (1974). Based on the data for C2 and mother molecules, it is suggested that CI calculations using near Hartree-Fock quality Slater basis sets produce highly reliable transition moments.
Effect of wave function on the proton induced L XRP cross sections for {sub 62}Sm and {sub 74}W
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shehla,; Kaur, Rajnish; Kumar, Anil
The L{sub k}(k= 1, α, β, γ) X-ray production cross sections have been calculated for {sub 74}W and {sub 62}Sm at different incident proton energies ranging 1-5 MeV using theoretical data sets of different physical parameters, namely, the Li(i=1-3) sub-shell X-ray emission rates based on the Dirac-Fork (DF) model, the fluorescence and Coster Kronig yields based on the Dirac- Hartree-Slater (DHS) model and two sets the proton ionization cross sections based on the DHS model and the ECPSSR in order to assess the influence of the wave function on the XRP cross sections. The calculated cross sections have been compared withmore » the measured cross sections reported in the recent compilation to check the reliability of the calculated values.« less
Kim, Jeongnim; Baczewski, Andrew T; Beaudet, Todd D; Benali, Anouar; Bennett, M Chandler; Berrill, Mark A; Blunt, Nick S; Borda, Edgar Josué Landinez; Casula, Michele; Ceperley, David M; Chiesa, Simone; Clark, Bryan K; Clay, Raymond C; Delaney, Kris T; Dewing, Mark; Esler, Kenneth P; Hao, Hongxia; Heinonen, Olle; Kent, Paul R C; Krogel, Jaron T; Kylänpää, Ilkka; Li, Ying Wai; Lopez, M Graham; Luo, Ye; Malone, Fionn D; Martin, Richard M; Mathuriya, Amrita; McMinis, Jeremy; Melton, Cody A; Mitas, Lubos; Morales, Miguel A; Neuscamman, Eric; Parker, William D; Pineda Flores, Sergio D; Romero, Nichols A; Rubenstein, Brenda M; Shea, Jacqueline A R; Shin, Hyeondeok; Shulenburger, Luke; Tillack, Andreas F; Townsend, Joshua P; Tubman, Norm M; Van Der Goetz, Brett; Vincent, Jordan E; Yang, D ChangMo; Yang, Yubo; Zhang, Shuai; Zhao, Luning
2018-05-16
QMCPACK is an open source quantum Monte Carlo package for ab initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater-Jastrow type trial wavefunctions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary-field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performance computing architectures, including multicore central processing unit and graphical processing unit systems. We detail the program's capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://qmcpack.org.
Borrego, Adrián; Latorre, Jorge; Llorens, Roberto; Alcañiz, Mariano; Noé, Enrique
2016-08-09
Even though virtual reality (VR) is increasingly used in rehabilitation, the implementation of walking navigation in VR still poses a technological challenge for current motion tracking systems. Different metaphors simulate locomotion without involving real gait kinematics, which can affect presence, orientation, spatial memory and cognition, and even performance. All these factors can dissuade their use in rehabilitation. We hypothesize that a marker-based head tracking solution would allow walking in VR with high sense of presence and without causing sickness. The objectives of this study were to determine the accuracy, the jitter, and the lag of the tracking system and its elicited sickness and presence in comparison of a CAVE system. The accuracy and the jitter around the working area at three different heights and the lag of the head tracking system were analyzed. In addition, 47 healthy subjects completed a search task that involved navigation in the walking VR system and in the CAVE system. Navigation was enabled by natural locomotion in the walking VR system and through a specific device in the CAVE system. An HMD was used as display in the walking VR system. After interacting with each system, subjects rated their sickness in a seven-point scale and their presence in the Slater-Usoh-Steed Questionnaire and a modified version of the Presence Questionnaire. Better performance was registered at higher heights, where accuracy was less than 0.6 cm and the jitter was about 6 mm. The lag of the system was 120 ms. Participants reported that both systems caused similar low levels of sickness (about 2.4 over 7). However, ratings showed that the walking VR system elicited higher sense of presence than the CAVE system in both the Slater-Usoh-Steed Questionnaire (17.6 ± 0.3 vs 14.6 ± 0.6 over 21, respectively) and the modified Presence Questionnaire (107.4 ± 2.0 vs 93.5 ± 3.2 over 147, respectively). The marker-based solution provided accurate, robust, and fast head tracking to allow navigation in the VR system by walking without causing relevant sickness and promoting higher sense of presence than CAVE systems, thus enabling natural walking in full-scale environments, which can enhance the ecological validity of VR-based rehabilitation applications.
Computational investigation of half-Heusler compounds for spintronics applications
NASA Astrophysics Data System (ADS)
Ma, Jianhua; Hegde, Vinay I.; Munira, Kamaram; Xie, Yunkun; Keshavarz, Sahar; Mildebrath, David T.; Wolverton, C.; Ghosh, Avik W.; Butler, W. H.
2017-01-01
We present first-principles density functional calculations of the electronic structure, magnetism, and structural stability of 378 XYZ half-Heusler compounds (with X = Cr, Mn, Fe, Co, Ni, Ru, Rh; Y = Ti, V, Cr, Mn, Fe, Ni; Z = Al, Ga, In, Si, Ge, Sn, P, As, Sb). We find that a "Slater-Pauling gap" in the density of states (i.e., a gap or pseudogap after nine states in the three atom primitive cell) in at least one spin channel is a common feature in half-Heusler compounds. We find that the presence of such a gap at the Fermi energy in one or both spin channels contributes significantly to the stability of a half-Heusler compound. We calculate the formation energy of each compound and systematically investigate its stability against all other phases in the open quantum materials database (OQMD). We represent the thermodynamic phase stability of each compound as its distance from the convex hull of stable phases in the respective chemical space and show that the hull distance of a compound is a good measure of the likelihood of its experimental synthesis. We find low formation energies and mostly correspondingly low hull distances for compounds with X = Co, Rh, or Ni, Y = Ti or V, and Z = P, As, Sb, or Si. We identify 26 18-electron semiconductors, 45 half-metals, and 34 near half-metals with negative formation energy that follow the Slater-Pauling rule of three electrons per atom. Our calculations predict several new, as-yet unknown, thermodynamically stable phases, which merit further experimental exploration—RuVAs, CoVGe, FeVAs in the half-Heusler structure, and NiScAs, RuVP, RhTiP in the orthorhombic MgSrSi-type structure. Further, two interesting zero-moment half-metals, CrMnAs and MnCrAs, are calculated to have negative formation energy. In addition, our calculations predict a number of hitherto unreported semiconducting (e.g., CoVSn and RhVGe), half-metallic (e.g., RhVSb), and near half-metallic (e.g., CoFeSb and CoVP) half-Heusler compounds to lie close to the respective convex hull of stable phases, and thus may be experimentally realized under suitable synthesis conditions, resulting in potential candidates for various semiconducting and spintronics applications.
Extension of the Kohn-Sham formulation of density functional theory to finite temperature
NASA Astrophysics Data System (ADS)
Gonis, A.; Däne, M.
2018-05-01
Based on Mermin's extension of the Hohenberg and Kohn theorems to non-zero temperature, the Kohn-Sham formulation of density functional theory (KS-DFT) is generalized to finite temperature. We show that present formulations are inconsistent with Mermin's functional containing expressions, in particular describing the Coulomb energy, that defy derivation and are even in violation of rules of logical inference. More; current methodology is in violation of fundamental laws of both quantum and classical mechanics. Based on this feature, we demonstrate the impossibility of extending the KS formalism to finite temperature through the self-consistent solutions of the single-particle Schrödinger equation of T > 0. Guided by the form of Mermin's functional that depends on the eigenstates of a Hamiltonian, determined at T = 0, we base our extension of KS-DFT on the determination of the excited states of a non-interacting system at the zero of temperature. The resulting formulation is consistent with that of Mermin constructing the free energy at T > 0 in terms of the excited states of a non-interacting Hamiltonian (system) that, within the KS formalism, are described by Slater determinants. To determine the excited states at T = 0 use is made of the extension of the Hohenberg and Kohn theorems to excited states presented in previous work applied here to a non-interacting collection of replicas of a non-interacting N-particle system, whose ground state density is taken to match that of K non-interacting replicas of an interacting N-particle system at T = 0 . The formalism allows for an ever denser population of the excitation spectrum of a Hamiltonian, within the KS approximation. The form of the auxiliary potential, (Kohn-Sham potential), is formally identical to that in the ground state formalism with the contribution of the Coulomb energy provided by the derivative of the Coulomb energy in all excited states taken into account. Once the excited states are determined, the minimum of the free energy within the KS formalism follows immediately in the form of Mermin's functional, but with the exact excited states in that functional represented by Slater determinants obtained through self-consistency conditions at the zero of temperature. It is emphasized that, in departure from all existing formulations, no self-consistency conditions are implemented at finite T; as we show, in fact, such formulations are rigorously blocked.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puri, Sanjiv, E-mail: sanjivpurichd@yahoo.com
The intensity ratios, I{sub Lk}/I{sub Lα1} (k=l,η,α{sub 2},β{sub 1},β{sub 2,15},β{sub 3},β{sub 4},β{sub 5,7},β{sub 6},β{sub 9,10},γ{sub 1,5},γ{sub 6,8},γ{sub 2,3},γ{sub 4}) and I{sub Lj}/I{sub Lα} (j=β,γ), have been evaluated at incident photon energies across the L{sub i} (i=1–3) absorption edge energies of all the elements with 35≤Z≤92. Use is made of what are currently considered to be more reliable theoretical data sets of different physical parameters, namely, the L{sub i} (i=1–3) sub-shell photoionization cross sections based on the relativistic Hartree–Fock–Slater (RHFS) model, the X-ray emission rates based on the Dirac–Fock model, and the fluorescence and Coster–Kronig yields based on the Dirac–Hartree–Slater model.more » In addition, the Lα{sub 1} X-ray production cross sections for different elements at various incident photon energies have been tabulated so as to facilitate the evaluation of production cross sections for different resolved L X-ray components from the tabulated intensity ratios. Further, to assist evaluation of the prominent (L{sub i}−S{sub j}) (S{sub j}=M{sub j}, N{sub j} and i=1–3, j=1–7) resonant Raman scattered (RRS) peak energies for an element at a given incident photon energy (below the L{sub i} sub-shell absorption edge), the neutral-atom electron binding energies based on the relaxed orbital RHFS calculations are also listed so as to enable identification of the RRS peaks, which can overlap with the fluorescent X-ray lines. -- Highlights: •The L X-ray relative intensities and Lα{sub 1} XRP cross sections are evaluated using physical parameters based on the IPA models. •Comparison of the intensity ratios evaluated using the DHS and DF models based photoionization cross sections is presented. •Importance of many body effects including electron exchange effects is highlighted.« less
Magnetic and transport properties of Co2Mn1-xCrxSi Heusler alloy thin films
NASA Astrophysics Data System (ADS)
Aftab, M.; Hassnain Jaffari, G.; Hasanain, S. K.; Ali Abbas, Turab; Ismat Shah, S.
2013-09-01
Magnetic, transport, and magnetotransport properties of Co2Mn1-xCrxSi (0 ≤ x ≤ 1) DC sputter grown thin films have been investigated. In films with x > 0.2 saturation magnetization values are seen to deviate from the Slater-Pauling rule due to the enhancement of Co-Cr antisite disorder. The increasing structural disorder eventually results in a sign change of the temperature coefficient of resistivity (at x > 0.6), while a resistivity minimum is observed for the metallic compositions. From resistivity measurements, we conclude that there is a phase transition from a half-metallic ferromagnetic phase to a normal ferromagnetic phase at T ˜ 68 K in composition with x ≤ 0.2. Both the onset temperature and the temperature range for half metallic phase were found to decrease with increasing x among the metallic compositions. Magnetotransport measurements performed on metallic compositions at temperatures below and above the resistivity minimum suggest the presence of both the metallic as well as semiconducting/localized states.
A Blocked Linear Method for Optimizing Large Parameter Sets in Variational Monte Carlo
Zhao, Luning; Neuscamman, Eric
2017-05-17
We present a modification to variational Monte Carlo’s linear method optimization scheme that addresses a critical memory bottleneck while maintaining compatibility with both the traditional ground state variational principle and our recently-introduced variational principle for excited states. For wave function ansatzes with tens of thousands of variables, our modification reduces the required memory per parallel process from tens of gigabytes to hundreds of megabytes, making the methodology a much better fit for modern supercomputer architectures in which data communication and per-process memory consumption are primary concerns. We verify the efficacy of the new optimization scheme in small molecule tests involvingmore » both the Hilbert space Jastrow antisymmetric geminal power ansatz and real space multi-Slater Jastrow expansions. Satisfied with its performance, we have added the optimizer to the QMCPACK software package, with which we demonstrate on a hydrogen ring a prototype approach for making systematically convergent, non-perturbative predictions of Mott-insulators’ optical band gaps.« less
Efficient construction of exchange and correlation potentials by inverting the Kohn-Sham equations.
Kananenka, Alexei A; Kohut, Sviataslau V; Gaiduk, Alex P; Ryabinkin, Ilya G; Staroverov, Viktor N
2013-08-21
Given a set of canonical Kohn-Sham orbitals, orbital energies, and an external potential for a many-electron system, one can invert the Kohn-Sham equations in a single step to obtain the corresponding exchange-correlation potential, vXC(r). For orbitals and orbital energies that are solutions of the Kohn-Sham equations with a multiplicative vXC(r) this procedure recovers vXC(r) (in the basis set limit), but for eigenfunctions of a non-multiplicative one-electron operator it produces an orbital-averaged potential. In particular, substitution of Hartree-Fock orbitals and eigenvalues into the Kohn-Sham inversion formula is a fast way to compute the Slater potential. In the same way, we efficiently construct orbital-averaged exchange and correlation potentials for hybrid and kinetic-energy-density-dependent functionals. We also show how the Kohn-Sham inversion approach can be used to compute functional derivatives of explicit density functionals and to approximate functional derivatives of orbital-dependent functionals.
ProThera Biologics, Inc.: a novel immunomodulator and biomarker for life-threatening diseases.
Lim, Yow-Pin
2013-02-01
ProThera Biologics is a development stage bio-therapeutics company in East Providence, Rhode Island. The company was founded in 2002 to focus on the critical role and commercial potential of Inter-alpha Inhibitor Proteins (IAIP) for treating acute life-threatening inflammatory diseases. The discovery research originated in the basic research laboratories of the co-founders, Yow-Pin Lim, MD, PhD, and Douglas C. Hixson, PhD, at Rhode Island Hospital, a Lifespan partner. The company is backed by the Slater Technology Fund and has received research grants from the Rhode Island State Science and Technology Council (RI STAC) as well as continuous funding from the National Institutes of Health (NIH), with several Phase I and II Small Business Innovation Research (SBIR) grants over the past 10 years. ProThera has developed a novel process to purify Inter-alpha Inhibitor Proteins from source material, and has conducted groundbreaking research into the usage of IAIP to fight systemic inflammation.
Magnetic Fe-Co films electroplated in a deep-eutectic-solvent-based plating bath
NASA Astrophysics Data System (ADS)
Yanai, T.; Shiraishi, K.; Watanabe, Y.; Ohgai, T.; Nakano, M.; Suzuki, K.; Fukunaga, H.
2015-05-01
We fabricated Fe-Co films from a deep eutectic solvent (DES)-based plating bath and investigated magnetic properties of the plated films. The plating baths were obtained by stirring the mixture of choline chloride, ethylene glycol, FeCl2.4H2O, and CoCl2.6H2O. The composition of the plated films depended on the amount of FeCl2.4H2O in the plating bath, and Fe content of the films was varied from 0 to 100 at. %. Depending on the Fe content, the saturation magnetization and the coercivity of the films varied. The Fe76Co24 film shows high saturation magnetization and smooth surface, and the change in the saturation magnetization shows good agreement with the expected change by the Slater-Pauling curve. High current efficiency (>90%) could be obtained in the wide film composition. From these results, we concluded that the DES-based plating bath is one of effective baths for the Fe-Co films with high current efficiency.
Pressure induced structural phase transition in IB transition metal nitrides compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soni, Shubhangi; Kaurav, Netram, E-mail: netramkaurav@yahoo.co.uk; Jain, A.
2015-06-24
Transition metal mononitrides are known as refractory compounds, and they have, relatively, high hardness, brittleness, melting point, and superconducting transition temperature, and they also have interesting optical, electronic, catalytic, and magnetic properties. Evolution of structural properties would be an important step towards realizing the potential technological scenario of this material of class. In the present study, an effective interionic interaction potential (EIOP) is developed to investigate the pressure induced phase transitions in IB transition metal nitrides TMN [TM = Cu, Ag, and Au] compounds. The long range Coulomb, van der Waals (vdW) interaction and the short-range repulsive interaction upto second-neighbormore » ions within the Hafemeister and Flygare approach with modified ionic charge are properly incorporated in the EIOP. The vdW coefficients are computed following the Slater-Kirkwood variational method, as both the ions are polarizable. The estimated value of the phase transition pressure (Pt) and the magnitude of the discontinuity in volume at the transition pressure are consistent as compared to the reported data.« less
NASA Astrophysics Data System (ADS)
Yousuf, Saleem; Gupta, Dinesh C.
2017-09-01
Investigation of band structure and thermo-physical response of new quaternary CoVTiAl Heusler alloy within the frame work of density functional theory has been analyzed. 100% spin polarization with ferromagnetic stable ground state at the optimized lattice parameter of 6.01 Å is predicted for the compound. Slater-Pauling rule for the total magnetic moment of 3 μB and an indirect semiconducting behavior is also seen for the compound. In order to perfectly analyze the thermo-physical response, the lattice thermal conductivity and thermodynamic properties have been calculated. Thermal effects on some macroscopic properties of CoVTiAl are predicted using the quasi-harmonic Debye model, in which the lattice vibrations are taken into account. The variations of the lattice constant, volume expansion coefficient, heat capacities, and Debye temperature with pressure and temperature in the ranges of 0 GPa to 15 GPa and 0 K to 800 K have been obtained.
NASA Astrophysics Data System (ADS)
Zhang, Y. J.; Liu, Z. H.; Liu, G. D.; Ma, X. Q.; Cheng, Z. X.
2018-03-01
Compensated ferrimagnets, due to their zero net magnetization and potential for large spin-polarization, have been attracting more and more attention in the field of spintronics. We demonstrate potential candidate materials among the inverse Heusler compounds Ti2VZ (Z = P, As, Sb, Bi) by first principles calculations. It is found that these compounds with 18 valence electrons per unit cell have zero net magnetic moment with compensated sublattice magnetization, as anticipated by a variant of Slater-Pauling rule of Mt = NV - 18, where Mt is the total spin magnetic moment per formula unit and NV is the number of valence electrons per formula unit, and show semiconducting behavior in both spin channels with a moderate exchange splitting, as with ordinary ferromagnetic semiconductors. Furthermore, the fully compensated ferrimagnetism and semiconductivity are rather robust over a wide range of lattice contraction and expansion. Due to the above distinct advantages, these compounds will be promising candidates for spintronic applications.
High profile backing for GS1 drive.
Hodgson, Glen
2016-09-01
At the 2016 GS1 UK Healthcare Conference in London, delegates heard from speakers including Pat Mills, the Department of Health's commercial director, on the ongoing work to embed GS1 standards throughout the NHS in England in line with the DH's eProcurement Strategy, published in April 2014. This mandated that any service or product procured by an English NHS acute Trust comply with the standards--one of the most obvious representations of which is on barcodes--'to enable Trusts to manage their non-pay spending by adopting master procurement data, automating the exchange of such data, and benchmarking their procurement against other Trusts and healthcare providers'. One of six 'demonstrator site' Trusts to provide a speaker at the 2016 GS1 UK national conference to report on their progress to date was Leeds Teaching Hospitals NHS Trust. Shortly after, HEJ editor, Jonathan Baillie, spoke to the Trust's associate director, Commercial and Procurement, Chris Slater, and to head of Healthcare at GS1 UK, Glen Hodgson.
Stiffness-constant variation in nickel-based alloys: Experiment and theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hennion, M.; Hennion, B.
1979-01-01
Recent measurements of the spin-wave stiffness constant in several nickel alloys at various concentrations are interpreted within a random-phase approximation, coherent-potential approximation (RPA-CPA) band model which uses the Hartree-Fock approximation to treat the intraatomic correlations. We give a theoretical description of the possible impurity states in the Hartree-Fock approximation. This allows the determination of the Hartree-Fock solutions which can account for the stiffness-constant behavior and the magnetic moment on the impurity for all the investigated alloys. For alloys such as NiCr, NiV, NiMo, and NiRu, the magnetizations of which deviate from the Slater-Pauling curve, our determination does not correspond tomore » previous works and is consequently discussed. The limits of the model appear mainly due to local-environment effects; in the case of NiMn, it is found that a ternary-alloy model with some Mn atoms in the antiferromagnetic state can account for both stiffness-constant and magnetization behaviors.« less
Kim, Jeongnim; Baczewski, Andrew T.; Beaudet, Todd D.; ...
2018-04-19
QMCPACK is an open source quantum Monte Carlo package for ab-initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater-Jastrow type trial wave functions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performancemore » computing architectures, including multicore central processing unit (CPU) and graphical processing unit (GPU) systems. We detail the program’s capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://www.qmcpack.org.« less
The SU(r)2 string functions as q-diagrams
NASA Astrophysics Data System (ADS)
Genish, Arel; Gepner, Doron
2016-06-01
A generalized Roger Ramanujan (GRR) type expression for the characters of A-type parafermions has been a long standing puzzle dating back to conjectures made regarding some of the characters in the 90s. Not long ago we have put forward such GRR type identities describing any of the level two ADE-type generalized parafermions characters at any rank. These characters are the string functions of simply laced Lie algebras at level two, as such, they are also of mathematical interest. In our last joint paper we presented the complete derivation for the D-type generalized parafermions characters identities. Here we generalize our previous discussion and prove the GRR type expressions for the characters of A-type generalized parafermions. To prove the A-type GRR conjecture we study further the q-diagrams, introduced in our last joint paper, and examine the diagrammatic interpretations of known identities among them Slater identities for the characters of the first minimal model, which is the Ising model, and the Bailey lemma.
Influence of the plasma environment on atomic structure using an ion-sphere model
Belkhiri, Madeny Jean; Fontes, Christopher John; Poirier, Michel
2015-09-03
Plasma environment effects on atomic structure are analyzed using various atomic structure codes. To monitor the effect of high free-electron density or low temperatures, Fermi-Dirac and Maxwell-Boltzmann statistics are compared. After a discussion of the implementation of the Fermi-Dirac approach within the ion-sphere model, several applications are considered. In order to check the consistency of the modifications brought here to extant codes, calculations have been performed using the Los Alamos Cowan Atomic Structure (cats) code in its Hartree-Fock or Hartree-Fock-Slater form and the parametric potential Flexible Atomic Code (fac). The ground-state energy shifts due to the plasma effects for themore » six most ionized aluminum ions have been calculated using the fac and cats codes and fairly agree. For the intercombination resonance line in Fe 22+, the plasma effect within the uniform electron gas model results in a positive shift that agrees with the MCDF value of B. Saha et al.« less
Influence of the plasma environment on atomic structure using an ion-sphere model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belkhiri, Madeny Jean; Fontes, Christopher John; Poirier, Michel
Plasma environment effects on atomic structure are analyzed using various atomic structure codes. To monitor the effect of high free-electron density or low temperatures, Fermi-Dirac and Maxwell-Boltzmann statistics are compared. After a discussion of the implementation of the Fermi-Dirac approach within the ion-sphere model, several applications are considered. In order to check the consistency of the modifications brought here to extant codes, calculations have been performed using the Los Alamos Cowan Atomic Structure (cats) code in its Hartree-Fock or Hartree-Fock-Slater form and the parametric potential Flexible Atomic Code (fac). The ground-state energy shifts due to the plasma effects for themore » six most ionized aluminum ions have been calculated using the fac and cats codes and fairly agree. For the intercombination resonance line in Fe 22+, the plasma effect within the uniform electron gas model results in a positive shift that agrees with the MCDF value of B. Saha et al.« less
Density-functional expansion methods: Grand challenges.
Giese, Timothy J; York, Darrin M
2012-03-01
We discuss the source of errors in semiempirical density functional expansion (VE) methods. In particular, we show that VE methods are capable of well-reproducing their standard Kohn-Sham density functional method counterparts, but suffer from large errors upon using one or more of these approximations: the limited size of the atomic orbital basis, the Slater monopole auxiliary basis description of the response density, and the one- and two-body treatment of the core-Hamiltonian matrix elements. In the process of discussing these approximations and highlighting their symptoms, we introduce a new model that supplements the second-order density-functional tight-binding model with a self-consistent charge-dependent chemical potential equalization correction; we review our recently reported method for generalizing the auxiliary basis description of the atomic orbital response density; and we decompose the first-order potential into a summation of additive atomic components and many-body corrections, and from this examination, we provide new insights and preliminary results that motivate and inspire new approximate treatments of the core-Hamiltonian.
Suppressing Ionic Terms with Number-Counting Jastrow Factors in Real Space
Goetz, Brett Van Der; Neuscamman, Eric
2017-04-06
Here, we demonstrate that four-body real-space Jastrow factors are, with the right type of Jastrow basis function, capable of performing successful wave function stenciling to remove unwanted ionic terms from an overabundant Fermionic reference without unduly modifying the remaining components. In addition to greatly improving size consistency (restoring it exactly in the case of a geminal power), real-space wave function stenciling is, unlike its Hilbert-space predecessors, immediately compatible with diffusion Monte Carlo, allowing it to be used in the pursuit of compact, strongly correlated trial functions with reliable nodal surfaces. Furthermore, we demonstrate the efficacy of this approach in themore » context of a double bond dissociation by using it to extract a qualitatively correct nodal surface despite being paired with a restricted Slater determinant, that, due to ionic term errors, produces a ground state with a qualitatively incorrect nodal surface when used in the absence of the Jastrow.« less
Suppressing Ionic Terms with Number-Counting Jastrow Factors in Real Space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goetz, Brett Van Der; Neuscamman, Eric
Here, we demonstrate that four-body real-space Jastrow factors are, with the right type of Jastrow basis function, capable of performing successful wave function stenciling to remove unwanted ionic terms from an overabundant Fermionic reference without unduly modifying the remaining components. In addition to greatly improving size consistency (restoring it exactly in the case of a geminal power), real-space wave function stenciling is, unlike its Hilbert-space predecessors, immediately compatible with diffusion Monte Carlo, allowing it to be used in the pursuit of compact, strongly correlated trial functions with reliable nodal surfaces. Furthermore, we demonstrate the efficacy of this approach in themore » context of a double bond dissociation by using it to extract a qualitatively correct nodal surface despite being paired with a restricted Slater determinant, that, due to ionic term errors, produces a ground state with a qualitatively incorrect nodal surface when used in the absence of the Jastrow.« less
NASA Astrophysics Data System (ADS)
Reyes-Herrera, J.; Miranda, J.
2016-06-01
This study presents measurement results of x-ray production cross sections of Lα and Lβ1,3,4 emitted by four lanthanoid elements (La, Ce, Pr and Nd), after irradiation with Kα and Kβ X rays of the elements Co, Ni, Cu, and Zn (covering energies between 7.01 keV and 8.75 keV). Primary x-rays were induced in turn by the irradiation of thick targets of these elements with a beam of x-rays produced by a tube with an Rh anode, operating at 50 kV and 850 μA. The experimental results are compared with theoretical cross sections predicted using known tabulations of photoelectric cross sections. Dirac-Hartree-Slater (DHS) atomic parameters were used for these calculations. An acceptable match between experiment and both sets of tabulated data is found.
Structural and magnetic characterizations of Co2FeGa/SiO2 nanoparticles prepared via chemical route
NASA Astrophysics Data System (ADS)
Priyanka, Dhaka, Rajendra S.
2018-04-01
We report the synthesis of Co2FeGa/SiO2 nanoparticles by sol-gel method and characterization usingx-ray diffraction (XRD), transmission electron microscopy (TEM) and magnetic measurements. The Rietveld refinementsof XRD data with space group Fm-3m clearly show the formation of A2 disordersingle phase and the lattice constant isfound to be 5.738 Å. The energy-dispersive x-ray spectroscopy (EDX) confirm the elemental composition close the desired values. The value of coercivity is found to be around 283 Oe and 126 Oe, measured at 10 K and 300 K, respectively. We observed the saturation magnetization significantly lower than expected from Slater-Pauling rule. This decrease in the magnetic moment might be due to the presence of amorphous SiO2 during the synthesis process. A large content of small size SiO2 particles along with Co2FeGa nanoparticles are also found in TEM study.
NASA Astrophysics Data System (ADS)
Moaienla, T.; Singh, Th. David; Singh, N. Rajmuhon; Devi, M. Indira
2009-10-01
Studying the absorption difference and comparative absorption spectra of the interaction of Pr(III) and Nd(III) with L-phenylalanine, L-glycine, L-alanine and L-aspartic acid in the presence and absence of Ca 2+ in organic solvents, various energy interaction parameters like Slater-Condon ( FK), Racah ( Ek), Lande factor ( ξ4f), nephelauxetic ratio ( β), bonding ( b1/2), percentage-covalency ( δ) have been evaluated applying partial and multiple regression analysis. The values of oscillator strength ( P) and Judd-Ofelt electric dipole intensity parameter Tλ ( λ = 2, 4, 6) for different 4f-4f transitions have been computed. On analysis of the variation of the various energy interaction parameters as well as the changes in the oscillator strength ( P) and Tλ values reveal the mode of binding with different ligands.
Pushing configuration-interaction to the limit: Towards massively parallel MCSCF calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogiatzis, Konstantinos D.; Ma, Dongxia; Olsen, Jeppe
A new large-scale parallel multiconfigurational self-consistent field (MCSCF) implementation in the open-source NWChem computational chemistry code is presented. The generalized active space approach is used to partition large configuration interaction (CI) vectors and generate a sufficient number of batches that can be distributed to the available cores. Massively parallel CI calculations with large active spaces can be performed. The new parallel MCSCF implementation is tested for the chromium trimer and for an active space of 20 electrons in 20 orbitals, which can now routinely be performed. Unprecedented CI calculations with an active space of 22 electrons in 22 orbitals formore » the pentacene systems were performed and a single CI iteration calculation with an active space of 24 electrons in 24 orbitals for the chromium tetramer was possible. In conclusion, the chromium tetramer corresponds to a CI expansion of one trillion Slater determinants (914 058 513 424) and is the largest conventional CI calculation attempted up to date.« less
Pushing configuration-interaction to the limit: Towards massively parallel MCSCF calculations
Vogiatzis, Konstantinos D.; Ma, Dongxia; Olsen, Jeppe; ...
2017-11-14
A new large-scale parallel multiconfigurational self-consistent field (MCSCF) implementation in the open-source NWChem computational chemistry code is presented. The generalized active space approach is used to partition large configuration interaction (CI) vectors and generate a sufficient number of batches that can be distributed to the available cores. Massively parallel CI calculations with large active spaces can be performed. The new parallel MCSCF implementation is tested for the chromium trimer and for an active space of 20 electrons in 20 orbitals, which can now routinely be performed. Unprecedented CI calculations with an active space of 22 electrons in 22 orbitals formore » the pentacene systems were performed and a single CI iteration calculation with an active space of 24 electrons in 24 orbitals for the chromium tetramer was possible. In conclusion, the chromium tetramer corresponds to a CI expansion of one trillion Slater determinants (914 058 513 424) and is the largest conventional CI calculation attempted up to date.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jeongnim; Baczewski, Andrew T.; Beaudet, Todd D.
QMCPACK is an open source quantum Monte Carlo package for ab-initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater-Jastrow type trial wave functions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performancemore » computing architectures, including multicore central processing unit (CPU) and graphical processing unit (GPU) systems. We detail the program’s capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://www.qmcpack.org.« less
Pushing configuration-interaction to the limit: Towards massively parallel MCSCF calculations
NASA Astrophysics Data System (ADS)
Vogiatzis, Konstantinos D.; Ma, Dongxia; Olsen, Jeppe; Gagliardi, Laura; de Jong, Wibe A.
2017-11-01
A new large-scale parallel multiconfigurational self-consistent field (MCSCF) implementation in the open-source NWChem computational chemistry code is presented. The generalized active space approach is used to partition large configuration interaction (CI) vectors and generate a sufficient number of batches that can be distributed to the available cores. Massively parallel CI calculations with large active spaces can be performed. The new parallel MCSCF implementation is tested for the chromium trimer and for an active space of 20 electrons in 20 orbitals, which can now routinely be performed. Unprecedented CI calculations with an active space of 22 electrons in 22 orbitals for the pentacene systems were performed and a single CI iteration calculation with an active space of 24 electrons in 24 orbitals for the chromium tetramer was possible. The chromium tetramer corresponds to a CI expansion of one trillion Slater determinants (914 058 513 424) and is the largest conventional CI calculation attempted up to date.
Schlüns, Danny; Franchini, Mirko; Götz, Andreas W; Neugebauer, Johannes; Jacob, Christoph R; Visscher, Lucas
2017-02-05
We present a new implementation of analytical gradients for subsystem density-functional theory (sDFT) and frozen-density embedding (FDE) into the Amsterdam Density Functional program (ADF). The underlying theory and necessary expressions for the implementation are derived and discussed in detail for various FDE and sDFT setups. The parallel implementation is numerically verified and geometry optimizations with different functional combinations (LDA/TF and PW91/PW91K) are conducted and compared to reference data. Our results confirm that sDFT-LDA/TF yields good equilibrium distances for the systems studied here (mean absolute deviation: 0.09 Å) compared to reference wave-function theory results. However, sDFT-PW91/PW91k quite consistently yields smaller equilibrium distances (mean absolute deviation: 0.23 Å). The flexibility of our new implementation is demonstrated for an HCN-trimer test system, for which several different setups are applied. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Bhat, Tahir Mohiuddin; Gupta, Dinesh C.
2018-03-01
The ground state properties along with thermodynamic and thermoelectric properties of quaternary CoFeCrAs alloy within the ordered LiMgPdSn-type structure have been investigated by employing first-principles calculations. The alloy offers half-metallic ferromagnet character with an indirect band gap of 1.12 eV in the minority spin state with total spin magnetic moment of 4μB and follows Slater-Pauling relation. Effects on various properties of the material has been studied by the variation of the pressure and temperature. CoFeCrAs tenders large value of the Grüneisen parameter and small value for the thermal expansion coefficient. The materials present high Seebeck coefficient and huge power factor with the room temperature value of ∼-40 μV/K and 18 (1014 μWcm-1 K-2 s-1) respectively, which make CoFeCrAs promising candidate for efficient thermoelectric material.
Theoretical analysis of the structural phase transformation from B3 to B1 in BeO under high pressure
NASA Astrophysics Data System (ADS)
Jain, Arvind; Verma, Saligram; Nagarch, R. K.; Shah, S.; Kaurav, Netram
2018-05-01
We have performed the phase transformation and elastic properties of BeO at high pressure by formulating effective interionic interaction potential. The elastic constants, including the long-range Coulomb and van der Waals (vdW) interactions and the short-range repulsive interaction of up to second-neighbor ions within the Hafemeister and Flygare approach, are derived. Assuming that both the ions are polarizable, we employed the Slater-Kirkwood variational method to estimate the vdW coefficients, a structural phase transition (Pt) from ZnS structure (B3) to NaCl structure (B1) at 108 GPa has been predicted for BeO. The estimated value of the phase transition pressure (Pt) and the magnitude of the discontinuity in volume at the transition pressure are consistent as compared to the theoretical data. The variations of elastic constants with pressure follow a systematic trend identical to that observed in others compounds of ZnS type structure family.
Stability of half-metallic behavior with lattice variation for Fe2MnZ (Z = Si, Ge, Sn) Heusler alloy
NASA Astrophysics Data System (ADS)
Jain, Vivek Kumar; Lakshmi, N.; Jain, Rakesh
2018-05-01
The electronic structure and magnetic properties with variation of lattice constant for Fe2MnZ (Z = Si, Ge, Sn) Heusler alloys have been studied. Optimized lattice constant are found to be 5.59, 5.69, 6.00 Å for Z= Si, Ge and Sn respectively. Total magnetic moments of the alloys are ˜3 µB as predicted by the Slater Pauling rule and is maintained over a wide range of lattice variation for all three alloys. Half metallic ferromagnetic nature with 100% spin polarization is observed for Fe2MnSi for a lattice range from 5.40-5.70 Å. Fe2MnGe and Fe2MnSn show ferromagnetic and metallic natures with more than 90% spin polarization over a wide range of lattice constant. Due to the stability of half metallic character of these alloys with respect to variation in the lattice parameters, they are promising robust materials suitable for spintronics device applications.
Extension of the Kohn-Sham formulation of density functional theory to finite temperature
Gonis, A.; Dane, M.
2017-12-20
Based on Mermin's extension of the Hohenberg and Kohn theorems to non-zero temperature, the Kohn-Sham formulation of density functional theory (KS-DFT) is generalized to finite temperature. Here, we show that present formulations are inconsistent with Mermin's functional containing expressions, in particular describing the Coulomb energy, that defy derivation and are even in violation of rules of logical inference. More; current methodology is in violation of fundamental laws of both quantum and classical mechanics. Based on this feature, we demonstrate the impossibility of extending the KS formalism to finite temperature through the self-consistent solutions of the single-particle Schrödinger equation of T>0.more » Guided by the form of Mermin's functional that depends on the eigenstates of a Hamiltonian, determined at T>0 we base our extension of KS-DFT on the determination of the excited states of a non-interacting system at the zero of temperature. The resulting formulation is consistent with that of Mermin constructing the free energy at T>0 in terms of the excited states of a non-interacting Hamiltonian (system) that, within the KS formalism, are described by Slater determinants. To determine the excited states at T=0 use is made of the extension of the Hohenberg and Kohn theorems to excited states presented in previous work applied here to a non-interacting collection of replicas of a non-interacting N-particle system, whose ground state density is taken to match that of K non-interacting replicas of an interacting N-particle system at T>0. The formalism allows for an ever denser population of the excitation spectrum of a Hamiltonian, within the KS approximation. The form of the auxiliary potential, (Kohn-Sham potential), is formally identical to that in the ground state formalism with the contribution of the Coulomb energy provided by the derivative of the Coulomb energy in all excited states taken into account. Once the excited states are determined, the minimum of the free energy within the KS formalism follows immediately in the form of Mermin's functional, but with the exact excited states in that functional represented by Slater determinants obtained through self-consistency conditions at the zero of temperature. Lastly, it is emphasized that, in departure from all existing formulations, no self-consistency conditions are implemented at finite T; as we show, in fact, such formulations are rigorously blocked.« less
Extension of the Kohn-Sham formulation of density functional theory to finite temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonis, A.; Dane, M.
Based on Mermin's extension of the Hohenberg and Kohn theorems to non-zero temperature, the Kohn-Sham formulation of density functional theory (KS-DFT) is generalized to finite temperature. Here, we show that present formulations are inconsistent with Mermin's functional containing expressions, in particular describing the Coulomb energy, that defy derivation and are even in violation of rules of logical inference. More; current methodology is in violation of fundamental laws of both quantum and classical mechanics. Based on this feature, we demonstrate the impossibility of extending the KS formalism to finite temperature through the self-consistent solutions of the single-particle Schrödinger equation of T>0.more » Guided by the form of Mermin's functional that depends on the eigenstates of a Hamiltonian, determined at T>0 we base our extension of KS-DFT on the determination of the excited states of a non-interacting system at the zero of temperature. The resulting formulation is consistent with that of Mermin constructing the free energy at T>0 in terms of the excited states of a non-interacting Hamiltonian (system) that, within the KS formalism, are described by Slater determinants. To determine the excited states at T=0 use is made of the extension of the Hohenberg and Kohn theorems to excited states presented in previous work applied here to a non-interacting collection of replicas of a non-interacting N-particle system, whose ground state density is taken to match that of K non-interacting replicas of an interacting N-particle system at T>0. The formalism allows for an ever denser population of the excitation spectrum of a Hamiltonian, within the KS approximation. The form of the auxiliary potential, (Kohn-Sham potential), is formally identical to that in the ground state formalism with the contribution of the Coulomb energy provided by the derivative of the Coulomb energy in all excited states taken into account. Once the excited states are determined, the minimum of the free energy within the KS formalism follows immediately in the form of Mermin's functional, but with the exact excited states in that functional represented by Slater determinants obtained through self-consistency conditions at the zero of temperature. Lastly, it is emphasized that, in departure from all existing formulations, no self-consistency conditions are implemented at finite T; as we show, in fact, such formulations are rigorously blocked.« less
Extension of PENELOPE to protons: simulation of nuclear reactions and benchmark with Geant4.
Sterpin, E; Sorriaux, J; Vynckier, S
2013-11-01
Describing the implementation of nuclear reactions in the extension of the Monte Carlo code (MC) PENELOPE to protons (PENH) and benchmarking with Geant4. PENH is based on mixed-simulation mechanics for both elastic and inelastic electromagnetic collisions (EM). The adopted differential cross sections for EM elastic collisions are calculated using the eikonal approximation with the Dirac-Hartree-Fock-Slater atomic potential. Cross sections for EM inelastic collisions are computed within the relativistic Born approximation, using the Sternheimer-Liljequist model of the generalized oscillator strength. Nuclear elastic and inelastic collisions were simulated using explicitly the scattering analysis interactive dialin database for (1)H and ICRU 63 data for (12)C, (14)N, (16)O, (31)P, and (40)Ca. Secondary protons, alphas, and deuterons were all simulated as protons, with the energy adapted to ensure consistent range. Prompt gamma emission can also be simulated upon user request. Simulations were performed in a water phantom with nuclear interactions switched off or on and integral depth-dose distributions were compared. Binary-cascade and precompound models were used for Geant4. Initial energies of 100 and 250 MeV were considered. For cases with no nuclear interactions simulated, additional simulations in a water phantom with tight resolution (1 mm in all directions) were performed with FLUKA. Finally, integral depth-dose distributions for a 250 MeV energy were computed with Geant4 and PENH in a homogeneous phantom with, first, ICRU striated muscle and, second, ICRU compact bone. For simulations with EM collisions only, integral depth-dose distributions were within 1%/1 mm for doses higher than 10% of the Bragg-peak dose. For central-axis depth-dose and lateral profiles in a phantom with tight resolution, there are significant deviations between Geant4 and PENH (up to 60%/1 cm for depth-dose distributions). The agreement is much better with FLUKA, with deviations within 3%/3 mm. When nuclear interactions were turned on, agreement (within 6% before the Bragg-peak) between PENH and Geant4 was consistent with uncertainties on nuclear models and cross sections, whatever the material simulated (water, muscle, or bone). A detailed and flexible description of nuclear reactions has been implemented in the PENH extension of PENELOPE to protons, which utilizes a mixed-simulation scheme for both elastic and inelastic EM collisions, analogous to the well-established algorithm for electrons/positrons. PENH is compatible with all current main programs that use PENELOPE as the MC engine. The nuclear model of PENH is realistic enough to give dose distributions in fair agreement with those computed by Geant4.
Extension of PENELOPE to protons: Simulation of nuclear reactions and benchmark with Geant4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sterpin, E.; Sorriaux, J.; Vynckier, S.
2013-11-15
Purpose: Describing the implementation of nuclear reactions in the extension of the Monte Carlo code (MC) PENELOPE to protons (PENH) and benchmarking with Geant4.Methods: PENH is based on mixed-simulation mechanics for both elastic and inelastic electromagnetic collisions (EM). The adopted differential cross sections for EM elastic collisions are calculated using the eikonal approximation with the Dirac–Hartree–Fock–Slater atomic potential. Cross sections for EM inelastic collisions are computed within the relativistic Born approximation, using the Sternheimer–Liljequist model of the generalized oscillator strength. Nuclear elastic and inelastic collisions were simulated using explicitly the scattering analysis interactive dialin database for {sup 1}H and ICRUmore » 63 data for {sup 12}C, {sup 14}N, {sup 16}O, {sup 31}P, and {sup 40}Ca. Secondary protons, alphas, and deuterons were all simulated as protons, with the energy adapted to ensure consistent range. Prompt gamma emission can also be simulated upon user request. Simulations were performed in a water phantom with nuclear interactions switched off or on and integral depth–dose distributions were compared. Binary-cascade and precompound models were used for Geant4. Initial energies of 100 and 250 MeV were considered. For cases with no nuclear interactions simulated, additional simulations in a water phantom with tight resolution (1 mm in all directions) were performed with FLUKA. Finally, integral depth–dose distributions for a 250 MeV energy were computed with Geant4 and PENH in a homogeneous phantom with, first, ICRU striated muscle and, second, ICRU compact bone.Results: For simulations with EM collisions only, integral depth–dose distributions were within 1%/1 mm for doses higher than 10% of the Bragg-peak dose. For central-axis depth–dose and lateral profiles in a phantom with tight resolution, there are significant deviations between Geant4 and PENH (up to 60%/1 cm for depth–dose distributions). The agreement is much better with FLUKA, with deviations within 3%/3 mm. When nuclear interactions were turned on, agreement (within 6% before the Bragg-peak) between PENH and Geant4 was consistent with uncertainties on nuclear models and cross sections, whatever the material simulated (water, muscle, or bone).Conclusions: A detailed and flexible description of nuclear reactions has been implemented in the PENH extension of PENELOPE to protons, which utilizes a mixed-simulation scheme for both elastic and inelastic EM collisions, analogous to the well-established algorithm for electrons/positrons. PENH is compatible with all current main programs that use PENELOPE as the MC engine. The nuclear model of PENH is realistic enough to give dose distributions in fair agreement with those computed by Geant4.« less
Enamullah, .; Venkateswara, Y.; Gupta, Sachin; ...
2015-12-10
In this study, we present a combined theoretical and experimental study of two quaternary Heusler alloys CoFeCrGe (CFCG) and CoMnCrAl (CMCA), promising candidates for spintronics applications. Magnetization measurement shows the saturation magnetization and transition temperature to be 3 μ B, 866 K and 0.9 μ B, 358 K for CFCG and CMCA respectively. The magnetization values agree fairly well with our theoretical results and also obey the Slater-Pauling rule, a prerequisite for half metallicity. A striking difference between the two systems is their structure; CFCG crystallizes in fully ordered Y-type structure while CMCA has L2 1 disordered structure. The antisitemore » disorder adds a somewhat unique property to the second compound, which arises due to the probabilistic mutual exchange of Al positions with Cr/Mn and such an effect is possibly expected due to comparable electronegativities of Al and Cr/Mn. Ab initio simulation predicted a unique transition from half metallic ferromagnet to metallic antiferromagnet beyond a critical excess concentration of Al in the alloy.« less
Electronic structure of lanthanide scandates
NASA Astrophysics Data System (ADS)
Mizzi, Christopher A.; Koirala, Pratik; Marks, Laurence D.
2018-02-01
X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and density functional theory calculations were used to study the electronic structure of three lanthanide scandates: GdSc O3,TbSc O3 , and DySc O3 . X-ray photoelectron spectra simulated from first-principles calculations using a combination of on-site hybrid and GGA +U methods were found to be in good agreement with experimental x-ray photoelectron spectra. The hybrid method was used to model the ground state electronic structure and the GGA +U method accounted for the shift of valence state energies due to photoelectron emission via a Slater-Janak transition state approach. From these results, the lanthanide scandate valence bands were determined to be composed of Ln 4 f ,O 2 p , and Sc 3 d states, in agreement with previous work. However, contrary to previous work the minority Ln 4 f states were found to be located closer to, and in some cases at, the valence band maximum. This suggests that minority Ln 4 f electrons may play a larger role in lanthanide scandate properties than previously thought.
Generalized Pauli constraints in small atoms
NASA Astrophysics Data System (ADS)
Schilling, Christian; Altunbulak, Murat; Knecht, Stefan; Lopes, Alexandre; Whitfield, James D.; Christandl, Matthias; Gross, David; Reiher, Markus
2018-05-01
The natural occupation numbers of fermionic systems are subject to nontrivial constraints, which include and extend the original Pauli principle. A recent mathematical breakthrough has clarified their mathematical structure and has opened up the possibility of a systematic analysis. Early investigations have found evidence that these constraints are exactly saturated in several physically relevant systems, e.g., in a certain electronic state of the beryllium atom. It has been suggested that, in such cases, the constraints, rather than the details of the Hamiltonian, dictate the system's qualitative behavior. Here, we revisit this question with state-of-the-art numerical methods for small atoms. We find that the constraints are, in fact, not exactly saturated, but that they lie much closer to the surface defined by the constraints than the geometry of the problem would suggest. While the results seem incompatible with the statement that the generalized Pauli constraints drive the behavior of these systems, they suggest that the qualitatively correct wave-function expansions can in some systems already be obtained on the basis of a limited number of Slater determinants, which is in line with numerical evidence from quantum chemistry.
NASA Astrophysics Data System (ADS)
Liu, B.; McLean, A. D.
1989-08-01
We report the LM-2 helium dimer interaction potential, from helium separations of 1.6 Å to dissociation, obtained by careful convergence studies with respect to configuration space, through a sequence of interacting correlated fragment (ICF) wave functions, and with respect to the primitive Slater-type basis used for orbital expansion. Parameters of the LM-2 potential are re=2.969 Å, rm=2.642 Å, and De=10.94 K, in near complete agreement with those of the best experimental potential of Aziz, McCourt, and Wong [Mol. Phys. 61, 1487 (1987)], which are re=2.963 Å, rm=2.637 Å, and De=10.95 K. The computationally estimated accuracy of each point on the potential is given; at re it is 0.03 K. Extrapolation procedures used to produce the LM-2 potential make use of the orbital basis inconsistency (OBI) and configuration base inconsistency (CBI) adjustments to separated fragment energies when computing the interaction energy. These components of basis set superposition error (BSSE) are given a full discussion.
Theophilou, Iris; Lathiotakis, Nektarios N; Helbig, Nicole
2018-03-21
We investigate the structure of the one-body reduced density matrix of three electron systems, i.e., doublet and quadruplet spin configurations, corresponding to the smallest interacting system with an open-shell ground state. To this end, we use configuration interaction (CI) expansions of the exact wave function in Slater determinants built from natural orbitals in a finite dimensional Hilbert space. With the exception of maximally polarized systems, the natural orbitals of spin eigenstates are generally spin dependent, i.e., the spatial parts of the up and down natural orbitals form two different sets. A measure to quantify this spin dependence is introduced and it is shown that it varies by several orders of magnitude depending on the system. We also study the ordering issue of the spin-dependent occupation numbers which has practical implications in reduced density matrix functional theory minimization schemes, when generalized Pauli constraints (GPCs) are imposed and in the form of the CI expansion in terms of the natural orbitals. Finally, we discuss the aforementioned CI expansion when there are GPCs that are almost "pinned."
Performance of multimirror quartzline lamps in a high-pressure, underwater environment
NASA Technical Reports Server (NTRS)
Slater, Howard A.
1988-01-01
Multimirror Quartzline Lamps are extremely versatile and effective for nonconventional imaging requirements such as high-speed photo and video instrumentation and high-magnification imaging. The lamps' versatility though, is not limited to conventional environments. Many research experiments and projects require a high pressure environment. Continuous photographic data acquisition in a high-pressure vessel requires wall penetrations and creates design problems as well as potential failure sites. Underwater photography adds the extra consideration of a liquid. This report expands upon the basic research presented in, Performance of Multimirror Quartzline Lamps in High-Pressure Environments, (NASA-TM-83793, Ernie Walker and Howard Slater, 1984). The report provides information to professional industrial, scientific, and technical photographers as well as research personnel on the survivability of lighting a multimirror quartzline lamp in a nonconventional high-pressure underwater environment. Test results of lighted ELH 300 W multimirror quartzline lamps under high-pressure conditions are documented and general information on the lamps' intensity (footcandle output), cone of light coverage, approximate color temperature is provided. Continuous lighting considerations in liquids are also discussed.
Factorization in large-scale many-body calculations
Johnson, Calvin W.; Ormand, W. Erich; Krastev, Plamen G.
2013-08-07
One approach for solving interacting many-fermion systems is the configuration-interaction method, also sometimes called the interacting shell model, where one finds eigenvalues of the Hamiltonian in a many-body basis of Slater determinants (antisymmetrized products of single-particle wavefunctions). The resulting Hamiltonian matrix is typically very sparse, but for large systems the nonzero matrix elements can nonetheless require terabytes or more of storage. An alternate algorithm, applicable to a broad class of systems with symmetry, in our case rotational invariance, is to exactly factorize both the basis and the interaction using additive/multiplicative quantum numbers; such an algorithm recreates the many-body matrix elementsmore » on the fly and can reduce the storage requirements by an order of magnitude or more. Here, we discuss factorization in general and introduce a novel, generalized factorization method, essentially a ‘double-factorization’ which speeds up basis generation and set-up of required arrays. Although we emphasize techniques, we also place factorization in the context of a specific (unpublished) configuration-interaction code, BIGSTICK, which runs both on serial and parallel machines, and discuss the savings in memory due to factorization.« less
Asymptotic behavior of the Kohn-Sham exchange potential at a metal surface
NASA Astrophysics Data System (ADS)
Qian, Zhixin
2012-03-01
The asymptotic structure of the Kohn-Sham exchange potential vx(r) in the classically forbidden region of a metal surface is investigated, together with that of the Slater exchange potential VxS(r) and those of the approximate Krieger-Li-Iafrate VxKLI(r) and Harbola-Sahni Wx(r) exchange potentials. Particularly, the former is shown to have the form of vx(z→∞)=-αx/z with αx a constant dependent only of bulk electron density. The same result in previous work is thus confirmed; in the meanwhile, a controversy raised recently gets resolved. The structure of the exchange hole ρx(r,r') is examined, and the delocalization of it in the metal bulk when the electron is at large distance from the metal surface is demonstrated with analytical expressions. The asymptotic structures of vx(r), VxS(r), VxKLI(r), and Wx(r) at a slab metal surface are also investigated. Particularly, vx(z→∞)=-1/z in the slab case. The distinction, in this respect, between the semi-infinite and the slab metal surfaces is elucidated.
NASA Astrophysics Data System (ADS)
Gao, Y. C.; Gao, X.
2015-05-01
Based on the first-principles calculations, quaternary Heusler alloys FeMnScZ (Z=Al, Ga, In) including its phase stability, band gap, the electronic structures and magnetic properties has been studied systematically. We have found that, in terms of the equilibrium lattice constants, FeMnScZ (Z=Al, Ga, In) are half-metallic ferrimagnets, which can sustain the high spin polarization under a very large amount of lattice distortions. The half-metallic band gap in FeMnScZ (Z=Al, Ga, In) alloys originates from the t1u-t2g splitting instead of the eu-t1u splitting. The total magnetic moments are 3μB per unit cell for FeMnScZ (Z=Al, Ga, In) alloys following the Slater-Pauling rule with the total number of valence electrons minus 18 rather than 24. According to the study, the conclusion can be drawn that all of these compounds which have a negative formation energy are possible to be synthesized experimentally.
Higher-Order Statistical Correlations and Mutual Information Among Particles in a Quantum Well
NASA Astrophysics Data System (ADS)
Yépez, V. S.; Sagar, R. P.; Laguna, H. G.
2017-12-01
The influence of wave function symmetry on statistical correlation is studied for the case of three non-interacting spin-free quantum particles in a unidimensional box, in position and in momentum space. Higher-order statistical correlations occurring among the three particles in this quantum system is quantified via higher-order mutual information and compared to the correlation between pairs of variables in this model, and to the correlation in the two-particle system. The results for the higher-order mutual information show that there are states where the symmetric wave functions are more correlated than the antisymmetric ones with same quantum numbers. This holds in position as well as in momentum space. This behavior is opposite to that observed for the correlation between pairs of variables in this model, and the two-particle system, where the antisymmetric wave functions are in general more correlated. These results are also consistent with those observed in a system of three uncoupled oscillators. The use of higher-order mutual information as a correlation measure, is monitored and examined by considering a superposition of states or systems with two Slater determinants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guille, Émilie; Vallverdu, Germain, E-mail: germain.vallverdu@univ-pau.fr; Baraille, Isabelle
2014-12-28
We present first-principle calculations of core-level binding energies for the study of insulating, bulk phase, compounds, based on the Slater-Janak transition state model. Those calculations were performed in order to find a reliable model of the amorphous Li{sub x}PO{sub y}N{sub z} solid electrolyte which is able to reproduce its electronic properties gathered from X-ray photoemission spectroscopy (XPS) experiments. As a starting point, Li{sub 2}PO{sub 2}N models were investigated. These models, proposed by Du et al. on the basis of thermodynamics and vibrational properties, were the first structural models of Li{sub x}PO{sub y}N{sub z}. Thanks to chemical and structural modifications appliedmore » to Li{sub 2}PO{sub 2}N structures, which allow to demonstrate the relevance of our computational approach, we raise an issue concerning the possibility of encountering a non-bridging kind of nitrogen atoms (=N{sup −}) in Li{sub x}PO{sub y}N{sub z} compounds.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yuan; Ning, Chuangang, E-mail: ningcg@tsinghua.edu.cn; Collaborative Innovation Center of Quantum Matter, Beijing
2015-10-14
Recently, the development of photoelectron velocity map imaging makes it much easier to obtain the photoelectron angular distributions (PADs) experimentally. However, explanations of PADs are only qualitative in most cases, and very limited works have been reported on how to calculate PAD of anions. In the present work, we report a method using the density-functional-theory Kohn-Sham orbitals to calculate the photodetachment cross sections and the anisotropy parameter β. The spherical average over all random molecular orientation is calculated analytically. A program which can handle both the Gaussian type orbital and the Slater type orbital has been coded. The testing calculationsmore » on Li{sup −}, C{sup −}, O{sup −}, F{sup −}, CH{sup −}, OH{sup −}, NH{sub 2}{sup −}, O{sub 2}{sup −}, and S{sub 2}{sup −} show that our method is an efficient way to calculate the photodetachment cross section and anisotropy parameter β for anions, thus promising for large systems.« less
Internal twisting motion dependent conductance of an aperiodic DNA molecule
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiliyanti, Vandan, E-mail: vandan.wiliyanti@ui.ac.id; Yudiarsah, Efta
The influence of internal twisting motion of base-pair on conductance of an aperiodic DNA molecule has been studied. Double-stranded DNA molecule with sequence GCTAGTACGTGACGTAGCTAGGATATGCCTGA on one chain and its complement on the other chain is used. The molecule is modeled using Hamiltonian Tight Binding, in which the effect of twisting motion on base onsite energy and between bases electron hopping constant was taking into account. Semi-empirical theory of Slater-Koster is employed in bringing the twisting motion effect on the hopping constants. In addition to the ability to hop from one base to other base, electron can also hop from amore » base to sugar-phosphate backbone and vice versa. The current flowing through DNA molecule is calculated using Landauer–Büttiker formula from transmission probability, which is calculated using transfer matrix technique and scattering matrix method, simultaneously. Then, the differential conductance is calculated from the I-V curve. The calculation result shows at some region of voltages, the conductance increases as the frequency increases, but in other region it decreases with the frequency.« less
Effect of oxygen vacancies on magnetic and transport properties of Sr2IrO4
NASA Astrophysics Data System (ADS)
Dwivedi, Vinod Kumar; Mukhopadhyay, Soumik
2018-05-01
Iridates have recently attracted growing interest because of their potential for realizing various interesting phases like interaction driven Mott-type insulator and magnetically driven Slater-type. In this paper, we present the magnetic and electrical transport properties of polycrystalline Sr2IrO4 synthesized by solid state reaction route. We find a ferromagnetic transition at 240 K. The Curie-Weiss law behavior hold good above the magnetic transition temperature TMag = 240 K with a small effective paramagnetic magnetic moment μeff = 0.25 µB/f.u. and a Curie-Weiss temperature, θCW = +100 K. Zero field cooled (ZFC) magnetization shows a gradual dcrease below 150 K, while same for field cooled (FC) below 50 K. Interestingly, below temperatures, ⁓ 10 K, a sharp increase in ZFC and FC magnetization can be seen. A temperature dependent resistivity reveals insulating behavior followed by power law mechanism. The sintering of sample in air leads to the very low value of resistivity is likely related to Sr or oxygen vacancies.
Accurate donor electron wave functions from a multivalley effective mass theory.
NASA Astrophysics Data System (ADS)
Pendo, Luke; Hu, Xuedong
Multivalley effective mass (MEM) theories combine physical intuition with a marginal need for computational resources, but they tend to be insensitive to variations in the wavefunction. However, recent papers suggest full Bloch functions and suitable central cell donor potential corrections are essential to replicating qualitative and quantitative features of the wavefunction. In this talk, we consider a variational MEM method that can accurately predict both spectrum and wavefunction of isolated phosphorus donors. As per Gamble et. al, we employ a truncated series representation of the Bloch function with a tetrahedrally symmetric central cell correction. We use a dynamic dielectric constant, a feature commonly seen in tight-binding methods. Uniquely, we use a freely extensible basis of either all Slater- or all Gaussian-type functions. With a large basis able to capture the influence of higher energy eigenstates, this method is well positioned to consider the influence of external perturbations, such as electric field or applied strain, on the charge density. This work is supported by the US Army Research Office (W911NF1210609).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamasha, Safeia, E-mail: safeia@hu.edu.jo
2013-11-15
The fully relativistic configuration interaction method of the FAC code is used to calculate atomic data for multipole transitions in Mg-like Au (Au{sup 67+}) and Al-like Au (Au{sup 66+}) ions. Generated atomic data are important in the modeling of M-shell spectra for heavy Au ions and Au plasma diagnostics. Energy levels, oscillator strengths and transition rates are calculated for electric-dipole (E1), electric quadrupole (E2), magnetic dipole (M1), and magnetic quadrupole (M2) for transitions between excited and ground states 3l−nl{sup ′}, such that n=4,5,6,7. The local central potential is derived using the Dirac–Fock–Slater method. Correlation effects to all orders are consideredmore » by the configuration interaction expansion. All relativistic effects are included in the calculations. Calculated energy levels are compared against published values that were calculated using the multi-reference many body perturbation theory, which includes higher order QED effects. Favorable agreement was observed, with less than 0.15% difference.« less
Development of a Multicenter Density Functional Tight Binding Model for Plutonium Surface Hydriding.
Goldman, Nir; Aradi, Bálint; Lindsey, Rebecca K; Fried, Laurence E
2018-05-08
We detail the creation of a multicenter density functional tight binding (DFTB) model for hydrogen on δ-plutonium, using a framework of new Slater-Koster interaction parameters and a repulsive energy based on the Chebyshev Interaction Model for Efficient Simulation (ChIMES), where two- and three-center atomic interactions are represented by linear combinations of Chebyshev polynomials. We find that our DFTB/ChIMES model yields a total electron density of states for bulk δ-Pu that compares well to that from Density Functional Theory, as well as to a grid of energy calculations representing approximate H 2 dissociation paths on the δ-Pu (100) surface. We then perform molecular dynamics simulations and minimum energy pathway calculations to determine the energetics of surface dissociation and subsurface diffusion on the (100) and (111) surfaces. Our approach allows for the efficient creation of multicenter repulsive energies with a relatively small investment in initial DFT calculations. Our efforts are particularly pertinent to studies that rely on quantum calculations for interpretation and validation, such as experimental determination of chemical reactivity both on surfaces and in condensed phases.
Zanbaka, Catherine A; Lok, Benjamin C; Babu, Sabarish V; Ulinski, Amy C; Hodges, Larry F
2005-01-01
We describe a between-subjects experiment that compared four different methods of travel and their effect on cognition and paths taken in an immersive virtual environment (IVE). Participants answered a set of questions based on Crook's condensation of Bloom's taxonomy that assessed their cognition of the IVE with respect to knowledge, understanding and application, and higher mental processes. Participants also drew a sketch map of the IVE and the objects within it. The users' sense of presence was measured using the Steed-Usoh-Slater Presence Questionnaire. The participants' position and head orientation were automatically logged during their exposure to the virtual environment. These logs were later used to create visualizations of the paths taken. Path analysis, such as exploring the overlaid path visualizations and dwell data information, revealed further differences among the travel techniques. Our results suggest that, for applications where problem solving and evaluation of information is important or where opportunity to train is minimal, then having a large tracked space so that the participant can walk around the virtual environment provides benefits over common virtual travel techniques.
NASA Astrophysics Data System (ADS)
Rezaei, S.; Ahmadian, F.
2018-06-01
On the basis of first principles calculations, the electronic structures and magnetic properties of quaternary Heusler alloys RbCaNZ (Z = O, S, and Se) were studied. The negative formation energies indicated that all these compounds were thermodynamically stable and thus may be experimentally synthesized at appropriate conditions in the future. The results showed that YI structure was the most favorable configuration among the three possible structures. All compounds were found to be half-metallic ferromagnets. The characteristic of energy bands and origin of half-metallicity were also verified. The total magnetic moments of RbCaNZ (Z = O, S, and Se) compounds were obtained 2μB per formula unit, which were in an agreement with Slater-Pauling rule (Mtot = 12 - Ztot). Half-metallicity was preserved at ranges of 5.06-8.36 Å, 5.96-8.81 Å, and 6.13-8.73 Å for RbCaNO, RbCaNS, and RbCaNSe compounds, respectively, which show that these quaternary Heusler compounds may be potential candidates in spintronic applications.
SYMBMAT: Symbolic computation of quantum transition matrix elements
NASA Astrophysics Data System (ADS)
Ciappina, M. F.; Kirchner, T.
2012-08-01
We have developed a set of Mathematica notebooks to compute symbolically quantum transition matrices relevant for atomic ionization processes. The utilization of a symbolic language allows us to obtain analytical expressions for the transition matrix elements required in charged-particle and laser induced ionization of atoms. Additionally, by using a few simple commands, it is possible to export these symbolic expressions to standard programming languages, such as Fortran or C, for the subsequent computation of differential cross sections or other observables. One of the main drawbacks in the calculation of transition matrices is the tedious algebraic work required when initial states other than the simple hydrogenic 1s state need to be considered. Using these notebooks the work is dramatically reduced and it is possible to generate exact expressions for a large set of bound states. We present explicit examples of atomic collisions (in First Born Approximation and Distorted Wave Theory) and laser-matter interactions (within the Dipole and Strong Field Approximations and different gauges) using both hydrogenic wavefunctions and Slater-Type Orbitals with arbitrary nlm quantum numbers as initial states. Catalogue identifier: AEMI_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEMI_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 71 628 No. of bytes in distributed program, including test data, etc.: 444 195 Distribution format: tar.gz Programming language: Mathematica Computer: Single machines using Linux or Windows (with cores with any clock speed, cache memory and bits in a word) Operating system: Any OS that supports Mathematica. The notebooks have been tested under Windows and Linux and with versions 6.x, 7.x and 8.x Classification: 2.6 Nature of problem: The notebooks generate analytical expressions for quantum transition matrix elements required in diverse atomic processes: ionization by ion, electron, or photon impact and ionization within the framework of strong field physics. In charged-particle collisions approaches based on perturbation theory enjoy widespread utilization. Accordingly, we have chosen the First Born Approximation and Distorted Wave theories as examples. In light-matter interactions, the main ingredient for many types of calculations is the dipole transition matrix in its different formulations, i.e. length, velocity, and acceleration gauges. In all these cases the transitions of interest occur between a bound state and a continuum state which can be described in different ways. With the notebooks developed in the present work it is possible to calculate transition matrix elements analytically for any set of quantum numbers nlm of initial hydrogenic states or Slater-Type Orbitals and for plane waves or Coulomb waves as final continuum states. Solution method: The notebooks employ symbolic computation to generate analytical expressions for transition matrix elements used in both collision and light-matter interaction physics. fba_hyd.nb - This notebook computes analytical expressions for the transition matrix of collision-induced ionization in the First Born Approximation (FBA). The transitions considered are from a bound hydrogenic state with arbitrary quantum numbers nlm to a continuum state represented by a plane wave (PW) or a Coulomb wave (CW). distorted_hyd.nb - This notebook computes analytical expressions for the transition matrix of collision-induced ionization in Distorted Wave (DW) theories. The transitions considered are from a (distorted) bound hydrogenic state with arbitrary quantum numbers nlm to a distorted-wave continuum state. The computations are based on scalar and vectorial integrals (see the text for details). dipoleLength_hyd.nb - This notebook computes analytical expressions for the dipole transition matrix in length gauge. The transitions considered are from a bound hydrogenic state with arbitrary quantum numbers nlm to a continuum state represented by a PW (the Strong Field Approximation (SFA)) or a CW (the Coulomb-Volkov Approximation (CVA)). dipoleVelocity_hyd.nb - This notebook computes analytical expressions for the dipole transition matrix in velocity gauge. The transitions considered are from a bound hydrogenic state with arbitrary quantum numbers nlm to a continuum state represented by a PW (the SFA) or a CW (the CVA). dipoleAcceleration_hyd.nb - This notebook computes analytical expressions for the dipole transition matrix in acceleration gauge. The transitions considered are from a bound hydrogenic state with arbitrary quantum numbers nlm to a continuum state represented by a PW (the SFA). For the case of the CVA we only include the transition from the 1s state to a continuum state represented by a CW. fba_STO.nb - This notebook computes analytical expressions for the transition matrix of collision-induced ionization in the FBA. The transitions considered are from a Slater-Type Orbital (STO) with arbitrary quantum numbers nlm to a continuum state represented by a PW or a CW. distorted_STO.nb - This notebook computes analytical expressions for the transition matrix of collision-induced ionization in DW theories. The transitions considered are from a (distorted) STO with arbitrary quantum numbers nlm to a distorted-wave continuum state. The computations are based on scalar and vectorial integrals (see the text for details). dipoleLength_STO.nb - This notebook computes analytical expressions for the dipole transition matrix in length gauge. The transitions considered are from an STO with arbitrary quantum numbers nlm to a continuum state represented by a PW (the SFA) or a CW (the CVA). dipoleVelocity_STO.nb - This notebook computes analytical expressions for the dipole transition matrix in velocity gauge. The transitions considered are from an STO with arbitrary quantum numbers nlm to a continuum state represented by a PW (the SFA) or a CW (the CVA). dipoleAcceleration_STO.nb - This notebook computes analytical expressions for the dipole transition matrix in acceleration gauge. The transitions considered are from an STO with arbitrary quantum numbers nlm to a continuum state represented by a PW (the SFA). The symbolic expressions obtained within each notebook can be exported to standard programming languages such as Fortran or C using the Format.m package (see the text and Ref. Sofroniou (1993) [16] for details). Running time: Computational times vary according to the transition matrix selected and quantum numbers nlm of the initial state used. The typical running time is several minutes, but it will take longer for large values of nlm.
NASA Astrophysics Data System (ADS)
Plummer, M.; Armour, E. A. G.; Todd, A. C.; Franklin, C. P.; Cooper, J. N.
2009-12-01
We present a program used to calculate intricate three-particle integrals for variational calculations of solutions to the leptonic Schrödinger equation with two nuclear centres in which inter-leptonic distances (electron-electron and positron-electron) are included directly in the trial functions. The program has been used so far in calculations of He-H¯ interactions and positron H 2 scattering, however the precisely defined integrals are applicable to other situations. We include a summary discussion of how the program has been optimized from a 'legacy'-type code to a more modern high-performance code with a performance improvement factor of up to 1000. Program summaryProgram title: tripleint.cc Catalogue identifier: AEEV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 12 829 No. of bytes in distributed program, including test data, etc.: 91 798 Distribution format: tar.gz Programming language: Fortran 95 (fixed format) Computer: Modern PC (tested on AMD processor) [1], IBM Power5 [2] Cray XT4 [3], similar Operating system: Red Hat Linux [1], IBM AIX [2], UNICOS [3] Has the code been vectorized or parallelized?: Serial (multi-core shared memory may be needed for some large jobs) RAM: Dependent on parameter sizes and option to use intermediate I/O. Estimates for practical use: 0.5-2 GBytes (with intermediate I/O); 1-4 GBytes (all-memory: the preferred option). Classification: 2.4, 2.6, 2.7, 2.9, 16.5, 16.10, 20 Nature of problem: The 'tripleint.cc' code evaluates three-particle integrals needed in certain variational (in particular: Rayleigh-Ritz and generalized-Kohn) matrix elements for solution of the Schrödinger equation with two fixed centres (the solutions may then be used in subsequent dynamic nuclear calculations). Specifically the integrals are defined by Eq. (16) in the main text and contain terms proportional to r×r/r,i≠j,i≠k,j≠k, with r the distance between leptons i and j. The article also briefly describes the performance optimizations used to increase the speed of evaluation of the integrals enough to allow detailed testing and mapping of the effect of varying non-linear parameters in the variational trial functions. Solution method: Each integral is solved using prolate spheroidal coordinates and series expansions (with cut-offs) of the many-lepton expressions. 1-d integrals and sub-integrals are solved analytically by various means (the program automatically chooses the most accurate of the available methods for each set of parameters and function arguments), while two of the three integrations over the prolate spheroidal coordinates ' λ' are carried out numerically. Many similar integrals with identical non-linear variational parameters may be calculated with one call of the code. Restrictions: There are limits to the number of points for the numerical integrations, to the cut-off variable itaumax for the many-lepton series expansions, and to the maximum powers of Slater-like input functions. For runs near the limit of the cut-off variable and with certain small-magnitude values of variational non-linear parameters, the code can require large amounts of memory (an option using some intermediate I/O is included to offset this). Unusual features: In addition to the program, we also present a summary description of the techniques and ideology used to optimize the code, together with accuracy tests and indications of performance improvement. Running time: The test runs take 1-15 minutes on HPCx [2] as indicated in Section 5 of the main text. A practical run with 729 integrals, 40 quadrature points per dimension and itaumax = 8 took 150 minutes on a PC (e.g., [1]): a similar run with 'medium' accuracy, e.g. for parameter optimization (see Section 2 of the main text), with 30 points per dimension and itaumax = 6 took 35 minutes. References:PC: Memory: 2.72 GB, CPU: AMD Opteron 246 dual-core, 2×2 GHz, OS: GNU/Linux, kernel: Linux 2.6.9-34.0.2.ELsmp. HPCx, IBM eServer 575 running IBM AIX, http://www.hpcx.ac.uk/ (visited May 2009). HECToR, CRAY XT4 running UNICOS/lc, http://www.hector.ac.uk/ (visited May 2009).
Ben-Nun, M; Mills, J D; Hinde, R J; Winstead, C L; Boatz, J A; Gallup, G A; Langhoff, P W
2009-07-02
Recent progress is reported in development of ab initio computational methods for the electronic structures of molecules employing the many-electron eigenstates of constituent atoms in spectral-product forms. The approach provides a universal atomic-product description of the electronic structure of matter as an alternative to more commonly employed valence-bond- or molecular-orbital-based representations. The Hamiltonian matrix in this representation is seen to comprise a sum over atomic energies and a pairwise sum over Coulombic interaction terms that depend only on the separations of the individual atomic pairs. Overall electron antisymmetry can be enforced by unitary transformation when appropriate, rather than as a possibly encumbering or unnecessary global constraint. The matrix representative of the antisymmetrizer in the spectral-product basis, which is equivalent to the metric matrix of the corresponding explicitly antisymmetric basis, provides the required transformation to antisymmetric or linearly independent states after Hamiltonian evaluation. Particular attention is focused in the present report on properties of the metric matrix and on the atomic-product compositions of molecular eigenstates as described in the spectral-product representations. Illustrative calculations are reported for simple but prototypically important diatomic (H(2), CH) and triatomic (H(3), CH(2)) molecules employing algorithms and computer codes devised recently for this purpose. This particular implementation of the approach combines Slater-orbital-based one- and two-electron integral evaluations, valence-bond constructions of standard tableau functions and matrices, and transformations to atomic eigenstate-product representations. The calculated metric matrices and corresponding potential energy surfaces obtained in this way elucidate a number of aspects of the spectral-product development, including the nature of closure in the representation, the general redundancy or linear dependence of its explicitly antisymmetrized form, the convergence of the apparently disparate atomic-product and explicitly antisymmetrized atomic-product forms to a common invariant subspace, and the nature of a chemical bonding descriptor provided by the atomic-product compositions of molecular eigenstates. Concluding remarks indicate additional studies in progress and the prognosis for performing atomic spectral-product calculations more generally and efficiently.
Determination of loss tangent of human tear film at 9.8 GHz
NASA Astrophysics Data System (ADS)
Bansal, Namita; Dhaliwal, A. S.; Mann, K. S.
2015-08-01
Basal (non-stimulated) tears that are produced by accessory lacrimal glands located in conjunctiva of human eye, form tear film which in turn keeps the eye moist and lubricate; nourishes the eye; protects the eye from dust, bacterial infection and shear forces generated during eye movements and blinking; and provides a refractive surface on the corneal epithelium. Film is known to contain water, mucin, lipids, lysozyme, glucose, urea, sodium etc. In present communication, loss tangent of human tear film has been determined at 9.8 GHz microwaves by employing cavity perturbation technique at a temperature of 37°C. The basal tears from a small population comprising six subjects were collected and average value of loss tangent is reported. Slater's technique was used to reduce the error caused in measuring the volume of sample. The determined values are useful to study the biological effects of microwaves on tear film as well as other parts of human eye such as eye lens and lens epithelial cells. To the best of author's knowledge, no such study is available in literature at any radio as well as microwave frequencies; therefore present determinations are first of its kind.
NASA Astrophysics Data System (ADS)
Singh, Th. David; Sumitra, Ch.; Yaiphaba, N.; Devi, H. Debecca; Devi, M. Indira; Singh, N. Rajmuhon
2005-04-01
The coordination chemistry of glutathione reduced (GSH) is of great importance as it acts as excellent model system for the binding of metal ions. The GSH complexation with metal ions is involved in the toxicology of different metal ions. Its coordination behaviour for soft metal ions and hard metal ions is found different because of the structure of GSH and its different potential binding sites. In our work we have studied two chemically dissimilar metal ions viz. Pr(III), which prefer hard donor site like carboxylic groups and Zn(II) the soft metal ion which prefer peptide-NH and sulphydryl groups. The absorption difference and comparative absorption spectroscopy involving 4f-4f transitions of the heterobimetallic Complexation of GSH with Pr(III) and Zn(II) has been explored in aqueous and aquated organic solvents. The variation in the energy parameters like Slater-Condon ( F K), Racah ( E K) and Lande ( ξ4f), Nephelauxetic parameter ( β) and bonding parameter ( b1/2) are computed to explain the nature of complexation.
Quantum Chemistry in Great Britain: Developing a Mathematical Framework for Quantum Chemistry
NASA Astrophysics Data System (ADS)
Simões, Ana; Gavroglu, Kostas
By 1935 quantum chemistry was already delineated as a distinct sub-discipline due to the contributions of Fritz London, Walter Heitler, Friedrich Hund, Erich Hückel, Robert Mulliken, Linus Pauling, John van Vleck and John Slater. These people are credited with showing that the application of quantum mechanics to the solution of chemical problems was, indeed, possible, especially so after the introduction of a number of new concepts and the adoption of certain approximation methods. And though a number of chemists had started talking of the formation of theoretical or, even, mathematical chemistry, a fully developed mathematical framework of quantum chemistry was still wanting. The work of three persons in particular-of John E. Lennard-Jones, Douglas R. Hartree, and Charles Alfred Coulson-has been absolutely crucial in the development of such a framework. In this paper we shall discuss the work of these three researchers who started their careers in the Cambridge tradition of mathematical physics and who at some point of their careers all became professors of applied mathematics. We shall argue that their work consisted of decisive contributions to the development of such a mathematical framework for quantum chemistry.
On the Making of Quantum Chemistry in Germany
NASA Astrophysics Data System (ADS)
Karachalios, Andreas
During the 1990s several historians of science have studied the emergence of quantum chemistry as an autonomous discipline in different national contexts (Nye, 1993; Simões, 1993; Simões, forthcoming; Gavroglu and Simões, 1994; Karachalios, 1997a). Beyond these disciplinary studies, a number of contributions to special aspects of this theme have appeared (Schweber, 1990; Gavroglu, 1995; Simões and Gavroglu, 1997, 1999a,b; Schwarz et al., 1999). In this literature the birth of quantum chemistry has generally been associated with two dates: the 1927 paper of Walter Heitler and Fritz London and the year 1931 in which Linus Pauling and John Clarke Slater independently explained the tetrahedral orientation of the four bonds of the carbon atom. To these dates we might also add a third: in 1928 London published a paper, 'Zur Quantentheorie der homöopolaren Valenzzahlen' (London, 1928), in which he gave a quantum mechanical explanation of the classical chemical notion of valency. There he showed a relationship between the valency numbers and the spectroscopical multiplicity, namely that valency=multiplicity-1. This relation established a bridge between physical and chemical facts. Taken together, these developments constitute important events for the international development of quantum chemistry.
Rill, Randolph L; Beheshti, Afshin; Van Winkle, David H
2002-08-01
Electrophoretic mobilities of DNA molecules ranging in length from 200 to 48 502 base pairs (bp) were measured in agarose gels with concentrations T = 0.5% to 1.3% at electric fields from E = 0.71 to 5.0 V/cm. This broad data set determines a range of conditions over which the new interpolation equation nu(L) = (beta+alpha(1+exp(-L/gamma))(-1) can be used to relate mobility to length with high accuracy. Mobility data were fit with chi(2) > 0.999 for all gel concentrations and fields ranging from 2.5 to 5 V/cm, and for lower fields at low gel concentrations. Analyses using so-called reptation plots (Rousseau, J., Drouin, G., Slater, G. W., Phys. Rev. Lett. 1997, 79, 1945-1948) indicate that this simple exponential relation is obeyed well when there is a smooth transition from the Ogston sieving regime to the reptation regime with increasing DNA length. Deviations from this equation occur when DNA migration is hindered, apparently by entropic-trapping, which is favored at low fields and high gel concentrations in the ranges examined.
Origin of spin gapless semiconductor behavior in CoFeCrGa: Theory and Experiment
Bainsla, Lakhan; Mallick, A. I.; Raja, M. Manivel; ...
2015-07-08
Despite a plethora of materials suggested for spintronic applications, a new class of materials has emerged, namely spin gapless semiconductors (SGS), which offers potentially more advantageous properties than existing ones. These magnetic semiconductors exhibit a finite band gap for one spin channel and a closed gap for the other. Supported by electronic-structure calculations, we report evidence of SGS behavior in equiatomic quaternary CoFeCrGa, having a cubic Heusler (prototype LiMgPdSn) structure but exhibiting chemical disorder (DO 3 structure). CoFeCrGa is found to transform from SGS to half-metallic phase under pressure, which is attributed to unique electronic-structure features. The saturation magnetization (Mmore » S) was obtained at 8K agrees with the Slater-Pauling rule and the Curie temperature (T C) is found to exceed 400K. Carrier concentration (up to 250K) and electrical conductivity are observed to be nearly temperature independent, prerequisites for SGS. The anomalous Hall coefficient is estimated to be 185S/cm at 5K. Considering the SGS properties and high T C, this material appears to be promising for spintronic applications.« less
Electronic Structure and Bonding in Complex Biomolecule
NASA Astrophysics Data System (ADS)
Ouyang, Lizhi
2005-03-01
For over a century vitamin B12 and its enzyme cofactor derivates have persistently attracted research efforts for their vital biological role, unique Co-C bonding, rich red-ox chemistry, and recently their candidacies as drug delivery vehicles etc. However, our understanding of this complex metalorganic molecule's efficient enzyme activated catalytic power is still controversial. We have for the first time calculated the electronic structure, Mulliken effective charge and bonding of a whole Vitamin B12 molecule without any structural simplification by first- principles approaches based on density functional theory using structures determined by high resolution X-ray diffraction. A partial density of states analysis shows excellent agreement with X-ray absorption data and has been used successfully to interpret measured optical absorption spectra. Mulliken bonding analysis of B12 and its derivatives reveal noticeable correlations between the two axial ligands which could be exploited by the enzyme to control the catalytic process. Our calculated X-ray near edge structure of B12 and its derivates using Slater's transition state theory are also in good agreement with experiments. The same approach has been applied to other B12 derivatives, ferrocene peptides, and recently DNA molecules.
The multifacet graphically contracted function method. I. Formulation and implementation
NASA Astrophysics Data System (ADS)
Shepard, Ron; Gidofalvi, Gergely; Brozell, Scott R.
2014-08-01
The basic formulation for the multifacet generalization of the graphically contracted function (MFGCF) electronic structure method is presented. The analysis includes the discussion of linear dependency and redundancy of the arc factor parameters, the computation of reduced density matrices, Hamiltonian matrix construction, spin-density matrix construction, the computation of optimization gradients for single-state and state-averaged calculations, graphical wave function analysis, and the efficient computation of configuration state function and Slater determinant expansion coefficients. Timings are given for Hamiltonian matrix element and analytic optimization gradient computations for a range of model problems for full-CI Shavitt graphs, and it is observed that both the energy and the gradient computation scale as O(N2n4) for N electrons and n orbitals. The important arithmetic operations are within dense matrix-matrix product computational kernels, resulting in a computationally efficient procedure. An initial implementation of the method is used to present applications to several challenging chemical systems, including N2 dissociation, cubic H8 dissociation, the symmetric dissociation of H2O, and the insertion of Be into H2. The results are compared to the exact full-CI values and also to those of the previous single-facet GCF expansion form.
The multifacet graphically contracted function method. I. Formulation and implementation.
Shepard, Ron; Gidofalvi, Gergely; Brozell, Scott R
2014-08-14
The basic formulation for the multifacet generalization of the graphically contracted function (MFGCF) electronic structure method is presented. The analysis includes the discussion of linear dependency and redundancy of the arc factor parameters, the computation of reduced density matrices, Hamiltonian matrix construction, spin-density matrix construction, the computation of optimization gradients for single-state and state-averaged calculations, graphical wave function analysis, and the efficient computation of configuration state function and Slater determinant expansion coefficients. Timings are given for Hamiltonian matrix element and analytic optimization gradient computations for a range of model problems for full-CI Shavitt graphs, and it is observed that both the energy and the gradient computation scale as O(N(2)n(4)) for N electrons and n orbitals. The important arithmetic operations are within dense matrix-matrix product computational kernels, resulting in a computationally efficient procedure. An initial implementation of the method is used to present applications to several challenging chemical systems, including N2 dissociation, cubic H8 dissociation, the symmetric dissociation of H2O, and the insertion of Be into H2. The results are compared to the exact full-CI values and also to those of the previous single-facet GCF expansion form.
High-efficiency wavefunction updates for large scale Quantum Monte Carlo
NASA Astrophysics Data System (ADS)
Kent, Paul; McDaniel, Tyler; Li, Ying Wai; D'Azevedo, Ed
Within ab intio Quantum Monte Carlo (QMC) simulations, the leading numerical cost for large systems is the computation of the values of the Slater determinants in the trial wavefunctions. The evaluation of each Monte Carlo move requires finding the determinant of a dense matrix, which is traditionally iteratively evaluated using a rank-1 Sherman-Morrison updating scheme to avoid repeated explicit calculation of the inverse. For calculations with thousands of electrons, this operation dominates the execution profile. We propose a novel rank- k delayed update scheme. This strategy enables probability evaluation for multiple successive Monte Carlo moves, with application of accepted moves to the matrices delayed until after a predetermined number of moves, k. Accepted events grouped in this manner are then applied to the matrices en bloc with enhanced arithmetic intensity and computational efficiency. This procedure does not change the underlying Monte Carlo sampling or the sampling efficiency. For large systems and algorithms such as diffusion Monte Carlo where the acceptance ratio is high, order of magnitude speedups can be obtained on both multi-core CPU and on GPUs, making this algorithm highly advantageous for current petascale and future exascale computations.
NASA Astrophysics Data System (ADS)
Mishra, Vinayak; Chaturvedi, Shashank
2013-03-01
Tungsten carbide is used in high pressure devices therefore knowledge of its elastic properties and their pressure dependence is of utmost practical importance. In this paper we present first principles results of equation of state and elastic properties of α and β phases of tungsten carbide and compare our results with the available reported experimental results. These calculations have been performed using the FPLAPW method within the framework of density functional theory. Enthalpies of α and β phases of WC have been compared up to 350 GPa to investigate possibility of structural transformation. Density-dependent Grüneisen parameter has been deduced from P-V isotherm using the well-known Slater's formula. High pressure elastic constants of α and β phases of WC have been calculated by applying various distortions to the original crystal structure. The elastic properties such as bulk, shear and Young's moduli have been derived from the calculated elastic constants. Pressure-dependent longitudinal velocity, shear velocity, Debye temperature and melting temperature have been deduced from the elastic properties. These calculated properties are in good agreement with the available experimental results.
Exact and approximate many-body dynamics with stochastic one-body density matrix evolution
NASA Astrophysics Data System (ADS)
Lacroix, Denis
2005-06-01
We show that the dynamics of interacting fermions can be exactly replaced by a quantum jump theory in the many-body density matrix space. In this theory, jumps occur between densities formed of pairs of Slater determinants, Dab=|Φa><Φb|, where each state evolves according to the stochastic Schrödinger equation given by O. Juillet and Ph. Chomaz [Phys. Rev. Lett. 88, 142503 (2002)]. A stochastic Liouville-von Neumann equation is derived as well as the associated. Bogolyubov-Born-Green-Kirwood-Yvon hierarchy. Due to the specific form of the many-body density along the path, the presented theory is equivalent to a stochastic theory in one-body density matrix space, in which each density matrix evolves according to its own mean-field augmented by a one-body noise. Guided by the exact reformulation, a stochastic mean-field dynamics valid in the weak coupling approximation is proposed. This theory leads to an approximate treatment of two-body effects similar to the extended time-dependent Hartree-Fock scheme. In this stochastic mean-field dynamics, statistical mixing can be directly considered and jumps occur on a coarse-grained time scale. Accordingly, numerical effort is expected to be significantly reduced for applications.
Frozen-Orbital and Downfolding Calculations with Auxiliary-Field Quantum Monte Carlo.
Purwanto, Wirawan; Zhang, Shiwei; Krakauer, Henry
2013-11-12
We describe the implementation of the frozen-orbital and downfolding approximations in the auxiliary-field quantum Monte Carlo (AFQMC) method. These approaches can provide significant computational savings, compared to fully correlating all of the electrons. While the many-body wave function is never explicit in AFQMC, its random walkers are Slater determinants, whose orbitals may be expressed in terms of any one-particle orbital basis. It is therefore straightforward to partition the full N-particle Hilbert space into active and inactive parts to implement the frozen-orbital method. In the frozen-core approximation, for example, the core electrons can be eliminated in the correlated part of the calculations, greatly increasing the computational efficiency, especially for heavy atoms. Scalar relativistic effects are easily included using the Douglas-Kroll-Hess theory. Using this method, we obtain a way to effectively eliminate the error due to single-projector, norm-conserving pseudopotentials in AFQMC. We also illustrate a generalization of the frozen-orbital approach that downfolds high-energy basis states to a physically relevant low-energy sector, which allows a systematic approach to produce realistic model Hamiltonians to further increase efficiency for extended systems.
The Effects of Hydrogen on the Potential-Energy Surface of Amorphous Silicon
NASA Astrophysics Data System (ADS)
Joly, Jean-Francois; Mousseau, Normand
2012-02-01
Hydrogenated amorphous silicon (a-Si:H) is an important semiconducting material used in many applications from solar cells to transistors. In 2010, Houssem et al. [1], using the open-ended saddle-point search method, ART nouveau, studied the characteristics of the potential energy landscape of a-Si as a function of relaxation. Here, we extend this study and follow the impact of hydrogen doping on the same a-Si models as a function of doping level. Hydrogen atoms are first attached to dangling bonds, then are positioned to relieve strained bonds of fivefold coordinated silicon atoms. Once these sites are saturated, further doping is achieved with a Monte-Carlo bond switching method that preserves coordination and reduces stress [2]. Bonded interactions are described with a modified Stillinger-Weber potential and non-bonded Si-H and H-H interactions with an adapted Slater-Buckingham potential. Large series of ART nouveau searches are initiated on each model, resulting in an extended catalogue of events that characterize the evolution of potential energy surface as a function of H-doping. [4pt] [1] Houssem et al., Phys Rev. Lett., 105, 045503 (2010)[0pt] [2] Mousseau et al., Phys Rev. B, 41, 3702 (1990)
Covalent bonding: the fundamental role of the kinetic energy.
Bacskay, George B; Nordholm, Sture
2013-08-22
This work addresses the continuing disagreement between two prevalent schools of thought concerning the mechanism of covalent bonding. According to Hellmann, Ruedenberg, and Kutzelnigg, a lowering of the kinetic energy associated with electron delocalization is the key stabilization mechanism. The opposing view of Slater, Feynman, and Bader has maintained that the source of stabilization is electrostatic potential energy lowering due to electron density redistribution to binding regions between nuclei. Despite the large body of accurate quantum chemical work on a range of molecules, the debate concerning the origin of bonding continues unabated, even for H2(+), the simplest of covalently bound molecules. We therefore present here a detailed study of H2(+), including its formation, that uses a sequence of computational methods designed to reveal the relevant contributing mechanisms as well as the spatial density distributions of the kinetic and potential energy contributions. We find that the electrostatic mechanism fails to provide real insight or explanation of bonding, while the kinetic energy mechanism is sound and accurate but complex or even paradoxical to those preferring the apparent simplicity of the electrostatic model. We further argue that the underlying mechanism of bonding is in fact of dynamical character, and analyses that focus on energy do not reveal the origin of covalent bonding in full clarity.
The multifacet graphically contracted function method. I. Formulation and implementation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shepard, Ron; Brozell, Scott R.; Gidofalvi, Gergely
2014-08-14
The basic formulation for the multifacet generalization of the graphically contracted function (MFGCF) electronic structure method is presented. The analysis includes the discussion of linear dependency and redundancy of the arc factor parameters, the computation of reduced density matrices, Hamiltonian matrix construction, spin-density matrix construction, the computation of optimization gradients for single-state and state-averaged calculations, graphical wave function analysis, and the efficient computation of configuration state function and Slater determinant expansion coefficients. Timings are given for Hamiltonian matrix element and analytic optimization gradient computations for a range of model problems for full-CI Shavitt graphs, and it is observed that bothmore » the energy and the gradient computation scale as O(N{sup 2}n{sup 4}) for N electrons and n orbitals. The important arithmetic operations are within dense matrix-matrix product computational kernels, resulting in a computationally efficient procedure. An initial implementation of the method is used to present applications to several challenging chemical systems, including N{sub 2} dissociation, cubic H{sub 8} dissociation, the symmetric dissociation of H{sub 2}O, and the insertion of Be into H{sub 2}. The results are compared to the exact full-CI values and also to those of the previous single-facet GCF expansion form.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aftab, M.; Department of Physics, Quaid-i-Azam University, Islamabad; Hassnain Jaffari, G.
2011-09-01
We present the structural, magnetic, and transport properties of quaternary Co{sub 2}Mn{sub 1-x}Cr{sub x}Si (0 {<=} x {<=} 1) Heusler alloy thin films prepared by DC magnetron sputtering on commercially available glass substrates without any buffer layer. Recent theoretical calculations have shown the compositions to be half-metallic. XRD patterns show the presence of L2{sub 1} structure in the films for x = 0, however, the peaks intensities are not in accordance with the literature. High resolution transmission electron microscopy images of films show granular morphologies, crystalline growth, and an ordered L2{sub 1} structure for x {<=} 0.6. For higher Crmore » concentrations, secondary phases start to appear in the films. Magnetization measurements as a function of applied magnetic field show that the saturation moments for x {<=} 0.2 follow the Slater-Pauling rule, however, for 0.2 < x {<=} 0.6 the saturation moments fall short of the theoretically predicted values. Transport measurements at room temperature show a monotonic increase in resistivity with increasing Cr concentration. These results are explained in terms of texturing effects, Co-Cr antisite disorder, presence of secondary phases, and the amount of disorder present in the films.« less
Hauser, Mark J; Olson, Erick; Drogin, Eric Y
2014-03-01
Persons with intellectual disability come into frequent and underreported contact with the legal system. Advances in forensic psychiatry help better identify persons with intellectual disability in forensic contexts, inform evaluation and treatment, and elucidate unique characteristics of this population. With the release of Diagnostic and Statistical Manual of Mental Disorders (DSM-5), forensic psychiatrists must adjust to changes in the diagnostic process. This review examines the past year's contributions to the literature, including predictors among offenders with intellectual disability, concurrent diagnoses, efficacy of competence restoration, means of studying individuals with intellectual disability, and impact of DSM-5. Impoverished personal relationships are found to be an important predictor of offense among persons with intellectual disability. A Personality Disorder Characteristics Checklist allows screening for personality disorders (indicative of increased risk of violence) among intellectual disability offenders. Referrals to specialists for treatment more often occur for violent and sexual offenses than for other offenses. Competence restoration is historically low among those with intellectual disability, specially compared with those referred for substance abuse and personality disorders. However, the Slater Method results in higher rates of restoration than traditional training methods. DSM-5 alters the definition of intellectual disability, moving from an IQ-oriented diagnosis system to a multifaceted approach, introducing more flexibility and nuance.
NASA Astrophysics Data System (ADS)
Guo, San-Dong
2016-08-01
Binary transition-metal pnictides and chalcogenides half-metallic ferromagnetic materials with zincblende structure, being compatible with current semiconductor technology, can be used to make high-performance spintronic devices. Here, we investigate electronic structures and magnetic properties of composite structure ((CrX)2 /(YX)2 (X=As, Sb; Se, Te and Y=Ga; Zn) superlattices) of zincblende half-metallic ferromagnetism and semiconductor by using Tran and Blaha's modified Becke and Johnson (mBJ) exchange potential. Calculated results show that they all are half-metallic ferromagnets with both generalized gradient approximation (GGA) and mBJ, and the total magnetic moment per formula unit follows a Slater-Pauling-like "rule of 8". The key half-metallic gaps by using mBJ are enhanced with respect to GGA results, which is because mBJ makes the occupied minority-spin p-bands move toward lower energy, but toward higher energy for empty minority-spin Cr-d bands. When the spin-orbit coupling (SOC) is included, the spin polarization deviates from 100%, and a most reduced polarization of 98.3% for (CrSb)2 /(GaSb)2, which indicates that SOC has small effects, of the order of 1%, in the considered four kinds of superlattice.
NASA Astrophysics Data System (ADS)
Wang, Xiaotian; Cheng, Zhenxiang; Khenata, Rabah; Wu, Yang; Wang, Liying; Liu, Guodong
2017-12-01
The spin-gapless semiconductors with parabolic energy dispersions [1-3] have been recently proposed as a new class of materials for potential applications in spintronic devices. In this work, according to the Slater-Pauling rule, we report the fully-compensated ferrimagnetic (FCF) behavior and spin-gapless semiconducting (SGS) properties for a new inverse Heusler compound Zr2MnGa by means of the plane-wave pseudo-potential method based on density functional theory. With the help of GGA-PBE, the electronic structures and the magnetism of Zr2MnGa compound at its equilibrium and strained lattice constants are systematically studied. The calculated results show that the Zr2MnGa is a new SGS at its equilibrium lattice constant: there is an energy gap between the conduction and valence bands for both the majority and minority electrons, while there is no gap between the majority electrons in the valence band and the minority electrons in the conduction band. Remarkably, not only a diverse physical nature transition, but also different types of spin-gapless features can be observed with the change of the lattice constants. Our calculated results of Zr2MnGa compound indicate that this material has great application potential in spintronic devices.
NASA Astrophysics Data System (ADS)
Anita, K.; Rajmuhon Singh, N.
2011-10-01
The complexation of thiosemicarbazide with Pr(III) and Nd(III) in absence and presence of Zn(II), a soft metal ion in aqueous and organic solvents like CH 3OH,CH 3CN, dioxane (C 4H 8O 2) and DMF (C 3H 7NO) and their equimolar mixtures are discussed by employing absorption difference and comparative absorption spectrophotometry. Complexation of thiosemicarbazide with Pr(III) and Nd(III) is indicated by the changes in the absorption intensity following the subsequent changes in the oscillator strength of different 4f-4f bands and Judd-Ofelt intensity ( Tλ) parameters. The other spectral parameters like energy interaction parameters namely Slater-Condon ( Fk), Racah ( Ek), Lande ( ξ4f), Nephelauxetic ratio ( β) and bonding parameters ( b1/2) are further computed to explain the nature of complexation. The difference in the energy parameters with respect to donor atoms and solvents reveal that the chemical environment around the lanthanide ions has great impact on f-f transition and any change in the environment result in modification of the spectra. Various solvents and their equimolar mixtures are also used to discuss the participation of solvents in the complexation.
Dissipative particle dynamics: Effects of thermostating schemes on nano-colloid electrophoresis
NASA Astrophysics Data System (ADS)
Hassanzadeh Afrouzi, Hamid; Moshfegh, Abouzar; Farhadi, Mousa; Sedighi, Kurosh
2018-05-01
A novel fully explicit approach using dissipative particle dynamics (DPD) method is introduced in the present study to model the electrophoretic transport of nano-colloids in an electrolyte solution. Slater type charge smearing function included in 3D Ewald summation method is employed to treat electrostatic interaction. Performance of various thermostats are challenged to control the system temperature and study the dynamic response of colloidal electrophoretic mobility under practical ranges of external electric field (0 . 072 < E < 0 . 361 v/nm) covering linear to non-linear response regime, and ionic salt concentration (0.049 < SC < 0 . 69 [M]) covering weak to strong Debye screening of the colloid. System temperature and electrophoretic mobility both show a direct and inverse relationships respectively with electric field and colloidal repulsion; although they each respectively behave direct and inverse trends with salt concentration under various thermostats. Nosé-Hoover-Lowe-Andersen and Lowe-Andersen thermostats are found to function more effectively under high electric fields (E > 0 . 145[v/nm ]) while thermal equilibrium is maintained. Reasonable agreements are achieved by benchmarking the system radial distribution function with available EW3D modellings, as well as comparing reduced mobility against conventional Smoluchowski and Hückel theories, and numerical solution of Poisson-Boltzmann equation.
Scemama, Anthony; Caffarel, Michel; Oseret, Emmanuel; Jalby, William
2013-04-30
Various strategies to implement efficiently quantum Monte Carlo (QMC) simulations for large chemical systems are presented. These include: (i) the introduction of an efficient algorithm to calculate the computationally expensive Slater matrices. This novel scheme is based on the use of the highly localized character of atomic Gaussian basis functions (not the molecular orbitals as usually done), (ii) the possibility of keeping the memory footprint minimal, (iii) the important enhancement of single-core performance when efficient optimization tools are used, and (iv) the definition of a universal, dynamic, fault-tolerant, and load-balanced framework adapted to all kinds of computational platforms (massively parallel machines, clusters, or distributed grids). These strategies have been implemented in the QMC=Chem code developed at Toulouse and illustrated with numerical applications on small peptides of increasing sizes (158, 434, 1056, and 1731 electrons). Using 10-80 k computing cores of the Curie machine (GENCI-TGCC-CEA, France), QMC=Chem has been shown to be capable of running at the petascale level, thus demonstrating that for this machine a large part of the peak performance can be achieved. Implementation of large-scale QMC simulations for future exascale platforms with a comparable level of efficiency is expected to be feasible. Copyright © 2013 Wiley Periodicals, Inc.
Half-metallicity in new Heusler alloys NaTO2 (T=Sc, Ti, V, Cr, and Mn): A first-principles study
NASA Astrophysics Data System (ADS)
Rajabi, Kh; Ahmadian, F.
2018-03-01
On the basis of the full-potential linearized augmented plane wave (FPLAPW) method within density functional theory (DFT), electronic structure and magnetic properties of Heusler alloys NaTO2 (T = Sc, Ti, V, Cr, and Mn) were investigated. The negative values of formation energy showed that these compounds can be experimentally synthesized. Results showed that in all compounds, AlCu2Mn-type structure was the most favorable one. The NaTO2 (T = Sc, Ti, V, Cr, and Mn) alloys were HM ferromagnets except NaScO2 (in both structures which were nonmagnetic semiconductors) and NaVO2 (in AlCu2Mn-type structure which was a magnetic semiconductor). The origin of half-metallicity was also verified in HM alloys. NaCrO2 and NaVO2 alloys had higher half-metallic band gaps in comparison with Heusler alloys including and excluding transition metals. The total magnetic moments of HM NaTO2 (T = Ti, V, Cr, and Mn) alloys obeyed Slater-Pauling rule (Mtot = Ztot-12). Among NaTO2 (T = Sc, Ti, V, Cr, and Mn) alloys, NaCrO2 had the highest robustness of half-metallicity with variation of lattice constant in both structures.
Elastic properties of Sr- and Mg-doped lanthanum gallate at elevated temperature
NASA Astrophysics Data System (ADS)
Okamura, T.; Shimizu, S.; Mogi, M.; Tanimura, M.; Furuya, K.; Munakata, F.
The elastic moduli, i.e., Young's modulus, shear modulus and Poisson's ratio, of a sintered La 0.9Sr 0.1Ga 0.8Mg 0.2O 3- δ bulk have been experimentally determined in the temperature range from room temperature to 1373 K using a resonance technique. Anomalous elastic properties were observed over a wide temperature range from 473 to 1173 K. In the results for internal friction and in X-ray diffraction measurements at elevated temperature, two varieties of structural changes were seen in La 0.9Sr 0.1Ga 0.8Mg 0.2O 3- δ in the examined temperature range. The results agreed with the findings of a previous crystallographic study of the same composition system by Slater et al. In addition, the temperature range in which a successive structural change occurred in La 0.9Sr 0.1Ga 0.8Mg 0.2O 3- δ was the same as that exhibiting the anomalous elastic properties. Taking all the results together, it can be inferred that the successive structural change in the significant temperature range is responsible for the elastic property anomaly of La 0.9Sr 0.1Ga 0.8Mg 0.2O 3- δ.
Magnetic ordering induced giant optical property change in tetragonal BiFeO3
NASA Astrophysics Data System (ADS)
Tong, Wen-Yi; Ding, Hang-Chen; Gong, Shi Jing; Wan, Xiangang; Duan, Chun-Gang
2015-12-01
Magnetic ordering could have significant influence on band structures, spin-dependent transport, and other important properties of materials. Its measurement, especially for the case of antiferromagnetic (AFM) ordering, however, is generally difficult to be achieved. Here we demonstrate the feasibility of magnetic ordering detection using a noncontact and nondestructive optical method. Taking the tetragonal BiFeO3 (BFO) as an example and combining density functional theory calculations with tight-binding models, we find that when BFO changes from C1-type to G-type AFM phase, the top of valance band shifts from the Z point to Γ point, which makes the original direct band gap become indirect. This can be explained by Slater-Koster parameters using the Harrison approach. The impact of magnetic ordering on band dispersion dramatically changes the optical properties. For the linear ones, the energy shift of the optical band gap could be as large as 0.4 eV. As for the nonlinear ones, the change is even larger. The second-harmonic generation coefficient d33 of G-AFM becomes more than 13 times smaller than that of C1-AFM case. Finally, we propose a practical way to distinguish the two AFM phases of BFO using the optical method, which is of great importance in next-generation information storage technologies.
Influence of the plasma environment on atomic structure using an ion-sphere model
NASA Astrophysics Data System (ADS)
Belkhiri, Madeny; Fontes, Christopher J.; Poirier, Michel
2015-09-01
Plasma environment effects on atomic structure are analyzed using various atomic structure codes. To monitor the effect of high free-electron density or low temperatures, Fermi-Dirac and Maxwell-Boltzmann statistics are compared. After a discussion of the implementation of the Fermi-Dirac approach within the ion-sphere model, several applications are considered. In order to check the consistency of the modifications brought here to extant codes, calculations have been performed using the Los Alamos Cowan Atomic Structure (cats) code in its Hartree-Fock or Hartree-Fock-Slater form and the parametric potential Flexible Atomic Code (fac). The ground-state energy shifts due to the plasma effects for the six most ionized aluminum ions have been calculated using the fac and cats codes and fairly agree. For the intercombination resonance line in Fe22 +, the plasma effect within the uniform electron gas model results in a positive shift that agrees with the multiconfiguration Dirac-Fock value of B. Saha and S. Fritzsche [J. Phys. B 40, 259 (2007), 10.1088/0953-4075/40/2/002]. Last, the present model is compared to experimental data in titanium measured on the terawatt Astra facility and provides values for electron temperature and density in agreement with the maria code.
Jankowska, Marzena; Kupka, Teobald; Stobiński, Leszek; Faber, Rasmus; Lacerda, Evanildo G; Sauer, Stephan P A
2016-02-05
Hartree-Fock and density functional theory with the hybrid B3LYP and general gradient KT2 exchange-correlation functionals were used for nonrelativistic and relativistic nuclear magnetic shielding calculations of helium, neon, argon, krypton, and xenon dimers and free atoms. Relativistic corrections were calculated with the scalar and spin-orbit zeroth-order regular approximation Hamiltonian in combination with the large Slater-type basis set QZ4P as well as with the four-component Dirac-Coulomb Hamiltonian using Dyall's acv4z basis sets. The relativistic corrections to the nuclear magnetic shieldings and chemical shifts are combined with nonrelativistic coupled cluster singles and doubles with noniterative triple excitations [CCSD(T)] calculations using the very large polarization-consistent basis sets aug-pcSseg-4 for He, Ne and Ar, aug-pcSseg-3 for Kr, and the AQZP basis set for Xe. For the dimers also, zero-point vibrational (ZPV) corrections are obtained at the CCSD(T) level with the same basis sets were added. Best estimates of the dimer chemical shifts are generated from these nuclear magnetic shieldings and the relative importance of electron correlation, ZPV, and relativistic corrections for the shieldings and chemical shifts is analyzed. © 2015 Wiley Periodicals, Inc.
Magnetic properties of Co2Fe(Ga1-xSix) alloys
NASA Astrophysics Data System (ADS)
Deka, Bhargab; Chakraborty, Dibyashree; Srinivasan, Ananthakrishnan
2014-09-01
Magnetic and crystallographic properties of bulk Co2Fe(Ga1-xSix) alloys with 0≤x≤1 are reported in this work. The alloys with x=0.75 and 1.00 exhibit L21 structure whereas the alloys with x=0, 0.25 and 0.50 crystallized in the disordered A2 phase. Unit cell volume of this series of alloys decreased from 189.1 to 178.5 Å3 as x was increased from 0 to 1.00. All alloy compositions exhibit ferromagnetic behavior with a high Curie temperature (TC) which showed a systematic variation with x (1089 K, 1075 K, 1059 K, 1019 K and 1015 K for x=0, 0.25, 0.5, 0.75 and 1.00, respectively). The saturation magnetization moment Ms for the alloys with x=0, 0.25 and 0.50 are 5.05μB, 5.23μB, 5.49μB, respectively, in accordance with the Slater-Pauling rule, but alloys with x=0.75 and 1.00 deviated from this rule. The effective moment per magnetic atom (pc) of the alloys was estimated from the inverse DC magnetic susceptibility data above TC. A comparison of Ms with pc reveals the half-metallic character of the alloys.
NASA Astrophysics Data System (ADS)
Umezawa, Naoto; Tsuneyuki, Shinji; Ohno, Takahisa; Shiraishi, Kenji; Chikyow, Toyohiro
2005-03-01
The transcorrelated (TC) method is a useful approach to optimize the Jastrow-Slater-type many-body wave function FD. The basic idea of the TC method [1] is based on the similarity transformation of a many-body Hamiltonian H with respect to the Jastrow factor F: HTC=frac1F H F in order to incorporate the correlation effect into HTC. Both the F and D are optimized by minimizing the variance ^2=|Hrm TCD - E D |^2 d^3N x. The optimization for F is implemented by the variational Monte Carlo calculation, and D is determined by the TC self-consistent-field equation for the one-body wave functions φμ(x), which is derived from the functional derivative of ^2 with respect to φmu(x). In this talk, we will present the results given by the transcorrelated variational Monte Carlo (TC-VMC) method for the ground state [2] and the excited states of atoms [3]. [1]S. F. Boys and N. C. Handy, Proc. Roy. Soc. A, 309, 209; 310, 43; 310, 63; 311, 309 (1969). [2]N. Umezawa and S. Tsuneyuki, J. Chem. Phys. 119, 10015 (2003). [3]N. Umezawa and S. Tsuneyuki, J. Chem. Phys. 121, 7070 (2004).
Origin of Lβ20 satellite in higher Z elements
NASA Astrophysics Data System (ADS)
Trivedi, Rajeev K.; Kendurkar, Renuka; Shrivastava, B. D.
2017-05-01
One of the satellite lines accompanied with the intense diagram line Lβ2 (L3-N5) on the higher energy side, is the satellite β20 in the elements from 71Lu to 84Po, 88Ra, 90Th and 92U. Shahlot and Soni have theoretically investigated this satellite and have found all the possible transitions using jj coupling scheme using Hartree-Fock-Slater formulae. A perusal of their results shows that in some cases the agreement between theoretical and experimental values is not so good. Hence, in the present investigation we have tried alternative calculations by using the tables of Parente et al. While these calculations are relativistic ab initio calculations, those of Shahlot and Soni are non-relativistic semi-empirical calculations. Considering the same grouping of transition schemes as assigned by Shahlot and Soni, calculations have been done by us using the tables of Parente et al, which gives the values of transition energies only for the 11 elements. The transition energies for intermediate elements have been calculated by us by linear interpolation method. Our calculations show better agreement with the experimental values than that obtained from the values of Shahlot and Soni. However, in some cases, our calculations also do not yield good results and this has been discussed.
Spectroscopic investigations of Nd3+ doped flouro- and chloro-borate glasses.
Mohan, Shaweta; Thind, Kulwant Singh; Sharma, Gopi; Gerward, Leif
2008-10-01
Spectroscopic and physical properties of Nd3+ doped sodium lead flouro- and chloro-borate glasses of the type 20NaX-30PbO-49.5B2O3-0.5Nd2O3 (X=F and Cl) have been investigated. Optical absorption spectra have been used to determine the Slater Condon (F2, F4, and F6), spin orbit xi4f and Racah parameters (E1, E2, and E3). The oscillator strengths and the intensity parameters Omega2, Omega4 and Omega6 have been determined by the Judd-Ofelt theory, which in turn provide the radiative transition probability (A), total transition probability (A(T)), radiative lifetime (tauR) and branching ratio (beta) for the fluorescent level 4F3/2. The lasing efficiency of the prepared glasses has been characterized by the spectroscopic quality factor (Omega4/Omega6), the value of which is in the range of 0.2-1.5, typical for Nd3+ in different laser hosts. Nephelauxetic effect results in a red shift in the energy levels of Nd3+ for chloroborate glass. The radiative transition probability of the potential lasing transition 4F3/2-->4I11/2 of Nd3+ ions is found to be higher for flouroborate as compared to chloroborate glass.
Application of Tight-Binding Method in Atomistic Simulation of Covalent Materials
NASA Astrophysics Data System (ADS)
Isik, Ahmet
1994-05-01
The primary goal of this thesis is to develop and apply molecular dynamics simulation methods to elemental and binary covalent materials (Si, C, SiC) based on the tight-binding (TB) model of atomic cohesion in studies of bulk and deformation properties far from equilibrium. A second purpose is to compare results with those obtained using empirical interatomic potential functions in order to elucidate the applicability of models of interatomic interactions which do not take into account explicitly electronic structure effects. We have calculated the former by using a basis set consisting of four atomic orbitals, one for the s state and three for the p states, constructing a TB Hamiltonian in the usual Slater-Koster parametrization, and diagonalizing the Hamiltonian matrix at the origin of the Brillouin zone. For the repulsive part of the energy we employ a function in the form of inverse power law with screening which is then fitted to the bulk modulus and lattice parameter of several stable polytypes, results calculated by ab initio methods in the literature. Three types of applications have been investigated to demonstrate the utility of the present TB models and their advantages relative to empirical potentials. In the case of Si we show the calculated cohesive energy agrees to within a few percent with the ab initio local-density approximation (LDA) results. In addition, for clusters up to 10 atoms we find most of the energies and equilibrium structures to be in good agreement with LDA results (the failure of the empirical potential of Stillinger and Weber (SW) is well known). In the case of C clusters our TB model gives ring and chain structures which have been found both experimentally and by LDA calculations. In the second application we have applied our TB model of Si to investigate the core structure and energetics of partial dislocations on the glide plane and reconstruction antiphase defect (APD). For the 90^circ partial we show that the TB description gives the correct asymetric reconstruction previously found by LDA. For the 30^circ partial, TB gives better bond angles in the dislocation core. For the APD we have obtained a binding energy and activation for migration which are somewhat larger than the SW values, but the conclusion remains that APD is a low-energy defect which should be quite mobile. In the third application we formulate a simple TB model for SiC where the coefficients of the two-center integrals in Si-C interactions are taken to be simple averages of Si-Si and C-C integrals. Fitting is done on two polytypes, zincblende and rocksalt structures, and a simulated annealing procedure is used. The TB results are found in good agreement with LDA and experimental results in the cohesive energy, acoustic phonon modes, and elastic constants. (Abstract shortened by UMI.).
NASA Astrophysics Data System (ADS)
Rani, Deepika; Enamullah, Suresh, K. G.; Yadav, A. K.; Jha, S. N.; Bhattacharyya, D.; Varma, Manoj Raama; Alam, Aftab
2017-11-01
In this work, we present structural, electronic, magnetic, mechanical, and transport properties of equiatomic quaternary Heusler alloy, CoRhMnGe, using theoretical and experimental techniques. A detailed structural analysis is performed using x-ray diffraction and extended x-ray absorption fine structure spectroscopy. The alloy is found to crystallize in Y -type structure having space group F 4 ¯3 m (no. 216). The ab initio simulation predicts half-metallic ferromagnetic characteristics leading to large spin polarization. The calculated magnetization is found to be in fair agreement with experiment as well as those predicted by the Slater-Pauling rule, which is a prerequisite for half-metallicity. The magnetic transition temperature (TC) is found to be ˜760 K. Measured electrical resistivity in the temperature range 2-400 K also gives an indication of half-metallic behavior. Effect of hydrostatic pressure on electronic structure, magnetic, and mechanical properties are investigated in detail. The alloy is found to preserve half-metallic characteristics up to 30.27 GPa, beyond which it transits to metallic phase. No magnetic phase transition is found to occur in the whole range of pressure. The system also satisfies the Born-Huang criteria for mechanical stability up to a limited range of pressure. All these properties make the CoRhMnGe alloy promising for spintronics devices.
The Astronomy Diagnostic Test: Past, Present and Future
NASA Astrophysics Data System (ADS)
Deming, G. L.; Hufnagel, B. R.
2000-12-01
During 1998, the Collaboration for Astronomy Education Research (Adams, Adrian, Brick, Deming, Hufnagel, Slater, and Zeilik) developed a content-based diagnostic test for undergraduate non-science majors taking their first introductory level astronomy course. Student interviews and written feedback were used to construct a series of questions reflecting the students' natural language and with distractors (wrong answers) that mirror commonly held misconceptions. Version 1.9 of the Astronomy Diagnostic Test (ADT) was administered during Spring 1999 by volunteers teaching astronomy at 22 institutions across the United States. Minor modifications were made and Version 2.0 was released on June 21, 1999. The ADT 2.0 currently is available to the astronomical community through two websites and we continue to collect pretest/posttest results. Award of an NSF Small Grant for Exploratory Research has enabled us to work with a team of education researchers at the Ontario Institute for Studies in Education. Our database will be subjected to a statistical analysis in order to establish reliability of ADT 2.0. In addition, content, face, and construct validity are being examined. If you are teaching an introductory astronomy course aimed at non-science majors for Spring 2001, your class can be part of this project. We are looking for volunteers! We are also interested in hearing your ideas for a "next-generation" version of the ADT. Funding provided by NSF grant REC-0089239
NASA Astrophysics Data System (ADS)
Giner, Emmanuel; Angeli, Celestino; Garniron, Yann; Scemama, Anthony; Malrieu, Jean-Paul
2017-06-01
The present paper introduces a new multi-reference perturbation approach developed at second order, based on a Jeziorski-Mokhorst expansion using individual Slater determinants as perturbers. Thanks to this choice of perturbers, an effective Hamiltonian may be built, allowing for the dressing of the Hamiltonian matrix within the reference space, assumed here to be a CAS-CI. Such a formulation accounts then for the coupling between the static and dynamic correlation effects. With our new definition of zeroth-order energies, these two approaches are strictly size-extensive provided that local orbitals are used, as numerically illustrated here and formally demonstrated in the Appendix. Also, the present formalism allows for the factorization of all double excitation operators, just as in internally contracted approaches, strongly reducing the computational cost of these two approaches with respect to other determinant-based perturbation theories. The accuracy of these methods has been investigated on ground-state potential curves up to full dissociation limits for a set of six molecules involving single, double, and triple bond breaking together with an excited state calculation. The spectroscopic constants obtained with the present methods are found to be in very good agreement with the full configuration interaction results. As the present formalism does not use any parameter or numerically unstable operation, the curves obtained with the two methods are smooth all along the dissociation path.
Improving Web-Based Student Learning Through Online Video Demonstrations
NASA Astrophysics Data System (ADS)
Miller, Scott; Redman, S.
2010-01-01
Students in online courses continue to lag their peers in comparable face-to-face (F2F) courses (Ury 2004, Slater & Jones 2004). A meta-study of web-based vs. classroom instruction by Sitzmann et al (2006) discovered that the degree of learner control positively influences the effectiveness of instruction: students do better when they are in control of their own learning. In particular, web-based courses are more effective when they incorporate a larger variety of instructional methods. To address this need, we developed a series of online videos to demonstrate various astronomical concepts and provided them to students enrolled in an online introductory astronomy course at Penn State University. We found that the online students performed worse than the F2F students on questions unrelated to the videos (t = -2.84), but that the online students who watched the videos performed better than the F2F students on related examination questions (t = 2.11). We also found that the online students who watched the videos performed significantly better than those who did not (t = 3.43). While the videos in general proved helpful, some videos were more helpful than others. We will discuss our thoughts on why this might be, and future plans to improve upon this study. These videos are freely available on iTunesU, YouTube, and Google Video.
Enhancement of the Co magnetic moment in bcc Co1-xMnx on MgO
NASA Astrophysics Data System (ADS)
Snow, Ryan; Bhatkar, Harsh; N'diaye, Alpha; Arenholz, Elke; Idzerda, Yves; Montana State University Team; Lawrence Berkeley National Laboratries Team
Using X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (MCD), we show that the elemental Co moment for MBE grown thin films of bcc Co1-xMnx grown on MgO(001) is enhanced by 40% to a maximum value of 2.1 μB at x =0.24. The net Mn moment is found to align parallel with Co for all concentrations and remains roughly constant until x =0.3, then drops steadily, up to x =0.7, where the total moment of the film abruptly collapses to zero. Using a low-concentration Mn moment of 3.0 μB, the average magnetization lies directly on the Slater-Pauling (SP) curve for concentrations up to about x =.25, where it reaches a maximum moment of 2.3 μB /atom. This peak is slightly shifted and the slope is steeper on the high-Mn concentration side of the peak relative to the standard SP curve. This is in stark contrast to the fcc CoMn and hcp CoCr bulk behavior which shows only a rapid total moment reduction with Mn concentration. This material is based upon work supported by the National Science Foundation under Grant ECCS-1542210. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Con.
NASA Astrophysics Data System (ADS)
Wang, Jia-Xing; Chen, Z. B.; Gao, Y. C.
2018-05-01
In this manuscript, we have studied the electronic, magnetic, half-metallic and mechanical properties of a new Zr-based equiatomic quaternary Heusler (EQH) compound, ZrRhTiIn using first-principles calculations. The generalized gradient approximation (GGA) calculation results imply that at its equilibrium lattice constant of 6.70 Å, ZrRhTiIn is a half-metallic material (HMM) with a considerable band gap (Ebg) of 0.530 eV and a spin-filter/half-metallic band-gap (EHM) of 0.080 eV in the minority-spin channel. For ZrRhTiIn, the formation energy of -2.738 eV and the cohesive energy of 21.38 eV indicate that it is a thermodynamically stable material according to theory. The minority-spin EHM arises from the hybridization among Zr-4d, Ti-3d and Rh-4d electrons. The calculated total magnetic moment of ZrRhTiIn is 2 μB, meeting the well-known Slater-Pauling rule Mt = Zt -18. Furthermore, uniform strain and tetragonal strain were applied in this work to examine the magneto-electronic and half-metallic behaviors of the ZrRhTiIn system. Finally, we show that ZrRhTiIn is mechanically stable, ductile and anisotropic.
Tomonari, Mutsumi; Nagashima, Umpei; Hirano, Tsuneo
2009-04-21
Electronic structures and molecular constants of the ground (7)Sigma(+) and low-lying A (7)Pi and a (5)Sigma(+) electronic excited states of the MnH molecule were studied by multireference single and double excitation configuration interaction (MR-SDCI) with Davidson's correction (+Q) calculations under exact C(infinity v) symmetry using Slater-type basis sets. To correctly describe the (7)Sigma(+) electronic ground state, X (7)Sigma(+), at the MR-SDCI+Q calculation, we employed a large number of reference configurations in terms of the state-averaged complete active space self-consistent field (CASSCF) orbitals, taking into account the contribution from the B (7)Sigma(+) excited state. The A (7)Pi and a (5)Sigma(+) states can well be described by the MR-SDCI wave functions based on the CASSCF orbitals obtained for the lowest state only. In the MR-SDCI+Q, calculations of the X (7)Sigma(+), A (7)Pi, and a (5)Sigma(+) states required 16, 7, and 17 reference configurations, respectively. Molecular constants, i.e., r(e) and omega(e) of these states and excitation energy from the X (7)Sigma(+) state, obtained at the MR-SDCI+Q level, showed a good agreement with experimental values. The small remaining differences may be accounted for by taking relativistic effects into account.
NASA Astrophysics Data System (ADS)
Tomonari, Mutsumi; Nagashima, Umpei; Hirano, Tsuneo
2009-04-01
Electronic structures and molecular constants of the ground ∑7+ and low-lying A 7Π and a ∑5+ electronic excited states of the MnH molecule were studied by multireference single and double excitation configuration interaction (MR-SDCI) with Davidson's correction (+Q) calculations under exact C∞v symmetry using Slater-type basis sets. To correctly describe the ∑7+ electronic ground state, X ∑7+, at the MR-SDCI+Q calculation, we employed a large number of reference configurations in terms of the state-averaged complete active space self-consistent field (CASSCF) orbitals, taking into account the contribution from the B ∑7+ excited state. The A 7Π and a ∑5+ states can well be described by the MR-SDCI wave functions based on the CASSCF orbitals obtained for the lowest state only. In the MR-SDCI+Q, calculations of the X ∑7+, A 7Π, and a ∑5+ states required 16, 7, and 17 reference configurations, respectively. Molecular constants, i.e., re and ωe of these states and excitation energy from the X ∑7+ state, obtained at the MR-SDCI+Q level, showed a good agreement with experimental values. The small remaining differences may be accounted for by taking relativistic effects into account.
Jena, Ajit; Nanda, B R K
2016-01-21
Oxygen plays a critical role in strongly correlated transition metal oxides as crystal field effect is one of the key factors that determine the degree of localization of the valence d/f states. Based on the localization, a set of conventional mechanisms such as Mott-Hubbard, Charge-transfer and Slater were formulated to explain the antiferromagnetic and insulating (AFI) phenomena in many of these correlated systems. From the case study on LiFePO4, through density-functional calculations, we demonstrate that none of these mechanisms are strictly applicable to explain the AFI behavior when the transition metal oxides have polyanions such as (PO4)(3-). The symmetry-lowering of the metal-oxygen complex, to stabilize the polyanion, creates an asymmetric crystal field for d/f states. In LiFePO4 this field creates completely non-degenerate Fe-d states which, with negligible p-d and d-d covalent interactions, become atomically localized to ensure a gap at the Fermi level. Due to large exchange splitting, high spin state is favored and an antiferromagnetic configuration is stabilized. For the prototype LiFePO4, independent electron approximation is good enough to obtain the AFI ground state. Inclusion of additional correlation measures like Hubbard U simply amplifies the gap and therefore LiFePO4 can be preferably called as weakly coupled Mott insulator.
Jena, Ajit; Nanda, B. R. K.
2016-01-01
Oxygen plays a critical role in strongly correlated transition metal oxides as crystal field effect is one of the key factors that determine the degree of localization of the valence d/f states. Based on the localization, a set of conventional mechanisms such as Mott-Hubbard, Charge-transfer and Slater were formulated to explain the antiferromagnetic and insulating (AFI) phenomena in many of these correlated systems. From the case study on LiFePO4, through density-functional calculations, we demonstrate that none of these mechanisms are strictly applicable to explain the AFI behavior when the transition metal oxides have polyanions such as (PO4)3−. The symmetry-lowering of the metal-oxygen complex, to stabilize the polyanion, creates an asymmetric crystal field for d/f states. In LiFePO4 this field creates completely non-degenerate Fe-d states which, with negligible p-d and d-d covalent interactions, become atomically localized to ensure a gap at the Fermi level. Due to large exchange splitting, high spin state is favored and an antiferromagnetic configuration is stabilized. For the prototype LiFePO4, independent electron approximation is good enough to obtain the AFI ground state. Inclusion of additional correlation measures like Hubbard U simply amplifies the gap and therefore LiFePO4 can be preferably called as weakly coupled Mott insulator. PMID:26791249
Fast and accurate 3D tensor calculation of the Fock operator in a general basis
NASA Astrophysics Data System (ADS)
Khoromskaia, V.; Andrae, D.; Khoromskij, B. N.
2012-11-01
The present paper contributes to the construction of a “black-box” 3D solver for the Hartree-Fock equation by the grid-based tensor-structured methods. It focuses on the calculation of the Galerkin matrices for the Laplace and the nuclear potential operators by tensor operations using the generic set of basis functions with low separation rank, discretized on a fine N×N×N Cartesian grid. We prove the Ch2 error estimate in terms of mesh parameter, h=O(1/N), that allows to gain a guaranteed accuracy of the core Hamiltonian part in the Fock operator as h→0. However, the commonly used problem adapted basis functions have low regularity yielding a considerable increase of the constant C, hence, demanding a rather large grid-size N of about several tens of thousands to ensure the high resolution. Modern tensor-formatted arithmetics of complexity O(N), or even O(logN), practically relaxes the limitations on the grid-size. Our tensor-based approach allows to improve significantly the standard basis sets in quantum chemistry by including simple combinations of Slater-type, local finite element and other basis functions. Numerical experiments for moderate size organic molecules show efficiency and accuracy of grid-based calculations to the core Hamiltonian in the range of grid parameter N3˜1015.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umino, Satoru; Takahashi, Hideaki, E-mail: hideaki@m.tohoku.ac.jp; Morita, Akihiro
In a recent work, we developed a method [H. Takahashi et al., J. Chem. Phys. 143, 084104 (2015)] referred to as exchange-core function (ECF) approach, to compute exchange repulsion E{sub ex} between solute and solvent in the framework of the quantum mechanical (QM)/molecular mechanical (MM) method. The ECF, represented with a Slater function, plays an essential role in determining E{sub ex} on the basis of the overlap model. In the work of Takahashi et al. [J. Chem. Phys. 143, 084104 (2015)], it was demonstrated that our approach is successful in computing the hydrogen bond energies of minimal QM/MM systems includingmore » a cationic QM solute. We provide in this paper the extension of the ECF approach to the free energy calculation in condensed phase QM/MM systems by combining the ECF and the QM/MM-ER approach [H. Takahashi et al., J. Chem. Phys. 121, 3989 (2004)]. By virtue of the theory of solutions in energy representation, the free energy contribution δμ{sub ex} from the exchange repulsion was naturally formulated. We found that the ECF approach in combination with QM/MM-ER gives a substantial improvement on the calculation of the hydration free energy of a hydronium ion. This can be attributed to the fact that the ECF reasonably realizes the contraction of the electron density of the cation due to the deficit of an electron.« less
Construction of exchange repulsion in terms of the wave functions at QM/MM boundary region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Hideaki, E-mail: hideaki@m.tohoku.ac.jp; Umino, Satoru; Morita, Akihiro
2015-08-28
We developed a simple method to calculate exchange repulsion between a quantum mechanical (QM) solute and a molecular mechanical (MM) molecule in the QM/MM approach. In our method, the size parameter in the Buckingham type potential for the QM solute is directly determined in terms of the one-electron wave functions of the solute. The point of the method lies in the introduction of the exchange core function (ECF) defined as a Slater function which mimics the behavior of the exterior electron density at the QM/MM boundary region. In the present paper, the ECF was constructed in terms of the Becke-Rousselmore » (BR) exchange hole function. It was demonstrated that the ECF yielded by the BR procedure can faithfully reproduce the radial behavior of the electron density of a QM solute. The size parameter of the solute as well as the exchange repulsion are, then, obtained using the overlap model without any fitting procedure. To examine the efficiency of the method, it was applied to calculation of the exchange repulsions for minimal QM/MM systems, hydrogen-bonded water dimer, and H{sub 3}O{sup +}–H{sub 2}O. We found that our approach is able to reproduce the potential energy curves for these systems showing reasonable agreements with those given by accurate full quantum chemical calculations.« less
Ultrafast absorption of intense x rays by nitrogen molecules
NASA Astrophysics Data System (ADS)
Buth, Christian; Liu, Ji-Cai; Chen, Mau Hsiung; Cryan, James P.; Fang, Li; Glownia, James M.; Hoener, Matthias; Coffee, Ryan N.; Berrah, Nora
2012-06-01
We devise a theoretical description for the response of nitrogen molecules (N2) to ultrashort and intense x rays from the free electron laser Linac Coherent Light Source (LCLS). We set out from a rate-equation description for the x-ray absorption by a nitrogen atom. The equations are formulated using all one-x-ray-photon absorption cross sections and the Auger and radiative decay widths of multiply-ionized nitrogen atoms. Cross sections are obtained with a one-electron theory and decay widths are determined from ab initio computations using the Dirac-Hartree-Slater (DHS) method. We also calculate all binding and transition energies of nitrogen atoms in all charge states with the DHS method as the difference of two self-consistent field (SCF) calculations (ΔSCF method). To describe the interaction with N2, a detailed investigation of intense x-ray-induced ionization and molecular fragmentation are carried out. As a figure of merit, we calculate ion yields and the average charge state measured in recent experiments at the LCLS. We use a series of phenomenological models of increasing sophistication to unravel the mechanisms of the interaction of x rays with N2: a single atom, a symmetric-sharing model, and a fragmentation-matrix model are developed. The role of the formation and decay of single and double core holes, the metastable states of N_2^{2+}, and molecular fragmentation are explained.
Long-range correction for tight-binding TD-DFT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humeniuk, Alexander; Mitrić, Roland, E-mail: roland.mitric@uni-wuerzburg.de
2015-10-07
We present two improvements to the tight-binding approximation of time-dependent density functional theory (TD-DFTB): First, we add an exact Hartree-Fock exchange term, which is switched on at large distances, to the ground state Hamiltonian and similarly to the coupling matrix that enters the linear response equations for the calculation of excited electronic states. We show that the excitation energies of charge transfer states are improved relative to the standard approach without the long-range correction by testing the method on a set of molecules from the database in Peach et al. [J. Chem. Phys. 128, 044118 (2008)] which are known tomore » exhibit problematic charge transfer states. The degree of spatial overlap between occupied and virtual orbitals indicates where TD-DFTB and long-range corrected TD-DFTB (lc-TD-DFTB) can be expected to produce large errors. Second, we improve the calculation of oscillator strengths. The transition dipoles are obtained from Slater Koster files for the dipole matrix elements between valence orbitals. In particular, excitations localized on a single atom, which appear dark when using Mulliken transition charges, acquire a more realistic oscillator strength in this way. These extensions pave the way for using lc-TD-DFTB to describe the electronic structure of large chromophoric polymers, where uncorrected TD-DFTB fails to describe the high degree of conjugation and produces spurious low-lying charge transfer states.« less
Origin of the satellites Lα3, Lα4 and Lα5 in the elements from 40Zr to 50Sn
NASA Astrophysics Data System (ADS)
Kendurkar, Renuka; Shrivastava, B. D.
2014-09-01
The origin of the Lα satellites Lα3, Lα4 and Lα5 have been explained in the elements from 40Zr to 50Sn, on the basis of multiple ionization theory. The energies and intensities of the various transitions corresponding to the L3Mx - MxM4,5 (where x = 1-5) transition array, which may give rise to these satellites, have been calculated theoretically. The energies of the transitions have been calculated using the available Hartree-Fock-Slater data for the energies of K-LM and L-MM Auger transitions. The intensities of the various transitions have been estimated by considering cross sections for L1-L3Mx Coster-Kronig transitions as well as for M-shell shake-off process occurring simultaneous to a L3 hole creation. The total cross sections for initial two-hole states L3Mx have then been distributed statistically amongst the various allowed transitions from these initial states to the final states MxM4,5. By assuming each transition as a Gaussian line, theoretical satellite spectrum has been computed as the sum of these Gaussian curves. The energies of the satellites, as obtained from the theoretical spectrum, have been found to be comparable with the measured energies of the satellites Lα3, Lα4 and Lα5. Consequently, these satellites have been assigned the transitions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Q.; Cheng, J. -G.; Fan, W.
The perovskite (Pv) SrIrO 3 is an exotic narrow-band metal owing to a confluence of the strengths of the spin-orbit coupling (SOC) and the electron-electron correlations. It has been proposed that topological and magnetic insulating phases can be achieved by tuning the SOC, Hubbard interactions, and/or lattice symmetry. Here, we report that the substitution of nonmagnetic, isovalent Sn 4+ for Ir 4+ in the SrIr 1-xSn xO 3 perovskites synthesized under high pressure leads to a metal-insulator transition to an antiferromagnetic phase at TN ≥ 225 K. The continuous change of the cell volume as detected by X-ray diffraction andmore » the l-shape transition of the specific heat on cooling through TN demonstrate that the metal-insulator transition is of second-order. Neutron powder diffraction results indicate that the Sn substitution enlarges an octahedral-site distortion that reduces the SOC relative to the spin-spin exchange interaction and results in the type-G AF spin ordering below TN. Measurement of high-temperature magnetic susceptibility shows the evolution of magnetic coupling in the paramagnetic phase typical of weak itinerant-electron magnetism in the Sn-substituted samples. A reduced structural symmetry in the magnetically ordered phase leads to an electron gap opening at the Brillouin zone boundary below TN in the same way as proposed by Slater.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Q.; Cheng, J. -G.; Fan, W.
The perovskite SrIrO 3 is an exotic narrow-band metal owing to a confluence of the strengths of the spin-orbit coupling (SOC) and the electron-electron correlations. It has been proposed that topological and magnetic insulating phases can be achieved by tuning the SOC, Hubbard interactions, and/or lattice symmetry. Here, we report that the substitution of nonmagnetic, isovalent Sn 4+ for Ir 4+ in the SrIr 1–xSn xO 3 perovskites synthesized under high pressure leads to a metal-insulator transition to an antiferromagnetic (AF) phase at T N ≥ 225 K. The continuous change of the cell volume as detected by x-ray diffractionmore » and the λ-shape transition of the specific heat on cooling through T N demonstrate that the metal-insulator transition is of second order. Neutron powder diffraction results indicate that the Sn substitution enlarges an octahedral-site distortion that reduces the SOC relative to the spin-spin exchange interaction and results in the type- G AF spin ordering below T N. Measurement of high-temperature magnetic susceptibility shows the evolution of magnetic coupling in the paramagnetic phase typical of weak itinerant-electron magnetism in the Sn-substituted samples. Furthermore, a reduced structural symmetry in the magnetically ordered phase leads to an electron gap opening at the Brillouin zone boundary below T N in the same way as proposed by Slater.« less
NASA Astrophysics Data System (ADS)
Zhang, Qiang; Ye, Feng; Tian, Wei; Cao, Huibo; Chi, Songxue; Hu, Biao; Diao, Zhenyu; Tennant, David A.; Jin, Rongying; Zhang, Jiandi; Plummer, Ward
2017-06-01
Bilayered S r3R u2O7 is an unusual metamagnetic metal with inherently antiferromagnetic (AFM) and ferromagnetic (FM) fluctuations. Partial substitution of Ru by Mn results in the establishment of a metal-insulator transition (MIT) at TMIT and AFM ordering at TM in S r3(Ru1-xM nx) 2O7 . Using elastic neutron scattering, we investigated the effect of Mn doping on the magnetic structure, in-plane magnetic correlation lengths and their correlation to the MIT in S r3(Ru1-xM nx) 2O7 (x =0.06 and 0.12). With the increase of Mn doping (x ) from 0.06 to 0.12 or the decrease of temperatures for x =0.12 , an evolution from an in-plane short-range to long-range antiferromagnetic (AFM) ground state occurs. For both compounds, the magnetic ordering has a double-stripe configuration, and the onset of magnetic correlation with an anisotropic behavior coincides with the sharp rise in electrical resistivity and specific heat. Since it does not induce a measurable lattice distortion, the double-stripe antiferromagnetic order with anisotropic spin texture breaks symmetry from a C4 v crystal lattice to a C2 v magnetic sublattice. These observations shed light on an age-old question regarding the Slater versus Mott-type MIT.
Anomalous Rayleigh scattering with dilute concentrations of elements of biological importance
NASA Astrophysics Data System (ADS)
Hugtenburg, Richard P.; Bradley, David A.
2004-01-01
The anomalous scattering factor (ASF) correction to the relativistic form-factor approximation for Rayleigh scattering is examined in support of its utilization in radiographic imaging. ASF corrected total cross-section data have been generated for a low resolution grid for the Monte Carlo code EGS4 for the biologically important elements, K, Ca, Mn, Fe, Cu and Zn. Points in the fixed energy grid used by EGS4 as well as 8 other points in the vicinity of the K-edge have been chosen to achieve an uncertainty in the ASF component of 20% according to the Thomas-Reiche-Kuhn sum rule and an energy resolution of 20 eV. Such data is useful for analysis of imaging with a quasi-monoenergetic source. Corrections to the sampled distribution of outgoing photons, due to ASF, are given and new total cross-section data including that of the photoelectric effect have been computed using the Slater exchange self-consistent potential with the Latter tail. A measurement of Rayleigh scattering in a dilute aqueous solution of manganese (II) was performed, this system enabling determination of the absolute cross-section, although background subtraction was necessary to remove K β fluorescence and resonant Raman scattering occurring within several 100 eV of the edge. Measurements confirm the presence of below edge bound-bound structure and variation in the structure due to the ionic state that are not currently included in tabulations.
Quantum Algorithms to Simulate Many-Body Physics of Correlated Fermions
NASA Astrophysics Data System (ADS)
Jiang, Zhang; Sung, Kevin J.; Kechedzhi, Kostyantyn; Smelyanskiy, Vadim N.; Boixo, Sergio
2018-04-01
Simulating strongly correlated fermionic systems is notoriously hard on classical computers. An alternative approach, as proposed by Feynman, is to use a quantum computer. We discuss simulating strongly correlated fermionic systems using near-term quantum devices. We focus specifically on two-dimensional (2D) or linear geometry with nearest-neighbor qubit-qubit couplings, typical for superconducting transmon qubit arrays. We improve an existing algorithm to prepare an arbitrary Slater determinant by exploiting a unitary symmetry. We also present a quantum algorithm to prepare an arbitrary fermionic Gaussian state with O (N2) gates and O (N ) circuit depth. Both algorithms are optimal in the sense that the numbers of parameters in the quantum circuits are equal to those describing the quantum states. Furthermore, we propose an algorithm to implement the 2D fermionic Fourier transformation on a 2D qubit array with only O (N1.5) gates and O (√{N }) circuit depth, which is the minimum depth required for quantum information to travel across the qubit array. We also present methods to simulate each time step in the evolution of the 2D Fermi-Hubbard model—again on a 2D qubit array—with O (N ) gates and O (√{N }) circuit depth. Finally, we discuss how these algorithms can be used to determine the ground-state properties and phase diagrams of strongly correlated quantum systems using the Hubbard model as an example.
Multiconfiguration Pair-Density Functional Theory: A New Way To Treat Strongly Correlated Systems.
Gagliardi, Laura; Truhlar, Donald G; Li Manni, Giovanni; Carlson, Rebecca K; Hoyer, Chad E; Bao, Junwei Lucas
2017-01-17
The electronic energy of a system provides the Born-Oppenheimer potential energy for internuclear motion and thus determines molecular structure and spectra, bond energies, conformational energies, reaction barrier heights, and vibrational frequencies. The development of more efficient and more accurate ways to calculate the electronic energy of systems with inherently multiconfigurational electronic structure is essential for many applications, including transition metal and actinide chemistry, systems with partially broken bonds, many transition states, and most electronically excited states. Inherently multiconfigurational systems are called strongly correlated systems or multireference systems, where the latter name refers to the need for using more than one ("multiple") configuration state function to provide a good zero-order reference wave function. This Account describes multiconfiguration pair-density functional theory (MC-PDFT), which was developed as a way to combine the advantages of wave function theory (WFT) and density functional theory (DFT) to provide a better treatment of strongly correlated systems. First we review background material: the widely used Kohn-Sham DFT (which uses only a single Slater determinant as reference wave function), multiconfiguration WFT methods that treat inherently multiconfigurational systems based on an active space, and previous attempts to combine multiconfiguration WFT with DFT. Then we review the formulation of MC-PDFT. It is a generalization of Kohn-Sham DFT in that the electron kinetic energy and classical electrostatic energy are calculated from a reference wave function, while the rest of the energy is obtained from a density functional. However, there are two main differences with respent to Kohn-Sham DFT: (i) The reference wave function is multiconfigurational rather than being a single Slater determinant. (ii) The density functional is a function of the total density and the on-top pair density rather than being a function of the spin-up and spin-down densities. In work carried out so far, the multiconfigurational wave function is a multiconfiguration self-consistent-field wave function. The new formulation has the advantage that the reference wave function has the correct spatial and spin symmetry and can describe bond dissociation (of both single and multiple bonds) and electronic excitations in a formally and physically correct way. We then review the formulation of density functionals in terms of the on-top pair density. Finally we review successful applications of the theory to bond energies and bond dissociation potential energy curves of main-group and transition metal bonds, to barrier heights (including pericyclic reactions), to proton affinities, to the hydrogen bond energy of water dimer, to ground- and excited-state charge transfer, to valence and Rydberg excitations of molecules, and to singlet-triplet splittings of radicals. We find that that MC-PDFT can give accurate results not only with complete-active-space multiconfiguration wave functions but also with generalized-active-space multiconfiguration wave functions, which are practical for larger numbers of active electrons and active orbitals than are complete-active-space wave functions. The separated-pair approximation, which is a special case of generalized active space self-consistent-field theory, is especially promising. MC-PDFT, because it requires much less computer time and storage than pure WFT methods, has the potential to open larger and more complex strongly correlated systems to accurate simulation.
Entanglement entropies and fermion signs of critical metals
NASA Astrophysics Data System (ADS)
Kaplis, N.; Krüger, F.; Zaanen, J.
2017-04-01
The fermion sign problem is often viewed as a sheer inconvenience that plagues numerical studies of strongly interacting electron systems. Only recently has it been suggested that fermion signs are fundamental for the universal behavior of critical metallic systems and crucially enhance their degree of quantum entanglement. In this work we explore potential connections between emergent scale invariance of fermion sign structures and scaling properties of bipartite entanglement entropies. Our analysis is based on a wave-function Ansatz that incorporates collective, long-range backflow correlations into fermionic Slater determinants. Such wave functions mimic the collapse of a Fermi liquid at a quantum critical point. Their nodal surfaces, a representation of the fermion sign structure in many-particle configurations space, show fractal behavior up to a length scale ξ that diverges at a critical backflow strength. We show that the Hausdorff dimension of the fractal nodal surface depends on ξ , the number of fermions and the exponent of the backflow. For the same wave functions we numerically calculate the second Rényi entanglement entropy S2. Our results show a crossover from volume scaling, S2˜ℓθ (θ =2 in d =2 dimensions), to the characteristic Fermi-liquid behavior S2˜ℓ lnℓ on scales larger than ξ . We find that volume scaling of the entanglement entropy is a robust feature of critical backflow fermions, independent of the backflow exponent and hence the fractal dimension of the scale invariant sign structure.
Albrecht, Jennifer Coyne; Kerby, Matthew B.; Niedringhaus, Thomas P.; Lin, Jennifer S.; Wang, Xiaoxiao; Barron, Annelise E.
2012-01-01
Here, we demonstrate the potential for high-resolution electrophoretic separations of ssDNA-protein conjugates in borosilicate glass microfluidic chips, with no sieving media and excellent repeatability. Using polynucleotides of two different lengths conjugated to moderately cationic protein polymer drag-tags, we measured separation efficiency as a function of applied electric field. In excellent agreement with prior theoretical predictions of Slater et al., resolution is found to remain constant as applied field is increased up to 700 V/cm, the highest field we were able to apply. This remarkable result illustrates the fundamentally different physical limitations of Free-Solution Conjugate Electrophoresis (FSCE)-based DNA separations relative to matrix-based DNA electrophoresis. Single-stranded DNA separations in “gels” have always shown rapidly declining resolution as the field strength is increased; this is especially true for ssDNA > 400 bases in length. FSCE’s ability to decouple DNA peak resolution from applied electric field suggests the future possibility of ultra-rapid FSCE sequencing on chips. We investigated sources of peak broadening for FSCE separations on borosilicate glass microchips, using six different protein polymer drag-tags. For drag-tags with four or more positive charges, electrostatic and adsorptive interactions with pHEA-coated microchannel walls led to appreciable band-broadening, while much sharper peaks were seen for bioconjugates with nearly charge-neutral protein drag-tags. PMID:21500207
First-principles study on the ferrimagnetic half-metallic Mn{sub 2}FeAs alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Santao; Zhang, Chuan-Hui, E-mail: zhangch@ustb.edu.cn; Chen, Bao
2015-05-15
Mn-based full-Heusler alloys are kinds of promising candidates for new half-metallic materials. Basing on first principles, the electronic structures and magnetic properties of the Mn{sub 2}FeAs full-Heusler alloy have been investigated in detail. The Hg{sub 2}CuTi-type Mn{sub 2}FeAs compound obeys the Slater-Pauling rule, while the anti-parallel alignment atomic magnetic moments of Mn locating at different sites indicate it a ferrimagnetic alloy. The calculated spin-down bands behave half-metallic character, exhibiting a direct gap of 0.46 eV with a 100% spin polarization at the Fermi level. More studies show the compound would maintain half-metallic nature in a large range of variational latticemore » constants. We expect that our calculated results may trigger Mn{sub 2}FeAs applying in the future spintronics field. - Graphical abstract: The d orbitals of Mn and Fe atoms split into multi-degenerated levels which create new bonding and nonbonding states. These exchange splitting shift the Fermi level to origin band gap.▪ - Highlights: • The electronic structure and magnetic properties of Mn{sub 2}FeAs full-Heusler alloy were studied. • A total magnetic moment of 3μ{sub B} was obtained for Mn{sub 2}FeAs alloy, following the SP rule M{sub t}=Z{sub t}−24. • The origin of ferrimagnetism and half-metallic character in Mn{sub 2}FeAs were discussed.« less
Improved NLDAS-2 Noah-simulated Hydrometeorological Products with an Interim Run
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Youlong; Peter-Lidard, Christa; Huang, Maoyi
2015-02-28
In NLDAS-2 Noah simulation, the NLDAS team introduced an intermediate fix suggested by Slater et al. (2007) and Livneh et al. (2010) to reduce large sublimation. The fix is used to constraint surface exchange coefficient (CH) using CH =CHoriginal x max (1.0-RiB/0.5, 0.05) when atmospheric boundary layer is stable. RiB is Richardson number. In NLDAS-2 Noah version, this fix was used for all stable cases including snow-free grid cells. In this study, we simply applied this fix to the grid cells in which both stable atmospheric boundary layer and snow exist simultaneously excluding the snow-free grid cells as we recognizemore » that the fix constraint in NLDAS-2 is too strong. We make a 31-year (1979-2009) Noah NLDAS-2 interim (NoahI) run. We use observed streamflow, evapotranspiration, land surface temperature, soil temperature, and ground heat flux to evaluate the results simulated from NoahI and make the reasonable comparison with those simulated from NLDAS-2 Noah (Xia et al., 2012). The results show that NoahI has the same performance as Noah does for snow water equivalent simulation. However, NoahI significantly improved the other hydrometeorological products’ simulation as described above when compared to Noah and the observations. This simple modification is being installed to the next Noah version. The hydrometeorological products simulated from NoahI will be staged on NCEP public server for the public in future.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Qiang; Ye, Feng; Tian, Wei
Bilayered Sr 3Ru 2O 7 is an unusual metamagnetic metal with inherently antiferromagnetic (AFM) and ferromagnetic (FM) fluctuations. Partial substitution of Ru by Mn results in the establishment of a metal-insulator transition (MIT) at TMIT and AFM ordering at TM in Sr 3(Ru 1-xMn x) 2O 7. Using elastic neutron scattering, we investigated the effect of Mn doping on the magnetic structure, in-plane magnetic correlation lengths and their correlation to the MIT in Sr 3(Ru 1-xMn x) 2O 7 (x=0.06 and 0.12). With the increase of Mn doping (x) from 0.06 to 0.12 or the decrease of temperatures for x=0.12,more » an evolution from an in-plane short-range to long-range antiferromagnetic (AFM) ground state occurs. For both compounds, the magnetic ordering has a double-stripe configuration, and the onset of magnetic correlation with an anisotropic behavior coincides with the sharp rise in electrical resistivity and specific heat. Since it does not induce a measurable lattice distortion, the double-stripe antiferromagnetic order with anisotropic spin texture breaks symmetry from a C 4v crystal lattice to a C 2v magnetic sublattice. These observations shed light on an age-old question regarding the Slater versus Mott-type MIT.« less
Merino-Soto, Cesar; Salas Blas, Edwin
2018-01-01
This research intended to validate two brief scales of sensations seeking with Peruvian adolescents: the eight item scale (BSSS8; Hoyle, Stephenson, Palmgreen, Lorch, y Donohew, 2002) and the four item scale (BSSS4; Stephenson, Hoyle, Slater, y Palmgreen, 2003). Questionnaires were administered to 618 voluntary participants, with an average age of 13.6 years, from different levels of high school, state and private school in a district in the south of Lima. It analyzed the internal structure of both short versions using three models: a) unidimensional (M1), b) oblique or related dimensions (M2), and c) the bifactor model (M3). Results show that both instruments have a single dimension which best represents the variability of the items; a fact that can be explained both by the complexity of the concept and by the small number of items representing each factor, which is more noticeable in the BSSS4. Reliability is within levels found by previous studies: alpha: .745 = BSSS8 and BSSS4 =. 643; omega coefficient: .747 in BSSS8 and .651 in BSSS4. These are considered suitable for the type of instruments studied. Based on the correlation between the two instruments, it was found that there are satisfactory levels of equivalence between the BSSS8 and BSSS4. However, it is recommended that the BSSS4 is mainly used for research and for the purpose of describing populations.
Santra, Biswajit; Klimes, Jirí; Tkatchenko, Alexandre; Alfè, Dario; Slater, Ben; Michaelides, Angelos; Car, Roberto; Scheffler, Matthias
2013-10-21
Density-functional theory (DFT) has been widely used to study water and ice for at least 20 years. However, the reliability of different DFT exchange-correlation (xc) functionals for water remains a matter of considerable debate. This is particularly true in light of the recent development of DFT based methods that account for van der Waals (vdW) dispersion forces. Here, we report a detailed study with several xc functionals (semi-local, hybrid, and vdW inclusive approaches) on ice Ih and six proton ordered phases of ice. Consistent with our previous study [B. Santra, J. Klimeš, D. Alfè, A. Tkatchenko, B. Slater, A. Michaelides, R. Car, and M. Scheffler, Phys. Rev. Lett. 107, 185701 (2011)] which showed that vdW forces become increasingly important at high pressures, we find here that all vdW inclusive methods considered improve the relative energies and transition pressures of the high-pressure ice phases compared to those obtained with semi-local or hybrid xc functionals. However, we also find that significant discrepancies between experiment and the vdW inclusive approaches remain in the cohesive properties of the various phases, causing certain phases to be absent from the phase diagram. Therefore, room for improvement in the description of water at ambient and high pressures remains and we suggest that because of the stern test the high pressure ice phases pose they should be used in future benchmark studies of simulation methods for water.
A review of high magnetic moment thin films for microscale and nanotechnology applications
Scheunert, Gunther; Heinonen, O.; Hardeman, R.; ...
2016-02-17
Here, the creation of large magnetic fields is a necessary component in many technologies, ranging from magnetic resonance imaging, electric motors and generators, and magnetic hard disk drives in information storage. This is typically done by inserting a ferromagnetic pole piece with a large magnetisation density M S in a solenoid. In addition to large M S, it is usually required or desired that the ferromagnet is magnetically soft and has a Curie temperature well above the operating temperature of the device. A variety of ferromagnetic materials are currently in use, ranging from FeCo alloys in, for example, hard diskmore » drives, to rare earth metals operating at cryogenic temperatures in superconducting solenoids. These latter can exceed the limit on M S for transition metal alloys given by the Slater-Pauling curve. This article reviews different materials and concepts in use or proposed for technological applications that require a large M S, with an emphasis on nanoscale material systems, such as thin and ultra-thin films. Attention is also paid to other requirements or properties, such as the Curie temperature and magnetic softness. In a final summary, we evaluate the actual applicability of the discussed materials for use as pole tips in electromagnets, in particular, in nanoscale magnetic hard disk drive read-write heads; the technological advancement of the latter has been a very strong driving force in the development of the field of nanomagnetism.« less
New quantum number for the many-electron Dirac-Coulomb Hamiltonian
NASA Astrophysics Data System (ADS)
Komorovsky, Stanislav; Repisky, Michal; Bučinský, Lukáš
2016-11-01
By breaking the spin symmetry in the relativistic domain, a powerful tool in physical sciences was lost. In this work, we examine an alternative of spin symmetry for systems described by the many-electron Dirac-Coulomb Hamiltonian. We show that the square of many-electron operator K+, defined as a sum of individual single-electron time-reversal (TR) operators, is a linear Hermitian operator which commutes with the Dirac-Coulomb Hamiltonian in a finite Fock subspace. In contrast to the square of a standard unitary many-electron TR operator K , the K+2 has a rich eigenspectrum having potential to substitute spin symmetry in the relativistic domain. We demonstrate that K+ is connected to K through an exponential mapping, in the same way as spin operators are mapped to the spin rotational group. Consequently, we call K+ the generator of the many-electron TR symmetry. By diagonalizing the operator K+2 in the basis of Kramers-restricted Slater determinants, we introduce the relativistic variant of configuration state functions (CSF), denoted as Kramers CSF. A new quantum number associated with K+2 has potential to be used in many areas, for instance, (a) to design effective spin Hamiltonians for electron spin resonance spectroscopy of heavy-element containing systems; (b) to increase efficiency of methods for the solution of many-electron problems in relativistic computational chemistry and physics; (c) to define Kramers contamination in unrestricted density functional and Hartree-Fock theory as a relativistic analog of the spin contamination in the nonrelativistic domain.
NASA Astrophysics Data System (ADS)
Özek Yıldırım, Arzu; Yıldırım, M. Hakkı; Albayrak Kaştaş, Çiǧdem
2017-01-01
(E)-2-((3,4-dimethylphenylimino)methyl)-4-nitrophenol, which is a new Schiff base compound, was synthesized and characterized by experimental and computational methods. Molecular geometry, harmonic oscillator model of aromaticity (HOMA) indices, intra- and inter-molecular interactions in the crystal structure were determined by using single crystal X-ray diffraction technique. The optimized structures, which are obtained by Gaussian and Slater type orbitals, were compared to experimental structures to determine how much correlation is found between the experimental and the calculated properties. Intramolecular and hyperconjugative interactions of bonds have been found by Natural Bond Orbital analysis. The experimental infrared spectrum of the compound has been analyzed in detail by the calculated infrared spectra and Potential Energy Distribution analysis. To find out about the correlation between the solvent polarity and the enol-keto equilibrium, experimental UV-Visible spectra of the compound were obtained in benzene, CHCl3, EtOH and DMSO solvents. In these solvents, the UV-Vis spectra and relaxed potential energy surface scan (PES) calculations have been performed to get more insight into the equilibrium dynamics. Solvent effects in UV-Vis and PES calculations have been taken into account by using Polarizable Continuum Modelling method. 1H and 13C NMR spectra of the compound (in DMSO) were analyzed. The computational study of nonlinear optical properties shows that the compound can be used for the development of nonlinear optical materials.
Hard and soft acids and bases: atoms and atomic ions.
Reed, James L
2008-07-07
The structural origin of hard-soft behavior in atomic acids and bases has been explored using a simple orbital model. The Pearson principle of hard and soft acids and bases has been taken to be the defining statement about hard-soft behavior and as a definition of chemical hardness. There are a number of conditions that are imposed on any candidate structure and associated property by the Pearson principle, which have been exploited. The Pearson principle itself has been used to generate a thermodynamically based scale of relative hardness and softness for acids and bases (operational chemical hardness), and a modified Slater model has been used to discern the electronic origin of hard-soft behavior. Whereas chemical hardness is a chemical property of an acid or base and the operational chemical hardness is an experimental measure of it, the absolute hardness is a physical property of an atom or molecule. A critical examination of chemical hardness, which has been based on a more rigorous application of the Pearson principle and the availability of quantitative measures of chemical hardness, suggests that the origin of hard-soft behavior for both acids and bases resides in the relaxation of the electrons not undergoing transfer during the acid-base interaction. Furthermore, the results suggest that the absolute hardness should not be taken as synonymous with chemical hardness but that the relationship is somewhat more complex. Finally, this work provides additional groundwork for a better understanding of chemical hardness that will inform the understanding of hardness in molecules.
NASA Astrophysics Data System (ADS)
Ye, Lin-Hui
2015-09-01
Although the supercell method has been widely used for surface calculations, it only works well with short-ranged potentials, but meets difficulty when the potential decays very slowly into the vacuum. Unfortunately, the exact exchange-correlation potential of the density functional theory is asymptotically long ranged, and therefore is not easily handled by use of supercells. This paper illustrates that the authentic slab geometry, another technique for surface calculations, is not affected by this issue: It works equally well with both short- and long-ranged potentials, with the computational cost and the convergence speed being essentially the same. Using the asymptotically long-ranged Becke-Roussel'89 exchange potential as an example, we have calculated six surfaces of various types. We found that accurate potential values can be obtained even in extremely low density regions of more than 100 Å away from the surface. This high performance allows us to explore the asymptotic region, and prove with clean numerical evidence that the Becke-Roussel'89 potential satisfies the correct asymptotic behavior for slab surfaces, as it does for finite systems. Our finding further implies that the Slater component of the exact exchange optimized effective potential is responsible for the asymptotic behavior, not only for jellium slabs, but for slabs of any type. The Becke-Roussel'89 potential may therefore be used to build asymptotically correct model exchange potentials applicable to both finite systems and slab surfaces.
Wang, Xiaotian; Khachai, Houari; Khenata, Rabah; Yuan, Hongkuan; Wang, Liying; Wang, Wenhong; Bouhemadou, Abdelmadjid; Hao, Liyu; Dai, Xuefang; Guo, Ruikang; Liu, Guodong; Cheng, Zhenxiang
2017-11-23
In this paper, we have investigated the structural, electronic, magnetic, half-metallic, mechanical, and thermodynamic properties of the equiatomic quaternary Heusler (EQH) compound FeCrRuSi using the density functional theory (DFT) and the quasi-harmonic Debye model. Our results reveal that FeCrRuSi is a half-metallic material (HMM) with a total magnetic moment of 2.0 μ B in agreement with the well-known Slater-Pauling rule M t = Z t - 24. Furthermore, the origin of the half-metallic band gap in FeCrRuSi is well studied through a schematic diagram of the possible d-d hybridization between Fe, Cr and Ru elements. The half-metallic behavior of FeCrRuSi can be maintained in a relatively wide range of variations of the lattice constant (5.5-5.8 Å) under uniform strain and the c/a ratio (0.96-1.05) under tetragonal distortion. The calculated phonon dispersion, cohesive and formation energies, and mechanical properties reveal that FeCrRuSi is stable with an EQH structure. Importantly, the compound of interest has been prepared and is found to exist in an EQH type structure with the presence of some B2 disorder. Moreover, the thermodynamic properties, such as the thermal expansion coefficient α, the heat capacity C V , the Grüneisen constant γ, and the Debye temperature Θ D are calculated.
A Source-Term Based Boundary Layer Bleed/Effusion Model for Passive Shock Control
NASA Technical Reports Server (NTRS)
Baurle, Robert A.; Norris, Andrew T.
2011-01-01
A modeling framework for boundary layer effusion has been developed based on the use of source (or sink) terms instead of the usual practice of specifying bleed directly as a boundary condition. This framework allows the surface boundary condition (i.e. isothermal wall, adiabatic wall, slip wall, etc.) to remain unaltered in the presence of bleed. This approach also lends itself to easily permit the addition of empirical models for second order effects that are not easily accounted for by simply defining effective transpiration values. Two effusion models formulated for supersonic flows have been implemented into this framework; the Doerffer/Bohning law and the Slater formulation. These models were applied to unit problems that contain key aspects of the flow physics applicable to bleed systems designed for hypersonic air-breathing propulsion systems. The ability of each model to predict bulk bleed properties was assessed, as well as the response of the boundary layer as it passes through and downstream of a porous bleed system. The model assessment was performed with and without the presence of shock waves. Three-dimensional CFD simulations that included the geometric details of the porous plate bleed systems were also carried out to supplement the experimental data, and provide additional insights into the bleed flow physics. Overall, both bleed formulations fared well for the tests performed in this study. However, the sample of test problems considered in this effort was not large enough to permit a comprehensive validation of the models.
Poelmans, Ward; Van Raemdonck, Mario; Verstichel, Brecht; De Baerdemacker, Stijn; Torre, Alicia; Lain, Luis; Massaccesi, Gustavo E; Alcoba, Diego R; Bultinck, Patrick; Van Neck, Dimitri
2015-09-08
We perform a direct variational determination of the second-order (two-particle) density matrix corresponding to a many-electron system, under a restricted set of the two-index N-representability P-, Q-, and G-conditions. In addition, we impose a set of necessary constraints that the two-particle density matrix must be derivable from a doubly occupied many-electron wave function, i.e., a singlet wave function for which the Slater determinant decomposition only contains determinants in which spatial orbitals are doubly occupied. We rederive the two-index N-representability conditions first found by Weinhold and Wilson and apply them to various benchmark systems (linear hydrogen chains, He, N2, and CN(-)). This work is motivated by the fact that a doubly occupied many-electron wave function captures in many cases the bulk of the static correlation. Compared to the general case, the structure of doubly occupied two-particle density matrices causes the associate semidefinite program to have a very favorable scaling as L(3), where L is the number of spatial orbitals. Since the doubly occupied Hilbert space depends on the choice of the orbitals, variational calculation steps of the two-particle density matrix are interspersed with orbital-optimization steps (based on Jacobi rotations in the space of the spatial orbitals). We also point to the importance of symmetry breaking of the orbitals when performing calculations in a doubly occupied framework.
NASA Astrophysics Data System (ADS)
Seema, K.; Kumar, Ranjan
2014-01-01
The structural, electronic, magnetic and optical properties of Co-based Heusler compounds, Co2CrZ (Z = Si, Ge), are studied using first-principle density functional theory. The calculations are performed within the generalized gradient approximation. Our calculated structural parameters at 0 GPa agree well with previous available results. The calculated magnetic moment agrees well with the Slater-Pauling (SP) rule. We have studied the effect of pressure on the electronic and magnetic properties of Co2CrSi and Co2CrGe. With an increase in applied pressure, a decrease in cell volume is observed. Under application of external pressure, the valence band and conduction band are shifted downward which leads to a modification of electronic structure. There exists an indirect band gap along Γ-X for both the alloys. Co2CrSi and Co2CrGe retain 100% spin polarization up to 60 and 50 GPa, respectively. The local magnetic moments of the Co and Si (Ge) atoms increase with an increase in pressure whereas the local magnetic moment of the Cr atom decreases. In addition, the optical properties such as dielectric function, absorption spectra, optical conductivity and energy loss function of these alloys have also been investigated. To our knowledge this is the first theoretical prediction of the pressure dependence of the structural, electronic, magnetic and optical properties of Co2CrSi and Co2CrGe.
NASA Astrophysics Data System (ADS)
Miloshevsky, G. V.; Tolkach, V. I.; Shani, Gad; Rozin, Semion
2002-06-01
Auger electron interaction with matter is gaining importance in particular in medical application of radiation. The production probability and energy spectrum is therefore of great importance. A good source of Auger electrons is the 157Gd(n,γ) 158Gd reaction. The present article describes calculations of electron levels in Gd atoms and provides missing data of outer electron energy levels. The energy of these electron levels missing in published tables, was found to be in the 23-24 and 6-7 eV energy ranges respectively. The probability of Auger emission was calculated as an interaction of wave function of the initial and final electron states. The wave functions were calculated using the Hartree-Fock-Slater approximation with relativistic correction. The equations were solved using a spherical symmetry potential. The error for inner shell level is less than 10%, it is increased to the order of 10-15% for the outer shells. The width of the Auger process changes from 0.1 to 1.2 eV for atomic number Z from 5 to 70. The fluorescence yield width changes five orders of magnitude in this range. Auger electron emission width from the K shell changes from 10 -2 to ˜1 eV with Z changing from 10 to 64, depending on the final state. For the L shell it changes from 0 to 0.25 when it Z changes from 20 to 64.
Zhang, Qiang; Ye, Feng; Tian, Wei; ...
2017-06-12
Bilayered Sr 3Ru 2O 7 is an unusual metamagnetic metal with inherently antiferromagnetic (AFM) and ferromagnetic (FM) fluctuations. Partial substitution of Ru by Mn results in the establishment of a metal-insulator transition (MIT) at TMIT and AFM ordering at TM in Sr 3(Ru 1-xMn x) 2O 7. Using elastic neutron scattering, we investigated the effect of Mn doping on the magnetic structure, in-plane magnetic correlation lengths and their correlation to the MIT in Sr 3(Ru 1-xMn x) 2O 7 (x=0.06 and 0.12). With the increase of Mn doping (x) from 0.06 to 0.12 or the decrease of temperatures for x=0.12,more » an evolution from an in-plane short-range to long-range antiferromagnetic (AFM) ground state occurs. For both compounds, the magnetic ordering has a double-stripe configuration, and the onset of magnetic correlation with an anisotropic behavior coincides with the sharp rise in electrical resistivity and specific heat. Since it does not induce a measurable lattice distortion, the double-stripe antiferromagnetic order with anisotropic spin texture breaks symmetry from a C 4v crystal lattice to a C 2v magnetic sublattice. These observations shed light on an age-old question regarding the Slater versus Mott-type MIT.« less
Nano-colloid electrophoretic transport: Fully explicit modelling via dissipative particle dynamics
NASA Astrophysics Data System (ADS)
Hassanzadeh Afrouzi, Hamid; Farhadi, Mousa; Sedighi, Kurosh; Moshfegh, Abouzar
2018-02-01
In present study, a novel fully explicit approach using dissipative particle dynamics (DPD) method is introduced for modelling electrophoretic transport of nano-colloids in an electrolyte solution. Slater type charge smearing function included in 3D Ewald summation method is employed to treat electrostatic interaction. Moreover, capability of different thermostats are challenged to control the system temperature and study the dynamic response of colloidal electrophoretic mobility under practical ranges of external electric field in nano scale application (0.072 < E < 0.361 v / nm) covering non-linear response regime, and ionic salt concentration (0.049 < SC < 0.69 [M]) covering weak to strong Debye screening of the colloid. The effect of different colloidal repulsions are then studied on temperature, reduced mobility and zeta potential which is computed based on charge distribution within the spherical colloidal EDL. System temperature and electrophoretic mobility both show a direct and inverse relationship respectively with electric field and colloidal repulsion. Mobility declining with colloidal repulsion reaches a plateau which is a relatively constant value at each electrolyte salinity for Aii > 600 in DPD units regardless of electric field intensity. Nosé-Hoover-Lowe-Andersen and Lowe-Andersen thermostats are found to function more effectively under high electric fields (E > 0.145 [ v / nm ]) while thermal equilibrium is maintained. Reasonable agreements are achieved by benchmarking the radial distribution function with available electrolyte structure modellings, as well as comparing reduced mobility against conventional Smoluchowski and Hückel theories, and numerical solution of Poisson-Boltzmann equation.
Quantum Monte Carlo with very large multideterminant wavefunctions.
Scemama, Anthony; Applencourt, Thomas; Giner, Emmanuel; Caffarel, Michel
2016-07-01
An algorithm to compute efficiently the first two derivatives of (very) large multideterminant wavefunctions for quantum Monte Carlo calculations is presented. The calculation of determinants and their derivatives is performed using the Sherman-Morrison formula for updating the inverse Slater matrix. An improved implementation based on the reduction of the number of column substitutions and on a very efficient implementation of the calculation of the scalar products involved is presented. It is emphasized that multideterminant expansions contain in general a large number of identical spin-specific determinants: for typical configuration interaction-type wavefunctions the number of unique spin-specific determinants Ndetσ ( σ=↑,↓) with a non-negligible weight in the expansion is of order O(Ndet). We show that a careful implementation of the calculation of the Ndet -dependent contributions can make this step negligible enough so that in practice the algorithm scales as the total number of unique spin-specific determinants, Ndet↑+Ndet↓, over a wide range of total number of determinants (here, Ndet up to about one million), thus greatly reducing the total computational cost. Finally, a new truncation scheme for the multideterminant expansion is proposed so that larger expansions can be considered without increasing the computational time. The algorithm is illustrated with all-electron fixed-node diffusion Monte Carlo calculations of the total energy of the chlorine atom. Calculations using a trial wavefunction including about 750,000 determinants with a computational increase of ∼400 compared to a single-determinant calculation are shown to be feasible. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
The total position-spread tensor: Spin partition
DOE Office of Scientific and Technical Information (OSTI.GOV)
El Khatib, Muammar, E-mail: elkhatib@irsamc.ups-tlse.fr; Evangelisti, Stefano, E-mail: stefano@irsamc.ups-tlse.fr; Leininger, Thierry, E-mail: Thierry.Leininger@irsamc.ups-tlse.fr
2015-03-07
The Total Position Spread (TPS) tensor, defined as the second moment cumulant of the position operator, is a key quantity to describe the mobility of electrons in a molecule or an extended system. In the present investigation, the partition of the TPS tensor according to spin variables is derived and discussed. It is shown that, while the spin-summed TPS gives information on charge mobility, the spin-partitioned TPS tensor becomes a powerful tool that provides information about spin fluctuations. The case of the hydrogen molecule is treated, both analytically, by using a 1s Slater-type orbital, and numerically, at Full Configuration Interactionmore » (FCI) level with a V6Z basis set. It is found that, for very large inter-nuclear distances, the partitioned tensor growths quadratically with the distance in some of the low-lying electronic states. This fact is related to the presence of entanglement in the wave function. Non-dimerized open chains described by a model Hubbard Hamiltonian and linear hydrogen chains H{sub n} (n ≥ 2), composed of equally spaced atoms, are also studied at FCI level. The hydrogen systems show the presence of marked maxima for the spin-summed TPS (corresponding to a high charge mobility) when the inter-nuclear distance is about 2 bohrs. This fact can be associated to the presence of a Mott transition occurring in this region. The spin-partitioned TPS tensor, on the other hand, has a quadratical growth at long distances, a fact that corresponds to the high spin mobility in a magnetic system.« less
Hou, Aiqiang; Zhou, Xiaojun; Wang, Ting; Wang, Fan
2018-05-15
Achieving both bond dissociation energies (BDEs) and their trends for the R-X bonds with R = Me, Et, i-Pr, and t-Bu reliably is nontrivial. Density functional theory (DFT) methods with traditional exchange-correlation functionals usually have large error on both the BDEs and their trends. The M06-2X functional gives rise to reliable BDEs, but the relative BDEs are determined not as accurately. More demanding approaches such as some double-hybrid functionals, for example, G4 and CCSD(T), are generally required to achieve the BDEs and their trends reliably. The fixed-node diffusion quantum Monte Carlo method (FN-DMC) is employed to calculated BDEs of these R-X bonds with X = H, CH 3 , OCH 3 , OH, and F in this work. The single Slater-Jastrow wave function is adopted as trial wave function, and pseudopotentials (PPs) developed for quantum Monte Carlo calculations are chosen. Error of these PPs is modest in wave function methods, while it is more pronounced in DFT calculations. Our results show that accuracy of BDEs with FN-DMC is similar to that of M06-2X and G4, and trends in BDEs are calculated more reliably than M06-2X. Both BDEs and trends in BDEs of these bonds are reproduced reasonably with FN-DMC. FN-DMC using PPs can thus be applied to BDEs and their trends of similar chemical bonds in larger molecules reliably and provide valuable information on properties of these molecules.
Bozkurt, Ali; Bozkurt, Ozlem Hekim; Sonmez, Ipek
2015-07-01
Western studies have consistently found that androphilic (sexually attracted to men) male-to-female transsexuals have a later birth order and a relative excess of brothers compared with appropriate control participants. However, non-Western studies on birth order and sibling sex ratio in androphilic males (transsexual or non-transsexual) are rare. The objective of the study was to test the hypothesis that androphilic male-to-female transsexuals have a late birth order and a relative excess of brothers in a non-Western culture with a higher fertility rate. The participants were 60 androphilic male-to-female transsexuals and 61 male heterosexual controls. The transsexual participants had significantly more older brothers than the control participants, but the groups did not differ in their numbers of older sisters, younger brothers, or younger sisters. The foregoing pattern is usually referred to as the "fraternal birth order effect." Slater's and Berglin's Indexes both showed that the mean birth order of the control participants was very close to that expected from a random sample drawn from a demographically stable population whereas the mean birth order of the transsexual participants was later. A measure of sibship composition, brothers/all siblings, showed that the transsexual group had a higher proportion of male siblings compared with the control group. In conclusion, the present study found that Turkish androphilic male-to-female transsexuals show the same high fraternal birth order that has been found in comparable androphilic samples in Western Europe, North America, and the South Pacific, which suggests a common underlying biological causal mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kersten, J. A. F., E-mail: jennifer.kersten@cantab.net; Alavi, Ali, E-mail: a.alavi@fkf.mpg.de; Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart
2016-08-07
The Full Configuration Interaction Quantum Monte Carlo (FCIQMC) method has proved able to provide near-exact solutions to the electronic Schrödinger equation within a finite orbital basis set, without relying on an expansion about a reference state. However, a drawback to the approach is that being based on an expansion of Slater determinants, the FCIQMC method suffers from a basis set incompleteness error that decays very slowly with the size of the employed single particle basis. The FCIQMC results obtained in a small basis set can be improved significantly with explicitly correlated techniques. Here, we present a study that assesses andmore » compares two contrasting “universal” explicitly correlated approaches that fit into the FCIQMC framework: the [2]{sub R12} method of Kong and Valeev [J. Chem. Phys. 135, 214105 (2011)] and the explicitly correlated canonical transcorrelation approach of Yanai and Shiozaki [J. Chem. Phys. 136, 084107 (2012)]. The former is an a posteriori internally contracted perturbative approach, while the latter transforms the Hamiltonian prior to the FCIQMC simulation. These comparisons are made across the 55 molecules of the G1 standard set. We found that both methods consistently reduce the basis set incompleteness, for accurate atomization energies in small basis sets, reducing the error from 28 mE{sub h} to 3-4 mE{sub h}. While many of the conclusions hold in general for any combination of multireference approaches with these methodologies, we also consider FCIQMC-specific advantages of each approach.« less
NASA Astrophysics Data System (ADS)
Paudel, Ramesh; Zhu, Jingchuan
2018-05-01
In this research work, we have predicted the physical properties of CoFeZrGe and CoFeZrSb for the first time by utilizing first principle calculations based on density functional theory. The exchange-correlation potentials are treated within the generalized-gradient approximation of Perdew-Burke and Ernzerhof (GGA-PBE). The investigated equilibrium lattice parameters of CoFeCrSi are in agreement with available theoretical data and for CoFeZrZ(Z = Ge,Sb) are 6.0013 and 6.2546 Å respectively. The calculated magnetic moments are 1.01μB /fu , 2μB /fu and 1μB /fu for CoFeZrZ(Z = Ge, Sb and Si) respectively, and agree with the Slater-Pauling rule, Mt =Zt - 24 . The CoFeZrGe, CoFeZrSb and CoFeZrSi composites showed half-metallic behaviour with 100 % spin polarization at equilibrium lattice parameters with band gap of 0.43, 0.70 and 0.59 eV for GGA and an improved band gap of 0.86, 1.01 and 1.08 for GGA + U respectively. Elastic properties are also discussed in this paper and it is found that all the materials are mechanically stable and ductile in nature. The CoFeZrSi alloy is found to be stiffer than CoFeZrZ(Z = Ge and Sb) alloys. The Debye temperatures are predicted by using calculated elastic constants. Moreover, the volume heat capacities (Cv) are investigated by utilizing the quasi-harmonic Debye model.
NASA Astrophysics Data System (ADS)
Sadeghi, K. H.; Ahmadian, F.
2018-02-01
The first-principle density functional theory (DFT) calculations were employed to investigate the electronic structures, magnetic properties and half-metallicity of {Ti}2 {IrZ} (Z = B, Al, Ga, and In) Heusler alloys with {AlCu}2 {Mn}- and {CuHg}2 {Ti}-type structures within local density approximation and generalised gradient approximation for the exchange correlation potential. It was found that {CuHg}2 {Ti}-type structure in ferromagnetic state was energetically more favourable than {AlCu}2 {Mn}-type structure in all compounds except {Ti}2 {IrB} which was stable in {AlCu}2 {Mn}-type structure in non-magnetic state. {Ti}2 {IrZ} (Z = B, Al, Ga, and In) alloys in {CuHg}2 {Ti}-type structure were half-metallic ferromagnets at their equilibrium lattice constants. Half-metallic band gaps were respectively equal to 0.87, 0.79, 0.75, and 0.73 eV for {Ti}2 {IrB}, {Ti}2 {IrAl}, {Ti}2 {IrGa}, and {Ti}2 {IrIn}. The origin of half-metallicity was discussed for {Ti}2 {IrGa} using the energy band structure. The total magnetic moments of {Ti}2 {IrZ} (Z = B, Al, Ga, and In) compounds in {CuHg}2 {Ti}-type structure were obtained as 2μ B per formula unit, which were in agreement with Slater-Pauling rule (M_{tot} =Z_{tot}-18). All the four compounds were half-metals in a wide range of lattice constants indicating that they may be suitable and promising materials for future spintronic applications.
Test Of Astronomy STandards TOAST Survey of K-12 Teachers
NASA Astrophysics Data System (ADS)
Slater, Timothy F.; Slater, Stephanie; Stork, Debra J.
2015-01-01
Discipline-based education research in astronomy is focused on understanding the underlying mental mechanisms used by students when learning astronomy and teachers when teaching astronomy. Systematic surveys of K-12 teacher' knowledge in the domain of astronomy are conducted periodically in order to better focus and improve professional development. These surveys are most often done when doing contemporary needs assessments or when new assessment instruments are readily available. Designed by Stephanie J. Slater of the CAPER Center for Astronomy & Physics Education Research, the 29-item multiple-choice format Test Of Astronomy STandards - TOAST is a carefully constructed, criterion-referenced instrument constructed upon a solid list of clearly articulated and widely agreed upon learning objectives. The targeted learning concepts tightly align with the consensus learning goals stated by the American Astronomical Society - Chair's Conference on ASTRO 101, the American Association of the Advancement of Science's Project 2061 Benchmarks, and the National Research Council's 1996 National Science Education Standards. Without modification, the TOAST is also aligned with the significantly less ambitious 2013 Next Generation Science Standards created by Achieve, Inc., under the auspices of the National Research Council. This latest survey reveals that K-12 teachers still hold many of the same fundamental misconceptions uncovered by earlier surveys. This includes misconceptions about the size, scale, and structure of the cosmos as well as misconceptions about the nature of physical processes at work in astronomy. This suggests that professional development in astronomy is still needed and that modern curriculum materials are best served if they provide substantial support for implementation.
NASA Astrophysics Data System (ADS)
Saravanan, G.; Asvini, V.; Kalaiezhily, R. K.; Parveen, I. Mubeena; Ravichandran, K.
2018-05-01
Half-metallic ferromagnetic [HMF] nanoparticles are of considerable interest in spintronics applications due to their potential use as a highly spin polarized current source. HMF exhibits a semiconductor in one spin band at the Fermi level Ef and at the other spin band they poses strong metallic nature which shows 100 % spin polarization at Ef. Fe based full Heusler alloys are primary interest due to high Curie temperature. Fe2CrSi Heusler alloys are synthesized using metallic powders of Fe, Cr and Si by mechanical alloying method. X-Ray diffractions studies were performed to analyze the structural details of Fe2CrSi nanoparticles with High resolution scanning electron microscope (HRSEM) studies for the morphological details of nanoparticles and magnetic properties were studied using Vibrating sample magnetometer (VSM). XRD Data analysis conforms the Heusler alloy phase showing the existence of L21 structure. Magnetic properties are measured for synthesized samples exhibiting a soft magnetic property possessing low coercivity (HC = 60.5 Oe) and saturation magnetic moment of Fe2CrSi is 3.16 µB, which is significantly higher than the ideal value of 2 µB from the Slater-Pauling rule due to room temperature measurement. The change in magnetic properties are half-metallic nature of Fe2CrSi is due to the shift of the Fermi level with respect to the gap were can be used as spin sensors and spin injectors in magnetic random access memories and other spin dependent devices.
Interaction cross sections and matter radii of oxygen isotopes using the Glauber model
NASA Astrophysics Data System (ADS)
Ahmad, Suhel; Usmani, A. A.; Ahmad, Shakeb; Khan, Z. A.
2017-05-01
Using the Coulomb modified correlation expansion for the Glauber model S matrix, we calculate the interaction cross sections of oxygen isotopes (O-2616) on 12C at 1.0 GeV/nucleon. The densities of O-2616 are obtained using (i) the Slater determinants consisting of the harmonic oscillator single-particle wave functions (SDHO) and (ii) the relativistic mean-field approach (RMF). Retaining up to the two-body density term in the correlation expansion, the calculations are performed employing the free as well as the in-medium nucleon-nucleon (N N ) scattering amplitude. The in-medium N N amplitude considers the effects arising due to phase variation, higher momentum transfer components, and Pauli blocking. Our main focus in this work is to reveal how could one make the best use of SDHO densities with reference to the RMF one. The results demonstrate that the SDHO densities, along with the in-medium N N amplitude, are able to provide satisfactory explanation of the experimental data. It is found that, except for O,2423, the predicted SDHO matter rms radii of oxygen isotopes closely agree with those obtained using the RMF densities. However, for O,2423, our results require reasonably larger SDHO matter rms radii than the RMF values, thereby predicting thicker neutron skins in 23O and 24O as compared to RMF ones. In conclusion, the results of the present analysis establish the utility of SDHO densities in predicting fairly reliable estimates of the matter rms radii of neutron-rich nuclei.
NASA Astrophysics Data System (ADS)
Cipolla, Sam J.
2009-09-01
New version program summaryProgram title: ISICS2008 Catalogue identifier: ADDS_v4_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADDS_v4_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 5420 No. of bytes in distributed program, including test data, etc.: 107 669 Distribution format: tar.gz Programming language: C Computer: 80 486 or higher level PCs Operating system: Windows XP and all earlier operating systems Classification: 16.7 Catalogue identifier of previous version: ADDS_v3_0 Journal reference of previous version: Comput. Phys. Comm. 179 (2008) 616 Does the new version supersede the previous version?: Yes Nature of problem: Ionization and X-ray production cross section calculations for ion-atom collisions. Solution method: Numerical integration of form factor using a logarithmic transform and Gaussian quadrature, plus exact integration limits. Reasons for new version: Addition of relativistic treatment of both projectile and K-shell electrons. Summary of revisions: A new addition to ISICS is the option (R) to calculate ECPSSR cross sections that account for the relativistic treatment of both projectile and K-shell electron, as proposed recently by Lapicki [1], accordingly as σKRECPSSR=Cṡ(1+0.07(()ṡσ(√{(mKRυ1R)}/Z,ςθ), where υ1R is the relativistic projectile velocity. The option can also be invoked in calculating ECPSShsR, where hsR stands for the Hartree-Slater description of the K-shell electron, which was already incorporated into ISICS2006 [2,3], and is now expressed in this option as, σKRECPSShsR=CṡhsR((2υ1R)/(Zςθ),Z/137)ṡ(1+0.07(()ṡσ(υ1R/Z,ςθ) using the function hsR that is already incorporated into ISICS2006. It should be noted that these expressions are corrected versions [4] from the ones published in Ref. [1]. In this new version, ISICS2008, the option line in the main menu that read "Use Relativistic Proj. velocity" has been replaced by "R option for K-shell … Uses Rel. Proj. vel.". As before, various combinations of options can be utilized and each is denoted in the output. Restrictions: The consumed CPU time increases with the atomic shell (K,L,M), but execution is still very fast. Additional comments: A revised User Manual is included in the distribution file. Running time: This depends on which shell and the number of different energies to be used in the calculation. The running time is not significantly changed from the previous version. As before, to calculate K-shell cross sections for protons striking carbon for 19 different proton energies it took less than 10 s; to calculate M-shell cross sections for protons on gold for 21 proton energies it took 4.2 min. References:G. Lapicki, J. Phys. B: At. Mol. Op. Phys. 41 (2008) 115201. S. Cipolla, Comput. Phys. Comm. 176 (2007) 157. S. Cipolla, Nucl. Instrum. Methods Phys. Res. B 261 (2007) 142. G. Lapicki, private communication.
Alkali/TX[sub 2] catalysts for CO/H[sub 2] conversion to C[sub 1]-C[sub 4] alcohols
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klier, K.; Herman, R.G.; Richards-Babb, M.
1993-03-01
The objective of this research is to determine the patterns of variations of catalyst activity and selectivity for the synthesis of alcohols from H[sub 2]/CO synthesis gas. Since the source of carbon can be coal-derived synthesis gas, this research makes a contribution to the technology for high quality clean transportation fuels and for basic chemicals from coal. Catalysts prepared were principally based on MoS[sub 2], RuS[sub 2], TaS[sub 2], and NbS[sub 2]. Catalytic testing of these materials was carried out both before and after surface doping with Cs. In alcohol synthesis activation of hydrogen by the catalyst surface is essential.more » Knowledge of transition metal disulfide surface properties is important before the mechanism of hydrogen dissociation can be addressed. The electronic structures of MoS[sub 2], RuS[sub 2], and NbS[sub 2] were studied both theoretically and experimentally. Experimental valence bands were obtained by high resolution electron spectroscopy for chemical analysis (HR-ESCA, also referred to as x-ray photoelectron spectroscopy) and theoretical valence bands were calculated using solid state extended Hueckel theory. Comparison of two-dimensional (2-D) MoS[sub 2] theoretical valence bands with the experimental HR-ESCA valence bands of polycrystalline MoS[sub 2] led to parametrization of the S 3s, S 3p, and Mo 4d atomic ionization potentials and Slater-type coefficients and exponents. The S 3s and S 3p parameters obtained for MoS[sub 2] were used to obtain the NbS[sub 2] and RuS[sub 2] theoretical valence bands.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klier, K.; Herman, R.G.; Richards-Babb, M.
1993-03-01
The objective of this research is to determine the patterns of variations of catalyst activity and selectivity for the synthesis of alcohols from H{sub 2}/CO synthesis gas. Since the source of carbon can be coal-derived synthesis gas, this research makes a contribution to the technology for high quality clean transportation fuels and for basic chemicals from coal. Catalysts prepared were principally based on MoS{sub 2}, RuS{sub 2}, TaS{sub 2}, and NbS{sub 2}. Catalytic testing of these materials was carried out both before and after surface doping with Cs. In alcohol synthesis activation of hydrogen by the catalyst surface is essential.more » Knowledge of transition metal disulfide surface properties is important before the mechanism of hydrogen dissociation can be addressed. The electronic structures of MoS{sub 2}, RuS{sub 2}, and NbS{sub 2} were studied both theoretically and experimentally. Experimental valence bands were obtained by high resolution electron spectroscopy for chemical analysis (HR-ESCA, also referred to as x-ray photoelectron spectroscopy) and theoretical valence bands were calculated using solid state extended Hueckel theory. Comparison of two-dimensional (2-D) MoS{sub 2} theoretical valence bands with the experimental HR-ESCA valence bands of polycrystalline MoS{sub 2} led to parametrization of the S 3s, S 3p, and Mo 4d atomic ionization potentials and Slater-type coefficients and exponents. The S 3s and S 3p parameters obtained for MoS{sub 2} were used to obtain the NbS{sub 2} and RuS{sub 2} theoretical valence bands.« less
Do Coupled Climate Models Correctly SImulate the Upward Branch of the Deept Ocean Global Conveyor?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarmiento, Jorge L; Downes, Stephanie; Bianchi, Daniele
The large-scale meridional overturning circulation (MOC) connects the deep ocean, a major reservoir of carbon, to the other components of the climate system and must therefore be accurately represented in Earth System Models. Our project aims to address the specific question of the pathways and mechanisms controlling the upwelling branch of the MOC, a subject of significant disagreement between models and observational syntheses, and among general circulation models. Observations of these pathways are limited, particularly in regions of complex hydrography such as the Southern Ocean. As such, we rely on models to examine theories of the overturning circulation, both physicallymore » and biogeochemically. This grant focused on a particular aspect of the meridional overturning circulation (MOC) where there is currently significant disagreement between models and observationally based analyses of the MOC, and amongst general circulation models. In particular, the research focused on addressing the following questions: 1. Where does the deep water that sinks in the polar regions rise to the surface? 2. What processes are responsible for this rise? 3. Do state-of-the-art coupled GCMs capture these processes? Our research had three key components: observational synthesis, model development and model analysis. In this final report we outline the key results from these areas of research for the 2007 to 2012 grant period. The research described here was carried out primarily by graduate student, Daniele Bianchi (now a Postdoc at McGill University, Canada), and Postdoc Stephanie Downes (now a Research Fellow at The Australian national University, Australia). Additional support was provided for programmers Jennifer Simeon as well as Rick Slater.« less
Slater, Lindsay V; Vriner, Melissa; Zapalo, Peter; Arbour, Kat; Hart, Joseph M
2016-12-01
Slater, LV, Vriner, M, Zapalo, P, Arbour, K, and Hart, JM. Difference in agility, strength, and flexibility in competitive figure skaters based on level of expertise and skating discipline. J Strength Cond Res 30(12): 3321-3328, 2016-Figure skating is an extremely difficult sport that requires a combination of grace, artistry, flexibility, speed, and power. Although many skaters are involved with strength and conditioning programs, there is no current information about differences in off-ice performance measures based on skating discipline and level. The purpose of this study was to compare agility, strength, and flexibility performance based on skating discipline and level. A total of 343 figure skaters from 4 different disciplines (singles, dance, pair, and synchronized skating) and 3 different levels (novice, junior, and senior) completed combine testing with the United States Figure Skating Association. All subjects completed the hexagon agility test, t-test, triple bound jumps, vertical jump, timed tuck jumps, push-ups, v-ups, hand press, front split, seated reach, and stork pose. A multivariate analysis of variance with Scheffe's post hoc was used to identify differences in performance based on skating discipline and level. Mean differences, Cohen's d effect sizes, and 95% confidence intervals were reported for all significant differences. Senior and junior skaters tended to be faster and stronger than novice skaters. Singles, dance, and pair skaters tended to be more agile, stronger, and flexible than synchronized skaters, however, senior synchronized skaters tended to perform better than senior skaters in other disciplines. These results indicate that strength and conditioning professionals should consider skating discipline and level when designing strengthening programs for figure skaters.
Köhn, Andreas
2010-11-07
The coupled-cluster singles and doubles method augmented with single Slater-type correlation factors (CCSD-F12) determined by the cusp conditions (also denoted as SP ansatz) yields results close to the basis set limit with only small overhead compared to conventional CCSD. Quantitative calculations on many-electron systems, however, require to include the effect of connected triple excitations at least. In this contribution, the recently proposed [A. Köhn, J. Chem. Phys. 130, 131101 (2009)] extended SP ansatz and its application to the noniterative triples correction CCSD(T) is reviewed. The approach allows to include explicit correlation into connected triple excitations without introducing additional unknown parameters. The explicit expressions are presented and analyzed, and possible simplifications to arrive at a computationally efficient scheme are suggested. Numerical tests based on an implementation obtained by an automated approach are presented. Using a partial wave expansion for the neon atom, we can show that the proposed ansatz indeed leads to the expected (L(max)+1)(-7) convergence of the noniterative triples correction, where L(max) is the maximum angular momentum in the orbital expansion. Further results are reported for a test set of 29 molecules, employing Peterson's F12-optimized basis sets. We find that the customary approach of using the conventional noniterative triples correction on top of a CCSD-F12 calculation leads to significant basis set errors. This, however, is not always directly visible for total CCSD(T) energies due to fortuitous error compensation. The new approach offers a thoroughly explicitly correlated CCSD(T)-F12 method with improved basis set convergence of the triples contributions to both total and relative energies.
NASA Astrophysics Data System (ADS)
Naghibolashrafi, N.; Keshavarz, S.; Hegde, Vinay I.; Gupta, A.; Butler, W. H.; Romero, J.; Munira, K.; LeClair, P.; Mazumdar, D.; Ma, J.; Ghosh, A. W.; Wolverton, C.
2016-03-01
Compounds of Fe, Ti, and Sb were prepared using arc melting and vacuum annealing. Fe2TiSb , expected to be a full Heusler compound crystallizing in the L 21 structure, was shown by XRD and SEM analyses to be composed of weakly magnetic grains of nominal composition Fe1.5TiSb with iron-rich precipitates in the grain boundaries. FeTiSb, a composition consistent with the formation of a half-Heusler compound, also decomposed into Fe1.5TiSb grains with Ti-Sb rich precipitates and was weakly magnetic. The dominant Fe1.5TiSb phase appears to crystallize in a defective L 21 -like structure with iron vacancies. Based on this finding, a first-principles DFT-based binary cluster expansion of Fe and vacancies on the Fe sublattice of the L 21 structure was performed. Using the cluster expansion, we computationally scanned >103 configurations and predict a novel, stable, nonmagnetic semiconductor phase to be the zero-temperature ground state. This new structure is an ordered arrangement of Fe and vacancies, belonging to the space group R 3 m , with composition Fe1.5TiSb , i.e., between the full- and half-Heusler compositions. This phase can be visualized as alternate layers of L 21 phase Fe2TiSb and C 1b phase FeTiSb, with layering along the [111] direction of the original cubic phases. Our experimental results on annealed samples support this predicted ground-state composition, but further work is required to confirm that the R 3 m structure is the ground state.
The Astronomy Diagnostic Test: Comparing Your Class to Others
NASA Astrophysics Data System (ADS)
Hufnagel, B.; Deming, G.
1999-05-01
A standard diagnostic test can be a powerful tool to assess the conceptual understanding of students, as has been proven for undergraduate physics instruction over the last ten years (e.g., E.F. Redish and R.N. Steinberg 1999, Physics Today, 52:1, 24). If you are now using, or are considering adopting, a more interactive teaching style such as that used by Eric Mazur (Peer Instruction: a User's Manual, [Prentice-Hall: 1997]) or Michael Zeilik and his collaborators (1997, AJP, 65:12, 987), you may want to use a standard diagnostic test designed for undergraduate astronomy classes. Details of the validation of the ADT are at Slater et al., also presented in this session. A comparative database of ADT scores, by class and by question, can help the instructor assess student preparedness and the effectiveness of alternative teaching methods. In the spring of 1999, 19 astronomy instructors at 7 state universities, 4 community colleges, 4 liberal arts schools, 1 woman's college and 1 technical university across the USA gave the ADT to their classes once at the beginning of the course, and again at the end of the course. The average pre-course ADT scores by class from these ~ 1000 students show two surprising results: the conceptual understanding of introductory classes is about the same (34%) regardless of type of school, geographic location, or average student age. However, there is a significant gender difference, with females scoring an average of 29% and males 39%, with the standard errors both less than 1%. The Astronomy Diagnostic Test (ADT) and its comparative by-class database will be available at the National Institute for Science Education (NISE) website after 1 June 1999. This research was supported by the National Science Foundation through Grant DGE-9714489, and by the generosity of the participating astronomy instructors.
Bonding in the first-row diatomic molecules within the local spin-density approximation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Painter, G.S.; Averill, F.W.
1982-08-15
The Hohenberg-Kohn-Sham density-functional equations in the local spin-density approximation (LSDA) have been solved with essentially no loss of accuracy for dimers of the first row of the Periodic Table with the use of a fully-self-consistent spin-polarized Gaussian-orbital approach. Spectroscopic constants (binding energies, equilibrium separations, and ground-state vibrational frequencies) have been derived from the calculated potential-energy curves. Intercomparison of results obtained using the exchange-correlation functionals of Slater (scaled exchange or X..cap alpha..), Gunnarsson and Lundqvist (GL), and Vosko, Wilk, and Nusair (VWN) permits assessment of the relative merits of each and serves to identify general shortcomings in the LSDA. Basic trendsmore » are similar for each functional, but the treatment of the spin dependence of the exchange-correlation energy in the GL and VWN functionals yields a variation of the binding energy across the series which is more systematic than that in the X..cap alpha.. approximation. Agreement between the present results and those of Dunlap, Connolly, and Sabin in the X..cap alpha.., approximation confirms the accuracy of the variational charge-density-fit procedure used in the latter work. The refinements in correlation treatment within the VWN functional are reflected in improvements in binding energies which are only slight for most dimers in the series. This behavior is attributed to the error remaining in the exchange channel within the LSDA and demonstrates the necessity for self-interaction corrections for more accurate binding-energy determinations. Within the current LSDA, absolute accuracies of the VWN functional for the first-row dimers are within 2.3 eV for binding energies, 0.07 a.u. for bond lengths, and approx.200 cm/sup -1/ for vibrational frequencies.« less
Oberli, Alexander; Slater, Leanne M.; Cutts, Erin; Brand, Françoise; Mundwiler-Pachlatko, Esther; Rusch, Sebastian; Masik, Martin F. G.; Erat, Michèle C.; Beck, Hans-Peter; Vakonakis, Ioannis
2014-01-01
Uniquely among malaria parasites, Plasmodium falciparum-infected erythrocytes (iRBCs) develop membrane protrusions, known as knobs, where the parasite adhesion receptor P. falciparum erythrocyte membrane protein 1 (PfEMP1) clusters. Knob formation and the associated iRBC adherence to host endothelium are directly linked to the severity of malaria and are functional manifestations of protein export from the parasite to the iRBC. A family of exported proteins featuring Plasmodium helical interspersed subtelomeric (PHIST) domains has attracted attention, with members being implicated in host-parasite protein interactions and differentially regulated in severe disease and among parasite isolates. Here, we show that PHIST member PFE1605w binds the PfEMP1 intracellular segment directly with Kd = 5 ± 0.6 μM, comigrates with PfEMP1 during export, and locates in knobs. PHIST variants that do not locate in knobs (MAL8P1.4) or bind PfEMP1 30 times more weakly (PFI1780w) used as controls did not display the same pattern. We resolved the first crystallographic structure of a PHIST protein and derived a partial model of the PHIST-PfEMP1 interaction from nuclear magnetic resonance. We propose that PFE1605w reinforces the PfEMP1-cytoskeletal connection in knobs and discuss the possible role of PHIST proteins as interaction hubs in the parasite exportome.—Oberli, A., Slater, L. M., Cutts, E., Brand, F., Mundwiler-Pachlatko, E., Rusch, S., Masik, M. F. G., Erat, M. C., Beck, H.-P., Vakonakis, I. A Plasmodium falciparum PHIST protein binds the virulence factor PfEMP1 and comigrates to knobs on the host cell surface. PMID:24983468
No-core configuration-interaction model for the isospin- and angular-momentum-projected states
NASA Astrophysics Data System (ADS)
Satuła, W.; Båczyk, P.; Dobaczewski, J.; Konieczka, M.
2016-08-01
Background: Single-reference density functional theory is very successful in reproducing bulk nuclear properties like binding energies, radii, or quadrupole moments throughout the entire periodic table. Its extension to the multireference level allows for restoring symmetries and, in turn, for calculating transition rates. Purpose: We propose a new variant of the no-core-configuration-interaction (NCCI) model treating properly isospin and rotational symmetries. The model is applicable to any nucleus irrespective of its mass and neutron- and proton-number parity. It properly includes polarization effects caused by an interplay between the long- and short-range forces acting in the atomic nucleus. Methods: The method is based on solving the Hill-Wheeler-Griffin equation within a model space built of linearly dependent states having good angular momentum and properly treated isobaric spin. The states are generated by means of the isospin and angular-momentum projection applied to a set of low-lying (multi)particle-(multi)hole deformed Slater determinants calculated using the self-consistent Skyrme-Hartree-Fock approach. Results: The theory is applied to calculate energy spectra in N ≈Z nuclei that are relevant from the point of view of a study of superallowed Fermi β decays. In particular, a new set of the isospin-symmetry-breaking corrections to these decays is given. Conclusions: It is demonstrated that the NCCI model is capable of capturing main features of low-lying energy spectra in light and medium-mass nuclei using relatively small model space and without any local readjustment of its low-energy coupling constants. Its flexibility and a range of applicability makes it an interesting alternative to the conventional nuclear shell model.
Exact exchange plane-wave-pseudopotential calculations for slabs: Extending the width of the vacuum
NASA Astrophysics Data System (ADS)
Engel, Eberhard
2018-04-01
Standard plane-wave pseudopotential (PWPP) calculations for slabs such as graphene become extremely demanding, as soon as the exact exchange (EXX) of density functional theory is applied. Even if the Krieger-Li-Iafrate (KLI) approximation for the EXX potential is utilized, such EXX-PWPP calculations suffer from the fact that an accurate representation of the occupied states throughout the complete vacuum between the replicas of the slab is required. In this contribution, a robust and efficient extension scheme for the PWPP states is introduced, which ensures the correct exponential decay of the slab states in the vacuum for standard cutoff energies and therefore facilitates EXX-PWPP calculations for very wide vacua and rather thick slabs. Using this scheme, it is explicitly verified that the Slater component of the EXX/KLI potential decays as -1 /z over an extended region sufficiently far from the surface (assumed to be perpendicular to the z direction) and from the middle of the vacuum, thus reproducing the asymptotic behavior of the exact EXX potential of a single slab. The calculations also reveal that the orbital-shift component of the EXX/KLI potential is quite sizable in the asymptotic region. In spite of the long-range exchange potential, the replicas of the slab decouple rather quickly with increasing width of the vacuum. Relying on the identity of the work function with the Fermi energy obtained with a suitably normalized total potential, the present EXX/KLI calculations predict work functions for both graphene and the Si(111) surface which are substantially larger than the corresponding experimental data. Together with the size of the orbital-shift potential in the asymptotic region, the very large EXX/KLI work functions indicate a failure of the KLI approximation for nonmetallic slabs.
NASA Astrophysics Data System (ADS)
Song, Ting; Sun, Xiao-Wei; Tian, Jun-Hong; Wei, Xiao-Ping; Wan, Gui-Xin; Ma, Qin
2017-04-01
In the frame of density functional theory, first-principles calculations based on generalized gradient approximation and quasi-harmonic Debye approximation model in which the phononic effects are taken into account have been carried out to investigate the structural, electronic, magnetic, and thermodynamic properties of full-Heusler alloy Mn2RuGe in CuHg2Ti-type structure in the pressure range of 0-50 GPa. Present calculations predict that Mn2RuGe is a ferrimagnet with an optimized lattice parameter of 5.854 Å. The calculated total magnetic moment of 2.01 μB per formula unit is very close to integer value and agree well with the Slater-Pauling rule, where the partial spin moments of Mn (A) and Mn (B) which mainly contribute to the total magnetic moment are 2.66 μB and -0.90 μB, respectively. In the study of the energy band structures and density of states, Mn2RuGe exhibits half-metallicity with an indirect gap of 0.235 eV in the spin-down channels, and the shifting of bands towards higher energies in spin-down channel under high pressure. Meanwhile, the high-pressure thermodynamic properties of Mn2RuGe, such as the pressure-volume-temperature relationship, bulk modulus, thermal expansivity, heat capacity, Debye temperature, and Grüneisen parameter are evaluated systematically in the temperature range of 0-900 K. This set of data is considered as the useful information to understand the high-pressure and high-temperature properties for the Mn2RuZ-type Heusler alloy family.
Phase diagram of a symmetric electron-hole bilayer system: a variational Monte Carlo study.
Sharma, Rajesh O; Saini, L K; Bahuguna, Bhagwati Prasad
2018-05-10
We study the phase diagram of a symmetric electron-hole bilayer system at absolute zero temperature and in zero magnetic field within the quantum Monte Carlo approach. In particular, we conduct variational Monte Carlo simulations for various phases, i.e. the paramagnetic fluid phase, the ferromagnetic fluid phase, the anti-ferromagnetic Wigner crystal phase, the ferromagnetic Wigner crystal phase and the excitonic phase, to estimate the ground-state energy at different values of in-layer density and inter-layer spacing. Slater-Jastrow style trial wave functions, with single-particle orbitals appropriate for different phases, are used to construct the phase diagram in the (r s , d) plane by finding the relative stability of trial wave functions. At very small layer separations, we find that the fluid phases are stable, with the paramagnetic fluid phase being particularly stable at [Formula: see text] and the ferromagnetic fluid phase being particularly stable at [Formula: see text]. As the layer spacing increases, we first find that there is a phase transition from the ferromagnetic fluid phase to the ferromagnetic Wigner crystal phase when d reaches 0.4 a.u. at r s = 20, and before there is a return to the ferromagnetic fluid phase when d approaches 1 a.u. However, for r s < 20 and [Formula: see text] a.u., the excitonic phase is found to be stable. We do not find that the anti-ferromagnetic Wigner crystal is stable over the considered range of r s and d. We also find that as r s increases, the critical layer separations for Wigner crystallization increase.
Influence of spin and charge fluctuations on spectra of the two-dimensional Hubbard model
NASA Astrophysics Data System (ADS)
Sherman, A.
2018-05-01
The influence of spin and charge fluctuations on spectra of the two-dimensional fermionic Hubbard model is considered using the strong coupling diagram technique. Infinite sequences of diagrams containing ladder inserts, which describe the interaction of electrons with these fluctuations, are summed, and obtained equations are self-consistently solved for the ranges of Hubbard repulsions , temperatures and electron concentrations with t the intersite hopping constant. For all considered U the system exhibits a transition to the long-range antiferromagnetic order at . At the same time no indication of charge ordering is observed. Obtained solutions agree satisfactorily with results of other approaches and obey moments sum rules. In the considered region of the U-T plane, the curve separating metallic solutions passes from at the highest temperatures to U = 2t at for half-filling. If only short-range fluctuations are allowed for the remaining part of this region is occupied by insulating solutions. Taking into account long-range fluctuations leads to strengthening of maxima tails, which transform a part of insulating solutions into bad-metal states. For low T, obtained results allow us to trace the gradual transition from the regime of strong correlations with the pronounced four-band structure and well-defined Mott gap for to the Slater regime of weak correlations with the spectral intensity having a dip along the boundary of the magnetic Brillouin zone due to an antiferromagnetic ordering for . For and doping leads to the occurrence of a pseudogap near the Fermi level, which is a consequence of the splitting out of a narrow band from a Hubbard subband. Obtained spectra feature waterfalls and Fermi arcs, which are similar to those observed in hole-doped cuprates.
NASA Astrophysics Data System (ADS)
Sidles, John A.; Garbini, Joseph L.; Harrell, Lee E.; Hero, Alfred O.; Jacky, Jonathan P.; Malcomb, Joseph R.; Norman, Anthony G.; Williamson, Austin M.
2009-06-01
Practical recipes are presented for simulating high-temperature and nonequilibrium quantum spin systems that are continuously measured and controlled. The notion of a spin system is broadly conceived, in order to encompass macroscopic test masses as the limiting case of large-j spins. The simulation technique has three stages: first the deliberate introduction of noise into the simulation, then the conversion of that noise into an equivalent continuous measurement and control process, and finally, projection of the trajectory onto state-space manifolds having reduced dimensionality and possessing a Kähler potential of multilinear algebraic form. These state-spaces can be regarded as ruled algebraic varieties upon which a projective quantum model order reduction (MOR) is performed. The Riemannian sectional curvature of ruled Kählerian varieties is analyzed, and proved to be non-positive upon all sections that contain a rule. These manifolds are shown to contain Slater determinants as a special case and their identity with Grassmannian varieties is demonstrated. The resulting simulation formalism is used to construct a positive P-representation for the thermal density matrix. Single-spin detection by magnetic resonance force microscopy (MRFM) is simulated, and the data statistics are shown to be those of a random telegraph signal with additive white noise. Larger-scale spin-dust models are simulated, having no spatial symmetry and no spatial ordering; the high-fidelity projection of numerically computed quantum trajectories onto low dimensionality Kähler state-space manifolds is demonstrated. The reconstruction of quantum trajectories from sparse random projections is demonstrated, the onset of Donoho-Stodden breakdown at the Candès-Tao sparsity limit is observed, a deterministic construction for sampling matrices is given and methods for quantum state optimization by Dantzig selection are given.
Select-divide-and-conquer method for large-scale configuration interaction
NASA Astrophysics Data System (ADS)
Bunge, Carlos F.; Carbó-Dorca, Ramon
2006-07-01
A select-divide-and-conquer variational method to approximate configuration interaction (CI) is presented. Given an orthonormal set made up of occupied orbitals (Hartree-Fock or similar) and suitable correlation orbitals (natural or localized orbitals), a large N-electron target space S is split into subspaces S0,S1,S2,…,SR. S0, of dimension d0, contains all configurations K with attributes (energy contributions, etc.) above thresholds T0≡{T0egy,T0etc.}; the CI coefficients in S0 remain always free to vary. S1 accommodates Ks with attributes above T1⩽T0. An eigenproblem of dimension d0+d1 for S0+S1 is solved first, after which the last d1 rows and columns are contracted into a single row and column, thus freezing the last d1 CI coefficients hereinafter. The process is repeated with successive Sj(j ⩾2) chosen so that corresponding CI matrices fit random access memory (RAM). Davidson's eigensolver is used R times. The final energy eigenvalue (lowest or excited one) is always above the corresponding exact eigenvalue in S. Threshold values {Tj;j=0,1,2,…,R} regulate accuracy; for large-dimensional S, high accuracy requires S0+S1 to be solved outside RAM. From there on, however, usually a few Davidson iterations in RAM are needed for each step, so that Hamiltonian matrix-element evaluation becomes rate determining. One μhartree accuracy is achieved for an eigenproblem of order 24×106, involving 1.2×1012 nonzero matrix elements, and 8.4×109 Slater determinants.
NASA Astrophysics Data System (ADS)
Haxton, Wick; Lunardini, Cecilia
2008-09-01
Semi-leptonic electroweak interactions in nuclei—such as β decay, μ capture, charged- and neutral-current neutrino reactions, and electron scattering—are described by a set of multipole operators carrying definite parity and angular momentum, obtained by projection from the underlying nuclear charge and three-current operators. If these nuclear operators are approximated by their one-body forms and expanded in the nucleon velocity through order |p→|/M, where p→ and M are the nucleon momentum and mass, a set of seven multipole operators is obtained. Nuclear structure calculations are often performed in a basis of Slater determinants formed from harmonic oscillator orbitals, a choice that allows translational invariance to be preserved. Harmonic-oscillator single-particle matrix elements of the multipole operators can be evaluated analytically and expressed in terms of finite polynomials in q, where q is the magnitude of the three-momentum transfer. While results for such matrix elements are available in tabular form, with certain restriction on quantum numbers, the task of determining the analytic form of a response function can still be quite tedious, requiring the folding of the tabulated matrix elements with the nuclear density matrix, and subsequent algebra to evaluate products of operators. Here we provide a Mathematica script for generating these matrix elements, which will allow users to carry out all such calculations by symbolic manipulation. This will eliminate the errors that may accompany hand calculations and speed the calculation of electroweak nuclear cross sections and rates. We illustrate the use of the new script by calculating the cross sections for charged- and neutral-current neutrino scattering in 12C. Program summaryProgram title: SevenOperators Catalogue identifier: AEAY_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAY_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 2227 No. of bytes in distributed program, including test data, etc.: 19 382 Distribution format: tar.gz Programming language: Mathematica Computer: Any computer running Mathematica; tested on Mac OS X PowerPC (32-bit) running Mathematica 6.0.0 Operating system: Any running Mathematica RAM: Memory requirements determined by Mathematica; 512 MB or greater RAM and hard drive space of at least 3.0 GB recommended Classification: 17.16, 17.19 Nature of problem: Algebraic evaluation of harmonic oscillator nuclear matrix elements for the one-body multipole operators governing semi-leptonic weak interactions, such as charged- or neutral-current neutrino scattering off nuclei. Solution method: Mathematica evaluation of associated angular momentum algebra and spherical Bessel function radial integrals. Running time: Depends on the complexity of the one-body density matrix employed, but times of a few seconds are typical.
NASA Astrophysics Data System (ADS)
Surzhykov, Andrey; Koval, Peter; Fritzsche, Stephan
2005-01-01
Today, the 'hydrogen atom model' is known to play its role not only in teaching the basic elements of quantum mechanics but also for building up effective theories in atomic and molecular physics, quantum optics, plasma physics, or even in the design of semiconductor devices. Therefore, the analytical as well as numerical solutions of the hydrogen-like ions are frequently required both, for analyzing experimental data and for carrying out quite advanced theoretical studies. In order to support a fast and consistent access to these (Coulomb-field) solutions, here we present the DIRAC program which has been developed originally for studying the properties and dynamical behavior of the (hydrogen-like) ions. In the present version, a set of MAPLE procedures is provided for the Coulomb wave and Green's functions by applying the (wave) equations from both, the nonrelativistic and relativistic theory. Apart from the interactive access to these functions, moreover, a number of radial integrals are also implemented in the DIRAC program which may help the user to construct transition amplitudes and cross sections as they occur frequently in the theory of ion-atom and ion-photon collisions. Program summaryTitle of program:DIRAC Catalogue number: ADUQ Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUQ Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: None Computer for which the program is designed and has been tested: All computers with a license of the computer algebra package MAPLE [1] Program language used: Maple 8 and 9 No. of lines in distributed program, including test data, etc.:2186 No. of bytes in distributed program, including test data, etc.: 162 591 Distribution format: tar gzip file CPC Program Library subprograms required: None Nature of the physical problem: Analytical solutions of the hydrogen atom are widely used in very different fields of physics [2,3]. Despite of the rather simple structure of the hydrogen-like ions, however, the underlying 'mathematics' is not always that easy to deal with. Apart from the well-known level structure of these ions as obtained from either the Schrödinger or Dirac equation, namely, a great deal of other properties are often needed. These properties are related to the interaction of bound electron(s) with external particles and fields and, hence, require to evaluate transition amplitudes, including wavefunctions and (transition) operators of quite different complexity. Although various special functions, such as the Laguerre polynomials, spherical harmonics, Whittaker functions, or the hypergeometric functions of various kinds can be used in most cases in order to express these amplitudes in a concise form, their derivation is time consuming and prone for making errors. In addition to their complexity, moreover, there exist a large number of mathematical relations among these functions which are difficult to remember in detail and which have often hampered quantitative studies in the past. Method of solution: A set of MAPLE procedures is developed which provides both the nonrelativistic and relativistic (analytical) solutions of the 'hydrogen atom model' and which facilitates the symbolic evaluation of various transition amplitudes. Restrictions onto the complexity of the problem: Over the past decades, a large number of representations have been worked out for the hydrogenic wave and Green's functions, using different variables and coordinates [2]. From these, the position-space representation in spherical coordinates is certainly of most practical interest and has been used as the basis of the present implementation. No attempt has been made by us so far to provide the wave and Green's functions also in momentum space, for which the relativistic momentum functions would have to be constructed numerically. Although the DIRAC program supports both symbolic and numerical computations, the latter one are based on MAPLE's standard software floating-point algorithms and on the (attempted) precision as defined by the global Digits variable. Although the default number, Digits = 10, appears sufficient for many computations, it often leads to a rather dramatic loss in the accuracy of the relativistic wave functions and integrals, mainly owing to MAPLE's imprecise internal evaluation of the corresponding special functions. Therefore, in order to avoid such computational difficulties, the Digits variable is set to 20 whenever the DIRAC program is (re-)loaded. Unusual features of the program: The DIRAC program has been designed for interactive work which, apart from the standard solutions and integrals of the hydrogen atom, also support the use of (approximate) semirelativistic wave functions for both, the bound- and continuum-states of the electron. To provide a fast and accurate access to a number of radial integrals which arise frequently in applications, the analytical expressions for these integrals have been implemented for the one-particle operators r, e, d/dr, j(kr) as well as for the (so-called) two-particle Slater integrals which are needed to describe the Coulomb repulsion among the electrons. Further procedures of the DIRAC program concern, for instance, the conversion of the physical results between different unit systems or for different sets of quantum numbers. A brief description of all procedures as available in the present version of the DIRAC program is given in the user manual Dirac-commands.pdf which is distributed together with the code. Typical running time: Although the program replies promptly on most requests, the running time also depends on the particular task. References: [1] Maple is a registered trademark of Waterloo Maple Inc. [2] H.A. Bethe and E.E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms, Springer, Berlin, 1957. [3] J. Eichler and W. Meyerhof, Relativistic Atomic Collisions, Academic Press, New York, 1995.
Validating the Astronomy Diagnostics Test for Undergraduate Non-Science Majors
NASA Astrophysics Data System (ADS)
Slater, T. F.; Hufnagel, B.; Adams, J. P.
1999-05-01
The Astronomy Diagnostics Test (ADT) is a standard diagnostic test for undergraduate non-science majors taking introductory astronomy. Serving to compare the effectiveness of various instructional interventions, the ADT has been developed and field-tested over the last year by a multi-institutional team, known as the Collaboration for Astronomy Education Research (CAER). The team includes Jeff Adams, Rebecca Lindell Adrian, Christine Brick, Gina Brissenden, Grace Deming, Beth Hufnagel, Tim Slater, and Michael Zeilik, among others. The need for a nationally normed, valid, and reliable assessment instrument in astronomy has been articulated in a wide variety of forums. This need results from the simultaneous occurrence of several important phenomena over the last decade including: the inclusion of astronomy concepts in national science education standards; documentation of widespread astronomical misconceptions; the influence of the Force Concept Inventory guiding reform in physics; and the call for university faculty to document improvements in instruction. In a triangulated effort to validate the ADT for widespread use, the researchers used on a three-phase strategy. In this context, "validity" means that the ADT measures what it purports to measure. In other words, do students give the correct answer for the scientifically correct reasons or, alternatively, do students give the correct answer even though they have misunderstandings about the phenomena being tested? These three phases were: (1) conduct statistical item-analysis on each test question for a large and diverse student population (n=2000 from 21 institutions); (2) conduct 60 clinical student interviews using the test questions as the script; and (3) conduct an inductive analysis of 30 student supplied written responses to ADT questions posed without the multiple-choices provided. The ADT and its supporting comparative database is available at URL: http://solar.physics.montana.edu/aae/adt/. This research was supported in part by NSF DGE-9714489 (BH) and NASA Grant #CERES-NAG54576 (TS).
Influence of spin and charge fluctuations on spectra of the two-dimensional Hubbard model.
Sherman, A
2018-05-16
The influence of spin and charge fluctuations on spectra of the two-dimensional fermionic Hubbard model is considered using the strong coupling diagram technique. Infinite sequences of diagrams containing ladder inserts, which describe the interaction of electrons with these fluctuations, are summed, and obtained equations are self-consistently solved for the ranges of Hubbard repulsions [Formula: see text], temperatures [Formula: see text] and electron concentrations [Formula: see text] with t the intersite hopping constant. For all considered U the system exhibits a transition to the long-range antiferromagnetic order at [Formula: see text]. At the same time no indication of charge ordering is observed. Obtained solutions agree satisfactorily with results of other approaches and obey moments sum rules. In the considered region of the U-T plane, the curve separating metallic solutions passes from [Formula: see text] at the highest temperatures to U = 2t at [Formula: see text] for half-filling. If only short-range fluctuations are allowed for the remaining part of this region is occupied by insulating solutions. Taking into account long-range fluctuations leads to strengthening of maxima tails, which transform a part of insulating solutions into bad-metal states. For low T, obtained results allow us to trace the gradual transition from the regime of strong correlations with the pronounced four-band structure and well-defined Mott gap for [Formula: see text] to the Slater regime of weak correlations with the spectral intensity having a dip along the boundary of the magnetic Brillouin zone due to an antiferromagnetic ordering for [Formula: see text]. For [Formula: see text] and [Formula: see text] doping leads to the occurrence of a pseudogap near the Fermi level, which is a consequence of the splitting out of a narrow band from a Hubbard subband. Obtained spectra feature waterfalls and Fermi arcs, which are similar to those observed in hole-doped cuprates.
Multispectral processing without spectra.
Drew, Mark S; Finlayson, Graham D
2003-07-01
It is often the case that multiplications of whole spectra, component by component, must be carried out,for example when light reflects from or is transmitted through materials. This leads to particularly taxing calculations, especially in spectrally based ray tracing or radiosity in graphics, making a full-spectrum method prohibitively expensive. Nevertheless, using full spectra is attractive because of the many important phenomena that can be modeled only by using all the physics at hand. We apply to the task of spectral multiplication a method previously used in modeling RGB-based light propagation. We show that we can often multiply spectra without carrying out spectral multiplication. In previous work [J. Opt. Soc. Am. A 11, 1553 (1994)] we developed a method called spectral sharpening, which took camera RGBs to a special sharp basis that was designed to render illuminant change simple to model. Specifically, in the new basis, one can effectively model illuminant change by using a diagonal matrix rather than the 3 x 3 linear transform that results from a three-component finite-dimensional model [G. Healey and D. Slater, J. Opt. Soc. Am. A 11, 3003 (1994)]. We apply this idea of sharpening to the set of principal components vectors derived from a representative set of spectra that might reasonably be encountered in a given application. With respect to the sharp spectral basis, we show that spectral multiplications can be modeled as the multiplication of the basis coefficients. These new product coefficients applied to the sharp basis serve to accurately reconstruct the spectral product. Although the method is quite general, we show how to use spectral modeling by taking advantage of metameric surfaces, ones that match under one light but not another, for tasks such as volume rendering. The use of metamers allows a user to pick out or merge different volume structures in real time simply by changing the lighting.
Multispectral processing without spectra
NASA Astrophysics Data System (ADS)
Drew, Mark S.; Finlayson, Graham D.
2003-07-01
It is often the case that multiplications of whole spectra, component by component, must be carried out, for example when light reflects from or is transmitted through materials. This leads to particularly taxing calculations, especially in spectrally based ray tracing or radiosity in graphics, making a full-spectrum method prohibitively expensive. Nevertheless, using full spectra is attractive because of the many important phenomena that can be modeled only by using all the physics at hand. We apply to the task of spectral multiplication a method previously used in modeling RGB-based light propagation. We show that we can often multiply spectra without carrying out spectral multiplication. In previous work J. Opt. Soc. Am. A 11 , 1553 (1994) we developed a method called spectral sharpening, which took camera RGBs to a special sharp basis that was designed to render illuminant change simple to model. Specifically, in the new basis, one can effectively model illuminant change by using a diagonal matrix rather than the 33 linear transform that results from a three-component finite-dimensional model G. Healey and D. Slater, J. Opt. Soc. Am. A 11 , 3003 (1994). We apply this idea of sharpening to the set of principal components vectors derived from a representative set of spectra that might reasonably be encountered in a given application. With respect to the sharp spectral basis, we show that spectral multiplications can be modeled as the multiplication of the basis coefficients. These new product coefficients applied to the sharp basis serve to accurately reconstruct the spectral product. Although the method is quite general, we show how to use spectral modeling by taking advantage of metameric surfaces, ones that match under one light but not another, for tasks such as volume rendering. The use of metamers allows a user to pick out or merge different volume structures in real time simply by changing the lighting. 2003 Optical Society of America
Mohammadzadeh, Mehdi; Aarabi, Sied Mohammad; Salamzadeh, Jamshid
2013-08-02
Strategic Functional-level planning should be aligned with business level and other functional strategies of a company. It is presumed that assimilating the strategies could have positive contribution to business performance, in this regard alignment between marketing strategy and financial strategy seems to be the most important strategies being studied. An empirical work in generic pharmaceutical manufacturing companies for evaluating effect of alignment between these two functions on organizational performance was developed in this paper. All Iranian pharmaceutical generic manufactures listed in Tehran stock market have been tested for period of five years between 2006-2010 and their marketing strategies were determined by using Slater and Olson taxonomy and their financial strategies have been developed by calculating total risk and total return of sample companies for five years based on rate of risk and return in the frame of a 2 × 2 matrix. For the business performance three profitability indices including Q-Tubin (Rate of market value to net asset value), ROA (Return on Asset), ROE (Return on Equity) have been tested. For analysis, a series of one-way ANOVAs as a collection of statistical models within marketing strategies considering financial strategy as independent variable and the three performance measures as dependent variables was used. Results show strategic alignment between financial and marketing has significant impact on profitability of company resulting in arise of all three profitability indices. Q tubing's rate were 2.33,2.09,2.29,2.58 and rate of ROA were 0.21,0.194,0.25,0.22 and rate of ROE were 0.44,0.46,0.45,0.42 for matched strategy types, respectively the rates shown here are more than average meaning that specific type of marketing strategy is fitted with specific type of financial strategy. Managers should not consider decisions regarding marketing strategy independently of their financial strategy.
The Far-UV Albedo of the Moon Determined from Dayside LAMP Observations
NASA Astrophysics Data System (ADS)
Bullock, Mark A.; Retherford, K. D.; Gladstone, R.; Greathouse, T. K.; Mandt, K. E.; Hendrix, A. R.; Feldman, P. D.; Miles, P. F.; Egan, A. F.
2013-10-01
The Lyman Alpha Mapping Project (LAMP) onboard the Lunar Reconnaissance Orbiter (LRO) has been recording far-UV photons reflected from the lunar surface almost continuously since December 2009 (Gladstone et al., 2010). One photon at a time, LAMP builds up spectra from 575 to 1965 Å with a resolution of 26 Å. We will present 3 years of accumulated LAMP lunar dayside spectral maps and derive the lunar geometric albedo spectrum for a range of phase angles. These LAMP observations can thus be used to reconstruct the lunar far-UV photometric function and refine photometric models of the lunar surface (Hapke, 1963; Lucke et al., 1976). We will also compare LAMP lunar dayside albedo with the albedo from 820-1840 Å obtained by the Hopkins Ultraviolet Telescope (HUT) on the March 1995 Astro-2 Space Shuttle mission (Henry et al., 1995). The improved lunar photometric functions from our analysis of LAMP albedo spectra will enable a better quantitative assessment of how phase angle and composition affect the Moon’s reflectance in the far-UV. Gladstone, G. R., Stern, S. A., Retherford, K. D., Black, R. K., Slater, D. C., Davis, M. W., Versteeg, M. H., Persson, K. B., Parker, J. W., Kaufmann, D. E., Egan, A. F., Greathouse, T. K., Feldman, P. D., Hurley, D., Pryor, W. R., Hendrix, A. R., 2010. LAMP: The lyman alpha mapping project on NASA's lunar reconnaissance orbiter mission. Space Science Reviews. 150, 161-181. Hapke, B. W., 1963. A theoretical photometric function for the lunar surface. Journal of Geophysical Research. 68, 4571-4586. Henry, R. C., Feldman, P. D., Kruk, J. W., Davidsen, A. F., Durrance, S. T., 1995. Ultraviolet Albedo of the Moon with the Hopkins Ultraviolet Telescope. The Astrophysical Journal Letters. 454, L69. Lucke, R. L., Henry, R. C., Fastie, W. G., 1976. Far-ultraviolet albedo of the moon. The Astronomical Journal. 81, 1162-1169.
NASA Astrophysics Data System (ADS)
Grüning, M.; Gritsenko, O. V.; Baerends, E. J.
2002-04-01
An approximate Kohn-Sham (KS) exchange potential vxσCEDA is developed, based on the common energy denominator approximation (CEDA) for the static orbital Green's function, which preserves the essential structure of the density response function. vxσCEDA is an explicit functional of the occupied KS orbitals, which has the Slater vSσ and response vrespσCEDA potentials as its components. The latter exhibits the characteristic step structure with "diagonal" contributions from the orbital densities |ψiσ|2, as well as "off-diagonal" ones from the occupied-occupied orbital products ψiσψj(≠1)σ*. Comparison of the results of atomic and molecular ground-state CEDA calculations with those of the Krieger-Li-Iafrate (KLI), exact exchange (EXX), and Hartree-Fock (HF) methods show, that both KLI and CEDA potentials can be considered as very good analytical "closure approximations" to the exact KS exchange potential. The total CEDA and KLI energies nearly coincide with the EXX ones and the corresponding orbital energies ɛiσ are rather close to each other for the light atoms and small molecules considered. The CEDA, KLI, EXX-ɛiσ values provide the qualitatively correct order of ionizations and they give an estimate of VIPs comparable to that of the HF Koopmans' theorem. However, the additional off-diagonal orbital structure of vxσCEDA appears to be essential for the calculated response properties of molecular chains. KLI already considerably improves the calculated (hyper)polarizabilities of the prototype hydrogen chains Hn over local density approximation (LDA) and standard generalized gradient approximations (GGAs), while the CEDA results are definitely an improvement over the KLI ones. The reasons of this success are the specific orbital structures of the CEDA and KLI response potentials, which produce in an external field an ultranonlocal field-counteracting exchange potential.
Modern Publishing Approach of Journal of Astronomy & Earth Sciences Education
NASA Astrophysics Data System (ADS)
Slater, Timothy F.
2015-01-01
Filling a needed scholarly publishing avenue for astronomy education researchers and earth science education researchers, the Journal of Astronomy & Earth Sciences Education - JAESE published its first volume and issue in 2014. The Journal of Astronomy & Earth Sciences Education - JAESE is a scholarly, peer-reviewed scientific journal publishing original discipline-based education research and evaluation, with an emphasis of significant scientific results derived from ethical observations and systematic experimentation in science education and evaluation. International in scope, JAESE aims to publish the highest quality and timely articles from discipline-based education research that advance understanding of astronomy and earth sciences education and are likely to have a significant impact on the discipline or on policy. Articles are solicited describing both (i) systematic science education research and (ii) evaluated teaching innovations across the broadly defined Earth & space sciences education, including the disciplines of astronomy, climate education, energy resource science, environmental science, geology, geography, agriculture, meteorology, planetary sciences, and oceanography education. The publishing model adopted for this new journal is open-access and articles appear online in GoogleScholar, ERIC, and are searchable in catalogs of 440,000 libraries that index online journals of its type. Rather than paid for by library subscriptions or by society membership dues, the annual budget is covered by page-charges paid by individual authors, their institutions, grants or donors: This approach is common in scientific journals, but is relatively uncommon in education journals. Authors retain their own copyright. The journal is owned by the Clute Institute of Denver, which owns and operates 17 scholarly journals and currently edited by former American Astronomical Society Education Officer Tim Slater, who is an endowed professor at the University of Wyoming and a Senior Scientist at the CAPER Center for Astronomy & Physics Education Research. More information about the journal and its policies are available online at http://www.JAESE.org
Publishing in the Refereed International Journal of Astronomy & Earth Sciences Education JAESE
NASA Astrophysics Data System (ADS)
Slater, Timothy F.
2015-08-01
Filling a needed scholarly publishing avenue for astronomy education researchers and earth science education researchers, the Journal of Astronomy & Earth Sciences Education- JAESE was first published in 2014. JAESE is a scholarly, peer-reviewed scientific journal publishing original discipline-based education research and evaluation, with an emphasis of significant scientific results derived from ethical observations and systematic experimentation in science education and evaluation. International in scope, JAESE aims to publish the highest quality and timely articles from discipline-based education research that advance understanding of astronomy and earth sciences education and are likely to have a significant impact on the discipline or on policy. Articles are solicited describing both (i) systematic science education research and (ii) evaluated teaching innovations across the broadly defined Earth & space sciences education, including the disciplines of astronomy, climate education, energy resource science, environmental science, geology, geography, agriculture, meteorology, planetary sciences, and oceanography education. The publishing model adopted for this new journal is open-access and articles appear online in GoogleScholar, ERIC, EBSCO, ProQuest, and NASA SAO/ADS and are searchable in catalogs of 440,000 libraries that index online journals of its type. Rather than paid for by library subscriptions or by society membership dues, the annual budget is covered by page-charges paid by individual authors, their institutions, grants or donors: This approach is common in scientific journals, but is relatively uncommon in education journals. Authors retain their own copyright. The journal is owned by the Clute Institute in the United States, which owns and operates 17 scholarly journals and currently edited by former American Astronomical Society Education Officer Tim Slater, who is an endowed professor at the University of Wyoming and a Senior Scientist at the CAPER Center for Astronomy & Physics Education Research. More information about the journal and its policies are available online at http://www.JAESE.org
Investigation of half-metallic ferromagnetism in Heusler compounds Co2VZ (Z = Ga, Ge, As, Se)
NASA Astrophysics Data System (ADS)
Han, Jiajia; Wang, Zhengwei; Xu, Weiwei; Wang, Cuiping; Liu, Xingjun
2017-11-01
The electronic structures and magnetic properties of 3d transition metal-based full Heusler compounds Co2VZ (Z = Ga, Ge, As, Se) are investigated using the projector augmented wave (PAW) pseudopotential method. By considering the strong localization of Co 3d-states and V 3d-states at the Fermi level, these Co2VZ (Z = Ga, Ge, As, Se) compounds were treated in the framework of the generalized gradient approximation (GGA)+U method, and the results from the conventional GGA method are presented for comparison. The results that were obtained from the density of states with the GGA+U and GGA methods show that the Co2VGa compound is a half-metallic ferromagnet. For the Co2VGe and Co2VAs compounds, the GGA+U method predicts that these two compounds are half-metallic ferromagnetic by shifting the Fermi level to a lower value with respect to the gap in the minority states, when compared to the conventional GGA method. The energy gaps are determined to be 0.283 eV and 0.425 eV, respectively. However, these results show that the density of states of the Co2VSe compound has a metallic character, although the 3d states were corrected when using the GGA+U method. We found that the characteristic of half-metallic ferromagnetism is attributed to the interaction between the V 3d-states other than Co 3d-states. The calculated total magnetic moments are 2.046 μB, 3.054 μB and 4.012 μB respectively for the Co2VZ (Z = Ga, Ge, As) compounds with the GGA+U method. The relationship between total spin magnetic moment per formula unit and total number of valence electrons of these Heusler compounds is in agreement with the Slater-Pauling rule.
2013-01-01
Background Strategic Functional-level planning should be aligned with business level and other functional strategies of a company. It is presumed that assimilating the strategies could have positive contribution to business performance, in this regard alignment between marketing strategy and financial strategy seems to be the most important strategies being studied. An empirical work in generic pharmaceutical manufacturing companies for evaluating effect of alignment between these two functions on organizational performance was developed in this paper. Methods All Iranian pharmaceutical generic manufactures listed in Tehran stock market have been tested for period of five years between 2006–2010 and their marketing strategies were determined by using Slater and Olson taxonomy and their financial strategies have been developed by calculating total risk and total return of sample companies for five years based on rate of risk and return in the frame of a 2 × 2 matrix. For the business performance three profitability indices including Q-Tubin (Rate of market value to net asset value), ROA (Return on Asset), ROE (Return on Equity) have been tested. For analysis, a series of one-way ANOVAs as a collection of statistical models within marketing strategies considering financial strategy as independent variable and the three performance measures as dependent variables was used. Results Results show strategic alignment between financial and marketing has significant impact on profitability of company resulting in arise of all three profitability indices. Q tubing’s rate were 2.33,2.09,2.29,2.58 and rate of ROA were 0.21,0.194,0.25,0.22 and rate of ROE were 0.44,0.46,0.45,0.42 for matched strategy types, respectively the rates shown here are more than average meaning that specific type of marketing strategy is fitted with specific type of financial strategy. Conclusion Managers should not consider decisions regarding marketing strategy independently of their financial strategy. PMID:23915467
Normal order and extended Wick theorem for a multiconfiguration reference wave function
NASA Astrophysics Data System (ADS)
Kutzelnigg, Werner; Mukherjee, Debashis
1997-07-01
A generalization of normal ordering and of Wick's theorem with respect to an arbitrary reference function Φ as some generalized "physical vacuum" is formulated in a different (but essentially equivalent) way than that suggested previously by one of the present authors. Guiding principles are that normal order operators with respect to any reference state must be expressible as linear combinations of those with respect to the genuine vacuum, that the vacuum expectation value of a normal order operator must vanish (with respect to the vacuum to which it is in normal order), and that the well-known formalism for a single Slater determinant as physical vacuum must be contained as a special case. The derivation is largely based on the concepts of "Quantum Chemistry in Fock space," which means that particle-number-conserving operators (excitation operators) play a central role. Nevertheless, the contraction rules in the frame of a generalized Wick theorem are derived, that hold for non-particle-number-conserving operators as well. The contraction rules are formulated and illustrated in terms of diagrams. The contractions involve the "residual n-particle density matrices" λ, which are the irreducible (non-factorizable) parts of the conventional n-particle density matrices γ, in the sense of a cumulant expansion for the density. A spinfree formulation is presented as well. The expression of the Hamiltonian in normal order with respect to a multiconfiguration reference function leads to a natural definition of a generalized Fock operator. MC-SCF-theory is easily worked out in this context. The paper concludes with a discussion of the excited configurations and the first-order interacting space, that underlies a perturbative coupled cluster type correction to the MCSCF function for an arbitrary reference function, and with general implications of the new formalism, that is related to "internally contracted multireference configuration interaction." The present generalization of normal ordering is not only valid for arbitrary reference functions, but also if the reference state is an ensemble state.
Semiempirical Theories of the Affinities of Negative Atomic Ions
NASA Technical Reports Server (NTRS)
Edie, John W.
1961-01-01
The determination of the electron affinities of negative atomic ions by means of direct experimental investigation is limited. To supplement the meager experimental results, several semiempirical theories have been advanced. One commonly used technique involves extrapolating the electron affinities along the isoelectronic sequences, The most recent of these extrapolations Is studied by extending the method to Include one more member of the isoelectronic sequence, When the results show that this extension does not increase the accuracy of the calculations, several possible explanations for this situation are explored. A different approach to the problem is suggested by the regularities appearing in the electron affinities. Noting that the regular linear pattern that exists for the ionization potentials of the p electrons as a function of Z, repeats itself for different degrees of ionization q, the slopes and intercepts of these curves are extrapolated to the case of the negative Ion. The method is placed on a theoretical basis by calculating the Slater parameters as functions of q and n, the number of equivalent p-electrons. These functions are no more than quadratic in q and n. The electron affinities are calculated by extending the linear relations that exist for the neutral atoms and positive ions to the negative ions. The extrapolated. slopes are apparently correct, but the intercepts must be slightly altered to agree with experiment. For this purpose one or two experimental affinities (depending on the extrapolation method) are used in each of the two short periods. The two extrapolation methods used are: (A) an isoelectronic sequence extrapolation of the linear pattern as such; (B) the same extrapolation of a linearization of this pattern (configuration centers) combined with an extrapolation of the other terms of the ground configurations. The latter method Is preferable, since it requires only experimental point for each period. The results agree within experimental error with all data, except with the most recent value of C, which lies 10% lower.
National Bureau Of Standards Data Base Of Photon Absorption Cross Sections From 10 eV To 100 deV
NASA Astrophysics Data System (ADS)
Saloman, E. B.; Hubbell, J. H.; Berger, M. J.
1988-07-01
The National Bureau of Standards (NBS) has maintained a data base of experimental and theoretical photon absorption cross sections (attenuation coefficients) since 1950. Currently the measured data include more than 20,000 data points abstracted from more than 500 independen.t literature sources including both published and unpublished reports and private communications. We have recently completed a systematic comparison over the energy range 0.1-100 keV of the measured cross sections in the NBS data base with cross sections obtained using the photoionization cross sections calculated by Scofield and the semi-empirical set of recommended photoionization cross section values of Henke et al. Cross sections for coherent and incoherent scattering were added to that of photoionization to obtain a value which could be compared to the experimental results. At energies above 1 keV, agreement between theory and experiment is rather good except for some special situations which prevent the accurate description of the measured samples as free atoms. These include molecular effects near absorption edges and solid state and crystal effects (such as for silicon). Below 1 keV the comparison indicates the range of atomic numbers and energies where the theory becomes inapplicable. The results obtained using Henke et al. agree well with the measured data when such data exist, but there are many elements for which data are not available over a wide range of energies. Comparisons with other theoretical data are in progress. This study also enabled us to show that a suggested renormalization procedure to the Scofield calculation (from dartree-Slater to Hartree-Fock) worsened the agreement between the theory and experiment. We have recently developed a PC-based computer program to generate theoretical cross section values based on Scofield's calculation. We have also completed a related program to enable a user to extract selected data from the measured data base.
Topics in electronic structure and spectroscopy of cuprates
NASA Astrophysics Data System (ADS)
Lin, Hsin
I have applied first-principles calculations to investigate several interrelated problems concerned with the electronic structure and spectroscopy of cuprates. The specific topics addressed in this thesis are as follows. 1. By properly including doping effects beyond rigid band filling, a longstanding problem of the missing Bi-O pocket in the electronic structure of Bi2Sr2CaCu2O8 (Bi2212) is solved. The doping effect is explained in terms of Coulombic effect between layers and is a generic property of all cuprates. 2. A systematic study for Pb/O and rare-earth doping in Bi2212 is carried out to explain the experimental phase diagrams, and a possible new electron doped Bi2212 is predicted. 3. To investigate how the Mott insulators evolve into superconductors with the addition of holes, an analysis of angle-resolved photoemission (ARPES) data of La2-xSr xCuO4 is carried out over a wide doping range of x = 0.03 - 0.30. The spectrum displays the presence of the van Hove singularity (VHS) whose location in energy and three-dimensionality are in accord with the band theory predictions. A nascent metallic state is found in the lightly doped Mott insulator and develops spectral weight as doping increases. This metallic spectrum is 'universal' in the sense that its dispersion depends weakly on doping, in sharp contrast to the common expectation that dispersion is renormalized to zero at half-filling. This finding challenges existing theoretical scenarios for cuprates. 4. Self-consistent mean-field three- and four-band Hubbard models are used to study the Mott gap in electron-doped cuprates. The Hubbard terms are decomposed into a Mott-like term which describes the lifting of Cu bands due to energy cost U and a Slater-like term which describes an additional splitting of Cu bands due to antiferromagnetic (AFM) order. While no set of doping-independent parameters can explain the observed gaps for the entire doping range, the experimental results are consistent with a weakly doping dependent Hubbard U. These parameters enhance Cu character of the bonding band, producing a charge transfer gap dominated by the Slater-like term. 5. The valence bands of Bi2212 extending from about 1 to 7 eV below the Fermi energy (EF) are primarily associated with various Cu d and O p orbitals. Sorting out these bands would provide valuable information on a number of issues relevant to cuprate physics. In particular, the bonding Cu dx2-y2 band has an intimate connection with the true lower Hubbard band (LHB), yet its binding energy has never been experimentally determined. An analysis of the ARPES valence band spectrum of Bi2212 is provided. The local-density approximation (LDA) bands are compared with experiments. While O Sr and OBi bands are in good agreement with LDA, there are disagreements between experiment and LDA associated with bands originating from the CuO2 layers. A necessary correction of the LDA derived TB model is found, and this correction is shown to be related to the Mott physics in such a way that Cu dx2-y2 weight is evenly distributed into bonding and antibonding bands. 6. Scanning tunneling microscopy/spectroscopy (STM/STS) techniques have entered the realm of high-Tc's impressively by offering atomic scale real space resolution and meV resolution in bias voltages. STM/STS spectra, however, represent a complex mapping of electronic states of interest related to the CuO2 planes, since the tunneling current must reach the tip after being filtered through the overlayers (e.g. SrO and BiO in Bi2212). We have developed a material specific theoretical framework for treating the normal as well as the superconducting state where the effect of the tunneling matrix element is included by taking into account various orbitals within a few eV's of the Fermi energy (EF). The tunneling current is evaluated directly including the effect of overlayers. Our computations show the presence of strong matrix element effects, which lead to significant differences between the dI/dV spectra and the local density of states (LDOS) of CuO2 planes. For instance, the dx2-y2 signal is found to be dominated by non-vertical hopping between the CuO2 and BiO layers. A substantial electron-hole anisotropy of the tunneling spectrum, which is in accord with experiments, is naturally explained by the contribution from dz2 and other orbitals below EF.
NASA Astrophysics Data System (ADS)
Bylicki, Mirosław; Nicolaides, Cleanthes A.
2000-05-01
We report on a theoretical approach to the calculation of wave functions, energies E, and widths Γ of high-lying resonances of H-, with application to the identification of 76 states of 1Po, 1Do, and 1Fo symmetries up to the n=4 threshold, with widths down to about 1×10-8-1×10-10 a.u., depending on symmetry and threshold. The overwhelming majority of these resonances have not been detected experimentally. Previous calculations by different methods allowed the identification of 35 of these states, with only very few cases having a level of accuracy comparable to the one of the present work. We suggest that the measurement of these resonances might become possible via two-step excitation mechanisms using ultrasensitive techniques capable of dealing with the problems of very small widths and preparation cross-sections. In this work, the 1D state at 10.872 eV above the H-1s2 1S ground state, already prepared and measured by electron scattering as well as by two-photon absorption, is considered as the stepping stone for the possible probing of resonances of 1Po, 1Do, and 1Fo symmetries via absorption of tunable radiation of high resolution. By classifying the results according to the Gailitis-Damburg model of dipole resonances (a product of a 1/r2-like potential) we find that there are unperturbed as well as perturbed series, in analogy with the Rydberg spectra of neutrals and positive ions (a product of a 1/r-like potential). For the former, the agreement with the Gailitis-Damburg predictions as to the relationship of the extent of the outer orbital and of the energies and widths of states is excellent. The perturbed series result from interchannel coupling and the remaining electron correlation. One of the effects is the existence of overlapping resonances. For example, for two 1Po states below the n=3 threshold there is degeneracy on the energy axis (E1=-0.0555763612 a.u. and E2=-0.0555763099 a.u.) but the widths differ (Γ1=1.14×10-4 eV and Γ2=5.45×10-6 eV). We also comment on whether consideration of the relativistic Lamb shift splitting of the hydrogen thresholds is sufficient for deciding the truncation of the resonance series. Our calculations were carried out by implementing previously published theories, whereby the resonance E's and Γ's are determined from properly selected complex eigenvalues of non-Hermitian Hamiltonian matrices constructed in terms of physically relevant square integrable real and complex function spaces representing the localized and asymptotic parts of the resonance eigenfunctions. For the H- series of resonances, the physical relevance of the real functions implies the systematic construction of basis sets with average
Teaching and Learning Astronomy
NASA Astrophysics Data System (ADS)
Pasachoff, Jay; Percy, John
2005-12-01
Preface; Part I. Astronomy in the Curriculum Around the World: Preface; 1. Why astronomy is useful and should be included in the school curriculum John R. Percy; 2. Astronomy and mathematics education Rosa M. Ros; 3. Astronomy in the curriculum around the world; 4. Engaging gifted science students through astronomy Robert Hollow; 5. Poster highlights: astronomy in the curriculum around the world; Part II. Astronomy Education Research: Preface; 6. Astronomy education research down under John M. Broadfoot and Ian S. Ginns; 7. A contemporary review of K-16 astronomy education research Janelle M. Bailey and Timothy F. Slater; 8. Implementing astronomy education research Leonarda Fucili; 9. The Astronomy Education Review: report on a new journal Sidney C. Wolff and Andrew Fraknoi; 10. Poster highlights: astronomy education research; Part III. Educating Students: Preface; 11. Textbooks for K-12 astronomy Jay M. Pasachoff; 12. Distance/internet astronomy education David H. McKinnon; 13. Educating students with robotic telescopes - open discussion; 14. Poster highlights - educating students; Part IV. Educating teachers: Preface; 15. Pre-service astronomy education of teachers Mary Kay Hemenway; 16. In-service education of teachers Michèle Gerbaldi; 17. Poster highlights: educating teachers; Part V. Astronomy and Pseudoscience: Preface; 18. Astronomy, pseudoscience and rational thinking Jayant V. Narlikar; 19. Astronomical pseudosciences in North America John R. Percy and Jay M. Pasachoff; Part VI. Astronomy and Culture: Preface; 20. Teaching astronomy in other cultures: archeoastronomy Julieta Fierro; 21. Poster highlights: astronomy and culture; Part VII. Astronomy in Developing Countries: Preface; 22. Astronomy Curriculum for developing countries Case Rijsdijk; 23. Science education resources for the developing countries James C. White II; Part VIII. Public Outreach in Astronomy: Preface; 24. What makes informal education programs successful? Nahide Craig and Isabel Hawkins; 25. The role of science centers and planetariums Nick Lomb; 26. Science education for the new century - a European perspective Claus Madsen; 27. Communicating astronomy to the public Charles Blue; 28. Poster highlights: public outreach in astronomy; Part IX. The Education Programs of the IAU: Preface; 29. A short overview of astronomical education carried out by the IAU Syuzo Isobe; Part X. Discussion; Index.
Teaching and Learning Astronomy
NASA Astrophysics Data System (ADS)
Pasachoff, Jay; Percy, John
2009-07-01
Preface; Part I. Astronomy in the Curriculum Around the World: Preface; 1. Why astronomy is useful and should be included in the school curriculum John R. Percy; 2. Astronomy and mathematics education Rosa M. Ros; 3. Astronomy in the curriculum around the world; 4. Engaging gifted science students through astronomy Robert Hollow; 5. Poster highlights: astronomy in the curriculum around the world; Part II. Astronomy Education Research: Preface; 6. Astronomy education research down under John M. Broadfoot and Ian S. Ginns; 7. A contemporary review of K-16 astronomy education research Janelle M. Bailey and Timothy F. Slater; 8. Implementing astronomy education research Leonarda Fucili; 9. The Astronomy Education Review: report on a new journal Sidney C. Wolff and Andrew Fraknoi; 10. Poster highlights: astronomy education research; Part III. Educating Students: Preface; 11. Textbooks for K-12 astronomy Jay M. Pasachoff; 12. Distance/internet astronomy education David H. McKinnon; 13. Educating students with robotic telescopes - open discussion; 14. Poster highlights - educating students; Part IV. Educating teachers: Preface; 15. Pre-service astronomy education of teachers Mary Kay Hemenway; 16. In-service education of teachers Michèle Gerbaldi; 17. Poster highlights: educating teachers; Part V. Astronomy and Pseudoscience: Preface; 18. Astronomy, pseudoscience and rational thinking Jayant V. Narlikar; 19. Astronomical pseudosciences in North America John R. Percy and Jay M. Pasachoff; Part VI. Astronomy and Culture: Preface; 20. Teaching astronomy in other cultures: archeoastronomy Julieta Fierro; 21. Poster highlights: astronomy and culture; Part VII. Astronomy in Developing Countries: Preface; 22. Astronomy Curriculum for developing countries Case Rijsdijk; 23. Science education resources for the developing countries James C. White II; Part VIII. Public Outreach in Astronomy: Preface; 24. What makes informal education programs successful? Nahide Craig and Isabel Hawkins; 25. The role of science centers and planetariums Nick Lomb; 26. Science education for the new century - a European perspective Claus Madsen; 27. Communicating astronomy to the public Charles Blue; 28. Poster highlights: public outreach in astronomy; Part IX. The Education Programs of the IAU: Preface; 29. A short overview of astronomical education carried out by the IAU Syuzo Isobe; Part X. Discussion; Index.
2013-01-01
Background Several research studies investigating the effectiveness of the different treatments have demonstrated that exposure-based therapies are more suitable and effective than others for the treatment of anxiety disorders. Traditionally, exposure may be achieved in two manners: in vivo, with direct contact to the stimulus, or by imagery, in the person’s imagination. However, despite its effectiveness, both types of exposure present some limitations that supported the use of Virtual Reality (VR). But is VR always an effective stressor? Are the technological breakdowns that may appear during such an experience a possible risk for its effectiveness? Methods To answer these questions we compared changes following the exposure to an academic examination, one of the most universal examples of real-life stressors, in a sample of 39 undergraduate students. The same experience was offered using text (TX), audio (AU), video (VD), and VR. However, in the virtual environment we manipulated the experience introducing technological breakdowns. The Post Media Questionnaire (PMQ) and the Slater-Usoh-Steed Presence Questionnaire (SUS) were administered to each participant in order to evaluated self-report measures of anxiety and relaxation and the level of presence experience during media exposure. Electrocardiogram (ECG), Thoracic Respiration Signal (RSP) and Facial corrugator supercilii muscle Electromyography (EMG) were recorded in order to obtain objective measures of subjects’ emotional state. Results Analyses conducted on PMQ showed a significant increase in anxiety scores and a mirror decrease in relax scores after all our emotional procedures, showing that all the condition were effective in inducing a negative emotional response. Psychometric scores and psychophysiological indexes showed that VR was less effective than other procedures in eliciting stress responses. Moreover, we did not observe significative difference in SUS scores: VR induced a sense of presence similar to that experienced during the exposition to other media. Conclusions Technological breakdowns significantly reduce the possibility of VR eliciting emotions related to complex real-life stressors. Without a high sense of presence, the significant advantages offered by VR disappear and its emotional induction abilities are even lower than the ones provided by much cheaper media. Trial registration Trial registration number: NCT01683617 PMID:23398927
Rault, Jacques
2015-08-01
The dynamical properties of glass formers (GFs) as a function of P, V, and T are reanalyzed in relation with the equations of state (EOS) proposed recently (Eur. Phys. J. E 37, 113 (2014)). The relaxation times τ of the cooperative non-Arrhenius α process and the individual Arrhenius β process are coupled via the Kohlrausch exponent n S(T, P). In the model n S is the sigmoidal logistic function depending on T (and P, and the α relaxation time τ α of GFs above T g verifies the pressure-modified VFT law: log τ α ∼ E β /nsRT, which can be put into a form with separated variables: log τ α ∼ f(T)g(P). From the variation of n S and τ α with T and P the Vogel temperature T 0 (τ α → ∝, n S = 0) and the crossover temperature (also called the merging or splitting temperature) T B (τ α ∼ τ β, n S ∼ 1) are determined. The proposed sm-VFT equation fits with excellent accuracy the experimental data of fragile and strong GFs under pressure. The properties generally observed in organic mineral and metallic GFs are explained: a) The Vogel temperature is independent of P (as suggested by the EOS properties), the crossover is pressure-dependent. b) In crystallizable GFs the T B (P) and Clapeyron curves T m(P) coincide. c) The α and β processes have the same ratio of the activation energies and volume, E*/V* (T- and P-independent), the compensation law is observed, this ratio depends on the anharmonicity Slater-Grüneisen parameter and on the critical pressure P* deduced from the EOS. d) The properties of the Fan Structure of the Tangents (FST) to the isotherms and isobars curves log τ versus P and T and to the isochrones curves P(T). e) The scaling law log τ = f(V (Λ) ) and the relation between Γ and γ. We conclude that these properties should be studied in detail in GFs submitted to negative pressures.
NASA Astrophysics Data System (ADS)
Konieczka, M.; Kortelainen, M.; Satuła, W.
2018-03-01
Background: The atomic nucleus is a unique laboratory in which to study fundamental aspects of the electroweak interaction. This includes a question concerning in medium renormalization of the axial-vector current, which still lacks satisfactory explanation. Study of spin-isospin or Gamow-Teller (GT) response may provide valuable information on both the quenching of the axial-vector coupling constant as well as on nuclear structure and nuclear astrophysics. Purpose: We have performed a seminal calculation of the GT response by using the no-core configuration-interaction approach rooted in multireference density functional theory (DFT-NCCI). The model treats properly isospin and rotational symmetries and can be applied to calculate both the nuclear spectra and transition rates in atomic nuclei, irrespectively of their mass and particle-number parity. Methods: The DFT-NCCI calculation proceeds as follows: First, one builds a configuration space by computing relevant, for a given physical problem, (multi)particle-(multi)hole Slater determinants. Next, one applies the isospin and angular-momentum projections and performs the isospin and K mixing in order to construct a model space composed of linearly dependent states of good angular momentum. Eventually, one mixes the projected states by solving the Hill-Wheeler-Griffin equation. Results: The method is applied to compute the GT strength distribution in selected N ≈Z nuclei including the p -shell 8Li and 8Be nuclei and the s d -shell well-deformed nucleus 24Mg. In order to demonstrate a flexibility of the approach we present also a calculation of the superallowed GT β decay in doubly-magic spherical 100Sn and the low-spin spectrum in 100In. Conclusions: It is demonstrated that the DFT-NCCI model is capable of capturing the GT response satisfactorily well by using a relatively small configuration space, exhausting simultaneously the GT sum rule. The model, due to its flexibility and broad range of applicability, may either serve as a complement or even as an alternative to other theoretical approaches, including the conventional nuclear shell model.
Development of the General Parenting Observational Scale to assess parenting during family meals.
Rhee, Kyung E; Dickstein, Susan; Jelalian, Elissa; Boutelle, Kerri; Seifer, Ronald; Wing, Rena
2015-04-10
There is growing interest in the relationship between general parenting and childhood obesity. However, assessing general parenting via surveys can be difficult due to issues with self-report and differences in the underlying constructs being measured. As a result, different aspects of parenting have been associated with obesity risk. We developed a more objective tool to assess general parenting by using observational methods during a mealtime interaction. The General Parenting Observational Scale (GPOS) was based on prior work of Baumrind, Maccoby and Martin, Barber, and Slater and Power. Ten dimensions of parenting were included; 4 were classified in the emotional dimension of parenting (warmth and affection, support and sensitivity, negative affect, detachment), and 6 were classified in the behavioral dimension of parenting (firm discipline and structure, demands for maturity, psychological control, physical control, permissiveness, neglect). Overweight children age 8-12 years old and their parent (n = 44 dyads) entering a weight control program were videotaped eating a family meal. Parents were coded for their general parenting behaviors. The Mealtime Family Interaction Coding System (MICS) and several self-report measures of general parenting were also used to assess the parent-child interaction. Spearman's correlations were used to assess correlation between measures. The emotional dimensions of warmth/affection and support/sensitivity, and the behavioral dimension of firm discipline/structure were robustly captured during the family meals. Warmth/affection and support/sensitivity were significantly correlated with affect management, interpersonal involvement, and communication from the MICS. Firm discipline/structure was inversely correlated with affect management, behavior control, and task accomplishment. Parents who were older, with higher educational status, and lower BMIs were more likely to display warmth/affection and support/sensitivity. Several general parenting dimensions from the GPOS were highly correlated with similar family functioning constructs from the MICS. This new observational tool appears to be a valid means of assessing general parenting behaviors during mealtimes and adds to our ability to measure parent-level factors affecting child weight-related outcomes. Future evaluation of this tool in a broader range of the population and other family settings should be conducted.
NASA Astrophysics Data System (ADS)
Soirat, Arnaud J. A.
Density Matrix Theory is a Quantum Mechanical formalism in which the wavefunction is eliminated and its role taken over by reduced density matrices. The interest of this is that, it allows one, in principle, to calculate any electronic property of a physical system, without having to solve the Schrodinger equation, using only two entities much simpler than an N-body wavefunction: first and second -order reduced density matrices. In practice, though, this very promising possibility faces the tremendous theoretical problem of N-representability, which has been solved for the former, but, until now, voids any hope of theoretically determining the latter. However, it has been shown that single determinant reduced density matrices of any order may be recovered from coherent X-ray diffraction data, if one provides a proper Quantum Mechanical description of the Crystallography experiment. A deeper investigation of this method is the purpose of this work, where we, first, further study the calculation of X-ray reduced density matrices N-representable by a single Slater determinant. In this context, we independently derive necessary and sufficient conditions for the uniqueness of the method. We then show how to account for electron correlation in this model. For the first time, indeed, we derive highly accurate, yet practical, density matrices approximately N-representable by correlated-determinant wavefunctions. The interest of such a result lies in the Quantum Mechanical validity of these density matrices, their property of being entirely obtainable from X-ray coherent diffraction data, their very high accuracy conferred by this known property of the N-representing wavefunction, as well as their definition as explicit functionals of the density. All of these properties are finally used in both a theoretical and a numerical application: in the former, we show that these density matrices may be used in the context of Density Functional Theory to highly accurately determine the unknown HK functional, associated with the theorem of Hohenberg and Kohn. The latter is provided by the calculation of helium correlation energy, where we test approximating the second-order density function by the leading term of its McLaurin's series expansion.
Applications of finite-size scaling for atomic and non-equilibrium systems
NASA Astrophysics Data System (ADS)
Antillon, Edwin A.
We apply the theory of Finite-size scaling (FSS) to an atomic and a non-equilibrium system in order to extract critical parameters. In atomic systems, we look at the energy dependence on the binding charge near threshold between bound and free states, where we seek the critical nuclear charge for stability. We use different ab initio methods, such as Hartree-Fock, Density Functional Theory, and exact formulations implemented numerically with the finite-element method (FEM). Using Finite-size scaling formalism, where in this case the size of the system is related to the number of elements used in the basis expansion of the wavefunction, we predict critical parameters in the large basis limit. Results prove to be in good agreement with previous Slater-basis set calculations and demonstrate that this combined approach provides a promising first-principles approach to describe quantum phase transitions for materials and extended systems. In the second part we look at non-equilibrium one-dimensional model known as the raise and peel model describing a growing surface which grows locally and has non-local desorption. For a specific values of adsorption ( ua) and desorption (ud) the model shows interesting features. At ua = ud, the model is described by a conformal field theory (with conformal charge c = 0) and its stationary probability can be mapped to the ground state of a quantum chain and can also be related a two dimensional statistical model. For ua ≥ ud, the model shows a scale invariant phase in the avalanche distribution. In this work we study the surface dynamics by looking at avalanche distributions using FSS formalism and explore the effect of changing the boundary conditions of the model. The model shows the same universality for the cases with and with our the wall for an odd number of tiles removed, but we find a new exponent in the presence of a wall for an even number of avalanches released. We provide new conjecture for the probability distribution of avalanches with a wall obtained by using exact diagonalization of small lattices and Monte-Carlo simulations.
The energy structure and decay channels of the 4p6-shell excited states in Sr
NASA Astrophysics Data System (ADS)
Kupliauskienė, A.; Kerevičius, G.; Borovik, V.; Shafranyosh, I.; Borovik, A.
2017-11-01
The ejected-electron spectra arising from the decay of the 4p{}5{{nln}}{\\prime }{l}{\\prime }{n}{\\prime\\prime }{l}{\\prime\\prime } autoionizing states in Sr atoms have been studied precisely at the incident-electron energies close to excitation and ionization thresholds of the 4{{{p}}}6 subshell. The excitation behaviors for 58 lines observed between 12 and 21 eV ejected-electron kinetic energy have been investigated. Also, the ab initio calculations of excitation energies, autoionization probabilities and electron-impact excitation cross sections of the states 4p{}5{{nln}}{\\prime }{l}{\\prime }{n}{\\prime\\prime }{l}{\\prime\\prime } (nl = 4d, 5s, 5p; {n}{\\prime }{l}{\\prime } = 4d, 5s, 5p; {n}{\\prime\\prime }{l}{\\prime\\prime } = 5s, 6s, 7s, 8s, 9s, 5p, 6p, 5d, 6d, 7d, 8d, 4f, 5g) have been performed by employing the large-scale configuration-interaction method in the basis of the solutions of Dirac-Fock-Slater equations. The obtained experimental and theoretical data have been used for the accurate identification of the 60 lines in ejected-electron spectra and the 68 lines observed earlier in photoabsorption spectra. The excitation and decay processes for 105 classified states in the 4p55s{}2{nl}, 4p54d{}2{nl} and 4p55s{{nln}}{\\prime }{l}{\\prime } configurations have been considered in detail. In particular, most of the states lying below the ionization threshold of the 4p6 subshell at 26.92 eV possess up to four decay channels with formation of Sr+ in 5s{}1/2, 4d{}3/{2,5/2} and 5p{}1/{2,3/2} states. Two-step autoionization and two-electron Auger transitions with formation of Sr2+ in the 4p6 {}1{{{S}}}0 ground state are the main decay paths for high-lying autoionizing states. The excitation threshold of the 4{{{p}}}6 subshell in Sr has been established at 20.98 ± 0.05 eV.
NASA Astrophysics Data System (ADS)
de Jong, G. Theodoor; Geerke, Daan P.; Diefenbach, Axel; Matthias Bickelhaupt, F.
2005-06-01
We have evaluated the performance of 24 popular density functionals for describing the potential energy surface (PES) of the archetypal oxidative addition reaction of the methane C-H bond to the palladium atom by comparing the results with our recent ab initio [CCSD(T)] benchmark study of this reaction. The density functionals examined cover the local density approximation (LDA), the generalized gradient approximation (GGA), meta-GGAs as well as hybrid density functional theory. Relativistic effects are accounted for through the zeroth-order regular approximation (ZORA). The basis-set dependence of the density-functional-theory (DFT) results is assessed for the Becke-Lee-Yang-Parr (BLYP) functional using a hierarchical series of Slater-type orbital (STO) basis sets ranging from unpolarized double-ζ (DZ) to quadruply polarized quadruple-ζ quality (QZ4P). Stationary points on the reaction surface have been optimized using various GGA functionals, all of which yield geometries that differ only marginally. Counterpoise-corrected relative energies of stationary points are converged to within a few tenths of a kcal/mol if one uses the doubly polarized triple-ζ (TZ2P) basis set and the basis-set superposition error (BSSE) drops to 0.0 kcal/mol for our largest basis set (QZ4P). Best overall agreement with the ab initio benchmark PES is achieved by functionals of the GGA, meta-GGA, and hybrid-DFT type, with mean absolute errors of 1.3-1.4 kcal/mol and errors in activation energies ranging from +0.8 to -1.4 kcal/mol. Interestingly, the well-known BLYP functional compares very reasonably with an only slightly larger mean absolute error of 2.5 kcal/mol and an underestimation by -1.9 kcal/mol of the overall barrier (i.e., the difference in energy between the TS and the separate reactants). For comparison, with B3LYP we arrive at a mean absolute error of 3.8 kcal/mol and an overestimation of the overall barrier by 4.5 kcal/mol.
The unique health needs of young women: application for occupational health professionals.
Graves, Virginia A
2005-07-01
This article presents some alternate views on how young women maintain health and how occupational health nurses can intervene with illness. These interventions are based on relational theories that address the importance of healthy connections for health and growth, and propose disconnections as what (Miller & Stiver, 1977): underlies many of the problems common to women in particular, including depression, various forms of anxiety, eating problems, and so-called personality disorders." (p. 81) Interventions outlined include teaching young women and families how to deconstruct damaging media images and creating groups for young women or parents as a venue to learn (e.g., signs of healthy and unhealthy relationships and knowing how interaction in the group can be an intervention in itself). Offering parents and other adults support and resources to help them discuss health issues with young women will provide a way for young women to examine healthy choices more accurately. The occupational health nurse can teach the importance of keeping connected during an illness and refer clients to an EAP for additional support. Knowing that some young women do not have homes where they receive adequate safe and healthy messages reinforces the value of a nurse and managers to create a caring and respectful climate in the workplace. The effectiveness of applying relational theories to health care is evidenced when professionals offer young women a resonant relationship, with mutuality and respect which fosters a safe environment for voicing health concerns (Slater, Guthrie, & Boyd, 2001). Occupational health nurses can also make a difference for young women within their own communities. Whether taking social action in a town meeting, addressing media influences, writing a letter when offended, or supporting local and national girls' organizations, nurses' input is valuable. Interactions with girls outside the workplace are also important. Young women often consider relationships with the older women in their lives (e.g., mothers, aunts, parents for whom they babysit) to be among the most valuable. With cultural messages normalizing unhealthy behaviors and health consequences, young women can benefit greatly from their relationships with adult relatives and friends who care enough to stay connected.
Plato: A localised orbital based density functional theory code
NASA Astrophysics Data System (ADS)
Kenny, S. D.; Horsfield, A. P.
2009-12-01
The Plato package allows both orthogonal and non-orthogonal tight-binding as well as density functional theory (DFT) calculations to be performed within a single framework. The package also provides extensive tools for analysing the results of simulations as well as a number of tools for creating input files. The code is based upon the ideas first discussed in Sankey and Niklewski (1989) [1] with extensions to allow high-quality DFT calculations to be performed. DFT calculations can utilise either the local density approximation or the generalised gradient approximation. Basis sets from minimal basis through to ones containing multiple radial functions per angular momenta and polarisation functions can be used. Illustrations of how the package has been employed are given along with instructions for its utilisation. Program summaryProgram title: Plato Catalogue identifier: AEFC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 219 974 No. of bytes in distributed program, including test data, etc.: 1 821 493 Distribution format: tar.gz Programming language: C/MPI and PERL Computer: Apple Macintosh, PC, Unix machines Operating system: Unix, Linux and Mac OS X Has the code been vectorised or parallelised?: Yes, up to 256 processors tested RAM: Up to 2 Gbytes per processor Classification: 7.3 External routines: LAPACK, BLAS and optionally ScaLAPACK, BLACS, PBLAS, FFTW Nature of problem: Density functional theory study of electronic structure and total energies of molecules, crystals and surfaces. Solution method: Localised orbital based density functional theory. Restrictions: Tight-binding and density functional theory only, no exact exchange. Unusual features: Both atom centred and uniform meshes available. Can deal with arbitrary angular momenta for orbitals, whilst still retaining Slater-Koster tables for accuracy. Running time: Test cases will run in a few minutes, large calculations may run for several days.
Psallidas, Ioannis; Kanellakis, Nikolaos I; Gerry, Stephen; Thézénas, Marie Laëtitia; Charles, Philip D; Samsonova, Anastasia; Schiller, Herbert B; Fischer, Roman; Asciak, Rachelle; Hallifax, Robert J; Mercer, Rachel; Dobson, Melissa; Dong, Tao; Pavord, Ian D; Collins, Gary S; Kessler, Benedikt M; Pass, Harvey I; Maskell, Nick; Stathopoulos, Georgios T; Rahman, Najib M
2018-06-13
The prevalence of malignant pleural effusion is increasing worldwide, but prognostic biomarkers to plan treatment and to understand the underlying mechanisms of disease progression remain unidentified. The PROMISE study was designed with the objectives to discover, validate, and prospectively assess biomarkers of survival and pleurodesis response in malignant pleural effusion and build a score that predicts survival. In this multicohort study, we used five separate and independent datasets from randomised controlled trials to investigate potential biomarkers of survival and pleurodesis. Mass spectrometry-based discovery was used to investigate pleural fluid samples for differential protein expression in patients from the discovery group with different survival and pleurodesis outcomes. Clinical, radiological, and biological variables were entered into least absolute shrinkage and selection operator regression to build a model that predicts 3-month mortality. We evaluated the model using internal and external validation. 17 biomarker candidates of survival and seven of pleurodesis were identified in the discovery dataset. Three independent datasets (n=502) were used for biomarker validation. All pleurodesis biomarkers failed, and gelsolin, macrophage migration inhibitory factor, versican, and tissue inhibitor of metalloproteinases 1 (TIMP1) emerged as accurate predictors of survival. Eight variables (haemoglobin, C-reactive protein, white blood cell count, Eastern Cooperative Oncology Group performance status, cancer type, pleural fluid TIMP1 concentrations, and previous chemotherapy or radiotherapy) were validated and used to develop a survival score. Internal validation with bootstrap resampling and external validation with 162 patients from two independent datasets showed good discrimination (C statistic values of 0·78 [95% CI 0·72-0·83] for internal validation and 0·89 [0·84-0·93] for external validation of the clinical PROMISE score). To our knowledge, the PROMISE score is the first prospectively validated prognostic model for malignant pleural effusion that combines biological and clinical parameters to accurately estimate 3-month mortality. It is a robust, clinically relevant prognostic score that can be applied immediately, provide important information on patient prognosis, and guide the selection of appropriate management strategies. European Respiratory Society, Medical Research Funding-University of Oxford, Slater & Gordon Research Fund, and Oxfordshire Health Services Research Committee Research Grants. Copyright © 2018 Elsevier Ltd. All rights reserved.
Trapping of N 2, CO and Ar in amorphous ice—Application to comets
NASA Astrophysics Data System (ADS)
Bar-Nun, A.; Notesco, G.; Owen, T.
2007-10-01
Recent attempts using high resolution spectra to detect N +2 in several comets were unsuccessful [Cochran, A.L., Cochran, W.D., Baker, E.S., 2000. Icarus 146, 583-593; Cochran, A.L., 2002. Astrophys. J. 576, L165-L168]. The upper limits on N +2 in comparison with the positively detected CO + for Comets C/1995 O1 Hale-Bopp, 122P/1995 S1 de Vico and 153P/2002 C1 Ikeya-Zhang range between N2+/CO<(0.65-5.4)×10. Ar was not detected in three recent comets [Weaver, H.A., Feldman, P.D., Combi, M.R., Krasnopolsky, V., Lisse, C.M., Shemansky, D.E., 2002. Astrophys. J. 576, L95-L98], with upper limits of Ar/CO<(3.4-7.8)×10 for Comets C/1999 T1 McNaught-Hartley, C/2001 A2 LINEAR and C/2000 WM1 LINEAR. The Ar detected by Stern et al. [Stern, S.A., Slater, D.C., Festou, M.C., Parker, J.Wm., Gladstone, G.R., A'Hearn, M.F., Wilkinson, E., 2000. Astrophys. J. 544, L169-L172] for Comet C/1995 O1 Hale-Bopp, gives a ratio Ar/CO=7.25×10, which was not confirmed by Cosmovici et al. [Cosmovici, C.B., Bratina, V., Schwarz, G., Tozzi, G., Mumma, M.J., Stalio, R., 2006. Astrophys. Space Sci. 301, 135-143]. Trying to solve the two problems, we studied experimentally the trapping of N+CO+Ar in amorphous water ice, at 24-30 K. CO was found to be trapped in the ice 20-70 times more efficiently than N 2 and with the same efficiency as Ar. The resulting Ar/CO ratio of 1.2×10 is consistent with Weaver et al.'s [Weaver, H.A., Feldman, P.D., Combi, M.R., Krasnopolsky, V., Lisse, C.M., Shemansky, D.E., 2002. Astrophys. J. 576, L95-L98] non-detection of Ar. However, with an extreme starting value for N 2/CO = 0.22 in the region where the ice grains which agglomerated to produce comet nuclei were formed, the expected N 2/CO ratio in the cometary ice should be 6.6×10, much higher than its non-detection limit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deka, Bhargab; Kundu, Ashis; Ghosh, Subhradip
2015-10-07
Crystallographic and magnetic properties of bulk Co{sub 2}Fe(Ge{sub 1−x}Si{sub x}) alloys with 0 ≤ x ≤ 1, synthesized by arc melting method, have been studied. Co{sub 2}FeSi alloy has been found to crystallize with L2{sub 1} structure, but the super-lattice peaks are absent in the X-ray diffraction patterns of alloys containing high Ge concentration. Unit cell volume of this series of alloys decreased from 185.2 to 178.5 Å{sup 3} as Si content was increased from 0 to 1.00. All alloy compositions exhibit ferromagnetic behavior with a high Curie temperature (T{sub C}). T{sub C} showed a systematic variation with x. A comparison between the valuesmore » of saturation magnetization (M{sub s}) and effective moment per magnetic atom p{sub c} estimated from the temperature dependent susceptibility data above T{sub C}, shows that the alloys have half-metallic character. The alloy with x = 0 follows Slater-Pauling (S-P) rule with M{sub s} of 5.99μ{sub B}. However, M{sub s} for the alloy with x = 1.00 was found to be 5.42μ{sub B}, which is lower than the value of 6.0μ{sub B} predicted by S-P rule. Since atomic disorder is known to affect the M{sub s} and electronic structure of these alloys, ab initio calculations were carried out to explain the deviation in observed M{sub s} from S-P rule prediction and the half-metallic character of the alloys. Ab initio calculations reveal that alloys with L2{sub 1} structure have M{sub s} value as predicted by S-P rule. However, introduction of 12.5% DO{sub 3} disorder, which occurs due to swapping of Co and Fe atoms in the unit cell, decreases M{sub s} of alloys with x > 0 from the S-P prediction to values obtained experimentally. The results analyzed from the view point of electronic structure of the alloys in different ordered states bring out the influence of disorder on the observed magnetic properties of these technologically important alloys.« less
Kilpert, Fabian; Podsiadlowski, Lars
2006-01-01
Background Sequence data and other characters from mitochondrial genomes (gene translocations, secondary structure of RNA molecules) are useful in phylogenetic studies among metazoan animals from population to phylum level. Moreover, the comparison of complete mitochondrial sequences gives valuable information about the evolution of small genomes, e.g. about different mechanisms of gene translocation, gene duplication and gene loss, or concerning nucleotide frequency biases. The Peracarida (gammarids, isopods, etc.) comprise about 21,000 species of crustaceans, living in many environments from deep sea floor to arid terrestrial habitats. Ligia oceanica is a terrestrial isopod living at rocky seashores of the european North Sea and Atlantic coastlines. Results The study reveals the first complete mitochondrial DNA sequence from a peracarid crustacean. The mitochondrial genome of Ligia oceanica is a circular double-stranded DNA molecule, with a size of 15,289 bp. It shows several changes in mitochondrial gene order compared to other crustacean species. An overview about mitochondrial gene order of all crustacean taxa yet sequenced is also presented. The largest non-coding part (the putative mitochondrial control region) of the mitochondrial genome of Ligia oceanica is unexpectedly not AT-rich compared to the remainder of the genome. It bears two repeat regions (4× 10 bp and 3× 64 bp), and a GC-rich hairpin-like secondary structure. Some of the transfer RNAs show secondary structures which derive from the usual cloverleaf pattern. While some tRNA genes are putative targets for RNA editing, trnR could not be localized at all. Conclusion Gene order is not conserved among Peracarida, not even among isopods. The two isopod species Ligia oceanica and Idotea baltica show a similarly derived gene order, compared to the arthropod ground pattern and to the amphipod Parhyale hawaiiensis, suggesting that most of the translocation events were already present the last common ancestor of these isopods. Beyond that, the positions of three tRNA genes differ in the two isopod species. Strand bias in nucleotide frequency is reversed in both isopod species compared to other Malacostraca. This is probably due to a reversal of the replication origin, which is further supported by the fact that the hairpin structure typically found in the control region shows a reversed orientation in the isopod species, compared to other crustaceans. PMID:16987408
Gradisar, Michael; Dohnt, Hayley; Gardner, Greg; Paine, Sarah; Starkey, Karina; Menne, Annemarie; Slater, Amy; Wright, Helen; Hudson, Jennifer L.; Weaver, Edward; Trenowden, Sophie
2011-01-01
Objective: To evaluate cognitive-behavior therapy plus bright light therapy (CBT plus BLT) for adolescents diagnosed with delayed sleep phase disorder (DSPD). Design: Randomized controlled trial of CBT plus BLT vs. waitlist (WL) control with comparisons at pre- and post-treatment. There was 6-month follow-up for the CBT plus BLT group only. Setting: Flinders University Child & Adolescent Sleep Clinic, Adelaide, South Australia. Patients: 49 adolescents (mean age 14.6 ± 1.0 y, 53% males) diagnosed with DSPD; mean chronicity 4 y 8 months; 16% not attending school. Eighteen percent of adolescents dropped out of the study (CBT plus BLT: N = 23 vs WL: N = 17). Interventions: CBT plus BLT consisted of 6 individual sessions, including morning bright light therapy to advance adolescents' circadian rhythms, and cognitive restructuring and sleep education to target associated insomnia and sleep hygiene. Measurements and Results: DSPD diagnosis was performed via a clinical interview and 7-day sleep diary. Measurements at each time-point included online sleep diaries and scales measuring sleepiness, fatigue, and depression symptoms. Compared to WL, moderate-to-large improvements (d = 0.65-1.24) were found at post-treatment for CBT plus BLT adolescents, including reduced sleep latency, earlier sleep onset and rise times, total sleep time (school nights), wake after sleep onset, sleepiness, and fatigue. At 6-month follow-up (N = 15), small-to-large improvements (d = 0.24-1.53) continued for CBT plus BLT adolescents, with effects found for all measures. Significantly fewer adolescents receiving CBT plus BLT met DPSD criteria at post-treatment (WL = 82% vs. CBT plus BLT = 13%, P < 0.0001), yet 13% still met DSPD criteria at the 6-month follow-up. Conclusions: CBT plus BLT for adolescent DSPD is effective for improving multiple sleep and daytime impairments in the immediate and long-term. Studies evaluating the treatment effectiveness of each treatment component are needed. Clinical Trial Information: Australia – New Zealand Trials Registry Number: ACTRN12610001041044. Citation: Gradisar M; Dohnt H; Gardner G; Paine S; Starkey K; Menne A; Slater A; Wright H; Hudson JL; Weaver E; Trenowden S. A randomized controlled trial of cognitive-behavior therapy plus bright light therapy for adolescent delayed sleep phase disorder. SLEEP 2011;34(12):1671-1680. PMID:22131604
Theoretical Modeling for the X-ray Spectroscopy of Iron-bearing MgSiO3 under High Pressure
NASA Astrophysics Data System (ADS)
Wang, X.; Tsuchiya, T.
2012-12-01
The behaviors of iron (Fe) in MgSiO3 perovskite, including valence state, spin state, and chemical environments, at high pressures are of fundamental importance for more detailed understanding the properties of the Earth's lower mantle. The pressure induced spin transition of Fe-bearing MgO and MgSiO3 are detected often by using high-resolution K-edge X-ray emission spectroscopy (XES) [1,2,3] and confirmed by theoretical simulations. [4,5] Since the Fe K-edge XES is associated to the 3p orbital, which is far from the valence orbitals (3d and 4s), it provides no information about its coordination environments. However, the Fe L-edge XES and X-ray absorption spectroscopy (XAS) can directly present the distribution and intensity of Fe-3d character. To identify both the spin states and the coordination environments of iron-bearing MgSiO3, we systematically investigate the L-edge XAS, XES and X-ray photoelectron (XPS) spectroscopy of Fe2+- and Fe3+-bearing MgSiO3 under high pressure by using the first-principles density functional method combined with the slater-transition method. Our results show that Fe2+ and Fe3+ can be distinguished easily by taking the XPS spectra. The spin transition of Fe2+ and Fe3+ can also be clearly certified by XAS and XES. Interestingly, the broadness of L-edge XES of Fe changes depending on the iron position, meaning that its coordination environment might also be distinguishable by using high-resolution XES measurements. Research supported by the Ehime University G-COE program and KAKENHI. [1] James Badro, Guillaume Fiquet, FranÇois Guyot, Jean-Pascal Rueff, Viktor V. Struzhkin, György VankÓ, and Giulio Monaco. Science 300, 789 (2003), [2] James Badro, Jean-Pascal Rueff, György VankÓ, Giulio Monaco, Guillaume Fiquet, and FranÇois Guyot, Science 305, 383 (2004), [3] Jung-Fu Lin, Viktor V. Struzhkin, Steven D. Jacobsen, Michael Y. Hu, Paul Chow, Jennifer Kung, Haozhe Liu, Ho-kwang Mao, and Gussell J. Hemley, Nature 436, 377 (2005). [4] Taku Tsuchiya, Renata M. Wentzcovitch, Cesar R.S. da Silva, and Stefano de Gironcoli, Phys. Rev. Lett. 96, 198501 (2006). [4] Han Hsu, Peter Blaha, Matteo Cococcioni, and Renata M. Wentzcovitch, Phys. Rev. Lett. 106, 118501 (2011).
Electronic Structure and Properties of Berkelium Iodates.
Silver, Mark A; Cary, Samantha K; Garza, Alejandro J; Baumbach, Ryan E; Arico, Alexandra A; Galmin, Gregory A; Chen, Kuan-Wen; Johnson, Jason A; Wang, Jamie C; Clark, Ronald J; Chemey, Alexander; Eaton, Teresa M; Marsh, Matthew L; Seidler, Kevin; Galley, Shane S; van de Burgt, Lambertus; Gray, Ashley L; Hobart, David E; Hanson, Kenneth; Van Cleve, Shelley M; Gendron, Frédéric; Autschbach, Jochen; Scuseria, Gustavo E; Maron, Laurent; Speldrich, Manfred; Kögerler, Paul; Celis-Barros, Cristian; Páez-Hernández, Dayán; Arratia-Pérez, Ramiro; Ruf, Michael; Albrecht-Schmitt, Thomas E
2017-09-27
The reaction of 249 Bk(OH) 4 with iodate under hydrothermal conditions results in the formation of Bk(IO 3 ) 3 as the major product with trace amounts of Bk(IO 3 ) 4 also crystallizing from the reaction mixture. The structure of Bk(IO 3 ) 3 consists of nine-coordinate Bk III cations that are bridged by iodate anions to yield layers that are isomorphous with those found for Am III , Cf III , and with lanthanides that possess similar ionic radii. Bk(IO 3 ) 4 was expected to adopt the same structure as M(IO 3 ) 4 (M = Ce, Np, Pu), but instead parallels the structural chemistry of the smaller Zr IV cation. Bk III -O and Bk IV -O bond lengths are shorter than anticipated and provide further support for a postcurium break in the actinide series. Photoluminescence and absorption spectra collected from single crystals of Bk(IO 3 ) 4 show evidence for doping with Bk III in these crystals. In addition to luminescence from Bk III in the Bk(IO 3 ) 4 crystals, a broad-band absorption feature is initially present that is similar to features observed in systems with intervalence charge transfer. However, the high-specific activity of 249 Bk (t 1/2 = 320 d) causes oxidation of Bk III and only Bk IV is present after a few days with concomitant loss of both the Bk III luminescence and the broadband feature. The electronic structure of Bk(IO 3 ) 3 and Bk(IO 3 ) 4 were examined using a range of computational methods that include density functional theory both on clusters and on periodic structures, relativistic ab initio wave function calculations that incorporate spin-orbit coupling (CASSCF), and by a full-model Hamiltonian with spin-orbit coupling and Slater-Condon parameters (CONDON). Some of these methods provide evidence for an asymmetric ground state present in Bk IV that does not strictly adhere to Russel-Saunders coupling and Hund's Rule even though it possesses a half-filled 5f 7 shell. Multiple factors contribute to the asymmetry that include 5f electrons being present in microstates that are not solely spin up, spin-orbit coupling induced mixing of low-lying excited states with the ground state, and covalency in the Bk IV -O bonds that distributes the 5f electrons onto the ligands. These factors are absent or diminished in other f 7 ions such as Gd III or Cm III .
Characterizing Dw1335-29, a Recently Discovered Dwarf Satellite of M83
NASA Astrophysics Data System (ADS)
Carrillo, Andreia Jessica; Bell, Eric F.; Bailin, Jeremy; Monachesi, Antonela
2016-01-01
Simulations of galaxy formation in a cosmological context predict that galaxies should be surrounded by hundreds of relatively massive dark matter subhalos, each of which was expected to host a dwarf satellite galaxy. Large numbers of luminous dwarf galaxies do not exist around the Milky Way or M31 - this has been termed the missing satellite problem. There are a number of possible physical drivers of this discrepancy, some of which might predict significant differences from galaxy to galaxy. Accordingly, there are a number of efforts whose goal is to solidify and augment the census of dwarf satellites of external galaxies, outside the Local Group. Recently, Mueller, Jergen & Bingelli (2015; arXiv.1509.04931) presented 16 dwarf galaxy candidates in the vicinity of M83 using the Dark Energy CAMera (DECAM). With a field from the HST/GHOSTS survey that partly covers dw1335-29 (Radburn-Smith et al. 2011; ApJS, 195, 18) in conjunction with complementary ground-based images from VIMOS that cover the whole dwarf, we confirm that one of the candidates dw1335-29 is a dwarf satellite of M83, at a projected distance from M83 of 26 kpc and a with distance modulus of m-M = 28.5-0.1+0.3, placing it in the M83 group. From our VIMOS imaging that covers the entire dwarf, we estimate an absolute magnitude of MV = -9.8-0.1+0.3, show that it is elongated with an ellipticity of 0.35+/-0.15, and has a half light radius of 500+/-50pc. Dw1335-29 has both a somewhat irregular shape and has superimposed young stars in the resolved stellar population maps, leading us to classify this galaxy as a faint dwarf irregular or transition dwarf. This is especially curious, as with a projected distance of only 26kpc from M83, our prior expectation from study of the Local Group (following e.g., Grebel et al. 2003; AJ, 125, 1926, Slater & Bell 2013; ApJ, 772, 15) would be that dw1335-29 would lack recent star formation. Further study of M83's dwarf population will reveal if star formation in its dwarfs is commonplace (suggesting a lack of a hot gas envelope for M83 that would quench star formation) or rare (suggesting that dw1335-29 is at much larger 3D distance from M83, and is fortuitously projected to small radii).
NASA Astrophysics Data System (ADS)
Navarro Pérez, R.; Schunck, N.; Dyhdalo, A.; Furnstahl, R. J.; Bogner, S. K.
2018-05-01
Background: Energy density functional methods provide a generic framework to compute properties of atomic nuclei starting from models of nuclear potentials and the rules of quantum mechanics. Until now, the overwhelming majority of functionals have been constructed either from empirical nuclear potentials such as the Skyrme or Gogny forces, or from systematic gradient-like expansions in the spirit of the density functional theory for atoms. Purpose: We seek to obtain a usable form of the nuclear energy density functional that is rooted in the modern theory of nuclear forces. We thus consider a functional obtained from the density matrix expansion of local nuclear potentials from chiral effective field theory. We propose a parametrization of this functional carefully calibrated and validated on selected ground-state properties that is suitable for large-scale calculations of nuclear properties. Methods: Our energy functional comprises two main components. The first component is a non-local functional of the density and corresponds to the direct part (Hartree term) of the expectation value of local chiral potentials on a Slater determinant. Contributions to the mean field and the energy of this term are computed by expanding the spatial, finite-range components of the chiral potential onto Gaussian functions. The second component is a local functional of the density and is obtained by applying the density matrix expansion to the exchange part (Fock term) of the expectation value of the local chiral potential. We apply the UNEDF2 optimization protocol to determine the coupling constants of this energy functional. Results: We obtain a set of microscopically constrained functionals for local chiral potentials from leading order up to next-to-next-to-leading order with and without three-body forces and contributions from Δ excitations. These functionals are validated on the calculation of nuclear and neutron matter, nuclear mass tables, single-particle shell structure in closed-shell nuclei, and the fission barrier of 240Pu. Quantitatively, they perform noticeably better than the more phenomenological Skyrme functionals. Conclusions: The inclusion of higher-order terms in the chiral perturbation expansion seems to produce a systematic improvement in predicting nuclear binding energies while the impact on other observables is not really significant. This result is especially promising since all the fits have been performed at the single-reference level of the energy density functional approach, where important collective correlations such as center-of-mass correction, rotational correction, or zero-point vibrational energies have not been taken into account yet.
Muscle 'contractures' and the 'stiff-man' syndrome.
Slater, J D
1986-12-01
The aetiology of the clinical stiff-man syndrome is likely to be heterogenous, but until we have more precise methods of identifying an individual cause the need will continue for this rather flippant appellation in patients whose condition cannot be described in any other way. It is also important because patients may otherwise become labelled as suffering from a psychiatric disorder and may even be falsely accused of abusing diazepam (Westblom, 1978). The reverse is also true, and patients may masquerade as stiff men or women (Price and Allott, 1958; Casati and Rossi, 1969). The endocrine dimension remains and should be tested for carefully, particularly in patients with predominantly lower-limb rigidity whose spasms are a relatively minor aspect of their clinical syndrome. Clearly those patients described by George et al (1984) and Slater (1960) as suffering from the stiff-man syndrome need to be reclassified as examples of the hormonal stiff muscle syndrome, and there may be others so misclassified. An endocrine aetiology may easily be missed in a patient with relatively minor muscle stiffness, pain and cramps, such as the man described by Yunus et al (1981) whose myalgia, 'arthralgia' and muscle tenderness vanished completely within four days of taking physiological replacement doses of cortisone acetate as treatment for his hypopituitarism. The rarity of the stiff-man syndrome makes prospective studies of its aetiology and treatment impossible, yet the dramatic and devastating nature of the syndrome suggests that such cases may be extreme examples of a much more common condition. On the other hand, it is possible to argue that once the psychiatric, the overtly neurological and the endocrine cases are omitted we are left with nothing. However, this is just where Moersch and Woltman came in; they could not explain 14 of their cases. Despite modern technology, despite refinements of diagnosis and despite the increasing recognition of the stiff-man syndrome as a heterogeneous condition, there still remains--albeit very rarely--a cohort of patients with progressive proximal muscular stiffness and spasms who defy proper scientific explanation, but who are likely to suffer from a chronic myelitis which destroys normal feedback mechanisms between muscle spindles and the spinal cord. Experience over the last 30 years has served at least to alert people to the psychiatric possibilities, to remove any question of primary muscle or tendon disease and to point to the usefulness of diazepam. With hope, this chapter provides an endocrine dimension which offers an actual cure and therefore deserves to be more widely recognized.
Generalized Jastrow Variational Method for Liquid HELIUM-3-HELIUM-4 Mixtures at T = 0 K.
NASA Astrophysics Data System (ADS)
Mirabbaszadeh, Kavoos
Microscopic theory of dilute liquid { ^3 He}-{^4 He} mixtures is of great interest, because it provides a physical realization of a nearly degenerate weakly interacting Fermion system. An understanding of properties of the mixtures has received considerable attention both theoretically and experimentally over the past thirty years. We present here a variational procedure based on the Jastrow function for the ground state of {^3 He}- {^4 He} mixtures by minimizing the total energy of the mixture using the hypernetted-chain (HNC) approximation and the Percus-Yevick (PY) approximation for the two body correlation functions. Our goal is to compute from first principles the internal energy of the system and the various two body correlation functions at various densities and compare the results with experiment. The Jastrow variational method for the ground state energy of liquid {^4 He} consists of the following ansatz for the wave function Psi_alpha {rm(vec r_{1 alpha},} {vec r_{2alpha},} dots, {vec r_{N _alpha})} = prod _{rm i < j} {rm f_ {alphaalpha}(r_{ij}). } For a {^3 He } system the corresponding ansatz is Psi_beta {rm( vec r_{1beta},} {vec r_{2beta },} dots, {vec r_{N_beta})} = {[prod _{i < j} f_{betabeta }(r_{ij})]} Phi {rm( vec r_{1beta},} {vec r_{2beta },} dots, {vec r_{Nbeta}),} where Phi is a Slater determinant of plane waves for the ground state of the Fermion system. The total energy per particle can be written in the form: E = x_sp{alpha}{2} E_{alphaalpha} + x_sp{beta}{2 }E_{betabeta } + 2x_{alpha} x_{beta}E _{alphabeta}, where E_{alphaalpha} , E_{betabeta} , E_{alphabeta} are unknown parameters to be determined from a microscopic theory. Using the Jastrow wave function Psi for the mixture, a general expression is given for the ground state energy in terms of the two body potential and two and three body correlation functions. The Kirkwood Super-position Approximation (KSA) is used for the three-body correlation functions. The antisymmetry of the wave function for Fermions is incorporated following the procedure given earlier by Lado, Inguva and Smith. This procedure for treating the antisymmetry of the wave function simplifies the equations for the two-body correlation functions considerably. The equations for the correlation functions are solved in the hypernetted-chain approximation. Once the two-particle correlation functions for the mixture ( ^3He-^4He) have been obtained, the energy is minimized with respect to the variational parameters involved in the Jastrow wave function. The binding energy and the optimal correlation functions are then obtained as a function of the concentration of ^3He atoms in the mixture. (Abstract shortened with permission of author.).
Theory of electron transfer and molecular state in DNA
NASA Astrophysics Data System (ADS)
Endres, Robert Gunter
2002-09-01
In this thesis, a mechanism for long-range electron transfer in DNA and a systematic search for high conductance DNA are developed. DNA is well known for containing the genetic code of all living species. On the other hand, there are some experimental indications that DNA can mediate effectively long-range electron transfer leading to the concept of chemistry at a distance. This can be important for DNA damage and healing. In the first part of the thesis, a possible mechanism for long-range electron transfer is introduced. The weak distance dependent electron transfer was experimentally observed using transition metal intercalators for donor and acceptor. In our model calculations, the transfer is mediated by the molecular analogue of a Kondo bound state well known from solid state physics of mixed-valence rare-earth compounds. We believe this is quite realistic, since localized d orbitals of the transition metal ions could function as an Anderson impurity embedded in a reservoir of rather delocalized molecular orbitals of the intercalator ligands and DNA pi orbitals. The effective Anderson model is solved with a physically intuitive variational ansatz as well as with the essentially exact DMRG method. The electronic transition matrix element, which is important because it contains the donor-acceptor distance dependence, is obtained with the Mulliken-Hush algorithm as well as from Born-Oppenheimer potential energy surfaces. Our possible explanation of long-range electron transfer is put in context to other more conventional mechanisms which also could lead to similar behavior. Another important issue of DNA is its possible use for nano-technology. Although DNA's mechanical properties are excellent, the question whether it can be conducting and be used for nano-wires is highly controversial. Experimentally, DNA shows conducting, semi-conducting and insulating properties. Motivated by these wide ranging experimental results on the conductivity of DNA, we have embarked on a theoretical effort to ascertain what conditions might induce such remarkable behavior. We use a combination of an ab initio density functional theory method and a parameterized Huckel-Slater-Koster model. Our focus here is to examine whether any likely DNA structures or environments can yield reduced activation gaps to conduction or enhanced electronic overlaps. In particular, we study a hypothetical stretched ribbon structure, A-, and B-form DNA, and the effects of counterions and humidity. Unlike solids, DNA and other molecules are considered soft condensed matter. Hence, we study the influence of vibrations upon the electronic structure of DNA. We calculate parameters for charge transfer rates between adjacent bases. We find good agreement between our estimated rates and recent experimental data assuming that torsional vibrations limit the charge transfer most significantly.
Definition of molecular structure: by choice or by appeal to observation?
Bader, Richard F W
2010-07-22
There are two schools of thought in chemistry: one derived from the valence bond and molecular orbital models of bonding, the other appealing directly to the measurable electron density and the quantum mechanical theorems that determine its behavior, an approach embodied in the quantum theory of atoms in molecules, QTAIM. No one questions the validity of the former approach, and indeed molecular orbital models and QTAIM play complementary roles, the models finding expression in the principles of physics. However, some orbital proponents step beyond the models to impose their personal stamp on their use in interpretive chemistry, by denying the possible existence of a physical basis for the concepts of chemistry. This places them at odds with QTAIM, whose very existence stems from the discovery in the observable topology of the electron density, the definitions of atoms, of the bonding between atoms and hence of molecular structure. Relating these concepts to the electron density provides the necessary link for their ultimate quantum definition. This paper explores in depth the possible causes of the difficulties some have in accepting the quantum basis of structure beginning with the arguments associated with the acceptance of a "bond path" as a criterion for bonding. This identification is based on the finding that all classical structures may be mapped onto molecular graphs consisting of bond paths linking neighboring atoms, a mapping that has no known exceptions and one that is further bolstered by the finding that there are no examples of "missing bond paths". Difficulties arise when the quantum concept is applied to systems that are not amenable to the classical models of bonding. Thus one is faced with the recurring dilemma of science, of having to escape the constraints of a model that requires a change in the existing paradigm, a process that has been in operation since the discovery of new and novel structures necessitated the extension of the Lewis model and the octet rule. The paper reviews all facets of bonding beginning with the work of Pauling and Slater in their accounting for crystal structures, taking note of Pauling's advocating possible bonding between large anions. Many examples of nonbonded or van der Waals interactions are considered from both points of view. The final section deals with the consequences of the realization that bonded quantum atoms that share an interatomic surface do not "overlap". The time has come for entering students of chemistry to be taught that the electron density can be seen, touched, and measured and that the chemical structures they learn are in fact the tracings of "bonds" onto lines of maximum density that link bonded nuclei. Matter, as we perceive it, is bound by the electrostatic force of attraction between the nuclei and the electron density.
NASA Astrophysics Data System (ADS)
Hill, J. Grant; Peterson, Kirk A.; Knizia, Gerald; Werner, Hans-Joachim
2009-11-01
Accurate extrapolation to the complete basis set (CBS) limit of valence correlation energies calculated with explicitly correlated MP2-F12 and CCSD(T)-F12b methods have been investigated using a Schwenke-style approach for molecules containing both first and second row atoms. Extrapolation coefficients that are optimal for molecular systems containing first row elements differ from those optimized for second row analogs, hence values optimized for a combined set of first and second row systems are also presented. The new coefficients are shown to produce excellent results in both Schwenke-style and equivalent power-law-based two-point CBS extrapolations, with the MP2-F12/cc-pV(D,T)Z-F12 extrapolations producing an average error of just 0.17 mEh with a maximum error of 0.49 for a collection of 23 small molecules. The use of larger basis sets, i.e., cc-pV(T,Q)Z-F12 and aug-cc-pV(Q,5)Z, in extrapolations of the MP2-F12 correlation energy leads to average errors that are smaller than the degree of confidence in the reference data (˜0.1 mEh). The latter were obtained through use of very large basis sets in MP2-F12 calculations on small molecules containing both first and second row elements. CBS limits obtained from optimized coefficients for conventional MP2 are only comparable to the accuracy of the MP2-F12/cc-pV(D,T)Z-F12 extrapolation when the aug-cc-pV(5+d)Z and aug-cc-pV(6+d)Z basis sets are used. The CCSD(T)-F12b correlation energy is extrapolated as two distinct parts: CCSD-F12b and (T). While the CCSD-F12b extrapolations with smaller basis sets are statistically less accurate than those of the MP2-F12 correlation energies, this is presumably due to the slower basis set convergence of the CCSD-F12b method compared to MP2-F12. The use of larger basis sets in the CCSD-F12b extrapolations produces correlation energies with accuracies exceeding the confidence in the reference data (also obtained in large basis set F12 calculations). It is demonstrated that the use of the 3C(D) Ansatz is preferred for MP2-F12 CBS extrapolations. Optimal values of the geminal Slater exponent are presented for the diagonal, fixed amplitude Ansatz in MP2-F12 calculations, and these are also recommended for CCSD-F12b calculations.
Yu, Haoyu; Truhlar, Donald G
2015-07-14
Although many transition metal complexes are known to have high multireference character, the multireference character of main-group closed-shell singlet diatomic molecules like BeF, CaO, and MgO has been less studied. However, many group-1 and group-2 diatomic molecules do have multireference character, and they provide informative systems for studying multireference character because they are simpler than transition metal compounds. The goal of the present work is to understand these multireference systems better so that, ultimately, we can apply what we learn to more complicated multireference systems and to the design of new exchange-correlation functionals for treating multireference systems more adequately. Fourteen main-group diatomic molecules and one triatomic molecule (including radicals, cations, and anions, as well as neutral closed-shell species) have been studied for this article. Eight of these molecules contain a group-1 element, and six contain a group-2 element. Seven of these molecules are multireference systems, and eight of them are single-reference systems. Fifty-three exchange-correlation functionals of 11 types [local spin-density approximation (LSDA), generalized gradient approximation (GGA), nonseparable gradient approximation (NGA), global-hybrid GGA, meta-GGA, meta-NGA, global-hybrid meta GGA, range-separated hybrid GGA, range-separated hybrid meta-GGA, range-separated hybrid meta-NGA, and DFT augmented with molecular mechanics damped dispersion (DFT-D)] and the Hartree-Fock method have been applied to calculate the bond distance, bond dissociation energy (BDE), and dipole moment of these molecules. All of the calculations are converged to a stable solution by allowing the symmetry of the Slater determinant to be broken. A reliable functional should not only predict an accurate BDE but also predict accurate components of the BDE, so each bond dissociation energy has been decomposed into ionization potential (IP) of the electropositive element, electron affinity of the electronegative bonding partner (EA), atomic excitation energy (EE) to prepare the valence states of the interacting partners, and interaction energy (IE) of the valence-prepared states. Adding Hartree-Fock exchange helps to obtain better results for atomic excitation energy, and this leads to improvements in getting the right answer for the right reason. The following functionals are singled out for reasonably good performance on all three of bond distance, BDE, and dipole moment: B97-1, B97-3, MPW1B95, M05, M06, M06-2X, M08-SO, N12-SX, O3LYP, TPSS, τ-HCTHhyb, and GAM; all but two (TPSS and GAM) of these functionals are hybrid functionals.
Shea, Linda; Frisch, Noreen
2016-09-01
The purpose of this article is to examine Dossey's theory of integral nursing in relation to its major theoretical source, Wilber's integral theory. Although several nursing scholars have written about integral theory in relation to nursing scholarship and practice, Dossey's theory of integral nursing may be influencing how nurses take up integral theory in a significant way due to an extensive outreach in the holistic nursing community. Despite this wide circulation, the theory of integral nursing has yet to be reviewed in the nursing literature. This article (a) compares Dossey's theory of integral nursing with Wilber's integral theory and (b) contrasts Dossey's integral approach with another integral approach used by other scholars of integral theory. © The Author(s) 2015.
Shared or Integrated: Which Type of Integration is More Effective Improves Students’ Creativity?
NASA Astrophysics Data System (ADS)
Mariyam, M.; Kaniawati, I.; Sriyati, S.
2017-09-01
Integrated science learning has various types of integration. This study aims to apply shared and integrated type of integration with project based learning (PjBL) model to improve students’ creativity on waste recycling theme. The research method used is a quasi experiment with the matching-only pre test-post test design. The samples of this study are 108 students consisting of 36 students (experiment class 1st), 35 students (experiment class 2nd) and 37 students (control class 3rd) at one of Junior High School in Tanggamus, Lampung. The results show that there is difference of creativity improvement in the class applied by PjBL model with shared type of integration, integrated type of integration and without any integration in waste recycling theme. Class applied by PjBL model with shared type of integration has the higher creativity improvement than the PjBL model with integrated type of integration and without any integration. Integrated science learning using shared type only combines 2 lessons, hence an intact concept is resulted. So, PjBL model with shared type of integration more effective improves students’ creativity than integrated type.
Mayhew, Susannah H; Ploubidis, George B; Sloggett, Andy; Church, Kathryn; Obure, Carol D; Birdthistle, Isolde; Sweeney, Sedona; Warren, Charlotte E; Watts, Charlotte; Vassall, Anna
2016-01-01
The body of knowledge on evaluating complex interventions for integrated healthcare lacks both common definitions of 'integrated service delivery' and standard measures of impact. Using multiple data sources in combination with statistical modelling the aim of this study is to develop a measure of HIV-reproductive health (HIV-RH) service integration that can be used to assess the degree of service integration, and the degree to which integration may have health benefits to clients, or reduce service costs. Data were drawn from the Integra Initiative's client flow (8,263 clients in Swaziland and 25,539 in Kenya) and costing tools implemented between 2008-2012 in 40 clinics providing RH services in Kenya and Swaziland. We used latent variable measurement models to derive dimensions of HIV-RH integration using these data, which quantified the extent and type of integration between HIV and RH services in Kenya and Swaziland. The modelling produced two clear and uncorrelated dimensions of integration at facility level leading to the development of two sub-indexes: a Structural Integration Index (integrated physical and human resource infrastructure) and a Functional Integration Index (integrated delivery of services to clients). The findings highlight the importance of multi-dimensional assessments of integration, suggesting that structural integration is not sufficient to achieve the integrated delivery of care to clients--i.e. "functional integration". These Indexes are an important methodological contribution for evaluating complex multi-service interventions. They help address the need to broaden traditional evaluations of integrated HIV-RH care through the incorporation of a functional integration measure, to avoid misleading conclusions on its 'impact' on health outcomes. This is particularly important for decision-makers seeking to promote integration in resource constrained environments.
Integration mechanisms and hospital efficiency in integrated health care delivery systems.
Wan, Thomas T H; Lin, Blossom Yen-Ju; Ma, Allen
2002-04-01
This study analyzes integration mechanisms that affect system performances measured by indicators of efficiency in integrated delivery systems (IDSs) in the United States. The research question is, do integration mechanisms improve IDSs' efficiency in hospital care? American Hospital Association's Annual Survey (1998) and Dorenfest's Survey on Information Systems in Integrated Healthcare Delivery Systems (1998) were used to conduct the study, using IDS as the unit of analysis. A covariance structure equation model of the effects of system integration mechanisms on IDS performance was formulated and validated by an empirical examination of IDSs. The study sample includes 973 hospital-based integrated health care delivery systems operating in the United States, carried in the list of Dorenfests Survey on Information Systems in Integrated Health care Delivery Systems. The measurement indicators of system integration mechanisms are categorized into six related domains: informatic integration, case management, hybrid physician-hospital integration, forward integration, backward integration, and high tech medical services. The multivariate analysis reveals that integration mechanisms in system operation are positively correlated and positively affect IDSs' efficiency. The six domains of integration mechanisms account for 58.9% of the total variance in hospital performance. The service differentiation strategy such as having more high tech medical services have much stronger influences on efficiency than other integration mechanisms do. The beneficial effects of integration mechanisms have been realized in IDS performance. High efficiency in hospital care can be achieved by employing proper integration strategies in operations.
Mayhew, Susannah H.; Ploubidis, George B.; Sloggett, Andy; Church, Kathryn; Obure, Carol D.; Birdthistle, Isolde; Sweeney, Sedona; Warren, Charlotte E.; Watts, Charlotte; Vassall, Anna
2016-01-01
Background The body of knowledge on evaluating complex interventions for integrated healthcare lacks both common definitions of ‘integrated service delivery’ and standard measures of impact. Using multiple data sources in combination with statistical modelling the aim of this study is to develop a measure of HIV-reproductive health (HIV-RH) service integration that can be used to assess the degree of service integration, and the degree to which integration may have health benefits to clients, or reduce service costs. Methods and Findings Data were drawn from the Integra Initiative’s client flow (8,263 clients in Swaziland and 25,539 in Kenya) and costing tools implemented between 2008–2012 in 40 clinics providing RH services in Kenya and Swaziland. We used latent variable measurement models to derive dimensions of HIV-RH integration using these data, which quantified the extent and type of integration between HIV and RH services in Kenya and Swaziland. The modelling produced two clear and uncorrelated dimensions of integration at facility level leading to the development of two sub-indexes: a Structural Integration Index (integrated physical and human resource infrastructure) and a Functional Integration Index (integrated delivery of services to clients). The findings highlight the importance of multi-dimensional assessments of integration, suggesting that structural integration is not sufficient to achieve the integrated delivery of care to clients—i.e. “functional integration”. Conclusions These Indexes are an important methodological contribution for evaluating complex multi-service interventions. They help address the need to broaden traditional evaluations of integrated HIV-RH care through the incorporation of a functional integration measure, to avoid misleading conclusions on its ‘impact’ on health outcomes. This is particularly important for decision-makers seeking to promote integration in resource constrained environments. PMID:26800517
Valentijn, Pim P.; Schepman, Sanneke M.; Opheij, Wilfrid; Bruijnzeels, Marc A.
2013-01-01
Introduction Primary care has a central role in integrating care within a health system. However, conceptual ambiguity regarding integrated care hampers a systematic understanding. This paper proposes a conceptual framework that combines the concepts of primary care and integrated care, in order to understand the complexity of integrated care. Methods The search method involved a combination of electronic database searches, hand searches of reference lists (snowball method) and contacting researchers in the field. The process of synthesizing the literature was iterative, to relate the concepts of primary care and integrated care. First, we identified the general principles of primary care and integrated care. Second, we connected the dimensions of integrated care and the principles of primary care. Finally, to improve content validity we held several meetings with researchers in the field to develop and refine our conceptual framework. Results The conceptual framework combines the functions of primary care with the dimensions of integrated care. Person-focused and population-based care serve as guiding principles for achieving integration across the care continuum. Integration plays complementary roles on the micro (clinical integration), meso (professional and organisational integration) and macro (system integration) level. Functional and normative integration ensure connectivity between the levels. Discussion The presented conceptual framework is a first step to achieve a better understanding of the inter-relationships among the dimensions of integrated care from a primary care perspective. PMID:23687482
Valentijn, Pim P; Schepman, Sanneke M; Opheij, Wilfrid; Bruijnzeels, Marc A
2013-01-01
Primary care has a central role in integrating care within a health system. However, conceptual ambiguity regarding integrated care hampers a systematic understanding. This paper proposes a conceptual framework that combines the concepts of primary care and integrated care, in order to understand the complexity of integrated care. The search method involved a combination of electronic database searches, hand searches of reference lists (snowball method) and contacting researchers in the field. The process of synthesizing the literature was iterative, to relate the concepts of primary care and integrated care. First, we identified the general principles of primary care and integrated care. Second, we connected the dimensions of integrated care and the principles of primary care. Finally, to improve content validity we held several meetings with researchers in the field to develop and refine our conceptual framework. The conceptual framework combines the functions of primary care with the dimensions of integrated care. Person-focused and population-based care serve as guiding principles for achieving integration across the care continuum. Integration plays complementary roles on the micro (clinical integration), meso (professional and organisational integration) and macro (system integration) level. Functional and normative integration ensure connectivity between the levels. The presented conceptual framework is a first step to achieve a better understanding of the inter-relationships among the dimensions of integrated care from a primary care perspective.
Automatic detection, tracking and sensor integration
NASA Astrophysics Data System (ADS)
Trunk, G. V.
1988-06-01
This report surveys the state of the art of automatic detection, tracking, and sensor integration. In the area of detection, various noncoherent integrators such as the moving window integrator, feedback integrator, two-pole filter, binary integrator, and batch processor are discussed. Next, the three techniques for controlling false alarms, adapting thresholds, nonparametric detectors, and clutter maps are presented. In the area of tracking, a general outline is given of a track-while-scan system, and then a discussion is presented of the file system, contact-entry logic, coordinate systems, tracking filters, maneuver-following logic, tracking initiating, track-drop logic, and correlation procedures. Finally, in the area of multisensor integration the problems of colocated-radar integration, multisite-radar integration, radar-IFF integration, and radar-DF bearing strobe integration are treated.
Lao, Lixing; Ning, Zhipeng
2015-11-01
The European Congress for Integrative Medicine 2015 Global Summit on Integrative Medicine and Healthcare in Greater Copenhagen has successfully promoted integrative medicine to the public once again. Integrative medicine, which is called the art and science of healthcare by Nordic Integrative Medicine, has been widely used in the world. In Hong Kong, integrated traditional Chinese and Western medicine, which is also known as the Chinese version of integrative medicine, provides a valuable reference for the development of integrative medicine in the world. In this article, we introduce the development of traditional Chinese medicine in Hong Kong and an integrated traditional Chinese and Western medicine model in the University of Hong Kong-Shenzhen Hospital.
Li, Shasha; Nie, Hongchao; Lu, Xudong; Duan, Huilong
2015-02-01
Integration of heterogeneous systems is the key to hospital information construction due to complexity of the healthcare environment. Currently, during the process of healthcare information system integration, people participating in integration project usually communicate by free-format document, which impairs the efficiency and adaptability of integration. A method utilizing business process model and notation (BPMN) to model integration requirement and automatically transforming it to executable integration configuration was proposed in this paper. Based on the method, a tool was developed to model integration requirement and transform it to integration configuration. In addition, an integration case in radiology scenario was used to verify the method.
A Comprehensive Theory of Integration.
Singer, Sara J; Kerrissey, Michaela; Friedberg, Mark; Phillips, Russell
2018-03-01
Efforts to transform health care delivery to improve care have increasingly focused on care integration. However, variation in how integration is defined has complicated efforts to design, synthesize, and compare studies of integration in health care. Evaluations of integration initiatives would be enhanced by describing them according to clear definitions of integration and specifying which empirical relationships they seek to test-whether among types of integration or between integration and outcomes of care. Drawing on previous work, we present a comprehensive theoretical model of relationships between types of integration and propose how to measure them.
A Feature-Reinforcement-Based Approach for Supporting Poly-Lingual Category Integration
NASA Astrophysics Data System (ADS)
Wei, Chih-Ping; Chen, Chao-Chi; Cheng, Tsang-Hsiang; Yang, Christopher C.
Document-category integration (or category integration for short) is fundamental to many e-commerce applications, including information integration along supply chains and information aggregation by intermediaries. Because of the trend of globalization, the requirement for category integration has been extended from monolingual to poly-lingual settings. Poly-lingual category integration (PLCI) aims to integrate two document catalogs, each of which consists of documents written in a mix of languages. Several category integration techniques have been proposed in the literature, but these techniques focus only on monolingual category integration rather than PLCI. In this study, we propose a feature-reinforcement-based PLCI (namely, FR-PLCI) technique that takes into account the master documents of all languages when integrating source documents (in the source catalog) written in a specific language into the master catalog. Using the monolingual category integration (MnCI) technique as a performance benchmark, our empirical evaluation results show that our proposed FR-PLCI technique achieves better integration accuracy than MnCI does in both English and Chinese category integration tasks.
Hatano, Takashi; Sano, Daisuke; Takahashi, Hideaki; Hyakusoku, Hiroshi; Isono, Yasuhiro; Shimada, Shoko; Sawakuma, Kae; Takada, Kentaro; Oikawa, Ritsuko; Watanabe, Yoshiyuki; Yamamoto, Hiroyuki; Itoh, Fumio; Myers, Jeffrey N; Oridate, Nobuhiko
2017-04-01
Recent studies showed that human papillomavirus (HPV) integration contributes to the genomic instability seen in HPV-associated head and neck squamous cell carcinoma (HPV-HNSCC). However, the epigenetic alterations induced after HPV integration remains unclear. To identify the molecular details of HPV16 DNA integration and the ensuing patterns of methylation in HNSCC, we performed next-generation sequencing using a target-enrichment method for the effective identification of HPV16 integration breakpoints as well as the characterization of genomic sequences adjacent to HPV16 integration breakpoints with three HPV16-related HNSCC cell lines. The DNA methylation levels of the integrated HPV16 genome and that of the adjacent human genome were also analyzed by bisulfite pyrosequencing. We found various integration loci, including novel integration sites. Integration loci were located predominantly in the intergenic region, with a significant enrichment of the microhomologous sequences between the human and HPV16 genomes at the integration breakpoints. Furthermore, various levels of methylation within both the human genome and the integrated HPV genome at the integration breakpoints in each integrant were observed. Allele-specific methylation analysis suggested that the HPV16 integrants remained hypomethylated when the flanking host genome was hypomethylated. After integration into highly methylated human genome regions, however, the HPV16 DNA became methylated. In conclusion, we found novel integration sites and methylation patterns in HPV-HNSCC using our unique method. These findings may provide insights into understanding of viral integration mechanism and virus-associated carcinogenesis of HPV-HNSCC. © 2016 UICC.
77 FR 54920 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-06
... . Name of Committee: Integrative, Functional and Cognitive Neuroscience Integrated Review [email protected] . Name of Committee: Integrative, Functional and Cognitive Neuroscience Integrated Review... Cognitive Neuroscience Integrated Review Group; Sensorimotor Integration Study Section. Date: October 2...
75 FR 52009 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-24
[email protected] . Name of Committee: Integrative, Functional and Cognitive Neuroscience Integrated Review... Cognitive Neuroscience Integrated Review Group; Sensorimotor Integration Study Section. Date: October 5...: Integrative, Functional and Cognitive Neuroscience Integrated Review Group; Cognitive Neuroscience Study...
Evaluating Simultaneous Integrals
ERIC Educational Resources Information Center
Kwong, Harris
2012-01-01
Many integrals require two successive applications of integration by parts. During the process, another integral of similar type is often invoked. We propose a method which can integrate these two integrals simultaneously. All we need is to solve a linear system of equations.
Shared mental models of integrated care: aligning multiple stakeholder perspectives.
Evans, Jenna M; Baker, G Ross
2012-01-01
Health service organizations and professionals are under increasing pressure to work together to deliver integrated patient care. A common understanding of integration strategies may facilitate the delivery of integrated care across inter-organizational and inter-professional boundaries. This paper aims to build a framework for exploring and potentially aligning multiple stakeholder perspectives of systems integration. The authors draw from the literature on shared mental models, strategic management and change, framing, stakeholder management, and systems theory to develop a new construct, Mental Models of Integrated Care (MMIC), which consists of three types of mental models, i.e. integration-task, system-role, and integration-belief. The MMIC construct encompasses many of the known barriers and enablers to integrating care while also providing a comprehensive, theory-based framework of psychological factors that may influence inter-organizational and inter-professional relations. While the existing literature on integration focuses on optimizing structures and processes, the MMIC construct emphasizes the convergence and divergence of stakeholders' knowledge and beliefs, and how these underlying cognitions influence interactions (or lack thereof) across the continuum of care. MMIC may help to: explain what differentiates effective from ineffective integration initiatives; determine system readiness to integrate; diagnose integration problems; and develop interventions for enhancing integrative processes and ultimately the delivery of integrated care. Global interest and ongoing challenges in integrating care underline the need for research on the mental models that characterize the behaviors of actors within health systems; the proposed framework offers a starting point for applying a cognitive perspective to health systems integration.
A Generalized Technique in Numerical Integration
NASA Astrophysics Data System (ADS)
Safouhi, Hassan
2018-02-01
Integration by parts is one of the most popular techniques in the analysis of integrals and is one of the simplest methods to generate asymptotic expansions of integral representations. The product of the technique is usually a divergent series formed from evaluating boundary terms; however, sometimes the remaining integral is also evaluated. Due to the successive differentiation and anti-differentiation required to form the series or the remaining integral, the technique is difficult to apply to problems more complicated than the simplest. In this contribution, we explore a generalized and formalized integration by parts to create equivalent representations to some challenging integrals. As a demonstrative archetype, we examine Bessel integrals, Fresnel integrals and Airy functions.
NASA Technical Reports Server (NTRS)
Vess, Melissa F.; Starin, Scott R.
2007-01-01
During design of the SDO Science and Inertial mode PID controllers, the decision was made to disable the integral torque whenever system stability was in question. Three different schemes were developed to determine when to disable or enable the integral torque, and a trade study was performed to determine which scheme to implement. The trade study compared complexity of the control logic, risk of not reenabling the integral gain in time to reject steady-state error, and the amount of integral torque space used. The first scheme calculated a simplified Routh criterion to determine when to disable the integral torque. The second scheme calculates the PD part of the torque and looked to see if that torque would cause actuator saturation. If so, only the PD torque is used. If not, the integral torque is added. Finally, the third scheme compares the attitude and rate errors to limits and disables the integral torque if either of the errors is greater than the limit. Based on the trade study results, the third scheme was selected. Once it was decided when to disable the integral torque, analysis was performed to determine how to disable the integral torque and whether or not to reset the integrator once the integral torque was reenabled. Three ways to disable the integral torque were investigated: zero the input into the integrator, which causes the integral part of the PID control torque to be held constant; zero the integral torque directly but allow the integrator to continue integrating; or zero the integral torque directly and reset the integrator on integral torque reactivation. The analysis looked at complexity of the control logic, slew time plus settling time between each calibration maneuver step, and ability to reject steady-state error. Based on the results of the analysis, the decision was made to zero the input into the integrator without resetting it. Throughout the analysis, a high fidelity simulation was used to test the various implementation methods.
ERIC Educational Resources Information Center
Veblen, Kari K.; Elliott, David J.
2000-01-01
Argues in support of integrating music education with other subject areas, discussing the importance of maintaining music's integrity, combining the arts, reasons for integration, and whether integration is always good. Offers an opposing argument that views the integration of music with other subject areas as unsound. (CMK)
NASA Astrophysics Data System (ADS)
Tuganbaev, A. A.
1982-04-01
This paper studies integrally closed rings. It is shown that a semiprime integrally closed Goldie ring is the direct product of a semisimple artinian ring and a finite number of integrally closed invariant domains that are classically integrally closed in their (division) rings of fractions. It is shown also that an integrally closed ring has a classical ring of fractions and is classically integrally closed in it.Next, integrally closed noetherian rings are considered. It is shown that an integrally closed noetherian ring all of whose nonzero prime ideals are maximal is either a quasi-Frobenius ring or a hereditary invariant domain.Finally, those noetherian rings all of whose factor rings are invariant are described, and the connection between integrally closed rings and distributive rings is examined.Bibliography: 13 titles.
A long time low drift integrator with temperature control
NASA Astrophysics Data System (ADS)
Zhang, Donglai; Yan, Xiaolan; Zhang, Enchao; Pan, Shimin
2016-10-01
The output of an operational amplifier always contains signals that could not have been predicted, even with knowledge of the input and an accurately determined closed-loop transfer function. These signals lead to integrator zero-drift over time. A new type of integrator system with a long-term low-drift characteristic has therefore been designed. The integrator system is composed of a temperature control module and an integrator module. The aluminum printed circuit board of the integrator is glued to a thermoelectric cooler to maintain the electronic components at a stable temperature. The integration drift is automatically compensated using an analog-to-digital converter/proportional integration/digital-to-analog converter control circuit. Performance testing in a standard magnet shows that the proposed integrator, which has an integration time constant of 10 ms, has a low integration drift (<5 mV) over 1000 s after repeated measurements. The integrator can be used for magnetic flux measurements in most tokamaks and in the wire rope nondestructive test.
Thinking graphically: Connecting vision and cognition during graph comprehension.
Ratwani, Raj M; Trafton, J Gregory; Boehm-Davis, Deborah A
2008-03-01
Task analytic theories of graph comprehension account for the perceptual and conceptual processes required to extract specific information from graphs. Comparatively, the processes underlying information integration have received less attention. We propose a new framework for information integration that highlights visual integration and cognitive integration. During visual integration, pattern recognition processes are used to form visual clusters of information; these visual clusters are then used to reason about the graph during cognitive integration. In 3 experiments, the processes required to extract specific information and to integrate information were examined by collecting verbal protocol and eye movement data. Results supported the task analytic theories for specific information extraction and the processes of visual and cognitive integration for integrative questions. Further, the integrative processes scaled up as graph complexity increased, highlighting the importance of these processes for integration in more complex graphs. Finally, based on this framework, design principles to improve both visual and cognitive integration are described. PsycINFO Database Record (c) 2008 APA, all rights reserved
A review of path-independent integrals in elastic-plastic fracture mechanics
NASA Technical Reports Server (NTRS)
Kim, Kwang S.; Orange, Thomas W.
1988-01-01
The objective of this paper is to review the path-independent (P-I) integrals in elastic plastic fracture mechanics which have been proposed in recent years to overcome the limitations imposed on the J-integral. The P-I integrals considered are the J-integral by Rice (1968), the thermoelastic P-I integrals by Wilson and Yu (1979) and Gurtin (1979), the J-integral by Blackburn (1972), the J(theta)-integral by Ainsworth et al. (1978), the J-integral by Kishimoto et al. (1980), and the Delta-T(p) and Delta T(p)-asterisk integrals by Alturi et al. (1982). The theoretical foundation of the P-I integrals is examined with an emphasis on whether or not the path independence is maintained in the presence of nonproportional loading and unloading in the plastic regime, thermal gradient, and material inhomogeneities. The simularities, difference, salient features, and limitations of the P-I integrals are discussed. Comments are also made with regard to the physical meaning, the possibility of experimental measurement, and computational aspects.
A long time low drift integrator with temperature control.
Zhang, Donglai; Yan, Xiaolan; Zhang, Enchao; Pan, Shimin
2016-10-01
The output of an operational amplifier always contains signals that could not have been predicted, even with knowledge of the input and an accurately determined closed-loop transfer function. These signals lead to integrator zero-drift over time. A new type of integrator system with a long-term low-drift characteristic has therefore been designed. The integrator system is composed of a temperature control module and an integrator module. The aluminum printed circuit board of the integrator is glued to a thermoelectric cooler to maintain the electronic components at a stable temperature. The integration drift is automatically compensated using an analog-to-digital converter/proportional integration/digital-to-analog converter control circuit. Performance testing in a standard magnet shows that the proposed integrator, which has an integration time constant of 10 ms, has a low integration drift (<5 mV) over 1000 s after repeated measurements. The integrator can be used for magnetic flux measurements in most tokamaks and in the wire rope nondestructive test.
A review of path-independent integrals in elastic-plastic fracture mechanics, task 4
NASA Technical Reports Server (NTRS)
Kim, K. S.
1985-01-01
The path independent (P-I) integrals in elastic plastic fracture mechanics which have been proposed in recent years to overcome the limitations imposed on the J integral are reviewed. The P-I integrals considered herein are the J integral by Rice, the thermoelastic P-I integrals by Wilson and Yu and by Gurtin, the J* integral by Blackburn, the J sub theta integral by Ainsworth et al., the J integral by Kishimoto et al., and the delta T sub p and delta T* sub p integrals by Atluri et al. The theoretical foundation of these P-I integrals is examined with emphasis on whether or not path independence is maintained in the presence of nonproportional loading and unloading in the plastic regime, thermal gradients, and material inhomogeneities. The similarities, differences, salient features, and limitations of these P-I integrals are discussed. Comments are also made with regard to the physical meaning, the possibility of experimental measurement, and computational aspects.
NASA Astrophysics Data System (ADS)
Broedel, Johannes; Duhr, Claude; Dulat, Falko; Tancredi, Lorenzo
2018-06-01
We introduce a class of iterated integrals that generalize multiple polylogarithms to elliptic curves. These elliptic multiple polylogarithms are closely related to similar functions defined in pure mathematics and string theory. We then focus on the equal-mass and non-equal-mass sunrise integrals, and we develop a formalism that enables us to compute these Feynman integrals in terms of our iterated integrals on elliptic curves. The key idea is to use integration-by-parts identities to identify a set of integral kernels, whose precise form is determined by the branch points of the integral in question. These kernels allow us to express all iterated integrals on an elliptic curve in terms of them. The flexibility of our approach leads us to expect that it will be applicable to a large variety of integrals in high-energy physics.
Energy Systems Integration Facility Videos | Energy Systems Integration
Facility | NREL Energy Systems Integration Facility Videos Energy Systems Integration Facility Integration Facility NREL + SolarCity: Maximizing Solar Power on Electrical Grids Redefining What's Possible for Renewable Energy: Grid Integration Robot-Powered Reliability Testing at NREL's ESIF Microgrid
HETEROGENEOUS INTEGRATION TECHNOLOGY
2017-08-24
provide a structure for this review. The history and the current status of integration technologies in each category are examined and product examples are...NEED HETEROGENEOUS INTEGRATION?............................................. 6 5. IMPACT OF HETEROGENEOUS INTEGRATION ON PRODUCT DEVELOPMENT ... 8 6...58 12. SUMMARY OF HETEROGENEOUS INTEGRATION TECHNIQUES........................... 63 13. HETEROGENEOUS INTEGRATION PRODUCT EXAMPLES
Integration: the firm and the health care sector.
Laugesen, Miriam J; France, George
2014-07-01
Integration in health care is a key goal of health reform in United States and England. Yet past efforts in the 1990s to better integrate the delivery system were of limited success. Building on work by Bevan and Janus on delivery integration, this article explores integration through the lens of economic theories of integration. Firms generally integrate to increase efficiency through economies of scale, to improve their market power, and resolve the transaction costs involved with multiple external suppliers. Using the United States and England as laboratories, we apply concepts of economic integration to understand why integration does or does not occur in health care, and whether expectations of integrating different kinds of providers (hospital, primary care) and health and social services are realistic. Current enthusiasm for a more integrated health care system expands the scope of integration to include social services in England, but retains the focus on health care in the United States. We find mixed applicability of economic theories of integration. Economies of scale have not played a significant role in stimulating integration in both countries. Managerial incentives for monopoly or oligopoly may be more compelling in the United States, since hospitals seek higher prices and more leverage over payers. In both countries the concept of transaction costs could explain the success of new payment and budgeting methods, since health care integration ultimately requires resolving transaction costs across different delivery organizations.
Energy Systems Integration Facility Control Room | Energy Systems
Integration Facility | NREL Energy Systems Integration Facility Control Room Energy Systems Integration Facility Control Room The Energy Systems Integration Facility control room allows system engineers as the monitoring point for the facility's integrated safety and control systems. Photo of employees
An equivalent domain integral for analysis of two-dimensional mixed mode problems
NASA Technical Reports Server (NTRS)
Raju, I. S.; Shivakumar, K. N.
1989-01-01
An equivalent domain integral (EDI) method for calculating J-integrals for two-dimensional cracked elastic bodies subjected to mixed mode loading is presented. The total and product integrals consist of the sum of an area or domain integral and line integrals on the crack faces. The EDI method gave accurate values of the J-integrals for two mode I and two mixed mode problems. Numerical studies showed that domains consisting of one layer of elements are sufficient to obtain accurate J-integral values. Two procedures for separating the individual modes from the domain integrals are presented. The procedure that uses the symmetric and antisymmetric components of the stress and displacement fields to calculate the individual modes gave accurate values of the integrals for all the problems analyzed.
Choosing the Right Systems Integration
NASA Astrophysics Data System (ADS)
Péči, Matúš; Važan, Pavel
2014-12-01
The paper examines systems integration and its main levels at higher levels of control. At present, the systems integration is one of the main aspects participating in the consolidation processes and financial flows of a company. Systems Integration is a complicated emotionconsuming process and it is often a problem to choose the right approach and level of integration. The research focused on four levels of integration, while each of them is characterized by specific conditions. At each level, there is a summary of recommendations and practical experience. The paper also discusses systems integration between the information and MES levels. The main part includes user-level integration where we describe an example of such integration. Finally, we list recommendations and also possible predictions of the systems integration as one of the important factors in the future.
Multisensory integration: flexible use of general operations
van Atteveldt, Nienke; Murray, Micah M.; Thut, Gregor; Schroeder, Charles
2014-01-01
Research into the anatomical substrates and “principles” for integrating inputs from separate sensory surfaces has yielded divergent findings. This suggests that multisensory integration is flexible and context-dependent, and underlines the need for dynamically adaptive neuronal integration mechanisms. We propose that flexible multisensory integration can be explained by a combination of canonical, population-level integrative operations, such as oscillatory phase-resetting and divisive normalization. These canonical operations subsume multisensory integration into a fundamental set of principles as to how the brain integrates all sorts of information, and they are being used proactively and adaptively. We illustrate this proposition by unifying recent findings from different research themes such as timing, behavioral goal and experience-related differences in integration. PMID:24656248
Information integration in health care organizations: The case of a European health system.
Calciolari, Stefano; Buccoliero, Luca
2010-01-01
Information system integration is an important dimension of a company's information system maturity and plays a relevant role in meeting information needs and accountability targets. However, no generalizable evidence exists about whether and how the main integrating technologies influence information system integration in health care organizations. This study examined how integrating technologies are adopted in public health care organizations and chief information officers' (CIOs) perceptions about their influence on information system integration. We used primary data on integrating technologies' adoption and CIOs' perception regarding information system integration in public health care organizations. Analysis of variance (ANOVA) and multinomial logistic regression were used to examine the relationship between CIOs' perception about information system integration and the adopted technologies. Data from 90 health care organizations were available for analyses. Integrating technologies are relatively diffused in public health care organizations, and CIOs seem to shape information system toward integrated architectures. There is a significant positive (although modest, .3) correlation between the number of integrating technologies adopted and the CIO's satisfaction with them. However, regression analysis suggests that organizations covering a broader spectrum of these technologies are less likely to have their CIO reporting main problems concerning integration in the administrative area of the information system compared with the clinical area and where the two areas overlap. Integrating technologies are associated with less perceived problems in the information system administrative area rather than in other areas. Because CIOs play the role of information resource allocators, by influencing information system toward integrated architecture, health care organization leaders should foster cooperation between CIOs and medical staff to enhance information system integration.
Improving integration for integrated coastal zone management: an eight country study.
Portman, M E; Esteves, L S; Le, X Q; Khan, A Z
2012-11-15
Integrated coastal zone management (ICZM) is a widely accepted approach for sustainable management of the coastal environment. ICZM emphasizes integration across sectors, levels of government, uses, stakeholders, and spatial and temporal scales. While improving integration is central to progress in ICZM, the role of and the achievement of integration remain understudied. To further study these two points, our research analyzes the performance of specific mechanisms used to support ICZM in eight countries (Belgium, India, Israel, Italy, Portugal, Sweden, UK, and Vietnam). The assessment is based on a qualitative comparative analysis conducted through the use of two surveys. It focuses on five ICZM mechanisms (environmental impact assessment; planning hierarchy; setback lines; marine spatial planning, and regulatory commission) and their role in improving integration. Our findings indicate that certain mechanisms enhance specific types of integration more effectively than others. Environmental impact assessment enhances science-policy integration and can be useful to integrate knowledge across sectors. Planning hierarchy and regulatory commissions are effective mechanisms to integrate policies across government levels, with the latter also promoting public-government integration. Setback lines can be applied to enhance integration across landscape units. Marine spatial planning is a multi-faceted mechanism with the potential to promote all types of integration. Policy-makers should adopt the mechanisms that are suited to the type of integration needed. Results of this study also contribute to evidence-based coastal management by identifying the most common impediments related to the mechanisms of integration in the eight studied countries. Copyright © 2012 Elsevier B.V. All rights reserved.
Murray, Brendan D.; Kensinger, Elizabeth A.
2014-01-01
Events often include novel combinations of items. Sometimes, through the process of integration, we experience and remember these items as parts of a whole rather than as separate entities. Recent research with younger adults has demonstrated that successfully integrating two non-emotional items at encoding, instead of imagining them separately, produces a disproportionately larger associative memory benefit than integrating an emotional and a non-emotional item (Murray & Kensinger, 2012). In the first study to examine whether age and emotion interact to influence integration, we use two measures of integrative success – the ability to successfully retrieve integrations, measured through associative cued recall, and the ability to successfully generate integrated representations at encoding, measured through self report. The cued recall results (Expt. 1 and 2) reveal that the emotional content of the word pairs interacts to influence the effect of integration on older adults’ associative memory, but in the opposite direction of younger adults: Older adults show no associative retrieval benefit of integration over non-integration for non-emotional pairs, but they show a significant integrative benefit for emotional pairs. We also demonstrate (Expt. 2) that encoding time interacts with emotion and integration in different ways for older and younger adults: Putting younger adults under time pressure reduces their success in generating integrated representations at encoding for non-emotional pairs, whereas for older adults it disrupts their ability to generate integrated representations for emotional pairs. We discuss possible age-related differences in the processes used to create emotional and non-emotional integrations. PMID:24364402
4 pitfalls to clinical integration.
Redding, John
2012-11-01
Four common mistakes can easily thwart clinical integration: Assuming that EHR adoption is the cornerstone of successful integration; Delaying the development of ambulatory services that support clinical integration; Believing that knowledge of clinical integration initiatives will passively diffuse through the ranks; Attaching too much weight to Federal Trade Commission/Department of Justice approval of a clinical integration model.
Subscribe to the Energy Systems Integration Newsletter | Energy Systems
Integration Facility | NREL Subscribe to the Energy Systems Integration Newsletter Subscribe to the Energy Systems Integration Newsletter Subscribe to receive regular updates on what's happening at the Energy Systems Integration Facility and in energy systems integration research at NREL and around
Research environments that promote integrity.
Jeffers, Brenda Recchia; Whittemore, Robin
2005-01-01
The body of empirical knowledge about research integrity and the factors that promote research integrity in nursing research environments remains small. To propose an internal control model as an innovative framework for the design and structure of nursing research environments that promote integrity. An internal control model is adapted to illustrate its use for conceptualizing and designing research environments that promote integrity. The internal control model integrates both the organizational elements necessary to promote research integrity and the processes needed to assess research environments. The model provides five interrelated process components within which any number of research integrity variables and processes may be used and studied: internal control environment, risk assessment, internal control activities, monitoring, and information and communication. The components of the proposed research integrity internal control model proposed comprise an integrated conceptualization of the processes that provide reasonable assurance that research integrity will be promoted within the nursing research environment. Schools of nursing can use the model to design, implement, and evaluate systems that promote research integrity. The model process components need further exploration to substantiate the use of the model in nursing research environments.
Decentralized Multisensory Information Integration in Neural Systems.
Zhang, Wen-Hao; Chen, Aihua; Rasch, Malte J; Wu, Si
2016-01-13
How multiple sensory cues are integrated in neural circuitry remains a challenge. The common hypothesis is that information integration might be accomplished in a dedicated multisensory integration area receiving feedforward inputs from the modalities. However, recent experimental evidence suggests that it is not a single multisensory brain area, but rather many multisensory brain areas that are simultaneously involved in the integration of information. Why many mutually connected areas should be needed for information integration is puzzling. Here, we investigated theoretically how information integration could be achieved in a distributed fashion within a network of interconnected multisensory areas. Using biologically realistic neural network models, we developed a decentralized information integration system that comprises multiple interconnected integration areas. Studying an example of combining visual and vestibular cues to infer heading direction, we show that such a decentralized system is in good agreement with anatomical evidence and experimental observations. In particular, we show that this decentralized system can integrate information optimally. The decentralized system predicts that optimally integrated information should emerge locally from the dynamics of the communication between brain areas and sheds new light on the interpretation of the connectivity between multisensory brain areas. To extract information reliably from ambiguous environments, the brain integrates multiple sensory cues, which provide different aspects of information about the same entity of interest. Here, we propose a decentralized architecture for multisensory integration. In such a system, no processor is in the center of the network topology and information integration is achieved in a distributed manner through reciprocally connected local processors. Through studying the inference of heading direction with visual and vestibular cues, we show that the decentralized system can integrate information optimally, with the reciprocal connections between processers determining the extent of cue integration. Our model reproduces known multisensory integration behaviors observed in experiments and sheds new light on our understanding of how information is integrated in the brain. Copyright © 2016 Zhang et al.
Decentralized Multisensory Information Integration in Neural Systems
Zhang, Wen-hao; Chen, Aihua
2016-01-01
How multiple sensory cues are integrated in neural circuitry remains a challenge. The common hypothesis is that information integration might be accomplished in a dedicated multisensory integration area receiving feedforward inputs from the modalities. However, recent experimental evidence suggests that it is not a single multisensory brain area, but rather many multisensory brain areas that are simultaneously involved in the integration of information. Why many mutually connected areas should be needed for information integration is puzzling. Here, we investigated theoretically how information integration could be achieved in a distributed fashion within a network of interconnected multisensory areas. Using biologically realistic neural network models, we developed a decentralized information integration system that comprises multiple interconnected integration areas. Studying an example of combining visual and vestibular cues to infer heading direction, we show that such a decentralized system is in good agreement with anatomical evidence and experimental observations. In particular, we show that this decentralized system can integrate information optimally. The decentralized system predicts that optimally integrated information should emerge locally from the dynamics of the communication between brain areas and sheds new light on the interpretation of the connectivity between multisensory brain areas. SIGNIFICANCE STATEMENT To extract information reliably from ambiguous environments, the brain integrates multiple sensory cues, which provide different aspects of information about the same entity of interest. Here, we propose a decentralized architecture for multisensory integration. In such a system, no processor is in the center of the network topology and information integration is achieved in a distributed manner through reciprocally connected local processors. Through studying the inference of heading direction with visual and vestibular cues, we show that the decentralized system can integrate information optimally, with the reciprocal connections between processers determining the extent of cue integration. Our model reproduces known multisensory integration behaviors observed in experiments and sheds new light on our understanding of how information is integrated in the brain. PMID:26758843
Integration in psychotherapy: Reasons and challenges.
Fernández-Álvarez, Héctor; Consoli, Andrés J; Gómez, Beatriz
2016-11-01
Although integration has been formally influencing the field of psychotherapy since the 1930s, its impact gained significant momentum during the 1980s. Practical, theoretical, and scientific reasons help to explain the growing influence of integration in psychotherapy. The field of psychotherapy is characterized by many challenges which integration may change into meaningful opportunities. Nonetheless, many obstacles remain when seeking to advance integration. To appreciate the strength of integration in psychotherapy we describe an integrative, comprehensive approach to service delivery, research, and training. We then discuss the role of integration in the future of psychotherapy. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Promoting research on research integrity in Canada.
Master, Zubin; McDonald, Michael; Williams-Jones, Bryn
2012-01-01
Research on research integrity is an important element in building a strong national research integrity framework. There is a lack of empirical evidence and conceptual research on research integrity in Canada. To further strengthen and develop our system of research integrity, we believe that greater support is needed to promote research on research integrity. Research on research integrity is imperative in order to gain a richer understanding of the diversity of responsible conduct of research norms, practices, education and policies from a Canadian perspective. The knowledge gained would help in the development of an evidenced-based and responsive Canadian system of research integrity.
New Challenges in Information Integration
NASA Astrophysics Data System (ADS)
Haas, Laura M.; Soffer, Aya
Information integration is the cornerstone of modern business informatics. It is a pervasive problem; rarely is a new application built without an initial phase of gathering and integrating information. Information integration comes in a wide variety of forms. Historically, two major approaches were recognized: data federation and data warehousing. Today, we need new approaches, as information integration becomes more dynamic, while coping with growing volumes of increasingly dirty and diverse data. At the same time, information integration must be coupled more tightly with the applications and the analytics that will leverage the integrated results, to make the integration process more tractable and the results more consumable.
Predictors of School Garden Integration: Factors Critical to Gardening Success in New York City.
Burt, Kate Gardner; Burgermaster, Marissa; Jacquez, Raquel
2018-03-01
The purpose of this study was to determine the level of integration of school gardens and identify factors that predict integration. 211 New York City schools completed a survey that collected demographic information and utilized the School Garden Integration Scale. A mean garden integration score was calculated, and multiple regression analysis was conducted to determine independent predictors of integration and assess relationships between individual integration characteristics and budget. The average integration score was 34.1 (of 57 points) and ranged from 8 to 53. Operating budget had significant influence on integration score, controlling for all other factors ( p < .0001). Partner organizations, evaluation/feedback, planning the physical space, and characteristics of the physical space were positively and significantly related to budget. The results of this study indicate that any garden can become well integrated, as budget is a modifiable factor. When adequate funding is secured, a well-integrated garden may be established with proper planning and sound implementation.
Concerning the Integral dx/x[superscript m] (1+x)
ERIC Educational Resources Information Center
Walters, William; Huber, Michael
2010-01-01
Consider the integral dx/x[superscript m] (1+x). In the "CRC Standard Mathematical Tables," this integral can require repeated integral evaluations. Enter this integral into your favourite computer algebra system, and the results may be unrecognizable. In this article, we seek to provide a simpler evaluation for integrals of this form. We state up…
Wind Integration Data Sets | Grid Modernization | NREL
Wind Integration Data Sets Wind Integration Data Sets NREL's wind integration data sets provide the Integration Data Sets Ten-minute time-series wind data for 2004, 2005, and 2006 to help energy professionals perform wind integration studies and estimate power production from hypothetical wind power plants. Access
What Is Energy Systems Integration? | Energy Systems Integration Facility |
NREL What Is Energy Systems Integration? What Is Energy Systems Integration? Energy systems integration (ESI) is an approach to solving big energy challenges that explores ways for energy systems to Research Community NREL is a founding member of the International Institute for Energy Systems Integration
On an Integral with Two Branch Points
ERIC Educational Resources Information Center
de Oliveira, E. Capelas; Chiacchio, Ary O.
2006-01-01
The paper considers a class of real integrals performed by using a convenient integral in the complex plane. A complex integral containing a multi-valued function with two branch points is transformed into another integral containing a pole and a unique branch point. As a by-product we obtain a new class of integrals which can be calculated in a…
ERIC Educational Resources Information Center
Laine, Teemu H.; Nygren, Eeva
2016-01-01
Technology integration is the process of overcoming different barriers that hinder efficient utilisation of learning technologies. The authors divide technology integration into two components based on technology's role in the integration process. In active integration, the technology integrates learning resources into a learning space, making it…
The Complexity of Health Service Integration: A Review of Reviews.
Heyeres, Marion; McCalman, Janya; Tsey, Komla; Kinchin, Irina
2016-01-01
The aim of health service integration is to provide a sustainable and integrated health system that better meets the needs of the end user. Yet, definitions of health service integration, methods for integrating health services, and expected outcomes are varied. This review was commissioned by Queensland Health, the government department responsible for health service delivery in Queensland, Australia, to inform efforts to integrate their mental health services. This review reports on the characteristics, reported outcomes, and design quality of studies included in systematic reviews of health service integration research. The review was developed by systematically searching nine electronic databases to find peer-reviewed Australian and international systematic reviews with a focus on health service integration. Reviews were included if they were in the English language and published between 2000 and 2015. A standardized assessment tool was used to analyze the study design quality of included reviews. Data relating to the integration types, methods, and reported outcomes of integration were synthesized. Seventeen publications met the inclusion criteria. Eleven (65%) reviews were published during the past 5 years, which may indicate a trend for increased awareness of the need for service integration. The majority of reviews were published by researchers in the UK (8/47%), USA (3/18%), and Australia (3/18%). Included reviews focused on a variety of integration types, including integrated care pathways, governance models, integration of interventions, collaborative/integrated care models, and integration of different types of health care. Most (53%) of the reviews reported on the cost-effectiveness of service integration, e.g., positive results, no effect, or inconclusive. Only one of the reviews reported on the importance of consumer involvement. The overall design of 70% of the reviews was high, 18% medium, and 12% low. There is no "one size fits all" approach to health service integration. Instead, this literature review highlighted the complexity of service integration, which in most primary studies involved a range of strategies. Rigorous assessments of cost-effectiveness and reporting on consumer involvement are required in future research.
Human Papillomavirus Genome Integration and Head and Neck Cancer.
Pinatti, L M; Walline, H M; Carey, T E
2018-06-01
We conducted a critical review of human papillomavirus (HPV) integration into the host genome in oral/oropharyngeal cancer, reviewed the literature for HPV-induced cancers, and obtained current data for HPV-related oral and oropharyngeal cancers. In addition, we performed studies to identify HPV integration sites and the relationship of integration to viral-host fusion transcripts and whether integration is required for HPV-associated oncogenesis. Viral integration of HPV into the host genome is not required for the viral life cycle and might not be necessary for cellular transformation, yet HPV integration is frequently reported in cervical and head and neck cancer specimens. Studies of large numbers of early cervical lesions revealed frequent viral integration into gene-poor regions of the host genome with comparatively rare integration into cellular genes, suggesting that integration is a stochastic event and that site of integration may be largely a function of chance. However, more recent studies of head and neck squamous cell carcinomas (HNSCCs) suggest that integration may represent an additional oncogenic mechanism through direct effects on cancer-related gene expression and generation of hybrid viral-host fusion transcripts. In HNSCC cell lines as well as primary tumors, integration into cancer-related genes leading to gene disruption has been reported. The studies have shown that integration-induced altered gene expression may be associated with tumor recurrence. Evidence from several studies indicates that viral integration into genic regions is accompanied by local amplification, increased expression in some cases, interruption of gene expression, and likely additional oncogenic effects. Similarly, reported examples of viral integration near microRNAs suggest that altered expression of these regulatory molecules may also contribute to oncogenesis. Future work is indicated to identify the mechanisms of these events on cancer cell behavior.
Lin, Chin-Kai; Wu, Huey-Min; Lin, Chung-Hui; Wu, Yuh-Yih; Wu, Pei-Fang; Kuo, Bor-Chen; Yeung, Kwok-Tak
2012-10-01
The goal of this study was to examine the relationship between the validity of postural movement and bilateral motor integration in terms of sensory integration theory. Participants in this study were 61 Chinese children ages 48 to 70 months. Structural equation modeling was applied to assess the relation between measures tapping postural movement and bilateral motor integration: for postural movement, the measures involve the Monkey Task, Side-Sit Co-contraction, Prone on Elbows, Wheelbarrow Walk, Airplane, and Scooter Board Co-contraction from the DeGangi-Berk Test of Sensory Integration, and Standing Balance with Eyes Closed/Opened in Southern California Sensory Integration Tests. For bilateral motor integration, the measures chosen were the Rolling Pin Activity, Jump and Turn, Diadokokinesis, Drumming, and Upper Extremity Control from the DeGangi-Berk Test of Sensory Integration, and Cross the Midline in Southern California Sensory Integration Tests (SCSIT). Postural movement was highly correlated with the bilateral motor integration. The factor structure fit the theoretical conceptualization, classifying postural movement and bilateral motor integration together in the same category. Therapists could combine two separate objectives (postural movement and bilateral motor integration) of intervention in an activity to improve the adaptive skills based on the vestibular-proprioceptive integration.
Energy System Integration Facility Secure Data Center | Energy Systems
Integration Facility | NREL Energy System Integration Facility Secure Data Center Energy System Integration Facility Secure Data Center The Energy Systems Integration Facility's Secure Data Center provides
Morphological Integration of the Modern Human Mandible during Ontogeny
Polanski, Joshua M.
2011-01-01
Craniofacial integration is prevalent in anatomical modernity research. Little investigation has been done on mandibular integration. Integration patterns were quantified in a longitudinal modern human sample of mandibles. This integration pattern is one of modularization between the alveolar and muscle attachment regions, but with age-specific differences. The ascending ramus and nonalveolar portions of the corpus remain integrated throughout ontogeny. The alveolar region is dynamic, becoming modularized according to the needs of the mandible at a particular developmental stage. Early in ontogeny, this modularity reflects the need for space for the developing dentition; later, modularity is more reflective of mastication. The overall pattern of modern human mandibular integration follows the integration pattern seen in other mammals, including chimpanzees. Given the differences in craniofacial integration patterns between humans and chimpanzees, but the similarities in mandibular integration, it is likely that the mandible has played the more passive role in hominin skull evolution. PMID:21716741
Application of a faith-based integration tool to assess mental and physical health interventions.
Saunders, Donna M; Leak, Jean; Carver, Monique E; Smith, Selina A
2017-01-01
To build on current research involving faith-based interventions (FBIs) for addressing mental and physical health, this study a) reviewed the extent to which relevant publications integrate faith concepts with health and b) initiated analysis of the degree of FBI integration with intervention outcomes. Derived from a systematic search of articles published between 2007 and 2017, 36 studies were assessed with a Faith-Based Integration Assessment Tool (FIAT) to quantify faith-health integration. Basic statistical procedures were employed to determine the association of faith-based integration with intervention outcomes. The assessed studies possessed (on average) moderate, inconsistent integration because of poor use of faith measures, and moderate, inconsistent use of faith practices. Analysis procedures for determining the effect of FBI integration on intervention outcomes were inadequate for formulating practical conclusions. Regardless of integration, interventions were associated with beneficial outcomes. To determine the link between FBI integration and intervention outcomes, additional analyses are needed.
ERIC Educational Resources Information Center
BCATA Journal for Art Teachers, 1991
1991-01-01
These articles focus on art as a component of interdisciplinary integration. (1) "Integrated Curriculum and the Visual Arts" (Anna Kindler) considers various aspects of integration and implications for art education. (2) "Integration: The New Literacy" (Tim Varro) illustrates how the use of technology can facilitate…
Energy Systems Integration: Demonstrating Distribution Feeder Voltage Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
2017-01-01
Overview fact sheet about the Smarter Grid Solutions Integrated Network Testbed for Energy Grid Research and Technology Experimentation (INTEGRATE) project at the Energy Systems Integration Facility. INTEGRATE is part of the U.S. Department of Energy's Grid Modernization Initiative.
Energy Systems Integration: Demonstrating Distributed Grid-Edge Control Hierarchy
DOE Office of Scientific and Technical Information (OSTI.GOV)
2017-01-01
Overview fact sheet about the OMNETRIC Group Integrated Network Testbed for Energy Grid Research and Technology Experimentation (INTEGRATE) project at the Energy Systems Integration Facility. INTEGRATE is part of the U.S. Department of Energy's Grid Modernization Initiative.
Integration of neutron time-of-flight single-crystal Bragg peaks in reciprocal space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schultz, Arthur J; Joergensen, Mads; Wang, Xiaoping
2014-01-01
The intensity of single crystal Bragg peaks obtained by mapping neutron time-of-flight event data into reciprocal space and integrating in various ways are compared. These include spherical integration with a fixed radius, ellipsoid fitting and integrating of the peak intensity and one-dimensional peak profile fitting. In comparison to intensities obtained by integrating in real detector histogram space, the data integrated in reciprocal space results in better agreement factors and more accurate atomic parameters. Furthermore, structure refinement using integrated intensities from one-dimensional profile fitting is demonstrated to be more accurate than simple peak-minus-background integration.
Data Entities and Information System Matrix for Integrated Agriculture Information System (IAIS)
NASA Astrophysics Data System (ADS)
Budi Santoso, Halim; Delima, Rosa
2018-03-01
Integrated Agriculture Information System is a system that is developed to process data, information, and knowledge in Agriculture sector. Integrated Agriculture Information System brings valuable information for farmers: (1) Fertilizer price; (2) Agriculture technique and practise; (3) Pest management; (4) Cultivation; (5) Irrigation; (6) Post harvest processing; (7) Innovation in agriculture processing. Integrated Agriculture Information System contains 9 subsystems. To bring an integrated information to the user and stakeholder, it needs an integrated database approach. Thus, researchers describes data entity and its matrix relate to subsystem in Integrated Agriculture Information System (IAIS). As a result, there are 47 data entities as entities in single and integrated database.
Non-integrability vs. integrability in pentagram maps
NASA Astrophysics Data System (ADS)
Khesin, Boris; Soloviev, Fedor
2015-01-01
We revisit recent results on integrable cases for higher-dimensional generalizations of the 2D pentagram map: short-diagonal, dented, deep-dented, and corrugated versions, and define a universal class of pentagram maps, which are proved to possess projective duality. We show that in many cases the pentagram map cannot be included into integrable flows as a time-one map, and discuss how the corresponding notion of discrete integrability can be extended to include jumps between invariant tori. We also present a numerical evidence that certain generalizations of the integrable 2D pentagram map are non-integrable and present a conjecture for a necessary condition of their discrete integrability.
Lin, Chao-Fen; Lo, Ta-Chun; Kuo, Yang-Cheng; Lin, Thy-Hou
2013-04-01
An integration vector capable of stably integrating and maintaining in the chromosomes of several lactobacilli over hundreds of generations has been constructed. The major integration machinery used is based on the ΦAT3 integrase (int) and attP sequences determined previously. A novel core sequence located at the 3' end of the tRNA(leu) gene is identified in Lactobacillus fermentum ATCC 14931 as the integration target by the integration vector though most of such sequences found in other lactobacilli are similar to that determined previously. Due to the lack of an appropriate attB site in Lactococcus lactis MG1363, the integration vector is found to be unable to integrate into the chromosome of the strain. However, such integration can be successfully restored by cotransforming the integration vector with a replicative one harboring both attB and erythromycin resistance sequences into the strain. Furthermore, the integration vector constructed carries a promoter region of placT from the chromosome of Lactobacillus rhamnosus TCELL-1 which is used to express green fluorescence and luminance protein genes in the lactobacilli studied.
Integrating art into science education: a survey of science teachers' practices
NASA Astrophysics Data System (ADS)
Turkka, Jaakko; Haatainen, Outi; Aksela, Maija
2017-07-01
Numerous case studies suggest that integrating art and science education could engage students with creative projects and encourage students to express science in multitude of ways. However, little is known about art integration practices in everyday science teaching. With a qualitative e-survey, this study explores the art integration of science teachers (n = 66). A pedagogical model for science teachers' art integration emerged from a qualitative content analysis conducted on examples of art integration. In the model, art integration is characterised as integration through content and activities. Whilst the links in the content were facilitated either directly between concepts and ideas or indirectly through themes or artefacts, the integration through activity often connected an activity in one domain and a concept, idea or artefact in the other domain with the exception of some activities that could belong to both domains. Moreover, the examples of art integration in everyday classroom did not include expression of emotions often associated with art. In addition, quantitative part of the survey confirmed that integration is infrequent in all mapped areas. The findings of this study have implications for science teacher education that should offer opportunities for more consistent art integration.