Lobenwein, Daniela; Tepeköylü, Can; Kozaryn, Radoslaw; Pechriggl, Elisabeth J; Bitsche, Mario; Graber, Michael; Fritsch, Helga; Semsroth, Severin; Stefanova, Nadia; Paulus, Patrick; Czerny, Martin; Grimm, Michael; Holfeld, Johannes
2015-10-27
Paraplegia following spinal cord ischemia represents a devastating complication of both aortic surgery and endovascular aortic repair. Shock wave treatment was shown to induce angiogenesis and regeneration in ischemic tissue by modulation of early inflammatory response via Toll-like receptor (TLR) 3 signaling. In preclinical and clinical studies, shock wave treatment had a favorable effect on ischemic myocardium. We hypothesized that shock wave treatment also may have a beneficial effect on spinal cord ischemia. A spinal cord ischemia model in mice and spinal slice cultures ex vivo were performed. Treatment groups received immediate shock wave therapy, which resulted in decreased neuronal degeneration and improved motor function. In spinal slice cultures, the activation of TLR3 could be observed. Shock wave effects were abolished in spinal slice cultures from TLR3(-/-) mice, whereas the effect was still present in TLR4(-/-) mice. TLR4 protein was found to be downregulated parallel to TLR3 signaling. Shock wave-treated animals showed significantly better functional outcome and survival. The protective effect on neurons could be reproduced in human spinal slices. Shock wave treatment protects from neuronal degeneration via TLR3 signaling and subsequent TLR4 downregulation. Consequently, it represents a promising treatment option for the devastating complication of spinal cord ischemia after aortic repair. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Solyakov, L; Dobrota, D; Drany, O; Vachova, M; Machac, S; Mezesova, V; Bachurin, S; Lombardi, V
1995-01-01
Changes in the functioning of the glutamatergic system in rabbit brain were studied after partial brain ischemia and reperfusion. In vitro studies were conducted relating to the release of L-[14C]glutamate from cortical brain slices, L-[14C]glutamate uptake in synaptosomes, and 45Ca uptake in synaptosomes. It was found that basal release of L-[14C]glutamate from rabbit brain cortical slices after 30 min of partial ischemia and 1 d of reperfusion was essentially without change compared to the control values. After 3 d of reperfusion, there was an increase in basal release of L-[14C]glutamate from rabbit brain cortical slices. K+ stimulated release of L-[14C]glutamate in normal Krebs-Ringer medium was essentially the same in the control group and in the experimental group after 30 min of ischemia. The K+ stimulated release of L-[14C]glutamate independent of calcium was increased to 145% after 30 min of ischemia and 1 d of reperfusion. The decreased Km value at the glutamate transporter may have contributed to this difference. Kinetic parameters of the L-[14C]glutamate uptake (Km and Vmax) in synaptosomes from rabbit brain were significantly lower after 30 min of ischemia. The authors discovered that during the reperfusion period, Vmax was almost the same as in the control group. The activity of the Na+/Ca2+ exchanger in synaptosomes of rat brain was about 70% of the control values after 30 min of ischemia and 72 h of reperfusion. According to our results, increased L-[14C]glutamate release after 30 min of ischemia appears to be the result of higher intracellular calcium concentration and possibly also of a higher uptake of glutamate.
N-methyl-D-aspartate neurotoxicity in hippocampal slices: protection by aniracetam.
Pizzi, M; Consolandi, O; Memo, M; Spano, P
1995-03-14
Aniracetam, a drug known to elicit cognition enhancing properties in both animals and humans, was found to counteract the neurotoxicity induced by excitatory amino acids in primary cultures of cerebellar neurons. We report here that aniracetam prevents the neurotoxic effect induced by N-methyl-D-aspartate (NMDA) in rat hippocampal slices. Time-course experiments showed that the aniracetam-induced neuroprotection does not require preincubation of the slices with the drug. Maximal effective concentration of aniracetam was 10 microM. Since the NMDA-mediated cell death in hippocampal slices is considered a valuable experimental model of ischemia, these results suggest a possible novel therapeutic application for aniracetam.
Gáspárová, Zdenka; Snirc, Vladimír; Stolc, Svorad; Dubovický, Michal; Mach, Mojmír; Ujházy, Eduard
2010-01-01
Damage to the developing brain may be caused by maternal environment, nutritional deficiencies, failure of protective mechanisms, etc. Further, the developing brain may be damaged by intrauterine ischemia or by ischemia in newborns complicated by perinatal asphyxia. There is an effort to find agents with neuroprotective effect on the developing brain. The aim was to study the effect of the new pyridoindole antioxidant SMe1EC2 on the resistance of offspring hippocampus exposed to ischemia in vitro after treatment of mothers. The electrically evoked responses were determined by extracellular recording from offspring hippocampal slices. The effect of oral treatment of rats with SMe1EC2 over 18 consecutive days, from day 15 of gestation to day 10 post partum (PP) was analyzed in the model of ischemia in vitro measured on the hippocampus of 21-day-old pups, with focus on neuronal function recovery in reoxygenation. Increased recovery of neuronal response was found at the end of 20-min reoxygenation in offspring hippocampal slices exposed to 10-min hypoxia/hypoglycemia from rats whose mothers were treated with the dose of 50 and 250 mg/kg of SMe1EC2, compared to control offspring slices (mothers received vehicle over the same time). The increased offspring hippocampus resistance to hypoxia/hypoglycemia due to 18-day maternal treatment with SMe1EC2 might have been obtained via the transplacental way as well as in the neonatal period via breast milk, skin and saliva. The manifested neuroprotective effect of SMe1EC2 on the developing brain might find exploitation during risk pregnancy and delivery.
CIMAROSTI, HELENA; HENLEY, JEREMY M.
2012-01-01
It is well established that brain ischemia can cause neuronal death via different signaling cascades. The relative importance and interrelationships between these pathways, however, remain poorly understood. Here is presented an overview of studies using oxygen-glucose deprivation of organotypic hippocampal slice cultures to investigate the molecular mechanisms involved in ischemia. The culturing techniques, setup of the oxygen-glucose deprivation model, and analytical tools are reviewed. The authors focus on SUMOylation, a posttranslational protein modification that has recently been implicated in ischemia from whole animal studies as an example of how these powerful tools can be applied and could be of interest to investigate the molecular pathways underlying ischemic cell death. PMID:19029060
Smail, Hassiba; Baste, Jean-Marc; Gay, Arnaud; Begueret, Hugues; Noël, Romain; Morin, Jean-Paul; Litzler, Pierre-Yves
2016-04-01
The objective of this study is to analyze the role of inflammation in the lung ischemia reperfusion (IR) injury and determine the protective role of adenosine in an in vitro lung transplantation model. We used a hybrid model of lung donor after cardiac death, with warm ischemia in corpo of varying duration (2 h, 4 h) followed by in vitro lung slices culture for reoxygenation (1 h, 4 h and 24 h), in the presence or not of lymphocytes and of adenosine. To quantify the inflammatory lesions, we performed TNFα, IL2 assays, and histological analysis. In this model of a nonblood perfused system, the addition of lymphocytes during reoxygenation lead to higher rates of TNFα and IL2 after 4 h than after 2 h of warm ischemia (P < .05). These levels increased with the duration of reoxygenation and were maximum at 24 h (P < .05). In the presence of adenosine TNFα and IL2 decreased. After 2 h of warm ischemia, we observed a significant inflammatory infiltration, alveolar thickening and a necrosis of the bronchiolar cells. After 4 h of warm ischemia, alveolar cells necrosis was associated. This model showed that lymphocytes increased the inflammatory response and the histological lesions after 4 h of warm ischemia and that adenosine could have an anti-inflammatory role with potential reconditioning action when used in the pneumoplegia solution.
Martin, Nellie Anne; Bonner, Helena; Elkjær, Maria Louise; D’Orsi, Beatrice; Chen, Gang; König, Hans Georg; Svensson, Martina; Deierborg, Tomas; Pfeiffer, Shona; Prehn, Jochen H.; Lambertsen, Kate Lykke
2016-01-01
The BH3 interacting-domain death agonist (BID) is a pro-apoptotic protein involved in death receptor-induced and mitochondria-mediated apoptosis. Recently, it has also been suggested that BID is involved in the regulation of inflammatory responses in the central nervous system. We found that BID deficiency protected organotypic hippocampal slice cultures in vitro from neuronal injury induced by oxygen-glucose deprivation. In vivo, BID-knockout (KO) mice and wild type (WT) mice were subjected to 60 min of transient middle cerebral artery occlusion (tMCAO) to induce focal cerebral ischemia, and allowed to recover for 24 h. Infarct volumes and functional outcome were assessed and the inflammatory response was evaluated using immunofluorescence, Western blotting, quantitative PCR (qPCR) and Mesoscale multiplex analysis. We observed no difference in the infarct volume or neurological outcome between BID-KO and WT mice. The inflammatory response was reduced by BID deficiency as indicated by a change in microglial/leukocyte response. In conclusion, our data suggest that BID deficiency is neuroprotective in an in vitro model and modulates the inflammatory response to focal cerebral ischemia in vivo. However, this is not translated into a robust neuroprotection in vivo. PMID:26869884
Baste, Jean-Marc; Gay, Arnaud; Smail, Hassiba; Noël, Romain; Bubenheim, Michael; Begueret, Hugues; Morin, Jean-Paul; Litzler, Pierre-Yves
2015-01-01
Donors after cardiac death (DCD) in lung transplantation is considered as a solution for organ shortage. However, it is characterized by warm ischemic period, which could be involved in severe Ischemia-Reperfusion lesion (IR) with early graft dysfunction. We describe a new hybrid model combining in vivo ischemia followed by in vitro reoxygenation using organ-specific culture. A hybrid model using in vivo ischemic period followed by in vitro lung slice reoxygenation was set up in rat to mimic DCD in lung transplantation with in vitro perfusion. Different markers (bioenergetics, oxidant stress assays, and histology) were measured to evaluate the viability of lung tissue after different ischemic times (I-0, I-1, I-2, I-4, I-15 hours) and reoxygenation times (R-0, R-1, R-4, R-24 hours). No differences were found in cell viability, ATP concentrations, extracellular LDH assays or histology, demonstrating extensive viability of up to 4 hours in lung tissue warm ischemia. We found oxidative stress mainly during the ischemic period with no burst at reoxygenation. Cytosolic anti-oxidant system was involved first (I-0,I-1,I-2) followed by mitochondrial anti-oxidant system for extensive ischemia (I-4). Histological features showed differences in this model of ischemia-reoxygenation between bronchial epithelium and lung parenchymal cells, with epithelium regeneration after 2 hours of warm ischemia and 24 hours of perfusion. The results of our hybrid model experiment suggest extensive lung viability of up to 4 hours ischemia. Our model could be an interesting tool to evaluate ex vivo reconditioning techniques after different in vivo lung insults.
Ischemic Brain Injury Leads to Brain Edema via Hyperthermia-Induced TRPV4 Activation.
Hoshi, Yutaka; Okabe, Kohki; Shibasaki, Koji; Funatsu, Takashi; Matsuki, Norio; Ikegaya, Yuji; Koyama, Ryuta
2018-06-20
Brain edema is characterized by an increase in net brain water content, which results in an increase in brain volume. Although brain edema is associated with a high fatality rate, the cellular and molecular processes of edema remain largely unclear. Here, we developed an in vitro model of ischemic stroke-induced edema in which male mouse brain slices were treated with oxygen-glucose deprivation (OGD) to mimic ischemia. We continuously measured the cross-sectional area of the brain slice for 150 min under macroscopic microscopy, finding that OGD induces swelling of brain slices. OGD-induced swelling was prevented by pharmacologically blocking or genetically knocking out the transient receptor potential vanilloid 4 (TRPV4), a member of the thermosensitive TRP channel family. Because TRPV4 is activated at around body temperature and its activation is enhanced by heating, we next elevated the temperature of the perfusate in the recording chamber, finding that hyperthermia induces swelling via TRPV4 activation. Furthermore, using the temperature-dependent fluorescence lifetime of a fluorescent-thermosensitive probe, we confirmed that OGD treatment increases the temperature of brain slices through the activation of glutamate receptors. Finally, we found that brain edema following traumatic brain injury was suppressed in TRPV4-deficient male mice in vivo Thus, our study proposes a novel mechanism: hyperthermia activates TRPV4 and induces brain edema after ischemia. SIGNIFICANCE STATEMENT Brain edema is characterized by an increase in net brain water content, which results in an increase in brain volume. Although brain edema is associated with a high fatality rate, the cellular and molecular processes of edema remain unclear. Here, we developed an in vitro model of ischemic stroke-induced edema in which mouse brain slices were treated with oxygen-glucose deprivation. Using this system, we showed that the increase in brain temperature and the following activation of the thermosensitive cation channel TRPV4 (transient receptor potential vanilloid 4) are involved in the pathology of edema. Finally, we confirmed that TRPV4 is involved in brain edema in vivo using TRPV4-deficient mice, concluding that hyperthermia activates TRPV4 and induces brain edema after ischemia. Copyright © 2018 the authors 0270-6474/18/385700-10$15.00/0.
Tuor, Ursula I; Qiao, Min
2017-04-01
To determine whether cumulative brain damage produced adjacent to a minor stroke that is followed by a mild transient ischemia is detectable with MRI and histology, and whether acute or chronic recovery between insults influences this damage. A minor photothrombotic (PT) stroke was followed acutely (1-2 days) or chronically (7 days) by a mild transient middle cerebral artery occlusion (tMCAO). MRI was performed after each insult, followed by final histology. The initial PT produced small hyperintense T 2 and DW infarct lesions and peri-lesion regions of scattered necrosis and modestly increased T 2 . Following tMCAO, in a slice and a region adjacent to the PT, a region of T 2 augmentation was observed when recovery between insults was acute but not chronic. Within the PT slice, a modest region of exacerbated T 2 change proximate to the PT was also observed in the chronic group. Corresponding histological changes within regions of augmented T 2 included increased vacuolation and cell death. Within regions adjacent to an experimental minor stroke, a recurrence of a mild transient cerebral ischemia augmented T 2 above increases produced by tMCAO alone, reflecting increased damage in this region. Exacerbation appeared broader with acute versus chronic recovery between insults.
Taurine and neural cell damage.
Saransaari, P; Oja, S S
2000-01-01
The inhibitory amino acid taurine is an osmoregulator and neuromodulator, also exerting neuroprotective actions in neural tissue. We review now the involvement of taurine in neuron-damaging conditions, including hypoxia, hypoglycemia, ischemia, oxidative stress, and the presence of free radicals, metabolic poisons and an excess of ammonia. The brain concentration of taurine is increased in several models of ischemic injury in vivo. Cell-damaging conditions which perturb the oxidative metabolism needed for active transport across cell membranes generally reduce taurine uptake in vitro, immature brain tissue being more tolerant to the lack of oxygen. In ischemia nonsaturable diffusion increases considerably. Both basal and K+-stimulated release of taurine in the hippocampus in vitro is markedly enhanced under cell-damaging conditions, ischemia, free radicals and metabolic poisons being the most potent. Hypoxia, hypoglycemia, ischemia, free radicals and oxidative stress also increase the initial basal release of taurine in cerebellar granule neurons, while the release is only moderately enhanced in hypoxia and ischemia in cerebral cortical astrocytes. The taurine release induced by ischemia is for the most part Ca2+-independent, a Ca2+-dependent mechanism being discernible only in hippocampal slices from developing mice. Moreover, a considerable portion of hippocampal taurine release in ischemia is mediated by the reversal of Na+-dependent transporters. The enhanced release in adults may comprise a swelling-induced component through Cl- channels, which is not discernible in developing mice. Excitotoxic concentrations of glutamate also potentiate taurine release in mouse hippocampal slices. The ability of ionotropic glutamate receptor agonists to evoke taurine release varies under different cell-damaging conditions, the N-methyl-D-aspartate-evoked release being clearly receptor-mediated in ischemia. Neurotoxic ammonia has been shown to provoke taurine release from different brain preparations, indicating that the ammonia-induced release may modify neuronal excitability in hyperammonic conditions. Taurine released simultane ously with an excess of excitatory amino acids in the hippocampus under ischemic and other neuron-damaging conditions may constitute an important protective mechanism against excitotoxicity, counteracting the harmful effects which lead to neuronal death. The release of taurine may prevent excitation from reaching neurotoxic levels.
Litt, L; Hirai, K; Basus, V J; James, T L
2003-01-01
Although mechanisms of hypothermic neuroprotection during oxygen deprivation have long been investigated, further characterizations of various molecular mechanisms are appropriate. Anticipating future studies of hypothermia and hypoxia/ischemia, we investigated the extent to which our ex vivo, NMR-based, superfused brain slice model might be helpful. (Slices are approximately 350 microm thick, with 18 slices per 8 mm NMR tube.) 31P NMR spectroscopic measurements were made of hypothermia-induced changes in high energy phosphates, while simultaneously monitoring and controlling tissue temperature, using 1H NMR, the high spectroscopic resolution available at 14.1 Tesla (600 MHz for protons), and a recently published protocol. NTP and PCr concentrations in healthy, well-oxygenated slices decreased to (55 +/- 15)% and (66 +/- 30)% of their respective values at 28.0 degrees C when warmed to 38.0 degrees C, in approximate agreement with earlier in vivo studies by others. During 30 min hypoxia NTP and PCr decreased to non-observable values, regardless of temperature. After reoxygenation, NTP and PCr recoveries as percentages of respective prehypoxia values were (63% +/- 16%; 70%) +/- 5%) for hypothermic slices (28.0 degrees C), and (46% +/- 13%; 41% +/- hypothermic neuroprotection during oxygen deprivation in this model, which appears suitable for use in further studies.
Protective effect of chlorogenic acid on the focal cerebral ischemia reperfusion rat models.
Miao, Mingsan; Cao, Lihua; Li, Ruiqi; Fang, Xiaoyan; Miao, Yanyan
2017-05-01
The aim of the study was to investigate the protective characteristic of chlorogenic acid, a natural glucosyl xanthone found in Lonicera Japonica on the cerebral ischemia reperfusion injury and the underlying mechanism. Focal cerebral ischemia reperfusion model was built by blocking the left middle cerebral artery in rats by using the suture-occluded method. Before operation, the corresponding drugs were given for each group once a day for 7 days. After 1 h of final administration, the model was built, after operation, reperfusion was conducted for 22 h, Before the reperfusion 10 min tail vein injection of large, medium and small dose of chlorogenic acid and then mortality was calculated, and Neurological deficit score (NDS) was conducted, and serum was collected to measure the NSE level; a 2 mm thick brain slice located at the intersection of optic nerves was collected for TTC staining, and the percentage of cerebral infarction area was calculated; brain homogenate was collected to measure the ICAM-1, VCAM-1, EPO and HIF-1α levels in brain tissue of cerebral ischemia reperfusion rat models; NGF was detected using immunohistochemical method; the morphological changes in brain tissue was observed with HE staining. All focal cerebral ischemia reperfusion rat models were duplicated successfully. Every chlorogenic acid group with different dosage can significantly reduce the mortality, NDS and cerebral infarction area of rats, and significantly increase the EPO, HIF-1α and NGF levels in brain tissue; significantly improve the pathological lesions of hippocampus and cortex in brain tissue. The results showed that chlorogenic acid could protect the focal cerebral ischemia reperfusion injury rat models by adjusting the inflammatory factor, hypoxia factor and nerve growth factor.
Buendia, Izaskun; Gómez-Rangel, Vanessa; González-Lafuente, Laura; Parada, Esther; León, Rafael; Gameiro, Isabel; Michalska, Patrycja; Laudon, Moshe; Egea, Javier; López, Manuela G
2015-12-01
Stopping the ischemic cascade by targeting its components is a potential strategy for acute ischemic stroke treatment. During ischemia and especially over reperfusion, oxidative stress plays a major role in causing neuronal cell death. Melatonin has been previously reported to provide neuroprotective effects in in vivo models of stroke by a mechanism that implicates melatonin receptors. In this context, this study was planned to test the potential neuroprotective effects of the novel melatonin MT1/MT2 receptor agonist, Neu-P11, against brain ischemia in in vitro and in vivo models, and to elucidate its underlying mechanism of action. Neu-P11 proved to be a good antioxidant, to protect against glutamate-induced excitotoxicity and oxygen and glucose deprivation in hippocampal slices, and to reduce infarct volume in an in vivo stroke model. Regarding its mechanism of action, the protective effect of Neu-P11 was reverted by luzindole (melatonin receptor antagonist), AG490 (JAK2 inhibitor), LY294002 (PI3/AKT inhibitor) and PD98059 (MEK/ERK1/2 inhibitor). In conclusion, Neu-P11 affords neuroprotection against brain ischemia in in vitro and in vivo models by activating a pro-survival signaling pathway that involves melatonin receptors, JAK/STAT, PI3K/Akt and MEK/ERK1/2. Copyright © 2015 Elsevier Ltd. All rights reserved.
Substance P induces cardioprotection in ischemia-reperfusion via activation of AKT
Jubair, Shaiban; Li, Jianping; Dehlin, Heather M.; Manteufel, Edward J.; Goldspink, Paul H.; Levick, Scott P.
2015-01-01
Accumulating evidence indicates that substance P is cardioprotective following ischemia-reperfusion primarily due to its potent coronary vasodilator actions. However, an anti-apoptotic effect of substance P has been observed in tenocytes following ischemia, which involved activation of the AKT pathway. This suggests the possibility that substance P also provides cardioprotection via direct actions to activate AKT in myocardial cells. The purpose of this study was to test the hypothesis that substance P attenuates ischemia-related cell death via direct effects on myocardial cells by activating cell survival pathways. Seven-week-old male Sprague-Dawley rats, anesthetized with intraperitoneal pentobarbital sodium (100 mg/kg), were used. The ability of substance P to prevent cellular damage was assessed following ischemia-reperfusion in an isolated heart preparation and in short-term hypoxia without reperfusion using a left ventricular tissue slice culture preparation. In addition, the NK-1 receptor and AKT involvement was assessed using the NK-1 receptor antagonist L732138 and the AKT inhibitor LY294002. The results indicate that substance P reduced the ischemia-related release of lactate dehydrogenase in both preparations and the degree of apoptosis and necrosis in the hypoxic left ventricular slices, indicating its ability to attenuate cell damage; and induced AKT phosphorylation, with both the AKT inhibitor and NK-1 receptor antagonist preventing the increased phosphorylation of AKT and the ability of substance P to attenuate hypoxic cellular damage. It is concluded that substance P reduces ischemia/hypoxia-induced myocardial cell death by acting directly on cardiac cells to initiate cell survival pathways via the NK-1 receptor and AKT. PMID:26071541
Substance P induces cardioprotection in ischemia-reperfusion via activation of AKT.
Jubair, Shaiban; Li, Jianping; Dehlin, Heather M; Manteufel, Edward J; Goldspink, Paul H; Levick, Scott P; Janicki, Joseph S
2015-08-15
Accumulating evidence indicates that substance P is cardioprotective following ischemia-reperfusion primarily due to its potent coronary vasodilator actions. However, an anti-apoptotic effect of substance P has been observed in tenocytes following ischemia, which involved activation of the AKT pathway. This suggests the possibility that substance P also provides cardioprotection via direct actions to activate AKT in myocardial cells. The purpose of this study was to test the hypothesis that substance P attenuates ischemia-related cell death via direct effects on myocardial cells by activating cell survival pathways. Seven-week-old male Sprague-Dawley rats, anesthetized with intraperitoneal pentobarbital sodium (100 mg/kg), were used. The ability of substance P to prevent cellular damage was assessed following ischemia-reperfusion in an isolated heart preparation and in short-term hypoxia without reperfusion using a left ventricular tissue slice culture preparation. In addition, the NK-1 receptor and AKT involvement was assessed using the NK-1 receptor antagonist L732138 and the AKT inhibitor LY294002. The results indicate that substance P reduced the ischemia-related release of lactate dehydrogenase in both preparations and the degree of apoptosis and necrosis in the hypoxic left ventricular slices, indicating its ability to attenuate cell damage; and induced AKT phosphorylation, with both the AKT inhibitor and NK-1 receptor antagonist preventing the increased phosphorylation of AKT and the ability of substance P to attenuate hypoxic cellular damage. It is concluded that substance P reduces ischemia/hypoxia-induced myocardial cell death by acting directly on cardiac cells to initiate cell survival pathways via the NK-1 receptor and AKT. Copyright © 2015 the American Physiological Society.
Blockade and knock-out of CALHM1 channels attenuate ischemic brain damage.
Cisneros-Mejorado, Abraham; Gottlieb, Miroslav; Ruiz, Asier; Chara, Juan C; Pérez-Samartín, Alberto; Marambaud, Philippe; Matute, Carlos
2018-06-01
Overactivation of purinergic receptors during cerebral ischemia results in a massive release of neurotransmitters, including adenosine triphosphate (ATP), to the extracellular space which leads to cell death. Some hypothetical pathways of ATP release are large ion channels, such as calcium homeostasis modulator 1 (CALHM1), a membrane ion channel that can permeate ATP. Since this transmitter contributes to postischemic brain damage, we hypothesized that CALHM1 activation may be a relevant target to attenuate stroke injury. Here, we analyzed the contribution of CALHM1 to postanoxic depolarization after ischemia in cultured neurons and in cortical slices. We observed that the onset of postanoxic currents in neurons in those preparations was delayed after its blockade with ruthenium red or silencing of Calhm1 gene by short hairpin RNA, as well as in slices from CALHM1 knockout mice. Subsequently, we used transient middle cerebral artery occlusion and found that ruthenium red, a blocker of CALHM1, or the lack of CALHM1, substantially attenuated the motor symptoms and reduced significantly the infarct volume. These results show that CALHM1 channels mediate postanoxic depolarization in neurons and brain damage after ischemia. Therefore, targeting CALHM1 may have a high therapeutic potential for treating brain damage after ischemia.
Carpenedo, Raffaella; Meli, Elena; Peruginelli, Fiamma; Pellegrini-Giampietro, Domenico E; Moroni, Flavio
2002-09-01
Kynurenine 3-mono-oxygenase (KMO) inhibitors reduce 3-hydroxykynurenine (3-HK) and quinolinic acid (QUIN) neosynthesis and facilitate kynurenine metabolism towards kynurenic acid (KYNA) formation. They also reduce tissue damage in models of focal or transient global cerebral ischemia in vivo. We used organotypic hippocampal slice cultures exposed to oxygen and glucose deprivation (OGD) to investigate KMO mechanism(s) of neuroprotective activity. Exposure of the slices to 30 min of OGD caused CA1 pyramidal cell death and significantly decreased the amount of KYNA released in the incubation medium. The KMO inhibitors (m-nitrobenzoyl)-alanine (30-100 micro m) or 3,4-dimethoxy-[-N-4-(nitrophenyl)thiazol-2yl]-benzenesulfonamide (1-10 micro m) reduced post-ischemic neuronal death and increased KYNA concentrations in slice incubation media. The maximal concentration of KYNA detected in the incubation media of slices treated with KMO inhibitors was approximately 50 nm and was too low to efficiently interact with alpha7 nicotinic acetylcholine receptors or with the glycineb site of N-methyl-d-aspartate (NMDA) receptors. On the other hand, the addition of either 3-HK or QUIN (1-10 micro m) to OGD-exposed hippocampal slices prevented the neuroprotective activity of KMO inhibitors. Our results suggest that KMO inhibitors reduce the neuronal death found in the CA1 region of organotypic hippocampal slices exposed to 30 min of OGD by decreasing the local synthesis of 3-HK and QUIN.
Jin, Wei-Na; Gonzales, Rayna; Feng, Yan; Wood, Kristofer; Chai, Zhi; Dong, Jing-Fei; La Cava, Antonio; Shi, Fu-Dong; Liu, Qiang
2018-06-01
Autoimmune responses can occur when antigens from the central nervous system are presented to lymphocytes in the periphery or central nervous system in several neurological diseases. However, whether autoimmune responses emerge after brain ischemia and their impact on clinical outcomes remains controversial. We hypothesized that brain ischemia facilitates the genesis of autoimmunity and aggravates ischemic brain injury. Using a mouse strain that harbors a transgenic T-cell receptor to a central nervous system antigen, MOG 35-55 (myelin oligodendrocyte glycoprotein) epitope (2D2), we determined the anatomic location and involvement of antigen-presenting cells in the development of T-cell reactivity after brain ischemia and how T-cell reactivity impacts stroke outcome. Transient middle cerebral artery occlusion and photothrombotic stroke models were used in this study. We also quantified the presence and status of T cells from brain slices of ischemic patients. By coupling transfer of labeled MOG 35-55 -specific (2D2) T cells with tetramer tracking, we show an expansion in reactivity of 2D2 T cells to MOG 91-108 and MOG 103-125 in transient middle cerebral artery occlusion and photothrombotic stroke models. This reactivity and T-cell activation first occur locally in the brain after ischemia. Also, microglia act as antigen-presenting cells that effectively present MOG antigens, and depletion of microglia ablates expansion of 2D2 reactive T cells. Notably, the adoptive transfer of neuroantigen-experienced 2D2 T cells exacerbates Th1/Th17 responses and brain injury. Finally, T-cell activation and MOG-specific T cells are present in the brain of patients with ischemic stroke. Our findings suggest that brain ischemia activates and diversifies T-cell responses locally, which exacerbates ischemic brain injury. © 2018 The Authors.
Neuroprotective effects of adenosine deaminase in the striatum
Tamura, Risa; Satoh, Yasushi; Nonoyama, Shigeaki; Nishida, Yasuhiro; Nibuya, Masashi
2016-01-01
Adenosine deaminase (ADA) is a ubiquitous enzyme that catabolizes adenosine and deoxyadenosine. During cerebral ischemia, extracellular adenosine levels increase acutely and adenosine deaminase catabolizes the increased levels of adenosine. Since adenosine is a known neuroprotective agent, adenosine deaminase was thought to have a negative effect during ischemia. In this study, however, we demonstrate that adenosine deaminase has substantial neuroprotective effects in the striatum, which is especially vulnerable during cerebral ischemia. We used temporary oxygen/glucose deprivation (OGD) to simulate ischemia in rat corticostriatal brain slices. We used field potentials as the primary measure of neuronal damage. For stable and efficient electrophysiological assessment, we used transgenic rats expressing channelrhodopsin-2, which depolarizes neurons in response to blue light. Time courses of electrically evoked striatal field potential (eFP) and optogenetically evoked striatal field potential (optFP) were recorded during and after oxygen/glucose deprivation. The levels of both eFP and optFP decreased after 10 min of oxygen/glucose deprivation. Bath-application of 10 µg/ml adenosine deaminase during oxygen/glucose deprivation significantly attenuated the oxygen/glucose deprivation-induced reduction in levels of eFP and optFP. The number of injured cells decreased significantly, and western blot analysis indicated a significant decrease of autophagic signaling in the adenosine deaminase-treated oxygen/glucose deprivation slices. These results indicate that adenosine deaminase has protective effects in the striatum. PMID:26746865
Nuñez-Figueredo, Yanier; Ramírez-Sánchez, Jeney; Hansel, Gisele; Simões Pires, Elisa Nicoloso; Merino, Nelson; Valdes, Odalys; Delgado-Hernández, René; Parra, Alicia Lagarto; Ochoa-Rodríguez, Estael; Verdecia-Reyes, Yamila; Salbego, Christianne; Costa, Silvia L; Souza, Diogo O; Pardo-Andreu, Gilberto L
2014-10-01
We previously showed that JM-20, a novel 1,5-benzodiazepine fused to a dihydropyridine moiety, possessed an anxiolytic profile similar to diazepam and strong neuroprotective activity in different cell models relevant to cerebral ischemia. Here, we investigated whether JM-20 protects against ischemic neuronal damage in vitro and in vivo. The effects of JM-20 were evaluated on hippocampal slices subjected to oxygen and glucose deprivation (OGD). For in vivo studies, Wistar rats were subjected 90 min of middle cerebral artery occlusion (MCAo) and oral administration of JM-20 at 2, 4 and 8 mg/kg 1 h following reperfusion. Twenty-four hours after cerebral blood flow restoration, neurological deficits were scored, and the infarct volume, histopathological changes in cortex, number of hippocampal and striatal neurons, and glutamate/aspartate concentrations in the cerebrospinal fluid were measured. Susceptibility to brain mitochondrial swelling, membrane potential dissipation, H2O2 generation, cytochrome c release, Ca2+ accumulation, and morphological changes in the organelles were assessed 24 h post-ischemia. In vitro, JM-20 (1 and 10 μM) administered during reperfusion significantly reduced cell death in hippocampal slices subjected to OGD. In vivo, JM-20 treatment (4 and 8 mg/kg) significantly decreased neurological deficit scores, edema formation, total infarct volumes and histological alterations in different brain regions. JM-20 treatment also protected brain mitochondria from ischemic damage, most likely by preventing Ca2+ accumulation in organelles. Moreover, an 8-mg/kg JM-20 dose reduced glutamate and aspartate concentrations in cerebrospinal fluid and the deleterious effects of MCAo even when delivered 8 h after blood flow restoration. These results suggest that in rats, JM-20 is a robust neuroprotective agent against ischemia/reperfusion injury with a wide therapeutic window. Our findings support the further examination of potential clinical JM-20 use to treat acute ischemic stroke. Copyright © 2014 Elsevier Ltd. All rights reserved.
Gavrilova, S A; Us, K S; Ostrovskaia, R U; Koshelev, V B
2006-01-01
The influence of noopept (N-phenylacetyl-L-prolylglycine ethyl ester, GVS-111) on the extent of ischemic cortical stroke was investigated in experiments on white mongrel male rats with ischemia induced by a combination of the middle cerebral artery occlusion with ipsilateral common carotid artery ligation. Animals were treated with noopept (0.5 mg/kg, i.p.) according to the following schedule: 15 min and 2, 24, and 48 h after the occlusion. Test rats were decapitated 72 h after occlusion, brains were extracted and frozen, and thin brain slices were stained with 2,3,5-triphenyltetrazolium chloride. The slices were scanned and processed using Auc 1 computer program, which estimates the percentage of damaged area relative to that of the whole ipsilateral hemisphere. The conditions of coagulation the distal segment of middle cerebral artery were selected, which caused necrosis localized in the fronto-parietal and dorso-lateral regions of the brain cortex without any damage of subcortical structures. The extent of the brain damage in control group (treated by saline) was 18.6%, while that in the group treated with noopept was 12.2%, thus demonstrating a decrease in the infarction area by 34.5% (p < 05). The data on noopept efficacy on the model of the extensive ischemic injury of brain cortex show that this drug has good prospects for use in the neuroprotective treatment of stroke.
Rosa, Angelo O; Egea, Javier; Martínez, Ana; García, Antonio G; López, Manuela G
2008-07-01
Thiadiazolidinones (TDZDs) are small molecules that inhibit glycogen synthase kinase 3-beta (GSK3-beta) activity in a non competitive manner to ATP. NP00111, a new TDZD, besides causing inhibition of GSK-3beta, has also shown to be an agonist of PPARgamma . Since phosphorylation and consequent inhibition of GSK-3beta by PI-3K/Akt and agonism of PPARgamma have shown to afford neuroprotection in several in vitro and in vivo models, we have studied the potential neuroprotective effect of NP00111 in an "in vitro" model of ischemia-reperfusion. NP00111, at the concentration of 10 microM, significantly protected adult rat hippocampal slices subjected to oxygen and glucose deprivation (OGD) for 1 h followed by 3 h re-oxygenation, measured as lactic dehydrogenase (LDH) released to the extracellular media. The protective effects of NP00111 were more pronounced during the re-oxygenation period in comparison to the OGD period. Other GSK-3beta inhibitors like lithium or AR-A014418 did not afford protection in this model. However, the PPARgamma agonist rosiglitazone was protective at 3 microM. Protection afforded by NP00111 and rosiglitazone were prevented by the PPARgamma antagonist GW9662, suggesting that both NP00111 and rosiglitazone were preventing cell death caused by oxygen-glucose deprivation via activation of PPARgamma. NP00111 increased by two fold phosphorylation of ERK1/2 and its protective effects were lost when the hippocampal slices were co-incubated with the mitogen-activated protein kinase (MAPK) inhibitor PD98059. In conclusion, the novel TDZD NP00111 was protective against OGD in rat hippocampal slices by a mechanism related to phosphorylation of ERK1/2 via activation of PPARgamma.
Fructose-1,6-Bisphospate does not preserve ATP in hypoxic-ischemic neonatal cerebrocortical slices
Liu, Jia; Hirai, Kiyoshi; Litt, Lawrence
2008-01-01
Fructose-1,6-bisphosphate (FBP), an endogenous intracellular metabolite in glycolysis, was found in many preclinical studies to be neuroprotective during hypoxia-ischemia (HI) when administered exogenously. We looked for HI neuroprotection from FBP in a neonatal rat brain slice model, using 14.1 Tesla 1H /31P/13C NMR spectroscopy of perchloric acid slice extracts to ask: 1) if FBP preserves high energy phosphates during HI; and 2) if exogenous [1-13C]FBP enters cells and is glycolytically metabolized to [3-13C]lactate. We also asked: 3) if substantial superoxide production occurs during and after HI, thinking such might be treatable by exogenous FBP's antioxidant effects. Superfused P7 rat cerebrocortical slices (350μm) were treated with 2 mM FBP before and during 30 min of HI, and then given four hours of recovery with an FBP-free oxygenated superfusate. Slices were removed before HI, at the end of HI, and at 1 and 4 hours after HI. FBP did not improve high energy phosphate levels or change 1H metabolite profiles. Large increases in [3-13C]lactate were seen with 13C NMR, but the lactate fractional enrichment was always (1.1±0.5)%, implying that all of lactate's 13C was natural abundance 13C, that none was from metabolism of 13C-FBP. FBP had no effect on the fluorescence of ethidium produced from superoxide oxidation of hydroethidine. Compared to control slices, ethidium fluorescence was 25% higher during HI and 50% higher at the end of recovery. Exogenous FBP did not provide protection or enter glycolysis. Its use as an antioxidant might be worth studying at higher FBP concentrations. PMID:18725216
Apixaban decreases brain thrombin activity in a male mouse model of acute ischemic stroke.
Bushi, Doron; Chapman, Joab; Wohl, Anton; Stein, Efrat Shavit; Feingold, Ekaterina; Tanne, David
2018-05-14
Factor Xa (FXa) plays a critical role in the coagulation cascade by generation of thrombin. During focal ischemia thrombin levels increase in the brain tissue and cause neural damage. This study examined the hypothesis that administration of the FXa inhibitor, apixaban, following focal ischemic stroke may have therapeutic potential by decreasing brain thrombin activity and infarct volume. Male mice were divided into a treated groups that received different doses of apixaban (2, 20, 100 mg/kg administered I.P.) or saline (controls) immediately after blocking the middle cerebral artery (MCA). Thrombin activity was measured by a fluorescence assay on fresh coronal slices taken from the mice brains 24 hr following the MCA occlusion. Infarct volume was assessed using triphenyltetrazolium chloride staining. A high dose of apixaban (100 mg/kg) significantly decreased thrombin activity levels in the ipsilateral hemisphere compared to the control group (Slice#5, p = .016; Slice#6, p = .016; Slice#7, p = .016; Slice#8, p = .036; by the nonparametric Mann-Whitney test). In addition, treatment with apixaban doses of both 100 mg/kg (32 ± 8% vs. 76 ± 7% in the treatment vs. control groups respectively; p = .005 by the nonparametric Mann-Whitney test) and 20 mg/kg (43 ± 7% vs. 76 ± 7% in the treatment vs. control groups respectively; p = .019 by the nonparametric Mann-Whitney test) decreased infarct volumes in areas surrounding the ischemic core (Slices #3 and #8). No brain hemorrhages were observed either in the treated or control groups. In summary, I.P. administration of high dose of apixaban immediately after MCA occlusion decreases brain thrombin activity and reduces infarct size. © 2018 Wiley Periodicals, Inc.
Huang, Sheng-Yang; Tai, Shih-Huang; Chang, Che-Chao; Tu, Yi-Fang; Chang, Chih-Han; Lee, E-Jian
2018-04-01
In the present study, the neuroprotective potential of magnolol against ischemia-reperfusion brain injury was examined via in vivo and in vitro experiments. Magnolol exhibited strong radical scavenging and antioxidant activity, and significantly inhibited the production of interleukin‑6, tumor necrosis factor‑a and nitrite/nitrate (NOX) in lipopolysaccharide-stimulated BV2 and RAW 264.7 cells when applied at concentrations of 10 and 50 µM, respectively. Magnolol (100 µM) also significantly attenuated oxygen‑glucose deprivation‑induced damage in neonatal rat hippocampal slice cultures, when administered up to 4 h following the insult. In a rat model of stable ischemia, compared with a vehicle‑treated ischemic control, pretreatment with magnolol (0.01‑1 mg/kg, intravenously) significantly reduced brain infarction following ischemic stroke, and post‑treatment with magnolol (1 mg/kg) remained effective and significantly reduced infarction when administered 2 h following the onset of ischemia. Additionally, magnolol (0.3 and 1 mg/kg) significantly reduced the accumulation of superoxide anions at the border zones of infarction and reduced oxidative damage in the ischemic brain. This was assessed by measuring the levels of NOX, malondialdehyde and myeloperoxidase, the ratio of glutathione/oxidized glutathione and the immunoreactions of 8‑hydroxy‑2'‑deoxyguanosine and 4‑hydroxynonenal. Thus, magnolol was revealed to protect against ischemia‑reperfusion brain damage. This may be partly attributed to its antioxidant, radical scavenging and anti‑inflammatory effects.
Patiño, Paloma; Parada, Esther; Farré-Alins, Victor; Molz, Simone; Cacabelos, Ramón; Marco-Contelles, José; López, Manuela G; Tasca, Carla I; Ramos, Eva; Romero, Alejandro; Egea, Javier
2016-12-01
Therapeutic interventions on pathological processes involved in the ischemic cascade, such as oxidative stress, neuroinflammation, excitotoxicity and/or apoptosis, are of urgent need for stroke treatment. Melatonin regulates a large number of physiological actions and its beneficial properties have been reported. The aim of this study was to investigate whether melatonin mediates neuroprotection in rat hippocampal slices subjected to oxygen-glucose-deprivation (OGD) and glutamate excitotoxicity. Thus, we describe here that melatonin significantly reduced the amount of lactate dehydrogenase released in the OGD-treated slices, reverted neuronal injury caused by OGD-reoxygenation in CA1 and CA3 hippocampal regions, restored the reduction of GSH content of the hippocampal slices induced by OGD, and diminished the oxidative stress produced in the reoxygenation period. Furthermore, melatonin afforded maximum protection against glutamate-induced toxicity and reversed the glutamate released almost basal levels, at 10 and 30μM concentration, respectively. Consequently, we propose that melatonin might strongly and positively influence the outcome of brain ischemia/reperfusion. Copyright © 2016 Elsevier B.V. All rights reserved.
BCL-2 and Bax Expression in Skin Flaps Treated with Finasteride or Azelaic Acid.
Ayatollahi, Seyyed Abdulmajid; Ajami, Marjan; Reyhanfard, Hamed; Asadi, Yasin; Nassiri-Kashani, Mansour; Rashighi Firoozabadi, Mehdi; Davoodi, Sayed Hossein; Habibi, Esmaeil; Pazoki-Toroudi, Hamidreza
2012-01-01
Despite all modern surgical techniques, skin flap that is considered as the main method in most reconstructive surgeries puts the skin tissue at danger of necrosis and apoptosis derived from ischemia. Therefore, finding a treatment for decreasing the apoptosis derived from flap ischemia will be useful in clinic. In present study, we evaluated the effect of azelaic acid 20% and finasteride on expression of BCL-2 and bax proteins after the skin flap surgery. For this purpose, 21 rats were entered in three groups including control, azelaic acid 20% and finasteride, all experienced skin flap surgery and then flap tissue was assessed for determining the expression of proteins in 5 slices prepared from each rat that were graded between - to +++ scales. Both azelaic acid and finasteride increased the expression of BCL-2 protein (p < 0.05) and decrease the expression of bax protein (p < 0.05). These results suggested an antiapoptotic role for finasteride and azelaic acid in preserving the flap after the ischemia reperfusion insult.
BCL-2 and Bax Expression in Skin Flaps Treated with Finasteride or Azelaic Acid
Ayatollahi, Seyyed Abdulmajid; Ajami, Marjan; Reyhanfard, Hamed; Asadi, Yasin; Nassiri-Kashani, Mansour; Rashighi Firoozabadi, Mehdi; Davoodi, Sayed Hossein; Habibi, Esmaeil; Pazoki-Toroudi, Hamidreza
2012-01-01
Despite all modern surgical techniques, skin flap that is considered as the main method in most reconstructive surgeries puts the skin tissue at danger of necrosis and apoptosis derived from ischemia. Therefore, finding a treatment for decreasing the apoptosis derived from flap ischemia will be useful in clinic. In present study, we evaluated the effect of azelaic acid 20% and finasteride on expression of BCL-2 and bax proteins after the skin flap surgery. For this purpose, 21 rats were entered in three groups including control, azelaic acid 20% and finasteride, all experienced skin flap surgery and then flap tissue was assessed for determining the expression of proteins in 5 slices prepared from each rat that were graded between – to +++ scales. Both azelaic acid and finasteride increased the expression of BCL-2 protein (p < 0.05) and decrease the expression of bax protein (p < 0.05). These results suggested an antiapoptotic role for finasteride and azelaic acid in preserving the flap after the ischemia reperfusion insult. PMID:24250563
Shen, Zhe; Zheng, Yanrong; Wu, Jiaying; Chen, Ying; Wu, Xiaoli; Zhou, Yiting; Yuan, Yang; Lu, Shousheng; Jiang, Lei; Qin, Zhenghong; Chen, Zhong; Hu, Weiwei; Zhang, Xiangnan
2017-03-04
Prompt reperfusion after cerebral ischemia is critical for neuronal survival. Any strategies that extend the limited reperfusion window will be of great importance. Acidic postconditioning (APC) is a mild acidosis treatment that involves inhaling CO 2 during reperfusion following ischemia. APC attenuates ischemic brain injury although the underlying mechanisms have not been elucidated. Here we report that APC reinforces ischemia-reperfusion-induced mitophagy in middle cortical artery occlusion (MCAO)-treated mice, and in oxygen-glucose deprivation (OGD)-treated brain slices and neurons. Inhibition of mitophagy compromises neuroprotection conferred by APC. Furthermore, mitophagy and neuroprotection are abolished in Park2 knockout mice, indicating that APC-induced mitophagy is facilitated by the recruitment of PARK2 to mitochondria. Importantly, in MCAO mice, APC treatment extended the effective reperfusion window from 2 to 4 h, and this window was further extended to 6 h by exogenously expressing PARK2. Taken together, we found that PARK2-dependent APC-induced mitophagy renders the brain resistant to ischemic injury. APC treatment could be a favorable strategy to extend the thrombolytic time window for stroke therapy.
Effect of beam hardening on transmural myocardial perfusion quantification in myocardial CT imaging
NASA Astrophysics Data System (ADS)
Fahmi, Rachid; Eck, Brendan L.; Levi, Jacob; Fares, Anas; Wu, Hao; Vembar, Mani; Dhanantwari, Amar; Bezerra, Hiram G.; Wilson, David L.
2016-03-01
The detection of subendocardial ischemia exhibiting an abnormal transmural perfusion gradient (TPG) may help identify ischemic conditions due to micro-vascular dysfunction. We evaluated the effect of beam hardening (BH) artifacts on TPG quantification using myocardial CT perfusion (CTP). We used a prototype spectral detector CT scanner (Philips Healthcare) to acquire dynamic myocardial CTP scans in a porcine ischemia model with partial occlusion of the left anterior descending (LAD) coronary artery guided by pressure wire-derived fractional flow reserve (FFR) measurements. Conventional 120 kVp and 70 keV projection-based mono-energetic images were reconstructed from the same projection data and used to compute myocardial blood flow (MBF) using the Johnson-Wilson model. Under moderate LAD occlusion (FFR~0.7), we used three 5 mm short axis slices and divided the myocardium into three LAD segments and three remote segments. For each slice and each segment, we characterized TPG as the mean "endo-to-epi" transmural flow ratio (TFR). BH-induced hypoenhancement on the ischemic anterior wall at 120 kVp resulted in significantly lower mean TFR value as compared to the 70 keV TFR value (0.29+/-0.01 vs. 0.55+/-0.01 p<1e-05). No significant difference was measured between 120 kVp and 70 keV mean TFR values on segments moderately affected or unaffected by BH. In the entire ischemic LAD territory, 120 kVp mean endocardial flow was significantly reduced as compared to mean epicardial flow (15.80+/-10.98 vs. 40.85+/-23.44 ml/min/100g; p<1e-04). At 70 keV, BH was effectively minimized resulting in mean endocardial MBF of 40.85+/-15.3407 ml/min/100g vs. 74.09+/-5.07 ml/min/100g (p=0.0054) in the epicardium. We also found that BH artifact in the conventional 120 kVp images resulted in falsely reduced MBF measurements even under non-ischemic conditions.
Hypoxia diminishes the protective function of white-matter astrocytes in the developing brain.
Agematsu, Kota; Korotcova, Ludmila; Morton, Paul D; Gallo, Vittorio; Jonas, Richard A; Ishibashi, Nobuyuki
2016-01-01
White-matter injury after surgery is common in neonates with cerebral immaturity secondary to in utero hypoxia. Astrocytes play a central role in brain protection; however, the reaction of astrocytes to hypothermic circulatory arrest (HCA) remains unknown. We investigated the role of astrocytes in white-matter injury after HCA and determined the effects of preoperative hypoxia on this role, using a novel mouse model. Mice were exposed to hypoxia from days 3 to 11, which is equivalent to the third trimester in humans (prehypoxia, n = 49). Brain slices were transferred to a chamber perfused by cerebrospinal fluid. Oxygen-glucose deprivation (OGD) was performed to simulate ischemia-reperfusion/reoxygenation resulting from circulatory arrest under hypothermia. Astrocyte reactions were compared with preoperative normoxia (prenormoxia; n = 45). We observed astrocyte activation after 25°C ischemia-reperfusion/reoxygenation in prenormoxia (P < .01). Astrocyte number after OGD correlated with caspase-3(+) cells (rho = .77, P = .001), confirming that astrogliosis is an important response after HCA. At 3 hours after OGD, astrocytes in prenormoxia had already proliferated and become activated (P < .05). Conversely, astrocytes that developed under hypoxia did not display these responses. At 20 hours after ischemia-reperfusion/reoxygenation, astrogliosis was not observed in prehypoxia, demonstrating that hypoxia altered the response of astrocytes to insult. In contrast to prenormoxia, caspase-3(+) cells in prehypoxia increased after ischemia reperfusion/reoxygenation, compared with control (P < .01). Caspase-3(+) cells were more common with prehypoxia than with prenormoxia (P < .001), suggesting that lack of astrogliosis permits increased white-matter injury. Preoperative hypoxia alters the neuroprotective function of astrocytes. Restoring this function before surgery may be a therapeutic option to reduce postoperative white-matter injury in the immature brain. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
Wu, K W; Yang, P; Li, S S; Liu, C W; Sun, F Y
2015-07-09
We recently indicated that the vascular endothelial growth factor (VEGF) protects neurons against hypoxic death via enhancement of tyrosine phosphorylation of Kv1.2, an isoform of the delayed-rectifier potassium channels through activation of the phosphatidylinositol 3-kinase (PI3-K) signaling pathway. The present study investigated whether VEGF could attenuate ischemia-induced increase of the potassium currents in the hippocampal pyramidal neurons of rats after ischemic injury. Adult male Sprague-Dawley rats were subjected to transient middle cerebral artery occlusion (MCAO) to induce brain ischemia. The whole-cell patch-clamp technique was used to record the potassium currents of hippocampal neurons in brain slices from the ischemically injured brains of the rats 24h after MCAO. We detected that transient MCAO caused a significant increase of voltage-gated potassium currents (Kv) and outward delayed-rectifier potassium currents (IK), but not outward transient potassium currents (IA), in the ipsilateral hippocampus compared with the sham. Moreover, we found that VEGF could acutely, reversibly and voltage-dependently inhibit the ischemia-induced IK increase. This inhibitory effect of VEGF could be completely abolished by wortmannin, an inhibitor of PI3-K. Our data indicate that VEGF attenuates the ischemia-induced increase of IK via activation of the PI3-K signaling pathway. Published by Elsevier Ltd.
Diffusion measurements in the ischemic human brain with a steady-state sequence.
Brüning, R; Wu, R H; Deimling, M; Porn, U; Haberl, R L; Reiser, M
1996-11-01
The authors evaluate the clinical usefulness of a diffusion-weighted steady-state free-precession (SSFP) sequence to detect acute and subacute ischemic changes. Twenty-four patients were examined on a 1.5-tesla scanner, using a SSFP-sequence (repetition time [TR]/ echo time [TE] = 22/3-8 mseconds). The slice thickness was 5 mm, 10 averages, 57 seconds per slice. The diffusion gradient strength was 23 millitesla/m, with b-values from 165 to 598 seconds/mm2. Diffusion-weighted images (DWI) were compared with T2-weighted images. The diffusion-weighted SSFP sequence produced diagnostic quality images in 23 of 24 patients. Diffusion depicted (group 1: 0-12 hours) more acute lesions (3 of 6) than T2-weighted images (2 of 6); the mean lesion diameter depicted by diffusion was 10.9 mm (standard deviation [SD], 12.3) and in T2-weighted images was 4.7 mm (SD 6.8). A significant correlation (P < 0.017) in subacute lesions was found when diffusion was compared with turbo spin echo (mean size difference/T2 = 18.5/17.5 mm, SD 13.2/12.2). The diffusion-weighted SSFP-sequence is more sensitive in acute ischemia and delineates likewise in subacute ischemia, when compared with T2-weighted imaging.
Koronowski, Kevin B; Khoury, Nathalie; Saul, Isabel; Loris, Zachary B; Cohan, Charles H; Stradecki-Cohan, Holly M; Dave, Kunjan R; Young, Juan I; Perez-Pinzon, Miguel A
2017-11-01
Resveratrol, at least in part via SIRT1 (silent information regulator 2 homologue 1) activation, protects against cerebral ischemia when administered 2 days before injury. However, it remains unclear if SIRT1 activation must occur, and in which brain cell types, for the induction of neuroprotection. We hypothesized that neuronal SIRT1 is essential for resveratrol-induced ischemic tolerance and sought to characterize the metabolic pathways regulated by neuronal Sirt1 at the cellular level in the brain. We assessed infarct size and functional outcome after transient 60 minute middle cerebral artery occlusion in control and inducible, neuronal-specific SIRT1 knockout mice. Nontargeted primary metabolomics analysis identified putative SIRT1-regulated pathways in brain. Glycolytic function was evaluated in acute brain slices from adult mice and primary neuronal-enriched cultures under ischemic penumbra-like conditions. Resveratrol-induced neuroprotection from stroke was lost in neuronal Sirt1 knockout mice. Metabolomics analysis revealed alterations in glucose metabolism on deletion of neuronal Sirt1 , accompanied by transcriptional changes in glucose metabolism machinery. Furthermore, glycolytic ATP production was impaired in acute brain slices from neuronal Sirt1 knockout mice. Conversely, resveratrol increased glycolytic rate in a SIRT1-dependent manner and under ischemic penumbra-like conditions in vitro. Our data demonstrate that resveratrol requires neuronal SIRT1 to elicit ischemic tolerance and identify a novel role for SIRT1 in the regulation of glycolytic function in brain. Identification of robust neuroprotective mechanisms that underlie ischemia tolerance and the metabolic adaptations mediated by SIRT1 in brain are crucial for the translation of therapies in cerebral ischemia and other neurological disorders. © 2017 American Heart Association, Inc.
Blockade of P2X7 receptors or pannexin-1 channels similarly attenuates postischemic damage.
Cisneros-Mejorado, Abraham; Gottlieb, Miroslav; Cavaliere, Fabio; Magnus, Tim; Koch-Nolte, Friederich; Scemes, Eliana; Pérez-Samartín, Alberto; Matute, Carlos
2015-05-01
The role of P2X7 receptors and pannexin-1 channels in ischemic damage remains controversial. Here, we analyzed their contribution to postanoxic depolarization after ischemia in cultured neurons and in brain slices. We observed that pharmacological blockade of P2X7 receptors or pannexin-1 channels delayed the onset of postanoxic currents and reduced their slope, and that simultaneous inhibition did not further enhance the effects of blocking either one. These results were confirmed in acute cortical slices from P2X7 and pannexin-1 knockout mice. Oxygen-glucose deprivation in cortical organotypic cultures caused neuronal death that was reduced with P2X7 and pannexin-1 blockers as well as in organotypic cultures derived from mice lacking P2X7 and pannexin 1. Subsequently, we used transient middle cerebral artery occlusion to monitor the neuroprotective effect of those drugs in vivo. We found that P2X7 and pannexin-1 antagonists, and their ablation in knockout mice, substantially attenuated the motor symptoms and reduced the infarct volume to ~50% of that in vehicle-treated or wild-type animals. These results show that P2X7 receptors and pannexin-1 channels are major mediators of postanoxic depolarization in neurons and of brain damage after ischemia, and that they operate in the same deleterious signaling cascade leading to neuronal and tissue demise.
Washout of heme-containing proteins dramatically improves tetrazolium-based infarct staining.
Pitts, Kelly R; Stiko, Ann; Buetow, Bernard; Lott, Fred; Guo, Ping; Virca, Duke; Toombs, Christopher F
2007-01-01
Methods to determine infarct size following ischemia-reperfusion injury include gross staining with triphenyltetrazolium chloride (TTC) and perfusion of colored dyes to demarcate the non-ischemic zone. Infarcted tissue (INF) can typically appear a mottled tan to brownish color, making a border between INF and TTC-positive tissue difficult to discern. Previous work in our lab indicated that following TTC staining, prolonged washing of thick sections dramatically sharpened this boundary. Adult rats underwent 30 min ischemia via LAD ligation and reperfusion/recovery over 24 h. Hearts were then harvested, thick-sectioned, and stained with TTC. Stained sections were stored in PBS at 4 degrees C for up to 3 weeks. Histology on thin sections from infarcted hearts fixed directly after harvest revealed extensive hemorrhage within the INF. However, this hemorrhage is washed out when hearts are stored in PBS for 3 weeks. SDS-PAGE of PBS samples taken at 1, 2, and 3 weeks showed a low molecular weight band appearing over time. Peptide sequencing revealed the presence of several proteins including the heme-containing proteins (HCPs) hemoglobin, cytochrome c, and myoglobin. The loss of HCPs from thick sections to PBS corresponded with the blanching of the previously mottled INF within each section. HPLC analysis of these samples confirmed the loss of HCPs contributes to INF whitening. Further, analysis of infarct size values derived from heart slices with or without HCPs showed a significant decrease in measurement error when values were derived from slices without HCPs. These data suggest that HCPs in the heart tissue contribute to the non-uniform and discolored appearance of the INF, and that washout of these proteins produces an INF more easily distinguished from neighboring non-infarcted tissue. This method greatly reduces the error associated with infarct measurements and improves the analysis of the effects of drug treatments and other interventions designed to impact ischemia reperfusion injury.
Pretreatment with apoaequorin protects hippocampal CA1 neurons from oxygen-glucose deprivation.
Detert, Julia A; Adams, Erin L; Lescher, Jacob D; Lyons, Jeri-Anne; Moyer, James R
2013-01-01
Ischemic stroke affects ∼795,000 people each year in the U.S., which results in an estimated annual cost of $73.7 billion. Calcium is pivotal in a variety of neuronal signaling cascades, however, during ischemia, excess calcium influx can trigger excitotoxic cell death. Calcium binding proteins help neurons regulate/buffer intracellular calcium levels during ischemia. Aequorin is a calcium binding protein isolated from the jellyfish Aequorea victoria, and has been used for years as a calcium indicator, but little is known about its neuroprotective properties. The present study used an in vitro rat brain slice preparation to test the hypothesis that an intra-hippocampal infusion of apoaequorin (the calcium binding component of aequorin) protects neurons from ischemic cell death. Bilaterally cannulated rats received an apoaequorin infusion in one hemisphere and vehicle control in the other. Hippocampal slices were then prepared and subjected to 5 minutes of oxygen-glucose deprivation (OGD), and cell death was assayed by trypan blue exclusion. Apoaequorin dose-dependently protected neurons from OGD--doses of 1% and 4% (but not 0.4%) significantly decreased the number of trypan blue-labeled neurons. This effect was also time dependent, lasting up to 48 hours. This time dependent effect was paralleled by changes in cytokine and chemokine expression, indicating that apoaequorin may protect neurons via a neuroimmunomodulatory mechanism. These data support the hypothesis that pretreatment with apoaequorin protects neurons against ischemic cell death, and may be an effective neurotherapeutic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arfian, Nur; Emoto, Noriaki, E-mail: emoto@med.kobe-u.ac.jp; Department of Clinical Pharmacy, Kobe Pharmaceutical University, Kobe
Highlights: Black-Right-Pointing-Pointer Ischemia/reperfusion injury (IRI) induced increased endothelin-1 (ET-1) expression. Black-Right-Pointing-Pointer IRI was accompanied by tubular injury and remodeling of renal arteries. Black-Right-Pointing-Pointer IRI increased oxidative stress and inflammation. Black-Right-Pointing-Pointer Genetic suppression of ET-1 in endothelial cells attenuates IRI in the kidney. Black-Right-Pointing-Pointer The mechanisms include the inhibition of oxidative stress and inflammation. -- Abstract: Background: The prognosis of patients after acute kidney injury (AKI) is poor and treatment is limited. AKI is mainly caused by renal ischemia/reperfusion injury (IRI). During the extension phase of IRI, endothelial damage may participate in ischemia and inflammation. Endothelin-1 (ET-1) which is mostly secretedmore » by endothelial cells is an important actor of IRI, particularly through its strong vasoconstrictive properties. We aimed to analyze the specific role of ET-1 from the endothelial cells in AKI. Methods: We used mice lacking ET-1 in the vascular endothelial cells (VEETKO). We induced IRI in VEETKO mice and wild type controls by clamping both kidneys for 30 min. Sham operated mice were used as controls. Mice were sacrificed one day after IRI in order to investigate the extension phase of IRI. Kidney function was assessed based on serum creatinine concentration. Levels of expression of ET-1, its receptor ET{sub A}, protein kinase C, eNOS, E-Cadherin and inflammation markers were evaluated by real time PCR or western blot. Tubular injury was scored on periodic acid Schiff stained kidney preparations. Lumen and wall area of small intrarenal arteries were measured on kidney slices stained for alpha smooth muscle cell actin. Oxidative stress, macrophage infiltration and cell proliferation was evaluated on slices stained for 8-hydroxy-2 Prime -deoxyguanosine, F4/80 and PCNA, respectively. Results: IRI induced kidney failure and increased ET-1 and ET{sub A} receptor expression. This was accompanied by tubular injury, wall thickening and reduction of lumen area/wall area ratio of small renal arteries, increased oxidative stress and inflammation. These parameters were attenuated in VEETKO mice. Conclusion: Our results suggest that suppression of ET-1 from the endothelial cells attenuates IRI kidney injury. Blocking ET-1 effects may represent a therapeutic strategy in the management of AKI.« less
Long-term potentiation protects rat hippocampal slices from the effects of acute hypoxia.
Youssef, F F; Addae, J I; McRae, A; Stone, T W
2001-07-13
We have previously shown that long-term potentiation (LTP) decreases the sensitivity of glutamate receptors in the rat hippocampal CA1 region to exogenously applied glutamate agonists. Since the pathophysiology of hypoxia/ischemia involves increased concentration of endogenous glutamate, we tested the hypothesis that LTP could reduce the effects of hypoxia in the hippocampal slice. The effects of LTP on hypoxia were measured by the changes in population spike potentials (PS) or field excitatory post-synaptic potentials (fepsps). Hypoxia was induced by perfusing the slice with (i) artificial CSF which had been pre-gassed with 95%N2/5% CO2; (ii) artificial CSF which had not been pre-gassed with 95% O2/5% CO2; or (iii) an oxygen-glucose deprived (OGD) medium which was similar to (ii) and in which the glucose had been replaced with sucrose. Exposure of a slice to a hypoxic medium for 1.5-3.0 min led to a decrease in the PS or fepsps; the potentials recovered to control levels within 3-5 min. Repeat exposure, 45 min later, of the same slice to the same hypoxic medium for the same duration as the first exposure caused a reduction in the potentials again; there were no significant differences between the degree of reduction caused by the first or second exposure for all three types of hypoxic media (P>0.05; paired t-test). In some of the slices, two episodes of LTP were induced 25 and 35 min after the first hypoxic exposure; this caused inhibition of reduction in potentials caused by the second hypoxic insult which was given at 45 min after the first; the differences in reduction in potentials were highly significant for all the hypoxic media used (P<0.01; paired t-test). The neuroprotective effects of LTP were not prevented by cyclothiazide or inhibitors of NO synthetase compounds that have been shown to be effective in blocking the effects of LTP on the actions of exogenously applied AMPA and NMDA, respectively. The neuroprotective effects of LTP were similar to those of propentofylline, a known neuroprotective compound. We conclude that LTP causes an appreciable protection of hippocampal slices to various models of acute hypoxia. This phenomenon does not appear to involve desensitisation of AMPA receptors or mediation by NO, but may account for the recognised inverse relationship between educational attainment and the development of dementia.
Simões Pires, Elisa Nicoloso; Frozza, Rudimar Luiz; Hoppe, Juliana Bender; Menezes, Bruna de Melo; Salbego, Christianne Gazzana
2014-04-04
Berberine is an alkaloid derived from herb the Berberis sp. and has long-term use in Oriental medicine. Studies along the years have demonstrated its beneficial effect in various neurodegenerative and neuropsychiatric disorders. The subject of this study was to evaluate whether berberine protects against delayed neuronal cell death in organotypic hippocampal culture (OHC) exposed to oxygen and glucose deprivation (OGD) and the cell signaling mechanism related to its effect. Hippocampal slices were obtained from 6 to 8-days-old male Wistar rat and cultured for 14 days. Following, the cultures were exposed for 1h to OGD and then treated with Berberine (10 and 20μM). After 24h recovery, propidium iodide (PI) uptake was analyzed and a decrease was observed in PI uptake on OGD Ber-treated culture, which means a decrease in cellular death. Western blot analysis showed that proteins Akt, GSK3β, ERK and JNK appear to play a role in berberine-mediated neuroprotection. Furthermore, capase-3 activity of OGD Ber-treated culture was diminished by control level in a fluorimetry assay. These findings suggest that berberine-mediated neuroprotection after ischemia involves Akt/GSK3β/ERK 1/2 survival/apoptotic signaling pathway as well as JNK and caspase-3 activity inhibition. Copyright © 2014 Elsevier B.V. All rights reserved.
Parecoxib reduces renal injury in an ischemia/reperfusion model in rats.
Calistro Neto, José Pedro; Torres, Rômulo da Costa; Gonçalves, Giovanna Maria; Silva, Leopoldo Muniz da; Domingues, Maria Aparecida Custódio; Módolo, Norma Sueli Pinheiro; Barros, Guilherme Antonio Moreira de
2015-04-01
To evaluate the effect of parecoxib (an NSAID) on renal function by measuring plasma NGAL (serum neutrophil gelatinase-associated lipocalin) levels in an induced-ischemia rat model. Forty male Wistar rats were randomly assigned to one of four groups: Ischemia (I), Ischemia/parecoxib (IP), No-ischemia (NI), and No-ischemia/parecoxib (NIP). Body weight, mean arterial pressure, heart rate, body temperature, NGAL levels, and renal histology were compared across groups. The Ischemia (I) group, which did not receive parecoxib, showed the highest NGAL levels (p=0.001), while the IP group, which received the medication, had NGAL levels similar to those of the non-ischemic (NI and NIP) groups. Parecoxib resulted in renal protection in this experimental model.
Gonzalez, Liara M.; Moeser, Adam J.
2014-01-01
Research in the field of ischemia-reperfusion injury continues to be plagued by the inability to translate research findings to clinically useful therapies. This may in part relate to the complexity of disease processes that result in intestinal ischemia but may also result from inappropriate research model selection. Research animal models have been integral to the study of ischemia-reperfusion-induced intestinal injury. However, the clinical conditions that compromise intestinal blood flow in clinical patients ranges widely from primary intestinal disease to processes secondary to distant organ failure and generalized systemic disease. Thus models that closely resemble human pathology in clinical conditions as disparate as volvulus, shock, and necrotizing enterocolitis are likely to give the greatest opportunity to understand mechanisms of ischemia that may ultimately translate to patient care. Furthermore, conditions that result in varying levels of ischemia may be further complicated by the reperfusion of blood to tissues that, in some cases, further exacerbates injury. This review assesses animal models of ischemia-reperfusion injury as well as the knowledge that has been derived from each to aid selection of appropriate research models. In addition, a discussion of the future of intestinal ischemia-reperfusion research is provided to place some context on the areas likely to provide the greatest benefit from continued research of ischemia-reperfusion injury. PMID:25414098
Mechanism underlying impaired cardiac pacemaking rhythm during ischemia: A simulation study
NASA Astrophysics Data System (ADS)
Bai, Xiangyun; Wang, Kuanquan; Yuan, Yongfeng; Li, Qince; Dobrzynski, Halina; Boyett, Mark R.; Hancox, Jules C.; Zhang, Henggui
2017-09-01
Ischemia in the heart impairs function of the cardiac pacemaker, the sinoatrial node (SAN). However, the ionic mechanisms underlying the ischemia-induced dysfunction of the SAN remain elusive. In order to investigate the ionic mechanisms by which ischemia causes SAN dysfunction, action potential models of rabbit SAN and atrial cells were modified to incorporate extant experimental data of ischemia-induced changes to membrane ion channels and intracellular ion homeostasis. The cell models were incorporated into an anatomically detailed 2D model of the intact SAN-atrium. Using the multi-scale models, the functional impact of ischemia-induced electrical alterations on cardiac pacemaking action potentials (APs) and their conduction was investigated. The effects of vagal tone activity on the regulation of cardiac pacemaker activity in control and ischemic conditions were also investigated. The simulation results showed that at the cellular level ischemia slowed the SAN pacemaking rate, which was mainly attributable to the altered Na+-Ca2+ exchange current and the ATP-sensitive potassium current. In the 2D SAN-atrium tissue model, ischemia slowed down both the pacemaking rate and the conduction velocity of APs into the surrounding atrial tissue. Simulated vagal nerve activity, including the actions of acetylcholine in the model, amplified the effects of ischemia, leading to possible SAN arrest and/or conduction exit block, which are major features of the sick sinus syndrome. In conclusion, this study provides novel insights into understanding the mechanisms by which ischemia alters SAN function, identifying specific conductances as contributors to bradycardia and conduction block.
Berger, R; Garnier, Y; Pfeiffer, D; Jensen, A
2000-10-01
The aim of the present study was to clarify whether endotoxins [lipopolysaccharides (LPS)] have a toxic effect on fetal brain tissue after cerebral ischemia, while excluding their effect on the cardiovascular system. Experiments were therefore performed on hippocampal slices prepared from mature fetal guinea pigs. In particular, we studied the influence of LPS on nitric oxide production, energy metabolism, and protein synthesis after oxygen-glucose deprivation (OGD). Incubating hippocampal slices in LPS (4 mg/L) for as long as 12 h did not alter cGMP tissue concentrations significantly. However, 10 min after OGD of 40-min duration, cGMP tissue concentrations were substantially increased in relation to controls, and this increase was almost completely blocked by the application of 100 microM N:(omega)-nitro-L-arginine, indicating that nitric oxide synthase was activated after OGD in fetal brain tissue. Again, LPS did not have any effect on cGMP tissue concentrations after OGD. Furthermore, addition of LPS altered neither protein synthesis nor energy metabolism measured 12 h after OGD. We therefore conclude that, apart from their well-known influence on the cardiovascular system, LPS do not alter metabolic disturbances in hippocampal slices of fetal guinea pigs 12 h after OGD. A direct toxic effect of LPS on immature brain tissue within this interval does not therefore seem to be very likely. However, delayed activation of LPS-sensitive pathways that may be involved in cell death, or damage limited to a small subgroup of cells such as oligodendrocyte progenitors, cannot be fully excluded.
Kim, Jin Woo; Choo, Ki Seok; Jeon, Ung Bae; Kim, Tae Un; Hwang, Jae Yeon; Yeom, Jeong A; Jeong, Hee Seok; Choi, Yoon Young; Nam, Kyung Jin; Kim, Chang Won; Jeong, Dong Wook; Lim, Soo Jin
2016-07-01
Multi-detector computed tomography (MDCT) angiography is now used for the diagnosing patients with peripheral arterial disease. The dose of radiation is related to variable factors, such as tube current, tube voltage, and helical pitch. To assess the diagnostic performance and radiation dose of lower extremity CT angiography (CTA) using a 128-slice dual source CT at 80 kVp and high pitch in patients with critical limb ischemia (CLI). Twenty-eight patients (mean, 64.1 years; range, 39-80 years) with CLI were enrolled in this retrospective study and underwent CTA using a 128-slice dual source CT at 80 kVp and high pitch and subsequent intra-arterial digital subtraction angiography (DSA), which was used as a reference standard for assessing diagnostic performance. For arterial segments with significant disease (>50% stenosis), overall sensitivity, specificity, and accuracy of lower extremity CTA were 94.8% (95% CI, 91.7-98.0%), 91.5% (95% CI, 87.7-95.2%), and 93.1% (95% CI, 90.6-95.6%), respectively, and its positive and negative predictive values were 91.0% (95% CI, 87.1-95.0%), and 95.1% (95% CI, 92.1-98.1%), respectively. Mean radiation dose delivered to lower extremities was 266.6 mGy.cm. Lower extremity CTA using a 128-slice dual source CT at 80 kVp and high pitch was found to have good diagnostic performance for the assessment of patients with CLI using an extremely low radiation dose. © The Foundation Acta Radiologica 2015.
Chao, Dongman; Donnelly, David F; Feng, Yin; Bazzy-Asaad, Alia; Xia, Ying
2007-02-01
Central neurons are extremely vulnerable to hypoxic/ischemic insult, which is a major cause of neurologic morbidity and mortality as a consequence of neuronal dysfunction and death. Our recent work has shown that delta-opioid receptor (DOR) is neuroprotective against hypoxic and excitotoxic stress, although the underlying mechanisms remain unclear. Because hypoxia/ischemia disrupts ionic homeostasis with an increase in extracellular K(+), which plays a role in neuronal death, we asked whether DOR activation preserves K(+) homeostasis during hypoxic/ischemic stress. To test this hypothesis, extracellular recordings with K(+)-sensitive microelectrodes were performed in mouse cortical slices under anoxia or oxygen-glucose deprivation (OGD). The main findings in this study are that (1) DOR activation with [D-Ala(2), D-Leu(5)]-enkephalinamide attenuated the anoxia- and OGD-induced increase in extracellular K(+) and decrease in DC potential in cortical slices; (2) DOR inhibition with naltrindole, a DOR antagonist, completely abolished the DOR-mediated prevention of increase in extracellular K(+) and decrease in DC potential; (3) inhibition of protein kinase A (PKA) with N-(2-[p-bromocinnamylamino]-ethyl)-5-isoquinolinesulfonamide dihydrochloride had no effect on the DOR protection; and (4) inhibition of protein kinase C (PKC) with chelerythrine chloride reduced the DOR protection, whereas the PKC activator (phorbol 12-myristate 13-acetate) mimicked the effect of DOR activation on K(+) homeostasis. These data suggest that activation of DOR protects the cortex against anoxia- or ODG-induced derangement of potassium homeostasis, and this protection occurs via a PKC-dependent and PKA-independent pathway. We conclude that an important aspect of DOR-mediated neuroprotection is its early action against derangement of K(+) homeostasis during anoxia or ischemia.
NASA Astrophysics Data System (ADS)
Striggow, Frank; Riek, Monika; Breder, Jörg; Henrich-Noack, Petra; Reymann, Klaus G.; Reiser, Georg
2000-02-01
We have considered the extracellular serine protease thrombin and its receptor as endogenous mediators of neuronal protection against brain ischemia. Exposure of gerbils to prior mild ischemic insults, here two relatively short-lasting occlusions (2 min) of both common carotid arteries applied at 1-day intervals 2 days before a severe occlusion (6 min), caused a robust ischemic tolerance of hippocampal CA1 neurons. This resistance was impaired if the specific thrombin inhibitor hirudin was injected intracerebroventricularly before each short-lasting insult. Thus, efficient native neuroprotective mechanisms exist and endogenous thrombin seems to be involved therein. In vitro experiments using organotypic slice cultures of rat hippocampus revealed that thrombin can have protective but also deleterious effects on hippocampal CA1 neurons. Low concentrations of thrombin (50 pM, 0.01 unit/ml) or of a synthetic thrombin receptor agonist (10 μM) induced significant neuroprotection against experimental ischemia. In contrast, 50 nM (10 units/ml) thrombin decreased further the reduced neuronal survival that follows the deprivation of oxygen and glucose, and 500 nM even caused neuronal cell death by itself. Degenerative thrombin actions also might be relevant in vivo, because hirudin increased the number of surviving neurons when applied before a 6-min occlusion. Among the thrombin concentrations tested, 50 pM induced intracellular Ca2+ spikes in fura-2-loaded CA1 neurons whereas higher concentrations caused a sustained Ca2+ elevation. Thus, distinct Ca2+ signals may define whether or not thrombin initiates protection. Taken together, in vivo and in vitro data suggest that thrombin can determine neuronal cell death or survival after brain ischemia.
Kanemitsu, Michiko; Tsupykov, Oleg; Potter, Gaël; Boitard, Michael; Salmon, Patrick; Zgraggen, Eloisa; Gascon, Eduardo; Skibo, Galina; Dayer, Alexandre G; Kiss, Jozsef Z
2017-11-01
Stimulation of endogenous neurogenesis and recruitment of neural progenitors from the subventricular zone (SVZ) neurogenic site may represent a useful strategy to improve regeneration in the ischemic cortex. Here, we tested whether transgenic overexpression of extracellular matrix metalloproteinase inducer (EMMPRIN), the regulator of matrix metalloproteinases (MMPs) expression, in endogenous neural progenitor cells (NPCs) in the subventricular zone (SVZ) could increase migration towards ischemic injury. For this purpose, we applied a lentivector-mediated gene transfer system. We found that EMMPRIN-transduced progenitors exhibited enhanced MMP-2 activity in vitro and showed improved motility in 3D collagen gel as well as in cortical slices. Using a rat model of neonatal ischemia, we showed that EMMPRIN overexpressing SVZ cells invade the injured cortical tissue more efficiently than controls. Our results suggest that EMMPRIN overexpression could be suitable approach to improve capacities of endogenous or transplanted progenitors to invade the injured cortex. Copyright © 2017 Elsevier Inc. All rights reserved.
Target recognition for ladar range image using slice image
NASA Astrophysics Data System (ADS)
Xia, Wenze; Han, Shaokun; Wang, Liang
2015-12-01
A shape descriptor and a complete shape-based recognition system using slice images as geometric feature descriptor for ladar range images are introduced. A slice image is a two-dimensional image generated by three-dimensional Hough transform and the corresponding mathematical transformation. The system consists of two processes, the model library construction and recognition. In the model library construction process, a series of range images are obtained after the model object is sampled at preset attitude angles. Then, all the range images are converted into slice images. The number of slice images is reduced by clustering analysis and finding a representation to reduce the size of the model library. In the recognition process, the slice image of the scene is compared with the slice image in the model library. The recognition results depend on the comparison. Simulated ladar range images are used to analyze the recognition and misjudgment rates, and comparison between the slice image representation method and moment invariants representation method is performed. The experimental results show that whether in conditions without noise or with ladar noise, the system has a high recognition rate and low misjudgment rate. The comparison experiment demonstrates that the slice image has better representation ability than moment invariants.
The topology of large-scale structure. VI - Slices of the universe
NASA Astrophysics Data System (ADS)
Park, Changbom; Gott, J. R., III; Melott, Adrian L.; Karachentsev, I. D.
1992-03-01
Results of an investigation of the topology of large-scale structure in two observed slices of the universe are presented. Both slices pass through the Coma cluster and their depths are 100 and 230/h Mpc. The present topology study shows that the largest void in the CfA slice is divided into two smaller voids by a statistically significant line of galaxies. The topology of toy models like the white noise and bubble models is shown to be inconsistent with that of the observed slices. A large N-body simulation was made of the biased cloud dark matter model and the slices are simulated by matching them in selection functions and boundary conditions. The genus curves for these simulated slices are spongelike and have a small shift in the direction of a meatball topology like those of observed slices.
The topology of large-scale structure. VI - Slices of the universe
NASA Technical Reports Server (NTRS)
Park, Changbom; Gott, J. R., III; Melott, Adrian L.; Karachentsev, I. D.
1992-01-01
Results of an investigation of the topology of large-scale structure in two observed slices of the universe are presented. Both slices pass through the Coma cluster and their depths are 100 and 230/h Mpc. The present topology study shows that the largest void in the CfA slice is divided into two smaller voids by a statistically significant line of galaxies. The topology of toy models like the white noise and bubble models is shown to be inconsistent with that of the observed slices. A large N-body simulation was made of the biased cloud dark matter model and the slices are simulated by matching them in selection functions and boundary conditions. The genus curves for these simulated slices are spongelike and have a small shift in the direction of a meatball topology like those of observed slices.
Enhanced taurine release in cell-damaging conditions in the developing and ageing mouse hippocampus.
Saransaari, P; Oja, S S
1997-08-01
Taurine has been shown to be essential for neuronal development and survival in the central nervous system. The release of preloaded [3H]taurine was studied in hippocampal slices from seven-day-, three-month- and 18-22-month-old mice in cell-damaging conditions. The slices were superfused in hypoxic, hypoglycemic and ischemic conditions and exposed to free radicals and oxidative stress. The release of taurine was greatly enhanced in the above conditions in all age groups, except in oxidative stress. The release was large in ischemia, particularly in the hippocampus of aged mice. Potassium stimulation was still able to release taurine in cell-damaging conditions in immature mice, whereas in adult and aged animals the release was so substantial that this additional stimulus failed to work. Taurine release was partially Ca2+-dependent in all cases. The massive release of the inhibitory amino acid taurine in ischemic conditions could act neuroprotectively, counteracting in several ways the effects of simultaneous release of excitatory amino acids. This protection could be of great importance in developing brain tissue, while also having an effect in aged brains.
Effects of lidocaine on random skin flap survival in rats.
Cao, Bin; Wang, Liren; Lin, Dingsheng; Cai, Leyi; Gao, Weiyang
2015-01-01
Use of a random skin flap is common for repairing wounds and for reconstruction. Lidocaine is a traditional local anesthetic that blocks sodium channels and has positive effects on ischemia-reperfusion injury. To investigate the effects of lidocaine on random skin flap survival in rats. McFarlane flaps were established in 20 rats divided into 2 groups. Lidocaine was injected in the lidocaine group, and the same concentration of saline was injected in the control group. The survival area of the flaps was measured on Day 7. Levels of inflammation were evaluated by hematoxylin and eosin (H&E)-stained slices, and superoxide dismutase and malonyldialdehyde contents were examined. The mean survival area of the flaps in the lidocaine group was significantly larger than that in the control group. Superoxide dismutase activity increased significantly in the lidocaine group compared with that in the control group. Malonyldialdehyde level in the lidocaine group was significantly lower than that in the control group. The H&E-stained slices showed that inflammation was clearly inhibited in the lidocaine group. Lidocaine improved the survival of random skin flaps.
Hyperbaric oxygen modalities are differentially effective in distinct brain ischemia models
Ostrowski, Robert P.; Stępień, Katarzyna; Pucko, Emanuela; Matyja, Ewa
2016-01-01
The effectiveness and efficacy of hyperbaric oxygen (HBO) preconditioning and post-treatment modalities have been demonstrated in experimental models of ischemic cerebrovascular diseases, including global brain ischemia, transient focal and permanent focal cerebral ischemia, and experimental neonatal hypoxia-ischemia encephalopathy. In general, early and repetitive post-treatment of HBO appears to create enhanced protection against brain ischemia whereas delayed HBO treatment after transient focal ischemia may even aggravate brain injury. This review advocates the level of injury reduction upon HBO as an important component for translational evaluation of HBO based treatment modalities. The combined preconditioning and HBO post-treatment that would provide synergistic effects is also worth considering. PMID:27826422
Photothrombosis-induced Focal Ischemia as a Model of Spinal Cord Injury in Mice
Zhang, Nannan; Ding, Shinghua
2015-01-01
Spinal cord injury (SCI) is a devastating clinical condition causing permanent changes in sensorimotor and autonomic functions of the spinal cord (SC) below the site of injury. The secondary ischemia that develops following the initial mechanical insult is a serious complication of the SCI and severely impairs the function and viability of surviving neuronal and non-neuronal cells in the SC. In addition, ischemia is also responsible for the growth of lesion during chronic phase of injury and interferes with the cellular repair and healing processes. Thus there is a need to develop a spinal cord ischemia model for studying the mechanisms of ischemia-induced pathology. Focal ischemia induced by photothrombosis (PT) is a minimally invasive and very well established procedure used to investigate the pathology of ischemia-induced cell death in the brain. Here, we describe the use of PT to induce an ischemic lesion in the spinal cord of mice. Following retro-orbital sinus injection of Rose Bengal, the posterior spinal vein and other capillaries on the dorsal surface of SC were irradiated with a green light resulting in the formation of a thrombus and thus ischemia in the affected region. Results from histology and immunochemistry studies show that PT-induced ischemia caused spinal cord infarction, loss of neurons and reactive gliosis. Using this technique a highly reproducible and relatively easy model of SCI in mice can be achieved that would serve the purpose of scientific investigations into the mechanisms of ischemia induced cell death as well as the efficacy of neuroprotective drugs. This model will also allow exploration of the pathological changes that occur following SCI in live mice like axonal degeneration and regeneration, neuronal and astrocytic Ca2+ signaling using two-photon microscopy. PMID:26274772
Modeling Musical Context With Word2Vec
NASA Astrophysics Data System (ADS)
Herremans, Dorien; Chuan, Ching-Hua
2017-05-01
We present a semantic vector space model for capturing complex polyphonic musical context. A word2vec model based on a skip-gram representation with negative sampling was used to model slices of music from a dataset of Beethoven's piano sonatas. A visualization of the reduced vector space using t-distributed stochastic neighbor embedding shows that the resulting embedded vector space captures tonal relationships, even without any explicit information about the musical contents of the slices. Secondly, an excerpt of the Moonlight Sonata from Beethoven was altered by replacing slices based on context similarity. The resulting music shows that the selected slice based on similar word2vec context also has a relatively short tonal distance from the original slice.
[Effect and mechanism of icariin on myocardial ischemia-reperfusion injury model in diabetes rats].
Hu, Yan-wu; Liu, Kai; Yan, Meng-tong
2015-11-01
To study the therapeutic effect and possible mechanism of icariin on myocardial ischemia-reperfusion injury ( MIRI) model in diabetes rats. The model of diabetic rats were induced by Streptozotocin (STZ), then the model of MIRI was established by ligating the reversible left anterior descending coronary artery for 30 min, and then reperfusing for 120 min. totally 40 male SD were randomly divided into five groups: the control group (NS), the ischemia reperfusion group (NIR), the diabetes control group (MS), the diabetic ischemia reperfusion group (MIR) and the diabetic ischemia reperfusion with icariin group (MIRI). The changes in blood glucose, body weight and living status were observed; the enzyme activity of serum CK-MB, LDH, GSH-Px and myocardium SOD and the content MDA and NO in myocardium were detected; the myocardial pathological changes were observed by HE staining; the myocardial Caspase-3, the Bcl-2, Bax protein expressions were detected by Western blot. The result showed that the diabetes model was successfully replicated; myocardial ischemia-reperfusion injury was more serious in diabetes rats; icariin can increase NO, SOD, GSH-Px, Bcl-2 protein expression, decrease MDA formation, CK-MB and LDH activities and Caspase-3 and Bcl-2 protein expressions and myocardial damage. The result suggested that icariin may play a protective role against ischemia reperfusion myocardial injury in diabetes rats by resisting oxidative stress and inhibiting cell apoptosis.
Rau, Thomas F.; Lu, Qing; Sharma, Shruti; Sun, Xutong; Leary, Gregory; Beckman, Matthew L.; Hou, Yali; Wainwright, Mark S.; Kavanaugh, Michael; Poulsen, David J.; Black, Stephen M.
2012-01-01
Mitochondrial dysfunction characterized by depolarization of mitochondrial membranes and the initiation of mitochondrial-mediated apoptosis are pathological responses to hypoxia-ischemia (HI) in the neonatal brain. Carnitine metabolism directly supports mitochondrial metabolism by shuttling long chain fatty acids across the inner mitochondrial membrane for beta-oxidation. Our previous studies have shown that HI disrupts carnitine homeostasis in neonatal rats and that L-carnitine can be neuroprotective. Thus, this study was undertaken to elucidate the molecular mechanisms by which HI alters carnitine metabolism and to begin to elucidate the mechanism underlying the neuroprotective effect of L-carnitine (LCAR) supplementation. Utilizing neonatal rat hippocampal slice cultures we found that oxygen glucose deprivation (OGD) decreased the levels of free carnitines (FC) and increased the acylcarnitine (AC): FC ratio. These changes in carnitine homeostasis correlated with decreases in the protein levels of carnitine palmitoyl transferase (CPT) 1 and 2. LCAR supplementation prevented the decrease in CPT1 and CPT2, enhanced both FC and the AC∶FC ratio and increased slice culture metabolic viability, the mitochondrial membrane potential prior to OGD and prevented the subsequent loss of neurons during later stages of reperfusion through a reduction in apoptotic cell death. Finally, we found that LCAR supplementation preserved the structural integrity and synaptic transmission within the hippocampus after OGD. Thus, we conclude that LCAR supplementation preserves the key enzymes responsible for maintaining carnitine homeostasis and preserves both cell viability and synaptic transmission after OGD. PMID:22984394
Suzuki, S; Nakamura, S; Sakaguchi, T; Mitsuoka, H; Tsuchiya, Y; Kojima, Y; Konno, H; Baba, S
1998-11-01
Animal models of total hepatic ischemia (THI) and reperfusion injury are restricted by concomitant splanchnic congestion. This study was performed to determine the requirement suitable for an extracorporeal portosystemic shunt (PSS) to maintain the intestinal integrity in a rat model of THI. Using a polyethylene tube (0.86 or 1 mm i.d.), PSS was placed between the mesenteric and jugular veins. Comparison was done between THI models with or without PSS and a partial ischemia model with hepatectomy of the nonischemic lobes. Well-tolerated hepatic ischemic period, portal pressure after 10 min of hepatic ischemia, portal endotoxin levels at 1 h after reperfusion, histological features of the small bowel just before reperfusion, and local jejunal and ileal blood hemoglobin oxygen saturation index (ISO2) were compared among the models. Animals without PSS poorly tolerated 30 min of THI. Animals receiving THI with PSS or partial hepatic ischemia tolerated a longer ischemic period (60 min) with a significantly higher small bowel ISO2, lower portal pressure and endotoxin levels (P < 0.01), and less histological damage of the small bowel when compared to those receiving THI without PSS. Portal endotoxin levels after THI with PSS using a 1-mm i.d. tube as well as partial hepatic ischemia were significantly lower than those after THI with PSS using a 0.86-mm i.d. tube. THI with PSS using a 1-mm i.d. tube was strikingly similar to partial hepatic ischemia in the pathophysiological profile during hepatic ischemia. PSS with a tube 1 mm or more in inner diameter offers pathophysiological advantages in experiments on THI and reperfusion. Copyright 1998 Academic Press.
Animal models of cerebral ischemia
NASA Astrophysics Data System (ADS)
Khodanovich, M. Yu.; Kisel, A. A.
2015-11-01
Cerebral ischemia remains one of the most frequent causes of death and disability worldwide. Animal models are necessary to understand complex molecular mechanisms of brain damage as well as for the development of new therapies for stroke. This review considers a certain range of animal models of cerebral ischemia, including several types of focal and global ischemia. Since animal models vary in specificity for the human disease which they reproduce, the complexity of surgery, infarct size, reliability of reproduction for statistical analysis, and adequate models need to be chosen according to the aim of a study. The reproduction of a particular animal model needs to be evaluated using appropriate tools, including the behavioral assessment of injury and non-invasive and post-mortem control of brain damage. These problems also have been summarized in the review.
Global Cerebral Ischemia: Synaptic and Cognitive Dysfunction
Neumann, Jake T.; Cohan, Charles H.; Dave, Kunjan R.; Wright, Clinton B.; Perez-Pinzon, Miguel A.
2018-01-01
Cardiopulmonary arrest is one of the leading causes of death and disability, primarily occurring in the aged population. Numerous global cerebral ischemia animal models induce neuronal damage similar to cardiac arrest. These global cerebral ischemia models range from vessel occlusion to total cessation of cardiac function, both of which have allowed for the investigation of this multifaceted disease and detection of numerous agents that are neuroprotective. Synapses endure a variety of alterations after global cerebral ischemia from the resulting excitotoxicity and have been a major target for neuroprotection; however, neuroprotective agents have proven unsuccessful in clinical trials, as neurological outcomes have not displayed significant improvements in patients. A majority of these neuroprotective agents have specific neuronal targets, where the success of future neuroprotective agents may depend on non-specific targets and numerous cognitive improvements. This review focuses on the different models of global cerebral ischemia, neuronal synaptic alterations, synaptic neuroprotection and behavioral tests that can be used to determine deficits in cognitive function after global cerebral ischemia. PMID:23170794
A Program for Solving the Brain Ischemia Problem
DeGracia, Donald J.
2013-01-01
Our recently described nonlinear dynamical model of cell injury is here applied to the problems of brain ischemia and neuroprotection. We discuss measurement of global brain ischemia injury dynamics by time course analysis. Solutions to proposed experiments are simulated using hypothetical values for the model parameters. The solutions solve the global brain ischemia problem in terms of “master bifurcation diagrams” that show all possible outcomes for arbitrary durations of all lethal cerebral blood flow (CBF) decrements. The global ischemia master bifurcation diagrams: (1) can map to a single focal ischemia insult, and (2) reveal all CBF decrements susceptible to neuroprotection. We simulate measuring a neuroprotectant by time course analysis, which revealed emergent nonlinear effects that set dynamical limits on neuroprotection. Using over-simplified stroke geometry, we calculate a theoretical maximum protection of approximately 50% recovery. We also calculate what is likely to be obtained in practice and obtain 38% recovery; a number close to that often reported in the literature. The hypothetical examples studied here illustrate the use of the nonlinear cell injury model as a fresh avenue of approach that has the potential, not only to solve the brain ischemia problem, but also to advance the technology of neuroprotection. PMID:24961411
Ma, Li-Li; Xing, Guo-Ping; Yu, Yin; Liang, Hui; Yu, Tian-Xia; Zheng, Wei-Hong; Lai, Tian-Bao
2015-01-01
Inflammatory damage plays an important role in cerebral ischemic pathogenesis and may represent a promising target for treatment. Sulforaphane exerts protective effects in a rat model of focal cerebral ischemia/reperfusion injury by alleviating brain edema. However, the possible mechanisms of sulforaphane after cerebral ischemia/reperfusion injury have not been fully elucidated. Therefore, in the present study, we investigated the effect of sulforaphane on inflammatory reaction and the potential molecular mechanisms in cerebral ischemia rats. We found that sulforaphane significantly attenuated the blood-brain barrier (BBB) disruption; decreased the levels of pro-inflammatory cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-1β; reduced the nitric oxide (NO) levels and inducible nitric oxide synthase (iNOS) activity; inhibited the expression of iNOS and cyclooxygenase-2 (COX-2). In addition, sulforaphane inhibits the expression of p-NF-κB p65 after focal cerebral ischemia-reperfusion injury. Taken together, our results suggest that sulforaphane suppresses the inflammatory response via inhibiting the NF-κB signaling pathway in a rat model of focal cerebral ischemia, and sulforaphane may be a potential therapeutic agent for the treatment of cerebral ischemia injury.
The administration of renoprotective agents extends warm ischemia in a rat model.
Cohen, Jacob; Dorai, Thambi; Ding, Cheng; Batinic-Haberle, Ines; Grasso, Michael
2013-03-01
Extended warm ischemia time during partial nephrectomy leads to considerable renal injury. Using a rat model of renal ischemia, we examined the ability of a unique renoprotective cocktail to ameliorate warm ischemia-reperfusion injury and extend warm ischemia time. A warm renal ischemia model was developed using Sprague-Dawley rats, clamping the left renal artery for 40, 50, 60, and 70 minutes, followed by 48 hours of reperfusion. An improved renoprotective cocktail referred to as I-GPM (a mixture of specific renoprotective growth factors, porphyrins, and mitochondria-protecting amino acids) was administered -24 hours, 0 hours, and +24 hours after surgery. At 48 hours, both kidneys were harvested and examined with hematoxylin and eosin and periodic acid-Schiff stains for the analysis of renal tubular necrosis. Creatinine, protein, and gene expression levels were also analyzed to evaluate several ischemia-specific and antioxidant response markers. I-GPM treated kidneys showed significant reversal of morphologic changes and a significant reduction in specific ischemic markers lipocalin-2, galectin-3, GRP-78, and HMGB1 compared with ischemic controls. These experiments also showed an upregulation of the stress response protein, heat shock protein (HSP)-70, as well as the phosphorylated active form of the transcription factor, heat shock factor (HSF)-1. In addition, quantitative RT-PCR analyses revealed a robust upregulation of several antioxidant pathway response genes in I-GPM treated animals. By histopathologic and several molecular measures, our unique renoprotective cocktail mitigated ischemia-reperfusion injury. Our cocktail minimized oxidative stress in an ischemic kidney rat model while at the same time protecting the global parenchymal function during extended periods of ischemia.
Amantea, Diana; Fratto, Vincenza; Maida, Simona; Rotiroti, Domenicantonio; Ragusa, Salvatore; Nappi, Giuseppe; Bagetta, Giacinto; Corasaniti, Maria Tiziana
2009-01-01
The effects of bergamot essential oil (BEO; Citrus bergamia, Risso) on brain damage caused by permanent focal cerebral ischemia in rat were investigated. Administration of BEO (0.1-0.5 ml/kg but not 1 ml/kg, given intraperitoneally 1 h before occlusion of the middle cerebral artery, MCAo) significantly reduced infarct size after 24 h permanent MCAo. The most effective dose (0.5 ml/kg) resulted in a significant reduction of infarct extension throughout the brain, especially in the medial striatum and the motor cortex as revealed by TTC staining of tissue slices. Microdialysis experiments show that BEO (0.5 ml/kg) did not affect basal amino acid levels, whereas it significantly reduced excitatory amino acid, namely aspartate and glutamate, efflux in the frontoparietal cortex typically observed following MCAo. Western blotting experiments demonstrated that these early effects were associated, 24 h after permanent MCAo, to a significant increase in the phosphorylation and activity of the prosurvival kinase, Akt. Indeed, BEO significantly enhanced the phosphorylation of the deleterious downstream kinase, GSK-3beta, whose activity is negatively regulated via phosphorylation by Akt.
Lacalzada-Almeida, Juan; De la Rosa-Hernández, Alejandro; Izquierdo-Gómez, María Manuela; García-Niebla, Javier; Hernández-Betancor, Iván; Bonilla-Arjona, Juan Alfonso; Barragán-Acea, Antonio; Laynez-Cerdeña, Ignacio
2018-01-01
A 61-year-old male with a prosthetic St Jude aortic valve size 24 presented with heart failure symptoms and minimal-effort angina. Eleven months earlier, the patient had undergone cardiac surgery because of an aortic root dilatation and bicuspid aortic valve with severe regurgitation secondary to infectious endocarditis by Coxiela burnetii and coronary artery disease in the left circumflex coronary artery. Then, a prosthesis valve and a saphenous bypass graft to the left circumflex coronary artery were placed. The patient was admitted to the Cardiology Department of Hospital Universitario de Canarias, Tenerife, Spain and a transthoracic echocardiography was performed that showed severe paraprosthetic aortic regurgitation and an aortic pseudoaneurysm. The 64-slice multidetector computed tomography confirmed the pseudoaneurysm, originating from the right sinus of Valsalva, with a compression of the native right coronary artery and a normal saphenous bypass graft. On the basis of these findings, we performed surgical treatment with a favorable postoperative evolution. In our case, results from complementary cardiac imaging techniques were crucial for patient management. The multidetector computed tomography allowed for a confident diagnosis of an unusual mechanism of coronary ischemia.
Sun, Yu-Yo; Yang, Dianer; Kuan, Chia-Yi
2011-01-01
A simple method to quantify cerebral infarction has great value for mechanistic and therapeutic studies in experimental stroke research. Immersion staining of unfixed brain slices with 2,3,5-triphenyltetrazolium chloride (TTC) is a popular method to determine cerebral infarction in preclinical studies. However, it is often difficult to apply immersion TTC-labeling to severely injured or soft newborn brains in rodents. Here we report an in-vivo TTC perfusion-labeling method based on osmotic opening of blood-brain-barrier with mannitol-pretreatment. This new method delineates cortical infarction correlated with the boundary of morphological cell injury, differentiates the induction or subcellular redistribution of apoptosis-related factors between viable and damaged areas, and easily determines the size of cerebral infarction in both adult and newborn mice. Using this method, we confirmed that administration of lipopolysaccharide 72 h before hypoxia-ischemia increases the damage in neonatal mouse brains, in contrast to its effect of protective preconditioning in adults. These results demonstrate a fast and inexpensive method that simplifies the task of quantifying cerebral infarction in small or severely injured brains and assists biochemical analysis of experimental cerebral ischemia. PMID:21982741
NASA Astrophysics Data System (ADS)
Han, Minah; Jang, Hanjoo; Baek, Jongduk
2018-03-01
We investigate lesion detectability and its trends for different noise structures in single-slice and multislice CBCT images with anatomical background noise. Anatomical background noise is modeled using a power law spectrum of breast anatomy. Spherical signal with a 2 mm diameter is used for modeling a lesion. CT projection data are acquired by the forward projection and reconstructed by the Feldkamp-Davis-Kress algorithm. To generate different noise structures, two types of reconstruction filters (Hanning and Ram-Lak weighted ramp filters) are used in the reconstruction, and the transverse and longitudinal planes of reconstructed volume are used for detectability evaluation. To evaluate single-slice images, the central slice, which contains the maximum signal energy, is used. To evaluate multislice images, central nine slices are used. Detectability is evaluated using human and model observer studies. For model observer, channelized Hotelling observer (CHO) with dense difference-of-Gaussian (D-DOG) channels are used. For all noise structures, detectability by a human observer is higher for multislice images than single-slice images, and the degree of detectability increase in multislice images depends on the noise structure. Variation in detectability for different noise structures is reduced in multislice images, but detectability trends are not much different between single-slice and multislice images. The CHO with D-DOG channels predicts detectability by a human observer well for both single-slice and multislice images.
Analysis of temporal dynamics in imagery during acute limb ischemia and reperfusion
NASA Astrophysics Data System (ADS)
Irvine, John M.; Regan, John; Spain, Tammy A.; Caruso, Joseph D.; Rodriquez, Maricela; Luthra, Rajiv; Forsberg, Jonathon; Crane, Nicole J.; Elster, Eric
2014-03-01
Ischemia and reperfusion injuries present major challenges for both military and civilian medicine. Improved methods for assessing the effects and predicting outcome could guide treatment decisions. Specific issues related to ischemia and reperfusion injury can include complications arising from tourniquet use, such as microvascular leakage in the limb, loss of muscle strength and systemic failures leading to hypotension and cardiac failure. Better methods for assessing the viability of limbs/tissues during ischemia and reducing complications arising from reperfusion are critical to improving clinical outcomes for at-risk patients. The purpose of this research is to develop and assess possible prediction models of outcome for acute limb ischemia using a pre-clinical model. Our model relies only on non-invasive imaging data acquired from an animal study. Outcome is measured by pathology and functional scores. We explore color, texture, and temporal features derived from both color and thermal motion imagery acquired during ischemia and reperfusion. The imagery features form the explanatory variables in a model for predicting outcome. Comparing model performance to outcome prediction based on direct observation of blood chemistry, blood gas, urinalysis, and physiological measurements provides a reference standard. Initial results show excellent performance for the imagery-base model, compared to predictions based direct measurements. This paper will present the models and supporting analysis, followed by recommendations for future investigations.
Ramírez-Sánchez, Jeney; Simões Pires, Elisa Nicoloso; Nuñez-Figueredo, Yanier; Pardo-Andreu, Gilberto L; Fonseca-Fonseca, Luis Arturo; Ruiz-Reyes, Alberto; Ochoa-Rodríguez, Estael; Verdecia-Reyes, Yamila; Delgado-Hernández, René; Souza, Diogo O; Salbego, Christianne
2015-11-01
Cerebral ischemia is the third most common cause of death and a major cause of disability worldwide. Beyond a shortage of essential metabolites, ischemia triggers many interconnected pathophysiological events, including excitotoxicity, oxidative stress, inflammation and apoptosis. Here, we investigated the neuroprotective mechanisms of JM-20, a novel synthetic molecule, focusing on the phosphoinositide-3-kinase (PI3K)/Akt survival pathway and glial cell response as potential targets of JM-20. For this purpose, we used organotypic hippocampal slice cultures exposed to oxygen-glucose deprivation (OGD) to achieve ischemic/reperfusion damage in vitro. Treatment with JM-20 at 0.1 and 10 μM reduced PI incorporation (indicative of cell death) after OGD. OGD decreased the phosphorylation of Akt (pro-survival) and GSK 3β (pro-apoptotic), resulting in respective inhibition and activation of these proteins. Treatment with JM20 prevented the reduced phosphorylation of these proteins after OGD, representing a shift from pro-apoptotic to pro-survival signaling. The OGD-induced activation of caspase-3 was also attenuated by JM-20 treatment at 10 μM. Moreover, in cultures treated with JM-20 and exposed to OGD conditioning, we observed a decrease in activated microglia, as well as a decrease in interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α release into the culture medium, while the level of the anti-inflammatory IL-10 increased. GFAP immunostaining and IB4 labeling showed that JM-20 treatment significantly augmented GFAP immunoreactivity after OGD, when compared with cultures exposed to OGD only, suggesting the activation of astroglial cells. Our results confirm that JM-20 has a strong neuroprotective effect against ischemic injury and suggest that the mechanisms involved in this effect may include the modulation of reactive astrogliosis, as well as neuroinflammation and the anti-apoptotic cell signaling pathway. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhang, Shuang-Wei; Liu, Yu; Wang, Fang; Qiang, Jiao; Liu, Pan; Zhang, Jun; Xu, Jin-Wen
2017-01-01
The protective effects of ilexsaponin A on ischemia-reperfusion-induced myocardial injury were investigated. Myocardial ischemia/reperfusion model was established in male Sprague-Dawley rats. Myocardial injury was evaluated by TTC staining and myocardial marker enzyme leakage. The in vitro protective potential of Ilexsaponin A was assessed on hypoxia/reoxygenation cellular model in neonatal rat cardiomyocytes. Cellular viability and apoptosis were evaluated by MTT and TUNEL assay. Caspase-3, cleaved caspase-3, bax, bcl-2, p-Akt and Akt protein expression levels were detected by western-blot. Ilexsaponin A treatment was able to attenuate the myocardial injury in ischemia/reperfusion model by reducing myocardial infarct size and lower the serum levels of LDH, AST and CK-MB. The in vitro study also showed that ilexsaponin A treatment could increase cellular viability and inhibit apoptosis in hypoxia/reoxygenation cardiomyocytes. Proapoptotic proteins including caspase-3, cleaved caspase-3 and bax were significantly reduced and anti-apoptotic protein bcl-2 was significantly increased by ilexsaponin A treatment in hypoxia/reoxygenation cardiomyocytes. Moreover, Ilexsaponin A treatment was able to increase the expression levels of p-Akt in hypoxia/reoxygenation cellular model and myocardial ischemia/reperfusion animal model. Coupled results from both in vivo and in vitro experiments indicate that Ilexsaponin A attenuates ischemia-reperfusion-induced myocardial injury through anti-apoptotic pathway.
Liu, Yu-Cheng; Lee, Yu-Da; Wang, Hwai-Lee; Liao, Kate Hsiurong; Chen, Kuen-Bao; Poon, Kin-Shing; Pan, Yu-Ling; Lai, Ted Weita
2017-01-01
Blood-brain barrier (BBB) disruption is thought to facilitate the development of cerebral infarction after a stroke. In a typical stroke model (such as the one used in this study), the early phase of BBB disruption reaches a peak 6 h post-ischemia and largely recovers after 8-24 h, whereas the late phase of BBB disruption begins 48-58 h post-ischemia. Because cerebral infarct develops within 24 h after the onset of ischemia, and several therapeutic agents have been shown to reduce the infarct volume when administered at 6 h post-ischemia, we hypothesized that attenuating BBB disruption at its peak (6 h post-ischemia) can also decrease the infarct volume measured at 24 h. We used a mouse stroke model obtained by combining 120 min of distal middle cerebral arterial occlusion (dMCAo) with ipsilateral common carotid arterial occlusion (CCAo). This model produced the most reliable BBB disruption and cerebral infarction compared to other models characterized by a shorter duration of ischemia or obtained with dMCAO or CCAo alone. The BBB permeability was measured by quantifying Evans blue dye (EBD) extravasation, as this tracer has been shown to be more sensitive for the detection of early-phase BBB disruption compared to other intravascular tracers that are more appropriate for detecting late-phase BBB disruption. We showed that a 1 h-long treatment with isoflurane-anesthesia induced marked hypothermia and attenuated the peak of BBB disruption when administered 6 h after the onset of dMCAo/CCAo-induced ischemia. We also demonstrated that the inhibitory effect of isoflurane was hypothermia-dependent because the same treatment had no effect on ischemic BBB disruption when the mouse body temperature was maintained at 37°C. Importantly, inhibiting the peak of BBB disruption by hypothermia had no effect on the volume of brain infarct 24 h post-ischemia. In conclusion, inhibiting the peak of BBB disruption is not an effective neuroprotective strategy, especially in comparison to the inhibitors of the neuronal death signaling cascade; these, in fact, can attenuate the infarct volume measured at 24 h post-ischemia when administered at 6 h in our same stroke model.
García-Berrocoso, Teresa; Llombart, Víctor; Colàs-Campàs, Laura; Hainard, Alexandre; Licker, Virginie; Penalba, Anna; Ramiro, Laura; Simats, Alba; Bustamante, Alejandro; Martínez-Saez, Elena; Canals, Francesc; Sanchez, Jean-Charles; Montaner, Joan
2018-01-01
Cerebral ischemia entails rapid tissue damage in the affected brain area causing devastating neurological dysfunction. How each component of the neurovascular unit contributes or responds to the ischemic insult in the context of the human brain has not been solved yet. Thus, the analysis of the proteome is a straightforward approach to unraveling these cell proteotypes. In this study, post-mortem brain slices from ischemic stroke patients were obtained corresponding to infarcted (IC) and contralateral (CL) areas. By means of laser microdissection, neurons and blood brain barrier structures (BBB) were isolated and analyzed using label-free quantification. MS data are available via ProteomeXchange with identifier PXD003519. Ninety proteins were identified only in neurons, 260 proteins only in the BBB and 261 proteins in both cell types. Bioinformatics analyses revealed that repair processes, mainly related to synaptic plasticity, are outlined in microdissected neurons, with nonexclusive important functions found in the BBB. A total of 30 proteins showing p < 0.05 and fold-change> 2 between IC and CL areas were considered meaningful in this study: 13 in neurons, 14 in the BBB and 3 in both cell types. Twelve of these proteins were selected as candidates and analyzed by immunohistofluorescence in independent brains. The MS findings were completely verified for neuronal SAHH2 and SRSF1 whereas the presence in both cell types of GABT and EAA2 was only validated in neurons. In addition, SAHH2 showed its potential as a prognostic biomarker of neurological improvement when analyzed early in the plasma of ischemic stroke patients. Therefore, the quantitative proteomes of neurons and the BBB (or proteotypes) after human brain ischemia presented here contribute to increasing the knowledge regarding the molecular mechanisms of ischemic stroke pathology and highlight new proteins that might represent putative biomarkers of brain ischemia or therapeutic targets. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Choi, Jong-Il; Kim, Sang-Dae; Kim, Se-Hoon; Lim, Dong-Jun; Ha, Sung-Kon
2014-06-01
We investigated the expression of hippocampal heat shock protein 70 (HSP-70) infarction volume after different durations of experimental ischemic stroke in mice. Focal cerebral ischemia was induced in mice by occluding the middle cerebral artery with the modified intraluminal filament technique. Twenty-four hours after ischemia induction, both hippocampi were extracted for HSP-70 protein analyses. Slices from each hemisphere were stained with 2,3,5-triphenyltetrazolium chloride (2%), and infarction volumes were calculated. HSP-70 levels were evaluated using western blot and enzyme-linked immunosorbent assay (ELISA). HSP-70 subtype (hsp70.1, hspa1a, hspa1b) mRNA levels in the hippocampus were measured using reverse transcription-polymerase chain reaction (RT-PCR). Cerebral infarctions were found ipsilateral to the occlusion in 10 mice exposed to transient ischemia (5 each in the 30-min and 60-min occlusion groups), whereas no focal infarctions were noted in any of the sham mice. The average infarct volumes of the 2 ischemic groups were 22.28±7.31 mm(3) [30-min group±standard deviation (SD)] and 38.06±9.53 mm(3) (60-min group±SD). Western blot analyses and ELISA showed that HSP-70 in hippocampal tissues increased in the infarction groups than in the sham group. However, differences in HSP-70 levels between the 2 infarction groups were statistically insignificant. Moreover, RT-PCR results demonstrated no relationship between the mRNA expression of HSP-70 subtypes and occlusion time or infarction volume. Our results indicated no significant difference in HSP-70 expression between the 30- and 60-min occlusion groups despite the statistical difference in infarction volumes. Furthermore, HSP-70 subtype mRNA expression was independent of both occlusion duration and cerebral infarction volume.
Murata, Shinya; Sugiyama, Noriyuki; Maemura, Kentaro; Otsuki, Yoshinori
2017-09-01
The purpose is to evaluate quantified kidney echogenicity as a biomarker for the early diagnosis of acute kidney injury (AKI) and predicting progression to chronic kidney disease (CKD) in a mouse model of ischemia-reperfusion injury (IRI). Two separate protocols of murine models of IRI were used: (1) 10, 30, and 40 min of bilateral ischemia duration and (2) 45 and 60 min of unilateral ischemia duration. Renal echogenicity was measured with ultrasound and compared with serum creatinine or urine neutrophil gelatinase-associated lipocalin (NGAL) at various timepoints after IRI. In mice subjected to 10, 30, and 40 min of bilateral ischemia, renal echogenicity increased about 2 h after IRI for all ischemia times, earlier than serum creatinine or urine NGAL. In those subjected to 45 and 60 min of unilateral ischemia, 60 min of unilateral ischemia, which represents atrophic changes 28 days after IRI, resulted in a sustained high level of echogenicity and was significantly different 24 h after IRI, while 45 min of unilateral ischemia resulted in trivial levels of histological damage 28 days after IRI. Renal echogenicity might have the potential to be a biomarker for the early diagnosis of AKI and the prognosis of CKD.
Powanda, D Douglas; Chang, Thomas M S
2002-01-01
In strokes, myocardial infarctions, severe sustained hemorrhagic shock, and donor organs, inadequate blood supply results in lack of oxygen to the tissue (ischemia). If ischemia is sustained, reperfusion with the needed oxygen can result in tissue injury (ischemia-reperfusion injury) due to formation of reactive oxygen species. We are studying an oxygen-carrying solution with anitoxidant activity formed by cross-linking hemoglobin, superoxide dismutase, and catalase to form PolyHb-SOD-CAT. The present report studies its effect on the blood-brain barrier and cerebral edema when used in a transient global brain ischemia-reperfusion rat model. We compare this solution to sham-control, oxygenated saline, stroma-free hemoglobin (SF-Hb), polymerized hemoglobin (PolyHb), and a mixture of SF-Hb, SOD, and CAT in free solution. The results show that the cross-linked PolyHb-SOD-CAT solution, unlike the other solutions, can supply oxygen to ischemic tissues without causing reperfusion injury in the transient global brain ischemia-reperfusion model.
Guerra-Mora, J R; Perales-Caldera, E; Aguilar-León, D; Nava-Sanchez, C; Díaz-Cruz, A; Díaz-Martínez, N E; Santillán-Doherty, P; Torres-Villalobos, G; Bravo-Reyna, C C
Lung ischemia-reperfusion injury is characterized by formation of reactive oxygen species and cellular swelling leading to pulmonary edema and primary graft dysfunction. Phosphodiesterase 5 inhibitors could ameliorate lung ischemia-reperfusion injury by interfering in many molecular pathways. The aim of this work was to evaluate and compare the effects of sildenafil and tadalafil on edema and reactive oxygen species formation in an ex vivo nonhuman animal model of lung ischemia-reperfusion injury. Thirty-two Wistar rats were distributed, treated, perfused and the cardiopulmonary blocks were managed as follows: control group: immediate excision and reperfusion without pretreatment; ischemia reperfusion group: treatment with dimethylsulfoxide 0.9% and excision 1 hour later; sildenafil group: treatment with sildenafil (0.7 mg/kg) and excision 1 hour later; and tadalafil group: treatment with tadalafil (0.15 mg/kg) and excision 2 hours later. All cardiopulmonary blocks except control group were preserved for 8 hours and then reperfused. Pulmonary arterial pressure, pulmonary venous pressure, and capillary filtration coefficient were measured. Reactive oxygen species were measured. Edema was similar between control and sildenafil groups, but significantly greater in the ischemia-reperfusion (P ≤ .04) and tadalafil (P ≤ .003) groups compared with the sildenafil group. The malondialdehyde levels were significantly lower in the sildenafil (P ≤ .001) and tadalafil (P ≤ .001) groups than the ischemia-reperfusion group. Administration of sildenafil, but not tadalafil, decreased edema in lung ischemia-reperfusion injury. Both drugs decreased reactive oxygen species formation in a lung ischemia-reperfusion injury model. Copyright © 2017 Elsevier Inc. All rights reserved.
Improved biochemical preservation of lung slices during cold storage.
Bull, D A; Connors, R C; Reid, B B; Albanil, A; Stringham, J C; Karwande, S V
2000-05-15
Development of lung preservation solutions typically requires whole-organ models which are animal and labor intensive. These models rely on physiologic rather than biochemical endpoints, making accurate comparison of the relative efficacy of individual solution components difficult. We hypothesized that lung slices could be used to assess preservation of biochemical function during cold storage. Whole rat lungs were precision cut into slices with a thickness of 500 microm and preserved at 4 degrees C in the following solutions: University of Wisconsin (UW), Euro-Collins (EC), low-potassium-dextran (LPD), Kyoto (K), normal saline (NS), or a novel lung preservation solution (NPS) developed using this model. Lung biochemical function was assessed by ATP content (etamol ATP/mg wet wt) and capacity for protein synthesis (cpm/mg protein) immediately following slicing (0 h) and at 6, 12, 18, and 24 h of cold storage. Six slices were assayed at each time point for each solution. The data were analyzed using analysis of variance and are presented as means +/- SD. ATP content was significantly higher in the lung slices stored in NPS compared with all other solutions at each time point (P < 0.0001). Protein synthesis was significantly higher in the lung slices stored in NPS compared with all other solutions at 6, 12, and 18 h of preservation (P < 0.05). This lung slice model allows the rapid and efficient screening of lung preservation solutions and their components using quantifiable biochemical endpoints. Using this model, we have developed a novel solution that improves the biochemical preservation of lung slices during cold storage. Copyright 2000 Academic Press.
Vinpocetine modulates metabolic activity and function during retinal ischemia.
Nivison-Smith, Lisa; O'Brien, Brendan J; Truong, Mai; Guo, Cindy X; Kalloniatis, Michael; Acosta, Monica L
2015-05-01
Vinpocetine protects against a range of degenerative conditions and insults of the central nervous system via multiple modes of action. Little is known, however, of its effects on metabolism. This may be highly relevant, as vinpocetine is highly protective against ischemia, a process that inhibits normal metabolic function. This study uses the ischemic retina as a model to characterize vinpocetine's effects on metabolism. Vinpocetine reduced the metabolic demand of the retina following ex vivo hypoxia and ischemia to normal levels based on lactate dehydrogenase activity. Vinpocetine delivered similar effects in an in vivo model of retinal ischemia-reperfusion, possibly through increasing glucose availability. Vinpocetine's effects on glucose also appeared to improve glutamate homeostasis in ischemic Müller cells. Other actions of vinpocetine following ischemia-reperfusion, such as reduced cell death and improved retinal function, were possibly a combination of the drug's actions on metabolism and other retinal pathways. Vinpocetine's metabolic effects appeared independent of its other known actions in ischemia, as it recovered retinal function in a separate metabolic model where the glutamate-to-glutamine metabolic pathway was inhibited in Müller cells. The results of this study indicate that vinpocetine mediates ischemic damage partly through altered metabolism and has potential beneficial effects as a treatment for ischemia of neuronal tissues. Copyright © 2015 the American Physiological Society.
Le, Xoan Thi; Nguyet Pham, Hang Thi; Van Nguyen, Tai; Minh Nguyen, Khoi; Tanaka, Ken; Fujiwara, Hironori; Matsumoto, Kinzo
2015-04-22
Bacopa monnieri (L.) Wettst. (BM) is a medicinal plant which has been not only used as a traditional medicine to improve intelligence and memory but also taken as vegetables in Vietnam for a long time. We previously demonstrated that Bacopa monnieri (BM) alcohol extract attenuated olfactory bulbectomy-induced cognitive deficits and the deterioration of septo-hippocampal cholinergic neurons, suggesting the beneficial effects of BM for dementia patients. The present study was conducted to further clarify the anti-dementia effects of BM, using transient 2 vessels occlusion (T2VO)-induced cognitive deficits in mice, an animal model of vascular dementia, and also to investigate the constituent(s) contributing to the actions of BM, using oxygen- and glucose-deprivation (OGD)-induced hippocampal cell damage as an in vitro model of ischemia. In the in vivo experiments, T2VO mice were treated daily with a standardized BM extract (50mg/kg, p.o.) 1 week before and continuously 3 days after surgery. In the in vitro experiments, organotypic hippocampal slice cultures (OHSCs) were incubated with triterpenoid saponins from BM (bacosides) or MK-801 1h before and during a 45-min period of OGD. Neuronal cell damage in OHSCs was analyzed by measurement of propidium iodide uptake 24h after OGD. The BM treatment significantly ameliorated T2VO-induced impairments in non-spatial short term memory performance in the object recognition test. Among the bacosides tested in the in vitro experiments using OHSCs, bacopaside I (25 μM) exhibited potent neuroprotective effects against OGD-induced neuronal cell damage. Double staining with TUNEL and PI revealed that OGD caused necrosis and apoptosis and that bacopaside I attenuated the effects of OGD. The neuroprotective effects of bacopaside I were blocked by the PKC inhibitor Ro-31-8220 and PI3K inhibitor LY294002, but not by the ERK inhibitor U0126. OGD reduced the level of phospho-Akt (p-Akt), an anti-apoptotic factor, in OHSCs. This decrease was reversed by bacopaside I. Moreover, the treatment with bacopaside I itself was able to elevate the level of p-Akt in OHSCs. These results suggest that BM was beneficial for the prevention of cognitive deficits related to cerebral ischemia and also that bacopaside I, via PKC and PI3K/Akt mechanisms, played a role in the neuroprotective effects of BM observed in the mouse model. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Bozkurt, Aras Adem; Mustafa, Guven; Tarık, Akman; Adile, Ozkan; Murat, Sen Halil; Mesut, Kılıcoglu; Yıldıray, Kalkan; Coskun, Silan; Murat, Cosar
2014-01-01
There are few studies on the neuroprotective effects of syringaldehyde in a rat model of cerebral ischemia. The study aimed to elucidate the mechanisms underlying the neuroprotective effects of syringaldehyde on ischemic brain cells. Rat models of cerebral ischemia were intraperitoneally administered syringaldehyde. At 6 and 24 hours after syringaldehyde administration, cell damage in the brain of cerebral ischemia rats was obviously reduced, superoxide dismutase activity and nuclear respiratory factor 1 expression in the brain tissue were markedly increased, malondiadehyde level was obviously decreased, apoptosis-related cysteine peptidase caspase-3 and -9 immunoreactivity was obviously decreased, and neurological function was markedly improved. These findings suggest that syringaldehyde exerts neuroprotective effects on cerebral ischemia injury through anti-oxidation and anti-apoptosis. PMID:25558237
Bozkurt, Aras Adem; Mustafa, Guven; Tarık, Akman; Adile, Ozkan; Murat, Sen Halil; Mesut, Kılıcoglu; Yıldıray, Kalkan; Coskun, Silan; Murat, Cosar
2014-11-01
There are few studies on the neuroprotective effects of syringaldehyde in a rat model of cerebral ischemia. The study aimed to elucidate the mechanisms underlying the neuroprotective effects of syringaldehyde on ischemic brain cells. Rat models of cerebral ischemia were intraperitoneally administered syringaldehyde. At 6 and 24 hours after syringaldehyde administration, cell damage in the brain of cerebral ischemia rats was obviously reduced, superoxide dismutase activity and nuclear respiratory factor 1 expression in the brain tissue were markedly increased, malondiadehyde level was obviously decreased, apoptosis-related cysteine peptidase caspase-3 and -9 immunoreactivity was obviously decreased, and neurological function was markedly improved. These findings suggest that syringaldehyde exerts neuroprotective effects on cerebral ischemia injury through anti-oxidation and anti-apoptosis.
Blokhin, I O; Galagudza, M M; Vlasov, T D; Nifontov, E M; Petrishchev, N N
2008-07-01
Traditionally infarction size reduction by ischemic preconditioning is estimated in duration of test ischemia. This approach limits the understanding of real antiischemic efficacy of ischemic preconditioning. Present study was performed in the in vivo rat model of regional myocardial ischemia-reperfusion and showed that protective effect afforded by ischemic preconditioning progressively decreased with prolongation of test ischemia. There were no statistically significant differences in infarction size between control and preconditioned animals when the duration of test ischemia was increased up to 1 hour. Preconditioning ensured maximal infarction-limiting effect in duration of test ischemia varying from 20 to 40 minutes.
Quantifying the vascular response to ischemia with speckle variance optical coherence tomography
Poole, Kristin M.; McCormack, Devin R.; Patil, Chetan A.; Duvall, Craig L.; Skala, Melissa C.
2014-01-01
Longitudinal monitoring techniques for preclinical models of vascular remodeling are critical to the development of new therapies for pathological conditions such as ischemia and cancer. In models of skeletal muscle ischemia in particular, there is a lack of quantitative, non-invasive and long term assessment of vessel morphology. Here, we have applied speckle variance optical coherence tomography (OCT) methods to quantitatively assess vascular remodeling and growth in a mouse model of peripheral arterial disease. This approach was validated on two different mouse strains known to have disparate rates and abilities of recovering following induction of hind limb ischemia. These results establish the potential for speckle variance OCT as a tool for quantitative, preclinical screening of pro- and anti-angiogenic therapies. PMID:25574425
Diabetic aggravation of stroke and animal models
Rehni, Ashish K.; Liu, Allen; Perez-Pinzon, Miguel A.; Dave, Kunjan R.
2017-01-01
Cerebral ischemia in diabetics results in severe brain damage. Different animal models of cerebral ischemia have been used to study the aggravation of ischemic brain damage in the diabetic condition. Since different disease conditions such as diabetes differently affect outcome following cerebral ischemia, the Stroke Therapy Academic Industry Roundtable (STAIR) guidelines recommends use of diseased animals for evaluating neuroprotective therapies targeted to reduce cerebral ischemic damage. The goal of this review is to discuss the technicalities and pros/cons of various animal models of cerebral ischemia currently being employed to study diabetes-related ischemic brain damage. The rational use of such animal systems in studying the disease condition may better help evaluate novel therapeutic approaches for diabetes related exacerbation of ischemic brain damage. PMID:28274862
Development and characterization of an ex-vivo brain slice culture model of chronic wasting disease
USDA-ARS?s Scientific Manuscript database
Prion diseases have long incubation times in vivo, therefore, modeling the diseases ex-vivo will advance the development of rationale-based therapeutic strategies. An organotypic slice culture assay (POSCA) was recently developed for scrapie prions by inoculating mouse cerebellar brain slices with R...
Neuroprotective effect of p-coumaric acid in rat model of embolic cerebral ischemia
Guven, Mustafa; Aras, Adem Bozkurt; Akman, Tarik; Sen, Halil Murat; Ozkan, Adile; Salis, Osman; Sehitoglu, Ibrahim; Kalkan, Yildiray; Silan, Coskun; Deniz, Mustafa; Cosar, Murat
2015-01-01
Objective(s): Stroke poses a crucial risk for mortality and morbidity. Our study aimed to investigate the effect of p-coumaric acid on focal cerebral ischemia in rats. Material and Methods: Rats were randomly divided into four groups, namely Group I (control rats), Group II (ischemia rats), Group III (6 hr ischemia + p-coumaric acid rats) and Group IV (24 hr ischemia + p-coumaric acid rats). Cerebral ischemia was induced via intraluminal monofilament occlusion model. In all groups, the brain was removed after the procedure and rats were sacrificed. Malondialdehyde, superoxide dismutase and nuclear respiratory factor-1 were measured in the ischemic hemisphere. The histopathological changes were observed in the right hemisphere within the samples. Functional assessment was performed for neurological deficit scores. Results: Following the treatment, biochemical factors changed significantly. Histopathologically, it was shown that p-coumaric acid decreased the oxidative damage. The neurological deficit scores of p-coumaric acid-treated rats were significantly improved after cerebral ischemia. Conclusion: Our results showed that p-coumaric acid is a neuroprotective agent on account of its strong anti-oxidant and anti-apoptotic features. Moreover, p-coumaric acid decreased the focal ischemia. Extra effort should be made to introduce p-coumaric acid as a promising therapeutic agent to be utilized for treatment of human cerebral ischemia in the future. PMID:26019798
Abd-Elsameea, A A; Moustaf, A A; Mohamed, A M
2014-08-01
Oxidative stress plays a major role in the pathogenesis of ischemic and reperfusion injury to many organs, including the brain. Chronic metformin treatment is associated with a lower risk of stroke in clinical populations. The aim of the present study was to investigate the effect of metformin on the oxidative stress induced in experimental model of incomplete global cerebral ischemia and ischemia/reperfusion in adult male Wistar rats. Metformin was administered to rats orally by gavage 500 mg/kg once daily for one week before induction of cerebral ischemia (rats were subjected to 30 min of ischemia before decapitation) and ischemia/reperfusion (rats were subjected to 30 min of ischemia then 60 minutes of reperfusion before decapitation). The selected parameters for oxidative stress were the activities of the antioxidant enzymes: glutathione peroxidase (GSHPx), superoxide dismutase (SOD), and catalase as well as malondialdehyde (MDA) levels. Metformin reduced the elevated activites of GSHPx, SOD and catalase as well as MDA levels in cerebrum of rats exposed to ischemia and ischemia/reperfusion injures. Metformin improved the oxidative stress induced by ischemia and ischemia/reperfusion injuries. This may be a mechanism that explains the cerebroprotective effect of the drug.
Slice sampling technique in Bayesian extreme of gold price modelling
NASA Astrophysics Data System (ADS)
Rostami, Mohammad; Adam, Mohd Bakri; Ibrahim, Noor Akma; Yahya, Mohamed Hisham
2013-09-01
In this paper, a simulation study of Bayesian extreme values by using Markov Chain Monte Carlo via slice sampling algorithm is implemented. We compared the accuracy of slice sampling with other methods for a Gumbel model. This study revealed that slice sampling algorithm offers more accurate and closer estimates with less RMSE than other methods . Finally we successfully employed this procedure to estimate the parameters of Malaysia extreme gold price from 2000 to 2011.
Improved biochemical preservation of heart slices during cold storage.
Bull, D A; Reid, B B; Connors, R C; Albanil, A; Stringham, J C; Karwande, S V
2000-01-01
Development of myocardial preservation solutions requires the use of whole organ models which are animal and labor intensive. These models rely on physiologic rather than biochemical endpoints, making accurate comparison of the relative efficacy of individual solution components difficult. We hypothesized that myocardial slices could be used to assess preservation of biochemical function during cold storage. Whole rat hearts were precision cut into slices with a thickness of 200 microm and preserved at 4 degrees C in one of the following solutions: Columbia University (CU), University of Wisconsin (UW), D5 0.2% normal saline with 20 meq/l KCL (QNS), normal saline (NS), or a novel cardiac preservation solution (NPS) developed using this model. Myocardial biochemical function was assessed by ATP content (etamoles ATP/mg wet weight) and capacity for protein synthesis (counts per minute (cpm)/mg protein) immediately following slicing (0 hours), and at 6, 12, 18, and 24 hours of cold storage. Six slices were assayed at each time point for each solution. The data were analyzed using analysis of variance and are presented as the mean +/- standard deviation. ATP content was higher in the heart slices stored in the NPS compared to all other solutions at 6, 12, 18 and 24 hours of cold storage (p < 0.05). Capacity for protein synthesis was higher in the heart slices stored in the NPS compared to all other solutions at 6, 12, and 18 hours of cold storage (p < 0.05). CONCLUSIONS This myocardial slice model allows the rapid and efficient screening of cardiac preservation solutions and their components using quantifiable biochemical endpoints. Using this model, we have developed a novel preservation solution which improves the biochemical function of myocardial slices during cold storage.
Mishra, Atul; Jain, Narendra; Bhagwat, Anand
2017-07-01
Peripheral arterial occlusive disease (PAOD) may cause disabling claudication or critical limb ischemia. Multidetector computed tomography (CT) technology has evolved to the level of 256-slice CT scanners which has significantly improved the spatial and temporal resolution of the images. This has provided the capability of chasing the contrast bolus at a fast speed enabling angiographic imaging of long segments of the body. These images can be reconstructed in various planes and various modes for detailed analysis of the peripheral vascular diseases which helps in making treatment decision. The aim of this retrospective study was to compare the CT angiograms (CTAs) of all cases of PAOD done by 256-slice CT scanner at a tertiary care vascular center and comparing these images with the digital subtraction angiograms (DSAs) of these patients. The retrospective study included 53 patients who underwent both CTA and DSA at our center over a period of 3 years from March 2013 to March 2016. The CTA showed high sensitivity (93%) and specificity (92.7%) for overall assessment of degree of stenosis in a vascular segment in cases of aortic and lower limb occlusive disease. The assessment of lesions of infrapopliteal segment was comparatively inferior (sensitivity 91.6%, accuracy 73.3%, and positive predictive value 78.5%), more so in the presence of significant calcification. The advantages of CTA were its noninvasive nature, ability to image large area of body, almost no adverse effects to the patients, and better assessment of vessel wall disease. However, the CTA assessment of collaterals was inferior with a sensitivity of only 62.7% as compared to DSA. Overall, 256-slice CTA provides fast and accurate imaging of vascular tree which can restrict DSA only in few selected cases as a problem-solving tool where clinico-radiological mismatch is present.
Zhao, Bo; Gao, Wen-Wei; Liu, Ya-Jing; Jiang, Meng; Liu, Lian; Yuan, Quan; Hou, Jia-Bao; Xia, Zhong-Yuan
2017-10-01
Myocardial ischemia/reperfusion injury can lead to severe brain injury. Glycogen synthase kinase 3 beta is known to be involved in myo-cardial ischemia/reperfusion injury and diabetes mellitus. However, the precise role of glycogen synthase kinase 3 beta in myocardial ischemia/reperfusion injury-induced brain injury is unclear. In this study, we observed the effects of glycogen synthase kinase 3 beta on brain injury induced by myocardial ischemia/reperfusion injury in diabetic rats. Rat models of diabetes mellitus were generated via intraperitoneal injection of streptozotocin. Models of myocardial ischemia/reperfusion injury were generated by occluding the anterior descending branch of the left coronary artery. Post-conditioning comprised three cycles of ischemia/reperfusion. Immunohistochemical staining and western blot assays demonstrated that after 48 hours of reperfusion, the structure of the brain was seriously damaged in the experimental rats compared with normal controls. Expression of Bax, interleukin-6, interleukin-8, terminal deoxynucleotidyl transferase dUTP nick end labeling, and cleaved caspase-3 in the brain was significantly increased, while expression of Bcl-2, interleukin-10, and phospho-glycogen synthase kinase 3 beta was decreased. Diabetes mellitus can aggravate inflammatory reactions and apoptosis. Ischemic post-conditioning with glycogen synthase kinase 3 beta inhibitor lithium chloride can effectively reverse these changes. Our results showed that myocardial ischemic post-conditioning attenuated myocardial ischemia/reperfusion injury-induced brain injury by activating glyco-gen synthase kinase 3 beta. According to these results, glycogen synthase kinase 3 beta appears to be an important factor in brain injury induced by myocardial ischemia/reperfusion injury.
Niu, Fei; Song, Xiu-Yun; Hu, Jin-Feng; Zuo, Wei; Kong, Ling-Lei; Wang, Xiao-Feng; Han, Ning; Chen, Nai-Hong
2017-10-01
IMM-H004 (7-hydroxy-5-methoxy-4-methyl-3-[4-methylpiperazin-1-yl]-2H-chromen-2-one) is a novel coumarin derivative that showed better effect in improving global cerebral ischemia in rats. However, the effects and mechanisms in focal cerebral ischemia were not clear. Blood-brain barrier (BBB) protection is a vital strategy for the treatment of cerebral ischemia. This study is to investigate whether IMM-H004 improves brain ischemia injury via BBB protection. Focal brain ischemia model was induced by middle cerebral artery occlusion for 1 hour and reperfusion (MCAO/R) for 24 hours in rats. IMM-H004 (1.5, 3, 6 mg/kg) and edaravone (positive drug, 6 mg/kg) were administered after 5 minutes of occlusion. Neurological score and TTC staining were used to evaluate the effect of IMM-H004. Evans Blue (EB) staining and electron microscopy were used to assess BBB permeability. Western blot, reverse transcription-polymerase chain reaction, and immunohistochemistry were used to detect the expression of BBB structure-related proteins. Compared with the model group, IMM-H004 in the focal brain ischemia model improved neurological function and reduced cerebral infarction size and edema content. IMM-H004 sharply reduced the EB content and alleviated BBB structure. In addition, IMM-H004 increased the level of zonula occludens (ZO-1) and occluding, decreased the level of aquaporin 4 and matrix metalloproteinase 9, either in cortex or in hippocampus. And all of these changed were related to BBB protection. IMM-H004 improved cerebral ischemia injury via BBB protection. For a potential therapy drug of cerebral ischemia, IMM-H004 merits further study. Copyright © 2017. Published by Elsevier Inc.
Rahimi, Jamshid; Singh, Ashutosh; Adewale, Peter Olusola; Adedeji, Akinbode A.; Ngadi, Michael O.; Raghavan, Vijaya
2013-01-01
The effect of different concentrations of sugar solution (hypertonic) (30%, 45% and 60% w/v) and carboxyl methyl cellulose (CMC) (0%, 1% and 2% w/v) coating on freeze drying of apple slices was studied. In total, nine treatments with respect to concentrations of hypertonic solution and coating layer were prepared to analyze their influence on the physical and chemical properties of freeze dried apple slices. It was observed that increase in the sugar solution concentration, decreased the moisture content of the apple slices significantly impacting its water activity, texture and sugar gain. Application of different concentrations of CMC coating had no significant effect on the properties of dried apple slices. A significant change was observed for color of CMC coated freeze dried apple slices pretreated with 60% sugar solution. Drying kinetics of pretreated apple slices were fitted by using two drying models, Newton’s and Page’s. Page’s model showed higher R-square and lower root mean square error (RSME) compared to Newton’s model. PMID:28239107
TRPM2 Channels Protect against Cardiac Ischemia-Reperfusion Injury
Miller, Barbara A.; Hoffman, Nicholas E.; Merali, Salim; Zhang, Xue-Qian; Wang, JuFang; Rajan, Sudarsan; Shanmughapriya, Santhanam; Gao, Erhe; Barrero, Carlos A.; Mallilankaraman, Karthik; Song, Jianliang; Gu, Tongda; Hirschler-Laszkiewicz, Iwona; Koch, Walter J.; Feldman, Arthur M.; Madesh, Muniswamy; Cheung, Joseph Y.
2014-01-01
Cardiac TRPM2 channels were activated by intracellular adenosine diphosphate-ribose and blocked by flufenamic acid. In adult cardiac myocytes the ratio of GCa to GNa of TRPM2 channels was 0.56 ± 0.02. To explore the cellular mechanisms by which TRPM2 channels protect against cardiac ischemia/reperfusion (I/R) injury, we analyzed proteomes from WT and TRPM2 KO hearts subjected to I/R. The canonical pathways that exhibited the largest difference between WT-I/R and KO-I/R hearts were mitochondrial dysfunction and the tricarboxylic acid cycle. Complexes I, III, and IV were down-regulated, whereas complexes II and V were up-regulated in KO-I/R compared with WT-I/R hearts. Western blots confirmed reduced expression of the Complex I subunit and other mitochondria-associated proteins in KO-I/R hearts. Bioenergetic analyses revealed that KO myocytes had a lower mitochondrial membrane potential, mitochondrial Ca2+ uptake, ATP levels, and O2 consumption but higher mitochondrial superoxide levels. Additionally, mitochondrial Ca2+ uniporter (MCU) currents were lower in KO myocytes, indicating reduced mitochondrial Ca2+ uptake was likely due to both lower ψm and MCU activity. Similar to isolated myocytes, O2 consumption and ATP levels were also reduced in KO hearts. Under a simulated I/R model, aberrant mitochondrial bioenergetics was exacerbated in KO myocytes. Reactive oxygen species levels were also significantly higher in KO-I/R compared with WT-I/R heart slices, consistent with mitochondrial dysfunction in KO-I/R hearts. We conclude that TRPM2 channels protect the heart from I/R injury by ameliorating mitochondrial dysfunction and reducing reactive oxygen species levels. PMID:24492610
3D model of filler melting with micro-beam plasma arc based on additive manufacturing technology
NASA Astrophysics Data System (ADS)
Chen, Weilin; Yang, Tao; Yang, Ruixin
2017-07-01
Additive manufacturing technology is a systematic process based on discrete-accumulation principle, which is derived by the dimension of parts. Aiming at the dimension mathematical model and slicing problems in additive manufacturing process, the constitutive relations between micro-beam plasma welding parameters and the dimension of part were investigated. The slicing algorithm and slicing were also studied based on the dimension characteristics. By using the direct slicing algorithm according to the geometric characteristics of model, a hollow thin-wall spherical part was fabricated by 3D additive manufacturing technology using micro-beam plasma.
NASA Astrophysics Data System (ADS)
Adnan, F. A.; Romlay, F. R. M.; Shafiq, M.
2018-04-01
Owing to the advent of the industrial revolution 4.0, the need for further evaluating processes applied in the additive manufacturing application particularly the computational process for slicing is non-trivial. This paper evaluates a real-time slicing algorithm for slicing an STL formatted computer-aided design (CAD). A line-plane intersection equation was applied to perform the slicing procedure at any given height. The application of this algorithm has found to provide a better computational time regardless the number of facet in the STL model. The performance of this algorithm is evaluated by comparing the results of the computational time for different geometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Favazza, C; Yu, L; Leng, S
2015-06-15
Purpose: To investigate using multiple CT image slices from a single acquisition as independent training images for a channelized Hotelling observer (CHO) model to reduce the number of repeated scans for CHO-based CT image quality assessment. Methods: We applied a previously validated CHO model to detect low contrast disk objects formed from cross-sectional images of three epoxy-resin-based rods (diameters: 3, 5, and 9 mm; length: ∼5cm). The rods were submerged in a 35x 25 cm2 iodine-doped water filled phantom, yielding-15 HU object contrast. The phantom was scanned 100 times with and without the rods present. Scan and reconstruction parameters include:more » 5 mm slice thickness at 0.5 mm intervals, 120 kV, 480 Quality Reference mAs, and a 128-slice scanner. The CHO’s detectability index was evaluated as a function of factors related to incorporating multi-slice image data: object misalignment along the z-axis, inter-slice pixel correlation, and number of unique slice locations. In each case, the CHO training set was fixed to 100 images. Results: Artificially shifting the object’s center position by as much as 3 pixels in any direction relative to the Gabor channel filters had insignificant impact on object detectability. An inter-slice pixel correlation of >∼0.2 yielded positive bias in the model’s performance. Incorporating multi-slice image data yielded slight negative bias in detectability with increasing number of slices, likely due to physical variations in the objects. However, inclusion of image data from up to 5 slice locations yielded detectability indices within measurement error of the single slice value. Conclusion: For the investigated model and task, incorporating image data from 5 different slice locations of at least 5 mm intervals into the CHO model yielded detectability indices within measurement error of the single slice value. Consequently, this methodology would Result in a 5-fold reduction in number of image acquisitions. This project was supported by National Institutes of Health grants R01 EB017095 and U01 EB017185 from the National Institute of Biomedical Imaging and Bioengineering.« less
Oliveira, Karen M; Lavor, Mário Sérgio L; Silva, Carla Maria O; Fukushima, Fabíola B; Rosado, Isabel R; Silva, Juneo F; Martins, Bernardo C; Guimarães, Laís B; Gomez, Marcus Vinícius; Melo, Marília M; Melo, Eliane G
2014-01-01
Excessive accumulation of intracellular calcium is the most critical step after spinal cord injury (SCI). Reducing the calcium influx should result in a better recovery from SCI. Calcium channel blockers have been shown a great potential in reducing brain and spinal cord injury. In this study, we first tested the neuroprotective effect of MVIIC on slices of spinal cord subjected to ischemia evaluating cell death and caspase-3 activation. Thereafter, we evaluated the efficacy of MVIIC in ameliorating damage following SCI in rats, for the first time in vivo. The spinal cord slices subjected a pretreatment with MVIIC showed a cell protection with a reduction of dead cells in 24.34% and of caspase-3-specific protease activation. In the in vivo experiment, Wistar rats were subjected to extradural compression of the spinal cord at the T12 vertebral level using a weigh of 70 g/cm, following intralesional treatment with either placebo or MVIIC in different doses (15, 30 and 60 pmol) five minutes after injury. Behavioral testing of hindlimb function was done using the Basso Beattie Bresnahan locomotor rating scale, and revealed significant recovery with 15 pmol (G15) compared to other trauma groups. Also, histological bladder structural revealed significant outcome in G15, with no morphological alterations, and anti-NeuN and TUNEL staining showed that G15 provided neuron preservation and indicated that this group had fewer neuron cell death, similar to sham. These results showed the neuroprotective effects of MVIIC in in vitro and in vivo model of SCI with neuronal integrity, bladder and behavioral improvements. PMID:25120731
Zheng, J; Li, G; Chen, S; Bihl, J; Buck, J; Zhu, Y; Xia, H; Lazartigues, E; Chen, Y; Olson, J E
2014-07-25
We previously demonstrated that mice which overexpress human renin and angiotensinogen (R+A+) show enhanced cerebral damage in both in vivo and in vitro experimental ischemia models. Angiotensin-converting enzyme 2 (ACE2) counteracts the effects of angiotensin (Ang-II) by transforming it into Ang-(1-7), thus reducing the ligand for the AT1 receptor and increasing stimulation of the Mas receptor. Triple transgenic mice, SARA, which specifically overexpress ACE2 in neurons of R+A+ mice were used to study the role of ACE2 in ischemic stroke using oxygen and glucose deprivation (OGD) of brain slices as an in vitro model. We examined tissue swelling, the production of reactive oxygen species (ROS), and cell death in the cerebral cortex (CX) and the hippocampal CA1 region during OGD. Expression levels of NADPH oxidase (Nox) isoforms, Nox2 and Nox4 were measured using western blots. Results show that SARA mice and R+A+ mice treated with the Mas receptor agonist Ang-(1-7) had less swelling, cell death, and ROS production in CX and CA1 areas compared to those in R+A+ animals. Treatment of slices from SARA mice with the Mas antagonist A779 eliminated this protection. Finally, western blots revealed less Nox2 and Nox4 expression in SARA mice compared with R+A+ mice both before and after OGD. We suggest that reduced brain swelling and cell death observed in SARA animals exposed to OGD result from diminished ROS production coupled with lower expression of Nox isoforms. Thus, the ACE2/Ang-(1-7)/Mas receptor pathway plays a protective role in brain ischemic damage by counteracting the detrimental effects of Ang-II-induced ROS production. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Fluidized bed drying characteristics and modeling of ginger ( zingiber officinale) slices
NASA Astrophysics Data System (ADS)
Parlak, Nezaket
2015-08-01
In this study fluidized bed drying characteristics of ginger have been investigated. The effects of the fluidizing air temperature, velocity, humidity and bed height on the drying performance of ginger slices have been found. The experimental moisture loss data of ginger slices has been fitted to the eight thin layer drying models. Two-term model drying model has shown a better fit to the experimental data with R2 of 0.998 as compared to others.
Lonchamp, Etienne; Dupont, Jean-Luc; Beekenkamp, Huguette; Poulain, Bernard; Bossu, Jean-Louis
2006-01-01
Thin acute slices and dissociated cell cultures taken from different parts of the brain have been widely used to examine the function of the nervous system, neuron-specific interactions, and neuronal development (specifically, neurobiology, neuropharmacology, and neurotoxicology studies). Here, we focus on an alternative in vitro model: brain-slice cultures in roller tubes, initially introduced by Beat Gähwiler for studies with rats, that we have recently adapted for studies of mouse cerebellum. Cultured cerebellar slices afford many of the advantages of dissociated cultures of neurons and thin acute slices. Organotypic slice cultures were established from newborn or 10-15-day-old mice. After 3-4 weeks in culture, the slices flattened to form a cell monolayer. The main types of cerebellar neurons could be identified with immunostaining techniques, while their electrophysiological properties could be easily characterized with the patch-clamp recording technique. When slices were taken from newborn mice and cultured for 3 weeks, aspects of the cerebellar development were displayed. A functional neuronal network was established despite the absence of mossy and climbing fibers, which are the two excitatory afferent projections to the cerebellum. When slices were made from 10-15-day-old mice, which are at a developmental stage when cerebellum organization is almost established, the structure and neuronal pathways were intact after 3-4 weeks in culture. These unique characteristics make organotypic slice cultures of mouse cerebellar cortex a valuable model for analyzing the consequences of gene mutations that profoundly alter neuronal function and compromise postnatal survival.
Rhodes, Samhita S; Camara, Amadou KS; Ropella, Kristina M; Audi, Said H; Riess, Matthias L; Pagel, Paul S; Stowe, David F
2006-01-01
Background The phase-space relationship between simultaneously measured myoplasmic [Ca2+] and isovolumetric left ventricular pressure (LVP) in guinea pig intact hearts is altered by ischemic and inotropic interventions. Our objective was to mathematically model this phase-space relationship between [Ca2+] and LVP with a focus on the changes in cross-bridge kinetics and myofilament Ca2+ sensitivity responsible for alterations in Ca2+-contraction coupling due to inotropic drugs in the presence and absence of ischemia reperfusion (IR) injury. Methods We used a four state computational model to predict LVP using experimentally measured, averaged myoplasmic [Ca2+] transients from unpaced, isolated guinea pig hearts as the model input. Values of model parameters were estimated by minimizing the error between experimentally measured LVP and model-predicted LVP. Results We found that IR injury resulted in reduced myofilament Ca2+ sensitivity, and decreased cross-bridge association and dissociation rates. Dopamine (8 μM) reduced myofilament Ca2+ sensitivity before, but enhanced it after ischemia while improving cross-bridge kinetics before and after IR injury. Dobutamine (4 μM) reduced myofilament Ca2+ sensitivity while improving cross-bridge kinetics before and after ischemia. Digoxin (1 μM) increased myofilament Ca2+ sensitivity and cross-bridge kinetics after but not before ischemia. Levosimendan (1 μM) enhanced myofilament Ca2+ affinity and cross-bridge kinetics only after ischemia. Conclusion Estimated model parameters reveal mechanistic changes in Ca2+-contraction coupling due to IR injury, specifically the inefficient utilization of Ca2+ for contractile function with diastolic contracture (increase in resting diastolic LVP). The model parameters also reveal drug-induced improvements in Ca2+-contraction coupling before and after IR injury. PMID:16512898
Retinal ischemic injury rescued by sodium 4-phenylbutyrate in a rat model.
Jeng, Yung-Yue; Lin, Nien-Ting; Chang, Pen-Heng; Huang, Yuan-Ping; Pang, Victor Fei; Liu, Chen-Hsuan; Lin, Chung-Tien
2007-03-01
Retinal ischemia is a common cause of visual impairment for humans and animals. Herein, the neuroprotective effects of phenylbutyrate (PBA) upon retinal ischemic injury were investigated using a rat model. Retinal ganglion cells (RGCs) were retrograde labeled with the fluorescent tracer fluorogold (FG) applied to the superior collicoli of test Sprague-Dawley rats. High intraocular pressure and retinal ischemia were induced seven days subsequent to such FG labeling. A dose of either 100 or 400 mg/kg PBA was administered intraperitoneally to test rats at two time points, namely 30 min prior to the induction of retinal ischemia and 1 h subsequent to the cessation of the procedure inducing retinal ischemia. The test-rat retinas were collected seven days subsequent to the induction of retinal ischemia, and densities of surviving RGCs were estimated by counting FG-labeled RGCs within the retina. Histological analysis revealed that ischemic injury caused the loss of retinal RGCs and a net decrease in retinal thickness. For PBA-treated groups, almost 100% of the RGCs were preserved by a pre-ischemia treatment with PBA (at a dose of either 100 or 400 mg/kg), while post-ischemia treatment of RGCs with PBA did not lead to the preservation of RGCs from ischemic injury by PBA as determined by the counting of whole-mount retinas. Pre-ischemia treatment of RGCs with PBA (at a dose of either 100 or 400 mg/kg) significantly reduced the level of ischemia-associated loss of thickness of the total retina, especially the inner retina, and the inner plexiform layer of retina. Besides, PBA treatment significantly reduced the ischemia-induced loss of cells in the ganglion-cell layer of the retina. Taken together, these results suggest that PBA demonstrates a marked neuroprotective effect upon high intraocular pressure-induced retinal ischemia when the PBA is administered prior to ischemia induction.
Jantzie, Lauren L.; Corbett, Christopher J.; Firl, Daniel J.; Robinson, Shenandoah
2015-01-01
Preterm birth impacts brain development and leads to chronic deficits including cognitive delay, behavioral problems, and epilepsy. Premature loss of the subplate, a transient subcortical layer that guides development of the cerebral cortex and axonal refinement, has been implicated in these neurological disorders. Subplate neurons influence postnatal upregulation of the potassium chloride co-transporter KCC2 and maturation of γ-amino-butyric acid A receptor (GABAAR) subunits. We hypothesized that prenatal transient systemic hypoxia–ischemia (TSHI) in Sprague–Dawley rats that mimic brain injury from extreme prematurity in humans would cause premature subplate loss and affect cortical layer IV development. Further, we predicted that the neuroprotective agent erythropoietin (EPO) could attenuate the injury. Prenatal TSHI induced subplate neuronal loss via apoptosis. TSHI impaired cortical layer IV postnatal upregulation of KCC2 and GABAAR subunits, and postnatal EPO treatment mitigated the loss (n ≥ 8). To specifically address how subplate loss affects cortical development, we used in vitro mechanical subplate ablation in slice cultures (n ≥ 3) and found EPO treatment attenuates KCC2 loss. Together, these results show that subplate loss contributes to impaired cerebral development, and EPO treatment diminishes the damage. Limitation of premature subplate loss and the resultant impaired cortical development may minimize cerebral deficits suffered by extremely preterm infants. PMID:24722771
Rat brain sagittal organotypic slice cultures as an ex vivo dopamine cell loss system.
McCaughey-Chapman, Amy; Connor, Bronwen
2017-02-01
Organotypic brain slice cultures are a useful tool to study neurological function as they provide a more complex, 3-dimensional system than standard 2-dimensional in vitro cell cultures. Building on a previously developed mouse brain slice culture protocol, we have developed a rat sagittal brain slice culture system as an ex vivo model of dopamine cell loss. We show that rat brain organotypic slice cultures remain viable for up to 6 weeks in culture. Using Fluoro-Gold axonal tracing, we demonstrate that the slice 3-dimensional cytoarchitecture is maintained over a 4 week culturing period, with particular focus on the nigrostriatal pathway. Treatment of the cultures with 6-hydroxydopamine and desipramine induces a progressive loss of Fluoro-Gold-positive nigral cells with a sustained loss of tyrosine hydroxylase-positive nigral cells. This recapitulates the pattern of dopaminergic degeneration observed in the rat partial 6-hydroxydopamine lesion model and, most importantly, the progressive pathology of Parkinson's disease. Our slice culture platform provides an advance over other systems, as we demonstrate for the first time 3-dimensional cytoarchitecture maintenance of rat nigrostriatal sagittal slices for up to 6 weeks. Our ex vivo organotypic slice culture system provides a long term cellular platform to model Parkinson's disease, allowing for the elucidation of mechanisms involved in dopaminergic neuron degeneration and the capability to study cellular integration and plasticity ex vivo. Copyright © 2017 Elsevier B.V. All rights reserved.
Neural network classification technique and machine vision for bread crumb grain evaluation
NASA Astrophysics Data System (ADS)
Zayas, Inna Y.; Chung, O. K.; Caley, M.
1995-10-01
Bread crumb grain was studied to develop a model for pattern recognition of bread baked at Hard Winter Wheat Quality Laboratory (HWWQL), Grain Marketing and Production Research Center (GMPRC). Images of bread slices were acquired with a scanner in a 512 multiplied by 512 format. Subimages in the central part of the slices were evaluated by several features such as mean, determinant, eigen values, shape of a slice and other crumb features. Derived features were used to describe slices and loaves. Neural network programs of MATLAB package were used for data analysis. Learning vector quantization method and multivariate discriminant analysis were applied to bread slices from what of different sources. A training and test sets of different bread crumb texture classes were obtained. The ranking of subimages was well correlated with visual judgement. The performance of different models on slice recognition rate was studied to choose the best model. The recognition of classes created according to human judgement with image features was low. Recognition of arbitrarily created classes, according to porosity patterns, with several feature patterns was approximately 90%. Correlation coefficient was approximately 0.7 between slice shape features and loaf volume.
Oja, Simo S; Saransaari, Pirjo
2009-09-01
The release of neurotransmitters and modulators has been studied mostly using labeled preloaded compounds. For several reasons, however, the estimated release may not reliably reflect the release of endogenous compounds. The basal and K(+)-evoked release of the neuroactive endogenous amino acids GABA, glycine, taurine, L-glutamate and L-aspartate was now studied in slices from the hippocampus and brain stem from 7-day-old and 3-month-old mice under control and ischemic conditions. The release of synaptically not active L-glutamine, L-alanine, L-threonine and L-serine was assessed for comparison. The estimates for the hippocampus and brainstem were markedly different and also different in developing and adult mice. GABA release was much greater in 3-month-old than in 7-day-old mice, whereas with taurine the situation was the opposite, in the hippocampus in particular. K(+) stimulation enhanced glycine release more in the mature than immature brain stem while in the hippocampus the converse was observed. Ischemia enhanced the release of all neuroactive amino acids in both brain regions, the effects being relatively most pronounced in the case of GABA, aspartate and glutamate in the hippocampus in 3-month-old mice, and taurine in 7-day-old and glycine in 3-month-old mice in the brain stem. These results are qualitatively similar to those obtained on earlier experiments with labeled preloaded amino acids. However, the magnitudes of the release cannot be quite correctly estimated using radioactive labels. In developing mice only taurine release may counteract the harmful effects of excitatory amino acids in ischemia in both hippocampus and brain stem.
Neuroprotective effects of tanshinone I from Danshen extract in a mouse model of hypoxia-ischemia
Lee, Jae-Chul; Park, Joon Ha; Park, Ok Kyu; Kim, In Hye; Yan, Bing Chun; Ahn, Ji Hyeon; Kwon, Seung-Hae; Choi, Jung Hoon
2013-01-01
Hypoxia-ischemia leads to serious neuronal damage in some brain regions and is a strong risk factor for stroke. The aim of this study was to investigate the neuroprotective effect of tanshinone I (TsI) derived from Danshen (Radix Salvia miltiorrhiza root extract) against neuronal damage using a mouse model of cerebral hypoxia-ischemia. Brain infarction and neuronal damage were examined using 2,3,5-triphenyltetrazolium chloride (TTC) staining, hematoxylin and eosin histochemistry, and Fluoro-Jade B histofluorescence. Pre-treatment with TsI (10 mg/kg) was associated with a significant reduction in infarct volume 1 day after hypoxia-ischemia was induced. In addition, TsI protected against hypoxia-ischemia-induced neuronal death in the ipsilateral region. Our present findings suggest that TsI has strong potential for neuroprotection against hypoxic-ischemic damage. These results may be used in research into new anti-stroke medications. PMID:24179693
Hilkens, N A; Algra, A; Greving, J P
2016-01-01
ESSENTIALS: Prediction models may help to identify patients at high risk of bleeding on antiplatelet therapy. We identified existing prediction models for bleeding and validated them in patients with cerebral ischemia. Five prediction models were identified, all of which had some methodological shortcomings. Performance in patients with cerebral ischemia was poor. Background Antiplatelet therapy is widely used in secondary prevention after a transient ischemic attack (TIA) or ischemic stroke. Bleeding is the main adverse effect of antiplatelet therapy and is potentially life threatening. Identification of patients at increased risk of bleeding may help target antiplatelet therapy. This study sought to identify existing prediction models for intracranial hemorrhage or major bleeding in patients on antiplatelet therapy and evaluate their performance in patients with cerebral ischemia. We systematically searched PubMed and Embase for existing prediction models up to December 2014. The methodological quality of the included studies was assessed with the CHARMS checklist. Prediction models were externally validated in the European Stroke Prevention Study 2, comprising 6602 patients with a TIA or ischemic stroke. We assessed discrimination and calibration of included prediction models. Five prediction models were identified, of which two were developed in patients with previous cerebral ischemia. Three studies assessed major bleeding, one studied intracerebral hemorrhage and one gastrointestinal bleeding. None of the studies met all criteria of good quality. External validation showed poor discriminative performance, with c-statistics ranging from 0.53 to 0.64 and poor calibration. A limited number of prediction models is available that predict intracranial hemorrhage or major bleeding in patients on antiplatelet therapy. The methodological quality of the models varied, but was generally low. Predictive performance in patients with cerebral ischemia was poor. In order to reliably predict the risk of bleeding in patients with cerebral ischemia, development of a prediction model according to current methodological standards is needed. © 2015 International Society on Thrombosis and Haemostasis.
Sosa, P M; Schimidt, H L; Altermann, C; Vieira, A S; Cibin, F W S; Carpes, F P; Mello-Carpes, P B
2015-09-01
Stroke is the third most common cause of death worldwide, and most stroke survivors present some functional impairment. We assessed the striatal oxidative balance and motor alterations resulting from stroke in a rat model to investigate the neuroprotective role of physical exercise. Forty male Wistar rats were assigned to 4 groups: a) control, b) ischemia, c) physical exercise, and d) physical exercise and ischemia. Physical exercise was conducted using a treadmill for 8 weeks. Ischemia-reperfusion surgery involved transient bilateral occlusion of the common carotid arteries for 30 min. Neuromotor performance (open-field and rotarod performance tests) and pain sensitivity were evaluated beginning at 24 h after the surgery. Rats were euthanized and the corpora striata was removed for assay of reactive oxygen species, lipoperoxidation activity, and antioxidant markers. Ischemia-reperfusion caused changes in motor activity. The ischemia-induced alterations observed in the open-field test were fully reversed, and those observed in the rotarod test were partially reversed, by physical exercise. Pain sensitivity was similar among all groups. Levels of reactive oxygen species and lipoperoxidation increased after ischemia; physical exercise decreased reactive oxygen species levels. None of the treatments altered the levels of antioxidant markers. In summary, ischemia-reperfusion resulted in motor impairment and altered striatal oxidative balance in this animal model, but those changes were moderated by physical exercise.
Weinberg, Nicole; Pohost, Gerald M.; Bairey Merz, C. Noel; Shaw, Leslee J.; Sopko, George; Fuisz, Anthon; Rogers, William J.; Walsh, Edward G.; Johnson, B. Delia; Sharaf, Barry L.; Pepine, Carl J.; Mankad, Sunil; Reis, Steven E.; Rayarao, Geetha; Vido, Diane A.; Bittner, Vera; Tauxe, Lindsey; Olson, Marian B.; Kelsey, Sheryl F.; Biederman, Robert WW
2013-01-01
Objectives To assess the prognostic value of a left ventricular energy-model in women with suspected myocardial ischemia. Background The prognostic value of internal energy utilization (IEU) of the left ventricle in women with suspected myocardial ischemia is unknown. Methods Women [n=227, mean age 59±12 years (range, 31-86 years)], with symptoms of myocardial ischemia, underwent myocardial perfusion imaging (MPI) assessment for regional perfusion defects along with measurement of ventricular volumes separately by gated Single Photon Emission Computed Tomography (SPECT) (n=207) and magnetic resonance imaging (MRI) (n=203). During follow-up (40±17 months), time to first major adverse cardiovascular event (MACE, death, myocardial infarction or hospitalization for congestive heart failure) was analyzed using MRI and gated SPECT variables. Results Adverse events occurred in 31 (14%). Multivariable Cox models were formed for each modality: IEU and wall thickness by MRI (Chi-squared 34, P<0.005) and IEU and systolic blood pressure by gated SEPCT (Chi-squared 34, P<0.005). The models remained predictive after adjustment for age, disease history and Framingham risk score. For each Cox model, patients were categorized as high-risk if the model hazard was positive and not high-risk otherwise. Kaplan-Meier analysis of time to MACE was performed for high-risk vs. not high-risk for MR (log rank 25.3, P<0.001) and gated SEPCT (log rank 18.2, P<0.001) models. Conclusions Among women with suspected myocardial ischemia a high internal energy utilization has higher prognostic value than either a low EF or the presence of a myocardial perfusion defect assessed using two independent modalities of MR or gated SPECT. PMID:24015377
Comparison of two models for evaluation histopathology of experimental renal ischemia.
Tirapelli, L F; Barione, D F; Trazzi, B F M; Tirapelli, D P C; Novas, P C; Silva, C S; Martinez, M; Costa, R S; Tucci, S; Suaid, H J; Cologna, A J; Martins, A C P
2009-12-01
Renal ischemia/reperfusion (I/R) injury is one of the frequent causes of acute renal failure (ARF) due to the complex, interrelated sequence of events, that result in damage to and death of kidney cells. Cells of the proximal tubular epithelium are especially susceptible to I/R injury, leading to acute tubular necrosis, which plays a pivotal role in the pathogenesis of ARF. Several models have been explicated to assess morphological changes, including those of Jabonski et al. and Goujon et al. We compared the 2 models for histopathological evaluation of 30- or 120-minute periods of renal ischemia followed by 24-hour reperfusion in rats. Several changes were observed after application of the 2 models: proximal tubular cell necrosis, loss of brush border, vacuolization, denudation of tubular basement membrane as a consequence of flattening of basal cells, and presence of intratubular exfoliated cells in the lumen of proximal convoluted tubules at various stages of degeneration (karyorexis, kariopyknosis and karyolysis). Evaluating tubular lesions after 2 periods of experimental ischemia with light microscopy allowed us to conclude that the Goujon classification better characterized the main changes in cortical renal tubules after ischemia.
Glomerular loss after arteriovenous and arterial clamping for renal warm ischemia in a swine model.
Bechara, Gustavo Ruschi; Damasceno-Ferreira, José Aurelino; Abreu, Leonardo Albuquerque Dos Santos; Costa, Waldemar Silva; Sampaio, Francisco José Barcellos; Pereira-Sampaio, Marco Aurélio; Souza, Diogo Benchimol De
2016-11-01
To evaluate the glomerular loss after arteriovenous or arterial warm ischemia in a swine model. Twenty four pigs were divided into Group Sham (submitted to all surgical steps except the renal ischemia), Group AV (submitted to 30 minutes of warm ischemia by arteriovenous clamping of left kidney vessels), and Group A (submitted to 30 minutes of ischemia by arterial clamping). Right kidneys were used as controls. Weigh, volume, cortical volume, glomerular volumetric density (Vv[Glom]), volume-weighted glomerular volume (VWGV), and the total number of glomeruli were measured for each organ. Group AV showed a 24.5% reduction in its left kidney Vv[Glom] and a 25.4% reduction in the VWGV, when compared to the right kidney. Reductions were also observed when compared to kidneys of sham group. There was a reduction of 19.2% in the total number of glomeruli in AV kidneys. No difference was observed in any parameters analyzed on the left kidneys from group A. Renal warm ischemia of 30 minutes by arterial clamping did not caused significant glomerular damage, but arteriovenous clamping caused significant glomerular loss in a swine model. Clamping only the renal artery should be considered to minimize renal injury after partial nephrectomies.
Rojas, Santiago; Herance, José Raul; Abad, Sergio; Jiménez, Xavier; Pareto, Deborah; Ruiz, Alba; Torrent, Èlia; Figueiras, Francisca P; Popota, Foteini; Fernández-Soriano, Francisco J; Planas, Anna M; Gispert, Juan D
2011-06-01
[¹⁸F]Fluoromisonidazole (¹⁸F-FMISO) is a nitroimidazole derivative that has been proposed as a positron emission tomography (PET) radiotracer to detect hypoxic tissue in vivo. This compound accumulates in hypoxic but viable tissue and may be a good candidate for evaluating the ischemic penumbra. We evaluated the time course of ¹⁸F-FMISO uptake using PET in a rat model of permanent cerebral ischemia and the correlation with histological changes. Rats (n = 14) were subjected to permanent ischemia by intraluminal occlusion of the middle cerebral artery in order to assess by PET the uptake of ¹⁸F-FMISO at various times over 24 h following ischemia. The PET results were compared to histological changes with Nissl and 2,3,5 triphenyltetrazolium chloride staining. Elevated uptake of ¹⁸F-FMISO was detected in the infarcted area up to 8 h after occlusion but was no longer detected at 24 h, a time point coincident with pan necrosis of the tissue. Our findings suggest that salvageable tissue persists for up to 8 h in this rat model of brain ischemia. We propose ¹⁸F-FMISO PET as a tool for evaluating the ischemic penumbra after cerebral ischemia.
Ahn, Ji Yun; Yan, Bing Chun; Park, Joon Ha; Ahn, Ji Hyeon; Lee, Dae Hwan; Kim, In Hye; Cho, Jeong-Hwi; Chen, Bai Hui; Lee, Jae-Chul; Cho, Young Shin; Shin, Myoung Chul; Cho, Jun Hwi; Hong, Seongkweon; Won, Moo-Ho; Kim, Sung Koo
2015-12-01
Lacosamide, which is a novel antiepileptic drug, has been reported to exert various additional therapeutic effects. The present study investigated the neuroprotective effects of lacosamide against transient cerebral ischemia-induced neuronal cell damage in the hippocampal cornu ammonis (CA)-1 region of a gerbil model. Neuronal Nuclei immunohistochemistry demonstrated that pre- and post-surgical treatment (5 min ischemia) with 25 mg/kg lacosamide protected CA1 pyramidal neurons in the lacosamide-treated-ischemia-operated group from ischemic injury 5 days post-ischemia, as compared with gerbils in the vehicle-treated-ischemia-operated group. Furthermore, treatment with 25 mg/kg lacosamide markedly attenuated the activation of astrocytes and microglia in the ischemic CA1 region at 5 days post-ischemia. The results of the present study suggested that pre- and post-surgical treatment of the gerbils with lacosamide was able to protect against transient cerebral ischemic injury-induced CA1 pyramidal neuronal cell death in the hippocampus. In addition, the neuroprotective effects of lacosamide may be associated with decreased activation of glial cells in the ischemic CA1 region.
Drying characteristics of pumpkin ( Cucurbita moschata) slices in convective and freeze dryer
NASA Astrophysics Data System (ADS)
Caliskan, Gulsah; Dirim, Safiye Nur
2017-06-01
This study was intended to determine the drying and rehydration kinetics of convective and freeze dried pumpkin slices (0.5 × 3.5 × 0.5 cm). A pilot scale tray drier (at 80 ± 2 °C inlet temperature, 1 m s-1 air velocity) and freeze drier (13.33 kPa absolute pressure, condenser temperature of -48 ± 2 °C) were used for the drying experiments. Drying curves were fitted to six well-known thin layer drying models. Nonlinear regression analysis was used to evaluate the parameters of the selected models by using statistical software SPSS 16.0 (SPSS Inc., USA). For the convective and freeze drying processes of pumpkin slices, the highest R2 values, and the lowest RMSE as well as χ2 values were obtained from Page model. The effective moisture diffusivity (Deff) of the convective and freeze dried pumpkin slices were obtained from the Fick's diffusion model, and they were found to be 2.233 × 10-7 and 3.040 × 10-9 m2s-1, respectively. Specific moisture extraction rate, moisture extraction rate, and specific energy consumption values were almost twice in freeze drying process. Depending on the results, moisture contents and water activity values of pumpkin slices were in acceptable limits for safe storage of products. The rehydration behaviour of [at 18 ± 2 and 100 ± 2 °C for 1:25, 1:50, 1:75, 1:100, and 1:125 solid:liquid ratios (w:w)] dried pumpkin slices was determined by Peleg's model with the highest R2. The highest total soluble solid loss of pumpkin slices was observed for the rehydration experiment which performed at 1:25 solid: liquid ratio (w:w). Rehydration ratio of freeze dried slices was found 2-3 times higher than convective dried slices.
Yu, Lifeng; Chen, Baiyu; Kofler, James M.; Favazza, Christopher P.; Leng, Shuai; Kupinski, Matthew A.; McCollough, Cynthia H.
2017-01-01
Purpose Model observers have been successfully developed and used to assess the quality of static 2D CT images. However, radiologists typically read images by paging through multiple 2D slices (i.e. multi-slice reading). The purpose of this study was to correlate human and model observer performance in a low-contrast detection task performed using both 2D and multi-slice reading, and to determine if the 2D model observer still correlate well with human observer performance in multi-slice reading. Methods A phantom containing 18 low-contrast spheres (6 sizes × 3 contrast levels) was scanned on a 192-slice CT scanner at 5 dose levels (CTDIvol = 27, 13.5, 6.8, 3.4, and 1.7 mGy), each repeated 100 times. Images were reconstructed using both filtered-backprojection (FBP) and an iterative reconstruction (IR) method (ADMIRE, Siemens). A 3D volume of interest (VOI) around each sphere was extracted and placed side-by-side with a signal-absent VOI to create a 2-alternative forced choice (2AFC) trial. Sixteen 2AFC studies were generated, each with 100 trials, to evaluate the impact of radiation dose, lesion size and contrast, and reconstruction methods on object detection. In total, 1600 trials were presented to both model and human observers. Three medical physicists acted as human observers and were allowed to page through the 3D volumes to make a decision for each 2AFC trial. The human observer performance was compared with the performance of a multi-slice channelized Hotelling observer (CHO_MS), which integrates multi-slice image data, and with the performance of previously validated CHO, which operates on static 2D images (CHO_2D). For comparison, the same 16 2AFC studies were also performed in a 2D viewing mode by the human observers and compared with the multi-slice viewing performance and the two CHO models. Results Human observer performance was well correlated with the CHO_2D performance in the 2D viewing mode (Pearson product-moment correlation coefficient R=0.972, 95% confidence interval (CI): 0.919 to 0.990) and with the CHO_MS performance in the multi-slice viewing mode (R=0.952, 95% CI: 0.865 to 0.984). The CHO_2D performance, calculated from the 2D viewing mode, also had a strong correlation with human observer performance in the multi-slice viewing mode (R=0.957, 95% CI: 879 to 0.985). Human observer performance varied between the multi-slice and 2D modes. One reader performed better in the multi-slice mode (p=0.013); whereas the other two readers showed no significant difference between the two viewing modes (p=0.057 and p=0.38). Conclusions A 2D CHO model is highly correlated with human observer performance in detecting spherical low contrast objects in multi-slice viewing of CT images. This finding provides some evidence for the use of a simpler, 2D CHO to assess image quality in clinically relevant CT tasks where multi-slice viewing is used. PMID:28555878
Barrese, Vincenzo; Taglialatela, Maurizio; Greenwood, Iain A; Davidson, Colin
2015-01-01
Ischemic stroke can cause striatal dopamine efflux that contributes to cell death. Since Kv7 potassium channels regulate dopamine release, we investigated the effects of their pharmacological modulation on dopamine efflux, measured by fast cyclic voltammetry (FCV), and neurotoxicity, in Wistar rat caudate brain slices undergoing oxygen and glucose deprivation (OGD). The Kv7 activators retigabine and ICA27243 delayed the onset, and decreased the peak level of dopamine efflux induced by OGD; and also decreased OGD-induced damage measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining. Retigabine also reduced OGD-induced necrotic cell death evaluated by lactate dehydrogenase activity assay. The Kv7 blocker linopirdine increased OGD-evoked dopamine efflux and OGD-induced damage, and attenuated the effects of retigabine. Quantitative-PCR experiments showed that OGD caused an ~6-fold decrease in Kv7.2 transcript, while levels of mRNAs encoding for other Kv7 subunits were unaffected; western blot experiments showed a parallel reduction in Kv7.2 protein levels. Retigabine also decreased the peak level of dopamine efflux induced by L-glutamate, and attenuated the loss of TTC staining induced by the excitotoxin. These results suggest a role for Kv7.2 in modulating ischemia-evoked caudate damage. PMID:25966943
Ammonia-induced brain swelling and neurotoxicity in an organotypic slice model
Back, Adam; Tupper, Kelsey Y.; Bai, Tao; Chiranand, Paulpoj; Goldenberg, Fernando D.; Frank, Jeffrey I.; Brorson, James R.
2013-01-01
Objectives Acute liver failure produces cerebral dysfunction and edema, mediated in part by elevated ammonia concentrations, often leading to coma and death. The pathophysiology of cerebral edema in acute liver failure is incompletely understood. In vitro models of the cerebral effects of acute liver failure have predominately consisted of dissociated astrocyte cultures or acute brain slices. We describe a stable long-term culture model incorporating both neural and glial elements in a three-dimensional tissue structure offering significant advantages to the study of astrocytic-neuronal interactions in the pathophysiology of cerebral edema and dysfunction in acute liver failure. Methods We utilized chronic organotypic slice cultures from mouse forebrain, applying ammonium acetate in iso-osmolar fashion for 72 hours. Imaging of slice thickness to assess for tissue swelling was accomplished in living slices with optical coherence tomography, and confocal microscopy of fluorescence immunochemical and histochemical staining served to assess astrocyte and neuronal numbers, morphology, and volume in the fixed brain slices. Results Ammonia exposure at 1–10 mM produced swelling of immunochemically-identified astrocytes, and at 10 mM resulted in macroscopic tissue swelling, with slice thickness increasing by about 30%. Astrocytes were unchanged in number. In contrast, 10 mM ammonia treatment severely disrupted neuronal morphology and reduced neuronal survival at 72 hours by one-half. Discussion Elevated ammonia produces astrocytic swelling, tissue swelling, and neuronal toxicity in cerebral tissues. Ammonia-treated organotypic brain slice cultures provide an in vitro model of cerebral effects of conditions relevant to acute liver failure, applicable to pathophysiological investigations. PMID:22196764
NASA Astrophysics Data System (ADS)
Olsson, C.; Thor, M.; Liu, M.; Moissenko, V.; Petersen, S. E.; Høyer, M.; Apte, A.; Deasy, J. O.
2014-07-01
When pooling retrospective data from different cohorts, slice thicknesses of acquired computed tomography (CT) images used for treatment planning may vary between cohorts. It is, however, not known if varying slice thickness influences derived dose-response relationships. We investigated this for rectal bleeding using dose-volume histograms (DVHs) of the rectum and rectal wall for dose distributions superimposed on images with varying CT slice thicknesses. We used dose and endpoint data from two prostate cancer cohorts treated with three-dimensional conformal radiotherapy to either 74 Gy (N = 159) or 78 Gy (N = 159) at 2 Gy per fraction. The rectum was defined as the whole organ with content, and the morbidity cut-off was Grade ≥2 late rectal bleeding. Rectal walls were defined as 3 mm inner margins added to the rectum. DVHs for simulated slice thicknesses from 3 to 13 mm were compared to DVHs for the originally acquired slice thicknesses at 3 and 5 mm. Volumes, mean, and maximum doses were assessed from the DVHs, and generalized equivalent uniform dose (gEUD) values were calculated. For each organ and each of the simulated slice thicknesses, we performed predictive modeling of late rectal bleeding using the Lyman-Kutcher-Burman (LKB) model. For the most coarse slice thickness, rectal volumes increased (≤18%), whereas maximum and mean doses decreased (≤0.8 and ≤4.2 Gy, respectively). For all a values, the gEUD for the simulated DVHs were ≤1.9 Gy different than the gEUD for the original DVHs. The best-fitting LKB model parameter values with 95% CIs were consistent between all DVHs. In conclusion, we found that the investigated slice thickness variations had minimal impact on rectal dose-response estimations. From the perspective of predictive modeling, our results suggest that variations within 10 mm in slice thickness between cohorts are unlikely to be a limiting factor when pooling multi-institutional rectal dose data that include slice thickness variations within this range. Presented in part at the European Society for Therapeutic Radiotherapy and Oncology Annual Meeting, April 5-8, 2014, Vienna, Austria.
On the identification of a Pliocene time slice for data–model comparison
Haywood, Alan M.; Dolan, Aisling M.; Pickering, Steven J.; Dowsett, Harry J.; McClymont, Erin L.; Prescott, Caroline L.; Salzmann, Ulrich; Hill, Daniel J.; Hunter, Stephen J.; Lunt, Daniel J.; Pope, James O.; Valdes, Paul J.
2013-01-01
The characteristics of the mid-Pliocene warm period (mPWP: 3.264–3.025 Ma BP) have been examined using geological proxies and climate models. While there is agreement between models and data, details of regional climate differ. Uncertainties in prescribed forcings and in proxy data limit the utility of the interval to understand the dynamics of a warmer than present climate or evaluate models. This uncertainty comes, in part, from the reconstruction of a time slab rather than a time slice, where forcings required by climate models can be more adequately constrained. Here, we describe the rationale and approach for identifying a time slice(s) for Pliocene environmental reconstruction. A time slice centred on 3.205 Ma BP (3.204–3.207 Ma BP) has been identified as a priority for investigation. It is a warm interval characterized by a negative benthic oxygen isotope excursion (0.21–0.23‰) centred on marine isotope stage KM5c (KM5.3). It occurred during a period of orbital forcing that was very similar to present day. Climate model simulations indicate that proxy temperature estimates are unlikely to be significantly affected by orbital forcing for at least a precession cycle centred on the time slice, with the North Atlantic potentially being an important exception.
Accurate reconstruction of 3D cardiac geometry from coarsely-sliced MRI.
Ringenberg, Jordan; Deo, Makarand; Devabhaktuni, Vijay; Berenfeld, Omer; Snyder, Brett; Boyers, Pamela; Gold, Jeffrey
2014-02-01
We present a comprehensive validation analysis to assess the geometric impact of using coarsely-sliced short-axis images to reconstruct patient-specific cardiac geometry. The methods utilize high-resolution diffusion tensor MRI (DTMRI) datasets as reference geometries from which synthesized coarsely-sliced datasets simulating in vivo MRI were produced. 3D models are reconstructed from the coarse data using variational implicit surfaces through a commonly used modeling tool, CardioViz3D. The resulting geometries were then compared to the reference DTMRI models from which they were derived to analyze how well the synthesized geometries approximate the reference anatomy. Averaged over seven hearts, 95% spatial overlap, less than 3% volume variability, and normal-to-surface distance of 0.32 mm was observed between the synthesized myocardial geometries reconstructed from 8 mm sliced images and the reference data. The results provide strong supportive evidence to validate the hypothesis that coarsely-sliced MRI may be used to accurately reconstruct geometric ventricular models. Furthermore, the use of DTMRI for validation of in vivo MRI presents a novel benchmark procedure for studies which aim to substantiate their modeling and simulation methods using coarsely-sliced cardiac data. In addition, the paper outlines a suggested original procedure for deriving image-based ventricular models using the CardioViz3D software. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
On the identification of a Pliocene time slice for data–model comparison
Haywood, Alan M.; Dolan, Aisling M.; Pickering, Steven J.; Dowsett, Harry J.; McClymont, Erin L.; Prescott, Caroline L.; Salzmann, Ulrich; Hill, Daniel J.; Hunter, Stephen J.; Lunt, Daniel J.; Pope, James O.; Valdes, Paul J.
2013-01-01
The characteristics of the mid-Pliocene warm period (mPWP: 3.264–3.025 Ma BP) have been examined using geological proxies and climate models. While there is agreement between models and data, details of regional climate differ. Uncertainties in prescribed forcings and in proxy data limit the utility of the interval to understand the dynamics of a warmer than present climate or evaluate models. This uncertainty comes, in part, from the reconstruction of a time slab rather than a time slice, where forcings required by climate models can be more adequately constrained. Here, we describe the rationale and approach for identifying a time slice(s) for Pliocene environmental reconstruction. A time slice centred on 3.205 Ma BP (3.204–3.207 Ma BP) has been identified as a priority for investigation. It is a warm interval characterized by a negative benthic oxygen isotope excursion (0.21–0.23‰) centred on marine isotope stage KM5c (KM5.3). It occurred during a period of orbital forcing that was very similar to present day. Climate model simulations indicate that proxy temperature estimates are unlikely to be significantly affected by orbital forcing for at least a precession cycle centred on the time slice, with the North Atlantic potentially being an important exception. PMID:24043865
Anticerebral Ischemia-Reperfusion Injury Activity of Synthesized Puerarin Derivatives
Ji, Yubin; Yan, Xinjia
2016-01-01
When cerebral ischemia-reperfusion injury happened in patients, multiple pathological processes occur, such as leukocyte infiltration, platelet, and complement activation, which would result in cognitive dysfunction and inflammation. Puerarin has shown protective effect on injury of neural cell. In order to enhance this protective effect of puerarin, puerarin derivatives with different logP values were designed and synthesized. The original phenolic hydroxyl in the puerarin molecules was substituted in order to change the blood-brain barrier permeability and thus enhance the efficacy for preventing cerebral ischemia/reperfusion injury. And the structure of the newly synthesized molecules was confirmed by 1H NMR spectroscopy and mass spectrometry. The mouse model of cerebral artery ischemia/reperfusion injury was established to test the anticerebral ischemia-reperfusion injury activity of the puerarin derivatives. The assays of the water maze, Y maze, brain cortex Ca2+-Mg2+-ATP enzyme, and iNOS enzyme activity were performed in this mouse model. The results showed that puerarin derivative P1-EA and P2-EA were resulting in an increased lipophilicity that enabled the derivatives to pass more efficiently through the blood-brain barrier, thus, improving the protective effects against cerebral ischemia/reperfusion injury. Therefore, derivatives of puerarin may serve as promising approach to improve neuron function in ischemia-reperfusion brain injury-related disorders. PMID:27807543
Zhang, Li; Gan, Weidong; An, Guoyao
2012-12-25
Tanshinone IIa is an effective monomer component of Danshen, which is a traditional Chinese medicine for activating blood circulation to dissipate blood stasis. Tanshinone IIa can effectively improve brain tissue ischemia/hypoxia injury. The present study established a rat model of spinal cord ischemia/reperfusion injury and intraperitoneally injected Tanshinone IIa, 0.5 hour prior to model establishment. Results showed that Tanshinone IIa promoted heat shock protein 70 and Bcl-2 protein expression, but inhibited Bax protein expression in the injured spinal cord after ischemia/reperfusion injury. Furthermore, Nissl staining indicated a reduction in nerve cell apoptosis and fewer pathological lesions in the presence of Tanshinone IIa, compared with positive control Danshen injection.
Predictive Modeling of Cardiac Ischemia
NASA Technical Reports Server (NTRS)
Anderson, Gary T.
1996-01-01
The goal of the Contextual Alarms Management System (CALMS) project is to develop sophisticated models to predict the onset of clinical cardiac ischemia before it occurs. The system will continuously monitor cardiac patients and set off an alarm when they appear about to suffer an ischemic episode. The models take as inputs information from patient history and combine it with continuously updated information extracted from blood pressure, oxygen saturation and ECG lines. Expert system, statistical, neural network and rough set methodologies are then used to forecast the onset of clinical ischemia before it transpires, thus allowing early intervention aimed at preventing morbid complications from occurring. The models will differ from previous attempts by including combinations of continuous and discrete inputs. A commercial medical instrumentation and software company has invested funds in the project with a goal of commercialization of the technology. The end product will be a system that analyzes physiologic parameters and produces an alarm when myocardial ischemia is present. If proven feasible, a CALMS-based system will be added to existing heart monitoring hardware.
Brugada syndrome and ischemia-induced ST-segment elevation. Similarities and differences#
Di Diego, José M.; Fish, Jeffrey M.; Antzelevitch, Charles
2006-01-01
Introduction ST-Segment elevation is a common electrocardiogram (ECG) manifestation of acute transmural myocardial ischemia in leads facing the injury. Acute myocardial ischemia involving the right-ventricular (RV) outflow tract is known to induce a Brugada-like ECG. In this paper, we examined the electrophysiological bases for the similarities between the ECG characteristics of the Brugada syndrome model induced by terfenadine (5 μmol/L) and the ECG manifestations of the acute transmural no-flow ischemia model. Methods For both experimental simulations, we used isolated arterially perfused canine RV wedge preparations to record transmembrane action potentials (AP) from endocardium and epicardium together with a transmural pseudo-ECG (ECG); basic cycle length = 400 to 2000 ms. Results In the presence of a prominent Ito-mediated AP notch, no-flow ischemia causes true ST-segment elevation because of selective depression and loss of the AP dome at some epicardial sites. In the absence of a prominent AP notch, ischemia ultimately produces an apparent ST-segment elevation, which is secondary to a prolongation of the R wave caused by marked transmural conduction delays. Similarly, in the Brugada syndrome model generated in preparations displaying a large epicardial Ito, ST-segment elevation was due to loss of the epicardial AP dome at some sites but not at others. Transmural conduction delay giving the appearance of ST-segment elevation is also observed in the Brugada model in preparations exhibiting smaller AP notch. In both models, propagation of the dome from the site at which it is maintained to a site at which it is lost may result in closely coupled phase 2 reentrant extrasystoles. Conclusion Our results suggest that Ito can modulate the electrocardiographic manifestation of acute ischemia as well as that of the Brugada syndrome, and that both clinical entities are the result of a similar electrophysiological substrate. PMID:16226068
Mendes, Niele D; Fernandes, Artur; Almeida, Glaucia M; Santos, Luis E; Selles, Maria Clara; Lyra-Silva, Natalia; Machado, Carla M; Horta-Júnior, José A C; Louzada, Paulo R; De Felice, Fernanda G; Alvez-Leon, Soniza; Marcondes, Jorge; Assirati, João Alberto; Matias, Caio M; Klein, William L; Garcia-Cairasco, Norberto; Ferreira, Sergio T; Neder, Luciano; Sebollela, Adriano
2018-05-31
Slice cultures have been prepared from several organs. With respect to the brain, advantages of slice cultures over dissociated cell cultures include maintenance of the cytoarchitecture and neuronal connectivity. Slice cultures from adult human brain have been reported and constitute a promising method to study neurological diseases. Despite this potential, few studies have characterized in detail cell survival and function along time in short-term, free-floating cultures. We used tissue from adult human brain cortex from patients undergoing temporal lobectomy to prepare 200 μm-thick slices. Along the period in culture, we evaluated neuronal survival, histological modifications, and neurotransmitter release. The toxicity of Alzheimer's-associated Aβ oligomers (AβOs) to cultured slices was also analyzed. Neurons in human brain slices remain viable and neurochemically active for at least four days in vitro, which allowed detection of binding of AβOs. We further found that slices exposed to AβOs presented elevated levels of hyperphosphorylated Tau, a hallmark of Alzheimer's disease. Although slice cultures from adult human brain have been previously prepared, this is the first report to analyze cell viability and neuronal activity in short-term free-floating cultures as a function of days in vitro. Once surgical tissue is available, the current protocol is easy to perform and produces functional slices from adult human brain. These slice cultures may represent a preferred model for translational studies of neurodegenerative disorders when long term culturing in not required, as in investigations on AβO neurotoxicity. Copyright © 2018 Elsevier B.V. All rights reserved.
Sleep Is Critical for Remote Preconditioning-Induced Neuroprotection.
Brager, Allison J; Yang, Tao; Ehlen, J Christopher; Simon, Roger P; Meller, Robert; Paul, Ketema N
2016-11-01
Episodes of brief limb ischemia (remote preconditioning) in mice induce tolerance to modeled ischemic stroke (focal brain ischemia). Since stroke outcomes are in part dependent on sleep-wake history, we sought to determine if sleep is critical for the neuroprotective effect of limb ischemia. EEG/EMG recording electrodes were implanted in mice. After a 24 h baseline recording, limb ischemia was induced by tightening an elastic band around the left quadriceps for 10 minutes followed by 10 minutes of release for two cycles. Two days following remote preconditioning, a second 24 h EEG/EMG recording was completed and was immediately followed by a 60-minute suture occlusion of the middle cerebral artery (modeled ischemic stroke). This experiment was then repeated in a model of circadian and sleep abnormalities ( Bmal1 knockout [KO] mice sleep 2 h more than wild-type littermates). Brain infarction was determined by vital dye staining, and sleep was assessed by trained identification of EEG/EMG recordings. Two days after limb ischemia, wild-type mice slept an additional 2.4 h. This additional sleep was primarily comprised of non-rapid eye movement (NREM) sleep during the middle of the light-phase (i.e., naps). Repeating the experiment but preventing increases in sleep after limb ischemia abolished tolerance to ischemic stroke. In Bmal1 knockout mice, remote preconditioning did not increase daily sleep nor provide tolerance to subsequent focal ischemia. These results suggest that sleep induced by remote preconditioning is both sufficient and necessary for its neuroprotective effects on stroke outcome. © 2016 Associated Professional Sleep Societies, LLC.
The Neuroprotective Effect of Kefir on Spinal Cord Ischemia/Reperfusion Injury in Rats.
Guven, Mustafa; Akman, Tarik; Yener, Ali Umit; Sehitoglu, Muserref Hilal; Yuksel, Yasemin; Cosar, Murat
2015-05-01
The main causes of spinal cord ischemia are a variety of vascular pathologies causing acute arterial occlusions. We investigated neuroprotective effects of kefir on spinal cord ischemia injury in rats. Rats were divided into three groups : 1) sham operated control rats; 2) spinal cord ischemia group fed on a standard diet without kefir pretreatment; and 3) spinal cord ischemia group fed on a standard diet plus kefir. Spinal cord ischemia was performed by the infrarenal aorta cross-clamping model. The spinal cord was removed after the procedure. The biochemical and histopathological changes were observed within the samples. Functional assessment was performed for neurological deficit scores. The kefir group was compared with the ischemia group, a significant decrease in malondialdehyde levels was observed (p<0.05). Catalase and superoxide dismutase levels of the kefir group were significantly higher than ischemia group (p<0.05). In histopathological samples, the kefir group is compared with ischemia group, there was a significant decrease in numbers of dead and degenerated neurons (p<0.05). In immunohistochemical staining, hipoxia-inducible factor-1α and caspase 3 immunopositive neurons were significantly decreased in kefir group compared with ischemia group (p<0.05). The neurological deficit scores of kefir group were significantly higher than ischemia group at 24 h (p<0.05). Our study revealed that kefir pretreatment in spinal cord ischemia/reperfusion reduced oxidative stress and neuronal degeneration as a neuroprotective agent. Ultrastructural studies are required in order for kefir to be developed as a promising therapeutic agent to be utilized for human spinal cord ischemia in the future.
Miao, Ming-san; Guo, Lin; Li, Rui-qi; Ma, Xiao
2016-01-01
Previous studies have shown that Radix Ilicis Pubescentis total flavonoids have a neuroprotective effect, but it remains unclear whether Radix Ilicis Pubescentis total flavonoids have a synergistic effect with the recombinant human granulocyte colony stimulating factor-mobilized bone marrow stem cell transplantation on cerebral ischemia/reperfusion injury. Rat ischemia models were administered 0.3, 0.15 and 0.075 g/kg Radix Ilicis Pubescentis total flavonoids from 3 days before modeling to 2 days after injury. Results showed that Radix Ilicis Pubescentis total flavonoids could reduce pathological injury in rats with cerebral ischemia/reperfusion injury. The number of Nissl bodies increased, Bax protein expression decreased, Bcl-2 protein expression increased and the number of CD34-positive cells increased. Therefore, Radix Ilicis Pubescentis total flavonoids can improve the bone marrow stem cell mobilization effect, enhance the anti-apoptotic ability of nerve cells, and have a neuroprotective effect on cerebral ischemia/reperfusion injury in rats. PMID:27073381
Insulin/NFκB protects against ischemia-induced necrotic cardiomyocyte death.
Díaz, Ariel; Humeres, Claudio; González, Verónica; Gómez, María Teresa; Montt, Natalia; Sanchez, Gina; Chiong, Mario; García, Lorena
2015-11-13
In the heart, insulin controls key functions such as metabolism, muscle contraction and cell death. However, all studies have been focused on insulin action during reperfusion. Here we explore the cardioprotective action of this hormone during ischemia. Rat hearts were perfused ex vivo with an ischemia/reperfusion Langendorff model in absence or presence of insulin. Additionally, cultured rat cardiomyocytes were exposed to simulated ischemia in the absence or presence of insulin. Cytoprotective effects were measured by myocardial infarct size, trypan blue exclusion, released LDH and DNA fragmentation by flow cytometry. We found that insulin protected against cardiac ischemia ex vivo and in vitro. Moreover, insulin protected cardiomyocytes from simulated ischemia by reducing necrotic cell death. Protective effects of insulin were dependent of Akt and NFκB. These novel results show that insulin reduces ischemia-induced cardiomyocyte necrosis through an Akt/NF-κB dependent mechanism. These novel findings clarify the role of insulin during ischemia and further support its use in early GIK perfusion to treat myocardial infarction. Copyright © 2015 Elsevier Inc. All rights reserved.
AHN, JI YUN; YAN, BING CHUN; PARK, JOON HA; AHN, JI HYEON; LEE, DAE HWAN; KIM, IN HYE; CHO, JEONG-HWI; CHEN, BAI HUI; LEE, JAE-CHUL; CHO, YOUNG SHIN; SHIN, MYOUNG CHUL; CHO, JUN HWI; HONG, SEONGKWEON; WON, MOO-HO; KIM, SUNG KOO
2015-01-01
Lacosamide, which is a novel antiepileptic drug, has been reported to exert various additional therapeutic effects. The present study investigated the neuroprotective effects of lacosamide against transient cerebral ischemia-induced neuronal cell damage in the hippocampal cornu ammonis (CA)-1 region of a gerbil model. Neuronal Nuclei immunohistochemistry demonstrated that pre- and post-surgical treatment (5 min ischemia) with 25 mg/kg lacosamide protected CA1 pyramidal neurons in the lacosamide-treated-ischemia-operated group from ischemic injury 5 days post-ischemia, as compared with gerbils in the vehicle-treated-ischemia-operated group. Furthermore, treatment with 25 mg/kg lacosamide markedly attenuated the activation of astrocytes and microglia in the ischemic CA1 region at 5 days post-ischemia. The results of the present study suggested that pre- and post-surgical treatment of the gerbils with lacosamide was able to protect against transient cerebral ischemic injury-induced CA1 pyramidal neuronal cell death in the hippocampus. In addition, the neuroprotective effects of lacosamide may be associated with decreased activation of glial cells in the ischemic CA1 region. PMID:26668588
Zhang, Feng; Signore, Armando P; Zhou, Zhigang; Wang, Suping; Cao, Guodong; Chen, Jun
2006-05-15
Erythropoietin (EPO) is a hormone that is neuroprotective in models of neurodegenerative diseases. This study examined whether EPO can protect against neuronal death in the CA1 region of the rat hippocampus following global cerebral ischemia. Recombinant human EPO was infused into the intracerebral ventricle either before or after the induction of ischemia produced by using the four-vessel-occlusion model in rat. Hippocampal CA1 neuron damage was ameliorated by infusion of 50 U EPO. Administration of EPO was neuroprotective if given 20 hr before or 20 min after ischemia, but not 1 hr following ischemia. Coinjection of the phosphoinositide 3 kinase inhibitor LY294002 with EPO inhibited the protective effects of EPO. Treatment with EPO induced phosphorylation of both AKT and its substrate, glycogen synthase kinase-3beta, in the CA1 region. EPO also enhanced the CA1 level of brain-derived neurotrophic factor. Finally, we determined that ERK activation played minor roles in EPO-mediated neuroprotection. These studies demonstrate that a single injection of EPO ICV up to 20 min after global ischemia is an effective neuroprotective agent and suggest that EPO is a viable candidate for treating global ischemic brain injury. Copyright 2006 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Li, Zhifang; Li, Hui; Chen, Haiyu; Xie, Wengming
2011-07-01
The location and ischemia extent are two important parameters for evaluating the acute myocardial ischemia (AMI). A focused-transducer-based photoacoustic imaging method was employed to assess time-dependent AMI. Our preliminary results show that the photoacoustic signal could identify the myocardium. The intensity and area of photoacoustic images of myocardium could be used for characterizing the ischemia extent and scope of myocardial ischemia. The results also imply that the intensity and area of photoacoustic images are the rapid fall of an exponential model with an increase of delaying time after the left anterior descending coronary artery (LAD) occlusion. These experimental results were consistent with the clinical characteristics. The findings suggest that the photoacoustic imaging be a potential tool for the real-time assessment of acute myocardial ischemia during surgical operation.
Rowe, Daniel B; Bruce, Iain P; Nencka, Andrew S; Hyde, James S; Kociuba, Mary C
2016-04-01
Achieving a reduction in scan time with minimal inter-slice signal leakage is one of the significant obstacles in parallel MR imaging. In fMRI, multiband-imaging techniques accelerate data acquisition by simultaneously magnetizing the spatial frequency spectrum of multiple slices. The SPECS model eliminates the consequential inter-slice signal leakage from the slice unaliasing, while maintaining an optimal reduction in scan time and activation statistics in fMRI studies. When the combined k-space array is inverse Fourier reconstructed, the resulting aliased image is separated into the un-aliased slices through a least squares estimator. Without the additional spatial information from a phased array of receiver coils, slice separation in SPECS is accomplished with acquired aliased images in shifted FOV aliasing pattern, and a bootstrapping approach of incorporating reference calibration images in an orthogonal Hadamard pattern. The aliased slices are effectively separated with minimal expense to the spatial and temporal resolution. Functional activation is observed in the motor cortex, as the number of aliased slices is increased, in a bilateral finger tapping fMRI experiment. The SPECS model incorporates calibration reference images together with coefficients of orthogonal polynomials into an un-aliasing estimator to achieve separated images, with virtually no residual artifacts and functional activation detection in separated images. Copyright © 2015 Elsevier Inc. All rights reserved.
Zhang, Li; Gan, Weidong; An, Guoyao
2012-01-01
Tanshinone IIa is an effective monomer component of Danshen, which is a traditional Chinese medicine for activating blood circulation to dissipate blood stasis. Tanshinone IIa can effectively improve brain tissue ischemia/hypoxia injury. The present study established a rat model of spinal cord ischemia/reperfusion injury and intraperitoneally injected Tanshinone IIa, 0.5 hour prior to model establishment. Results showed that Tanshinone IIa promoted heat shock protein 70 and Bcl-2 protein expression, but inhibited Bax protein expression in the injured spinal cord after ischemia/reperfusion injury. Furthermore, Nissl staining indicated a reduction in nerve cell apoptosis and fewer pathological lesions in the presence of Tanshinone IIa, compared with positive control Danshen injection. PMID:25317140
Wang, Lixin; Ma, Hao; Xue, Yan; Shi, Haiyan; Ma, Teng; Cui, Xiaozheng
2018-02-01
Myocardial ischemia-reperfusion injury is one of the most common cardiovascular diseases, and can lead to serious damage and dysfunction of the myocardial tissue. Previous studies have demonstrated that berberine exhibits ameliorative effects on cardiovascular disease. The present study further investigated the efficacy and potential mechanism underlying the effects of berberine on ischemia-reperfusion injury in a mouse model. Inflammatory markers were measured in the serum and levels of inflammatory proteins in myocardial cells were investigated after treatment with berberine. In addition, the apoptosis of myocardial cells was investigated after berberine treatment. Apoptosis-associated gene expression levels and apoptotic signaling pathways were analyzed in myocardial cells after treatment with berberine. The phosphoinositide 3-kinase (PI3K)/RAC-α serine/threonine-protein kinase (AKT) and nuclear factor (NF)-κB signaling pathways were also analyzed in myocardial cells after treatment with berberine. Histological analysis was used to analyze the potential benefits of berberine in ischemia-reperfusion injury. The present study identified that inflammatory responses and inflammatory factors were decreased in the myocardial cells of the mouse model of ischemia-reperfusion injury. Mechanism analysis demonstrated that berberine inhibited apoptotic protease-activating factor 1, caspase-3 and caspase-9 expression in myocardial cells. The expression of Bcl2-associated agonist of cell death, Bcl-2-like protein 1 and cellular tumor antigen p53 was upregulated. Expression of NF-κB p65, inhibitor of NF-κB kinase subunit β (IKK-β), NF-κB inhibitor α (IκBα), and NF-κB activity, were inhibited in myocardial cells in the mouse model of ischemia-reperfusion injury. In conclusion, the results of the present study indicate that berberine inhibits inflammatory responses through the NF-κB signaling pathway and suppresses the apoptosis of myocardial cells via the PI3K/AKT signaling pathway in a mouse model of ischemia-reperfusion injury. These results suggest that berberine is a potential drug for the treatment of patients with ischemia-reperfusion injury.
Wang, Lixin; Ma, Hao; Xue, Yan; Shi, Haiyan; Ma, Teng; Cui, Xiaozheng
2018-01-01
Myocardial ischemia-reperfusion injury is one of the most common cardiovascular diseases, and can lead to serious damage and dysfunction of the myocardial tissue. Previous studies have demonstrated that berberine exhibits ameliorative effects on cardiovascular disease. The present study further investigated the efficacy and potential mechanism underlying the effects of berberine on ischemia-reperfusion injury in a mouse model. Inflammatory markers were measured in the serum and levels of inflammatory proteins in myocardial cells were investigated after treatment with berberine. In addition, the apoptosis of myocardial cells was investigated after berberine treatment. Apoptosis-associated gene expression levels and apoptotic signaling pathways were analyzed in myocardial cells after treatment with berberine. The phosphoinositide 3-kinase (PI3K)/RAC-α serine/threonine-protein kinase (AKT) and nuclear factor (NF)-κB signaling pathways were also analyzed in myocardial cells after treatment with berberine. Histological analysis was used to analyze the potential benefits of berberine in ischemia-reperfusion injury. The present study identified that inflammatory responses and inflammatory factors were decreased in the myocardial cells of the mouse model of ischemia-reperfusion injury. Mechanism analysis demonstrated that berberine inhibited apoptotic protease-activating factor 1, caspase-3 and caspase-9 expression in myocardial cells. The expression of Bcl2-associated agonist of cell death, Bcl-2-like protein 1 and cellular tumor antigen p53 was upregulated. Expression of NF-κB p65, inhibitor of NF-κB kinase subunit β (IKK-β), NF-κB inhibitor α (IκBα), and NF-κB activity, were inhibited in myocardial cells in the mouse model of ischemia-reperfusion injury. In conclusion, the results of the present study indicate that berberine inhibits inflammatory responses through the NF-κB signaling pathway and suppresses the apoptosis of myocardial cells via the PI3K/AKT signaling pathway in a mouse model of ischemia-reperfusion injury. These results suggest that berberine is a potential drug for the treatment of patients with ischemia-reperfusion injury. PMID:29403554
van der Heijden, Karin M.; van der Heijden, Inneke M.; Galvao, Flavio H.; Lopes, Camila G.; Costa, Silvia F.; Abdala, Edson; D’Albuquerque, Luiz A.; Levin, Anna S.
2014-01-01
The objectives of this study were to develop a rat model of gastrointestinal colonization with vancomycin-resistant Enterococcus faecalis (VRE) and extended-spectrum beta-lactamase (ESBL)-producing E. coli and to evaluate intestinal translocation to blood and tissues after total and partial hepatic ischemia. Methods - We developed a model of rat colonization with VRE and ESBL-E coli. Then we studied four groups of colonized rats: Group I (with hepatic pedicle occlusion causing complete liver ischemia and intestinal stasis); Group II (with partial liver ischemia without intestinal stasis); Group III (surgical manipulation without hepatic ischemia or intestinal stasis); Group IV (anesthetized without surgical manipulation). After sacrifice, portal and systemic blood, large intestine, small intestine, spleen, liver, lungs, and cervical and mesenteric lymph nodes were cultured. Endotoxin concentrations in portal and systemic blood were determined. Results – The best inocula were: VRE: 2.4×1010 cfu and ESBL-E. coli: 1.12×1010 cfu. The best results occurred 24 hours after inoculation and antibiotic doses of 750 µg/mL of water for vancomycin and 2.1 mg/mL for ceftriaxone. There was a significantly higher proportion of positive cultures for ESBL-E. coli in the lungs in Groups I, II and III when compared with Group IV (67%; 60%; 75% and 13%, respectively; p:0.04). VRE growth was more frequent in mesenteric lymph nodes for Groups I (67%) and III (38%) than for Groups II (13%) and IV (none) (p:0.002). LPS was significantly higher in systemic blood of Group I (9.761±13.804 EU/mL−p:0.01). No differences for endotoxin occurred in portal blood. Conclusion –We developed a model of rats colonized with resistant bacteria useful to study intestinal translocation. Translocation occurred in surgical procedures with and without hepatic ischemia-reperfusion and probably occurred via the bloodstream. Translocation was probably lymphatic in the ischemia-reperfusion groups. Systemic blood endotoxin levels were higher in the group with complete hepatic ischemia. PMID:25255079
The Neuroprotective Effect of Kefir on Spinal Cord Ischemia/Reperfusion Injury in Rats
Akman, Tarik; Yener, Ali Umit; Sehitoglu, Muserref Hilal; Yuksel, Yasemin; Cosar, Murat
2015-01-01
Objective The main causes of spinal cord ischemia are a variety of vascular pathologies causing acute arterial occlusions. We investigated neuroprotective effects of kefir on spinal cord ischemia injury in rats. Methods Rats were divided into three groups : 1) sham operated control rats; 2) spinal cord ischemia group fed on a standard diet without kefir pretreatment; and 3) spinal cord ischemia group fed on a standard diet plus kefir. Spinal cord ischemia was performed by the infrarenal aorta cross-clamping model. The spinal cord was removed after the procedure. The biochemical and histopathological changes were observed within the samples. Functional assessment was performed for neurological deficit scores. Results The kefir group was compared with the ischemia group, a significant decrease in malondialdehyde levels was observed (p<0.05). Catalase and superoxide dismutase levels of the kefir group were significantly higher than ischemia group (p<0.05). In histopathological samples, the kefir group is compared with ischemia group, there was a significant decrease in numbers of dead and degenerated neurons (p<0.05). In immunohistochemical staining, hipoxia-inducible factor-1α and caspase 3 immunopositive neurons were significantly decreased in kefir group compared with ischemia group (p<0.05). The neurological deficit scores of kefir group were significantly higher than ischemia group at 24 h (p<0.05). Conclusion Our study revealed that kefir pretreatment in spinal cord ischemia/reperfusion reduced oxidative stress and neuronal degeneration as a neuroprotective agent. Ultrastructural studies are required in order for kefir to be developed as a promising therapeutic agent to be utilized for human spinal cord ischemia in the future. PMID:26113960
Cofilin Inhibition Restores Neuronal Cell Death in Oxygen-Glucose Deprivation Model of Ischemia.
Madineni, Anusha; Alhadidi, Qasim; Shah, Zahoor A
2016-03-01
Ischemia is a condition associated with decreased blood supply to the brain, eventually leading to death of neurons. It is associated with a diverse cascade of responses involving both degenerative and regenerative mechanisms. At the cellular level, the changes are initiated prominently in the neuronal cytoskeleton. Cofilin, a cytoskeletal actin severing protein, is known to be involved in the early stages of apoptotic cell death. Evidence supports its intervention in the progression of disease states like Alzheimer's and ischemic kidney disease. In the present study, we have hypothesized the possible involvement of cofilin in ischemia. Using PC12 cells and mouse primary cultures of cortical neurons, we investigated the potential role of cofilin in ischemia in two different in vitro ischemic models: chemical induced oxidative stress and oxygen-glucose deprivation/reperfusion (OGD/R). The expression profile studies demonstrated a decrease in phosphocofilin levels in all models of ischemia, implying stress-induced cofilin activation. Furthermore, calcineurin and slingshot 1L (SSH) phosphatases were found to be the signaling mediators of the cofilin activation. In primary cultures of cortical neurons, cofilin was found to be significantly activated after 1 h of OGD. To delineate the role of activated cofilin in ischemia, we knocked down cofilin by small interfering RNA (siRNA) technique and tested the impact of cofilin silencing on neuronal viability. Cofilin siRNA-treated neurons showed a significant reduction of cofilin levels in all treatment groups (control, OGD, and OGD/R). Additionally, cofilin siRNA-reduced cofilin mitochondrial translocation and caspase 3 cleavage, with a concomitant increase in neuronal viability. These results strongly support the active role of cofilin in ischemia-induced neuronal degeneration and apoptosis. We believe that targeting this protein mediator has a potential for therapeutic intervention in ischemic brain injury and stroke.
Wiard, R P; Dickerson, M C; Beek, O; Norton, R; Cooper, B R
1995-03-01
Elevated glutamate levels are thought to be a primary cause of neuronal death after global cerebral ischemia. The purpose of this study was to investigate the potential neuroprotective effects of lamotrigine, a novel antiepileptic drug that inhibits the release of glutamate in vitro, with both behavioral and histological measures of global ischemia in gerbils. The common carotid arteries of gerbils were occluded for either 5, 10, or 15 minutes. Twenty-one days after reperfusion, gerbils were tested for impairments in a spatial memory task (Morris water maze). After water maze testing the animals were killed, and damage to hippocampal pyramidal cells was assessed. The effect of lamotrigine on the behavioral and histological outcome of either 5 or 15 minutes of global ischemia was evaluated. Bilateral occlusion of the common carotid arteries for 5 minutes resulted in severe degeneration of hippocampal CA1 and CA2 pyramidal cells. Lamotrigine significantly prevented loss of hippocampal CA1 neurons when administered acutely (100 mg/kg PO) immediately after reperfusion or when administered in two equal doses of 30 or 50 mg/kg 2 hours before and immediately after reperfusion. Gerbils subjected to 5 minutes of ischemic insult were not impaired in their ability to solve a spatial memory task 21 days after cerebral ischemia. However, gerbils subjected to 10 and 15 minutes of carotid artery occlusion showed significant impairment in their ability to solve a water maze task. Lamotrigine significantly protected against the cognitive deficits associated with 15 minutes of cerebral ischemia. Histologically, increased durations of cerebral ischemia resulted in a progressive loss of CA1, CA2, and CA3 pyramidal cells. Lamotrigine completely protected gerbils exposed to 15 minutes of cerebral ischemia against CA3 cell loss and greatly reduced damage to the CA1 and CA2 cell tracts of the hippocampus. Lamotrigine also reduced the mortality associated with 15 minutes of ischemia. Lamotrigine had neuroprotective effects in a gerbil model of global cerebral ischemia. Lamotrigine protected gerbils against behavioral deficits resulting from 15 minutes of carotid occlusion and also prevented histological damage resulting from 5 and 15 minutes of global cerebral ischemia.
Reconstructing liver shape and position from MR image slices using an active shape model
NASA Astrophysics Data System (ADS)
Fenchel, Matthias; Thesen, Stefan; Schilling, Andreas
2008-03-01
We present an algorithm for fully automatic reconstruction of 3D position, orientation and shape of the human liver from a sparsely covering set of n 2D MR slice images. Reconstructing the shape of an organ from slice images can be used for scan planning, for surgical planning or other purposes where 3D anatomical knowledge has to be inferred from sparse slices. The algorithm is based on adapting an active shape model of the liver surface to a given set of slice images. The active shape model is created from a training set of liver segmentations from a group of volunteers. The training set is set up with semi-manual segmentations of T1-weighted volumetric MR images. Searching for the optimal shape model that best fits to the image data is done by maximizing a similarity measure based on local appearance at the surface. Two different algorithms for the active shape model search are proposed and compared: both algorithms seek to maximize the a-posteriori probability of the grey level appearance around the surface while constraining the surface to the space of valid shapes. The first algorithm works by using grey value profile statistics in normal direction. The second algorithm uses average and variance images to calculate the local surface appearance on the fly. Both algorithms are validated by fitting the active shape model to abdominal 2D slice images and comparing the shapes, which have been reconstructed, to the manual segmentations and to the results of active shape model searches from 3D image data. The results turn out to be promising and competitive to active shape model segmentations from 3D data.
Evaluation of a pulmonary strain model by registration of dynamic CT scans
NASA Astrophysics Data System (ADS)
Pomeroy, Marc; Liang, Zhengrong; Brehm, Anthony
2017-03-01
Idiopathic pulmonary fibrosis (IPF) is a chronic fibrotic lung disease that develops in adults without any known cause. It is an interstitial lung disease in which the lung tissue becomes scarred and stiffens, ultimately leading to respiratory failure. This disease currently has no cure with limited treatment options, leading to an average survival time of 3-5 years after diagnosis. In this paper we employ a mathematical model simulating the lung parenchyma as hexagons with elastic forces applied to connecting vertices and opposing vertices. Using an image registration algorithm, we obtain trajectories of 4D-CT scans of a healthy patient, and one suffering from IPF. Converting the image trajectories into a hexagonal lattice, we fit the model parameters to match the respiratory motion seen for both patients across multiple image slices. We found the model could decently describe the healthy lung slices, with a minimum average error between corresponding vertices to be 1.66 mm. For the fibrotic lung slices the model was less accurate, maintaining a higher average error across all slices. Using the optimized parameters, we apply the forces predicted from the model using the image trajectory positions for each phase. Although the error is large, the spring constant values determined for the fibrotic patient were not as high as we expected, and more often than not determined to be lower than corresponding healthy lung slices. However, the net force distribution for some of those slices was still found to be greater than the healthy lung counterparts. Other modifications to the model, including additional directional components and which vertices were receiving with the limited sample size available, a clear distinction between the healthy and fibrotic lung cannot yet be made by this model.
Polychromatic wave-optics models for image-plane speckle. 2. Unresolved objects.
Van Zandt, Noah R; Spencer, Mark F; Steinbock, Michael J; Anderson, Brian M; Hyde, Milo W; Fiorino, Steven T
2018-05-20
Polychromatic laser light can reduce speckle noise in many wavefront-sensing and imaging applications. To help quantify the achievable reduction in speckle noise, this study investigates the accuracy of three polychromatic wave-optics models under the specific conditions of an unresolved object. Because existing theory assumes a well-resolved object, laboratory experiments are used to evaluate model accuracy. The three models use Monte-Carlo averaging, depth slicing, and spectral slicing, respectively, to simulate the laser-object interaction. The experiments involve spoiling the temporal coherence of laser light via a fiber-based, electro-optic modulator. After the light scatters off of the rough object, speckle statistics are measured. The Monte-Carlo method is found to be highly inaccurate, while depth-slicing error peaks at 7.8% but is generally much lower in comparison. The spectral-slicing method is the most accurate, always producing results within the error bounds of the experiment.
Reduced cerebral ischemia-reperfusion injury in Toll-like receptor 4 deficient mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao Canxiang; Yang Qingwu; Lv Fenglin
Inflammatory reaction plays an important role in cerebral ischemia-reperfusion injury, however, its mechanism is still unclear. Our study aims to explore the function of Toll-like receptor 4 (TLR4) in the process of cerebral ischemia-reperfusion. We made middle cerebral artery ischemia-reperfusion model in mice with line embolism method. Compared with C3H/OuJ mice, scores of cerebral water content, cerebral infarct size and neurologic impairment in C3H/Hej mice were obviously lower after 6 h ischemia and 24 h reperfusion. Light microscopic and electron microscopic results showed that cerebral ischemia-reperfusion injury in C3H/Hej mice was less serious than that in C3H/OuJ mice. TNF-{alpha} andmore » IL-6 contents in C3H/HeJ mice were obviously lower than that in C3H/OuJ mice with ELISA. The results showed that TLR4 participates in the process of cerebral ischemia-reperfusion injury probably through decrease of inflammatory cytokines. TLR4 may become a new target for prevention of cerebral ischemia-reperfusion injury. Our study suggests that TLR4 is one of the mechanisms of cerebral ischemia-reperfusion injury besides its important role in innate immunity.« less
Ling, Qi; Liu, Jimin; Zhuo, Jianyong; Zhuang, Runzhou; Huang, Haitao; He, Xiangxiang; Xu, Xiao; Zheng, Shusen
2018-04-27
Donor characteristics and graft quality were recently reported to play an important role in the recurrence of hepatocellular carcinoma after liver transplantation. Our aim was to establish a prognostic model by using both donor and recipient variables. Data of 1,010 adult patients (training/validation: 2/1) undergoing primary liver transplantation for hepatocellular carcinoma were extracted from the China Liver Transplant Registry database and analyzed retrospectively. A multivariate competing risk regression model was developed and used to generate a nomogram predicting the likelihood of post-transplant hepatocellular carcinoma recurrence. Of 673 patients in the training cohort, 70 (10.4%) had hepatocellular carcinoma recurrence with a median recurrence time of 6 months (interquartile range: 4-25 months). Cold ischemia time was the only independent donor prognostic factor for predicting hepatocellular carcinoma recurrence (hazard ratio = 2.234, P = .007). The optimal cutoff value was 12 hours when patients were grouped according to cold ischemia time at 2-hour intervals. Integrating cold ischemia time into the Milan criteria (liver transplantation candidate selection criteria) improved the accuracy for predicting hepatocellular carcinoma recurrence in both training and validation sets (P < .05). A nomogram composed of cold ischemia time, tumor burden, differentiation, and α-fetoprotein level proved to be accurate and reliable in predicting the likelihood of 1-year hepatocellular carcinoma recurrence after liver transplantation. Additionally, donor anti-hepatitis B core antibody positivity, prolonged cold ischemia time, and anhepatic time were linked to the intrahepatic recurrence, whereas older donor age, prolonged donor warm ischemia time, cold ischemia time, and ABO incompatibility were relevant to the extrahepatic recurrence. The graft quality integrated models exhibited considerable predictive accuracy in early hepatocellular carcinoma recurrence risk assessment. The identification of donor risks can further help understand the mechanism of different patterns of recurrence. Copyright © 2018 Elsevier Inc. All rights reserved.
Tectonic slicing of subducting oceanic crust along plate interfaces: Numerical modeling
NASA Astrophysics Data System (ADS)
Ruh, J. B.; Le Pourhiet, L.; Agard, Ph.; Burov, E.; Gerya, T.
2015-10-01
Multikilometer-sized slivers of high-pressure low-temperature metamorphic oceanic crust and mantle are observed in many mountain belts. These blueschist and eclogite units were detached from the descending plate during subduction. Large-scale thermo-mechanical numerical models based on finite difference marker-in-cell staggered grid technique are implemented to investigate slicing processes that lead to the detachment of oceanic slivers and their exhumation before the onset of the continental collision phase. In particular, we investigate the role of the serpentinized subcrustal slab mantle in the mechanisms of shallow and deep crustal slicing. Results show that spatially homogeneous serpentinization of the sub-Moho slab mantle leads to complete accretion of oceanic crust within the accretionary wedge. Spatially discontinuous serpentinization of the slab mantle in form of unconnected patches can lead to shallow slicing of the oceanic crust below the accretionary wedge and to its deep slicing at mantle depths depending on the patch length, slab angle, convergence velocity and continental geothermal gradient. P-T paths obtained in this study are compared to natural examples of shallow slicing of the Crescent Terrane below Vancouver Island and deeply sliced crust of the Lago Superiore and Saas-Zermatt units in the Western Alps.
Hydrogen Sulfide Induced Disruption of Na+ Homeostasis in the Cortex
Chao, Dongman; He, Xiaozhou; Yang, Yilin; Balboni, Gianfranco; Salvadori, Severo; Kim, Dong H.; Xia, Ying
2012-01-01
Maintenance of ionic balance is essential for neuronal functioning. Hydrogen sulfide (H2S), a known toxic environmental gaseous pollutant, has been recently recognized as a gasotransmitter involved in numerous biological processes and is believed to play an important role in the neural activities under both physiological and pathological conditions. However, it is unclear if it plays any role in maintenance of ionic homeostasis in the brain under physiological/pathophysiological conditions. Here, we report by directly measuring Na+ activity using Na+ selective electrodes in mouse cortical slices that H2S donor sodium hydrosulfide (NaHS) increased Na+ influx in a concentration-dependent manner. This effect could be partially blocked by either Na+ channel blocker or N-methyl-D-aspartate receptor (NMDAR) blocker alone or almost completely abolished by coapplication of both blockers but not by non-NMDAR blocker. These data suggest that increased H2S in pathophysiological conditions, e.g., hypoxia/ischemia, potentially causes a disruption of ionic homeostasis by massive Na+ influx through Na+ channels and NMDARs, thus injuring neural functions. Activation of delta-opioid receptors (DOR), which reduces Na+ currents/influx in normoxia, had no effect on H2S-induced Na+ influx, suggesting that H2S-induced disruption of Na+ homeostasis is resistant to DOR regulation and may play a major role in neuronal injury in pathophysiological conditions, e.g., hypoxia/ischemia. PMID:22474073
Modeling of Helicopter Pilot Misperception During Overland Navigation
2012-03-01
into obstacles in the terrain. The Navy Safety Center has adopted James Reason’s Swiss cheese model for understanding the underlying process that...results in mishaps (Reason, 2000). The Swiss cheese model relates a system to a stack of slices of Swiss cheese . Each slice of cheese is a layer of
The Role of Erythropoietin Signaling in Human Cancer
2004-01-01
Semenza GL. Hearts from rodents exposed to intermittent hypoxia or erythropoietin are protected against ischemia - reperfusion injury . Circulation, 2003...against ischemia - reperfusion injury . Circulation, 2003; 108:79-85. 18. Wu H, Lee SH, Gao J, Liu X and Iruela-Arispe ML. Inactivation of... injury of the brain and spinal cord39, 40. It prevents hypoxia/ ischemia -induced DNA fragmentation in an experimental model of perinatal asphyxia41. Epo
Savvanis, Spyridon; Nastos, Constantinos; Tasoulis, Marios-Konstantinos; Papoutsidakis, Nikolaos; Demonakou, Maria; Karmaniolou, Iosifina; Arkadopoulos, Nikolaos; Smyrniotis, Vassilios; Theodoraki, Kassiani
2014-01-01
We evaluated the role of sildenafil in a rat liver ischemia-reperfusion model. Forty male rats were randomly allocated in four groups. The sham group underwent midline laparotomy only. In the sildenafil group, sildenafil was administered intraperitoneally 60 minutes before sham laparotomy. In the ischemia-reperfusion (I/R) group, rats were subjected to 45 minutes of hepatic ischemia followed by 120 minutes of reperfusion, while in the sild+I/R group rats were subjected to a similar pattern of I/R after the administration of sildenafil, 60 minutes before ischemia. Two hours after reperfusion, serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured and histopathological examination of the lobes subjected to ischemia as well as TUNEL staining for apoptotic bodies was performed. Additionally, myeloperoxidase (MPO) activity and the expression of intercellular adhesion molecule-1 (ICAM-1) were analyzed. Serum markers of hepatocellular injury were significantly lower in the sild+I/R group, which also exhibited lower severity of histopathological lesions and fewer apoptotic bodies, as compared to the I/R group. The I/R group showed significantly higher MPO activity and higher expression of ICAM-1, as compared to the sild+I/R group. Use of sildenafil as a preconditioning agent in a rat model of liver I/R exerted a protective effect. PMID:24999378
Ji, Xunming; Li, Ke; Li, Wenbin; Li, Shuting; Yan, Feng; Gong, Wei; Luo, Yumin
2009-03-01
With the proposal of penumbra theory and development of intra-arterial thrombolysis (such as urokinase), the outcome of ischemic cerebrovascular disease is greatly improved. However, the incidence of hemorrhagic transformation (HT) increased concomitantly, and some studies showed a close relationship between blood pressure and HT. The mechanisms of blood pressure and urokinase effect on the incidence of HT are not clear. In this study, we investigated the effects of the different levels of blood pressure and urokinase on the ischemic lesions, the incidence of HT and the expression of matrix metalloproteinase 9 (MMP-9) in the rat ischemia-reperfusion models. Temporary focal ischemia was induced in male Sprague-Dawley rats using the intraluminal vascular occlusion method. The animals were assigned into four groups (n=11 in each group): low blood pressure group (LP), normal blood pressure group (NP), high blood pressure group (HP) and urokinase/high blood pressure group (UKHP). Adnephrin was applied to enhance the mean arterial blood pressure (MABP) at the beginning of reperfusion. MABP was maintained 20 mmHg higher than the baseline for 1 hour. Sodium nitroprusside was used to decrease MABP by 20 mmHg lower than the baseline for 1 hour. Both urokinase and adnephrin were used concomitantly in the UKHP group. Neurological deficit scores were evaluated at 2 hours (R2h) and 24 hours (R24h) after reperfusion. All rats were decapitated, their brains were sliced into 15-mum-thick slices, and the infarct volume and the visible HT were analysed. Three rats in each group were taken for immunohistochemistry and pathological analysis. There was no significant difference in MABP among the groups at the baseline time points (p>0.05), but blood pressure are definitely increased and decreased in the HP, UKHP, and LP groups. Neurological deficit scores showed no significant difference at R2h among the groups (p=0.443). However, neurological deficit scores showed significant differences at R24h among the groups, the neurological deficits scores of rats in the LP group are significantly higher than that in the other groups. Compared with that of 2 hours after reperfusion, neurological deficit scores deteriorated in the LP group (p=0.047) but was improved in the NP, HP and UKHP groups (p=0.076, 0.002, 0.017, respectively) at 24 hours after reperfusion. The infarct volume in the HP group was apparently smaller than that in the LP group (p=0.006). There was indeed a tendency that HT occurred more frequently in the UKHP group (42.8%) than in the HP (25%) and LP (28.5%) groups. MMP-9 expression showed significant increase around the ischemic lesion areas of the UKHP group and significant decrease in the cortical areas of the LP and HP groups but no significant difference in the basal ganglia of rats of all groups. Mild elevation of blood pressure during reperfusion is supposed to improve neurological outcomes in rats following ischemia/reperfusion. The incidence of HT tended to increase with the elevation of blood pressure and the administration of urokinase. Immunohistochemitry analysis indicated that incidence of HT may correlate with excessive expression of MMP-9.
Loerakker, S; Manders, E; Strijkers, G J; Nicolay, K; Baaijens, F P T; Bader, D L; Oomens, C W J
2011-10-01
Deep tissue injury (DTI) is a severe form of pressure ulcer where tissue damage starts in deep tissues underneath intact skin. In the present study, the contributions of deformation, ischemia, and reperfusion to skeletal muscle damage development were examined in a rat model during a 6-h period. Magnetic resonance imaging (MRI) was used to study perfusion (contrast-enhanced MRI) and tissue integrity (T2-weighted MRI). The levels of tissue deformation were estimated using finite element models. Complete ischemia caused a gradual homogeneous increase in T2 (∼20% during the 6-h period). The effect of reperfusion on T2 was highly variable, depending on the anatomical location. In experiments involving deformation, inevitably associated with partial ischemia, a variable T2 increase (17-66% during the 6-h period) was observed reflecting the significant variation in deformation (with two-dimensional strain energies of 0.60-1.51 J/mm) and ischemia (50.8-99.8% of the leg) between experiments. These results imply that deformation, ischemia, and reperfusion all contribute to the damage process during prolonged loading, although their importance varies with time. The critical deformation threshold and period of ischemia that cause muscle damage will certainly vary between individuals. These variations are related to intrinsic factors, such as pathological state, which partly explain the individual susceptibility to the development of DTI and highlight the need for regular assessments of individual subjects.
Tao, Zhenyin; Zhao, Zhaoyang; Lee, Cheng Chi
2011-08-15
Early intervention using hypothermia treatment has been shown to reduce early inflammation, apoptosis and infarct size in animal models of cardiac ischemia/reperfusion. We have shown that 5'-adenosine monophosphate (5'-AMP) can induce a reversible deep hypothermia in mammals. We hypothesize that 5'-AMP-induced hypothermia (AIH) may reduce ischemic/reperfusion damage following myocardial infarct. C57BL/6J male mice were subjected to myocardial ischemia by ligating the left anterior descending coronary artery (LAD) followed by reperfusion. Compared to euthermic controls, mice given AIH treatment exhibited significant inhibition of neutrophil infiltration and a reduction in matrix metallopeptidase 9 (MMP-9) expressions in the infarcted myocardium. A decrease in terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive nuclei in the left ventricle myocardium were also observed. The overall infarct size of the heart was significantly smaller in AIH treated mice. Myocardial ischemia in mice given 5'-AMP without hypothermia had similar ischemia/reperfusion injuries as the euthermic control. Thus, the AIH cardio-protective effects were primarily hypothermia based.
Magnetohydrodynamics of unsteady viscous fluid on boundary layer past a sliced sphere
NASA Astrophysics Data System (ADS)
Nursalim, Rahmat; Widodo, Basuki; Imron, Chairul
2017-10-01
Magnetohydrodynamics (MHD) is important study in engineering and industrial fields. By study on MHD, we can reach the fluid flow characteristics that can be used to minimize its negative effect to an object. In decades, MHD has been widely studied in various geometry forms and fluid types. The sliced sphere is a geometry form that has not been investigated. In this paper we study magnetohydrodynamics of unsteady viscous fluid on boundary layer past a sliced sphere. Assumed that the fluid is incompressible, there is no magnetic field, there is no electrical voltage, the sliced sphere is fix and there is no barrier around the object. In this paper we focus on velocity profile at stagnation point (x = 0°). Mathematical model is governed by continuity and momentum equation. It is converted to non-dimensional, stream function, and similarity equation. Solution of the mathematical model is obtained by using Keller-Box numerical method. By giving various of slicing angle and various of magnetic parameter we get the simulation results. The simulation results show that increasing the slicing angle causes the velocity profile be steeper. Also, increasing the value of magnetic parameter causes the velocity profile be steeper. On the large slicing angle there is no significant effect of magnetic parameter to velocity profile, and on the high the value of magnetic parameter there is no significant effect of slicing angle to velocity profile.
2014-01-01
Background The nuclear protein high-mobility group box 1 (HMGB1) is a key trigger for the inflammatory reaction during liver ischemia reperfusion injury (IRI). Hydrogen treatment was recently associated with down-regulation of the expression of HMGB1 and pro-inflammatory cytokines during sepsis and myocardial IRI, but it is not known whether hydrogen has an effect on HMGB1 in liver IRI. Methods A rat model of 60 minutes 70% partial liver ischemia reperfusion injury was used. Hydrogen enriched saline (2.5, 5 or 10 ml/kg) was injected intraperitoneally 10 minutes before hepatic reperfusion. Liver injury was assessed by serum alanine aminotransferase (ALT) enzyme levels and histological changes. We also measured malondialdehyde (MDA), hydroxynonenal (HNE) and 8-hydroxy-guanosine (8-OH-G) levels as markers of the peroxidation injury induced by reactive oxygen species (ROS). In addition, pro-inflammatory cytokines including TNF-α and IL-6, and high mobility group box B1 protein (HMGB1) were measured as markers of post ischemia-reperfusion inflammation. Results Hydrogen enriched saline treatment significantly attenuated the severity of liver injury induced by ischemia-reperfusion. The treatment group showed reduced serum ALT activity and markers of lipid peroxidation and post ischemia reperfusion histological changes were reduced. Hydrogen enriched saline treatment inhibited HMGB1 expression and release, reflecting a reduced local and systemic inflammatory response to hepatic ischemia reperfusion. Conclusion These results suggest that, in our model, hydrogen enriched saline treatment is protective against liver ischemia-reperfusion injury. This effect may be mediated by both the anti-oxidative and anti-inflammatory effects of the solution. PMID:24410860
Kisel, Alena; Kudabaeva, Marina; Chernysheva, Galina; Smolyakova, Vera; Krutenkova, Elena; Wasserlauf, Irina; Plotnikov, Mark; Yarnykh, Vasily
2018-01-01
A selective serotonin reuptake inhibitor, fluoxetine, has recently attracted a significant interest as a neuroprotective therapeutic agent. There is substantial evidence of improved neurogenesis under fluoxetine treatment of brain ischemia in animal stroke models. We studied long-term effects of fluoxetine treatment on hippocampal neurogenesis, neuronal loss, inflammation, and functional recovery in a new model of global cerebral ischemia (GCI). Brain ischemia was induced in adult Wistar male rats by transient occlusion of three main vessels originating from the aortic arch and providing brain blood supply. Fluoxetine was injected intraperitoneally in a dose of 20 mg/kg for 10 days after surgery. To evaluate hippocampal neurogenesis at time points 10 and 30 days, 5-Bromo-2′-deoxyuridine was injected at days 8–10 after GCI. According to our results, 10-day fluoxetine injections decreased neuronal loss and inflammation, improved survival and functional recovery of animals, enhanced neurogenesis, and prevented an early pathological increase in neural stem cell recruitment in the subgranular zone (SGZ) of the hippocampus without reducing the number of mature neurons at day 30 after GCI. In summary, this study suggests that fluoxetine may provide a promising therapy in cerebral ischemia due to its neuroprotective, anti-inflammatory, and neurorestorative effect. PMID:29304004
Dragon's blood dropping pills have protective effects on focal cerebral ischemia rats model.
Xin, Nian; Yang, Fang-Ju; Li, Yan; Li, Yu-Juan; Dai, Rong-Ji; Meng, Wei-Wei; Chen, Yan; Deng, Yu-Lin
2013-12-15
Dragon's blood is a bright red resin obtained from Dracaena cochinchinensis (Lour.) S.C.Chen (Yunnan, China). As a traditional Chinese medicinal herb, it has great traditional medicinal value and is used for wound healing and to stop bleeding. Its main biological activity comes from phenolic compounds. In this study, phenolic compounds were made into dropping pills and their protective effects were examined by establishing focal cerebral ischemia rats model used method of Middle Cerebral Artery Occlusion (MCAO), and by investigating indexes of neurological scores, infarct volume, cerebral index, cerebral water content and oxidation stress. Compared to model group, high, middle and low groups of Dragon's blood dropping pills could improve the neurological function significantly (p<0.01) and reduce cerebral infarct volume of focal cerebral ischemia rats remarkably (p<0.05-0.01). Meanwhile, each group could alleviate cerebral water content and cerebral index (p<0.05-0.01) and regulate oxidative stress of focal cerebral ischemia rats obviously (p<0.05-0.01). Activities of middle group corresponded with that treated with positive control drug. The results obtained here showed that Dragon's blood dropping pills had protective effects on focal cerebral ischemia rats. Copyright © 2013 Elsevier GmbH. All rights reserved.
Koçarslan, Aydemir; Koçarslan, Sezen; Aydin, Mehmet Salih; Gunay, Şamil; Karahan, Mahmut Alp; Taşkın, Abdullah; Üstunel, Murat; Aksoy, Nurten
2016-01-01
To determine whether intraperitoneal silymarin administration has favorable effects on the heart, lungs, kidney, and liver and on oxidative stress in a rat model of supraceliac aorta ischemia/reperfusion injury. Thirty male Wistar albino rats were divided equally into three groups: sham, control, and silymarin. The control and silymarin groups underwent supraceliac aortic occlusion for 45 min, followed by a 60 min period of reperfusion under terminal anesthesia. In the silymarin group, silymarin was administered intraperitoneally during ischemia at a dose of 200 mg/kg. Rats were euthanized using terminal anesthesia, and blood was collected from the inferior vena cava for total antioxidant capacity, total oxidative status, and oxidative stress index measurement. Lungs, heart, liver and kidney tissues were histologically examined. Ischemia/reperfusion injury significantly increased histopathological damage as well as the total oxidative status and oxidative stress index levels in the blood samples. The silymarin group incurred significantly lesser damage to the lungs, liver and kidneys than the control group, while no differences were observed in the myocardium. Furthermore, the silymarin group had significantly lower total oxidative status and oxidative stress index levels than the control group. Intraperitoneal administration of silymarin reduces oxidative stress and protects the liver, kidney, and lungs from acute supraceliac abdominal aorta ischemia/reperfusion injury in the rat model.
Thymoquinone protects end organs from abdominal aorta ischemia/reperfusion injury in a rat model.
Aydin, Mehmet Salih; Kocarslan, Aydemir; Kocarslan, Sezen; Kucuk, Ahmet; Eser, İrfan; Sezen, Hatice; Buyukfirat, Evren; Hazar, Abdussemet
2015-01-01
Previous studies have demonstrated that thymoquinone has protective effects against ischemia reperfusion injury to various organs like lungs, kidneys and liver in different experimental models. We aimed to determine whether thymoquinone has favorable effects on lung, renal, heart tissues and oxidative stress in abdominal aorta ischemia-reperfusion injury. Thirty rats were divided into three groups as sham (n=10), control (n=10) and thymoquinone (TQ) treatment group (n=10). Control and TQ-treatment groups underwent abdominal aorta ischemia for 45 minutes followed by a 120-min period of reperfusion. In the TQ-treatment group, thymoquinone was given 5 minutes. before reperfusion at a dose of 20 mg/kg via an intraperitoneal route. Total antioxidant capacity, total oxidative status (TOS), and oxidative stress index (OSI) in blood serum were measured and lung, kidney, and heart tissue histopathology were evaluated with light microscopy. Total oxidative status and oxidative stress index activity in blood samples were statistically higher in the control group compared to the sham and TQ-treatment groups (P<0.001 for TOS and OSI). Control group injury scores were statistically higher compared to sham and TQ-treatment groups (P<0.001 for all comparisons). Thymoquinone administered intraperitoneally was effective in reducing oxidative stress and histopathologic injury in an acute abdominal aorta ischemia-reperfusion rat model.
The protective effect of dexmedetomidine in a rat ex vivo lung model of ischemia-reperfusion injury.
Zhou, Yan; Zhou, Xinqiao; Zhou, Wenjuan; Pang, Qingfeng; Wang, Zhiping
2018-01-01
To investigate the effect of dexmedetomidine (Dex) in a rat ex vivo lung model of ischemia-reperfusion injury. An IL-2 ex vivo lung perfusion system was used to establish a rat ex vivo lung model of ischemia-reperfusion injury. Drugs were added to the perfusion solution for reperfusion. Lung injury was assessed by histopathological changes, airway pressure (Res), lung compliance (Compl), perfusion flow (Flow), pulmonary venous oxygen partial pressure (PaO2), and lung wet/dry (W/D) weight ratio. The levels of superoxide dismutase (SOD), malondialdehyde (MDA), 78 kDa glucose-regulated protein (GRP78) and CCAAT/enhancer-binding protein homologous protein (CHOP) were measured, respectively. The introduction of Dex attenuated the post-ischemia-reperfusion lung damage and MDA level, improved lung histology, W/D ratio, lung injury scores and SOD activity. Decreased mRNA and protein levels of GRP78 and CHOP compared with the IR group were observed after Dex treatment. The effect of Dex was dosage-dependence and a high dose of Dex (10 nM) was shown to confer the strongest protective effect against lung damage (P<0.05). Yohimbine, an α2 receptor antagonist, significantly reversed the protective effect of Dex in lung tissues (P<0.05). Dex reduced ischemia-reperfusion injury in rat ex vivo lungs.
A survey of program slicing for software engineering
NASA Technical Reports Server (NTRS)
Beck, Jon
1993-01-01
This research concerns program slicing which is used as a tool for program maintainence of software systems. Program slicing decreases the level of effort required to understand and maintain complex software systems. It was first designed as a debugging aid, but it has since been generalized into various tools and extended to include program comprehension, module cohesion estimation, requirements verification, dead code elimination, and maintainence of several software systems, including reverse engineering, parallelization, portability, and reuse component generation. This paper seeks to address and define terminology, theoretical concepts, program representation, different program graphs, developments in static slicing, dynamic slicing, and semantics and mathematical models. Applications for conventional slicing are presented, along with a prognosis of future work in this field.
The 2007 Feinberg lecture: a new road map for neuroprotection.
Donnan, Geoffrey A
2008-01-01
There have now been numerous phase III trials of neuroprotection that have failed to live up to the expectations created by preclinical testing in animal models, the most recent of which was the second pivotal trial of the spin trap agent NXY-059. We have reached a stage at which research in this area should stop altogether or radical new approaches adopted. The purpose of this article is to review how we reached this stage and make recommendations for a new approach to neuroprotection research. The background to neuroprotection research is reviewed and its problems are highlighted based on the research of others and of our own research group. From this, a series of questions are posed that require answers if the field is to progress. A road map for future research is then proposed. The road map involves the following steps for putative neuroprotectants: (1) better proof of efficacy in animal models; (2) in vivo evidence of efficacy in human tissue using cell cultures or brain slices; (3) in vivo studies of their distribution in the normal and ischemic human brain, particularly focusing on the ischemic penumbra; (4) demonstration of efficacy in novel human models of cerebral ischemia; and (5) phase II and III clinical trails with penumbral selection using imaging techniques. The accumulated evidence suggests that neuroprotection failure in clinical trial is due to identifiable preclinical and clinical factors. Neuroprotection research should be pursued but with a very different and more rigorous approach.
Forearm ischemia decreases endothelial colony-forming cell angiogenic potential.
Mauge, Laetitia; Sabatier, Florence; Boutouyrie, Pierre; D'Audigier, Clément; Peyrard, Séverine; Bozec, Erwan; Blanchard, Anne; Azizi, Michel; Dizier, Blandine; Dignat-George, Françoise; Gaussem, Pascale; Smadja, David M
2014-02-01
Circulating endothelial progenitor cells and especially endothelial colony-forming cells (ECFCs) are promising candidate cells for endothelial regenerative medicine of ischemic diseases, but the conditions for an optimal collection from adult blood must be improved. On the basis of a recently reported vascular niche of ECFCs, we hypothesized that a local ischemia could trigger ECFC mobilization from the vascular wall into peripheral blood to optimize their collection for autologous implantation in critical leg ischemia. Because the target population with critical leg ischemia is composed of elderly patients in whom a vascular impairment has been documented, we also analyzed the impact of aging on ECFC mobilization and vascular integrity. After having defined optimized ECFC culture conditions, we studied the effect of forearm ischemia on ECFC numbers and functions in 26 healthy volunteers (13 volunteers ages 20-30-years old versus 13 volunteers ages 60-70 years old). The results show that forearm ischemia induced an efficient local ischemia and a normal endothelial response but did not mobilize ECFCs regardless of the age group. Moreover, we report an alteration of angiogenic properties of ECFCs obtained after forearm ischemia, in vitro as well as in vivo in a hindlimb ischemia murine model. This impaired ECFC angiogenic potential was not associated with a quantitative modification of the circulating endothelial compartment. The procedure of local ischemia, although reulting in a preserved endothelial reactivity, did not mobilize ECFCs but altered their angiogenic potential. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Electrocardiography as a Tool for Validating Myocardial Ischemia–Reperfusion Procedures in Mice
Preda, Mihai B; Burlacu, Alexandrina
2010-01-01
This paper evaluates the modifications induced by ischemia and ischemia–reperfusion in mice after permanent or transient, respectively, ligation of the left coronary artery and establishes a correlation among the extent of ischemia, electrocardiograph features, and infarct size. The left coronary artery was ligated 1 mm distal from the tip of the left auricle. Histologic analysis revealed that 30-min ischemia (n = 9) led to infarction involving 9.7% ± 0.5% of the left ventricle, whereas 1-h ischemia (n = 9) resulted in transmural infarction of 16.1% ± 4.6% of the left ventricle. In contrast, 24-h ischemia (n = 8) and permanent ischemia (n = 8) induced similarly sized infarcts (33% ± 2% and 31.8% ± 0.7%, respectively), suggesting ineffective reperfusion after 24-h ischemia. Electrocardiography revealed that ligation of the left coronary artery led to ST height elevation (204 compared with 14 μV) and QTc prolongation (136 compared with 76 ms). Both parameters rapidly normalized on reperfusion, demonstrating that electrocardiography was important for validating correct ligation and reperfusion. In addition, electrocardiography predicted the severity of the myocardial damage induced by ischemia. Our results show that electrocardiographic changes present after 30-min ischemia were reversed on reperfusion; however, prolonged ischemia induced pathologic electrocardiographic patterns that remained even after reperfusion. The mouse model of myocardial ischemia–reperfusion can be improved by using electrocardiography to validate ligation and reperfusion during surgery and to predict the severity of infarction. PMID:21262130
Modelling of nectarine drying under near infrared - Vacuum conditions.
Alaei, Behnam; Chayjan, Reza Amiri
2015-01-01
Drying of nectarine slices was performed to determine the thermal and physical properties in order to reduce product deterioration due to chemical reactions, facilitate storage and lower transportation costs. Because nectarine slices are sensitive to heat with long drying period, the selection of a suitable drying approach is a challenging task. Infrared-vacuum drying can be used as an appropriate method for susceptible materials with high moisture content such as nectarine slices. Modelling of nectarine slices drying was carried out in a thin layer near infraredvacuum conditions. Drying of the samples was implemented at the absolute pressures of 20, 40 and 60 kPa and drying temperatures of 50, 60 and 70°C. Drying behaviour of nectarine slices, as well as the effect of drying conditions on moisture loss trend, drying rate, effective diffusion coefficient, activation energy, shrinkage, colour and energy consumption of nectarine slices, dried in near infrared-vacuum dryer are discussed in this study. Six mathematical models were used to predict the moisture ratio of the samples in thin layer drying. The Midilli model had supremacy in prediction of nectarine slices drying behaviour. The maximum drying rates of the samples were between 0.014-0.047 gwater/gdry material·min. Effective moisture diffusivity of the samples was estimated in the ranges of 2.46·10-10 to 6.48·10-10 m2/s. Activation energy were computed between 31.28 and 35.23 kJ/mol. Minimum shrinkage (48.4%) and total colour difference (15.1) were achieved at temperature of 50°C and absolute pressure of 20 kPa. Energy consumption of the tests was estimated in the ranges of 0.129 to 0.247 kWh. Effective moisture diffusivity was increased with decrease of vacuum pressure and increase of drying temperature but effect of drying temperature on effective moisture diffusivity of nectarine slices was more than vacuum pressure. Activation energy was decreased with decrease in absolute pressure. Total colour difference and shrinkage of nectarine slices on near infrared-vacuum drying was decreased with decrease of vacuum pressure and decrease of drying temperature.
Cregan, E F; Peeling, J; Corbett, D; Buchan, A M; Saunders, J; Auer, R N; Gao, M; Mccarthy, D J; Eisman, M S; Campbell, T M; Murray, R J; Stagnitto, M L; Palmer, G C
1997-12-01
[(S)-Alpha-phenyl-2-pyridine-ethanamine dihydrochloride] (ARL 15896AR) is a low affinity uncompetitive N-methyl-D-aspartic acid receptor antagonist that was tested in animal models of anoxia and ischemia. Pretreatment of rodents with ARL 15896AR extended survival time during exposure to hypoxia. With the rat four-vessel occlusion model of global ischemia (20 min), oral dosing commencing at reflow, resulted in significant protection of the CA1 hippocampal neurons. ARL 15896AR was, however, ineffective in the rat two-vessel occlusion model and in the gerbil models of forebrain ischemia, the latter due to an inability to attain suitable plasma levels. In the spontaneously hypertensive rat model of middle cerebral artery occlusion (MCAO) (2 hr plus 22 hr reflow), acute dosing with ARL 15896AR (i.p.) beginning from 30 min before or up to 1 hr post-MCAO significantly reduced cortical infarct volume. The ability of ARL 15896AR to influence infarct size, as well as functional correlates was examined in SHR after 90 min of MCAO. T2 weighted magnetic resonance images taken at 2 and 6 days post-MCAO revealed significantly smaller lesion sizes in the group receiving injections with ARL 15896AR beginning 30 min after occlusion. Spontaneously hypertensive rats were subsequently tested (30-42 days post-MCAO) and found to be deficient in skilled use of the forepaws (staircase test). The contralateral forepaw was most severely impaired, however, ARL 15896AR treatment prevented motor impairment in only the ipsilateral forepaw. Histopathological examination of cortical infarct size was unremarkable between treated and control rats. The findings indicate that ARL 15896AR exhibits neuroprotection in global and focal models of ischemia
Haraldsen, Pernille; Metzsch, Carsten; Lindstedt, Sandra; Algotsson, Lars; Ingemansson, Richard
2016-09-01
The intention of the present study was to evaluate possible cardioprotective properties of inhalation anesthesia with sevoflurane. A porcine, open-chest model of right ventricular ischemia was used in 7 pigs receiving inhalation anesthesia with sevoflurane. The model was earlier developed and published by our group, using pigs receiving intravenous anesthesia with propofol. They served as controls. The animals were observed for three hours after the induction of right ventricular ischemia by ligation of the main branches supplying the right ventricular free wall. In the sevoflurane group, the cardiac output recovered 2 hours after the induction of ischemia and intact right ventricular stroke work was observed. In the propofol group, no such recovery occurred. The release of troponin T was significantly lower than in the sevoflurane group. Inhalation anesthesia with sevoflurane seems superior to intravenous anesthesia with propofol in acute right ventricular ischemic dysfunction. © The Author(s) 2016.
2012-10-01
the study. Ill. ~Ut’i.Jt.t.;l I 1:111V1~ Vascular injury, Extremity\\ Ischemia-rcperfusion, Therapeutic reperfusion, Statin \\ Recovery\\ Neuromuscular...Health Sciences, Bethesda, Maryland Keywords: Vascular injury, Extremity, Ischemia-reperfusion, Therapeutic reperfusion, Statin , Recovery...compartment pressure (pɘ.05) which were directly related to degree of muscle degeneration (pɘ.05) and inversely related to nerve recovery (p<.05
Protective Effect of Platelet Rich Plasma on Experimental Ischemia/Reperfusion Injury in Rat Ovary.
Bakacak, Murat; Bostanci, Mehmet Suhha; İnanc, Fatma; Yaylali, Asli; Serin, Salih; Attar, Rukset; Yildirim, Gazi; Yildirim, Ozge Kizilkale
2016-01-01
Ovarian torsion is a common cause of local ischemic damage, reduced follicular activity and infertility. Platelet-rich plasma (PRP) contains growth factors with demonstrated cytoprotective properties; so we evaluated PRP efficacy in a rat ischemia/reperfusion (I/R) model. Sixty adult female Sprague-Dawley albino rats were randomly assigned to 6 groups of 8 animals each: Sham, Ischemia, I/R, Sham + PRP, I + PRP and I/R + PRP; and the remaining 12 used to prepare PRP. Ischemia groups were subjected to bilateral adnexal torsion for 3 h, while I/R and I/R + PRP groups received subsequent detorsion for 3 h. Intraperitoneal PRP was administered 30 min prior to ischemia (Ischemia + PRP) or reperfusion (I/R + PRP). Total oxidant status (TOS), oxidative stress index (OSI) and total ovarian histopathological scores were higher in Ischemia and I/R groups than in the Sham group (p < 0.05). PRP decreased mean TOS, OSI and histopathological scores in I + PRP and I/R + PRP groups compared to the corresponding Ischemia and I/R groups (p < 0.001). There was a strong correlation between total histopathological score and OSI (r = 0.877, p < 0.001). Peritoneal vascular endothelial growth factor was significantly higher in PRP-treated groups than corresponding untreated groups (p < 0.05). PRP is effective for the prevention of ischemia and reperfusion damage in rat ovary. © 2015 S. Karger AG, Basel.
Progression of Diabetic Capillary Occlusion: A Model
Gens, John Scott; Glazier, James A.; Burns, Stephen A.; Gast, Thomas J.
2016-01-01
An explanatory computational model is developed of the contiguous areas of retinal capillary loss which play a large role in diabetic maculapathy and diabetic retinal neovascularization. Strictly random leukocyte mediated capillary occlusion cannot explain the occurrence of large contiguous areas of retinal ischemia. Therefore occlusion of an individual capillary must increase the probability of occlusion of surrounding capillaries. A retinal perifoveal vascular sector as well as a peripheral retinal capillary network and a deleted hexagonal capillary network are modelled using Compucell3D. The perifoveal modelling produces a pattern of spreading capillary loss with associated macular edema. In the peripheral network, spreading ischemia results from the progressive loss of the ladder capillaries which connect peripheral arterioles and venules. System blood flow was elevated in the macular model before a later reduction in flow in cases with progression of capillary occlusions. Simulations differing only in initial vascular network structures but with identical dynamics for oxygen, growth factors and vascular occlusions, replicate key clinical observations of ischemia and macular edema in the posterior pole and ischemia in the retinal periphery. The simulation results also seem consistent with quantitative data on macular blood flow and qualitative data on venous oxygenation. One computational model applied to distinct capillary networks in different retinal regions yielded results comparable to clinical observations in those regions. PMID:27300722
Geometry Processing of Conventionally Produced Mouse Brain Slice Images.
Agarwal, Nitin; Xu, Xiangmin; Gopi, M
2018-04-21
Brain mapping research in most neuroanatomical laboratories relies on conventional processing techniques, which often introduce histological artifacts such as tissue tears and tissue loss. In this paper we present techniques and algorithms for automatic registration and 3D reconstruction of conventionally produced mouse brain slices in a standardized atlas space. This is achieved first by constructing a virtual 3D mouse brain model from annotated slices of Allen Reference Atlas (ARA). Virtual re-slicing of the reconstructed model generates ARA-based slice images corresponding to the microscopic images of histological brain sections. These image pairs are aligned using a geometric approach through contour images. Histological artifacts in the microscopic images are detected and removed using Constrained Delaunay Triangulation before performing global alignment. Finally, non-linear registration is performed by solving Laplace's equation with Dirichlet boundary conditions. Our methods provide significant improvements over previously reported registration techniques for the tested slices in 3D space, especially on slices with significant histological artifacts. Further, as one of the application we count the number of neurons in various anatomical regions using a dataset of 51 microscopic slices from a single mouse brain. To the best of our knowledge the presented work is the first that automatically registers both clean as well as highly damaged high-resolutions histological slices of mouse brain to a 3D annotated reference atlas space. This work represents a significant contribution to this subfield of neuroscience as it provides tools to neuroanatomist for analyzing and processing histological data. Copyright © 2018 Elsevier B.V. All rights reserved.
Detection of MRI artifacts produced by intrinsic heart motion using a saliency model
NASA Astrophysics Data System (ADS)
Salguero, Jennifer; Velasco, Nelson; Romero, Eduardo
2017-11-01
Cardiac Magnetic Resonance (CMR) requires synchronization with the ECG to correct many types of noise. However, the complex heart motion frequently produces displaced slices that have to be either ignored or manually corrected since the ECG correction is useless in this case. This work presents a novel methodology that detects the motion artifacts in CMR using a saliency method that highlights the region where the heart chambers are located. Once the Region of Interest (RoI) is set, its center of gravity is determined for the set of slices composing the volume. The deviation of the gravity center is an estimation of the coherence between the slices and is used to find out slices with certain displacement. Validation was performed with distorted real images where a slice is artificially misaligned with respect to set of slices. The displaced slice is found with a Recall of 84% and F Score of 68%.
Dreixler, John C; Shaikh, Afzhal R; Alexander, Michael; Savoie, Brian; Roth, Steven
2010-12-01
Ischemic pre-conditioning (IPC) provides neuroprotection in the rat retina from the damaging effects of severe ischemia. Recently, neuroprotection by retinal ischemic post-conditioning (Post-C), i.e., transient ischemia after more lengthy, damaging ischemia, was described, but its mechanisms are not yet known. One possible explanation of the effectiveness of Post-C is that it augments intrinsic neuroprotective mechanisms initiated during ischemia. Increasing duration of the damaging ischemic insult may therefore impact the effectiveness of Post-C. IPC, in contrast, sets in motion a series of neuroprotective events prior to the onset of ischemia. Thus, IPC and Post-C may operate by differing mechanisms. Accordingly, we examined the effect of retinal ischemic duration on post-ischemic outcome in vivo in rats after adding Post-C, and the impact of combining pre- and post-conditioning. Recovery after ischemia performed 24 h after IPC, or after Post-C performed 5 min after ischemia ended, was assessed functionally (electroretinography) and histologically at 7 days after ischemia. Durations of ischemia of 45 and 55 min were studied. Since recovery with IPC or Post-C alone, with 55 min of ischemia, did not achieve the same degree of effect (i.e., not complete recovery) exhibited in our previous studies of IPC using a different ischemia model, we also combined IPC and Post-C to test the hypothesis of the possible additive effects of the IPC and Post-C. We found that the recovery after Post-C was enhanced to a greater degree when ischemia was of longer duration. Post-C led to greater post-ischemic recovery compared to IPC. Both IPC and Post-C also attenuated structural damage to the retina. Contrary to our hypothesis, IPC and Post-C did not combine to enhance recovery after ischemia. In earlier studies, IPC attenuated post-ischemic apoptosis. To begin to examine the mechanism of Post-C, we studied its impact on apoptosis following ischemia. We examined apoptosis by determining the percentage of TUNEL-positive cells at 24 h after ischemia. Post-C attenuated apoptosis, but when combined with IPC, TUNEL was similar in the combined group to that of ischemia alone. We also examined the role of the recruitment of an inflammatory response in ischemia and Post-C. We found that inflammatory markers increased by ischemia were not altered by Post-C. We conclude that Post-C effectiveness depends upon the duration of ischemia; Post-C is not additive with IPC, and Post-C functions, in part, by preventing apoptotic damage to the inner retina. Post-C has considerable promise for clinical translation to eye diseases that cause blindness by ischemia. Copyright © 2010 Elsevier Ltd. All rights reserved.
Dutta, Sara; Mincholé, Ana; Quinn, T Alexander; Rodriguez, Blanca
2017-10-01
Acute myocardial ischemia is one of the main causes of sudden cardiac death. The mechanisms have been investigated primarily in experimental and computational studies using different animal species, but human studies remain scarce. In this study, we assess the ability of four human ventricular action potential models (ten Tusscher and Panfilov, 2006; Grandi et al., 2010; Carro et al., 2011; O'Hara et al., 2011) to simulate key electrophysiological consequences of acute myocardial ischemia in single cell and tissue simulations. We specifically focus on evaluating the effect of extracellular potassium concentration and activation of the ATP-sensitive inward-rectifying potassium current on action potential duration, post-repolarization refractoriness, and conduction velocity, as the most critical factors in determining reentry vulnerability during ischemia. Our results show that the Grandi and O'Hara models required modifications to reproduce expected ischemic changes, specifically modifying the intracellular potassium concentration in the Grandi model and the sodium current in the O'Hara model. With these modifications, the four human ventricular cell AP models analyzed in this study reproduce the electrophysiological alterations in repolarization, refractoriness, and conduction velocity caused by acute myocardial ischemia. However, quantitative differences are observed between the models and overall, the ten Tusscher and modified O'Hara models show closest agreement to experimental data. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
A deep learning model integrating FCNNs and CRFs for brain tumor segmentation.
Zhao, Xiaomei; Wu, Yihong; Song, Guidong; Li, Zhenye; Zhang, Yazhuo; Fan, Yong
2018-01-01
Accurate and reliable brain tumor segmentation is a critical component in cancer diagnosis, treatment planning, and treatment outcome evaluation. Build upon successful deep learning techniques, a novel brain tumor segmentation method is developed by integrating fully convolutional neural networks (FCNNs) and Conditional Random Fields (CRFs) in a unified framework to obtain segmentation results with appearance and spatial consistency. We train a deep learning based segmentation model using 2D image patches and image slices in following steps: 1) training FCNNs using image patches; 2) training CRFs as Recurrent Neural Networks (CRF-RNN) using image slices with parameters of FCNNs fixed; and 3) fine-tuning the FCNNs and the CRF-RNN using image slices. Particularly, we train 3 segmentation models using 2D image patches and slices obtained in axial, coronal and sagittal views respectively, and combine them to segment brain tumors using a voting based fusion strategy. Our method could segment brain images slice-by-slice, much faster than those based on image patches. We have evaluated our method based on imaging data provided by the Multimodal Brain Tumor Image Segmentation Challenge (BRATS) 2013, BRATS 2015 and BRATS 2016. The experimental results have demonstrated that our method could build a segmentation model with Flair, T1c, and T2 scans and achieve competitive performance as those built with Flair, T1, T1c, and T2 scans. Copyright © 2017 Elsevier B.V. All rights reserved.
Liu, Chuan-Bin; Huang, He; Sun, Ping; Ma, Shi-Ze; Liu, An-Heng; Xue, Jian; Fu, Jin-Hui; Liang, Yu-Qian; Liu, Bing; Wu, Dong-Ying
2016-01-01
Stem cell therapy has emerged as a new strategy for treatment of ischemic heart disease. Although umbilical cord-derived mesenchymal stromal cells (UC-MSCs) have been used preferentially in the acute ischemia model, data for the chronic ischemia model are lacking. In this study, we investigated the effect of UC-MSCs originated from Wharton’s jelly in the treatment of chronic myocardial ischemia in a porcine model induced by ameroid constrictor. Four weeks after ameroid constrictor placement, the surviving animals were divided randomly into two groups to undergo saline injection (n = 6) or UC-MSC transplantation (n = 6) through the left main coronary artery. Two additional intravenous administrations of UC-MSCs were performed in the following 2 weeks to enhance therapeutic effect. Cardiac function and perfusion were examined just before and at 4 weeks after intracoronary transplantation. The results showed that pigs with UC-MSC transplantation exhibited significantly greater left ventricular ejection fraction compared with control animals (61.3% ± 1.3% vs. 50.3% ± 2.0%, p < .05). The systolic thickening fraction in the infarcted left ventricular wall was also improved (41.2% ± 3.3% vs. 46.2% ± 2.3%, p < .01). Additionally, the administration of UC-MSCs promoted collateral development and myocardial perfusion. The indices of fibrosis and apoptosis were also significantly reduced. Immunofluorescence staining showed clusters of CM-DiI-labeled cells in the border zone, some of which expressed von Willebrand factor. These results suggest that UC-MSC treatment improves left ventricular function, perfusion, and remodeling in a porcine model with chronic myocardial ischemia. Significance Ischemic heart disease is the leading cause of death worldwide. Many patients with chronic myocardial ischemia are not suitable for surgery and have no effective drug treatment; they are called “no-option” patients. This study finds that umbilical cord-derived mesenchymal stromal cells transplanted by intracoronary delivery combined with two intravenous administrations was safe and could significantly improve left ventricular function, perfusion, and remodeling in a large-animal model of chronic myocardial ischemia, which provides a new choice for the no-option patients. In addition, this study used clinical-grade mesenchymal stem cells with delivery and assessment methods commonly used clinically to facilitate further clinical transformation. PMID:27334487
Liu, Chuan-Bin; Huang, He; Sun, Ping; Ma, Shi-Ze; Liu, An-Heng; Xue, Jian; Fu, Jin-Hui; Liang, Yu-Qian; Liu, Bing; Wu, Dong-Ying; Lü, Shuang-Hong; Zhang, Xiao-Zhong
2016-08-01
: Stem cell therapy has emerged as a new strategy for treatment of ischemic heart disease. Although umbilical cord-derived mesenchymal stromal cells (UC-MSCs) have been used preferentially in the acute ischemia model, data for the chronic ischemia model are lacking. In this study, we investigated the effect of UC-MSCs originated from Wharton's jelly in the treatment of chronic myocardial ischemia in a porcine model induced by ameroid constrictor. Four weeks after ameroid constrictor placement, the surviving animals were divided randomly into two groups to undergo saline injection (n = 6) or UC-MSC transplantation (n = 6) through the left main coronary artery. Two additional intravenous administrations of UC-MSCs were performed in the following 2 weeks to enhance therapeutic effect. Cardiac function and perfusion were examined just before and at 4 weeks after intracoronary transplantation. The results showed that pigs with UC-MSC transplantation exhibited significantly greater left ventricular ejection fraction compared with control animals (61.3% ± 1.3% vs. 50.3% ± 2.0%, p < .05). The systolic thickening fraction in the infarcted left ventricular wall was also improved (41.2% ± 3.3% vs. 46.2% ± 2.3%, p < .01). Additionally, the administration of UC-MSCs promoted collateral development and myocardial perfusion. The indices of fibrosis and apoptosis were also significantly reduced. Immunofluorescence staining showed clusters of CM-DiI-labeled cells in the border zone, some of which expressed von Willebrand factor. These results suggest that UC-MSC treatment improves left ventricular function, perfusion, and remodeling in a porcine model with chronic myocardial ischemia. Ischemic heart disease is the leading cause of death worldwide. Many patients with chronic myocardial ischemia are not suitable for surgery and have no effective drug treatment; they are called "no-option" patients. This study finds that umbilical cord-derived mesenchymal stromal cells transplanted by intracoronary delivery combined with two intravenous administrations was safe and could significantly improve left ventricular function, perfusion, and remodeling in a large-animal model of chronic myocardial ischemia, which provides a new choice for the no-option patients. In addition, this study used clinical-grade mesenchymal stem cells with delivery and assessment methods commonly used clinically to facilitate further clinical transformation. ©AlphaMed Press.
Silent ischemia: silent after all?
D'Antono, Bianca; Dupuis, Gilles; Arsenault, André; Burelle, Denis
2008-04-01
To examine the association of nonpain symptoms in men and women with exercise-related silent ischemia, as well as the independence of these findings from other clinical factors. A prospective study of 482 women and 425 men (mean age 58 years) undergoing exercise stress testing with myocardial perfusion imaging. Analyses were performed on 60 women and 155 men with no angina but medical perfusion imaging evidence of ischemia during exercise. The presence of various non-pain-related symptoms. Ischemia is indicated by myocardial perfusion defects on exercise stress testing with single photon emission computed tomography. Women reported more nonangina symptoms than men (P<0.05). They experienced fatigue, hot flushes, tense muscles, shortness of breath and headaches more frequently (P<0.05). Symptoms relating to muscle tension and diaphoresis were associated with ischemia after controlling for pertinent clinical covariates. However, the direction of association differed according to sex and history of coronary artery disease events or procedures. Sensitivity of the detection models showed modest improvements with the addition of these symptoms. While patients who experience silent ischemia experience a number of nonpain symptoms, those symptoms may not be sufficiently specific to ischemia, nor sensitive in detecting ischemia, to be of particular help to physicians in the absence of other clinical information.
Damasceno-Ferreira, José Aurelino; Bechara, Gustavo Ruschi; Costa, Waldemar Silva; Pereira-Sampaio, Marco Aurélio; Sampaio, Francisco José Barcellos; Souza, Diogo Benchimol De
2017-05-01
To investigate the glomerular number after different warm ischemia times. Thirty two pigs were assigned into four groups. Three groups (G10, G20, and G30) were treated with 10, 20, and 30 minutes of left renal warm ischemia. The sham group underwent the same surgery without renal ischemia. The animals were euthanized after 3 weeks, and the kidneys were collected. Right kidneys were used as controls. The kidney weight, volume, cortical-medullar ratio, glomerular volumetric density, volume-weighted mean glomerular volume, and the total number of glomeruli per kidney were obtained. Serum creatinine levels were assessed pre and postoperatively. Serum creatinine levels did not differ among the groups. All parameters were similar for the sham, G10, and G20 groups upon comparison of the right and left organs. The G30 group pigs' left kidneys had lower weight, volume, and cortical-medullar ratio and 24.6% less glomeruli compared to the right kidney. A negative correlation was found between warm ischemia time and glomerular number. About one quarter of glomeruli was lost after 30 minutes of renal warm ischemia. No glomeruli loss was detected before 20 minutes of warm ischemia. However, progressive glomerular loss was associated with increasing warm ischemia time.
Masum, M A; Pickering, M R; Lambert, A J; Scarvell, J M; Smith, P N
2017-09-06
In this paper, a novel multi-slice ultrasound (US) image calibration of an intelligent skin-marker used for soft tissue artefact compensation is proposed to align and orient image slices in an exact H-shaped pattern. Multi-slice calibration is complex, however, in the proposed method, a phantom based visual alignment followed by transform parameters estimation greatly reduces the complexity and provides sufficient accuracy. In this approach, the Hough Transform (HT) is used to further enhance the image features which originate from the image feature enhancing elements integrated into the physical phantom model, thus reducing feature detection uncertainty. In this framework, slice by slice image alignment and calibration are carried out and this provides manual ease and convenience. Copyright © 2016 Elsevier Ltd. All rights reserved.
TIA model is attainable in Wistar rats by intraluminal occlusion of the MCA for 10min or shorter.
Durukan Tolvanen, A; Tatlisumak, E; Pedrono, E; Abo-Ramadan, U; Tatlisumak, T
2017-05-15
Transient ischemic attack (TIA) has received only little attention in the experimental research field. Recently, we introduced a TIA model for mice, and here we set similar principles for simulating this human condition in Wistar rats. In the model: 1) transient nature of the event is ensured, and 2) 24h after the event animals are free from any sensorimotor deficit and from any detectable lesion by magnetic resonance imaging (MRI). Animals experienced varying durations of ischemia (5, 10, 12.5, 15, 25, and 30min, n=6-8pergroup) by intraluminal middle cerebral artery occlusion (MCAO). Ischemia severity and reperfusion rates were controlled by cerebral blood flow measurements. Sensorimotor neurological evaluations and MRI at 24h differentiated between TIA and ischemic stroke. Hematoxylin and eosin staining and apoptotic cell counts revealed pathological correlates of the event. We found that already 12.5min of ischemia was long enough to induce ischemic stroke in Wistar rats. Ten min or shorter durations induced neither gross neurological deficits nor infarcts visible on MRI, but histologically caused selective neuronal necrosis. A separate group of animals with 10min of ischemia followed up to 1week after reperfusion remained free of infarction and any MRI signal change. Thus, 10min or shorter focal cerebral ischemia induced by intraluminal MCAO in Wistar rats provides a clinically relevant TIA the rat. This model is useful for studying molecular correlates of TIA. Copyright © 2017 Elsevier B.V. All rights reserved.
Teste, Iliana Sosa; Tamos, Yuneidys Mengana; Cruz, Yamila Rodríguez; Cernada, Adriana Muñoz; Rodríguez, Janette Cruz; Martínez, Nelvis Subirós; Antich, Rosa Maria Coro; González-Quevedo, Alina; Rodríguez, Julio Cesar García
2012-01-01
Cerebrovascular disease is the third leading cause of death and the leading cause of disability in Cuba and in several developed countries. A possible neuroprotective agent is the rHu-EPO, whose effects have been demonstrated in models of brain ischemia. The Neuro-EPO is a derivative of the rHu-EPO that avoids the stimulation of erythropoiesis. The aim of this study was to determine the Neuro-EPO delivery into the central nervous system (CNS) to exert a neuroprotective effect in cerebral ischemia model of the Mongolian gerbil. The Neuro-EPO in a rate of 249.4 UI every 8 hours for 4 days showed 25% higher viability efficacy (P > 0.01), improving neurological score and behavior of the spontaneous exploratory activity, the preservation of CA3 areas of the hippocampus, the cortex, and thalamic nuclei in the focal ischemia model of the Mongolian gerbil. In summary, this study, the average dose-used Neuro-EPO (249.4 UI/10 μL/every 8 hours for 4 days), proved to be valid indicators of viability, neurological status, and spontaneous exploratory activity, being significantly lower than that reported for the systemically use of the rHu-EPO as a neuroprotectant. Indeed, up to 12 h after brain ischemia is very positive Neuro-EPO administration by the nasal route as a candidate for neuroprotection. PMID:22701364
Teste, Iliana Sosa; Tamos, Yuneidys Mengana; Cruz, Yamila Rodríguez; Cernada, Adriana Muñoz; Rodríguez, Janette Cruz; Martínez, Nelvis Subirós; Antich, Rosa Maria Coro; González-Quevedo, Alina; Rodríguez, Julio Cesar García
2012-01-01
Cerebrovascular disease is the third leading cause of death and the leading cause of disability in Cuba and in several developed countries. A possible neuroprotective agent is the rHu-EPO, whose effects have been demonstrated in models of brain ischemia. The Neuro-EPO is a derivative of the rHu-EPO that avoids the stimulation of erythropoiesis. The aim of this study was to determine the Neuro-EPO delivery into the central nervous system (CNS) to exert a neuroprotective effect in cerebral ischemia model of the Mongolian gerbil. The Neuro-EPO in a rate of 249.4 UI every 8 hours for 4 days showed 25% higher viability efficacy (P > 0.01), improving neurological score and behavior of the spontaneous exploratory activity, the preservation of CA3 areas of the hippocampus, the cortex, and thalamic nuclei in the focal ischemia model of the Mongolian gerbil. In summary, this study, the average dose-used Neuro-EPO (249.4 UI/10 μL/every 8 hours for 4 days), proved to be valid indicators of viability, neurological status, and spontaneous exploratory activity, being significantly lower than that reported for the systemically use of the rHu-EPO as a neuroprotectant. Indeed, up to 12 h after brain ischemia is very positive Neuro-EPO administration by the nasal route as a candidate for neuroprotection.
Establishment and Characterization of a Tumor Stem Cell-Based Glioblastoma Invasion Model.
Jensen, Stine Skov; Meyer, Morten; Petterson, Stine Asferg; Halle, Bo; Rosager, Ann Mari; Aaberg-Jessen, Charlotte; Thomassen, Mads; Burton, Mark; Kruse, Torben A; Kristensen, Bjarne Winther
2016-01-01
Glioblastoma is the most frequent and malignant brain tumor. Recurrence is inevitable and most likely connected to tumor invasion and presence of therapy resistant stem-like tumor cells. The aim was therefore to establish and characterize a three-dimensional in vivo-like in vitro model taking invasion and tumor stemness into account. Glioblastoma stem cell-like containing spheroid (GSS) cultures derived from three different patients were established and characterized. The spheroids were implanted in vitro into rat brain slice cultures grown in stem cell medium and in vivo into brains of immuno-compromised mice. Invasion was followed in the slice cultures by confocal time-lapse microscopy. Using immunohistochemistry, we compared tumor cell invasion as well as expression of proliferation and stem cell markers between the models. We observed a pronounced invasion into brain slice cultures both by confocal time-lapse microscopy and immunohistochemistry. This invasion closely resembled the invasion in vivo. The Ki-67 proliferation indexes in spheroids implanted into brain slices were lower than in free-floating spheroids. The expression of stem cell markers varied between free-floating spheroids, spheroids implanted into brain slices and tumors in vivo. The established invasion model kept in stem cell medium closely mimics tumor cell invasion into the brain in vivo preserving also to some extent the expression of stem cell markers. The model is feasible and robust and we suggest the model as an in vivo-like model with a great potential in glioma studies and drug discovery.
Sun, Baozhu; Chen, Lin; Wei, Xinbing; Xiang, Yanxiao; Liu, Xiaoqian; Zhang, Xiumei
2011-06-17
Apoptosis is one of the major mechanisms of cell death during cerebral ischemia and reperfusion injury. Flurbiprofen has been shown to reduce cerebral ischemia/reperfusion injury in both focal and global cerebral ischemia models, but the mechanism remains unclear. This study aimed to investigate the potential association between the neuroprotective effect of flurbiprofen and the apoptosis inhibiting signaling pathways, in particularly the Akt/GSK-3β pathway. A focal cerebral ischemia rat model was subjected to middle cerebral artery occlusion (MCAO) for 120 min and then treated with flurbiprofen at the onset of reperfusion. The infarct volume and the neurological deficit scores were evaluated at 24h after reperfusion. Cell apoptosis, apoptosis-related proteins and the levels of p-Akt and p-GSK-3β in ischemic penumbra were measured using TUNEL and western blot. The results showed that administration of flurbiprofen at the doses of 5 and 10mg/kg significantly attenuated brain ischemia/reperfusion injury, as shown by a reduction in the infarct volume, neurological deficit scores and cell apoptosis. Moreover, flurbiprofen not only inhibited the expression of Bax protein and p-GSK-3β, but also increased the expression of Bcl-2 protein, the ratio of Bcl-2/Bax as well as the P-Akt level. Taken together, these results suggest that flurbiprofen protects the brain from ischemia/reperfusion injury by reducing apoptosis and this neuroprotective effect may be partly due to the activation of Akt/GSK-3β signaling pathway. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Golan, Hava; Huleihel, Mahmoud
2006-01-01
Hypoxia (H) and hypoxia-ischemia (HI) are major causes of foetal brain damage with long-lasting behavioral implications. The effect of hypoxia has been widely studied in human and a variety of animal models. In the present review, we summarize the latest studies testing the behavioral outcomes following prenatal hypoxia/hypoxia-ischemia in rodent…
Nicotine and estrogen synergistically exacerbate cerebral ischemic injury.
Raval, A P; Hirsch, N; Dave, K R; Yavagal, D R; Bramlett, H; Saul, I
2011-05-05
The greater incidence of myocardial infarction, cardiac arrest, and ischemic stroke among women who smoke and use oral contraception (OC) compared to women who do not smoke and who do or do not use OC may be due in part to how nicotine influences endocrine function in women. For example, we recently demonstrated that chronic exposure to nicotine, the addictive agent in tobacco smoke responsible for the elevated risk of cardiac arrest, abolishes the endogenous or exogenous 17β-estradiol-conferred protection of the hippocampus against global cerebral ischemia (a potential outcome of cardiac arrest) in naive or ovariectomized female rats. In the current study we examined the hypotheses that (1) a synergistic deleterious effect of nicotine plus oral contraceptives exacerbates post-ischemic hippocampal damage in female rats, and (2) nicotine directly inhibits estrogen-mediated intracellular signaling in the hippocampus. To test first hypothesis and to simulate smoking behavior-induced nicotine levels in the human body, we implanted osmotic pumps containing nicotine in the female rats for 16 days. Furthermore, we mimicked the use of oral contraceptives in females by administering oral contraceptives orally to the rat. Rats exposed to either nicotine alone or in combination with oral contraceptives were subjected to an episode of cerebral ischemia and the resultant brain damage was quantified. These results showed for the first time that nicotine with oral contraceptives did indeed exacerbate post-ischemic CA1 damage as compared to nicotine alone in naive female rats. In ex vivo hippocampal slice cultures, we found that nicotine alone or with 17β-estradiol directly hinders estrogen receptors-mediated phosphorylation of cyclic-AMP element binding protein, a process required for neuronal survival and also exacerbates ischemic damage. Thus, nicotine can affect the outcome of cerebral ischemia by influencing brain endocrine function directly rather than through indirect systemic effects. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
Ischemia-Reperfusion Injury and Volatile Anesthetics
Erturk, Engin
2014-01-01
Ischemia-reperfusion injury (IRI) is induced as a result of reentry of the blood and oxygen to ischemic tissue. Antioxidant and some other drugs have protective effect on IRI. In many surgeries and clinical conditions IRI is counteract inevitable. Some anesthetic agents may have a protective role in this procedure. It is known that inhalational anesthetics possess protective effects against IRI. In this review the mechanism of preventive effects of volatile anesthetics and different ischemia-reperfusion models are discussed. PMID:24524079
Otsuka, Tomohiro; Shimazawa, Masamitsu; Inoue, Yuki; Nakano, Yusuke; Ojino, Kazuki; Izawa, Hiroshi; Tsuruma, Kazuhiro; Ishibashi, Takashi; Hara, Hideaki
2016-11-01
Astaxanthin exhibits various pharmacological activities, including anti-oxidative, anti-tumor, and anti-inflammatory effects, and is thought to exert a neuroprotective effect via these mechanisms. The purpose of this study was to investigate the protective effects of astaxanthin on neuronal cell death using a retinal ischemia/reperfusion model. In vivo, retinal ischemia was induced by 5 h unilateral ligation of the pterygopalatine artery (PPA) and the external carotid artery (ECA) in ddY mice. Astaxanthin (100 mg/kg) was administered orally 1 h before induction of ischemia, immediately after reperfusion, at 6 or 12 h after reperfusion, and twice daily for the following 4 days. Histological analysis and an electroretinogram (ERG) were performed 5 days after ischemia/reperfusion. In vitro, cell death was induced in the RGC-5 (retinal precursor cells) by oxygen-glucose deprivation (OGD), and the rates of cell death and production of intracellular reactive oxygen species (ROS) were measured using nuclear staining and a ROS reactive reagent, CM-H 2 DCFDA. Histological studies revealed that astaxanthin significantly reduced retinal ischemic damage and ERG reduction. In in vitro studies, astaxanthin inhibited cell death and ROS production in a concentration-dependent manner. Collectively, these results indicate that astaxanthin inhibits ischemia-induced retinal cell death via its antioxidant effect. Hence, astaxanthin might be effective in treating retinal ischemic pathologies.
2010-01-01
Background Ischemic hypoxic brain injury often causes irreversible brain damage. The lack of effective and widely applicable pharmacological treatments for ischemic stroke patients may explain a growing interest in traditional medicines. From the point of view of "self-medication" or "preventive medicine," Cordyceps sinensis was used in the prevention of cerebral ischemia in this paper. Methods The right middle cerebral artery occlusion model was used in the study. The effects of Cordyceps sinensis (Caterpillar fungus) extract on mortality rate, neurobehavior, grip strength, lactate dehydrogenase, glutathione content, Lipid Peroxidation, glutathione peroxidase activity, glutathione reductase activity, catalase activity, Na+K+ATPase activity and glutathione S transferase activity in a rat model were studied respectively. Results Cordyceps sinensis extract significantly improved the outcome in rats after cerebral ischemia and reperfusion in terms of neurobehavioral function. At the same time, supplementation of Cordyceps sinensis extract significantly boosted the defense mechanism against cerebral ischemia by increasing antioxidants activity related to lesion pathogenesis. Restoration of the antioxidant homeostasis in the brain after reperfusion may have helped the brain recover from ischemic injury. Conclusions These experimental results suggest that complement Cordyceps sinensis extract is protective after cerebral ischemia in specific way. The administration of Cordyceps sinensis extract significantly reduced focal cerebral ischemic/reperfusion injury. The defense mechanism against cerebral ischemia was by increasing antioxidants activity related to lesion pathogenesis. PMID:20955613
Liu, Zhenquan; Li, Pengtao; Zhao, Dan; Tang, Huiling; Guo, Jianyou
2010-10-19
Ischemic hypoxic brain injury often causes irreversible brain damage. The lack of effective and widely applicable pharmacological treatments for ischemic stroke patients may explain a growing interest in traditional medicines. From the point of view of "self-medication" or "preventive medicine," Cordyceps sinensis was used in the prevention of cerebral ischemia in this paper. The right middle cerebral artery occlusion model was used in the study. The effects of Cordyceps sinensis (Caterpillar fungus) extract on mortality rate, neurobehavior, grip strength, lactate dehydrogenase, glutathione content, Lipid Peroxidation, glutathione peroxidase activity, glutathione reductase activity, catalase activity, Na+K+ATPase activity and glutathione S transferase activity in a rat model were studied respectively. Cordyceps sinensis extract significantly improved the outcome in rats after cerebral ischemia and reperfusion in terms of neurobehavioral function. At the same time, supplementation of Cordyceps sinensis extract significantly boosted the defense mechanism against cerebral ischemia by increasing antioxidants activity related to lesion pathogenesis. Restoration of the antioxidant homeostasis in the brain after reperfusion may have helped the brain recover from ischemic injury. These experimental results suggest that complement Cordyceps sinensis extract is protective after cerebral ischemia in specific way. The administration of Cordyceps sinensis extract significantly reduced focal cerebral ischemic/reperfusion injury. The defense mechanism against cerebral ischemia was by increasing antioxidants activity related to lesion pathogenesis.
Imaging of acute mesenteric ischemia using multidetector CT and CT angiography in a porcine model.
Rosow, David E; Sahani, Dushyant; Strobel, Oliver; Kalva, Sanjeeva; Mino-Kenudson, Mari; Holalkere, Nagaraj S; Alsfasser, Guido; Saini, Sanjay; Lee, Susanna I; Mueller, Peter R; Fernández-del Castillo, Carlos; Warshaw, Andrew L; Thayer, Sarah P
2005-12-01
Acute mesenteric ischemia, a frequently lethal disease, requires prompt diagnosis and intervention for favorable clinical outcomes. This goal remains elusive due, in part, to lack of a noninvasive and accurate imaging study. Traditional angiography is the diagnostic gold standard but is invasive and costly. Computed tomography (CT) is readily available and noninvasive but has shown variable success in diagnosing this disease. The faster scanning time of multidetector row CT (M.D.CT) greatly facilitates the use of CT angiography (CTA) in the clinical setting. We sought to determine whether M.D.CT-CTA could accurately demonstrate vascular anatomy and capture the earliest stages of mesenteric ischemia in a porcine model. Pigs underwent embolization of branches of the superior mesenteric artery, then imaging by M.D.CT-CTA with three-dimensional reconstruction protocols. After scanning, diseased bowel segments were surgically resected and pathologically examined. Multidetector row CT and CT angiography reliably defined normal and occluded mesenteric vessels in the pig. It detected early changes of ischemia including poor arterial enhancement and venous dilatation, which were seen in all ischemic animals. The radiographic findings--compared with pathologic diagnoses-- predicted ischemia, with a positive predictive value of 92%. These results indicate that M.D.CT-CTA holds great promise for the early detection necessary for successful treatment of acute mesenteric ischemia.
Burton, Brett M; Aras, Kedar K; Good, Wilson W; Tate, Jess D; Zenger, Brian; MacLeod, Rob S
2018-05-21
The biophysical basis for electrocardiographic evaluation of myocardial ischemia stems from the notion that ischemic tissues develop, with relative uniformity, along the endocardial aspects of the heart. These injured regions of subendocardial tissue give rise to intramural currents that lead to ST segment deflections within electrocardiogram (ECG) recordings. The concept of subendocardial ischemic regions is often used in clinical practice, providing a simple and intuitive description of ischemic injury; however, such a model grossly oversimplifies the presentation of ischemic disease-inadvertently leading to errors in ECG-based diagnoses. Furthermore, recent experimental studies have brought into question the subendocardial ischemia paradigm suggesting instead a more distributed pattern of tissue injury. These findings come from experiments and so have both the impact and the limitations of measurements from living organisms. Computer models have often been employed to overcome the constraints of experimental approaches and have a robust history in cardiac simulation. To this end, we have developed a computational simulation framework aimed at elucidating the effects of ischemia on measurable cardiac potentials. To validate our framework, we simulated, visualized, and analyzed 226 experimentally derived acute myocardial ischemic events. Simulation outcomes agreed both qualitatively (feature comparison) and quantitatively (correlation, average error, and significance) with experimentally obtained epicardial measurements, particularly under conditions of elevated ischemic stress. Our simulation framework introduces a novel approach to incorporating subject-specific, geometric models and experimental results that are highly resolved in space and time into computational models. We propose this framework as a means to advance the understanding of the underlying mechanisms of ischemic disease while simultaneously putting in place the computational infrastructure necessary to study and improve ischemia models aimed at reducing diagnostic errors in the clinic.
Tian, Xiao-xi; Wang, Bo-liang; Cao, Yi-zhan; Zhong, Yue-xia; Tu, Yan-yang; Xiao, Jian-bo; He, Qian-feng; Zhai, Li-na
2015-03-01
To observe the protective effects of safflor Injection (SI) and extract of Ginkgo biloba (EGB) on lung ischemia-reperfusion injury (LIRI) and investigate its mechanism. In vivo rabbit model of LIRI was reconstructed. Forty rabbits were randomly and equally divided into four groups: sham-operation group (sham group), ischemia-reperfusion group (model group), ischemia-reperfusion plus SI group (safflor group) and ischemia-reperfusion plus EGB injection group (EGB group). Malondialdehyde (MDA) content, superoxide dismutase (SOD) and xanthine oxidase (XO) activity in serum were measured. The wet/dry weight ratio (W/D) of the lung tissue and activity of myeloperoxidase (MPO) were also tested. Ultrastructure change of the lung tissue was observed by the electron microscope. The expression of intercellular adhesion molecule-1 (ICAM-1) was measured by immunohistochemistry (IHC). In the model group, MDA and XO increased and SOD decreased in serum compared with the sham group (P<0.01). The values of W/D, MPO and ICAM-1 of the model group were higher than those of the sham group (P<0.01), but those of the safflor group and EGB group were significantly lower than those of the model group (P<0.01). The IHC demonstrated that ICAM-1 expression in lung tissue of the model group was significantly higher than those of the safflor group (P<0.01). Compared with safflor group, in the EGB group MDA, XO, MPO decreased, SOD and ICAM-1 expression increased (P<0.05), but the change of W/D was not statistically significant (P>0.05). SI and EGB may attenuate LIRI through antioxidation, inhibition of neutrophil aggregation and down-regulation of ICAM-1 expression. But EGB had more effect on the antioxidation, while SI did better on regulating ICAM-1 expression.
Progesterone Treatment in Two Rat Models of Ocular Ischemia
Allen, Rachael S.; Olsen, Timothy W.; Sayeed, Iqbal; Cale, Heather A.; Morrison, Katherine C.; Oumarbaeva, Yuliya; Lucaciu, Irina; Boatright, Jeffrey H.; Pardue, Machelle T.; Stein, Donald G.
2015-01-01
Purpose. To determine whether the neurosteroid progesterone, shown to have protective effects in animal models of traumatic brain injury, stroke, and spinal cord injury, is also protective in ocular ischemia animal models. Methods. Progesterone treatment was tested in two ocular ischemia models in rats: a rodent anterior ischemic optic neuropathy (rAION) model, which induces permanent monocular optic nerve stroke, and the middle cerebral artery occlusion (MCAO) model, which causes transient ischemia in both the retina and brain due to an intraluminal filament that blocks the ophthalmic and middle cerebral arteries. Visual function and retinal histology were assessed to determine whether progesterone attenuated retinal injury in these models. Additionally, behavioral testing and 2% 2,3,5-triphenyltetrazolium chloride (TTC) staining in brains were used to compare progesterone's neuroprotective effects in both retina and brain using the MCAO model. Results. Progesterone treatment showed no effect on visual evoked potential (VEP) reduction and retinal ganglion cell loss in the permanent rAION model. In the transient MCAO model, progesterone treatment reduced (1) electroretinogram (ERG) deficits, (2) MCAO-induced upregulation of glutamine synthetase (GS) and glial fibrillary acidic protein (GFAP), and (3) retinal ganglion cell loss. As expected, progesterone treatment also had significant protective effects in behavioral tests and a reduction in infarct size in the brain. Conclusions. Progesterone treatment showed protective effects in the retina following MCAO but not rAION injury, which may result from mechanistic differences with injury type and the therapeutic action of progesterone. PMID:26024074
Dictionary-Driven Ischemia Detection From Cardiac Phase-Resolved Myocardial BOLD MRI at Rest.
Bevilacqua, Marco; Dharmakumar, Rohan; Tsaftaris, Sotirios A
2016-01-01
Cardiac Phase-resolved Blood-Oxygen-Level Dependent (CP-BOLD) MRI provides a unique opportunity to image an ongoing ischemia at rest. However, it requires post-processing to evaluate the extent of ischemia. To address this, here we propose an unsupervised ischemia detection (UID) method which relies on the inherent spatio-temporal correlation between oxygenation and wall motion to formalize a joint learning and detection problem based on dictionary decomposition. Considering input data of a single subject, it treats ischemia as an anomaly and iteratively learns dictionaries to represent only normal observations (corresponding to myocardial territories remote to ischemia). Anomaly detection is based on a modified version of One-class Support Vector Machines (OCSVM) to regulate directly the margins by incorporating the dictionary-based representation errors. A measure of ischemic extent (IE) is estimated, reflecting the relative portion of the myocardium affected by ischemia. For visualization purposes an ischemia likelihood map is created by estimating posterior probabilities from the OCSVM outputs, thus obtaining how likely the classification is correct. UID is evaluated on synthetic data and in a 2D CP-BOLD data set from a canine experimental model emulating acute coronary syndromes. Comparing early ischemic territories identified with UID against infarct territories (after several hours of ischemia), we find that IE, as measured by UID, is highly correlated (Pearson's r=0.84) with respect to infarct size. When advances in automated registration and segmentation of CP-BOLD images and full coverage 3D acquisitions become available, we hope that this method can enable pixel-level assessment of ischemia with this truly non-invasive imaging technique.
Slicing Method for curved façade and window extraction from point clouds
NASA Astrophysics Data System (ADS)
Iman Zolanvari, S. M.; Laefer, Debra F.
2016-09-01
Laser scanning technology is a fast and reliable method to survey structures. However, the automatic conversion of such data into solid models for computation remains a major challenge, especially where non-rectilinear features are present. Since, openings and the overall dimensions of the buildings are the most critical elements in computational models for structural analysis, this article introduces the Slicing Method as a new, computationally-efficient method for extracting overall façade and window boundary points for reconstructing a façade into a geometry compatible for computational modelling. After finding a principal plane, the technique slices a façade into limited portions, with each slice representing a unique, imaginary section passing through a building. This is done along a façade's principal axes to segregate window and door openings from structural portions of the load-bearing masonry walls. The method detects each opening area's boundaries, as well as the overall boundary of the façade, in part, by using a one-dimensional projection to accelerate processing. Slices were optimised as 14.3 slices per vertical metre of building and 25 slices per horizontal metre of building, irrespective of building configuration or complexity. The proposed procedure was validated by its application to three highly decorative, historic brick buildings. Accuracy in excess of 93% was achieved with no manual intervention on highly complex buildings and nearly 100% on simple ones. Furthermore, computational times were less than 3 sec for data sets up to 2.6 million points, while similar existing approaches required more than 16 hr for such datasets.
Preparation of organotypic brain slice cultures for the study of Alzheimer’s disease
Croft, Cara L.; Noble, Wendy
2018-01-01
Alzheimer's disease, the most common cause of dementia, is a progressive neurodegenerative disorder characterised by amyloid-beta deposits in extracellular plaques, intracellular neurofibrillary tangles of aggregated tau, synaptic dysfunction and neuronal death. There are no cures for AD and current medications only alleviate some disease symptoms. Transgenic rodent models to study Alzheimer’s mimic features of human disease such as age-dependent accumulation of abnormal beta-amyloid and tau, synaptic dysfunction, cognitive deficits and neurodegeneration. These models have proven vital for improving our understanding of the molecular mechanisms underlying AD and for identifying promising therapeutic approaches. However, modelling neurodegenerative disease in animals commonly involves aging animals until they develop harmful phenotypes, often coupled with invasive procedures. In vivo studies are also resource, labour, time and cost intensive. We have developed a novel organotypic brain slice culture model to study Alzheimer’ disease which brings the potential of substantially reducing the number of rodents used in dementia research from an estimated 20,000 per year. We obtain 36 brain slices from each mouse pup, considerably reducing the numbers of animals required to investigate multiple stages of disease. This tractable model also allows the opportunity to modulate multiple pathways in tissues from a single animal. We believe that this model will most benefit dementia researchers in the academic and drug discovery sectors. We validated the slice culture model against aged mice, showing that the molecular phenotype closely mimics that displayed in vivo, albeit in an accelerated timescale. We showed beneficial outcomes following treatment of slices with agents previously shown to have therapeutic effects in vivo, and we also identified new mechanisms of action of other compounds. Thus, organotypic brain slice cultures from transgenic mouse models expressing Alzheimer’s disease-related genes may provide a valid and sensitive replacement for in vivo studies that do not involve behavioural analysis. PMID:29904599
3D acquisition and modeling for flint artefacts analysis
NASA Astrophysics Data System (ADS)
Loriot, B.; Fougerolle, Y.; Sestier, C.; Seulin, R.
2007-07-01
In this paper, we are interested in accurate acquisition and modeling of flint artefacts. Archaeologists needs accurate geometry measurements to refine their understanding of the flint artefacts manufacturing process. Current techniques require several operations. First, a copy of a flint artefact is reproduced. The copy is then sliced. A picture is taken for each slice. Eventually, geometric information is manually determined from the pictures. Such a technique is very time consuming, and the processing applied to the original, as well as the reproduced object, induces several measurement errors (prototyping approximations, slicing, image acquisition, and measurement). By using 3D scanners, we significantly reduce the number of operations related to data acquisition and completely suppress the prototyping step to obtain an accurate 3D model. The 3D models are segmented into sliced parts that are then analyzed. Each slice is then automatically fitted by mathematical representation. Such a representation offers several interesting properties: geometric features can be characterized (e.g. shapes, curvature, sharp edges, etc), and a shape of the original piece of stone can be extrapolated. The contributions of this paper are an acquisition technique using 3D scanners that strongly reduces human intervention, acquisition time and measurement errors, and the representation of flint artefacts as mathematical 2D sections that enable accurate analysis.
Lyu, Ming; Cui, Ying; Zhao, Tiechan; Ning, Zhaochen; Ren, Jie; Jin, Xingpiao; Fan, Guanwei; Zhu, Yan
2018-01-01
Shuxuening injection (SXNI) is a widely prescribed herbal medicine of Ginkgo biloba extract (EGB) for cerebral and cardiovascular diseases in China. However, its curative effects on ischemic stroke and heart diseases and the underlying mechanisms remain unknown. Taking an integrated approach of RNA-seq and network pharmacology analysis, we compared transcriptome profiles of brain and heart ischemia reperfusion injury in C57BL/6J mice to identify common and differential target genes by SXNI. Models for myocardial ischemia reperfusion injury (MIRI) by ligating left anterior descending coronary artery (LAD) for 30 min ischemia and 24 h reperfusion and cerebral ischemia reperfusion injury (CIRI) by middle cerebral artery occlusion (MCAO) for 90 min ischemia and 24 h reperfusion were employed to identify the common mechanisms of SXNI on both cerebral and myocardial ischemia reperfusion. In the CIRI model, ischemic infarct volume was markedly decreased after pre-treatment with SXNI at 0.5, 2.5, and 12.5 mL/kg. In the MIRI model, pre-treatment with SXNI at 2.5 and 12.5 mL/kg improved cardiac function and coronary blood flow and decreased myocardial infarction area. Besides, SXNI at 2.5 mL/kg also markedly reduced the levels of LDH, AST, CK-MB, and CK in serum. RNA-seq analysis identified 329 differentially expressed genes (DEGs) in brain and 94 DEGs in heart after SXNI treatment in CIRI or MIRI models, respectively. Core analysis by Ingenuity Pathway Analysis (IPA) revealed that atherosclerosis signaling and inflammatory response were top-ranked in the target profiles for both CIRI and MIRI after pre-treatment with SXNI. Specifically, Tnfrsf12a was recognized as an important common target, and was regulated by SXNI in CIRI and MIRI. In conclusion, our study showed that SXNI effectively protects brain and heart from I/R injuries via a common Tnfrsf12a-mediated pathway involving atherosclerosis signaling and inflammatory response. It provides a novel knowledge of active ingredients of Ginkgo biloba on cardio-cerebral vascular diseases in future clinical application. PMID:29681850
Li, Zhenlan; Hua, Cong; Pan, Xiaoqiang; Fu, Xijia; Wu, Wei
2016-08-01
Increasing evidence demonstrates that inflammation plays an important role in cerebral ischemia. Carvacrol, a monoterpenic phenol, is naturally occurring in various plants belonging to the family Lamiaceae and exerts protective effects in a mice model of focal cerebral ischemia/reperfusion injury by reducing infarct volume and decreasing the expression of cleaved caspase-3. However, the anti-inflammatory mechanisms by which carvacrol protect the brain have yet to be fully elucidated. We investigated the effects of carvacrol on inflammatory reaction and inflammatory mediators in middle cerebral artery occlusion rats. The results of the present study showed that carvacrol inhibited the levels of inflammatory cytokines and myeloperoxidase (MPO) activity, as well as the expression of iNOS and COX-2. It also increased SOD activity and decreased MDA level in ischemic cortical tissues. In addition, carvacrol treatment suppressed the ischemia/reperfusion-induced increase in the protein expression of nuclear NF-kB p65. In conclusion, we have shown that carvacrol inhibits the inflammatory response via inhibition of the NF-kB signaling pathway in a rat model of focal cerebral ischemia. Therefore, carvacrol may be a potential therapeutic agent for the treatment of cerebral ischemia injury.
Koçarslan, Aydemir; Koçarslan, Sezen; Aydin, Mehmet Salih; Gunay, Şamil; Karahan, Mahmut Alp; Taşkın, Abdullah; Üstunel, Murat; Aksoy, Nurten
2016-01-01
Objective To determine whether intraperitoneal silymarin administration has favorable effects on the heart, lungs, kidney, and liver and on oxidative stress in a rat model of supraceliac aorta ischemia/reperfusion injury. Methods Thirty male Wistar albino rats were divided equally into three groups: sham, control, and silymarin. The control and silymarin groups underwent supraceliac aortic occlusion for 45 min, followed by a 60 min period of reperfusion under terminal anesthesia. In the silymarin group, silymarin was administered intraperitoneally during ischemia at a dose of 200 mg/kg. Rats were euthanized using terminal anesthesia, and blood was collected from the inferior vena cava for total antioxidant capacity, total oxidative status, and oxidative stress index measurement. Lungs, heart, liver and kidney tissues were histologically examined. Results Ischemia/reperfusion injury significantly increased histopathological damage as well as the total oxidative status and oxidative stress index levels in the blood samples. The silymarin group incurred significantly lesser damage to the lungs, liver and kidneys than the control group, while no differences were observed in the myocardium. Furthermore, the silymarin group had significantly lower total oxidative status and oxidative stress index levels than the control group. Conclusion Intraperitoneal administration of silymarin reduces oxidative stress and protects the liver, kidney, and lungs from acute supraceliac abdominal aorta ischemia/reperfusion injury in the rat model. PMID:28076620
Bell, Marshall T.; Reece, T. Brett; Smith, Phillip D.; Mares, Joshua; Weyant, Michael J.; Cleveland, Joseph C.; Freeman, Kirsten A.; Fullerton, David A.; Puskas, Ferenc
2014-01-01
Background Lower extremity paralysis continues to complicate aortic interventions. The lack of understanding of the underlying pathology has hindered advancements to decrease the occurrence this injury. The current model demonstrates reproducible lower extremity paralysis following thoracic aortic occlusion. Methods Adult male C57BL6 mice were anesthetized with isoflurane. Through a cervicosternal incision the aorta was exposed. The descending thoracic aorta and left subclavian arteries were identified without entrance into pleural space. Skeletonization of these arteries was followed by immediate closure (Sham) or occlusion for 4 min (moderate ischemia) or 8 min (prolonged ischemia). The sternotomy and skin were closed and the mouse was transferred to warming bed for recovery. Following recovery, functional analysis was obtained at 12 hr intervals until 48 hr. Results Mice that underwent sham surgery showed no observable hind limb deficit. Mice subjected to moderate ischemia for 4 min had minimal functional deficit at 12 hr followed by progression to complete paralysis at 48 hr. Mice subjected to prolonged ischemia had an immediate paralysis with no observable hind-limb movement at any point in the postoperative period. There was no observed intraoperative or post operative mortality. Conclusion Reproducible lower extremity paralysis whether immediate or delayed can be achieved in a murine model. Additionally, by using a median sternotomy and careful dissection, high survival rates, and reproducibility can be achieved. PMID:24637534
Bell, Marshall T; Reece, T Brett; Smith, Phillip D; Mares, Joshua; Weyant, Michael J; Cleveland, Joseph C; Freeman, Kirsten A; Fullerton, David A; Puskas, Ferenc
2014-03-03
Lower extremity paralysis continues to complicate aortic interventions. The lack of understanding of the underlying pathology has hindered advancements to decrease the occurrence this injury. The current model demonstrates reproducible lower extremity paralysis following thoracic aortic occlusion. Adult male C57BL6 mice were anesthetized with isoflurane. Through a cervicosternal incision the aorta was exposed. The descending thoracic aorta and left subclavian arteries were identified without entrance into pleural space. Skeletonization of these arteries was followed by immediate closure (Sham) or occlusion for 4 min (moderate ischemia) or 8 min (prolonged ischemia). The sternotomy and skin were closed and the mouse was transferred to warming bed for recovery. Following recovery, functional analysis was obtained at 12 hr intervals until 48 hr. Mice that underwent sham surgery showed no observable hind limb deficit. Mice subjected to moderate ischemia for 4 min had minimal functional deficit at 12 hr followed by progression to complete paralysis at 48 hr. Mice subjected to prolonged ischemia had an immediate paralysis with no observable hind-limb movement at any point in the postoperative period. There was no observed intraoperative or post operative mortality. Reproducible lower extremity paralysis whether immediate or delayed can be achieved in a murine model. Additionally, by using a median sternotomy and careful dissection, high survival rates, and reproducibility can be achieved.
Alvarez, Francisco Jose; Revuelta, Miren; Santaolalla, Francisco; Alvarez, Antonia; Lafuente, Hector; Arteaga, Olatz; Alonso-Alconada, Daniel; Sanchez-del-Rey, Ana; Hilario, Enrique; Martinez-Ibargüen, Agustin
2015-01-01
Hypoxia-ischemia (HI) is a major perinatal problem that results in severe damage to the brain impairing the normal development of the auditory system. The purpose of the present study is to study the effect of perinatal asphyxia on the auditory pathway by recording auditory brain responses in a novel animal experimentation model in newborn piglets. Hypoxia-ischemia was induced to 1.3 day-old piglets by clamping 30 minutes both carotid arteries by vascular occluders and lowering the fraction of inspired oxygen. We compared the Auditory Brain Responses (ABRs) of newborn piglets exposed to acute hypoxia/ischemia (n = 6) and a control group with no such exposure (n = 10). ABRs were recorded for both ears before the start of the experiment (baseline), after 30 minutes of HI injury, and every 30 minutes during 6 h after the HI injury. Auditory brain responses were altered during the hypoxic-ischemic insult but recovered 30-60 minutes later. Hypoxia/ischemia seemed to induce auditory functional damage by increasing I-V latencies and decreasing wave I, III and V amplitudes, although differences were not significant. The described experimental model of hypoxia-ischemia in newborn piglets may be useful for studying the effect of perinatal asphyxia on the impairment of the auditory pathway.
NASA Astrophysics Data System (ADS)
Zheng, Qiang; Li, Honglun; Fan, Baode; Wu, Shuanhu; Xu, Jindong
2017-12-01
Active contour model (ACM) has been one of the most widely utilized methods in magnetic resonance (MR) brain image segmentation because of its ability of capturing topology changes. However, most of the existing ACMs only consider single-slice information in MR brain image data, i.e., the information used in ACMs based segmentation method is extracted only from one slice of MR brain image, which cannot take full advantage of the adjacent slice images' information, and cannot satisfy the local segmentation of MR brain images. In this paper, a novel ACM is proposed to solve the problem discussed above, which is based on multi-variate local Gaussian distribution and combines the adjacent slice images' information in MR brain image data to satisfy segmentation. The segmentation is finally achieved through maximizing the likelihood estimation. Experiments demonstrate the advantages of the proposed ACM over the single-slice ACM in local segmentation of MR brain image series.
Akbas, Alpaslan; Silan, Coskun; Gulpinar, Murat Tolga; Sancak, Eyup Burak; Ozkanli, Sidika Seyma; Cakir, Dilek Ulker
2015-12-01
Humic acid is an antioxidant molecule used in agriculture and livestock breeding, as well as in medicine. Our aim was to investigate the potential renoprotective effects of humic acid in a renal ischemia reperfusion model. Twenty-one rats were randomly divided into three equal groups. Intraperitoneal serum or humic acid was injected at 1, 12, and 24 h. Non-ischemic group I was evaluated as sham. The left renal artery was clamped in serum (group II) and intraperitoneal humic acid (group III) to subject to left renal ischemic reperfusion procedure. Ischemia and reperfusion time was 60 min for each. Total antioxidant status, total oxidative status, oxidative stress index, and ischemia-modified albumin levels were analyzed biochemically from the serum samples. Kidneys were evaluated histopatologically and immunohistochemically. Biochemical results showed that total oxidative status, ischemia-modified albumin, and oxidative stress index levels were significantly decreased, but total antioxidant status was increased in the humic acid group (III) compared with the ischemia group (II) On histopathological examination, renal tubular dilatation, tubular cell damage and necrosis, dilatation of Bowman's capsule, hyaline casts, and tubular cell spillage were decreased in the humic acid group (III) compared with the ischemia group (II). Immunohistochemical results showed that apoptosis was deteriorated in group III. Renal ischemia reperfusion injury was attenuated by humic acid administration. These observations indicate that humic acid may have a potential therapeutic effect on renal ischemia reperfusion injury by preventing oxidative stress.
Thaminy, S; Reymann, J M; Heresbach, N; Allain, H; Lechat, P; Bentué-Ferrer, D
1997-04-01
Chlormethiazole, an anticonvulsive agent, has been shown to have a possible neuroprotective effect against cerebral ischemia. In addition, chlormethiazole inhibits methamphetamine-induced release of dopamine, protecting against this neurotransmitter's neurotoxicity. The aim of this work was to ascertain whether, in experimental cerebral ischemia, chlormethiazole administration attenuated the ischemia-induced rise of the extracellular concentration of aminergic neurotransmitters and whether it reduces ischemia-induced deficits in memory and learning. Histology for assessment of ischemic damage was a so included. The four-vessel occlusion rat model was used to induce global cerebral ischemia. Aminergic neurotransmitters and their metabolites in the striatal extracellular fluid obtained by microdialysis were assayed by high-performance liquid chromatography-electrochemical detection. The drug was administered either IP (50 mg/kg-1) or directly through the dialysis probe (30 microM) 80 min before ischemia. For the behavioral test and histology, the drug was given IP (100 mg/kg-1) 1 h postischemia. The results obtained did not demonstrate any statistically significant evidence that chlormethiazole has an effect on the ischemia-induced rise in extracellular dopamine and serotonin levels. There was also no variation in metabolite levels. Behavioral measures (learning, recall) were not changed appreciably by the treatment. We observed no significant cell protection in the hippocampus (CA1, CA1), striatum, and entorhinal cortex in animals treated with chlormethiazole. We conclude that, under our experimental conditions, chlormethiazole has little or no effect on the neurochemical, neurobehavioral, and histological consequences of global cerebral ischemia.
1979-03-01
LSPFIT 112 4.3.5 SLICE 112 4.3.6 CRD 113 4.3.7 OUTPUT 113 4.3.8 SHOCK 115 4.3.9 ATMOS 115 4.3.10 PNLC 115 4.4 Program Usage and Logic 116 4.5 Description...number MAIN, SLICE, OUTPUT F Intermediate variable LSPFIT FAC Intermediate variable PNLC FC Center frequency SLICE FIRSTU Flight velocity Ua MAIN, SLICE...Index CRD J211 Index CRD K Index, also wave number MAIN, SLICE, PNLC KN Surrounding boundary index MAIN KNCAS Case counter MAIN KNK Surrounding
Low contrast detection in abdominal CT: comparing single-slice and multi-slice tasks
NASA Astrophysics Data System (ADS)
Ba, Alexandre; Racine, Damien; Viry, Anaïs.; Verdun, Francis R.; Schmidt, Sabine; Bochud, François O.
2017-03-01
Image quality assessment is crucial for the optimization of computed tomography (CT) protocols. Human and mathematical model observers are increasingly used for the detection of low contrast signal in abdominal CT, but are frequently limited to the use of a single image slice. Another limitation is that most of them only consider the detection of a signal embedded in a uniform background phantom. The purpose of this paper was to test if human observer performance is significantly different in CT images read in single or multiple slice modes and if these differences are the same for anatomical and uniform clinical images. We investigated detection performance and scrolling trends of human observers of a simulated liver lesion embedded in anatomical and uniform CT backgrounds. Results show that observers don't take significantly benefit of additional information provided in multi-slice reading mode. Regarding the background, performances are moderately higher for uniform than for anatomical images. Our results suggest that for low contrast detection in abdominal CT, the use of multi-slice model observers would probably only add a marginal benefit. On the other hand, the quality of a CT image is more accurately estimated with clinical anatomical backgrounds.
Hays, Allison M; Lantz, R Clark; Witten, Mark L
2003-01-01
In tissue slice models, interactions between the heterogeneous cell types comprising the lung parenchyma are maintained thus providing a controlled system for the study of pulmonary toxicology in vitro. However, validation of the model in vitro system must be affirmed. Previous reports, in in vivo systems, have demonstrated that Clara cells and alveolar type II cells are the targets following inhalation of JP-8 jet fuel. We have utilized the lung slice model to determine if cellular targets are similar following in vitro exposure to JP-8. Agar-filled adult rat lung explants were cored and precision cut, using the Brende/Vitron tissue slicer. Slices were cultured on titanium screens located as half-cylinders in cylindrical Teflon cradles that were loaded into standard scintillation vials and incubated at 37 degrees C. Slices were exposed to JP-8 jet fuel (0.5 mg/ml, 1.0 mg/ml, and 1.5 mg/ml in medium) for up to 24 hours. We determined ATP content using a luciferin-luciferase bioluminescent assay. No significant difference was found between the JP-8 jet fuel doses or time points, when compared to controls. Results were correlated with structural alterations following aerosol inhalation of JP-8. As a general observation, ultrastructural evaluation of alveolar type cells revealed an apparent increase in the number and size of surfactant secreting lamellar bodies that was JP-8 jet fuel-dose dependent. These results are similar to those observed following aerosol inhalation exposure. Thus, the lung tissue slice model appears to mimic in vivo effects of JP-8 and therefore is a useful model system for studying the mechanisms of lunginjury following JP-8 exposure.
2011-12-01
infiltrating PMNs is not merely limited to organs that have been directly injured from trauma. Ischemia - reperfusion injury (which occurs after... injury by facilitating inflammatory cell adhesion in an animal model of myocardial ischemia - reperfusion [61,62]. Fabp2 and Fabp5 have been implicated in...Bauer A, Tweardy DJ (1998) Activation of STAT proteins following ischemia reperfusion injury demonstrates a distinct IL- 6 and G-CSF mediated profile
Ruminant organotypic brain-slice cultures as a model for the investigation of CNS listeriosis
Guldimann, Claudia; Lejeune, Beatrice; Hofer, Sandra; Leib, Stephen L; Frey, Joachim; Zurbriggen, Andreas; Seuberlich, Torsten; Oevermann, Anna
2012-01-01
Central nervous system (CNS) infections in ruminant livestock, such as listeriosis, are of major concern for veterinary and public health. To date, no host-specific in vitro models for ruminant CNS infections are available. Here, we established and evaluated the suitability of organotypic brain-slices of ruminant origin as in vitro model to study mechanisms of Listeria monocytogenes CNS infection. Ruminants are frequently affected by fatal listeric rhombencephalitis that closely resembles the same condition occurring in humans. Better insight into host–pathogen interactions in ruminants is therefore of interest, not only from a veterinary but also from a public health perspective. Brains were obtained at the slaughterhouse, and hippocampal and cerebellar brain-slices were cultured up to 49 days. Viability as well as the composition of cell populations was assessed weekly. Viable neurons, astrocytes, microglia and oligodendrocytes were observed up to 49 days in vitro. Slice cultures were infected with L. monocytogenes, and infection kinetics were monitored. Infected brain cells were identified by double immunofluorescence, and results were compared to natural cases of listeric rhombencephalitis. Similar to the natural infection, infected brain-slices showed focal replication of L. monocytogenes and bacteria were predominantly observed in microglia, but also in astrocytes, and associated with axons. These results demonstrate that organotypic brain-slice cultures of bovine origin survive for extended periods and can be infected easily with L. monocytogenes. Therefore, they are a suitable model to study aspects of host–pathogen interaction in listeric encephalitis and potentially in other neuroinfectious diseases. PMID:22804762
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, W; Yin, F; Wang, C
Purpose: To develop a technique to estimate on-board VC-MRI using multi-slice sparsely-sampled cine images, patient prior 4D-MRI, motion-modeling and free-form deformation for real-time 3D target verification of lung radiotherapy. Methods: A previous method has been developed to generate on-board VC-MRI by deforming prior MRI images based on a motion model(MM) extracted from prior 4D-MRI and a single-slice on-board 2D-cine image. In this study, free-form deformation(FD) was introduced to correct for errors in the MM when large anatomical changes exist. Multiple-slice sparsely-sampled on-board 2D-cine images located within the target are used to improve both the estimation accuracy and temporal resolution ofmore » VC-MRI. The on-board 2D-cine MRIs are acquired at 20–30frames/s by sampling only 10% of the k-space on Cartesian grid, with 85% of that taken at the central k-space. The method was evaluated using XCAT(computerized patient model) simulation of lung cancer patients with various anatomical and respirational changes from prior 4D-MRI to onboard volume. The accuracy was evaluated using Volume-Percent-Difference(VPD) and Center-of-Mass-Shift(COMS) of the estimated tumor volume. Effects of region-of-interest(ROI) selection, 2D-cine slice orientation, slice number and slice location on the estimation accuracy were evaluated. Results: VCMRI estimated using 10 sparsely-sampled sagittal 2D-cine MRIs achieved VPD/COMS of 9.07±3.54%/0.45±0.53mm among all scenarios based on estimation with ROI-MM-ROI-FD. The FD optimization improved estimation significantly for scenarios with anatomical changes. Using ROI-FD achieved better estimation than global-FD. Changing the multi-slice orientation to axial, coronal, and axial/sagittal orthogonal reduced the accuracy of VCMRI to VPD/COMS of 19.47±15.74%/1.57±2.54mm, 20.70±9.97%/2.34±0.92mm, and 16.02±13.79%/0.60±0.82mm, respectively. Reducing the number of cines to 8 enhanced temporal resolution of VC-MRI by 25% while maintaining the estimation accuracy. Estimation using slices sampled uniformly through the tumor achieved better accuracy than slices sampled non-uniformly. Conclusions: Preliminary studies showed that it is feasible to generate VC-MRI from multi-slice sparsely-sampled 2D-cine images for real-time 3D-target verification. This work was supported by the National Institutes of Health under Grant No. R01-CA184173 and a research grant from Varian Medical Systems.« less
NASA Astrophysics Data System (ADS)
Sergeeva, Tatiana F.; Moshkova, Albina N.; Erlykina, Elena I.; Khvatova, Elena M.
2016-04-01
Creatine kinase is a key enzyme of energy metabolism in the brain. There are known cytoplasmic and mitochondrial creatine kinase isoenzymes. Mitochondrial creatine kinase exists as a mixture of two oligomeric forms - dimer and octamer. The aim of investigation was to study catalytic properties of cytoplasmic and mitochondrial creatine kinase and using of the method of empirical dependences for the possible prediction of the activity of these enzymes in cerebral ischemia. Ischemia was revealed to be accompanied with the changes of the activity of creatine kinase isoenzymes and oligomeric state of mitochondrial isoform. There were made the models of multiple regression that permit to study the activity of creatine kinase system in cerebral ischemia using a calculating method. Therefore, the mathematical method of empirical dependences can be applied for estimation and prediction of the functional state of the brain by the activity of creatine kinase isoenzymes in cerebral ischemia.
NASA Astrophysics Data System (ADS)
Crane, Nicole J.; Huffman, Scott W.; Alemozaffar, Mehrdad; Gage, Frederick A.; Levin, Ira W.; Elster, Eric A.
2013-03-01
Renal ischemia that occurs intraoperatively during procedures requiring clamping of the renal artery (such as renal procurement for transplantation and partial nephrectomy for renal cancer) is known to have a significant impact on the viability of that kidney. To better understand the dynamics of intraoperative renal ischemia and recovery of renal oxygenation during reperfusion, a visible reflectance imaging system (VRIS) was developed to measure renal oxygenation during renal artery clamping in both cooled and warm porcine kidneys. For all kidneys, normothermic and hypothermic, visible reflectance imaging demonstrated a spatially distinct decrease in the relative oxy-hemoglobin concentration (%HbO2) of the superior pole of the kidney compared to the middle or inferior pole. Mean relative oxy-hemoglobin concentrations decrease more significantly during ischemia for normothermic kidneys compared to hypothermic kidneys. VRIS may be broadly applicable to provide an indicator of organ ischemia during open and laparoscopic procedures.
Steffensen, Lasse Bach; Poulsen, Christian Bo; Shim, Jeong; Bek, Marie; Jacobsen, Kevin; Conover, Cheryl A; Bentzon, Jacob Fog; Oxvig, Claus
2015-12-01
The usefulness of circulating pregnancy-associated plasma protein-A (PAPP-A) as a biomarker for acute coronary syndrome (ACS) is widely debated. We used the pig as a model to assess PAPP-A dynamics in the setting of myocardial ischemia. Induction of myocardial ischemia by ligation of the left anterior descending (LAD) coronary artery caused a systemic rise in PAPP-A. However, the ischemic myocardium was excluded as the source of PAPP-A. Interestingly, induction of ischemia in peripheral tissues by ligation of the left femoral artery caused a systemic rise in PAPP-A originating from the left hind limb. This is the first study to demonstrate PAPP-A elevations in the absence of atherosclerosis or heparin during myocardial ischemia. Our findings thus add to the current discussion of the usefulness of PAPP-A as a biomarker for ACS.
Wang, Hongxin; Zhang, Kan; Zhao, Lan; Tang, Jiangwei; Gao, Luyan; Wei, Zhongping
2014-04-30
The restoration of blood flow to the brain after ischemic stroke prevents further, extensive damage but can result in reperfusion injury. The inflammation response is one of many factors involved in cerebral ischemia-reperfusion injury. This study investigated the use of vinpocetine, a drug used to treat cognitive impairment, to explore its effects on inflammation in a rat model of cerebral ischemia-reperfusion. Wistar rats were randomly assigned to a control group, (n=40) a cerebral ischemia-reperfusion group (n=52) and a vinpocetine cerebral ischemia-reperfusion group (n=52). A model of middle cerebral artery occlusion was induced for 2h followed by reperfusion and the infarct size was determined by 2,3,5-triphenyltetrazolium chloride (TTC) staining 6h, 24h, 3 days, and 7 days after reperfusion. The dry-wet weight method was used to measure brain water content and evaluate the extent of brain edema. Immunohistochemistry and in-situ hybridization were used to detect the expression of NF-κB and TNF-α. The NF-κB levels in ischemic brain tissue increased 6h after reperfusion and the TNF-α levels increased at 24h, both reached their peaks at day 3 then decreased gradually, but remained above the controls at day 7. Vinpocetine decreased the levels of NF-κB and TNF-α 24h and 3 days after reperfusion. NF-κB and TNF-α is associated with changes in brain edema and infarct volume. Vinpocetine decreases the expression of NF-κB and TNF-α and inhibits the inflammatory response after cerebral ischemia-reperfusion. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Klafke, J Z; da Silva, M A; Rossato, M F; de Prá, S Dal Toé; Rigo, F K; Walker, C I B; Bochi, G V; Moresco, R N; Ferreira, J; Trevisan, G
2016-02-01
Complex regional pain syndrome type 1 (CRPS1) may be evoked by ischemia/reperfusion, eliciting acute and chronic pain that is difficult to treat. Despite this, the underlying mechanism of CRPS1 has not been fully elucidated. Therefore, the goal of this study is to evaluate the involvement of inflammation, oxidative stress, and the transient receptor potential ankyrin 1 (TRPA1) channel, a chemosensor of inflammation and oxidative substances, in an animal model of chronic post-ischemia pain (CPIP). Male Wistar rats were subjected to 3 h hind paw ischemia/reperfusion (CPIP model). Different parameters of nociception, inflammation, ischemia, and oxidative stress were evaluated at 1 (acute) and 14 (chronic) days after CPIP. The effect of a TRPA1 antagonist and the TRPA1 immunoreactivity were also observed after CPIP. In the CPIP acute phase, we observed mechanical and cold allodynia; increased levels of tumor necrosis factor-α (hind paw), ischemia-modified albumin (IMA) (serum), protein carbonyl (hind paw and spinal cord), lactate (serum), and 4-hydroxy-2-nonenal (4-HNE, hind paw and spinal cord); and higher myeloperoxidase (MPO) and N-acetyl-β-D-glucosaminidase (NAGase) activities (hind paw). In the CPIP chronic phase, we detected mechanical and cold allodynia and increased levels of IMA (serum), protein carbonyl (hind paw and spinal cord), and 4-HNE (hind paw and spinal cord). TRPA1 antagonism reduced mechanical and cold allodynia 1 and 14 days after CPIP, but no change in TRPA1 immunoreactivity was observed. Different mechanisms underlie acute (inflammation and oxidative stress) and chronic (oxidative stress) phases of CPIP. TRPA1 activation may be relevant for CRPS1/CPIP-induced acute and chronic pain.
Nonhuman primate models of focal cerebral ischemia
Fan, Jingjing; Li, Yi; Fu, Xinyu; Li, Lijuan; Hao, Xiaoting; Li, Shasha
2017-01-01
Rodents have been widely used in the production of cerebral ischemia models. However, successful therapies have been proven on experimental rodent stroke model, and they have often failed to be effective when tested clinically. Therefore, nonhuman primates were recommended as the ideal alternatives, owing to their similarities with the human cerebrovascular system, brain metabolism, grey to white matter ratio and even their rich behavioral repertoire. The present review is a thorough summary of ten methods that establish nonhuman primate models of focal cerebral ischemia; electrocoagulation, endothelin-1-induced occlusion, microvascular clip occlusion, autologous blood clot embolization, balloon inflation, microcatheter embolization, coil embolization, surgical suture embolization, suture, and photochemical induction methods. This review addresses the advantages and disadvantages of each method, as well as precautions for each model, compared nonhuman primates with rodents, different species of nonhuman primates and different modeling methods. Finally it discusses various factors that need to be considered when modelling and the method of evaluation after modelling. These are critical for understanding their respective strengths and weaknesses and underlie the selection of the optimum model. PMID:28400817
Localized Spatio-Temporal Constraints for Accelerated CMR Perfusion
Akçakaya, Mehmet; Basha, Tamer A.; Pflugi, Silvio; Foppa, Murilo; Kissinger, Kraig V.; Hauser, Thomas H.; Nezafat, Reza
2013-01-01
Purpose To develop and evaluate an image reconstruction technique for cardiac MRI (CMR)perfusion that utilizes localized spatio-temporal constraints. Methods CMR perfusion plays an important role in detecting myocardial ischemia in patients with coronary artery disease. Breath-hold k-t based image acceleration techniques are typically used in CMR perfusion for superior spatial/temporal resolution, and improved coverage. In this study, we propose a novel compressed sensing based image reconstruction technique for CMR perfusion, with applicability to free-breathing examinations. This technique uses local spatio-temporal constraints by regularizing image patches across a small number of dynamics. The technique is compared to conventional dynamic-by-dynamic reconstruction, and sparsity regularization using a temporal principal-component (pc) basis, as well as zerofilled data in multi-slice 2D and 3D CMR perfusion. Qualitative image scores are used (1=poor, 4=excellent) to evaluate the technique in 3D perfusion in 10 patients and 5 healthy subjects. On 4 healthy subjects, the proposed technique was also compared to a breath-hold multi-slice 2D acquisition with parallel imaging in terms of signal intensity curves. Results The proposed technique results in images that are superior in terms of spatial and temporal blurring compared to the other techniques, even in free-breathing datasets. The image scores indicate a significant improvement compared to other techniques in 3D perfusion (2.8±0.5 vs. 2.3±0.5 for x-pc regularization, 1.7±0.5 for dynamic-by-dynamic, 1.1±0.2 for zerofilled). Signal intensity curves indicate similar dynamics of uptake between the proposed method with a 3D acquisition and the breath-hold multi-slice 2D acquisition with parallel imaging. Conclusion The proposed reconstruction utilizes sparsity regularization based on localized information in both spatial and temporal domains for highly-accelerated CMR perfusion with potential utility in free-breathing 3D acquisitions. PMID:24123058
Presynaptic modulation of tonic and respiratory inputs to cardiovagal motoneurons by substance P.
Hou, Lili; Tang, Hongtai; Chen, Yonghua; Wang, Lin; Zhou, Xujiao; Rong, Weifang; Wang, Jijiang
2009-08-11
Substance P (SP) has been implicated in vagal control of heart rate and cardiac functions, but the mechanisms of SP actions on cardiac vagal activity remain obscure. The present study has investigated the effects of SP on the synaptic inputs of preganglionic cardiovagal motoneurons (CVNs) in brainstem slices of neonatal rat. Whole-cell voltage-clamp recordings were performed on retrogradely labeled CVNs in the nucleus ambiguus. The results show that in thin slices (400 microm thickness) without respiratory-like rhythm, globally applied SP (1 microM) significantly enhanced both the GABAergic and the glycinergic inputs, but had no effect on the glutamatergic inputs, of CVNs. Since inspiratory-related augmentation of the inhibitory inputs of CVNs in individual respiratory cycles is known to play an important role in the genesis of respiratory sinus arrhythmia, the effects of SP on the inhibitory inputs of CVNs were further examined in thick slices (500-800 microm thickness) with respiratory-like rhythm, and SP (1 microM) was focally applied to the CVNs under patch-clamp recording. Focally applied SP caused frequency increases of the GABAergic and the glycinergic inputs both during inspiratory bursts and during inspiratory intervals. However, the inspiratory-related augmentation of the GABAergic and the glycinergic inputs of CVNs, measured by the frequency increases during inspiratory bursts in percentage of the frequency during inspiratory intervals, was significantly decreased by SP. These results suggest that SP inhibits CVNs via enhancement of their inhibitory synaptic inputs, and SP diminishes the respiratory-related fluctuation of cardiac vagal activity in individual respiratory cycles. These results also indicate that SP may play a role in altering the vagal control of the heart in some cardiovascular diseases such as myocardial ischemia and hypertension, since these diseases are characterized by weakened cardiac vagal tone and heart rate variability, and have been found to have increased central release and receptor binding of SP.
Qian, Jiang; Ren, Xiaoping; Wang, Xiaohong; Zhang, Pengyuan; Jones, W. Keith; Molkentin, Jeffery D.; Fan, Guo-Chang; Kranias, Evangelia G.
2009-01-01
Rationale The levels of a small heat shock protein 20 (Hsp20) and its phosphorylation are increased upon ischemic insults, and overexpression of Hsp20 protects the heart against ischemia/reperfusion injury. However, the mechanism underlying cardioprotection of Hsp20 and especially the role of its phosphorylation in regulating ischemia/reperfusion-induced autophagy, apoptosis and necrosis remain to be clarified. Objective Herein we generated a cardiac-specific overexpression model, carrying non-phosphorylatable Hsp20, where serine 16 was substituted with alanine (Hsp20S16A). By subjecting this model to ischemia/reperfusion, we addressed whether: 1) the cardioprotective effects of Hsp20 are associated with serine 16 phosphorylation; 2) blockade of Hsp20 phosphorylation influences the balance between autophagy and cell death; and 3) the aggregation pattern of Hsp20 is altered by its phosphorylation. Methods and Results Our results demonstrated that Hsp20S16A hearts were more sensitive to ischemia/reperfusion injury, evidenced by lower recovery of contractile function and increased necrosis and apoptosis, compared with non-transgenic (TG) hearts. Interestingly, autophagy was activated in non-TG hearts, but significantly inhibited in Hsp20S16A hearts following ischemia/reperfusion. Accordingly, pre-treatment of Hsp20S16A hearts with rapamycin, an activator of autophagy, resulted in improvement of functional recovery, compared with saline-treated Hsp20S16A hearts. Furthermore, upon ischemia/reperfusion, the oligomerization pattern of Hsp20 appeared to shift to higher aggregates in Hsp20S16A hearts. Conclusion Collectively, these data indicate that blockade of Ser16-Hsp20 phosphorylation attenuates the cardioprotective effects of Hsp20 against ischemia/reperfusion injury, which may be due to suppressed autophagy and increased cell death. Therefore, phosphorylation of Hsp20 at serine 16 may represent a potential therapeutic target in ischemic heart disease. PMID:19850943
The synergetic effect of edaravone and borneol in the rat model of ischemic stroke.
Wu, Hai-Yin; Tang, Ying; Gao, Li-Yan; Sun, Wei-Xiang; Hua, Yao; Yang, Shi-Bao; Zhang, Zheng-Ping; Liao, Gao-Yong; Zhou, Qi-Gang; Luo, Chun-Xia; Zhu, Dong-Ya
2014-10-05
Free radical production contributes to the early ischemic response and the neuroinflammatory response to injury initiates the second wave of cell death following ischemic stroke. Edaravone is a free radical scavenger, and borneol has shown anti-inflammatory effect. We investigated the synergistic effect of these two drugs in the rat model of transient cerebral ischemia. Edaravone scavenged OH, NO and ONOO─ concentration-dependently, and borneol inhibited ischemia/reperfusion-induced tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS), interleukin-1β (IL-1β) and cyclooxygenase-2 (COX-2) expressions. In the rat model of transient cerebral ischemia and reperfusion, the combination of edaravone and borneol significantly ameliorated ischemic damage with an optimal proportion of 4:1. Emax (% inhibition) of edaravone, borneol and two drugs in combination was 55.7%, 65.8% and 74.3% respectively. ED50 of edaravone and borneol was 7.17 and 0.36 mg/kg respectively. When two drugs in combination, ED50 was 0.484 mg/kg, in which edaravone was 0.387 mg/kg (ineffective dose) and borneol was 0.097 mg/kg (ineffective dose). Combination index (CI)<1 among effects observed in experiments, suggesting a significant synergistic effect. Reduced levels of pro-inflammatory mediators and free radicals were probably associated with the synergistic effect of edaravone and borneol. The combination exhibited a therapeutic time window of 6h in ischemia/reperfusion model, and significantly ameliorated damages in permanent ischemia model. Moreover, two drugs in combination promoted long-term effect, including improved elemental vital signs, sensorimotor functions and spatial cognition. Our results suggest that the combination of edaravone and borneol have a synergistic effect for treating ischemic stroke. Copyright © 2014 Elsevier B.V. All rights reserved.
Peng, Long-yun; Ma, Hong; He, Jian-gui; Gao, Xiu-ren; Zhang, Yan; He, Xiao-hong; Zhai, Yuan-sheng; Zhang, Xue-jiao
2006-08-01
To explore the effects of ischemic postconditioning on ischemia/reperfusion injury in isolated hypertrophied rat heart and investigate the signal transduction pathway changes induced by ischemia postconditioning. Cardiac hypertrophy was induced in rats by abdominal aortic banding, and isolated hypertrophied rat heart ischemia/reperfusion model was made by Langendorff technique to evaluate the effects of ischemia postconditioning on left ventricular systole pressure, coronary artery flow, creatine phosphokinase (CPK) and lactate dehydrogenase (LDH) release, myocardial infarction size, and the level of myocardial phospho-protein kinase B/Akt (Ser473), phospho-glycogen synthase kinase-3beta (Ser9). Following groups were studied (n = 12 each group): IR, 30 min ischemia (I)/60 min Reperfusion (R); Post: 30 min ischemia, 6 circles of 10 s I/10 s R followed by 60 min R; Post Wort: 30 min ischemia, 6 circles of 10 s I/10 s R, wortmannin (10(-7) mol/L) followed by 60 min R; Wort: 30 min ischemia, wortmannin (10(-7) mol/L) followed by 60 min R. Left ventricular systolic pressure and coronary artery flow were significantly increased, myocardial infarction size and the release of CPK, LDH significantly reduced in Post group compared to that in IR group. Phospho-protein kinase B/Akt (Ser473) and phospho-glycogen synthase kinase-3beta (Ser9) levels were also significantly higher in Post group than that in IR group. Phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin prevented the increase of phospho-protein kinase B/Akt (Ser473) and phospho-glycogen synthase kinase-3beta (Ser9) induced by ischemic postconditioning, but only partly abolished the cardioprotection of ischemic postconditioning. Ischemic postconditioning attenuates ischemia/reperfusion injury in isolated hypertrophied rat heart. The cardioprotective effects of ischemic postconditioning were partly mediated through PI3K/Akt/GSK-3beta signaling pathway.
Chen, Linyan; Cai, Ping; Cheng, Zhendong; Zhang, Zaibao; Fang, Jun
2017-07-01
Diabetes is an independent risk factor for myocardial ischemia, and many epidemiological data and laboratory studies have revealed that diabetes significantly exacerbated myocardial ischemia/reperfusion injury and ameliorated protective effects. The present study aimed to determine whether pharmacological postconditioning with atorvastatin calcium lessened diabetic myocardial ischemia/reperfusion injury, and investigated the role of glycogen synthase kinase (GSK3β) in this. A total of 72 streptozotocin-induced diabetic rats were randomly divided into six groups, and 24 age-matched male non-diabetic Sprague-Dawley rats were randomly divided into two groups. Rats all received 40 min myocardial ischemia followed by 180 min reperfusion, except sham-operated groups. Compared with the non-diabetic ischemia/reperfusion model group, the diabetic ischemia/reperfusion group had a comparable myocardial infarct size, but a higher level of serum cardiac troponin I (cTnI) and morphological alterations to their myocardial cells. Compared with the diabetic ischemia/reperfusion group, the group that received pharmacological postconditioning with atorvastatin calcium had smaller myocardial infarct sizes, lower levels of cTnI, reduced morphological alterations to myocardial cells, higher levels of p-GSK3β, heat shock factor (HSF)-1 and heat shock protein (HSP)70. The cardioprotective effect conferred by atorvastatin calcium did not attenuate myocardial ischemia/reperfusion injury following application of TDZD-8, which phosphorylates and inactivates GSK3β. Pharmacological postconditioning with atorvastatin calcium may attenuate diabetic heart ischemia/reperfusion injury in the current context. The phosphorylation of GSK3β serves a critical role during the cardioprotection in diabetic rats, and p-GSK3β may accelerate HSP70 production partially by activating HSF-1 during myocardial ischemic/reperfusion injury.
Dictionary-driven Ischemia Detection from Cardiac Phase-Resolved Myocardial BOLD MRI at Rest
Bevilacqua, Marco; Dharmakumar, Rohan; Tsaftaris, Sotirios A.
2016-01-01
Cardiac Phase-resolved Blood-Oxygen-Level Dependent (CP–BOLD) MRI provides a unique opportunity to image an ongoing ischemia at rest. However, it requires post-processing to evaluate the extent of ischemia. To address this, here we propose an unsupervised ischemia detection (UID) method which relies on the inherent spatio-temporal correlation between oxygenation and wall motion to formalize a joint learning and detection problem based on dictionary decomposition. Considering input data of a single subject, it treats ischemia as an anomaly and iteratively learns dictionaries to represent only normal observations (corresponding to myocardial territories remote to ischemia). Anomaly detection is based on a modified version of One-class Support Vector Machines (OCSVM) to regulate directly the margins by incorporating the dictionary-based representation errors. A measure of ischemic extent (IE) is estimated, reflecting the relative portion of the myocardium affected by ischemia. For visualization purposes an ischemia likelihood map is created by estimating posterior probabilities from the OCSVM outputs, thus obtaining how likely the classification is correct. UID is evaluated on synthetic data and in a 2D CP–BOLD data set from a canine experimental model emulating acute coronary syndromes. Comparing early ischemic territories identified with UID against infarct territories (after several hours of ischemia), we find that IE, as measured by UID, is highly correlated (Pearson’s r = 0.84) w.r.t. infarct size. When advances in automated registration and segmentation of CP–BOLD images and full coverage 3D acquisitions become available, we hope that this method can enable pixel-level assessment of ischemia with this truly non-invasive imaging technique. PMID:26292338
Mathematical Modeling of Ischemia-Reperfusion Injury and Postconditioning Therapy.
Fong, D; Cummings, L J
2017-11-01
Reperfusion (restoration of blood flow) after a period of ischemia (interruption of blood flow) can paradoxically place tissues at risk of further injury: so-called ischemia-reperfusion injury or IR injury. Recent studies have shown that postconditioning (intermittent periods of further ischemia applied during reperfusion) can reduce IR injury. We develop a mathematical model to describe the reperfusion and postconditioning process following an ischemic insult, treating the blood vessel as a two-dimensional channel, lined with a monolayer of endothelial cells that interact (respiration and mechanotransduction) with the blood flow. We investigate how postconditioning affects the total cell density within the endothelial layer, by varying the frequency of the pulsatile flow and the oxygen concentration at the inflow boundary. We find that, in the scenarios we consider, the pulsatile flow should be of high frequency to minimize cellular damage, while oxygen concentration at the inflow boundary should be held constant, or subject to only low-frequency variations, to maximize cell proliferation.
Shin, Bich Na; Ahn, Ji Hyeon; Kim, In Hye; Lee, Jae-Chul; Yoo, Ki-Yeon; Hwang, In Koo; Choi, Jung Hoon; Park, Jeong Ho; Lee, Yun Lyul; Suh, Hong-Won; Jun, Jong-Gab; Kwon, Young-Guen; Kim, Young-Myeong; Kwon, Seung-Hae; Her, Song; Kim, Jin Su; Hyun, Byung-Hwa; Kim, Chul-Kyu; Cho, Jun Hwi; Lee, Choong Hyun; Won, Moo-Ho
2013-01-01
Stroke is the second leading cause of death. Experimental animal models of cerebral ischemia are widely used for researching mechanisms of ischemic damage and developing new drugs for the prevention and treatment of stroke. The present study aimed to comparatively investigate neuroprotective effects of aspirin (ASA), decursinol (DA) and new synthetic aspirin-decursinol adduct (ASA-DA) against transient focal and global cerebral ischemic damage. We found that treatment with 20 mg/kg, not 10 mg/kg, ASA-DA protected against ischemia-induced neuronal death after transient focal and global ischemic damage, and its neuroprotective effect was much better than that of ASA or DA alone. In addition, 20 mg/kg ASA-DA treatment reduced the ischemia-induced gliosis and maintained antioxidants levels in the corresponding injury regions. In brief, ASA-DA, a new synthetic drug, dramatically protected neurons from ischemic damage, and neuroprotective effects of ASA-DA may be closely related to the attenuation of ischemia-induced gliosis and maintenance of antioxidants. PMID:24073226
The increase in the number of astrocytes in the total cerebral ischemia model in rats
NASA Astrophysics Data System (ADS)
Kudabayeva, M.; Kisel, A.; Chernysheva, G.; Smol'yakova, V.; Plotnikov, M.; Khodanovich, M.
2017-08-01
Astrocytes are the most abundant cell class in the CNS. Astrocytic therapies have a huge potential for neuronal repair after stroke. The majority of brain stroke studies address the damage to neurons. Modern studies turn to the usage of morphological and functional changes in astroglial cells after stroke in regenerative medicine. Our study is focused on the changes in the number of astrocytes in the hippocampus (where new glia cells divide) after brain ischemia. Ischemia was modeled by occlusion of tr. brachiocephalicus, a. subclavia sin., a. carotis communis sin. Astrocytes were determined using immunohistochemical labeling with anti GFAP antibody. We found out that the number of astrocytes increased on the 10th and 30th days after stroke in the CA1, CA2 fields, the granular layer of dentate gyrus (GrDG) and hilus. The morphology of astrocytes became reactive in these regions. Therefore, our results revealed long-term reactive astrogliosis in the hippocampus region after total ischemia in rats.
Yan, Bing Chun; Park, Joon Ha; Shin, Bich Na; Ahn, Ji Hyeon; Kim, In Hye; Lee, Jae-Chul; Yoo, Ki-Yeon; Hwang, In Koo; Choi, Jung Hoon; Park, Jeong Ho; Lee, Yun Lyul; Suh, Hong-Won; Jun, Jong-Gab; Kwon, Young-Guen; Kim, Young-Myeong; Kwon, Seung-Hae; Her, Song; Kim, Jin Su; Hyun, Byung-Hwa; Kim, Chul-Kyu; Cho, Jun Hwi; Lee, Choong Hyun; Won, Moo-Ho
2013-01-01
Stroke is the second leading cause of death. Experimental animal models of cerebral ischemia are widely used for researching mechanisms of ischemic damage and developing new drugs for the prevention and treatment of stroke. The present study aimed to comparatively investigate neuroprotective effects of aspirin (ASA), decursinol (DA) and new synthetic aspirin-decursinol adduct (ASA-DA) against transient focal and global cerebral ischemic damage. We found that treatment with 20 mg/kg, not 10 mg/kg, ASA-DA protected against ischemia-induced neuronal death after transient focal and global ischemic damage, and its neuroprotective effect was much better than that of ASA or DA alone. In addition, 20 mg/kg ASA-DA treatment reduced the ischemia-induced gliosis and maintained antioxidants levels in the corresponding injury regions. In brief, ASA-DA, a new synthetic drug, dramatically protected neurons from ischemic damage, and neuroprotective effects of ASA-DA may be closely related to the attenuation of ischemia-induced gliosis and maintenance of antioxidants.
Orbay, Hakan; Zhang, Yin; Hong, Hao; Hacker, Timothy A; Valdovinos, Hector F; Zagzebski, James A; Theuer, Charles P; Barnhart, Todd E; Cai, Weibo
2013-07-01
The goal of this study was to assess ischemia-induced angiogenesis with (64)Cu-NOTA-TRC105 positron emission tomography (PET) in a murine hindlimb ischemia model of peripheral artery disease (PAD). CD105 binding affinity/specificity of NOTA-conjugated TRC105 (an anti-CD105 antibody) was evaluated by flow cytometry, which exhibited no difference from unconjugated TRC105. BALB/c mice were anesthetized, and the right femoral artery was ligated to induce hindlimb ischemia, with the left hindlimb serving as an internal control. Laser Doppler imaging showed that perfusion in the ischemic hindlimb plummeted to ∼ 20% of the normal level after surgery and gradually recovered to near normal level on day 24. Ischemia-induced angiogenesis was noninvasively monitored and quantified with (64)Cu-NOTA-TRC105 PET on postoperative days 1, 3, 10, 17, and 24. (64)Cu-NOTA-TRC105 uptake in the ischemic hindlimb increased significantly from the control level of 1.6 ± 0.2 %ID/g to 14.1 ± 1.9 %ID/g at day 3 (n = 3) and gradually decreased with time (3.4 ± 1.9 %ID/g at day 24), which correlated well with biodistribution studies performed on days 3 and 24. Blocking studies confirmed the CD105 specificity of tracer uptake in the ischemic hindlimb. Increased CD105 expression on days 3 and 10 following ischemia was confirmed by histology and reverse transcription polymerase chain reaction (RT-PCR). This is the first report of PET imaging of CD105 expression during ischemia-induced angiogenesis. (64)Cu-NOTA-TRC105 PET may play multiple roles in future PAD-related research and improve PAD patient management by identifying the optimal timing of treatment and monitoring the efficacy of therapy.
Shiroshita-Takeshita, Akiko; Sakabe, Masao; Haugan, Ketil; Hennan, James K; Nattel, Stanley
2007-01-23
Abnormal intercellular communication caused by connexin dysfunction may be involved in atrial fibrillation (AF). The present study assessed the effect of the gap junctional conduction-enhancing peptide rotigaptide on AF maintenance in substrates that result from congestive heart failure induced by 2-week ventricular tachypacing (240 bpm), atrial tachypacing (ATP; 400 bpm for 3 to 6 weeks), and isolated atrial myocardial ischemia. Electrophysiological study and epicardial mapping were performed before and after rotigaptide administration in dogs with ATP and congestive heart failure, as well as in similarly instrumented sham dogs that were not tachypaced. For atrial myocardial ischemia, dogs administered rotigaptide before myocardial ischemia were compared with no-drug myocardial ischemia controls. ATP significantly shortened the atrial effective refractory period (P=0.003) and increased AF duration (P=0.008), with AF lasting >3 hours in all 6-week ATP animals. Rotigaptide increased conduction velocity in ATP dogs slightly but significantly (P=0.04) and did not affect the effective refractory period, AF duration, or atrial vulnerability. In dogs with congestive heart failure, rotigaptide also slightly increased conduction velocity (P=0.046) but failed to prevent AF promotion. Rotigaptide had no statistically significant effects in sham dogs. Myocardial ischemia alone increased AF duration and impaired conduction (based on conduction velocity across the ischemic border and indices of conduction heterogeneity). Rotigaptide prevented myocardial ischemia-induced conduction slowing and AF duration increases. Rotigaptide improves conduction in various AF models but suppresses AF only for the acute ischemia substrate. These results define the atrial antiarrhythmic profile of a mechanistically novel antiarrhythmic drug and suggest that gap junction dysfunction may be more important in ischemic AF than in ATP remodeling or congestive heart failure substrates.
Johnsen, Jacob; Pryds, Kasper; Salman, Rasha; Løfgren, Bo; Kristiansen, Steen Buus; Bøtker, Hans Erik
2016-03-01
Remote ischemic preconditioning (rIPC), induced by cycles of transient limb ischemia and reperfusion (IR), is cardioprotective. The optimal rIPC-algorithm is not established. We investigated the effect of cycle numbers and ischemia duration within each rIPC-cycle and the influence of effector organ mass on the efficacy of cardioprotection. Furthermore, the duration of the early phase of protection by rIPC was investigated. Using a tourniquet tightened at the inguinal level, we subjected C57Bl/6NTac mice to intermittent hind-limb ischemia and reperfusion. The rIPC-protocols consisted of (I) two, four, six or eight cycles, (II) 2, 5 or 10 min of ischemia in each cycle, (III) single or two hind-limb occlusions and (IV) 0.5, 1.5, 2.0 or 2.5 h intervals from rIPC to index cardiac ischemia. All rIPC algorithms were followed by 5 min of reperfusion. The hearts were subsequently exposed to 25 min of global ischemia and 60 min of reperfusion in an ex vivo Langendorff model. Cardioprotection was evaluated by infarct size and post-ischemic hemodynamic recovery. Four to six rIPC cycles yielded significant cardioprotection with no further protection by eight cycles. Ischemic cycles lasting 2 min offered the same protection as cycles of 5 min ischemia, whereas prolonged cycles lasting 10 min abrogated protection. One and two hind-limb preconditioning were equally protective. In our mouse model, the duration of protection by rIPC was 1.5 h. These findings indicate that the number and duration of cycles rather than the tissue mass exposed to rIPC determines the efficacy of rIPC.
Erfani, Sohaila; Khaksari, Mehdi; Oryan, Shahrbanoo; Shamsaei, Nabi; Aboutaleb, Nahid; Nikbakht, Farnaz
2015-05-01
Nicotinamide phosphoribosyl transferase/pre-B cell colony-enhancing factor/visfatin (Nampt/PBEF/visfatin) is an adipocytokine. By synthesizing nicotinamide adenine dinucleotide (NAD(+)), Nampt/PBEF/visfatin functions to maintain an energy supply that has critical roles in cell survival. Cerebral ischemia leads to energy depletion and eventually neuronal death by apoptosis in specific brain regions specially the hippocampus. However, the role of Nampt/PBEF/visfatin in brain and cerebral ischemia remains to be investigated. This study investigated the role of administration Nampt/PBEF/visfatin in hippocampal CA3 area using a transient global cerebral ischemia model. Both common carotid arteries were occluded for 20 min followed by reperfusion. Saline as a vehicle and Nampt/PBEF/visfatin at a dose of 100 ng were injected intracerebroventricularly (ICV) at the time of cerebral reperfusion. To investigate the underlying mechanisms of Nampt/PBEF/visfatin neuroprotection, levels of expression of apoptosis-related proteins (caspase-3 activation, Bax protein levels, and Bcl-2 protein levels) 96 h after ischemia were determined by immunohistochemical staining. The number of active caspase-3-positive neurons in CA3 was significantly increased in the ischemia group, compared with the sham group (P < 0.001), and treatment with Nampt/PBEF/visfatin significantly reduced the ischemia/reperfusion-induced caspase-3 activation, compared to the ischemia group (P < 0.05). Also, results indicated a significant increase in Bax/Bcl-2 ratio in the ischemia group, compared with the sham group (P < 0.01). However, treatment with Nampt/PBEF/visfatin significantly attenuated the ischemia/reperfusion-induced increase in Bax/Bcl-2 ratio, compared with the ischemia group (P < 0.05). This study has indicated that Nampt/PBEF/visfatin entails neuroprotective effects against ischemia injury when used at the time of cerebral reperfusion. These neuroprotective mechanisms of Nampt/PBEF/visfatin occur through decrease the expression ofproapoptotic proteins (cleaved caspase-3 and Bax) and, on the other hand, increase the expression ofantiapoptotic proteins (Bcl-2). Thus, our findings indicate that Nampt/PBEF/visfatin is a new therapeutic target for cerebral ischemia.
Fogtmann, Mads; Seshamani, Sharmishtaa; Kroenke, Christopher; Cheng, Xi; Chapman, Teresa; Wilm, Jakob; Rousseau, François
2014-01-01
This paper presents an approach to 3-D diffusion tensor image (DTI) reconstruction from multi-slice diffusion weighted (DW) magnetic resonance imaging acquisitions of the moving fetal brain. Motion scatters the slice measurements in the spatial and spherical diffusion domain with respect to the underlying anatomy. Previous image registration techniques have been described to estimate the between slice fetal head motion, allowing the reconstruction of 3-D a diffusion estimate on a regular grid using interpolation. We propose Approach to Unified Diffusion Sensitive Slice Alignment and Reconstruction (AUDiSSAR) that explicitly formulates a process for diffusion direction sensitive DW-slice-to-DTI-volume alignment. This also incorporates image resolution modeling to iteratively deconvolve the effects of the imaging point spread function using the multiple views provided by thick slices acquired in different anatomical planes. The algorithm is implemented using a multi-resolution iterative scheme and multiple real and synthetic data are used to evaluate the performance of the technique. An accuracy experiment using synthetically created motion data of an adult head and a experiment using synthetic motion added to sedated fetal monkey dataset show a significant improvement in motion-trajectory estimation compared to a state-of-the-art approaches. The performance of the method is then evaluated on challenging but clinically typical in utero fetal scans of four different human cases, showing improved rendition of cortical anatomy and extraction of white matter tracts. While the experimental work focuses on DTI reconstruction (second-order tensor model), the proposed reconstruction framework can employ any 5-D diffusion volume model that can be represented by the spatial parameterizations of an orientation distribution function. PMID:24108711
Wang, Pei; Xu, Tian-Ying; Wei, Kai; Guan, Yun-Feng; Wang, Xia; Xu, Hui; Su, Ding-Feng; Pei, Gang; Miao, Chao-Yu
2014-01-01
Autophagy, a highly conserved process conferring cytoprotection against stress, contributes to the progression of cerebral ischemia. β-arrestins are multifunctional proteins that mediate receptor desensitization and serve as important signaling scaffolds involved in numerous physiopathological processes. Here, we show that both ARRB1 (arrestin, β 1) and ARRB2 (arrestin, β 2) were upregulated by cerebral ischemic stress. Knockout of Arrb1, but not Arrb2, aggravated the mortality, brain infarction, and neurological deficit in a mouse model of cerebral ischemia. Accordingly, Arrb1-deficient neurons exhibited enhanced cell injury upon oxygen-glucose deprivation (OGD), an in vitro model of ischemia. Deletion of Arrb1 did not affect the cerebral ischemia-induced inflammation, oxidative stress, and nicotinamide phosphoribosyltransferase upregulation, but markedly suppressed autophagy and induced neuronal apoptosis/necrosis in vivo and in vitro. Additionally, we found that ARRB1 interacted with BECN1/Beclin 1 and PIK3C3/Vps34, 2 major components of the BECN1 autophagic core complex, under the OGD condition but not normal conditions in neurons. Finally, deletion of Arrb1 impaired the interaction between BECN1 and PIK3C3, which is a critical event for autophagosome formation upon ischemic stress, and markedly reduced the kinase activity of PIK3C3. These findings reveal a neuroprotective role for ARRB1, in the context of cerebral ischemia, centered on the regulation of BECN1-dependent autophagosome formation. PMID:24988431
Drying characteristics and modeling of yam slices under different relative humidity conditions
USDA-ARS?s Scientific Manuscript database
The drying characteristics of yam slices under different 23 constant relative humidity (RH) and step-down RH levels were studied. A mass transfer model was developed based on Bi-Di correlations containing a drying coefficient and a lag factor to describe the drying process. It was validated using ex...
Stabilization of a finite slice in miscible displacement in homogeneous porous media
NASA Astrophysics Data System (ADS)
Pramanik, Satyajit; Mishra, Manoranjan
2016-11-01
We numerically studied the miscible displacement of a finite slice of variable viscosity and density. The stability of the finite slice depends on different flow parameters, such as displacement velocity U, mobility ratio R , and the density contrast. Series of numerical simulations corresponding to different ordered pair (R, U) in the parameter space, and a given density contrast reveal six different instability regions. We have shown that independent of the width of the slice, there always exists a region of stable displacement, and below a critical value of the slice width, this stable region increases with decreasing slice width. Further we observe that the viscous fingering (buoyancy-induced instability) at the upper interface induces buoyancy-induced instability (viscous fingering) at the lower interface. Besides the fundamental fluid dynamics understanding, our results can be helpful to model CO2 sequestration and chromatographic separation.
Estimation of cauliflower mass transfer parameters during convective drying
NASA Astrophysics Data System (ADS)
Sahin, Medine; Doymaz, İbrahim
2017-02-01
The study was conducted to evaluate the effect of pre-treatments such as citric acid and hot water blanching and air temperature on drying and rehydration characteristics of cauliflower slices. Experiments were carried out at four different drying air temperatures of 50, 60, 70 and 80 °C with the air velocity of 2.0 m/s. It was observed that drying and rehydration characteristics of cauliflower slices were greatly influenced by air temperature and pre-treatment. Six commonly used mathematical models were evaluated to predict the drying kinetics of cauliflower slices. The Midilli et al. model described the drying behaviour of cauliflower slices at all temperatures better than other models. The values of effective moisture diffusivities ( D eff ) were determined using Fick's law of diffusion and were between 4.09 × 10-9 and 1.88 × 10-8 m2/s. Activation energy was estimated by an Arrhenius type equation and was 23.40, 29.09 and 26.39 kJ/mol for citric acid, blanch and control samples, respectively.
An overview of 5G network slicing architecture
NASA Astrophysics Data System (ADS)
Chen, Qiang; Wang, Xiaolei; Lv, Yingying
2018-05-01
With the development of mobile communication technology, the traditional single network model has been unable to meet the needs of users, and the demand for differentiated services is increasing. In order to solve this problem, the fifth generation of mobile communication technology came into being, and as one of the key technologies of 5G, network slice is the core technology of network virtualization and software defined network, enabling network slices to flexibly provide one or more network services according to users' needs[1]. Each slice can independently tailor the network functions according to the requirements of the business scene and the traffic model and manage the layout of the corresponding network resources, to improve the flexibility of network services and the utilization of resources, and enhance the robustness and reliability of the whole network [2].
Altinay, Serdar; Cabalar, Murat; Isler, Cihan; Yildirim, Funda; Celik, Duygu S; Zengi, Oguzhan; Tas, Abdurrahim; Gulcubuk, Ahmet
2017-01-01
To investigate the neuroprotective effect of chronic curcumin supplementation on the rat forebrain prior to ischemia and reperfusion. Forebrain ischemia was induced by bilateral common carotid artery occlusion for 1/2 hour, followed by reperfusion for 72 hours. Older rats were divided into five groups: Group I received 300 mg/kg oral curcumin for 21 days before ischemia and 300 mg/kg intraperitoneal curcumin after ischemia; Group II received 300 mg/kg intraperitoneal curcumin after ischemia; Group III received 300 mg/kg oral curcumin for 21 days before ischemia; Group IV had only ischemia; Group V was the sham-operated group. The forebrain was rapidly dissected for biochemical parameter assessment and histopathological examination. In forebrain tissue, enzyme activities of superoxide dismutase, glutathione peroxidase, and catalase were significantly higher in Group I than Groups II or III (p < 0.05) while xanthine dehydrogenase and malondialdehyde enzyme activities and concentrations of interleukin-6 and TNF-alpha were significantly lower in Group I when compared to Groups II and III (p < 0.05). A significant reduction in neurological score was observed after 24 and 72 hours in the curcumin-treated groups compared with the ischemic group. We also found a marked reduction in apoptotic index after 72 hours in the groups receiving curcumin. Significantly more TUNEL-positive cells were observed in the ischemic group compared to those treated with curcumin. We demonstrated the neuroprotective effect of chronic curcumin supplement on biochemical parameters, neurological scores and apoptosis following ischemia and reperfusion injury in rats.
Izumi, So; Okada, Kenji; Hasegawa, Tomomi; Omura, Atsushi; Munakata, Hiroshi; Matsumori, Masamichi; Okita, Yutaka
2010-05-01
Paraplegia from spinal cord ischemia remains an unresolved complication in thoracoabdominal aortic surgery, with high morbidity and mortality. This study investigated postoperative effects of systemic blood pressure augmentation during ischemia. Spinal cord ischemia was induced in rabbits by infrarenal aortic occlusion for 15 minutes with infused phenylephrine (high blood pressure group, n = 8) or nitroprusside (low blood pressure group, n = 8) or without vasoactive agent (control, n = 8). Spinal cord blood flow, transcranial motor evoked potentials, neurologic outcome, and motor neuron cell damage (apoptosis, necrosis, superoxide generation, myeloperoxidase activity) were evaluated. Mean arterial pressures during ischemia were controlled at 121.9 +/- 2.8, 50.8 +/- 4.3, and 82.3 +/- 10.7 mm Hg in high blood pressure, low blood pressure, and control groups, respectively. In high blood pressure group, high spinal cord blood flow (P < .01), fast recovery of transcranial motor evoked potentials (P < .01), and high neurologic score (P < .05) were observed after ischemia relative to low blood pressure and control groups. At 48 hours after ischemia, there were significantly more viable neurons, fewer terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling-positive neurons, and less alpha-fodrin expression in high blood pressure group than low blood pressure and control groups. Superoxide generation and myeloperoxidase activity at 3 hours after ischemia were suppressed in high blood pressure group relative to low blood pressure group. Augmentation of systemic blood pressure during spinal cord ischemia can reduce ischemic insult and postoperative neurologic adverse events. 2010 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.
Olivetto, E; Simoni, E; Guaran, V; Astolfi, L; Martini, A
2015-09-01
Hearing loss may be genetic, associated with aging or exposure to noise or ototoxic substances. Its aetiology can be attributed to vascular injury, trauma, tumours, infections or autoimmune response. All these factors could be related to alterations in cochlear microcirculation resulting in hypoxia, which in turn may damage cochlear hair cells and neurons, leading to deafness. Hypoxia could underlie the aetiology of deafness, but very few data about it are presently available. The aim of this work is to develop animal models of hypoxia and ischemia suitable for study of cochlear vascular damage, characterizing them by electrophysiology and gene/protein expression analyses. The effects of hypoxia in infarction were mimicked in rat by partial permanent occlusion of the left coronary artery, and those of ischemia in thrombosis by complete temporary carotid occlusion. In our models both hypoxia and ischemia caused a small but significant hearing loss, localized at the cochlear apex. A slight induction of the coagulation cascade and of oxidative stress pathways was detected as cell survival mechanism, and cell damages were found on the cuticular plate of outer hair cells only after carotid ischemia. Based on these data, the two developed models appear suitable for in vivo studies of cochlear vascular damage. Copyright © 2015 Elsevier B.V. All rights reserved.
MacAskill, Mark G; Saif, Jaimy; Condie, Alison; Jansen, Maurits A; MacGillivray, Thomas J; Tavares, Adriana A S; Fleisinger, Lucija; Spencer, Helen L; Besnier, Marie; Martin, Ernesto; Biglino, Giovanni; Newby, David E; Hadoke, Patrick W F; Mountford, Joanne C; Emanueli, Costanza; Baker, Andrew H
2018-03-28
Pluripotent stem cell-derived differentiated endothelial cells offer high potential in regenerative medicine in the cardiovascular system. With the aim of translating the use of a human stem cell-derived endothelial cell product (hESC-ECP) for treatment of critical limb ischemia (CLI) in man, we report a good manufacturing practice (GMP)-compatible protocol and detailed cell tracking and efficacy data in multiple preclinical models. The clinical-grade cell line RC11 was used to generate hESC-ECP, which was identified as mostly endothelial (60% CD31 + /CD144 + ), with the remainder of the subset expressing various pericyte/mesenchymal stem cell markers. Cell tracking using MRI, PET, and qPCR in a murine model of limb ischemia demonstrated that hESC-ECP was detectable up to day 7 following injection. Efficacy in several murine models of limb ischemia (immunocompromised/immunocompetent mice and mice with either type I/II diabetes mellitus) demonstrated significantly increased blood perfusion and capillary density. Overall, we demonstrate a GMP-compatible hESC-ECP that improved ischemic limb perfusion and increased local angiogenesis without engraftment, paving the way for translation of this therapy. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Haas, Sina; Jahnke, Heinz-Georg; Moerbt, Nora; von Bergen, Martin; Aharinejad, Seyedhossein; Andrukhova, Olena; Robitzki, Andrea A.
2012-01-01
Proteomic analysis of myocardial tissue from patient population is suited to yield insights into cellular and molecular mechanisms taking place in cardiovascular diseases. However, it has been limited by small sized biopsies and complicated by high variances between patients. Therefore, there is a high demand for suitable model systems with the capability to simulate ischemic and cardiotoxic effects in vitro, under defined conditions. In this context, we established an in vitro ischemia/reperfusion cardiac disease model based on the contractile HL-1 cell line. To identify pathways involved in the cellular alterations induced by ischemia and thereby defining disease-specific biomarkers and potential target structures for new drug candidates we used fluorescence 2D-difference gel electrophoresis. By comparing spot density changes in ischemic and reperfusion samples we detected several protein spots that were differentially abundant. Using MALDI-TOF/TOF-MS and ESI-MS the proteins were identified and subsequently grouped by functionality. Most prominent were changes in apoptosis signalling, cell structure and energy-metabolism. Alterations were confirmed by analysis of human biopsies from patients with ischemic cardiomyopathy. With the establishment of our in vitro disease model for ischemia injury target identification via proteomic research becomes independent from rare human material and will create new possibilities in cardiac research. PMID:22384053
Vinpocetine prevent ischemic cell damage in rat hippocampus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sauer, D.; Rischke, R.; Beck, T.
1988-01-01
The effects of vinpocetine on hippocampal cell damage and local cerebral blood flow (LCBF) were measured in a rat model of forebrain ischemia. Duration of ischemia was 10 min. LCBF was determined after 2 min of recirculation using the /sup 14/C-iodoantipyrine technique. Hippocampal cell loss was quantified histologically 7 days post-ischemia. Intraperitoneal application of vinpocetine 15 min prior to ischemia significantly reduced neuronal cell loss in hippocampal CA 1 sector from 60% to 28%. The drug led to a marked increase in blood flow in cortical areas, whereas LCBF remained unchanged in hippocampus and all other structures measured. It ismore » suggested that the protective effect of vinpocetine does not depend on increased postischemic blood flow.« less
Zhao, Ya-Ning; Li, Jian-Min; Chen, Chang-Xiang; Li, Shu-Xing; Xue, Cheng-Jing
2017-06-20
We discussed the intensity of treadmill running on learning, memory and expression of cell cycle-related proteins in rats with cerebral ischemia. Eighty healthy male SD rats were randomly divided into normal group, model group, intensity I group and intensity II group, with 20 rats in each group. The four-vessel occlusion method of Pulsinelli (4-VO) was used to induce global cerebral ischemia. Brain neuronal morphology was observed by hematoxylin-eosin (HE) staining at 3h, 6h, 24h and 48h after modeling, respectively. Hippocampal expressions of cyclin A and cyclin E were detected by immunohistochemistry. At 48h after modeling, the learning and memory performance of rats was tested by water maze experiment. Compared with the normal group, the other three groups had a significant reduction in surviving neurons, prolonging of escape latency and decreased number of passes over the former position of the platform (P<0.05). The number of surviving neurons and the number of passes over the former position of the platform were obviously lower in the model group than in intensity I group (P<0.05), but significantly higher compared with intensity II group (P<0.05). Escape latency of the model group was obviously prolonged as compared with intensity I group (P<0.05), but much shorter than that of intensity II group (P<0.05). Compared with the normal group, the expressions of cyclin A and cyclin E were significantly upregulated at different time points after modeling (P<0.05). The expression of the model group was higher than that of intensity I group, but lower than that of intensity II group (P<0.05). Moderate intensity of treadmill running can help protect brain neurons and improve learning and memory performance of rats with global cerebral ischemia. But high intensity of treadmill running has a negative impact, possibly through the regulation of cell cycle-related proteins in ischemia/reperfusion injury.
Minoxidil attenuates ischemia-induced apoptosis in cultured neonatal rat cardiomyocytes.
Takatani, Tomoka; Takahashi, Kyoko; Jin, Chengshi; Matsuda, Takahisa; Cheng, Xinyao; Ito, Takashi; Azuma, Junichi
2004-06-01
The effects of minoxidil (a mitochondrial K+(ATP) channel opener) on ischemia-induced necrosis and apoptosis were examined using a cardiomyocyte model of simulated ischemia, since mitochondrial K+(ATP) channel openers have been suggested to be involved in the mechanisms of cardioprotective action against ischemia/reperfusion injury. In the absence of minoxidil, simulated ischemia led to cellular release of creatine phosphokinase (CPK), morphologic degeneration, and beating cessation within 24 to 72 hours. Based on the Hoechst 33258 staining pattern, a significant number of cells placed in sealed flasks underwent apoptosis. Myocytes treated with 5 microM of minoxidil failed to alter the degree of ischemia-induced CPK loss for 48 to 72 hours. However, minoxidil treatment prevented the loss of beating function in many of the ischemic cells, and attenuated the decline in intracellular ATP content after a 48-hour ischemic incubation. The number of nuclear fragmentation was significantly reduced in minoxidil-treated cells after a 72-hour ischemic insult compared with untreated ischemic cells. This effect was blocked by the mitochondrial K+(ATP) channel antagonist 5-HD. The data suggest that minoxidil renders the cell resistant to ischemia-induced necrosis and apoptosis. The beneficial effects of minoxidil appear to be related to the opening of mitochondrial K+(ATP) channels.
Park, Jaeyeong; Kim, Jun-Young; Kim, Hyun Deok; Kim, Young Cheol; Seo, Anna; Je, Minkyu; Mun, Jong Uk; Kim, Bia; Park, Il Hyung; Kim, Shin-Yoon
2017-05-01
Radiographic measurements using two-dimensional (2D) plain radiographs or planes from computed tomography (CT) scans have several drawbacks, while measurements using images of three-dimensional (3D) reconstructed bone models can provide more consistent anthropometric information. We compared the consistency of results using measurements based on images of 3D reconstructed bone models (3D measurements) with those using planes from CT scans (measurements using 2D slice images). Ninety-six of 561 patients who had undergone deep vein thrombosis-CT between January 2013 and November 2014 were randomly selected. We evaluated measurements using 2D slice images and 3D measurements. The images used for 3D reconstruction of bone models were obtained and measured using [Formula: see text] and [Formula: see text] (Materialize, Leuven, Belgium). The mean acetabular inclination, acetabular anteversion and femoral anteversion values on 2D slice images were 42.01[Formula: see text], 18.64[Formula: see text] and 14.44[Formula: see text], respectively, while those using images of 3D reconstructed bone models were 52.80[Formula: see text], 14.98[Formula: see text] and 17.26[Formula: see text]. Intra-rater reliabilities for acetabular inclination, acetabular anteversion, and femoral anteversion on 2D slice images were 0.55, 0.81, and 0.85, respectively, while those for 3D measurements were 0.98, 0.99, and 0.98. Inter-rater reliabilities for acetabular inclination, acetabular anteversion and femoral anteversion on 2D slice images were 0.48, 0.86, and 0.84, respectively, while those for 3D measurements were 0.97, 0.99, and 0.97. The differences between the two measurements are explained by the use of different tools. However, more consistent measurements were possible using the images of 3D reconstructed bone models. Therefore, 3D measurement can be a good alternative to measurement using 2D slice images.
Kim, MiJung; Kim, Dong-Ik; Kim, Eun Key; Kim, Chan-Wha
2017-02-16
We investigated the effects of transplantation of CXCR4-overexpressing adipose tissue-derived stem cells (ADSCs) into a mouse diabetic hindlimb ischemia model on homing and engraftment as early as 48 h after transplant. CXCR4-overexpressing ADSCs were intramuscularly or intravenously injected into diabetic mice with hindlimb ischemia. After 48 h, muscle tissues in the femur and tibia were collected, and the CXCR4 expression pattern was analyzed by immunofluorescence staining. The homing and engraftment of transplanted CXCR4-overexpressing ADSCs into the ischemic area were significantly increased, and intravenous (systemic) injection resulted in the more effective delivery of stem cells to the target site 48 h posttransplantation. Furthermore, CXCR4-overexpressing ADSCs more efficiently contributed to long-term engraftment and muscle tissue regeneration than normal ADSCs in a limb ischemia model. In addition, the homing and engraftment of ADSCs were correlated with the CXCR4 transfection efficiency. These results demonstrated that enhanced CXCR4 signaling could significantly improve the early homing and engraftment of ADSCs into ischemic areas as well as the long-term engraftment and ultimate muscle tissue regeneration.
Christian, Sherri L; Ross, Austin P; Zhao, Huiwen W; Kristenson, Heidi J; Zhan, Xinhua; Rasley, Brian T; Bickler, Philip E; Drew, Kelly L
2009-01-01
Oxygen–glucose deprivation (OGD) initiates a cascade of intracellular responses that culminates in cell death in sensitive species. Neurons from Arctic ground squirrels (AGS), a hibernating species, tolerate OGD in vitro and global ischemia in vivo independent of temperature or torpor. Regulation of energy stores and activation of mitogen-activated protein kinase (MAPK) signaling pathways can regulate neuronal survival. We used acute hippocampal slices to investigate the role of ATP stores and extracellular signal-regulated kinase (ERK)1/2 and Jun NH2-terminal kinase (JNK) MAPKs in promoting survival. Acute hippocampal slices from AGS tolerated 30 mins of OGD and showed a small but significant increase in cell death with 2 h OGD at 37°C. This tolerance is independent of hibernation state or season. Neurons from AGS survive OGD despite rapid ATP depletion by 3 mins in interbout euthermic AGS and 10 mins in hibernating AGS. Oxygen–glucose deprivation does not induce JNK activation in AGS and baseline ERK1/2 and JNK activation is maintained even after drastic depletion of ATP. Surprisingly, inhibition of ERK1/2 or JNK during OGD had no effect on survival, whereas inhibition of JNK increased cell death during normoxia. Thus, protective mechanisms promoting tolerance to OGD by AGS are downstream from ATP loss and are independent of hibernation state or season. PMID:18398417
An MR-based Model for Cardio-Respiratory Motion Compensation of Overlays in X-Ray Fluoroscopy
Fischer, Peter; Faranesh, Anthony; Pohl, Thomas; Maier, Andreas; Rogers, Toby; Ratnayaka, Kanishka; Lederman, Robert; Hornegger, Joachim
2017-01-01
In X-ray fluoroscopy, static overlays are used to visualize soft tissue. We propose a system for cardiac and respiratory motion compensation of these overlays. It consists of a 3-D motion model created from real-time MR imaging. Multiple sagittal slices are acquired and retrospectively stacked to consistent 3-D volumes. Slice stacking considers cardiac information derived from the ECG and respiratory information extracted from the images. Additionally, temporal smoothness of the stacking is enhanced. Motion is estimated from the MR volumes using deformable 3-D/3-D registration. The motion model itself is a linear direct correspondence model using the same surrogate signals as slice stacking. In X-ray fluoroscopy, only the surrogate signals need to be extracted to apply the motion model and animate the overlay in real time. For evaluation, points are manually annotated in oblique MR slices and in contrast-enhanced X-ray images. The 2-D Euclidean distance of these points is reduced from 3.85 mm to 2.75 mm in MR and from 3.0 mm to 1.8 mm in X-ray compared to the static baseline. Furthermore, the motion-compensated overlays are shown qualitatively as images and videos. PMID:28692969
Kim, Yong Ho; Tong, Haiyan; Daniels, Mary; Boykin, Elizabeth; Krantz, Q Todd; McGee, John; Hays, Michael; Kovalcik, Kasey; Dye, Janice A; Gilmour, M Ian
2014-06-16
Emissions from a large peat fire in North Carolina in 2008 were associated with increased hospital admissions for asthma and the rate of heart failure in the exposed population. Peat fires often produce larger amounts of smoke and last longer than forest fires, however few studies have reported on their toxicity. Moreover, reliable alternatives to traditional animal toxicity testing are needed to reduce the number of animals required for hazard identification and risk assessments. Size-fractionated particulate matter (PM; ultrafine, fine, and coarse) were obtained from the peat fire while smoldering (ENCF-1) or when nearly extinguished (ENCF-4). Extracted samples were analyzed for chemical constituents and endotoxin content. Female CD-1 mice were exposed via oropharyngeal aspiration to 100 μg/mouse, and assessed for relative changes in lung and systemic markers of injury and inflammation. At 24 h post-exposure, hearts were removed for ex vivo functional assessments and ischemic challenge. Lastly, 8 mm diameter lung slices from CD-1 mice were exposed (11 μg) ± co-treatment of PM with polymyxin B (PMB), an endotoxin-binding compound. On an equi-mass basis, coarse ENCF-1 PM had the highest endotoxin content and elicited the greatest pro-inflammatory responses in the mice including: increases in bronchoalveolar lavage fluid protein, cytokines (IL-6, TNF-α, and MIP-2), neutrophils and intracellular reactive oxygen species (ROS) production. Exposure to fine or ultrafine particles from either period failed to elicit significant lung or systemic effects. In contrast, mice exposed to ENCF-1 ultrafine PM developed significantly decreased cardiac function and greater post-ischemia-associated myocardial infarction. Finally, similar exposures to mouse lung slices induced comparable patterns of cytokine production; and these responses were significantly attenuated by PMB. The findings suggest that exposure to coarse PM collected during a peat fire causes greater lung inflammation in association with endotoxin and ROS, whereas the ultrafine PM preferentially affected cardiac responses. In addition, lung tissue slices were shown to be a predictive, alternative assay to assess pro-inflammatory effects of PM of differing size and composition. Importantly, these toxicological findings were consistent with the cardiopulmonary health effects noted in epidemiologic reports from exposed populations.
2014-01-01
Background Emissions from a large peat fire in North Carolina in 2008 were associated with increased hospital admissions for asthma and the rate of heart failure in the exposed population. Peat fires often produce larger amounts of smoke and last longer than forest fires, however few studies have reported on their toxicity. Moreover, reliable alternatives to traditional animal toxicity testing are needed to reduce the number of animals required for hazard identification and risk assessments. Methods Size-fractionated particulate matter (PM; ultrafine, fine, and coarse) were obtained from the peat fire while smoldering (ENCF-1) or when nearly extinguished (ENCF-4). Extracted samples were analyzed for chemical constituents and endotoxin content. Female CD-1 mice were exposed via oropharyngeal aspiration to 100 μg/mouse, and assessed for relative changes in lung and systemic markers of injury and inflammation. At 24 h post-exposure, hearts were removed for ex vivo functional assessments and ischemic challenge. Lastly, 8 mm diameter lung slices from CD-1 mice were exposed (11 μg) ± co-treatment of PM with polymyxin B (PMB), an endotoxin-binding compound. Results On an equi-mass basis, coarse ENCF-1 PM had the highest endotoxin content and elicited the greatest pro-inflammatory responses in the mice including: increases in bronchoalveolar lavage fluid protein, cytokines (IL-6, TNF-α, and MIP-2), neutrophils and intracellular reactive oxygen species (ROS) production. Exposure to fine or ultrafine particles from either period failed to elicit significant lung or systemic effects. In contrast, mice exposed to ENCF-1 ultrafine PM developed significantly decreased cardiac function and greater post-ischemia-associated myocardial infarction. Finally, similar exposures to mouse lung slices induced comparable patterns of cytokine production; and these responses were significantly attenuated by PMB. Conclusions The findings suggest that exposure to coarse PM collected during a peat fire causes greater lung inflammation in association with endotoxin and ROS, whereas the ultrafine PM preferentially affected cardiac responses. In addition, lung tissue slices were shown to be a predictive, alternative assay to assess pro-inflammatory effects of PM of differing size and composition. Importantly, these toxicological findings were consistent with the cardiopulmonary health effects noted in epidemiologic reports from exposed populations. PMID:24934158
The Effect of Botulinum Toxin A on Ischemia-Reperfusion Injury in a Rat Model
2017-01-01
Introduction While studies using various materials to overcome ischemia-reperfusion (IR) injury are becoming increasingly common, studies on the effects of botulinum toxin A (BoTA) on IR injury in musculocutaneous flaps are still limited. The purpose of this study was to examine our hypotheses that BoTA provide protection of musculocutaneous flap from ischemia-reperfusion injury. Method Five days after pretreatment injection (BoTA versus normal saline), a right superior musculocutaneous flap (6 × 1.5 cm in size) was made. Ischemia was created by a tourniquet strictly wrapping the pedicle containing skin and muscle for 8 h. After ischemia, the tourniquet was cut, and the musculocutaneous flap was reperfused. Results The overall survival percentage of flap after 8 h of pedicle clamping followed by reperfusion was 87.32 ± 3.67% in the control group versus 95.64 ± 3.25% in the BoTA group (p < 0.001). The BoTA group had higher expression of CD34, HIF-1α, VEGF, and NF-kB comparing to control group in qRT-PCR analysis. Conclusions In this study, we found that local BoTA preconditioning yielded significant protection against IR injury in a rat musculocutaneous flap model. PMID:28589130
Ramos, Denise Barbosa; Muller, Gabriel Cardozo; Rocha, Guilherme Botter Maio; Dellavia, Gustavo Hirata; Almeida, Roberto Farina; Pettenuzzo, Leticia Ferreira; Loureiro, Samanta Oliveira; Hansel, Gisele; Horn, Ângelo Cássio Magalhães; Souza, Diogo Onofre; Ganzella, Marcelo
2016-03-01
In addition to its intracellular roles, the nucleoside guanosine (GUO) also has extracellular effects that identify it as a putative neuromodulator signaling molecule in the central nervous system. Indeed, GUO can modulate glutamatergic neurotransmission, and it can promote neuroprotective effects in animal models involving glutamate neurotoxicity, which is the case in brain ischemia. In the present study, we aimed to investigate a new in vivo GUO administration route (intranasal, IN) to determine putative improvement of GUO neuroprotective effects against an experimental model of permanent focal cerebral ischemia. Initially, we demonstrated that IN [(3)H] GUO administration reached the brain in a dose-dependent and saturable pattern in as few as 5 min, presenting a higher cerebrospinal GUO level compared with systemic administration. IN GUO treatment started immediately or even 3 h after ischemia onset prevented behavior impairment. The behavior recovery was not correlated to decreased brain infarct volume, but it was correlated to reduced mitochondrial dysfunction in the penumbra area. Therefore, we showed that the IN route is an efficient way to promptly deliver GUO to the CNS and that IN GUO treatment prevented behavioral and brain impairment caused by ischemia in a therapeutically wide time window.
Paulova, Hana; Stracina, Tibor; Jarkovsky, Jiri; Novakova, Marie; Taborska, Eva
2013-06-01
Ischemic and reperfusion injury is a serious condition related to numerous biochemical and electrical abnormalities of the myocardium. It has been repeatedly studied in various animal models. In this study, the production of hydroxyl radicals and electrophysiological parameters were compared in three species. Rat, guinea pig and rabbit isolated hearts were perfused according to Langendorff under strictly identical conditions. The heart rate and arrhythmia were monitored during ischemia and reperfusion periods at defined time intervals; the production of hydroxyl radical was determined by HPLC as 2.5-dihydroxybenzoic acid (2.5-DHBA) formed by salicylic acid hydroxylation. Relationship between arrhythmias and production of 2.5-DHBA was studied. The inter-species differences were observed in timing of arrhythmias onset and their severity, and in the production of 2.5-DHBA in both ischemia and reperfusion. The most considerable changes were observed in rats, where arrhythmias appeared early and with highest severity during ischemia on one side and the regular rhythm was restored early and completely during reperfusion. The corresponding changes in the production of 2.5-DHBA were observed. It can be concluded that rat isolated heart is the most suitable model for evaluation of ischemia/reperfusion injury under given experimental conditions.
Zhao, Hailin; Luo, Xianghong; Zhou, Zhaowei; Liu, Juying; Tralau-Stewart, Catherine; George, Andrew J T; Ma, Daqing
2014-01-01
Chronic allograft nephropathy (CAN) is a common finding in kidney grafts with functional impairment. Prolonged hypothermic storage-induced ischemia-reperfusion injury is associated with the early onset of CAN. As the noble gas xenon is clinically used as an anesthetic and has renoprotective properties in a rodent model of ischemia-reperfusion injury, we studied whether early treatment with xenon could attenuate CAN associated with prolonged hypothermic storage. Exposure to xenon enhanced the expression of insulin growth factor-1 (IGF-1) and its receptor in human proximal tubular (HK-2) cells, which, in turn, increased cell proliferation. Xenon treatment before or after hypothermia-hypoxia decreased cell apoptosis and cell inflammation after reoxygenation. The xenon-induced HK-2 cell proliferation was abolished by blocking the IGF-1 receptor, mTOR, and HIF-1α individually. In the Fischer-to-Lewis rat allogeneic renal transplantation model, xenon exposure of donors before graft retrieval or recipients after engraftment enhanced tubular cell proliferation and decreased tubular cell death and cell inflammation associated with ischemia-reperfusion injury. Compared with control allografts, xenon treatment significantly suppressed T-cell infiltration and fibrosis, prevented the development of CAN, and improved renal function. Thus, xenon treatment promoted recovery from ischemia-reperfusion injury and reduced susceptibility to the subsequent development of CAN in allografts.
The role of microglia and myeloid immune cells in acute cerebral ischemia
Benakis, Corinne; Garcia-Bonilla, Lidia; Iadecola, Costantino; Anrather, Josef
2015-01-01
The immune response to acute cerebral ischemia is a major contributor to stroke pathobiology. The inflammatory response is characterized by the participation of brain resident cells and peripheral leukocytes. Microglia in the brain and monocytes/neutrophils in the periphery have a prominent role in initiating, sustaining and resolving post-ischemic inflammation. In this review we aim to summarize recent literature concerning the origins, fate and role of microglia, monocytes and neutrophils in models of cerebral ischemia and to discuss their relevance for human stroke. PMID:25642168
Grading of Chinese Cantonese Sausage Using Hyperspectral Imaging Combined with Chemometric Methods
Gong, Aiping; Zhu, Susu; He, Yong; Zhang, Chu
2017-01-01
Fast and accurate grading of Chinese Cantonese sausage is an important concern for customers, organizations, and the industry. Hyperspectral imaging in the spectral range of 874–1734 nm, combined with chemometric methods, was applied to grade Chinese Cantonese sausage. Three grades of intact and sliced Cantonese sausages were studied, including the top, first, and second grades. Support vector machine (SVM) and random forests (RF) techniques were used to build two different models. Second derivative spectra and RF were applied to select optimal wavelengths. The optimal wavelengths were the same for intact and sliced sausages when selected from second derivative spectra, while the optimal wavelengths for intact and sliced sausages selected using RF were quite similar. The SVM and RF models, using full spectra and the optimal wavelengths, obtained acceptable results for intact and sliced sausages. Both models for intact sausages performed better than those for sliced sausages, with a classification accuracy of the calibration and prediction set of over 90%. The overall results indicated that hyperspectral imaging combined with chemometric methods could be used to grade Chinese Cantonese sausages, with intact sausages being better suited for grading. This study will help to develop fast and accurate online grading of Cantonese sausages, as well as other sausages. PMID:28757578
Schnorbusch, Kathy; Lembrechts, Robrecht; Brouns, Inge; Pintelon, Isabel; Timmermans, Jean-Pierre; Adriaensen, Dirk
2012-01-01
We recently developed an ex vivo lung slice model that allows for confocal live cell imaging (LCI) of neuroepithelial bodies (NEBs) in postnatal mouse lungs (postnatal days 1-21 and adult). NEBs are morphologically well-characterized, extensively innervated groups of neuroendocrine cells in the airway epithelium, which are shielded from the airway lumen by 'Clara-like' cells. The prominent presence of differentiated NEBs from early embryonic development onwards, strongly suggests that NEBs may exert important functions during late fetal and neonatal life. The main goal of the present study was to adapt the current postnatal LCI lung slice model to enable functional studies of fetal mouse lungs (gestational days 17-20).In vibratome lung slices of prenatal mice, NEBs could be unequivocally identified with the fluorescent stryryl pyridinium dye 4-Di-2-ASP. Changes in the intracellular free calcium concentration and in mitochondrial membrane potential could be monitored using appropriate functional fluorescent indicators (e.g. Fluo-4).It is clear that the described fetal mouse lung slice model is suited for LCI studies of Clara cells, ciliated cells, and the NEB microenvironment, and offers excellent possibilities to further unravel the significance of NEBs during the prenatal and perinatal period.
Automated detection of arterial input function in DSC perfusion MRI in a stroke rat model
NASA Astrophysics Data System (ADS)
Yeh, M.-Y.; Lee, T.-H.; Yang, S.-T.; Kuo, H.-H.; Chyi, T.-K.; Liu, H.-L.
2009-05-01
Quantitative cerebral blood flow (CBF) estimation requires deconvolution of the tissue concentration time curves with an arterial input function (AIF). However, image-based determination of AIF in rodent is challenged due to limited spatial resolution. We evaluated the feasibility of quantitative analysis using automated AIF detection and compared the results with commonly applied semi-quantitative analysis. Permanent occlusion of bilateral or unilateral common carotid artery was used to induce cerebral ischemia in rats. The image using dynamic susceptibility contrast method was performed on a 3-T magnetic resonance scanner with a spin-echo echo-planar-image sequence (TR/TE = 700/80 ms, FOV = 41 mm, matrix = 64, 3 slices, SW = 2 mm), starting from 7 s prior to contrast injection (1.2 ml/kg) at four different time points. For quantitative analysis, CBF was calculated by the AIF which was obtained from 10 voxels with greatest contrast enhancement after deconvolution. For semi-quantitative analysis, relative CBF was estimated by the integral divided by the first moment of the relaxivity time curves. We observed if the AIFs obtained in the three different ROIs (whole brain, hemisphere without lesion and hemisphere with lesion) were similar, the CBF ratios (lesion/normal) between quantitative and semi-quantitative analyses might have a similar trend at different operative time points. If the AIFs were different, the CBF ratios might be different. We concluded that using local maximum one can define proper AIF without knowing the anatomical location of arteries in a stroke rat model.
So, Aaron; Imai, Yasuhiro; Nett, Brian; Jackson, John; Nett, Liz; Hsieh, Jiang; Wisenberg, Gerald; Teefy, Patrick; Yadegari, Andrew; Islam, Ali; Lee, Ting-Yim
2016-08-01
The authors investigated the performance of a recently introduced 160-mm/256-row CT system for low dose quantitative myocardial perfusion (MP) imaging of the whole heart. This platform is equipped with a gantry capable of rotating at 280 ms per full cycle, a second generation of adaptive statistical iterative reconstruction (ASiR-V) to correct for image noise arising from low tube voltage potential/tube current dynamic scanning, and image reconstruction algorithms to tackle beam-hardening, cone-beam, and partial-scan effects. Phantom studies were performed to investigate the effectiveness of image noise and artifact reduction with a GE Healthcare Revolution CT system for three acquisition protocols used in quantitative CT MP imaging: 100, 120, and 140 kVp/25 mAs. The heart chambers of an anthropomorphic chest phantom were filled with iodinated contrast solution at different concentrations (contrast levels) to simulate the circulation of contrast through the heart in quantitative CT MP imaging. To evaluate beam-hardening correction, the phantom was scanned at each contrast level to measure the changes in CT number (in Hounsfield unit or HU) in the water-filled region surrounding the heart chambers with respect to baseline. To evaluate cone-beam artifact correction, differences in mean water HU between the central and peripheral slices were compared. Partial-scan artifact correction was evaluated from the fluctuation of mean water HU in successive partial scans. To evaluate image noise reduction, a small hollow region adjacent to the heart chambers was filled with diluted contrast, and contrast-to-noise ratio in the region before and after noise correction with ASiR-V was compared. The quality of MP maps acquired with the CT system was also evaluated in porcine CT MP studies. Myocardial infarct was induced in a farm pig from a transient occlusion of the distal left anterior descending (LAD) artery with a catheter-based interventional procedure. MP maps were generated from the dynamic contrast-enhanced (DCE) heart images taken at baseline and three weeks after the ischemic insult. Their results showed that the phantom and animal images acquired with the CT platform were minimally affected by image noise and artifacts. For the beam-hardening phantom study, changes in water HU in the wall surrounding the heart chambers greatly reduced from >±30 to ≤ ± 5 HU at all kVp settings except one region at 100 kVp (7 HU). For the cone-beam phantom study, differences in mean water HU from the central slice were less than 5 HU at two peripheral slices with each 4 cm away from the central slice. These findings were reproducible in the pig DCE images at two peripheral slices that were 6 cm away from the central slice. For the partial-scan phantom study, standard deviations of the mean water HU in 10 successive partial scans were less than 5 HU at the central slice. Similar observations were made in the pig DCE images at two peripheral slices with each 6 cm away from the central slice. For the image noise phantom study, CNRs in the ASiR-V images were statistically higher (p < 0.05) than the non-ASiR-V images at all kVp settings. MP maps generated from the porcine DCE images were in excellent quality, with the ischemia in the LAD territory clearly seen in the three orthogonal views. The study demonstrates that this CT system can provide accurate and reproducible CT numbers during cardiac gated acquisitions across a wide axial field of view. This CT number fidelity will enable this imaging tool to assess contrast enhancement, potentially providing valuable added information beyond anatomic evaluation of coronary stenoses. Furthermore, their results collectively suggested that the 100 kVp/25 mAs protocol run on this CT system provides sufficient image accuracy at a low radiation dose (<3 mSv) for whole-heart quantitative CT MP imaging.
Craft, Daniel F; Howell, Rebecca M
2017-09-01
Patient-specific 3D-printed phantoms have many potential applications, both research and clinical. However, they have been limited in size and complexity because of the small size of most commercially available 3D printers as well as material warping concerns. We aimed to overcome these limitations by developing and testing an effective 3D printing workflow to fabricate a large patient-specific radiotherapy phantom with minimal warping errors. In doing so, we produced a full-scale phantom of a real postmastectomy patient. We converted a patient's clinical CT DICOM data into a 3D model and then sliced the model into eleven 2.5-cm-thick sagittal slices. The slices were printed with a readily available thermoplastic material representing all body tissues at 100% infill, but with air cavities left open. Each slice was printed on an inexpensive and commercially available 3D printer. Once the printing was completed, the slices were placed together for imaging and verification. The original patient CT scan and the assembled phantom CT scan were registered together to assess overall accuracy. The materials for the completed phantom cost $524. The printed phantom agreed well with both its design and the actual patient. Individual slices differed from their designs by approximately 2%. Registered CT images of the assembled phantom and original patient showed excellent agreement. Three-dimensional printing the patient-specific phantom in sagittal slices allowed a large phantom to be fabricated with high accuracy. Our results demonstrate that our 3D printing workflow can be used to make large, accurate, patient-specific phantoms at 100% infill with minimal material warping error. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Wang, Jiehua; Hong, Zhuquan; Pan, Ying; Li, Guoqian
2017-01-01
Objective To observe the effect of adipose-derived stem cells (ADSCs) transplantation on the expression of netrin-1 in rats after focal cerebral ischemia. Methods Male SD rats were randomly divided into control group, model group and ADSC group. ADSCs were harvested and purified. Focal cerebral ischemia models were established in rats by the suture method. ADSCs were injected into the lateral ventricle of ADSC group rats and the same does of PBS was given to model group rats. At day 4, 7 and 14 after reperfusion, six rats were sacrificed to remove the brain tissues at each time point. The expression of netrin-1 was detected by reverse-transcription PCR, Western blotting and immunohistochemistry. Results Compared with the control group, the expression of netrin-1 in the brain tissues of the model group increased after focal cerebral ischemia, reached the peak at 4 days, and the expression of netrin-1 was significantly higher than that of the control group at each time point. Compared with the model group, the expression of netrin-1 in the ADSC group increased further, reached the peak at 7 days, and the expression of netrin-1 in the ADSC group was significantly higher than that of the model group at each time point. Conclusion ADSC transplantation could up-regulate the expression of netrin-1, and promote axon regeneration and the recovery of neurological functions.
NASA Astrophysics Data System (ADS)
Olweny, Ephrem O.; Tan, Yung K.; Faddegon, Stephen; Jackson, Neil; Wehner, Eleanor F.; Best, Sara L.; Park, Samuel K.; Thapa, Abhas; Cadeddu, Jeffrey A.; Zuzak, Karel J.
2012-03-01
Digital light processing hyperspectral imaging (DLP® HSI) was adapted for use during laparoscopic surgery by coupling a conventional laparoscopic light guide with a DLP-based Agile Light source (OL 490, Optronic Laboratories, Orlando, FL), incorporating a 0° laparoscope, and a customized digital CCD camera (DVC, Austin, TX). The system was used to characterize renal ischemia in a porcine model.
Using pancreas tissue slices for in situ studies of islet of Langerhans and acinar cell biology.
Marciniak, Anja; Cohrs, Christian M; Tsata, Vasiliki; Chouinard, Julie A; Selck, Claudia; Stertmann, Julia; Reichelt, Saskia; Rose, Tobias; Ehehalt, Florian; Weitz, Jürgen; Solimena, Michele; Slak Rupnik, Marjan; Speier, Stephan
2014-12-01
Studies on the cellular function of the pancreas are typically performed in vitro on its isolated functional units, the endocrine islets of Langerhans and the exocrine acini. However, these approaches are hampered by preparation-induced changes of cell physiology and the lack of an intact surrounding. We present here a detailed protocol for the preparation of pancreas tissue slices. This procedure is less damaging to the tissue and faster than alternative approaches, and it enables the in situ study of pancreatic endocrine and exocrine cell physiology in a conserved environment. Pancreas tissue slices facilitate the investigation of cellular mechanisms underlying the function, pathology and interaction of the endocrine and exocrine components of the pancreas. We provide examples for several experimental applications of pancreas tissue slices to study various aspects of pancreas cell biology. Furthermore, we describe the preparation of human and porcine pancreas tissue slices for the validation and translation of research findings obtained in the mouse model. Preparation of pancreas tissue slices according to the protocol described here takes less than 45 min from tissue preparation to receipt of the first slices.
Rengifo Valbuena, Carlos Augusto; Ávila Rodríguez, Marco Fidel; Céspedes Rubio, Angel
2013-01-01
Introduction: The pathophysiology of cerebral ischemia is essential for early diagnosis, neurologic recovery, the early onset of drug treatment and the prognosis of ischemic events. Experimental models of cerebral ischemia can be used to evaluate the cellular response phenomena and possible neurological protection by drugs. Objective: To characterize the cellular changes in the neuronal population and astrocytic response by the effect of Dimethyl Sulfoxide (DMSO) on a model of ischemia caused by cerebral embolism. Methods: Twenty Wistar rats were divided into four groups (n= 5). The infarct was induced with α-bovine thrombin (40 NIH/Unit.). The treated group received 90 mg (100 μL) of DMSO in saline (1:1 v/v) intraperitoneally for 5 days; ischemic controls received only NaCl (placebo) and two non-ischemic groups (simulated) received NaCl and DMSO respectively. We evaluated the neuronal (anti-NeuN) and astrocytic immune-reactivity (anti-GFAP). The results were analyzed by densitometry (NIH Image J-Fiji 1.45 software) and analysis of variance (ANOVA) with the Graph pad software (Prism 5). Results: Cerebral embolism induced reproducible and reliable lesions in the cortex and hippocampus (CA1)., similar to those of focal models. DMSO did not reverse the loss of post-ischemia neuronal immune-reactivity, but prevented the morphological damage of neurons, and significantly reduced astrocytic hyperactivity in the somato-sensory cortex and CA1 (p <0.001). Conclusions: The regulatory effect of DMSO on astrocyte hyperreactivity and neuronal-astroglial cytoarchitecture , gives it potential neuroprotective properties for the treatment of thromboembolic cerebral ischemia in the acute phase. PMID:24892319
Parrella, Edoardo; Porrini, Vanessa; Iorio, Rosa; Benarese, Marina; Lanzillotta, Annamaria; Mota, Mariana; Fusco, Mariella; Tonin, Paolo; Spano, PierFranco; Pizzi, Marina
2016-10-01
The combination of palmitoylethanolamide (PEA), an endogenous fatty acid amide belonging to the family of the N-acylethanolamines, and the flavonoid luteolin has been found to exert neuroprotective activities in a variety of mouse models of neurological disorders, including brain ischemia. Indirect findings suggest that the two molecules can reduce the activation of mastocytes in brain ischemia, thus modulating crucial cells that trigger the inflammatory cascade. Though, no evidence exists about a direct effect of PEA and luteolin on mast cells in experimental models of brain ischemia, either used separately or in combination. In order to fill this gap, we developed a novel cell-based model of severe brain ischemia consisting of primary mouse cortical neurons and cloned mast cells derived from mouse fetal liver (MC/9 cells) subjected to oxygen and glucose deprivation (OGD). OGD exposure promoted both mast cell degranulation and the release of lactate dehydrogenase (LDH) in a time-dependent fashion. MC/9 cells exacerbated neuronal damage in neuron-mast cells co-cultures exposed to OGD. Likewise, the conditioned medium derived from OGD-exposed MC/9 cells induced significant neurotoxicity in control primary neurons. PEA and luteolin pre-treatment synergistically prevented the OGD-induced degranulation of mast cells and reduced the neurotoxic potential of MC/9 cells conditioned medium. Finally, the association of the two drugs promoted a direct synergistic neuroprotection even in pure cortical neurons exposed to OGD. In summary, our results indicate that mast cells release neurotoxic factors upon OGD-induced activation. The association PEA-luteolin actively reduces mast cell-mediated neurotoxicity as well as pure neurons susceptibility to OGD. Copyright © 2016 Elsevier B.V. All rights reserved.
Ding-Zhou, Li; Marchand-Verrecchia, Catherine; Croci, Nicole; Plotkine, Michel; Margaill, Isabelle
2002-12-20
The role of nitric oxide (NO) in the development of post-ischemic cerebral infarction has been extensively examined, but fewer studies have investigated its role in other outcomes. In the present study, we first determined the temporal evolution of infarct volume, NO production, neurological deficit and blood-brain barrier disruption in a model of transient focal cerebral ischemia in mice. We then examined the effect of the nonselective NO-synthase inhibitor N(omega)-nitro-L-arginine-methylester (L-NAME). L-NAME given at 3 mg/kg 3 h after ischemia reduced by 20% the infarct volume and abolished the increase in brain NO production evaluated by its metabolites (nitrites/nitrates) 48 h after ischemia. L-NAME with this protocol also reduced the neurological deficit evaluated by the grip test and decreased by 65% the extravasation of Evans blue, an index of blood-brain barrier breakdown. These protective activities of L-NAME suggest that NO has multiple deleterious effects in cerebral ischemia.
Dreixler, John C.; Poston, Jacqueline N.; Balyasnikova, Irina; Shaikh, Afzhal R.; Tupper, Kelsey Y.; Conway, Sineadh; Boddapati, Venkat; Marcet, Marcus M.; Lesniak, Maciej S.; Roth, Steven
2014-01-01
Purpose. Delayed treatment after ischemia is often unsatisfactory. We hypothesized that injection of bone marrow stem cell (BMSC) conditioned medium after ischemia could rescue ischemic retina, and in this study we characterized the functional and histological outcomes and mechanisms of this neuroprotection. Methods. Retinal ischemia was produced in adult Wistar rats by increasing intraocular pressure for 55 minutes. Conditioned medium (CM) from rat BMSCs or unconditioned medium (uCM) was injected into the vitreous 24 hours after the end of ischemia. Recovery was assessed 7 days after ischemia using electroretinography, at which time we euthanized the animals and then prepared 4-μm-thick paraffin-embedded retinal sections. TUNEL and Western blot were used to identify apoptotic cells and apoptosis-related gene expression 24 hours after injections; that is, 48 hours after ischemia. Protein content in CM versus uCM was studied using tandem mass spectrometry, and bioinformatics methods were used to model protein interactions. Results. Intravitreal injection of CM 24 hours after ischemia significantly improved retinal function and attenuated cell loss in the retinal ganglion cell layer. CM attenuated postischemic apoptosis and apoptosis-related gene expression. By spectral counting, 19 proteins that met stringent identification criteria were increased in the CM compared to uCM; the majority were extracellular matrix proteins that mapped into an interactional network together with other proteins involved in cell growth and adhesion. Conclusions. By restoring retinal function, attenuating apoptosis, and preventing retinal cell loss after ischemia, CM is a robust means of delayed postischemic intervention. We identified some potential candidate proteins for this effect. PMID:24699381
[Protective effect of octreotide on liver warm ischemia reperfusion injury].
Li, Jie-qun; Qi, Hai-zhi; He, Zhi-jun; Hu, Wei; Si, Zhong-zhou; Li, Yi-ning
2006-10-01
To explore the protective effect of octreotide on liver warm ischemia-reperfusion injury and its possible mechanism. Pringle's maneuver liver ischemia-reperfusion models were established. Forty eight male Sprague Daweley rats were randomly divided into a sham operation group (S group, n=16), an ischemia-reperfusion group (I/R group, n=16) and an octreotide preconditioning group (OPC group, n=16). ALT and AST in the serum were measured at 30 min after the ischemia and 120 min after the reperfusion. The histomorphological changes and ultrastructure of hepatocellular were observed by optic and transmission electronic microscope. Hepatic adenine nucleotide levels and energy changes (EC) were determined by high performance liquid chromatography (HPLC). (1) At 30 min after the ischemia and 120 min after the reperfusion, the levels of ALT and AST in the serum of OPC group was lower than those in I/R group, whereas the levels of ATP and EC in the hepatic tissue were higher than those in the I/R group (P<0.01 or P<0.05). Compared with the I/R group, the injury of hepatocellular histomorphology and ultrastructure in the OPC group was abated. (2) At 30, 60, and 120 min after the reperfusion, the levels of ATP and EC in the OPC groups were higher than those in the I/R group. During the ischemia, the levels of ATP and EC in the OPC group dropped more slowly than those in the I/R group, but ATP and EC in the OPC groups rose more quickly than those in the I/R group during the reperfusion. Octreotide precondition can improve the hepatocellular energy reserve, and protect the liver from warm ischemia-reperfusion injury. The protective of octreotide on warm ischemia-reperfusion injury may be related to its influence on endocrine secretion.
Anuncibay-Soto, Berta; Pérez-Rodriguez, Diego; Santos-Galdiano, María; Font-Belmonte, Enrique; Ugidos, Irene F; Gonzalez-Rodriguez, Paloma; Regueiro-Purriños, Marta; Fernández-López, Arsenio
2018-05-01
Blood reperfusion of the ischemic tissue after stroke promotes increases in the inflammatory response as well as accumulation of unfolded/misfolded proteins in the cell, leading to endoplasmic reticulum (ER) stress. Both Inflammation and ER stress are critical processes in the delayed death of the cells damaged after ischemia. The aim of this study is to check the putative synergic neuroprotective effect by combining anti-inflammatory and anti-ER stress agents after ischemia. The study was performed on a two-vessel occlusion global cerebral ischemia model. Animals were treated with salubrinal one hour after ischemia and with robenacoxib at 8 h and 32 h after ischemia. Parameters related to the integrity of the blood-brain barrier (BBB), such as matrix metalloproteinase 9 and different cell adhesion molecules (CAMs), were analyzed by qPCR at 24 h and 48 h after ischemia. Microglia and cell components of the neurovascular unit, including neurons, endothelial cells and astrocytes, were analyzed by immunofluorescence after 48 h and seven days of reperfusion. Pharmacologic control of ER stress by salubrinal treatment after ischemia, revealed a neuroprotective effect over neurons that reduces the transcription of molecules involved in the impairment of the BBB. Robenacoxib treatment stepped neuronal demise forward, revealing a detrimental effect of this anti-inflammatory agent. Combined treatment with robenacoxib and salubrinal after ischemia prevented neuronal loss and changes in components of the neurovascular unit and microglia observed when animals were treated only with robenacoxib. Combined treatment with anti-ER stress and anti-inflammatory agents is able to provide enhanced neuroprotective effects reducing glial activation, which opens new avenues in therapies against stroke. Copyright © 2018 Elsevier Inc. All rights reserved.
Yu, Albert Cheung Hoi; Yung, Hon Wa; Hui, Michael Hung Kit; Lau, Lok Ting; Chen, Xiao Qian; Collins, Richard A
2003-10-15
An in vitro ischemia model was established and the effect of the metabolic inhibitors cycloheximide (CHX) and actinomycin D (ActD) on apoptosis in astrocytes under ischemia studied. CHX decreased by 75% the number of cells dying after 6 hr of ischemia compared with control cultures. TdT-mediated dUTP nick end labelling (TUNEL) staining of comparable cultures was reduced by 40%. ActD decreased cell death by 60% compared with controls. The number of TUNEL-positive cells was reduced by 38%. The nuclear shrinkage in TUNEL-positive astrocytes in control cultures did not occur in ActD-treated astrocytes, indicating that nuclear shrinkage and DNA fragmentation during apoptosis are two unrelated processes. Expression of bcl-2 (alpha and beta), bax, and Ice in astrocytes under similar ischemic conditions, as measured by quantitative reverse transcription-polymerase chain reaction, indicated that ischemia down-regulated bcl-2 (alpha and beta) and bax. Ice was initially down-regulated from 0 to 4 hr, before returning to control levels after 8 hr of ischemia. ActD decreased the expression of these genes. CHX reduced the expression of bcl-2 (alpha and beta) but increased bax and Ice expression. It is hypothesized that the balance of proapoptotic (Bad, Bax) and antiapoptotic (Bcl-2, Bcl-Xl) proteins determines apoptosis. The data suggest that the ratio of Bcl-2/Bad in astrocytes following ActD and CHX treatment does not decrease as much in untreated cells during ischemia. Our data indicate that it is the ratio of Bcl-2 family members that plays a critical role in determining ischemia-induced apoptosis. It is also important to note that ischemia-induced apoptosis involves the regulation of RNA and protein synthesis. Copyright 2003 Wiley-Liss, Inc.
Manipulations of core temperatures in ischemia-reperfusion lung injury in rabbits.
Chang, Hung; Huang, Kun-Lun; Li, Min-Hui; Hsu, Ching-Wang; Tsai, Shih-Hung; Chu, Shi-Jye
2008-01-01
The present study was designed to determine the effect of various core temperatures on acute lung injury induced by ischemia-reperfusion (I/R) in our isolated rabbit lung model. Typical acute lung injury was successfully induced by 30 min of ischemia followed by 90 min of reperfusion observation. The I/R elicited a significant increase in pulmonary arterial pressure, microvascular permeability (measured by using the capillary filtration coefficient, Kfc), Delta Kfc ratio, lung weight gain and the protein concentration of the bronchoalveolar lavage fluid. Mild hypothermia significantly attenuated acute lung injury induced by I/R, all parameters having decreased significantly (p<0.05); conversely, mild hyperthermia did not further exacerbate acute lung injury. These experimental data suggest that mild hypothermia significantly ameliorated acute lung injury induced by ischemia-reperfusion in rabbits.
Gonçalves, Eduardo Silvio Gouveia; Rabelo, Camila Menezes; Prado Neto, Alberico Ximenes do; Garcia, José Huygens Parente; Guimarães, Sérgio Botelho; Vasconcelos, Paulo Roberto Leitão de
2011-01-01
To investigate the effects of preventive enteral administration of ornithine alpha-ketoglutarate (OKG) in an ischemia-reperfusion rat model. Sixty rats were randomized into five groups (G1-G5, n = 12). Each group was divided into two subgroups (n = 6) and treated with calcium carbonate (CaCa) or OKG by gavage. Thirty minutes later, the animals were anesthetized with xylazine 15mg + ketamine 1mg ip and subjected to laparotomy. G1-G3 rats served as controls. Rats in groups G4 and G5 were subjected to ischemia for 30 minutes. Ischemia was achieved by clamping the small intestine and its mesentery, delimiting a segment of bowel 5 cm long and 5 cm apart from the ileocecal valve. In addition, G5 rats underwent reperfusion for 30 minutes. Blood samples were collected at the end of the laparotomy (G1), after 30 minutes (G2, G4) and 60 minutes (G3, G5) to determine concentrations of metabolites (pyruvate, lactate), creatine phosphokinase (CPK), thiobarbituric acid reactive substances (TBARS) and glutathione (GSH). There was a significant decrease in tissue pyruvate and lactate and plasma CPK levels in OKG-treated rats at the end of reperfusion period. GSH levels did not change significantly in ischemia and reperfusion groups. However, TBARS levels increased significantly (p<0.05) in tissue samples in OKG-treated rats subjected to ischemia for 30 minutes. Short-term pretreatment with OKG before induction of I/R decreases tissue damage, increases pyruvate utilization for energy production in the Krebs cycle and does not attenuate the oxidative stress in this animal model.
The protective effect of diosmin on hepatic ischemia reperfusion injury: an experimental study
Tanrikulu, Yusuf; Şahin, Mefaret; Kismet, Kemal; Kilicoglu, Sibel Serin; Devrim, Erdinc; Tanrikulu, Ceren Sen; Erdemli, Esra; Erel, Serap; Bayraktar, Kenan; Akkus, Mehmet Ali
2013-01-01
Liver ischemia reperfusion injury (IRI) is an important pathologic process leading to bodily systemic effects and liver injury. Our study aimed to investigate the protective effects of diosmin, a phlebotrophic drug with antioxidant and anti-inflammatory effects, in a liver IRI model. Forty rats were divided into 4 groups. Sham group, control group (ischemia-reperfusion), intraoperative treatment group, and preoperative treatment group. Ischemia reperfusion model was formed by clamping hepatic pedicle for a 60 minute of ischemia followed by liver reperfusion for another 90 minutes. Superoxide dismutase (SOD) and catalase (CAT) were measured as antioaxidant enzymes in the liver tissues, and malondialdehyde (MDA) as oxidative stress marker, xanthine oxidase (XO) as an oxidant enzyme and glutathione peroxidase (GSH-Px) as antioaxidant enzyme were measured in the liver tissues and the plasma samples. Hepatic function tests were lower in treatment groups than control group (p<0.001 for ALT and AST). Plasma XO and MDA levels were lower in treatment groups than control group, but plasma GSH-Px levels were higher (p<0.05 for all). Tissue MDA levels were lower in treatment groups than control group, but tissue GSH-Px, SOD, CAT and XO levels were higher (p<0.05 for MDA and p<0.001 for others). Samples in control group histopathologically showed morphologic abnormalities specific to ischemia reperfusion. It has been found that both preoperative and intraoperative diosmin treatment decreases cellular damage and protects cells from toxic effects in liver IRI. As a conclusion, diosmin may be used as a protective agent against IRI in elective and emergent liver surgical operations. PMID:24289756
Kim, D J; Kim, D I; Lee, S K; Suh, S H; Lee, Y J; Kim, J; Chung, T S; Lee, J E
2006-04-01
The goal of thrombolytic therapy in patients with acute ischemic stroke is early recanalization, but this may result in delayed reperfusion injury. The purpose of this study was to evaluate the neuroprotective effect of agmatine in a transient ischemic cat model by using MR perfusion imaging and histopathologic analyses. One-hour temporary occlusion of the left middle cerebral artery of cats was performed in the control ischemia group (n = 10), and 100 mg/kg of agmatine was intravenously injected immediately after recanalization in the agmatine-treated group (n = 15). MR imaging was performed at 1, 24, and 48 hours after recanalization, and the perfusion patterns were investigated. Terminal-deoxynucleotidyl transferase mediated nick and end-labeling (TUNEL) and hematoxylin-eosin (H&E) stainings were performed at the corresponding sections. In the control ischemia group, the number of TUNEL-positive cells was significantly increased in the areas with reperfusion hyperemia (P < .05). In the agmatine-treated group, no significant increase in the number of TUNEL-positive cells was noted in the areas of reperfusion hyperemia. The difference in the number of TUNEL-positive cells between the control ischemia and agmatine-treated group in the areas of reperfusion hyperemia was significant (P < .05). The total number of TUNEL-positive cells and the area of severe ischemic neuronal damage on H&E stain were also significantly attenuated in the agmatine-treated cats compared with the control ischemia cats (P < .05). Our results suggest that agmatine has neuroprotective effects against reperfusion injury and ischemia.
Zhao, Shumin; Kong, Wei; Zhang, Shufeng; Chen, Meng; Zheng, Xiaoying; Kong, Xiangyu
2013-01-01
Pretreatment with scutellaria baicalensis stem-leaf total flavonoid has protective effects against ischemia and attenuates myocardial ischemia-reperfusion injury. In this study, rats were given scutellaria baicalensis stem-leaf total flavonoid intragastrically at 50, 100, and 200 mg/kg per day for 7 days before focal cerebral ischemia-reperfusion injury models were established using the suture method. We then determined the protective effects of scutellaria baicalensis stem-leaf total flavonoid pretreatment on focal cerebral ischemia-reperfusion injury. Results showed that neurological deficit scores increased, infarct volumes enlarged, apoptosis increased and Bcl-2 and Bax protein expression were upregulated at 24 hours after reperfusion. Pretreatment with scutellaria baicalensis stem-leaf total flavonoid at any dose lowered the neurological deficit scores, reduced the infarct volume, prevented apoptosis in hippocampal cells, attenuated neuronal and blood-brain barrier damage and upregulated Bcl-2 protein expression but inhibited Bax protein expression. Doses of 100 and 200 mg/kg were the most efficacious. Our findings indicate that pretreatment with scutellaria baicalensis stem-leaf total flavonoid at 100 and 200 mg/kg can improve the neurological functions and have preventive and protective roles after focal cerebral ischemia-reperfusion injury. PMID:25206639
NASA Astrophysics Data System (ADS)
Lehr, Hans-Anton; Hubner, Christoph; Nolte, Dirk; Kohlschutter, Alfried; Messmer, Konrad
1991-08-01
Epidemiologic observations and experimental studies have demonstrated a protective effect of dietary fish oil on the clinical manifestations of ischemia-reperfusion injury. To investigate the underlying mechanisms, we used the dorsal skinfold chamber model for intravital fluorescence microscopy of the microcirculation in striated muscle of awake hamsters. In control hamsters (n = 7), reperfusion after a 4-hr pressure-induced ischemia to the muscle tissue elicited the adhesion of fluorescently stained leukocytes to the endothelium of postcapillary venules, capillary obstruction, and the breakdown of endothelial integrity. These microvascular manifestations of ischemia-reperfusion injury were significantly attenuated in animals (n = 7) when fed with a fish oil-enriched diet for 4 weeks prior to the experiments. In leukocyte total lipids, the fish oil diet resulted in a substantial displacement of arachidonic acid, the precursor of the potent adhesionpromoting leukotriene (LT) B_4, by fish oil-derived eicosapentaenoic acid, the precursor of biologically less potent LTB_5, emphasizing the mediator role of LTB_4 in ischemia-reperfusion injury. These results suggest that the preservation of microvascular perfusion by dietary fish oil contributes to its protective effects on the clinical manifestations of ischemia-reperfusion injury.
Li, Dong-Liang; Han, Hua
2008-08-01
To investigate the expression of GLUT1 and GLUT3 in the hippocampus after cerebral hypoxic-ischemia (HI) in newborn rats and the effect of progesterone (PROG) on them. Forty newborn SD rats were randomly divided into four groups: normal group, sham-operated group, hypoxic-ischemic group and progesterone group. Model of hypoxic-ischemia encephalopathy (HIE) was established in the 7-day-old newborn SD rats. Immunohistochemical method was applied to detect the expression of GLUT1 and GLUT3 in hippocampus. GLUT1 and GLUT3 were slightly seen in normal and sham operation group, there was no obviously difference between the two groups (P > 0.05). The expression of GLUT1 and GLUT3 in hypoxic-ischemia group were all higher than that in sham operated group (P < 0.05). Not only the expression of GLUT in progesterone group were significantly higher than that in sham operated group (P < 0.01), but also than that in hypoxic-ischemia group (P < 0.05). PROG could increase the tolerance of neuron to hypoxic-ischemia with maintaining the energy supply in the brain by up-regulating GLUT expression.
Oxidative and inflammatory biomarkers of ischemia and reperfusion injuries.
Halladin, Natalie Løvland
2015-04-01
Ischemia-reperfusion injuries occur when the blood supply to an organ or tissue is temporarily cut-off and then restored. Even though the restoration of blood flow is absolutely essential in preventing tissue death, the reperfusion of oxygenated blood to the oxygen-deprived areas may in itself augment the tissue damage in excess of that produced by the ischemia alone. The process of ischemia-reperfusion is multifactorial and there are several mechanisms involved in the pathogenesis. Ample evidence shows that the injury is in part caused by an excessive generation of reactive oxygen species or free radicals. The free radicals consequently initiate an inflammatory response, which in some cases may affect distant organs, thus causing remote organ injuries. Ischemia-reperfusion injuries are a common complication in many diseases (acute myocardial infarctions, stroke) or surgical settings (transplantations, tourniquet-related surgery) and they have potential detrimental and disabling consequences. The tolerance of ischemia-reperfusion has proven to be time-of-day-dependent and the size of myocardial infarctions has proven to be significantly higher when occurring in the dark-to-light period. This period is characterized by and coincides with a rapid decrease in the plasma levels of the hormone melatonin. Melatonin is the body's most potent antioxidant and is capable of both direct free radical scavenging and indirect optimization of other anti-oxidant enzymes. It also possesses anti-inflammatory properties and is known to inhibit the mitochondrial permeability transition pore during reperfusion. This inhibiting property has been shown to be of great importance in reducing ischemia-reperfusion injuries. Furthermore, melatonin is a relatively non-toxic molecule, which has proven to be safe for use in clinical trials. Thus, there is compelling evidence of melatonin's effect in reducing ischemia-reperfusion injuries in many experimental studies, but the number of human clinical trials is very limited. In this PhD thesis we set out to explore the oxidative and inflammatory biochemical markers of ischemia and reperfusion injuries and the possible effect of melatonin on these markers. We have reviewed the literature on the tourniquet-related oxidative damage and found that ischemic preconditioning and the use of propofol could significantly reduce the release of such markers. However, the relevance of this reduction in terms of clinical outcomes is still to be investigated (paper 1). We undertook the characterization of a human ischemia-reperfusion model without the influencing factors of surgery and anesthesia, and subsequently found ways to improve this model (paper 2). In order to apply an intracoronary melatonin administration, we investigated whether melatonin could be dissolved in non-ethanol based buffers and still activate the melatonin receptors (paper 3). We found this to be possible, and in a porcine closed-chest model of acute myocardial infarction (AMI) we randomized the pigs to intracoronary and systemic melatonin or placebo in order to test whether melatonin could attenuate the oxidative and inflammatory biomarkers following reperfusion (paper 4). The outcomes were not optimal for this model, and the effect of melatonin still remains to be explored in a large animal model. We are currently still awaiting the results of the IMPACT-trial - a randomized, placebo-controlled, clinical trial exploring the effect of intracoronary and systemic melatonin given to patients suffering from AMI and undergoing primary percutaneous coronary intervention (pPCI) (paper 5). Though pPCI is undisputedly life-saving, it holds a built-in consequence of aggravating the ischemic injury, paradoxically due to the reperfusion. The optimization of existing treatments and the exploring of new suitable interventions, such as melatonin, for minimizing the ischemia-reperfusion injuries is therefore of great interest.
Berman, Deborah R; Liu, YiQing; Barks, John; Mozurkewich, Ellen
2010-01-01
Objective Docosahexaenoic acid (DHA) is a dietary fatty acid with neuroprotective properties. We hypothesized that DHA treatment after hypoxia-ischemia (HI) would improve function and reduce brain volume loss in a perinatal rat model. Study design Seven-day-old Wistar rat pups from 7 litters (N=84) underwent right carotid ligation, followed by 8% O2 for 90 minutes. Fifteen minutes after HI, pups were divided into 3 treatment groups (intraperitoneal injections of DHA 1, 2.5 or 5 mg/kg) and 2 control groups (25% albumin or saline). At 14 days, rats underwent vibrissae-stimulated forepaw placing testing, and bilateral regional volumes were calculated for cortex, striatum, hippocampus, and hemisphere. Results Post HI treatment with DHA significantly improved vibrissae forepaw placing (complete responses: 8.5±2 treatment vs. 7.4±2 controls; normal=10; p = 0.032, t-test). Post injury DHA treatment did not attenuate brain volume loss in any region. Conclusion Post-hypoxia-ischemia DHA treatment significantly improves functional outcome. PMID:20691409
Breschi, Gian Luca; Librizzi, Laura; Pastori, Chiara; Zucca, Ileana; Mastropietro, Alfonso; Cattalini, Alessandro; de Curtis, Marco
2010-08-01
Magnetic resonance imaging (MRI) during the acute phase of a stroke contributes to recognize ischemic regions and is potentially useful to predict clinical outcome. Yet, the functional significance of early MRI alterations during brain ischemia is not clearly understood. We achieved an experimental study to interpret MRI signals in a novel model of focal ischemia in the in vitro isolated guinea pig brain. By combining neurophysiological and morphological analysis with MR-imaging, we evaluated the suitability of MR to identify ischemic and peri-ischemic regions. Extracellular recordings demonstrated depolarizations in the ischemic core, but not in adjacent areas, where evoked activity was preserved and brief peri-infarct depolarizations occurred. Diffusion-weighted MRI and immunostaining performed after neurophysiological characterization showed changes restricted to the core region. Diffusion-weighted MR alterations did not include the penumbra region characterized by peri-infarct depolarizations. Therefore, by comparing neurophysiological, imaging and anatomical data, we can conclude that DW-MRI underestimates the extension of the tissue damage involved in brain ischemia.
You Can Touch This! Bringing HST images to life as 3-D models
NASA Astrophysics Data System (ADS)
Christian, Carol A.; Nota, A.; Grice, N. A.; Sabbi, E.; Shaheen, N.; Greenfield, P.; Hurst, A.; Kane, S.; Rao, R.; Dutterer, J.; de Mink, S. E.
2014-01-01
We present the very first results of an innovative process to transform Hubble images into tactile 3-D models of astronomical objects. We have created a very new, unique tool for understanding astronomical phenomena, especially designed to make astronomy accessible to visually impaired children and adults. From the multicolor images of stellar clusters, we construct 3-D computer models that are digitally sliced into layers, each featuring touchable patterning and Braille characters, and are printed on a 3-D printer. The slices are then fitted together, so that the user can explore the structure of the cluster environment with their fingertips, slice-by-slice, analogous to a visual fly-through. Students will be able to identify and spatially locate the different components of these complex astronomical objects, namely gas, dust and stars, and will learn about the formation and composition of stellar clusters. The primary audiences for the 3D models are middle school and high school blind students and, secondarily, blind adults. However, we believe that the final materials will address a broad range of individuals with varied and multi-sensory learning styles, and will be interesting and visually appealing to the public at large.
Meenan, Christopher; Daly, Barry; Toland, Christopher; Nagy, Paul
2006-01-01
Rapid advances are changing the technology and applications of multidetector computed tomography (CT) scanners. The major increase in data associated with this new technology, however, breaks most commercial picture archiving and communication system (PACS) architectures by preventing them from delivering data in real time to radiologists and outside clinicians. We proposed a phased model for 3D workflow, installed a thin-slice archive and measured thin-slice data storage over a period of 5 months. A mean of 1,869 CT studies were stored per month, with an average of 643 images per study and a mean total volume of 588 GB/month. We also surveyed 48 radiologists to determine diagnostic use, impressions of thin-slice value, and requirements for retention times. The majority of radiologists thought thin slice was helpful for diagnosis and regularly used the application. Permanent storage of thin slice CT is likely to become best practice and a mission-critical pursuit for the health care enterprise.
Stel, Mariëlle; van Koningsbruggen, Guido M
2015-07-01
People's eating behaviors tend to be influenced by the behaviors of others. In the present studies, we investigated the effect of another person's eating behavior and body weight appearance on healthy food consumption of young women. In Study 1, participants watched a short film fragment together with a confederate who appeared normal weight or overweight and consumed either 3 or 10 cucumber slices. In Study 2, a confederate who appeared underweight, normal weight, or overweight consumed no or 4 cucumber slices. The number of cucumber slices eaten by participants was registered. Results showed that participants' healthy eating behavior was influenced by the confederate's eating behavior when the confederate was underweight, normal weight, and overweight. Participants ate more cucumber slices when the confederate ate a higher amount of cucumber slices compared with a lower (or no) amount of cucumber slices (Studies 1 and 2). The food intake effect was stronger for the underweight compared with the overweight model (Study 2). Copyright © 2015 Elsevier Ltd. All rights reserved.
Wu, Pei-Hsin; Cheng, Cheng-Chieh; Wu, Ming-Long; Chao, Tzu-Cheng; Chung, Hsiao-Wen; Huang, Teng-Yi
2014-01-01
The dual echo steady-state (DESS) sequence has been shown successful in achieving fast T2 mapping with good precision. Under-estimation of T2, however, becomes increasingly prominent as the flip angle decreases. In 3D DESS imaging, therefore, the derived T2 values would become a function of the slice location in the presence of non-ideal slice profile of the excitation RF pulse. Furthermore, the pattern of slice-dependent variation in T2 estimates is dependent on the RF pulse waveform. Multi-slice 2D DESS imaging provides better inter-slice consistency, but the signal intensity is subject to integrated effects of within-slice distribution of the actual flip angle. Consequently, T2 measured using 2D DESS is prone to inaccuracy even at the designated flip angle of 90°. In this study, both phantom and human experiments demonstrate the above phenomena in good agreement with model prediction. © 2013.
A novel dehydration technique for carrot slices implementing ultrasound and vacuum drying methods.
Chen, Zhi-Gang; Guo, Xiao-Yu; Wu, Tao
2016-05-01
A novel drying technique using a combination of ultrasound and vacuum dehydration was developed to shorten the drying time and improve the quality of carrot slices. Carrot slices were dried with ultrasonic vacuum (USV) drying and vacuum drying at 65 °C and 75 °C. The drying rate was significantly influenced by the drying techniques and temperatures. Compared with vacuum drying, USV drying resulted in a 41-53% decrease in the drying time. The drying time for the USV and vacuum drying techniques at 75 °C was determined to be 140 and 340 min for carrot slices, respectively. The rehydration potential, nutritional value (retention of β-carotene and ascorbic acid), color, and textural properties of USV-dried carrot slices are predominately better compared to vacuum-dried carrot slices. Moreover, lower energy consumption was used in the USV technique. The drying data (time versus moisture ratio) were successfully fitted to Wang and Singh model. Copyright © 2015. Published by Elsevier B.V.
Down-regulation of NOX4 by betulinic acid protects against cerebral ischemia-reperfusion in mice.
Lu, Pei; Zhang, Chen-Chen; Zhang, Xiao-Min; Li, Hui-Ge; Luo, Ai-Lin; Tian, Yu-Ke; Xu, Hui
2017-10-01
Ischemic stroke leads to high potentiality of mortality and disability. The current treatment for ischemic stroke is mainly focused on intravenous thrombolytic therapy. However, ischemia/ reperfusion induces neuronal damage, which significantly influences the outcome of patients with ischemic stroke, and the exact mechanism implicated in ischemia/reperfusion injury remains unclear, although evidence shows that oxidative stress is likely to be involved. Betulinic acid is mainly known for its anti-tumor and anti-inflammatory activities. Our previous study showed that betulinic acid could decrease the reactive oxygen species (ROS) production by regulating the expression of NADPH oxidase. Thus, we hypothesized that betulinic acid may protect against brain ischemic injury in the animal model of stroke. Focal cerebral ischemia was achieved by using the standard intraluminal occlusion method and reperfusion enabled after 2 h ischemia. Neurological deficits were scored. Infarct size was determined with 2,3,5-triphenyltetrazolium chloride monohydrate (TTC) staining and the mRNA expression of NADPH oxidase 4 (NOX4) was determined by RT-PCR in infarct tissue. ROS generation and apoptosis in ischemic tissue were analyzed by measuring the oxidative conversion of cell permeable 2',7'-dichloro-fluorescein diacetate (DCF-DA) to fluorescent dichlorofluorescein (DCF) in fluorescence microplate reader and TUNEL assay, respectively. In Kunming mice, 2 h of middle cerebral artery (MCA) occlusion followed by 24 or 72 h of reperfusion led to an enhanced NOX4 expression in the ischemic hemisphere. This was associated with elevated levels of ROS generation and neuronal apoptosis. Pre-treatment with betulinic acid (50 mg/kg/day for 7 days via gavage) prior to MCA occlusion prevented the ischemia/reperfusion-induced up-regulation of NOX4 and ROS production. In addition, treatment with betulinic acid could markedly blunt the ischemia/reperfusion-induced neuronal apoptosis. Finally, betulinic acid reduced infarct volume and ameliorated the neurological deficit in this stroke mouse model. Our results suggest that betulinic acid protects against cerebral ischemia/reperfusion injury in mice and the down-regulation of NOX4 may represent a mechanism contributing to this effect.
NASA Astrophysics Data System (ADS)
He, Nana; Zhang, Xiaolong; Zhao, Juanjuan; Zhao, Huilan; Qiang, Yan
2017-07-01
While the popular thin layer scanning technology of spiral CT has helped to improve diagnoses of lung diseases, the large volumes of scanning images produced by the technology also dramatically increase the load of physicians in lesion detection. Computer-aided diagnosis techniques like lesions segmentation in thin CT sequences have been developed to address this issue, but it remains a challenge to achieve high segmentation efficiency and accuracy without much involvement of human manual intervention. In this paper, we present our research on automated segmentation of lung parenchyma with an improved geodesic active contour model that is geodesic active contour model based on similarity (GACBS). Combining spectral clustering algorithm based on Nystrom (SCN) with GACBS, this algorithm first extracts key image slices, then uses these slices to generate an initial contour of pulmonary parenchyma of un-segmented slices with an interpolation algorithm, and finally segments lung parenchyma of un-segmented slices. Experimental results show that the segmentation results generated by our method are close to what manual segmentation can produce, with an average volume overlap ratio of 91.48%.
Finite slice analysis (FINA) of sliced and velocity mapped images on a Cartesian grid
NASA Astrophysics Data System (ADS)
Thompson, J. O. F.; Amarasinghe, C.; Foley, C. D.; Rombes, N.; Gao, Z.; Vogels, S. N.; van de Meerakker, S. Y. T.; Suits, A. G.
2017-08-01
Although time-sliced imaging yields improved signal-to-noise and resolution compared with unsliced velocity mapped ion images, for finite slice widths as encountered in real experiments there is a loss of resolution and recovered intensities for the slow fragments. Recently, we reported a new approach that permits correction of these effects for an arbitrarily sliced distribution of a 3D charged particle cloud. This finite slice analysis (FinA) method utilizes basis functions that model the out-of-plane contribution of a given velocity component to the image for sequential subtraction in a spherical polar coordinate system. However, the original approach suffers from a slow processing time due to the weighting procedure needed to accurately model the out-of-plane projection of an anisotropic angular distribution. To overcome this issue we present a variant of the method in which the FinA approach is performed in a cylindrical coordinate system (Cartesian in the image plane) rather than a spherical polar coordinate system. Dubbed C-FinA, we show how this method is applied in much the same manner. We compare this variant to the polar FinA method and find that the processing time (of a 510 × 510 pixel image) in its most extreme case improves by a factor of 100. We also show that although the resulting velocity resolution is not quite as high as the polar version, this new approach shows superior resolution for fine structure in the differential cross sections. We demonstrate the method on a range of experimental and synthetic data at different effective slice widths.
Fast parallel algorithm for slicing STL based on pipeline
NASA Astrophysics Data System (ADS)
Ma, Xulong; Lin, Feng; Yao, Bo
2016-05-01
In Additive Manufacturing field, the current researches of data processing mainly focus on a slicing process of large STL files or complicated CAD models. To improve the efficiency and reduce the slicing time, a parallel algorithm has great advantages. However, traditional algorithms can't make full use of multi-core CPU hardware resources. In the paper, a fast parallel algorithm is presented to speed up data processing. A pipeline mode is adopted to design the parallel algorithm. And the complexity of the pipeline algorithm is analyzed theoretically. To evaluate the performance of the new algorithm, effects of threads number and layers number are investigated by a serial of experiments. The experimental results show that the threads number and layers number are two remarkable factors to the speedup ratio. The tendency of speedup versus threads number reveals a positive relationship which greatly agrees with the Amdahl's law, and the tendency of speedup versus layers number also keeps a positive relationship agreeing with Gustafson's law. The new algorithm uses topological information to compute contours with a parallel method of speedup. Another parallel algorithm based on data parallel is used in experiments to show that pipeline parallel mode is more efficient. A case study at last shows a suspending performance of the new parallel algorithm. Compared with the serial slicing algorithm, the new pipeline parallel algorithm can make full use of the multi-core CPU hardware, accelerate the slicing process, and compared with the data parallel slicing algorithm, the new slicing algorithm in this paper adopts a pipeline parallel model, and a much higher speedup ratio and efficiency is achieved.
Scott-McKean, Jonah J.; Roque, Adriano L.; Surewicz, Krystyna; Johnson, Mark W.; Surewicz, Witold K.
2018-01-01
The Ts65Dn mouse is the most studied animal model of Down syndrome. Past research has shown a significant reduction in CA1 hippocampal long-term potentiation (LTP) induced by theta-burst stimulation (TBS), but not in LTP induced by high-frequency stimulation (HFS), in slices from Ts65Dn mice compared with euploid mouse-derived slices. Additionally, therapeutically relevant doses of the drug memantine were shown to rescue learning and memory deficits in Ts65Dn mice. Here, we observed that 1 μM memantine had no detectable effect on HFS-induced LTP in either Ts65Dn- or control-derived slices, but it rescued TBS-induced LTP in Ts65Dn-derived slices to control euploid levels. Then, we assessed LTP induced by four HFS (4xHFS) and found that this form of LTP was significantly depressed in Ts65Dn slices when compared with LTP in euploid control slices. Memantine, however, did not rescue this phenotype. Because 4xHFS-induced LTP had not yet been characterized in Ts65Dn mice, we also investigated the effects of picrotoxin, amyloid beta oligomers, and soluble recombinant human prion protein (rPrP) on this form of LTP. Whereas ≥10 μM picrotoxin increased LTP to control levels, it also caused seizure-like oscillations. Neither amyloid beta oligomers nor rPrP had any effect on 4xHFS-induced LTP in Ts65Dn-derived slices. PMID:29849573
Reshma, P L; Lekshmi, V S; Sankar, Vandana; Raghu, K G
2015-06-01
Tribulus terrestris L. was evaluated for its cardioprotective property against myocardial ischemia in a cell line model. Initially, methanolic extract was prepared and subjected to sequential extraction with various solvents. The extract with high phenolic content (T. terrestris L. ethyl acetate extract-TTME) was further characterized for its chemical constituents and taken forward for evaluation against cardiac ischemia. HPLC analysis revealed the presence of phenolic compounds like caffeic acid (12.41 ± 0.22 mg g(-1)), chlorogenic acid (0.52 ± 0.06 mg g(-1)) and 4-hydroxybenzoic acid (0.60 ± 0.08 mg g(-1)). H9c2 cells were pretreated with TTME (10, 25, 50 and 100 µg/ml) for 24 h before the induction of ischemia. Then ischemia was induced by exposing cells to ischemia buffer, in a hypoxic chamber, maintained at 0.1% O2, 95% N2 and 5% CO2, for 1 h. A significant (p ≤ 0.05) increase in reactive oxygen species generation (56%), superoxide production (18%), loss of plasma membrane integrity, dissipation of transmembrane potential, permeability transition pore opening and apoptosis had been observed during ischemia. However, pretreatment with TTME was found to significantly (p ≤ 0.05) attenuate the alterations caused by ischemia. The overall results of this study partially reveal the scientific basis of the use of T. terrestris L. in the traditional system of medicine for heart diseases. Copyright © 2015 John Wiley & Sons, Ltd.
Liu, Yu; Zhang, Lei; Liang, Jiangjiu
2015-04-15
Oxidative stress is considered a major contributing factor in cerebral ischemia/reperfusion injury. Phloretin, a dihydrochalcone belonging to the flavonoid family, is particularly rich in apples and apple-derived products. A large body of evidence demonstrates that phloretin exhibits anti-oxidant properties, and phloretin has potential implications for treating oxidative stress injuries in cerebral ischemia/reperfusion. Therefore, the neuroprotective and antioxidant effects of phloretin against ischemia/reperfusion injury, as well as related probable mechanisms, were investigated. The cerebral ischemic/reperfusion injury model was reproduced in male Sprague-Dawley rats through middle cerebral artery occlusion. At 24h after reperfusion, neurological score, infarct volume, and brain water content were assessed. Oxidative stress was evaluated by superoxide dismutases (SOD), glutathione (GSH), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) levels. Nrf2 expression was measured by RT-PCR and western blot. Consequently, results showed that phloretin pretreatment for 14days significantly reduced infarct volume and brain edema, and ameliorated neurological scores in focal cerebral ischemia/reperfusion rats. SOD, GSH and GSH-Px activities were greatly decreased, and MDA levels significantly increased after ischemia/reperfusion injury. However, phloretin pretreatment dramatically suppressed these oxidative stress processes. Furthermore, phloretin upregulated Nrf2 mRNA and protein expression of in ischemia/reperfusion brain tissue. Taken together, phloretin exhibited neuroprotective effects in cerebral ischemia/reperfusion, and the mechanisms are associated with oxidative stress inhibition and Nrf2 defense pathway activation. Copyright © 2015 Elsevier B.V. All rights reserved.
Wang, Yong; Ren, Qianyao; Zhang, Xing; Lu, Huiling; Chen, Jian
2018-01-01
Emerging evidence suggests that autophagy plays important roles in the pathophysiological processes of cerebral ischemia and reperfusion injury. Calycosin, an isoflavone phytoestrogen, possesses neuroprotective effects in cerebral ischemia and reperfusion in rats. Here, we investigated the neuroprotective effects of calycosin against ischemia and reperfusion injury, as well as related probable mechanisms behind autophagy pathways. A cerebral ischemic and reperfusion injury model was established by middle cerebral artery occlusion in male Sprague-Dawley rats. Neurological scores, infarct volumes, and brain water content were assessed after 24 h reperfusion following 2 h ischemia. Additionally, the expression of the autophagy-related protein p62 and NBR1 (neighbor of BRCA1 gene 1), as well as Bcl-2, and TNF-α in rat brain tissues was measured by RT-PCR, western blotting and immunohistochemical analyses. The results showed that calycosin pretreatment for 14 days markedly decreased infarct volume and brain edema, and ameliorated neurological scores in rats with focal cerebral ischemia and reperfusion. It was observed that levels of p62, NBR1 and Bcl-2 were greatly decreased, and levels of TNF-α significantly increased after ischemia and reperfusion injury. However, calycosin administration dramatically upregulated the expression of p62, NBR1 and Bcl-2, and downregulated the level of TNF-α. All data reveal that calycosin exerts a neuroprotective effect on cerebral ischemia and reperfusion injury, and the mechanisms maybe associated with its anti-autophagic, anti-apoptotic and anti-inflammatory action. © 2018 The Author(s). Published by S. Karger AG, Basel.
METHOXYCHLOR METABOLISM AND VITELLOGENINESIS IN MALE RAINBOW TROUT LIVER SLICES
Induction of vitellogenesis (VTG) in male fish has become an accepted biomarker for xenoestrogenicity. This study utilized the male rainbow trout liver slice model to determine the estrogenicity of parent compound, methoxychlor (MXC) and metabolites, di-hydroxy methoxychlor (HPTE...
Protective effect of estrogen in endothelin-induced middle cerebral artery occlusion in female rats.
Glendenning, Michele L; Lovekamp-Swan, Tara; Schreihofer, Derek A
2008-11-14
Estrogen is a powerful endogenous and exogenous neuroprotective agent in animal models of brain injury, including focal cerebral ischemia. Although this protection has been demonstrated in several different treatment and injury paradigms, it has not been demonstrated in focal cerebral ischemia induced by intraparenchymal endothelin-1 injection, a model with many advantages over other models of experimental focal ischemia. Reproductively mature female Sprague-Dawley rats were ovariectomized and divided into placebo and estradiol-treated groups. Two weeks later, halothane-anesthetized rats underwent middle cerebral artery (MCA) occlusion by interparenchymal stereotactic injection of the potent vasoconstrictor endothelin 1 (180pmoles/2microl) near the middle cerebral artery. Laser-Doppler flowmetry (LDF) revealed similar reductions in cerebral blood flow in both groups. Animals were behaviorally evaluated before, and 2 days after, stroke induction, and infarct size was evaluated. In agreement with other models, estrogen treatment significantly reduced infarct size evaluated by both TTC and Fluoro-Jade staining and behavioral deficits associated with stroke. Stroke size was significantly correlated with LDF in both groups, suggesting that cranial perfusion measures can enhance success in this model.
NASA Astrophysics Data System (ADS)
Romano, Renan A.; Vollet-Filho, Jose D.; Pratavieira, Sebastião.; Fernandez, Jorge L.; Kurachi, Cristina; Bagnato, Vanderlei S.; Castro-e-Silva, Orlando; Sankarankutty, Ajith K.
2015-06-01
Liver transplantation is a well-established treatment for liver failure. However, the success of the transplantation procedure depends on liver graft conditions. The tissue function evaluation during the several transplantation stages is relevant, in particular during the organ harvesting, when a decision is made concerning the viability of the graft. Optical fluorescence spectroscopy is a good option because it is a noninvasive and fast technique. A partial normothermic hepatic ischemia was performed in rat livers, with a vascular occlusion of both median and left lateral lobes, allowing circulation only for the right lateral lobe and the caudate lobe. Fluorescence spectra under excitation at 532 nm (doubled frequency Nd:YAG laser) were collected using a portable spectrometer (USB2000, Ocean Optics, USA). The fluorescence emission was collected before vascular occlusion, after ischemia, and 24 hours after reperfusion. A morphometric histology analysis was performed as the gold standard evaluation - liver samples were analyzed, and the percentage of necrotic tissue was obtained. The results showed that changes in the fluorescence emission after ischemia can be correlated with the amount of necrosis evaluated by a morphometric analysis, the Pearson correlation coefficient of the generated model was 0.90 and the root mean square error was around 20%. In this context, the laser-induced fluorescence spectroscopy technique after normothermic ischemia showed to be a fast and efficient method to differentiate ischemic injury from viable tissues.
EZH2 Modulates Angiogenesis In Vitro and in a Mouse Model of Limb Ischemia
Mitić, Tijana; Caporali, Andrea; Floris, Ilaria; Meloni, Marco; Marchetti, Micol; Urrutia, Raul; Angelini, Gianni D; Emanueli, Costanza
2015-01-01
Epigenetic mechanisms may regulate the expression of pro-angiogenic genes, thus affecting reparative angiogenesis in ischemic limbs. The enhancer of zest homolog-2 (EZH2) induces thtrimethylation of lysine 27 on histone H3 (H3K27me3), which represses gene transcription. We explored (i) if EZH2 expression is regulated by hypoxia and ischemia; (ii) the impact of EZH2 on the expression of two pro-angiogenic genes: eNOS and BDNF; (iii) the functional effect of EZH2 inhibition on cultured endothelial cells (ECs); (iv) the therapeutic potential of EZH2 inhibition in a mouse model of limb ischemia (LI). EZH2 expression was increased in cultured ECs exposed to hypoxia (control: normoxia) and in ECs extracted from mouse ischemic limb muscles (control: absence of ischemia). EZH2 increased the H3K27me3 abundance onto regulatory regions of eNOS and BDNF promoters. In vitro RNA silencing or pharmacological inhibition by 3-deazaneplanocin (DZNep) of EZH2 increased eNOS and BDNF mRNA and protein levels and enhanced functional capacities (migration, angiogenesis) of ECs under either normoxia or hypoxia. In mice with experimentally induced LI, DZNep increased angiogenesis in ischaemic muscles, the circulating levels of pro-angiogenic hematopoietic cells and blood flow recovery. Targeting EZH2 for inhibition may open new therapeutic avenues for patients with limb ischemia. PMID:25189741
Mackins, Christina J; Kano, Seiichiro; Seyedi, Nahid; Schäfer, Ulrich; Reid, Alicia C; Machida, Takuji; Silver, Randi B; Levi, Roberto
2006-04-01
Having identified renin in cardiac mast cells, we assessed whether its release leads to cardiac dysfunction. In Langendorff-perfused guinea pig hearts, mast cell degranulation with compound 48/80 released Ang I-forming activity. This activity was blocked by the selective renin inhibitor BILA2157, indicating that renin was responsible for Ang I formation. Local generation of cardiac Ang II from mast cell-derived renin also elicited norepinephrine release from isolated sympathetic nerve terminals. This action was mediated by Ang II-type 1 (AT1) receptors. In 2 models of ischemia/reperfusion using Langendorff-perfused guinea pig and mouse hearts, a significant coronary spillover of renin and norepinephrine was observed. In both models, this was accompanied by ventricular fibrillation. Mast cell stabilization with cromolyn or lodoxamide markedly reduced active renin overflow and attenuated both norepinephrine release and arrhythmias. Similar cardioprotection was observed in guinea pig hearts treated with BILA2157 or the AT1 receptor antagonist EXP3174. Renin overflow and arrhythmias in ischemia/reperfusion were much less prominent in hearts of mast cell-deficient mice than in control hearts. Thus, mast cell-derived renin is pivotal for activating a cardiac renin-angiotensin system leading to excessive norepinephrine release in ischemia/reperfusion. Mast cell-derived renin may be a useful therapeutic target for hyperadrenergic dysfunctions, such as arrhythmias, sudden cardiac death, myocardial ischemia, and congestive heart failure.
Kakinuma, Yoshihiko; Noguchi, Tatsuya; Okazaki, Kayo; Oikawa, Shino; Iketani, Mitsue; Kurabayashi, Atsushi; Kurabayashi, Mutsumi; Furihata, Mutsuo; Sato, Takayuki
2014-07-01
We have recently identified that donepezil, an anti-Alzheimer drug, accelerates angiogenesis in a murine hindlimb ischemia (HLI) model. However, the precise mechanisms are yet to be fully elucidated, particularly whether the effects are derived from endothelial cells alone or from other nonvascular cells. Further investigation of the HLI model revealed that nicotine accelerated angiogenesis by activation of vascular endothelial cell growth factor (VEGF) synthesis through nicotinic receptors in myogenic cells, that is, satellite cells, in vivo and upregulated the expression of angiogenic factors, for example, VEGF and fibroblast growth factor 2, in vitro. As a result, nicotine prevented skeletal muscle from ischemia-induced muscle atrophy and upregulated myosin heavy chain expression in vitro. The in vivo anti-atrophy effect of nicotine on muscle was also observed in galantamine, another anti-Alzheimer drug, playing as an allosteric potentiating ligand. Such effects of nicotine were attenuated in α7 nicotinic receptor knockout mice. In contrast, PNU282987, an α7 nicotinic receptor agonist, comparably salvaged skeletal muscle, which was affected by HLI. These results suggest that cholinergic signals also target myogenic cells and have inhibiting roles in muscle loss by ischemia-induced muscle atrophy. Copyright © 2014 Mosby, Inc. All rights reserved.
Cockburn, Neil; Kovacs, Michael
2016-01-01
CT Perfusion (CTP) derived cerebral blood flow (CBF) thresholds have been proposed as the optimal parameter for distinguishing the infarct core prior to reperfusion. Previous threshold-derivation studies have been limited by uncertainties introduced by infarct expansion between the acute phase of stroke and follow-up imaging, or DWI lesion reversibility. In this study a model is proposed for determining infarction CBF thresholds at 3hr ischemia time by comparing contemporaneously acquired CTP derived CBF maps to 18F-FFMZ-PET imaging, with the objective of deriving a CBF threshold for infarction after 3 hours of ischemia. Endothelin-1 (ET-1) was injected into the brain of Duroc-Cross pigs (n = 11) through a burr hole in the skull. CTP images were acquired 10 and 30 minutes post ET-1 injection and then every 30 minutes for 150 minutes. 370 MBq of 18F-FFMZ was injected ~120 minutes post ET-1 injection and PET images were acquired for 25 minutes starting ~155–180 minutes post ET-1 injection. CBF maps from each CTP acquisition were co-registered and converted into a median CBF map. The median CBF map was co-registered to blood volume maps for vessel exclusion, an average CT image for grey/white matter segmentation, and 18F-FFMZ-PET images for infarct delineation. Logistic regression and ROC analysis were performed on infarcted and non-infarcted pixel CBF values for each animal that developed infarct. Six of the eleven animals developed infarction. The mean CBF value corresponding to the optimal operating point of the ROC curves for the 6 animals was 12.6 ± 2.8 mL·min-1·100g-1 for infarction after 3 hours of ischemia. The porcine ET-1 model of cerebral ischemia is easier to implement then other large animal models of stroke, and performs similarly as long as CBF is monitored using CTP to prevent reperfusion. PMID:27347877
Hinkel, Rabea; Lange, Philipp; Petersen, Björn; Gottlieb, Elena; Ng, Judy King Man; Finger, Stefanie; Horstkotte, Jan; Lee, Seungmin; Thormann, Michael; Knorr, Maike; El-Aouni, Chiraz; Boekstegers, Peter; Reichart, Bruno; Wenzel, Philip; Niemann, Heiner; Kupatt, Christian
2015-07-14
Heme oxygenase-1 (HO-1) is an inducible stress-responsive enzyme converting heme to bilirubin, carbon monoxide, and free iron, which exerts anti-inflammatory and antiapoptotic effects. Although efficient cardioprotection after HO-1 overexpression has been reported in rodents, its role in attenuating post-ischemic inflammation is unclear. This study assessed the efficacy of recombinant adenoassociated virus (rAAV)-encoding human heme oxygenase-1 (hHO-1) in attenuating post-ischemic inflammation in a murine and a porcine ischemia/reperfusion model. Murine ischemia was induced by 45 min of left anterior descending occlusion, followed by 24 h of reperfusion and functional as well as fluorescent-activated cell sorting analysis. Porcine hearts were subjected to 60 min of ischemia and 24h of reperfusion before hemodynamic and histologic analyses were performed. Human microvascular endothelial cells transfected with hHO-1 displayed an attenuated interleukin-6 and intercellular adhesion molecule 1 expression, resulting in reduced monocytic THP-1 cell recruitment in vitro. In murine left anterior descending occlusion and reperfusion, the post-ischemic influx of CD45(+) leukocytes, Ly-6G(+) neutrophils, and Ly-6C(high) monocytes was further exacerbated in HO-1-deficient hearts and reversed by rAAV.hHO-1 treatment. Conversely, in our porcine model of ischemia, the post-ischemic influx of myeloperoxidase-positive neutrophils and CD14(+) monocytes was reduced by 49% and 87% after rAAV.hHO-1 transduction, similar to hHO-1 transgenic pigs. Functionally, rAAV.hHO-1 and hHO-1 transgenic left ventricles displayed a smaller loss of ejection fraction than control animals. Whereas HO-1 deficiency exacerbates post-ischemic cardiac inflammation in mice, hHO-1 gene therapy attenuates inflammation after ischemia and reperfusion in murine and porcine hearts. Regional hHO-1 gene therapy provides cardioprotection in a pre-clinical porcine ischemia/reperfusion model. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Fernández-Jiménez, Rodrigo; Galán-Arriola, Carlos; Sánchez-González, Javier; Agüero, Jaume; López-Martín, Gonzalo J.; Gomez-Talavera, Sandra; Garcia-Prieto, Jaime; Benn, Austin; Molina-Iracheta, Antonio; Barreiro-Pérez, Manuel; Martin-García, Ana; García-Lunar, Inés; Pizarro, Gonzalo; Sanz, Javier; Sánchez, Pedro L.; Fuster, Valentin
2017-01-01
Rationale: The impact of cardioprotective strategies and ischemia duration on postischemia/reperfusion (I/R) myocardial tissue composition (edema, myocardium at risk, infarct size, salvage, intramyocardial hemorrhage, and microvascular obstruction) is not well understood. Objective: To study the effect of ischemia duration and protective interventions on the temporal dynamics of myocardial tissue composition in a translational animal model of I/R by the use of state-of-the-art imaging technology. Methods and Results: Four 5-pig groups underwent different I/R protocols: 40-minute I/R (prolonged ischemia, controls), 20-minute I/R (short-duration ischemia), prolonged ischemia preceded by preconditioning, or prolonged ischemia followed by postconditioning. Serial cardiac magnetic resonance (CMR)-based tissue characterization was done in all pigs at baseline and at 120 minutes, day 1, day 4, and day 7 after I/R. Reference myocardium at risk was assessed by multidetector computed tomography during the index coronary occlusion. After the final CMR, hearts were excised and processed for water content quantification and histology. Five additional healthy pigs were euthanized after baseline CMR as reference. Edema formation followed a bimodal pattern in all 40-minute I/R pigs, regardless of cardioprotective strategy and the degree of intramyocardial hemorrhage or microvascular obstruction. The hyperacute edematous wave was ameliorated only in pigs showing cardioprotection (ie, those undergoing short-duration ischemia or preconditioning). In all groups, CMR-measured edema was barely detectable at 24 hours postreperfusion. The deferred healing-related edematous wave was blunted or absent in pigs undergoing preconditioning or short-duration ischemia, respectively. CMR-measured infarct size declined progressively after reperfusion in all groups. CMR-measured myocardial salvage, and the extent of intramyocardial hemorrhage and microvascular obstruction varied dramatically according to CMR timing, ischemia duration, and cardioprotective strategy. Conclusions: Cardioprotective therapies, duration of index ischemia, and the interplay between these greatly influence temporal dynamics and extent of tissue composition changes after I/R. Consequently, imaging techniques and protocols for assessing edema, myocardium at risk, infarct size, salvage, intramyocardial hemorrhage, and microvascular obstruction should be standardized accordingly. PMID:28596216
Rossoni, G; Pompilio, G; Biglioli, P; Alamanni, F; Tartara, P; Rona, P; Porqueddu, M; Berti, F
1999-01-01
Previous studies have shown that defibrotide, a polydeoxyribonucleotide obtained by depolymerization of DNA from porcine tissues, has important protective effects on myocardial ischemia, which may be associated with a prostacyclin-related mechanism. The purpose of this study was to investigate the direct effects of defibrotide (given in cardioplegia or after ischemia) on a model of rat heart recovery after cardioplegia followed by ischemia/reperfusion injury. Isolated rat hearts, undergoing 5 minutes of warm cardioplegic arrest followed by 20 minutes of global ischemia and 30 minutes of reperfusion, were studied using the modified Langendorff model. The cardioplegia consisted of St. Thomas' Hospital solution augmented with defibrotide (50, 100, and 200 microg/mL) or without defibrotide (controls). Left ventricular mechanical function and the levels of creatine kinase, lactate dehydrogenase, and 6-keto-prostaglandin F1alpha (6-keto-PGF1alpha; the stable metabolite of prostacyclin) were measured during preischemic and reperfusion periods. After global ischemia, hearts receiving defibrotide in the cardioplegic solution (n = 8) manifested in a concentration-dependent fashion lower left ventricular end-diastolic pressure (p < 0.001), higher left ventricular developed pressure (p < 0.01), and lower coronary perfusion pressure (p < 0.001) compared to the control group. After reperfusion, hearts receiving defibrotide in the cardioplegic solution also had, in a dose-dependent way, lower levels of creatine-kinase (p < 0.01), lactate dehydrogenase (p < 0.001), and higher levels of 6-keto-PGF1alpha (p < 0.001) compared to the control group. Furthermore, when defibrotide was given alone to the hearts at the beginning of reperfusion (n = 7), the recovery of postischemic left ventricular function was inferior (p < 0.05) to that obtained when defibrotide was given in cardioplegia. Defibrotide confers to conventional crystalloid cardioplegia a potent concentration-dependent protective effect on the recovery of isolated rat heart undergoing ischemia/reperfusion injury. The low cost and the absence of contraindications (cardiac toxicity and hemodynamic effects) make defibrotide a promising augmentation to cardioplegia.
Marczin, Nándor
2005-12-01
The main objective of this paper is to review the potential diagnostic roles of exhaled nitric oxide (NO) in evaluating ischemia-reperfusion-induced lung injury associated with cardiac surgery. We shall start by elaborating on current clinical practice of cardiac surgery and to arrive at the conclusion that clinically important ischemia-reperfusion injury is a common scenario of many forms of these surgical procedures. We shall conclude this part by establishing the clinical need for biomarkers of inflammation in cardiothoracic surgery and by proposing that exhaled NO could be an important new addition to our anaesthetic monitoring repertoire based on our expertise with exhaled breath monitoring. We shall then take a closer look at mechanisms of ischemia-reperfusion injury and will propose the role of reactive oxygen and nitrogen species as mediators and biomarkers of acute lung injury. This analysis will provide a good opportunity to highlight major potential mechanisms of altered NO production and bioactivity of NO. We shall conclude that multiple relevant mechanisms may either lead to increased production of NO or enhance consumption of NO, leaving us with the paradigm that NO maybe used either as a positive or negative biomarker of inflammation. In order to explore this dilemma further, we will investigate the predominant effect of oxidative stress on NO bioactivity in cell culture models of ischemia-reperfusion injury. We will then turn to animal models of ischemia-reperfusion injury to elucidate the ultimate effects of this condition on lung NO production and concentrations of NO in the lung. Finally, we shall complete this journey by highlighting the human relevance of these observations by reviewing our own experience at Harefield Hospital, UK, and that of others, regarding exhaled NO in ischemia-reperfusion injury associated with cardiac surgery and lung transplantation.
Metzger, Marco; Bareiss, Petra M; Nikolov, Ivan; Skutella, Thomas; Just, Lothar
2007-01-01
Three-dimensional intestinal cultures offer new possibilities for the examination of growth potential, analysis of time specific gene expression, and spatial cellular arrangement of enteric nervous system in an organotypical environment. We present an easy to produce in vitro model of the enteric nervous system for analysis and manipulation of cellular differentiation processes. Slice cultures of murine fetal colon were cultured on membrane inserts for up to 2 weeks without loss of autonomous contractility. After slice preparation, cultured tissue reorganized within the first days in vitro. Afterward, the culture possessed more than 35 cell layers, including high prismatic epithelial cells, smooth muscle cells, glial cells, and neurons analyzed by immunohistochemistry. The contraction frequency of intestinal slice culture could be modulated by the neurotransmitter serotonin and the sodium channel blocker tetrodotoxin. Coculture experiments with cultured neurospheres isolated from enhanced green fluorescent protein (eGFP) transgenic mice demonstrated that differentiating eGFP-positive neurons were integrated into the intestinal tissue culture. This slice culture model of enteric nervous system proved to be useful for studying cell-cell interactions, cellular signaling, and cell differentiation processes in a three-dimensional cell arrangement.
[Simulation and data analysis of stereological modeling based on virtual slices].
Wang, Hao; Shen, Hong; Bai, Xiao-yan
2008-05-01
To establish a computer-assisted stereological model for simulating the process of slice section and evaluate the relationship between section surface and estimated three-dimensional structure. The model was designed by mathematic method as a win32 software based on the MFC using Microsoft visual studio as IDE for simulating the infinite process of sections and analysis of the data derived from the model. The linearity of the fitting of the model was evaluated by comparison with the traditional formula. The win32 software based on this algorithm allowed random sectioning of the particles distributed randomly in an ideal virtual cube. The stereological parameters showed very high throughput (>94.5% and 92%) in homogeneity and independence tests. The data of density, shape and size of the section were tested to conform to normal distribution. The output of the model and that from the image analysis system showed statistical correlation and consistency. The algorithm we described can be used for evaluating the stereologic parameters of the structure of tissue slices.
METHOXYCHLOR METABOLISM AND VITELLOGENESIS IN MALE RAINBOW TROUT LIVER SLICES
Induction of vitellogenin (VTG) in male fish has become an accepted biomarker to xenoestrogenicity. This study utilized the male rainbow trout liver slice model to determine the estrogenicity of parent compound, methoxychlor (MXC) and metabolites, di-hydroxy methoxychlor (HPTE) a...
Chao, Dongman; He, Xiaozhou; Yang, Yilin; Bazzy-Asaad, Alia; Lazarus, Lawrence H; Balboni, Gianfranco; Kim, Dong H; Xia, Ying
2012-08-01
Activation of delta-opioid receptors (DOR) is neuroprotective against hypoxic/ischemic injury in the cortex, which is at least partially related to its action against hypoxic/ischemic disruption of ionic homeostasis that triggers neuronal injury. Na(+) influx through TTX-sensitive voltage-gated Na(+) channels may be a main mechanism for hypoxia-induced disruption of K(+) homeostasis, with DOR activation attenuating the disruption of ionic homeostasis by targeting voltage-gated Na(+) channels. In the present study we examined the role of DOR in the regulation of Na(+) influx in anoxia and simulated ischemia (oxygen-glucose deprivation) as well as the effect of DOR activation on the Na(+) influx induced by a Na(+) channel opener without anoxic/ischemic stress and explored a potential PKC mechanism underlying the DOR action. We directly measured extracellular Na(+) activity in mouse cortical slices with Na(+) selective electrodes and found that (1) anoxia-induced Na(+) influx occurred mainly through TTX-sensitive Na(+) channels; (2) DOR activation inhibited the anoxia/ischemia-induced Na(+) influx; (3) veratridine, a Na(+) channel opener, enhanced the anoxia-induced Na(+) influx; this could be attenuated by DOR activation; (4) DOR activation did not reduce the anoxia-induced Na(+) influx in the presence of chelerythrine, a broad-spectrum PKC blocker; and (5) DOR effects were blocked by PKCβII peptide inhibitor, and PKCθ pseudosubstrate inhibitor, respectively. We conclude that DOR activation inhibits anoxia-induced Na(+) influx through Na(+) channels via PKC (especially PKCβII and PKCθ isoforms) dependent mechanisms in the cortex. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Onwude, Daniel I.; Hashim, Norhashila; Abdan, Khalina; Janius, Rimfiel; Chen, Guangnan
2018-04-01
This study investigated the drying kinetics, mass and heat transfer characteristics of sweet potato slices (0.4-0.6 cm thickness) during drying based on mid-infrared experimental set-up (intensity of 1100-1400 W/m2). Thin layer drying models were used to evaluate the drying kinetics of sweet potato slices. Two analytical models (Fick's diffusion model, and Dincer and Dost model) were used to study the mass transfer behaviour of sweet potato slices with and without shrinkage during mid-infrared drying. The heat transfer flux between the emitter and sweet potato slices was also investigated. Results demonstrated that an increase in infrared intensity from 1100 W/m2 to 1400 W/m2 resulted in increased in average radiation heat flux by 3.4 times and a 15% reduction in the overall drying time. The two-term exponential model was found to be the best in predicting the drying kinetics of sweet potato slices during mid-infrared drying. The specific heat consumption varied from 0.91-4.82 kWh/kg. The effective moisture diffusivity with and without shrinkage using the Fick's diffusion model varied from 2.632 × 10-9 to 1.596 × 10-8 m2/s, and 1.24 × 10-8 to 2.4 × 10-8 m2/s using Dincer and Dost model, respectively. The obtained values of mass transfer coefficient, Biot number and activation energy varied from 5.99 × 10-6 to 1.17 × 10-5 m/s, 0.53 to 2.62, and 12.83 kJ/mol to 34.64 kJ/mol, respectively. The values obtained for Biot number implied the existence of simultaneous internal and external resistances. The findings further explained that mid-infrared intensity of 1100 W/m2 did not significantly affect the quality of sweet potato during drying, demonstrating a great potential of applying low intensity mid-infrared radiation in the drying of agricultural crops.
Protective effect of Shenfu injection preconditioning on lung ischemia-reperfusion injury
Zhang, Hong; Wan, Zhanhai; Yan, Xiang; Wang, De-Gui; Leng, Yufang; Liu, Yongqiang; Zhang, Yan; Zhang, Haijun; Han, Xuena
2016-01-01
Lung ischemia-reperfusion injury remains a problem in thoracic surgery, as minimal progress has been made concerning its prevention and control. In the present study, the protective effects and the underlying mechanism of Shenfu injection preconditioning on a rat lung ischemia-reperfusion model was investigated. Shenfu injection is a well-known Chinese traditional medicine, which is composed of Red Radix Ginseng and Radix Aconitum carmichaelii, with ginseng saponin and aconitum alkaloids as the active ingredients. A total of 72 specific pathogen-free, healthy male Wistar rats were randomly divided into control, model and Shenfu injection (10 ml/kg injection prior to injury) groups and were assessed at the following points: Ischemia 45 min; reperfusion 60 min; and reperfusion 120 min. Blood collected from the aorta abdominalis was cryopreserved at −70°C for the analysis of malondialdehyde (MDA) and superoxide dismutase (SOD) activity. Lung tissues were divided into three equal sections in order to assess the wet-to-dry (W/D) lung ratio, tumor necrosis factor (TNF)-α expression levels, myeloperoxidase (MPO) activity, alveolar damage, total protein and hematoxylin and eosin staining. The results demonstrated that the lung W/D weight ratio, TNF-α expression levels and SOD activity in the Shenfu group were significantly lower at 120 min reperfusion (P<0.05), as compared with the model group. MPO and MDA activity significantly decreased following reperfusion at 60 and 120 min (P<0.05), as compared with the model group. In addition, the degree of alveolar damage in the Shenfu group was significantly decreased (P<0.05), as compared with the model group. In addition, compared with the model group, the degree of alveolar damage in the Shenfu group was significantly lower (P<0.05); however, no significant changes in total protein were observed. The extent of alveolar structural damage and the proportion of interstitial neutrophils and alveolar and interstitial red blood cells were lower in the Shenfu group, as compared with the model and control groups. Therefore, the results of the present study suggested that Shenfu injection may have protective effects on lung ischemia-reperfusion injury. PMID:27602083
Park, In-Su; Chung, Phil-Sang; Ahn, Jin Chul; Leproux, Anais
2017-11-01
Skin flap grafting is a form of transplantation widely used in plastic surgery. However, ischemia/reperfusion injury is the main factor which reduces the survival rate of flaps following grafting. We investigated whether photobiomodulation (PBM) precondition prior to human adipose-derived stromal cell (hASC) spheroid (PBM-spheroid) transplantation improved skin tissue functional recovery by the stimulation of angiogenesis and tissue regeneration in skin flap of mice. The LED had an emission wavelength peaked at 660 ± 20 nm (6 J/cm 2 , 10 mW/cm 2 ). The expression of angiogenic growth factors in PBM-spheroid hASCs was much greater than that of not-PBM-treated spheroid or monolayer-cultured hASCs. From immunochemical staining analysis, the hASCs of PBM-spheroid were CD31 + , KDR + , and CD34 + , whereas monolayer-cultured hASCs were negative for these markers. To evaluate the therapeutic effect of hASC PBM-spheroid in vivo, PBS, monolayer-cultured hASCs, and not-PBM-spheroid were transplanted into a skin flap model. The animals were observed for 14 days. The PBM-spheroid hASCs transplanted into the skin flap ischemia differentiated into endothelial cells and remained differentiated. Transplantation of PBM-spheroid hASCs into the skin flap ischemia significantly elevated the density of vascular formations through angiogenic factors released by the skin flap ischemia and enhanced tissue regeneration at the lesion site. Consistent with these results, the transplantation of PBM-spheroid hASCs significantly improved functional recovery compared with PBS, monolayer-cultured hASCs, and not-PBM-spheroid treatment. These findings suggest that transplantation of PBM-spheroid hASCs may be an effective stem cell therapy for the treatment of skin flap ischemia.
Püschel, Anja; Ebel, Rasmus; Fuchs, Patricia; Hofmann, Janet; Schubert, Jochen K; Roesner, Jan P; Bergt, Stefan; Wree, Andreas; Vollmar, Brigitte; Klar, Ernst; Bünger, Carsten M; Kischkel, Sabine
2018-05-01
Paraplegia due to spinal cord ischemia (SCI) is a serious complication after repair of thoracoabdominal aortic aneurysms. For prevention and early treatment of spinal ischemia, intraoperative monitoring of spinal cord integrity is essential. This study was intended to improve recognition of SCI through a combination of transcranial motor-evoked potentials (tc-MEPs), serum markers, and innovative breath analysis. In 9 female German Landrace pigs, tc-MEPs were captured, markers of neuronal damage were determined in blood, and volatile organic compounds (VOCs) were analyzed in exhaled air. After thoraco-phrenico-laparotomy, SCI was initiated through sequential clamping (n = 4) or permanently ligating (n = 5) SAs of the abdominal and thoracic aorta in caudocranial orientation until a drop in the tc-MEPs to at least 25% of the baseline was recorded. VOCs in breath were determined by means of solid-phase microextraction coupled with gas chromatography-mass spectrometry. After waking up, clinical and neurological status was evaluated (Tarlov score). Spinal cord histology was obtained in postmortem. Permanent vessel ligature induced a worse neurological outcome and a higher number of necrotic motor neurons compared to clamping. Changes of serum markers remained unspecific. After laparotomy, exhaled acetone and isopropanol showed highest concentrations, and pentane and hexane increased during ischemia-reperfusion injury. To mimic spinal ischemia occurring in humans during aortic aneurysm repair, animal models have to be meticulously evaluated concerning vascular anatomy and function. Volatiles from breath indicated metabolic stress during surgery and oxidative damage through ischemia reperfusion. Breath VOCs may provide complimentary information to conventional monitoring methods. Copyright © 2018 Elsevier Inc. All rights reserved.
Resource allocation for error resilient video coding over AWGN using optimization approach.
An, Cheolhong; Nguyen, Truong Q
2008-12-01
The number of slices for error resilient video coding is jointly optimized with 802.11a-like media access control and the physical layers with automatic repeat request and rate compatible punctured convolutional code over additive white gaussian noise channel as well as channel times allocation for time division multiple access. For error resilient video coding, the relation between the number of slices and coding efficiency is analyzed and formulated as a mathematical model. It is applied for the joint optimization problem, and the problem is solved by a convex optimization method such as the primal-dual decomposition method. We compare the performance of a video communication system which uses the optimal number of slices with one that codes a picture as one slice. From numerical examples, end-to-end distortion of utility functions can be significantly reduced with the optimal slices of a picture especially at low signal-to-noise ratio.
Tarlak, Fatih; Ozdemir, Murat; Melikoglu, Mehmet
2018-02-02
The growth data of Pseudomonas spp. on sliced mushrooms (Agaricus bisporus) stored between 4 and 28°C were obtained and fitted to three different primary models, known as the modified Gompertz, logistic and Baranyi models. The goodness of fit of these models was compared by considering the mean squared error (MSE) and the coefficient of determination for nonlinear regression (pseudo-R 2 ). The Baranyi model yielded the lowest MSE and highest pseudo-R 2 values. Therefore, the Baranyi model was selected as the best primary model. Maximum specific growth rate (r max ) and lag phase duration (λ) obtained from the Baranyi model were fitted to secondary models namely, the Ratkowsky and Arrhenius models. High pseudo-R 2 and low MSE values indicated that the Arrhenius model has a high goodness of fit to determine the effect of temperature on r max . Observed number of Pseudomonas spp. on sliced mushrooms from independent experiments was compared with the predicted number of Pseudomonas spp. with the models used by considering the B f and A f values. The B f and A f values were found to be 0.974 and 1.036, respectively. The correlation between the observed and predicted number of Pseudomonas spp. was high. Mushroom spoilage was simulated as a function of temperature with the models used. The models used for Pseudomonas spp. growth can provide a fast and cost-effective alternative to traditional microbiological techniques to determine the effect of storage temperature on product shelf-life. The models can be used to evaluate the growth behaviour of Pseudomonas spp. on sliced mushroom, set limits for the quantitative detection of the microbial spoilage and assess product shelf-life. Copyright © 2017 Elsevier B.V. All rights reserved.
Yue, Shi; Zhou, Haoming; Wang, Xuehao; Busuttil, Ronald W.; Kupiec-Weglinski, Jerzy W.; Zhai, Yuan
2017-01-01
Although mechanisms of immune activation against liver ischemia reperfusion injury (IRI) have been studied extensively, questions regarding liver resident macrophages, i.e., Kupffer cells, remain controversial. Recent progress in the biology of tissue resident macrophages implicates homeostatic functions of KCs. This study aims to dissect responses and functions of KCs in liver IRI. In a murine liver partial warm ischemia model, we analyzed liver resident vs. infiltrating macrophages by fluorescence-activated cell sorting (FACS) and immunofluorescence staining. Our data showed that liver immune activation by IR was associated with not only infiltrations/activations of peripheral macrophages (iMØ), but also necrotic depletion of KCs. Inhibition of Receptor Interacting Protein 1 (RIP1) by necrostatin-1s protected KCs from ischemia-induce depletion, resulting in the reduction of iMØ infiltration, suppression of pro-inflammatory immune activation and protection of livers from IRI. The depletion of KCs by clodronate-liposomes abrogated these effects of Nec-1s. Additionally, liver reconstitutions with KCs post-ischemia exerted anti-inflammatory/cytoprotective effects against IRI. These results reveal a unique response of KCs against liver IR, i.e., RIP-1-dependent necrosis, which constitutes a novel mechanism of liver inflammatory immune activation in the pathogenesis of liver IRI. PMID:28289160
Nadjafi, S; Ebrahimi, S-A; Rahbar-Roshandel, N
2015-12-01
This study was carried out to evaluate the effects of noscapine, a benzylisoquinoline alkaloid from opium poppy, on oligodendrocyte during ischemia/reperfusion-induced excitotoxic injury. Changes in intracellular calcium levels due to chemical ischemia and nitric oxide (NO) production during ischemia/reperfusion were evaluated as the hallmarks of ischemia-derived excitotoxic event. OLN-93 cell line (a permanent immature rat oligodendrocyte) was used as a model of oligodendrocyte. 30- or 60-minute-oxygen-glucose deprivation/24 hours reperfusion were used to induce excitotoxicity. MTT (3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide) assay was used to evaluate cell viability. Ratiometric fluorescence microscopy using Ca(2+)-sensitive indicator Fura-2/AM was utilized to assess intracellular calcium levels. NO production was evaluated by Griess method. Noscapine (4 μM) significantly attenuated intracellular Ca(2+) elevation (P < 0.001). Also, noscapine significantly decreased NO production during a 30-minute oxygen-glucose deprivation/reperfusion (P < 0.01). The inhibitory effect of noscapine (4 μM) on intracellular Ca(2+) was greater than ionotropic glutamate receptors antagonists. Noscapine is protective against ischemia/reperfusion-induced excitotoxic injury in OLN-93 oligodendrocyte. This protective effect seems to be related to attenuation of intracellular Ca(2+) overload and NO production.
Microarray analysis in rat liver slices correctly predicts in vivo hepatotoxicity.
Elferink, M G L; Olinga, P; Draaisma, A L; Merema, M T; Bauerschmidt, S; Polman, J; Schoonen, W G; Groothuis, G M M
2008-06-15
The microarray technology, developed for the simultaneous analysis of a large number of genes, may be useful for the detection of toxicity in an early stage of the development of new drugs. The effect of different hepatotoxins was analyzed at the gene expression level in the rat liver both in vivo and in vitro. As in vitro model system the precision-cut liver slice model was used, in which all liver cell types are present in their natural architecture. This is important since drug-induced toxicity often is a multi-cellular process involving not only hepatocytes but also other cell types such as Kupffer and stellate cells. As model toxic compounds lipopolysaccharide (LPS, inducing inflammation), paracetamol (necrosis), carbon tetrachloride (CCl(4), fibrosis and necrosis) and gliotoxin (apoptosis) were used. The aim of this study was to validate the rat liver slice system as in vitro model system for drug-induced toxicity studies. The results of the microarray studies show that the in vitro profiles of gene expression cluster per compound and incubation time, and when analyzed in a commercial gene expression database, can predict the toxicity and pathology observed in vivo. Each toxic compound induces a specific pattern of gene expression changes. In addition, some common genes were up- or down-regulated with all toxic compounds. These data show that the rat liver slice system can be an appropriate tool for the prediction of multi-cellular liver toxicity. The same experiments and analyses are currently performed for the prediction of human specific toxicity using human liver slices.
NASA Astrophysics Data System (ADS)
Platiša, Ljiljana; Goossens, Bart; Vansteenkiste, Ewout; Badano, Aldo; Philips, Wilfried
2010-02-01
Clinical practice is rapidly moving in the direction of volumetric imaging. Often, radiologists interpret these images in liquid crystal displays at browsing rates of 30 frames per second or higher. However, recent studies suggest that the slow response of the display can compromise image quality. In order to quantify the temporal effect of medical displays on detection performance, we investigate two designs of a multi-slice channelized Hotelling observer (msCHO) model in the task of detecting a single-slice signal in multi-slice simulated images. The design of msCHO models is inspired by simplifying assumptions about how humans observe while viewing in the stack-browsing mode. For comparison, we consider a standard CHO applied only on the slice where the signal is located, recently used in a similar study. We refer to it as a single-slice CHO (ssCHO). Overall, our results confirm previous findings that the slow response of displays degrades the detection performance of the observers. More specifically, the observed performance range of msCHO designs is higher compared to the ssCHO suggesting that the extent and rate of degradation, though significant, may be less drastic than previously estimated by the ssCHO. Especially, the difference between msCHO and ssCHO is more significant for higher browsing speeds than for slow image sequences or static images. This, together with their design criteria driven by the assumptions about humans, makes the msCHO models promising candidates for further studies aimed at building anthropomorphic observer models for the stack-mode image presentation.
Microarray analysis in rat liver slices correctly predicts in vivo hepatotoxicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elferink, M.G.L.; Olinga, P.; Draaisma, A.L.
2008-06-15
The microarray technology, developed for the simultaneous analysis of a large number of genes, may be useful for the detection of toxicity in an early stage of the development of new drugs. The effect of different hepatotoxins was analyzed at the gene expression level in the rat liver both in vivo and in vitro. As in vitro model system the precision-cut liver slice model was used, in which all liver cell types are present in their natural architecture. This is important since drug-induced toxicity often is a multi-cellular process involving not only hepatocytes but also other cell types such asmore » Kupffer and stellate cells. As model toxic compounds lipopolysaccharide (LPS, inducing inflammation), paracetamol (necrosis), carbon tetrachloride (CCl{sub 4}, fibrosis and necrosis) and gliotoxin (apoptosis) were used. The aim of this study was to validate the rat liver slice system as in vitro model system for drug-induced toxicity studies. The results of the microarray studies show that the in vitro profiles of gene expression cluster per compound and incubation time, and when analyzed in a commercial gene expression database, can predict the toxicity and pathology observed in vivo. Each toxic compound induces a specific pattern of gene expression changes. In addition, some common genes were up- or down-regulated with all toxic compounds. These data show that the rat liver slice system can be an appropriate tool for the prediction of multi-cellular liver toxicity. The same experiments and analyses are currently performed for the prediction of human specific toxicity using human liver slices.« less
Superior diastolic function with KATP channel opener diazoxide in a novel mouse Langendorff model.
Makepeace, Carol M; Suarez-Pierre, Alejandro; Kanter, Evelyn M; Schuessler, Richard B; Nichols, Colin G; Lawton, Jennifer S
2018-07-01
Adenosine triphosphate-sensitive potassium (K ATP ) channel openers have been found to be cardioprotective in multiple animal models via an unknown mechanism. Mouse models allow genetic manipulation of K ATP channel components for the investigation of this mechanism. Mouse Langendorff models using 30 min of global ischemia are known to induce measurable myocardial infarction and injury. Prolongation of global ischemia in a mouse Langendorff model could allow the determination of the mechanisms involved in K ATP channel opener cardioprotection. Mouse hearts (C57BL/6) underwent baseline perfusion with Krebs-Henseleit buffer (30 min), assessment of function using a left ventricular balloon, delivery of test solution, and prolonged global ischemia (90 min). Hearts underwent reperfusion (30 min) and functional assessment. Coronary flow was measured using an inline probe. Test solutions included were as follows: hyperkalemic cardioplegia alone (CPG, n = 11) or with diazoxide (CPG + DZX, n = 12). Although the CPG + DZX group had greater percent recovery of developed pressure and coronary flow, this was not statistically significant. Following a mean of 74 min (CPG) and 77 min (CPG + DZX), an additional increase in end-diastolic pressure was noted (plateau), which was significantly higher in the CPG group. Similarly, the end-diastolic pressure (at reperfusion and at the end of experiment) was significantly higher in the CPG group. Prolongation of global ischemia demonstrated added benefit when DZX was added to traditional hyperkalemic CPG. This model will allow the investigation of DZX mechanism of cardioprotection following manipulation of targeted K ATP channel components. This model will also allow translation to prolonged ischemic episodes associated with cardiac surgery. Copyright © 2018 Elsevier Inc. All rights reserved.
Hertanto, Agung; Zhang, Qinghui; Hu, Yu-Chi; Dzyubak, Oleksandr; Rimner, Andreas; Mageras, Gig S
2012-06-01
Respiration-correlated CT (RCCT) images produced with commonly used phase-based sorting of CT slices often exhibit discontinuity artifacts between CT slices, caused by cycle-to-cycle amplitude variations in respiration. Sorting based on the displacement of the respiratory signal yields slices at more consistent respiratory motion states and hence reduces artifacts, but missing image data (gaps) may occur. The authors report on the application of a respiratory motion model to produce an RCCT image set with reduced artifacts and without missing data. Input data consist of CT slices from a cine CT scan acquired while recording respiration by monitoring abdominal displacement. The model-based generation of RCCT images consists of four processing steps: (1) displacement-based sorting of CT slices to form volume images at 10 motion states over the cycle; (2) selection of a reference image without gaps and deformable registration between the reference image and each of the remaining images; (3) generation of the motion model by applying a principal component analysis to establish a relationship between displacement field and respiration signal at each motion state; (4) application of the motion model to deform the reference image into images at the 9 other motion states. Deformable image registration uses a modified fast free-form algorithm that excludes zero-intensity voxels, caused by missing data, from the image similarity term in the minimization function. In each iteration of the minimization, the displacement field in the gap regions is linearly interpolated from nearest neighbor nonzero intensity slices. Evaluation of the model-based RCCT examines three types of image sets: cine scans of a physical phantom programmed to move according to a patient respiratory signal, NURBS-based cardiac torso (NCAT) software phantom, and patient thoracic scans. Comparison in physical motion phantom shows that object distortion caused by variable motion amplitude in phase-based sorting is visibly reduced with model-based RCCT. Comparison of model-based RCCT to original NCAT images as ground truth shows best agreement at motion states whose displacement-sorted images have no missing slices, with mean and maximum discrepancies in lung of 1 and 3 mm, respectively. Larger discrepancies correlate with motion states having a larger number of missing slices in the displacement-sorted images. Artifacts in patient images at different motion states are also reduced. Comparison with displacement-sorted patient images as a ground truth shows that the model-based images closely reproduce the ground truth geometry at different motion states. Results in phantom and patient images indicate that the proposed method can produce RCCT image sets with reduced artifacts relative to phase-sorted images, without the gaps inherent in displacement-sorted images. The method requires a reference image at one motion state that has no missing data. Highly irregular breathing patterns can affect the method's performance, by introducing artifacts in the reference image (although reduced relative to phase-sorted images), or in decreased accuracy in the image prediction of motion states containing large regions of missing data. © 2012 American Association of Physicists in Medicine.
Suk, Kyoungho; Kim, Sun Yeou; Leem, Kanghyun; Kim, Young Ock; Park, Sun Young; Hur, Jinyoung; Baek, Jihwoon; Lee, Kang Jin; Zheng, Hu Zhan; Kim, Hocheol
2002-04-21
In traditional Oriental medicine, Uncaria rhynchophylla has been used to lower blood pressure and to relieve various neurological symptoms. However, scientific evidence related to its effectiveness or precise modes of action has not been available. Thus, in the current study, we evaluated neuroprotective effects of U. rhynchophylla after transient global ischemia using 4-vessel occlusion model in rats. Methanol extract of U. rhynchophylla administered intraperitoneally (100-1000 mg/kg at 0 and 90 min after reperfusion) significantly protected hippocampal CA1 neurons against 10 min transient forebrain ischemia. Measurement of neuronal cell density in CA1 region at 7 days after ischemia by Nissl staining revealed more than 70% protection in U. rhynchophylla-treated rats compared to saline-treated animals. In U. rhynchophylla-treated animals, induction of cyclooxygenase-2 in hippocampus at 24 hr after ischemia was significantly inhibited at both mRNA and protein levels. Furthermore, U. rhynchophylla extract inhibited TNF-alpha and nitric oxide production in BV-2 mouse microglial cells in vitro. These anti-inflammatory actions of U. rhynchophylla extract may contribute to its neuroprotective effects.
Traveset, Alicia; Rubinat, Esther; Ortega, Emilio; Alcubierre, Nuria; Vazquez, Beatriz; Hernández, Marta; Jurjo, Carmen; Espinet, Ramon; Ezpeleta, Juan Antonio; Mauricio, Didac
2016-01-01
Aims. To assess the association of blood oxygen-transport capacity variables with the prevalence of diabetic retinopathy (DR), retinal ischemia, and macular oedema in patients with type 2 diabetes mellitus (T2DM). Methods. Cross-sectional, case-control study (N = 312) with T2DM: 153 individuals with DR and 159 individuals with no DR. Participants were classified according to the severity of DR and the presence of retinal ischemia or macular oedema. Hematological variables were collected by standardized methods. Three logistic models were adjusted to ascertain the association between hematologic variables with the severity of DR and the presence of retinal ischemia or macular oedema. Results. Individuals with severe DR showed significantly lower hemoglobin, hematocrit, and erythrocyte levels compared with those with mild disease and in individuals with retinal ischemia and macular oedema compared with those without these disorders. Hemoglobin was the only factor that showed a significant inverse association with the severity of DR [beta-coefficient = −0.52, P value = 0.003] and retinal ischemia [beta-coefficient = −0.49, P value = 0.001]. Lower erythrocyte level showed a marginally significant association with macular oedema [beta-coefficient = −0.86, P value = 0.055]. Conclusions. In patients with DR, low blood oxygen-transport capacity was associated with more severe DR and the presence of retinal ischemia. Low hemoglobin levels may have a key role in the development and progression of DR. PMID:27200379
Effects of Platelet-Rich Plasma (PRP) on a Model of Renal Ischemia-Reperfusion in Rats.
Martín-Solé, Oriol; Rodó, Joan; García-Aparicio, Lluís; Blanch, Josep; Cusí, Victoria; Albert, Asteria
2016-01-01
Renal ischemia-reperfusion injury is a major cause of acute renal failure, causing renal cell death, a permanent decrease of renal blood flow, organ dysfunction and chronic kidney disease. Platelet-rich plasma (PRP) is an autologous product rich in growth factors, and therefore able to promote tissue regeneration and angiogenesis. This product has proven its efficacy in multiple studies, but has not yet been tested on kidney tissue. The aim of this work is to evaluate whether the application of PRP to rat kidneys undergoing ischemia-reperfusion reduces mid-term kidney damage. A total of 30 monorrenal Sprague-Dawley male rats underwent renal ischemia-reperfusion for 45 minutes. During ischemia, PRP (PRP Group, n = 15) or saline solution (SALINE Group, n = 15) was administered by subcapsular renal injection. Control kidneys were the contralateral organs removed immediately before the start of ischemia in the remaining kidneys. Survival, body weight, renal blood flow on Doppler ultrasound, kidney weight, kidney volume, blood biochemistry and histopathology were determined for all subjects and kidneys, as applicable. Correlations between these variables were searched for. The PRP Group showed significantly worse kidney blood flow (p = 0.045) and more histopathological damage (p<0.0001). Correlations were found between body weight, kidney volume, kidney weight, renal blood flow, histology, and serum levels of creatinine and urea. Our study provides the first evidence that treatment with PRP results in the deterioration of the kidney's response to ischemia-reperfusion injury.
Effects of Platelet-Rich Plasma (PRP) on a Model of Renal Ischemia-Reperfusion in Rats
Martín-Solé, Oriol; Rodó, Joan; García-Aparicio, Lluís; Blanch, Josep; Cusí, Victoria; Albert, Asteria
2016-01-01
Renal ischemia-reperfusion injury is a major cause of acute renal failure, causing renal cell death, a permanent decrease of renal blood flow, organ dysfunction and chronic kidney disease. Platelet-rich plasma (PRP) is an autologous product rich in growth factors, and therefore able to promote tissue regeneration and angiogenesis. This product has proven its efficacy in multiple studies, but has not yet been tested on kidney tissue. The aim of this work is to evaluate whether the application of PRP to rat kidneys undergoing ischemia-reperfusion reduces mid-term kidney damage. A total of 30 monorrenal Sprague-Dawley male rats underwent renal ischemia-reperfusion for 45 minutes. During ischemia, PRP (PRP Group, n = 15) or saline solution (SALINE Group, n = 15) was administered by subcapsular renal injection. Control kidneys were the contralateral organs removed immediately before the start of ischemia in the remaining kidneys. Survival, body weight, renal blood flow on Doppler ultrasound, kidney weight, kidney volume, blood biochemistry and histopathology were determined for all subjects and kidneys, as applicable. Correlations between these variables were searched for. The PRP Group showed significantly worse kidney blood flow (p = 0.045) and more histopathological damage (p<0.0001). Correlations were found between body weight, kidney volume, kidney weight, renal blood flow, histology, and serum levels of creatinine and urea. Our study provides the first evidence that treatment with PRP results in the deterioration of the kidney’s response to ischemia-reperfusion injury. PMID:27551718
Traveset, Alicia; Rubinat, Esther; Ortega, Emilio; Alcubierre, Nuria; Vazquez, Beatriz; Hernández, Marta; Jurjo, Carmen; Espinet, Ramon; Ezpeleta, Juan Antonio; Mauricio, Didac
2016-01-01
Aims. To assess the association of blood oxygen-transport capacity variables with the prevalence of diabetic retinopathy (DR), retinal ischemia, and macular oedema in patients with type 2 diabetes mellitus (T2DM). Methods. Cross-sectional, case-control study (N = 312) with T2DM: 153 individuals with DR and 159 individuals with no DR. Participants were classified according to the severity of DR and the presence of retinal ischemia or macular oedema. Hematological variables were collected by standardized methods. Three logistic models were adjusted to ascertain the association between hematologic variables with the severity of DR and the presence of retinal ischemia or macular oedema. Results. Individuals with severe DR showed significantly lower hemoglobin, hematocrit, and erythrocyte levels compared with those with mild disease and in individuals with retinal ischemia and macular oedema compared with those without these disorders. Hemoglobin was the only factor that showed a significant inverse association with the severity of DR [beta-coefficient = -0.52, P value = 0.003] and retinal ischemia [beta-coefficient = -0.49, P value = 0.001]. Lower erythrocyte level showed a marginally significant association with macular oedema [beta-coefficient = -0.86, P value = 0.055]. Conclusions. In patients with DR, low blood oxygen-transport capacity was associated with more severe DR and the presence of retinal ischemia. Low hemoglobin levels may have a key role in the development and progression of DR.
Lee, Choong Hyun; Park, Joon Ha; Yoo, Ki-Yeon; Choi, Jung Hoon; Hwang, In Koo; Ryu, Pan Dong; Kim, Do-Hoon; Kwon, Young-Guen; Kim, Young-Myeong; Won, Moo-Ho
2011-06-01
Selective serotonin re-uptake inhibitors (SSRI) have been widely used in treatment of major depression because of their efficacy, safety, and tolerability. Escitalopram, an SSRI, is known to decrease oxidative stress in chronic stress animal models. In the present study, we examined the neuroprotective effects of pre- and post-treatments with 20 mg/kg and 30 mg/kg escitalopram in the gerbil hippocampal CA1 region (CA1) after transient cerebral ischemia. Pre-treatment with escitalopram protected against ischemia-induced neuronal death in the CA1 after ischemia/reperfusion (I/R). Post-treatment with 30 mg/kg, not 20 mg/kg, escitalopram had a neuroprotective effect against ischemic damage. In addition, 20 mg/kg pre- and 30 mg/kg post-treatments with escitalopram increased brain-derived neurotrophic factor (BDNF) protein levels in the ischemic CA1 compared to vehicle-treated ischemia animals. In addition, 20 mg/kg pre- and 30 mg/kg post-treatments with escitalopram reduced microglia activation and decreased 4-hydroxy-2-nonenal and Cu,Zn-superoxide dismutase immunoreactivity and their levels in the ischemic CA1 compared to vehicle-treated ischemia animals after transient cerebral ischemia. In conclusion, these results indicated that pre- and post-treatments with escitalopram can protect against ischemia-induced neuronal death in the CA1 induced by transient cerebral ischemic damage by increase of BDNF as well as decrease of microglia activation and oxidative stress. Copyright © 2011 Elsevier Inc. All rights reserved.
Metabolic Adaptation to Muscle Ischemia
NASA Technical Reports Server (NTRS)
Cabrera, Marco E.; Coon, Jennifer E.; Kalhan, Satish C.; Radhakrishnan, Krishnan; Saidel, Gerald M.; Stanley, William C.
2000-01-01
Although all tissues in the body can adapt to varying physiological/pathological conditions, muscle is the most adaptable. To understand the significance of cellular events and their role in controlling metabolic adaptations in complex physiological systems, it is necessary to link cellular and system levels by means of mechanistic computational models. The main objective of this work is to improve understanding of the regulation of energy metabolism during skeletal/cardiac muscle ischemia by combining in vivo experiments and quantitative models of metabolism. Our main focus is to investigate factors affecting lactate metabolism (e.g., NADH/NAD) and the inter-regulation between carbohydrate and fatty acid metabolism during a reduction in regional blood flow. A mechanistic mathematical model of energy metabolism has been developed to link cellular metabolic processes and their control mechanisms to tissue (skeletal muscle) and organ (heart) physiological responses. We applied this model to simulate the relationship between tissue oxygenation, redox state, and lactate metabolism in skeletal muscle. The model was validated using human data from published occlusion studies. Currently, we are investigating the difference in the responses to sudden vs. gradual onset ischemia in swine by combining in vivo experimental studies with computational models of myocardial energy metabolism during normal and ischemic conditions.
Pu, Yuan-Yuan; Sun, Da-Wen
2015-12-01
Mango slices were dried by microwave-vacuum drying using a domestic microwave oven equipped with a vacuum desiccator inside. Two lab-scale hyperspectral imaging (HSI) systems were employed for moisture prediction. The Page and the Two-term thin-layer drying models were suitable to describe the current drying process with a fitting goodness of R(2)=0.978. Partial least square (PLS) was applied to correlate the mean spectrum of each slice and reference moisture content. With three waveband selection strategies, optimal wavebands corresponding to moisture prediction were identified. The best model RC-PLS-2 (Rp(2)=0.972 and RMSEP=4.611%) was implemented into the moisture visualization procedure. Moisture distribution map clearly showed that the moisture content in the central part of the mango slices was lower than that of other parts. The present study demonstrated that hyperspectral imaging was a useful tool for non-destructively and rapidly measuring and visualizing the moisture content during drying process. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sugiura, Yuki; Katsumata, Yoshinori; Sano, Motoaki; Honda, Kurara; Kajimura, Mayumi; Fukuda, Keiichi; Suematsu, Makoto
2016-01-01
Acute ischemia produces dynamic changes in labile metabolites. To capture snapshots of such acute metabolic changes, we utilized focused microwave treatment to fix metabolic flow in vivo in hearts of mice 10 min after ligation of the left anterior descending artery. The left ventricle was subdivided into short-axis serial slices and the metabolites were analyzed by capillary electrophoresis mass spectrometry and matrix-assisted laser desorption/ionization imaging mass spectrometry. These techniques allowed us to determine the fate of exogenously administered 13C6-glucose and 13C3-lactate. The penumbra regions, which are adjacent to the ischemic core, exhibited the greatest adenine nucleotide energy charge and an adenosine overflow extending from the ischemic core, which can cause ischemic hyperemia. Imaging analysis of metabolic pathway flows revealed that the penumbra executes accelerated glucose oxidation, with remaining lactate utilization for tricarboxylic acid cycle for energy compensation, suggesting unexpected metabolic interplays of the penumbra with the ischemic core and normoxic regions. PMID:27581923
Lee, Monica Y; Gamez-Mendez, Ana; Zhang, Jiasheng; Zhuang, Zhenwu; Vinyard, David J; Kraehling, Jan; Velazquez, Heino; Brudvig, Gary W; Kyriakides, Themis R; Simons, Michael; Sessa, William C
2018-04-01
The importance of PI3K/Akt signaling in the vasculature has been demonstrated in several models, as global loss of Akt1 results in impaired postnatal ischemia- and VEGF-induced angiogenesis. The ubiquitous expression of Akt1, however, raises the possibility of cell-type-dependent Akt1-driven actions, thereby necessitating tissue-specific characterization. Herein, we used an inducible, endothelial-specific Akt1-deleted adult mouse model (Akt1iECKO) to characterize the endothelial cell autonomous functions of Akt1 in the vascular system. Endothelial-targeted ablation of Akt1 reduces eNOS (endothelial nitric oxide synthase) phosphorylation and promotes both increased vascular contractility in isolated vessels and elevated diastolic blood pressures throughout the diurnal cycle in vivo. Furthermore, Akt1iECKO mice subject to the hindlimb ischemia model display impaired blood flow and decreased arteriogenesis. Endothelial Akt1 signaling is necessary for ischemic resolution post-injury and likely reflects the consequence of NO insufficiency critical for vascular repair. © 2018 American Heart Association, Inc.
Yang, Ni; Wu, Liuzhong; Zhao, Ying; Zou, Ning; Liu, Chunfeng
2018-04-01
It is generally accepted that insulin exerts an antiapoptotic effect against ischemia/reperfusion through the activation of PI3K/Akt/mTOR pathway. MicroRNAs involve in multiple cardiac pathophysiological processes, including ischemia/reperfusion-induced cardiac injury. However, the regulation of microRNAs in the cardioprotective effect of insulin is rarely discussed. In this study, using a cell model of ischemia through culturing H9C2 cardiac myocytes in serum-free medium with hypoxia, we demonstrated that pretreatment with insulin significantly inhibited cell apoptosis and downregulated microRNA-320 (miR-320) expression. Interestingly, miR-320 mimic impaired the cardioprotective effect of insulin against myocardial ischemia injury by targeting survivin, which is a member of the family of inhibitor of apoptosis proteins. Suppression miR-320 expression by miR-320 inhibitor in H9C2 cells with myocardial ischemia mimics the cardioprotective effect of insulin by maintaining survivin expression. Taken together, miR-320-mediated survivin expression involves in cardioprotective effect of insulin against myocardial ischemia injury. Myocardial ischemia/reperfusion (I/R) injury remains an important clinical problem with extremely deficient clinical therapies. Insulin exerts an antiapoptotic effect against I/R through the activation of PI3K/Akt/mTOR pathway. Here, we provided evidences to show that microRNA-320 involves in the cardioprotective effect of insulin by targeting survivin, which is an inhibitor of apoptosis protein and functions as a key regulator in cell apoptosis and involves in the tumour genesis and progression. Our findings may provide a new potential therapeutic strategy for I/R injury and ischemic heart disease. Copyright © 2018 John Wiley & Sons, Ltd.
Mesenchymal Stem Cell-Based Therapy Improves Lower Limb Movement After Spinal Cord Ischemia in Rats.
Takahashi, Shinya; Nakagawa, Kei; Tomiyasu, Mayumi; Nakashima, Ayumu; Katayama, Keijiro; Imura, Takeshi; Herlambang, Bagus; Okubo, Tomoe; Arihiro, Koji; Kawahara, Yumi; Yuge, Louis; Sueda, Taijiro
2018-05-01
Spinal cord ischemia is a devastating complication after thoracic and thoracoabdominal aortic operations. In this study, we aimed to investigate the effects of mesenchymal stem cells (MSCs), which have regenerative capability and exert paracrine actions on damaged tissues, injected into rat models of spinal cord ischemia-reperfusion injury. Forty-five Sprague-Dawley rats were divided into sham, phosphate-buffered saline (PBS), and MSC groups. Spinal cord ischemia was induced in the latter two groups by balloon occlusion of the thoracic aorta. MSCs and PBS were then immediately injected into the left carotid artery of the MSC and PBS groups, respectively. Hindlimb motor function was evaluated at 6 and 24 hours. The spinal cord was removed at 24 hours after ischemia-reperfusion injury, and histologic and immunohistochemical analyses and real-time polymerase chain reaction assessments were performed. Rats in the MSC and PBS groups showed flaccid paraparesis/paraplegia postoperatively. Hindlimb function was significantly better at 6 and 24 hours after ischemia-reperfusion injury in the MSC group than in the PBS group (p < 0.05). The number of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive neuron cells in the spinal cord and the ratio of Bax to Bcl2 were significantly larger (p < 0.05) in the PBS group than in the MSC group. The injected MSCs were observed in the spinal cord 24 hours after ischemia-reperfusion injury. The MSC therapy by transarterial injection immediately after spinal cord ischemia-reperfusion injury may improve lower limb function by preventing apoptosis of neuron cells in the spinal cord. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Del Sorbo, Lorenzo; Costamagna, Andrea; Muraca, Giuseppe; Rotondo, Giuseppe; Civiletti, Federica; Vizio, Barbara; Bosco, Ornella; Martin Conte, Erica L; Frati, Giacomo; Delsedime, Luisa; Lupia, Enrico; Fanelli, Vito; Ranieri, V Marco
2016-08-01
Lung ischemia-reperfusion injury is the main cause of primary graft dysfunction after lung transplantation and results in increased morbidity and mortality. Fas-mediated apoptosis is one of the pathologic mechanisms involved in the development of ischemia-reperfusion injury. We hypothesized that the inhibition of Fas gene expression in lungs by intratracheal administration of small interfering RNA could reduce lung ischemia-reperfusion injury in an ex vivo model reproducing the procedural sequence of lung transplantation. Prospective, randomized, controlled experimental study. University research laboratory. C57/BL6 mice weighing 28-30 g. Ischemia-reperfusion injury was induced in lungs isolated from mice, 48 hours after treatment with intratracheal small interfering RNA targeting Fas, control small interfering RNA, or vehicle. Isolated lungs were exposed to 6 hours of cold ischemia (4°C), followed by 2 hours of warm (37°C) reperfusion with a solution containing 10% of fresh whole blood and mechanical ventilation with constant low driving pressure. Fas gene expression was significantly silenced at the level of messenger RNA and protein after ischemia-reperfusion in lungs treated with small interfering RNA targeting Fas compared with lungs treated with control small interfering RNA or vehicle. Silencing of Fas gene expression resulted in reduced edema formation (bronchoalveolar lavage protein concentration and lung histology) and improvement in lung compliance. These effects were associated with a significant reduction of pulmonary cell apoptosis of lungs treated with small interfering RNA targeting Fas, which did not affect cytokine release and neutrophil infiltration. Fas expression silencing in the lung by small interfering RNA is effective against ischemia-reperfusion injury. This approach represents a potential innovative strategy of organ preservation before lung transplantation.
Li, Yanli; Yu, Min; Zhao, Bo; Wang, Yan; Zha, Yunhong; Li, Zicheng; Yu, Lingling; Yan, Lingling; Chen, Zhangao; Zhang, Wenjuan; Zeng, Xiaoli; He, Zhi
2018-01-05
Clonidine, a classical α-2 adrenergic agonists, has been shown to antagonize brain damage caused by hypoxia, cerebral ischemia and excitotoxicity and reduce cerebral infarction volume in recent studies. We herein investigate the regulatory effect and possible underlying mechanism of clonidine on learning and memory in rats with cerebral ischemia. The cerebral ischemia rat model was established by right middle cerebral artery occlusion for 2h and reperfusion for 28 days. Drugs were administrated to the rats for consecutive 7 days intraperitoneally and once again on the day of surgery. The learning and memory in rats was assayed by Morris water maze. Moreover, protein expression levels of NMDAR2B (NR2B)/ phosphor - NR2B, ERK1/2/phosphor- ERK1/2, CREB/phosphor-CREB and NF-κB/phosphor-NF-κB in the cortex and hippocampus of the rats were assayed by western blotting. Our results demonstrated that clonidine treatment significantly abrogated the negative effect induced by cerebral ischemia on the learning and memory in the rats. In the Western blotting assay, clonidine treatment led to significant up-regulation of the expression level of NR2B and Phospho-NR2B in the hippocampus of the rats when compared with the cerebral ischemia group. Furthermore, clonidine also significantly decreased the protein expression levels of ERK1/2, Phospho-ERK1/2, CREB, Phospho-CREB and Phospho-NF-κB in the hippocampus of the rats when compared with the cerebral ischemia group. In conclusion, clonidine could improve the learning and memory ability of rats with cerebral ischemia, and NR2B, ERK1/2, CREB, NF-κB were involved in this effect. Copyright © 2017 Elsevier B.V. All rights reserved.
Loss of c-Kit function impairs arteriogenesis in a mouse model of hindlimb ischemia.
Hernandez, Diana R; Artiles, Adriana; Duque, Juan C; Martinez, Laisel; Pinto, Mariana T; Webster, Keith A; Velazquez, Omaida C; Vazquez-Padron, Roberto I; Lassance-Soares, Roberta M
2018-04-01
Arteriogenesis is a process whereby collateral vessels remodel usually in response to increased blood flow and/or wall stress. Remodeling of collaterals can function as a natural bypass to alleviate ischemia during arterial occlusion. Here we used a genetic approach to investigate possible roles of tyrosine receptor c-Kit in arteriogenesis. Mutant mice with loss of c-Kit function (Kit W/W-v ), and controls were subjected to hindlimb ischemia. Blood flow recovery was evaluated pre-, post-, and weekly after ischemia. Foot ischemic damage and function were assessed between days 1 to 14 post-ischemia while collaterals remodeling were measured 28 days post-ischemia. Both groups of mice also were subjected to wild type bone marrow cells transplantation 3 weeks before hindlimb ischemia to evaluate possible contributions of defective bone marrow c-Kit expression on vascular recovery. Kit W/W-v mice displayed impaired blood flow recovery, greater ischemic damage and foot dysfunction after ischemia compared to controls. Kit W/W-v mice also demonstrated impaired collateral remodeling consistent with flow recovery findings. Because arteriogenesis is a biological process that involves bone marrow-derived cells, we investigated which source of c-Kit signaling (bone marrow or vascular) plays a major role in arteriogenesis. Kit W/W-v mice transplanted with bone marrow wild type cells exhibited similar phenotype of impaired blood flow recovery, greater tissue ischemic damage and foot dysfunction as nontransplanted Kit W/W-v mice. This study provides evidence that c-Kit signaling is required during arteriogenesis. Also, it strongly suggests a vascular role for c-Kit signaling because rescue of systemic c-Kit activity by bone marrow transplantation did not augment the functional recovery of Kit W/W-v mouse hindlimbs. Copyright © 2017 Elsevier Inc. All rights reserved.
Dihné, Marcel; Grommes, Christian; Lutzenburg, Michael; Witte, Otto W; Block, Frank
2002-12-01
After focal cerebral ischemia, depending on its localization and extent, secondary neuronal damage may occur that is remote from the initial lesion. In this study differences in secondary damage of the ventroposterior thalamic nucleus (VPN) and the reticular thalamic nucleus (RTN) were investigated with the use of different ischemia models. Transient middle cerebral artery occlusion (MCAO) leads to cortical infarction, including parts of the basal ganglia such as the globus pallidus, and to widespread edema. Photothrombotic ischemia generates pure cortical infarcts sparing the basal ganglia and with only minor edema. Neuronal degeneration was quantified within the ipsilateral RTN and VPN 14 days after ischemia. Glial reactions were studied with the use of immunohistochemistry. MCAO resulted in delayed neuronal cell loss of the ipsilateral VPN and RTN. Glial activation occurred in both nuclei beginning after 24 hours. Photothrombotic ischemia resulted in delayed neuronal cell loss only within the VPN. Even 2 weeks after photothrombotic ischemia, glial activation could only be seen within the VPN. Pure cortical infarcts after photothrombotic ischemia, without major edema and without effects on the globus pallidus of the basal ganglia, only lead to secondary VPN damage that is possibly due to retrograde degeneration. MCAO, which results in infarction of cortex and globus pallidus and which causes widespread edema, leads to secondary damage in the VPN and RTN. Thus, additional RTN damage may be due to loss of protective GABAergic input from the globus pallidus to the RTN or due to the extensive edema. Retrograde degeneration is not possible because the RTN, in contrast to the VPN, has no efferents to the cortex.
Smit, Jeff M; Koning, Gerhard; van Rosendael, Alexander R; Dibbets-Schneider, Petra; Mertens, Bart J; Jukema, J Wouter; Delgado, Victoria; Reiber, Johan H C; Bax, Jeroen J; Scholte, Arthur J
2017-10-01
A new method has been developed to calculate fractional flow reserve (FFR) from invasive coronary angiography, the so-called "contrast-flow quantitative flow ratio (cQFR)". Recently, cQFR was compared to invasive FFR in intermediate coronary lesions showing an overall diagnostic accuracy of 85%. The purpose of this study was to investigate the relationship between cQFR and myocardial ischemia assessed by single-photon emission computed tomography myocardial perfusion imaging (SPECT MPI). Patients who underwent SPECT MPI and coronary angiography within 3 months were included. The cQFR computation was performed offline, using dedicated software. The cQFR computation was based on 3-dimensional quantitative coronary angiography (QCA) and computational fluid dynamics. The standard 17-segment model was used to determine the vascular territories. Myocardial ischemia was defined as a summed difference score ≥2 in a vascular territory. A cQFR of ≤0.80 was considered abnormal. Two hundred and twenty-four coronary arteries were analysed in 85 patients. Overall accuracy of cQFR to detect ischemia on SPECT MPI was 90%. In multivariable analysis, cQFR was independently associated with ischemia on SPECT MPI (OR per 0.01 decrease of cQFR: 1.10; 95% CI 1.04-1.18, p = 0.002), whereas clinical and QCA parameters were not. Furthermore, cQFR showed incremental value for the detection of ischemia compared to clinical and QCA parameters (global chi square 48.7 to 62.6; p <0.001). A good relationship between cQFR and SPECT MPI was found. cQFR was independently associated with ischemia on SPECT MPI and showed incremental value to detect ischemia compared to clinical and QCA parameters.
Shekarforoush, Shahnaz; Fatahi, Zahra; Safari, Fatemeh
2016-06-01
To achieve reliable experimental data, the side-effects of anesthetics should be eliminated. Since anesthetics exert a variety of effects on hemodynamic data and incidence of arrhythmias, the selection of anesthetic agents in a myocardial ischemic reperfusion injury model is very important. The present study was performed to compare hemodynamic variables, the incidence of ventricular arrhythmias, and infarct size during 30 min of ischemia and 120 min of reperfusion in rats using pentobarbital, ketamine-pentobarbital or ketamine-xylazine anaesthesia. A total of 30 rats were randomly divided into three groups. In group P, pentobarbital (60 mg/kg, intraperitoneally [IP]) was used solely; in group K-P, ketamine and pentobarbital (50 and 30 mg/kg, respectively, IP) were used in combination; and in group K-X, ketamine and xylazine (75 and 5 mg/kg, respectively, IP) were also used in combination. Hemodynamic data and occurrence of ventricular arrhythmias were recorded throughout the experiments. The ischemic area was measured by triphenyltetrazolium chloride staining. The combination of ketamine-xylazine caused bradycardia and hypotension. The greatest reduction in mean arterial blood pressure during ischemia was in the P group. The most stability in hemodynamic parameters during ischemia and reperfusion was in the K-P group. The infarct size was significantly less in the K-X group. Whereas none of the rats anesthetized with ketamine-xylazine fibrillated during ischemia, ventricular fibrillation occurred in 57% of the animals anesthetized with pentobarbital or ketamine-pentobarbital. Because it offers the most stable hemodynamic parameters, it is concluded that the ketamine-pentobarbital anesthesia combination is the best anesthesia in a rat ischemia reperfusion injury model. © The Author(s) 2015.
Thomas, Gail D; Ye, Jianfeng; De Nardi, Claudio; Monopoli, Angela; Ongini, Ennio; Victor, Ronald G
2012-01-01
In patients with Duchenne muscular dystrophy (DMD) and the standard mdx mouse model of DMD, dystrophin deficiency causes loss of neuronal nitric oxide synthase (nNOSμ) from the sarcolemma, producing functional ischemia when the muscles are exercised. We asked if functional muscle ischemia would be eliminated and normal blood flow regulation restored by treatment with an exogenous nitric oxide (NO)-donating drug. Beginning at 8 weeks of age, mdx mice were fed a standard diet supplemented with 1% soybean oil alone or in combination with a low (15 mg/kg) or high (45 mg/kg) dose of HCT 1026, a NO-donating nonsteroidal anti-inflammatory agent which has previously been shown to slow disease progression in the mdx model. After 1 month of treatment, vasoconstrictor responses to intra-arterial norepinephrine (NE) were compared in resting and contracting hindlimbs. In untreated mdx mice, the usual effect of muscle contraction to attenuate NE-mediated vasoconstriction was impaired, resulting in functional ischemia: NE evoked similar decreases in femoral blood flow velocity and femoral vascular conductance (FVC) in the contracting compared to resting hindlimbs (ΔFVC contraction/ΔFVC rest=0.88 ± 0.03). NE-induced functional ischemia was unaffected by low dose HCT 1026 (ΔFVC ratio=0.92 ± 0.04; P>0.05 vs untreated), but was alleviated by the high dose of the drug (ΔFVC ratio=0.22 ± 0.03; P<0.05 vs untreated or low dose). The beneficial effect of high dose HCT 1026 was maintained with treatment up to 3 months. The effect of the NO-donating drug HCT 1026 to normalize blood flow regulation in contracting mdx mouse hindlimb muscles suggests a putative novel treatment for DMD. Further translational research is warranted.
Nagahama, Ryoji; Matoba, Tetsuya; Nakano, Kaku; Kim-Mitsuyama, Shokei; Sunagawa, Kenji; Egashira, Kensuke
2012-10-01
Critical limb ischemia is a severe form of peripheral artery disease (PAD) for which neither surgical revascularization nor endovascular therapy nor current medicinal therapy has sufficient therapeutic effects. Peroxisome proliferator activated receptor-γ agonists present angiogenic activity in vitro; however, systemic administration of peroxisome proliferator-activated receptor-γ agonists is hampered by its side effects, including heart failure. Here, we demonstrate that the nanoparticle (NP)-mediated delivery of the peroxisome proliferator activated receptor-γ agonist pioglitazone enhances its therapeutic efficacy on ischemia-induced neovascularization in a murine model. In a nondiabetic murine model of hindlimb ischemia, a single intramuscular injection of pioglitazone-incorporated NP (1 µg/kg) into ischemic muscles significantly improved the blood flow recovery in the ischemic limbs, significantly increasing the number of CD31-positive capillaries and α-smooth muscle actin-positive arterioles. The therapeutic effects of pioglitazone-incorporated NP were diminished by the peroxisome proliferator activated receptor-γ antagonist GW9662 and were not observed in endothelial NO synthase-deficient mice. Pioglitazone-incorporated NP induced endothelial NO synthase phosphorylation, as demonstrated by Western blot analysis, as well as expression of multiple angiogenic growth factors in vivo, including vascular endothelial growth factor-A, vascular endothelial growth factor-B, and fibroblast growth factor-1, as demonstrated by real-time polymerase chain reaction. Intramuscular injection of pioglitazone (1 µg/kg) was ineffective, and oral administration necessitated a >500 μg/kg per day dose to produce therapeutic effects equivalent to those of pioglitazone-incorporated NP. NP-mediated drug delivery is a novel modality that may enhance the effectiveness of therapeutic neovascularization, surpassing the effectiveness of current treatments for peripheral artery disease with critical limb ischemia.
Mendoza, Fernando; Valous, Nektarios A; Allen, Paul; Kenny, Tony A; Ward, Paddy; Sun, Da-Wen
2009-02-01
This paper presents a novel and non-destructive approach to the appearance characterization and classification of commercial pork, turkey and chicken ham slices. Ham slice images were modelled using directional fractal (DF(0°;45°;90°;135°)) dimensions and a minimum distance classifier was adopted to perform the classification task. Also, the role of different colour spaces and the resolution level of the images on DF analysis were investigated. This approach was applied to 480 wafer thin ham slices from four types of hams (120 slices per type): i.e., pork (cooked and smoked), turkey (smoked) and chicken (roasted). DF features were extracted from digitalized intensity images in greyscale, and R, G, B, L(∗), a(∗), b(∗), H, S, and V colour components for three image resolution levels (100%, 50%, and 25%). Simulation results show that in spite of the complexity and high variability in colour and texture appearance, the modelling of ham slice images with DF dimensions allows the capture of differentiating textural features between the four commercial ham types. Independent DF features entail better discrimination than that using the average of four directions. However, DF dimensions reveal a high sensitivity to colour channel, orientation and image resolution for the fractal analysis. The classification accuracy using six DF dimension features (a(90°)(∗),a(135°)(∗),H(0°),H(45°),S(0°),H(90°)) was 93.9% for training data and 82.2% for testing data.
Adjudin attenuates lipopolysaccharide (LPS)- and ischemia-induced microglial activation
Shao, Jiaxiang; Liu, Tengyuan; Xie, Qian Reuben; Zhang, Tingting; Yu, Hemei; Wang, Boshi; Ying, Weihai; Mruk, Dolores D.; Silvestrini, Bruno; Cheng, C. Yan; Xia, Weiliang
2014-01-01
Neuroinflammation caused by microglial activation plays a key role in ischemia, neurodegeneration and many other CNS diseases. In this study, we found that Adjudin, a potential non-hormonal male contraceptive, exhibits additional function to reduce the production of proinflammatory mediators. Adjudin significantly inhibited LPS-induced IL-6 release and IL-6, IL-1β, TNF-α expression in BV2 microglial cells. Furthermore, Adjudin exhibited anti-inflammatory properties by suppression of NF-κB p65 nuclear translocation and DNA binding activity as well as ERK MAPK phosphorylation. To determine the in vivo effect of Adjudin, we used a permanent middle cerebral artery occlusion (pMCAO) mouse model and found that Adjudin could reduce ischemia-induced CD11b expression, a marker of microglial activation. Furthermore, Adjudin treatment attenuated brain edema and neurological deficits after ischemia but did not reduce infarct volume. Thus, our data suggest that Adjudin may be useful for mitigating neuroinflammation. PMID:23084372
Yoo, Ki-Yeon; Kim, In Hye; Cho, Jeong-Hwi; Ahn, Ji Hyeon; Park, Joon Ha; Lee, Jae-Chul; Tae, Hyun-Jin; Kim, Dae Won; Kim, Jong-Dai; Hong, Seongkweon; Won, Moo-Ho; Kang, Il Jun
2016-01-01
In this study, we tried to verify the neuroprotective effect of Chrysanthemum indicum Linne (CIL) extract, which has been used as a botanical drug in East Asia, against ischemic damage and to explore the underlying mechanism involving the anti-inflammatory approach. A gerbil was given CIL extract for 7 consecutive days followed by bilateral carotid artery occlusion to make a cerebral ischemia/reperfusion model. Then, we found that CIL extracts protected pyramidal neurons in the hippocampal CA1 region (CA1) from ischemic damage using neuronal nucleus immunohistochemistry and Fluoro-Jade B histofluorescence. Accordingly, interleukin-13 immunoreactivities in the CA1 pyramidal neurons of CIL-pretreated animals were maintained or increased after cerebral ischemia/reperfusion. These findings indicate that the pre-treatment of CIL can attenuate neuronal damage/death in the brain after cerebral ischemia/reperfusion via an anti-inflammatory approach. PMID:27073380
Miao, Yi-Feng; Wu, Hui; Yang, Shao-Feng; Dai, Jiong; Qiu, Yong-Ming; Tao, Zhen-Yi; Zhang, Xiao-Hua
2015-01-01
Hypothermia treatment is a promising therapeutic strategy for brain injury. We previously demonstrated that 5'-adenosine monophosphate (5'-AMP), a ribonucleic acid nucleotide, produces reversible deep hypothermia in rats when the ambient temperature is appropriately controlled. Thus, we hypothesized that 5'-AMP-induced hypothermia (AIH) may attenuate brain ischemia/reperfusion injury. Transient cerebral ischemia was induced by using the middle cerebral artery occlusion (MCAO) model in rats. Rats that underwent AIH treatment exhibited a significant reduction in neutrophil elastase infiltration into neuronal cells and matrix metalloproteinase 9 (MMP-9), interleukin-1 receptor (IL-1R), tumor necrosis factor receptor (TNFR), and Toll-like receptor (TLR) protein expression in the infarcted area compared to euthermic controls. AIH treatment also decreased the number of terminal deoxynucleotidyl transferase dUTP nick end labeling- (TUNEL-) positive neuronal cells. The overall infarct volume was significantly smaller in AIH-treated rats, and neurological function was improved. By contrast, rats with ischemic brain injury that were administered 5'-AMP without inducing hypothermia had ischemia/reperfusion injuries similar to those in euthermic controls. Thus, the neuroprotective effects of AIH were primarily related to hypothermia.
Rong, Jian; Ye, Sheng; Liang, Meng-ya; Chen, Guang-xian; Liu, Hai; Zhang, Jin-Xin; Wu, Zhong-kai
2013-01-01
Controlled oxygen reperfusion could protect the lung against ischemia-reperfusion injury in cardiopulmonary bypass (CPB) by downregulating high mobility group box 1 (HMGB1), a high affinity receptor of HMGB1. This study investigated the effect of controlled oxygen reperfusion on receptor for advanced glycation end products (RAGE) expression and its downstream effects on lung ischemia-reperfusion injury. Fourteen canines received CPB with 60 minutes of aortic clamping and cardioplegic arrest followed by 90 minutes of reperfusion. Animals were randomized to receive 80% FiO2 during the entire procedure (control group) or to a test group receiving a controlled oxygen reperfusion protocol. Pathologic changes in lung tissues, RAGE expression, serum interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were evaluated. The lung pathologic scores after 25 and 90 minutes of reperfusion were significantly lower in the test group compared with the control group (p < 0.001). RAGE expression, TNF-α, and IL-6 were downregulated by controlled oxygen treatment (p < 0.001). RAGE might be involved in the lung ischemia-reperfusion injury in canine model of CPB, which was downregulated by controlled oxygen reperfusion.
Gradient-free MCMC methods for dynamic causal modelling
Sengupta, Biswa; Friston, Karl J.; Penny, Will D.
2015-03-14
Here, we compare the performance of four gradient-free MCMC samplers (random walk Metropolis sampling, slice-sampling, adaptive MCMC sampling and population-based MCMC sampling with tempering) in terms of the number of independent samples they can produce per unit computational time. For the Bayesian inversion of a single-node neural mass model, both adaptive and population-based samplers are more efficient compared with random walk Metropolis sampler or slice-sampling; yet adaptive MCMC sampling is more promising in terms of compute time. Slice-sampling yields the highest number of independent samples from the target density -- albeit at almost 1000% increase in computational time, in comparisonmore » to the most efficient algorithm (i.e., the adaptive MCMC sampler).« less
Outcomes of lower extremity bypass performed for acute limb ischemia
Baril, Donald T.; Patel, Virendra I.; Judelson, Dejah R.; Goodney, Philip P.; McPhee, James T.; Hevelone, Nathanael D.; Cronenwett, Jack L.; Schanzer, Andres
2013-01-01
Objective Acute limb ischemia remains one of the most challenging emergencies in vascular surgery. Historically, outcomes following interventions for acute limb ischemia have been associated with high rates of morbidity and mortality. The purpose of this study was to determine contemporary outcomes following lower extremity bypass performed for acute limb ischemia. Methods All patients undergoing infrainguinal lower extremity bypass between 2003 and 2011 within hospitals comprising the Vascular Study Group of New England were identified. Patients were stratified according to whether or not the indication for lower extremity bypass was acute limb ischemia. Primary end points included bypass graft occlusion, major amputation, and mortality at 1 year postoperatively as determined by Kaplan-Meier life table analysis. Multivariable Cox proportional hazards models were constructed to evaluate independent predictors of mortality and major amputation at 1 year. Results Of 5712 lower extremity bypass procedures, 323 (5.7%) were performed for acute limb ischemia. Patients undergoing lower extremity bypass for acute limb ischemia were similar in age (66 vs 67; P = .084) and sex (68% male vs 69% male; P = .617) compared with chronic ischemia patients, but were less likely to be on aspirin (63% vs 75%; P < .0001) or a statin (55% vs 68%; P < .0001). Patients with acute limb ischemia were more likely to be current smokers (49% vs 39%; P < .0001), to have had a prior ipsilateral bypass (33% vs 24%; P = .004) or a prior ipsilateral percutaneous intervention (41% vs 29%; P = .001). Bypasses performed for acute limb ischemia were longer in duration (270 vs 244 minutes; P = .007), had greater blood loss (363 vs 272 mL; P < .0001), and more commonly utilized prosthetic conduits (41% vs 33%; P = .003). Acute limb ischemia patients experienced increased in-hospital major adverse events (20% vs 12%; P < .0001) including myocardial infarction, congestive heart failure exacerbation, deterioration in renal function, and respiratory complications. Patients who underwent lower extremity bypass for acute limb ischemia had no difference in rates of graft occlusion (18.1% vs 18.5%; P = .77), but did have significantly higher rates of limb loss (22.4% vs 9.7%; P < .0001) and mortality (20.9% vs 13.1%; P < .0001) at 1 year. On multivariable analysis, acute limb ischemia was an independent predictor of both major amputation (hazard ratio, 2.16; confidence interval, 1.38–3.40; P = .001) and mortality (hazard ratio, 1.41; confidence interval, 1.09–1.83; P = .009) at 1 year. Conclusions Patients who present with acute limb ischemia represent a less medically optimized subgroup within the population of patients undergoing lower extremity bypass. These patients may be expected to have more complex operations followed by increased rates of perioperative adverse events. Additionally, despite equivalent graft patency rates, patients undergoing lower extremity bypass for acute ischemia have significantly higher rates of major amputation and mortality at 1 year. PMID:23714364
Outcomes of lower extremity bypass performed for acute limb ischemia.
Baril, Donald T; Patel, Virendra I; Judelson, Dejah R; Goodney, Philip P; McPhee, James T; Hevelone, Nathanael D; Cronenwett, Jack L; Schanzer, Andres
2013-10-01
Acute limb ischemia remains one of the most challenging emergencies in vascular surgery. Historically, outcomes following interventions for acute limb ischemia have been associated with high rates of morbidity and mortality. The purpose of this study was to determine contemporary outcomes following lower extremity bypass performed for acute limb ischemia. All patients undergoing infrainguinal lower extremity bypass between 2003 and 2011 within hospitals comprising the Vascular Study Group of New England were identified. Patients were stratified according to whether or not the indication for lower extremity bypass was acute limb ischemia. Primary end points included bypass graft occlusion, major amputation, and mortality at 1 year postoperatively as determined by Kaplan-Meier life table analysis. Multivariable Cox proportional hazards models were constructed to evaluate independent predictors of mortality and major amputation at 1 year. Of 5712 lower extremity bypass procedures, 323 (5.7%) were performed for acute limb ischemia. Patients undergoing lower extremity bypass for acute limb ischemia were similar in age (66 vs 67; P = .084) and sex (68% male vs 69% male; P = .617) compared with chronic ischemia patients, but were less likely to be on aspirin (63% vs 75%; P < .0001) or a statin (55% vs 68%; P < .0001). Patients with acute limb ischemia were more likely to be current smokers (49% vs 39%; P < .0001), to have had a prior ipsilateral bypass (33% vs 24%; P = .004) or a prior ipsilateral percutaneous intervention (41% vs 29%; P = .001). Bypasses performed for acute limb ischemia were longer in duration (270 vs 244 minutes; P = .007), had greater blood loss (363 vs 272 mL; P < .0001), and more commonly utilized prosthetic conduits (41% vs 33%; P = .003). Acute limb ischemia patients experienced increased in-hospital major adverse events (20% vs 12%; P < .0001) including myocardial infarction, congestive heart failure exacerbation, deterioration in renal function, and respiratory complications. Patients who underwent lower extremity bypass for acute limb ischemia had no difference in rates of graft occlusion (18.1% vs 18.5%; P = .77), but did have significantly higher rates of limb loss (22.4% vs 9.7%; P < .0001) and mortality (20.9% vs 13.1%; P < .0001) at 1 year. On multivariable analysis, acute limb ischemia was an independent predictor of both major amputation (hazard ratio, 2.16; confidence interval, 1.38-3.40; P = .001) and mortality (hazard ratio, 1.41; confidence interval, 1.09-1.83; P = .009) at 1 year. Patients who present with acute limb ischemia represent a less medically optimized subgroup within the population of patients undergoing lower extremity bypass. These patients may be expected to have more complex operations followed by increased rates of perioperative adverse events. Additionally, despite equivalent graft patency rates, patients undergoing lower extremity bypass for acute ischemia have significantly higher rates of major amputation and mortality at 1 year. Copyright © 2013 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.
Multislice spiral CT simulator for dynamic cardiopulmonary studies
NASA Astrophysics Data System (ADS)
De Francesco, Silvia; Ferreira da Silva, Augusto M.
2002-04-01
We've developed a Multi-slice Spiral CT Simulator modeling the acquisition process of a real tomograph over a 4-dimensional phantom (4D MCAT) of the human thorax. The simulator allows us to visually characterize artifacts due to insufficient temporal sampling and a priori evaluate the quality of the images obtained in cardio-pulmonary studies (both with single-/multi-slice and ECG gated acquisition processes). The simulating environment allows both for conventional and spiral scanning modes and includes a model of noise in the acquisition process. In case of spiral scanning, reconstruction facilities include longitudinal interpolation methods (360LI and 180LI both for single and multi-slice). Then, the reconstruction of the section is performed through FBP. The reconstructed images/volumes are affected by distortion due to insufficient temporal sampling of the moving object. The developed simulating environment allows us to investigate the nature of the distortion characterizing it qualitatively and quantitatively (using, for example, Herman's measures). Much of our work is focused on the determination of adequate temporal sampling and sinogram regularization techniques. At the moment, the simulator model is limited to the case of multi-slice tomograph, being planned as a next step of development the extension to cone beam or area detectors.
Ozban, Murat; Aydin, Cagatay; Cevahir, Nural; Yenisey, Cigdem; Birsen, Onur; Gumrukcu, Gulistan; Aydin, Berrin; Berber, Ibrahim
2015-03-08
Acute mesenteric ischemia is a life-threatening vascular emergency resulting in tissue destruction due to ischemia-reperfusion injury. Melatonin, the primary hormone of the pineal gland, is a powerful scavenger of reactive oxygen species (ROS), including the hydroxyl and peroxyl radicals, as well as singlet oxygen, and nitric oxide. In this study, we aimed to investigate whether melatonin prevents harmful effects of superior mesenteric ischemia-reperfusion on intestinal tissues in rats. Rats were randomly divided into three groups, each having 10 animals. In group I, the superior mesenteric artery (SMA) was isolated but not occluded. In group II and group III, the SMA was occluded immediately distal to the aorta for 60 minutes. After that, the clamp was removed and the reperfusion period began. In group III, 30 minutes before the start of reperfusion, 10 mg/kg melatonin was administered intraperitonally. All animals were sacrified 24 hours after reperfusion. Tissue samples were collected to evaluate the I/R-induced intestinal injury and bacterial translocation (BT). There was a statistically significant increase in myeloperoxidase activity, malondialdehyde levels and in the incidence of bacterial translocation in group II, along with a decrease in glutathione levels. These investigated parameters were found to be normalized in melatonin treated animals (group III). We conclude that melatonin prevents bacterial translocation while precluding the harmful effects of ischemia/reperfusion injury on intestinal tissues in a rat model of superior mesenteric artery occlusion.
A TIGAR-regulated metabolic pathway is critical for protection of brain ischemia.
Li, Mei; Sun, Meiling; Cao, Lijuan; Gu, Jin-hua; Ge, Jianbin; Chen, Jieyu; Han, Rong; Qin, Yuan-Yuan; Zhou, Zhi-Peng; Ding, Yuqiang; Qin, Zheng-Hong
2014-05-28
TP53-induced glycolysis and apoptosis regulator (TIGAR) inhibits glycolysis and increases the flow of pentose phosphate pathway (PPP), which generates NADPH and pentose. We hypothesized that TIGAR plays a neuroprotective role in brain ischemia as neurons do not rely on glycolysis but are vulnerable to oxidative stress. We found that TIGAR was highly expressed in brain neurons and was rapidly upregulated in response to ischemia/reperfusion insult in a TP53-independent manner. Overexpression of TIGAR in normal mice with lentivirus reduced ischemic neuronal injury, whereas lentivirus-mediated TIGAR knockdown aggravated it. In cultured primary neurons, increasing TIGAR expression reduced oxygen and glucose deprivation (OGD)/reoxygenation-induced injury, whereas decreasing its expression worsened the injury. The glucose 6-phosphate dehydrogenase was upregulated in mouse and cellular models of stroke, and its upregulation was further enhanced by overexpression of TIGAR. Supplementation of NADPH also reduced ischemia/reperfusion brain injury and alleviated TIGAR knockdown-induced aggravation of ischemic injury. In animal and cellular stroke models, ischemia/reperfusion increased mitochondrial localization of TIGAR. OGD/reoxygenation-induced elevation of ROS, reduction of GSH, dysfunction of mitochondria, and activation of caspase-3 were rescued by overexpression of TIGAR or supplementation of NADPH, while knockdown of TIGAR aggravated these changes. Together, our results show that TIGAR protects ischemic brain injury via enhancing PPP flux and preserving mitochondria function, and thus may be a valuable therapeutic target for ischemic brain injury. Copyright © 2014 the authors 0270-6474/14/347458-14$15.00/0.
Chen, Zheng-Zhen; Yang, Dan-Dan; Zhao, Zhan; Yan, Hui; Ji, Juan; Sun, Xiu-Lan
2016-04-01
Memantine is a low-moderate affinity and uncompetitive N-methyl-d-aspartate receptor (NMDAR) antagonist, which is also a potential neuroprotectant in acute ischemic stroke for its particular action profiles. The present study was to reveal the mechanisms involved in the neuroprotection of memantine. We used a mouse model of permanent focal cerebral ischemia via middle cerebral artery occlusion to verify our hypothesis. 2,3,5-Triphenyltetrazolium chloride staining was used to compare infarct size. The amount of astrocytes and the somal volume of the microglia cell body were analyzed by immunohistochemistry and stereological estimates. Western blotting was used to determine the protein expressions. Memantine prevented cerebral ischemia-induced brain infarct and neuronal injury, and reduced oxygen-glucose deprivation-induced cortical neuronal apoptosis. Moreover, memantine reduced the amount of the damaged astrocytes and over activated microglia after 24h of ischemia. In the early phase of ischemia, higher production of MMP-9 was observed, and thereby collagen IV was dramatically disrupted. Meanwhile, the post-synaptic density protein 95(PSD-95) was also severely cleavaged. Memantine decreased MMP-9 secretion, prevented the degradation of collagen IV in mouse brain. PSD-95 cleavage was also inhibited by memantine. These results suggested that memantine exerted neuroprotection effects in acute ischemic brain damage, partially via improving the functions of neurovascular unit. Taking all these findings together, we consider that memantine might be a promising protective agent against ischemic stroke. Copyright © 2016 Elsevier Inc. All rights reserved.
[The role of Leptin on neuron apoptosis in mice with cerebral ischemia/reperfusion injury].
Yan, Guang-tao; Si, Yi-ling; Zhang, Jin-ying; Deng, Zi-hui; Xue, Hui
2011-06-01
To study the effect of Leptin on neuron apoptosis in mice with cerebral ischemia injury and its mechanism. Seventy-five mice were randomly divided into three groups. Focal cerebral ischemia/reperfusion injury model in mice was reproduced by middle cerebral artery occlusion for 2 hours followed by reperfusion. In Leptin intervention group mice were given Leptin 1 μg/g during cerebral ischemia by intraperitoneal injection. Mice in the model group were given equal amount of phosphate buffer saline. After reperfusion for 24 hours, the neuron apoptosis was detected by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining. The mRNA and protein expression of apoptosis relative gene caspase-3 and bcl-2 were determined by reverse transcription-polymerase chain reaction (RT-PCR) and immuno histochemistry. Most of neuron necrosis was observed in cerebral ischemia center in model group. Compared with sham-operation group, neuron apoptosis rate, mRNA and protein expression of caspase-3 and bcl-2 in model group increased significantly [apoptosis rate: (68.65 ± 0.79)% vs. (4.40 ± 0.00)%, caspase-3 mRNA: 2.563 ± 0.250 vs. 0.153 ± 0.020, bcl-2 mRNA: 0.337 ± 0.100 vs. 0.125 ± 0.030, caspase-3 protein (absorbance value, A value): 0.57 ± 0.05 vs. 0.37 ± 0.03, bcl-2 protein (A value): 0.51 ± 0.04 vs. 0.35 ± 0.01, all P<0.01]. The apoptosis rate of penumbra neurons was reduced in Leptin intervention group significantly compared with model group [(42.30 ± 8.45)% vs. (68.65 ± 0.79)%, P<0.01]. Compared with model group, the mRNA and protein expression of caspase-3 in Leptin intervention group were reduced significantly [caspase-3 mRNA: 2.267 ± 0.040 vs. 2.563 ± 0.250, caspase-3 protein (A value): 0.45 ± 0.04 vs. 0.57 ± 0.05, P>0.05 and P<0.01], and the mRNA and protein expression of bcl-2 in Leptin intervention group upregulated significantly [bcl-2 mRNA: 0.662 ± 0.040 vs. 0.337 ± 0.100, bcl-2 protein (A value): 0.76 ± 0.09 vs. 0.51 ± 0.04, both P<0.01]. Leptin could reduce apoptosis of neurons through down-regulation of the expression of caspase-3 and up-regulation of the expression of bcl-2. The results suggest that Leptin plays a neuroprotective role in cerebral ischemia injury.
High resolution wind measurements for offshore wind energy development
NASA Technical Reports Server (NTRS)
Nghiem, Son Van (Inventor); Neumann, Gregory (Inventor)
2013-01-01
A method, apparatus, system, article of manufacture, and computer readable storage medium provide the ability to measure wind. Data at a first resolution (i.e., low resolution data) is collected by a satellite scatterometer. Thin slices of the data are determined. A collocation of the data slices are determined at each grid cell center to obtain ensembles of collocated data slices. Each ensemble of collocated data slices is decomposed into a mean part and a fluctuating part. The data is reconstructed at a second resolution from the mean part and a residue of the fluctuating part. A wind measurement is determined from the data at the second resolution using a wind model function. A description of the wind measurement is output.
NASA Astrophysics Data System (ADS)
Horuz, Erhan; Bozkurt, Hüseyin; Karataş, Haluk; Maskan, Medeni
2018-02-01
Drying kinetics, modeling, temperature profile and energy indices were investigated in apple slices during drying by a specially designed microwave-hot air domestic hybrid oven at the following conditions: 120, 150 and 180 W microwave powers coupled with 50, 60 and 70 °C air temperatures. Both sources of energy were applied simultaneously during the whole drying processes. The drying process continued until the moisture content of apple slices reached to 20% from 86.3% (wet basis, w.b). Drying times ranged from 330 to 800 min and decreased with increasing microwave power and air temperatures. The constant rate period was only observed at low microwave powers and air temperatures. Two falling rate periods were observed. Temperature of apple slices sharply increased within the first 60 min, then reached equilibrium with drying medium and finally increased at the end of the drying process. In order to describe drying behavior of apple slices nine empirical models were applied. The Modified Logistic Model fitted the best our experimental data ( R 2 = 0.9955-0.9998; χ 2 = 3.46 × 10-5-7.85 × 10-4 and RMSE = 0.0052-0.0221). The effective moisture and thermal diffusivities were calculated by Fick's second law and ranged from 1.42 × 10-9 to 3.31 × 10-9 m2/s and 7.70 × 10-9 to 12.54 × 10-9 m2/s, respectively. The activation energy ( Ea) values were calculated from effective moisture diffusivity ( Deff), thermal diffusivity ( α) and the rate constant of the best model ( k). The Ea values found from these three terms were similar and varied from 13.04 to 33.52 kJ/mol. Energy consumption and specific energy requirement of the hybrid drying of apple slices decreased and energy efficiency of the drying system increased with increasing microwave power and air temperature. Apples can be dried rapidly and effectively by use of the hybrid technique.
Cardiac tissue slices: preparation, handling, and successful optical mapping.
Wang, Ken; Lee, Peter; Mirams, Gary R; Sarathchandra, Padmini; Borg, Thomas K; Gavaghan, David J; Kohl, Peter; Bollensdorff, Christian
2015-05-01
Cardiac tissue slices are becoming increasingly popular as a model system for cardiac electrophysiology and pharmacology research and development. Here, we describe in detail the preparation, handling, and optical mapping of transmembrane potential and intracellular free calcium concentration transients (CaT) in ventricular tissue slices from guinea pigs and rabbits. Slices cut in the epicardium-tangential plane contained well-aligned in-slice myocardial cell strands ("fibers") in subepicardial and midmyocardial sections. Cut with a high-precision slow-advancing microtome at a thickness of 350 to 400 μm, tissue slices preserved essential action potential (AP) properties of the precutting Langendorff-perfused heart. We identified the need for a postcutting recovery period of 36 min (guinea pig) and 63 min (rabbit) to reach 97.5% of final steady-state values for AP duration (APD) (identified by exponential fitting). There was no significant difference between the postcutting recovery dynamics in slices obtained using 2,3-butanedione 2-monoxime or blebistatin as electromechanical uncouplers during the cutting process. A rapid increase in APD, seen after cutting, was caused by exposure to ice-cold solution during the slicing procedure, not by tissue injury, differences in uncouplers, or pH-buffers (bicarbonate; HEPES). To characterize intrinsic patterns of CaT, AP, and conduction, a combination of multipoint and field stimulation should be used to avoid misinterpretation based on source-sink effects. In summary, we describe in detail the preparation, mapping, and data analysis approaches for reproducible cardiac tissue slice-based investigations into AP and CaT dynamics. Copyright © 2015 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Gong, Hao; Yu, Lifeng; Leng, Shuai; Dilger, Samantha; Zhou, Wei; Ren, Liqiang; McCollough, Cynthia H.
2018-03-01
Channelized Hotelling observer (CHO) has demonstrated strong correlation with human observer (HO) in both single-slice viewing mode and multi-slice viewing mode in low-contrast detection tasks with uniform background. However, it remains unknown if the simplest single-slice CHO in uniform background can be used to predict human observer performance in more realistic tasks that involve patient anatomical background and multi-slice viewing mode. In this study, we aim to investigate the correlation between CHO in a uniform water background and human observer performance at a multi-slice viewing mode on patient liver background for a low-contrast lesion detection task. The human observer study was performed on CT images from 7 abdominal CT exams. A noise insertion tool was employed to synthesize CT scans at two additional dose levels. A validated lesion insertion tool was used to numerically insert metastatic liver lesions of various sizes and contrasts into both phantom and patient images. We selected 12 conditions out of 72 possible experimental conditions to evaluate the correlation at various radiation doses, lesion sizes, lesion contrasts and reconstruction algorithms. CHO with both single and multi-slice viewing modes were strongly correlated with HO. The corresponding Pearson's correlation coefficient was 0.982 (with 95% confidence interval (CI) [0.936, 0.995]) and 0.989 (with 95% CI of [0.960, 0.997]) in multi-slice and single-slice viewing modes, respectively. Therefore, this study demonstrated the potential to use the simplest single-slice CHO to assess image quality for more realistic clinically relevant CT detection tasks.
Cardiac tissue slices: preparation, handling, and successful optical mapping
Wang, Ken; Lee, Peter; Mirams, Gary R.; Sarathchandra, Padmini; Borg, Thomas K.; Gavaghan, David J.; Kohl, Peter
2015-01-01
Cardiac tissue slices are becoming increasingly popular as a model system for cardiac electrophysiology and pharmacology research and development. Here, we describe in detail the preparation, handling, and optical mapping of transmembrane potential and intracellular free calcium concentration transients (CaT) in ventricular tissue slices from guinea pigs and rabbits. Slices cut in the epicardium-tangential plane contained well-aligned in-slice myocardial cell strands (“fibers”) in subepicardial and midmyocardial sections. Cut with a high-precision slow-advancing microtome at a thickness of 350 to 400 μm, tissue slices preserved essential action potential (AP) properties of the precutting Langendorff-perfused heart. We identified the need for a postcutting recovery period of 36 min (guinea pig) and 63 min (rabbit) to reach 97.5% of final steady-state values for AP duration (APD) (identified by exponential fitting). There was no significant difference between the postcutting recovery dynamics in slices obtained using 2,3-butanedione 2-monoxime or blebistatin as electromechanical uncouplers during the cutting process. A rapid increase in APD, seen after cutting, was caused by exposure to ice-cold solution during the slicing procedure, not by tissue injury, differences in uncouplers, or pH-buffers (bicarbonate; HEPES). To characterize intrinsic patterns of CaT, AP, and conduction, a combination of multipoint and field stimulation should be used to avoid misinterpretation based on source-sink effects. In summary, we describe in detail the preparation, mapping, and data analysis approaches for reproducible cardiac tissue slice-based investigations into AP and CaT dynamics. PMID:25595366
Garbayo, Elisa; Gavira, Juan José; de Yebenes, Manuel Garcia; Pelacho, Beatriz; Abizanda, Gloria; Lana, Hugo; Blanco-Prieto, María José; Prosper, Felipe
2016-01-01
Cardiovascular protein therapeutics such as neuregulin (NRG1) and acidic-fibroblast growth factor (FGF1) requires new formulation strategies that allow for sustained bioavailability of the drug in the infarcted myocardium. However, there is no FDA-approved injectable protein delivery platform due to translational concerns about biomaterial administration through cardiac catheters. We therefore sought to evaluate the efficacy of percutaneous intramyocardial injection of poly(lactic-co-glycolic acid) microparticles (MPs) loaded with NRG1 and FGF1 using the NOGA MYOSTAR injection catheter in a porcine model of ischemia-reperfusion. NRG1- and FGF1-loaded MPs were prepared using a multiple emulsion solvent-evaporation technique. Infarcted pigs were treated one week after ischemia-reperfusion with MPs containing NRG1, FGF1 or non-loaded MPs delivered via clinically-translatable percutaneous transendocardial-injection. Three months post-treatment, echocardiography indicated a significant improvement in systolic and diastolic cardiac function. Moreover, improvement in bipolar voltage and decrease in transmural infarct progression was demonstrated by electromechanical NOGA-mapping. Functional benefit was associated with an increase in myocardial vascularization and remodeling. These findings in a large animal model of ischemia-reperfusion demonstrate the feasibility and efficacy of using MPs as a delivery system for growth factors and provide strong evidence to move forward with clinical studies using therapeutic proteins combined with catheter-compatible biomaterials. PMID:27184924
Lozeron, Pierre; Mantsounga, Chris S; Broqueres-You, Dong; Dohan, Anthony; Polivka, Marc; Deroide, Nicolas; Silvestre, Jean-Sébastien; Kubis, Nathalie; Lévy, Bernard I
2015-09-01
Neuropathy is the most common complication of the peripheral nervous system during the progression of diabetes. The pathophysiology is unclear but may involve microangiopathy, reduced endoneurial blood flow, and tissue ischemia. We used a mouse model of type 1 diabetes to study parallel alterations of nerves and microvessels following tissue ischemia. We designed an easily reproducible model of ischemic neuropathy induced by irreversible ligation of the femoral artery. We studied the evolution of behavioral function, epineurial and endoneurial vessel impairment, and large nerve myelinated fiber as well as small cutaneous unmyelinated fiber impairment for 1 month following the onset of ischemia. We observed a more severe hindlimb dysfunction and delayed recovery in diabetic animals. This was associated with reduced density of large arteries in the hindlimb and reduced sciatic nerve epineurial blood flow. A reduction in sciatic nerve endoneurial capillary density was also observed, associated with a reduction in small unmyelinated epidermal fiber number and large myelinated sciatic nerve fiber dysfunction. Moreover, vascular recovery was delayed, and nerve dysfunction was still present in diabetic animals at day 28. This easily reproducible model provides clear insight into the evolution over time of the impact of ischemia on nerve and microvessel homeostasis in the setting of diabetes. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Garbayo, Elisa; Gavira, Juan José; de Yebenes, Manuel Garcia; Pelacho, Beatriz; Abizanda, Gloria; Lana, Hugo; Blanco-Prieto, María José; Prosper, Felipe
2016-05-01
Cardiovascular protein therapeutics such as neuregulin (NRG1) and acidic-fibroblast growth factor (FGF1) requires new formulation strategies that allow for sustained bioavailability of the drug in the infarcted myocardium. However, there is no FDA-approved injectable protein delivery platform due to translational concerns about biomaterial administration through cardiac catheters. We therefore sought to evaluate the efficacy of percutaneous intramyocardial injection of poly(lactic-co-glycolic acid) microparticles (MPs) loaded with NRG1 and FGF1 using the NOGA MYOSTAR injection catheter in a porcine model of ischemia-reperfusion. NRG1- and FGF1-loaded MPs were prepared using a multiple emulsion solvent-evaporation technique. Infarcted pigs were treated one week after ischemia-reperfusion with MPs containing NRG1, FGF1 or non-loaded MPs delivered via clinically-translatable percutaneous transendocardial-injection. Three months post-treatment, echocardiography indicated a significant improvement in systolic and diastolic cardiac function. Moreover, improvement in bipolar voltage and decrease in transmural infarct progression was demonstrated by electromechanical NOGA-mapping. Functional benefit was associated with an increase in myocardial vascularization and remodeling. These findings in a large animal model of ischemia-reperfusion demonstrate the feasibility and efficacy of using MPs as a delivery system for growth factors and provide strong evidence to move forward with clinical studies using therapeutic proteins combined with catheter-compatible biomaterials.
Wang, Dafang; Kirby, Robert M.; MacLeod, Rob S.; Johnson, Chris R.
2013-01-01
With the goal of non-invasively localizing cardiac ischemic disease using body-surface potential recordings, we attempted to reconstruct the transmembrane potential (TMP) throughout the myocardium with the bidomain heart model. The task is an inverse source problem governed by partial differential equations (PDE). Our main contribution is solving the inverse problem within a PDE-constrained optimization framework that enables various physically-based constraints in both equality and inequality forms. We formulated the optimality conditions rigorously in the continuum before deriving finite element discretization, thereby making the optimization independent of discretization choice. Such a formulation was derived for the L2-norm Tikhonov regularization and the total variation minimization. The subsequent numerical optimization was fulfilled by a primal-dual interior-point method tailored to our problem’s specific structure. Our simulations used realistic, fiber-included heart models consisting of up to 18,000 nodes, much finer than any inverse models previously reported. With synthetic ischemia data we localized ischemic regions with roughly a 10% false-negative rate or a 20% false-positive rate under conditions up to 5% input noise. With ischemia data measured from animal experiments, we reconstructed TMPs with roughly 0.9 correlation with the ground truth. While precisely estimating the TMP in general cases remains an open problem, our study shows the feasibility of reconstructing TMP during the ST interval as a means of ischemia localization. PMID:23913980
Xu, Zhenfeng; Mu, Chaofeng; Alvarez, Paloma; Ford, Byron D.; El Sayed, Khalid; Eterovic, Vesna A.; Ferchmin, Pedro A.; Hao, Jiukuan
2015-01-01
(1S,2E,4R,6R,-7E,11E)-2,7,11-cembratriene-4,6-diol (4R) is a precursor to key flavor ingredients in leaves of Nicotiana species. The present study shows 4R decreased brain damage in rodent ischemic stroke models. The 4R-pretreated mice had lower infarct volume (26.2±9.7 mm3) than those in control groups (untreated: 63.4±4.2 mm3, DMSO: 60.2±14.2 mm3). The 4R-posttreated rats also had less infarct volume (120±65 mm3) than those in the rats of DMSO group (291±95 mm3). The results from in vitro experiments indicate that 4R decreased neuro2a cells (neuroblastoma cells) apoptosis induced by oxygen glucose deprivation (OGD), and improved the population spikes (PSs) recovery in rat acute hippocampal slices under OGD; a phosphatidylinositol 3-kinase (PI3K) inhibitor, wortmannin, abolished the effect of 4R on PSs recovery. Furthermore, 4R also inhibited monocyte adhesion to bEND5 cells (murine brain-derived endothelial cells) and upregulation of intercellular adhesion molecule-1(ICAM-1) induced by OGD/reoxygenation (OGD/R), and restored the p-Akt level to pre-OGD/R values in bEND5 cells. In conclusion, the present study indicates that 4R has a protective effect in rodent ischemic stroke models. Inhibition of ICAM-1 expression and restoration of Akt phosphorylation are the possible mechanisms involved in cellular protection by 4R. PMID:25677097
Martins, Antonio H; Hu, Jing; Xu, Zhenfeng; Mu, Chaofeng; Alvarez, Paloma; Ford, Byron D; El Sayed, Khalid; Eterovic, Vesna A; Ferchmin, Pedro A; Hao, Jiukuan
2015-04-16
(1S,2E,4R,6R,-7E,11E)-2,7,11-cembratriene-4,6-diol (4R) is a precursor to key flavor ingredients in leaves of Nicotiana species. The present study shows 4R decreased brain damage in rodent ischemic stroke models. The 4R-pretreated mice had lower infarct volumes (26.2±9.7 mm3) than those in control groups (untreated: 63.4±4.2 mm3, DMSO: 60.2±14.2 mm3). The 4R-posttreated rats also had less infarct volumes (120±65 mm3) than those in the rats of the DMSO group (291±95 mm3). The results from in vitro experiments indicate that 4R decreased neuro2a cell (neuroblastoma cells) apoptosis induced by oxygen-glucose deprivation (OGD), and improved the population spikes' (PSs) recovery in rat acute hippocampal slices under OGD; a phosphatidylinositol 3-kinase (PI3K) inhibitor, wortmannin, abolished the effect of 4R on PSs recovery. Furthermore, 4R also inhibited monocyte adhesion to murine brain-derived endothelial (bEND5) cells and upregulation of intercellular adhesion molecule-1(ICAM-1) induced by OGD/reoxygenation (OGD/R), and restored the p-Akt level to pre-OGD/R values in bEND5 cells. In conclusion, the present study indicates that 4R has a protective effect in rodent ischemic stroke models. Inhibition of ICAM-1 expression and restoration of Akt phosphorylation are the possible mechanisms involved in cellular protection by 4R. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Li, Lei; Lin, Cheng-Ren; Ren, Jian-Xun; Miao, Lan; Yao, Ming-Jiang; Li, Dan; Shi, Yue; Ma, Yan-Lei; Fu, Jian-Hua; Liu, Jian-Xun
2014-02-01
To evaluate that the effect of formula of removing both phlegm and blood stasis in improving cardiac function of Chinese mini-swine with coronary heart disease of phlegm-stasis cementation syndrome. Totally 36 Chinese mini-swine were randomly divided to six groups: the normal control group, the model group, the Danlou tablet group, and Tanyu Tonzhi Fang(TYTZ) groups with doses of 2. 0, 1. 0 and 0. 5 g kg-1, with six in each group. Except for the normal control group, all of other groups were fed with high-fat diet for 2 weeks. Interventional balloons are adopted to injure their left anterior descending artery endothelium. After the operation, they were fed with high-fat diet for 8 weeks to prepare the coronary heart disease model of phlegm-stasis cementation syndrome. After the operation, they were administered with drugs for 8 weeks. The changes in the myocardial ischemia were observed. The changes in the cardiac function and structure were detected by cardiac ultrasound and noninvasive hemodynamic method. Compared with the normal control group, the model group showed significant increase in myocardial ischemia and SVR and obvious decrease in CO, SV and LCW in noninvasive hemodynamic parameters (P <0.05 or P <0.01). The ultrasonic cardiogram indicated notable decrease in IVSd, LVPWs, EF and FS, and remarkable increase in LVIDs (P<0. 05 orP<0.01). Compared with the model group, TYTZ could reduce the myocardial ischemia, strengthen cardiac function, and improve the abnormal cardiac structure and function induced by ischemia (P <0. 05 or P <0. 01). TYTZ shows a significant effect in improving cardiac function of Chinese mini-swine with coronary heart disease of phlegm-stasis cementation syndrome. The clinical cardiac function detection method could be adopted to correctly evaluate the changes in the post-myocardial ischemia cardiac function, and narrow the gap between clinical application and basic experimental studies.
Vercelli, A; Biggi, S; Sclip, A; Repetto, I E; Cimini, S; Falleroni, F; Tomasi, S; Monti, R; Tonna, N; Morelli, F; Grande, V; Stravalaci, M; Biasini, E; Marin, O; Bianco, F; di Marino, D; Borsello, T
2015-01-01
Excitotoxicity following cerebral ischemia elicits a molecular cascade, which leads to neuronal death. c-Jun-N-terminal kinase (JNK) has a key role in excitotoxic cell death. We have previously shown that JNK inhibition by a specific cell-permeable peptide significantly reduces infarct size and neuronal death in an in vivo model of cerebral ischemia. However, systemic inhibition of JNK may have detrimental side effects, owing to blockade of its physiological function. Here we designed a new inhibitor peptide (growth arrest and DNA damage-inducible 45β (GADD45β-I)) targeting mitogen-activated protein kinase kinase 7 (MKK7), an upstream activator of JNK, which exclusively mediates JNK's pathological activation. GADD45β-I was engineered by optimizing the domain of the GADD45β, able to bind to MKK7, and by linking it to the TAT peptide sequence, to allow penetration of biological membranes. Our data clearly indicate that GADD45β-I significantly reduces neuronal death in excitotoxicity induced by either N-methyl-D-aspartate exposure or by oxygen–glucose deprivation in vitro. Moreover, GADD45β-I exerted neuroprotection in vivo in two models of ischemia, obtained by electrocoagulation and by thromboembolic occlusion of the middle cerebral artery (MCAo). Indeed, GADD45β-I reduced the infarct size when injected 30 min before the lesion in both models. The peptide was also effective when administrated 6 h after lesion, as demonstrated in the electrocoagulation model. The neuroprotective effect of GADD45β-I is long lasting; in fact, 1 week after MCAo the infarct volume was still reduced by 49%. Targeting MKK7 could represent a new therapeutic strategy for the treatment of ischemia and other pathologies involving MKK7/JNK activation. Moreover, this new inhibitor can be useful to further dissect the physiological and pathological role of the JNK pathway in the brain. PMID:26270349
A Deep Learning Approach to Examine Ischemic ST Changes in Ambulatory ECG Recordings.
Xiao, Ran; Xu, Yuan; Pelter, Michele M; Mortara, David W; Hu, Xiao
2018-01-01
Patients with suspected acute coronary syndrome (ACS) are at risk of transient myocardial ischemia (TMI), which could lead to serious morbidity or even mortality. Early detection of myocardial ischemia can reduce damage to heart tissues and improve patient condition. Significant ST change in the electrocardiogram (ECG) is an important marker for detecting myocardial ischemia during the rule-out phase of potential ACS. However, current ECG monitoring software is vastly underused due to excessive false alarms. The present study aims to tackle this problem by combining a novel image-based approach with deep learning techniques to improve the detection accuracy of significant ST depression change. The obtained convolutional neural network (CNN) model yields an average area under the curve (AUC) at 89.6% from an independent testing set. At selected optimal cutoff thresholds, the proposed model yields a mean sensitivity at 84.4% while maintaining specificity at 84.9%.
NASA Astrophysics Data System (ADS)
Tüfekçi, Senem; Özkal, Sami Gökhan
2017-07-01
Effect of ultrasound application prior to hot air drying on drying and rehydration kinetics, rehydration ratio and microstructure of okra slices were investigated. For this purpose, the selected parameters are ultrasound pre-treatment time (10, 20 and 30 min), ultrasound amplitude (55 and 100%) and the temperature of drying air (60 and 70 °C). 5 mm thick cylindrical shaped okra slices were used in the experiments. The samples were immersed in water and ultrasonic pre-treatments were done in water with ultrasonic probe connected to an ultrasonic generator with 20 kHz frequency. Pre-treated samples were dried in a tray drier with a 0.3 m/s air velocity. Ultrasound pre-treatment affected the drying rate of the okra slices significantly. Drying time of okra slices was decreased by the application of ultrasound pre-treatment. Modified Page model found to be the most suitable model for describing the drying characteristics of okra slices. Improvements in rehydration properties of the dried samples were observed due to the ultrasound pre-treatment. The influence of the ultrasound pre-treatment on microstructure was clearly observed through scanning electron microscopy images of the dried samples. As the amplitude of ultrasound increased the changes in structure of the okra tissue increased.
Development of Multi-slice Analytical Tool to Support BIM-based Design Process
NASA Astrophysics Data System (ADS)
Atmodiwirjo, P.; Johanes, M.; Yatmo, Y. A.
2017-03-01
This paper describes the on-going development of computational tool to analyse architecture and interior space based on multi-slice representation approach that is integrated with Building Information Modelling (BIM). Architecture and interior space is experienced as a dynamic entity, which have the spatial properties that might be variable from one part of space to another, therefore the representation of space through standard architectural drawings is sometimes not sufficient. The representation of space as a series of slices with certain properties in each slice becomes important, so that the different characteristics in each part of space could inform the design process. The analytical tool is developed for use as a stand-alone application that utilises the data exported from generic BIM modelling tool. The tool would be useful to assist design development process that applies BIM, particularly for the design of architecture and interior spaces that are experienced as continuous spaces. The tool allows the identification of how the spatial properties change dynamically throughout the space and allows the prediction of the potential design problems. Integrating the multi-slice analytical tool in BIM-based design process thereby could assist the architects to generate better design and to avoid unnecessary costs that are often caused by failure to identify problems during design development stages.
Spatial assessment of soluble solid contents on apple slices using hyperspectral imaging
USDA-ARS?s Scientific Manuscript database
A partial least squares regression (PLSR) model to map internal soluble solids content (SSC) of apples using visible/near-infrared (VNIR) hyperspectral imaging was developed. The reflectance spectra of sliced apples were extracted from hyperspectral absorbance images obtained in the 400e1000 nm rang...
de Hoogt, Ronald; Estrada, Marta F; Vidic, Suzana; Davies, Emma J; Osswald, Annika; Barbier, Michael; Santo, Vítor E; Gjerde, Kjersti; van Zoggel, Hanneke J A A; Blom, Sami; Dong, Meng; Närhi, Katja; Boghaert, Erwin; Brito, Catarina; Chong, Yolanda; Sommergruber, Wolfgang; van der Kuip, Heiko; van Weerden, Wytske M; Verschuren, Emmy W; Hickman, John; Graeser, Ralph
2017-11-21
Two-dimensional (2D) culture of cancer cells in vitro does not recapitulate the three-dimensional (3D) architecture, heterogeneity and complexity of human tumors. More representative models are required that better reflect key aspects of tumor biology. These are essential studies of cancer biology and immunology as well as for target validation and drug discovery. The Innovative Medicines Initiative (IMI) consortium PREDECT (www.predect.eu) characterized in vitro models of three solid tumor types with the goal to capture elements of tumor complexity and heterogeneity. 2D culture and 3D mono- and stromal co-cultures of increasing complexity, and precision-cut tumor slice models were established. Robust protocols for the generation of these platforms are described. Tissue microarrays were prepared from all the models, permitting immunohistochemical analysis of individual cells, capturing heterogeneity. 3D cultures were also characterized using image analysis. Detailed step-by-step protocols, exemplary datasets from the 2D, 3D, and slice models, and refined analytical methods were established and are presented.
de Hoogt, Ronald; Estrada, Marta F.; Vidic, Suzana; Davies, Emma J.; Osswald, Annika; Barbier, Michael; Santo, Vítor E.; Gjerde, Kjersti; van Zoggel, Hanneke J. A. A.; Blom, Sami; Dong, Meng; Närhi, Katja; Boghaert, Erwin; Brito, Catarina; Chong, Yolanda; Sommergruber, Wolfgang; van der Kuip, Heiko; van Weerden, Wytske M.; Verschuren, Emmy W.; Hickman, John; Graeser, Ralph
2017-01-01
Two-dimensional (2D) culture of cancer cells in vitro does not recapitulate the three-dimensional (3D) architecture, heterogeneity and complexity of human tumors. More representative models are required that better reflect key aspects of tumor biology. These are essential studies of cancer biology and immunology as well as for target validation and drug discovery. The Innovative Medicines Initiative (IMI) consortium PREDECT (www.predect.eu) characterized in vitro models of three solid tumor types with the goal to capture elements of tumor complexity and heterogeneity. 2D culture and 3D mono- and stromal co-cultures of increasing complexity, and precision-cut tumor slice models were established. Robust protocols for the generation of these platforms are described. Tissue microarrays were prepared from all the models, permitting immunohistochemical analysis of individual cells, capturing heterogeneity. 3D cultures were also characterized using image analysis. Detailed step-by-step protocols, exemplary datasets from the 2D, 3D, and slice models, and refined analytical methods were established and are presented. PMID:29160867
Mun, Chin Hee; Lee, Won Taek; Park, Kyung Ah; Lee, Jong Eun
2010-09-01
Nitric oxide (NO) production by endothelial nitric oxide synthase (eNOS) plays a protective role in cerebral ischemia by maintaining vascular permeability, whereas NO derived from neuronal and inducible NOS is neurotoxic and can participate in neuronal damage occurring in ischemia. Matrix metalloproteinases (MMPs) are up-regulated by ischemic injury and degrade the basement membrane if brain vessels to promote cell death and tissue injury. We previously reported that agmatine, synthesized from L-arginine by arginine decarboxylase (ADC) which is expressed in endothelial cells, has shown a direct increased eNOS expression and decreased MMPs expression in bEnd3 cells. But, there are few reports about the regulation of eNOS by agmatine in ischemic animal model. In the present study, we examined the expression of eNOS and MMPs by agmatine treatment after transient global ischemia in vivo. Global ischemia was induced with four vessel occlusion (4-VO) and agmatine (100 mg/kg) was administered intraperitoneally at the onset of reperfusion. The animals were euthanized at 6 and 24 hours after global ischemia and prepared for other analysis. Global ischemia led severe neuronal damage in the rat hippocampus and cerebral cortex, but agmatine treatment protected neurons from ischemic injury. Moreover, the level and expression of eNOS was increased by agmatine treatment, whereas inducible NOS (iNOS) and MMP-9 protein expressions were decreased in the brain. These results suggest that agmatine protects microvessels in the brain by activation eNOS as well as reduces extracellular matrix degradation during the early phase of ischemic insult.
Effect of Cold Preservation on Chronic Rejection in a Rat Hindlimb Transplantation Model.
Bonastre, Jorge; Landín, Luis; Bolado, Pedro; Casado-Sánchez, César; López-Collazo, Eduardo; Díez, Jesús
2016-09-01
Previous studies on solid organ transplantation have shown that cold ischemia contributes to the development of chronic allograft vasculopathy. The authors evaluated the effect of cold ischemia on the development of chronic rejection in vascularized composite allotransplantation. Thirty rat hindlimbs were transplanted and divided into two experimental groups: immediate transplantation and transplantation after 7 hours of cold ischemia. The animals received daily low-dose immunosuppression with cyclosporine A for 2 months. Intimal proliferation, arterial permeability rate, leukocyte infiltration, and tissue fibrosis were assessed. The CD3, CD4, CD8, CD20, and CD68 cells per microscopic field (200×) were counted, and C4d deposition was investigated. Cytokine RNA analysis was performed to measure tumor necrosis factor-α, interleukin-6, and interleukin-10 levels. Significant differences were found in the intimal proliferation and arterial permeability rate between the two groups (p = 0.004). The arterial permeability rate worsened in the most distal and small vessels (p = 0.047). The numbers of CD3, CD8, CD20, and CD68 were also statistically higher in the cold ischemia group (p < 0.05, all levels). A trend toward significance was observed with C4d deposition (p = 0.059). No differences were found in the RNA of cytokines. An association between cold ischemia and chronic rejection was observed in experimental vascularized composite allotransplantation. Chronic rejection intensity and distal progression were significantly related with cold ischemia. The leukocyte infiltrates in vascularized composite allotransplantation components were a rejection marker; however, their exact implication in monitoring and their relation with cold ischemia are yet to be clarified.
Novel critical role of Toll-like receptor 4 in lung ischemia-reperfusion injury and edema
Zanotti, Giorgio; Casiraghi, Monica; Abano, John B.; Tatreau, Jason R.; Sevala, Mayura; Berlin, Hilary; Smyth, Susan; Funkhouser, William K.; Burridge, Keith; Randell, Scott H.; Egan, Thomas M.
2009-01-01
Toll-like receptors (TLRs) of the innate immune system contribute to noninfectious inflammatory processes. We employed a murine model of hilar clamping (1 h) with reperfusion times between 15 min and 3 h in TLR4-sufficient (C3H/OuJ) and TLR4-deficient (C3H/HeJ) anesthetized mice with additional studies in chimeric and myeloid differentiation factor 88 (MyD88)- and TLR4-deficient mice to determine the role of TLR4 in lung ischemia-reperfusion injury. Human pulmonary microvascular endothelial monolayers were subjected to simulated warm ischemia and reperfusion with and without CRX-526, a competitive TLR4 inhibitor. Functional TLR4 solely on pulmonary parenchymal cells, not bone marrow-derived cells, mediates early lung edema following ischemia-reperfusion independent of MyD88. Activation of MAPKs and NF-κB was significantly blunted and/or delayed in lungs of TLR4-deficient mice as a consequence of ischemia-reperfusion injury, but edema development appeared to be independent of activation of these signaling pathways. Pretreatment with a competitive TLR4 inhibitor prevented edema in vivo and reduced actin cytoskeletal rearrangement and gap formation in pulmonary microvascular endothelial monolayers subjected to simulated warm ischemia and reperfusion. In addition to its well-accepted role to alter gene transcription, functioning TLR4 on pulmonary parenchymal cells plays a key role in very early and profound pulmonary edema in murine lung ischemia-reperfusion injury. This may be due to a novel mechanism: regulation of endothelial cell cytoskeleton affecting microvascular endothelial cell permeability. PMID:19376887
Zhu, Guoqi; Li, Junyao; He, Ling; Wang, Xuncui; Hong, Xiaoqi
2015-01-01
Background and Purpose Mild cognitive deficit in early Parkinson's disease (PD) has been widely studied. Here we have examined the effects of memantine in preventing memory deficit in experimental PD models and elucidated some of the underlying mechanisms. Experimental Approaches I.p. injection of 1-methyl-4- phenyl-1,2,3,6-tetrahydro pyridine (MPTP) in C57BL/6 mice was used to produce models of PD. We used behavioural tasks to test memory. In vitro, we used slices of hippocampus, with electrophysiological, Western blotting, real time PCR, elisa and immunochemical techniques. Key Results Following MPTP injection, long-term memory was impaired and these changes were prevented by pre-treatment with memantine. In hippocampal slices from MPTP treated mice, long-term potentiation (LTP) –induced by θ burst stimulation (10 bursts, 4 pulses) was decreased, while long-term depression (LTD) induced by low-frequency stimulation (1 Hz, 900 pulses) was enhanced, compared with control values. A single dose of memantine (i.p., 10 mg·kg−1) reversed the decreased LTP and the increased LTD in this PD model. Activity-dependent changes in tyrosine kinase receptor B (TrkB), ERK and brain-derived neurotrophic factor (BDNF) expression were decreased in slices from mice after MPTP treatment. These effects were reversed by pretreatment with memantine. Incubation of slices in vitro with 1-methyl-4-phenylpyridinium (MPP+) decreased depolarization-induced expression of BDNF. This effect was prevented by pretreatment of slices with memantine or with calpain inhibitor III, suggesting the involvement of an overactivated calcium signalling pathway. Conclusions and Implications Memantine should be useful in preventing loss of memory and hippocampal synaptic plasticity in PD models. PMID:25560396
NASA Astrophysics Data System (ADS)
Ni, Ruiqing; Vaas, Markus; Ren, Wuwei; Klohs, Jan
2018-02-01
Matrix metalloproteinases (MMPs) play important roles in the pathophysiology of cerebral ischemia. Here we visualized in vivo MMP activity in the transient middle cerebral artery occlusion (tMCAO) mouse model using multispectral optoacoustic imaging (MSOT) with a MMP-activatable probe. MSOT data was co-registered with structural magnetic resonance imaging (MRI) obtained at 7 T for localization of signal distribution. We demonstrated upregulated MMP signal within the focal ischemic lesion in the tMCAO mouse model using MSOT/MRI multimodal imaging. This convenient non-invasive method will allow repetitive measurement following the time course of MMP-lesion development in ischemic stroke animal model.
Jungraithmayr, Wolfgang; De Meester, Ingrid; Matheeussen, Veerle; Inci, Ilhan; Augustyns, Koen; Scharpé, Simon; Weder, Walter; Korom, Stephan
2010-04-01
The T cell activation Ag CD26/dipeptidylpeptidase IV (DPP IV) combines co-stimulatory and enzymatic properties. Catalytically, it functions as an exopeptidase, modulating biological activity of key chemokines and peptides. Here we investigated the effect of organ-specific inhibition of DPP IV catalytic activity on ischemia/reperfusion injury after extended ischemia in the mouse model of orthotopic single lung transplantation. C57BL/6 mice were syngeneically, transplanted, grafts were perfused and stored in Perfadex with (treated) or without (control) a DPP IV enzymatic activity inhibitor (AB192). Transplantation was performed after 18h cold ischemia time; following 2-h reperfusion, grafts were analyzed for oxygenation, thiobarbituric acid-reactive substances, histomorphology, and immunohistochemistry was performed for leukocyte Ag 6, myeloperoxidase, hemoxygenase 1, vasoactive intestinal protein (VIP), and real-time PCR for VIP. Treatment with the DPP IV inhibitor AB192 resulted in significant improvement of gas exchange, less lipid oxidation, preservation of parenchymal ultrastructure, reduced neutrophil infiltration, reduced myeloperoxidase expression, increased hemoxygenase 1 expression, pronounced expression of VIP in alveolar macrophages and increased mRNA expression of VIP. Inhibition of intragraft DPP IV catalytic activity with AB192 strikingly ameliorates ischemia/reperfusion injury after extended ischemia. Furthermore, preservation of endogenous intragraft VIP levels correlate with maintaining lung function and structural integrity. Copyright (c) 2009 Elsevier Inc. All rights reserved.
Nayak, Vanishri S; Kumar, Nitesh; D'Souza, Antony S; Nayak, Sunil S; Cheruku, Sri P; Pai, K Sreedhara Ranganath
2017-12-13
Stroke is considered to be one of the most important causes of death worldwide. Global ischemia causes widespread brain injury and infarctions in various regions of the brain. Oxidative stress can be considered an important factor in the development of tissue damage, which is caused because of arterial occlusion with subsequent reperfusion. Kapikacchu or Mucuna pruriens, commonly known as velvet bean, is well known for its aphrodisiac activities. It is also used in the treatment of snakebites, depressive neurosis, and Parkinson's disease. Although this plant has different pharmacological actions, its neuroprotective activity has received minimal attention. Thus, this study was carried out with the aim of evaluating the neuroprotective action of M. pruriens in bilateral carotid artery occlusion-induced global cerebral ischemia in Wistar rats. The carotid arteries of both sides were occluded for 30 min and reperfused to induce global cerebral ischemia. The methanolic plant extract was administered to the study animals for 10 days. The brains of the Wistar rats were isolated by decapitation and observed for histopathological and biochemical changes. Cerebral ischemia resulted in significant neurological damage in the brains of the rats that were not treated by M. pruriens. The group subjected to treatment by the M. pruriens extract showed significant protection against brain damage compared with the negative control group, which indicates the therapeutic potential of this plant in ischemia.
Enriched endogenous omega-3 fatty acids in mice protect against global ischemia injury.
Luo, Chuanming; Ren, Huixia; Wan, Jian-Bo; Yao, Xiaoli; Zhang, Xiaojing; He, Chengwei; So, Kwok-Fai; Kang, Jing X; Pei, Zhong; Su, Huanxing
2014-07-01
Transient global cerebral ischemia, one of the consequences of cardiac arrest and cardiovascular surgery, usually leads to delayed death of hippocampal cornu Ammonis1 (CA1) neurons and cognitive deficits. Currently, there are no effective preventions or treatments for this condition. Omega-3 (ω-3) PUFAs have been shown to have therapeutic potential in a variety of neurological disorders. Here, we report that the transgenic mice that express the fat-1 gene encoding for ω-3 fatty acid desaturase, which leads to an increase in endogenous ω-3 PUFAs and a concomitant decrease in ω-6 PUFAs, were protected from global cerebral ischemia injury. The results of the study show that the hippocampal CA1 neuronal loss and cognitive deficits induced by global ischemia insult were significantly less severe in fat-1 mice than in WT mice controls. The protection against global cerebral ischemia injury was closely correlated with increased production of resolvin D1, suppressed nuclear factor-kappa B activation, and reduced generation of pro-inflammatory mediators in the hippocampus of fat-1 mice compared with WT mice controls. Our study demonstrates that fat-1 mice with high endogenous ω-3 PUFAs exhibit protective effects on hippocampal CA1 neurons and cognitive functions in a global ischemia injury model. Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc.
Xie, Lei; Wang, Zhenfei; Li, Changwei; Yang, Kai; Liang, Yu
2017-02-01
As previous studies demonstrate that oxidative stress and apoptosis play crucial roles in ischemic pathogenesis and nicotinamide adenine dinucleotide (NAD + ) treatment attenuates oxidative stress-induced cell death among primary neurons and astrocytes as well as significantly reduce cerebral ischemic injury in rats. We used a spinal cord ischemia injury (SCII) model in rats to verify our hypothesis that NAD + could ameliorate oxidative stress-induced neuronal apoptosis. Adult male rats were subjected to transient spinal cord ischemia for 60min, and different doses of NAD + were administered intraperitoneally immediately after the start of reperfusion. Neurological function was determined by Basso, Beattie, Bresnahan (BBB) scores. The oxidative stress level was assessed by superoxide dismutase (SOD) activity and malondialdehyde (MDA) content. The degree of apoptosis was analyzed by deoxyuridinetriphosphate nick-end labeling (TUNEL) staining and protein levels of cleaved caspase-3 and AIF (apoptosis inducing factor). The results showed that NAD + at 50 or 100mg/kg significantly decreased the oxidative stress level and neuronal apoptosis in the spinal cord of ischemia-reperfusion rats compared with saline, as accompanied with the decreased oxidative stress, NAD + administration significantly restrained the neuronal apoptosis after ischemia injury while improved the neurological and motor function. These findings suggested that NAD + might protect against spinal cord ischemia-reperfusion via reducing oxidative stress-induced neuronal apoptosis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhang, Xin; Chen, Xiu-Ping; Lin, Jun-Bin; Xiong, Yu; Liao, Wei-Jing; Wan, Qi
2017-01-15
The purpose of this study was to investigate the effect of enriched environment (EE) on cerebral angiogenesis after ischemia-reperfusion injury. Middle cerebral artery occlusion (MCAO) followed by reperfusion was performed in rats to set up an animal model of ischemia-reperfusion injury. In a set of behavioral tests, we demonstrated that the animals in the IEE (ischemia + enriched environment) group exhibited significantly improved neurological functions compared to those in the standard housing condition group. In consistent with the functional tests, smaller infarction volumes were observed in the animals of IEE group. Laser scanning confocal microscopy and 3D quantitative analysis of cerebral microvessels revealed that EE treatment increased the total vessel surface area and number of branch point in the ischemic boundary zone. IgG extraction assay showed that the blood brain barrier (BBB) leakage in the ischemic brain was attenuated after EE treatment. EE treatment also enhanced endothelial cells (ECs) proliferation and increased the expression levels of VEGF and its receptor Flk-1 after ischemia-reperfusion injury. Analyses of Spearman's correlation coefficients indicated a correlation of mNSS scores with enhanced cerebral angiogenesis. Together, the results suggest that EE treatment-induced cerebral angiogenesis may contribute to the improved neurological outcome of stroke animals after ischemia-reperfusion injury. Copyright © 2016 Elsevier B.V. All rights reserved.
Hwang, Catherine J; Morgan, Payam V; Pimentel, Aline; Sayre, James W; Goldberg, Robert A; Duckwiler, Gary
2016-01-01
Soft tissue dermal fillers, both temporary and permanent, are used frequently in facial rejuvenation. As the use of fillers increases, ischemic complications including skin necrosis are becoming more prevalent. In the literature, topical nitroglycerin paste has been recommended in the early treatment of patients presenting with ischemia. The purpose of this study was to evaluate the vascular perfusion effects of topical nitroglycerin paste in an animal model using indocyanine green (ICG) imaging. After Animal Research Committee approval, a rabbit ear model was used to create filler-associated skin ischemia. Ischemia was confirmed to occur after intra-arterial occlusion. Four commonly used soft tissue fillers were injected intra-arterially: Radiesse (Merz USA, Greensboro NC), Restylane (Galderma, Ft. Worth, TX), Juvederm Ultra (Allergan, Irvine CA), Belotero (Merz USA, Greensboro NC) (0.1 ml). A total of 15 ears were used, 1 control and 4 experimental per product. Thirty minutes after occlusion, nitroglycerin ointment USP, 2%(Nitro-Bid) was applied topically to the experimental ears. Vascular perfusion was evaluated with the SPY System (Novadaq Inc.) using ICG imaging. Perfusion images were obtained at baseline, immediately after, and 30 minutes after intra-arterial filler injection, and at 30, 60, 90, and 120 minutes after application of topical nitroglycerin ointment. In this rabbit ear model, no statistically significant improvement in perfusion was noted after topical application of nitroglycerin paste with ICG imaging. In addition, the skin of the rabbit ear post-nitroglycerin ointment appeared to have more of a congested appearance than the controls. Ischemic filler complications are becoming increasingly prevalent. Practitioners often treat these complications with topical nitroglycerin paste based on the knowledge that topical nitroglycerin causes vasodilation. In filler-induced tissue ischemia, however, filler product is present within arterioles. Theoretically, applying nitroglycerin paste, at least early, may not improve perfusion and could worsen ischemia with dilation of vessels and further propagation of product into the smaller arterioles and capillaries. In addition, nitroglycerin paste has systemic effects, including hypotension and dizziness, which may not be tolerated by some patients. Therefore, the authors caution the use of topical nitroglycerin paste in patients presenting with filler-associated ischemia. Further studies in the best treatment algorithms for patients presenting with ischemic complications need to be performed.
Guseinov, R G; Popov, S V; Gorshkov, A N; Sivak, K V; Martov, A G
2017-12-01
To investigate experimentally ultrastructural and biochemical signs of acute injury to the renal parenchyma after warm renal ischemia of various duration and subsequent reperfusion. The experiments were performed on 44 healthy conventional female rabbits of the "Chinchilla" breed weighted 2.6-2.7 kg, which were divided into four groups. In the first, control, group included pseudo-operated animals. In the remaining three groups, an experimental model of warm ischemia of renal tissue was created, followed by a 60-minute reperfusion. The renal warm ischemia time was 30, 60 and 90 minutes in the 2nd, 3rd and 4th groups, respectively. Electron microscopy was used to study ultrastructural disturbances of the renal parenchyma. Biochemical signs of acute kidney damage were detected by measuring the following blood serum and/or urine analytes: NGAL, cystatin C, KIM-1, L-FABP, interleukin-18. The glomerular filtration was evaluated by creatinine clearance, which was determined on days 1, 5, 7, 14, 21 and 35 of follow-up. A 30-minute renal warm ischemia followed by a 60-minute reperfusion induced swelling and edema of the brush membrane, vacuolation of the cytoplasm of the endothelial cells of the proximal tubules, and microvilli restructuring. The observed disorders were reversible, and the epithelial cells retained their viability. After 60 minutes of ischemia and 60 minutes of reperfusion, the observed changes in the ultrastructure of the epithelial cells were much more pronounced, some of the epithelial cells were in a state of apoptosis. 90 min of ischemia and 60 min of reperfusion resulted in electron-microscopic signs of the mass cellular death of the tubular epithelium. Concentration in serum and/or biochemical urine markers of acute renal damage increased sharply after ischemic-reperfusion injury. Restoration of indicators was observed only in cases when the renal warm ischemia time did not exceed 60 minutes. The decrease in creatinine clearance occurred in the first 24 hours after the intervention, lasting not less than two weeks after a 30-minute warm ischemia, at least 3 weeks after a 60-minute warm ischemia and continued more than a month after a 90-minute renal artery occlusion. Intraoperative warm ischemia and subsequent reperfusion are the actual reasons for the alteration of the ultrastructure of the renal tissue and the impairment of the filtration function. The severity of the disorders depends on the duration of the damaging factors. After a 30-60-minute ischemia, the structural and functional changes in the renal tissue are reversible. The mass death of nephrocytes-effectors is possible only after warm renal ischemia longer than 60 min.
Dash, Ranjan K; Li, Yanjun; Kim, Jaeyeon; Beard, Daniel A; Saidel, Gerald M; Cabrera, Marco E
2008-09-09
Control mechanisms of cellular metabolism and energetics in skeletal muscle that may become evident in response to physiological stresses such as reduction in blood flow and oxygen supply to mitochondria can be quantitatively understood using a multi-scale computational model. The analysis of dynamic responses from such a model can provide insights into mechanisms of metabolic regulation that may not be evident from experimental studies. For the purpose, a physiologically-based, multi-scale computational model of skeletal muscle cellular metabolism and energetics was developed to describe dynamic responses of key chemical species and reaction fluxes to muscle ischemia. The model, which incorporates key transport and metabolic processes and subcellular compartmentalization, is based on dynamic mass balances of 30 chemical species in both capillary blood and tissue cells (cytosol and mitochondria) domains. The reaction fluxes in cytosol and mitochondria are expressed in terms of a general phenomenological Michaelis-Menten equation involving the compartmentalized energy controller ratios ATP/ADP and NADH/NAD(+). The unknown transport and reaction parameters in the model are estimated simultaneously by minimizing the differences between available in vivo experimental data on muscle ischemia and corresponding model outputs in coupled with the resting linear flux balance constraints using a robust, nonlinear, constrained-based, reduced gradient optimization algorithm. With the optimal parameter values, the model is able to simulate dynamic responses to reduced blood flow and oxygen supply to mitochondria associated with muscle ischemia of several key metabolite concentrations and metabolic fluxes in the subcellular cytosolic and mitochondrial compartments, some that can be measured and others that can not be measured with the current experimental techniques. The model can be applied to test complex hypotheses involving dynamic regulation of cellular metabolism and energetics in skeletal muscle during physiological stresses such as ischemia, hypoxia, and exercise.
Inhaled 45-50% argon augments hypothermic brain protection in a piglet model of perinatal asphyxia.
Broad, Kevin D; Fierens, Igor; Fleiss, Bobbi; Rocha-Ferreira, Eridan; Ezzati, Mojgan; Hassell, Jane; Alonso-Alconada, Daniel; Bainbridge, Alan; Kawano, Go; Ma, Daqing; Tachtsidis, Ilias; Gressens, Pierre; Golay, Xavier; Sanders, Robert D; Robertson, Nicola J
2016-03-01
Cooling to 33.5°C in babies with neonatal encephalopathy significantly reduces death and disability, however additional therapies are needed to maximize brain protection. Following hypoxia-ischemia we assessed whether inhaled 45-50% Argon from 2-26h augmented hypothermia neuroprotection in a neonatal piglet model, using MRS and aEEG, which predict outcome in babies with neonatal encephalopathy, and immunohistochemistry. Following cerebral hypoxia-ischemia, 20 Newborn male Large White piglets<40h were randomized to: (i) Cooling (33°C) from 2-26h (n=10); or (ii) Cooling and inhaled 45-50% Argon (Cooling+Argon) from 2-26h (n=8). Whole-brain phosphorus-31 and regional proton MRS were acquired at baseline, 24 and 48h after hypoxia-ischemia. EEG was monitored. At 48h after hypoxia-ischemia, cell death (TUNEL) was evaluated over 7 brain regions. There were no differences in body weight, duration of hypoxia-ischemia or insult severity; throughout the study there were no differences in heart rate, arterial blood pressure, blood biochemistry and inotrope support. Two piglets in the Cooling+Argon group were excluded. Comparing Cooling+Argon with Cooling there was preservation of whole-brain MRS ATP and PCr/Pi at 48h after hypoxia-ischemia (p<0.001 for both) and lower (1)H MRS lactate/N acetyl aspartate in white (p=0.03 and 0.04) but not gray matter at 24 and 48h. EEG background recovery was faster (p<0.01) with Cooling+Argon. An overall difference between average cell-death of Cooling versus Cooling+Argon was observed (p<0.01); estimated cells per mm(2) were 23.9 points lower (95% C.I. 7.3-40.5) for the Cooling+Argon versus Cooling. Inhaled 45-50% Argon from 2-26h augmented hypothermic protection at 48h after hypoxia-ischemia shown by improved brain energy metabolism on MRS, faster EEG recovery and reduced cell death on TUNEL. Argon may provide a cheap and practical therapy to augment cooling for neonatal encephalopathy. Copyright © 2015. Published by Elsevier Inc.
Sato, H; Miki, T; Vallabhapurapu, R P; Wang, P; Liu, G S; Cohen, M V; Downey, J M
1997-10-01
We investigated the effects of 5-(N-ethyl-N-isopropyl)amiloride (EIPA) on infarction in isolated rabbit hearts and cardiomyocytes. Thirty min of regional ischemia caused 29.6 +/- 2.8% of the risk zone to infarct in untreated Krebs buffer-perfused hearts. Treatment with EIPA (1 microM) for 20 min starting either 15 min before ischemia or 15 min after the onset of ischemia significantly reduced infarction to 5.4 +/- 2.0% and 7.0 +/- 1.0%, respectively (p < 0.01 versus untreated hearts). In both cases salvage was very similar to that seen with ischemic preconditioning (PC) (7.1 +/- 1.5% infarction). Unlike the case with ischemic preconditioning, however, protection from EIPA was not blocked by 50 microM polymyxin B, a PKC inhibitor, or 1 microM glibenclamide, a KATP channel blocker. Forty-five min of regional ischemia caused 51.0 +/- 2.9% infarction in untreated hearts. Ischemic preconditioning reduced infarction to 23.4 +/- 3.1% (p < 0.001 versus untreated hearts). In these hearts with longer periods of ischemia pretreatment with EIPA reduced infarction similarly to 28.8 +/- 2.1% (p < 0.01 versus untreated hearts). However, when EIPA was combined with ischemic PC, no further reduction in infarction was seen (23.8 +/- 3.5% infarction). To further elucidate the mechanism of EIPA's cardioprotective effect, this agent was also examined in isolated rabbit cardiomyocytes. Preconditioning caused a delay of about 30 min in the progressive increase in osmotic fragility that occurs during simulated ischemia. In contrast, EIPA had no effect on the time course of ischemia-induced osmotic fragility. Furthermore, EIPA treatment did not alter the salutary effect of ischemic preconditioning when the two were combined in this model. We conclude that Na+/H+ exchange inhibition limits myocardial infarction in the isolated rabbit heart by a mechanism which is quite different from that of ischemic preconditioning. Despite the apparently divergent mechanisms, EIPA's cardioprotective effect could not be added to that of ischemic or metabolic preconditioning in these models.
Data-driven sampling method for building 3D anatomical models from serial histology
NASA Astrophysics Data System (ADS)
Salunke, Snehal Ulhas; Ablove, Tova; Danforth, Theresa; Tomaszewski, John; Doyle, Scott
2017-03-01
In this work, we investigate the effect of slice sampling on 3D models of tissue architecture using serial histopathology. We present a method for using a single fully-sectioned tissue block as pilot data, whereby we build a fully-realized 3D model and then determine the optimal set of slices needed to reconstruct the salient features of the model objects under biological investigation. In our work, we are interested in the 3D reconstruction of microvessel architecture in the trigone region between the vagina and the bladder. This region serves as a potential avenue for drug delivery to treat bladder infection. We collect and co-register 23 serial sections of CD31-stained tissue images (6 μm thick sections), from which four microvessels are selected for analysis. To build each model, we perform semi-automatic segmentation of the microvessels. Subsampled meshes are then created by removing slices from the stack, interpolating the missing data, and re-constructing the mesh. We calculate the Hausdorff distance between the full and subsampled meshes to determine the optimal sampling rate for the modeled structures. In our application, we found that a sampling rate of 50% (corresponding to just 12 slices) was sufficient to recreate the structure of the microvessels without significant deviation from the fullyrendered mesh. This pipeline effectively minimizes the number of histopathology slides required for 3D model reconstruction, and can be utilized to either (1) reduce the overall costs of a project, or (2) enable additional analysis on the intermediate slides.
NASA Astrophysics Data System (ADS)
Pandremmenou, K.; Tziortziotis, N.; Paluri, S.; Zhang, W.; Blekas, K.; Kondi, L. P.; Kumar, S.
2015-03-01
We propose the use of the Least Absolute Shrinkage and Selection Operator (LASSO) regression method in order to predict the Cumulative Mean Squared Error (CMSE), incurred by the loss of individual slices in video transmission. We extract a number of quality-relevant features from the H.264/AVC video sequences, which are given as input to the LASSO. This method has the benefit of not only keeping a subset of the features that have the strongest effects towards video quality, but also produces accurate CMSE predictions. Particularly, we study the LASSO regression through two different architectures; the Global LASSO (G.LASSO) and Local LASSO (L.LASSO). In G.LASSO, a single regression model is trained for all slice types together, while in L.LASSO, motivated by the fact that the values for some features are closely dependent on the considered slice type, each slice type has its own regression model, in an e ort to improve LASSO's prediction capability. Based on the predicted CMSE values, we group the video slices into four priority classes. Additionally, we consider a video transmission scenario over a noisy channel, where Unequal Error Protection (UEP) is applied to all prioritized slices. The provided results demonstrate the efficiency of LASSO in estimating CMSE with high accuracy, using only a few features. les that typically contain high-entropy data, producing a footprint that is far less conspicuous than existing methods. The system uses a local web server to provide a le system, user interface and applications through an web architecture.
Chai, Yu-Shuang; Hu, Jun; Lei, Fan; Wang, Yu-Gang; Yuan, Zhi-Yi; Lu, Xi; Wang, Xin-Pei; Du, Feng; Zhang, Dong; Xing, Dong-Ming; Du, Li-Jun
2013-05-15
Berberine acted as a natural medicine with multiple pharmacological activities. In the present study, we examined the effect of berberine against cerebral ischemia damage from cell cycle arrest and cell survival. Oxygen-glucose deprivation of PC12 cells and primary neurons, and carotid artery ligation in mice were used as in vitro and in vivo cerebral ischemia models. We found that the effect of berberine on cell cycle arrest during ischemia was mediated by decreased p53 and cyclin D1, increased phosphorylation of Bad (higher expression of p-Bad and higher ratio of p-Bad to Bad) and decreased cleavage of caspase 3. Meanwhile, berberine activated the PI3K/Akt pathway during the reperfusion, especially the phosphor-activation of Akt, to promote the cell survival. The neural protective effect of berberine was remained in the presence of inhibitor of mitogen-activated protein/extracellular signal-regulated kinase (MEK), but was suppressed by the inhibitors of PI3K and Akt. We demonstrated that berberine induced cell cycle arrest and cell survival to resist cerebral ischemia injury. Copyright © 2013 Elsevier B.V. All rights reserved.
Hydrogen, a potential safeguard for graft-versus-host disease and graft ischemia-reperfusion injury?
Yuan, Lijuan; Shen, Jianliang
2016-01-01
Post-transplant complications such as graft-versus-host disease and graft ischemia-reperfusion injury are crucial challenges in transplantation. Hydrogen can act as a potential antioxidant, playing a preventive role against post-transplant complications in animal models of multiple organ transplantation. Herein, the authors review the current literature regarding the effects of hydrogen on graft ischemia-reperfusion injury and graft-versus-host disease. Existing data on the effects of hydrogen on ischemia-reperfusion injury related to organ transplantation are specifically reviewed and coupled with further suggestions for future work. The reviewed studies showed that hydrogen (inhaled or dissolved in saline) improved the outcomes of organ transplantation by decreasing oxidative stress and inflammation at both the transplanted organ and the systemic levels. In conclusion, a substantial body of experimental evidence suggests that hydrogen can significantly alleviate transplantation-related ischemia-reperfusion injury and have a therapeutic effect on graft-versus-host disease, mainly via inhibition of inflammatory cytokine secretion and reduction of oxidative stress through several underlying mechanisms. Further animal experiments and preliminary human clinical trials will lay the foundation for hydrogen use as a drug in the clinic. PMID:27652837
Hemorheological changes in ischemia-reperfusion: an overview on our experimental surgical data.
Nemeth, Norbert; Furka, Istvan; Miko, Iren
2014-01-01
Blood vessel occlusions of various origin, depending on the duration and extension, result in tissue damage, causing ischemic or ischemia-reperfusion injuries. Necessary surgical clamping of vessels in vascular-, gastrointestinal or parenchymal organ surgery, flap preparation-transplantation in reconstructive surgery, as well as traumatological vascular occlusions, all present special aspects. Ischemia and reperfusion have effects on hemorheological state by numerous ways: besides the local metabolic and micro-environmental changes, by hemodynamic alterations, free-radical and inflammatory pathways, acute phase reactions and coagulation changes. These processes may be harmful for red blood cells, impairing their deformability and influencing their aggregation behavior. However, there are still many unsolved or non-completely answered questions on relation of hemorheology and ischemia-reperfusion. How do various organ (liver, kidney, small intestine) or limb ischemic-reperfusionic processes of different duration and temperature affect the hemorheological factors? What is the expected magnitude and dynamics of these alterations? Where is the border of irreversibility? How can hemorheological investigations be applied to experimental models using laboratory animals in respect of inter-species differences? This paper gives a summary on some of our research data on organ/tissue ischemia-reperfusion, hemorheology and microcirculation, related to surgical research and experimental microsurgery.
Blood vessel control of macrophage maturation promotes arteriogenesis in ischemia.
Krishnasamy, Kashyap; Limbourg, Anne; Kapanadze, Tamar; Gamrekelashvili, Jaba; Beger, Christian; Häger, Christine; Lozanovski, Vladimir J; Falk, Christine S; Napp, L Christian; Bauersachs, Johann; Mack, Matthias; Haller, Hermann; Weber, Christian; Adams, Ralf H; Limbourg, Florian P
2017-10-16
Ischemia causes an inflammatory response that is intended to restore perfusion and homeostasis yet often aggravates damage. Here we show, using conditional genetic deletion strategies together with adoptive cell transfer experiments in a mouse model of hind limb ischemia, that blood vessels control macrophage differentiation and maturation from recruited monocytes via Notch signaling, which in turn promotes arteriogenesis and tissue repair. Macrophage maturation is controlled by Notch ligand Dll1 expressed in vascular endothelial cells of arteries and requires macrophage canonical Notch signaling via Rbpj, which simultaneously suppresses an inflammatory macrophage fate. Conversely, conditional mutant mice lacking Dll1 or Rbpj show proliferation and transient accumulation of inflammatory macrophages, which antagonizes arteriogenesis and tissue repair. Furthermore, the effects of Notch are sufficient to generate mature macrophages from monocytes ex vivo that display a stable anti-inflammatory phenotype when challenged with pro-inflammatory stimuli. Thus, angiocrine Notch signaling fosters macrophage maturation during ischemia.Molecular mechanisms of macrophage-mediated regulation of artery growth in response to ischemia are poorly understood. Here the authors show that vascular endothelium controls macrophage maturation and differentiation via Notch signaling, which in turn promotes arteriogenesis and ischemic tissue recovery.
Gradient-free MCMC methods for dynamic causal modelling.
Sengupta, Biswa; Friston, Karl J; Penny, Will D
2015-05-15
In this technical note we compare the performance of four gradient-free MCMC samplers (random walk Metropolis sampling, slice-sampling, adaptive MCMC sampling and population-based MCMC sampling with tempering) in terms of the number of independent samples they can produce per unit computational time. For the Bayesian inversion of a single-node neural mass model, both adaptive and population-based samplers are more efficient compared with random walk Metropolis sampler or slice-sampling; yet adaptive MCMC sampling is more promising in terms of compute time. Slice-sampling yields the highest number of independent samples from the target density - albeit at almost 1000% increase in computational time, in comparison to the most efficient algorithm (i.e., the adaptive MCMC sampler). Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
The effects of drying on physical properties of bilimbi slices (Averrhoa bilimbi l.)
NASA Astrophysics Data System (ADS)
Shahari, N.; Nursabrina, M.; Suhairah, A. Zai
2015-05-01
Physical appearance analyses of fruits are used to maintain food quality throughout and at the end of processing. However, control variables have to be designed to obtained the desired food quality. In the present study, the effects of pretreatment and drying air temperatures of 50°C, 60°C and 70°C on the drying kinetics of belimbi slices were investigated using a hot-air dryer. In order to investigate and select the appropriate drying model, seven experiment based mathematical drying models were fitted to the experimental data. According to the statistical criteria (R2, SSE and RMSE), a Logarithmic model was found to be the best model to describe the drying behaviour of belimbi slices at 40°C for control; The Page/modified Page model was the best model to describe drying behaviour at 40°C, 60°C pre-treatment and 50°C for the control and the Wang and Singh model fitted well for 50°C pre-treatment and 60°C for the control. Comparison between experiment based mathematical modelling with a single phase mathematical model shows that close agreement was produced. The qualities of belimbi slices in terms of colour, texture and shrinkage with different air temperature and pre-treatment were also investigated. Higher drying temperatures gives less drying time, a lighter colour but greater product shrinkage, whilst pre-treatment can reduce product shrinkage and drying time and can also give good texture properties. The results show that pre-treatment and the drying temperature are important to improve mass and heat transfer as well as the product characteristics such as colour, shrinkage and texture.
Modeling Surface Cross-contamination of Salmonella spp. on Ready-to-Eat Meat via Slicing Operation
USDA-ARS?s Scientific Manuscript database
Food pathogen cross-contamination occurring at home, retail food service or production site is one of the major factors causing foodborne illness. Studies on Salmonella Typhimurium surface transfer on ready-to-eat (RTE) deli meat and the slicer used for slicing RTE products are needed to ensure RTE...
DOE Office of Scientific and Technical Information (OSTI.GOV)
So, Aaron, E-mail: aso@robarts.ca
Purpose: The authors investigated the performance of a recently introduced 160-mm/256-row CT system for low dose quantitative myocardial perfusion (MP) imaging of the whole heart. This platform is equipped with a gantry capable of rotating at 280 ms per full cycle, a second generation of adaptive statistical iterative reconstruction (ASiR-V) to correct for image noise arising from low tube voltage potential/tube current dynamic scanning, and image reconstruction algorithms to tackle beam-hardening, cone-beam, and partial-scan effects. Methods: Phantom studies were performed to investigate the effectiveness of image noise and artifact reduction with a GE Healthcare Revolution CT system for three acquisitionmore » protocols used in quantitative CT MP imaging: 100, 120, and 140 kVp/25 mAs. The heart chambers of an anthropomorphic chest phantom were filled with iodinated contrast solution at different concentrations (contrast levels) to simulate the circulation of contrast through the heart in quantitative CT MP imaging. To evaluate beam-hardening correction, the phantom was scanned at each contrast level to measure the changes in CT number (in Hounsfield unit or HU) in the water-filled region surrounding the heart chambers with respect to baseline. To evaluate cone-beam artifact correction, differences in mean water HU between the central and peripheral slices were compared. Partial-scan artifact correction was evaluated from the fluctuation of mean water HU in successive partial scans. To evaluate image noise reduction, a small hollow region adjacent to the heart chambers was filled with diluted contrast, and contrast-to-noise ratio in the region before and after noise correction with ASiR-V was compared. The quality of MP maps acquired with the CT system was also evaluated in porcine CT MP studies. Myocardial infarct was induced in a farm pig from a transient occlusion of the distal left anterior descending (LAD) artery with a catheter-based interventional procedure. MP maps were generated from the dynamic contrast-enhanced (DCE) heart images taken at baseline and three weeks after the ischemic insult. Results: Their results showed that the phantom and animal images acquired with the CT platform were minimally affected by image noise and artifacts. For the beam-hardening phantom study, changes in water HU in the wall surrounding the heart chambers greatly reduced from >±30 to ≤ ± 5 HU at all kVp settings except one region at 100 kVp (7 HU). For the cone-beam phantom study, differences in mean water HU from the central slice were less than 5 HU at two peripheral slices with each 4 cm away from the central slice. These findings were reproducible in the pig DCE images at two peripheral slices that were 6 cm away from the central slice. For the partial-scan phantom study, standard deviations of the mean water HU in 10 successive partial scans were less than 5 HU at the central slice. Similar observations were made in the pig DCE images at two peripheral slices with each 6 cm away from the central slice. For the image noise phantom study, CNRs in the ASiR-V images were statistically higher (p < 0.05) than the non-ASiR-V images at all kVp settings. MP maps generated from the porcine DCE images were in excellent quality, with the ischemia in the LAD territory clearly seen in the three orthogonal views. Conclusions: The study demonstrates that this CT system can provide accurate and reproducible CT numbers during cardiac gated acquisitions across a wide axial field of view. This CT number fidelity will enable this imaging tool to assess contrast enhancement, potentially providing valuable added information beyond anatomic evaluation of coronary stenoses. Furthermore, their results collectively suggested that the 100 kVp/25 mAs protocol run on this CT system provides sufficient image accuracy at a low radiation dose (<3 mSv) for whole-heart quantitative CT MP imaging.« less
Drying kinetics and characteristics of combined infrared-vacuum drying of button mushroom slices
NASA Astrophysics Data System (ADS)
Salehi, Fakhreddin; Kashaninejad, Mahdi; Jafarianlari, Ali
2017-05-01
Infrared-vacuum drying characteristics of button mushroom ( Agaricus bisporus) were evaluated in a combined dryer system. The effects of drying parameters, including infrared radiation power (150-375 W), system pressure (5-15 kPa) and time (0-160 min) on the drying kinetics and characteristics of button mushroom slices were investigated. Both the infrared lamp power and vacuum pressure influenced the drying time of button mushroom slices. The rate constants of the nine different kinetic's models for thin layer drying were established by nonlinear regression analysis of the experimental data which were found to be affected mainly by the infrared power level while system pressure had a little effect on the moisture ratios. The regression results showed that the Page model satisfactorily described the drying behavior of button mushroom slices with highest R value and lowest SE values. The effective moisture diffusivity increases as power increases and range between 0.83 and 2.33 × 10-9 m2/s. The rise in infrared power has a negative effect on the ΔE and with increasing in infrared radiation power it was increased.
Wang, Qingyu; Canton, Gador; Guo, Jian; Guo, Xiaoya; Hatsukami, Thomas S.; Billiar, Kristen L.; Yuan, Chun; Wu, Zheyang
2017-01-01
Background Image-based computational models are widely used to determine atherosclerotic plaque stress/strain conditions and investigate their association with plaque progression and rupture. However, patient-specific vessel material properties are in general lacking in those models, limiting the accuracy of their stress/strain measurements. A noninvasive approach of combining in vivo 3D multi-contrast and Cine magnetic resonance imaging (MRI) and computational modeling was introduced to quantify patient-specific carotid plaque material properties for potential plaque model improvements. Vessel material property variation in patients, along vessel segment, and between baseline and follow up were investigated. Methods In vivo 3D multi-contrast and Cine MRI carotid plaque data were acquired from 8 patients with follow-up (18 months) with written informed consent obtained. 3D thin-layer models and an established iterative procedure were used to determine parameter values of the Mooney-Rivlin models for the 81slices from 16 plaque samples. Effective Young’s Modulus (YM) values were calculated for comparison and analysis. Results Average Effective Young’s Modulus (YM) and circumferential shrinkage rate (C-Shrink) value of the 81 slices was 411kPa and 5.62%, respectively. Slice YM value varied from 70 kPa (softest) to 1284 kPa (stiffest), a 1734% difference. Average slice YM values by vessel varied from 109 kPa (softest) to 922 kPa (stiffest), a 746% difference. Location-wise, the maximum slice YM variation rate within a vessel was 311% (149 kPa vs. 613 kPa). The average slice YM variation rate for the 16 vessels was 134%. The average variation of YM values for all patients from baseline to follow up was 61.0%. The range of the variation of YM values was [-28.4%, 215%]. For plaque progression study, YM at follow-up showed negative correlation with plaque progression measured by wall thickness increase (WTI) (r = -0.7764, p = 0.0235). Wall thickness at baseline correlated with WTI negatively, with r = -0.5253 (p = 0.1813). Plaque burden at baseline correlated with YM change between baseline and follow-up, with r = 0.5939 (p = 0.1205). Conclusion In vivo carotid vessel material properties have large variations from patient to patient, along the diseased segment within a patient, and with time. The use of patient-specific, location specific and time-specific material properties in plaque models could potentially improve the accuracy of model stress/strain calculations. PMID:28715441
NASA Astrophysics Data System (ADS)
McClelland, Jamie R.; Modat, Marc; Arridge, Simon; Grimes, Helen; D'Souza, Derek; Thomas, David; O' Connell, Dylan; Low, Daniel A.; Kaza, Evangelia; Collins, David J.; Leach, Martin O.; Hawkes, David J.
2017-06-01
Surrogate-driven respiratory motion models relate the motion of the internal anatomy to easily acquired respiratory surrogate signals, such as the motion of the skin surface. They are usually built by first using image registration to determine the motion from a number of dynamic images, and then fitting a correspondence model relating the motion to the surrogate signals. In this paper we present a generalized framework that unifies the image registration and correspondence model fitting into a single optimization. This allows the use of ‘partial’ imaging data, such as individual slices, projections, or k-space data, where it would not be possible to determine the motion from an individual frame of data. Motion compensated image reconstruction can also be incorporated using an iterative approach, so that both the motion and a motion-free image can be estimated from the partial image data. The framework has been applied to real 4DCT, Cine CT, multi-slice CT, and multi-slice MR data, as well as simulated datasets from a computer phantom. This includes the use of a super-resolution reconstruction method for the multi-slice MR data. Good results were obtained for all datasets, including quantitative results for the 4DCT and phantom datasets where the ground truth motion was known or could be estimated.
McClelland, Jamie R; Modat, Marc; Arridge, Simon; Grimes, Helen; D'Souza, Derek; Thomas, David; Connell, Dylan O'; Low, Daniel A; Kaza, Evangelia; Collins, David J; Leach, Martin O; Hawkes, David J
2017-06-07
Surrogate-driven respiratory motion models relate the motion of the internal anatomy to easily acquired respiratory surrogate signals, such as the motion of the skin surface. They are usually built by first using image registration to determine the motion from a number of dynamic images, and then fitting a correspondence model relating the motion to the surrogate signals. In this paper we present a generalized framework that unifies the image registration and correspondence model fitting into a single optimization. This allows the use of 'partial' imaging data, such as individual slices, projections, or k-space data, where it would not be possible to determine the motion from an individual frame of data. Motion compensated image reconstruction can also be incorporated using an iterative approach, so that both the motion and a motion-free image can be estimated from the partial image data. The framework has been applied to real 4DCT, Cine CT, multi-slice CT, and multi-slice MR data, as well as simulated datasets from a computer phantom. This includes the use of a super-resolution reconstruction method for the multi-slice MR data. Good results were obtained for all datasets, including quantitative results for the 4DCT and phantom datasets where the ground truth motion was known or could be estimated.
McClelland, Jamie R; Modat, Marc; Arridge, Simon; Grimes, Helen; D’Souza, Derek; Thomas, David; Connell, Dylan O’; Low, Daniel A; Kaza, Evangelia; Collins, David J; Leach, Martin O; Hawkes, David J
2017-01-01
Abstract Surrogate-driven respiratory motion models relate the motion of the internal anatomy to easily acquired respiratory surrogate signals, such as the motion of the skin surface. They are usually built by first using image registration to determine the motion from a number of dynamic images, and then fitting a correspondence model relating the motion to the surrogate signals. In this paper we present a generalized framework that unifies the image registration and correspondence model fitting into a single optimization. This allows the use of ‘partial’ imaging data, such as individual slices, projections, or k-space data, where it would not be possible to determine the motion from an individual frame of data. Motion compensated image reconstruction can also be incorporated using an iterative approach, so that both the motion and a motion-free image can be estimated from the partial image data. The framework has been applied to real 4DCT, Cine CT, multi-slice CT, and multi-slice MR data, as well as simulated datasets from a computer phantom. This includes the use of a super-resolution reconstruction method for the multi-slice MR data. Good results were obtained for all datasets, including quantitative results for the 4DCT and phantom datasets where the ground truth motion was known or could be estimated. PMID:28195833
Healy, Sinead; McMahon, Jill; Owens, Peter; FitzGerald, Una
2016-01-01
Aberrant iron deposition in the brain is associated with neurodegenerative disorders including Multiple Sclerosis, Alzheimer’s disease and Parkinson’s disease. To study the collective response to iron loading, we have used hippocampal organotypic slices as a platform to develop a novel ex vivo model of iron accumulation. We demonstrated differential uptake and toxicity of iron after 12 h exposure to 10 μM ferrous ammonium sulphate, ferric citrate or ferrocene. Having established the supremacy of ferrocene in this model, the cultures were then loaded with 0.1–100 μM ferrocene for 12 h. One μM ferrocene exposure produced the maximal 1.6-fold increase in iron compared with vehicle. This was accompanied by a 1.4-fold increase in ferritin transcripts and mild toxicity. Using dual-immunohistochemistry, we detected ferritin in oligodendrocytes, microglia, but rarely in astrocytes and never in neurons in iron-loaded slice cultures. Moreover, iron loading led to a 15% loss of olig2-positive cells and a 16% increase in number and greater activation of microglia compared with vehicle. However, there was no appreciable effect of iron loading on astrocytes. In what we believe is a significant advance on traditional mono- or dual-cultures, our novel ex vivo slice-culture model allows characterization of the collective response of brain cells to iron-loading. PMID:27808258
Wu, Li-Rong; Liu, Liang; Xiong, Xiao-Yi; Zhang, Qin; Wang, Fa-Xiang; Gong, Chang-Xiong; Zhong, Qi; Yang, Yuan-Rui; Meng, Zhao-You; Yang, Qing-Wu
2017-01-01
Inflammatory responses play crucial roles in cerebral ischemia/reperfusion injury. Toll-like receptor 4 (TLR4) is an important mediator of the neuroinflammatory response to cerebral ischemia/reperfusion injury. Vinpocetine is a derivative of the alkaloid vincamine and exerts an anti-inflammatory effect by inhibiting NF-κB activation. However, the effects of vinpocetine on pathways upstream of NF-κB signaling, such as TLR4, have not been fully elucidated. Here, we used mouse middle cerebral artery occlusion (MCAO) and cell-based oxygen-glucose deprivation (OGD) models to evaluate the therapeutic effects and mechanisms of vinpocetine treatment. The vinpocetine treatment significantly reduced mice cerebral infarct volumes and neurological scores. Moreover, the numbers of TUNEL+ and Fluoro-Jade B+ cells were significantly decreased in the ischemic brain tissues after vinpocetine treatment. In the OGD model, the vinpocetine treatment also increased the viability of cultured cortical neurons. Interestingly, vinpocetine exerted a neuroprotective effect on the mouse MCAO model and cell-based OGD model by inhibiting TLR4-mediated inflammatory responses and decreasing proinflammatory cytokine release through the MyD88-dependent signaling pathway, independent of TRIF signaling pathway. In conclusion, vinpocetine exerts anti-inflammatory effects to ameliorate cerebral ischemia/reperfusion injury in vitro and in vivo. Vinpocetine may inhibit inflammatory responses through the TLR4/MyD88/NF-κB signaling pathway, independent of TRIF-mediated inflammatory responses. Thus, vinpocetine may be an attractive therapeutic candidate for the treatment of ischemic cerebral injury or other inflammatory diseases. PMID:29113305
Wu, Li-Rong; Liu, Liang; Xiong, Xiao-Yi; Zhang, Qin; Wang, Fa-Xiang; Gong, Chang-Xiong; Zhong, Qi; Yang, Yuan-Rui; Meng, Zhao-You; Yang, Qing-Wu
2017-10-06
Inflammatory responses play crucial roles in cerebral ischemia/reperfusion injury. Toll-like receptor 4 (TLR4) is an important mediator of the neuroinflammatory response to cerebral ischemia/reperfusion injury. Vinpocetine is a derivative of the alkaloid vincamine and exerts an anti-inflammatory effect by inhibiting NF-κB activation. However, the effects of vinpocetine on pathways upstream of NF-κB signaling, such as TLR4, have not been fully elucidated. Here, we used mouse middle cerebral artery occlusion (MCAO) and cell-based oxygen-glucose deprivation (OGD) models to evaluate the therapeutic effects and mechanisms of vinpocetine treatment. The vinpocetine treatment significantly reduced mice cerebral infarct volumes and neurological scores. Moreover, the numbers of TUNEL+ and Fluoro-Jade B+ cells were significantly decreased in the ischemic brain tissues after vinpocetine treatment. In the OGD model, the vinpocetine treatment also increased the viability of cultured cortical neurons. Interestingly, vinpocetine exerted a neuroprotective effect on the mouse MCAO model and cell-based OGD model by inhibiting TLR4-mediated inflammatory responses and decreasing proinflammatory cytokine release through the MyD88-dependent signaling pathway, independent of TRIF signaling pathway. In conclusion, vinpocetine exerts anti-inflammatory effects to ameliorate cerebral ischemia/reperfusion injury in vitro and in vivo. Vinpocetine may inhibit inflammatory responses through the TLR4/MyD88/NF-κB signaling pathway, independent of TRIF-mediated inflammatory responses. Thus, vinpocetine may be an attractive therapeutic candidate for the treatment of ischemic cerebral injury or other inflammatory diseases.
Park, Eunkuk; Lee, Gi-Ja; Choi, Samjin; Choi, Seok-Keun; Chae, Su-Jin; Kang, Sung-Wook; Pak, Youngmi Kim; Park, Hun-Kuk
2010-01-01
Voltage-dependent anion channel (VDAC) is the main protein in mitochondria-mediated apoptosis, and the modulation of VDAC may be induced by the excessive release of extracellular glutamate. This study examined the role of glutamate release on VDAC-mediated apoptosis in an eleven vessel occlusion model in rats. Male Sprague-Dawley rats (250–350 g) were used for the 11 vessel occlusion ischemic model, which were induced for a 10-min transient occlusion. During the ischemic and initial reperfusion episode, the real-time monitoring of the extracellular glutamate concentration was measured using an amperometric microdialysis biosensor and the cerebral blood flow (CBF) was monitored by laser-Doppler flowmetry. To confirm neuronal apoptosis, the brains were removed 72 h after ischemia to detect the neuron-specific nuclear protein and pro-apoptotic proteins (cleaved caspase-3, VDAC, p53 and BAX). The changes in the mitochondrial morphology were measured by atomic force microscopy. A decrease in the % of CBF was observed, and an increase in glutamate release was detected after the onset of ischemia, which continued to increase during the ischemic period. A significantly higher level of glutamate release was observed in the ischemia group. The increased glutamate levels in the ischemia group resulted in the activation of VDAC and pro-apoptotic proteins in the hippocampus with morphological alterations to the mitochondria. This study suggests that an increase in glutamate release promotes VDAC-mediated apoptosis in an 11 vessel occlusion ischemic model. PMID:21203570
(-)-Phenserine inhibits neuronal apoptosis following ischemia/reperfusion injury.
Chang, Cheng-Fu; Lai, Jing-Huei; Wu, John Chung-Che; Greig, Nigel H; Becker, Robert E; Luo, Yu; Chen, Yen-Hua; Kang, Shuo-Jhen; Chiang, Yung-Hsiao; Chen, Kai-Yun
2017-12-15
Stroke commonly leads to adult disability and death worldwide. Its major symptoms are spastic hemiplegia and discordant motion, consequent to neuronal cell death induced by brain vessel occlusion. Acetylcholinesterase (AChE) is upregulated and allied with inflammation and apoptosis after stroke. Recent studies suggest that AChE inhibition ameliorates ischemia-reperfusion injury and has neuroprotective properties. (-)-Phenserine, a reversible AChE inhibitor, has a broad range of actions independent of its AChE properties, including neuroprotective ones. However, its protective effects and detailed mechanism of action in the rat middle cerebral artery occlusion model (MCAO) remain to be elucidated. This study investigated the therapeutic effects of (-)-phenserine for stroke in the rat focal cerebral ischemia model and oxygen-glucose deprivation/reperfusion (OGD/RP) damage model in SH-SY5Y neuronal cultures. (-)-Phenserine mitigated OGD/PR-induced SH-SY5Y cell death, providing an inverted U-shaped dose-response relationship between concentration and survival. In MCAO challenged rats, (-)-phenserine reduced infarction volume, cell death and improved body asymmetry, a behavioral measure of stoke impact. In both cellular and animal studies, (-)-phenserine elevated brain-derived neurotrophic factor (BDNF) and B-cell lymphoma 2 (Bcl-2) levels, and decreased activated-caspase 3, amyloid precursor protein (APP) and glial fibrillary acidic protein (GFAP) expression, potentially mediated through the ERK-1/2 signaling pathway. These actions mitigated neuronal apoptosis in the stroke penumbra, and decreased matrix metallopeptidase-9 (MMP-9) expression. In synopsis, (-)-phenserine significantly reduced neuronal damage induced by ischemia/reperfusion injury in a rat model of MCAO and cellular model of OGD/RP, demonstrating that its anti-apoptotic/neuroprotective/neurotrophic cholinergic and non-cholinergic properties warrant further evaluation in conditions of brain injury. Published by Elsevier B.V.
Doyle, Mark; Pohost, Gerald M; Bairey Merz, C Noel; Shaw, Leslee J; Sopko, George; Rogers, William J; Sharaf, Barry L; Pepine, Carl J; Thompson, Diane V; Rayarao, Geetha; Tauxe, Lindsey; Kelsey, Sheryl F; Biederman, Robert W W
2016-10-01
We introduce an algorithmic approach to optimize diagnostic and prognostic value of gated cardiac single photon emission computed tomography (SPECT) and magnetic resonance (MR) myocardial perfusion imaging (MPI) modalities in women with suspected myocardial ischemia. The novel approach: bio-informatics assessment schema (BIAS) forms a mathematical model utilizing MPI data and cardiac metrics generated by one modality to predict the MPI status of another modality. The model identifies cardiac features that either enhance or mask the image-based evidence of ischemia. For each patient, the BIAS model value is used to set an appropriate threshold for the detection of ischemia. Women (n=130), with symptoms and signs of suspected myocardial ischemia, underwent MPI assessment for regional perfusion defects using two different modalities: gated SPECT and MR. To determine perfusion status, MR data were evaluated qualitatively (MRI QL ) and semi-quantitatively (MRI SQ ) while SPECT data were evaluated using conventional clinical criteria. Evaluators were masked to results of the alternate modality. These MPI status readings were designated "original". Two regression models designated "BIAS" models were generated to model MPI status obtained with one modality (e.g., MRI) compared with a second modality (e.g., SPECT), but importantly, the BIAS models did not include the primary Original MPI reading of the predicting modality. Instead, the BIAS models included auxiliary measurements like left ventricular chamber volumes and myocardial wall thickness. For each modality, the BIAS model was used to set a progressive threshold for interpretation of MPI status. Women were then followed for 38±14 months for the development of a first major adverse cardiovascular event [MACE: CV death, nonfatal myocardial infarction (MI) or hospitalization for heart failure]. Original and BIAS-augmented perfusion status were compared in their ability to detect coronary artery disease (CAD) and for prediction of MACE. Adverse events occurred in 14 (11%) women and CAD was present in 13 (10%). There was a positive correlation of maximum coronary artery stenosis and BIAS score for MRI and SPECT (P<0.001). Receiver operator characteristic (ROC) analysis was conducted and showed an increase in the area under the curve of the BIAS-augmented MPI interpretation of MACE vs . the original for MRI SQ (0.78 vs . 0.54), MRI QL (0.78 vs . 0.64), SPECT (0.82 vs . 0.63) and the average of the three readings (0.80±0.02 vs . 0.60±0.05, P<0.05). Increasing values of the BIAS score generated by both MRI and SPECT corresponded to the increasing prevalence of CAD and MACE. The BIAS-augmented detection of ischemia better predicted MACE compared with the Original reading for the MPI data for both MRI and SPECT.
Pohost, Gerald M.; Bairey Merz, C. Noel; Shaw, Leslee J.; Sopko, George; Rogers, William J.; Sharaf, Barry L.; Pepine, Carl J.; Thompson, Diane V.; Rayarao, Geetha; Tauxe, Lindsey; Kelsey, Sheryl F.; Biederman, Robert W. W.
2016-01-01
Background We introduce an algorithmic approach to optimize diagnostic and prognostic value of gated cardiac single photon emission computed tomography (SPECT) and magnetic resonance (MR) myocardial perfusion imaging (MPI) modalities in women with suspected myocardial ischemia. The novel approach: bio-informatics assessment schema (BIAS) forms a mathematical model utilizing MPI data and cardiac metrics generated by one modality to predict the MPI status of another modality. The model identifies cardiac features that either enhance or mask the image-based evidence of ischemia. For each patient, the BIAS model value is used to set an appropriate threshold for the detection of ischemia. Methods Women (n=130), with symptoms and signs of suspected myocardial ischemia, underwent MPI assessment for regional perfusion defects using two different modalities: gated SPECT and MR. To determine perfusion status, MR data were evaluated qualitatively (MRIQL) and semi-quantitatively (MRISQ) while SPECT data were evaluated using conventional clinical criteria. Evaluators were masked to results of the alternate modality. These MPI status readings were designated “original”. Two regression models designated “BIAS” models were generated to model MPI status obtained with one modality (e.g., MRI) compared with a second modality (e.g., SPECT), but importantly, the BIAS models did not include the primary Original MPI reading of the predicting modality. Instead, the BIAS models included auxiliary measurements like left ventricular chamber volumes and myocardial wall thickness. For each modality, the BIAS model was used to set a progressive threshold for interpretation of MPI status. Women were then followed for 38±14 months for the development of a first major adverse cardiovascular event [MACE: CV death, nonfatal myocardial infarction (MI) or hospitalization for heart failure]. Original and BIAS-augmented perfusion status were compared in their ability to detect coronary artery disease (CAD) and for prediction of MACE. Results Adverse events occurred in 14 (11%) women and CAD was present in 13 (10%). There was a positive correlation of maximum coronary artery stenosis and BIAS score for MRI and SPECT (P<0.001). Receiver operator characteristic (ROC) analysis was conducted and showed an increase in the area under the curve of the BIAS-augmented MPI interpretation of MACE vs. the original for MRISQ (0.78 vs. 0.54), MRIQL (0.78 vs. 0.64), SPECT (0.82 vs. 0.63) and the average of the three readings (0.80±0.02 vs. 0.60±0.05, P<0.05). Conclusions Increasing values of the BIAS score generated by both MRI and SPECT corresponded to the increasing prevalence of CAD and MACE. The BIAS-augmented detection of ischemia better predicted MACE compared with the Original reading for the MPI data for both MRI and SPECT. PMID:27747165
Heidemann, Martina; Streit, Jürg; Tscherter, Anne
2015-09-23
Adult higher vertebrates have a limited potential to recover from spinal cord injury. Recently, evidence emerged that propriospinal connections are a promising target for intervention to improve functional regeneration. So far, no in vitro model exists that grants the possibility to examine functional recovery of propriospinal fibers. Therefore, a representative model that is based on two organotypic spinal cord sections of embryonic rat, cultured next to each other on multi-electrode arrays (MEAs) was developed. These slices grow and, within a few days in vitro, fuse along the sides facing each other. The design of the used MEAs permits the performance of lesions with a scalpel blade through this fusion site without inflicting damage on the MEAs. The slices show spontaneous activity, usually organized in network activity bursts, and spatial and temporal activity parameters such as the location of burst origins, speed and direction of their propagation and latencies between bursts can be characterized. Using these features, it is also possible to assess functional connection of the slices by calculating the amount of synchronized bursts between the two sides. Furthermore, the slices can be morphologically analyzed by performing immunohistochemical stainings after the recordings. Several advantages of the used techniques are combined in this model: the slices largely preserve the original tissue architecture with intact local synaptic circuitry, the tissue is easily and repeatedly accessible and neuronal activity can be detected simultaneously and non-invasively in a large number of spots at high temporal resolution. These features allow the investigation of functional regeneration of intraspinal connections in isolation in vitro in a sophisticated and efficient way.
In vivo photoacoustic imaging of chorioretinal oxygen gradients
NASA Astrophysics Data System (ADS)
Hariri, Ali; Wang, Junxin; Kim, Yeji; Jhunjhunwala, Anamik; Chao, Daniel L.; Jokerst, Jesse V.
2018-03-01
Chorioretinal imaging has a crucial role for the patients with chorioretinal vascular diseases, such as neovascular age-related macular degeneration. Imaging oxygen gradients in the eye could better diagnose and treat ocular diseases. Here, we describe the use of photoacoustic ocular imaging (PAOI) in measuring chorioretinal oxygen saturation (CR - sO2) gradients in New Zealand white rabbits (n = 5) with ocular ischemia. We observed good correlation (R2 = 0.98) between pulse oximetry and PAOI as a function of different oxygen percentages in inhaled air. We then used an established ocular ischemia model in which intraocular pressure is elevated to constrict ocular blood flow, and notice a positive correlation (R2 = 0.92) between the injected volume of phosphate buffered saline (PBS) and intraocular pressure (IOP) as well as a negative correlation (R2 = 0.98) between CR - sO2 and injected volume of PBS. The CR - sO2 was measured before (baseline), during (ischemia), and after the infusion (600-μL PBS). The ischemia-reperfusion model did not affect the measurement of the sO2 using a pulse oximeter on the animal's paw, but the chorioretinal PAOI signal showed a nearly sixfold decrease in CR - sO2 (n = 5, p = 0.00001). We also observe a sixfold decrease in CR - sO2 after significant elevation of IOP during ischemia, with an increase close to baseline during reperfusion. These data suggest that PAOI can detect changes in chorioretinal oxygenation and may be useful for application to imaging oxygen gradients in ocular disease.
Holmberg, Per; Liljequist, Sture; Wägner, Anna
2009-02-01
The development and distribution of secondary brain lesions, subsequent to ischemic stroke, are of considerable clinical interest but so far only a limited number of studies have investigated the distribution and development of these secondary lesions in detail. In this study, we used an animal model of focal ischemia caused by extradural compression of the sensorimotor cortex. This paradigm of focal ischemia was shown to produce a consistent pattern of secondary lesions located distally from the primary lesion. Functionally the primary brain lesion produced a transient neurological deficit, which was evaluated by daily beam walking tests. Morphological changes were assessed in parallel after the ischemic event using Fluoro-Jade (FJ) staining as a marker of neuronal cell death. Secondary brain lesions were observed in the thalamus as well as in the hippocampus. The first sign of the slowly developing secondary brain lesions was present on day 3 with subsequent lesions being identified until day 16 after the primary ischemia. In addition to the identification of neuronal cell death by the FJ assays, immunostaining for parvalbumin (PA), a marker of GABAergic interneurons, revealed a loss of PA-staining in the pyramidal layer of CA1 on day 3, thus showing a similar time pattern for loss of PA-staining as for the loss of FJ stained cells. Based upon our present results, we suggest that the current animal model of focal ischemia represents a valuable tool for studies concerning the development of secondary remote brain lesions and their association to impaired motor and cognitive functions.
Kim, Junhwan; Lampe, Joshua W.; Yin, Tai; Shinozaki, Koichiro; Becker, Lance B.
2015-01-01
Cardiac arrest (CA) induces whole-body ischemia, causing damage to multiple organs. Ischemic damage to the brain is mainly responsible for patient mortality. However, the molecular mechanism responsible for brain damage is not understood. Prior studies have provided evidence that degradation of membrane phospholipids plays key roles in ischemia/reperfusion injury. The aim of this study is to correlate organ damage to phospholipid alterations following 30 min asphyxia-induced CA or CA followed by cardiopulmonary bypass (CPB) resuscitation using a rat model. Following 30 min CA and CPB resuscitation, rats showed no brain function, moderately compromised heart function, and died within a few hours; typical outcomes of severe CA. However, we did not find any significant change in the content or composition of phospholipids in either tissue following 30 min CA or CA followed by CPB resuscitation. We found a moderate increase in lysophosphatidylinositol in both tissues, and a small increase in lysophosphatidylethanolamine and lysophosphatidylcholine only in brain tissue following CA. CPB resuscitation significantly decreased lysophosphatidylinositol but did not alter the other lyso species. These results indicate that a decrease in phospholipids is not a cause of brain damage in CA or a characteristic of brain ischemia. However, a significant increase in lysophosphatidylcholine and lysophosphatidylethanolamine found only in the brain with more damage suggests that impaired phospholipid metabolism may be correlated with the severity of ischemia in CA. In addition, the unique response of lysophosphatidylinositol suggests that phosphatidylinositol metabolism is highly sensitive to cellular conditions altered by ischemia and resuscitation. PMID:26160279
Huang, Hao; Chen, Yang-Mei; Zhu, Fei; Tang, Shi-Ting; Xiao, Ji-Dong; Li, Lv-Li; Lin, Xin-Jing
2015-01-01
This study was aimed to examine whether the Na+/K+ adenosine triphosphatase (Na+/K+-ATPase) activity in ischemic penumbra is associated with the pathogenesis of ischemia/reperfusion-induced brain injury. An experimental model of cerebral ischemia/reperfusion was made by transient middle cerebral artery occlusion (tMCAO) in rats and the changes of Na+/K+-ATPase activity in the ischemic penumbra was examined by Enzyme Assay Kit. Extensive infarction was observed in the frontal and parietal cortical and subcortical areas at 6 h, 24 h, 48 h, 3 d and 7 d after tMCAO. Enzyme Assay analyses revealed the activity of Na+/K+-ATPase was decreased in the ischemic penumbra of model rats after focal cerebral ischemia/reperfusion compared with sham-operated rats, and reduced to its minimum at 48 h, while the infarct volume was enlarged gradually. In addition, accompanied by increased brain water content, apoptosis-related bcl-2 and Bax proteins, apoptotic index and neurologic deficits Longa scores, but fluctuated the ratio of bcl-2/Bax. Correlation analysis showed that the infarct volume, apoptotic index, neurologic deficits Longa scores and brain water content were negatively related with Na+/K+-ATPase activity, while the ratio of bcl-2/Bax was positively related with Na+/K+-ATPase activity. Our results suggest that down-regulated Na+/K+-ATPase activity in ischemic penumbra might be involved in the pathogenesis of cerebral ischemia/reperfusion injury presumably through the imbalance ratio of bcl-2/Bax and neuronal apoptosis, and identify novel target for neuroprotective therapeutic intervention in cerebral ischemic disease. PMID:26722460
Xu, Lixing; Li, Yuebi; Fu, Qiang; Ma, Shiping
2014-11-07
Perillaldehyde (PAH), one of the major oil components in Perilla frutescens, has anti-inflammatory effects. Few studies have examined the neuroprotective effect of PAH on stroke. So the aim of our study is to investigate the effect of PAH on ischemia-reperfusion-induced injury in the rat brain cortex. Middle cerebral artery occlusion (MCAO) model was selected to make cerebral ischemia-reperfusion injury. Rats were assigned randomly to groups of sham, MCAO, and two treatment groups by PAH at 36.0, 72.0mg/kg. Disease model was set up after intragastrically (i.g.) administering for 7 consecutive days. The neurological deficit, the cerebral infarct size, biochemical parameters and the relative mRNA and protein levels were examined. The results showed that the NO level, the iNOS activity, the neurological deficit scores, the cerebral infarct size and the expression of inflammatory cytokines including interleukin (IL)-1β, interleukin (IL)-6 and tumor necrosis factor (TNF)-α were significantly decreased by PAH treatment. PAH also increased the Phospho-Akt level and decrease the Phospho-JNK level by Western blot analysis. Meanwhile, the PAH groups exhibited a dramatically decrease of apoptosis-related mRNA expression such as Bax and caspase-3. Our findings shown that PAH attenuates cerebral ischemia/reperfusion injury in the rat brain cortex, and suggest its neuroprotective effect is relate to regulating the inflammatory response through Akt /JNK pathway. The activation of this signalling pathway eventually inhibits apoptotic cell death induced by cerebral ischemia-reperfusion. Copyright © 2014 Elsevier Inc. All rights reserved.
Kim, Junhwan; Lampe, Joshua W; Yin, Tai; Shinozaki, Koichiro; Becker, Lance B
2015-10-01
Cardiac arrest (CA) induces whole-body ischemia, causing damage to multiple organs. Ischemic damage to the brain is mainly responsible for patient mortality. However, the molecular mechanism responsible for brain damage is not understood. Prior studies have provided evidence that degradation of membrane phospholipids plays key roles in ischemia/reperfusion injury. The aim of this study is to correlate organ damage to phospholipid alterations following 30 min asphyxia-induced CA or CA followed by cardiopulmonary bypass (CPB) resuscitation using a rat model. Following 30 min CA and CPB resuscitation, rats showed no brain function, moderately compromised heart function, and died within a few hours; typical outcomes of severe CA. However, we did not find any significant change in the content or composition of phospholipids in either tissue following 30 min CA or CA followed by CPB resuscitation. We found a substantial increase in lysophosphatidylinositol in both tissues, and a small increase in lysophosphatidylethanolamine and lysophosphatidylcholine only in brain tissue following CA. CPB resuscitation significantly decreased lysophosphatidylinositol but did not alter the other lyso species. These results indicate that a decrease in phospholipids is not a cause of brain damage in CA or a characteristic of brain ischemia. However, a significant increase in lysophosphatidylcholine and lysophosphatidylethanolamine found only in the brain with more damage suggests that impaired phospholipid metabolism may be correlated with the severity of ischemia in CA. In addition, the unique response of lysophosphatidylinositol suggests that phosphatidylinositol metabolism is highly sensitive to cellular conditions altered by ischemia and resuscitation.
Shevtsov, Maxim A; Nikolaev, Boris P; Yakovleva, Ludmila Y; Dobrodumov, Anatolii V; Dayneko, Anastasiy S; Shmonin, Alexey A; Vlasov, Timur D; Melnikova, Elena V; Vilisov, Alexander D; Guzhova, Irina V; Ischenko, Alexander M; Mikhrina, Anastasiya L; Galibin, Oleg V; Yakovenko, Igor V; Margulis, Boris A
2014-01-01
Recombinant 70 kDa heat shock protein (Hsp70) is an antiapoptotic protein that has a cell protective activity in stress stimuli and thus could be a useful therapeutic agent in the management of patients with acute ischemic stroke. The neuroprotective and neurotherapeutic activity of recombinant Hsp70 was explored in a model of experimental stroke in rats. Ischemia was produced by the occlusion of the middle cerebral artery for 45 minutes. To assess its neuroprotective capacity, Hsp70, at various concentrations, was intravenously injected 20 minutes prior to ischemia. Forty-eight hours after ischemia, rats were sacrificed and brain tissue sections were stained with 2% triphenyl tetrazolium chloride. Preliminary treatment with Hsp70 significantly reduced the ischemic zone (optimal response at 2.5 mg/kg). To assess Hsp70's neurotherapeutic activity, we intravenously administered Hsp70 via the tail vein 2 hours after reperfusion (2 hours and 45 minutes after ischemia). Rats were then kept alive for 72 hours. The ischemic region was analyzed using a high-field 11 T MRI scanner. Administration of the Hsp70 decreased the infarction zone in a dose-dependent manner with an optimal (threefold) therapeutic response at 5 mg/kg. Long-term treatment of the ischemic rats with Hsp70 formulated in alginate granules with retarded release of protein further reduced the infarct volume in the brain as well as apoptotic area (annexin V staining). Due to its high neurotherapeutic potential, prolonged delivery of Hsp70 could be useful in the management of acute ischemic stroke.
Li, Jie; Wei, Yuquan; Liu, Kang; Yuan, Chuang; Tang, Yajuan; Quan, Qingli; Chen, Ping; Wang, Wei; Hu, Huozhen; Yang, Li
2010-07-01
Combinatorial strategy has been used in therapeutic angiogenesis in animal models of peripheral arterial disease (PAD) and coronary artery disease for decades. Previous studies have shown that basic fibroblast growth factor (FGF-2) and platelet-derived growth factor BB (PDGF-BB) proteins together establish functional and stable vascular networks on mouse corneal and also in animal model of hindlimb ischemia. However, the short half life of protein by single injection is not sufficient to achieve effective dosage, repeated and prolonged injection causes systemic toxicity. Here we study the synergistic effects of FGF-2 and PDGF-BB by intramuscular injection of naked plasmid DNA on therapeutic angiogenesis in rabbit model of hindlimb ischemia. We found that transient delivery of FGF-2 and PDGF-BB naked DNA together resulted in greater increases in capillary growth, collateral formation and popliteal blood flow compared with control and single gene delivery. Our data provided novel evidence of beneficial effects of DNA-based FGF-2 and PDFG-BB on muscle repair after ischemic injury. These findings reveal an alternative therapeutic approach in the treatment of ischemic diseases and even in muscular disorders. Copyright 2010. Published by Elsevier Inc.
2017-10-01
of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other...average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed...IRI) in scenarios relevant to limb transplantation using mouse models for experimentation. Limitations in tolerated ischemia times limits the scope
Effects of Enhanced Oxygen Delivery by Perfluorocarbons in Spinal Cord Injury
2013-10-01
been established, linking post- traumatic ischemia to axonal dysfunction.8 Decreased oxygen level in severe traumatic injuries appears to be implicated...rodent weight drop traumatic spinal cord injury model; ( 2 ) determine if enhanced oxygen delivery in spinal cord injury spares cellular elements, white...shown that ischemia /hypoxia play crucial role in the devastating effects of the secondary injury following SCI which translates into worse neurological
Hou, Linda; Nilsson, Åsa; Pekna, Marcela; Pekny, Milos; Nilsson, Michael
2012-01-01
Sulforaphane-induced activation of the transcription factor NF-E2 related factor 2 (Nrf2 or the gene Nfe2l2) and subsequent induction of the phase II antioxidant system has previously been shown to exert neuroprotective action in a transient model of focal cerebral ischemia. However, its ability to attenuate functional and cellular deficits after permanent focal cerebral ischemia is not clear. We assessed the neuroprotective effects of sulforaphane in the photothrombotic model of permanent focal cerebral ischemia. Sulforaphane was administered (5 or 50 mg/kg, i.p.) after ischemic onset either as a single dose or as daily doses for 3 days. Sulforaphane increased transcription of Nrf2, Hmox1, GCLC and GSTA4 mRNA in the brain confirming activation of the Nrf2 system. Single or repeated administration of sulforaphane had no effect on the infarct volume, nor did it reduce the number of activated glial cells or proliferating cells when analyzed 24 and 72 h after stroke. Motor-function as assessed by beam-walking, cylinder-test, and adhesive test, did not improve after sulforaphane treatment. The results show that sulforaphane treatment initiated after photothrombosis-induced permanent cerebral ischemia does not interfere with key cellular mechanisms underlying tissue damage. PMID:22911746
Quercetin attenuates neuronal cells damage in a middle cerebral artery occlusion animal model.
Park, Dong-Ju; Shah, Fawad-Ali; Koh, Phil-Ok
2018-04-27
Cerebral ischemia is a neurological disorder with high mortality. Quercetin is a flavonoid compound that is abundant in vegetables and fruits. It exerts anti-inflammatory and anti-apoptotic effects. This study investigated the neuroprotective effects of quercetin in focal cerebral ischemia. Male Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO) to induce focal cerebral ischemia. Quercetin or vehicle was injected 30 min before the onset of ischemia. A neurological function test, brain edema measurement, and 2,3,5-triphenyltetrazolium chloride staining were performed to elucidate the neuroprotective effects of quercetin. Western blot analysis was performed to observe caspase-3 and poly ADP-ribose polymerase (PARP) protein expression. MCAO leads to severe neuronal deficits and increases brain edema and infarct volume. However, quercetin administration attenuated the MCAO-induced neuronal deficits and neuronal degeneration. We observed increases in caspase-3 and PARP protein levels in MCAO-operated animals injected with vehicle, whereas quercetin administration attenuated these increases in MCAO injury. This study reveals the neuroprotective effect of quercetin in an MCAO-induced animal model and demonstrates the regulation of caspase-3 and PARP expression by quercetin treatment. These results suggest that quercetin exerts a neuroprotective effect through preventing the MCAO-induced activation of apoptotic pathways affecting caspase-3 and PARP expression.
Porritt, Michelle J; Andersson, Helene C; Hou, Linda; Nilsson, Åsa; Pekna, Marcela; Pekny, Milos; Nilsson, Michael
2012-01-01
Sulforaphane-induced activation of the transcription factor NF-E2 related factor 2 (Nrf2 or the gene Nfe2l2) and subsequent induction of the phase II antioxidant system has previously been shown to exert neuroprotective action in a transient model of focal cerebral ischemia. However, its ability to attenuate functional and cellular deficits after permanent focal cerebral ischemia is not clear. We assessed the neuroprotective effects of sulforaphane in the photothrombotic model of permanent focal cerebral ischemia. Sulforaphane was administered (5 or 50 mg/kg, i.p.) after ischemic onset either as a single dose or as daily doses for 3 days. Sulforaphane increased transcription of Nrf2, Hmox1, GCLC and GSTA4 mRNA in the brain confirming activation of the Nrf2 system. Single or repeated administration of sulforaphane had no effect on the infarct volume, nor did it reduce the number of activated glial cells or proliferating cells when analyzed 24 and 72 h after stroke. Motor-function as assessed by beam-walking, cylinder-test, and adhesive test, did not improve after sulforaphane treatment. The results show that sulforaphane treatment initiated after photothrombosis-induced permanent cerebral ischemia does not interfere with key cellular mechanisms underlying tissue damage.
Ji, Qiong; Gao, Jianbo; Zheng, Yan; Liu, Xueli; Zhou, Qiangqiang; Shi, Canxia; Yao, Meng; Chen, Xia
2017-07-01
MicroRNAs are emerging as critical regulators in cerebral ischemia/reperfusion injury; however, their exact roles remain poorly understood. miR-153 is reported to be a neuron-related miRNA involved in neuroprotection. In this study, we aimed to investigate the precise role of miR-153 in regulating neuron survival during cerebral ischemia/reperfusion injury using an oxygen-glucose deprivation and reoxygenation (OGD/R) cellular model. We found that miR-153 was significantly upregulated in neurons subjected to OGD/R treatment. Inhibition of miR-153 significantly attenuated OGD/R-induced injury and oxidative stress in neurons. Nuclear factor erythroid 2-related factor 2 (Nrf2) was identified as a target gene of miR-153. Inhibition of miR-153 significantly promoted the expression of Nrf2 and heme oxygenase-1 (HO-1). However, silencing of Nrf2 significantly blocked the protective effects of miR-153 inhibition. Our study indicates that the inhibition of miR-153 protects neurons against OGD/R-induced injury by regulating Nrf2/HO-1 signaling and suggests a potential therapeutic target for cerebral ischemia/reperfusion injury. © 2017 Wiley Periodicals, Inc.
Lipoate ameliorates ischemia-reperfusion in animal models.
Freisleben, H J
2000-01-01
Ischemia and reperfusion were studied in isolated working rat hearts and in exarticulated rat hind limbs. Free radicals are known to be generated in ischemia/reperfusion and to propagate complications. To reduce reperfusion injury, conditions were ameliorated including the treatment with antioxidants, lipoate or dihydrolipoate. In isolated working rat hearts, cardiac and mitochondrial parameters are impaired during hypoxia and partially recover in reperfusion. Dihydrolipoate, if added into the perfusion buffer at 0.3 microM concentration, keeps the pH higher (7.15) during hypoxia, as compared to controls (6.98). This compound accelerates and stabilizes the recovery of the aortic flow. With dihydrolipoate, ATP synthesis is increased, ATPase activity (ATP hydrolysis) reduced, intracellular creatine kinase activity maintained and thus phosphocreatine contents are higher than in controls. For exarticulated rat hind limbs, the dihydrolipoate group contained 8.3 microM in the modified reperfusate. Recovery of the contractile function was 49% vs. 34% in controls and muscle flexibility was maintained whereas it decreased by 15% in the controls. Release of creatine kinase from cells was significantly lower with dihydrolipoate. Lipoate/dihydrolipoate effectively reduced reperfusion injury in isolated working rat hearts and in exarticulated rat hind limbs after extended ischemia. Finally, the compound was successfully applied in an in vivo pig hind limb model.
Ozkan, Adile; Sen, Halil Murat; Sehitoglu, Ibrahim; Alacam, Hasan; Guven, Mustafa; Aras, Adem Bozkurt; Akman, Tarik; Silan, Coşkun; Cosar, Murat; Karaman, Handan Isin Ozisik
2015-02-01
Stroke is still a major cause of death and permanent neurological disability. As humic acids are well-known antioxidant molecules, the purpose of this study was to investigate the potential neuroprotective effects of humic acid in a focal cerebral ischemia model. Twenty-four rats were divided equally into three groups. A middle cerebral artery occlusion model was performed in this study where control (group II) and humic acid (group III) were administered intraperitoneally following an ischemic experimental procedure. Group I was evaluated as sham. Malondialdehyde (MDA), superoxide dismutase (SOD), and nuclear respiratory factor-1 (NRF-1) levels were analyzed biochemically on the right side of the ischemic cerebral hemisphere, while ischemic histopathological studies were completed on the left side to investigate the antioxidant status. Biochemical results showed that SOD and NRF-1 levels were significantly increased in the humic acid group (III) compared with the control group (II) while MDA levels were significantly decreased. On histopathological examination, cerebral edema, vacuolization, degeneration, and destruction of neural elements were decreased in the humic acid group (III) compared with the control group (II). Cerebral ischemia was attenuated by humic acid administration. These observations indicate that humic acid may have potential as a therapeutic agent in cerebral ischemia by preventing oxidative stress.
Karahan, M A; Yalcin, S; Aydogan, H; Büyükfirat, E; Kücük, A; Kocarslan, S; Yüce, H H; Taskın, A; Aksoy, N
2016-06-01
Curcumin and dexmedetomidine have been shown to have protective effects in ischemia-reperfusion injury on various organs. However, their protective effects on kidney tissue against ischemia-reperfusion injury remain unclear. We aimed to determine whether curcumin or dexmedetomidine prevents renal tissue from injury that was induced by hind limb ischemia-reperfusion in rats. Fifty rats were divided into five groups: sham, control, curcumin (CUR) group (200 mg/kg curcumin, n = 10), dexmedetomidine (DEX) group (25 μg/kg dexmedetomidine, n = 10), and curcumin-dexmedetomidine (CUR-DEX) group (200 mg/kg curcumin and 25 μg/kg dexmedetomidine). Curcumin and dexmedetomidine were administered intraperitoneally immediately after the end of 4 h ischemia, just 5 min before reperfusion. The extremity re-perfused for 2 h and then blood samples were taken and total antioxidant capacity (TAC), total oxidative status (TOS) levels, and oxidative stress index (OSI) were measured, and renal tissue samples were histopathologically examined. The TAC activity levels in blood samples were significantly lower in the control than the other groups (p < 0.01 for all comparisons). The TOS activity levels in blood samples were significantly higher in Control group and than the other groups (p < 0.01 for all comparison). The OSI were found to be significantly increased in the control group compared to others groups (p < 0.001 for all comparisons). Histopathological examination revealed less severe lesions in the sham, CUR, DEX, and CUR-DEX groups, compared with the control group (p < 0.01). Rat hind limb ischemia-reperfusion causes histopathological changes in the kidneys. Curcumin and dexmedetomidine administered intraperitoneally was effective in reducing oxidative stress and renal histopathologic injury in an acute hind limb I/R rat model.
Isoproterenol effects evaluated in heart slices of human and rat in comparison to rat heart in vivo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrmann, Julia E.; Heale, Jason; Bieraugel, Mike
Human response to isoproterenol induced cardiac injury was evaluated by gene and protein pathway changes in human heart slices, and compared to rat heart slices and rat heart in vivo. Isoproterenol (10 and 100 μM) altered human and rat heart slice markers of oxidative stress (ATP and GSH) at 24 h. In this in vivo rat study (0.5 mg/kg), serum troponin concentrations increased with lesion severity, minimal to mild necrosis at 24 and 48 h. In the rat and the human heart, isoproterenol altered pathways for apoptosis/necrosis, stress/energy, inflammation, and remodeling/fibrosis. The rat and human heart slices were in anmore » apoptotic phase, while the in vivo rat heart exhibited necrosis histologically and further progression of tissue remodeling. In human heart slices genes for several heat shock 70 kD members were altered, indicative of stress to mitigate apoptosis. The stress response included alterations in energy utilization, fatty acid processing, and the up-regulation of inducible nitric oxide synthase, a marker of increased oxidative stress in both species. Inflammation markers linked with remodeling included IL-1α, Il-1β, IL-6 and TNFα in both species. Tissue remodeling changes in both species included increases in the TIMP proteins, inhibitors of matrix degradation, the gene/protein of IL-4 linked with cardiac fibrosis, and the gene Ccl7 a chemokine that induces collagen synthesis, and Reg3b a growth factor for cardiac repair. This study demonstrates that the initial human heart slice response to isoproterenol cardiac injury results in apoptosis, stress/energy status, inflammation and tissue remodeling at concentrations similar to that in rat heart slices. - Highlights: • Human response to isoproterenol induced cardiac injury evaluated in heart slices. • Isoproterenol altered apoptosis, energy, inflammation and remodeling pathways. • Human model verified by comparison to rat heart slices and rat heart in vivo. • Human and rat respond to isoproterenol at similar concentrations in vitro.« less
Leonard, Ellen C.; Beal, Alisa G.; Schleuter, Devin; Friedrich, Jessica
2012-01-01
ANG II is a potent renal vasoconstrictor and profibrotic factor and its activity is enhanced by oxidative stress. We sought to determine whether renal oxidative stress was persistent following recovery from acute kidney injury (AKI) induced by ischemia-reperfusion (I/R) injury in rats and whether this resulted in increased ANG II sensitivity. Rats were allowed to recover from bilateral renal I/R injury for 5 wk and renal blood flow responses were measured. Post-AKI rats showed significantly enhanced renal vasoconstrictor responses to ANG II relative to sham-operated controls and treatment of AKI rats with apocynin (15 mM, in the drinking water) normalized these responses. Recovery from AKI for 5 wk resulted in sustained oxidant stress as indicated by increased dihydroethidium incorporation in renal tissue slices and was normalized in apocynin-treated rats. Surprisingly, the renal mRNA expression for common NADPH oxidase subunits was not altered in kidneys following recovery from AKI; however, mRNA screening using PCR arrays suggested that post-AKI rats had decreased renal Gpx3 mRNA and an increased expression other prooxidant genes such as lactoperoxidase, myeloperoxidase, and dual oxidase-1. When rats were infused for 7 days with ANG II (100 ng·kg−1·min−1), renal fibrosis was not apparent in sham-operated control rats, but it was enhanced in post-AKI rats. The profibrotic response was significantly attenuated in rats treated with apocynin. These data suggest that there is sustained renal oxidant stress following recovery from AKI that alters both renal hemodynamic and fibrotic responses to ANG II, and may contribute to the transition to chronic kidney disease following AKI. PMID:22442209
Simulation of the hot rolling of steel with direct iteration
NASA Astrophysics Data System (ADS)
Hanoglu, Umut; Šarler, Božidar
2017-10-01
In this study a simulation system based on the meshless Local Radial Basis Function Collocation Method (LRBFCM) is applied for the hot rolling of steel. Rolling is a complex, 3D, thermo-mechanical problem; however, 2D cross-sectional slices are used as computational domains that are aligned with the rolling direction and no heat flow or strain is considered in the direction that is orthogonal to the slices. For each predefined position with respect to the rolling direction, the solution procedure is repeated until the slice reaches the final rolling position. Collocation nodes are initially distributed over the domain and boundaries of the initial slice. A local solution is achieved by considering the overlapping influence domains with either 5 or 7 nodes. Radial Basis Functions (RBFs) are used for the temperature discretization in the thermal model and displacement discretization in the mechanical model. The meshless solution procedure does not require a mesh-generation algorithm in the classic sense. Strong-form mechanical and thermal models are run for each slice regarding the contact with the roll's surface. Ideal plastic material behavior is considered for the mechanical results, where the nonlinear stress-strain relation is solved with a direct iteration. The majority of the Finite Element Model (FEM) simulations, including commercial software, use a conventional Newton-Raphson algorithm. However, direct iteration is chosen here due to its better compatibility with meshless methods. In order to overcome any unforeseen stability issues, the redistribution of the nodes by Elliptic Node Generation (ENG) is applied to one or more slices throughout the simulation. The rolling simulation presented here helps the user to design, test and optimize different rolling schedules. The results can be seen minutes after the simulation's start in terms of temperature, displacement, stress and strain fields as well as important technological parameters, like the roll-separating forces, roll toque, etc. An example of a rolling simulation, in which an initial size of 110x110 mm steel is rolled to a round bar with 80 mm diameter, is shown in Fig. 3. A user-friendly computer application for industrial use is created by using the C# and .NET frameworks.
Zhang, Pin; Liang, Yanmei; Chang, Shengjiang; Fan, Hailun
2013-08-01
Accurate segmentation of renal tissues in abdominal computed tomography (CT) image sequences is an indispensable step for computer-aided diagnosis and pathology detection in clinical applications. In this study, the goal is to develop a radiology tool to extract renal tissues in CT sequences for the management of renal diagnosis and treatments. In this paper, the authors propose a new graph-cuts-based active contours model with an adaptive width of narrow band for kidney extraction in CT image sequences. Based on graph cuts and contextual continuity, the segmentation is carried out slice-by-slice. In the first stage, the middle two adjacent slices in a CT sequence are segmented interactively based on the graph cuts approach. Subsequently, the deformable contour evolves toward the renal boundaries by the proposed model for the kidney extraction of the remaining slices. In this model, the energy function combining boundary with regional information is optimized in the constructed graph and the adaptive search range is determined by contextual continuity and the object size. In addition, in order to reduce the complexity of the min-cut computation, the nodes in the graph only have n-links for fewer edges. The total 30 CT images sequences with normal and pathological renal tissues are used to evaluate the accuracy and effectiveness of our method. The experimental results reveal that the average dice similarity coefficient of these image sequences is from 92.37% to 95.71% and the corresponding standard deviation for each dataset is from 2.18% to 3.87%. In addition, the average automatic segmentation time for one kidney in each slice is about 0.36 s. Integrating the graph-cuts-based active contours model with contextual continuity, the algorithm takes advantages of energy minimization and the characteristics of image sequences. The proposed method achieves effective results for kidney segmentation in CT sequences.
Automaticity in acute ischemia: Bifurcation analysis of a human ventricular model
NASA Astrophysics Data System (ADS)
Bouchard, Sylvain; Jacquemet, Vincent; Vinet, Alain
2011-01-01
Acute ischemia (restriction in blood supply to part of the heart as a result of myocardial infarction) induces major changes in the electrophysiological properties of the ventricular tissue. Extracellular potassium concentration ([Ko+]) increases in the ischemic zone, leading to an elevation of the resting membrane potential that creates an “injury current” (IS) between the infarcted and the healthy zone. In addition, the lack of oxygen impairs the metabolic activity of the myocytes and decreases ATP production, thereby affecting ATP-sensitive potassium channels (IKatp). Frequent complications of myocardial infarction are tachycardia, fibrillation, and sudden cardiac death, but the mechanisms underlying their initiation are still debated. One hypothesis is that these arrhythmias may be triggered by abnormal automaticity. We investigated the effect of ischemia on myocyte automaticity by performing a comprehensive bifurcation analysis (fixed points, cycles, and their stability) of a human ventricular myocyte model [K. H. W. J. ten Tusscher and A. V. Panfilov, Am. J. Physiol. Heart Circ. Physiol.AJPHAP0363-613510.1152/ajpheart.00109.2006 291, H1088 (2006)] as a function of three ischemia-relevant parameters [Ko+], IS, and IKatp. In this single-cell model, we found that automatic activity was possible only in the presence of an injury current. Changes in [Ko+] and IKatp significantly altered the bifurcation structure of IS, including the occurrence of early-after depolarization. The results provide a sound basis for studying higher-dimensional tissue structures representing an ischemic heart.
AN ORGANOTYPIC UNIAXIAL STRAIN MODEL USING MICROFLUIDICS
Dollé, Jean-Pierre; Morrison, Barclay; Schloss, Rene R.; Yarmush, Martin L.
2012-01-01
Traumatic brain injuries are the leading cause of disability each year in the US. The most common and devastating consequence is the stretching of axons caused by shear deformation that occurs during rotational acceleration of the brain during injury. The injury effects on axonal molecular and functional events are not fully characterized. We have developed a strain injury model that maintains the three dimensional cell architecture and neuronal networks found in vivo with the ability to visualize individual axons and their response to a mechanical injury. The advantage of this model is that it can apply uniaxial strains to axons that make functional connections between two organotypic slices and injury responses can be observed in real-time and over long term. This uniaxial strain model was designed to be capable of applying an array of mechanical strains at various rates of strain, thus replicating a range of modes of axonal injury. Long term culture, preservation of slice and cell orientation, and slice-slice connection on the device was demonstrated. The device has the ability to strain either individual axons or bundles of axons through the control of microchannel dimensions. The fidelity of the model was verified by observing characteristic responses to various strain injuries which included axonal beading, delayed elastic effects and breakdown in microtubules. Microtubule breakdown was shown to be dependent on the degree of the applied strain field, where maximal breakdown was observed at peak strain and minimal breakdown is observed at low strain. This strain injury model could be a powerful tool in assessing strain injury effects on functional axonal connections. PMID:23233120
Ischemia/reperfusion-induced injury of forebrain mitochondria and protection by ascorbate.
Sciamanna, M A; Lee, C P
1993-09-01
Complete, reversible forebrain ischemia was induced with a seven-vessel occlusion rat model. Previous studies of ischemic (M. A. Sciamanna, J. Zinkel, A. Y. Fabi, and C. P. Lee, 1992, Biochim. Biophys. Acta 1134, 223-232) rat brain mitochondria (RBM) showed that ischemia of 30 min caused an approximately 60% decrease in State 3 respiratory rates with both succinate and NAD-linked substrates and also in energy-linked Ca2+ transport. No significant change was seen in the State 4 rates. The inhibition of respiration could be prevented by EGTA or ruthenium red. In this paper it is shown that reperfusion (5 h) following ischemia (30 min) further impaired RBM respiratory activities (succinate and NAD-linked substrates). The presence of EGTA or ruthenium red in the assay medium did not protect against ischemia/reperfusion-induced injury. The effects of ascorbate, an oxygen radical scavenger, were studied. RBM isolated from ascorbate-treated animals (0.8 mg ascorbate/kg body weight) after ischemia (30 min) alone showed only a slight increase in State 3 (approximately 25%) and a decrease in State 4 (approximately 20%) activities with succinate, when compared to untreated 30-min ischemic animals, whereas, with glutamate+malate little or no effect was seen. The respiratory activities of RBM from ascorbate-treated, ischemic/reperfused (30 min/5 h) rats were restored to approximately 65% of controls levels. Ascorbate protection was dose-dependent with maximum protection at 0.8 mg ascorbate/kg body weight of rat. The k of succinate oxidase-supported Ca2+ uptake also returned to 62% of control values. Protection by ascorbate was most effective when administered prior to the onset of ischemia and provided partial protection when administered after the onset of reperfusion. These results suggest that ischemia-induced injury is primarily mediated by disruption of cellular Ca2+ homeostasis, and reperfusion-induced injury by peroxidative events.
Sim, Dawn A; Keane, Pearse A; Rajendram, Ranjan; Karampelas, Michael; Selvam, Senthil; Powner, Michael B; Fruttiger, Marcus; Tufail, Adnan; Egan, Catherine A
2014-07-01
To investigate the association between peripheral and central ischemia in diabetic retinopathy. Retrospective, cross-sectional. Consecutive ultra-widefield fluorescein angiography images were collected from patients with diabetes over a 12-month period. Parameters quantified include the foveal avascular zone (FAZ) area, peripheral ischemic index, peripheral leakage index, and central retinal thickness measurements, as well as visual acuity. The peripheral ischemia or leakage index was calculated as the area of capillary nonperfusion or leakage, expressed as a percentage of the total retinal area. Forty-seven eyes of 47 patients were included. A moderate correlation was observed between the peripheral ischemia index and FAZ area (r = 0.49, P = .0001). A moderate correlation was also observed between the peripheral leakage index and FAZ area, but only in eyes that were laser naïve (r = 0.44, P = .02). A thinner retina was observed in eyes with macular ischemia (217 ± 81.8 μm vs 272 ± 36.0 μm) (P = .02), but not peripheral ischemia (258 ± 76.3 μm vs 276 ± 68.0 μm) (P = .24). The relationships between different patterns of peripheral and central macular pathology and visual acuity were evaluated in a step-wise multivariable regression model, and the variables that remained independently associated were age (r = 0.33, P = .03), FAZ area (r = 0.45, P = .02), and central retinal thickness (r = 0.38, P = .01), (R(2)-adjusted = 0.36). Ultra-widefield fluorescein angiography provides an insight into the relationships between diabetic vascular complications in the retinal periphery and central macula. Although we observed relationships between ischemia and vascular leakage in the macula and periphery, it was only macular ischemia and retinal thinning that was independently associated with a reduced visual function. Copyright © 2014 Elsevier Inc. All rights reserved.
Delayed preconditioning with NMDA receptor antagonists in a rat model of perinatal asphyxia.
Makarewicz, Dorota; Sulejczak, Dorota; Duszczyk, Małgorzata; Małek, Michał; Słomka, Marta; Lazarewicz, Jerzy W
2014-01-01
In vitro experiments have demonstrated that preconditioning primary neuronal cultures by temporary application of NMDA receptor antagonists induces long-term tolerance against lethal insults. In the present study we tested whether similar effects also occur in brain submitted to ischemia in vivo and whether the potential benefit outweighs the danger of enhancing the constitutive apoptosis in the developing brain. Memantine in pharmacologically relevant doses of 5 mg/kg or (+)MK-801 (3 mg/kg) was administered i.p. 24, 48, 72 and 96 h before 3-min global forebrain ischemia in adult Mongolian gerbils or prior to hypoxia/ischemia in 7-day-old rats. Neuronal loss in the hippocampal CA1 in gerbils or weight deficit of the ischemic hemispheres in the rat pups was evaluated after 14 days. Also, the number of apoptotic neurons in the immature rat brain was evaluated. In gerbils only the application of (+)MK-801 24 h before ischemia resulted in significant prevention of the loss of pyramidal neurons. In rat pups administration of (+)MK-801 at all studied times before hypoxia-ischemia, or pretreatment with memantine or with hypoxia taken as a positive control 48 to 92 h before the insult, significantly reduced brain damage. Both NMDA receptor antagonists equally reduced the number of apoptotic neurons after hypoxia-ischemia, while (+)MK-801-evoked potentiation of constitutive apoptosis greatly exceeded the effect of memantine. We ascribe neuroprotection induced in the immature rats by the pretreatment with both NMDA receptor antagonists 48 to 92 h before hypoxia-ischemia to tolerance evoked by preconditioning, while the neuroprotective effect of (+)MK-801 applied 24 h before the insults may be attributed to direct consequences of the inhibition of NMDA receptors. This is the first report demonstrating the phenomenon of inducing tolerance against hypoxia-ischemia in vivo in developing rat brain by preconditioning with NMDA receptor antagonists.
Liu, Ji-tong; Liu, Jing-shi; Jiang, Jin-yu; Zhou, Li-xue; Liang, Gang; Li, Yan-chun
2010-12-01
To study the effect of hBcl-2 gene transfer on rat liver against ischemia-reperfusion injury, and explore the feasibility of this approach to reduce ischemia-reperfusion injury in liver transplantation. We constructed the replication-deficient recombinant adenoviruses Adv-EGFP and Adv-Bcl-2 and transfected them into 293 cells and packaged into adenovirus particles for amplification and purification. The empty plasmid vector virus was constructed similarly. Male SD rats were randomized into Adv-Bcl-2-transfected group, Adv-EGFP-transfected group, ischemia-reperfusion group, and sham-operated group, and liver allograft transplantation model was established by sleeve method. In the transfected groups, the recombinant viruses were administered by perfusion through the portal vein, and the ischemia-reperfusion and sham-operated groups received no treatment. Real-time quantitative PCR and Western blotting were used to detect the mRNA and protein expressions of bcl-2 in the liver tissue of each group, and at 0, 60 and 180 min after reperfusion, serum AST, LDH, and MDA levels were measured. Histological changes of the liver cells were evaluated by HE staining. Bcl-2 mRNA and protein expressions in Adv-Bcl-2-transfected group, as compared with those in Adv-EGFP-transfected group and control group, were significantly increased (P<0.01); the serum levels of AST, LDH and MDA in Adv-Bcl-2-transfected group were significantly lower than those of Adv-EGFP-transfected group and ischemia-reperfusion group (P<0.05 or 0.01). Compared with the sham-operated group, Adv-Bcl-2 treatment group showed lessened edema and vacuolar degeneration of the liver cells without patches or spots of necrosis. In ischemia-reperfusion and Adv-EGFP group, HE staining revealed hepatic lobular destruction and extensive liver cell swelling, enlargement, vacuolar degeneration, edema and occasional focal necrosis. Adv-Bcl-2 transfection can induce the expression of bcl-2 gene to reduce ischemia-reperfusion injury of the liver graft in rats.
Novel Biomarkers of Arterial and Venous Ischemia in Microvascular Flaps
Nguyen, Gerard K.; Monahan, John F. W.; Davis, Gabrielle B.; Lee, Yong Suk; Ragina, Neli P.; Wang, Charles; Zhou, Zhao Y.; Hong, Young Kwon; Spivak, Ryan M.; Wong, Alex K.
2013-01-01
The field of reconstructive microsurgery is experiencing tremendous growth, as evidenced by recent advances in face and hand transplantation, lower limb salvage after trauma, and breast reconstruction. Common to all of these procedures is the creation of a nutrient vascular supply by microsurgical anastomosis between a single artery and vein. Complications related to occluded arterial inflow and obstructed venous outflow are not uncommon, and can result in irreversible tissue injury, necrosis, and flap loss. At times, these complications are challenging to clinically determine. Since early intervention with return to the operating room to re-establish arterial inflow or venous outflow is key to flap salvage, the accurate diagnosis of early stage complications is essential. To date, there are no biochemical markers or serum assays that can predict these complications. In this study, we utilized a rat model of flap ischemia in order to identify the transcriptional signatures of venous congestion and arterial ischemia. We found that the critical ischemia time for the superficial inferior epigastric fasciocutaneus flap was four hours and therefore performed detailed analyses at this time point. Histolgical analysis confirmed significant differences between arterial and venous ischemia. The transcriptome of ischemic, congested, and control flap tissues was deciphered by performing Affymetrix microarray analysis and verified by qRT-PCR. Principal component analysis revealed that arterial ischemia and venous congestion were characterized by distinct transcriptomes. Arterial ischemia and venous congestion was characterized by 408 and 1536>2-fold differentially expressed genes, respectively. qRT-PCR was used to identify five candidate genes Prol1, Muc1, Fcnb, Il1b, and Vcsa1 to serve as biomarkers for flap failure in both arterial ischemia and venous congestion. Our data suggests that Prol1 and Vcsa1 may be specific indicators of venous congestion and allow clinicians to both diagnose and successfully treat microvascular complications before irreversible tissue damage and flap loss occurs. PMID:23977093
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takatani-Nakase, Tomoka, E-mail: nakase@mukogawa-u.ac.jp; Takahashi, Koichi, E-mail: koichi@mukogawa-u.ac.jp
Caspase-independent, non-apoptotic cell death is an important therapeutic target in myocardial ischemia. Leptin, an adipose-derived hormone, is known to exhibit cytoprotective effects on the ischemic heart, but the mechanisms are poorly understood. In this research, we found that pretreatment of leptin strongly suppressed ischemic-augmented nuclear shrinkage and non-apoptotic cell death on cardiomyocytes. Leptin was also shown to significantly inhibit the activity of iPLA{sub 2}, which is considered to play crucial roles in non-apoptotic cell death, resulting in effective prevention of ischemia-induced myocyte death. These findings provide the first evidence of a protective mechanism of leptin against ischemia-induced non-apoptotic cardiomyocyte death.more » - Highlights: • Myocardial ischemia-model induces in caspase-independent, non-apoptotic cell death. • Leptin strongly inhibits ischemic-augmented non-apoptotic cell death. • Leptin reduces iPLA{sub 2} activity, leading to avoidance of non-apoptotic cell death.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imamura, Ryoichi; Isaka, Yoshitaka; Ichimaru, Naotsugu
Several studies have shown that erythropoietin (EPO) can protect the kidneys from ischemia-reperfusion injury and can raise the hemoglobin (Hb) concentration. Recently, the EPO molecule modified by carbamylation (CEPO) has been identified and was demonstrated to be able to protect several organs without increasing the Hb concentration. We hypothesized that treatment with CEPO would protect the kidneys from tubular apoptosis and inhibit subsequent tubulointerstitial injury without erythropoiesis. The therapeutic effect of CEPO was evaluated using a rat ischemia-reperfusion injury model. Saline-treated kidneys exhibited increased tubular apoptosis with interstitial expression of {alpha}-smooth muscle actin ({alpha}-SMA), while EPO treatment inhibited tubular apoptosismore » and {alpha}-SMA expression to some extent. On the other hand, CEPO-treated kidneys showed minimal tubular apoptosis with limited expression of {alpha}-SMA. Moreover, CEPO significantly promoted tubular epithelial cell proliferation without erythropoiesis. In conclusion, we identified a new therapeutic approach using CEPO to protect kidneys from ischemia-reperfusion injury.« less
Crawford, Robert S.; Albadawi, Hassan; Robaldo, Alessandro; Peck, Michael A.; Abularrage, Christopher J.; Yoo, Hyung-Jin; LaMuraglia, Glenn M.; Watkins, Michael T.
2013-01-01
Introduction Studies were designed to determine whether the ApoE−/− phenotype modulates the local skeletal muscle and systemic inflammatory (plasma) responses to lower extremity demand ischemia. The ApoE−/− phenotype is an experimental model for atherosclerosis in humans. Methods Aged female ApoE −/− and C57BL6 mice underwent femoral artery ligation, then divided into sedentary and demand ischemia (exercise) groups on day 14. Baseline and post exercise limb perfusion and hind limb function were assessed. On day 14, animals in the demand ischemia group underwent daily treadmill exercise through day 28. Sedentary mice were not exercised. On day 28, plasma and skeletal muscle from ischemic limbs were harvested from sedentary and exercised mice. Muscle was assayed for angiogenic and pro-inflammatory proteins, markers of skeletal muscle regeneration, and evidence of skeletal muscle fiber maturation. Results Hind limb ischemia was similar in ApoE −/− and C57 mice prior to the onset of exercise. Under sedentary conditions, plasma VEGF, IL-6, but not KC or MIP-2 were higher in ApoE (P<0.0001). Following exercise, plasma levels of VEGF, KC and MIP-2, but not IL-6 were lower in ApoE (P<0.004). The cytokines KC and MIP-2 in muscle was greater in exercised ApoE−/− mice as compared to C57BL6 mice (p=0.01). Increased PAR activity, and mature muscle regeneration was associated with demand ischemia in the C57BL6 mice as compared to the ApoE −/− mice (p=0.01). Conclusion Demand limb ischemia in the ApoE−/− phenotype exacerbated the expression of select systemic cytokines in plasma and blunted indices of muscle regeneration. PMID:23528286
Doeppner, Thorsten R.; Kaltwasser, Britta; Bähr, Mathias; Hermann, Dirk M.
2014-01-01
Systemic transplantation of neural progenitor cells (NPCs) in rodents reduces functional impairment after cerebral ischemia. In light of upcoming stroke trials regarding safety and feasibility of NPC transplantation, experimental studies have to successfully analyze the extent of NPC-induced neurorestoration on the functional level. However, appropriate behavioral tests for analysis of post-stroke motor coordination deficits and cognitive impairment after NPC grafting are not fully established. We therefore exposed male C57BL6 mice to either 45 min (mild) or 90 min (severe) of cerebral ischemia, using the thread occlusion model followed by intravenous injection of PBS or NPCs 6 h post-stroke with an observation period of three months. Post-stroke motor coordination was assessed by means of the rota rod, tight rope, corner turn, inclined plane, grip strength, foot fault, adhesive removal, pole test and balance beam test, whereas cognitive impairment was analyzed using the water maze, the open field and the passive avoidance test. Significant motor coordination differences after both mild and severe cerebral ischemia in favor of NPC-treated mice were observed for each motor coordination test except for the inclined plane and the grip strength test, which only showed significant differences after severe cerebral ischemia. Cognitive impairment after mild cerebral ischemia was successfully assessed using the water maze test, the open field and the passive avoidance test. On the contrary, the water maze test was not suitable in the severe cerebral ischemia paradigm, as it too much depends on motor coordination capabilities of test mice. In terms of both reliability and cost-effectiveness considerations, we thus recommend the corner turn, foot fault, balance beam, and open field test, which do not depend on durations of cerebral ischemia. PMID:25374509
A novel method to measure regional muscle blood flow continuously using NIRS kinetics information
Nioka, Shoko; Kime, Ryotaro; Sunar, Ulas; Im, Joohee; Izzetoglu, Meltem; Zhang, Jun; Alacam, Burak; Chance, Britton
2006-01-01
Background This article introduces a novel method to continuously monitor regional muscle blood flow by using Near Infrared Spectroscopy (NIRS). We demonstrate the feasibility of the new method in two ways: (1) by applying this new method of determining blood flow to experimental NIRS data during exercise and ischemia; and, (2) by simulating muscle oxygenation and blood flow values using these newly developed equations during recovery from exercise and ischemia. Methods Deoxy (Hb) and oxyhemoglobin (HbO2), located in the blood ofthe skeletal muscle, carry two internal relationships between blood flow and oxygen consumption. One is a mass transfer principle and the other describes a relationship between oxygen consumption and Hb kinetics in a two-compartment model. To monitor blood flow continuously, we transfer these two relationships into two equations and calculate the blood flow with the differential information of HbO2 and Hb. In addition, these equations are used to simulate the relationship between blood flow and reoxygenation kinetics after cuff ischemia and a light exercise. Nine healthy subjects volunteered for the cuff ischemia, light arm exercise and arm exercise with cuff ischemia for the experimental study. Results Analysis of experimental data of both cuff ischemia and light exercise using the new equations show greater blood flow (four to six times more than resting values) during recovery, agreeing with previous findings. Further, the simulation and experimental studies of cuff ischemia and light exercise agree with each other. Conclusion We demonstrate the accuracy of this new method by showing that the blood flow obtained from the method agrees with previous data as well as with simulated data. We conclude that this novel continuous blood flow monitoring method can provide blood flow information non-invasively with NIRS. PMID:16704736
Poloxamer 188 protects against ischemia-reperfusion injury in a murine hind-limb model.
Murphy, Adrian D; McCormack, Michael C; Bichara, David A; Nguyen, John T; Randolph, Mark A; Watkins, Michael T; Lee, Raphael C; Austen, William G
2010-06-01
Ischemia-reperfusion injury can activate pathways generating reactive oxygen species, which can injure cells by creating holes in the cell membranes. Copolymer surfactants such as poloxamer 188 are capable of sealing defects in cell membranes. The authors postulated that a single-dose administration of poloxamer 188 would decrease skeletal myocyte injury and mortality following ischemia-reperfusion injury. Mice underwent normothermic hind-limb ischemia for 2 hours. Animals were treated with 150 microl of poloxamer 188 or dextran at three time points: (1) 10 minutes before ischemia; (2) 10 minutes before reperfusion; and (3) 2 or 4 hours after reperfusion. After 24 hours of reperfusion, tissues were analyzed for myocyte injury (histology) and metabolic dysfunction (muscle adenosine 5'-triphosphate). Additional groups of mice were followed for 7 days to assess mortality. When poloxamer 188 treatment was administered 10 minutes before ischemia, injury was reduced by 84 percent, from 50 percent injury in the dextran group to 8 percent injury in the poloxamer 188 group (p < 0.001). When administered 10 minutes before reperfusion, poloxamer 188 animals demonstrated a 60 percent reduction in injury compared with dextran controls (12 percent versus 29 percent). Treatment at 2 hours, but not at 4 hours, postinjury prevented substantial myocyte injury. Preservation of muscle adenosine 5'-triphosphate paralleled the decrease in myocyte injury in poloxamer 188-treated animals. Poloxamer 188 treatment significantly reduced mortality following injury (10 minutes before, 75 percent versus 25 percent survival, p = 0.0077; 2 hours after, 50 percent versus 8 percent survival, p = 0.032). Poloxamer 188 administered to animals decreased myocyte injury, preserved tissue adenosine 5'-triphosphate levels, and improved survival following hind-limb ischemia-reperfusion injury.
Imahori, Taichiro; Hosoda, Kohkichi; Nakai, Tomoaki; Yamamoto, Yusuke; Irino, Yasuhiro; Shinohara, Masakazu; Sato, Naoko; Sasayama, Takashi; Tanaka, Kazuhiro; Nagashima, Hiroaki; Kohta, Masaaki; Kohmura, Eiji
2017-05-04
The metabolic pathophysiology underlying ischemic stroke remains poorly understood. To gain insight into these mechanisms, we performed a comparative metabolic and transcriptional analysis of the effects of cerebral ischemia on the metabolism of the cerebral cortex using middle cerebral artery occlusion (MCAO) rat model. Metabolic profiling by gas-chromatography/mass-spectrometry analysis showed clear separation between the ischemia and control group. The decreases of fructose 6-phosphate and ribulose 5-phosphate suggested enhancement of the pentose phosphate pathway (PPP) during cerebral ischemia (120-min MCAO) without reperfusion. Transcriptional profiling by microarray hybridization indicated that the Toll-like receptor and mitogen-activated protein kinase (MAPK) signaling pathways were upregulated during cerebral ischemia without reperfusion. In relation to the PPP, upregulation of heat shock protein 27 (HSP27) was observed in the MAPK signaling pathway and was confirmed through real-time polymerase chain reaction. Immunoblotting showed a slight increase in HSP27 protein expression and a marked increase in HSP27 phosphorylation at serine 85 after 60-min and 120-min MCAO without reperfusion. Corresponding upregulation of glucose 6-phosphate dehydrogenase (G6PD) activity and an increase in the NADPH/NAD + ratio were also observed after 120-min MCAO. Furthermore, intracerebroventricular injection of ataxia telangiectasia mutated (ATM) kinase inhibitor (KU-55933) significantly reduced HSP27 phosphorylation and G6PD upregulation after MCAO, but that of protein kinase D inhibitor (CID755673) did not affect HSP27 phosphorylation. Consequently, G6PD activation via ischemia-induced HSP27 phosphorylation by ATM kinase may be part of an endogenous antioxidant defense neuroprotection mechanism during the earliest stages of ischemia. These findings have important therapeutic implications for the treatment of stroke. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Liu, Ying; Yang, HongNa; Jia, GuoYong; Li, Lan; Chen, Hui; Bi, JianZhong; Wang, CuiLan
2018-06-01
It is well accepted that both rosuvastatin and resveratrol exert neuroprotective effects on cerebral ischemia/reperfusion injury through some common pathways. Resveratrol has also been demonstrated to protect against cerebral ischemia/reperfusion injury through enhancing autophagy. Thus, we hypothesized that combined rosuvastatin and resveratrol pretreatment had synergistic effects on cerebral ischemia/reperfusion injury. Adult male Sprague Dawley rats receiving middle cerebral artery occlusion surgery as animal model of cerebral ischemia/reperfusion injury were randomly assigned to 4 groups: control, resveratrol alone pretreatment, rosuvastatin alone pretreatment, and combined rosuvastatin and resveratrol pretreatment. Rosuvastatin (10 mg/kg) or resveratrol (50 mg/kg) was administrated once a day for 7 days before cerebral ischemia onset. We found that combined rosuvastatin and resveratrol pretreatment not only significantly decreased the neurologic defective score, cerebral infarct volume, the levels of caspase-3, and Interleukin-1β (IL-1β) but also significantly increased the ratios of Bcl-2/Bax and LC3II/LC3I, as well as the level of Becline-1, compared with resveratrol alone or rosuvastatin alone pretreatment group. Rosuvastatin alone pretreatment significantly increased the ratio of LC3II/LC3I and the level of Beclin-1. However, there were no significant differences in the neurologic defective score, cerebral infarct volume, the levels of caspase-3, IL-1β, and Beclin-1, and the ratios of Bcl-2/Bax and LC3II/LC3I between resveratrol pretreatment group and rosuvastatin pretreatment group. Synergistically enhanced antiapoptosis, anti-inflammation, and autophagy activation might be responsible for the synergistic neuroprotective effects of combining rosuvastatin with resveratrol on cerebral ischemia/reperfusion injury. Copyright © 2018 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Drying characteristics of garlic ( Allium sativum L) slices in a convective hot air dryer
NASA Astrophysics Data System (ADS)
Demiray, Engin; Tulek, Yahya
2014-06-01
The effects of drying temperatures on the drying kinetics of garlic slices were investigated using a cabinet-type dryer. The experimental drying data were fitted best to the Page and Modified Page models apart from other theoretical models to predict the drying kinetics. The effective moisture diffusivities varied from 4.214 × 10-10 to 2.221 × 10-10 m2 s-1 over the temperature range studied, and activation energy was 30.582 kJ mol-1.
The effects of profound hypothermia on pancreas ischemic injury: a new experimental model.
Rocha-Santos, Vinicius; Ferro, Oscar Cavalcante; Pantanali, Carlos Andrés; Seixas, Marcel Povlovistsch; Pecora, Rafael Antonio Arruda; Pinheiro, Rafael Soares; Claro, Laura Carolina López; Abdo, Emílio Elias; Chaib, Eleazar; D'Albuquerque, Luiz Augusto Carneiro
2014-08-01
Pancreatic ischemia-reperfusion (IR) has a key role in pancreas surgery and transplantation. Most experimental models evaluate the normothermic phase of the IR. We proposed a hypothermic model of pancreas IR to evaluate the benefic effects of the cold ischemic phase. We performed a reproducible model of hypothermic pancreatic IR. The ischemia was induced in the pancreatic tail portion (1-hour ischemia, 4-hour reperfusion) in 36 Wistar rats. They are divided in 3 groups as follows: group 1 (control), sham; group 2, normothermic IR; and group 3, hypothermic IR. In group 3, the temperature was maintained as close to 4.5°C. After reperfusion, serum amylase and lipase levels, inflammatory mediators (tumor necrosis factor α, interleukin 6), and pancreas histology were evaluated. In pancreatic IR groups, amylase, cytokines, and histological damage were significantly increased when compared with group 1. In the group 3, we observed a significant decrease in tumor necrosis factor α (P = 0.004) and interleukin 6 (P = 0.001) when compared with group 2. We did not observe significant difference in amylase (P = 0.867), lipase (P = 0.993), and histology (P = 0.201). In our experimental model, we reproduced the cold phase of pancreas IR, and the pancreas hypothermia reduced the inflammatory mediators after reperfusion.
USDA-ARS?s Scientific Manuscript database
Response surface methodology was applied to investigate the combined effect of apple skin polyphenols (ASP), acetic acid (AA), oregano essential oil (O) and carvacrol (C) on the inactivation of Salmonella on sliced cooked ham. A full factorial experimental design was employed with control variables ...
USDA-ARS?s Scientific Manuscript database
The knowledge regarding food pathogens (Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella spp.) surface transfer on ready-to-eat (RTE) deli meat and the slicer used for slicing different RTE products are needed to ensure RTE food safety. The objectives of this study were to investigat...
Human primary CD34+ cells transplantation for critical limb ischemia.
Lian, Weishuai; Hu, Xiaoxiao; Pan, Long; Han, Shilong; Cao, Chuanwu; Jia, Zhongzhi; Li, Maoquan
2018-06-11
The goal of this study was to characterize the properties of human CD34 + cells in culture and investigate the feasibility and efficacy of CD34 + transplantation in a mouse model of limb ischemia and in patients with no-option critical limb ischemia. Human CD34 + cells isolated from peripheral blood and grown in culture for up to four passages stained positively for the surface markers CD34 and CD133 and showed high viability after cryopreservation and recovery. Seven days after surgery to induce limb ischemia, ischemic muscles of nude mice were injected with CD34 + cells. Two weeks later, mice were scored for extent of ischemic injury, and muscle tissue was collected for immunohistochemical analysis of vascular endothelial cells and RT-PCR analysis of cytokine expression. Injury scores of CD34 + -treated, but not control, mice were significantly different before and after transplantation. Vascular density and expression of VEGF and bFGF mRNAs were also significantly increased in the treated mice. Patients with severe lower extremity arterial ischemia were injected with their own CD34 + cells in the affected calf, foot, or toe. Significant improvements were observed in peak pain-free walking time, ankle-brachial index, and transcutaneous partial oxygen pressure. These findings demonstrate that growth of human CD34 + cells in vitro and cryopreservations are feasible. Such cells may provide a renewable source of stem cells for transplantation, which appears to be a feasible, safe, and effective treatment for patients with critical limb ischemia. © 2018 Wiley Periodicals, Inc.
Che, Xia; Wang, Xin; Zhang, Junyan; Peng, Chengfeng; Zhen, Yilan; Shao, Xu; Zhang, Gongliang; Dong, Liuyi
2016-01-01
The aim of this study was to explore the cardioprotective effect of vitexin on chronic myocardial ischemia/reperfusion injury in rats and potential mechanisms. A chronic myocardial ischemia/reperfusion injury model was established by ligating left anterior descending coronary for 60 minutes, and followed by reperfusion for 14 days. After 2 weeks ischemia/reperfusion, cardiac function was measured to assess myocardial injury. The level of ST segment was recorded in different periods by electrocardiograph. The change of left ventricular function and myocardial reaction degree of fibrosis of heart was investigated by hematoxylin and eosin (HE) staining and Sirius red staining. Endothelium-dependent relaxations due to acetylcholine were observed in isolated rat thoracic aortic ring preparation. The blood samples were collected to measure the levels of MDA, the activities of SOD and NADPH in serum. Epac1, Rap1, Bax and Bcl-2 were examined by using Western Blotting. Vitexin exerted significant protective effect on chronic myocardial ischemia/reperfusion injury, improved obviously left ventricular diastolic function and reduced myocardial reactive fibrosis degree in rats of myocardial ischemia. Medium and high-dose vitexin groups presented a significant decrease in Bax, Epac1 and Rap1 production and increase in Bcl-2 compared to the I/R group. It may be related to preventing myocardial cells from apoptosis, improving myocardial diastolic function and inhibiting lipid peroxidation. Vitexin is a cardioprotective herb, which may be a promising useful complementary and alternative medicine for patients with coronary heart disease.
Lu, Xiufang; Gu, Renjun; Hu, Weimin; Sun, Zhitang; Wang, Gaiqing; Wang, Li; Xu, Yuming
2018-06-01
The aim of the present study was to identify the effect of heme oxygenase (HO)-1 gene on cerebral ischemia-reperfusion injury. Sprague-Dawley rats were divided randomly into four groups: Sham group, vehicle group, empty adenovirus vector (Ad) group and recombinant HO-1 adenovirus (Ad-HO-1) transfection group. Rats in the vehicle, Ad and Ad-HO-1 groups were respectively injected with saline, Ad or Ad-HO-1 for 3 days prior to cerebral ischemia-reperfusion injury. Subsequently, the middle cerebral artery occlusion method was used to establish the model of cerebral ischemia-reperfusion injury. Following the assessment of neurological function, rats were sacrificed, and the infarction volume and apoptotic index in rat brains were measured. Furthermore, the protein expression levels of HO-1 in brain tissues were detected using western blot analysis. Results indicated that the neurological score of the Ad-HO-1 group was significantly increased compared with the Ad or vehicle groups, respectively (P<0.001). The volume of cerebral infarction and the index score of neuronal apoptosis in the vehicle and Ad groups was significantly increased compared with the Ad-HO-1 group (P<0.01). The death of neuronal cells following cerebral ischemia-reperfusion injury reduced remarkably induced by over-expression of HO-1. These findings suggest a neuroprotective role of HO-1 against brain injury induced by transient cerebral ischemia-reperfusion injury.
Oxidative Stress and Lung Ischemia-Reperfusion Injury
Ferrari, Renata Salatti; Andrade, Cristiano Feijó
2015-01-01
Ischemia-reperfusion (IR) injury is directly related to the formation of reactive oxygen species (ROS), endothelial cell injury, increased vascular permeability, and the activation of neutrophils and platelets, cytokines, and the complement system. Several studies have confirmed the destructiveness of the toxic oxygen metabolites produced and their role in the pathophysiology of different processes, such as oxygen poisoning, inflammation, and ischemic injury. Due to the different degrees of tissue damage resulting from the process of ischemia and subsequent reperfusion, several studies in animal models have focused on the prevention of IR injury and methods of lung protection. Lung IR injury has clinical relevance in the setting of lung transplantation and cardiopulmonary bypass, for which the consequences of IR injury may be devastating in critically ill patients. PMID:26161240
Sora, Mircea-Constantin; Jilavu, Radu; Matusz, Petru
2012-10-01
The aim of this study was to describe a method of developing a computerized model of the human female pelvis using plastinated slices. Computerized reconstruction of anatomical structures is becoming very useful for developing anatomical teaching, research modules and animations. Although databases consisting of serial sections derived from frozen cadaver material exist, plastination represents an alternative method for developing anatomical data useful for computerized reconstruction. A slice anatomy study, using plastinated transparent pelvis cross sections, was performed to obtain a 3D reconstruction. One female human pelvis used for this study, first plastinated as a block, then sliced into thin slices and in the end subjected to 3D computerized reconstruction using WinSURF modeling system (SURFdriver Software). To facilitate the understanding of the complex pelvic floor anatomy on sectional images obtained through MR imaging, and to make the representation more vivid, a female pelvis computer-aided 3D model was created. Qualitative observations revealed that the morphological features of the model were consistent with those displayed by typical cadaveric specimens. The quality of the reconstructed images appeared distinct, especially the spatial positions and complicated relationships of contiguous structures of the female pelvis. All reconstructed structures can be displayed in groups or as a whole and interactively rotated in 3D space. The utilization of plastinates for generating tissue sections is useful for 3D computerized modeling. The 3D model of the female pelvis presented in this paper provides a stereoscopic view to study the adjacent relationship and arrangement of respective pelvis sections. A better understanding of the pelvic floor anatomy is relevant to gynaecologists, radiologists, surgeons, urologists, physical therapists and all professionals who take care of women with pelvic floor dysfunction.
Thomas, Gail D.; Ye, Jianfeng; De Nardi, Claudio; Monopoli, Angela; Ongini, Ennio; Victor, Ronald G.
2012-01-01
In patients with Duchenne muscular dystrophy (DMD) and the standard mdx mouse model of DMD, dystrophin deficiency causes loss of neuronal nitric oxide synthase (nNOSμ) from the sarcolemma, producing functional ischemia when the muscles are exercised. We asked if functional muscle ischemia would be eliminated and normal blood flow regulation restored by treatment with an exogenous nitric oxide (NO)-donating drug. Beginning at 8 weeks of age, mdx mice were fed a standard diet supplemented with 1% soybean oil alone or in combination with a low (15 mg/kg) or high (45 mg/kg) dose of HCT 1026, a NO-donating nonsteroidal anti-inflammatory agent which has previously been shown to slow disease progression in the mdx model. After 1 month of treatment, vasoconstrictor responses to intra-arterial norepinephrine (NE) were compared in resting and contracting hindlimbs. In untreated mdx mice, the usual effect of muscle contraction to attenuate NE-mediated vasoconstriction was impaired, resulting in functional ischemia: NE evoked similar decreases in femoral blood flow velocity and femoral vascular conductance (FVC) in the contracting compared to resting hindlimbs (ΔFVC contraction/ΔFVC rest = 0.88±0.03). NE-induced functional ischemia was unaffected by low dose HCT 1026 (ΔFVC ratio = 0.92±0.04; P>0.05 vs untreated), but was alleviated by the high dose of the drug (ΔFVC ratio = 0.22±0.03; P<0.05 vs untreated or low dose). The beneficial effect of high dose HCT 1026 was maintained with treatment up to 3 months. The effect of the NO-donating drug HCT 1026 to normalize blood flow regulation in contracting mdx mouse hindlimb muscles suggests a putative novel treatment for DMD. Further translational research is warranted. PMID:23139842
Wong, Shi-Bing; Cheng, Sin-Jhong; Hung, Wei-Chen; Lee, Wang-Tso; Min, Ming-Yuan
2015-01-01
Peroxisomal proliferator-activated receptor gamma (PPARγ) is a nuclear hormone receptor whose agonist, rosiglitazone has a neuroprotective effect to hippocampal neurons in pilocarpine-induced seizures. Hippocampal slice preparations treated in Mg2+ free medium can induce ictal and interictal-like epileptiform discharges, which is regarded as an in vitro model of N-methyl-D-aspartate (NMDA) receptor-mediated temporal lobe epilepsy (TLE). We applied rosiglitazone in hippocampal slices treated in Mg2+ free medium. The effects of rosiglitazone on hippocampal CA1-Schaffer collateral synaptic transmission were tested. We also examined the neuroprotective effect of rosiglitazone toward NMDA excitotoxicity on cultured hippocampal slices. Application of 10 μM rosiglitazone significantly suppressed amplitude and frequency of epileptiform discharges in CA1 neurons. Pretreatment with the PPARγ antagonist GW9662 did not block the effect of rosiglitazone on suppressing discharge frequency, but reverse the effect on suppressing discharge amplitude. Application of rosiglitazone suppressed synaptic transmission in the CA1-Schaffer collateral pathway. By miniature excitatory-potential synaptic current (mEPSC) analysis, rosiglitazone significantly suppressed presynaptic neurotransmitter release. This phenomenon can be reversed by pretreating PPARγ antagonist GW9662. Also, rosiglitazone protected cultured hippocampal slices from NMDA-induced excitotoxicity. The protective effect of 10 μM rosiglitazone was partially antagonized by concomitant high dose GW9662 treatment, indicating that this effect is partially mediated by PPARγ receptors. In conclusion, rosiglitazone suppressed NMDA receptor-mediated epileptiform discharges by inhibition of presynaptic neurotransmitter release. Rosiglitazone protected hippocampal slice from NMDA excitotoxicity partially by PPARγ activation. We suggest that rosiglitazone could be a potential agent to treat patients with TLE.
Fernández-López, David; Martínez-Orgado, José; Casanova, Ignacio; Bonet, Bartolomé; Leza, Juan Carlos; Lorenzo, Pedro; Moro, Maria Angeles; Lizasoain, Ignacio
2005-06-30
To analyze whether exposure to oxygen-glucose deprivation (OGD) of immature rat brain slices might reproduce the main pathophysiologic events leading to neuronal death in neonatal hypoxic-ischemic encephalopathy (NHIE), 500 microm-thick brain slices were obtained from 7-day-old Wistar rats, and incubated in oxygenated physiological solution. In OGD group, oxygen and glucose were removed from the medium for 10-30 min (n = 25); then, slices were re-incubated in normal medium. In control group the medium composition remained unchanged (CG, n = 30). Medium samples were obtained every 30 min for 3 h. To analyze neuronal damage, slices were stained with Nissl and CA1 area of hippocampus and cortex were observed under microscopy. In addition, neuronal death was quantified as LDH released to the medium determined by spectrophotometry. Additionally, medium glutamate (Glu) levels were determined by HPLC and those of TNFalpha by ELISA, whereas inducible nitric oxide synthase expression was determined by Western blot performed on slices homogenate. Optimal OGD time was established in 20 min. After OGD, a significant decrease in the number of neurones in hippocampus and cortex was observed. LDH release was maximal at 30 min, when it was five-fold greater than in CG. Furthermore, medium Glu concentrations were 200 times greater than CG levels at the end of OGD period. A linear relationship between Glu and LDH release was demonstrated. Finally, 3 h after OGD a significant induction of iNOS as well as an increase in TNFalpha release were observed. In conclusion, OGD appears as a feasible and reproducible in vitro model, leading to a neuronal damage, which is physiopathologically similar to that found in NHIE.
Malliaras, Konstantinos; Charitos, Efstratios; Diakos, Nikolaos; Pozios, Iraklis; Papalois, Apostolos; Terrovitis, John; Nanas, John
2014-12-01
We investigated the effects of intra-aortic balloon pump (IABP) counterpulsation on left ventricular (LV) contractility, relaxation, and energy consumption and probed the underlying physiologic mechanisms in 12 farm pigs, using an ischemia-reperfusion model of acute heart failure. During both ischemia and reperfusion, IABP support unloaded the LV, decreased LV energy consumption (pressure-volume area, stroke work), and concurrently improved LV mechanical performance (ejection fraction, stroke volume, cardiac output). During reperfusion exclusively, IABP also improved LV relaxation (tau) and contractility (Emax, PRSW). The beneficial effects of IABP support on LV relaxation and contractility correlated with IABP-induced augmentation of coronary blood flow. In conclusion, we find that during both ischemia and reperfusion, IABP support optimizes LV energetic performance (decreases energy consumption and concurrently improves mechanical performance) by LV unloading. During reperfusion exclusively, IABP support also improves LV contractility and active relaxation, possibly due to a synergistic effect of unloading and augmentation of coronary blood flow.
Heat Shock Protein-70 Inducers and iNOS Inhibitors as Therapeutics to Ameliorate Hemorrhagic Shock
2004-09-01
downregulation of iNOS can limit tissue injury caused by ischemia / reperfusion or hemorrhage/resuscitation. In our laboratory, geldanamycin, a member of... ischemia / reperfusion [Charier 1999]. Mice deficient in inducible NO synthase (iNOS) also demonstrate limited hemorrhage/resuscitation-induced injury ...tissues and leukotriene B4 (LTB4) generation increases. In a hemorrhage/resuscitation-induced injury model, iNOS, cyclooxygenase- 2 , and CD14 are all
Influence of drying air parameters on mass transfer characteristics of apple slices
NASA Astrophysics Data System (ADS)
Beigi, Mohsen
2016-10-01
To efficiently design both new drying process and equipment and/or to improve the existing systems, accurate values of mass transfer characteristics are necessary. The present study aimed to investigate the influence of drying air parameters (i.e. temperature, velocity and relative humidity) on effective diffusivity and convective mass transfer coefficient of apple slices. The Dincer and Dost model was used to determine the mass transfer characteristics. The obtained Biot number indicated that the moisture transfer in the apple slices was controlled by both internal and external resistance. The effective diffusivity and mass transfer coefficient values obtained to be in the ranges of 7.13 × 10-11-7.66 × 10-10 and 1.46 × 10-7-3.39 × 10-7 m s-1, respectively and the both of them increased with increasing drying air temperature and velocity, and decreasing relative humidity. The validation of the model showed that the model predicted the experimental drying curves of the samples with a good accuracy.
Chaos Control of Epileptiform Bursting in the Brain
NASA Astrophysics Data System (ADS)
Slutzky, M. W.; Cvitanovic, P.; Mogul, D. J.
Epilepsy, defined as recurrent seizures, is a pathological state of the brain that afflicts over one percent of the world's population. Seizures occur as populations of neurons in the brain become overly synchronized. Although pharmacological agents are the primary treatment for preventing or reducing the incidence of these seizures, over 30% of epilepsy cases are not adequately helped by standard medical therapies. Several groups are exploring the use of electrical stimulation to terminate or prevent epileptic seizures. One experimental model used to test these algorithms is the brain slice where a select region of the brain is cut and kept viable in a well-oxygenated artificial cerebrospinal fluid. Under certain conditions, such slices may be made to spontaneously and repetitively burst, thereby providing an in vitro model of epilepsy. In this chapter, we discuss our efforts at applying chaos analysis and chaos control algorithms for manipulating this seizure-like behavior in a brain slice model. These techniques may provide a nonlinear control pathway for terminating or potentially preventing epileptic seizures in the whole brain.
AMBER: a PIC slice code for DARHT
NASA Astrophysics Data System (ADS)
Vay, Jean-Luc; Fawley, William
1999-11-01
The accelerator for the second axis of the Dual Axis Radiographic Hydrodynamic Test (DARHT) facility will produce a 4-kA, 20-MeV, 2-μ s output electron beam with a design goal of less than 1000 π mm-mrad normalized transverse emittance and less than 0.5-mm beam centroid motion. In order to study the beam dynamics throughout the accelerator, we have developed a slice Particle-In-Cell code named AMBER, in which the beam is modeled as a time-steady flow, subject to self, as well as external, electrostatic and magnetostatic fields. The code follows the evolution of a slice of the beam as it propagates through the DARHT accelerator lattice, modeled as an assembly of pipes, solenoids and gaps. In particular, we have paid careful attention to non-paraxial phenomena that can contribute to nonlinear forces and possible emittance growth. We will present the model and the numerical techniques implemented, as well as some test cases and some preliminary results obtained when studying emittance growth during the beam propagation.
Aydoğan, Semih; Celiker, Ulkü; Türkçüoğlu, Peykan; Ilhan, Nevin; Akpolat, Nusret
2008-03-01
To evaluate the effects of thalidomide treatment on the temporal course of TNF-alpha, VEGF production and the histopathological changes in ischemia/reperfusion (I/R) injured guinea pigs retina. Control, ischemia, and thalidomide/ischemia groups including seven animals each were formed. Retinal ischemia was induced in male guinea pigs by cannulating anterior chambers and lifting the bottle to a height of 205 cm for 90 min in the ischemia and thalidomide/ischemia groups. The thalidomide/ischemia group received thalidomide (300 mg/kg/day) via nasogastric tube 24 h before ischemia and during 7 days of reperfusion. Guinea pigs were sacrificed for histopathological examination to evaluate the mean thickness of the inner plexiform layer (IPL), polymorphonuclear leukocyte (PMNL) infiltration, and biochemical analysis of retinal VEGF and TNF-alpha levels by ELISA. The mean retinal VEGF and TNF-alpha levels of the control, ischemia, and thalidomide/ischemia groups were 10.22 +/- 2.58 and 270.41 +/- 69.77 pg/ml; 35.80 +/- 5.97 and 629.93 +/- 146.41 pg/ml; 19.01 +/- 3.01 and 340.93 +/- 158.26 pg/ml, respectively. The retinal VEGF levels were significantly higher in I/R injured groups. The thalidomide/ischemia group retinal VEGF level was significantly lower versus the ischemia group. The retinal TNF-alpha levels were significantly elevated in the ischemia group, but no difference was observed between the thalidomide/ischemia and control groups. Also, the retinal TNF-alpha level was significantly lower in the thalidomide/ischemia group versus the ischemia group. The mean thickness of IPL and PMNL infiltration showed no difference between the control and thalidomide/ischemia groups. However, there was a significant difference between the control and ischemia groups. Thalidomide treatment decreases PMNL infiltration, retinal edema, VEGF, and TNF-alpha synthesis following I/R injury to the guinea pig retina.
Blood-brain barrier transport of an essential amino acid after cerebral ischemia reperfusion injury.
Suzuki, Toyofumi; Miyazaki, Yumiko; Ohmuro, Aya; Watanabe, Masaki; Furuishi, Takayuki; Fukami, Toshiro; Tomono, Kazuo
2013-01-01
Under pathophysiological conditions such as -cerebral ischemia-reperfusion (IR), damage to cerebrovascular endothelial cells causes alterations in the blood-brain barrier (BBB) function that can exacerbate neuronal cell injury and death. Clarifying changes in BBB transport in the early period of IR is important for understanding BBB function during therapy after cerebral ischemia. The present study was aimed at clarifying changes during IR in the BBB transport of L-phenylalanine (Phe) as a substrate of L-type amino acid transporter 1. An IR model was produced in mice by blood recirculation following occlusion of the middle cerebral artery. Permeability of the BBB to [(3)H]Phe was measured after IR injury using the brain perfusion method. Confocal microscopy of the IR injury showed no brain penetration of fluorescent tracer, thus confirming BBB integrity during 45 min of ischemia. Tight junction opening was not observed at 30 min after reperfusion following ischemia for 45 min. At the time of IR, [(3)H]Phe uptake into the brain appeared saturated. The Michaelis constant and maximum transport velocity in the IR group was reduced by 22 % compared with those in controls. These results suggest that the intrinsic transport clearance of Phe is slightly decreased in the early phase of IR.
wyffels, Leonie; Gray, Brian D.; Barber, Christy; Pak, Koon Y.; Forbes, Safiyyah; Mattis, Jeffrey A.; Woolfenden, James M.; Liu, Zhonglin
2012-01-01
A fluorescent zinc 2,2′-dipicolylamine coordination complex PSVue®794 (probe 1) is known to selectively bind to phosphatidylserine exposed on the surface of apoptotic and necrotic cells. In this study, we investigated the cell death targeting properties of probe 1 in myocardial ischemia-reperfusion injury. A rat heart model of ischemia-reperfusion was used. Probe 1, control dye, or 99mTc glucarate was intravenously injected in rats subjected to 30-minute and 5-minute myocardial ischemia followed by 2-hour reperfusion. At 90 minutes or 20 hours postinjection, myocardial uptake was evaluated ex vivo by fluorescence imaging and autoradiography. Hematoxylin-eosin and cleaved caspase-3 staining was performed on myocardial sections to demonstrate the presence of ischemiareperfusion injury and apoptosis. Selective accumulation of probe 1 could be detected in the area at risk up to 20 hours postinjection. Similar topography and extent of uptake of probe 1 and 99mTc glucarate were observed at 90 minutes postinjection. Histologic analysis demonstrated the presence of necrosis, but only a few apoptotic cells could be detected. Probe 1 selectively accumulates in myocardial ischemia-reperfusion injury and is a promising cell death imaging tool. PMID:22554483
An Automatic Occlusion Device for Remote Control of Tumor Tissue Ischemia
El-Dahdah, Hamid; Wang, Bei; He, Guanglong; Xu, Ronald X.
2015-01-01
We developed an automatic occlusion device for remote control of tumor tissue ischemia. The device consists of a flexible cannula encasing a shape memory alloy wire with its distal end connected to surgical suture. Regional tissue occlusion was tested on both the benchtop and the animal models. In the benchtop test, the occlusion device introduced quantitative and reproducible changes of blood flow in a tissue simulating phantom embedding a vessel simulator. In the animal test, the device generated a cyclic pattern of reversible ischemia in the right hinder leg tissue of a black male C57BL/6 mouse. We also developed a multimodal detector that integrates near infrared spectroscopy and electron paramagnetic resonance spectroscopy for continuous monitoring of tumor tissue oxygenation, blood content, and oxygen tension changes. The multimodal detector was tested on a cancer xenograft nude mouse undergoing reversible tumor ischemia. The automatic occlusion device and the multi-modal detector can be potentially integrated for closed-loop feedback control of tumor tissue ischemia. Such an integrated occlusion device may be used in multiple clinical applications such as regional hypoperfusion control in tumor resection surgeries and thermal ablation processes. In addition, the proposed occlusion device can also be used as a research tool to understand tumor oxygen transport and hemodynamic characteristics. PMID:20082532
Nuzzo, A; Corcos, O
2017-09-01
Mesenteric ischemia is a gut and life-threatening, medical and surgical, digestive and vascular emergency. Mesenteric ischemia is the result of an arterial or venous occlusion, a vasospasm secondary to low-flow states in intensive care patients, aortic clamping during vascular surgery or intestinal transplantation. Progression towards mesenteric infarction and its complications is unpredictable and correlates with high rates of mortality or a high risk of short bowel syndrome in case of survival. Thus, mesenteric ischemia should be diagnosed and treated at an early stage, when gut injury is still reversible. Diagnostic workup lacks sensitive and specific clinical and biological marker. Consequently, diagnosis and effective therapy can be achieved by a high clinical suspicion and a specific multimodal management: the gut and lifesaving strategy. Based on the model of ischemic stroke centers, the need for a multidisciplinary and expert 24/24 emergency care has led, in 2016, to the inauguration of the first Intestinal Stroke Center (Structure d'urgences vasculaires intestinales [SURVI]) in France. This review highlights the pathophysiological features of chronic and acute mesenteric ischemia, as well as the diagnosis workup and the therapeutic management developed in this Intestinal Stroke Center. Copyright © 2017 Société Nationale Française de Médecine Interne (SNFMI). Published by Elsevier SAS. All rights reserved.
Collateral circulation of the rat lower limb and its significance in ischemia-reperfusion studies.
Rosero, Olivér; Németh, Károly; Turóczi, Zsolt; Fülöp, András; Garbaisz, Dávid; Győrffy, András; Szuák, András; Dorogi, Bence; Kiss, Mátyás; Nemeskéri, Ágnes; Harsányi, László; Szijártó, Attila
2014-12-01
Rats are the most commonly used animal model for studies of acute lower limb ischemia-reperfusion. The ischemia induced by arterial clamping may cause milder damage than the application of a tourniquet if the presence of a possible collateral system is considered. Male Wistar rats were randomized into three groups: in group A, the muscle weight affected by ischemia was measured; in group B, the severity of muscle damage caused by the application of a tourniquet and by infrarenal aortic occlusion was examined. Blood and muscle samples were taken from group B to assess the serum necroenzyme, potassium and TNF-α levels, as well as the muscle fiber viability and for histological examinations. In group C, the identification of the lower limb collateral system was performed using corrosion casting. Tourniquet application affected the lower muscle mass and resulted in significantly more severe injury compared to infrarenal aortic occlusion. This difference was reflected in the serum necroenzyme, potassium and TNF-α levels. The histological examination and viability assay confirmed these findings. The corrosion casts showed several anastomoses capable of supplying the lower limb. Tourniquet application proved to be capable of inducing absolute lower limb ischemia, in contrast to infrarenal aortic ligation, where a rich collateral system is considered to help mitigate the injury.
The Protective Effects of Lycium Barbarum Polysaccharides on Transient Retinal Ischemia
Yang, Di; Li, Suk-Yee; Yeung, Chung-Man; Yu, Wing-Yan; Chang, Raymond Chuen-Chung; So, Kwok-Fai; Wong, David; Lo, Amy C. Y.
2011-01-01
Retinal ischemia/reperfusion (I/R) injury leads to irreversible neuronal death, glial activation, retinal swelling and oxidative stress. It is a common feature in various ocular diseases, such as glaucoma, diabetic retinopathy and amaurosis fugax. In the present study, we aimed to evaluate the effects of Lycium Barbarum Polysaccharides (LBP) in a murine retinal I/R model. Mice were orally treated with either vehicle (PBS) or LBP (1mg/kg) daily for 1 week before induction of retinal ischemia. Retinae were collected after 2 hours ischemia and 22 hours reperfusion. Paraffin-embedded sections were prepared for immunohistochemical analyses. Significantly fewer viable cells were found in vehicle-treated retinae comparing to LBP group. This finding was further confirmed by TUNEL assay where significantly fewer apoptotic cells were identified in LBP-treated retinae. Additionally, retinal swelling induced by retinal I/R injury in the vehicle-treated group was not observed in LBP-treated group. Moreover, intense GFAP immunoreactivity and IgG extravasation were observed in vehicle-treated group but not in LBP treated group. The results showed that pre-treatment with LBP was protective in retinal I/R injury via reducing neuronal death, apoptosis, retinal swelling, GFAP activation and blood vessel leakage. LBP may be used as a preventive agent for retinal ischemia diseases.
Sakurai, Masahiro; Kawamura, Takae; Nishimura, Hidekazu; Suzuki, Hiroyoshi; Tezuka, Fumiaki; Abe, Koji
2009-04-01
The mechanism of spinal cord injury has been thought to be related to the vulnerability of spinal motor neuron cells against ischemia. However, the mechanisms of such vulnerability are not fully understood. We investigated a possible mechanism of neuronal death by immunohistochemical analysis for DJ-1, PINK1, and alpha-Synuclein. We used a 15-min rabbit spinal cord ischemia model, with use of a balloon catheter. Western blot analysis for DJ-1, PINK1, and alpha-Synuclein; temporal profiles of DJ-1, PINK1, and alpha-Synuclein immunoreactivity; and double-label fluorescence immunocytochemical studies were performed. Western blot analysis revealed scarce immunoreactivity for DJ-1, PINK1, and alpha-Synuclein in the sham-operated spinal cords. However, they became apparent at 8 h after transient ischemia, which returned to the baseline level at 1 day. Double-label fluorescence immunocytochemical study revealed that both DJ-1 and PINK1, and DJ-1 and alpha-Synuclein were positive at 8 h of reperfusion in the same motor neurons, which eventually die. The induction of DJ-1 and PINK1 proteins in the motor neurons at the early stage of reperfusion may indicate oxidative stress, and the induction of alpha-Synuclein may be implicated in the programmed cell death change after transient spinal cord ischemia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Lantao; Li, Shuhong; Wang, Shilei, E-mail: wshlei@aliyun.com
The mitochondrial calcium uniporter (MCU) transports free Ca{sup 2+} into the mitochondrial matrix, maintaining Ca{sup 2+} homeostasis, thus regulates the mitochondrial morphology. Previous studies have indicated that there was closely crosstalk between MCU and mitochondrial fission during the process of ischemia/reperfusion injury. This study constructed a hypoxia reoxygenation model using primary hippocampus neurons to mimic the cerebral ischemia/reperfusion injury and aims to explore the exactly effect of MCU on the mitochondrial fission during the process of ischemia/reperfusion injury and so as the mechanisms. Our results found that the inhibitor of the MCU, Ru360, decreased mitochondrial Ca{sup 2+} concentration, suppressed themore » expression of mitochondrial fission protein Drp1, MIEF1 and Fis1, and thus improved mitochondrial morphology significantly. Whereas spermine, the agonist of the MCU, had no significant impact compared to the I/R group. This study demonstrated that the MCU regulates the process of mitochondrial fission by controlling the Ca{sup 2+} transport, directly upregulating mitochondrial fission proteins Drp1, Fis1 and indirectly reversing the MIEF1-induced mitochondrial fusion. It also provides new targets for brain protection during ischemia/reperfusion injury. - Highlights: • We study MCU with primary neuron culture. • MCU induces mitochondrial fission. • MCU reverses MIEF1 effect.« less
PEGylated carboxyhemoglobin bovine (SANGUINATE): results of a phase I clinical trial.
Misra, Hemant; Lickliter, Jason; Kazo, Friedericke; Abuchowski, Abraham
2014-08-01
PEGylated carboxyhemoglobin bovine (SANGUINATE) is a dual action carbon monoxide releasing (CO)/oxygen (O2 ) transfer agent for the treatment of hypoxia. Its components inhibit vasoconstriction, decrease extravasation, limit reactive oxygen species production, enhance blood rheology, and deliver oxygen to the tissues. Animal models of cerebral ischemia, peripheral ischemia, and myocardial ischemia demonstrated SANGUINATE's efficacy in reducing myocardial infarct size, limiting necrosis from cerebral ischemia, and promoting more rapid recovery from hind limb ischemia. In a Phase I trial, three cohorts of eight healthy volunteers received single ascending doses of 80, 120, or 160 mg/kg of SANGUINATE. Two volunteers within each cohort served as a saline control. There were no serious adverse events. Serum haptoglobin decreased, but did not appear to be dose related. The T1/2 was dose dependent and ranged from 7.9 to 13.8 h. In addition to the Phase I trial, SANGUINATE was used under an expanded access emergency Investigational New Drug. SANGUINATE was found to be safe and well tolerated in a Phase I clinical trial, and therefore it will advance into further clinical trials in patients. © 2014 The Authors. Artificial Organs published by Wiley Periodicals, Inc. on behalf of International Center for Artificial Organs and Transplantation (ICAOT).
Park, Joon Ha; Park, Chan Woo; Ahn, Ji Hyeon; Choi, Soo Young; Shin, Myoung Cheol; Cho, Jun Hwi; Lee, Tae-Kyeong; Kim, In Hye; Cho, Jeong Hwi; Lee, Jae-Chul; Kim, Yang Hee; Kim, Young-Myeong; Kim, Jong-Dai; Tae, Hyun-Jin; Shin, Bich Na; Bae, Eun Joo; Chen, Bai Hui; Won, Moo-Ho; Kang, Il Jun
2017-12-25
Hydroquinone (HQ), a major metabolite of benzene, exists in many plant-derived food and products. Although many studies have addressed biological properties of HQ including the regulation of immune responses and antioxidant activity, neuroprotective effects of HQ following ischemic insults have not yet been considered. Therefore, in this study, we examined neuroprotective effects of HQ against ischemic damage in the gerbil hippocampal cornu ammonis 1 (CA1) region following 5 min of transient cerebral ischemia. We found that pre- and post-treatments with 50 and 100 mg/kg of HQ protected CA1 pyramidal neurons from ischemic insult. Especially, pre- and post-treatments with 100 mg/kg of HQ showed strong neuroprotective effects against ischemic damage. In addition, pre- and post-treatments with 100 mg/kg of HQ significantly attenuated activations of astrocytes and microglia in the ischemic CA1 region compared to the vehicle-treated-ischemia-operated group. Briefly, these results show that pre- and post-treatments with HQ can protect neurons from transient cerebral ischemia and strongly attenuate ischemia-induced glial activation in the hippocampal CA1 region, and indicate that HQ can be used for both prevention and therapy of ischemic injury. Copyright © 2017 Elsevier B.V. All rights reserved.
Bischoff, Ariane; Bucher, Michael; Gekle, Michael; Sauvant, Christoph
2014-02-01
Determination of renal plasma flow (RPF) by para-aminohippurate (PAH) clearance leads to gross underestimation of this respective parameter due to impaired renal extraction of PAH after renal ischemia and reperfusion injury. However, no mechanistic explanation for this phenomenon is available. Based on our own previous studies we hypothesized that this may be due to impairment of expression of the basolateral rate limiting organic anion transporters Oat1 and Oat3. Thus, we investigated this phenomenon in a rat model of renal ischemia and reperfusion by determining PAH clearance, PAH extraction, PAH net secretion, and the expression of rOat1 and rOat3. PAH extraction was seriously impaired after ischemia and reperfusion which led to a threefold underestimation of RPF when PAH extraction ratio was not considered. PAH extraction directly correlated with the expression of basolateral Oat1 and Oat3. Tubular PAH secretion directly correlated with PAH extraction. Consequently, our data offer an explanation for impaired renal PAH extraction by reduced expression of the rate limiting basolateral organic anion transporters Oat1 and Oat3. Moreover, we show that determination of PAH net secretion is suitable to correct PAH clearance for impaired extraction after ischemia and reperfusion in order to get valid results for RPF.
Rapamycin alleviates brain edema after focal cerebral ischemia reperfusion in rats.
Guo, Wei; Feng, Guoying; Miao, Yanying; Liu, Guixiang; Xu, Chunsheng
2014-06-01
Brain edema is a major consequence of cerebral ischemia reperfusion. However, few effective therapeutic options are available for retarding the brain edema progression after cerebral ischemia. Recently, rapamycin has been shown to produce neuroprotective effects in rats after cerebral ischemia reperfusion. Whether rapamycin could alleviate this brain edema injury is still unclear. In this study, the rat stroke model was induced by a 1-h left transient middle cerebral artery occlusion using an intraluminal filament, followed by 48 h of reperfusion. The effects of rapamycin (250 μg/kg body weight, intraperitoneal; i.p.) on brain edema progression were evaluated. The results showed that rapamycin treatment significantly reduced the infarct volume, the water content of the brain tissue and the Evans blue extravasation through the blood-brain barrier (BBB). Rapamycin treatment could improve histological appearance of the brain tissue, increased the capillary lumen space and maintain the integrity of BBB. Rapamycin also inhibited matrix metalloproteinase 9 (MMP9) and aquaporin 4 (AQP4) expression. These data imply that rapamycin could improve brain edema progression after reperfusion injury through maintaining BBB integrity and inhibiting MMP9 and AQP4 expression. The data of this study provide a new possible approach for improving brain edema after cerebral ischemia reperfusion by administration of rapamycin.
Lytton, William W; Neymotin, Samuel A; Hines, Michael L
2008-06-30
In an effort to design a simulation environment that is more similar to that of neurophysiology, we introduce a virtual slice setup in the NEURON simulator. The virtual slice setup runs continuously and permits parameter changes, including changes to synaptic weights and time course and to intrinsic cell properties. The virtual slice setup permits shocks to be applied at chosen locations and activity to be sampled intra- or extracellularly from chosen locations. By default, a summed population display is shown during a run to indicate the level of activity and no states are saved. Simulations can run for hours of model time, therefore it is not practical to save all of the state variables. These, in any case, are primarily of interest at discrete times when experiments are being run: the simulation can be stopped momentarily at such times to save activity patterns. The virtual slice setup maintains an automated notebook showing shocks and parameter changes as well as user comments. We demonstrate how interaction with a continuously running simulation encourages experimental prototyping and can suggest additional dynamical features such as ligand wash-in and wash-out-alternatives to typical instantaneous parameter change. The virtual slice setup currently uses event-driven cells and runs at approximately 2 min/h on a laptop.
Computed Tomography Scanner Productivity and Entry-Level Models in the Global Market
Almeida, R. M. V. R.
2017-01-01
Objective This study evaluated the productivity of computed tomography (CT) models and characterized their simplest (entry-level) models' supply in the world market. Methods CT exam times were measured in eight health facilities in the state of Rio de Janeiro, Brazil. Exams were divided into six stages: (1) arrival of patient records to the examination room; (2) patient arrival; (3) patient positioning; (4) data input prior to exam; (5) image acquisition; and (6) patient departure. CT exam productivity was calculated by dividing the total weekly working time by the total exam time for each model. Additionally, an internet search identified full-body CT manufacturers and their offered entry-level models. Results The time durations of 111 CT exams were obtained. Differences among average exam times were not large, and they were mainly due to stages not directly related to data acquisition or image reconstruction. The survey identified that most manufacturers offer 2- to 4-slice models for Asia, South America, and Africa, and one offers single-slice models (Asia). In the USA, two manufacturers offer models below 16-slice. Conclusion Productivity gains are not linearly related to “slice” number. It is suggested that the use of “shareable platforms” could make CTs cheaper, increasing their availability. PMID:29093804
Lehrberg, Jeffrey; Gardiner, David M
2015-01-01
We have modified and optimized the technique of organotypic slice culture in order to study the mechanisms regulating growth and pattern formation in regenerating axolotl limb blastemas. Blastema cells maintain many of the behaviors that are characteristic of blastemas in vivo when cultured as slices in vitro, including rates of proliferation that are comparable to what has been reported in vivo. Because the blastema slices can be cultured in basal medium without fetal bovine serum, it was possible to test the response of blastema cells to signaling molecules present in serum, as well as those produced by nerves. We also were able to investigate the response of blastema cells to experimentally regulated changes in BMP signaling. Blastema cells responded to all of these signals by increasing the rate of proliferation and the level of expression of the blastema marker gene, Prrx-1. The organotypic slice culture model provides the opportunity to identify and characterize the spatial and temporal co-regulation of pathways in order to induce and enhance a regenerative response.
Lehrberg, Jeffrey; Gardiner, David M.
2015-01-01
We have modified and optimized the technique of organotypic slice culture in order to study the mechanisms regulating growth and pattern formation in regenerating axolotl limb blastemas. Blastema cells maintain many of the behaviors that are characteristic of blastemas in vivo when cultured as slices in vitro, including rates of proliferation that are comparable to what has been reported in vivo. Because the blastema slices can be cultured in basal medium without fetal bovine serum, it was possible to test the response of blastema cells to signaling molecules present in serum, as well as those produced by nerves. We also were able to investigate the response of blastema cells to experimentally regulated changes in BMP signaling. Blastema cells responded to all of these signals by increasing the rate of proliferation and the level of expression of the blastema marker gene, Prrx-1. The organotypic slice culture model provides the opportunity to identify and characterize the spatial and temporal co-regulation of pathways in order to induce and enhance a regenerative response. PMID:25923915
Evaluating the morphological completeness of a training image.
Gao, Mingliang; Teng, Qizhi; He, Xiaohai; Feng, Junxi; Han, Xue
2017-05-01
Understanding the three-dimensional (3D) stochastic structure of a porous medium is helpful for studying its physical properties. A 3D stochastic structure can be reconstructed from a two-dimensional (2D) training image (TI) using mathematical modeling. In order to predict what specific morphology belonging to a TI can be reconstructed at the 3D orthogonal slices by the method of 3D reconstruction, this paper begins by introducing the concept of orthogonal chords. After analyzing the relationship among TI morphology, orthogonal chords, and the 3D morphology of orthogonal slices, a theory for evaluating the morphological completeness of a TI is proposed for the cases of three orthogonal slices and of two orthogonal slices. The proposed theory is evaluated using four TIs of porous media that represent typical but distinct morphological types. The significance of this theoretical evaluation lies in two aspects: It allows special morphologies, for which the attributes of a TI can be reconstructed at a special orthogonal slice of a 3D structure, to be located and quantified, and it can guide the selection of an appropriate reconstruction method for a special TI.
Functional Recovery From Extended Warm Ischemia Associated With Partial Nephrectomy.
Zhang, Zhiling; Zhao, Juping; Velet, Lily; Ercole, Cesar E; Remer, Erick M; Mir, Carme M; Li, Jianbo; Takagi, Toshio; Demirjian, Sevag; Campbell, Steven C
2016-01-01
To evaluate the impact of extended warm ischemia on incidence of acute kidney injury (AKI) and ultimate functional recovery after partial nephrectomy (PN), incorporating rigorous control for loss of parenchymal mass, and embedded within comparison to cohorts of patients managed with hypothermia or limited warm ischemia. From 2007 to 2014, 277 patients managed with PN had appropriate studies to evaluate changes in function/mass specifically within the operated kidney. Recovery from ischemia was defined as %function saved/%parenchymal mass saved. AKI was based on global renal function and defined as a ≥1.5-fold increase in serum creatinine above the preoperative level. Hypothermia was utilized in 112 patients (median = 27 minutes) and warm ischemia in 165 (median = 21 minutes). AKI strongly correlated with solitary kidney (P < .001) and duration (P < .001) but not type (P = .49) of ischemia. Median recovery from ischemia in the operated kidney was 100% (interquartile range [IQR] = 88%-109%) for cold ischemia, with 6 (5%) noted to have <80% recovery from ischemia. For the warm ischemia group, median recovery from ischemia was 91% (IQR = 82%-101%, P < .001 compared with hypothermia), and 34 (21%) had recovery from ischemia <80% (P < .001). For warm ischemia subgrouped by duration <25 minutes (n = 114), 25-35 minutes (n = 35), and >35 minutes (n = 16), median recovery from ischemia was 92% (IQR = 86%-100%), 90% (IQR = 78%-104%), and 91% (IQR = 80%-96%), respectively (P = .77). Our results suggest that AKI after PN correlates with duration but not with type of ischemia. However, subsequent recovery, which ultimately defines the new baseline glomerular filtration rate, is most reliable with hypothermia. However, most patients undergoing PN with warm ischemia still recover relatively strongly from ischemia, even if extended to 35-45 minutes. Copyright © 2015 Elsevier Inc. All rights reserved.
Rocha, Joao; Figueira, Maria-Eduardo; Barateiro, Andreia; Fernandes, Adelaide; Brites, Dora; Pinto, Rui; Freitas, Marisa; Fernandes, Eduarda; Mota-Filipe, Helder; Sepodes, Bruno
2015-04-01
Glycogen synthase kinase 3 (GSK-3) is a serine-threonine kinase discovered decades ago to have an important role in glycogen metabolism. Today, we know that this kinase is involved in the regulation of many cell functions, including insulin signaling, specification of cell fate during embryonic development, and the control of cell division and apoptosis. Insulin and TDZD-8 (4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione) are inhibitors of GSK-3β that have been shown to possess organ-protective effects in inflammatory-mediated organ injury models. We aimed to evaluate the cytoprotective effect of GSK-3β inhibition on rat models of liver ischemia-reperfusion and thermal injury. In the liver ischemia-reperfusion model, TDZD-8 and insulin were administered at 5 mg/kg (i.v.) and 1.4 IU/kg (i.v.), respectively, 30 min before induction of ischemia and led to the significant reduction of the serum concentration of aspartate aminotransferase, alanine aminotransferase, γ-glutamyltransferase, and lactate dehydrogenase. Beneficial effects were found to be independent from blood glucose levels. In the thermal injury model, TDZD-8 was administered at 5 mg/kg (i.v.) 5 min before induction of injury and significantly reduced multiple organ dysfunction markers (liver, neuromuscular, and lung). In the lung, TDZD-8 reduced the histological signs of tissue injury, inflammatory markers (cytokines), and neutrophil chemotaxis/infiltration; reduced GSK-3β, nuclear factor-κB, and Akt activation; reduced caspase-3 and metalloproteinase-9 activation. Our study provides a new insight on the beneficial effects of GSK-3β inhibition on systemic inflammation and further elucidates the mechanism and pathway crosstalks by which TDZD-8 reduces the multiple organ injury elicited by thermal injury.
Rating knowledge sharing in cross-domain collaborative filtering.
Li, Bin; Zhu, Xingquan; Li, Ruijiang; Zhang, Chengqi
2015-05-01
Cross-domain collaborative filtering (CF) aims to share common rating knowledge across multiple related CF domains to boost the CF performance. In this paper, we view CF domains as a 2-D site-time coordinate system, on which multiple related domains, such as similar recommender sites or successive time-slices, can share group-level rating patterns. We propose a unified framework for cross-domain CF over the site-time coordinate system by sharing group-level rating patterns and imposing user/item dependence across domains. A generative model, say ratings over site-time (ROST), which can generate and predict ratings for multiple related CF domains, is developed as the basic model for the framework. We further introduce cross-domain user/item dependence into ROST and extend it to two real-world cross-domain CF scenarios: 1) ROST (sites) for alleviating rating sparsity in the target domain, where multiple similar sites are viewed as related CF domains and some items in the target domain depend on their correspondences in the related ones; and 2) ROST (time) for modeling user-interest drift over time, where a series of time-slices are viewed as related CF domains and a user at current time-slice depends on herself in the previous time-slice. All these ROST models are instances of the proposed unified framework. The experimental results show that ROST (sites) can effectively alleviate the sparsity problem to improve rating prediction performance and ROST (time) can clearly track and visualize user-interest drift over time.
Placental Ischemia Impairs Middle Cerebral Artery Myogenic Responses in the Pregnant Rat
Ryan, Michael J.; Gilbert, Emily L.; Glover, Porter H.; George, Eric M.; Masterson, C. Warren; McLemore, Gerald R.; LaMarca, Babbette; Granger, Joey P.; Drummond, Heather A.
2011-01-01
One potential mechanism contributing to the increased risk for encephalopathies in women with preeclampsia is altered cerebral vascular autoregulation resulting from impaired myogenic tone. Whether placental ischemia, a commonly proposed initiator of preeclampsia, alters cerebral vascular function is unknown. This study tested the hypothesis that placental ischemia in pregnant rats (induced by reducing uterine perfusion pressure, RUPP) leads to impaired myogenic responses in middle cerebral arteries (MCA). Mean arterial pressure (in mmHg) was increased by RUPP (135±3) compared with normal pregnant rats (NP, 103±2) and non-pregnant controls (Ctrl, 116±1). MCA from rats sacrificed on gestation day 19 were assessed in a pressure ateriograph under active (+ Ca2+) and passive (0 Ca2+) conditions while luminal pressure was varied between 25 and 150 mmHg. The slope of the relationship between tone and pressure in the MCA was 0.08±0.01 in CTRL rats and was similar in NP rats (0.05±0.01). In the RUPP model of placental ischemia, this relationship was markedly reduced (slope = 0.01±0.00, p<0.05). Endothelial dependent and independent dilation was not different between groups nor was there evidence of vascular remodeling assessed by the wall:lumen ratio and calculated wall stress. The impaired myogenic response associated with brain edema measured by % water content (RUPP p<0.05 vs. CTRL and NP). This study demonstrates that placental ischemia in pregnant rats leads to impaired myogenic tone in the MCA and that the RUPP model is a potentially important tool to examine mechanisms leading to encephalopathy during preeclamptic pregnancies. PMID:22068864
Choe, Chi-un; Lardong, Kerstin; Gelderblom, Mathias; Ludewig, Peter; Leypoldt, Frank; Koch-Nolte, Friedrich; Gerloff, Christian; Magnus, Tim
2011-01-01
Converging evidence suggests that inflammatory processes significantly influence brain injury and clinical impairment in ischemic stroke. Although early studies suggested a key role of lymphocytes, recent data has emphasized the orchestrating function of innate immunity, i.e., macrophages and microglia. The bifunctional receptor and ectoenzyme CD38 synthesizes calcium-mobilizing second messengers (e.g., cyclic ADP-ribose), which have been shown to be necessary for activation and migration of myeloid immune cells. Therefore, we investigated the dynamics of CD38 in stroke and the impact of CD38-deficiency on cytokine production, inflammation and cerebral damage in a mouse model of cerebral ischemia-reperfusion. We show that the local expression of the chemokine MCP-1 was attenuated in CD38-deficient mice compared with wildtype mice after focal cerebral ischemia and reperfusion. In contrast, no significant induction of MCP-1 expression was observed in peripheral blood after 6 hours. Flow cytometry analysis revealed less infiltrating macrophages and lymphocytes in the ischemic hemisphere of CD38-deficient mice, whereas the amount of resident microglia was unaltered. An up-regulation of CD38 expression was observed in macrophages and CD8(+) cells after focal cerebral ischemia in wildtype mice, whereas CD38 expression was unchanged in microglia. Finally, we demonstrate that CD38-deficiency decreases the cerebral ischemic injury and the persistent neurological deficit after three days of reperfusion in this murine temporary middle cerebral artery occlusion (tMCAO) model. CD38 is differentially regulated following stroke and its deficiency attenuates the postischemic chemokine production, the immune cell infiltration and the cerebral injury after temporary ischemia and reperfusion. Therefore CD38 might prove a therapeutic target in ischemic stroke.
Sabogal, Angélica María; Arango, César Augusto; Cardona, Gloria Patricia; Céspedes, Ángel Enrique
2014-01-01
Cerebral ischemia is the third leading cause of death and the primary cause of permanent disability worldwide. Atorvastatin is a promising drug with neuroprotective effects that may be useful for the treatment of stroke. However, the effects of atorvastatin on specific neuronal populations within the nigrostriatal system following cerebral ischemia are unknown. To evaluate the effects of atorvastatin on dopaminergic and GABAergic neuronal populations in exofocal brain regions in a model of transient occlusion of the middle cerebral artery. Twenty-eight male eight-week-old Wistar rats were used in this study. Both sham and ischemic rats were treated with atorvastatin (10 mg/kg) or carboxymethylcellulose (placebo) by gavage at 6, 24, 48 and 72 hours post-reperfusion. We analyzed the immunoreactivity of glutamic acid decarboxylase and tyrosine hydroxylase in the globus pallidus, caudate putamen and substantia nigra. We observed neurological damage and cell loss in the caudate putamen following ischemia. We also found an increase in tyrosine hydroxylase immunoreactivity in the medial globus pallidus and substantia nigra reticulata, as well as a decrease in glutamic acid decarboxylase immunoreactivity in the lateral globus pallidus in ischemic animals treated with a placebo. However, atorvastatin treatment was able to reverse these effects, significantly decreasing tyrosine hydroxylase levels in the medial globus pallidus and substantia nigra reticulata and significantly increasing glutamic acid decarboxylase levels in the lateral globus pallidus. Our data suggest that post-ischemia treatment with atorvastatin can have neuro-protective effects in exofocal regions far from the ischemic core by modulating the GABAergic and dopaminergic neuronal populations in the nigrostriatal system, which could be useful for preventing neurological disorders.
Induction of Heme Oxygenase-1 Attenuates Placental-Ischemia Induced Hypertension
George, Eric M.; Cockrell, Kathy; Aranay, Marietta; Csongradi, Eva; Stec, David E.; Granger, Joey P.
2011-01-01
Recent in vitro studies have reported that heme oxygenase-1 (HO-1) downregulates the angiostatic protein sFlt-1 from placental villous explants and that the HO-1 metabolites CO and bilirubin negatively regulates endothelin-1 and reactive oxygen species (ROS). Although sFlt-1, ET-1, and ROS have been implicated in the pathophysiology of hypertension during preeclampsia and in response to placental ischemia in pregnant rats, it is unknown whether chronic induction of HO-1 alters the hypertensive response to placental ischemia. The present study examined the hypothesis that HO-1 induction in a rat model of placental ischemia would beneficially affect blood pressure, angiogenic balance, superoxide, and ET-1 production in the ischemic placenta. To achieve this goal we examined the effects of cobalt protoporphyrin (CoPP), an HO-1 inducer, in the reduced uterine perfusion pressure (RUPP) placental ischemia model and in normal pregnant rats. In response to RUPP treatment, MAP increases 29mmHg (136 ± 7 vs. 106 ± 5 mmHg) which is significantly attenuated by CoPP (118 ± 5 mmHg). While RUPP treatment causes placental sFlt-1/VEGF ratios to alter significantly to an angiostatic balance (1 ± 0.1 vs 1.27 ± 0.2,), treatment with CoPP causes a significant shift in the ratio to an angiogenic balance (0.68 ± 0.1). Placental superoxide increased in RUPP (952.5 ± 278.8 vs 243.9 ± 70.5 RLU/min/mg), but was significantly attenuated by HO-1 induction (482.7 ± 117.4 RLU/min/mg). Also, preproendothelin message was significantly increased in RUPP, which was prevented by CoPP. These data indicate that HO-1, or its metabolites, are potential therapeutics for the treatment of preeclampsia. PMID:21383306
Junnarkar, Sameer P; Tapuria, Niteen; Mani, Alireza; Dijk, Sas; Fuller, Barry; Seifalian, Alexander M; Davidson, Brian R
2010-12-01
Liver transplantation and resection surgery involve a period of ischemia and reperfusion to the liver, which initiates an inflammatory cascade resulting in liver and remote organ injury. Bucillamine is a low molecular weight thiol antioxidant that is capable of rapidly entering cells. We hypothesized that bucillamine acts by replenishing glutathione levels, thus reducing neutrophil activation, modulating Bax/Bcl-2 expression, and subsequently, attenuating the effects of warm ischemia-reperfusion injury (IRI) in the liver. The effect of bucillamine was studied in a rat model of liver IRI with 45 min of partial (70%) liver ischemia and 3 h of reperfusion. Liver injury was assessed by measuring serum transaminases (aspartate aminotransferase [AST] and alanine aminotransferase [ALT]) and liver histology. Oxidative stress was quantified by measuring F(2) isoprostane and glutathione levels. Leukocyte adhesion was assessed by intravital microscopy, and inflammatory cytokine response was assessed by measuring serum cytokine-induced neutrophil chemoattractant-1 (CINC-1) levels. Bax and Bcl-2 expression was measured by reverse transcription-polymerase chain reaction. The model produced significant liver injury with elevated transaminases and an acute inflammatory response. Bucillamine reduced the liver injury, as indicated by reduced AST (932 ± 200.8 vs 2072.5 ± 511.79, P < 0.05). Bucillamine reduced Bax expression, serum CINC-1 levels, and neutrophil adhesion, and upregulated Bcl-2. However, bucillamine did not affect tissue glutathione levels nor the levels of oxidative stress, as measured by plasma and hepatic F(2) isoprostane levels. Bucillamine reduces warm ischemia-reperfusion in the liver by inhibiting neutrophil activation and modulating Bax/Bcl-2 expression. © 2010 Journal of Gastroenterology and Hepatology Foundation and Blackwell Publishing Asia Pty Ltd.