Science.gov

Sample records for sliding clamp-dna interactions

  1. Identification of β Clamp-DNA Interaction Regions That Impair the Ability of E. coli to Tolerate Specific Classes of DNA Damage

    PubMed Central

    Nanfara, Michael T.; Babu, Vignesh M. P.; Ghazy, Mohamed A.; Sutton, Mark D.

    2016-01-01

    The E. coli dnaN-encoded β sliding clamp protein plays a pivotal role in managing the actions on DNA of the 5 bacterial DNA polymerases, proteins involved in mismatch repair, as well as several additional proteins involved in DNA replication. Results of in vitro experiments indicate that the loading of β clamp onto DNA relies on both the DnaX clamp loader complex as well as several discrete sliding clamp-DNA interactions. However, the importance of these DNA interactions to E. coli viability, as well as the ability of the β clamp to support the actions of its numerous partner proteins, have not yet been examined. To determine the contribution of β clamp-DNA interactions to the ability of E. coli to cope with different classes of DNA damage, we used alanine scanning to mutate 22 separate residues mapping to 3 distinct β clamp surfaces known or nearby those known to contact the DNA template, including residues P20-L27 (referred to here as loop I), H148-Y154 (loop II) and 7 different residues lining the central pore of the β clamp through which the DNA template threads. Twenty of these 22 dnaN mutants supported bacterial growth. While none of these 20 conferred sensitivity to hydrogen peroxide or ultra violet light, 12 were sensitized to NFZ, 5 were sensitized to MMS, 8 displayed modestly altered frequencies of DNA damage-induced mutagenesis, and 2 may be impaired for supporting hda function. Taken together, these results demonstrate that discrete β clamp-DNA interaction regions contribute to the ability of E. coli to tolerate specific classes of DNA damage. PMID:27685804

  2. Sliding Clamp–DNA Interactions Are Required for Viability and Contribute to DNA Polymerase Management in Escherichia coli

    SciTech Connect

    Heltzel, J.; Scouten Ponticelli, S; Sanders, L; Duzen, J; Cody, V; Pace, J; Snell, E; Sutton, M

    2009-01-01

    Sliding clamp proteins topologically encircle DNA and play vital roles in coordinating the actions of various DNA replication, repair, and damage tolerance proteins. At least three distinct surfaces of the Escherichia coli {beta} clamp interact physically with the DNA that it topologically encircles. We utilized mutant {beta} clamp proteins bearing G66E and G174A substitutions ({beta}159), affecting the single-stranded DNA-binding region, or poly-Ala substitutions in place of residues 148-HQDVR-152 ({beta}148-152), affecting the double-stranded DNA binding region, to determine the biological relevance of clamp-DNA interactions. As part of this work, we solved the X-ray crystal structure of {beta}148-152, which verified that the poly-Ala substitutions failed to significantly alter the tertiary structure of the clamp. Based on functional assays, both {beta}159 and {beta}148-152 were impaired for loading and retention on a linear primed DNA in vitro. In the case of {beta}148-152, this defect was not due to altered interactions with the DnaX clamp loader, but rather was the result of impaired {beta}148-152-DNA interactions. Once loaded, {beta}148-152 was proficient for DNA polymerase III (Pol III) replication in vitro. In contrast, {beta}148-152 was severely impaired for Pol II and Pol IV replication and was similarly impaired for direct physical interactions with these Pols. Despite its ability to support Pol III replication in vitro, {beta}148-152 was unable to support viability of E. coli. Nevertheless, physiological levels of {beta}148-152 expressed from a plasmid efficiently complemented the temperature-sensitive growth phenotype of a strain expressing {beta}159 (dnaN159), provided that Pol II and Pol IV were inactivated. Although this strain was impaired for Pol V-dependent mutagenesis, inactivation of Pol II and Pol IV restored the Pol V mutator phenotype. Taken together, these results support a model in which a sophisticated combination of competitive clamp-DNA

  3. Sliding tethered ligands add topological interactions to the toolbox of ligand-receptor design

    NASA Astrophysics Data System (ADS)

    Bauer, Martin; Kékicheff, Patrick; Iss, Jean; Fajolles, Christophe; Charitat, Thierry; Daillant, Jean; Marques, Carlos M.

    2015-09-01

    Adhesion in the biological realm is mediated by specific lock-and-key interactions between ligand-receptor pairs. These complementary moieties are ubiquitously anchored to substrates by tethers that control the interaction range and the mobility of the ligands and receptors, thus tuning the kinetics and strength of the binding events. Here we add sliding anchoring to the toolbox of ligand-receptor design by developing a family of tethered ligands for which the spacer can slide at the anchoring point. Our results show that this additional sliding degree of freedom changes the nature of the adhesive contact by extending the spatial range over which binding may sustain a significant force. By introducing sliding tethered ligands with self-regulating length, this work paves the way for the development of versatile and reusable bio-adhesive substrates with potential applications for drug delivery and tissue engineering.

  4. Sliding tethered ligands add topological interactions to the toolbox of ligand–receptor design

    PubMed Central

    Bauer, Martin; Kékicheff, Patrick; Iss, Jean; Fajolles, Christophe; Charitat, Thierry; Daillant, Jean; Marques, Carlos M.

    2015-01-01

    Adhesion in the biological realm is mediated by specific lock-and-key interactions between ligand–receptor pairs. These complementary moieties are ubiquitously anchored to substrates by tethers that control the interaction range and the mobility of the ligands and receptors, thus tuning the kinetics and strength of the binding events. Here we add sliding anchoring to the toolbox of ligand–receptor design by developing a family of tethered ligands for which the spacer can slide at the anchoring point. Our results show that this additional sliding degree of freedom changes the nature of the adhesive contact by extending the spatial range over which binding may sustain a significant force. By introducing sliding tethered ligands with self-regulating length, this work paves the way for the development of versatile and reusable bio-adhesive substrates with potential applications for drug delivery and tissue engineering. PMID:26350224

  5. Sliding friction across the scales: Thermomechanical interactions and dissipation partitioning

    NASA Astrophysics Data System (ADS)

    Temizer, İ.

    2016-04-01

    A homogenization framework is developed for determining the complete macroscopic thermomechanical sliding contact response of soft interfaces with microscopic roughness. To this end, a micro-macro mechanical dissipation equality is first established which enables defining a macroscopic frictional traction. The derivation allows both contacting bodies to be deformable, thereby extending the commonly adopted setting where one of the bodies is rigid. Moreover, it forms a basis for the second step, where a novel micro-macro thermal dissipation equality is established which enables defining partitioning coefficients that are associated with the frictional dissipation as it is perceived on the macroscale. Finally, a comparison of the temperature fields from the original heterogeneous thermomechanical contact problem and an idealized homogeneous one reveals an identification of the macroscopic temperature jump. The computational implementation of the framework is carried out within an incrementally two-phase micromechanical test which delivers a well-defined macroscopic response that is not influenced by purely algorithmic choices such as the duration of sliding. Two-dimensional numerical investigations on periodic and random samples from thermo-viscoelastic boundary layers with unilateral and bilateral roughness demonstrate the temperature-velocity-pressure dependence of the macroscopic contact response.

  6. Chromosomal Replication Dynamics and Interaction with the β Sliding Clamp Determine Orientation of Bacterial Transposable Elements

    PubMed Central

    Gómez, Manuel J.; Díaz-Maldonado, Héctor; González-Tortuero, Enrique; López de Saro, Francisco J.

    2014-01-01

    Insertion sequences (ISs) are small transposable elements widespread in bacterial genomes, where they play an essential role in chromosome evolution by stimulating recombination and genetic flow. Despite their ubiquity, it is unclear how ISs interact with the host. Here, we report a survey of the orientation patterns of ISs in bacterial chromosomes with the objective of gaining insight into the interplay between ISs and host chromosomal functions. We find that a significant fraction of IS families present a consistent and family-specific orientation bias with respect to chromosomal DNA replication, especially in Firmicutes. Additionally, we find that the transposases of up to nine different IS families with different transposition pathways interact with the β sliding clamp, an essential replication factor, suggesting that this is a widespread mechanism of interaction with the host. Although we find evidence that the interaction with the β sliding clamp is common to all bacterial phyla, it also could explain the observed strong orientation bias found in Firmicutes, because in this group β is asymmetrically distributed during synthesis of the leading or lagging strands. Besides the interaction with the β sliding clamp, other asymmetries also play a role in the biased orientation of some IS families. The utilization of the highly conserved replication sliding clamps suggests a mechanism for host regulation of IS proliferation and also a universal platform for IS dispersal and transmission within bacterial populations and among phylogenetically distant species. PMID:24614824

  7. Transposase interaction with the β sliding clamp: effects on insertion sequence proliferation and transposition rate

    PubMed Central

    Díaz-Maldonado, Héctor; Gómez, Manuel J.; Moreno-Paz, Mercedes; San Martín-Úriz, Patxi; Amils, Ricardo; Parro, Víctor; López de Saro, Francisco J.

    2015-01-01

    Insertion sequences (ISs) are ubiquitous and abundant mobile genetic elements in prokaryotic genomes. ISs often encode only one protein, the transposase, which catalyzes their transposition. Recent studies have shown that transposases of many different IS families interact with the β sliding clamp, a DNA replication factor of the host. However, it was unclear to what extent this interaction limits or favors the ability of ISs to colonize a chromosome from a phylogenetically-distant organism, or if the strength of this interaction affects the transposition rate. Here we describe the proliferation of a member of the IS1634 family in Acidiphilium over ~600 generations of cultured growth. We demonstrate that the purified transposase binds to the β sliding clamp of Acidiphilium, Leptospirillum and E. coli. Further, we also demonstrate that the Acidiphilium IS1634 transposase binds to the archaeal sliding clamp (PCNA) from Methanosarcina, and that the transposase encoded by Methanosarcina IS1634 binds to Acidiphilium β. Finally, we demonstrate that increasing the strength of the interaction between β and transposase results in a higher transposition rate in vivo. Our results suggest that the interaction could determine the potential of ISs to be mobilized in bacterial populations and also their ability to proliferate within chromosomes. PMID:26306550

  8. Computer simulations of particle-bubble interactions and particle sliding using Discrete Element Method.

    PubMed

    Maxwell, R; Ata, S; Wanless, E J; Moreno-Atanasio, R

    2012-09-01

    Three dimensional Discrete Element Method (DEM) computer simulations have been carried out to analyse the kinetics of collision of multiple particles against a stationary bubble and the sliding of the particles over the bubble surface. This is the first time that a computational analysis of the sliding time and particle packing arrangements of multiple particles on the surface of a bubble has been carried out. The collision kinetics of monodisperse (33 μm in radius) and polydisperse (12-33 μm in radius) particle systems have been analysed in terms of the time taken by 10%, 50% and 100% of the particles to collide against the bubble. The dependencies of these collision times on the strength of hydrophobic interactions follow relationships close to power laws. However, minimal sensitivity of the collision times to particle size was found when linear and square relationships of the hydrophobic force with particles radius were considered. The sliding time for single particles has corroborated published theoretical expressions. Finally, a good qualitative comparison with experiments has been observed with respect to the particle packing at the bottom of the bubble after sliding demonstrating the usefulness of computer simulations in the studies of particle-bubble systems.

  9. A Single-Strand Annealing Protein Clamps DNA to Detect and Secure Homology

    PubMed Central

    Ander, Marcel; Subramaniam, Sivaraman; Fahmy, Karim; Stewart, A. Francis; Schäffer, Erik

    2015-01-01

    Repair of DNA breaks by single-strand annealing (SSA) is a major mechanism for the maintenance of genomic integrity. SSA is promoted by proteins (single-strand-annealing proteins [SSAPs]), such as eukaryotic RAD52 and λ phage Redβ. These proteins use a short single-stranded region to find sequence identity and initiate homologous recombination. However, it is unclear how SSAPs detect homology and catalyze annealing. Using single-molecule experiments, we provide evidence that homology is recognized by Redβ monomers that weakly hold single DNA strands together. Once annealing begins, dimerization of Redβ clamps the double-stranded region and nucleates nucleoprotein filament growth. In this manner, DNA clamping ensures and secures a successful detection for DNA sequence homology. The clamp is characterized by a structural change of Redβ and a remarkable stability against force up to 200 pN. Our findings not only present a detailed explanation for SSAP action but also identify the DNA clamp as a very stable, noncovalent, DNA–protein interaction. PMID:26271032

  10. The TCF C-clamp DNA binding domain expands the Wnt transcriptome via alternative target recognition

    PubMed Central

    Hoverter, Nate P.; Zeller, Michael D.; McQuade, Miriam M.; Garibaldi, Angela; Busch, Anke; Selwan, Elizabeth M.; Hertel, Klemens J.; Baldi, Pierre; Waterman, Marian L.

    2014-01-01

    LEF/TCFs direct the final step in Wnt/β-catenin signalling by recruiting β-catenin to genes for activation of transcription. Ancient, non-vertebrate TCFs contain two DNA binding domains, a High Mobility Group box for recognition of the Wnt Response Element (WRE; 5′-CTTTGWWS-3′) and the C-clamp domain for recognition of the GC-rich Helper motif (5′-RCCGCC-3′). Two vertebrate TCFs (TCF-1/TCF7 and TCF-4/TCF7L2) use the C-clamp as an alternatively spliced domain to regulate cell-cycle progression, but how the C-clamp influences TCF binding and activity genome-wide is not known. Here, we used a doxycycline inducible system with ChIP-seq to assess how the C-clamp influences human TCF1 binding genome-wide. Metabolic pulse-labeling of nascent RNA with 4′Thiouridine was used with RNA-seq to connect binding to the Wnt transcriptome. We find that the C-clamp enables targeting to a greater number of gene loci for stronger occupancy and transcription regulation. The C-clamp uses Helper sites concurrently with WREs for gene targeting, but it also targets TCF1 to sites that do not have readily identifiable canonical WREs. The coupled ChIP-seq/4′Thiouridine-seq analysis identified new Wnt target genes, including additional regulators of cell proliferation. Thus, C-clamp containing isoforms of TCFs are potent transcriptional regulators with an expanded transcriptome directed by C-clamp-Helper site interactions. PMID:25414359

  11. Dynamic Sliding Analysis of a Gravity Dam with Fluid-Structure-Foundation Interaction Using Finite Elements and Newmark's Sliding Block Analysis

    NASA Astrophysics Data System (ADS)

    Goldgruber, Markus; Shahriari, Shervin; Zenz, Gerald

    2015-11-01

    To reduce the natural hazard risks—due to, e.g., earthquake excitation—seismic safety assessments are carried out. Especially under severe loading, due to maximum credible or the so-called safety evaluation earthquake, critical infrastructure, as these are high dams, must not fail. However, under high loading local failure might be allowed as long as the entire structure does not collapse. Hence, for a dam, the loss of sliding stability during a short time period might be acceptable if the cumulative displacements after an event are below an acceptable value. This performance is not only valid for gravity dams but also for rock blocks as sliding is even more imminent in zones with higher seismic activity. Sliding modes cannot only occur in the dam-foundation contact, but also in sliding planes formed due to geological conditions. This work compares the qualitative possible and critical displacements for two methods, the well-known Newmark's sliding block analysis and a Fluid-Foundation-Structure Interaction simulation with the finite elements method. The results comparison of the maximum displacements at the end of the seismic event of the two methods depicts that for high friction angles, they are fairly close. For low friction angles, the results are differing more. The conclusion is that the commonly used Newmark's sliding block analysis and the finite elements simulation are only comparable for high friction angles, where this factor dominates the behaviour of the structure. Worth to mention is that the proposed simulation methods are also applicable to dynamic rock wedge problems and not only to dams.

  12. Modelling of the Vajont rockslide displacements by delayed plasticity of interacting sliding blocks

    NASA Astrophysics Data System (ADS)

    Castellanza, riccardo; Hedge, Amarnath; Crosta, Giovanni; di Prisco, Claudio; Frigerio, Gabriele

    2015-04-01

    In order to model complex sliding masses subject to continuous slow movements related to water table fluctuations it is convenient to: i) model the time-dependent mechanical behaviour of the materials by means of a viscous-plastic constitutive law; ii) assume the water table fluctuation as the main input to induce displacement acceleration; iii) consider, the 3D constrains by maintaining a level of simplicity such to allow the implementation into EWS (Early Warning System) for risk management. In this work a 1D pseudo-dynamic visco-plastic model (Secondi et al. 2011), based on Perzyna's delayed plasticity theory is applied. The sliding mass is considered as a rigid block subject to its self weight, inertial forces and seepage forces varying with time. All non-linearities are lumped in a thin layer positioned between the rigid block and the stable bedrock. The mechanical response of this interface is assumed to be visco-plastic. The viscous nucleus is assumed to be of the exponential type, so that irreversible strains develop for both positive and negative values of the yield function; the sliding mass is discretized in blocks to cope with complex rockslide geometries; the friction angle is assumed to reduce with strain rate assuming a sort of strain - rate law (Dietrich-Ruina law). To validate the improvements introduced in this paper the simulation of the displacements of the Vajont rockslide from 1960 to the failure, occurred on October the 9th 1963, is perfomed. It will be shown that, in its modified version, the model satisfactorily fits the Vajont pre-collapse displacements triggered by the fluctuation of the Vajont lake level and the associated groundwater level. The model is able to follow the critical acceleration of the motion with a minimal change in friction properties.The discretization in interacting sliding blocks confirms its suitability to model the complex 3D rockslide behaviour. We are currently implementing a multi-block model capable to include

  13. Conditions for the sliding-bouncing transition for the interaction of a bubble with an inclined wall

    NASA Astrophysics Data System (ADS)

    Barbosa, C.; Legendre, D.; Zenit, R.

    2016-07-01

    In this study we analyze the interaction of a single rising bubble with an inclined wall. We conduct experiments considering different liquids and bubble sizes, to cover a wide range of Reynolds and Weber numbers, with wall angles from nearly horizontal to nearly vertical. For all cases, the bubble initially collides with the wall; after the initial interaction, in accord with previous studies, the bubble either steadily slides on the wall or ascends, colliding repeatedly with it. Considering a force balance for the bubble motion on the wall, we propose a set of conditions for the transition from sliding to bouncing that is validated with the present and previous data.

  14. Molecular sled is an eleven-amino acid vehicle facilitating biochemical interactions via sliding components along DNA

    DOE PAGES

    Mangel, Walter F.; McGrath, William J.; Xiong, Kan; Graziano, Vito; Blainey, Paul C.

    2016-02-02

    Recently, we showed the adenovirus proteinase interacts productively with its protein substrates in vitro and in vivo in nascent virus particles via one-dimensional diffusion along the viral DNA. The mechanism by which this occurs has heretofore been unknown. We show sliding of these proteins along DNA occurs on a new vehicle in molecular biology, a ‘molecular sled’ named pVIc. This 11-amino acid viral peptide binds to DNA independent of sequence. pVIc slides on DNA, exhibiting the fastest one-dimensional diffusion constant, 26±1.8 × 106 (bp)2 s−1. pVIc is a ‘molecular sled,’ because it can slide heterologous cargos along DNA, for example, amore » streptavidin tetramer. Similar peptides, for example, from the C terminus of β-actin or NLSIII of the p53 protein, slide along DNA. Finally, characteristics of the ‘molecular sled’ in its milieu (virion, nucleus) have implications for how proteins in the nucleus of cells interact and imply a new form of biochemistry, one-dimensional biochemistry.« less

  15. Molecular sled is an eleven-amino acid vehicle facilitating biochemical interactions via sliding components along DNA.

    PubMed

    Mangel, Walter F; McGrath, William J; Xiong, Kan; Graziano, Vito; Blainey, Paul C

    2016-02-02

    Recently, we showed the adenovirus proteinase interacts productively with its protein substrates in vitro and in vivo in nascent virus particles via one-dimensional diffusion along the viral DNA. The mechanism by which this occurs has heretofore been unknown. We show sliding of these proteins along DNA occurs on a new vehicle in molecular biology, a 'molecular sled' named pVIc. This 11-amino acid viral peptide binds to DNA independent of sequence. pVIc slides on DNA, exhibiting the fastest one-dimensional diffusion constant, 26±1.8 × 10(6) (bp)(2) s(-1). pVIc is a 'molecular sled,' because it can slide heterologous cargos along DNA, for example, a streptavidin tetramer. Similar peptides, for example, from the C terminus of β-actin or NLSIII of the p53 protein, slide along DNA. Characteristics of the 'molecular sled' in its milieu (virion, nucleus) have implications for how proteins in the nucleus of cells interact and imply a new form of biochemistry, one-dimensional biochemistry.

  16. Detachment of compliant films adhered to stiff substrates via van der Waals interactions: role of frictional sliding during peeling

    PubMed Central

    Collino, Rachel R.; Philips, Noah R.; Rossol, Michael N.; McMeeking, Robert M.; Begley, Matthew R.

    2014-01-01

    The remarkable ability of some plants and animals to cling strongly to substrates despite relatively weak interfacial bonds has important implications for the development of synthetic adhesives. Here, we examine the origins of large detachment forces using a thin elastomer tape adhered to a glass slide via van der Waals interactions, which serves as a model system for geckos, mussels and ivy. The forces required for peeling of the tape are shown to be a strong function of the angle of peeling, which is a consequence of frictional sliding at the edge of attachment that serves to dissipate energy that would otherwise drive detachment. Experiments and theory demonstrate that proper accounting for frictional sliding leads to an inferred work of adhesion of only approximately 0.5 J m−2 (defined for purely normal separations) for all load orientations. This starkly contrasts with the interface energies inferred using conventional interface fracture models that assume pure sticking behaviour, which are considerably larger and shown to depend not only on the mode-mixity, but also on the magnitude of the mode-I stress intensity factor. The implications for developing frameworks to predict detachment forces in the presence of interface sliding are briefly discussed. PMID:24920120

  17. Manual stage acquisition and interactive display of digital slides in histopathology.

    PubMed

    Gherardi, Alessandro; Bevilacqua, Alessandro

    2014-07-01

    More powerful PC architectures, high-resolution cameras working at increasing frame rates, and more and more accurate motorized microscopes have boosted new applications in the field of biomedicine and medical imaging. In histopathology, the use of digital slides (DSs) imaging through dedicated hardware for digital pathology is increasing for several reasons: digital annotation of suspicious lesions, recorded clinical history, and telepathology as a collaborative environment. In this paper, we propose the first method known in the literature for real-time whole slide acquisition and displaying conceived for conventional nonautomated microscopes. Differently from DS scanner, our software enables biologists and histopathologists to build and view the DS in real time while inspecting the sample, as they are accustomed to. In addition, since our approach is compliant with existing common microscope positions, provided with camera and PC, this could contribute to disseminate the whole slide technology in the majority of small labs not endowed with DS hardware facilities. Experiments performed with different histologic specimens (referring to tumor tissues of different body parts as well as to tumor cells), acquired under different setup conditions and devices, prove the effectiveness of our approach both in terms of quality and speed performances. PMID:25014942

  18. Stacking interactions in RNA and DNA: Roll-slide energy hyperspace for ten unique dinucleotide steps.

    PubMed

    Mukherjee, Sanchita; Kailasam, Senthilkumar; Bansal, Manju; Bhattacharyya, Dhananjay

    2015-03-01

    Understanding dinucleotide sequence directed structures of nuleic acids and their variability from experimental observation remained ineffective due to unavailability of statistically meaningful data. We have attempted to understand this from energy scan along twist, roll, and slide degrees of freedom which are mostly dependent on dinucleotide sequence using ab initio density functional theory. We have carried out stacking energy analysis in these dinucleotide parameter phase space for all ten unique dinucleotide steps in DNA and RNA using DFT-D by ωB97X-D/6-31G(2d,2p), which appears to satisfactorily explain conformational preferences for AU/AU step in our recent study. We show that values of roll, slide, and twist of most of the dinucleotide sequences in crystal structures fall in the low energy region. The minimum energy regions with large twist values are associated with the roll and slide values of B-DNA, whereas, smaller twist values correspond to higher stability to RNA and A-DNA like conformations. Incorporation of solvent effect by CPCM method could explain the preference shown by some sequences to occur in B-DNA or A-DNA conformations. Conformational preference of BII sub-state in B-DNA is preferentially displayed mainly by pyrimidine-purine steps and partly by purine-purine steps. The purine-pyrimidine steps show largest effect of 5-methyl group of thymine in stacking energy and the introduction of solvent reduces this effect significantly. These predicted structures and variabilities can explain the effect of sequence on DNA and RNA functionality.

  19. Interaction and variability of ice streams under a triple-valued sliding law and non-Newtonian rheology

    NASA Astrophysics Data System (ADS)

    Sayag, Roiy; Tziperman, Eli

    2011-03-01

    Ice streams are regions of fast flowing glacier ice that transport a significant portion of the total ice flux from present ice sheets. The flow pattern of ice streams can vary both temporally and spatially. In particular, ice streams can become stagnant and change their path. We study the dynamics of ice streams using an idealized model of an isothermal and power law viscous ice flow that includes horizontal (lateral) shear stresses. The basal sliding law is assumed to be triple-valued. We investigate the spatiotemporal patterns formed because of the flow over a flat bed, fed from an upstream mass source. The ice flows from the mass source region through one or two gaps in a prescribed upstream topographic ridge which restricts the flow, leading to the formation of one or two ice streams. We find a relation between the parameters of the ice rheology and the width of the ice stream shear margins and show how these parameters can affect the minimum width of an ice stream. We also find that complex asymmetric spatiotemporal patterns can result from the interaction of two ice streams sharing a common mass source. The rich spatiotemporal variability is found to mostly be a result of the triple-valued sliding law, but non-Newtonian effects are found to play a significant role in setting a more realistic shear margin width and allowing for relevant time scales of the variability.

  20. Interaction and variability of ice streams under a triple-valued sliding law and non-Newtonian rheology

    NASA Astrophysics Data System (ADS)

    Sayag, Roiy; Tziperman, Eli

    2010-05-01

    Ice streams are regions of fast flowing glacier ice that transport a significant portion of the total ice flux from present ice sheets. The flow pattern of ice streams can vary both temporally and spatially. In particular, ice streams can become stagnant, and change their path. We study the dynamics of ice streams using an idealized two dimensional horizontal model of an isothermal, non-Newtonian power-law viscous ice flow. The basal sliding law is assumed to be triple-valued. We investigate the spatiotemporal patterns formed due to the flow over a flat bed, fed from a uniform upstream mass source. The ice flows from the mass source region through one or two gaps in a prescribed upstream topographic ridge which restricts the flow, leading to the formation of one or two ice streams. We find a relation between the parameters of the ice rheology and the width of the ice-stream shear margins, and show how these parameters can affect the minimum width of an ice stream. We also find that complex asymmetric spatiotemporal patterns can result from the interaction of two ice streams sharing a common mass source. The rich spatiotemporal variability is found to mostly be a result of the triple valued sliding law, but non-Newtonian effects are found to play a significant role in setting a more realistic shear margin width and allowing for relevant time scales of the variability.

  1. Interaction between mutations in the slide helix of Kir6.2 associated with neonatal diabetes and neurological symptoms

    PubMed Central

    Männikkö, Roope; Jefferies, Craig; Flanagan, Sarah E.; Hattersley, Andrew; Ellard, Sian; Ashcroft, Frances M.

    2010-01-01

    ATP-sensitive potassium (KATP) channels regulate insulin secretion from pancreatic beta-cells. Gain-of-function mutations in the genes encoding the Kir6.2 and SUR1 subunits of this channel cause neonatal diabetes. We report two novel mutations on the same haplotype (cis), F60Y and V64L, in the slide helix of Kir6.2 in a patient with neonatal diabetes, developmental delay and epilepsy. Functional analysis revealed the F60Y mutation increases the intrinsic channel open probability (Po(0)), thereby indirectly producing a marked decrease in channel inhibition by ATP and an increase in whole-cell KATP currents. When expressed alone, the V64L mutation caused a small reduction in apparent ATP inhibition, by enhancing the ability of MgATP to stimulate channel activity. The V64L mutation also ameliorated the deleterious effects on the F60Y mutation when it was expressed on the same (but not a different) subunit. These data indicate that F60Y is the pathogenic mutation and reveal that interactions between slide helix residues can influence KATP channel gating. PMID:20022885

  2. Single-layer MoS{sub 2} roughness and sliding friction quenching by interaction with atomically flat substrates

    SciTech Connect

    Quereda, J.; Castellanos-Gomez, A.; Agraït, N.; Rubio-Bollinger, G.

    2014-08-04

    We experimentally study the surface roughness and the lateral friction force in single-layer MoS{sub 2} crystals deposited on different substrates: SiO{sub 2}, mica, and hexagonal boron nitride (h-BN). Roughness and sliding friction measurements are performed by atomic force microscopy. We find a strong dependence of the MoS{sub 2} roughness on the underlying substrate material, being h-BN the substrate which better preserves the flatness of the MoS{sub 2} crystal. The lateral friction also lowers as the roughness decreases, and attains its lowest value for MoS{sub 2} flakes on h-BN substrates. However, it is still higher than for the surface of a bulk MoS{sub 2} crystal, which we attribute to the deformation of the flake due to competing tip-to-flake and flake-to-substrate interactions.

  3. Auger analysis of oxygen and sulfur interactions with various metals and the effect of sliding on these interactions

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1973-01-01

    Various gases were adsorbed to copper, aluminum, and chromium surfaces. The gases included oxygen, hydrogen sulfide, methyl mercaptan, and sulfur dioxide. Chemisorption was conducted on static surfaces and during dynamic friction experiments. An Auger cyclindrical mirror analyzer was used to monitor surface films. The sulfur containing gases adsorbed readily to all surfaces. Exposures of as little as 0.000001 (torr)(sec) (1 langmuir) were sufficient to reduce friction. Sliding contact did not affect chemisorption of copper or aluminum but did affect chemisorption to chromium surfaces. Oxygen removed sulfur films from all surfaces at room temperature (23 C). Gaseous exposures were from 0.000001 to 0.01 (torr)(sec) (1 to 10,000 langmuirs).

  4. Structure of a Sliding Clamp on DNA

    SciTech Connect

    Georgescu,R.; Kim, S.; Yurieva, O.; Kuriyan, J.; Kong, X.; O'Donnell, M.

    2008-01-01

    The structure of the E. coli {beta} clamp polymerase processivity factor has been solved in complex with primed DNA. Interestingly, the clamp directly binds the DNA duplex and also forms a crystal contact with the ssDNA template strand, which binds into the protein-binding pocket of the clamp. We demonstrate that these clamp-DNA interactions function in clamp loading, perhaps by inducing the ring to close around DNA. Clamp binding to template ssDNA may also serve to hold the clamp at a primed site after loading or during switching of multiple factors on the clamp. Remarkably, the DNA is highly tilted as it passes through the {beta} ring. The pronounced 22 angle of DNA through {beta} may enable DNA to switch between multiple factors bound to a single clamp simply by alternating from one protomer of the ring to the other.

  5. Rings sliding on a honeycomb network: Adsorption contours, interactions, and assembly of benzene on Cu(111)

    NASA Astrophysics Data System (ADS)

    Berland, K.; Einstein, T. L.; Hyldgaard, P.

    2009-10-01

    Using a van der Waals density functional (vdW-DF) [Phys. Rev. Lett. 92, 246401 (2004)], we perform ab initio calculations for the adsorption energy of benzene (Bz) on Cu(111) as a function of lateral position and height. We find that the vdW-DF inclusion of nonlocal correlations (responsible for dispersive interactions) changes the relative stability of eight binding-position options and increases the binding energy by over an order of magnitude, achieving good agreement with experiment. The admolecules can move almost freely along a honeycomb web of “corridors” passing between fcc and hcp hollow sites via bridge sites. Our diffusion barriers (for dilute and two condensed adsorbate phases) are consistent with experimental observations. Further vdW-DF calculations suggest that the more compact (hexagonal) Bz-overlayer phase, with lattice constant a=6.74Å , is due to direct Bz-Bz vdW attraction, which extends to ˜8Å . We attribute the second, sparser hexagonal Bz phase, with a=10.24Å , to indirect electronic interactions mediated by the metallic surface state on Cu(111). To support this claim, we use a formal Harris-functional approach to evaluate nonperturbationally the asymptotic form of this indirect interaction. Thus, we can account well for benzene self-organization on Cu(111).

  6. Functional glass slides for in vitro evaluation of interactions between osteosarcoma TE85 cells and mineral-binding ligands

    SciTech Connect

    Song, Jie; Chen, Julia; Klapperich, Catherine M.; Eng, Vincent; Bertozzi, Carolyn R.

    2004-07-20

    Primary amine-functionalized glass slides obtained through a multi-step plasma treatment were conjugated with anionic amino acids that are frequently found as mineral binding elements in acidic extracellular matrix components of natural bone. The modified glass surfaces were characterized by X-ray photoelectron spectroscopy (XPS) and contact angle measurements. Human osteosarcoma TE85 cells were cultured on these functionalized slides and analyses on both protein and gene expression levels were performed to probe the ''biocompatibility'' of the surface ligands. Cell attachment and proliferation on anionic surfaces were either better than or comparable to those of cells cultured on tissue culture polystyrene (TCPS). The modified glass surfaces promoted the expression of osteocalcin, alkaline phosphatase activity and ECM proteins such as fibronectin and vitronectin under differentiation culture conditions. Transcript analysis using gene chip microarrays confirmed that culturing TE85 cells on anionic surfaces did not activate apoptotic pathways. Collectively, these results suggest that the potential mineral-binding anionic ligands examined here do not exert significant adverse effects on the expression of important osteogenic markers of TE85 cells. This work paves the way for the incorporation of these ligands into 3-dimensional artificial bone-like scaffolds.

  7. T-Slide Linear Actuators

    NASA Technical Reports Server (NTRS)

    Vranish, John

    2009-01-01

    -the-shelf, electric servomotor, a motor angle resolution sensor (typically an encoder or resolver), and microprocessor-based intelligent software. In applications requiring precision positioning, it may be necessary to add strain gauges to the T-slide housing. Existing sensory- interactive motion control art will work for T slides. For open-loop positioning, a stepping motor emulation technique can be used.

  8. Mycobacterium tuberculosis class II apurinic/apyrimidinic-endonuclease/3'-5' exonuclease III exhibits DNA regulated modes of interaction with the sliding DNA β-clamp.

    PubMed

    Khanam, Taran; Rai, Niyati; Ramachandran, Ravishankar

    2015-10-01

    The class-II AP-endonuclease (XthA) acts on abasic sites of damaged DNA in bacterial base excision repair. We identified that the sliding DNA β-clamp forms in vivo and in vitro complexes with XthA in Mycobacterium tuberculosis. A novel 239 QLRFPKK245 motif in the DNA-binding domain of XthA was found to be important for the interactions. Likewise, the peptide binding-groove (PBG) and the C-terminal of β-clamp located on different domains interact with XthA. The β-clamp-XthA complex can be disrupted by clamp binding peptides and also by a specific bacterial clamp inhibitor that binds at the PBG. We also identified that β-clamp stimulates the activities of XthA primarily by increasing its affinity for the substrate and its processivity. Additionally, loading of the β-clamp onto DNA is required for activity stimulation. A reduction in XthA activity stimulation was observed in the presence of β-clamp binding peptides supporting that direct interactions between the proteins are necessary to cause stimulation. Finally, we found that in the absence of DNA, the PBG located on the second domain of the β-clamp is important for interactions with XthA, while the C-terminal domain predominantly mediates functional interactions in the substrate's presence.

  9. Dust Slides

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03677 Linear Clouds

    Dust slides are common in the dust covered region called Lycus Sulci. A large fracture is also visible in this image.

    Image information: VIS instrument. Latitude 28.1N, Longitude 226.3E. 18 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  10. The Ddc1-Mec3-Rad17 Sliding Clamp Regulates Histone-Histone Chaperone Interactions and DNA Replication-coupled Nucleosome Assembly in Budding Yeast*

    PubMed Central

    Burgess, Rebecca J.; Han, Junhong; Zhang, Zhiguo

    2014-01-01

    The maintenance of genome integrity is regulated in part by chromatin structure and factors involved in the DNA damage response pathway. Nucleosome assembly is a highly regulated process that restores chromatin structure after DNA replication, DNA repair, and gene transcription. During S phase the histone chaperones Asf1, CAF-1, and Rtt106 coordinate to deposit newly synthesized histones H3-H4 onto replicated DNA in budding yeast. Here we describe synthetic genetic interactions between RTT106 and the DDC1-MEC3-RAD17 (9-1-1) complex, a sliding clamp functioning in the S phase DNA damage and replication checkpoint response, upon treatment with DNA damaging agents. The DNA damage sensitivity of rad17Δ rtt106Δ cells depends on the function of Rtt106 in nucleosome assembly. Epistasis analysis reveals that 9-1-1 complex components interact with multiple DNA replication-coupled nucleosome assembly factors, including Rtt106, CAF-1, and lysine residues of H3-H4. Furthermore, rad17Δ cells exhibit defects in the deposition of newly synthesized H3-H4 onto replicated DNA. Finally, deletion of RAD17 results in increased association of Asf1 with checkpoint kinase Rad53, which may lead to the observed reduction in Asf1-H3 interaction in rad17Δ mutant cells. In addition, we observed that the interaction between histone H3-H4 with histone chaperone CAF-1 or Rtt106 increases in cells lacking Rad17. These results support the idea that the 9-1-1 checkpoint protein regulates DNA replication-coupled nucleosome assembly in part through regulating histone-histone chaperone interactions. PMID:24573675

  11. Computational Fluid Dynamics Study of Molten Steel Flow Patterns and Particle-Wall Interactions Inside a Slide-Gate Nozzle by a Hybrid Turbulent Model

    NASA Astrophysics Data System (ADS)

    Mohammadi-Ghaleni, Mahdi; Asle Zaeem, Mohsen; Smith, Jeffrey D.; O'Malley, Ronald

    2016-10-01

    Melt flow patterns and turbulence inside a slide-gate throttled submerged entry nozzle (SEN) were studied using Detached-Eddy Simulation (DES) model, which is a combination of Reynolds-Averaged Navier-Stokes (RANS) and Large-Eddy Simulation (LES) models. The DES switching criterion between RANS and LES was investigated to closely reproduce the flow structures of low and high turbulence regions similar to RANS and LES simulations, respectively. The melt flow patterns inside the nozzle were determined by k- ɛ (a RANS model), LES, and DES turbulent models, and convergence studies were performed to ensure reliability of the results. Results showed that the DES model has significant advantages over the standard k- ɛ model in transient simulations and in regions containing flow separation from the nozzle surface. Moreover, due to applying a hybrid approach, DES uses a RANS model at wall boundaries which resolves the extremely fine mesh requirement of LES simulations, and therefore it is computationally more efficient. Investigation of particle distribution inside the nozzle and particle adhesion to the nozzle wall also reveals that the DES model simulations predict more particle-wall interactions compared to LES model.

  12. Computational Fluid Dynamics Study of Molten Steel Flow Patterns and Particle-Wall Interactions Inside a Slide-Gate Nozzle by a Hybrid Turbulent Model

    NASA Astrophysics Data System (ADS)

    Mohammadi-Ghaleni, Mahdi; Asle Zaeem, Mohsen; Smith, Jeffrey D.; O'Malley, Ronald

    2016-06-01

    Melt flow patterns and turbulence inside a slide-gate throttled submerged entry nozzle (SEN) were studied using Detached-Eddy Simulation (DES) model, which is a combination of Reynolds-Averaged Navier-Stokes (RANS) and Large-Eddy Simulation (LES) models. The DES switching criterion between RANS and LES was investigated to closely reproduce the flow structures of low and high turbulence regions similar to RANS and LES simulations, respectively. The melt flow patterns inside the nozzle were determined by k-ɛ (a RANS model), LES, and DES turbulent models, and convergence studies were performed to ensure reliability of the results. Results showed that the DES model has significant advantages over the standard k-ɛ model in transient simulations and in regions containing flow separation from the nozzle surface. Moreover, due to applying a hybrid approach, DES uses a RANS model at wall boundaries which resolves the extremely fine mesh requirement of LES simulations, and therefore it is computationally more efficient. Investigation of particle distribution inside the nozzle and particle adhesion to the nozzle wall also reveals that the DES model simulations predict more particle-wall interactions compared to LES model.

  13. Sliding vane geometry turbines

    DOEpatents

    Sun, Harold Huimin; Zhang, Jizhong; Hu, Liangjun; Hanna, Dave R

    2014-12-30

    Various systems and methods are described for a variable geometry turbine. In one example, a turbine nozzle comprises a central axis and a nozzle vane. The nozzle vane includes a stationary vane and a sliding vane. The sliding vane is positioned to slide in a direction substantially tangent to an inner circumference of the turbine nozzle and in contact with the stationary vane.

  14. Teach Classification with Slides.

    ERIC Educational Resources Information Center

    Franks, Deborah

    1980-01-01

    Described is a creative approach to the use of contact slides as a means of student participation in a learning unit on animal classification. The finished product is a slide presentation in which students themselves have made the slides and taped the narration. (CS)

  15. Sliding-Ring Catenanes.

    PubMed

    Fernando, Isurika R; Frasconi, Marco; Wu, Yilei; Liu, Wei-Guang; Wasielewski, Michael R; Goddard, William A; Stoddart, J Fraser

    2016-08-17

    Template-directed protocols provide a routine approach to the synthesis of mechanically interlocked molecules (MIMs), in which the mechanical bonds are stabilized by a wide variety of weak interactions. In this Article, we describe a strategy for the preparation of neutral [2]catenanes with sliding interlocked electron-rich rings, starting from two degenerate donor-acceptor [2]catenanes, consisting of a tetracationic cyclobis(paraquat-p-phenylene) cyclophane (CBPQT(4+)) and crown ethers containing either (i) hydroquinone (HQ) or (ii) 1,5-dioxynaphthalene (DNP) recognition units and carrying out four-electron reductions of the cyclophane components to their neutral forms. The donor-acceptor interactions between the CBPQT(4+) ring and both HQ and DNP units present in the crown ethers that stabilize the [2]catenanes are weakened upon reduction of the cyclophane components to their radical cationic states and are all but absent in their fully reduced states. Characterization in solution performed by UV-vis, EPR, and NMR spectroscopic probes reveals that changes in the redox properties of the [2]catenanes result in a substantial decrease of the energy barriers for the circumrotation and pirouetting motions of the interlocked rings, which glide freely through one another in the neutral states. The solid-state structures of the fully reduced catenanes reveal profound changes in the relative dispositions of the interlocked rings, with the glycol chains of the crown ethers residing in the cavities of the neutral CBPQT(0) rings. Quantum mechanical investigations of the energy levels associated with the four different oxidation states of the catenanes support this interpretation. Catenanes and rotaxanes with sliding rings are expected to display unique properties. PMID:27398609

  16. Whole slide imaging for educational purposes

    PubMed Central

    Pantanowitz, Liron; Szymas, Janusz; Yagi, Yukako; Wilbur, David

    2012-01-01

    Digitized slides produced by whole slide image scanners can be easily shared over a network or by transferring image files to optical or other data storage devices. Navigation of digitized slides is interactive and intended to simulate viewing glass slides with a microscope (virtual microscopy). Image viewing software permits users to edit, annotate, analyze, and easily share whole slide images (WSI). As a result, WSI have begun to replace the traditional light microscope, offering a myriad of opportunities for education. This article focuses on current applications of WSI in education and proficiency testing. WSI has been successfully explored for graduate education (medical, dental, and veterinary schools), training of pathology residents, as an educational tool in allied pathology schools (e.g., cytotechnology), for virtual tracking and tutoring, tele-education (tele-conferencing), e-learning, virtual workshops, at tumor boards, with interactive publications, and on examinations. WSI supports flexible and cost-effective distant learning and augments problem-oriented teaching, competency evaluation, and proficiency testing. WSI viewed on touchscreen displays and with tablet technology are especially beneficial for education. Further investigation is necessary to develop superior WSI applications that better support education and to design viewing stations with ergonomic tools that improve the WSI-human interface and navigation of virtual slides. Studies to determine the impact of training pathologists without exposure to actual glass slides are also needed. PMID:23372987

  17. Physics in water slides

    NASA Astrophysics Data System (ADS)

    Thomazo, Jean-Baptiste; Reyssat, Etienne; Fermigier, Marc

    2015-11-01

    Water slides are body-size inclined pipes fed with water to improve sliding. Water is allowed to freely flow down the slide. It forms a lubrication film that reduces friction between the slide and the body, allowing sliders to travel down at high speeds. We present the results of an experimental study on a model water slide at the scale of the laboratory. We analyze the sliding velocities of cylindrical objects of various masses and sizes sliding down an inclined gutter fed with a controlled flux of water. In the range of parameters that we have studied, we show that the speed of the model sliders is faster than the flow of the environing water. We propose a minimal model to account for the observed sliding velocities measured in our experiments. The sliding velocity is set by a balance of the apparent weight with inertial drag or viscous friction in the lubrication film under the slider. Other resisting mechanisms will also be discussed.

  18. Mailing microscope slides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many insects feed agriculturally important crops, trees, and ornamental plants and cause millions of dollars of damage annually. Identification for some of these require the preparation of a microscope slide for examination. There are times when a microscope slide may need to be sent away to a speci...

  19. Analysis of slide exploration strategy of cytologists when reading digital slides

    NASA Astrophysics Data System (ADS)

    Pantanowitz, Liron; Parwani, Anil; Tseytlin, Eugene; Mello-Thoms, Claudia

    2012-02-01

    Cytology is the sub-domain of Pathology that deals mainly with the diagnosis of cellular changes caused by disease. Current clinical practice involves a cytotechnologist that manually screens glass slides containing fixed cytology material using a light microscope. Screened slides are then forwarded to a specialized pathologist, a cytopathologist, for microscopic review and final diagnostic interpretation. If no abnormalities are detected, the specimen is interpreted as "normal", otherwise the abnormalities are marked with a pen on the glass slide by the cytotechnologist and then are used to render a diagnosis. As Pathology is migrating towards a digital environment it is important to determine whether these crucial screening and diagnostic tasks can be performed as well using digital slides as the current practice with glass slides. The purpose of this work is to make this assessment, by using a set of digital slides depicting cytological materials of different disease processes in several organs, and then to analyze how different cytologists including cytotechnologists, cytopathologists and cytotechnology-trainees explored the digital slides. We will (1) collect visual search data from the cytologists as they navigate the digital slides, as well as record any electronic marks (annotations) made by the cytologists; (2) convert the dynamic visual search data into a static representation of the observers' exploration strategy using 'search maps'; and (3) determine slide coverage, per viewing magnification range, for each group. We have developed a virtual microscope to collect this data, and this interface allows for interactive navigation of the virtual slide (including panning and zooming), as well as annotation of reportable findings. Furthermore, all interactions with the interface are time stamped, which allows us to recreate the cytologists' search strategy.

  20. Slides, Swings and Science.

    ERIC Educational Resources Information Center

    Dreyer, Kay Jardon; Bryte, Janelle

    1990-01-01

    Described are eight science activities that may take place on a school playground using a parachute, balls, swings, slides, and a balance beam. Procedures and questions for each activity are included. (CW)

  1. Water-slide alopecia.

    PubMed

    Adams, B B

    2001-05-01

    A 29-year-old male presented with large, symmetric, alopecic patches on the posterolateral aspects of both calves. A detailed history revealed that the individual had recently attended a water-slide amusement park. Repeated frictional trauma between the legs and the slide resulted in these alopecic patches. Friction, especially when encountered during sports-related and recreational activities, should be included in the differential diagnosis of well-defined alopecic patches.

  2. Prototype Slide Stainer

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The prototype slide staining system capable of performing both one-component Wright's staining of blood smears and eight-step Gram staining of heat fixed slides of microorganisms is described. Attention was given to liquid containment, waste handling, absence of contamination from previous staining, and stability of the staining reagents. The unit is self-contained, capable of independent operation under one- or zero-g conditions, and compatible with Skylab A.

  3. Fundamentals of the Slide Library.

    ERIC Educational Resources Information Center

    Boerner, Susan Zee

    This paper is an introduction to the fundamentals of the art (including architecture) slide library, with some emphasis on basic procedures of the science slide library. Information in this paper is particularly relevant to the college, university, and museum slide library. Topics addressed include: (1) history of the slide library; (2) duties of…

  4. Selected Landscape Plants. Slide Script.

    ERIC Educational Resources Information Center

    McCann, Kevin

    This slide script, part of a series of slide scripts designed for use in vocational agriculture classes, deals with commercially important woody ornamental landscape plants. Included in the script are narrations for use with a total of 253 slides illustrating 92 different plants. Several slides are used to illustrate each plant: besides a view of…

  5. Ornamental Landscape Grasses. Slide Script.

    ERIC Educational Resources Information Center

    Still, Steven M.; Adams, Denise W.

    This slide script to accompany the slide series, Ornamental Landscape Grasses, contains photographs of the 167 slides and accompanying narrative text intended for use in the study and identification of commercially important ornamental grasses and grasslike plants. Narrative text is provided for slides of 62 different perennial and annual species…

  6. The selectivity of Vibrio cholerae H-NOX for gaseous ligands follows the "sliding scale rule" hypothesis. Ligand interactions with both ferrous and ferric Vc H-NOX.

    PubMed

    Wu, Gang; Liu, Wen; Berka, Vladimir; Tsai, Ah-lim

    2013-12-31

    Vc H-NOX (or VCA0720) is an H-NOX (heme-nitric oxide and oxygen binding) protein from facultative aerobic bacterium Vibrio cholerae. It shares significant sequence homology with soluble guanylyl cyclase (sGC), a NO sensor protein commonly found in animals. Similar to sGC, Vc H-NOX binds strongly to NO and CO with affinities of 0.27 nM and 0.77 μM, respectively, but weakly to O2. When positioned on a "sliding scale" plot [Tsai, A.-l., et al. (2012) Biochemistry 51, 172-186], the line connecting log K(D)(NO) and log K(D)(CO) of Vc H-NOX can almost be superimposed with that of Ns H-NOX. Therefore, the measured affinities and kinetic parameters of gaseous ligands to Vc H-NOX provide more evidence to validate the "sliding scale rule" hypothesis. Like sGC, Vc H-NOX binds NO in multiple steps, forming first a six-coordinate heme-NO complex at a rate of 1.1 × 10(9) M(-1) s(-1), and then converts to a five-coordinate heme-NO complex at a rate that is also dependent on NO concentration. Although the formation of oxyferrous Vc H-NOX cannot be detected at a normal atmospheric oxygen level, ferrous Vc H-NOX is oxidized to the ferric form at a rate of 0.06 s(-1) when mixed with O2. Ferric Vc H-NOX exists as a mixture of high- and low-spin states and is influenced by binding to different ligands. Characterization of both ferric and ferrous Vc H-NOX and their complexes with various ligands lays the foundation for understanding the possible dual roles in gas and redox sensing of Vc H-NOX.

  7. Slowing the Summer Slide

    ERIC Educational Resources Information Center

    Smith, Lorna

    2012-01-01

    Research shows that summer slide--the loss of learning over the summer break--is a huge contributor to the achievement gap between low-income students and their higher-income peers. In fact, some researchers have concluded that two-thirds of the 9th-grade reading achievement gap can be explained by unequal access to summer learning opportunities…

  8. Reversing the Slide

    ERIC Educational Resources Information Center

    Gallagher, Michael

    2005-01-01

    The Government is embarking on a grand market-based vision for the sector just at the moment when university enrolments will begin a long and perhaps inexorable slide. And according to Michael Gallagher, higher education is becoming a less attractive investment for the private sector even as the Government is pushing the sector towards ever higher…

  9. cryo-EM structures of the E. coli replicative DNA polymerase reveal its dynamic interactions with the DNA sliding clamp, exonuclease and τ

    PubMed Central

    Fernandez-Leiro, Rafael; Conrad, Julian; Scheres, Sjors HW; Lamers, Meindert H

    2015-01-01

    The replicative DNA polymerase PolIIIα from Escherichia coli is a uniquely fast and processive enzyme. For its activity it relies on the DNA sliding clamp β, the proofreading exonuclease ε and the C-terminal domain of the clamp loader subunit τ. Due to the dynamic nature of the four-protein complex it has long been refractory to structural characterization. Here we present the 8 Å resolution cryo-electron microscopy structures of DNA-bound and DNA-free states of the PolIII-clamp-exonuclease-τc complex. The structures show how the polymerase is tethered to the DNA through multiple contacts with the clamp and exonuclease. A novel contact between the polymerase and clamp is made in the DNA bound state, facilitated by a large movement of the polymerase tail domain and τc. These structures provide crucial insights into the organization of the catalytic core of the replisome and form an important step towards determining the structure of the complete holoenzyme. DOI: http://dx.doi.org/10.7554/eLife.11134.001 PMID:26499492

  10. Slide system for machine tools

    DOEpatents

    Douglass, Spivey S.; Green, Walter L.

    1982-01-01

    The present invention relates to a machine tool which permits the machining of nonaxisymmetric surfaces on a workpiece while rotating the workpiece about a central axis of rotation. The machine tool comprises a conventional two-slide system (X-Y) with one of these slides being provided with a relatively short travel high-speed auxiliary slide which carries the material-removing tool. The auxiliary slide is synchronized with the spindle speed and the position of the other two slides and provides a high-speed reciprocating motion required for the displacement of the cutting tool for generating a nonaxisymmetric surface at a selected location on the workpiece.

  11. Slide system for machine tools

    DOEpatents

    Douglass, S.S.; Green, W.L.

    1980-06-12

    The present invention relates to a machine tool which permits the machining of nonaxisymmetric surfaces on a workpiece while rotating the workpiece about a central axis of rotation. The machine tool comprises a conventional two-slide system (X-Y) with one of these slides being provided with a relatively short travel high-speed auxiliary slide which carries the material-removing tool. The auxiliary slide is synchronized with the spindle speed and the position of the other two slides and provides a high-speed reciprocating motion required for the displacement of the cutting tool for generating a nonaxisymmetric surface at a selected location on the workpiece.

  12. Reconstitution of flagellar sliding.

    PubMed

    Alper, Joshua; Geyer, Veikko; Mukundan, Vikram; Howard, Jonathon

    2013-01-01

    The motile structure within eukaryotic cilia and flagella is the axoneme. This structure typically consists of nine doublet microtubules arranged around a pair of singlet microtubules. The axoneme contains more than 650 different proteins that have structural, force-generating, and regulatory functions. Early studies on sea urchin sperm identified the force-generating components, the dynein motors. It was shown that dynein can slide adjacent doublet microtubules in the presence of ATP. How this sliding gives rise to the beating of the axoneme is still unknown. Reconstitution assays provide a clean system, free from cellular effects, to elucidate the underlying beating mechanisms. These assays can be used to identify the components that are both necessary and sufficient for the generation of flagellar beating. PMID:23498749

  13. Reconstitution of flagellar sliding.

    PubMed

    Alper, Joshua; Geyer, Veikko; Mukundan, Vikram; Howard, Jonathon

    2013-01-01

    The motile structure within eukaryotic cilia and flagella is the axoneme. This structure typically consists of nine doublet microtubules arranged around a pair of singlet microtubules. The axoneme contains more than 650 different proteins that have structural, force-generating, and regulatory functions. Early studies on sea urchin sperm identified the force-generating components, the dynein motors. It was shown that dynein can slide adjacent doublet microtubules in the presence of ATP. How this sliding gives rise to the beating of the axoneme is still unknown. Reconstitution assays provide a clean system, free from cellular effects, to elucidate the underlying beating mechanisms. These assays can be used to identify the components that are both necessary and sufficient for the generation of flagellar beating.

  14. Protein-Protein Interactions Leading to Recruitment of the Host DNA Sliding Clamp by the Hyperthermophilic Sulfolobus islandicus Rod-Shaped Virus 2

    PubMed Central

    Gardner, Andrew F.; Bell, Stephen D.; White, Malcolm F.

    2014-01-01

    Viruses infecting hyperthermophilic archaea typically do not encode DNA polymerases, raising questions regarding their genome replication. Here, using a yeast two-hybrid approach, we have assessed interactions between proteins of Sulfolobus islandicus rod-shaped virus 2 (SIRV2) and the host-encoded proliferating cell nuclear antigen (PCNA), a key DNA replication protein in archaea. Five SIRV2 proteins were found to interact with PCNA, providing insights into the recruitment of host replisome for viral DNA replication. PMID:24696494

  15. Microtubule sliding in reactivated flagella.

    PubMed

    Takahashi, K; Shingyoji, C; Kamimura, S

    1982-01-01

    Recent experimental studies of microtubule sliding in demembranated sea urchin sperm flagella are described. A local iontophoretic application of ATP to a Triton-extracted flagellum elicits a local bending response whose form is in exact conformity with the predictions of the sliding microtubule model. Cinematographic analysis of the microtubule sliding initiated by treating fragments of demembranated flagella with trypsin in the presence of ATP reveals that the speed of sliding is almost constant. This implies that the speed does not depend on the number of dynein arms participating in the generation of sliding force. The distribution of apparent sliding velocities indicates that there is no difference in sliding velocity among the doublets. The sliding velocity depends on MgATP concentration in a manner consistent with Michaelis-Menten kinetics. The sliding velocity of doublets in trypsin-treated axonemes is close to the maximum velocity of relative sliding taking place between adjacent doublets in beating flagella reactivated at the same MgATP concentration.

  16. Appearance Normalization of Histology Slides

    NASA Astrophysics Data System (ADS)

    Niethammer, Marc; Borland, David; Marron, J. S.; Woosley, John; Thomas, Nancy E.

    This paper presents a method for automatic color and intensity normalization of digitized histology slides stained with two different agents. In comparison to previous approaches, prior information on the stain vectors is used in the estimation process, resulting in improved stability of the estimates. Due to the prevalence of hematoxylin and eosin staining for histology slides, the proposed method has significant practical utility. In particular, it can be used as a first step to standardize appearances across slides, that is very effective at countering effects due to differing stain amounts and protocols, and to slide fading. The approach is validated using synthetic experiments and 13 real datasets.

  17. Single molecule study of a processivity clamp sliding on DNA

    SciTech Connect

    Laurence, T A; Kwon, Y; Johnson, A; Hollars, C; O?Donnell, M; Camarero, J A; Barsky, D

    2007-07-05

    Using solution based single molecule spectroscopy, we study the motion of the polIII {beta}-subunit DNA sliding clamp ('{beta}-clamp') on DNA. Present in all cellular (and some viral) forms of life, DNA sliding clamps attach to polymerases and allow rapid, processive replication of DNA. In the absence of other proteins, the DNA sliding clamps are thought to 'freely slide' along the DNA; however, the abundance of positively charged residues along the inner surface may create favorable electrostatic contact with the highly negatively charged DNA. We have performed single-molecule measurements on a fluorescently labeled {beta}-clamp loaded onto freely diffusing plasmids annealed with fluorescently labeled primers of up to 90 bases. We find that the diffusion constant for 1D diffusion of the {beta}-clamp on DNA satisfies D {le} 10{sup -14} cm{sup 2}/s, much slower than the frictionless limit of D = 10{sup -10} cm{sup 2}/s. We find that the {beta} clamp remains at the 3-foot end in the presence of E. coli single-stranded binding protein (SSB), which would allow for a sliding clamp to wait for binding of the DNA polymerase. Replacement of SSB with Human RP-A eliminates this interaction; free movement of sliding clamp and poor binding of clamp loader to the junction allows sliding clamp to accumulate on DNA. This result implies that the clamp not only acts as a tether, but also a placeholder.

  18. Using Scrap Slides for Art.

    ERIC Educational Resources Information Center

    Hanlon, Heather

    1979-01-01

    Using scrap slides for an art lesson can be an exciting, creative experience for people of all ages, and many techniques are applicable in both primary and secondary grades. Scrap slides are an inexpensive means to unique, original, and stimulating discoveries about film as an art form. (Author)

  19. Appearance normalization of histology slides.

    PubMed

    Vicory, Jared; Couture, Heather D; Thomas, Nancy E; Borland, David; Marron, J S; Woosley, John; Niethammer, Marc

    2015-07-01

    This paper presents a method for automatic color and intensity normalization of digitized histology slides stained with two different agents. In comparison to previous approaches, prior information on the stain vectors is used in the plane estimation process, resulting in improved stability of the estimates. Due to the prevalence of hematoxylin and eosin staining for histology slides, the proposed method has significant practical utility. In particular, it can be used as a first step to standardize appearance across slides and is effective at countering effects due to differing stain amounts and protocols and counteracting slide fading. The approach is validated against non-prior plane-fitting using synthetic experiments and 13 real datasets. Results of application of the method to adjustment of faded slides are given, and the effectiveness of the method in aiding statistical classification is shown.

  20. SurfaceSlide: A Multitouch Digital Pathology Platform

    PubMed Central

    Wang, Yinhai; Williamson, Kate E.; Kelly, Paul J.; James, Jacqueline A.; Hamilton, Peter W.

    2012-01-01

    Background Digital pathology provides a digital environment for the management and interpretation of pathological images and associated data. It is becoming increasing popular to use modern computer based tools and applications in pathological education, tissue based research and clinical diagnosis. Uptake of this new technology is stymied by its single user orientation and its prerequisite and cumbersome combination of mouse and keyboard for navigation and annotation. Methodology In this study we developed SurfaceSlide, a dedicated viewing platform which enables the navigation and annotation of gigapixel digitised pathological images using fingertip touch. SurfaceSlide was developed using the Microsoft Surface, a 30 inch multitouch tabletop computing platform. SurfaceSlide users can perform direct panning and zooming operations on digitised slide images. These images are downloaded onto the Microsoft Surface platform from a remote server on-demand. Users can also draw annotations and key in texts using an on-screen virtual keyboard. We also developed a smart caching protocol which caches the surrounding regions of a field of view in multi-resolutions thus providing a smooth and vivid user experience and reducing the delay for image downloading from the internet. We compared the usability of SurfaceSlide against Aperio ImageScope and PathXL online viewer. Conclusion SurfaceSlide is intuitive, fast and easy to use. SurfaceSlide represents the most direct, effective and intimate human–digital slide interaction experience. It is expected that SurfaceSlide will significantly enhance digital pathology tools and applications in education and clinical practice. PMID:22292040

  1. Sliding Mode Thermal Control System for Space Station Furnace Facility

    NASA Technical Reports Server (NTRS)

    Jackson Mark E.; Shtessel, Yuri B.

    1998-01-01

    The decoupled control of the nonlinear, multiinput-multioutput, and highly coupled space station furnace facility (SSFF) thermal control system is addressed. Sliding mode control theory, a subset of variable-structure control theory, is employed to increase the performance, robustness, and reliability of the SSFF's currently designed control system. This paper presents the nonlinear thermal control system description and develops the sliding mode controllers that cause the interconnected subsystems to operate in their local sliding modes, resulting in control system invariance to plant uncertainties and external and interaction disturbances. The desired decoupled flow-rate tracking is achieved by optimization of the local linear sliding mode equations. The controllers are implemented digitally and extensive simulation results are presented to show the flow-rate tracking robustness and invariance to plant uncertainties, nonlinearities, external disturbances, and variations of the system pressure supplied to the controlled subsystems.

  2. Directional molecular sliding at room temperature on a silicon runway

    NASA Astrophysics Data System (ADS)

    Bouju, Xavier; Chérioux, Frédéric; Coget, Sébastien; Rapenne, Gwénaël; Palmino, Frank

    2013-07-01

    The design of working nanovehicles is a key challenge for the development of new devices. In this context, 1D controlled sliding of molecules on a silicon-based surface is successfully achieved by using an optimized molecule-substrate pair. Even though the molecule and surface are compatible, the molecule-substrate interaction provides a 1D template effect to guide molecular sliding along a preferential surface orientation. Molecular motion is monitored by STM experiments under ultra-high vacuum at room temperature. Molecule-surface interactions are elucidated by semi-empirical calculations.The design of working nanovehicles is a key challenge for the development of new devices. In this context, 1D controlled sliding of molecules on a silicon-based surface is successfully achieved by using an optimized molecule-substrate pair. Even though the molecule and surface are compatible, the molecule-substrate interaction provides a 1D template effect to guide molecular sliding along a preferential surface orientation. Molecular motion is monitored by STM experiments under ultra-high vacuum at room temperature. Molecule-surface interactions are elucidated by semi-empirical calculations. Electronic supplementary information (ESI) available: Computational details, additional STM images and movies showing DETB molecules sliding on the SmSi(111)-(7 × 1) reconstruction obtained from semi-empirical calculations. See DOI: 10.1039/c3nr01685d

  3. Sliding Motility in Mycobacteria

    PubMed Central

    Martínez, Asunción; Torello, Sandra; Kolter, Roberto

    1999-01-01

    Mycobacteria are nonflagellated gram-positive microorganisms. Previously thought to be nonmotile, we show here that Mycobacterium smegmatis can spread on the surface of growth medium by a sliding mechanism. M. smegmatis spreads as a monolayer of cells which are arranged in pseudofilaments by close cell-to-cell contacts, predominantly along their longitudinal axis. The monolayer moves away from the inoculation point as a unit with only minor rearrangements. No extracellular structures such as pili or fimbriae appear to be involved in this process. The ability to translocate over the surface correlates with the presence of glycopeptidolipids, a mycobacterium-specific class of amphiphilic molecules located in the outermost layer of the cell envelope. We present evidence that surface motility is not restricted to M. smegmatis but is also a property of the slow-growing opportunistic pathogen M. avium. This form of motility could play an important role in surface colonization by mycobacteria in the environment as well as in the host. PMID:10572138

  4. An Airship Slide Rule

    NASA Technical Reports Server (NTRS)

    Weaver, E R; Pickering, S F

    1924-01-01

    This report prepared for the National Advisory Committee for Aeronautics, describes an airship slide rule developed by the Gas-Chemistry Section of the Bureau of Standards, at the request of the Bureau of Engineering of the Navy Department. It is intended primarily to give rapid solutions of a few problems of frequent occurrence in airship navigation, but it can be used to advantage in solving a great variety of problems, involving volumes, lifting powers, temperatures, pressures, altitudes and the purity of the balloon gas. The rule is graduated to read directly in the units actually used in making observations, constants and conversion factors being taken care of by the length and location of the scales. It is thought that with this rule practically any problem likely to arise in this class of work can be readily solved after the user has become familiar with the operation of the rule; and that the solution will, in most cases, be as accurate as the data warrant.

  5. Understanding Learning Style by Eye Tracking in Slide Video Learning

    ERIC Educational Resources Information Center

    Cao, Jianxia; Nishihara, Akinori

    2012-01-01

    More and more videos are now being used in e-learning context. For improving learning effect, to understand how students view the online video is important. In this research, we investigate how students deploy their attention when they learn through interactive slide video in the aim of better understanding observers' learning style. Felder and…

  6. A novel glass slide filing system for pathology slides.

    PubMed

    Tsai, Steve; Kartono, Francisca; Shitabata, Paul K

    2007-07-01

    The availability of a collection of microscope glass slides for review is essential in the study and practice of pathology. A common problem facing many pathologists is the lack of a well-organized filing system. We present a novel system that would be easily accessible, informative, protective, and portable.

  7. Dependence of boundary lubrication on the misfit angle between the sliding surfaces.

    PubMed

    Braun, O M; Manini, Nicola

    2011-02-01

    Using molecular dynamics based on Langevin equations with a coordinate- and velocity-dependent damping coefficient, we study the frictional properties of a thin layer of "soft" lubricant (where the interaction within the lubricant is weaker than the lubricant-substrate interaction) confined between two solids. At low driving velocities the system demonstrates stick-slip motion. The lubricant may or may not be melted during sliding, thus exhibiting either the "liquid sliding" (LS) or the "layer over layer sliding" (LoLS) regimes. The LoLS regime mainly operates at low sliding velocities. We investigate the dependence of friction properties on the misfit angle between the sliding surfaces and calculate the distribution of static frictional thresholds for a contact of polycrystalline surfaces. PMID:21405848

  8. Herbaceous Ornamental Plants. Slide Script.

    ERIC Educational Resources Information Center

    Still, Steven

    This document, which is one in a series of curriculum materials that has been developed for use in Ohio agricultural education programs, contains 338 black-and-white photographs of a set of color slides and an accompanying script that, together, are intended as an aid in the study and identification of 150 different commercially important…

  9. Automatic 35 mm slide duplicator

    NASA Technical Reports Server (NTRS)

    Seidel, H. F.; Texler, R. E.

    1980-01-01

    Automatic duplicator is readily assembled from conventional, inexpensive equipment and parts. Series of slides can be exposed without operator attention, eliminating considerable manual handling and processing ordinarily required. At end of programmed exposure sequence, unit shuts off and audible alarm signals completion of process.

  10. Diseases of Landscape Ornamentals. Slide Script.

    ERIC Educational Resources Information Center

    Powell, Charles C.; Sydnor, T. Davis

    This slide script, part of a series of slide scripts designed for use in vocational agriculture classes, deals with recognizing and controlling diseases found on ornamental landscape plants. Included in the script are narrations for use with a total of 80 slides illustrating various foliar diseases (anthracnose, black spot, hawthorn leaf blight,…

  11. Linear Classification of Dairy Cattle. Slide Script.

    ERIC Educational Resources Information Center

    Sipiorski, James; Spike, Peter

    This slide script, part of a series of slide scripts designed for use in vocational agriculture classes, deals with principles of the linear classification of dairy cattle. Included in the guide are narrations for use with 63 slides, which illustrate the following areas that are considered in the linear classification system: stature, strength,…

  12. Approved Practices in Dairy Reproduction. Slide Script.

    ERIC Educational Resources Information Center

    Roediger, Roger D.; Barr, Harry L.

    This slide script, part of a series of slide scripts designed for use in vocational agriculture classes, deals with approved practices in dairy reproduction. Included in the guide are narrations for use with 200 slides dealing with the following topics: the importance of good reproduction, the male and female roles in reproduction, selection of…

  13. Pressure vessel sliding support unit and system using the sliding support unit

    DOEpatents

    Breach, Michael R.; Keck, David J.; Deaver, Gerald A.

    2013-01-15

    Provided is a sliding support and a system using the sliding support unit. The sliding support unit may include a fulcrum capture configured to attach to a support flange, a fulcrum support configured to attach to the fulcrum capture, and a baseplate block configured to support the fulcrum support. The system using the sliding support unit may include a pressure vessel, a pedestal bracket, and a plurality of sliding support units.

  14. Automated single-slide staining device

    NASA Technical Reports Server (NTRS)

    Wilkins, J. R.; Mills, S. M. (Inventor)

    1977-01-01

    A simple apparatus and method is disclosed for making individual single Gram stains on bacteria inoculated slides to assist in classifying bacteria in the laboratory as Gram-positive or Gram-negative. The apparatus involves positioning a single inoculated slide in a stationary position and thereafter automatically and sequentially flooding the slide with increments of a primary stain, a mordant, a decolorizer, a counterstain and a wash solution in a sequential manner without the individual lab technician touching the slide and with minimum danger of contamination thereof from other slides.

  15. Sliding mode control of magnetic suspensions for precision pointing and tracking applications

    NASA Technical Reports Server (NTRS)

    Misovec, Kathleen M.; Flynn, Frederick J.; Johnson, Bruce G.; Hedrick, J. Karl

    1991-01-01

    A recently developed nonlinear control method, sliding mode control, is examined as a means of advancing the achievable performance of space-based precision pointing and tracking systems that use nonlinear magnetic actuators. Analytic results indicate that sliding mode control improves performance compared to linear control approaches. In order to realize these performance improvements, precise knowledge of the plant is required. Additionally, the interaction of an estimating scheme and the sliding mode controller has not been fully examined in the literature. Estimation schemes were designed for use with this sliding mode controller that do not seriously degrade system performance. The authors designed and built a laboratory testbed to determine the feasibility of utilizing sliding mode control in these types of applications. Using this testbed, experimental verification of the authors' analyses is ongoing.

  16. Apparatus Would Stain Microscope Slides

    NASA Technical Reports Server (NTRS)

    Breeding, James D.

    1993-01-01

    Proposed apparatus meters specific amounts of fluid out of containers at specific times to stain microscope slides. Intended specifically for semiautomated staining of microbiological and hematological samples in microgravity, leakproof apparatus used in other environments in which technicians have little time to allocate to staining procedures and/or exposure to toxic staining agents or to micro-organisms to be stained hazardous. Apparatus adapted to perform almost any staining procedure and accommodates multiple staining reagents, useful for small or remote clinical laboratories.

  17. Sliding seal materials for adiabatic engines

    NASA Technical Reports Server (NTRS)

    Lankford, J.

    1985-01-01

    The sliding friction coefficients and wear rates of promising carbide, oxide, and nitride materials were measured under temperature, environmental, velocity, loading conditions that are representative of the adiabatic engine environment. In order to provide guidance needed to improve materials for this application, the program stressed fundamental understanding of the mechanisms involved in friction and wear. Microhardness tests were performed on the candidate materials at elevated temperatures, and in atmospheres relevant to the piston seal application, and optical and electron microscopy were used to elucidate the micromechanisms of wear following wear testing. X-ray spectroscopy was used to evaluate interface/environment interactions which seemed to be important in the friction and wear process. Electrical effects in the friction and wear processes were explored in order to evaluate the potential usefulness of such effects in modifying the friction and wear rates in service. However, this factor was found to be of negligible significance in controlling friction and wear.

  18. Triggering mechanism and tsunamogenic potential of the Cape Fear Slide complex, U.S. Atlantic margin

    USGS Publications Warehouse

    Hornbach, Matthew J.; Lavier, Luc L.; Ruppel, Carolyn D.

    2007-01-01

    Analysis of new multibeam bathymetry data and seismic Chirp data acquired over the Cape Fear Slide complex on the U.S. Atlantic margin suggests that at least 5 major submarine slides have likely occurred there within the past 30,000 years, indicating that repetitive, large-scale mass wasting and associated tsunamis may be more common in this area than previously believed. Gas hydrate deposits and associated free gas as well as salt tectonics have been implicated in previous studies as triggers for the major Cape Fear slide events. Analysis of the interaction of the gas hydrate phase boundary and the various generations of slides indicates that only the most landward slide likely intersected the phase boundary and inferred high gas pressures below it. For much of the region, we believe that displacement along a newly recognized normal fault led to upward migration of salt, oversteepening of slopes, and repeated slope failures. Using new constraints on slide morphology, we develop the first tsunami model for the Cape Fear Slide complex. Our results indicate that if the most seaward Cape Fear slide event occurred today, it could produce waves in excess of 2 m at the present-day 100 m bathymetric contour.

  19. Current Status of Whole-Slide Imaging in Education.

    PubMed

    Saco, Adela; Bombi, Jose Antoni; Garcia, Adriana; Ramírez, Jose; Ordi, Jaume

    2016-01-01

    Conventional light microscopy (CLM) has classically been the basic tool to teach histology and pathology. In recent years, whole-slide imaging (WSI), which consists of generating a high-magnification digital image of an entire histological glass slide, has emerged as a useful alternative to CLM offering a myriad of opportunities for education. Navigation through the digitized slides closely simulates viewing glass slides with a microscope and is also referred to as virtual microscopy. WSI has many advantages for education. Students feel more comfortable with its use, and it can be used in any classroom as it only requires a computer with Internet access and it allows remote access from anywhere and from any device. WSI can be used simultaneously by a large number of people, stimulating cooperation between students and improving the interaction with the teachers. It allows making marks and annotations on specific fields, which enable specific directed questions to the teacher. Finally, WSI supports are cost-effective compared with CLM. Consequently, WSI has begun to replace CLM in many institutions. WSI has shown to be an extremely useful tool for undergraduate education (medical, dental and veterinary schools), for the training of residents of pathology, tele-education and in tumor boards. PMID:27101397

  20. Interfacial dynamnics at sliding Ta/Al interfaces

    NASA Astrophysics Data System (ADS)

    Hammerberg, J. E.; Ravelo, R.; Holian, B. L.; Germann, T. C.; Olson, C. J.

    2002-03-01

    We present results of large-scale MD simulations of sliding Al(100)/Ta(100) interfaces at high shearing velocties. The Ta and Al interactions are modeled using EAM potentials. We discuss the structural evolution near the interface and compare our results with known 2-dimensional simulations which make use of Lennard-Jones potentials but in similar scaled-velocity regimes, namely, 0.01

  1. Understanding the desensitizing mechanism of olefin in explosives: shear slide of mixed HMX-olefin systems.

    PubMed

    Zhang, Chaoyang; Cao, Xia; Xiang, Bin

    2012-04-01

    We simulated the shear slide behavior of typical mixed HMX-olefin systems and the effect of thickness of olefin layers (4-22 Å) on the behavior at a molecular level by considering two cases: bulk shear and interfacial shear. The results show that: (1) the addition of olefin into HMX can reduce greatly the shear sliding barriers relative to the pure HMX in the two cases, suggesting that the desensitizing mechanism of olefin is controlled dominantly by its good lubricating property; (2) the change of interaction energy in both systoles of shear slide is strongly dominated by van der Waals interaction; and (3) the thickness of olefin layers in the mixed explosives can influence its desensitizing efficiency. That is, the excessive thinness of olefin layers in the mixed explosive systems, for example, several angstroms, can lead to very high sliding barriers.

  2. Dynamical chiral symmetry breaking in sliding nanotubes.

    PubMed

    Zhang, X H; Santoro, G E; Tartaglino, U; Tosatti, E

    2009-03-27

    We discover in simulations of sliding coaxial nanotubes an unanticipated example of dynamical symmetry breaking taking place at the nanoscale. While both nanotubes are perfectly left-right symmetric and nonchiral, a nonzero angular momentum of phonon origin appears spontaneously at a series of critical sliding velocities, in correspondence with large peaks of the sliding friction. The nonlinear equations governing this phenomenon resemble the rotational instability of a forced string. However, several new elements, exquisitely "nano" appear here, with the crucial involvement of umklapp and of sliding nanofriction.

  3. Tape-recorded Lectures With Slide Synchronization

    ERIC Educational Resources Information Center

    Goodhue, D.

    1969-01-01

    Describes "Taped Explanation Slide Synchronization" programs used for individual study or group showing in college zoology. Discusses preparation of programs, class organization, equipment, and costs. (EB)

  4. Instant slides of radiographs for lectures.

    PubMed

    Rothstein, S G; Stewart, P L

    1989-10-01

    High quality slides of radiographs may be made with a simple, fast, and inexpensive technique using Kodak Rapid Process Copy film. Lecture presentations may include a slide of a pertinent plain radiograph, computed tomography (CT) scan, or magnetic resonance imaging (MRI). Although these slides may be made with a 35 mm SLR camera and flash or with a 35 mm SLR camera and a lighted viewbox, an alternative method is available that is easy to perform, inexpensive, and can produce quality slides in as little as 30 minutes. PMID:2477785

  5. "Slide less pathology": Fairy tale or reality?

    PubMed

    Indu, M; Rathy, R; Binu, M P

    2016-01-01

    Pathology practice is significantly advanced in various frontiers. Therefore, "slide less digital" pathology will not be a mere imagination in near future. Digitalization of histopathological slides (whole slide imaging [WSI]) is possible with the help of whole slide scanner. The WSI has a positive impact not only in routine practice but also in research field, medical education and bioindustry. Even if digital pathology has definitive advantages, its widespread use is not yet possible. As it is an upcoming technology in our field, this article is aimed to discussessential aspects of WSI. PMID:27601824

  6. Slide Tape. A Guide to the Production of Slide-Tape Programmes.

    ERIC Educational Resources Information Center

    Rowatt, Robert W.

    Step by step instructions are provided for planning and executing a slide tape program, as well as diagrams of equipment for presenting such programs. Guidelines are given for ways to: (1) define a program's purpose and objectives, (2) complete a storyboard, (3) produce slides from transparencies and photographed artwork, (4) write on slides, (5)…

  7. [Heritage Education Lesson Plans and Slide Presentations].

    ERIC Educational Resources Information Center

    Van Buren, Maurie

    Field tested in 27 schools and in grades four through twelve, this teaching unit stresses heritage education through the study of southern U.S. architectural styles for homes from the pioneer log structures to the 1950s ranch home. Each of the four lessons in this unit focuses around a slide presentation of 20 slides designed to fit into one…

  8. Getting Clever with the Sliding Ladder

    ERIC Educational Resources Information Center

    De, Subhranil

    2014-01-01

    The familiar system involving a uniform ladder sliding against a vertical wall and a horizontal floor is considered again. The floor is taken to be smooth and the wall to be possibly rough--a situation where no matter how large the static friction coefficient between the ladder and the wall, the ladder cannot lean at rest and must slide down.…

  9. The Cancer Digital Slide Archive - TCGA

    Cancer.gov

    Dr. David Gutman and Dr. Lee Cooper developed The Cancer Digital Slide Archive (CDSA), a web platform for accessing pathology slide images of TCGA samples. Find out how they did it and how to use the CDSA website in this Case Study.

  10. Thermal and thermomechanical effects in dry sliding

    NASA Technical Reports Server (NTRS)

    Kennedy, F. E., Jr.

    1984-01-01

    Developments in the study of interrelated thermal and mechanical phenomena in sliding systems are reviewed. The topics reviewed include mechanisms of frictional heating and the distribution of heat during sliding friction, the experimental measurement and analysis of surface and near-surface temperatures resulting from frictional heating, thermal deformation around sliding contacts and the changes in contact geometry caused by thermal deformation and thermoelastic instability, and the thermomechanical stress distribution around the frictionally heated and thermally deformed contact spots. The influence of the thermal and thermomechanical contact phenomena on friction and wear, surface melting, softening, chemical deterioration, and thermocracking are discussed. The phenomena have important implications in the design and application of sliding or sliding-rolling mechanical components such as dynamic seals, brakes, clutches, plastic bearings, solid or boundary-lubricated bearings, and gears.

  11. A Sliding Mode Control with Optimized Sliding Surface for Aircraft Pitch Axis Control System

    NASA Astrophysics Data System (ADS)

    Lee, Sangchul; Kim, Kwangjin; Kim, Youdan

    A sliding mode controller with an optimized sliding surface is proposed for an aircraft control system. The quadratic type of performance index for minimizing the angle of attack and the angular rate of the aircraft in the longitudinal motion is used to design the sliding surface. For optimization of the sliding surface, a Hamilton-Jacobi-Bellman (HJB) equation is formulated and it is solved through a numerical algorithm using a Generalized HJB (GHJB) equation and the Galerkin spectral method. The solution of this equation denotes a nonlinear sliding surface, on which the trajectory of the system approximately satisfies the optimality condition. Numerical simulation is performed for a nonlinear aircraft model with an optimized sliding surface and a simple linear sliding surface. The simulation result demonstrates that the proposed controller can be effectively applied to the longitudinal maneuver of an aircraft.

  12. Sliding mode control with PID sliding surface and experimental application to an electromechanical plant.

    PubMed

    Eker, Ilyas

    2006-01-01

    In this study, a sliding mode control system with a proportional+integral+derivative (PID) sliding surface is adopted to control the speed of an electromechanical plant. A robust sliding mode controller is derived so that the actual trajectory tracks the desired trajectory despite uncertainty, nonlinear dynamics, and external disturbances. The proposed sliding mode controller is chosen to ensure the stability of overall dynamics during the reaching phase and sliding phase. The stability of the system is guaranteed in the sense of the Lyapunov stability theorem. The chattering problem is overcome using a hyperbolic function for the sliding surface. Experimental results that are compared with the results of conventional PID verify that the proposed sliding mode controller can achieve favorable tracking performance, and it is robust with regard to uncertainties and disturbances.

  13. Sliding Over a Phase Transition

    NASA Astrophysics Data System (ADS)

    Tosatti, Erio; Benassi, Andrea; Vanossi, Andrea; Santoro, Giuseppe E.

    2011-03-01

    The frictional response experienced by a stick-slip slider when a phase transition occurs in the underlying solid substrate is a potentially exciting, poorly explored problem. We show, based on 2-dimensional simulations modeling the sliding of a nanotip, that indeed friction may be heavily affected by a continuous structural transition. First, friction turns nonmonotonic as temperature crosses the transition, peaking at the critical temperature Tc where fluctuations are strongest. Second, below Tc friction depends upon order parameter directions, and is much larger for those where the frictional slip can cause a local flip. This may open a route towards control of atomic scale friction by switching the order parameter direction by an external field or strain, with possible application to e.g., displacive ferroelectrics such as BaTi O3 , as well as ferro- and antiferro-distortive materials. Supported by project ESF FANAS/AFRI sponsored by the Italian Research Council (CNR).

  14. Slide Star: An Approach to Videodisc/Computer Aided Instruction

    PubMed Central

    McEnery, Kevin W.

    1984-01-01

    One of medical education's primary goals is for the student to be proficient in the gross and microscopic identification of disease. The videodisc, with its storage capacity of up to 54,000 photomicrographs is ideally suited to assist in this educational process. “Slide Star” is a method of interactive instruction which is designed for use in any subject where it is essential to identify visual material. The instructional approach utilizes a computer controlled videodisc to display photomicrographs. In the demonstration program, these are slides of normal blood cells. The program is unique in that the instruction is created by the student's commands manipulating the photomicrograph data base. A prime feature is the use of computer generated multiple choice questions to reinforce the learning process.

  15. On damping characteristics of frictional hysteresis in pre-sliding range

    NASA Astrophysics Data System (ADS)

    Ruderman, Michael; Iwasaki, Makoto

    2016-06-01

    Frictional hysteresis at relative motion in the pre-sliding range is considered. This effect is characterized by an elasto-plastic interaction, and that on the micro-scale, between two rubbing surfaces in contact that gives rise to nonlinear friction force. The pre-sliding friction force yields hysteresis in displacement. In this study, the damping characteristics of frictional hysteresis are analyzed. It is worth noting that we exclude the viscous damping mechanisms and focus on the pure hysteresis damping to be accounted in the friction modeling. The general properties of pre-sliding friction hysteresis are demonstrated and then compared with the limit case of discontinuous Coulomb friction. Further we consider two advanced dynamic friction models, LuGre and Maxwell-slip, so as demonstrate their damping properties and convergence of the motion system to equilibrium state. Experimental observations of the free motion in pre-sliding range are also shown and discussed.

  16. SSP: Sketching Slide Presentations, a Syntactic Approach

    NASA Astrophysics Data System (ADS)

    Mas, Joan; Sanchez, Gemma; Lladós, Josep

    The design of a slide presentation is a creative process. In this process first, humans visualize in their minds what they want to explain. Then, they have to be able to represent this knowledge in an understandable way. There exists a lot of commercial software that allows to create our own slide presentations but the creativity of the user is rather limited. In this article we present an application that allows the user to create and visualize a slide presentation from a sketch. A slide may be seen as a graphical document or a diagram where its elements are placed in a particular spatial arrangement. To describe and recognize slides a syntactic approach is proposed. This approach is based on an Adjacency Grammar and a parsing methodology to cope with this kind of grammars. The experimental evaluation shows the performance of our methodology from a qualitative and a quantitative point of view. Six different slides containing different number of symbols, from 4 to 7, have been given to the users and they have drawn them without restrictions in the order of the elements. The quantitative results give an idea on how suitable is our methodology to describe and recognize the different elements in a slide.

  17. The Earth surface slide movement at Soledad

    NASA Astrophysics Data System (ADS)

    Moreno, A.

    1986-11-01

    The Earth surface slide movement at Soledad is a mountain-slide type of movement. Estimations of the thickness of the layer which is moving range between 10 and 100 m. There is no proof that the movement is water induced, but it could be influenced by the water household. The slope of the slide area is H: D = 1: 2. The height difference in the moving area studied, according to this paper, is 1 km. The actual rate of movement is about 12 cm/yr.

  18. Rheological behavior of Slide Ring Gels.

    NASA Astrophysics Data System (ADS)

    Sharma, Vivek; Park, Jong Seung; Park, Jung O.; Srinivasarao, Mohan

    2006-03-01

    Slide ring gels were synthesized by chemically crosslinking, sparsely populated α-cyclodextrin (α-CD) present on the polyrotaxanes consisting of α-CD and polyethylene glycol (PEG). [1] Unlike physically or chemically crosslinked gels, slide ring gels are topological gels where crosslinks can slide along the chain. [2] We investigate the rheological behavior of these gels swollen in water and compare their viscoelastic properties to those of physical and chemical gels. We also study the equilibrium swelling behavior of these gels. [1] Okumura and Ito, Adv. Mater. 2001, 13, 485 [2] C. Zhao et al, J. Phys. Cond. Mat. 2005, 17, S2841

  19. Increase in friction force with sliding speed

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    2005-09-01

    A block sliding down an inclined plane normally accelerates. However, if the friction force increases with speed, then the block can slide at a constant terminal speed in a manner similar to the fall of an object through a fluid. Measurements of the increase in the coefficient of friction for tennis ball cloth sliding on a smooth surface are described over speeds varying by a factor of 9000. For the low speed measurements, the ball cloth was attached to the bottom of a weighted box and pulled along a horizontal surface by a constant horizontal force. Results at higher speeds were obtained by bouncing a tennis ball off the surface.

  20. Sliding bubble dynamics and the effects on surface heat transfer

    NASA Astrophysics Data System (ADS)

    Donnelly, B.; Robinson, A. J.; Delauré, Y. M. C.; Murray, D. B.

    2012-11-01

    An investigation into the effects of a single sliding air bubble on heat transfer from a submerged, inclined surface has been undertaken. Existing literature has shown that both vapour and gas bubbles can increase heat transfer rates from adjacent heated surfaces. However, the mechanisms involved are complex and dynamic and in some cases poorly understood. The present study utilises high speed, high resolution, infrared thermography and video photography to measure two dimensional surface heat transfer and three dimensional bubble position and shape. This provides a unique insight into the complex interactions at the heated surface. Bubbles of volume 0.05, 0.1, 0.2 and 0.4 ml were released onto a surface inclined at 30 degrees to horizontal. Results confirmed that sliding bubbles can enhance heat transfer rates up to a factor of 9 and further insight was gained about the mechanisms behind this phenomenon. The enhancement effects were observed over large areas and persisted for a long duration with the bubble exhibiting complex shape and path oscillations. It is believed that the periodic wake structure present behind the sliding bubble affects the bubble motion and is responsible for the heat transfer effects observed. The nature of this wake is proposed to be that of a chain of horseshoe vortices.

  1. The Relation Between Grain-Boundary Structure and Sliding Resistance

    SciTech Connect

    Hoagland, Richard G.; Kurtz, Richard J.

    2002-04-01

    During sliding, the grain boundary (GB) energy depends on the atomic structures produced during relative translation of the two grains. The variation of the GB energy within the two-dimensional boundary unit cell (BUC) constitutes the GB gamma surface. Maxima in the slope of the gamma surface determines the sliding resistance, i.e., the stress required to move the system over the lowest saddle points along a particular path within the BUC. In this paper we present the results of an atomistic study of the gamma surfaces for two types of boundaries in an fcc metal, a, Sigma 11<110>{131} is a low energy boundary and has a simple gamma surface with a single stable configuration located at the corners and center of the BUC. The resistance to sliding was determined by chain-of-states methods along four shear vectors connecting equivalent states within the BUC and is found to be very high in all cases. The asymmetric GB has a higher GB energy and its gamma surface is much more complex, with distinctly different structures appearing at various locations in the BUC. At certain locations more than one structure is found for the asymmetric GB. Although complex, a chain-of-states calculation along one path across the BUC suggests that the shear strength of this GB is also quite high. Extrinsic GB dislocations are found to lower the resistance to shear considerably, and, therefore, perform the same role in shear of GBs as do glide dislocations in slip of the lattice. The existence of multiple configurations has significant implications for the interaction of lattice dislocations with GBs, the core structure of GB dislocations, the temperature dependence of GB properties, and the GB sliding resistance, which we discuss.

  2. Foam-filled cushions for sliding trays

    NASA Technical Reports Server (NTRS)

    Nahin, S. B.; Robb, P. H.

    1980-01-01

    Polytetrafluoroethylene tube filled with polyurethane foam forms low friction sliding surface that cushions vibrations and absorbs manufacturing tolerances and misalignment. Possible uses include packaging of components for shipping and seals for doors in lockers, cars, and refrigerators.

  3. Sliding scale insulin use: myth or insanity?

    PubMed

    Umpierrez, Guillermo E; Palacio, Andres; Smiley, Dawn

    2007-07-01

    Inpatient hyperglycemia in people with or without diabetes is associated with an increased risk of complications and mortality, a longer hospital stay, a higher admission rate to the intensive care unit, and higher hospitalization costs. Despite increasing evidence that supports intensive glycemic control in hospitalized patients, blood glucose control continues to be challenging, and sliding scale insulin coverage, a practice associated with limited therapeutic success, continues to be the most frequent insulin regimen in hospitalized patients. Sliding scale insulin has been in use for more than 80 years without much evidence to support its use as the standard of care. Several studies have revealed evidence of poor glycemic control and deleterious effects in sliding scale insulin use. To understand its wide use and acceptance, we reviewed the origin, advantages, and disadvantages of sliding scale insulin in the inpatient setting.

  4. Automated single-slide staining system

    NASA Technical Reports Server (NTRS)

    Mills, S. M.; Wilkins, J. R.

    1974-01-01

    Apparatus developed to Gram-stain single slides automatically is flexible enough to accommodate other types of staining procedures. Method frees operator and eliminates necessity for subjective evaluations as to length of staining or decolorizing time.

  5. Variations of the Sliding Ladder Problem

    ERIC Educational Resources Information Center

    Kapranidis, Stelios; Koo, Reginald

    2008-01-01

    This article takes another look at the sliding ladder problem that students meet in the study of related rates in calculus. Physically realistic situations with both constrained and understrained ladders are explored.

  6. The Foley Acoustic Wave Front Slides

    NASA Astrophysics Data System (ADS)

    Greenslade, Thomas B.

    2004-04-01

    In 1912 Arthur L. Foley of Indiana University published an article in Physical Review about his technique for photographing acoustic wave fronts. Subsequently, the Central Scientific Company published a series of glass lantern slides of his illustrations. These have been unavailable for about 60 years. Here I discuss how Foley made his slides and give examples of use to the present-day physics teacher.

  7. WTP Pretreatment Facility Potential Design Deficiencies--Sliding Bed and Sliding Bed Erosion Assessment

    SciTech Connect

    Hansen, E. K.

    2015-05-06

    This assessment is based on readily available literature and discusses both Newtonian and non-Newtonian slurries with respect to sliding beds and erosion due to sliding beds. This report does not quantify the size of the sliding beds or erosion rates due to sliding beds, but only assesses if they could be present. This assessment addresses process pipelines in the Pretreatment (PT) facility and the high level waste (HLW) transfer lines leaving the PT facility to the HLW vitrification facility concentrate receipt vessel.

  8. The Louisiana Slide Library; A Humanities Program. Bulletin 1755.

    ERIC Educational Resources Information Center

    Louisiana Council for Music and Performing Arts, New Orleans.

    The Louisiana Slide Library is an extensive collection of slides, lectures, and tapes designed for use in the arts, the humanities, social and ethnic studies, languages, home economics, careers, crafts, and special education. This bibliography lists these slide sets and indicates the grade level intended for each set and the number of slides in…

  9. Ornamental Annual Plants and Their Uses. Slide Script.

    ERIC Educational Resources Information Center

    Still, Steven

    This slide script, part of a series of slide scripts designed for use in vocational agriculture classes, deals with ornamental annual plants and their uses. Included in the script are narrations for use with a total of 254 slides illustrating 97 different plants. At least two slides are provided for each plant: one shows the growth habits of the…

  10. Sliding Wear Response of Beryl Reinforced Aluminum Composite - A Factorial Design Approach

    NASA Astrophysics Data System (ADS)

    Bharat, V.; Durga Prasad, B.; Prabhakar, M. Bhovi; Venkateswarlu, K.

    2016-02-01

    Al-Beryl MMCs were successfully fabricated using powder metallurgy route. Processing conditions such as beryl content and particle size were varied and its influence on dry sliding wear response was studied. Effect of test parameters like applied load and sliding distance on wear performance of Al-Beryl MMCs were discussed detail. Sliding wear tests were conducted using a pin on disc machine based on the 24 (4 factors at 2 levels) factorial design. Analysis of variance (ANOVA) was performed to obtain the contribution of control parameters on wear rate. The present study shows that wear resistance of Al-beryl MMCs not only depends on the beryl content but also influenced by normal load, sliding distance and particle size. The results show that most significant variables affecting wear rate of Al - beryl MMCs are size of the beryl particles (22%), beryl content (19.60%), sliding distance (18.47%), and normal load (10.30%). The interaction effects of these parameters are less significant in influencing wear rate compared to the individual parameters. The correlation between sliding wear and its parameters was obtained by multiple regression analysis. Regression model developed in the present study can be successfully implemented to predict the wear response of Al-Beryl MMCs.

  11. Pseudomonas aeruginosa Exhibits Sliding Motility in the Absence of Type IV Pili and Flagella▿ †

    PubMed Central

    Murray, Thomas S.; Kazmierczak, Barbara I.

    2008-01-01

    Pseudomonas aeruginosa exhibits swarming motility on 0.5 to 1% agar plates in the presence of specific carbon and nitrogen sources. We have found that PAO1 double mutants expressing neither flagella nor type IV pili (fliC pilA) display sliding motility under the same conditions. Sliding motility was inhibited when type IV pilus expression was restored; like swarming motility, it also decreased in the absence of rhamnolipid surfactant production. Transposon insertions in gacA and gacS increased sliding motility and restored tendril formation to spreading colonies, while transposon insertions in retS abolished motility. These changes in motility were not accompanied by detectable changes in rhamnolipid surfactant production or by the appearance of bacterial surface structures that might power sliding motility. We propose that P. aeruginosa requires flagella during swarming to overcome adhesive interactions mediated by type IV pili. The apparent dependence of sliding motility on environmental cues and regulatory pathways that also affect swarming motility suggests that both forms of motility are influenced by similar cohesive factors that restrict translocation, as well as by dispersive factors that facilitate spreading. Studies of sliding motility may be particularly well-suited for identifying factors other than pili and flagella that affect community behaviors of P. aeruginosa. PMID:18065549

  12. The sliding clamp tethers the endonuclease domain of MutL to DNA

    PubMed Central

    Pillon, Monica C.; Babu, Vignesh M. P.; Randall, Justin R.; Cai, Jiudou; Simmons, Lyle A.; Sutton, Mark D.; Guarné, Alba

    2015-01-01

    The sliding clamp enhances polymerase processivity and coordinates DNA replication with other critical DNA processing events including translesion synthesis, Okazaki fragment maturation and DNA repair. The relative binding affinity of the sliding clamp for its partners determines how these processes are orchestrated and is essential to ensure the correct processing of newly replicated DNA. However, while stable clamp interactions have been extensively studied; dynamic interactions mediated by the sliding clamp remain poorly understood. Here, we characterize the interaction between the bacterial sliding clamp (β-clamp) and one of its weak-binding partners, the DNA mismatch repair protein MutL. Disruption of this interaction causes a mild mutator phenotype in Escherichia coli, but completely abrogates mismatch repair activity in Bacillus subtilis. We stabilize the MutL-β interaction by engineering two cysteine residues at variable positions of the interface. Using disulfide bridge crosslinking, we have stabilized the E. coli and B. subtilis MutL-β complexes and have characterized their structures using small angle X-ray scattering. We find that the MutL-β interaction greatly stimulates the endonuclease activity of B. subtilis MutL and supports this activity even in the absence of the N-terminal region of the protein. PMID:26384423

  13. Compact, Automated Centrifugal Slide-Staining System

    NASA Technical Reports Server (NTRS)

    Feeback, Daniel L.; Clarke, Mark S. F.

    2004-01-01

    The Directional Acceleration Vector-Driven Displacement of Fluids (DAVD-DOF) system, under development at the time of reporting the information for this article, would be a relatively compact, automated, centrifugally actuated system for staining blood smears and other microbiological samples on glass microscope slides in either a microgravitational or a normal Earth gravitational environment. The DAVD-DOF concept is a successor to the centrifuge-operated slide stainer (COSS) concept, which was reported in Slide-Staining System for Microgravity or Gravity (MSC-22949), NASA Tech Briefs, Vol. 25, No. 1 (January, 2001), page 64. The COSS includes reservoirs and a staining chamber that contains a microscope slide to which a biological sample is affixed. The staining chamber is sequentially filled with and drained of staining and related liquids from the reservoirs by use of a weighted plunger to force liquid from one reservoir to another at a constant level of hypergravity maintained in a standard swing-bucket centrifuge. In the DAVD-DOF system, a staining chamber containing a sample would also be sequentially filled and emptied, but with important differences. Instead of a simple microscope slide, one would use a special microscope slide on which would be fabricated a network of very small reservoirs and narrow channels connected to a staining chamber (see figure). Unlike in the COSS, displacement of liquid would be effected by use of the weight of the liquid itself, rather than the weight of a plunger.

  14. Rolling motion: experiments and simulations focusing on sliding friction forces

    NASA Astrophysics Data System (ADS)

    Onorato, Pasquale; Malgieri, Massimiliano; De Ambrosis, Anna

    2016-05-01

    The paper presents an activity sequence aimed at elucidating the role of sliding friction forces in determining/shaping the rolling motion. The sequence is based on experiments and computer simulations and it is devoted both to high school and undergraduate students. Measurements are carried out by using the open source Tracker Video Analysis software, while interactive simulations are realized by means of Algodoo, a freeware 2D-simulation software. Data collected from questionnaires before and after the activities, and from final reports, show the effectiveness of combining simulations and Video Based Analysis experiments in improving students' understanding of rolling motion.

  15. Exploring virtual reality technology and the Oculus Rift for the examination of digital pathology slides

    PubMed Central

    Farahani, Navid; Post, Robert; Duboy, Jon; Ahmed, Ishtiaque; Kolowitz, Brian J.; Krinchai, Teppituk; Monaco, Sara E.; Fine, Jeffrey L.; Hartman, Douglas J.; Pantanowitz, Liron

    2016-01-01

    Background: Digital slides obtained from whole slide imaging (WSI) platforms are typically viewed in two dimensions using desktop personal computer monitors or more recently on mobile devices. To the best of our knowledge, we are not aware of any studies viewing digital pathology slides in a virtual reality (VR) environment. VR technology enables users to be artificially immersed in and interact with a computer-simulated world. Oculus Rift is among the world's first consumer-targeted VR headsets, intended primarily for enhanced gaming. Our aim was to explore the use of the Oculus Rift for examining digital pathology slides in a VR environment. Methods: An Oculus Rift Development Kit 2 (DK2) was connected to a 64-bit computer running Virtual Desktop software. Glass slides from twenty randomly selected lymph node cases (ten with benign and ten malignant diagnoses) were digitized using a WSI scanner. Three pathologists reviewed these digital slides on a 27-inch 5K display and with the Oculus Rift after a 2-week washout period. Recorded endpoints included concordance of final diagnoses and time required to examine slides. The pathologists also rated their ease of navigation, image quality, and diagnostic confidence for both modalities. Results: There was 90% diagnostic concordance when reviewing WSI using a 5K display and Oculus Rift. The time required to examine digital pathology slides on the 5K display averaged 39 s (range 10–120 s), compared to 62 s with the Oculus Rift (range 15–270 s). All pathologists confirmed that digital pathology slides were easily viewable in a VR environment. The ratings for image quality and diagnostic confidence were higher when using the 5K display. Conclusion: Using the Oculus Rift DK2 to view and navigate pathology whole slide images in a virtual environment is feasible for diagnostic purposes. However, image resolution using the Oculus Rift device was limited. Interactive VR technologies such as the Oculus Rift are novel tools

  16. On a model of frictional sliding

    NASA Astrophysics Data System (ADS)

    Estrin, Y.; Bréchet, Y.

    1996-10-01

    A model of frictional sliding with an N-shaped curve for the sliding velocity dependence of the coefficient of friction is considered. This type of friction law is shown to be related to dynamic i.e., velocity dependent ‘ageing’ of asperity junctions. Mechanisms of ‘ageing’ for ductile (Bowden-Tabor) and brittle (Byerlee) materials, though different in nature, lead to qualitatively similar N-shaped velocity dependencies of the coefficient of friction. Estimates for the velocities limiting the range of negative velocity sensitivity of the coefficient of friction are obtained for the ductile case and—albeit with a lesser degree of reliability—for the brittle one. It is shown by linear stability analysis that discontinuous sliding (stick-slip) is associated with the descending portion of the N-shaped curve. An instability criterion is obtained. An expression for the period of the attendant relaxation oscillations of the sliding velocity is given in terms of the calculated velocity dependence of the coefficient of friction. It is suggested that the micromechanically motivated friction law proposed should be used in models of earthquakes due to discontinuous frictional sliding on a crustal fault.

  17. Resistance to Sliding on Atomic Scales

    NASA Technical Reports Server (NTRS)

    Dominik, C.; Tielens, A.; Cuzzi, Jeffrey (Technical Monitor)

    1995-01-01

    The structure and stability of agglomerates of micron-sized particles is determined by the mechanical properties of the individual contacts between the constituent particles. In this paper we study the possibility of aggregate rearrangements by sliding. Since the contacts between (sub)micron particles are only a few hundred atoms in diameter, processes on atomic levels will play the dominating roll. We study a theoretical model of sliding friction for surfaces that are either flat or contain steps in their grids. The results show that sliding over flat surfaces may produce a large range of friction coefficients, including zero if the adhesive forces are small compared to the binding forces inside a body. However, both grid alignment and steps in the surface will lead to high values for friction. These processes combined virtually eliminate the possibility of sliding in a collision of two (sub)micron sized particles at velocities low enough for sticking to occur. On the other hand we show that in collisions between aggregates sliding may be an important factor for energy dissipation and compaction.

  18. Theory of sliding-mode triboelectric nanogenerators.

    PubMed

    Niu, Simiao; Liu, Ying; Wang, Sihong; Lin, Long; Zhou, Yu Sheng; Hu, Youfan; Wang, Zhong Lin

    2013-11-20

    The triboelectric nanogenerator (TENG) is a powerful approach toward new energy technology, especially for portable electronics. A theoretical model for the sliding-mode TENG is presented in this work. The finite element method was utilized to characterize the distributions of electric potential, electric field, and charges on the metal electrodes of the TENG. Based on the FEM calculation, the semi-analytical results from the interpolation method and the analytical V-Q-x relationship are built to study the sliding-mode TENG. The analytical V-Q-x equation is validated through comparison with the semi-analytical results. Furthermore, based on the analytical V-Q-x equation, dynamic output performance of sliding-mode TENG is calculated with arbitrary load resistance, and good agreement with experimental data is achieved. The theory presented here is a milestone work for in-depth understanding of the working mechanism of the sliding-mode TENG, and provides a theoretical basis for further enhancement of the sliding-mode TENG for both energy scavenging and self-powered sensor applications.

  19. Parametric Study of Dry Sliding Wear Behavior of Hybrid Metal Matrix Composite Produced by a Novel Process

    NASA Astrophysics Data System (ADS)

    Sharma, Pardeep; Sharma, Satpal; Khanduja, Dinesh

    2015-07-01

    In the present research work, silicon nitride (Si3N4) and graphite (Gr) ceramic powders are ball milled to obtain homogeneous mixing and consistent density of combined powder. The ball-milled powder is used as reinforcement for hybrid composite development by stir casting process in the inert atmosphere. After mixing by ball milling for 100 hours, the density of ball-milled (Si3N4 + Gr) powder is measured as 2.81 g/cm3, which is approximately equal to the density of aluminum (2.7 g/cm3). The microstructures and hardness of the manufactured hybrid composites are analyzed and compared with Si3N4- and Gr-reinforced composites. Scanning electron micrograph reveals a reasonably uniform dispersion of ball-milled (Si3N4 + Gr) reinforcement in the metal matrix composites. Hardness results reveal that hybrid composites have more hardness than Gr-reinforced and lower hardness than Si3N4-reinforced composites. The dry sliding wear behavior of aluminum matrix hybrid composites has also been investigated. Response surface methodology is used to develop wear model of hybrid composites using reinforcement percentage ( R), load ( L), sliding speed ( S), and sliding distance ( D) as the process parameters. The results of wear investigation show that increase in sliding speed ( S) and percentage reinforcement ( R) reduce the wear, while increase in sliding distance ( D) or load ( L) increases the wear of the hybrid composites. Further, the load-sliding distance and load-sliding speed interactions increase the wear, while the wear reduces due to sliding speed-sliding distance interaction in the high range. The errors between the modeled and experimental results are found within 3 to 7 pct.

  20. The Laser Videodisc, A Slide-Management System for Your Classroom Now.

    ERIC Educational Resources Information Center

    Miller, Phyllis Knerl; And Others

    1988-01-01

    Compares the use of a laser videodisc system in the art classroom to the use of a standard slide projection system. Describes the three levels of interactivity that are possible and discusses methods of use, product availability, and equipment cost. (GEA)

  1. Bending Flexibility of Actin Filaments during Motor-Induced Sliding

    PubMed Central

    Vikhorev, Petr G.; Vikhoreva, Natalia N.; Månsson, Alf

    2008-01-01

    Muscle contraction and other forms of cell motility occur as a result of cyclic interactions between myosin molecules and actin filaments. Force generation is generally attributed to ATP-driven structural changes in myosin, whereas a passive role is ascribed to actin. However, some results challenge this view, predicting structural changes in actin during motor activity, e.g., when the actin filaments slide on a myosin-coated surface in vitro. Here, we analyzed statistical properties of the sliding filament paths, allowing us to detect changes of this type. It is interesting to note that evidence for substantial structural changes that led to increased bending flexibility of the filaments was found in phalloidin-stabilized, but not in phalloidin-free, actin filaments. The results are in accordance with the idea that a high-flexibility structural state of actin is a prerequisite for force production, but not the idea that a low-to-high flexibility transition of the actin filament should be an important component of the force-generating step per se. Finally, our data challenge the general view that phalloidin-stabilized filaments behave as native actin filaments in their interaction with myosin. This has important implications, since phalloidin stabilization is a routine procedure in most studies of actomyosin function. PMID:18835897

  2. A comparative study of input devices for digital slide navigation

    PubMed Central

    Molin, Jesper; Lundström, Claes; Fjeld, Morten

    2015-01-01

    This paper describes work presented at the Nordic Symposium on Digital Pathology 2014, Linköping, Sweden. Quick and seamless integration between input devices and the navigation of digital slides remains a key barrier for many pathologists to “go digital.” To better understand this integration, three different input device implementations were compared in terms of time to diagnose, perceived workload and users’ preferences. Six pathologists reviewed in total nine cases with a computer mouse, a 6 degrees-of-freedom (6DOF) navigator and a touchpad. The participants perceived significantly less workload (P < 0.05) with the computer mouse and the 6DOF navigator, than with the touchpad, while no effect of the input device used on the time to diagnose was observed. Five out of six pathologists preferred the 6DOF navigator, while the touchpad was the least preferred device. While digital slide navigation is often designed to mimic microscope interaction, the results of this study demonstrate that in order to minimize workload there is reason to let the digital interaction move beyond the familiar microscope tradition. PMID:25774318

  3. A comparative study of input devices for digital slide navigation.

    PubMed

    Molin, Jesper; Lundström, Claes; Fjeld, Morten

    2015-01-01

    This paper describes work presented at the Nordic Symposium on Digital Pathology 2014, Linköping, Sweden. Quick and seamless integration between input devices and the navigation of digital slides remains a key barrier for many pathologists to "go digital." To better understand this integration, three different input device implementations were compared in terms of time to diagnose, perceived workload and users' preferences. Six pathologists reviewed in total nine cases with a computer mouse, a 6 degrees-of-freedom (6DOF) navigator and a touchpad. The participants perceived significantly less workload (P < 0.05) with the computer mouse and the 6DOF navigator, than with the touchpad, while no effect of the input device used on the time to diagnose was observed. Five out of six pathologists preferred the 6DOF navigator, while the touchpad was the least preferred device. While digital slide navigation is often designed to mimic microscope interaction, the results of this study demonstrate that in order to minimize workload there is reason to let the digital interaction move beyond the familiar microscope tradition.

  4. Better slides needed at AGU Meetings

    NASA Astrophysics Data System (ADS)

    Jacobson, Randall S.

    Recent AGU meetings show a dangerous trend in the quality of presentations. A fair percentage of slides used during oral presentations consisted of a black background and colored lines and/or words for data. Such slides are illegible and serve to undercut the speaker's points by not demonstrating the data clearly.A typical example consisted of dark red, dark blue, and green data on a black background. Even the author had difficulty in pointing out the data using his light arrow. Line drawings, in particular, should not use colors, but instead use high-contrast white-on-black for the following reasons: dark colors on black backgrounds provide little contrast, making it difficult to discern patterns; people who are colorblind are at a disadvantage; and the same information can be obtained using a variety of line weights (dotdash, solid, dotted, etc.) with single color slides.

  5. NEMD simulations for ductile metal sliding

    SciTech Connect

    Hammerberg, James E; Germann, Timothy C; Ravelo, Ramon J; Holian, Brad L

    2011-01-31

    We have studied the sliding behavior for a 19 M Al(110)/Al(110) defective crystal at 15 GPa as a function of relative sliding velocity. The general features are qualitatively similar to smaller scale (1.4 M) atom simulations for Al(111)/Al(110) nondefective single crystal sliding. The critical velocity, v{sub c}, is approximately the same for the defective crystal as the size scaled v{sub c}. The lower velocity tangential force is depressed relative to the perfect crystal. The critical temperature, T*, is depressed relative to the perfect crystal. These conclusions are consistent with a lower value for f{sub c} for the defective crystal. The detailed features of structural transformation and the high velocity regime remain to be mapped.

  6. Newly recognized submarine slide complexes in the southern California Bight

    NASA Astrophysics Data System (ADS)

    Conrad, J. E.; Lee, H. J.; Edwards, B. D.; McGann, M.; Sliter, R. W.

    2012-12-01

    New high-resolution bathymetric and seismic-reflection surveys have imaged large (<0.5 km3) submarine landslides offshore southern California that have not been previously recognized in the Borderland. The new data show several large slides or slide complexes that include: 1) a slide complex consisting of numerous (>7) individual overlapping slides along the western margin of Santa Cruz Basin (SCB slide); 2) a series of slumps and slide scars on the slope south of San Pedro shelf (SPS slide); and 3) a slope failure along the shelf edge in northern San Diego County, termed the Del Mar slide. The SCB slide complex extends for 30 km along the western slope of Santa Cruz Basin, with debris lobes extending 5-8 km into the basin. Head scarps of some of these slides are 50-75 m high. The SPS slide complex also appears to consist of multiple slides, which roughly parallel the Palos Verdes Fault and the San Gabriel Canyon submarine channel on the shelf edge and slope south of San Pedro shelf. Slide deposits associated with this complex are only partially mapped due to limited high-resolution bathymetric coverage, but extend to the south in the area SW of Lasuen Knoll. Seismic-reflection profiles show that some of these deposits are up to 20 m thick. The Del Mar slide is located about 10 km north of La Jolla Canyon and extends about 6 km along the shelf edge. The head scarp lies along the trend of a branch of the Rose Canyon Fault Zone. Radiocarbon ages of sediment overlying this slide indicate the Del Mar slide is approximately 12-16 ka. These large slide complexes have several characteristics in common. Nearly all occur in areas of tectonic uplift. All of the complexes show evidence of recurrent slide activity, exhibiting multiple headwall scarps and debris lobes, and where available, high-resolution seismic-reflection profiles of these slide areas provide evidence of older, buried mass transport deposits. Assuming typical sedimentation rates, the recurrence interval of

  7. Optimal second order sliding mode control for nonlinear uncertain systems.

    PubMed

    Das, Madhulika; Mahanta, Chitralekha

    2014-07-01

    In this paper, a chattering free optimal second order sliding mode control (OSOSMC) method is proposed to stabilize nonlinear systems affected by uncertainties. The nonlinear optimal control strategy is based on the control Lyapunov function (CLF). For ensuring robustness of the optimal controller in the presence of parametric uncertainty and external disturbances, a sliding mode control scheme is realized by combining an integral and a terminal sliding surface. The resulting second order sliding mode can effectively reduce chattering in the control input. Simulation results confirm the supremacy of the proposed optimal second order sliding mode control over some existing sliding mode controllers in controlling nonlinear systems affected by uncertainty.

  8. Develop and Manufacture an airlock sliding tray

    SciTech Connect

    Lawton, Cindy M.

    2014-02-26

    Objective: The goal of this project is to continue to develop an airlock sliding tray and then partner with an industrial manufacturing company for production. The sliding tray will be easily installed into and removed from most glovebox airlocks in a few minutes. Technical Approach: A prototype of a sliding tray has been developed and tested in the LANL cold lab and 35 trays are presently being built for the plutonium facility (PF-4). The current, recently approved design works for a 14-inch diameter round airlock and has a tray length of approximately 20 inches. The grant will take the already tested and approved round technology and design for the square airlock. These two designs will be suitable for the majority of the existing airlocks in the multitude of DOE facilities. Partnering with an external manufacturer will allow for production of the airlock trays at a much lower cost and increase the availability of the product for all DOE sites. Project duration is estimated to be 12-13 months. Benefits: The purpose of the airlock sliding trays is fourfold: 1) Mitigate risk of rotator cuff injuries, 2) Improve ALARA, 3) Reduce risk of glovebox glove breaches and glove punctures, and 4) Improve worker comfort. I have had the opportunity to visit many other DOE facilities including Savannah, Y-12, ORNL, Sandia, and Livermore for assistance with ergonomic problems and/or injuries. All of these sites would benefit from the airlock sliding tray and I can assume all other DOE facilities with gloveboxes built prior to 1985 could also use the sliding trays.

  9. Railgun rail gouging by hypervelocity sliding contact

    SciTech Connect

    Barker, L.M.; Trucano, T.G. ); Susoeff, A.R. )

    1989-01-01

    A description is given of a recently resolved mechanisms of gouging which occurs during hypervelocity sliding contact between two materials. A parameter study based on computer modeling of the gouging mechanism is presented in which gouging velocity thresholds are determined for several combinations of sliding materials. Materials which can gouge each other are found to do so only within a certain range of velocities. Related calculations of gaseous material ahead of railgun projectiles are also presented. Gun bore gouging experience with the Lawrence Livermore National Laboratory railgun project is reviewed.

  10. Railgun rail gouging by hypervelocity sliding contact

    SciTech Connect

    Barker, L.M.; Trucano, T.G.; Susoeff, A.R.

    1988-01-01

    A description is given of a recently resolved mechanism of gouging which occurs during hypervelocity sliding contact between two materials. A parameter study based on computer modelling of the gouging mechanism is presented in which gouging velocity thresholds are determined for several combinations of sliding materials. Materials which can gouge each other are found to do so only within a certain range of velocities. Related calculations of gaseous material ahead of railgun projectiles are also presented. Gun bore gouging experience with the Lawrence Livermore National Laboratory railgun project is reviewed.

  11. Sliding mode control of wind-induced vibrations using fuzzy sliding surface and gain adaptation

    NASA Astrophysics Data System (ADS)

    Thenozhi, Suresh; Yu, Wen

    2016-04-01

    Although fuzzy/adaptive sliding mode control can reduce the chattering problem in structural vibration control applications, they require the equivalent control and the upper bounds of the system uncertainties. In this paper, we used fuzzy logic to approximate the standard sliding surface and designed a dead-zone adaptive law for tuning the switching gain of the sliding mode control. The stability of the proposed controller is established using Lyapunov stability theory. A six-storey building prototype equipped with an active mass damper has been used to demonstrate the effectiveness of the proposed controller towards the wind-induced vibrations.

  12. How to Prepare Clay-Lift and Sandwich Slides.

    ERIC Educational Resources Information Center

    Barman, Charles R.

    1984-01-01

    Describes two techniques for making 35 millimeter slides without using photographic film. One method uses clear adhesive contact paper and the other uses transparency film. Both techniques are inexpensive and require only a few minutes of preparation per slide. (JM)

  13. 45. March 26, 1935 View of the big slide of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. March 26, 1935 View of the big slide of several hundred cubic yards of rock, spring of 1934. Another slide occurred at this same location on May 26, 1935. - Scotts Bluff Summit Road, Gering, Scotts Bluff County, NE

  14. Ceramic wear in indentation and sliding

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1984-01-01

    The various wear mechanisms involved with single-crystal ceramic materials in indentation and in sliding contacts. Experiments simulating interfacial events have been conducted with hemispherical, conical and pyramidal indenters (riders). With spherical riders, under either abrasive or adhesive conditions, two types of fracture pits have been observed. First, spherical-shaped fracture pits and wear particles are found as a result of either indenting or sliding. These are shown to be due to a spherical-shaped fracture along the circular or spherical stress trajectories. Second, polyhedral fracture pits and debris, produced by anisotropic fracture, and also found both during indenting and sliding. These are primarily controlled by surface and subsurface cracking along cleavage planes. Several quantitative results have also been obtained from this work. For example, using a pyramidal diamond, crack length of Mn-Zn ferrite in the indentation process grows linearly with increasing normal load. Moreover, the critical load to fracture both in indentation and sliding is essentially isotropic and is found to be directly proportional to the indenter radius.

  15. Enhancing Creative Thinking through Designing Electronic Slides

    ERIC Educational Resources Information Center

    Mokaram, Al-Ali Khaled; Al-Shabatat, Ahmad Mohammad; Fong, Fook Soon; Abdallah, Andaleeb Ahmad

    2011-01-01

    During the shifting of teaching and learning methods using computer technologies, much emphasis was paid on the knowledge content more than the thinking skills. Thus, this study investigated the effects of a computer application, namely, designing electronic slides on the development of creative thinking skills of a sample of undergraduate…

  16. Metatarsal-slide lengthening without bone grafting.

    PubMed

    Tabak, B; Lefkowitz, H; Steiner, I

    1986-01-01

    Brachymetatarsia is a condition of premature closure of the epiphyseal plate of a metatarsal. The authors present a case of brachymetatarsia of the second metatarsal. Utilizing a review of the literature, various surgical procedures are discussed. Treatment in this case consisted of a metatarsal-slide lengthening osteotomy, a modification of the Giannestras step-down procedure. PMID:3950333

  17. Simulation of sliding of liquid droplets

    NASA Astrophysics Data System (ADS)

    Alen, Saif Khan; Farhat, Nazia; Rahman, Md. Ashiqur

    2016-07-01

    Numerical simulations of sliding behavior of liquid droplets on flat and periodic microgrooved surfaces with a range of groove geometry are conducted. A numerical model is developed which is capable of predicting the critical sliding angle of the drop by comparing the advancing and the receding angles obtained from numerical and experimental findings. The effect of microgroove topography, droplet size and inclination angle on the droplet sliding characteristics is analysed. Using an open-source platform (Surface Evolver), a 3D drop-shape model is developed to numerically determine the drop stability and contact angle hysteresis on tilted surfaces. In this numerical model, the three phase contact line of the drop is obtained by numerically calculating the vertex force and local contact angle at each vertex of the base contour. Several numerical models are developed based on various assumptions of base contour shape (circular or elliptical) and implementation of gravitational force to the droplet. Droplet shapes and critical sliding angles, obtained from these numerical models, are compared with those of experimental results and are found to be in very good agreement.

  18. Particle Sliding on a Rough Incline

    ERIC Educational Resources Information Center

    Zurcher, Ulrich

    2007-01-01

    We study a particle sliding on a rough inclined plane as an example of a mechanical problem with nonholonomic constraint. The particle is launched in an arbitrary direction so that its motion has both a horizontal and a "vertical" (i.e., up- and downhill) direction. The friction force acts along the instantaneous velocity, so that the horizontal…

  19. Color Microfiche as a Replacement for Slides.

    ERIC Educational Resources Information Center

    Schwarz, Philip

    This is the summary of a larger paper describing the evolution of a mediated elementary accounting course at the University of Wisconsin-Stout. The course was initially developed as a 25 slide-tape lesson course which included 950 visuals and approximately 25 hours of instruction. One hundred students per semester took the course in the following…

  20. Sliding Seal Materials for Adiabatic Engines, Phase 2

    NASA Technical Reports Server (NTRS)

    Lankford, J.; Wei, W.

    1986-01-01

    An essential task in the development of the heavy-duty adiabatic diesel engine is identification and improvements of reliable, low-friction piston seal materials. In the present study, the sliding friction coefficients and wear rates of promising carbide, oxide, and nitride materials were measured under temperature, environmental, velocity, and loading conditions that are representative of the adiabatic engine environment. In addition, silicon nitride and partially stabilized zirconia disks were ion implanted with TiNi, Ni, Co, and Cr, and subsequently run against carbide pins, with the objective of producing reduced friction via solid lubrication at elevated temperature. In order to provide guidance needed to improve materials for this application, the program stressed fundamental understanding of the mechanisms involved in friction and wear. Electron microscopy was used to elucidate the micromechanisms of wear following wear testing, and Auger electron spectroscopy was used to evaluate interface/environment interactions which seemed to be important in the friction and wear process. Unmodified ceramic sliding couples were characterized at all temperatures by friction coefficients of 0.24 and above. The coefficient at 800 C in an oxidizing environment was reduced to below 0.1, for certain material combinations, by the ion implanation of TiNi or Co. This beneficial effect was found to derive from lubricious Ti, Ni, and Co oxides.

  1. Texturing in metals as a result of sliding

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.; Buckley, D. H.

    1973-01-01

    Sliding friction experiments were conducted with copper, nickel, iron, and cobalt sliding on themselves in air and argon. The resulting wear surfaces were examined with X-ray analysis to determine if surface texturing had occurred as a result of sliding. Results of the investigation indicate that, for the face-centered-cubic metals copper and nickel, a (111) texture develops with the (111) planes tilted 10 deg in the direction of sliding. The body-centered-cubic metal iron exhibited a (110) texture with the (100) direction oriented in the direction of sliding. It also exhibited a 10 deg tilt in the direction of sliding. The environment influenced the results in that the degree of texture observed in argon was less than that seen in air for iron. No texturing was observed for the close-packed-hexagonal metal cobalt. Recrystallization was observed with copper as a result of sliding.

  2. Sliding friction on wet and dry sand.

    PubMed

    Fall, A; Weber, B; Pakpour, M; Lenoir, N; Shahidzadeh, N; Fiscina, J; Wagner, C; Bonn, D

    2014-05-01

    We show experimentally that the sliding friction on sand is greatly reduced by the addition of some-but not too much-water. The formation of capillary water bridges increases the shear modulus of the sand, which facilitates the sliding. Too much water, on the other hand, makes the capillary bridges coalesce, resulting in a decrease of the modulus; in this case, we observe that the friction coefficient increases again. Our results, therefore, show that the friction coefficient is directly related to the shear modulus; this has important repercussions for the transport of granular materials. In addition, the polydispersity of the sand is shown to also have a large effect on the friction coefficient. PMID:24836256

  3. Plastic deformation at surface during unlubricated sliding

    NASA Technical Reports Server (NTRS)

    Yamamoto, T.; Buckley, D. H.

    1982-01-01

    The plastic deformation and wear of 304 stainless-steel surface slid against an aluminum oxide rider were observed by using a scanning electron microscope and an optical microscope. Experiments were conducted in a vacuum of 0.000001 Pa and in an environment of 0.0005 Pa chlorine gas at 25 C. The load was 500 grams and the sliding velocity was 0.5 centimeter per second. The deformed surface layer which accumulates and develops successively is left behind the rider, and step-shaped protuberances are developed even after single pass sliding under both environmental conditions. A fully developed surface layer is gradually torn off leaving a characteristic pattern. These observations result from both adhesion and an adhesive wear mechanism.

  4. Operational seismic network estimates rock slide properties

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-02-01

    During the spring of 1991, two subsequent landslides near Randa, Switzerland, dropped 30,000,000 cubic meters of debris on the town below. The rocks dammed the Vispa River, a temporary reservoir that would have failed catastrophically had the army not carved a channel through it. Many rock slides occur in remote alpine locations, so it can sometimes take days or weeks before they are detected, a delay that could have cost the town of Randa. Rock slides can range from deadly, to disruptive, to simple scientific curiosities.Dammeier et al. have developed a method to remotely estimate their volume, location, and runout distances that could potentially be used in real time.

  5. Zooming in: high resolution 3D reconstruction of differently stained histological whole slide images

    NASA Astrophysics Data System (ADS)

    Lotz, Johannes; Berger, Judith; Müller, Benedikt; Breuhahn, Kai; Grabe, Niels; Heldmann, Stefan; Homeyer, André; Lahrmann, Bernd; Laue, Hendrik; Olesch, Janine; Schwier, Michael; Sedlaczek, Oliver; Warth, Arne

    2014-03-01

    Much insight into metabolic interactions, tissue growth, and tissue organization can be gained by analyzing differently stained histological serial sections. One opportunity unavailable to classic histology is three-dimensional (3D) examination and computer aided analysis of tissue samples. In this case, registration is needed to reestablish spatial correspondence between adjacent slides that is lost during the sectioning process. Furthermore, the sectioning introduces various distortions like cuts, folding, tearing, and local deformations to the tissue, which need to be corrected in order to exploit the additional information arising from the analysis of neighboring slide images. In this paper we present a novel image registration based method for reconstructing a 3D tissue block implementing a zooming strategy around a user-defined point of interest. We efficiently align consecutive slides at increasingly fine resolution up to cell level. We use a two-step approach, where after a macroscopic, coarse alignment of the slides as preprocessing, a nonlinear, elastic registration is performed to correct local, non-uniform deformations. Being driven by the optimization of the normalized gradient field (NGF) distance measure, our method is suitable for differently stained and thus multi-modal slides. We applied our method to ultra thin serial sections (2 μm) of a human lung tumor. In total 170 slides, stained alternately with four different stains, have been registered. Thorough visual inspection of virtual cuts through the reconstructed block perpendicular to the cutting plane shows accurate alignment of vessels and other tissue structures. This observation is confirmed by a quantitative analysis. Using nonlinear image registration, our method is able to correct locally varying deformations in tissue structures and exceeds the limitations of globally linear transformations.

  6. Vesicocutaneous fistula after sliding hernia repair

    PubMed Central

    Mittal, Varun; Kapoor, Rakesh; Sureka, Sanjoy

    2016-01-01

    Sliding inguinal hernias are usually direct inguinal hernias containing various abdominal viscera. The incidence of bladder forming a part of an inguinal hernia, called as “scrotal cystocele,” is 1–4%. The risk of bladder injury is as high as 12% when repairing this type of hernia. This case report emphasizes this aspect in a 65-year-old man who presented with urinary leak through the scrotal wound following right inguinal hernia repair. PMID:26941501

  7. Slide-specific models for segmentation of differently stained digital histopathology whole slide images

    NASA Astrophysics Data System (ADS)

    Brieu, Nicolas; Pauly, Olivier; Zimmermann, Johannes; Binnig, Gerd; Schmidt, Günter

    2016-03-01

    The automatic analysis of whole slide images (WSIs) of stained histopathology tissue sections plays a crucial role in the discovery of predictive biomarkers in the field on immuno-oncology by enabling the quantification of the phenotypic information contained in the tissue sections. The automatic detection of cells and nuclei, while being one of the major steps of such analysis, remains a difficult problem because of the low visual differentiation of high pleomorphic and densely cluttered objects and of the diversity of tissue appearance between slides. The key idea of this work is to take advantage of well-differentiated objects in each slide to learn about the appearance of the tissue and in particular about the appearance of low-differentiated objects. We detect well-differentiated objects on a automatically selected set of representative regions, learn slide-specific visual context models, and finally use the resulting posterior maps to perform the final detection steps on the whole slide. The accuracy of the method is demonstrated against manual annotations on a set of differently stained images.

  8. The Afen Slide a multistage slope failure in the Faroe Shetland Channel

    NASA Astrophysics Data System (ADS)

    Wilson, C. K.; Long, D.; Bulat, J.

    2003-04-01

    The West Shetland slope in the Faroe Shetland Channel is the site of glaciomarine sedimentation modified by the interaction of along-slope and down-slope processes. An extensive range of seismic and sample data collected since 1984 has revealed an history of a small submarine landslide, 13 km long, 3 km wide and 10-20 m thick between 850 m and 1130 m waterdepth on a slope of less than 2°, on the continental slope. 3D and 2D high resolution seismic data suggests at least four phases of failure. The initial slip surface is thought to have been around 4.5km long and was followed by further retrogressive movement lengthening the slide scar by almost a kilometre upslope. The final major movement was a block failure on one flank with 5m thick blocks up to 500 m in length, which moved intact 1-2 km down-slope. Minor sidewall failures have also occurred, however, their relative timing is more difficult to establish. Some of the limits of failure reflect faulting detected on 3D seismic more than 100 m below the slide replicating the modern seabed. The detachment is thought to have occurred within a poorly consolidated contouritic sands/silts. The slide profile shows a distinct change in geometry just down-slope of a regional change in slope gradient changing from predominantly erosion to predominantly deposition. The multiphase failure events are correlated with multiphase debris lobes now identified on the channel floor. Cores collected through the debris lobe show multiphase deposits comprising blocks of sediment within a matrix of silty clay. The blocks and matrix can be distinguished on the grounds of colour, lithology and geotechnics. The boundaries between phases of debris lobes are interpreted on the basis of sedimentological units and frequency of blocks. Below the debris lobe a ripped up sand unit may indicate the pre-slide seabed. Geotechnical studies highlight the composite nature of the deposits within the slide. Results from outside the slide indicate a normal

  9. Two dimensional nanoscale reciprocating sliding contacts of textured surfaces

    NASA Astrophysics Data System (ADS)

    Tong, Ruiting; Liu, Geng; Liu, Tianxiang

    2016-05-01

    Detailed behaviors of nanoscale textured surfaces during the reciprocating sliding contacts are still unknown although they are widely used in mechanical components to improve tribological characteristics. The current research of sliding contacts of textured surfaces mainly focuses on the experimental studies, while the cost is too high. Molecular dynamics(MD) simulation is widely used in the studies of nanoscale single-pass sliding contacts, but the CPU cost of MD simulation is also too high to simulate the reciprocating sliding contacts. In this paper, employing multiscale method which couples molecular dynamics simulation and finite element method, two dimensional nanoscale reciprocating sliding contacts of textured surfaces are investigated. Four textured surfaces with different texture shapes are designed, and a rigid cylindrical tip is used to slide on these textured surfaces. For different textured surfaces, average potential energies and average friction forces of the corresponding sliding processes are analyzed. The analyzing results show that "running-in" stages are different for each texture, and steady friction processes are discovered for textured surfaces II, III and IV. Texture shape and sliding direction play important roles in reciprocating sliding contacts, which influence average friction forces greatly. This research can help to design textured surfaces to improve tribological behaviors in nanoscale reciprocating sliding contacts.

  10. Slide-and-exchange mechanism for rapid and selective transport through the nuclear pore complex

    PubMed Central

    Raveh, Barak; Karp, Jerome M.; Sparks, Samuel; Rout, Michael P.; Sali, Andrej; Cowburn, David

    2016-01-01

    Nucleocytoplasmic transport is mediated by the interaction of transport factors (TFs) with disordered phenylalanine-glycine (FG) repeats that fill the central channel of the nuclear pore complex (NPC). However, the mechanism by which TFs rapidly diffuse through multiple FG repeats without compromising NPC selectivity is not yet fully understood. In this study, we build on our recent NMR investigations showing that FG repeats are highly dynamic, flexible, and rapidly exchanging among TF interaction sites. We use unbiased long timescale all-atom simulations on the Anton supercomputer, combined with extensive enhanced sampling simulations and NMR experiments, to characterize the thermodynamic and kinetic properties of FG repeats and their interaction with a model transport factor. Both the simulations and experimental data indicate that FG repeats are highly dynamic random coils, lack intrachain interactions, and exhibit significant entropically driven resistance to spatial confinement. We show that the FG motifs reversibly slide in and out of multiple TF interaction sites, transitioning rapidly between a strongly interacting state and a weakly interacting state, rather than undergoing a much slower transition between strongly interacting and completely noninteracting (unbound) states. In the weakly interacting state, FG motifs can be more easily displaced by other competing FG motifs, providing a simple mechanism for rapid exchange of TF/FG motif contacts during transport. This slide-and-exchange mechanism highlights the direct role of the disorder within FG repeats in nucleocytoplasmic transport, and resolves the apparent conflict between the selectivity and speed of transport. PMID:27091992

  11. Slide-and-exchange mechanism for rapid and selective transport through the nuclear pore complex.

    PubMed

    Raveh, Barak; Karp, Jerome M; Sparks, Samuel; Dutta, Kaushik; Rout, Michael P; Sali, Andrej; Cowburn, David

    2016-05-01

    Nucleocytoplasmic transport is mediated by the interaction of transport factors (TFs) with disordered phenylalanine-glycine (FG) repeats that fill the central channel of the nuclear pore complex (NPC). However, the mechanism by which TFs rapidly diffuse through multiple FG repeats without compromising NPC selectivity is not yet fully understood. In this study, we build on our recent NMR investigations showing that FG repeats are highly dynamic, flexible, and rapidly exchanging among TF interaction sites. We use unbiased long timescale all-atom simulations on the Anton supercomputer, combined with extensive enhanced sampling simulations and NMR experiments, to characterize the thermodynamic and kinetic properties of FG repeats and their interaction with a model transport factor. Both the simulations and experimental data indicate that FG repeats are highly dynamic random coils, lack intrachain interactions, and exhibit significant entropically driven resistance to spatial confinement. We show that the FG motifs reversibly slide in and out of multiple TF interaction sites, transitioning rapidly between a strongly interacting state and a weakly interacting state, rather than undergoing a much slower transition between strongly interacting and completely noninteracting (unbound) states. In the weakly interacting state, FG motifs can be more easily displaced by other competing FG motifs, providing a simple mechanism for rapid exchange of TF/FG motif contacts during transport. This slide-and-exchange mechanism highlights the direct role of the disorder within FG repeats in nucleocytoplasmic transport, and resolves the apparent conflict between the selectivity and speed of transport. PMID:27091992

  12. Plan averaging for multicriteria navigation of sliding window IMRT and VMAT

    SciTech Connect

    Craft, David Papp, Dávid; Unkelbach, Jan

    2014-02-15

    Purpose: To describe a method for combining sliding window plans [intensity modulated radiation therapy (IMRT) or volumetric modulated arc therapy (VMAT)] for use in treatment plan averaging, which is needed for Pareto surface navigation based multicriteria treatment planning. Methods: The authors show that by taking an appropriately defined average of leaf trajectories of sliding window plans, the authors obtain a sliding window plan whose fluence map is the exact average of the fluence maps corresponding to the initial plans. In the case of static-beam IMRT, this also implies that the dose distribution of the averaged plan is the exact dosimetric average of the initial plans. In VMAT delivery, the dose distribution of the averaged plan is a close approximation of the dosimetric average of the initial plans. Results: The authors demonstrate the method on three Pareto optimal VMAT plans created for a demanding paraspinal case, where the tumor surrounds the spinal cord. The results show that the leaf averaged plans yield dose distributions that approximate the dosimetric averages of the precomputed Pareto optimal plans well. Conclusions: The proposed method enables the navigation of deliverable Pareto optimal plans directly, i.e., interactive multicriteria exploration of deliverable sliding window IMRT and VMAT plans, eliminating the need for a sequencing step after navigation and hence the dose degradation that is caused by such a sequencing step.

  13. Unwinding forward and sliding back: an intermittent unwinding mode of the BLM helicase.

    PubMed

    Wang, Shuang; Qin, Wei; Li, Jing-Hua; Lu, Ying; Lu, Ke-Yu; Nong, Da-Guan; Dou, Shuo-Xing; Xu, Chun-Hua; Xi, Xu-Guang; Li, Ming

    2015-04-20

    There are lines of evidence that the Bloom syndrome helicase, BLM, catalyzes regression of stalled replication forks and disrupts displacement loops (D-loops) formed during homologous recombination (HR). Here we constructed a forked DNA with a 3' single-stranded gap and a 5' double-stranded handle to partly mimic a stalled DNA fork and used magnetic tweezers to study BLM-catalyzed unwinding of the forked DNA. We have directly observed that the BLM helicase may slide on the opposite strand for some distance after duplex unwinding at different forces. For DNA construct with a long hairpin, progressive unwinding of the hairpin is frequently interrupted by strand switching and backward sliding of the enzyme. Quantitative study of the uninterrupted unwinding length (time) has revealed a two-state-transition mechanism for strand-switching during the unwinding process. Mutational studies revealed that the RQC domain plays an important role in stabilizing the helicase/DNA interaction during both DNA unwinding and backward sliding of BLM. Especially, Lys1125 in the RQC domain, a highly conserved amino acid among RecQ helicases, may be involved in the backward sliding activity. We have also directly observed the in vitro pathway that BLM disrupts the mimic stalled replication fork. These results may shed new light on the mechanisms for BLM in DNA repair and homologous recombination.

  14. Optimal second order sliding mode control for linear uncertain systems.

    PubMed

    Das, Madhulika; Mahanta, Chitralekha

    2014-11-01

    In this paper an optimal second order sliding mode controller (OSOSMC) is proposed to track a linear uncertain system. The optimal controller based on the linear quadratic regulator method is designed for the nominal system. An integral sliding mode controller is combined with the optimal controller to ensure robustness of the linear system which is affected by parametric uncertainties and external disturbances. To achieve finite time convergence of the sliding mode, a nonsingular terminal sliding surface is added with the integral sliding surface giving rise to a second order sliding mode controller. The main advantage of the proposed OSOSMC is that the control input is substantially reduced and it becomes chattering free. Simulation results confirm superiority of the proposed OSOSMC over some existing.

  15. Sliding wear and friction behaviour of zircaloy-4 in water

    NASA Astrophysics Data System (ADS)

    Sharma, Garima; Limaye, P. K.; Jadhav, D. T.

    2009-11-01

    In water cooled nuclear reactors, the sliding of fuel bundles in fuel channel handling system can lead to severe wear and it is an important topic to study. In the present study, sliding wear behaviour of zircaloy-4 was investigated in water (pH ˜ 10.5) using ball-on-plate sliding wear tester. Sliding wear resistance zircaloy-4 against SS 316 was examined at room temperature. Sliding wear tests were carried out at different load and sliding frequencies. The coefficient of friction of zircaloy-4 was also measured during each tests and it was found to decrease slightly with the increase in applied load. The micro-mechanisms responsible for wear in zircaloy-4 were identified to be microcutting, micropitting and microcracking of deformed subsurface zones in water.

  16. Significance of grain sliding mechanisms for ductile deformation of rocks

    NASA Astrophysics Data System (ADS)

    Dimanov, A.; Bourcier, M.; Gaye, A.; Héripré, E.; Bornert, M.; Raphanel, J.; Ludwig, W.

    2013-12-01

    Ductile shear zones at depth present polyphase and heterogeneous rocks and multi-scale strain localization patterns. Most strain concentrates in ultramylonitic layers, which exhibit microstructural signatures of several concomitant deformation mechanisms. The latter are either active in volume (dislocation creep), or in the vicinity and along interfaces (grain sliding and solution mass transfer). Because their chronology of appearance and interactions are unclear, inference of the overall rheology seems illusory. We have therefore characterized over a decade the rheology of synthetic lower crustal materials with different compositions and fluid contents, and for various microstructures. Non-Newtonian flow clearly related to dominant dislocation creep. Conversely, Newtonian behavior involved grain sliding mechanisms, but crystal plasticity could be identified as well. In order to clarify the respective roles of these mechanisms we underwent a multi-scale investigation of the ductile deformation of rock analog synthetic halite with controlled microstructures. The mechanical tests were combined with in-situ optical microscopy, scanning electron microscopy and X ray computed tomography, allowing for digital image correlation (DIC) techniques and retrieval of full strain field. Crystal plasticity dominated, as evidenced by physical slip lines and DIC computed slip bands. Crystal orientation mapping allowed to identify strongly active easy glide {110} <110> systems. But, all other slip systems were observed as well, and especially near interfaces, where their activity is necessary to accommodate for the plastic strain incompatibilities between neighboring grains. We also evidenced grain boundary sliding (GBS), which clearly occurred as a secondary, but necessary, accommodation mechanism. The DIC technique allowed the quantification of the relative contribution of each mechanism. The amount of GBS clearly increased with decreasing grain size. Finite element (FE) modeling

  17. Planning Robotic Manipulation Strategies for Sliding Objects

    NASA Astrophysics Data System (ADS)

    Peshkin, Michael A.

    Automated planning of grasping or manipulation requires an understanding of both the physics and the geometry of manipulation, and a representation of that knowledge which facilitates the search for successful strategies. We consider manipulation on a level conveyor belt or tabletop, on which a part may slide when touched by a robot. Manipulation plans for a given part must succeed in the face of two types of uncertainty: that of the details of surfaces in contact, and that of the initial configuration of the part. In general the points of contact between the part and the surface it slides on will be unknown, so the motion of the part in response to a push cannot be predicted exactly. Using a simple variational principle (which is derived), we find the set of possible motions of a part for a given push, for all collections of points of contact. The answer emerges as a locus of centers of rotation (CORs). Manipulation plans made using this locus will succeed despite unknown details of contact. Results of experimental tests of the COR loci are presented. Uncertainty in the initial configuration of a part is usually also present. To plan in the presence of uncertainty, configuration maps are defined, which map all configurations of a part before an elementary operation to all possible outcomes, thus encapsulating the physics and geometry of the operation. The configuration map for an operation sequence is a product of configuration maps of elementary operations. Using COR loci we compute configuration maps for elementary sliding operations. Appropriate search techniques are applied to find operation sequences which succeed in the presence of uncertainty in the initial configuration and unknown details of contact. Such operation sequences may be used as parts feeder designs or as manipulation or grasping strategies for robots. As an example we demonstrate the automated design of a class of passive parts feeders consisting of multiple sequential fences across a conveyor

  18. Bi-directional planar slide mechanism

    SciTech Connect

    Bieg, Lothar F.

    2003-11-04

    A bi-directional slide mechanism. A pair of master and slave disks engages opposite sides of the platform. Rotational drivers are connected to master disks so the disks rotate eccentrically about their respective axes of rotation. Opposing slave disks are connected to master disks on opposite sides of the platform by a circuitous mechanical linkage, or are electronically synchronized together using stepper motors, to effect coordinated motion. The synchronized eccentric motion of the pairs of master/slave disks compels smooth linear motion of the platform forwards and backwards without backlash. The apparatus can be incorporated in a MEMS device.

  19. 21 CFR 864.3800 - Automated slide stainer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Pathology Instrumentation and Accessories § 864.3800..., cytology, and hematology slides for diagnosis. (b) Classification. Class I (general controls). This...

  20. 21 CFR 864.3800 - Automated slide stainer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Pathology Instrumentation and Accessories § 864.3800..., cytology, and hematology slides for diagnosis. (b) Classification. Class I (general controls). This...

  1. 21 CFR 864.3800 - Automated slide stainer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Pathology Instrumentation and Accessories § 864.3800..., cytology, and hematology slides for diagnosis. (b) Classification. Class I (general controls). This...

  2. 21 CFR 864.3800 - Automated slide stainer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Pathology Instrumentation and Accessories § 864.3800..., cytology, and hematology slides for diagnosis. (b) Classification. Class I (general controls). This...

  3. 21 CFR 864.3800 - Automated slide stainer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Pathology Instrumentation and Accessories § 864.3800..., cytology, and hematology slides for diagnosis. (b) Classification. Class I (general controls). This...

  4. Underwater Sliding Properties: Effect of Slider Shape and Surface Wettability

    NASA Astrophysics Data System (ADS)

    Kirveslahti, A.; Mielonen, K.; Ikonen, K.; Cui, W.; Suvanto, M.; Pakkanen, T. A.

    2016-04-01

    A dynamic test method for the measurement of the underwater sliding properties of model boats has been developed. Surface-modified model boats were examined to assess how the surface wettability properties affect sliding. Along with the surface properties, the influence of the boat shape was considered. We studied various coatings in the contact angle range of 3-162∘ with two model boat shapes. The hydrophobicity of the surfaces influenced the sliding speed of the model boat depending on the boat shape. The method is applicable to study sliding properties of model boats with different surfaces in variable flow conditions.

  5. Second order sliding mode control for a quadrotor UAV.

    PubMed

    Zheng, En-Hui; Xiong, Jing-Jing; Luo, Ji-Liang

    2014-07-01

    A method based on second order sliding mode control (2-SMC) is proposed to design controllers for a small quadrotor UAV. For the switching sliding manifold design, the selection of the coefficients of the switching sliding manifold is in general a sophisticated issue because the coefficients are nonlinear. In this work, in order to perform the position and attitude tracking control of the quadrotor perfectly, the dynamical model of the quadrotor is divided into two subsystems, i.e., a fully actuated subsystem and an underactuated subsystem. For the former, a sliding manifold is defined by combining the position and velocity tracking errors of one state variable, i.e., the sliding manifold has two coefficients. For the latter, a sliding manifold is constructed via a linear combination of position and velocity tracking errors of two state variables, i.e., the sliding manifold has four coefficients. In order to further obtain the nonlinear coefficients of the sliding manifold, Hurwitz stability analysis is used to the solving process. In addition, the flight controllers are derived by using Lyapunov theory, which guarantees that all system state trajectories reach and stay on the sliding surfaces. Extensive simulation results are given to illustrate the effectiveness of the proposed control method.

  6. Slide less pathology”: Fairy tale or reality?

    PubMed Central

    Indu, M; Rathy, R; Binu, MP

    2016-01-01

    Pathology practice is significantly advanced in various frontiers. Therefore, “slide less digital” pathology will not be a mere imagination in near future. Digitalization of histopathological slides (whole slide imaging [WSI]) is possible with the help of whole slide scanner. The WSI has a positive impact not only in routine practice but also in research field, medical education and bioindustry. Even if digital pathology has definitive advantages, its widespread use is not yet possible. As it is an upcoming technology in our field, this article is aimed to discussessential aspects of WSI.

  7. Slide less pathology”: Fairy tale or reality?

    PubMed Central

    Indu, M; Rathy, R; Binu, MP

    2016-01-01

    Pathology practice is significantly advanced in various frontiers. Therefore, “slide less digital” pathology will not be a mere imagination in near future. Digitalization of histopathological slides (whole slide imaging [WSI]) is possible with the help of whole slide scanner. The WSI has a positive impact not only in routine practice but also in research field, medical education and bioindustry. Even if digital pathology has definitive advantages, its widespread use is not yet possible. As it is an upcoming technology in our field, this article is aimed to discussessential aspects of WSI. PMID:27601824

  8. Application of partial sliding mode in guidance problem.

    PubMed

    Shafiei, M H; Binazadeh, T

    2013-03-01

    In this paper, the problem of 3-dimensional guidance law design is considered and a new guidance law based on partial sliding mode technique is presented. The approach is based on the classification of the state variables within the guidance system dynamics with respect to their required stabilization properties. In the proposed law by using a partial sliding mode technique, only trajectories of a part of states variables are forced to reach the partial sliding surfaces and slide on them. The resulting guidance law enables the missile to intercept highly maneuvering targets within a finite interception time. Effectiveness of the proposed guidance law is demonstrated through analysis and simulations.

  9. Numerical Modelling of Tsunami Generated by Deformable Submarine Slides: Parameterisation of Slide Dynamics for Coupling to Tsunami Propagation Model

    NASA Astrophysics Data System (ADS)

    Smith, R. C.; Collins, G. S.; Hill, J.; Piggott, M. D.; Mouradian, S. L.

    2015-12-01

    Numerical modelling informs risk assessment of tsunami generated by submarine slides; however, for large-scale slides modelling can be complex and computationally challenging. Many previous numerical studies have approximated slides as rigid blocks that moved according to prescribed motion. However, wave characteristics are strongly dependent on the motion of the slide and previous work has recommended that more accurate representation of slide dynamics is needed. We have used the finite-element, adaptive-mesh CFD model Fluidity, to perform multi-material simulations of deformable submarine slide-generated waves at real world scales for a 2D scenario in the Gulf of Mexico. Our high-resolution approach represents slide dynamics with good accuracy, compared to other numerical simulations of this scenario, but precludes tracking of wave propagation over large distances. To enable efficient modelling of further propagation of the waves, we investigate an approach to extract information about the slide evolution from our multi-material simulations in order to drive a single-layer wave propagation model, also using Fluidity, which is much less computationally expensive. The extracted submarine slide geometry and position as a function of time are parameterised using simple polynomial functions. The polynomial functions are used to inform a prescribed velocity boundary condition in a single-layer simulation, mimicking the effect the submarine slide motion has on the water column. The approach is verified by successful comparison of wave generation in the single-layer model with that recorded in the multi-material, multi-layer simulations. We then extend this approach to 3D for further validation of this methodology (using the Gulf of Mexico scenario proposed by Horrillo et al., 2013) and to consider the effect of lateral spreading. This methodology is then used to simulate a series of hypothetical submarine slide events in the Arctic Ocean (based on evidence of historic

  10. A frictional sliding algorithm for liquid droplets

    NASA Astrophysics Data System (ADS)

    Sauer, Roger A.

    2016-08-01

    This work presents a new frictional sliding algorithm for liquid menisci in contact with solid substrates. In contrast to solid-solid contact, the liquid-solid contact behavior is governed by the contact line, where a contact angle forms and undergoes hysteresis. The new algorithm admits arbitrary meniscus shapes and arbitrary substrate roughness, heterogeneity and compliance. It is discussed and analyzed in the context of droplet contact, but it also applies to liquid films and solids with surface tension. The droplet is modeled as a stabilized membrane enclosing an incompressible medium. The contact formulation is considered rate-independent such that hydrostatic conditions apply. Three distinct contact algorithms are needed to describe the cases of frictionless surface contact, frictionless line contact and frictional line contact. For the latter, a predictor-corrector algorithm is proposed in order to enforce the contact conditions at the contact line and thus distinguish between the cases of advancing, pinning and receding. The algorithms are discretized within a monolithic finite element formulation. Several numerical examples are presented to illustrate the numerical and physical behavior of sliding droplets.

  11. Sliding viscoelastic drops on slippery surfaces

    NASA Astrophysics Data System (ADS)

    Xu, H.; Clarke, A.; Rothstein, J. P.; Poole, R. J.

    2016-06-01

    We study the sliding of drops of constant-viscosity dilute elastic liquids (Boger fluids) on various surfaces caused by sudden surface inclination. For smooth or roughened hydrophilic surfaces, such as glass or acrylic, there is essentially no difference between these elastic liquids and a Newtonian comparator fluid (with identical shear viscosity, surface tension, and static contact angle). In contrast for embossed polytetrafluoroethylene superhydrophobic surfaces, profound differences are observed: the elastic drops slide at a significantly reduced rate and complex branch-like patterns are left on the surface by the drop's wake including, on various scales, beads-on-a-string like phenomena. Microscopy images indicate that the strong viscoelastic effect is caused by stretching filaments of fluid from isolated islands, residing at pinning sites on the surface pillars, of the order ˜30 μm in size. On this scale, the local strain rates are sufficient to extend the polymer chains, locally increasing the extensional viscosity of the solution, retarding the drop and leaving behind striking branch-like structures on much larger scales.

  12. Influence of normal loads and sliding velocities on friction properties of engineering plastics sliding against rough counterfaces

    NASA Astrophysics Data System (ADS)

    Nuruzzaman, D. M.; Chowdhury, M. A.; Rahaman, M. L.; Oumer, A. N.

    2016-02-01

    Friction properties of plastic materials are very important under dry sliding contact conditions for bearing applications. In the present research, friction properties of engineering plastics such as polytetrafluoroethylene (PTFE) and nylon are investigated under dry sliding contact conditions. In the experiments, PTFE and nylon slide against different rough counterfaces such as mild steel and stainless steel 316 (SS 316). Frictional tests are carried out at low loads 5, 7.5 and 10 N, low sliding velocities 0.5, 0.75 and 1 m/s and relative humidity 70%. The obtained results reveal that friction coefficient of PTFE increases with the increase in normal loads and sliding velocities within the observed range. On the other hand, frictional values of nylon decrease with the increase in normal loads and sliding velocities. It is observed that in general, these polymers show higher frictional values when sliding against SS 316 rather than mild steel. During running-in process, friction coefficient of PTFE and nylon steadily increases with the increase in rubbing time and after certain duration of rubbing, it remains at steady level. At identical operating conditions, the frictional values are significantly different depending on normal load, sliding velocity and material pair. It is also observed that in general, the influence of normal load on the friction properties of PTFE and nylon is greater than that of sliding velocity.

  13. In situ TEM characterization of shear-stress-induced interlayer sliding in the cross section view of molybdenum disulfide.

    PubMed

    Oviedo, Juan Pablo; KC, Santosh; Lu, Ning; Wang, Jinguo; Cho, Kyeongjae; Wallace, Robert M; Kim, Moon J

    2015-02-24

    The experimental study of interlayer sliding at the nanoscale in layered solids has been limited thus far by the incapability of mechanical and imaging probes to simultaneously access sliding interfaces and overcome through mechanical stimulus the van der Waals and Coulombic interactions holding the layers in place. For this purpose, straightforward methods were developed to achieve interlayer sliding in molybdenum disulfide (MoS2) while under observation within a transmission electron microscope. A method to manipulate, tear, and slide free-standing atomic layers of MoS2 is demonstrated by electrostatically coupling it to an oxidized tungsten probe attached to a micromanipulator at a bias above ±7 V. A first-principles model of a MoS2 bilayer polarized by a normal electric field of 5 V/nm, emanating from the tip, demonstrates the appearance of a periodic negative sliding potential energy barrier when the layers slide into the out-of-registry stacking configuration, hinting at electrostatic gating as a means of modifying the interlayer tribology to facilitate shear exfoliation. A method to shear focused ion beam prepared MoS2 cross section samples using a nanoindenter force sensor is also demonstrated, allowing both the observation and force measurement of its interlayer dynamics during shear-induced sliding. From this experiment, the zero normal load shear strength of MoS2 can be directly obtained: 25.3 ± 0.6 MPa. These capabilities enable the site-specific mechanical testing of dry lubricant-based nanoelectromechanical devices and can lead to a better understanding of the atomic mechanisms from which the interlayer tribology of layered materials originates. PMID:25494557

  14. Lecture Handouts of Projected Slides in a Medical Course.

    ERIC Educational Resources Information Center

    Amato, Dominick; Quirt, Ian

    1991-01-01

    In a third-year medical school hematology course, handouts reproducing all or most of the 35mm slides used during the lecture are given at the beginning of class. The slides are reproduced on the left, with room for note-taking on the right. Despite some disadvantages, the method is seen as helpful. (Author/MSE)

  15. 45 CFR 98.42 - Sliding fee scales.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Welfare Department of Health and Human Services GENERAL ADMINISTRATION CHILD CARE AND DEVELOPMENT FUND Program Operations (Child Care Services)-Lead Agency and Provider Requirements § 98.42 Sliding fee scales... provides for cost sharing by families that receive CCDF child care services. (b) A sliding fee...

  16. 45 CFR 98.42 - Sliding fee scales.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION CHILD CARE AND DEVELOPMENT FUND Program Operations (Child Care Services)-Lead Agency and Provider Requirements § 98.42 Sliding fee scales... provides for cost sharing by families that receive CCDF child care services. (b) A sliding fee...

  17. 45 CFR 98.42 - Sliding fee scales.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION CHILD CARE AND DEVELOPMENT FUND Program Operations (Child Care Services)-Lead Agency and Provider Requirements § 98.42 Sliding fee scales... provides for cost sharing by families that receive CCDF child care services. (b) A sliding fee...

  18. 45 CFR 98.42 - Sliding fee scales.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION CHILD CARE AND DEVELOPMENT FUND Program Operations (Child Care Services)-Lead Agency and Provider Requirements § 98.42 Sliding fee scales... provides for cost sharing by families that receive CCDF child care services. (b) A sliding fee...

  19. 45 CFR 98.42 - Sliding fee scales.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION CHILD CARE AND DEVELOPMENT FUND Program Operations (Child Care Services)-Lead Agency and Provider Requirements § 98.42 Sliding fee scales... provides for cost sharing by families that receive CCDF child care services. (b) A sliding fee...

  20. Determining the Ecosystem Services Important for Urban Landscapes-Slides

    EPA Science Inventory

    This presentation consists of introductory slides on ecosystem services in urban landscapes and then a discussion of two case studies concerning the provision of water quality in urban landscapes. The introductory slides will explore the range of ecosystem services provided by u...

  1. Optimizing Student Learning: Examining the Use of Presentation Slides

    ERIC Educational Resources Information Center

    Strauss, Judy; Corrigan, Hope; Hofacker, Charles F.

    2011-01-01

    Sensory overload and split attention result in reduced learning when instructors read slides with bullet points and complex graphs during a lecture. Conversely, slides containing relevant visual elements, when accompanied by instructor narration, use both the visual and verbal channels of a student's working memory, thus improving the chances of…

  2. The Easy Way to Create Computer Slide Shows.

    ERIC Educational Resources Information Center

    Anderson, Mary Alice

    1995-01-01

    Discusses techniques for creating computer slide shows. Topics include memory; format; color use; HyperCard and CD-ROM; font styles and sizes; graphs and graphics; the slide show option; special effects; and tips for effective presentation. (Author/AEF)

  3. A Simple Measurement of the Sliding Friction Coefficient

    ERIC Educational Resources Information Center

    Gratton, Luigi M.; Defrancesco, Silvia

    2006-01-01

    We present a simple computer-aided experiment for investigating Coulomb's law of sliding friction in a classroom. It provides a way of testing the possible dependence of the friction coefficient on various parameters, such as types of materials, normal force, apparent area of contact and sliding velocity.

  4. 49 CFR 229.115 - Slip/slide alarms.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... sliding wheels on powered axles under power. When two or more locomotives are coupled in multiple or remote control, the wheel slip/slide alarm of each locomotive shall be shown in the cab of the... road service, or continue in road service following a daily inspection, unless the wheel...

  5. 49 CFR 229.115 - Slip/slide alarms.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... sliding wheels on powered axles under power. When two or more locomotives are coupled in multiple or remote control, the wheel slip/slide alarm of each locomotive shall be shown in the cab of the... road service, or continue in road service following a daily inspection, unless the wheel...

  6. 49 CFR 229.115 - Slip/slide alarms.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... sliding wheels on powered axles under power. When two or more locomotives are coupled in multiple or remote control, the wheel slip/slide alarm of each locomotive shall be shown in the cab of the... road service, or continue in road service following a daily inspection, unless the wheel...

  7. Qualification test unit slide stainer (Beckman P/N 673753)

    NASA Technical Reports Server (NTRS)

    Bernier, P. S.

    1972-01-01

    Specifications for a slide stainer unit for the Skylab program are presented. The qualification test slide stainer was designed to be a self-contained system capable of performing an eight-step Gram stain of microorganisms and a Wright's stain of blood smears.

  8. A Transformational Approach to Slip-Slide Factoring

    ERIC Educational Resources Information Center

    Steckroth, Jeffrey

    2015-01-01

    In this "Delving Deeper" article, the author introduces the slip-slide method for solving Algebra 1 mathematics problems. This article compares the traditional method approach of trial and error to the slip-slide method of factoring. Tools that used to be taken for granted now make it possible to investigate relationships visually,…

  9. 8. Photocopy of original USRS glass plate slide (from original ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Photocopy of original USRS glass plate slide (from original slide on file at National Archives, Rocky Mountain Region, Denver, Colorado) Photographer unknown, ca. 1908 The diversion weir of the Okanogan National Irrigation Project - Salmon Creek Diversion Dam, Salmon Creek, Okanogan, Okanogan County, WA

  10. AFRD WAREHOUSE, WEST SIDE DETAIL OF ALTERED SLIDING DOORS, FACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AFRD WAREHOUSE, WEST SIDE DETAIL OF ALTERED SLIDING DOORS, FACING EAST. WEATHER COVER OVER RAIL IS ORIGINAL. SHEET METAL SIDING HAS BEEN INSERTED BETWEEN TWO HALVES OF SLIDING DOORS. - Minidoka Relocation Center Warehouse, 111 South Fir Street, Shoshone, Lincoln County, ID

  11. Detection of felt tip markers on microscope slides

    NASA Astrophysics Data System (ADS)

    Friedrich, David; Meyer-Ebrecht, Dietrich; Böcking, Alfred; Merhof, Dorit

    2014-03-01

    Sensitivity and specificity of conventional cytological methods for cancer diagnosis can be raised significantly by applying further adjuvant cytological methods. To this end, the pathologist marks regions of interest (ROI) with a felt tip pen on the microscope slide for further analysis. This paper presents algorithms for the automated detection of these ROIs, which enables further automated processing of these regions by digital pathology solutions and image analysis. For this purpose, an overview scan is obtained at low magnification. Slides from different manufacturers need to be treated, as they might contain certain regions which need to be excluded from the analysis. Therefore the slide type is identified first. Subsequently, the felt tip marks are detected automatically, and gaps appearing in the case of ROIs which have been drawn incompletely are closed. Based on the marker detection, the ROIs are obtained. The algorithms have been optimized on a training set of 82 manually annotated images. On the test set, the slide types of all but one out of 81 slides were identified correctly. A sensitivity of 98.31% and a positive predictive value of 97.48% were reached for the detection of ROIs. In combination with a slide loader or a whole slide imaging scanner as well as automated image analysis, this enables fully automated batch processing of slides.

  12. A Computer System for Making Quick and Economical Color Slides.

    ERIC Educational Resources Information Center

    Pryor, Harold George

    1986-01-01

    A computer-based method for producing 35mm color slides has been used in Ohio State University's College of Dentistry. The method can produce both text and slides in less than two hours, providing substantial flexibility in planning and revising visual presentations. (Author/MLW)

  13. Various sizes of sliding event bursts in the plastic flow of metallic glasses based on a spatiotemporal dynamic model

    SciTech Connect

    Ren, Jingli E-mail: g.wang@shu.edu.cn; Chen, Cun; Wang, Gang E-mail: g.wang@shu.edu.cn; Cheung, Wing-Sum; Sun, Baoan; Mattern, Norbert; Siegmund, Stefan; Eckert, Jürgen

    2014-07-21

    This paper presents a spatiotemporal dynamic model based on the interaction between multiple shear bands in the plastic flow of metallic glasses during compressive deformation. Various sizes of sliding events burst in the plastic deformation as the generation of different scales of shear branches occurred; microscopic creep events and delocalized sliding events were analyzed based on the established model. This paper discusses the spatially uniform solutions and traveling wave solution. The phase space of the spatially uniform system applied in this study reflected the chaotic state of the system at a lower strain rate. Moreover, numerical simulation showed that the microscopic creep events were manifested at a lower strain rate, whereas the delocalized sliding events were manifested at a higher strain rate.

  14. [Whole slide imaging technology: from digitization to online applications].

    PubMed

    Ameisen, David; Le Naour, Gilles; Daniel, Christel

    2012-11-01

    As e-health becomes essential to modern care, whole slide images (virtual slides) are now an important clinical, teaching and research tool in pathology. Virtual microscopy consists of digitizing a glass slide by acquiring hundreds of tiles of regions of interest at different zoom levels and assembling them into a structured file. This gigapixel image can then be remotely viewed over a terminal, exactly the way pathologists use a microscope. In this article, we will first describe the key elements of this technology, from the acquisition, using a scanner or a motorized microscope, to the broadcasting of virtual slides through a local or distant viewer over an intranet or Internet connection. As virtual slides are now commonly used in virtual classrooms, clinical data and research databases, we will highlight the main issues regarding its uses in modern pathology. Emphasis will be made on quality assurance policies, standardization and scaling.

  15. Roles of hardness in the sliding behavior of materials

    NASA Astrophysics Data System (ADS)

    Rigney, D. A.

    1994-06-01

    It is generally recognized that hardness is one of the key factors which influence the sliding behavior of different materials combinations. However, in many discussions the only hardness value considered is that of the softer of the two materials in a tribological pair. This is usually the case when a simple linear wear equation (Holm, Archard, Khruschov) is cited. Observations on many materials combinations demonstrate that the effects of hardness are much more complex. Hardness varies with position and time. It can depend on temperature, sliding speed and the chemical environment. The sign of hardness gradients adjacent to the sliding surface affects sliding behavior. Transfer and subsequent mechanical mixing strongly influence local hardness. Changes in hardness can affect transitions in friction and wear. Relative hardness values can help to explain differences in debris and in smooth and rough sliding. They can also help us to understand geometric effects such as those noted when materials are interchanged in a test system. Examples are described.

  16. Teaching Veterinary Histopathology: A Comparison of Microscopy and Digital Slides.

    PubMed

    Brown, Peter J; Fews, Debra; Bell, Nick J

    2016-01-01

    Virtual microscopy using digitized slides has become more widespread in teaching in recent years. There have been no direct comparisons of the use of virtual microscopy and the use of microscopes and glass slides. Third-year veterinary students from two different schools completed a simple objective test, covering aspects of histology and histopathology, before and after a practical class covering relevant material presented as either glass slides viewed with a microscope or as digital slides. There was an overall improvement in performance by students at both veterinary schools using both practical formats. Neither format was consistently better than the other, and neither school consistently outperformed the other. In a comparison of student appraisal of use of digital slides and microscopes, the digital technology was identified as having many advantages.

  17. Sliding wear studies using acoustic emission

    NASA Astrophysics Data System (ADS)

    Lingard, S.; Yu, C. W.; Yau, C. F.

    1993-04-01

    Deformation processes in solids, such as dislocation movements under plastic flow, crack propagation and void crushing, produce stress waves at ultrasonic frequencies, usually described as acoustic emission (AE), which can be detected by sensitive instruments and which are related to the severity and nature of the deformations. The paper discusses the characteristics of the stress waves and their variation with wear rates, wear regimes, and friction forces, as determined during laboratory experiments on metallic specimens in relative sliding motion, both unlubricated and with elastohydrodynamic lubrication. It is shown that there are systematic relationships between the acoustic emissions, the wear rates, the frictional work inputs and established tribological contact variables. The predominant frequencies of the emissions are also evaluated and considered in relation to the materials and wear conditions.

  18. Sliding Mode Control of Steerable Needles

    PubMed Central

    Rucker, D. Caleb; Das, Jadav; Gilbert, Hunter B.; Swaney, Philip J.; Miga, Michael I.; Sarkar, Nilanjan; Webster, Robert J.

    2014-01-01

    Steerable needles can potentially increase the accuracy of needle-based diagnosis and therapy delivery, provided they can be adequately controlled based on medical image information. We propose a novel sliding mode control law that can be used to deliver the tip of a flexible asymmetric-tipped needle to a desired point, or to track a desired trajectory within tissue. The proposed control strategy requires no a priori knowledge of model parameters, has bounded input speeds, and requires little computational resources. We show that if the standard nonholonomic model for tip-steered needles holds, then the control law will converge to desired targets in a reachable workspace, within a tolerance that can be defined by the control parameters. Experimental results validate the control law for target points and trajectory following in phantom tissue and ex vivo liver. Experiments with targets that move during insertion illustrate robustness to disturbances caused by tissue deformation. PMID:25400527

  19. Sliding Mode Control of Steerable Needles.

    PubMed

    Rucker, D Caleb; Das, Jadav; Gilbert, Hunter B; Swaney, Philip J; Miga, Michael I; Sarkar, Nilanjan; Webster, Robert J

    2013-10-01

    Steerable needles can potentially increase the accuracy of needle-based diagnosis and therapy delivery, provided they can be adequately controlled based on medical image information. We propose a novel sliding mode control law that can be used to deliver the tip of a flexible asymmetric-tipped needle to a desired point, or to track a desired trajectory within tissue. The proposed control strategy requires no a priori knowledge of model parameters, has bounded input speeds, and requires little computational resources. We show that if the standard nonholonomic model for tip-steered needles holds, then the control law will converge to desired targets in a reachable workspace, within a tolerance that can be defined by the control parameters. Experimental results validate the control law for target points and trajectory following in phantom tissue and ex vivo liver. Experiments with targets that move during insertion illustrate robustness to disturbances caused by tissue deformation.

  20. Yeast actin filaments display ATP-dependent sliding movement over surfaces coated with rabbit muscle myosin.

    PubMed Central

    Kron, S J; Drubin, D G; Botstein, D; Spudich, J A

    1992-01-01

    The yeast Saccharomyces cerevisiae has been used to study the function of components of the actin cytoskeleton in vivo, mainly because it is easy to derive and characterize mutations affecting these proteins. In contrast, biochemical studies have generally used proteins derived from higher eukaryotes. We have devised a simple procedure to prepare, in high yield, homogeneous native actin from wild-type and act1 mutant yeast. Using intensified video fluorescence microscopy, we found that actin filaments polymerized from these preparations exhibit ATP-dependent sliding movement over surfaces coated with rabbit skeletal muscle myosin. The rates of sliding movement of the wild-type and mutant yeast actins were each about half that of rabbit skeletal muscle actin under similar conditions. We conclude that over the large evolutionary distance between yeast and mammals there has been significant conservation of actin function, specifically the ability to be moved by interaction with myosin. Images PMID:1533933

  1. DPS Discovery Slide Sets for the Introductory Astronomy Instructor

    NASA Astrophysics Data System (ADS)

    Meinke, Bonnie K.; Jackson, Brian; Buxner, Sanlyn; Horst, Sarah; Brain, David; Schneider, Nicholas M.

    2016-10-01

    The DPS actively supports the E/PO needs of the society's membership, including those at the front of the college classroom. The DPS Discovery Slide Sets are an opportunity for instructors to put the latest planetary science into their lectures and for scientists to get their exciting results to college students.In an effort to keep the astronomy classroom apprised of the fast moving field of planetary science, the Division for Planetary Sciences (DPS) has developed "DPS Discoveries", which are 3-slide presentations that can be incorporated into college lectures. The slide sets are targeted at the Introductory Astronomy undergraduate level. Each slide set consists of three slides which cover a description of the discovery, a discussion of the underlying science, and a presentation of the big picture implications of the discovery, with a fourth slide that includes links to associated press releases, images, and primary sources. Topics span all subdisciplines of planetary science, and 26 sets are available in Farsi and Spanish. We intend for these slide sets to help Astronomy 101 instructors include new developments (not yet in their textbooks) into the broader context of the course. If you need supplemental material for your classroom, please checkout the archived collection: http://dps.aas.org/education/dpsdiscMore slide sets are now in development and will be available soon! In the meantime, we seek input, feedback, and help from the DPS membership to add fresh slide sets to the series and to connect the college classroom to YOUR science. It's easy to get involved – we'll provide a content template, tips and tricks for a great slide set, and pedagogy reviews. Talk to a coauthor to find out how you can disseminate your science or get involved in E/PO with your contributions.

  2. Resultant knee joint moments for lateral movement tasks on sliding and non-sliding sport surfaces.

    PubMed

    Nigg, Benno M; Stefanyshyn, Darren J; Rozitis, Antra I; Mundermann, Annegret

    2009-03-01

    The aim of this study was to compare ankle and knee joint moments observed when playing on sport surfaces that slide slightly relative to the ground with the moments observed when playing on conventional sport surfaces. Three-dimensional resultant internal joint moments and kinematic characteristics of the lower extremity were quantified for 21 university basketball players when performing v-cut and side-shuffle tasks on three types of sliding surface (interlocking tiles) and on two types of conventional surface (maple wood and rolled vinyl). Translational and rotational friction between the five test surfaces and a test shoe were also quantified. The five sport surfaces moved horizontally between 0.2 and 1.6 mm during the landing phase of the two tasks. The medio-lateral ground reaction forces were lowest for the surfaces with the highest horizontal movement. Resultant ankle joint moments were lower and resultant knee moments were higher on the sliding surfaces than the conventional surfaces. Sport surfaces that allow a few millimetres of horizontal movement during ground contact may reduce joint loading at the ankle joint, but increase joint loading at the knee joint, when compared with conventional sport surfaces, and thus may influence the prevalence of knee injuries.

  3. Reverse actin sliding triggers strong myosin binding that moves tropomyosin

    SciTech Connect

    Bekyarova, T.I.; Reedy, M.C.; Baumann, B.A.J.; Tregear, R.T.; Ward, A.; Krzic, U.; Prince, K.M.; Perz-Edwards, R.J.; Reconditi, M.; Gore, D.; Irving, T.C.; Reedy, M.K.

    2008-09-03

    Actin/myosin interactions in vertebrate striated muscles are believed to be regulated by the 'steric blocking' mechanism whereby the binding of calcium to the troponin complex allows tropomyosin (TM) to change position on actin, acting as a molecular switch that blocks or allows myosin heads to interact with actin. Movement of TM during activation is initiated by interaction of Ca{sup 2+} with troponin, then completed by further displacement by strong binding cross-bridges. We report x-ray evidence that TM in insect flight muscle (IFM) moves in a manner consistent with the steric blocking mechanism. We find that both isometric contraction, at high [Ca{sup 2+}], and stretch activation, at lower [Ca{sup 2+}], develop similarly high x-ray intensities on the IFM fourth actin layer line because of TM movement, coinciding with x-ray signals of strong-binding cross-bridge attachment to helically favored 'actin target zones.' Vanadate (Vi), a phosphate analog that inhibits active cross-bridge cycling, abolishes all active force in IFM, allowing high [Ca{sup 2+}] to elicit initial TM movement without cross-bridge attachment or other changes from relaxed structure. However, when stretched in high [Ca{sup 2+}], Vi-'paralyzed' fibers produce force substantially above passive response at pCa {approx} 9, concurrent with full conversion from resting to active x-ray pattern, including x-ray signals of cross-bridge strong-binding and TM movement. This argues that myosin heads can be recruited as strong-binding 'brakes' by backward-sliding, calcium-activated thin filaments, and are as effective in moving TM as actively force-producing cross-bridges. Such recruitment of myosin as brakes may be the major mechanism resisting extension during lengthening contractions.

  4. Humboldt slide - A large shear-dominated retrogressive slope failure

    USGS Publications Warehouse

    Gardner, J.V.; Prior, D.B.; Field, M.E.

    1999-01-01

    Humboldt Slide is a large, complex slide zone located on the northern California continental margin. Its three-dimensional architecture has been imaged by a combination of multibeam bathymetry, Huntec Deep-Tow seismic profiling, and sidescan sonar. The slide is interpreted to be Late Pleistocene to early Holocene in age and was caused by a combination of factors. The area of the slide is a local depocenter with high accumulation rates of organic-rich sediment; there has been local steepening of slopes by tectonic uplifts; and the entire area is one of high seismicity. Overall, the failure occurred by retrogressive, shear-dominated, minimum movement apparently as a sequence of events. Failure initially occurred by subsidence extension at the middle of the feature, followed by upslope retrogressive failure and downslope compression, and finally by translational sliding at the top of the slide. Degassing, as evidenced by abundant pockmarks, may have inhibited downslope translation. The slide may still be active, as suggested by offsets in Holocene hemipelagic sediment draped over some of the shear surfaces. Crown cracks occur above the present head of the failure and may represent the next generation of failure.

  5. Estimation of lung lobar sliding using image registration

    NASA Astrophysics Data System (ADS)

    Amelon, Ryan; Cao, Kunlin; Reinhardt, Joseph M.; Christensen, Gary E.; Raghavan, Madhavan

    2012-03-01

    MOTIVATION: The lobes of the lungs slide relative to each other during breathing. Quantifying lobar sliding can aid in better understanding lung function, better modeling of lung dynamics, and a better understanding of the limits of image registration performance near fissures. We have developed a method to estimate lobar sliding in the lung from image registration of CT scans. METHODS: Six human lungs were analyzed using CT scans spanning functional residual capacity (FRC) to total lung capacity (TLC). The lung lobes were segmented and registered on a lobe-by-lobe basis. The displacement fields from the independent lobe registrations were then combined into a single image. This technique allows for displacement discontinuity at lobar boundaries. The displacement field was then analyzed as a continuum by forming finite elements from the voxel grid of the FRC image. Elements at a discontinuity will appear to have undergone significantly elevated 'shear stretch' compared to those within the parenchyma. Shear stretch is shown to be a good measure of sliding magnitude in this context. RESULTS: The sliding map clearly delineated the fissures of the lung. The fissure between the right upper and right lower lobes showed the greatest sliding in all subjects while the fissure between the right upper and right middle lobe showed the least sliding.

  6. Second-order sliding mode control with experimental application.

    PubMed

    Eker, Ilyas

    2010-07-01

    In this article, a second-order sliding mode control (2-SMC) is proposed for second-order uncertain plants using equivalent control approach to improve the performance of control systems. A Proportional + Integral + Derivative (PID) sliding surface is used for the sliding mode. The sliding mode control law is derived using direct Lyapunov stability approach and asymptotic stability is proved theoretically. The performance of the closed-loop system is analysed through an experimental application to an electromechanical plant to show the feasibility and effectiveness of the proposed second-order sliding mode control and factors involved in the design. The second-order plant parameters are experimentally determined using input-output measured data. The results of the experimental application are presented to make a quantitative comparison with the traditional (first-order) sliding mode control (SMC) and PID control. It is demonstrated that the proposed 2-SMC system improves the performance of the closed-loop system with better tracking specifications in the case of external disturbances, better behavior of the output and faster convergence of the sliding surface while maintaining the stability.

  7. Comparing whole slide digital images versus traditional glass slides in the detection of common microscopic features seen in dermatitis

    PubMed Central

    Vyas, Nikki S.; Markow, Michael; Prieto-Granada, Carlos; Gaudi, Sudeep; Turner, Leslie; Rodriguez-Waitkus, Paul; Messina, Jane L.; Jukic, Drazen M.

    2016-01-01

    Background: The quality and limitations of digital slides are not fully known. We aimed to estimate intrapathologist discrepancy in detecting specific microscopic features on glass slides and digital slides created by scanning at ×20. Methods: Hematoxylin and eosin and periodic acid–Schiff glass slides were digitized using the Mirax Scan (Carl Zeiss Inc., Germany). Six pathologists assessed 50–71 digital slides. We recorded objective magnification, total time, and detection of the following: Mast cells; eosinophils; plasma cells; pigmented macrophages; melanin in the epidermis; fungal bodies; neutrophils; civatte bodies; parakeratosis; and sebocytes. This process was repeated using the corresponding glass slides after 3 weeks. The diagnosis was not required. Results: The mean time to assess digital slides was 176.77 s and 137.61 s for glass slides (P < 0.001, 99% confidence interval [CI]). The mean objective magnification used to detect features using digital slides was 18.28 and 14.07 for glass slides (P < 0.001, 99.99% CI). Parakeratosis, civatte bodies, pigmented macrophages, melanin in the epidermis, mast cells, eosinophils, plasma cells, and neutrophils, were identified at lower objectives on glass slides (P = 0.023–0.001, 95% CI). Average intraobserver concordance ranged from κ = 0.30 to κ = 0.78. Features with poor to fair average concordance were: Melanin in the epidermis (κ = 0.15–0.58); plasma cells (κ = 0.15–0.49); and neutrophils (κ = 0.12–0.48). Features with moderate average intrapathologist concordance were: parakeratosis (κ = 0.21–0.61); civatte bodies (κ = 0.21–0.71); pigment-laden macrophages (κ = 0.34–0.66); mast cells (κ = 0.29–0.78); and eosinophils (κ = 0.31–0.79). The average intrapathologist concordance was good for sebocytes (κ = 0.51–1.00) and fungal bodies (κ = 0.47–0.76). Conclusions: Telepathology using digital slides scanned at ×20 is sufficient for detection of histopathologic features routinely

  8. Geomorphology, stability and mobility of the Currituck slide

    USGS Publications Warehouse

    Locat, J.; Lee, H.; ten Brink, U.S.; Twichell, D.; Geist, E.; Sansoucy, M.

    2009-01-01

    Over the last 100,000??years, the U.S. Atlantic continental margin has experienced various types of mass movements some of which are believed to have taken place at times of low sea level. At one of these times of low sea level a significant trigger caused a major submarine mass movement off the coast of Virginia: the Currituck slide which is believed to have taken place between 24 and 50??ka ago. This slide removed a total volume of about 165??km3 from this section of the continental slope. The departure zone still shows a very clean surface that dips at 4?? and is only covered by a thin veneer of postglacial sediment. Multibeam bathymetric and seismic survey data suggest that this slide took place along three failures surfaces. The morphology of the source area suggests that the sediments were already at least normally consolidated at the time of failure. The slide debris covers an area as much as 55??km wide that extends 180??km from the estimated toe of the original slope. The back analysis of slide initiation indicates that very high pore pressure, a strong earthquake, or both had to be generated to trigger slides on such a low failure plane angle. The shape of the failure plane, the fact that the surface is almost clear of any debris, and the mobility analysis, all support the argument that the slides took place nearly simultaneously. Potential causes for the generation of high pore pressures could be seepage forces from coastal aquifers, delta construction and related pore pressure generation due to the local sediment loading, gas hydrates, and earthquakes. This slide, and its origin, is a spectacular example of the potential threat that submarine mass movements can pose to the US Atlantic coast and underline the need to further assess the potential for the generation of such large slides, like the Grand Banks 1927 landslide of similar volume. ?? 2008 Elsevier B.V.

  9. Introducing Slide Sets for the Introductory Astronomy Instructor

    NASA Astrophysics Data System (ADS)

    Meinke, Bonnie K.; Schneider, Nicholas; Brain, David; Schultz, Gregory; Buxner, Sanlyn; Smith, Denise

    2014-11-01

    The NASA Science Mission Directorate (SMD) Science Education and Public Outreach (E/PO) community and Forums work together to bring the cutting-edge discoveries of NASA Astrophysics and Planetary Science missions to the introductory astronomy college classroom. These mission- and grant-based E/PO programs are uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. We present two new opportunities for college instructors to bring the latest NASA discoveries in Space Science into their classrooms.In an effort to keep the astronomy classroom apprised of the fast moving field of planetary science, the Division of Planetary Sciences (DPS) has developed “DPS Discoveries”, which are short, topical presentations that can be incorporated into college lectures. The slide sets are targeted at the Introductory Astronomy undergraduate level. Each slide set consists of three slides that cover a description of the discovery, a discussion of the underlying science, and a presentation of the big picture implications of the discovery, with a fourth slide that includes links to associated press releases, images, and primary sources. Topics span all subdisciplines of planetary science, and sets are available in Farsi and Spanish. The NASA SMD Planetary Science Forum has recently partnered with the DPS to continue producing the Discovery slides and connect them to NASA mission science. http://dps.aas.org/education/dpsdisc Similarly, the NASA SMD Astrophysics Forum is coordinating the development of a series of slide sets to help Astronomy 101 instructors incorporate new discoveries in their classrooms. The “Astro 101 slide sets” are presentations 5-7 slides in length on a new development or discovery from a NASA Astrophysics mission relevant to topics in introductory astronomy courses. We intend for these slide sets to help Astronomy 101 instructors include new developments (not yet in their textbooks) into the

  10. Finite element based simulation of dry sliding wear

    NASA Astrophysics Data System (ADS)

    Hegadekatte, V.; Huber, N.; Kraft, O.

    2005-01-01

    In order to predict wear and eventually the life-span of complex mechanical systems, several hundred thousand operating cycles have to be simulated. Therefore, a finite element (FE) post-processor is the optimum choice, considering the computational expense. A wear simulation approach based on Archard's wear law is implemented in an FE post-processor that works in association with a commercial FE package, ABAQUS, for solving the general deformable-deformable contact problem. Local wear is computed and then integrated over the sliding distance using the Euler integration scheme. The wear simulation tool works in a loop and performs a series of static FE-simulations with updated surface geometries to get a realistic contact pressure distribution on the contacting surfaces. It will be demonstrated that this efficient approach can simulate wear on both two-dimensional and three-dimensional surface topologies. The wear on both the interacting surfaces is computed using the contact pressure distribution from a two-dimensional or three-dimensional simulation, depending on the case. After every wear step the geometry is re-meshed to correct the deformed mesh due to wear, thus ensuring a fairly uniform mesh for further processing. The importance and suitability of such a wear simulation tool will be enunciated in this paper.

  11. Planar shock wave sliding over a water layer

    NASA Astrophysics Data System (ADS)

    Rodriguez, V.; Jourdan, G.; Marty, A.; Allou, A.; Parisse, J.-D.

    2016-08-01

    In this work, we conduct experiments to study the interaction between a horizontal free water layer and a planar shock wave that is sliding over it. Experiments are performed at atmospheric pressure in a shock tube with a square cross section (200× 200 mm^2) for depths of 10, 20, and 30 mm; a 1500-mm-long water layer; and two incident planar shock waves having Mach numbers of 1.11 and 1.43. We record the pressure histories and high-speed visualizations to study the flow patterns, surface waves, and spray layers behind the shock wave. We observe two different flow patterns with ripples formed at the air-water interface for the weaker shock wave and the dispersion of a droplet mist for the stronger shock wave. From the pressure signals, we extract the delay time between the arrival of the compression wave into water and the shock wave in air at the same location. We show that the delay time evolves with the distance traveled over the water layer, the depth of the water layer, and the Mach number of the shock wave.

  12. Design of anti-slide piles for slope stabilization in Wanzhou city, Three Gorges Area, China

    NASA Astrophysics Data System (ADS)

    Zhou, Chunmei; van Westen, Cees

    2013-04-01

    This study is related to the design of anti-slide piles for several landslides in Wanzhou city located in the Three Gorges area. Due to the construction of the Three Gorges Reservoir the hydro-geological conditions in this area have deteriorated significantly, leading to larger instability problems. China has invested a lot of money in slope stabilization measures for the treatment of landslides in the Three Gorges area. One of the methods for the stabilization of large landslides is the design of anti-sliding piles. This paper focuses on extensive slope stability analysis and modeling of the mechanical behavior of the landslide masses, and the parameters required for designing the number, size and dimensions of reinforced concrete stabilization piles. The study focuses on determining the rock parameters, anchor depth, and the pile and soil interaction coefficient. The study aims to provide guidelines for anti-slide pile stabilization works for landslides in the Wanzhou area. The research work contains a number of aspects. First a study is carried out on the distribution of pressures expected on the piles, using two different methods that take into account the expected pore water pressure and seismic acceleration. For the Ercengyan landslide , the Limit Equilibrium Method and Strength Reduction Method of FEM are compared through the results of the landslide pressure distributions on the piles and stress fields in the piles. The second component is the study of the required anchor depth of antislide piles, which is carried out using a statistical analysis with data from 20 landslides that have been controlled with anti-sliding piles. The rock characteristics of the anchor locations were obtained using laboratory tests, and a classification of rock mass quality is made for the anchors of antislide piles. The relationship between the critical anchor height and the angle of the landslide slip surface is determined. Two different methods are presented for the length

  13. Robust sliding mode control applied to double Inverted pendulum system

    SciTech Connect

    Mahjoub, Sonia; Derbel, Nabil; Mnif, Faical

    2009-03-05

    A three hierarchical sliding mode control is presented for a class of an underactuated system which can overcome the mismatched perturbations. The considered underactuated system is a double inverted pendulum (DIP), can be modeled by three subsystems. Such structure allows the construction of several designs of hierarchies for the controller. For all hierarchical designs, the asymptotic stability of every layer sliding mode surface and the sliding mode surface of subsystems are proved theoretically by Barbalat's lemma. Simulation results show the validity of these methods.

  14. Robust sliding mode control applied to double Inverted pendulum system

    NASA Astrophysics Data System (ADS)

    Mahjoub, Sonia; Mnif, Faiçal; Derbel, Nabil

    2009-03-01

    A three hierarchical sliding mode control is presented for a class of an underactuated system which can overcome the mismatched perturbations. The considered underactuated system is a double inverted pendulum (DIP), can be modeled by three subsystems. Such structure allows the construction of several designs of hierarchies for the controller. For all hierarchical designs, the asymptotic stability of every layer sliding mode surface and the sliding mode surface of subsystems are proved theoretically by Barbalat's lemma. Simulation results show the validity of these methods.

  15. Sliding of proteins non-specifically bound to DNA: Brownian dynamics studies with coarse-grained protein and DNA models.

    PubMed

    Ando, Tadashi; Skolnick, Jeffrey

    2014-12-01

    DNA binding proteins efficiently search for their cognitive sites on long genomic DNA by combining 3D diffusion and 1D diffusion (sliding) along the DNA. Recent experimental results and theoretical analyses revealed that the proteins show a rotation-coupled sliding along DNA helical pitch. Here, we performed Brownian dynamics simulations using newly developed coarse-grained protein and DNA models for evaluating how hydrodynamic interactions between the protein and DNA molecules, binding affinity of the protein to DNA, and DNA fluctuations affect the one dimensional diffusion of the protein on the DNA. Our results indicate that intermolecular hydrodynamic interactions reduce 1D diffusivity by 30%. On the other hand, structural fluctuations of DNA give rise to steric collisions between the CG-proteins and DNA, resulting in faster 1D sliding of the protein. Proteins with low binding affinities consistent with experimental estimates of non-specific DNA binding show hopping along the CG-DNA. This hopping significantly increases sliding speed. These simulation studies provide additional insights into the mechanism of how DNA binding proteins find their target sites on the genome.

  16. Automated detection of diagnostically relevant regions in H&E stained digital pathology slides

    NASA Astrophysics Data System (ADS)

    Bahlmann, Claus; Patel, Amar; Johnson, Jeffrey; Ni, Jie; Chekkoury, Andrei; Khurd, Parmeshwar; Kamen, Ali; Grady, Leo; Krupinski, Elizabeth; Graham, Anna; Weinstein, Ronald

    2012-03-01

    We present a computationally efficient method for analyzing H&E stained digital pathology slides with the objective of discriminating diagnostically relevant vs. irrelevant regions. Such technology is useful for several applications: (1) It can speed up computer aided diagnosis (CAD) for histopathology based cancer detection and grading by an order of magnitude through a triage-like preprocessing and pruning. (2) It can improve the response time for an interactive digital pathology workstation (which is usually dealing with several GByte digital pathology slides), e.g., through controlling adaptive compression or prioritization algorithms. (3) It can support the detection and grading workflow for expert pathologists in a semi-automated diagnosis, hereby increasing throughput and accuracy. At the core of the presented method is the statistical characterization of tissue components that are indicative for the pathologist's decision about malignancy vs. benignity, such as, nuclei, tubules, cytoplasm, etc. In order to allow for effective yet computationally efficient processing, we propose visual descriptors that capture the distribution of color intensities observed for nuclei and cytoplasm. Discrimination between statistics of relevant vs. irrelevant regions is learned from annotated data, and inference is performed via linear classification. We validate the proposed method both qualitatively and quantitatively. Experiments show a cross validation error rate of 1.4%. We further show that the proposed method can prune ~90% of the area of pathological slides while maintaining 100% of all relevant information, which allows for a speedup of a factor of 10 for CAD systems.

  17. Myosin filament sliding through the Z-disc relates striated muscle fibre structure to function.

    PubMed

    Rode, Christian; Siebert, Tobias; Tomalka, Andre; Blickhan, Reinhard

    2016-03-16

    Striated muscle contraction requires intricate interactions of microstructures. The classic textbook assumption that myosin filaments are compressed at the meshed Z-disc during striated muscle fibre contraction conflicts with experimental evidence. For example, myosin filaments are too stiff to be compressed sufficiently by the muscular force, and, unlike compressed springs, the muscle fibres do not restore their resting length after contractions to short lengths. Further, the dependence of a fibre's maximum contraction velocity on sarcomere length is unexplained to date. In this paper, we present a structurally consistent model of sarcomere contraction that reconciles these findings with the well-accepted sliding filament and crossbridge theories. The few required model parameters are taken from the literature or obtained from reasoning based on structural arguments. In our model, the transition from hexagonal to tetragonal actin filament arrangement near the Z-disc together with a thoughtful titin arrangement enables myosin filament sliding through the Z-disc. This sliding leads to swivelled crossbridges in the adjacent half-sarcomere that dampen contraction. With no fitting of parameters required, the model predicts straightforwardly the fibre's entire force-length behaviour and the dependence of the maximum contraction velocity on sarcomere length. Our model enables a structurally and functionally consistent view of the contractile machinery of the striated fibre with possible implications for muscle diseases and evolution.

  18. Art History Interactive Videodisc Project at the University of Iowa.

    ERIC Educational Resources Information Center

    Sustik, Joan M.

    A project which developed a retrieval system to evaluate the advantages and disadvantages of an interactive computer and video display system over traditional methods for using a slide library is described in this publication. The art school slide library of the University of Iowa stores transparencies which are arranged alphabetically within…

  19. Depth Estimation Using a Sliding Camera.

    PubMed

    Ge, Kailin; Hu, Han; Feng, Jianjiang; Zhou, Jie

    2016-02-01

    Image-based 3D reconstruction technology is widely used in different fields. The conventional algorithms are mainly based on stereo matching between two or more fixed cameras, and high accuracy can only be achieved using a large camera array, which is very expensive and inconvenient in many applications. Another popular choice is utilizing structure-from-motion methods for arbitrarily placed camera(s). However, due to too many degrees of freedom, its computational cost is heavy and its accuracy is rather limited. In this paper, we propose a novel depth estimation algorithm using a sliding camera system. By analyzing the geometric properties of the camera system, we design a camera pose initialization algorithm that can work satisfyingly with only a small number of feature points and is robust to noise. For pixels corresponding to different depths, an adaptive iterative algorithm is proposed to choose optimal frames for stereo matching, which can take advantage of continuously pose-changing imaging and save the time consumption amazingly too. The proposed algorithm can also be easily extended to handle less constrained situations (such as using a camera mounted on a moving robot or vehicle). Experimental results on both synthetic and real-world data have illustrated the effectiveness of the proposed algorithm. PMID:26685238

  20. Depth Estimation Using a Sliding Camera.

    PubMed

    Ge, Kailin; Hu, Han; Feng, Jianjiang; Zhou, Jie

    2016-02-01

    Image-based 3D reconstruction technology is widely used in different fields. The conventional algorithms are mainly based on stereo matching between two or more fixed cameras, and high accuracy can only be achieved using a large camera array, which is very expensive and inconvenient in many applications. Another popular choice is utilizing structure-from-motion methods for arbitrarily placed camera(s). However, due to too many degrees of freedom, its computational cost is heavy and its accuracy is rather limited. In this paper, we propose a novel depth estimation algorithm using a sliding camera system. By analyzing the geometric properties of the camera system, we design a camera pose initialization algorithm that can work satisfyingly with only a small number of feature points and is robust to noise. For pixels corresponding to different depths, an adaptive iterative algorithm is proposed to choose optimal frames for stereo matching, which can take advantage of continuously pose-changing imaging and save the time consumption amazingly too. The proposed algorithm can also be easily extended to handle less constrained situations (such as using a camera mounted on a moving robot or vehicle). Experimental results on both synthetic and real-world data have illustrated the effectiveness of the proposed algorithm.

  1. Soft hydrated sliding interfaces as complex fluids.

    PubMed

    Kim, Jiho; Dunn, Alison C

    2016-08-21

    Hydrogel surfaces are biomimics for sensing and mobility systems in the body such as the eyes and large joints due to their important characteristics of flexibility, permeability, and integrated aqueous component. Recent studies have shown polymer concentration gradients resulting in a less dense region in the top micrometers of the surface. Under shear, this gradient is hypothesized to drive lubrication behavior due to its rheological similarity to a semi-dilute polymer solution. In this work we map 3 distinct lubricating regimes between a polyacrylamide surface and an aluminum annulus using stepped-velocity tribo-rheometry over 5 decades of sliding speed in increasing and decreasing steps. These regimes, characterized by weakly or strongly time-dependent response and thixotropy-like hysteresis, provide the skeleton of a lubrication curve for hydrogel-against-hard material interfaces and support hypotheses of polymer mechanics-driven lubrication. Tribo-rheometry is particularly suited to uncover the lubrication mechanisms of complex interfaces such as are formed with hydrated hydrogel surfaces and biological surfaces. PMID:27425448

  2. Electrical charging effects on the sliding friction of a model nano-confined ionic liquid.

    PubMed

    Capozza, R; Benassi, A; Vanossi, A; Tosatti, E

    2015-10-14

    Recent measurements suggest the possibility to exploit ionic liquids (ILs) as smart lubricants for nano-contacts, tuning their tribological and rheological properties by charging the sliding interfaces. Following our earlier theoretical study of charging effects on nanoscale confinement and squeezout of a model IL, we present here molecular dynamics simulations of the frictional and lubrication properties of that model under charging conditions. First, we describe the case when two equally charged plates slide while being held together to a confinement distance of a few molecular layers. The shear sliding stress is found to rise strongly and discontinuously as the number of IL layers decreases stepwise. However, the shear stress shows, within each given number of layers, only a weak dependence upon the precise value of the normal load, a result in agreement with data extracted from recent experiments. We subsequently describe the case of opposite charging of the sliding plates and follow the shear stress when the charging is slowly and adiabatically reversed in the course of time, under fixed load. Despite the fixed load, the number and structure of the confined IL layers change with changing charge, and that in turn drives strong friction variations. The latter involves first of all charging-induced freezing of the IL film, followed by a discharging-induced melting, both made possible by the nanoscale confinement. Another mechanism for charging-induced frictional changes is a shift of the plane of maximum shear from mid-film to the plate-film interface, and vice versa. While these occurrences and results invariably depend upon the parameters of the model IL and upon its specific interaction with the plates, the present study helps identifying a variety of possible behavior, obtained under very simple assumptions, while connecting it to an underlying equilibrium thermodynamics picture. PMID:26472391

  3. Electrical charging effects on the sliding friction of a model nano-confined ionic liquid

    SciTech Connect

    Capozza, R.; Vanossi, A.; Benassi, A.; Tosatti, E.

    2015-10-14

    Recent measurements suggest the possibility to exploit ionic liquids (ILs) as smart lubricants for nano-contacts, tuning their tribological and rheological properties by charging the sliding interfaces. Following our earlier theoretical study of charging effects on nanoscale confinement and squeezout of a model IL, we present here molecular dynamics simulations of the frictional and lubrication properties of that model under charging conditions. First, we describe the case when two equally charged plates slide while being held together to a confinement distance of a few molecular layers. The shear sliding stress is found to rise strongly and discontinuously as the number of IL layers decreases stepwise. However, the shear stress shows, within each given number of layers, only a weak dependence upon the precise value of the normal load, a result in agreement with data extracted from recent experiments. We subsequently describe the case of opposite charging of the sliding plates and follow the shear stress when the charging is slowly and adiabatically reversed in the course of time, under fixed load. Despite the fixed load, the number and structure of the confined IL layers change with changing charge, and that in turn drives strong friction variations. The latter involves first of all charging-induced freezing of the IL film, followed by a discharging-induced melting, both made possible by the nanoscale confinement. Another mechanism for charging-induced frictional changes is a shift of the plane of maximum shear from mid-film to the plate-film interface, and vice versa. While these occurrences and results invariably depend upon the parameters of the model IL and upon its specific interaction with the plates, the present study helps identifying a variety of possible behavior, obtained under very simple assumptions, while connecting it to an underlying equilibrium thermodynamics picture.

  4. QUALITY ASSESSMENT OF CONFOCAL MICROSCOPY SLIDE-BASED SYSTEMS: INSTABLITY

    EPA Science Inventory

    Background: All slide-based fluorescence cytometry detections systems basically include an excitation light source, intermediate optics, and a detection device (CCD or PMT). Occasionally, this equipment becomes unstable, generating unreliable and inferior data. Methods: A num...

  5. DETAIL OF WEST END SLIDING DOOR AND EAVE VENTS ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF WEST END SLIDING DOOR AND EAVE VENTS ON THE SOUTH SIDE - Hickam Field, Practice Bomb Loading Shed, Bomb Storage Road near the intersection of Moffet and Kamakahi Streets, Honolulu, Honolulu County, HI

  6. BASEMENT, A view looking southwest toward the three panel, sliding ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BASEMENT, A view looking southwest toward the three panel, sliding glass door of walk-in hood and dial guage - Department of Energy, Mound Facility, Hydrolysis House Building (HH Building), One Mound Road, Miamisburg, Montgomery County, OH

  7. 2. WEST ELEVATION, SHOWING TAILRACE AND SLIDING DOOR UNDER SHED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. WEST ELEVATION, SHOWING TAILRACE AND SLIDING DOOR UNDER SHED ROOF. ADMINISTRATIVE OFFICE IS IN BACKGROUND AT RIGHT. VIEW TO EAST-NORTHEAST. - Santa Ana River Hydroelectric System, SAR-3 Powerhouse, San Bernardino National Forest, Redlands, San Bernardino County, CA

  8. 19. INTERIOR OF NORTHEAST REAR BEDROOM SHOWING ALUMINUMFRAME SLIDING GLASS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. INTERIOR OF NORTHEAST REAR BEDROOM SHOWING ALUMINUM-FRAME SLIDING GLASS WINDOWS. VIEW TO NORTHEAST. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA

  9. 21. INTERIOR OF SOUTHEAST REAR BEDROOM SHOWING ALUMINUMFRAME SLIDING GLASS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. INTERIOR OF SOUTHEAST REAR BEDROOM SHOWING ALUMINUM-FRAME SLIDING GLASS WINDOWS. VIEW TO SOUTHEAST. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA

  10. 30 CFR 816.99 - Slides and other damage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... § 816.99 Slides and other damage. (a) An undisturbed natural barrier shall be provided beginning at the... determined by the regulatory authority as is needed to assure stability. The barrier shall be retained...

  11. 32. DETAIL OF CONCRETE TOWER AND SLIDE GATE LIFTING GEARS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. DETAIL OF CONCRETE TOWER AND SLIDE GATE LIFTING GEARS ON HEADWORKS OF DEER FLAT LOW LINE CANAL ON LOWER EMBANKMENT. VIEW TO SOUTHEAST. - Boise Project, Deer Flat Embankments, Lake Lowell, Nampa, Canyon County, ID

  12. 13. DETAIL OF CONCRETE TOWER AND SLIDE GATE LIFTING GEARS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. DETAIL OF CONCRETE TOWER AND SLIDE GATE LIFTING GEARS ON HEADWORKS OF DEER FLAT NAMPA CANAL ON UPPER EMBANKMENT. VIEW TO SOUTHWEST. - Boise Project, Deer Flat Embankments, Lake Lowell, Nampa, Canyon County, ID

  13. 17. Sliding access doors typical of those covering opening to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Sliding access doors typical of those covering opening to filtration bed. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  14. Detail of the exterior "selfclosing" sliding door with vent above. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of the exterior "self-closing" sliding door with vent above. View facing northeast - U.S. Naval Base, Pearl Harbor, Paint & Oil Storehouse, Avenue D near Seventh Street intersection, Pearl City, Honolulu County, HI

  15. Interior of screened lanai with selfclosing sliding door and steel ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior of screened lanai with self-closing sliding door and steel roof support, view facing west - U.S. Naval Base, Pearl Harbor, Paint & Oil Storehouse, Avenue D near Seventh Street intersection, Pearl City, Honolulu County, HI

  16. AUTOMOTIVE REPAIR SHOP, SLIDING DOOR LEADING TO BOILER ROOM ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AUTOMOTIVE REPAIR SHOP, SLIDING DOOR LEADING TO BOILER ROOM ON SOUTH SIDE OF SOUTH WING, WITH SCALE. - Cedar City Automotive Repair Shop, Automotive Repair Shop, 820 North Main Street, Cedar City, Iron County, UT

  17. AUTOMOTIVE REPAIR SHOP, SLIDING DOOR LEADING TO BOILER ROOM ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AUTOMOTIVE REPAIR SHOP, SLIDING DOOR LEADING TO BOILER ROOM ON SOUTH SIDE OF SOUTH WING. - Cedar City Automotive Repair Shop, Automotive Repair Shop, 820 North Main Street, Cedar City, Iron County, UT

  18. Physical Geography Slide Sets of America's National Parks.

    ERIC Educational Resources Information Center

    Miller, E. Willard

    1984-01-01

    The national parks of the United States are widely known for their unique physical environments. Described are 10 sets of slides that will acquaint students with the parks' landforms and geologic processes. (RM)

  19. 14. INTERIOR OF CARPENTER SHOP, LOOKING SOUTH. NOTE THE SLIDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. INTERIOR OF CARPENTER SHOP, LOOKING SOUTH. NOTE THE SLIDING FIRE DOOR IN THE FAR CORNER. - U.S. Coast Guard Air Station San Francisco, Warehouse, 1020 North Access Road, San Francisco, San Francisco County, CA

  20. 33. Photocopied August 1978. LAND SLIDE AND WRECK OF THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. Photocopied August 1978. LAND SLIDE AND WRECK OF THE MAPLE STREET BRIDGE, LOOKING SOUTH, OCTOBER 16, 1900. (91) - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI

  1. AFRD WAREHOUSE, SOUTH SIDE DETAIL, SLIDING DOORS. FACING NORTH. COMPARE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AFRD WAREHOUSE, SOUTH SIDE DETAIL, SLIDING DOORS. FACING NORTH. COMPARE WITH FIGURES 4 AND 5 IN NARRATIVE REPORT, WHICH SHOW DIAGONAL BRACES BELOW GLAZED SECTION OF DOORS. - Minidoka Relocation Center Warehouse, 111 South Fir Street, Shoshone, Lincoln County, ID

  2. INTERIOR ELEVATION SHOWING THE SLIDING DOORS AND ROOF TRUSSES. VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR ELEVATION SHOWING THE SLIDING DOORS AND ROOF TRUSSES. VIEW FACING SOUTHWEST. - U.S. Naval Base, Pearl Harbor, Seaplane Hangar, Lexington Boulevard, south of Enterprise Street, Pearl City, Honolulu County, HI

  3. 11. COULTERVILLE ROAD AT ROCK SLIDE AREA WITH HWY 140 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. COULTERVILLE ROAD AT ROCK SLIDE AREA WITH HWY 140 AT REAR. LOOKING NNE. GIS: N-37 43 04.7 / W-119 43 00.3 - Coulterville Road, Between Foresta & All-Weather Highway, Yosemite Village, Mariposa County, CA

  4. Temperature rise and wear of sliding contact of alloy steels

    NASA Astrophysics Data System (ADS)

    Goswami, Arindam Roy; Sardar, Santanu; Karmakar, Santanu Kumar

    2016-07-01

    The tribo-failure of machine elements under relative sliding velocities is greatly affected by frictional heating and resultant contact temperature rise. Nevertheless, the tribo-failure of automotive components is a combined effect of mechanical, thermal and chemical phenomena. Over the decades, there have been developed a number of different mathematical models for predicting surface temperature rise at sliding contact under different geometries of asperity contacts and operating conditions. The experimental investigation is still relevant today to find out the surface temperature rise at sliding contact along with the outcomes of friction and wear under various operating conditions for real time applications. The present work aims at finding average surface temperature rise at different sliding velocities, normal loads with different surface roughness experimentally. It also involves to prepare two different rough surfaces of alloy steels and to study their influences in the process of generating contact temperature rise under a given operating conditions.

  5. 25. VIEW SHOWING SLIDE GATE OUTLET TRASH RACK STRUCTURE AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. VIEW SHOWING SLIDE GATE OUTLET TRASH RACK STRUCTURE AT BASE OF ARCH 8. NOTE TWO SECTIONS OF NEEDLE VALVE TRASH RACKS IN PLACE BETWEEN ARCHES 8 AND 9. December 20, 1938 - Bartlett Dam, Verde River, Phoenix, Maricopa County, AZ

  6. 9. Bronze slide expansion plate at Pier 3, on right, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Bronze slide expansion plate at Pier 3, on right, fixed end left. - Monongahela Connecting Railroad Company, Hot Metal Bridge, Spanning Monongahela River at mile post 3.1, Pittsburgh, Allegheny County, PA

  7. Sliding mode control application in ABWR plant pressure regulation

    SciTech Connect

    Huang, Zhengyu; Edwards, Robert M.

    2002-07-01

    A sliding mode controller is designed for an ABWR nuclear power plant turbine throttle pressure regulation. To avoid chattering problem, which is common to conventional sliding mode controllers, and estimation of uncertainties and disturbances, the recursive-form sliding mode control algorithm is developed. To apply the sliding mode control technique, the original plant's 11.-order dynamics model is first transformed to a canonical form differential equation of a relative order of 2 for turbine throttle pressure's dynamics. Simulation results show that the design objectives are achieved and the resulting controller is superior to the existing PI controller in many aspects, including settling time, overshoot/undershoot in response to setpoint step input and fluctuation amplitude in the presence of external disturbances. (authors)

  8. Applications and challenges of digital pathology and whole slide imaging.

    PubMed

    Higgins, C

    2015-07-01

    Virtual microscopy is a method for digitizing images of tissue on glass slides and using a computer to view, navigate, change magnification, focus and mark areas of interest. Virtual microscope systems (also called digital pathology or whole slide imaging systems) offer several advantages for biological scientists who use slides as part of their general, pharmaceutical, biotechnology or clinical research. The systems usually are based on one of two methodologies: area scanning or line scanning. Virtual microscope systems enable automatic sample detection, virtual-Z acquisition and creation of focal maps. Virtual slides are layered with multiple resolutions at each location, including the highest resolution needed to allow more detailed review of specific regions of interest. Scans may be acquired at 2, 10, 20, 40, 60 and 100 × or a combination of magnifications to highlight important detail. Digital microscopy starts when a slide collection is put into an automated or manual scanning system. The original slides are archived, then a server allows users to review multilayer digital images of the captured slides either by a closed network or by the internet. One challenge for adopting the technology is the lack of a universally accepted file format for virtual slides. Additional challenges include maintaining focus in an uneven sample, detecting specimens accurately, maximizing color fidelity with optimal brightness and contrast, optimizing resolution and keeping the images artifact-free. There are several manufacturers in the field and each has not only its own approach to these issues, but also its own image analysis software, which provides many options for users to enhance the speed, quality and accuracy of their process through virtual microscopy. Virtual microscope systems are widely used and are trusted to provide high quality solutions for teleconsultation, education, quality control, archiving, veterinary medicine, research and other fields.

  9. Adaptive sliding mode control for a class of chaotic systems

    SciTech Connect

    Farid, R.; Ibrahim, A.; Zalam, B.

    2015-03-30

    Chaos control here means to design a controller that is able to mitigating or eliminating the chaos behavior of nonlinear systems that experiencing such phenomenon. In this paper, an Adaptive Sliding Mode Controller (ASMC) is presented based on Lyapunov stability theory. The well known Chua's circuit is chosen to be our case study in this paper. The study shows the effectiveness of the proposed adaptive sliding mode controller.

  10. Sliding mode control of an FRC plasma axial position

    NASA Astrophysics Data System (ADS)

    Romero, Jesus Antonio; TAE Team

    2015-11-01

    We study the problem of controlling the position of an axially unstable FRC configuration by acting on discrete voltage levels applied to radial field coil actuators. Due to the discrete, on/off nature of the actuators, the control problem is treated using sliding mode control theory. In sliding mode control, we don't usually design the controllers (usually based on a hystheresis type control logic), but find instead a function of system states (sliding surface) that will act as the error signal with the desired asymptotically stable (sliding) behavior. A simplified rigid plasma model for axial position including perturbations is developed and used to derive a suitable sliding surface for the system. The asymptotic stability of this surface is demonstrated using Liapunov theory, and is shown to be fairly insensitive to plant parameter values. The result is that the proposed control can be used for both axially stable or unstable plasmas without the need to re-tune the parameters used in the sliding surface. This property is important because the equilibrium may have to transit between an axially stable and unstable equilibria on different phases of the FRC discharge. Numerical simulations show the robustness of the control scheme against plant uncertainties and perturbations.

  11. Soliton dynamics in a solid lubricant during sliding friction

    NASA Astrophysics Data System (ADS)

    Vigentini, Anna; Van Hattem, Barbara; Diato, Elena; Ponzellini, Paolo; Meledina, Tommaso; Vanossi, Andrea; Santoro, Giuseppe; Tosatti, Erio; Manini, Nicola

    2014-03-01

    Recent highly idealized model studies of lubricated nanofriction for two crystalline sliding surfaces with an interposed thin solid crystalline lubricant layer showed that the overall relative velocity of the lubricant vlub/vslider depends only on the ratio of the lattice spacings, and retains a strictly constant value even when system parameters are varied within a wide range. This peculiar "quantized" dynamical locking was understood as due to the sliding-induced motion of misfit dislocations, or soliton structures. So far the practical relevance of this concept to realistic sliding three-dimensional crystals has not been demonstrated. In this work, by means of classical molecular dynamics simulations and theoretical considerations, we realize a realistic three-dimensional crystal-lubricant-crystal geometry. Results show that the flux of lubricant particles associated with the advancing soliton lines gives rise here too to a quantized-velocity ratio. Moreover, depending on the interface lattice spacing mismatch, both forward and backward quantized motion of the lubricant is predicted. The persistence under realistic conditions of the dynamically pinned state and quantized sliding is further investigated by varying sliding speed, temperature, load, and lubricant film thickness. The possibilities of experimental observation of quantized sliding are also discussed.

  12. Relative sliding durability of candidate high temperature fiber seal materials

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Steinetz, Bruce M.

    1992-01-01

    The relative sliding durability behavior of six candidate ceramic fibers for high temperature sliding seal applications is reviewed and compared. Pin on disk tests were used to evaluate potential seal materials by sliding a tow or bundle of the candidate ceramic fiber against a superalloy test disk. Tests were conducted in air under a 2.65 N load, at a sliding velocity of 0.025 m/sec and at temperatures from 25 to 900 C. Friction was measured during the tests and fiber wear, indicated by the extent of fibers broken in the tow or bundle, was measured at the end of each test. For most of the fibers, friction and wear increase with test temperature. The relative fiber durability ranking correlates with tensile strength, indicating that tensile data, which is more readily available than sliding durability data, may be useful in predicting fiber wear behavior under various conditions. A dimensional analysis of the wear data shows that the fiber durability is related to a dimensionless durability ratio which represents the ratio of the fiber strength to the fiber stresses imposed by sliding. The analysis is applicable to fibers with similar diameters and elastic moduli. Based upon the results of the research program, three fiber candidates are recommended for further study as potential seal materials. They are a silicon based complex carbide-oxide fiber, an alumina-boria-silica and an aluminosilicate fiber.

  13. A comparison of cervical histopathology variability using whole slide digitized images versus glass slides: experience with a statewide registry.

    PubMed

    Gage, Julia C; Joste, Nancy; Ronnett, Brigette M; Stoler, Mark; Hunt, William C; Schiffman, Mark; Wheeler, Cosette M

    2013-11-01

    Whole slide imaging is increasingly used for primary and consultative diagnoses, teaching, telepathology, slide sharing, and archiving. We compared pathologist evaluations of glass slides and corresponding digitized images within the context of a statewide surveillance effort. Cervical specimens collected by the New Mexico HPV Pap Registry research program targeted cases diagnosed between 2006 and 2010. Two samples of 250 slides each were digitized with the ScanScope XT (Aperio, Vista, CA) microscope and reviewed with Aperio ImageScope reader. (1) A "random set" had a distribution of community diagnoses: 70% from cases of cervical intraepithelial neoplasia grade 2 or higher, 20% from cases of cervical intraepithelial neoplasia grade 1 and 10% from negative cases. (2) A "discrepant set" was represented by difficult cases where 2 study pathologists initially disagreed. Within the regular workflow of the New Mexico HPV Pap Registry, 3 pathologists read the slides 2 to 3 times each without knowledge of clinical history, previous readings or sampling scheme. Pathologists also read each corresponding image twice. For within- and between-reader comparisons we calculated unweighted κ statistics and asymmetry χ(2) tests. Across all comparisons, slides and images yielded similar results. For the random set, almost all within-reader and between-reader Kappa values ranged between 0.7 and 0.8 and 0.6 and 0.7, respectively. For the discrepant set, most within- and between-reader κ values were 0.4 to 0.6. As cervical intraepithelial neoplasia diagnostic terminology changes, pathologists may need to re-read histopathology slides to compare disease trends over time, eg, before/after introduction of human papillomavirus vaccination. Diagnosis of cervical intraepithelial neoplasia differed little between slides and corresponding digitized images. PMID:24075599

  14. Method and apparatus for imparting strength to a material using sliding loads

    DOEpatents

    Hughes, D.A.; Dawson, D.B.; Korellis, J.S.

    1999-03-16

    A method of enhancing the strength of metals by affecting subsurface zones developed during the application of large sliding loads is disclosed. Stresses which develop locally within the near surface zone can be many times larger than those predicted from the applied load and the friction coefficient. These stress concentrations arise from two sources: (1) asperity interactions and (2) local and momentary bonding between the two surfaces. By controlling these parameters more desirable strength characteristics can be developed in weaker metals to provide much greater strength to rival that of steel, for example. 11 figs.

  15. Method And Apparatus For Imparting Strength To Materials Using Sliding Loads

    DOEpatents

    Hughes, Darcy Anne; Dawson, Daniel B.; Korellis, John S.

    1999-03-16

    A method of enhancing the strength of metals by affecting subsurface zones developed during the application of large sliding loads. Stresses which develop locally within the near surface zone can be many times larger than those predicted from the applied load and the friction coefficient. These stress concentrations arise from two sources: 1) asperity interactions and 2) local and momentary bonding between the two surfaces. By controlling these parameters more desirable strength characteristics can be developed in weaker metals to provide much greater strength to rival that of steel, for example.

  16. Method and apparatus for imparting strength to a material using sliding loads

    DOEpatents

    Hughes, Darcy Anne; Dawson, Daniel B.; Korellis, John S.

    1999-01-01

    A method of enhancing the strength of metals by affecting subsurface zones developed during the application of large sliding loads. Stresses which develop locally within the near surface zone can be many times larger than those predicted from the applied load and the friction coefficient. These stress concentrations arise from two sources: 1) asperity interactions and 2) local and momentary bonding between the two surfaces. By controlling these parameters more desirable strength characteristics can be developed in weaker metals to provide much greater strength to rival that of steel, for example.

  17. The effects of wall slide and sling slide exercises on scapular alignment and pain in subjects with scapular downward rotation

    PubMed Central

    Kim, Tae-Ho; Lim, Jin-Yong

    2016-01-01

    [Purpose] The present study was performed to evaluate the changes in the scapular alignment, pressure pain threshold and pain in subjects with scapular downward rotation after 4 weeks of wall slide exercise or sling slide exercise. [Subjects and Methods] Twenty-two subjects with scapular downward rotation participated in this study. The alignment of the scapula was measured using radiographic analysis (X-ray). Pain and pressure pain threshold were assessed using visual analogue scale and digital algometer. Patients were assessed before and after a 4 weeks of exercise. [Results] In the within-group comparison, the wall slide exercise group showed significant differences in the resting scapular alignment, pressure pain threshold, and pain after four weeks. The between-group comparison showed that there were significant differences between the wall slide group and the sling slide group after four weeks. [Conclusion] The results of this study found that the wall slide exercise may be effective at reducing pain and improving scapular alignment in subjects with scapular downward rotation. PMID:27799716

  18. Correlation between angle of incidence and sliding patterns of the tongue along the palate in Korean velar stops

    NASA Astrophysics Data System (ADS)

    Brunner, Jana; Fuchs, Susanne; Perrier, Pascal; Kim, Hyeon-Zoo

    2001-05-01

    In former studies, it has been hypothesized that the articulatory production of oral stops could result from the interaction between the tongue moving towards a virtual target located above the palate, and the palate. Velar stops, where the tongue slides along the palate during the occlusion phase, offer a nice experimental framework for further experimental assessments. Indeed, in the framework of the ``virtual target'' hypothesis, the sliding movement should be seen as the continuation of the movement before the occlusion, but constrained by the palate. Hence, relations should exist between the movement characteristics before contact and during the occlusion phase. To test this hypothesis three Korean speakers were recorded via EMA producing /aCV/ sequences with C=/g/, /k'/ and /kh/, V=/a/, /i/ or /u/. The angle between tongue trajectory just before the impact and palatal contour was estimated, and the amplitude of the sliding movement was measured. Preliminary results for two speakers show that these two variables correlate: The greater the angle, the larger the sliding movement. These findings are interpreted as supporting the ``virtual target'' hypothesis. This interpretation will be verified by simulations using a 2D biomechanical tongue model [Payan and Perrier, Speech Commun. 22 (1997)].

  19. Optimal sliding guidance algorithm for Mars powered descent phase

    NASA Astrophysics Data System (ADS)

    Wibben, Daniel R.; Furfaro, Roberto

    2016-02-01

    Landing on large planetary bodies (e.g. Mars) with pinpoint accuracy presents a set of new challenges that must be addressed. One such challenge is the development of new guidance algorithms that exhibit a higher degree of robustness and flexibility. In this paper, the Zero-Effort-Miss/Zero-Effort-Velocity (ZEM/ZEV) optimal sliding guidance (OSG) scheme is applied to the Mars powered descent phase. This guidance algorithm has been specifically designed to combine techniques from both optimal and sliding control theories to generate an acceleration command based purely on the current estimated spacecraft state and desired final target state. Consequently, OSG yields closed-loop trajectories that do not need a reference trajectory. The guidance algorithm has its roots in the generalized ZEM/ZEV feedback guidance and its mathematical equations are naturally derived by defining a non-linear sliding surface as a function of the terms Zero-Effort-Miss and Zero-Effort-Velocity. With the addition of the sliding mode and using Lyapunov theory for non-autonomous systems, one can formally prove that the developed OSG law is globally finite-time stable to unknown but bounded perturbations. Here, the focus is on comparing the generalized ZEM/ZEV feedback guidance with the OSG law to explicitly demonstrate the benefits of the sliding mode augmentation. Results show that the sliding guidance provides a more robust solution in off-nominal scenarios while providing similar fuel consumption when compared to the non-sliding guidance command. Further, a Monte Carlo analysis is performed to examine the performance of the OSG law under perturbed conditions.

  20. Sliding mode observers for automotive alternator

    NASA Astrophysics Data System (ADS)

    Chen, De-Shiou

    Estimator development for synchronous rectification of the automotive alternator is a desirable approach for estimating alternator's back electromotive forces (EMFs) without a direct mechanical sensor of the rotor position. Recent theoretical studies show that estimation of the back EMF may be observed based on system's phase current model by sensing electrical variables (AC phase currents and DC bus voltage) of the synchronous rectifier. Observer design of the back EMF estimation has been developed for constant engine speed. In this work, we are interested in nonlinear observer design of the back EMF estimation for the real case of variable engine speed. Initial back EMF estimate can be obtained from a first-order sliding mode observer (SMO) based on the phase current model. A fourth-order nonlinear asymptotic observer (NAO), complemented by the dynamics of the back EMF with time-varying frequency and amplitude, is then incorporated into the observer design for chattering reduction. Since the cost of required phase current sensors may be prohibitive, the most applicable approach in real implementation by measuring DC current of the synchronous rectifier is carried out in the dissertation. It is shown that the DC link current consists of sequential "windows" with partial information of the phase currents, hence, the cascaded NAO is responsible not only for the purpose of chattering reduction but also for necessarily accomplishing the process of estimation. Stability analyses of the proposed estimators are considered for most linear and time-varying cases. The stability of the NAO without speed information is substantiated by both numerical and experimental results. Prospective estimation algorithms for the case of battery current measurements are investigated. Theoretical study indicates that the convergence of the proposed LAO may be provided by high gain inputs. Since the order of the LAO/NAO for the battery current case is one order higher than that of the link

  1. Wide-field lensfree imaging of tissue slides

    NASA Astrophysics Data System (ADS)

    Morel, Sophie Nhu An; Delon, Antoine; Blandin, Pierre; Bordy, Thomas; Cioni, Olivier; Hervé, Lionel; Fromentin, Catherine; Dinten, Jean-Marc; Allier, Cédric

    2015-07-01

    We developed a new imaging tool that can help pathologists in recording wide-field images of tissue slides. We present a simple cost-effective lens-free imaging method to record 2-4μm resolution wide-field (10 mm2 - 6 cm2) images of stained and unstained tissue slides. To our knowledge, our method is the first technique that enables fast (less than 5 minutes) wide-field lens-free imaging of such dense samples. Multiple holograms are recorded with different wavelength illumination, and a multispectral algorithm is used to retrieve both amplitude and phase. Our method can be used to retrieve images of stained tissue slides. For such absorbing object, the useful information is included in the modulus of the reconstructed complex field. Our method can also be applied to retrieve images of unstained tissue slides, where the useful information is in the retrieved phase. This technique is much cheaper and compact than a conventional microscope and could be made portable. Moreover, it enables wide field unstained tissue slides imaging, which could quickly provide useful information, for example on frozen section biopsies, when a rapid diagnosis is needed during surgery.

  2. Robust observer-based adaptive fuzzy sliding mode controller

    NASA Astrophysics Data System (ADS)

    Oveisi, Atta; Nestorović, Tamara

    2016-08-01

    In this paper, a new observer-based adaptive fuzzy integral sliding mode controller is proposed based on the Lyapunov stability theorem. The plant is subjected to a square-integrable disturbance and is assumed to have mismatch uncertainties both in state- and input-matrices. Based on the classical sliding mode controller, the equivalent control effort is obtained to satisfy the sufficient requirement of sliding mode controller and then the control law is modified to guarantee the reachability of the system trajectory to the sliding manifold. In order to relax the norm-bounded constrains on the control law and solve the chattering problem of sliding mode controller, a fuzzy logic inference mechanism is combined with the controller. An adaptive law is then introduced to tune the parameters of the fuzzy system on-line. Finally, for evaluating the controller and the robust performance of the closed-loop system, the proposed regulator is implemented on a real-time mechanical vibrating system.

  3. Sliding mode controllers for a tempered glass furnace.

    PubMed

    Almutairi, Naif B; Zribi, Mohamed

    2016-01-01

    This paper investigates the design of two sliding mode controllers (SMCs) applied to a tempered glass furnace system. The main objective of the proposed controllers is to regulate the glass plate temperature, the upper-wall temperature and the lower-wall temperature in the furnace to a common desired temperature. The first controller is a conventional sliding mode controller. The key step in the design of this controller is the introduction of a nonlinear transformation that maps the dynamic model of the tempered glass furnace into the generalized controller canonical form; this step facilitates the design of the sliding mode controller. The second controller is based on a state-dependent coefficient (SDC) factorization of the tempered glass furnace dynamic model. Using an SDC factorization, a simplified sliding mode controller is designed. The simulation results indicate that the two proposed control schemes work very well. Moreover, the robustness of the control schemes to changes in the system's parameters as well as to disturbances is investigated. In addition, a comparison of the proposed control schemes with a fuzzy PID controller is performed; the results show that the proposed SDC-based sliding mode controller gave better results.

  4. SSB Functions as a Sliding Platform that Migrates on DNA via Reptation

    PubMed Central

    Zhou, Ruobo; Kozlov, Alexander G.; Roy, Rahul; Zhang, Jichuan; Korolev, Sergey; Lohman, Timothy M.; Ha, Taekjip

    2011-01-01

    SUMMARY SSB proteins bind to and control the accessibility of single stranded (ss) DNA, likely facilitated by their ability to diffuse on ssDNA. Using a hybrid single-molecule method combining fluorescence and force, we probed how proteins with large binding site sizes can migrate rapidly on DNA and how protein-protein interactions and tension may modulate the motion. We observed force-induced progressive unraveling of ssDNA from the SSB surface between 1 and 6 pN, followed by SSB dissociation at ~10 pN, and obtained experimental evidence of a reptation mechanism for protein movement along DNA wherein a protein slides via DNA bulge formation and propagation. SSB diffusion persists even when bound with RecO and at forces under which the fully wrapped state is perturbed, suggesting that even in crowded cellular conditions SSB can act as a sliding platform to recruit and carry its interacting proteins for use in DNA replication, recombination and repair. PMID:21784244

  5. SSB functions as a sliding platform that migrates on DNA via reptation.

    PubMed

    Zhou, Ruobo; Kozlov, Alexander G; Roy, Rahul; Zhang, Jichuan; Korolev, Sergey; Lohman, Timothy M; Ha, Taekjip

    2011-07-22

    SSB proteins bind to and control the accessibility of single-stranded DNA (ssDNA), likely facilitated by their ability to diffuse on ssDNA. Using a hybrid single-molecule method combining fluorescence and force, we probed how proteins with large binding site sizes can migrate rapidly on DNA and how protein-protein interactions and tension may modulate the motion. We observed force-induced progressive unraveling of ssDNA from the SSB surface between 1 and 6 pN, followed by SSB dissociation at ∼10 pN, and obtained experimental evidence of a reptation mechanism for protein movement along DNA wherein a protein slides via DNA bulge formation and propagation. SSB diffusion persists even when bound with RecO and at forces under which the fully wrapped state is perturbed, suggesting that even in crowded cellular conditions SSB can act as a sliding platform to recruit and carry its interacting proteins for use in DNA replication, recombination and repair. PMID:21784244

  6. Nanosecond pulsed sliding dielectric barrier discharge plasma actuator for airflow control: Electrical, optical, and mechanical characteristics

    NASA Astrophysics Data System (ADS)

    Bayoda, K. D.; Benard, N.; Moreau, E.

    2015-08-01

    Plasma actuators used for active flow control are widely studied because they could replace mechanical actuators. Industrial applications of these plasma actuators sometimes require a large surface plasma sheet in view of increasing the interaction region between the discharge and the incoming flow. Instead of using a typical two-electrode nanosecond pulsed dielectric barrier discharge for which the interaction region is limited to about 20 mm, this study proposes to characterize a nanosecond sliding discharge based on a three-electrode geometry in order to increase the extension length up to the electrode gap. This sliding discharge is compared to the typical nanosecond dielectric barrier discharge by means of electrical, optical, and mechanical diagnostics. Electrical characterization reveals that the deposited energy can be widely increased. Time-resolved Intensified Charge Coupled Device (iCCD) images of the discharge development over the dielectric surface highlight that the intensity and the propagation velocity of streamers are strongly affected by the DC voltage applied at the third electrode. Finally, qualitative and quantitative characterizations of the pressure wave due to the surrounding gas heating are proposed by means of Schlieren visualizations and high frequency pressure measurements, respectively.

  7. An Augmented Lagrangian Method for Sliding Contact of Soft Tissue

    PubMed Central

    Guo, Hongqiang; Nickel, Jeffrey C.; Iwasaki, Laura R.; Spilker, Robert L.

    2012-01-01

    Despite the importance of sliding contact in diarthrodial joints, only a limited number of studies have addressed this type of problem, with the result that mechanical behavior of articular cartilage in daily life remains poorly understood. In this paper, a finite element formulation is developed for the sliding contact of biphasic soft tissues. The Augmented Lagrangian method is used to enforce the continuity of contact traction and fluid pressure across the contact interface. The resulting method is implemented in the commercial software COMSOL Multiphysics. The accuracy of the new implementation is verified using an example problem of sliding contact between a rigid, impermeable indenter and a cartilage layer for which analytical solutions have been obtained. The new implementation’s capability to handle a complex loading regime is verified by modeling plowing tests of the temporomandibular joint (TMJ) disc. PMID:22938363

  8. High current density, cryogenically cooled sliding electrical joint development

    SciTech Connect

    Murray, H.

    1986-09-01

    In the past two years, conceptual designs for fusion energy research devices have focussed on compact, high magnetic field configurations. The concept of sliding electrical joints in the large magnets allows a number of technical advantages including enhanced mechanical integrity, remote maintainability, and reduced project cost. The rationale for sliding electrical joints is presented. The conceptual configuration for this generation of experimental devices is highlghted by an approx. 20 T toroidal field magnet with a flat top conductor current of approx. 300 kA and a sliding electrical joint with a gross current density of approx. 0.6 kA/cm/sup 2/. A numerical model was used to map the conductor current distribution as a function of time and position in the conductor. A series of electrical joint arrangements were produced against the system code envelope constraints for a specific version of the Ignition Studies Project (ISP) which is designated as 1025.

  9. Fuzzy logic sliding mode control for command guidance law design.

    PubMed

    Elhalwagy, Y Z; Tarbouchi, M

    2004-04-01

    Recently, the combination of sliding mode and fuzzy logic techniques has emerged as a promising methodology for dealing with nonlinear, uncertain, dynamical systems. In this paper, a sliding mode control algorithm combined with a fuzzy control scheme is developed for the trajectory control of a command guidance system. The acceleration command input is mathematically derived. The proposed controller is used to compensate for the influence of unmodeled dynamics and to alleviate chattering. Simulation results show that the proposed controller gives good system performance in the face of system parameters variation and external disturbances. In addition, they show the effectiveness of the proposed missile guidance law against different engagement scenarios where the results demonstrate better performance over the conventional sliding mode control.

  10. Tribological study of selected ceramics versus metal sliding couples

    SciTech Connect

    Matsuhiro, K.; Sakai, H.; Soma, T.; Oda, I.

    1987-01-01

    A tribological study has been done with dry and lubricated conditions on the several selected sliding couples of ceramics vs. ceramics, ceramics vs. metal and ceramics vs. plasma sprayed metal. Sliding velocity was 2.6m/s (8.5ft/s), load was 22N and temperature was room temperature to 540/sup 0/C (1000/sup 0/F). No significant wear was observed on any sliding couples when they were lubricated. A considerably better tribological character was found in the ceramics vs. metal couple with dry condition. Especially sintered silicon nitride (SSN) vs. LiF+Cu plasma sprayed M2 steel at room temperature to 540/sup 0/C and SSN vs. M2 steel couple at 540/sup 0/C were remarkable. It is considered that the tribological character between ceramics and metal contact may be controlled by adhesion of metal to ceramics.

  11. A sliding mode controller for vehicular traffic flow

    NASA Astrophysics Data System (ADS)

    Li, Yongfu; Kang, Yuhao; Yang, Bin; Peeta, Srinivas; Zhang, Li; Zheng, Taixong; Li, Yinguo

    2016-11-01

    This study proposes a sliding mode controller for vehicular traffic flow based on a car-following model to enhance the smoothness and stability of traffic flow evolution. In particular, the full velocity difference (FVD) model is used to capture the characteristics of vehicular traffic flow. The proposed sliding mode controller is designed in terms of the error between the desired space headway and the actual space headway. The stability of the controller is guaranteed using the Lyapunov technique. Numerical experiments are used to compare the performance of sliding mode control (SMC) with that of feedback control. The results illustrate the effectiveness of the proposed SMC method in terms of the distribution smoothness and stability of the space headway, velocity, and acceleration profiles. They further illustrate that the SMC strategy is superior to that of the feedback control strategy, while enabling computational efficiency that can aid in practical applications.

  12. Reducing Sliding Friction with Liquid-Impregnated Surfaces

    NASA Astrophysics Data System (ADS)

    Habibi, Mohammad; Collier, C. Patrick; Boreyko, Jonathan; Nature Inspired Fluids; Interfaces Team; CenterNanophase Materials Sciences Team

    2015-11-01

    Liquid-impregnated surfaces are fabricated by infusing a lubricating liquid into the micro/nano roughness of a textured substrate, such that the surface is slippery for any deposited liquid immiscible with the lubricant. To date, liquid-impregnated surfaces have almost exclusively focused on repelling liquids by minimizing the contact angle hysteresis. Here, we demonstrate that liquid-impregnated surfaces are also capable of reducing sliding friction for solid objects. Ordered arrays of silicon micropillars were infused with lubricating liquids varying in viscosity by two orders of magnitude. Five test surfaces were used: two different micropillared surfaces with and without liquid infusion and a smooth, dry control surface. The static and kinetic coefficients of friction were measured using a polished aluminum cube as the sliding object. Compared to the smooth control surface, the sliding friction was reduced by at least a factor of two on the liquid-impregnated surfaces.

  13. Robust sliding mode continuous control of an IM drive

    SciTech Connect

    Jezernik, K.; Hren, A.; Drevensek, D.

    1995-12-31

    A control approach for robust trajectory tracking of IM servodrive based on the variable structure systems (VSS) is described. A new discrete-time control algorithm has been developed by combining VSS and Lyapunov design. It possesses all the good properties of the sliding mode and avoids the unnecessary discontinuity of the control input, thus eliminating chattering which has been considering as serious obstacles for applications of VSS. A unified control approach for current, torque and motion control based on the discrete-time sliding mode for application in indirect vector control of an IM drive is developed. The sliding mode approach can be applied to the control of an Im drive due to the replacement of the hysteresis controller with widely used PWM technique. All the theoretical issues are verified by experiment. The experimental system consists of a transputer and a microcontroller, thus allowing parallel processing.

  14. Hand ultrasound: a high-fidelity simulation of lung sliding.

    PubMed

    Shokoohi, Hamid; Boniface, Keith

    2012-09-01

    Simulation training has been effectively used to integrate didactic knowledge and technical skills in emergency and critical care medicine. In this article, we introduce a novel model of simulating lung ultrasound and the features of lung sliding and pneumothorax by performing a hand ultrasound. The simulation model involves scanning the palmar aspect of the hand to create normal lung sliding in varying modes of scanning and to mimic ultrasound features of pneumothorax, including "stratosphere/barcode sign" and "lung point." The simple, reproducible, and readily available simulation model we describe demonstrates a high-fidelity simulation surrogate that can be used to rapidly illustrate the signs of normal and abnormal lung sliding at the bedside.

  15. Permanent deformation on preexisting sliding surfaces in dams

    SciTech Connect

    Gazetas, G. State Univ. of New York, Buffalo, NY ); Uddin, N. )

    1994-11-01

    A finite-element model capable of computing permanent deformations along preexisting sliding surfaces in dams and embankments is used to evaluate the error in the current state-of-practice two-step procedures that are based on the simplifying assumption that the computation of dynamic response and of the resulting sliding displacements can be decoupled. Both sinusoidal and real earthquake ground motions are used as excitation, and Coulomb's friction law governs sliding along any point of the rigid-plastic tensionless interface. It is found that only when the dominant excitation frequencies lie in the proximity of the fundamental dam frequency will the permanent deformation from the decoupling assumption exceed appreciably the single-step value. As a validation of the single-step procedure, an analysis is performed and shown to successfully explain the nonsymmetric response of La Villita Dam recorded in the 1985 Mexico Earthquake.

  16. Tensor product model transformation based decoupled terminal sliding mode control

    NASA Astrophysics Data System (ADS)

    Zhao, Guoliang; Li, Hongxing; Song, Zhankui

    2016-06-01

    The main objective of this paper is to propose a tensor product model transformation based decoupled terminal sliding mode controller design methodology. The methodology is divided into two steps. In the first step, tensor product model transformation is applied to the single-input-multi-output system and a parameter-varying weighted linear time-invariant system is obtained. Then, decoupled terminal sliding mode controller is designed based on the linear time-invariant systems. The main novelty of this paper is that the nonsingular terminal sliding mode control design is based on a numerical model rather than an analytical one. Finally, simulations are tested on cart-pole system and translational oscillations with a rotational actuator system.

  17. Composite fuzzy sliding mode control of nonlinear singularly perturbed systems.

    PubMed

    Nagarale, Ravindrakumar M; Patre, B M

    2014-05-01

    This paper deals with the robust asymptotic stabilization for a class of nonlinear singularly perturbed systems using the fuzzy sliding mode control technique. In the proposed approach the original system is decomposed into two subsystems as slow and fast models by the singularly perturbed method. The composite fuzzy sliding mode controller is designed for stabilizing the full order system by combining separately designed slow and fast fuzzy sliding mode controllers. The two-time scale design approach minimizes the effect of boundary layer system on the full order system. A stability analysis allows us to provide sufficient conditions for the asymptotic stability of the full order closed-loop system. The simulation results show improved system performance of the proposed controller as compared to existing methods. The experimentation results validate the effectiveness of the proposed controller.

  18. Prediction of a landslide and analysis of slide motion with reference to the 2004 Ohto slide in Nara, Japan

    NASA Astrophysics Data System (ADS)

    Suwa, Hiroshi; Mizuno, Takashi; Ishii, Takayuki

    2010-12-01

    A slope 120 m wide and 100 m high collapsed including the roadbed of a national highway of Route 168 at Ohto, Nara, Japan on August 10, 2004. The precursory phenomena of abnormal features were found as cracks growing on the road-side slope 7 months before the catastrophe. The movements of the slope were monitored by extensometers. The data of the extensometers showed that creep mode turned from the secondary into the tertiary due to the heavy rainstorm of Typhoon Namtheun. The slide claimed no victims because the highway was closed 43 h before the catastrophe, anticipating a possible hazard when the creep velocity reached 4 mm/2 h. Comparison of rupture time predictions suggested that precision of the prediction using the reciprocal of creep velocity is higher than that by tertiary creep analysis, although leaving a problem that the prediction of the time zone of failure erred on the dangerous side. The slide generated ground vibration which was observed by seismometers deployed around the slide. Duration of the seismic signals corresponded well with the slide motion deciphered from video records. We found the fact that the seismic energy radiation from a landslide consisted of four stages. This had not been reported in any previous study, and may be important in understanding the dynamics of a rock-slide avalanche.

  19. Image Montaging for Creating a Virtual Pathology Slide: An Innovative and Economical Tool to Obtain a Whole Slide Image

    PubMed Central

    Pandurangappa, Rohit; Annavajjula, Saileela; Rajashekaraiah, Premalatha Bidadi

    2016-01-01

    Background. Microscopes are omnipresent throughout the field of biological research. With microscopes one can see in detail what is going on at the cellular level in tissues. Though it is a ubiquitous tool, the limitation is that with high magnification there is a small field of view. It is often advantageous to see an entire sample at high magnification. Over the years technological advancements in optics have helped to provide solutions to this limitation of microscopes by creating the so-called dedicated “slide scanners” which can provide a “whole slide digital image.” These scanners can provide seamless, large-field-of-view, high resolution image of entire tissue section. The only disadvantage of such complete slide imaging system is its outrageous cost, thereby hindering their practical use by most laboratories, especially in developing and low resource countries. Methods. In a quest for their substitute, we tried commonly used image editing software Adobe Photoshop along with a basic image capturing device attached to a trinocular microscope to create a digital pathology slide. Results. The seamless image created using Adobe Photoshop maintained its diagnostic quality. Conclusion. With time and effort photomicrographs obtained from a basic camera-microscope set up can be combined and merged in Adobe Photoshop to create a whole slide digital image of practically usable quality at a negligible cost. PMID:27747147

  20. THE DRINKING WATER TREATABILITY DATABASE (Slides)

    EPA Science Inventory

    The Drinking Water Treatability Database (TDB) assembles referenced data on the control of contaminants in drinking water, housed on an interactive, publicly-available, USEPA web site (www.epa.gov/tdb). The TDB is of use to drinking water utilities, treatment process design engin...

  1. 3D DEM analyses of the 1963 Vajont rock slide

    NASA Astrophysics Data System (ADS)

    Boon, Chia Weng; Houlsby, Guy; Utili, Stefano

    2013-04-01

    The 1963 Vajont rock slide has been modelled using the distinct element method (DEM). The open-source DEM code, YADE (Kozicki & Donzé, 2008), was used together with the contact detection algorithm proposed by Boon et al. (2012). The critical sliding friction angle at the slide surface was sought using a strength reduction approach. A shear-softening contact model was used to model the shear resistance of the clayey layer at the slide surface. The results suggest that the critical sliding friction angle can be conservative if stability analyses are calculated based on the peak friction angles. The water table was assumed to be horizontal and the pore pressure at the clay layer was assumed to be hydrostatic. The influence of reservoir filling was marginal, increasing the sliding friction angle by only 1.6˚. The results of the DEM calculations were found to be sensitive to the orientations of the bedding planes and cross-joints. Finally, the failure mechanism was investigated and arching was found to be present at the bend of the chair-shaped slope. References Boon C.W., Houlsby G.T., Utili S. (2012). A new algorithm for contact detection between convex polygonal and polyhedral particles in the discrete element method. Computers and Geotechnics, vol 44, 73-82, doi.org/10.1016/j.compgeo.2012.03.012. Kozicki, J., & Donzé, F. V. (2008). A new open-source software developed for numerical simulations using discrete modeling methods. Computer Methods in Applied Mechanics and Engineering, 197(49-50), 4429-4443.

  2. A history of slide rules for blackbody radiation computations

    NASA Astrophysics Data System (ADS)

    Johnson, R. Barry; Stewart, Sean M.

    2012-10-01

    During the Second World War the importance of utilizing detection devices capable of operating in the infrared portion of the electromagnetic spectrum was firmly established. Up until that time, laboriously constructed tables for blackbody radiation needed to be used in calculations involving the amount of radiation radiated within a given spectral region or for other related radiometric quantities. To rapidly achieve reasonably accurate calculations of such radiometric quantities, a blackbody radiation calculator was devised in slide rule form first in Germany in 1944 and soon after in England and the United States. In the immediate decades after its introduction, the radiation slide rule was widely adopted and recognized as a useful and important tool for engineers and scientists working in the infrared field. It reached its pinnacle in the United States in 1970 in a rule introduced by Electro Optical Industries, Inc. With the onset in the latter half of the 1970s of affordable, hand-held electronic calculators, the impending demise of the radiation slide rule was evident. No longer the calculational device of choice, the radiation slide rule all but disappeared within a few short years. Although today blackbody radiation calculations can be readily accomplished using anything from a programmable pocket calculator upwards, with each device making use of a wide variety of numerical approximations to the integral of Planck's function, radiation slide rules were in the early decades of infrared technology the definitive "workhorse" for those involved in infrared systems design and engineering. This paper presents a historical development of radiation slide rules with many versions being discussed.

  3. Color accuracy and reproducibility in whole slide imaging scanners

    PubMed Central

    Shrestha, Prarthana; Hulsken, Bas

    2014-01-01

    Abstract We propose a workflow for color reproduction in whole slide imaging (WSI) scanners, such that the colors in the scanned images match to the actual slide color and the inter-scanner variation is minimum. We describe a new method of preparation and verification of the color phantom slide, consisting of a standard IT8-target transmissive film, which is used in color calibrating and profiling the WSI scanner. We explore several International Color Consortium (ICC) compliant techniques in color calibration/profiling and rendering intents for translating the scanner specific colors to the standard display (sRGB) color space. Based on the quality of the color reproduction in histopathology slides, we propose the matrix-based calibration/profiling and absolute colorimetric rendering approach. The main advantage of the proposed workflow is that it is compliant to the ICC standard, applicable to color management systems in different platforms, and involves no external color measurement devices. We quantify color difference using the CIE-DeltaE2000 metric, where DeltaE values below 1 are considered imperceptible. Our evaluation on 14 phantom slides, manufactured according to the proposed method, shows an average inter-slide color difference below 1 DeltaE. The proposed workflow is implemented and evaluated in 35 WSI scanners developed at Philips, called the Ultra Fast Scanners (UFS). The color accuracy, measured as DeltaE between the scanner reproduced colors and the reference colorimetric values of the phantom patches, is improved on average to 3.5 DeltaE in calibrated scanners from 10 DeltaE in uncalibrated scanners. The average inter-scanner color difference is found to be 1.2 DeltaE. The improvement in color performance upon using the proposed method is apparent with the visual color quality of the tissue scans. PMID:26158041

  4. Color accuracy and reproducibility in whole slide imaging scanners

    NASA Astrophysics Data System (ADS)

    Shrestha, Prarthana; Hulsken, Bas

    2014-03-01

    In this paper, we propose a work-flow for color reproduction in whole slide imaging (WSI) scanners such that the colors in the scanned images match to the actual slide color and the inter scanner variation is minimum. We describe a novel method of preparation and verification of the color phantom slide, consisting of a standard IT8- target transmissive film, which is used in color calibrating and profiling the WSI scanner. We explore several ICC compliant techniques in color calibration/profiling and rendering intents for translating the scanner specific colors to the standard display (sRGB) color-space. Based on the quality of color reproduction in histopathology tissue slides, we propose the matrix-based calibration/profiling and absolute colorimetric rendering approach. The main advantage of the proposed work-ow is that it is compliant to the ICC standard, applicable to color management systems in different platforms, and involves no external color measurement devices. We measure objective color performance using CIE-DeltaE2000 metric, where DeltaE values below 1 is considered imperceptible. Our evaluation 14 phantom slides, manufactured according to the proposed method, show an average inter-slide color difference below 1 DeltaE. The proposed work-flow is implemented and evaluated in 35 Philips Ultra Fast Scanners (UFS). The results show that the average color difference between a scanner and the reference is 3.5 DeltaE, and among the scanners is 3.1 DeltaE. The improvement on color performance upon using the proposed method is apparent on the visual color quality of the tissues scans.

  5. Scale effects in sliding friction: An experimental study

    SciTech Connect

    Blau, P.J.

    1991-07-24

    Solid friction is considered by some to be a fundamental property of two contacting materials, while others consider it to be a property of the larger tribosystem in which the materials are contained. A set of sliding friction experiments were designed to investigate the hypothesis that the unlubricated sliding friction between two materials is indeed a tribosystems-related property and that the relative influence of the materials properties or those of the machine on friction varies from one situation to another. Three tribometers were used: a friction microprobe (FMP), a typical laboratory-scale reciprocating pin-on-flat device, and a heavy-duty commercial wear tester. The slider material was stainless steel (AISI 440C) and the flat specimen material was an ordered alloy of Ni{sub 3}Al (IC-50). Sphere-on-flat geometry was used at ambient conditions and at normal forces ranging from 0.01 N to 100 N and average sliding velocities of 0.01 to 100.0 mm/s. The nominal, steady-state sliding friction coefficient tended to decrease with increases in normal force for each of the three tribometers, and the steady state value of sliding friction tended to increase as the mass of the machine increased. The variation of the friction force during sliding was also a characteristic of the test system. These studies provide further support to the idea that the friction of both laboratory-scale and engineering tribosystems should be treated as a parameter which may take on a range of characteristic values and not conceived as having a single, unique value for each material pair.

  6. Atomic-Scale Sliding Friction on Graphene in Water.

    PubMed

    Vilhena, J G; Pimentel, Carlos; Pedraz, Patricia; Luo, Feng; Serena, Pedro A; Pina, Carlos M; Gnecco, Enrico; Pérez, Rubén

    2016-04-26

    The sliding of a sharp nanotip on graphene completely immersed in water is investigated by molecular dynamics (MD) and atomic force microscopy. MD simulations predict that the atomic-scale stick-slip is almost identical to that found in ultrahigh vacuum. Furthermore, they show that water plays a purely stochastic role in sliding (solid-to-solid) friction. These observations are substantiated by friction measurements on graphene grown on Cu and Ni, where, oppositely of the operation in air, lattice resolution is readily achieved. Our results promote friction force microscopy in water as a robust alternative to ultra-high-vacuum measurements. PMID:26982997

  7. Atomic-Scale Sliding Friction on Graphene in Water.

    PubMed

    Vilhena, J G; Pimentel, Carlos; Pedraz, Patricia; Luo, Feng; Serena, Pedro A; Pina, Carlos M; Gnecco, Enrico; Pérez, Rubén

    2016-04-26

    The sliding of a sharp nanotip on graphene completely immersed in water is investigated by molecular dynamics (MD) and atomic force microscopy. MD simulations predict that the atomic-scale stick-slip is almost identical to that found in ultrahigh vacuum. Furthermore, they show that water plays a purely stochastic role in sliding (solid-to-solid) friction. These observations are substantiated by friction measurements on graphene grown on Cu and Ni, where, oppositely of the operation in air, lattice resolution is readily achieved. Our results promote friction force microscopy in water as a robust alternative to ultra-high-vacuum measurements.

  8. Use of the 'sliding lung sign' in emergency bedside ultrasound.

    PubMed

    Razzaq, Quaisar M

    2008-08-01

    Ultrasound at the bedside is being increasingly used by emergency physicians and others assessing the acutely ill and injured patient. Recent studies have described a sonographic sign, known as the 'sliding lung sign', which appears to hold promise in certain emergency situations including diagnosis of a pneumothorax and confirmation of endotracheal tube placement. This review article provides an introduction to the concept of the 'sliding lung sign' and gives an insight as to how it can be practically elicited and how it may potentially be used at the bedside in the emergency department. PMID:19078825

  9. Tribological Behaviour of PTFE Under Variable Loading Dry Sliding Condition

    NASA Astrophysics Data System (ADS)

    Patil, S. M.; Ahuja, B. B.

    2014-04-01

    To study the tribological behaviour of materials subjected to variable and constant loading the pin-on-disk tribometer has been modified. This paper discusses the wear and friction behaviour of Poly Tetra Fluoro Ethylene (PTFE) operating under variable loading dry unidirectional sliding condition using the modified tribometer. The results under variable loading are compared with corresponding maximum, minimum and mean constant load situations. Wear and specific wear rate of PTFE subjected to variable loading under dry unidirectional sliding condition lies above those of corresponding mean constant load but no such comparative behaviour was observed for coefficient of friction.

  10. Preservation of Lantern Slides for Use in Today's Technology

    NASA Astrophysics Data System (ADS)

    Hillier, A. S.

    2007-10-01

    Lantern slides will keep a long time, which is a good quality for preservation. However, as I have found, they break. Unless there is a lantern slide projector available, there is no way to show these valuable assets to others. This poster will explain my project to bring these pictures to life, to use them in education projects, and to simply show a bit of history to an attentive audience. With today's technology they can be placed on computers and stored more easily and be a joy to all.

  11. Development of a teledermatopathology consultation system using virtual slides

    PubMed Central

    2012-01-01

    Background An online consultation system using virtual slides (whole slide images; WSI) has been developed for pathological diagnosis, and could help compensate for the shortage of pathologists, especially in the field of dermatopathology and in other fields dealing with difficult cases. This study focused on the performance and future potential of the system. Method In our system, histological specimens on slide glasses are digitalized by a virtual slide instrument, converted into web data, and up-loaded to an open server. Using our own purpose-built online system, we then input patient details such as age, gender, affected region, clinical data, past history and other related items. We next select up to ten consultants. Finally we send an e-mail to all consultants simultaneously through a single command. The consultant receives an e-mail containing an ID and password which is used to access the open server and inspect the images and other data associated with the case. The consultant makes a diagnosis, which is sent to us along with comments. Because this was a pilot study, we also conducted several questionnaires with consultants concerning the quality of images, operability, usability, and other issues. Results We solicited consultations for 36 cases, including cases of tumor, and involving one to eight consultants in the field of dermatopathology. No problems were noted concerning the images or the functioning of the system on the sender or receiver sides. The quickest diagnosis was received only 18 minutes after sending our data. This is much faster than in conventional consultation using glass slides. There were no major problems relating to the diagnosis, although there were some minor differences of opinion between consultants. The results of questionnaires answered by many consultants confirmed the usability of this system for pathological consultation. (16 out of 23 consultants.) Conclusion We have developed a novel teledermatopathological consultation

  12. Occurrence of spherical ceramic debris in indentation and sliding contact

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1982-01-01

    Indenting experiments were conducted with the silicon carbide (0001) surface in contact with a spherical diamond indenter in air. Sliding friction experiments were also conducted with silicon carbide in contact with iron and iron-based binary alloys at room temperature and 800 C. Fracture pits with a spherical particle and spherical wear debris were observed as a result of indenting and sliding. Spherical debris may be produced by a mechanism that involves a spherical-shaped fracture along the circular or spherical stress trajectories under the inelastic deformation zone.

  13. Output feedback sliding mode control under networked environment

    NASA Astrophysics Data System (ADS)

    Zhang, Jinhui; Lam, James; Xia, Yuanqing

    2013-04-01

    This article considers the problem of sliding mode output feedback control for networked control systems (NCSs). The key idea is to make use of not only the current and previous measurements, but also previous inputs for the reconstruction of the state variables. Using this idea, sliding mode controllers are designed for systems with constant or time-varying network delay. The approach is not only more practical but also easy to implement. To illustrate this, the design technique is applied to an inverted pendulum system.

  14. Adaptive robust controller based on integral sliding mode concept

    NASA Astrophysics Data System (ADS)

    Taleb, M.; Plestan, F.

    2016-09-01

    This paper proposes, for a class of uncertain nonlinear systems, an adaptive controller based on adaptive second-order sliding mode control and integral sliding mode control concepts. The adaptation strategy solves the problem of gain tuning and has the advantage of chattering reduction. Moreover, limited information about perturbation and uncertainties has to be known. The control is composed of two parts: an adaptive one whose objective is to reject the perturbation and system uncertainties, whereas the second one is chosen such as the nominal part of the system is stabilised in zero. To illustrate the effectiveness of the proposed approach, an application on an academic example is shown with simulation results.

  15. Baseball and softball sliding injuries. Incidence, and the effect of technique in collegiate baseball and softball players.

    PubMed

    Hosey, R G; Puffer, J C

    2000-01-01

    We prospectively observed seven softball and three baseball Division I collegiate teams to study the incidence of sliding injuries, the types of injuries resulting from the sliding technique, and the amount of time lost from participation. Slides were categorized as either feet- or head-first on the basis of the leading part of the body during the slide. Slides were further stratified depending on whether a diveback technique was performed. We recorded 37 injuries in 3889 slides in 637 games and 7596 athlete game exposures. The overall incidence of sliding injuries was 9.51 per 1000 slides and 4.87 per 1000 game exposures. Softball players had a significantly higher incidence of sliding injuries (12.13 per 1000 slides) than did baseball players (6.01 per 1000 slides). In baseball, the injury rate was higher for feet-first slides (7.31 per 1000 slides) than for headfirst slides (3.53 per 1000 slides) or divebacks (5.75 per 1000 divebacks). In softball, injury rates were higher for head-first slides (19.46 per 1000 slides) than for feet-first slides (10.04 per 1000 slides) or divebacks (7.49 per 1000 divebacks). The majority of injuries sustained were minor, with only four (11%) injuries causing the athlete to miss more than 7 days of participation.

  16. System dynamic instabilities induced by sliding contact: A numerical analysis with experimental validation

    NASA Astrophysics Data System (ADS)

    Brunetti, J.; Massi, F.; Saulot, A.; Renouf, M.; D`Ambrogio, W.

    2015-06-01

    Mechanical systems present several contact surfaces between deformable bodies. The contact interface can be either static (joints) or in sliding (active interfaces). The sliding interfaces can have several roles and according to their application they can be developed either for maximizing the friction coefficient and the energy dissipation (e.g. brakes) or rather to allow the relative displacement at joints with a maximum efficiency. In both cases the coupling between system and local contact dynamics can bring to system dynamics instabilities (e.g. brake squeal or squeaking of hip prostheses). This results in unstable vibrations of the system, induced by the oscillation of the contact forces. In the literature, a large number of works deal with such kind of instabilities and are mainly focused on applied problems such as brake squeal noise. This paper shows a more general numerical analysis of a simple system constituted by two bodies in sliding contact: a rigid cylinder rotating inside a deformable one. The parametrical Complex Eigenvalue Analysis and the transient numerical simulations show how the friction forces can give rise to in-plane dynamic instabilities due to the interaction between two system modes, even for such a simple system characterized by one deformable body. Results from transient simulations highlight the key role of realistic values of the material damping to have convergence of the model and, consequently, reliable physical results. To this aim an experimental estimation of the material damping has been carried out. Moreover, the simplicity of the system allows for a deeper analysis of the contact instability and a balance of the energy flux among friction, system vibrations and damping. The numerical results have been validated by comparison with experimental ones, obtained by a specific test bench developed to reproduce and analyze the contact friction instabilities.

  17. Effects of lag screw design and lubrication on sliding in trochanteric nails.

    PubMed

    Kummer, Frederick J

    2010-01-01

    This study compared the sliding characteristics of three lag screw designs used with trochanteric nails and determined the effects of lubrication on sliding. They were tested by an established method to measure initiation and ease of lag screw sliding. These tests were then repeated with calf serum lubrication. There were significant differences (p < 0.05) between the loads required to initiate lag screw sliding that appeared to be related to design. Screw sliding was similar for all three designs; however, the presence of lag screw locking slots affected sliding in that region. Lubrication did not affect either parameter. Lag screw design aspects, such as diameter and, particularly, surface finish, affect sliding. Due to the small contact area between the lag screw and nail creating high interface stresses, lubrication had no effect on lag screw sliding.

  18. 29. Photocopy of photograph (original slide in possession of the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. Photocopy of photograph (original slide in possession of the Preservation Society of Charleston, Charleston, South Carolina; Collection of Dr. and Mrs. E. L. Powers, Charleston, South Carolina) Photographer unknown, Christmas 1935 DETAIL, FIRST FLOOR, SOUTH ROOM, MANTELPIECE AND CHIMNEY BREAST, LOOKING WEST - 8 Court House Square (House), Charleston, Charleston County, SC

  19. 21 CFR 864.5850 - Automated slide spinner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Automated slide spinner. 864.5850 Section 864.5850 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Automated and Semi-Automated Hematology Devices §...

  20. 21 CFR 864.5850 - Automated slide spinner.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Automated slide spinner. 864.5850 Section 864.5850 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Automated and Semi-Automated Hematology Devices §...

  1. 21 CFR 864.5850 - Automated slide spinner.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Automated slide spinner. 864.5850 Section 864.5850 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Automated and Semi-Automated Hematology Devices §...

  2. 21 CFR 864.5850 - Automated slide spinner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Automated slide spinner. 864.5850 Section 864.5850 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Automated and Semi-Automated Hematology Devices §...

  3. 21 CFR 864.5850 - Automated slide spinner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Automated slide spinner. 864.5850 Section 864.5850 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Automated and Semi-Automated Hematology Devices §...

  4. Slide crown lengthening procedure using wide surface incisions and cyanoacrylate.

    PubMed

    Szymaitis, Dennis W

    2011-01-01

    This article introduces the slide crown lengthening procedure (SCLP), which incorporates surgical design features to overcome present crown lengthening procedure (CLP) shortcomings. The result is a 75% decrease in required surgery on adjacent teeth and a corresponding 75% reduction in surgical time. Other advantages include a reduction in surgical morbidity, improvement in terminal esthetics, and fewer teeth subject to papillae removal and apically repositioned gingiva. The 20 to 30 degree incision forming the slide is the pivotal feature; it allows effortless flap positioning. This incision angle enables wide surface incisions to adhere flaps together by producing stronger fibrin clots, decreasing tissue retraction angles, and reforming disrupted fibrin clots as incision sides slide while maintaining contact. This enhanced fibrin clot eliminates the need for sutures. The slide produced by the 20 to 30 degree incision functions for crown lengthening on all sites (facial, lingual, or palatal). This versatile surgical design introduces a new healing dimension that adapts to and provides benefits for other dental surgeries, such as gingival grafts, endodontic surgery, implants, and extractions.

  5. PARTIAL ELEVATION OF THE SOUTHWEST SIDE SHOWING THE LARGE SLIDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PARTIAL ELEVATION OF THE SOUTHWEST SIDE SHOWING THE LARGE SLIDING DOORS WITH MULTI-LIGHT WINDOWS AND METAL SECTIONS AT THE BOTTOM. NOTE THE FRAMEWORK WHICH SUPPORTS THE OVERHEAD GUIDEWAYS. VIEW FACING NORTHEAST. - U.S. Naval Base, Pearl Harbor, Seaplane Hangar, Lexington Boulevard, south of Enterprise Street, Pearl City, Honolulu County, HI

  6. An Evaluation of a Biological Slide-Tutorial Program.

    ERIC Educational Resources Information Center

    Chan, Gordon L.

    Described is an auto-tutorial slide program for zoology students. A self-paced system was devised for observing the subject matter covered in the twelve study units of a zoology course. The post-testing evaluation revealed that students with lower grade point averages achieved scores comparable with students of higher grade point averages.…

  7. Dynamics of a Sliding Ladder Leaning against a Wall

    ERIC Educational Resources Information Center

    Oliveira, J. B.; Simeão Carvalho, P.; Mota, M. F.; Quintas, M. J.

    2015-01-01

    This study is about the dynamics of a sliding ladder leaning against a vertical wall. The results are understood by considering the motion divided in two parts: (i) for 0 = t = t[subscript s] with one degree of freedom, and (ii) for t > t[subscript s] with two degrees of freedom, where the separation is determined by the instance t[subscript…

  8. 9. INTERIOR OF LIVING ROOM SHOWING ALUMINUM SLIDING GLASS WINDOW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. INTERIOR OF LIVING ROOM SHOWING ALUMINUM SLIDING GLASS WINDOW FRONT DOOR, AND ORIGINAL 6-LIGHT OVER 1-LIGHT, DOUBLE-HUNG WINDOWS IN SINGLE AND DOUBLE ARRANGEMENTS. VIEW TO NORTHWEST. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA

  9. Programmed Instruction with Microfiche: Intoduction to the Slide Rule.

    ERIC Educational Resources Information Center

    Wachtel, L. W.

    The use of microfiche as a means of programed self-instruction was examined in this study. Lessons adapted from a one-hour lecture on the slide rule were typed in large print in order to allow easy reading at distances normally used with microfiche readers. The 58 pages of the course were reproduced on microfilm, strips of which were then inserted…

  10. 12. INTERIOR VIEW OF GATE OPERATOR ROOM, SHOWING SLIDES GATE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. INTERIOR VIEW OF GATE OPERATOR ROOM, SHOWING SLIDES GATE OPERATORS, LOOKING NORTHWEST. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  11. 11. Credit JTL. North elevation of powerhouse showing sliding wood ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Credit JTL. North elevation of powerhouse showing sliding wood doors used for easy installation and removal of equipment. Note painted surface indicating location of transformer annex (now removed). - Battle Creek Hydroelectric System, Battle Creek & Tributaries, Red Bluff, Tehama County, CA

  12. Thermodynamics of a Block Sliding across a Frictional Surface

    ERIC Educational Resources Information Center

    Mungan, Carl E.

    2007-01-01

    The following idealized problem is intended to illustrate some basic thermodynamic concepts involved in kinetic friction. A block of mass m is sliding on top of a frictional, flat-topped table of mass M. The table is magnetically levitated, so that it can move without thermal contact and friction across a horizontal floor. The table is initially…

  13. The Edison Environmental Center Permeable Pavement Site - slides

    EPA Science Inventory

    This is a presentation for a second Community Outreach Event called "Chemistry Works!" at West Windsor Public Library on Saturday, November 5th. It will review the permeable pavement research project at the Edison Environmental center. Besides slide persentation, two demo units w...

  14. Reusable Launch Vehicle Control In Multiple Time Scale Sliding Modes

    NASA Technical Reports Server (NTRS)

    Shtessel, Yuri; Hall, Charles; Jackson, Mark

    2000-01-01

    A reusable launch vehicle control problem during ascent is addressed via multiple-time scaled continuous sliding mode control. The proposed sliding mode controller utilizes a two-loop structure and provides robust, de-coupled tracking of both orientation angle command profiles and angular rate command profiles in the presence of bounded external disturbances and plant uncertainties. Sliding mode control causes the angular rate and orientation angle tracking error dynamics to be constrained to linear, de-coupled, homogeneous, and vector valued differential equations with desired eigenvalues placement. Overall stability of a two-loop control system is addressed. An optimal control allocation algorithm is designed that allocates torque commands into end-effector deflection commands, which are executed by the actuators. The dual-time scale sliding mode controller was designed for the X-33 technology demonstration sub-orbital launch vehicle in the launch mode. Simulation results show that the designed controller provides robust, accurate, de-coupled tracking of the orientation angle command profiles in presence of external disturbances and vehicle inertia uncertainties. This is a significant advancement in performance over that achieved with linear, gain scheduled control systems currently being used for launch vehicles.

  15. Three Monotheistic Religions: Judaism, Christianity, Islam. Slide Exercise.

    ERIC Educational Resources Information Center

    Michalak, Laurence

    This slide exercise is intended to communicate information about the three major monotheistic religions of the Middle East: Judaism, Christianity, and Islam. The exercise focuses on beliefs, events, symbols, institutions, and practices important to the three religions, but the main purpose is to impress upon students the many things that these…

  16. 11. Photocopy of a color slide (showing Ranger Robert Doorw ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Photocopy of a color slide (showing Ranger Robert Doorw ourside the recently completed Main Office) (from the U.S. Forest Service, Wenatchee National Forest) F.W. Cleator, Photographer, July 1941 FRONT ELEVATION - U.S. Forest Service Chelan Ranger Station, Main Office, 428 West Woodin Avenue, Chelan, Chelan County, WA

  17. Global Trends in Environment and Development. Presentation Set [Slides].

    ERIC Educational Resources Information Center

    World Resources Inst., Washington, DC.

    This 50 slide set of presentation graphs and maps illustrates some of the major conditions and trends in population, agriculture, biodiversity, forests, water resources, energy, climate, and social and economic development that determine the state of the world's environment. Graphs and maps can be used by those in academic, professional, and…

  18. DETAIL OF SLIDING DOOR LEADING FROM THE ENTRANCE TERRACE TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF SLIDING DOOR LEADING FROM THE ENTRANCE TERRACE TO THE RECREATION CENTER, SOUTHWEST WING. VIEW FACING NORTH NORTHWEST - U.S. Naval Base, Pearl Harbor, Bloch Recreation Center & Arena, Between Center Drive & North Road near Nimitz Gate, Pearl City, Honolulu County, HI

  19. Optoelectronic hit/miss transform for screening cervical smear slides

    NASA Astrophysics Data System (ADS)

    Narayanswamy, R.; Turner, R. M.; McKnight, D. J.; Johnson, K. M.; Sharpe, J. P.

    1995-06-01

    An optoelectronic morphological processor for detecting regions of interest (abnormal cells) on a cervical smear slide using the hit/miss transform is presented. Computer simulation of the algorithm tested on 184 Pap-smear images provided 95% detection and 5% false alarm. An optoelectronic implementation of the hit/miss transform is presented, along with preliminary experimental results.

  20. MASTER BEDROOM SHOWING THE CLOSET WITH SLIDING DOORS. VIEW FACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MASTER BEDROOM SHOWING THE CLOSET WITH SLIDING DOORS. VIEW FACING NORTHEAST - Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, Three-Bedroom Single-Family Types 8 and 11, Birch Circle, Elm Drive, Elm Circle, and Date Drive, Pearl City, Honolulu County, HI

  1. MARINE SCIENCE FILM CATALOG. MOVIES, FILMSTRIPS, AND SLIDES.

    ERIC Educational Resources Information Center

    CHAPMAN, FRANK L.

    THIS CATALOG CONTAINS ANNOTATED LISTINGS OF 16MM. FILMS, 35MM. FILMSTRIPS, AND 35MM. SLIDES FOR INSTRUCTIONAL USE IN THE MARINE SCIENCES. PARTS 1, 2, AND 3 LIST THOSE WHICH ARE AVAILABLE FROM THE CARTERET COUNTY MARINE SCIENCE PROJECT, AN ELEMENTARY AND SECONDARY EDUCATION ACT TITLE III PROJECT. PART 4 LISTS A-V MATERIALS AVAILABLE ON FREE LOAN…

  2. The Slide-Lecture: An Alternative to Chalkdust?

    ERIC Educational Resources Information Center

    Wilkins, S. A.

    Many instructors teaching large survey courses use the chalkboard to aid their lectures in spite of the waste of class time in writing and erasing, the clutter and confusion that may result, and the messiness of chalkdust. As an alternative, the slide-lecture method has been used for several years at Bossier Community College in teaching…

  3. Ribosomes slide on lysine-encoding homopolymeric A stretches.

    PubMed

    Koutmou, Kristin S; Schuller, Anthony P; Brunelle, Julie L; Radhakrishnan, Aditya; Djuranovic, Sergej; Green, Rachel

    2015-01-01

    Protein output from synonymous codons is thought to be equivalent if appropriate tRNAs are sufficiently abundant. Here we show that mRNAs encoding iterated lysine codons, AAA or AAG, differentially impact protein synthesis: insertion of iterated AAA codons into an ORF diminishes protein expression more than insertion of synonymous AAG codons. Kinetic studies in E. coli reveal that differential protein production results from pausing on consecutive AAA-lysines followed by ribosome sliding on homopolymeric A sequence. Translation in a cell-free expression system demonstrates that diminished output from AAA-codon-containing reporters results from premature translation termination on out of frame stop codons following ribosome sliding. In eukaryotes, these premature termination events target the mRNAs for Nonsense-Mediated-Decay (NMD). The finding that ribosomes slide on homopolymeric A sequences explains bioinformatic analyses indicating that consecutive AAA codons are under-represented in gene-coding sequences. Ribosome 'sliding' represents an unexpected type of ribosome movement possible during translation.

  4. View of east side with large sliding door, rollers, and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of east side with large sliding door, rollers, and tracks to large x-ray room - U.S. Naval Base, Pearl Harbor, Industrial X-Ray Building, Off Sixth Street, adjacent to and south of Facility No. 11, Pearl City, Honolulu County, HI

  5. 3D finite element modeling of sliding wear

    NASA Astrophysics Data System (ADS)

    Buentello Hernandez, Rodolfo G.

    Wear is defined as "the removal of material volume through some mechanical process between two surfaces". There are many mechanical situations that can induce wear and each can involve many wear mechanisms. This research focuses on the mechanical wear due to dry sliding between two surfaces. Currently there is a need to identify and compare materials that would endure sliding wear under severe conditions such as high velocities. The high costs associated with the field experimentation of systems subject to high-speed sliding, has prevented the collection of the necessary data required to fully characterize this phenomena. Simulating wear through Finite Elements (FE) would enable its prediction under different scenarios and would reduce experimentation costs. In the aerospace, automotive and weapon industries such a model can aid in material selection, design and/or testing of systems subjected to wear in bearings, gears, brakes, gun barrels, slippers, locomotive wheels, or even rocket test tracks. The 3D wear model presented in this dissertation allows one to reasonably predict high-speed sliding mechanical wear between two materials. The model predictions are reasonable, when compared against those measured on a sled slipper traveling over the Holloman High Speed Tests Track. This slipper traveled a distance of 5,816 meters in 8.14 seconds and reached a maximum velocity of 1,530 m/s.

  6. 11. Photocopy of photograph (original color slide made in 1974 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Photocopy of photograph (original color slide made in 1974 by Henry D. Boykin, II, A.I.A., of Camden, South Carolina, and kept in his possession) OBLIQUE VIEW, SECTION OF SOUTH WALL OF NAVE SHOWING INTERNAL CONSTRUCTION OF ORIGINAL BRICK BUTTRESS AND RAMMED EARTH WALL. - Church of the Holy Cross, State Route 261, Stateburg, Sumter County, SC

  7. BEDROOM 2 SHOWING THE SLIDING CLOSET DOORS AND WINDOWS IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BEDROOM 2 SHOWING THE SLIDING CLOSET DOORS AND WINDOWS IN THE UPPER PORTION OF THE EXTERIOR WALL. VIEW FACING NORTH - Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, U-Shaped Two-Bedroom Duplex Type 1, Acacia Road, Birch Circle, and Cedar Drive, Pearl City, Honolulu County, HI

  8. MASTER BEDROOM SHOWING THE SLIDING CLOSET DOORS AND THE HALL. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MASTER BEDROOM SHOWING THE SLIDING CLOSET DOORS AND THE HALL. VIEW FACING SOUTH - Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, U-Shaped Three-Bedroom Duplex Type 2, Acacia Road, Birch Circle, and Cedar Drive, Pearl City, Honolulu County, HI

  9. INTERIOR VIEW OF THE LIVING ROOM. NOTE THE SLIDING DOORS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF THE LIVING ROOM. NOTE THE SLIDING DOORS TO THE DINING ROOM ON THE LEFT. VIEW FACING NORTH - Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, U-Shaped Three-Bedroom Duplex Type 2, Acacia Road, Birch Circle, and Cedar Drive, Pearl City, Honolulu County, HI

  10. LIVING ROOM WITH THE SLIDING DOORS TO DINING ROOM ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LIVING ROOM WITH THE SLIDING DOORS TO DINING ROOM ON THE LEFT. SHOWING THE WOOD GRILLE TO THE FOYER. VIEW FACING SOUTHEAST - Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, U-Shaped Two-Bedroom Duplex Type 1, Acacia Road, Birch Circle, and Cedar Drive, Pearl City, Honolulu County, HI

  11. DINING ROOM. NOTE THE RECESSED PULLS ON THE SLIDING DOORS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DINING ROOM. NOTE THE RECESSED PULLS ON THE SLIDING DOORS. VIEW FACING EAST - Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, U-Shaped Two-Bedroom Single-Family Type 6, Birch Circle, Elm Drive, Elm Circle, and Date Drive, Pearl City, Honolulu County, HI

  12. 3. View of EPA Farm Lab Building 1506 (with sliding ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. View of EPA Farm Lab Building 15-06 (with sliding doors open to slaughter addition) and Sioux silo, facing north-northwest - Nevada Test Site, Environmental Protection Agency Farm, Laboratory Building, Area 15, Yucca Flat, 10-2 Road near Circle Road, Mercury, Nye County, NV

  13. Slide rule-type color chart predicts reproduced photo tones

    NASA Technical Reports Server (NTRS)

    Griffin, J. D.

    1966-01-01

    Slide rule-type color chart determines the final reproduced gray tones in the production of briefing charts that are photographed in black and white. The chart shows both the color by drafting paint manufacturers name and mixture number, and the gray tone resulting from black and white photographic reproduction.

  14. DETAIL VIEW OF THE EAST INTERIOR CORNER, SLIDING DOORS ARE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF THE EAST INTERIOR CORNER, SLIDING DOORS ARE ON THE LEFT AND LEAN-TO IS ON THE RIGHT. VIEW FACING EAST. - U.S. Naval Base, Pearl Harbor, Seaplane Hangar, Lexington Boulevard, south of Enterprise Street, Pearl City, Honolulu County, HI

  15. DETAIL VIEW OF THE LOWER SECTION OF SLIDING DOORS. SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF THE LOWER SECTION OF SLIDING DOORS. SHOWING THE BYPASS FEATURE OF THE DOORS ON THE TRACKS. VIEW FACING SOUTHEAST. - U.S. Naval Base, Pearl Harbor, Seaplane Hangar, Lexington Boulevard, south of Enterprise Street, Pearl City, Honolulu County, HI

  16. 40. HYDRAULIC OIL LINES, VALVES AND GAUGE FOR SLIDE GATE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. HYDRAULIC OIL LINES, VALVES AND GAUGE FOR SLIDE GATE HOISTS IN MACHINERY CHAMBER FOR SLUICE GATE WORKS ON GALLERY 1. NOTE HYDRAULIC OIL TANK AT UPPER RIGHT AND SCHEMATIC DRAWING OF PUMPING SYSTEM AT LEFT. VIEW TO NORTHWEST. - Owyhee Dam, Across Owyhee River, Nyssa, Malheur County, OR

  17. Studying the Activities of Microorganisms in Soil Using Slides.

    ERIC Educational Resources Information Center

    Cullimore, D. Roy; Pipe, Annette E.

    1980-01-01

    Two implanted slide techniques are described by which activity of proteolylic bacteria and the growth of algae in the soil can be readily studied by school students using simple apparatus and methods. Variations are suggested for studying the effects of agricultural practices and environmental conditions on the soil bacteria and algae. (Author/DS)

  18. 20. DOWNSTREAM VIEW OF THE INTAKE STRUCTURE, SHOWING THE SLIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. DOWNSTREAM VIEW OF THE INTAKE STRUCTURE, SHOWING THE SLIDE GATES FOR THE CONTROLLED OUTLET, IN POSITION FOR INSTALLATION.... Volume XVII, No. 15, November 13, 1939. - Prado Dam, Outlet Works, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  19. 13. Removal of slide material and construction of stone retaining ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Removal of slide material and construction of stone retaining wall to protect highway. Zion NP negative no. 2084. Photographer: Russell K. Grater, 1941. - Floor of the Valley Road, Between Zion-Mt. Carmel Highway & Temple of Sinawava, Springdale, Washington County, UT

  20. 37. EMERGENCY SLIDE GATE HOISTS (MANUFACTURED BY JOSHUA HENDRY IRON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. EMERGENCY SLIDE GATE HOISTS (MANUFACTURED BY JOSHUA HENDRY IRON WORKS, SAN FRANCISCO) FOR NEEDLE VALVE PENSTOCK IN MACHINERY CHAMBER ON GALLERY 2 (LOCATED AT B ON SITE PLAN). VIEW TO EAST. - Owyhee Dam, Across Owyhee River, Nyssa, Malheur County, OR

  1. Robust Neural Sliding Mode Control of Robot Manipulators

    SciTech Connect

    Nguyen Tran Hiep; Pham Thuong Cat

    2009-03-05

    This paper proposes a robust neural sliding mode control method for robot tracking problem to overcome the noises and large uncertainties in robot dynamics. The Lyapunov direct method has been used to prove the stability of the overall system. Simulation results are given to illustrate the applicability of the proposed method.

  2. One-Dimensional Sliding of p53 Along DNA Is Accelerated in the Presence of Ca(2+) or Mg(2+) at Millimolar Concentrations.

    PubMed

    Murata, Agato; Ito, Yuji; Kashima, Risa; Kanbayashi, Saori; Nanatani, Kei; Igarashi, Chihiro; Okumura, Masaki; Inaba, Kenji; Tokino, Takashi; Takahashi, Satoshi; Kamagata, Kiyoto

    2015-08-14

    One-dimensional (1D) sliding of the tumor suppressor p53 along DNA is an essential dynamics required for its efficient search for the binding sites in the genome. To address how the search process of p53 is affected by the changes in the concentration of Mg(2+) and Ca(2+) after the cell damages, we investigated its sliding dynamics at different concentrations of the divalent cations. The 1D sliding trajectories of p53 along the stretched DNA were measured by using single-molecule fluorescence microscopy. The averaged diffusion coefficient calculated from the mean square displacement of p53 on DNA increased significantly at the higher concentration of Mg(2+) or Ca(2+), indicating that the divalent cations accelerate the sliding likely by weakening the DNA-p53 interaction. In addition, two distributions were identified in the displacement of the observed trajectories of p53, demonstrating the presence of the fast and slow sliding modes having large and small diffusion coefficients, respectively. A coreless mutant of p53, in which the core domain was deleted, showed only a single mode whose diffusion coefficient is about twice that of the fast mode for the full-length p53. Thus, the two modes are likely the result of the tight and loose interactions between the core domain of p53 and DNA. These results demonstrated clearly that the 1D sliding dynamics of p53 is strongly dependent on the concentration of Mg(2+) and Ca(2+), which maintains the search distance of p53 along DNA in cells that lost homeostatic control of the divalent cations.

  3. The Giant Submarine Alika Debris Slide, Mauna Loa, Hawaii

    NASA Astrophysics Data System (ADS)

    Lipman, Peter W.; Normark, William R.; Moore, James G.; Wilson, John B.; Gutmacher, Christina E.

    1988-05-01

    A 4000-km2 area of submarine slump and slide deposits along the west flank of Mauna Loa volcano has been mapped with GLORIA side-scan sonar images, seismic reflection profiles, and new bathymetry. The youngest deposits are two debris avalanche lobes that travelled from their breakaway area near the present shoreline as much as 100 km into the Hawaiian Deep at water depths of 4800 m. The two lobes partly overlap and together are designated the Alika slide. They were derived from the same source area and probably formed in rapid succession. Distinction hummocky topography, marginal levees, and other features on lower slopes (0.3°-0.6°) of these deposits resemble subaerial volcanic debris avalanche deposits such as 1980 Mount St. Helens and suggest high emplacement velocities. The breakaway area for the Alika slide (10°-15° slopes) is characterized by large block slumps, bounded by normal faults, that probably represent multiple subsidence events before, during, and after the debris avalanches. Lower slopes of the slide contain distinctive lobate-terraced deposits that are interpreted as having been emplaced more slowly, prior to the debris avalanches. Estimated thicknesses of 50-200 m suggest volumes of 200-600 km3 for the two lobes. The combined volume of the entire slide and slump terrane is probably 1500-2000 km3. The slide deposits predate a 13-ka coral reef and probably postdate the block-faulted Ninole Basalt, roughly dated as a few hundred thousand years old. The Alika slide, or a similar deposit recognized on GLORIA images further north along the Hawaiian Ridge, probably triggered a giant wave that washed 325 m high on Lanai at about 100 ka. Slumping on Mauna Loa has been most intense adjacent to the large arcuate bend in its southwest rift zone, as the rift zone migrated westward away from the growing Kilauea volcano. Slumping events were probably triggered by seismic activity accompanying dike injection along the rift zone. Such massive slumps

  4. Application of High Resolution Multispectral Imagery for Levee Slide Detection and Monitoring

    NASA Technical Reports Server (NTRS)

    Hossain, A. K. M. Azad; Easson, Greg

    2007-01-01

    The objective is to develop methods to detect and monitor levee slides using commercially available high resolution multispectral imagery. High resolution multispectral imagery like IKONOS and QuickBird are suitable for detecting and monitoring levee slides. IKONOS is suitable for visual inspection, image classification and Tasseled Cap transform based slide detection. Tasseled Cap based model was found to be the best method for slide detection. QuickBird was suitable for visual inspection and image classification.

  5. Using a modified standard microscope to generate virtual slides.

    PubMed

    Romer, David J; Yearsley, Kurtis H; Ayers, Leona W

    2003-05-01

    A standard microscope was reconfigured as a virtual slide generator by adding a Prior Scientific H101 robotic stage with H29 controller and 0.1 microm linear scales and a Hitachi HV-C20 3CCD camera. Media Cybernetics Image Pro Plus version 4 (IP4) software controlled stage movement in the X-, Y-, and Z-axis, whereas a Media Cybernetics Pro-Series Capture Kit captured images at 640 x 480 pixels. Stage calibration, scanning algorithms, storage requirements, and viewing modes were standardized. IP4 was used to montage the captured images into a large virtual slide image that was subsequently saved in TIF or JPEG format. Virtual slides were viewed at the workstation using the IP4 viewer as well as Adobe Photoshop and Kodak Imaging. MGI Zoom Server delivered the virtual slides to the Internet, and MicroBrightField's Neuroinformatica viewing software provided a browser-based virtual microscope interface together with labeling tools for annotating virtual slides. The images were served from a Windows 2000 platform with 2 GB RAM, 500 GB of disk storage, and a 1.0 GHz P4 processor. To conserve disk space on the image server, TIF files were converted to the FlashPix (FPX) file format using a compression ratio of 10:1. By using 4x, 10x, 20x, and 40x objectives, very large gigapixel images of tissue whole-mounts and tissue arrays with high quality and morphologic detail are now being generated for teaching, publication, research, and morphometric analysis. Technical details and a demonstration of our system can be found on the Web at http://virtualmicroscope.osu.edu.

  6. Whole slide imaging of unstained tissue using lensfree microscopy

    NASA Astrophysics Data System (ADS)

    Morel, Sophie Nhu An; Hervé, Lionel; Bordy, Thomas; Cioni, Olivier; Delon, Antoine; Fromentin, Catherine; Dinten, Jean-Marc; Allier, Cédric

    2016-04-01

    Pathologist examination of tissue slides provides insightful information about a patient's disease. Traditional analysis of tissue slides is performed under a binocular microscope, which requires staining of the sample and delays the examination. We present a simple cost-effective lensfree imaging method to record 2-4μm resolution wide-field (10 mm2 to 6 cm2) images of unstained tissue slides. The sample processing time is reduced as there is no need for staining. A wide field of view (10 mm2) lensfree hologram is recorded in a single shot and the image is reconstructed in 2s providing a very fast acquisition chain. The acquisition is multispectral, i.e. multiple holograms are recorded simultaneously at three different wavelengths, and a dedicated holographic reconstruction algorithm is used to retrieve both amplitude and phase. Whole tissue slides imaging is obtained by recording 130 holograms with X-Y translation stages and by computing the mosaic of a 25 x 25 mm2 reconstructed image. The reconstructed phase provides a phase-contrast-like image of the unstained specimen, revealing structures of healthy and diseased tissue. Slides from various organs can be reconstructed, e.g. lung, colon, ganglion, etc. To our knowledge, our method is the first technique that enables fast wide-field lensfree imaging of such unlabeled dense samples. This technique is much cheaper and compact than a conventional phase contrast microscope and could be made portable. In sum, we present a new methodology that could quickly provide useful information when a rapid diagnosis is needed, such as tumor margin identification on frozen section biopsies during surgery.

  7. Instant Reality--The Use (and Misuse) of Photographic Slides in the Classroom.

    ERIC Educational Resources Information Center

    Underhill, Nic

    The paper suggests ways in which the teacher of English as a second language may use slides to stimulate students by teaching through, and not just about, the slides. Slides are useful when used as a tool to uncover the students' creative and imaginative faculties, which may fail to be discovered through conventional language teaching. The use of…

  8. Sliding Fee Scales That Work: A Model for State Child Care Programs.

    ERIC Educational Resources Information Center

    Lookner, Sherrie

    Guiding principles for using sliding fee scales are presented in this paper in an effort to help states plan new child care initiatives, coordinate or strengthen existing programs, and improve sliding fee scales for current programs. Introductory comments urge states to adopt a single sliding fee scale for all their child care programs. The report…

  9. An Evaluation of the Effectiveness of Stereo Slides in Teaching Geomorphology.

    ERIC Educational Resources Information Center

    Giardino, John R.; Thornhill, Ashton G.

    1984-01-01

    Provides information about producing stereo slides and their use in the classroom. Describes an evaluation of the teaching effectiveness of stereo slides using two groups of 30 randomly selected students from introductory geomorphology. Results from a pretest/postttest measure show that stereo slides significantly improved understanding. (JM)

  10. Hardwood Lumber Scaling [and] Hardwood Log Scaling and Grading. Slide Scripts.

    ERIC Educational Resources Information Center

    Wooten, D. E.; Touse, Robert D.

    These two slide scripts, part of a series of slide scripts designed for use in vocational agriculture classes, deal with scaling and grading hardwood logs and lumber. The first script includes narrations for use with 39 slides, which explain the techniques of scaling and grading hardwood logs, and the second script contains the narrations to…

  11. Passivity-based sliding mode control for a polytopic stochastic differential inclusion system.

    PubMed

    Liu, Leipo; Fu, Zhumu; Song, Xiaona

    2013-11-01

    Passivity-based sliding mode control for a polytopic stochastic differential inclusion (PSDI) system is considered. A control law is designed such that the reachability of sliding motion is guaranteed. Moreover, sufficient conditions for mean square asymptotic stability and passivity of sliding mode dynamics are obtained by linear matrix inequalities (LMIs). Finally, two examples are given to illustrate the effectiveness of the proposed method.

  12. Numerical simulation of the 2002 Northern Rhodes Slide (Greece) and evaluation of the generated tsunami

    NASA Astrophysics Data System (ADS)

    Zaniboni, Filippo; Armigliato, Alberto; Pagnoni, Gianluca; Tinti, Stefano

    2013-04-01

    Small landslides are very common along the submarine margins, due to steep slopes and continuous material deposition that increment mass instability and supply collapse occurrences, even without earthquake triggering. This kind of events can have relevant consequences when occurring close to the coast, because they are characterized by sudden change of velocity and relevant speed achievement, reflecting into high tsunamigenic potential. This is the case for example of the slide of Rhodes Island (Greece), named Northern Rhodes Slide (NRS), where unusual 3-4 m waves were registered on 24 March 2002, provoking some damage in the coastal stretch of the city of Rhodes (Papadopoulos et al., 2007). The event was not associated with earthquake occurrence, and eyewitnesses supported the hypothesis of a non-seismic source for the tsunami, placed 1 km offshore. Subsequent marine geophysical surveys (Sakellariou et al., 2002) evidenced the presence of several detachment niches at about 300-400 m depth along the northern steep slope, one of which can be considered responsible of the observed tsunami, fitting with the previously mentioned supposition. In this work, that is carried out in the frame of the European funded project NearToWarn, we evaluated the tsunami effects due to the NRS by means of numerical modelling: after having reconstructed the sliding body basing on morphological assumptions (obtaining an esteemed volume of 33 million m3), we simulated the sliding motion through the in-house built code UBO-BLOCK1, adopting a Lagrangian approach and splitting the sliding mass into a "chain" of interacting blocks. This provides the complete dynamics of the landslide, including the shape changes that relevantly influence the tsunami generation. After the application of an intermediate code, accounting for the slide impulse filtering through the water depth, the tsunami propagation in the sea around the island of Rhodes and up to near coasts of Turkey was simulated via the

  13. Structural insight into recruitment of translesion DNA polymerase Dpo4 to sliding clamp PCNA

    SciTech Connect

    Xing, G.; Kirouac, K.; Shin, Y.J.; Bell, S.D.; Ling, H.

    2009-09-16

    DNA polymerases are co-ordinated by sliding clamps (PCNA/{beta}-clamp) in translesion synthesis. It is unclear how these enzymes assemble on PCNA with geometric and functional compatibility. We report the crystal structure of a full-length Y-family polymerase, Dpo4, in complex with heterodimeric PCNA1-PCNA2 at 2.05 {angstrom} resolution. Dpo4 exhibits an extended conformation that differs from the Dpo4 structures in apo- or DNA-bound form. Two hinges have been identified in Dpo4, which render the multidomain polymerase flexible conformations and orientations relative to PCNA. Dpo4 binds specifically to PCNA1 on the conserved ligand binding site. The C-terminal peptide of Dpo4 becomes structured with a 3{sub 10} helix and dominates the specific binding. The Y-family polymerase also contacts PCNA1 with its finger, thumb and little finger domains, which are conformation-dependent protein-protein interactions that diversify the binding mode of Dpo4 on PCNA. The structure reveals a molecular model in which substrate/partner binding-coupled multiple conformations of a Y-family polymerase facilitate its recruitment and co-ordination on the sliding clamp. The conformational flexibility would turn the error-prone Y-family polymerase off when more efficient high-fidelity DNA polymerases work on undamaged DNA and turn it onto DNA templates to perform translesion synthesis when replication forks are stalled by DNA lesions.

  14. Evaluation of Solid Supports for Slide- and Well-Based Recombinant Antibody Microarrays

    PubMed Central

    Gerdtsson, Anna S.; Dexlin-Mellby, Linda; Delfani, Payam; Berglund, Erica; Borrebaeck, Carl A. K.; Wingren, Christer

    2016-01-01

    Antibody microarrays have emerged as an important tool within proteomics, enabling multiplexed protein expression profiling in both health and disease. The design and performance of antibody microarrays and how they are processed are dependent on several factors, of which the interplay between the antibodies and the solid surfaces plays a central role. In this study, we have taken on the first comprehensive view and evaluated the overall impact of solid surfaces on the recombinant antibody microarray design. The results clearly demonstrated the importance of the surface-antibody interaction and showed the effect of the solid supports on the printing process, the array format of planar arrays (slide- and well-based), the assay performance (spot features, reproducibility, specificity and sensitivity) and assay processing (degree of automation). In the end, two high-end recombinant antibody microarray technology platforms were designed, based on slide-based (black polymer) and well-based (clear polymer) arrays, paving the way for future large-scale protein expression profiling efforts. PMID:27600082

  15. Interface structure and sliding friction at a Ta/Al interface

    NASA Astrophysics Data System (ADS)

    Ravelo, R.; Germann, T. C.; Hammerberg, J. E.; Holian, B. L.; Kress, J. D.

    2003-03-01

    We have carried out large-scale molecular dynamics simulations of sliding Ta/Al interfaces. The atomic interactions are modeled employing Embedded Atom Method (EAM) potentials. These potentials predict strong bonding between Ta and Al atoms consistent with first principles simulations and with experimentally known heats of formation of Ta-Al alloys. The Al(100)/Ta(100) interface is characterized by near epitaxial growth of Al onto the Ta for the first 3 layers followed by a deformed transition region that leads to fcc stacking after about 5 layers. Ab-initio Molecular Dynamics simulations also show near epitaxial growth of Al on Ta(100). The Al(111)/Ta(110) interface, by contrast, exhibits no structural transformation of the Al layers which maintain their six-fold symmetry. The velocity dependence of the frictional force as a function of velocity has been determined for both Al(100)/Ta(100) and Al(111)/Ta(110) sliding using large-scale MD simulations. The frictional force shows a characteristic maximum at velocities of order 0.1 c, where c is the transverse sound speed in Al, followed by a power-law decrease.

  16. Numerical investigation of dynamic effects for sliding drops on wetting defects

    NASA Astrophysics Data System (ADS)

    Cavalli, Andrea; Musterd, Michiel; Mugele, Frieder

    2015-02-01

    The ability to trap or deflect sliding drops is of great interest in microfluidics, as it has several technological applications, ranging from self-cleaning and fog harvesting surfaces to laboratory-on-a-chip devices. We present a three-dimensional numerical model that describes sliding droplets interacting with wetting defects of variable strength and size. This approach provides relevant insight if compared to simplified analytic models, as it allows us to assess the relevance of the internal degrees of freedom of the droplet. We observe that the deformation of the drop enhances the effective strength and range of the defect, and we quantify this effect by comparison to a point-mass model. We also analyze the role of the steepness and strength of the defect on the drop motion, observing that small, strong defects are more effective at trapping than large, shallow traps of same excess surface energy. Finally, our results show quantitative agreement with previously reported electrowetting experiments, suggesting a universal behavior in droplet trapping that does not depend strongly on the nature of the defect.

  17. Evaluation of Solid Supports for Slide- and Well-Based Recombinant Antibody Microarrays

    PubMed Central

    Gerdtsson, Anna S.; Dexlin-Mellby, Linda; Delfani, Payam; Berglund, Erica; Borrebaeck, Carl A. K.; Wingren, Christer

    2016-01-01

    Antibody microarrays have emerged as an important tool within proteomics, enabling multiplexed protein expression profiling in both health and disease. The design and performance of antibody microarrays and how they are processed are dependent on several factors, of which the interplay between the antibodies and the solid surfaces plays a central role. In this study, we have taken on the first comprehensive view and evaluated the overall impact of solid surfaces on the recombinant antibody microarray design. The results clearly demonstrated the importance of the surface-antibody interaction and showed the effect of the solid supports on the printing process, the array format of planar arrays (slide- and well-based), the assay performance (spot features, reproducibility, specificity and sensitivity) and assay processing (degree of automation). In the end, two high-end recombinant antibody microarray technology platforms were designed, based on slide-based (black polymer) and well-based (clear polymer) arrays, paving the way for future large-scale protein expression profiling efforts.

  18. Rigid-rod anion-pi slides for multiion hopping across lipid bilayers.

    PubMed

    Gorteau, Virginie; Bollot, Guillaume; Mareda, Jiri; Matile, Stefan

    2007-09-21

    Shape-persistent oligo-p-phenylene-N,N-naphthalenediimide (O-NDI) rods are introduced as anion-pi slides for chloride-selective multiion hopping across lipid bilayers. Results from end-group engineering and covalent capture as O-NDI hairpins suggested that self-assembly into transmembrane O-NDI bundles is essential for activity. A halide topology VI (Cl > F > Br approximately I, Cl/Br approximately Cl/I > 7) implied strong anion binding along the anion-pi slides with relatively weak contributions from size exclusion (F >or= OAc). Anomalous mole fraction effects (AMFE) supported the occurrence of multiion hopping along the pi-acidic O-NDI rods. The existence of anion-pi interactions was corroborated by high-level ab initio and DFT calculations. The latter revealed positive NDI quadrupole moments far beyond the hexafluorobenzene standard. Computational studies further suggested that anion binding occurs at the confined, pi-acidic edges of the sticky NDI surface and is influenced by the nature of the phenyl spacer between two NDIs. With regard to methods development, a detailed analysis of the detection of ion selectivity with the HPTS assay including AMFE in vesicles is provided. PMID:17728867

  19. Evaluation of Solid Supports for Slide- and Well-Based Recombinant Antibody Microarrays.

    PubMed

    Gerdtsson, Anna S; Dexlin-Mellby, Linda; Delfani, Payam; Berglund, Erica; Borrebaeck, Carl A K; Wingren, Christer

    2016-01-01

    Antibody microarrays have emerged as an important tool within proteomics, enabling multiplexed protein expression profiling in both health and disease. The design and performance of antibody microarrays and how they are processed are dependent on several factors, of which the interplay between the antibodies and the solid surfaces plays a central role. In this study, we have taken on the first comprehensive view and evaluated the overall impact of solid surfaces on the recombinant antibody microarray design. The results clearly demonstrated the importance of the surface-antibody interaction and showed the effect of the solid supports on the printing process, the array format of planar arrays (slide- and well-based), the assay performance (spot features, reproducibility, specificity and sensitivity) and assay processing (degree of automation). In the end, two high-end recombinant antibody microarray technology platforms were designed, based on slide-based (black polymer) and well-based (clear polymer) arrays, paving the way for future large-scale protein expression profiling efforts. PMID:27600082

  20. Anomaly Detection in Test Equipment via Sliding Mode Observers

    NASA Technical Reports Server (NTRS)

    Solano, Wanda M.; Drakunov, Sergey V.

    2012-01-01

    Nonlinear observers were originally developed based on the ideas of variable structure control, and for the purpose of detecting disturbances in complex systems. In this anomaly detection application, these observers were designed for estimating the distributed state of fluid flow in a pipe described by a class of advection equations. The observer algorithm uses collected data in a piping system to estimate the distributed system state (pressure and velocity along a pipe containing liquid gas propellant flow) using only boundary measurements. These estimates are then used to further estimate and localize possible anomalies such as leaks or foreign objects, and instrumentation metering problems such as incorrect flow meter orifice plate size. The observer algorithm has the following parts: a mathematical model of the fluid flow, observer control algorithm, and an anomaly identification algorithm. The main functional operation of the algorithm is in creating the sliding mode in the observer system implemented as software. Once the sliding mode starts in the system, the equivalent value of the discontinuous function in sliding mode can be obtained by filtering out the high-frequency chattering component. In control theory, "observers" are dynamic algorithms for the online estimation of the current state of a dynamic system by measurements of an output of the system. Classical linear observers can provide optimal estimates of a system state in case of uncertainty modeled by white noise. For nonlinear cases, the theory of nonlinear observers has been developed and its success is mainly due to the sliding mode approach. Using the mathematical theory of variable structure systems with sliding modes, the observer algorithm is designed in such a way that it steers the output of the model to the output of the system obtained via a variety of sensors, in spite of possible mismatches between the assumed model and actual system. The unique properties of sliding mode control

  1. Proper paraffin slide storage is crucial for translational research projects involving immunohistochemistry stains

    PubMed Central

    2014-01-01

    The use of paraffin slides and tissue microarrays (TMA) is indispensable for translational research. However, storage of paraffin slides over time has a substantial detrimental effect on the quality and reliability of immunohistochemistry stains. Particularly affected by this issue may be any collaborative efforts where paraffin slides or TMAs are shipped to central laboratories and then ‘biobanked’ for some time until use. This article summarizes some of the key issues affecting loss of antigenicity on paraffin slides and some simple storage solutions to help maintain high quality immunohistochemistry results when paraffin slides must be stored for a certain time prior to use. PMID:24636624

  2. Sliding and target location of DNA-binding proteins: an NMR view of the lac repressor system.

    PubMed

    Loth, Karine; Gnida, Manuel; Romanuka, Julija; Kaptein, Robert; Boelens, Rolf

    2013-05-01

    In non-specific lac headpiece-DNA complexes selective NMR line broadening is observed that strongly depends on length and composition of the DNA fragments. This broadening involves amide protons found in the non-specific lac-DNA structure to be interacting with the DNA phosphate backbone, and can be ascribed to DNA sliding of the protein along the DNA. This NMR exchange broadening has been used to estimate the 1D diffusion constant for sliding along non-specific DNA. The observed 1D diffusion constant of 4×10(-12) cm(2)/s is two orders of magnitude smaller than derived from previous kinetic experiments, but falls in the range of values determined more recently using single molecule methods. This strongly supports the notion that sliding could play at most a minor role in the association kinetics of binding of lac repressor to lac operator and that other processes such as hopping and intersegment transfer contribute to facilitate the DNA recognition process.

  3. Universal Aging Mechanism for Static and Sliding Friction of Metallic Nanoparticles.

    PubMed

    Feldmann, Michael; Dietzel, Dirk; Tekiel, Antoni; Topple, Jessica; Grütter, Peter; Schirmeisen, André

    2016-07-01

    The term "contact aging" refers to the temporal evolution of the interface between a slider and a substrate usually resulting in increasing friction with time. Current phenomenological models for multiasperity contacts anticipate that such aging is not only the driving force behind the transition from static to sliding friction, but at the same time influences the general dynamics of the sliding friction process. To correlate static and sliding friction on the nanoscale, we show experimental evidence of stick-slip friction for nanoparticles sliding on graphite over a wide dynamic range. We can assign defined periods of aging to the stick phases of the particles, which agree with simulations explicitly including contact aging. Additional slide-hold-slide experiments for the same system allow linking the sliding friction results to static friction measurements, where both friction mechanisms can be universally described by a common aging formalism. PMID:27447515

  4. Universal Aging Mechanism for Static and Sliding Friction of Metallic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Feldmann, Michael; Dietzel, Dirk; Tekiel, Antoni; Topple, Jessica; Grütter, Peter; Schirmeisen, André

    2016-07-01

    The term "contact aging" refers to the temporal evolution of the interface between a slider and a substrate usually resulting in increasing friction with time. Current phenomenological models for multiasperity contacts anticipate that such aging is not only the driving force behind the transition from static to sliding friction, but at the same time influences the general dynamics of the sliding friction process. To correlate static and sliding friction on the nanoscale, we show experimental evidence of stick-slip friction for nanoparticles sliding on graphite over a wide dynamic range. We can assign defined periods of aging to the stick phases of the particles, which agree with simulations explicitly including contact aging. Additional slide-hold-slide experiments for the same system allow linking the sliding friction results to static friction measurements, where both friction mechanisms can be universally described by a common aging formalism.

  5. Universal Aging Mechanism for Static and Sliding Friction of Metallic Nanoparticles.

    PubMed

    Feldmann, Michael; Dietzel, Dirk; Tekiel, Antoni; Topple, Jessica; Grütter, Peter; Schirmeisen, André

    2016-07-01

    The term "contact aging" refers to the temporal evolution of the interface between a slider and a substrate usually resulting in increasing friction with time. Current phenomenological models for multiasperity contacts anticipate that such aging is not only the driving force behind the transition from static to sliding friction, but at the same time influences the general dynamics of the sliding friction process. To correlate static and sliding friction on the nanoscale, we show experimental evidence of stick-slip friction for nanoparticles sliding on graphite over a wide dynamic range. We can assign defined periods of aging to the stick phases of the particles, which agree with simulations explicitly including contact aging. Additional slide-hold-slide experiments for the same system allow linking the sliding friction results to static friction measurements, where both friction mechanisms can be universally described by a common aging formalism.

  6. Analysis and Synthesis of Memory-Based Fuzzy Sliding Mode Controllers.

    PubMed

    Zhang, Jinhui; Lin, Yujuan; Feng, Gang

    2015-12-01

    This paper addresses the sliding mode control problem for a class of Takagi-Sugeno fuzzy systems with matched uncertainties. Different from the conventional memoryless sliding surface, a memory-based sliding surface is proposed which consists of not only the current state but also the delayed state. Both robust and adaptive fuzzy sliding mode controllers are designed based on the proposed memory-based sliding surface. It is shown that the sliding surface can be reached and the closed-loop control system is asymptotically stable. Furthermore, to reduce the chattering, some continuous sliding mode controllers are also presented. Finally, the ball and beam system is used to illustrate the advantages and effectiveness of the proposed approaches. It can be seen that, with the proposed control approaches, not only can the stability be guaranteed, but also its transient performance can be improved significantly.

  7. A novel adaptive sliding mode control with application to MEMS gyroscope.

    PubMed

    Fei, Juntao; Batur, Celal

    2009-01-01

    This paper presents a new adaptive sliding mode controller for MEMS gyroscope; an adaptive tracking controller with a proportional and integral sliding surface is proposed. The adaptive sliding mode control algorithm can estimate the angular velocity and the damping and stiffness coefficients in real time. A proportional and integral sliding surface, instead of a conventional sliding surface is adopted. An adaptive sliding mode controller that incorporates both matched and unmatched uncertainties and disturbances is derived and the stability of the closed-loop system is established. The numerical simulation is presented to verify the effectiveness of the proposed control scheme. It is shown that the proposed adaptive sliding mode control scheme offers several advantages such as the consistent estimation of gyroscope parameters including angular velocity and large robustness to parameter variations and external disturbances.

  8. Ascending Aortic Slide for Interrupted Aortic Arch Repair.

    PubMed

    Urencio, Miguel; Dodge-Khatami, Ali; Greenleaf, Chris E; Aru, Giorgio; Salazar, Jorge D

    2016-09-01

    For repair of interrupted aortic arch, unfavorable anatomy challenges a tension-free anastomosis. We describe a useful alternative surgical technique used in five neonates/infants, involving splitting the ascending aorta from the sinotubular junction to the arch origin, leftward and posterior "sliding" of the flap with anastomosis to the distal arch creating a native tissue bridge, and reconstruction with a patch. With wide interruption gaps between proximal and distal aortic portions, the ascending aortic slide is a safe and reproducible technique, providing a tension-free native tissue bridge with potential for growth, and a scaffold for patch augmentation in biventricular hearts, or for Norwood stage I in univentricular palliation. PMID:27587504

  9. Frictional sliding of biotite gouge under hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    Lu, Z.; He, C.

    2012-12-01

    In order to understand the origin of compositionally-weak fault and the mechanical behavior of fault zone composed of biotite-rich rocks in general, this work investigated the frictional sliding behavior of biotite gouge under hydrothermal conditions by shearing 1-mm-thick biotite gouge layers sandwiched between saw-cut driver blocks, using a triaxial testing system with argon gas as confining medium. Experiments were conducted under effective normal stress of 200MPa, with pore pressure of 30MPa, temperatures from room temperature to 600°C, and shear displacement rate were stepped with our standard (0.0001-0.001mm/s) and slow velocity steps (0.00004-0.0002mm/s). The results show that the coefficient of friction of biotite is on the order of 0.29 in the low temperature range (25 to 100°C), and varies around 0.35 for temperatures over 200°C. The overall average of friction coefficient from room temperature up to 600°C is ca. 0.33, evidently weaker than framework minerals such as quartz and feldspar and also weaker than muscovite in the mica group. Within the sliding displacement up to 4mm in our experiments, velocity strengthening occurred at temperatures of 25-200°C, with steady-state rate dependence ranging from 0.001 to 0.006. Weak velocity weakening was found at 300°C, with steady-state rate dependence similar to neutral. At 400°C, the deformation behavior changed radically and very strong velocity strengthening occurred, with steady-state rate dependence ranging from 0.012 to 0.112. At 500 and 600°C, the experiments show strong velocity dependence in the early stage of sliding, but the sliding behavior gradually evolves to stick-slip as the shearing deformation proceeds, indicating strong velocity-weakening behavior. The strongest velocity dependence occurred at 400°C in the early stage of sliding, with stress exponent similar to that of power-law creep, but the confining pressure dependence of shear strength suggests that such a behavior is semi

  10. Sliding contact fracture of dental ceramics: Principles and validation

    PubMed Central

    Ren, Linlin; Zhang, Yu

    2014-01-01

    Ceramic prostheses are subject to sliding contact under normal and tangential loads. Accurate prediction of the onset of fracture at two contacting surfaces holds the key to greater long-term performance of these prostheses. In this study, building on stress analysis of Hertzian contact and considering fracture criteria for linear elastic materials, a constitutive fracture mechanics relation was developed to incorporate the critical fracture load with the contact geometry, coefficient of friction and material fracture toughness. Critical loads necessary to cause fracture under a sliding indenter were calculated from the constitutive equation, and compared with the loads predicted from elastic stress analysis in conjunction with measured critical load for frictionless normal contact—a semi-empirical approach. The major predictions of the models were calibrated with experimentally determined critical loads of current and future dental ceramics after contact with a rigid spherical slider. Experimental results conform with the trends predicted by the models. PMID:24632538

  11. Sliding contact fracture of dental ceramics: Principles and validation.

    PubMed

    Ren, Linlin; Zhang, Yu

    2014-07-01

    Ceramic prostheses are subject to sliding contact under normal and tangential loads. Accurate prediction of the onset of fracture at two contacting surfaces holds the key to greater long-term performance of these prostheses. In this study, building on stress analysis of Hertzian contact and considering fracture criteria for linear elastic materials, a constitutive fracture mechanics relation was developed to incorporate the critical fracture load with the contact geometry, coefficient of friction and material fracture toughness. Critical loads necessary to cause fracture under a sliding indenter were calculated from the constitutive equation, and compared with the loads predicted from elastic stress analysis in conjunction with measured critical load for frictionless normal contact-a semi-empirical approach. The major predictions of the models were calibrated with experimentally determined critical loads of current and future dental ceramics after contact with a rigid spherical slider. Experimental results conform with the trends predicted by the models.

  12. Real-time misfire detection via sliding mode observer

    NASA Astrophysics Data System (ADS)

    Wang, Yunsong; Chu, Fulei

    2005-07-01

    A new method to detect misfire in internal combustion engines is presented. It is based on the estimation of the cylinder deviation torque by using sliding mode observer. The input estimation problem is transformed into the control tracking problem. The sliding controller is utilised to continuously track the measured varying crank speed by changing the estimated deviation torque. During the process of tracking, the speed estimation errors decrease and the gradual stability of the dynamics is assured. The mean deviation torque during the power stroke derived from the estimated deviation torque can be employed to detect easily engine misfires. Experimental results for a four-cylinder engine indicate that the method is a suitable tool for real-time misfire detection on board vehicle under various working conditions.

  13. Adaptive sliding mode control - convergence and gain boundedness revisited

    NASA Astrophysics Data System (ADS)

    Zhu, Jiang; Khayati, Karim

    2016-04-01

    This paper reviews the main adaptive sliding mode controller (ASMC) designs for nonlinear systems with finite uncertainties of unknown bounds. Different statements of convergence referring to uniformly ultimate boundedness (UUB), asymptotic convergence (AC) and finite-time convergence (FTC) for ASMC shown in recent papers are analysed. Weaknesses and incomplete proofs apropos FTC are pointed out. Thereafter, a new approach is proposed to successfully demonstrate FTC of the so-called sliding variable. We identify a compensating phase and a reaching phase during the ASMC process. A new explicit form for estimating the upper-bound reaching time is provided for any bounded perturbation. An amended form of the real ASMC is recalled showing improved accuracy and chattering reduction. Finally, numerical and experimental applications are performed to convey the discussed results.

  14. Evidence of Self-Organized Criticality in Dry Sliding Friction

    NASA Technical Reports Server (NTRS)

    Zypman, Fredy R.; Ferrante, John; Jansen, Mark; Scanlon, Kathleen; Abel, Phillip

    2003-01-01

    This letter presents experimental results on unlubricated friction, which suggests that stick-slip is described by self-organized criticality (SOC). The data, obtained with a pin-on-disc tribometer examines the variation of the friction force as a function of time-or sliding distance. This is the first time that standard tribological equipment has been used to examine the possibility of SOC. The materials were matching pins and discs of aluminium loaded with 250, 500 and 1000 g masses, and matching M50 steel couples loaded with a 1000 g mass. An analysis of the data shows that the probability distribution of slip sizes follows a power law. We perform a careful analysis of all the properties, beyond the two just mentioned, which are required to imply the presence of SOC. Our data strongly support the existence of SOC for stick-slip in dry sliding friction.

  15. Reutilization of previously hybridized slides for fluorescence in situ hybridization

    SciTech Connect

    Epstein, L.; DeVries, S.; Waldman, F.M.

    1995-12-01

    Application of fluorescence in situ hybridization (FISH) to clinical material is sometimes limited by sample size. In addition, heterogeneity among slides prepared from a single sample may lead to variation in FISH analyses. Reutilization of material for repeated FISH analyses would help to alleviate these problems. We have developed a simple procedure for repeated FISH analyses with directly conjugated probes. Previously hybridized probes are removed by incubation in denaturing solution, and slides can then be rehybridized without residual signals remaining. Several cycles of this procedure allow a full complement of chromosomal loci to be analyzed on the same population of cells. Advantages of this protocol include gaining more cytogenetic information from small samples and eliminating the problem of intratumorvariability. 5 refs., 4 figs.

  16. Sliding wear resistance of epoxy polymers against stainless steel

    SciTech Connect

    Spinks, G.M.; Dimovski, L.; Samandi, M.

    1993-12-31

    The wear mechanisms occurring during sliding contact between epoxy resins and a smooth steel counterface have been investigated. The samples were prepared from a commercial diglycidyl ether of bisphenol-A epoxy and cured with various hardeners. The cured resins displayed a wide range of mechanical properties (particularly fracture toughness), and crosslink densities. The wear rates of the samples were found to vary by up to four orders of magnitude. It was found that the wear rates correlated to the inverse of the fracture toughness, which was in accord with previous studies on the wear of plastics by Omar et al. The mechanism was found to involve an ``adhesive/fatigue`` process, as proposed by Omar. Additionally, it was found that the addition of a rubber toughening agent had no effect on the wear rate, whilst sliding contact between polymer and polymer resulted in a much higher rate of wear. Possible explanations for this behavior are given.

  17. Sliding behavior and deformation textures of heated illite gouge

    USGS Publications Warehouse

    Moore, Diane E.; Summers, R.; Byerlee, J.D.

    1989-01-01

    The run products of a series of triaxial friction experiments on an illite-rich gouge have been examined petrographically to study the relationship between textural development and sliding mode. The samples show a complete range of textures, from ones in which the entire gouge layer is deformed to ones in which the deformation is concentrated along narrow subsidiary shears and the rest of the gouge layer is massive. The samples with a pervasively developed deformation fabric slide stably, whereas the samples containing shear bands show stick-slip motion if the intersection angles between boundary-parallel and cross-cutting (Riedel) shears are also relatively high. These textural differences suggest that localization of shear combined with higher-angle Riedel shears are somehow involved in stick-slip motion. The orientation of Riedel-type shears in natural fault zones may also have potential as a paleoseismological tool. ?? 1989.

  18. Stable and unstable development of an interfacial sliding instability.

    PubMed

    Viesca, Robert C

    2016-06-01

    Examining a nonlinear instability of sliding rate on a frictional interface of elastic bodies, we investigate whether laboratory-constrained frictional relations suggest universal scaling under even the simplest of configurations. We find blowup solutions by solving an equivalent, classical problem in fracture mechanics. The solutions are fixed points of a dynamical system and we show that their stability is lost by a cascade of Hopf bifurcations as a single problem parameter is increased, leading to chaotic dynamics. PMID:27415191

  19. Stain Specific Standardization of Whole-Slide Histopathological Images.

    PubMed

    Bejnordi, Babak Ehteshami; Litjens, Geert; Timofeeva, Nadya; Otte-Höller, Irene; Homeyer, André; Karssemeijer, Nico; van der Laak, Jeroen A W M

    2016-02-01

    Variations in the color and intensity of hematoxylin and eosin (H&E) stained histological slides can potentially hamper the effectiveness of quantitative image analysis. This paper presents a fully automated algorithm for standardization of whole-slide histopathological images to reduce the effect of these variations. The proposed algorithm, called whole-slide image color standardizer (WSICS), utilizes color and spatial information to classify the image pixels into different stain components. The chromatic and density distributions for each of the stain components in the hue-saturation-density color model are aligned to match the corresponding distributions from a template whole-slide image (WSI). The performance of the WSICS algorithm was evaluated on two datasets. The first originated from 125 H&E stained WSIs of lymph nodes, sampled from 3 patients, and stained in 5 different laboratories on different days of the week. The second comprised 30 H&E stained WSIs of rat liver sections. The result of qualitative and quantitative evaluations using the first dataset demonstrate that the WSICS algorithm outperforms competing methods in terms of achieving color constancy. The WSICS algorithm consistently yields the smallest standard deviation and coefficient of variation of the normalized median intensity measure. Using the second dataset, we evaluated the impact of our algorithm on the performance of an already published necrosis quantification system. The performance of this system was significantly improved by utilizing the WSICS algorithm. The results of the empirical evaluations collectively demonstrate the potential contribution of the proposed standardization algorithm to improved diagnostic accuracy and consistency in computer-aided diagnosis for histopathology data.

  20. Stable and unstable development of an interfacial sliding instability

    NASA Astrophysics Data System (ADS)

    Viesca, Robert C.

    2016-06-01

    Examining a nonlinear instability of sliding rate on a frictional interface of elastic bodies, we investigate whether laboratory-constrained frictional relations suggest universal scaling under even the simplest of configurations. We find blowup solutions by solving an equivalent, classical problem in fracture mechanics. The solutions are fixed points of a dynamical system and we show that their stability is lost by a cascade of Hopf bifurcations as a single problem parameter is increased, leading to chaotic dynamics.

  1. The axonemal axis and Ca2+-induced asymmetry of active microtubule sliding in sea urchin sperm tails

    PubMed Central

    1986-01-01

    Structural studies of stationary principal bends and of definitive patterns of spontaneous microtubule sliding disruption permitted description of the bending axis in sea urchin sperm tail axonemes. Lytechinus pictus sperm were demembranated in a buffer containing Triton X-100 and EGTA. Subsequent resuspension in a reactivation buffer containing 0.4 mM CaCl2 and 1.0 mM MgATP2- resulted in quiescent, rather than motile, cells and each sperm tail axoneme took on an extreme, basal principal bend of 5.2 rad. Thereafter, such flagellar axonemes began to disrupt spontaneously into two subsets of microtubules by active sliding requiring ATP. Darkfield light microscopy demonstrated that subset "1" is composed of microtubules from the inside edge of the principal bend. Subset "2" is composed of microtubules from the outside edge of the principal bend and always scatters less light in darkfield than subset 1. Subset 2, which always slides in the proximal direction, relative to subset 1, results in a basal loop of microtubules, and the subset 2 loop is restricted to the bend plane during sliding disruption. Electron microscopy revealed that doublets 8, 9, 1, 2, 3 and the central pair comprise subset 1, and doublets 4, 5, the bridge, 6, and 7 comprise subset 2. The microtubules of isolated subset 2 are maintained in a circular arc in the absence of spoke-central pair interaction. Longitudinal sections show that the bending plane bisects the central pair. We therefore conclude that the bend plane passes through doublet 1 and the 5-6 bridge and that doublet 1 is at the inside edge of the principal bend. Experimental definition of the axis permits explicit discussion of the location of active axonemal components which result in Ca2+-induced stationary basal bends and explicit description of components responsible for alternating basal principal and reverse bends. PMID:2940250

  2. Scale dependence of interface dislocation storage governing the frictional sliding of single asperities

    NASA Astrophysics Data System (ADS)

    Gao, Zhiwen; Zhang, Wei; Gao, Yanfei

    2016-08-01

    Single-asperity friction tests have found a critical dependence of friction stress on the nanoscale contact size, as successfully explained by the nucleation of interface dislocations as opposed to concurrent sliding of all the interfacial atoms in contact. Modeling and simulation results, however, vary when the motion and interactions of multiple dislocations dominate at a larger scale regime. A Rice-Peierls framework is employed to investigate the multiplication and storage of interface dislocations, and the critical conditions for dislocation initiation and steady-state gliding are determined numerically. Our findings identify the key parameters that govern various friction mechanisms in the Hurtado-Kim and Deshpande-Needleman-van der Giessen models.

  3. Scale dependence of interface dislocation storage governing the frictional sliding of single asperities

    NASA Astrophysics Data System (ADS)

    Gao, Zhiwen; Zhang, Wei; Gao, Yanfei

    2016-08-01

    Single-asperity friction tests have found a critical dependence of friction stress on the nanoscale contact size, as successfully explained by the nucleation of interface dislocations as opposed to concurrent sliding of all the interfacial atoms in contact. Modeling and simulation results, however, vary when the motion and interactions of multiple dislocations dominate at a larger scale regime. A Rice–Peierls framework is employed to investigate the multiplication and storage of interface dislocations, and the critical conditions for dislocation initiation and steady-state gliding are determined numerically. Our findings identify the key parameters that govern various friction mechanisms in the Hurtado–Kim and Deshpande–Needleman–van der Giessen models.

  4. Impedance Control of the Rehabilitation Robot Based on Sliding Mode Control

    NASA Astrophysics Data System (ADS)

    Zhou, Jiawang; Zhou, Zude; Ai, Qingsong

    As an auxiliary treatment, the 6-DOF parallel robot plays an important role in lower limb rehabilitation. In order to improve the efficiency and flexibility of the lower limb rehabilitation training, this paper studies the impedance controller based on the position control. A nonsingular terminal sliding mode control is developed to ensure the trajectory tracking precision and in contrast to traditional PID control strategy in the inner position loop, the system will be more stable. The stability of the system is proved by Lyapunov function to guarantee the convergence of the control errors. Simulation results validate the effectiveness of the target impedance model and show that the parallel robot can adjust gait trajectory online according to the human-machine interaction force to meet the gait request of patients, and changing the impedance parameters can meet the demands of different stages of rehabilitation training.

  5. Characterization of tissue and slide artifacts from automated embedding systems.

    PubMed

    Goldberg, Matthew S; Wetherington, Sarah J; Susa, Joseph S; Wickless, Scott C; Cockerell, Clay J

    2015-11-01

    With recent technological advances and cost reductions, automated embedding systems are rapidly becoming routine in the processing of skin biopsy specimens. The efficiency advantages of this technique are due in part to the use of patented sectionable cassettes that hold formalin-fixed tissue from the time of grossing through tissue sectioning. In this process, the final paraffin block contains both the tissue and the cassette, which are sectioned and stained in unison. Here, we report the multiple tissue and slide artifacts commonly seen with automated embedding systems that are unique to this method of tissue processing. The most frequently observed tissue changes are patterned molding of the biopsy specimen around the cassette material. The most common slide artifacts are due to the presence of geometrically shaped polarizable cassette material adjacent to or overlying the stained tissue. As many of these artifacts strongly resemble the shapes seen in the classic 1980s video game, Tetris, we propose the term of Tetris-like artifacts for these findings. Although we remain confident that use of an automated embedding system does not decrease diagnostic reliability, increased familiarity with the standard appearance of slides processed using this technique will help avoid confusion when evaluating these cases.

  6. Plastic strain arrangement in copper single crystals in sliding

    SciTech Connect

    Chumaevskii, Andrey V. Lychagin, Dmitry V.; Tarasov, Sergei Yu.

    2014-11-14

    Deformation of tribologically loaded contact zone is one of the wear mechanisms in spite of the fact that no mass loss may occur during this process. Generation of optimal crystallographic orientations of the grains in a polycrystalline materials (texturing) may cause hardening and reducing the deformation wear. To reveal the orientation dependence of an individual gain and simplify the task we use copper single crystals with the orientations of the compression axis along [111] and [110]. The plastic deformation was investigated by means of optical, scanning electron microscopy and EBSD techniques. It was established that at least four different zones were generated in the course of sliding test, such as non-deformed base metal, plastic deformation layer sliding, crystalline lattice reorientation layer and subsurface grain structure layer. The maximum plastic strain penetration depth was observed on [110]-single crystals. The minimum stability of [111]-crystals with respect to rotation deformation mode as well as activation of shear in the sliding contact plane provide for rotation deformation localization below the worn surface. The high-rate accumulation of misorientations and less strain penetration depth was observed on [111]-crystals as compared to those of [110]-oriented ones.

  7. Sliding Mode Control Applied to Reconfigurable Flight Control Design

    NASA Technical Reports Server (NTRS)

    Hess, R. A.; Wells, S. R.; Bacon, Barton (Technical Monitor)

    2002-01-01

    Sliding mode control is applied to the design of a flight control system capable of operating with limited bandwidth actuators and in the presence of significant damage to the airframe and/or control effector actuators. Although inherently robust, sliding mode control algorithms have been hampered by their sensitivity to the effects of parasitic unmodeled dynamics, such as those associated with actuators and structural modes. It is known that asymptotic observers can alleviate this sensitivity while still allowing the system to exhibit significant robustness. This approach is demonstrated. The selection of the sliding manifold as well as the interpretation of the linear design that results after introduction of a boundary layer is accomplished in the frequency domain. The design technique is exercised on a pitch-axis controller for a simple short-period model of the High Angle of Attack F-18 vehicle via computer simulation. Stability and performance is compared to that of a system incorporating a controller designed by classical loop-shaping techniques.

  8. Probing the Contact and Sliding of Elastomer/Polymer Interfaces

    NASA Astrophysics Data System (ADS)

    Yurdumakan, Betul; Nanjundiah, Kumar; Dhinojwala, Ali

    2006-03-01

    In this study, we have designed a novel approach to couple interface sensitive infrared-visible sum frequency generation (SFG) spectroscopy with adhesion and friction experiments. This provides a direct probe of the interfacial structure in terms of orientation and density of molecules during contact and sliding which is important in understanding the molecular origin of adhesion and friction. Here, we show that the friction forces between poly(dimethyl siloxane) (PDMS) lens and glassy poly(styrene) (PS) are 4 times higher than PDMS sliding on surfaces of crystalline alkyl side chain comb polymers. This cannot be explained by the differences in adhesion energy or hysteresis. The in-situ SFG measurements indicate local interdigitation during contact, which is evident from the decrease in the number of oriented phenyl groups at the interface. The local penetration is unexpected at room temperature (TR) that is much below the Tg of PS. For comparison, we have also studied poly(n-butyl methacrylate) and poly(n-propyl methacrylate) having Tg above and below TR, respectively. Both of these polymers show similar adhesion and friction forces as PS. The SFG results indicate that local changes in interfacial structure affect friction, regardless of the bulk Tg. These results also show that the adhesion energy and hysteresis are not sufficient to predict friction, which makes the characterization of the molecular structure during contact and sliding essential.

  9. A sliding cell technique for diffusion measurements in liquid metals

    SciTech Connect

    Geng, Yongliang; Zhu, Chunao; Zhang, Bo

    2014-03-15

    The long capillary and shear cell techniques are the usual methods for diffusion measurements in liquid metals. Here we present a new “sliding cell technique” to measure interdiffusion in liquid alloys, which combines the merits of these two methods. Instead of a number of shear cells, as used in the shear cell method, only one sliding cell is designed to separate and join the liquid diffusion samples. Using the sliding cell technique, the influence of the heating process (which affects liquid diffusion measurements in the conventional long capillary method) can be eliminated. Time-dependent diffusion measurements at the same isothermal temperature were carried out in Al-Cu liquids. Compared with the previous results measured by in-situ X-ray radiography, the obtained liquid diffusion coefficient in this work is believed to be influenced by convective flow. The present work further supports the idea that to obtain accurate diffusion constants in liquid metals, the measurement conditions must be well controlled, and there should be no temperature gradients or other disturbances.

  10. How to measure diagnosis-associated information in virtual slides.

    PubMed

    Kayser, Klaus; Görtler, Jürgen; Borkenfeld, Stephan; Kayser, Gian

    2011-01-01

    The distribution of diagnosis-associated information in histological slides is often spatial dependent. A reliable selection of the slide areas containing the most significant information to deriving the associated diagnosis is a major task in virtual microscopy. Three different algorithms can be used to select the appropriate fields of view: 1) Object dependent segmentation combined with graph theory; 2) time series associated texture analysis; and 3) geometrical statistics based upon geometrical primitives. These methods can be applied by sliding technique (i.e., field of view selection with fixed frames), and by cluster analysis. The implementation of these methods requires a standardization of images in terms of vignette correction and gray value distribution as well as determination of appropriate magnification (method 1 only). A principle component analysis of the color space can significantly reduce the necessary computation time. Method 3 is based upon gray value dependent segmentation followed by graph theory application using the construction of (associated) minimum spanning tree and Voronoi's neighbourhood condition. The three methods have been applied on large sets of histological images comprising different organs (colon, lung, pleura, stomach, thyroid) and different magnifications, The trials resulted in a reproducible and correct selection of fields of view in all three methods. The different algorithms can be combined to a basic technique of field of view selection, and a general theory of "image information" can be derived. The advantages and constraints of the applied methods will be discussed. PMID:21489204

  11. Sliding contact fatigue damage in layered ceramic structures.

    PubMed

    Kim, J-W; Kim, J-H; Thompson, V P; Zhang, Y

    2007-11-01

    Porcelain-veneered restorations often chip and fracture from repeated occlusal loading, making fatigue studies relevant. Most fatigue studies are limited to uni-axial loading without sliding motion. We hypothesized that bi-axial loading (contact-load-slide-liftoff, simulating a masticatory cycle), as compared with uni-axial loading, accelerates the fatigue of layered ceramics. Monolithic glass plates were epoxy-joined to polycarbonate substrates as a transparent model for an all-ceramic crown on dentin. Uni-and bi-axial cyclic contact was applied through a hard sphere in water, by means of a mouth-motion simulator apparatus. The uni-axial (contact-load-hold-liftoff) and traditional R-ratio fatigue (indenter never leaves the specimen surface) produced similar lifespans, while bi-axial fatigue was more severe. The accelerated crack growth rate in bi-axial fatigue is attributed to enhanced tensile stresses at the trailing edges of a moving indenter. Fracture mechanics descriptions for damage evolution in brittle materials loaded repeatedly with a sliding sphere are provided. Clinical relevance is addressed.

  12. Sliding drops across alternating hydrophobic and hydrophilic stripes.

    PubMed

    Sbragaglia, M; Biferale, L; Amati, G; Varagnolo, S; Ferraro, D; Mistura, G; Pierno, M

    2014-01-01

    We perform a joint numerical and experimental study to systematically characterize the motion of 30 μl drops of pure water and of ethanol in water solutions, sliding over a periodic array of alternating hydrophobic and hydrophilic stripes with a large wettability contrast and a typical width of hundreds of microns. The fraction of the hydrophobic areas has been varied from about 20% to 80%. The effects of the heterogeneous patterning can be described by a renormalized value of the critical Bond number, i.e., the critical dimensionless force needed to depin the drop before it starts to move. Close to the critical Bond number we observe a jerky motion characterized by an evident stick-slip dynamics. As a result, dissipation is strongly localized in time, and the mean velocity of the drops can easily decrease by an order of magnitude compared to the sliding on the homogeneous surface. Lattice Boltzmann numerical simulations are crucial for disclosing to what extent the sliding dynamics can be deduced from the computed balance of capillary, viscous, and body forces by varying the Bond number, the surface composition, and the liquid viscosity. Beyond the critical Bond number, we characterize both experimentally and numerically the dissipation inside the droplet by studying the relation between the average velocity and the applied volume forces.

  13. The use of virtual slides in the EUROPALS examination

    PubMed Central

    2011-01-01

    Background The only realistic way to improve harmonisation of European pathology training is to define the generally accepted competencies and to test them periodically during the training programme (progress test). The European Association of Pathology Chairs and Program Directors therefore decided to implement an annual on-line test using virtual slides in addition to static jpeg images and theoretical MCQ’s. The EU supported this endeavour as EUROPALS (EUROpean Pathology Assessement & Learning System). Methods To address the challenges of large scale digital testing EUROPALS teamed up with i-Path Diagnostics Ltd, a company specialising in utilisation of virtual slides in histology/pathology education and examination. Specific examination software was used in the test system. Results In the first 2 years we provided at five occasions progress tests, including 2 proctored tests, attracting hundreds of participants. The accessibility varied from suboptimal to good and improved with each subsequent test. It was influenced both by the hosting server capacity and the internet bandwidth at the user’s location. Conclusion On-line testing using virtual slides is possible but requires a good collaboration between the provider and the user. Both should be aware of the requirements and threads of large scale testing with hundreds of simultaneous users. PMID:21489194

  14. Slides showing a preliminary geologic map of the Dillon 1 degree by 2 degrees Quadrangle, Montana and Idaho

    USGS Publications Warehouse

    Ruppel, E.T.; O'Neill, J. M.; Lopez, David

    1982-01-01

    This open-file report consists of two colored 35-mm photographic slides. Slide 1 is a photograph of a hand-colored copy of the geologic map of the Dillon 1' x 2' quadrangle. Scale of original 1:250,00. Slide 2 is a brief explanation of the map units shown on slide 1.

  15. Dynamic instabilities of frictional sliding at a bimaterial interface

    NASA Astrophysics Data System (ADS)

    Brener, Efim A.; Weikamp, Marc; Spatschek, Robert; Bar-Sinai, Yohai; Bouchbinder, Eran

    2016-04-01

    Understanding the dynamic stability of bodies in frictional contact steadily sliding one over the other is of basic interest in various disciplines such as physics, solid mechanics, materials science and geophysics. Here we report on a two-dimensional linear stability analysis of a deformable solid of a finite height H, steadily sliding on top of a rigid solid within a generic rate-and-state friction type constitutive framework, fully accounting for elastodynamic effects. We derive the linear stability spectrum, quantifying the interplay between stabilization related to the frictional constitutive law and destabilization related both to the elastodynamic bi-material coupling between normal stress variations and interfacial slip, and to finite size effects. The stabilizing effects related to the frictional constitutive law include velocity-strengthening friction (i.e. an increase in frictional resistance with increasing slip velocity, both instantaneous and under steady-state conditions) and a regularized response to normal stress variations. We first consider the small wave-number k limit and demonstrate that homogeneous sliding in this case is universally unstable, independent of the details of the friction law. This universal instability is mediated by propagating waveguide-like modes, whose fastest growing mode is characterized by a wave-number satisfying kH ∼ O(1) and by a growth rate that scales with H-1. We then consider the limit kH → ∞ and derive the stability phase diagram in this case. We show that the dominant instability mode travels at nearly the dilatational wave-speed in the opposite direction to the sliding direction. In a certain parameter range this instability is manifested through unstable modes at all wave-numbers, yet the frictional response is shown to be mathematically well-posed. Instability modes which travel at nearly the shear wave-speed in the sliding direction also exist in some range of physical parameters. Previous results

  16. Development and evaluation of an off-the-slide genotyping technique for identifying Giardia cysts and Cryptosporidium oocysts directly from US EPA Method 1623 slides

    EPA Science Inventory

    ABSTRACT Aims This study developed and systematically evaluated performance and limit of detection of an off-the-slide genotyping procedure for both Cryptosporidium oocysts and Giardia cysts. Methods and Results Slide standards containing flow sorted (oo)cysts were used to e...

  17. User attitudes in analyzing digital slides in a quality control test bed: a preliminary study.

    PubMed

    Della Mea, Vincenzo; Demichelis, Francesca; Viel, Federico; Dalla Palma, Paolo; Beltrami, Carlo Alberto

    2006-05-01

    The pathologist examines suitably stained glass slides through a bright field microscope in order to render histopathological or cytological diagnosis by looking at tissues and cells. Glass slides serve as a permanent record of the patient disease. Over the course of a patient's treatment slides may need to be reviewed at other institutions before treatment can commence. Due to their fragile nature a transportable permanent digital facsimile of the glass slide would be ideal. A digital slide is a set of digital images representing the whole slide normally used by the pathologist, or a significant part of it; it is usually made by a large amount of images, up to thousands, which makes its management difficult. The present paper provides a description of the requirements needed to reproduce glass slides and of the available technological equipment, then the features of the two systems we implemented on different hardware are described, together with those of the digital slide viewer. The viewer was evaluated in two experimental test phases, during which user behaviour and diagnostic reports were measured. Digital slides used in the two experiments were acquired with either system. Possible applications of digital slides are then discussed, including undergraduate and professional education, quality control, and image analysis on full samples as well as on tissue microarrays.

  18. Application of grey-taguchi method for optimization of dry sliding wear properties of aluminum MMCs

    NASA Astrophysics Data System (ADS)

    Siriyala, Rajesh; Alluru, Gopala Krishna; Penmetsa, Rama Murthy Raju; Duraiselvam, Muthukannan

    2012-09-01

    Through a pin-on-disc type wear setup, the dry sliding wear behavior of SiC-reinforced aluminum composites produced using the molten metal mixing method was investigated in this paper. Dry sliding wear tests were carried on SiC-reinforced metal matrix composites (MMCs) and its matrix alloy sliding against a steel counter face. Different contact stresses, reinforcement percentages, sliding distances, and sliding velocities were selected as the control variables, and the responses were selected as the wear volume loss (WVL) and coefficient of friction (COF) to evaluate the dry sliding performance. An L25 orthogonal array was employed for the experimental design. Initially, the optimization of the dry sliding performance of the SiC-reinforced MMCs was performed using grey relational analysis (GRA). Based on the GRA, the optimum level parameters for overall grey relational grade in terms of WVL and COF were identified. Analysis of variance was performed to determine the effect of individual factors on the overall grey relational grade. The results indicated that the sliding velocity was the most effective factor among the control parameters on dry sliding wear, followed by the reinforcement percentage, sliding distance, and contact stress. Finally, the wear surface morphology and wear mechanism of the composites were investigated through scanning electron microscopy.

  19. Comparing approaches for numerical modelling of tsunami generation by deformable submarine slides

    NASA Astrophysics Data System (ADS)

    Smith, Rebecca C.; Hill, Jon; Collins, Gareth S.; Piggott, Matthew D.; Kramer, Stephan C.; Parkinson, Samuel D.; Wilson, Cian

    2016-04-01

    Tsunami generated by submarine slides are arguably an under-considered risk in comparison to earthquake-generated tsunami. Numerical simulations of submarine slide-generated waves can be used to identify the important factors in determining wave characteristics. Here we use Fluidity, an open source finite element code, to simulate waves generated by deformable submarine slides. Fluidity uses flexible unstructured meshes combined with adaptivity which alters the mesh topology and resolution based on the simulation state, focussing or reducing resolution, when and where it is required. Fluidity also allows a number of different numerical approaches to be taken to simulate submarine slide deformation, free-surface representation, and wave generation within the same numerical framework. In this work we use a multi-material approach, considering either two materials (slide and water with a free surface) or three materials (slide, water and air), as well as a sediment model (sediment, water and free surface) approach. In all cases the slide is treated as a viscous fluid. Our results are shown to be consistent with laboratory experiments using a deformable submarine slide, and demonstrate good agreement when compared with other numerical models. The three different approaches for simulating submarine slide dynamics and tsunami wave generation produce similar waveforms and slide deformation geometries. However, each has its own merits depending on the application. Mesh adaptivity is shown to be able to reduce the computational cost without compromising the accuracy of results.

  20. Effect of sliding velocity on the tribological behavior of copper and associated nanostructure development

    NASA Astrophysics Data System (ADS)

    Emge, Andrew

    The unlubricated sliding of metals is important in many mechanical devices covering a wide range of sliding velocities. However, the effect of sliding velocity on the tribological behavior of unlubricated metals has not been widely studied. Similarly, the relationship between microstructures developed at high sliding velocities and tribological behavior has not been studied in depth. Microstructures produced at low sliding velocities have been studied extensively and commonly include nanocrystalline or fine grained material near the sliding surface with heavily deformed microstructures further from the surface. The current research relates two aspects of the sliding friction of ductile metals, the effect of sliding velocity and the production of nanocrystalline tribomaterial. The project focused on the effects of sliding velocity on the frictional behavior of oxygen free high conductivity (OFHC) copper sliding against 440C stainless steel, Nitronic 40 stainless steel, and copper. Low velocity tests were performed with a pin on disk tribometer. High velocity tests were performed with a rotating barrel gas gun (RBGG) which combined impact with sliding. The RBGG provides sliding velocities as high as 5.5 m/s and impact velocities as high as 12 m/s while maintaining sliding times on the order of tens of microseconds. Changes in the coefficient of friction, microstructure, and composition were studied. Surface and subsurface microstructures of the worn samples were characterized with a range of instruments including scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS), focused ion beam (FIB) milling and imaging, transmission electron microscopy (TEM) with EDS, orientation imaging microscopy (OIM), and nanoindentation. In the case of self-mated copper the sliding velocity had little effect on the coefficient of friction for both experimental apparatuses. For the case of copper sliding against 440C stainless steel on the pin on disk system

  1. Cyclic Peptide Inhibitors of the β-Sliding Clamp in Staphylococcus aureus

    PubMed Central

    Kjelstrup, Susanne; Hansen, Paula Melo Paulon; Thomsen, Line E.; Hansen, Paul Robert; Løbner-Olesen, Anders

    2013-01-01

    Interaction between pairs of Staphylococcus aureus replication proteins was detected in an Escherichia coli based two-hybrid analysis. A reverse two-hybrid system was constructed for selection of compounds that hindered interaction between interacting protein pairs. A number of cyclic peptides, from a library generated by the split intein-mediated circular ligation of peptides and proteins technology, were found to interfere with dimerization of the β-sliding clamp of the replisome. Two 8-mer peptides were analyzed in more detail. Both inhibited DNA replication, led to SOS induction, altered cell morphology and cell death. The peptides were active when added to bacterial cultures indicating that they could traverse the bacterial membrane to find their intracellular target. Peptide specificity was confirmed by overproduction of the putative target (DnaN) which resulted in resistance. The minimum inhibitory concentration was ∼50 μg/ml for S. aureus cells. These compounds may serve as lead candidates for future development into novel classes of antibiotics as well as provide information on the function of the S. aureus replication process. PMID:24023733

  2. Inside the Brain: An Interactive Tour

    MedlinePlus

    ... to move to the next slide. Take the Brain Tour in... الجولة دماغك (Arabic) Vodič kroz Mozak ( ... Alzheimer's Stages of Alzheimer's Treatments Virtual Library Interactive Brain Tour Learn how Alzheimer's affects the brain Join ...

  3. Grain boundary sliding behaviour of copper and alpha brass at intermediate temperatures

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    1991-01-01

    The role of grain boundary sliding in copper and Cu-30 pct Zn in the temperature range 0.50-0.72 Tm, where Tm is the absolute melting point of the material, is examined. First, sliding data obtained on these materials are presented. The results indicate that the stress exponent for sliding is similar to that for lattice deformation, while the activation energy for sliding varies between 0.5 and 1.6 of the activation energy for creep. Several models proposed for grain boundary sliding are discussed, and it is shown that they do not account for the observed results on copper and alpha brass. A phenomenological model is proposed, where it is assumed that grain boundary sliding results from the glide of dislocations on secondary slip planes.

  4. OpenSlide: A vendor-neutral software foundation for digital pathology

    PubMed Central

    Goode, Adam; Gilbert, Benjamin; Harkes, Jan; Jukic, Drazen; Satyanarayanan, Mahadev

    2013-01-01

    Although widely touted as a replacement for glass slides and microscopes in pathology, digital slides present major challenges in data storage, transmission, processing and interoperability. Since no universal data format is in widespread use for these images today, each vendor defines its own proprietary data formats, analysis tools, viewers and software libraries. This creates issues not only for pathologists, but also for interoperability. In this paper, we present the design and implementation of OpenSlide, a vendor-neutral C library for reading and manipulating digital slides of diverse vendor formats. The library is extensible and easily interfaced to various programming languages. An application written to the OpenSlide interface can transparently handle multiple vendor formats. OpenSlide is in use today by many academic and industrial organizations world-wide, including many research sites in the United States that are funded by the National Institutes of Health. PMID:24244884

  5. Hybrid neural network fraction integral terminal sliding mode control of an Inchworm robot manipulator

    NASA Astrophysics Data System (ADS)

    Rahmani, Mehran; Ghanbari, Ahmad; Ettefagh, Mir Mohammad

    2016-12-01

    This paper proposes a control scheme based on the fraction integral terminal sliding mode control and adaptive neural network. It deals with the system model uncertainties and the disturbances to improve the control performance of the Inchworm robot manipulator. A fraction integral terminal sliding mode control applies to the Inchworm robot manipulator to obtain the initial stability. Also, an adaptive neural network is designed to approximate the system uncertainties and unknown disturbances to reduce chattering phenomena. The weight matrix of the proposed adaptive neural network can be updated online, according to the current state error information. The stability of the proposed control method is proved by Lyapunov theory. The performance of the adaptive neural network fraction integral terminal sliding mode control is compared with three other conventional controllers such as sliding mode control, integral terminal sliding mode control and fraction integral terminal sliding mode control. Simulation results show the effectiveness of the proposed control method.

  6. Influence of fluid pore pressure on chaotic sliding of tectonic faults

    NASA Astrophysics Data System (ADS)

    Turuntaev, Sergey; Riga, Vasily

    2016-04-01

    The problem of permeable rock pore pressure variation influence on tectonic fault sliding and generation of seismic events was studied in the scope of rate-and-state friction model with two-parametric friction law. The coupled problem of pore-elasticity and fault sliding governed by two-parametric rate-and-state equation was studied numerically. The main modes of the fault sliding were found, and transitions from one mode to another due to the fluid pore pressure change were observed. The conditions for transition from stable to chaotic sliding (considered as an analog of seismic event generations) were found. It was shown, that chaotic sliding has features of Poincare stability and can be characterized by finite values of correlation integral and embedding dimension, which depend on critical shear stresses. Change of the effective critical stresses by the pore pressure variation will result in change of the tectonic fault sliding mode and consequently change of the seismic regime.

  7. Robust fuzzy control for stochastic Markovian jumping systems via sliding mode method

    NASA Astrophysics Data System (ADS)

    Chen, Bei; Jia, Tinggang; Niu, Yugang

    2016-07-01

    This paper considers the problem of sliding mode control for stochastic Markovian jumping systems by means of fuzzy method. The Takagi-Sugeno (T-S) fuzzy stochastic model subject to state-dependent noise is presented. A key feature in this work is to remove the restricted condition that each local system model had to share the same input channel, which is usually assumed in some existing results. The integral sliding surface is constructed for every mode and the connections among various sliding surfaces are established via a set of coupled matrices. Moreover, the present sliding mode controller including the transition rates of modes can cope with the effect of Markovian switching. It is shown that both the reachability of sliding surfaces and the stability of sliding mode dynamics can be ensured. Finally, numerical simulation results are given.

  8. Projective synchronization of nonidentical fractional-order neural networks based on sliding mode controller.

    PubMed

    Ding, Zhixia; Shen, Yi

    2016-04-01

    This paper investigates global projective synchronization of nonidentical fractional-order neural networks (FNNs) based on sliding mode control technique. We firstly construct a fractional-order integral sliding surface. Then, according to the sliding mode control theory, we design a sliding mode controller to guarantee the occurrence of the sliding motion. Based on fractional Lyapunov direct methods, system trajectories are driven to the proposed sliding surface and remain on it evermore, and some novel criteria are obtained to realize global projective synchronization of nonidentical FNNs. As the special cases, some sufficient conditions are given to ensure projective synchronization of identical FNNs, complete synchronization of nonidentical FNNs and anti-synchronization of nonidentical FNNs. Finally, one numerical example is given to demonstrate the effectiveness of the obtained results.

  9. A new optimal sliding mode controller design using scalar sign function.

    PubMed

    Singla, Mithun; Shieh, Leang-San; Song, Gangbing; Xie, Linbo; Zhang, Yongpeng

    2014-03-01

    This paper presents a new optimal sliding mode controller using the scalar sign function method. A smooth, continuous-time scalar sign function is used to replace the discontinuous switching function in the design of a sliding mode controller. The proposed sliding mode controller is designed using an optimal Linear Quadratic Regulator (LQR) approach. The sliding surface of the system is designed using stable eigenvectors and the scalar sign function. Controller simulations are compared with another existing optimal sliding mode controller. To test the effectiveness of the proposed controller, the controller is implemented on an aluminum beam with piezoceramic sensor and actuator for vibration control. This paper includes the control design and stability analysis of the new optimal sliding mode controller, followed by simulation and experimental results. The simulation and experimental results show that the proposed approach is very effective.

  10. Mechanism of sand slide - cold lahar induced by extreme rainfall

    NASA Astrophysics Data System (ADS)

    Fukuoka, Hiroshi; Yamada, Masumi; Dok, Atitkagna

    2014-05-01

    Along with the increasing frequencies of extreme rainfall events in almost every where on the earth, shallow slide - debris flow, i.e. cold lahars running long distance often occurs and claims downslope residents lives. In the midnight of 15 October 2013, Typhoon Wilpha attacked the Izu-Oshima, a active volcanic Island and the extreme rainfall of more than 800 mm / 24 hours was recorded. This downpour of more than 80 mm/hr lasted 4 hours at its peak and caused a number of cold lahars. The initial stage of those lahars was shallow slides of surface black volcanic ash deposits, containing mostly fine sands. The thickness was only 50 cm - 1 m. In the reconnaissance investigation, author found that the sliding surface was the boundary of two separate volcanic ash layers between the black and yellow colored and apparently showing contrast of permeability and hardness. Permeability contrast may have contributed to generation of excess pore pressure on the border and trigger the slide. Then, the unconsolidated, unpacked mass was easily fluidized and transformed into mud flows, that which volcanologists call cold lahars. Seismometers installed for monitoring the active volcano's activities, succeeded to detect many tremors events. Many are spikes but 5 larger and longer events were extracted. They lasted 2 -3 minutes and if we assume that this tremors reflects the runout movement, then we can calculate the mean velocity of the lahars. Estimated velocity was 45 - 60 km/h, which is much higher than the average speed 30 - 40 km/h of debris flows observed in Japan. Flume tests of volcanic ash flows by the Forestry and Forest Products Research Institute showed the wet volcanic ash can run at higher speed than other materials. The two tremor records were compare d with the local residents witnessed and confirmed by newspaper reported that the reach of the lahar was observed at the exact time when tremor ends. We took the black volcanic ash and conducted ring shear tests to

  11. Unusually high indoor radon concentrations from a giant rock slide.

    PubMed

    Ennemoser, O; Ambach, W; Brunner, P; Schneider, P; Oberaigner, W; Purtscheller, F; Stingl, V; Keller, G

    1994-07-18

    In a village in western Tyrol, Austria (Umhausen, approximately 2600 inhabitants) unusually high indoor radon concentrations were measured. The medians were found to be 3750 Bq/m3 (basements) and 1160 Bq/m3 (ground floors) in winter, and 361 Bq/m3 (basements) and 210 Bq/m3 (ground floors) in summer. Maximum radon concentrations of up to 274,000 Bq/m3 were registered. The unusually high radon concentrations are due to the geology of the locality. The part of Umhausen with the highest radon concentrations is built on an alluvial fan of a giant rock slide (granitic gneiss). Measurements of the radon exhalation rate from soil showed a median of 0.4 Bq/m2/s, measurements of the radium content of rock samples yielded a median of 125 Bq/kg. The material of the rock slide is heavily fractured so that an elevated emanating power and an increased diffusion coefficient for radon in soil must be assumed. Given a diffusion coefficient of 8 x 10(-6) m2/s and an emanating power of 0.3, the median exhalation rate of 0.4 Bq/m2/s is obtained at a radium concentration of 125 Bq/kg. The rock slide is therefore considered to be the main source of radon. The abnormally high radon concentrations in Umhausen coincide with a statistically significant increase in lung cancer mortality (age and sex standardized mortality rate = 3.9, 95% C.I.: 2.9-5.1); the control population is the population of the entire Tyrol (630,000 inhabitants). PMID:8085147

  12. Hydrophobins as aqueous lubricant additive for a soft sliding contact.

    PubMed

    Lee, Seunghwan; Røn, Troels; Pakkanen, Kirsi I; Linder, Markus

    2015-01-01

    Two type II fungal hydrophobins, HFBI and FpHYD5, have been studied as aqueous lubricant additive at a nonpolar, compliant sliding contact (self-mated poly(dimethylsiloxane) (PDMS) contact) at two different concentrations, 0.1 mg/mL and 1.0 mg/mL. The two hydrophobins are featured as non-glycosylated (HFBI, m.w. ca. 7 kDa) vs glycosylated (FpHYD5, m.w. ca. 10 kDa) proteins. Far UV CD spectra of the two hydrophobins were very similar, suggesting overall structural similarity, but showed a noticeable difference according to the concentration. This is proposed to be related to the formation of multimers at 1.0 mg/mL. Despite 10-fold difference in the bulk concentration, the adsorbed masses of the hydrophobins onto PDMS surface obtained from the two solutions (0.1 and 1.0 mg/mL) were nearly identical, suggesting that a monolayer of the hydrophobins are formed from 0.1 mg/mL solution. PDMS-PDMS sliding interface was effectively lubricated by the hydrophobin solutions, and showed a reduction in the coefficient of friction by as much as ca. two orders of magnitude. Higher concentration solution (1.0 mg/mL) provided a superior lubrication, particularly in low-speed regime, where boundary lubrication characteristic is dominant via 'self-healing' mechanism. FpHYD5 revealed a better lubrication than HFBI presumably due to the presence of glycans and improved hydration of the sliding interface. Two type II hydrophobins function more favorably compared to a synthetic amphiphilic copolymer, PEO-PPO-PEO, with a similar molecular weight. This is ascribed to higher amount of adsorption of the hydrophobins to hydrophobic surfaces from aqueous solution. PMID:25466456

  13. Frequency-Shaped Sliding Mode Control for Rudder Roll Damping System of Robotic Boat

    NASA Astrophysics Data System (ADS)

    Bao, Xinping; Yu, Zhenyu; Nonami, Kenzo

    In this paper, a robotic boat model of combined yaw and roll rate is obtained by a system identification approach. The identified system is designed with frequency-shaped sliding mode control. The control scheme is composed of a sliding mode observer and a sliding mode controller. The stability and reachability of the switching function are proved by Lyapunov theory. Computer simulations and experiment carried out at INAGE offshore show that successful course keeping and roll reduction results are achieved.

  14. Robustness and Actuator Bandwidth of MRP-Based Sliding Mode Control for Spacecraft Attitude Control Problems

    NASA Astrophysics Data System (ADS)

    Keum, Jung-Hoon; Ra, Sung-Woong

    2009-12-01

    Nonlinear sliding surface design in variable structure systems for spacecraft attitude control problems is studied. A robustness analysis is performed for regular form of system, and calculation of actuator bandwidth is presented by reviewing sliding surface dynamics. To achieve non-singular attitude description and minimal parameterization, spacecraft attitude control problems are considered based on modified Rodrigues parameters (MRP). It is shown that the derived controller ensures the sliding motion in pre-determined region irrespective of unmodeled effects and disturbances.

  15. Percolation, sliding, localization and relaxation in topologically closed circuits

    PubMed Central

    Hurowitz, Daniel; Cohen, Doron

    2016-01-01

    Considering a random walk in a random environment in a topologically closed circuit, we explore the implications of the percolation and sliding transitions for its relaxation modes. A complementary question regarding the “delocalization” of eigenstates of non-hermitian Hamiltonians has been addressed by Hatano, Nelson, and followers. But we show that for a conservative stochastic process the implied spectral properties are dramatically different. In particular we determine the threshold for under-damped relaxation, and observe “complexity saturation” as the bias is increased. PMID:26961586

  16. Bedrock erosion by sliding wear in channelized granular flow

    NASA Astrophysics Data System (ADS)

    Hung, C. Y.; Stark, C. P.; Capart, H.; Smith, B.; Maia, H. T.; Li, L.; Reitz, M. D.

    2014-12-01

    Boundary forces generated by debris flows can be powerful enough to erode bedrock and cause considerable damage to infrastructure during runout. Bedrock wear can be separated into impact and sliding wear processes. Here we focus on sliding wear. We have conducted experiments with a 40-cm-diameter grainflow-generating rotating drum designed to simulate dry channelized debris flows. To generate sliding erosion, we placed a 20-cm-diameter bedrock plate axially on the back wall of the drum. The rotating drum was half filled with 2.3-mm-diameter grains, which formed a thin grain-avalanching layer with peak flow speed and depth close to the drum axis. The whole experimental apparatus was placed on a 100g-ton geotechnical centrifuge and, in order to scale up the stress level, spun to a range of effective gravity levels. Rates and patterns of erosion of the bedrock plate were mapped after each experiment using 3d micro-photogrammetry. High-speed video and particle tracking were employed to measure granular flow dynamics. The resulting data for granular velocities and flow geometry were used to estimate impulse exchanges and forces on the bedrock plate. To address some of the complexities of granular flow under variable gravity levels, we developed a continuum model framed around a GDR MiDi rheology. This model allowed us to scale up boundary forcing while maintaining the same granular flow regime, and helped us to understand important aspects of the flow dynamics including e.g. fluxes of momentum and kinetic energy. In order to understand the detailed processes of boundary forcing, we performed numerical simulations with a new contact dynamics model. This model confirmed key aspects of our continuum model and provided information on second-order behavior such as fluctuations in the forces acting on the wall. By combining these measurements and theoretical analyses, we have developed and calibrated a constitutive model for sliding wear that is a threshold function of

  17. Experimental Study of Sliding Friction for PET Track Membranes

    NASA Astrophysics Data System (ADS)

    Filippova, E. O.; Filippov, A. V.; Shulepov, I. A.

    2016-04-01

    The article is presented results of a study of the process for a dry friction metal-polymer couple on scheme disc-finger. Track membrane from polyethylene terephthalate was a research material. Membrane had pores with 0.4 and 0.8 μm diameters. The effect of the sliding velocity for membranes with pores of 0.8 microns was determined. Research was shown that increasing pore’s diameter caused a reduction of the friction coefficient and downturn its magnitude vibrations. The study showed that track membrane have adequate resistance to wear and can be successfully used in surgical procedures in the layers of the cornea.

  18. Sliding Mode Control of a Slewing Flexible Beam

    NASA Technical Reports Server (NTRS)

    Wilson, David G.; Parker, Gordon G.; Starr, Gregory P.; Robinett, Rush D., III

    1997-01-01

    An output feedback sliding mode controller (SMC) is proposed to minimize the effects of vibrations of slewing flexible manipulators. A spline trajectory is used to generate ideal position and velocity commands. Constrained nonlinear optimization techniques are used to both calibrate nonlinear models and determine optimized gains to produce a rest-to-rest, residual vibration-free maneuver. Vibration-free maneuvers are important for current and future NASA space missions. This study required the development of the nonlinear dynamic system equations of motion; robust control law design; numerical implementation; system identification; and verification using the Sandia National Laboratories flexible robot testbed. Results are shown for a slewing flexible beam.

  19. Interpolating sliding mode observer for a ball and beam system

    NASA Astrophysics Data System (ADS)

    Luai Hammadih, Mohammad; Hosani, Khalifa Al; Boiko, Igor

    2016-09-01

    A principle of interpolating sliding mode observer is introduced in this paper. The observer incorporates multiple linear observers through interpolation of multiple estimates, which is treated as a type of adaptation. The principle is then applied to the ball and beam system for observation of the slope of the beam from the measurement of the ball position. The linearised model of the ball and beam system using multiple linearisation points is developed. The observer dynamics implemented in Matlab/Simulink Real Time Workshop environment. Experiments conducted on the ball and beam experimental setup demonstrate excellent performance of the designed novel interpolating (adaptive) observer.

  20. Automated single-slide staining device. [in clinical bacteriology

    NASA Technical Reports Server (NTRS)

    Wilkins, J. R.; Mills, S. M.

    1975-01-01

    An automatic single-slide Gram staining device is described. A timer-actuated solenoid controls the dispensing of gentian violet, Gram iodine solution, decolorizer, and 1% aqueous safranin in proper sequence and for the time required for optimum staining. The amount of stain or reagent delivered is controlled by means of stopcocks below each solenoid. Used stains and reagents can be flushed automatically or manually. Smears Gram stained automatically are equal in quality to those prepared manually. The time to complete one Gram cycle is 4.80 min.

  1. Risk Analysis for Unintentional Slide Deployment During Airline Operations.

    PubMed

    Ayra, Eduardo S; Insua, David Ríos; Castellanos, María Eugenia; Larbi, Lydia

    2015-09-01

    We present a risk analysis undertaken to mitigate problems in relation to the unintended deployment of slides under normal operations within a commercial airline. This type of incident entails relevant costs for the airline industry. After assessing the likelihood and severity of its consequences, we conclude that such risks need to be managed. We then evaluate the effectiveness of various countermeasures, describing and justifying the chosen ones. We also discuss several issues faced when implementing and communicating the proposed measures, thus fully illustrating the risk analysis process.

  2. 12. Photocopy of photograph (original color slide made in 1974 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Photocopy of photograph (original color slide made in 1974 by Henry D. Boykin, II, A.I.A., of Camden, South Carolina, and kept in his possession) FULL SECTIONAL VIEW OF SOUTH WALL OF NAVE SHOWING TYPICAL INTERNAL CONSTRUCTION AND MATERIALS OF CHURCH WALLS. BRICK BUTTRESS WITH CREPE COVERING ON LEFT; RAMMED EARTH WALL CORE IN CENTER (ADZE MARKS ARE FROM 1974 REPAIR PROCESS); INTERIOR LATH, PLASTER, AND CORNICE ON RIGHT. NOTE REMAINS OF EMBEDDED WOODEN BRACES (NEAR BUTTRESS) USED TO HOLD WALL FORMS DURING ORIGINAL CONSTRUCTION OF WALLS. - Church of the Holy Cross, State Route 261, Stateburg, Sumter County, SC

  3. Practical quantification of necrosis in histological whole-slide images.

    PubMed

    Homeyer, André; Schenk, Andrea; Arlt, Janine; Dahmen, Uta; Dirsch, Olaf; Hahn, Horst K

    2013-06-01

    Since the histological quantification of necrosis is a common task in medical research and practice, we evaluate different image analysis methods for quantifying necrosis in whole-slide images. In a practical usage scenario, we assess the impact of different classification algorithms and feature sets on both accuracy and computation time. We show how a well-chosen combination of multiresolution features and an efficient postprocessing step enables the accurate quantification necrosis in gigapixel images in less than a minute. The results are general enough to be applied to other areas of histological image analysis as well. PMID:23796718

  4. Adaptive second-order sliding mode control with uncertainty compensation

    NASA Astrophysics Data System (ADS)

    Bartolini, G.; Levant, A.; Pisano, A.; Usai, E.

    2016-09-01

    This paper endows the second-order sliding mode control (2-SMC) approach with additional capabilities of learning and control adaptation. We present a 2-SMC scheme that estimates and compensates for the uncertainties affecting the system dynamics. It also adjusts the discontinuous control effort online, so that it can be reduced to arbitrarily small values. The proposed scheme is particularly useful when the available information regarding the uncertainties is conservative, and the classical `fixed-gain' SMC would inevitably lead to largely oversized discontinuous control effort. Benefits from the viewpoint of chattering reduction are obtained, as confirmed by computer simulations.

  5. Cytopathology whole slide images and adaptive tutorials for postgraduate pathology trainees: a randomized crossover trial.

    PubMed

    Van Es, Simone L; Kumar, Rakesh K; Pryor, Wendy M; Salisbury, Elizabeth L; Velan, Gary M

    2015-09-01

    To determine whether cytopathology whole slide images and virtual microscopy adaptive tutorials aid learning by postgraduate trainees, we designed a randomized crossover trial to evaluate the quantitative and qualitative impact of whole slide images and virtual microscopy adaptive tutorials compared with traditional glass slide and textbook methods of learning cytopathology. Forty-three anatomical pathology registrars were recruited from Australia, New Zealand, and Malaysia. Online assessments were used to determine efficacy, whereas user experience and perceptions of efficiency were evaluated using online Likert scales and open-ended questions. Outcomes of online assessments indicated that, with respect to performance, learning with whole slide images and virtual microscopy adaptive tutorials was equivalent to using traditional methods. High-impact learning, efficiency, and equity of learning from virtual microscopy adaptive tutorials were strong themes identified in open-ended responses. Participants raised concern about the lack of z-axis capability in the cytopathology whole slide images, suggesting that delivery of z-stacked whole slide images online may be important for future educational development. In this trial, learning cytopathology with whole slide images and virtual microscopy adaptive tutorials was found to be as effective as and perceived as more efficient than learning from glass slides and textbooks. The use of whole slide images and virtual microscopy adaptive tutorials has the potential to provide equitable access to effective learning from teaching material of consistently high quality. It also has broader implications for continuing professional development and maintenance of competence and quality assurance in specialist practice.

  6. Designing for Damage: Robust Flight Control Design using Sliding Mode Techniques

    NASA Technical Reports Server (NTRS)

    Vetter, T. K.; Wells, S. R.; Hess, Ronald A.; Bacon, Barton (Technical Monitor); Davidson, John (Technical Monitor)

    2002-01-01

    A brief review of sliding model control is undertaken, with particular emphasis upon the effects of neglected parasitic dynamics. Sliding model control design is interpreted in the frequency domain. The inclusion of asymptotic observers and control 'hedging' is shown to reduce the effects of neglected parasitic dynamics. An investigation into the application of observer-based sliding mode control to the robust longitudinal control of a highly unstable is described. The sliding mode controller is shown to exhibit stability and performance robustness superior to that of a classical loop-shaped design when significant changes in vehicle and actuator dynamics are employed to model airframe damage.

  7. Finite-time control of DC-DC buck converters via integral terminal sliding modes

    NASA Astrophysics Data System (ADS)

    Chiu, Chian-Song; Shen, Chih-Teng

    2012-05-01

    This article presents novel terminal sliding modes for finite-time output tracking control of DC-DC buck converters. Instead of using traditional singular terminal sliding mode, two integral terminal sliding modes are introduced for robust output voltage tracking of uncertain buck converters. Different from traditional sliding mode control (SMC), the proposed controller assures finite convergence time for the tracking error and integral tracking error. Furthermore, the singular problem in traditional terminal SMC is removed from this article. When considering worse modelling, adaptive integral terminal SMC is derived to guarantee finite-time convergence under more relaxed stability conditions. In addition, several experiments show better start-up performance and robustness.

  8. Attributes and origins of ancient submarine slides and filled embayments: examples from the Gulf Coast basin

    USGS Publications Warehouse

    Morton, Robert

    1993-01-01

    Submarine slides exhibit landward-dipping, wavy, mounded, and chaotic seismic reflections that are manifestations of slump blocks and other mass transport material. Composition of these internally derived slide deposits depends on the composition of the preexisting shelf margin. Embayment fill above the slide consists mostly of externally derived mudstones and sandstones deposited by various disorganized slope processes, as well as more organized submarine channel-levee systems. Thickest slope sandstones, which are potential hydrocarbon reservoirs, commonly occur above the basal slide mudstones where seismic reflections change from chaotic patterns to overlying wavy or subhorizontal reflections.

  9. Digital and traditional slides for teaching cellular morphology: a comparative analysis of learning outcomes.

    PubMed

    Solberg, Brooke L

    2012-01-01

    Recent advances in technology have brought forth an intriguing new tool for teaching hematopoietic cellular identification skills: the digital slide. Although digitized slides offer a number of appealing options for educators, little research has been done to examine how their utilization would impact learning outcomes. To fill that void, this study was designed to examine student performance, skill retention and transferability, and self-efficacy beliefs amongst undergraduate MLS students learning cellular morphology with digital versus traditional slides. Results showed that students learning with digital slides performed better on assessments containing only traditional slide specimens than students learning with traditional slides, both immediately following the learning activity and after a considerable duration of time. Students learning with digital slides also reported slightly higher levels of self-efficacy related to cellular identification. The findings of this study suggest that students learning cellular identification skills with digital slides are able to transfer that skill directly to traditional slides, and that their ability to identify cells is not negatively affected in present or future settings.

  10. Dynamic output feedback sliding mode control for uncertain mechanical systems without velocity measurements.

    PubMed

    Chang, Jeang-Lin

    2010-04-01

    For MIMO mechanical systems using position measurements only, this paper presents a dynamic output feedback sliding mode control algorithm in which an additional dynamics is introduced into the design of the sliding surface. Although the system has the mismatched uncertainty and external disturbance, once the system is in the sliding mode, the proposed method can guarantee robust stabilization and sustain the nature of performing disturbance attenuation through utilizing H(infinity) control analytical technique. A controller is then designed to drive the system to the sliding surface in a finite time and stay on it thereafter. Finally, a numerical example is explained for demonstrating the applicability of the proposed scheme.

  11. Friction microprobe investigation of particle layer effects on sliding friction

    SciTech Connect

    Blau, P.J.

    1993-01-01

    Interfacial particles (third-bodies), resulting from wear or external contamination, can alter and even dominate the frictional behavior of solid-solid sliding in the absence of effective particle removal processes (e.g., lubricant flow). A unique friction microprobe, developed at Oak Ridge National Laboratory, was used to conduct fine- scale friction studies using 1.0 mm diameter stainless steel spheres sliding on several sizes of loose layers of fine aluminum oxide powders on both aluminum and alumina surfaces. Conventional, pin-on-disk experiments were conducted to compare behavior with the friction microprobe results. The behavior of the relatively thick particle layers was found to be independent of the nature of underlying substrate, substantiating previous work by other investigators. The time-dependent behavior of friction, for a spherical macrocontact starting from rest, could generally be represented by a series of five rather distinct phases involving static compression, slider breakaway, transition to steady state, and dynamic layer instability. A friction model for the steady state condition, which incorporates lamellar powder layer behavior, is described.

  12. Seismically reactivated Hattian slide in Kashmir, Northern Pakistan

    NASA Astrophysics Data System (ADS)

    Schneider, Jean F.

    2009-07-01

    The Pakistan 2005 earthquake, of magnitude 7.6, caused severe damage on landscape and infrastructure, in addition to numerous casualties. The event reactivated Hattian Slide, creating a rock avalanche in a location where earlier mass movements had happened already, as indicated by satellite imagery and ground investigation. The slide originated on Dana Hill, in the upper catchment area of Hattian on Karli Stream, a tributary of Jhelum River, Pakistan, and buried the hamlet Dandbeh and several farms nearby. A natural dam accumulated, impounding two lakes, the larger one threatening parts of downstream Hattian Village with flooding. An access road and artificial spillways needed to be constructed in very short time to minimize the flooding risk. As shown by this example, when pointing out the risk of large-scale damage to population and infrastructure by way of hazard indication maps of seismically active regions, and preparing for alleviation of that risk, it is advisable to consider the complete Holocene history of the slopes involved.

  13. Compensation of significant parametric uncertainties using sliding mode online learning

    NASA Astrophysics Data System (ADS)

    Schnetter, Philipp; Kruger, Thomas

    An augmented nonlinear inverse dynamics (NID) flight control strategy using sliding mode online learning for a small unmanned aircraft system (UAS) is presented. Because parameter identification for this class of aircraft often is not valid throughout the complete flight envelope, aerodynamic parameters used for model based control strategies may show significant deviations. For the concept of feedback linearization this leads to inversion errors that in combination with the distinctive susceptibility of small UAS towards atmospheric turbulence pose a demanding control task for these systems. In this work an adaptive flight control strategy using feedforward neural networks for counteracting such nonlinear effects is augmented with the concept of sliding mode control (SMC). SMC-learning is derived from variable structure theory. It considers a neural network and its training as a control problem. It is shown that by the dynamic calculation of the learning rates, stability can be guaranteed and thus increase the robustness against external disturbances and system failures. With the resulting higher speed of convergence a wide range of simultaneously occurring disturbances can be compensated. The SMC-based flight controller is tested and compared to the standard gradient descent (GD) backpropagation algorithm under the influence of significant model uncertainties and system failures.

  14. Sliding seal materials for low heat rejection engines

    NASA Technical Reports Server (NTRS)

    Beaty, Kevin; Lankford, James; Vinyard, Shannon

    1989-01-01

    Sliding friction coefficients and wear rates of promising piston seal materials were measured under temperature, environmental, velocity, and loading conditions that are representative of the low heat rejection (LHR) diesel engine environment. These materials included carbides, oxides, and nitrides. In addition, silicon nitride and partially stablized zirconia disks (cylinder liners) were ion-implanted with TiNi, Ni, Co, and Cr, and subsequently run against carbide pins (piston rings), with the objective of producing reduced friction via solid lubrication at elevated temperature. Friction and wear measurements were obtained using pin-on-disk laboratory experiments and a unique engine friction test rig. Unmodified ceramic sliding couples were characterized at all temperatures by friction coefficients of 0.24 and above during the pin-on-disk tests. The coefficient at 800 C in an oxidizing environment was reduced to below 0.1, for certain material combination, by the ion-implantation of TiNi or Co. This beneficial effect was found to derive from the lubricious Ti, Ni, and Co oxides. Similar results were demonstrated on the engine friction test rig at lower temperatures. The structural integrity and feasibility of engine application with the most promising material combination were demonstrated during a 30-hour single-cylinder, direct-injection diesel engine test.

  15. Sliding Wigner solid on liquid {sup 4}He

    SciTech Connect

    Shirahama, Keiya; Kono, Kimitoshi

    1996-08-01

    The authors report a systematic experimental study of the anomalous nonlinear magnetotransport in the Wigner solid (WS) trapped on a liquid {sup 4}He surface. The ac Corbino conductivity {sigma}{sub xx} exhibits an abrupt jump at a certain driving voltage. The threshold input voltage V{sub th} for the {sigma}{sub xx} jump varies as V{sub th} {proportional_to}B{sup {minus}0.8}{omega}{sup {minus}1}n{sub s}{sup 1.5}E{sub {perpendicular}}, where B, {omega}, n{sub s}, and E{sub {perpendicular}} are magnetic field, frequency, electron density and pressing electric field, respectively. The authors interpret the {sigma}{sub xx} jump as the transition between the WS accompanied with the periodic {sup 4}He surface deformation and the WS which decouples from the surface, due to the large driving force. A simple model is presented: The rigid-potential sliding model qualitatively explains the above mentioned behaviors of V{sub th}. They have found that the dependences of {sigma}{sub xx} on B and E{sub {perpendicular}} are different from those of the liquid phase. The anomalous behaviors of {sigma}{sub xx} play a crucial role on the sliding model.

  16. Adaptive suboptimal second-order sliding mode control for microgrids

    NASA Astrophysics Data System (ADS)

    Incremona, Gian Paolo; Cucuzzella, Michele; Ferrara, Antonella

    2016-09-01

    This paper deals with the design of adaptive suboptimal second-order sliding mode (ASSOSM) control laws for grid-connected microgrids. Due to the presence of the inverter, of unpredicted load changes, of switching among different renewable energy sources, and of electrical parameters variations, the microgrid model is usually affected by uncertain terms which are bounded, but with unknown upper bounds. To theoretically frame the control problem, the class of second-order systems in Brunovsky canonical form, characterised by the presence of matched uncertain terms with unknown bounds, is first considered. Four adaptive strategies are designed, analysed and compared to select the most effective ones to be applied to the microgrid case study. In the first two strategies, the control amplitude is continuously adjusted, so as to arrive at dominating the effect of the uncertainty on the controlled system. When a suitable control amplitude is attained, the origin of the state space of the auxiliary system becomes attractive. In the other two strategies, a suitable blend between two components, one mainly working during the reaching phase, the other being the predominant one in a vicinity of the sliding manifold, is generated, so as to reduce the control amplitude in steady state. The microgrid system in a grid-connected operation mode, controlled via the selected ASSOSM control strategies, exhibits appreciable stability properties, as proved theoretically and shown in simulation.

  17. Buckling of a Flexible Strip Sliding on a Frictional Base

    NASA Astrophysics Data System (ADS)

    Huynen, Alexandre; Marck, Julien; Denoel, Vincent; Detournay, Emmanuel

    2013-03-01

    The main motivation for this contribution is the buckling of a drillstring sliding on the bottom of the horizontal section of borehole. The open questions that remain today are related to the determination of the onset of instability, and to the conditions under which different modes of constrained buckling occur. In this presentation, we are concerned by a two-dimensional version of this problem; namely, the sliding of a flexible strip being fed inside a conduit. The ribbon, which has a flexural rigidity EI and a weight per unit length w, is treated as an inextensible elastica of negligible thickness. The contact between the ribbon and the wall of the conduit is characterized by a friction coefficient μ. First, we report the result of a stability analysis that aims at determining the critical inserted length of the ribbon l* (μ) (scaled by the characteristic length λ =(EI / w) 1 / 3) at which there is separation between the strip and the conduit bottom, as well as the buckling mode. Next, the relationship between the feeding force F and the inserted length l after bifurcation is computed. Finally, the results of a ``kitchen table'' experiment involving a strip of silicon rubber being pushed on a plank are reported and compared with predictions.

  18. XY-sliding phases - mirage of the Renormalization Group

    NASA Astrophysics Data System (ADS)

    Vayl, Steven; Kuklov, Anatoly; Oganesyan, Vadim

    The so called sliding XY phases in layered systems are predicted to occur if the one loop renormalization group (RG) flow renders the interlayer Josephson coupling irrelevant, while each layer still features broken U(1) symmetry. In other words, such a layered system remains essentially two-dimensional despite the presence of inter-layer Josephson coupling. We have analyzed numerically a layered system consisting of groups of asymmetric layers where the RG analysis predicts sliding phases to occur. Monte Carlo simulations of such a system have been conducted in the dual representation by Worm Algorithm in terms of the closed loops of J-currents for layer sizes varying from 4 ×4 to 640 ×640 and the number of layers - from 2 to 40. The resulting flow of the inter-layer XY-stiffness has been found to be inconsistent with the RG prediction and fully consistent with the behavior of the 3D standard XY model where the bare inter-layer Josephson coupling is much smaller than the intra-layer stiffness. This result emphasizes the importance of the compactness of the U(1) variable for 2D to 3D transformation. This work was supported by the NSF Grant PHY1314469.

  19. Sliding mode control of electromagnetic tethered satellite formation

    NASA Astrophysics Data System (ADS)

    Hallaj, Mohammad Amin Alandi; Assadian, Nima

    2016-08-01

    This paper investigates the control of tethered satellite formation actuated by electromagnetic dipoles and reaction wheels using the robust sliding mode control technique. Generating electromagnetic forces and moments by electric current coils provides an attractive control actuation alternative for tethered satellite system due to the advantages of no propellant consumption and no obligatory rotational motion. Based on a dumbbell model of tethered satellite in which the flexibility and mass of the tether is neglected, the equations of motion in Cartesian coordinate are derived. In this model, the J2 perturbation is taken into account. The far-field and mid-field models of electromagnetic forces and moments of two satellites on each other and the effect of the Earth's magnetic field are presented. A robust sliding mode controller is designed for precise trajectory tracking purposes and to deal with the electromagnetic force and moment uncertainties and external disturbances due to the Earth's gravitational and magnetic fields inaccuracy. Numerical simulation results are presented to validate the effectiveness of the developed controller and its superiority over the linear controller.

  20. Virtual slides: high-quality demand, physical limitations, and affordability.

    PubMed

    Glatz-Krieger, Katharina; Glatz, Dieter; Mihatsch, Michael J

    2003-10-01

    Virtual slides (VSs) have been around since the beginning of telepathology. As recently as a couple of years ago, only single small images could be acquired, and their distribution was limited to e-mail at best. Today, whole slides can be acquired, covering an area up to 100,000 times larger than that possible only a few years ago. Moreover, advanced Internet and world-wide web technologies enable delivery of those images to a broad audience. Despite considerable advances in technology, few good examples of VSs for public use can be found on the web. One of the reasons for this is a lack of sophisticated and integrated commercial solutions covering the needs from acquisition to delivery at reasonable cost. This article describes physical and technical limitations of the VS technology to clarify the demands on a VS acquisition system. A new type of web-based VS viewer (vMic; http://alf3.urz.unibas.ch/vmic/) open to public use is introduced, allowing anyone to set up a VS system with high usability at low cost.

  1. Sliding Friction at a Rubber/Brush Interface

    NASA Astrophysics Data System (ADS)

    Bureau, Lionel

    2004-03-01

    The friction of poly(dimethylsiloxane) (PDMS) rubber networks sliding, at low velocity (3 nm.s-1sliding. This latter result provides a strong evidence for friction controlled by arm retraction relaxation of the grafted chains, as proposed by Rubinstein et al. in a model of slippage at a network/brush interface.

  2. Adaptive backstepping slide mode control of pneumatic position servo system

    NASA Astrophysics Data System (ADS)

    Ren, Haipeng; Fan, Juntao

    2016-06-01

    With the price decreasing of the pneumatic proportional valve and the high performance micro controller, the simple structure and high tracking performance pneumatic servo system demonstrates more application potential in many fields. However, most existing control methods with high tracking performance need to know the model information and to use pressure sensor. This limits the application of the pneumatic servo system. An adaptive backstepping slide mode control method is proposed for pneumatic position servo system. The proposed method designs adaptive slide mode controller using backstepping design technique. The controller parameter adaptive law is derived from Lyapunov analysis to guarantee the stability of the system. A theorem is testified to show that the state of closed-loop system is uniformly bounded, and the closed-loop system is stable. The advantages of the proposed method include that system dynamic model parameters are not required for the controller design, uncertain parameters bounds are not need, and the bulk and expensive pressure sensor is not needed as well. Experimental results show that the designed controller can achieve better tracking performance, as compared with some existing methods.

  3. Structure of p15PAF-PCNA complex and implications for clamp sliding during DNA replication and repair

    NASA Astrophysics Data System (ADS)

    de Biasio, Alfredo; de Opakua, Alain Ibáñez; Mortuza, Gulnahar B.; Molina, Rafael; Cordeiro, Tiago N.; Castillo, Francisco; Villate, Maider; Merino, Nekane; Delgado, Sandra; Gil-Cartón, David; Luque, Irene; Diercks, Tammo; Bernadó, Pau; Montoya, Guillermo; Blanco, Francisco J.

    2015-03-01

    The intrinsically disordered protein p15PAF regulates DNA replication and repair by binding to the proliferating cell nuclear antigen (PCNA) sliding clamp. We present the structure of the human p15PAF-PCNA complex. Crystallography and NMR show the central PCNA-interacting protein motif (PIP-box) of p15PAF tightly bound to the front-face of PCNA. In contrast to other PCNA-interacting proteins, p15PAF also contacts the inside of, and passes through, the PCNA ring. The disordered p15PAF termini emerge at opposite faces of the ring, but remain protected from 20S proteasomal degradation. Both free and PCNA-bound p15PAF binds DNA mainly through its histone-like N-terminal tail, while PCNA does not, and a model of the ternary complex with DNA inside the PCNA ring is consistent with electron micrographs. We propose that p15PAF acts as a flexible drag that regulates PCNA sliding along the DNA and facilitates the switch from replicative to translesion synthesis polymerase binding.

  4. A pocket aide-memoire on drug interactions.

    PubMed

    Stockley, I H

    1975-04-01

    A pocket size "slide-rule" type device designed to be used by physicians, pharmacists and nurses as a memory aid on potential drug-drug interactions is described. Color-coded symbols on the device indicate both the type and clinical significance of the potential interactions involving 56 drugs or groups of drugs.

  5. The 1903 Frank Slide, Alberta, Canada : a review of one hundred years of investigation

    NASA Astrophysics Data System (ADS)

    Evans, S. G.; Couture, R.

    2003-04-01

    The Frank Slide occurred without warning at 0410h on April 29th, 1903. It involved 30 M m^3 of Paleozoic limestone, which travelled down Turtle Mountain and swept across the Crowsnest Valley, climbing 145 m up the opposite slope. H/L is 0.22. The movement lasted ca. 100 seconds suggesting an average velocity of ca. 30 m/s. The landslide was immediately investigated by R.G. McConnell and R.W. Brock, who, in their famous report, introduced the term "rock avalanche" to describe the event. No weather or seismic trigger is associated with the landslide. However, McConnell and Brock pointed to the role of coal mining in overthrust Mesozoic rocks at the base of Turtle Mountain as one of the causes of the catastrophe. A subsequent investigation in 1912, led by R.A. Daly, further documented the geology and found that the coal mining was instrumental in triggering the event. In the 1970s, D.M. Cruden and J. Krahn undertook an important re-examination of the geology of the Frank Slide, which produced a geological interpretation significantly different from earlier work. Krahn and N.R. Morgenstern applied numerical methods to assess the role of mining in the failure and carried out direct shear tests on the limestone. In the 1980s, Cruden and O.Hungr initiated the study of the debris with reference to emplacement mechanisms and D.K. Norris produced the definitive geological cross-section of Turtle Mountain. In the 1990s, a numerical analysis by B. Benko and D. Stead found that, with the slope at or near the limit equilibrium, mining-induced deformation may have been a contributory factor in the failure. Hungr and S.G. Evans undertook a dynamic simulation of the rock avalanche. K. Sassa et al. analysed the interaction between the debris and the valley floor sediments and its effect on run-out. Most recently, R. Couture studied the geomechanics of initial failure, and the fragmentation characteristics of the debris. Six key issues have thus emerged in the 100 year investigation

  6. Gold nanoparticles assisted characterization of amine functionalized polystyrene multiwell plate and glass slide surfaces

    NASA Astrophysics Data System (ADS)

    Dharanivasan, Gunasekaran; Rajamuthuramalingam, Thangavelu; Michael Immanuel Jesse, Denison; Rajendiran, Nagappan; Kathiravan, Krishnan

    2015-01-01

    We demonstrated citrate-capped gold nanoparticles assisted characterization of amine functionalized polystyrene plate and glass slide surfaces through AuNPs staining method. The effect of AuNPs concentration on the characterization of amine modified surfaces was also studied with different concentration of AuNPs (ratios 1.0-0.0). 3-Aminopropylyl triethoxy silane has been used as amine group source for the surface modification. The interactions of AuNPs on modified and unmodified surfaces were investigated using atomic force microscopy and the dispersibility, and the aggregation of AuNPs was analyzed using UV-visible spectrophotometer. Water contact angle measurement and X-ray photoelectron spectroscopy (XPS) were used to further confirmation of amine modified surfaces. The aggregation of AuNPs in modified multiwell plate leads to the color change from red to purple and they are found to be adsorped on the modified surfaces. Aggregation and adsorption of AuNPs on the modified surfaces through the electrostatic interactions and the hydrogen bonds were revealed by XPS analysis. Remarkable results were found even in the very low concentration of AuNPs (ratio 0.2). This AuNPs staining method is simple, cost-effective, less time consuming, and required very low concentration of AuNPs. These results can be read out through the naked eye without the help of sophisticated equipments.

  7. Time-varying sliding-coefficient-based decoupled terminal sliding-mode control for a class of fourth-order systems.

    PubMed

    Bayramoglu, Husnu; Komurcugil, Hasan

    2014-07-01

    A time-varying sliding-coefficient-based decoupled terminal sliding mode control strategy is presented for a class of fourth-order systems. First, the fourth-order system is decoupled into two second-order subsystems. The sliding surface of each subsystem was designed by utilizing time-varying coefficients. Then, the control target of one subsystem to another subsystem was embedded. Thereafter, a terminal sliding mode control method was utilized to make both subsystems converge to their equilibrium points in finite time. The simulation results on the inverted pendulum system demonstrate that the proposed method exhibits a considerable improvement in terms of a faster dynamic response and lower IAE and ITAE values as compared with the existing decoupled control methods.

  8. Effects of Different Ligature Materials on Friction in Sliding Mechanics

    PubMed Central

    Khamatkar, Aparna; Sonawane, Sushma; Narkhade, Sameer; Gadhiya, Nitin; Bagade, Abhijit; Soni, Vivek; Betigiri, Asha

    2015-01-01

    Background: During orthodontic tooth movement friction occurs at the bracket wire interface. Out of the total force applied to the tooth movement, some of it is dissipated as friction, and the remainder is transferred to the supporting structures of the tooth to mediate tooth movement. However many factors affect friction, and method of arch wire ligation being an important contributing factor. Hence, this study was carried out to evaluate the effects of different ligature materials on friction in sliding mechanics and to compare the effect of environment (dry and wet) on friction produced in sliding mechanics. Materials and Methods: The evaluation of friction between the bracket and the archwire consisted of a simulated half arch fixed appliance with archwire ligated in a vertical position. Four 0.022” maxillary stainless steel premolar brackets having a - 0° torque and 0° angulation were aligned with a 0.019” × 0.025” stainless steel arch wire onto a rigid Plexiglass sheet. The movable test bracket was fitted with a 10 mm long, 0.045” thick stainless steel power arm on the bonding surface. Testing was performed on a Hounsfield material testing machine. A total of 100 g weight was suspended from the power arm and the load needed to move the bracket over the distance of not <4 mm across the central span was recorded separately. Fifteen representative readings were taken with one reading per test sample. Results: The results showed that the mean frictional force of different groups in dry and wet state was statistically significantly different. The mean frictional force in a dry state was statistically significantly higher than wet state in elastomeric group. Conclusion: The type of ligation material and environment significantly affected the degree of friction generated during sliding mechanics. Teflon coated stainless steel ligatures produced the least friction among the materials tested in both dry and wet conditions and there was no significant effect

  9. Traditional elastic ligatures versus slide ligation system. A morphological evaluation

    PubMed Central

    CONDÒ, R.; CASAGLIA, A.; ARMELLIN, E.; CONDÒ, S.G.; CERRONI, L.

    2013-01-01

    SUMMARY Objective Elastomeric materials play an important role in the orthodontic practice, including the retraction force to move teeth into extraction sites, closing diastemas, selective shifting of the midline and generalized space closure. Frictional resistance and ligating strength of archwire-bracket-ligature complex occurs during utilization of elastomeric and metallic ligatures when orthodontic forces are applicated. The aim of this study was to analyze elastic deformation of three types of elastomeric ligatures, after clinical use. Material and Methods Elastomeric ligatures: ring-shape, transparent, latex ligatures (Leone® S.p.A.), ring-shape, grey, polyurethane ligatures (Micerium® S.p.A.) and grey, polyurethane, Slide low-friction ligatures (Leone® S.p.A.). A total of 9 orthodontic patients undergoing fixed orthodontic therapy were selected. Three specimens were applied, one for each types of ligature, inside the oral cavity of each subject. Samples were kept in the oral cavity for 28 days, ligating 0.16 X 0.22 inches stainless steel archwires to stainless steel premolars brackets (Leone® S.p.A., Sesto Fiorentino, FI, Italy) for Bidimensional technique. After the pre-established time, the systems of ligature were removed and washed. Control group consisted of 9 unused specimens of each ligation type. Each elastomeric ligature was observed under the scanning electron microscope (SEM) to determine variations in size. The archwire-bracket-ligature complex was also analyzed. Results Transparent O-ring ligatures showed significant volumetric and structural changes. The external rounded shape was rather maintained, while the internal shape tended to appear square. Both external and internal diameter significantly increased (p<0.005 and p<0.0001 respectively) while the thickness decreased ( p<0,005) when analyzed with t-test. Polyurethane ring-shape ligatures retained the initial ring design. Both external and internal diameter increased (p<0.0001), while

  10. Enhancing the staggered fluctuations of an actin filament sliding on Chara myosin.

    PubMed

    Hatori, Kuniyuki; Okeno, Yusuke; Honda, Hajime; Shimada, Katsuhiko; Matsuno, Koichiro

    2004-06-01

    We examined both longitudinal and transversal fluctuations of displacements of an actin filament sliding upon Chara myosin molecules. Although the magnitude of transversal fluctuations remained rather independent of ATP concentration, the longitudinal ones were found to increase their magnitude as the concentration increased. In addition, the longitudinal fluctuations gradually increased as the sliding velocity of the filament increased.

  11. Real-time deformable registration of multi-modal whole slides for digital pathology.

    PubMed

    Mueller, Dan; Vossen, Dirk; Hulsken, Bas

    2011-01-01

    Digital pathology provides new ways to visualize tissue slides and enables new workflows for analyzing these slides. Analogous to radiology, adjacent tissue sections prepared with different stains or biomarkers (e.g. H&E, IHC, special stains, or ISH; chromogenic or fluorescent) may be seen as different modalities, each representing different structural and/or functional information. Today, the anatomic pathologist views multiple glass slides using an optical microscope and then combines the information in their head to reach a (diagnostic) opinion. Moreover, due to the nature of the slide preparation and digitization process, the tissue and its features do not have the exact same morphology, appearance, or spatial alignment, making it difficult to find the same region on adjacent slides. To address such concerns, this paper presents a method for the spatial alignment of multi-modal whole slide digital microscopy images. To remain practical, the described method employs a two-step registration strategy designed to reduce computation time: the first step computes a B-spline deformable transform on low-resolution images prior to visualization, the second step applies the precomputed transformation only to the high-resolution region currently being viewed. The proposed method is demonstrated using a number of cases comprising H&E and IHC stained slides. These results indicate the feasibility of deformable registration for spatial alignment of multi-modal whole slide digital microscopy images within practical time constraints.

  12. 24 CFR 3280.403 - Standard for windows and sliding glass doors used in manufactured homes.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... glass doors used in manufactured homes. 3280.403 Section 3280.403 Housing and Urban Development... AND SAFETY STANDARDS Testing § 3280.403 Standard for windows and sliding glass doors used in manufactured homes. (a) Scope. This section sets the requirements for prime windows and sliding glass...

  13. 24 CFR 3280.403 - Standard for windows and sliding glass doors used in manufactured homes.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... glass doors used in manufactured homes. 3280.403 Section 3280.403 Housing and Urban Development... AND SAFETY STANDARDS Testing § 3280.403 Standard for windows and sliding glass doors used in manufactured homes. (a) Scope. This section sets the requirements for prime windows and sliding glass...

  14. 24 CFR 3280.403 - Standard for windows and sliding glass doors used in manufactured homes.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... glass doors used in manufactured homes. 3280.403 Section 3280.403 Housing and Urban Development... AND SAFETY STANDARDS Testing § 3280.403 Standard for windows and sliding glass doors used in manufactured homes. (a) Scope. This section sets the requirements for prime windows and sliding glass...

  15. 24 CFR 3280.403 - Standard for windows and sliding glass doors used in manufactured homes.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... glass doors used in manufactured homes. 3280.403 Section 3280.403 Housing and Urban Development... AND SAFETY STANDARDS Testing § 3280.403 Standard for windows and sliding glass doors used in... the requirements for prime windows and sliding glass doors except for windows used in entry...

  16. 24 CFR 3280.403 - Standard for windows and sliding glass doors used in manufactured homes.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... glass doors used in manufactured homes. 3280.403 Section 3280.403 Housing and Urban Development... AND SAFETY STANDARDS Testing § 3280.403 Standard for windows and sliding glass doors used in manufactured homes. (a) Scope. This section sets the requirements for prime windows and sliding glass...

  17. Whole slide imaging: uses and limitations for surgical pathology and teaching.

    PubMed

    Boyce, B F

    2015-07-01

    Advances in computer and software technology and in the quality of images produced by digital cameras together with development of robotic devices that can take glass histology slides from a cassette holding many slides and place them in a conventional microscope for electronic scanning have facilitated the development of whole slide imaging (WSI) systems during the past decade. Anatomic pathologists now have opportunities to test the utility of WSI systems for diagnostic, teaching and research purposes and to determine their limitations. Uses include rendering primary diagnoses from scanned hematoxylin and eosin stained tissues on slides, reviewing frozen section or routine slides from remote locations for interpretation or consultation. Also, WSI can replace physical storage of glass slides with digital images, storing images of slides from outside institutions, presenting slides at clinical or research conferences, teaching residents and medical students, and storing fluorescence images without fading or quenching of the fluorescence signal. Limitations include the high costs of the scanners, maintenance contracts and IT support, storage of digital files and pathologists' lack of familiarity with the technology. Costs are falling as more devices and systems are sold and cloud storage costs drop. Pathologist familiarity with the technology will grow as more institutions purchase WSI systems. The technology holds great promise for the future of anatomic pathology. PMID:25901738

  18. Whole slide imaging: uses and limitations for surgical pathology and teaching.

    PubMed

    Boyce, B F

    2015-07-01

    Advances in computer and software technology and in the quality of images produced by digital cameras together with development of robotic devices that can take glass histology slides from a cassette holding many slides and place them in a conventional microscope for electronic scanning have facilitated the development of whole slide imaging (WSI) systems during the past decade. Anatomic pathologists now have opportunities to test the utility of WSI systems for diagnostic, teaching and research purposes and to determine their limitations. Uses include rendering primary diagnoses from scanned hematoxylin and eosin stained tissues on slides, reviewing frozen section or routine slides from remote locations for interpretation or consultation. Also, WSI can replace physical storage of glass slides with digital images, storing images of slides from outside institutions, presenting slides at clinical or research conferences, teaching residents and medical students, and storing fluorescence images without fading or quenching of the fluorescence signal. Limitations include the high costs of the scanners, maintenance contracts and IT support, storage of digital files and pathologists' lack of familiarity with the technology. Costs are falling as more devices and systems are sold and cloud storage costs drop. Pathologist familiarity with the technology will grow as more institutions purchase WSI systems. The technology holds great promise for the future of anatomic pathology.

  19. Interfacial sliding stress in Si{sub 3}N{sub 4}/BN fibrous monoliths.

    SciTech Connect

    Singh, D.; Goretta, K. C.; Richardson,, J. W., Jr.; de Arellano-Lopez, A. R.; Energy Technology; Univ. de Sevilla

    2002-05-24

    Pushout tests of Si{sub 3}N{sub 4} cells in Si{sub 3}N{sub 4}/BN fibrous monoliths yielded values for debond and sliding stresses of 45{+-}8 and 25{+-}7 MPa, respectively. The sliding stress was consistent with estimates of residual stresses and the interfacial friction coefficient.

  20. An Antique Microscope Slide Brings the Thrill of Discovery into a Contemporary Biology Classroom

    ERIC Educational Resources Information Center

    Reiser, Frank

    2012-01-01

    The discovery of a Victorian-era microscope slide titled "Grouped Flower Seeds" began an investigation into the scientific and historical background of the antique slide to develop its usefulness as a multidisciplinary tool for PowerPoint presentations usable in contemporary biology classrooms, particularly large-enrollment sections. The resultant…

  1. Self-Sustained Oscillatory Sliding Movement of Doublet Microtubules and Flagellar Bend Formation.

    PubMed

    Ishijima, Sumio

    2016-01-01

    It is well established that the basis for flagellar and ciliary movements is ATP-dependent sliding between adjacent doublet microtubules. However, the mechanism for converting microtubule sliding into flagellar and ciliary movements has long remained unresolved. The author has developed new sperm models that use bull spermatozoa divested of their plasma membrane and midpiece mitochondrial sheath by Triton X-100 and dithiothreitol. These models enable the observation of both the oscillatory sliding movement of activated doublet microtubules and flagellar bend formation in the presence of ATP. A long fiber of doublet microtubules extruded by synchronous sliding of the sperm flagella and a short fiber of doublet microtubules extruded by metachronal sliding exhibited spontaneous oscillatory movements and constructed a one beat cycle of flagellar bending by alternately actuating. The small sliding displacement generated by metachronal sliding formed helical bends, whereas the large displacement by synchronous sliding formed planar bends. Therefore, the resultant waveform is a half-funnel shape, which is similar to ciliary movements. PMID:26863204

  2. Public Playground Equipment: Suggested Safety Requirements and Supporting Rationale for Swing Assemblies and Straight Slides.

    ERIC Educational Resources Information Center

    Mahajan, Bal; And Others

    This memorandum report proposes a safety standard to reduce the frequency and severity of children's impacts with the suspended members of swing assemblies and falls from slide surfaces, under conditions of normal use and reasonably foreseeable misuse. The standard applies to swings and straight slides intended for use as public playground…

  3. "Discoveries in Planetary Sciences": Slide Sets Highlighting New Advances for Astronomy Educators

    NASA Astrophysics Data System (ADS)

    Brain, David; Schneider, N.; Molaverdikhani, K.; Afsharahmadi, F.

    2012-10-01

    We present two new features of an ongoing effort to bring recent newsworthy advances in planetary science to undergraduate lecture halls. The effort, called 'Discoveries in Planetary Sciences', summarizes selected recently announced discoveries that are 'too new for textbooks' in the form of 3-slide PowerPoint presentations. The first slide describes the discovery, the second slide discusses the underlying planetary science concepts at a level appropriate for students of 'Astronomy 101', and the third presents the big picture implications of the discovery. A fourth slide includes links to associated press releases, images, and primary sources. This effort is generously sponsored by the Division for Planetary Sciences of the American Astronomical Society, and the slide sets are available at http://dps.aas.org/education/dpsdisc/ for download by undergraduate instructors or any interested party. Several new slide sets have just been released, and we summarize the topics covered. The slide sets are also being translated into languages other than English (including Spanish and Farsi), and we will provide an overview of the translation strategy and process. Finally, we will present web statistics on how many people are using the slide sets, as well as individual feedback from educators.

  4. A mechanism of stick-slip fault sliding without friction rate dependence and supersonic wave propagation

    NASA Astrophysics Data System (ADS)

    Karachevtseva, Iuliia; Dyskin, Arcady; Pasternak, Elena

    2015-04-01

    Stick-slip sliding is often observed at various scales and in particular in fault sliding and the accompanied seismic events. Stick-slip is conventionally associated with rate-dependent friction, in particular the intermittent change between static and kinetic friction. However the accumulation of elastic energy in the sliding plates on both sides of the fault can produce oscillations in the velocity of sliding even if the friction coefficient is constant. This manifests itself in terms of oscillations in the sliding velocity somewhat resembling the stick-slip movement. Furthermore, over long faults the sliding exhibits wave-like propagation. We present a model that shows that the zones of non-zero sliding velocities propagate along the fault with the velocity of p-wave. The mechanism of such fast wave propagation is the normal (tensile/compressive) stresses in the neighbouring elements (normal stresses on the planes normal to the fault surface). The strains associated with these stresses are controlled by the Young's modulus rather than shear modulus resulting in the p-wave velocity of propagation of the sliding zone. This manifests itself as a supersonic (with respect to the s-waves) propagation of an apparent shear rupture.

  5. Self-Sustained Oscillatory Sliding Movement of Doublet Microtubules and Flagellar Bend Formation

    PubMed Central

    Ishijima, Sumio

    2016-01-01

    It is well established that the basis for flagellar and ciliary movements is ATP-dependent sliding between adjacent doublet microtubules. However, the mechanism for converting microtubule sliding into flagellar and ciliary movements has long remained unresolved. The author has developed new sperm models that use bull spermatozoa divested of their plasma membrane and midpiece mitochondrial sheath by Triton X-100 and dithiothreitol. These models enable the observation of both the oscillatory sliding movement of activated doublet microtubules and flagellar bend formation in the presence of ATP. A long fiber of doublet microtubules extruded by synchronous sliding of the sperm flagella and a short fiber of doublet microtubules extruded by metachronal sliding exhibited spontaneous oscillatory movements and constructed a one beat cycle of flagellar bending by alternately actuating. The small sliding displacement generated by metachronal sliding formed helical bends, whereas the large displacement by synchronous sliding formed planar bends. Therefore, the resultant waveform is a half-funnel shape, which is similar to ciliary movements. PMID:26863204

  6. To the Point: How Management Faculty Use Powerpoint Slides and Quizzes

    ERIC Educational Resources Information Center

    Williamson, Stan; Clow, Kenneth E.; Stevens, Robert E.

    2011-01-01

    This exploratory study examines U.S. management faculty usage of two types of supplements: PowerPoint (PPT) slides and quizzes. Results suggest the majority (67%) of experienced management faculty frequently employ PowerPoint in their classes. However, they do not see PPT basic slides provided by the publisher as very central to getting their…

  7. Diagnosis of major cancer resection specimens with virtual slides: impact of a novel digital pathology workstation.

    PubMed

    Randell, Rebecca; Ruddle, Roy A; Thomas, Rhys G; Mello-Thoms, Claudia; Treanor, Darren

    2014-10-01

    Digital pathology promises a number of benefits in efficiency in surgical pathology, yet the longer time required to review a virtual slide than a glass slide currently represents a significant barrier to the routine use of digital pathology. We aimed to create a novel workstation that enables pathologists to view a case as quickly as on the conventional microscope. The Leeds Virtual Microscope (LVM) was evaluated using a mixed factorial experimental design. Twelve consultant pathologists took part, each viewing one long cancer case (12-25 slides) on the LVM and one on a conventional microscope. Total time taken and diagnostic confidence were similar for the microscope and LVM, as was the mean slide viewing time. On the LVM, participants spent a significantly greater proportion of the total task time viewing slides and revisited slides more often. The unique design of the LVM, enabling real-time rendering of virtual slides while providing users with a quick and intuitive way to navigate within and between slides, makes use of digital pathology in routine practice a realistic possibility. With further practice with the system, diagnostic efficiency on the LVM is likely to increase yet more.

  8. Whole-slide imaging in pathology: the potential impact on PACS

    NASA Astrophysics Data System (ADS)

    Horii, Steven C.

    2007-03-01

    Pathology, the medical specialty charged with the evaluation of macroscopic and microscopic aspects of disease, is increasingly turning to digital imaging. While the conventional tissue blocks and glass slides form an "archive" that pathology departments must maintain, digital images acquired from microscopes or digital slide scanners are increasingly used for telepathology, consultation, and intra-facility communication. Since many healthcare facilities are moving to "enterprise PACS" with departments in addition to radiology using the infrastructure of such systems, some understanding of the potential of whole-slide digital images is important. Network and storage designers, in particular, are very likely to be impacted if a significant number of such images are to be moved on, or stored (even temporarily) in, enterprise PACS. As an example, a typical commercial whole-slide imaging system typically generates 15 gigabytes per slide scanned (per focal plane). Many of these whole-slide scanners have a throughput of 1000 slides per day. If that full capacity is used and all the resulting digital data is moved to the enterprise PACS, it amounts to 15 terabytes per day; the amount of data a large radiology department might generate in a year or two. This paper will review both the clinical scenarios of whole-slide imaging as well as the resulting data volumes. The author will emphasize the potential PACS infrastructure impact of such huge data volumes.

  9. A sliding-bulge structure at the Dicer processing site of pre-miRNAs regulates alternative Dicer processing to generate 5'-isomiRs.

    PubMed

    Ma, Hongming; Wu, Yonggan; Niu, Qi; Zhang, Junli; Jia, Gengxiang; Manjunath, N; Wu, Haoquan

    2016-09-01

    5'-isomiRs expand the repertoire of miRNA targets. However, how they are generated is not well understood. Previously, we showed that for some miRNAs in mammalian cells, Drosha cleaves at multiple sites to generate multiple pre-miRNAs that give rise to multiple 5'-isomiRs. Here, we showed that for some other miRNAs, 5'-isomiRs are generated by alternative Dicer processing. In addition, we showed that in miR-203, alternative Dicer processing is regulated by a conserved sliding-bulge structure at the Dicer processing site, which allows the pre-miRNA molecule to fold into two different structures that are processed differently by Dicer. So far no RNA motif that slides to change conformation and alter a protein-RNA interaction has been reported. Thus, our study revealed a novel RNA motif that regulates 5'-isomiR generation in some miRNAs. It might also contribute to regulating protein-RNA interactions in other biological processes, since it takes only one point mutation to generate the sliding bulge, and there are a large number of different RNAs in the cell. PMID:27656682

  10. Studies on cilia. 3. Further studies on the cilium tip and a "sliding filament" model of ciliary motility.

    PubMed

    Satir, P

    1968-10-01

    This study confirms and extends previous work on the lateral cilia of the fresh-water mussel, Elliptio complanatus, in support of a "sliding filament" mechanism of ciliary motility wherein peripheral filaments (microtubules) do not change length during beat (see Satir, 1967). Short sequences of serial sections of tips are examined in control (nonbeating) and activated (metachronal wave) preparations. Several different tip types, functional rather than morphogenetic variants, are demonstrated, but similarly bent cilia have similar tips. The peripheral filaments are composed of two subfibers: a and b. The bent regions of cilia are in the form of circular arcs, and apparent differences in subfiber-b length at the tip are those predicted solely by geometry of the stroke without the necessity of assuming filament contraction. Various subfibers b apparently move with respect to one another during beat, since small systematic variations in relative position can be detected from cilium to cilium. While subfiber-b lengths are uniform throughout, subfiber-a lengths are morphologically different for each filament: 8 and 3 are about 0.8 micro longer than 1, 4 and 5, but each unique length is independent of stroke position or tip type. Subfiber-a does not contract, nor does it move, e.g. slide, with respect to subfiber-b of the same doublet. The central pair of filaments extends to the tip of the cilium where its members fuse. Subunit assembly in ciliary microtubules is evidently precise. This may be of importance in establishing the relationships needed for mechanochemical interactions that produce sliding and beat.

  11. Insights from new high-resolution data from the Traenadjupet Slide on the Norwegian margin

    NASA Astrophysics Data System (ADS)

    Mozzato, Alessandro; Tappin, David; Talling, Peter; Cartigny, Matthieu; Long, David; Hunt, James; Watts, Camilla; Pope, Ed; Allin, Joshua; Stanford, Jennifer; Dowdeswell, Julian

    2015-04-01

    Submarine landslides are among the largest mass flows on Earth and can be far larger than landslides on land. They can generate tsunami and therefore represent a significant geohazard. A series of large submarine landslides have been studied previously in unusual detail along the Norwegian continental margin, including the Storegga and Traenadjupet Slides. The most closely studied is the Storegga slide(1,2) which occurred 8.2k BP and moved >3,000 km3 of sediment(2). A tsunami with run up heights sometimes reaching 20m high has been identified from deposits mapped along the Norwegian, Shetland and mainland Scottish coasts (1). The Traenadjupet Slide is the second largest slide on the Norwegian margin with a volume of about 900km3. It has been dated to ~4k BP(3,4). The volume is comparable to that of the Storegga Slide. However, no major tsunami deposit at 4ka has yet been mapped that links to the Traenadjupet Slide (Stein Bondevik, pers. comm.). The purpose of this study is to obtain new insights into how the Traenadjupet Slide was emplaced. In particular, why did movement of 900km3 of sediment during the Traenadjupet Slide fail to produce a major tsunami at 4ka? We present a new field dataset for the Traendajupet Slide including MBES bathymetry, sub-bottom profiles, and piston cores acquired during the 64PE391 research expedition in July 2014, together with data acquired previously during the JCR51 cruise. These datasets cover a large part of Traenadjupet slide and give new insights into the mechanism of the slide failure. The Traenadjupet Slide morphology is very different to that of the Storegga Slide. The Storegga Slide disintegrated generating debris flows and turbidity currents that propagated for hundreds of kilometres. The Traenadjupet Slide, on the other hand, appears not to have disintegrated in a similar manner, but rather left thick mounded deposits at the foot of the slope(5). Several distinct lobes covered with 500m-scale sediment blocks are visible

  12. Dry Sliding Tribological Studies of AA6061-B4C-Gr Hybrid Composites

    NASA Astrophysics Data System (ADS)

    Monikandan, V. V.; Joseph, M. A.; Rajendrakumar, P. K.

    2016-08-01

    The dry sliding behavior of stir-cast AA6061-10 wt.% B4C composites containing 2.5, 5 and 7.5 wt.% graphite particles was studied as a function of applied load, sliding speed and sliding distance on a pin-on-disk tribotester. The wear rate and friction coefficient increased with increase in applied load and sliding distance. The increase in graphite addition reduced the increase in wear rate and friction coefficient in the sliding speed range 2-2.5 m/s. Scanning electron microscopy of the worn pin revealed a graphite tribolayer, and transmission electron microscopy revealed overlapping deformation bands under 30 N applied load. Upon increasing the applied load to 40 N, welded region with fine crystalline structure was formed due to dynamic recrystallization of AA6061 alloy matrix.

  13. Dry Sliding Tribological Studies of AA6061-B4C-Gr Hybrid Composites

    NASA Astrophysics Data System (ADS)

    Monikandan, V. V.; Joseph, M. A.; Rajendrakumar, P. K.

    2016-10-01

    The dry sliding behavior of stir-cast AA6061-10 wt.% B4C composites containing 2.5, 5 and 7.5 wt.% graphite particles was studied as a function of applied load, sliding speed and sliding distance on a pin-on-disk tribotester. The wear rate and friction coefficient increased with increase in applied load and sliding distance. The increase in graphite addition reduced the increase in wear rate and friction coefficient in the sliding speed range 2-2.5 m/s. Scanning electron microscopy of the worn pin revealed a graphite tribolayer, and transmission electron microscopy revealed overlapping deformation bands under 30 N applied load. Upon increasing the applied load to 40 N, welded region with fine crystalline structure was formed due to dynamic recrystallization of AA6061 alloy matrix.

  14. Sliding Wear and Friction Behavior of Fuel Rod Material in Water and Dry State

    NASA Astrophysics Data System (ADS)

    Park, Jin Moo; Kim, Jae Hoon; Jeon, Kyeong Lak; Park, Jun Kyu

    In water cooled reactors, the friction between spacer grid and fuel rod can lead to severe wear and it is an important topic to study. In the present study, sliding wear behavior of zirconium alloy was investigated in water and dry state using the pin-on-disc sliding wear tester. Sliding wear resistance of zirconium alloy against heat treated inconel alloy was examined at room temperature. The parameters in this study were sliding velocity, axial load and sliding distance. The wear characteristics of zirconium alloy was evaluated by friction coefficient, specific wear rate and wear volume. The micro-mechanisms responsible for wear in zirconium alloy were identified to be micro-cutting, micro-pitting, delamination and micro-cracking of deformed surface zone.

  15. Changing the scale: slides and electron microscopy at the Virus Laboratory of the Pasteur Institute.

    PubMed

    Gaudillière, Jean-Paul

    2013-01-01

    Slides are material objects, the daily existence of which cannot be diassociated from the practice of microscopy. But what happens to slides when the examination tool is no longer an optical apparatus but an electon microscope? This is the core issue this paper examines. The answer it proposes is that electron microscope slides are not slides in the classical sense of the word but complex arrangements of materials including plates, cards, photographs and notebooks, which constitute an imaginary "slide," an assemblage the status and existence of which is defined in reference to the heritage of optical microscopy. To illustrate this argument, the paper follows the experimental work of Odile Croissant, the first electron microscopist at the Pasteur Institute in Paris during the 1940s and 1950s when the practices of the new microscopy were introduced and calibrated. PMID:24779109

  16. Sliding mode output feedback control based on tracking error observer with disturbance estimator.

    PubMed

    Xiao, Lingfei; Zhu, Yue

    2014-07-01

    For a class of systems who suffers from disturbances, an original output feedback sliding mode control method is presented based on a novel tracking error observer with disturbance estimator. The mathematical models of the systems are not required to be with high accuracy, and the disturbances can be vanishing or nonvanishing, while the bounds of disturbances are unknown. By constructing a differential sliding surface and employing reaching law approach, a sliding mode controller is obtained. On the basis of an extended disturbance estimator, a creative tracking error observer is produced. By using the observation of tracking error and the estimation of disturbance, the sliding mode controller is implementable. It is proved that the disturbance estimation error and tracking observation error are bounded, the sliding surface is reachable and the closed-loop system is robustly stable. The simulations on a servomotor positioning system and a five-degree-of-freedom active magnetic bearings system verify the effect of the proposed method.

  17. Energy Partitioning during Frictional Sliding at Coseismic Slip Rates

    NASA Astrophysics Data System (ADS)

    Hirose, T.; Mizoguchi, K.

    2008-12-01

    Determination of the energy partitioning during an earthquake is key to understanding the physics of earthquakes (e.g., Kanamori and Rivera, 2006). Observations made on natural faults that have experienced earthquakes suggest that part of the energy dissipates into a volume of rock surrounding the fault though grain crushing processes, forming fault gouge (e.g., Wilson et al., 2005). Thus we performed high-velocity wear experiments using a rotary-shear apparatus, in order to estimate the partitioning of the frictional work into heat and surface energy during frictional sliding at nearly coseismic slip rates. In particular, we attempted to test whether the ratio of the energy partitioning varies as a function of slip rate. The ratio of dissipated energy as heat to the total frictional work was estimated from the difference between measured temperature around the sliding surfaces and calculated temperature by 2D-FEM on the assumption that all frictional work converts into heat. The surface energy was estimated based on the particle size distribution of the wear materials, which was determined by FE-SEM image analysis. The particles size ranged between 0.03 and 10 μm in average diameter. In the experiments, hollow cylindrical specimens of gabbro were slid at slip rates of 0.004 to 0.3 m/s and normal stresses of 0.2 to 5.6 MPa under unconfined and dry conditions. Rock powder (gouge) was continuously produced by abrasive wear of initially bare fault surfaces during sliding. Because the sliding surfaces were not confined in the experiments, the gouge was extruded from the fault surfaces, resulting in shortening of axial length of specimen. In this study, we defined the dimensionless wear rate, given by that an axial shortening rate of the specimen was divided by slip rate. Then, we examined how the wear rate and temperature changed as a function of the rate of frictional work per a unit fault area, Ef, determined by shear stress multiplied by slip rate. Hereafter, Q and

  18. Sliding contacts on printed circuit boards and wear behavior

    NASA Astrophysics Data System (ADS)

    Le Solleu, J.-P.

    2010-04-01

    Automotive suppliers use since decades printed circuit boards (PCB) gold plating pads, as direct contact interface for low current sliding contacts. Several gold plating processes are available on the market, providing various wear behaviour. Some specific galvanic hard gold (AuCo or AuNi). plating was developed on PCB's. This specific plating generates extra costs due to the material quantity and also the process complexity. In a cost driven industry, the challenge is to use a standard low cost PCB for systems requesting high reliability performances. After a brief overview of standard PCB manufacturing processes and especially gold plating processes, the global experimental results of wear behaviour of three different gold plating technologies will be exposed and an explanation of the correlation between surface key parameters and wear out will be provided.

  19. Sliding Contact Bearings for Service to 700 C

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.

    1996-01-01

    Cylindrical, sliding contact bearings made entirely of a self-lubricating powder metallurgy composite (PM212) or of super alloy shells lined with clad PM212 were tested in an oscillating mode at temperatures from 25 to 700 C. Tests of 100 hr duration or longer were conducted at a bearing unit load of 3.45 Mpa (500 psi). Shorter duration tests at various unit loads up to 24.1 Mpa (3500 psi) were also conducted. In comparison tests, bearings lubricated with PM212 had superior anti-wear characteristics compared to the baseline, unlubricated, super alloy bearings: no galling of PM212-lubricated bearings occurred, while severe surface damage including galling occurred, especially at high loads, during the baseline tests. A heat treatment procedure, which dimensionally stabilizes PM212 and thereby minimizes clearance changes during high temperature bearing operation, is described.

  20. Sliding Mode Control of a Thermal Mixing Process

    NASA Technical Reports Server (NTRS)

    Richter, Hanz; Figueroa, Fernando

    2004-01-01

    In this paper we consider the robust control of a thermal mixer using multivariable Sliding Mode Control (SMC). The mixer consists of a mixing chamber, hot and cold fluid valves, and an exit valve. The commanded positions of the three valves are the available control inputs, while the controlled variables are total mass flow rate, chamber pressure and the density of the mixture inside the chamber. Unsteady thermodynamics and linear valve models are used in deriving a 5th order nonlinear system with three inputs and three outputs, An SMC controller is designed to achieve robust output tracking in the presence of unknown energy losses between the chamber and the environment. The usefulness of the technique is illustrated with a simulation.

  1. Infrared emission spectra from operating elastohydrodynamic sliding contacts

    NASA Technical Reports Server (NTRS)

    Lauer, J. L.

    1976-01-01

    Infrared emission spectra from an operating EHD sliding contact were obtained through a diamond window for an aromatic polymer solute present in equal concentration in four different fluids. Three different temperature ranges, three different loads, and three different speeds for every load were examined. Very sensitive Fourier spectrophotometric (Interferometric) techniques were employed. Band Intensities and band intensity ratios found to depend both on the operating parameters and on the fluid. Fluid film and metal surface temperatures were calculated from the spectra and their dependence on the mechanical parameters plotted. The difference between these temperatures could be plotted against shear rate on one curve for all fluids. However, at the same shear rate the difference between bulk fluid temperature and diamond window temperature was much higher for one of the fluids, a traction fluid, than for the others.

  2. Receding contact lines: From sliding drops to immersion lithography

    NASA Astrophysics Data System (ADS)

    Winkels, K. G.; Peters, I. R.; Evangelista, F.; Riepen, M.; Daerr, A.; Limat, L.; Snoeijer, J. H.

    2011-02-01

    Instabilities of receding contact lines often occur through the formation of a corner with a very sharp tip. These dewetting structures also appear in the technology of Immersion Lithography, where water is put between the lens and the silicon wafer to increase the optical resolution. In this paper we aim to compare corners appearing in Immersion Lithography to those at the tail of gravity driven-drops sliding down an incline. We use high speed recordings to measure the dynamic contact angle and the sharpness of the corner, for varying contact line velocity. It is found that these quantities behave very similarly for Immersion Lithography and drops on an incline. In addition, the results agree well with predictions by a lubrication model for cornered contact lines, hinting at a generic structure of dewetting corners.

  3. Towards slide enhancement with the titanium-molybdenum wire?

    PubMed

    Thiry, Pol; Barthélémi, Stéphane

    2010-12-01

    This study aims to improve the tribological properties of titanium-molybdenum wire. Following an analysis of the wire/bracket/ligation friction parameters and an overview of the technological research into means of reducing such friction,we set up several types of surface treatment in the laboratory by physical deposition in the vapor phase and using cold plasma technology. The specimens obtained underwent two types of tribological tests and were then subjected to traction and bending tests in order to determine the variations in their mechanical properties induced by the different types of treatment. For purposes of comparison, all the tests were conducted on untreated wire, TMA® Low-friction® wire and stainless steel wire and with two types of elastomeric ties. We were able to demonstrate some remarkable slide performances obtained using cold plasma nitriding while preserving the mechanical properties. A significant difference was observed relative to the other surface treatments.

  4. Mechanism of shallow disrupted slide induced by extreme rainfall

    NASA Astrophysics Data System (ADS)

    Igwe, O.; Fukuoka, H.

    2010-12-01

    On July 16, 2010, extreme rainfall attacked western Japan and it caused very intense rainfall in Shobara city, Hiroshima prefecture, Japan. This rainfall induced hundreds of shallow disrupted slides and many of those became debris flows. One of this debris flows attacked a house standing in front of the exit of a channel, and claimed a resident’s life. Western Japan had repeatedly similar disasters in the past. Last event took place from July 19 to 26, 2009, when western Japan had a severe rainstorms and caused floods and landslides. Most of the landslides are debris slide - debris flows. Most devastated case took place in Hofu city, Japan. On July 21, extremely intense rainstorm caused numerous debris flows and mud flows in the hillslopes. Some of the debris flows destroyed residential houses and home for elderly people, and finally killed 14 residents. One of the unusual feature of both disaster was that landslides are distributed in very narrow area. In the 2010 Shobara city disaster, all of the landslides were distributed in 5 km x 3 km, and in the 2009 Hofu city disaster, most devastated zone of landslides were 10 km x 5 km. Rain radars of Meteorological Agency of Government of Japan detected the intense rainfall, however, the spatial resolution is usually larger than 5 km and the disaster area is too small to predict landslides nor issue warning. Furthermore, it was found that the growth rate of baby clouds was very quick. The geology of both areas are rhyolite (Shobara) and granite (Hofu), so the areal assessment of landslide hazard should be prepared before those intense rainfall will come. As for the Hofu city case, it was proved that debris flows took place in the high precipitation area and covered by covered by weathered granite sands and silts which is called “masa". This sands has been proved susceptible against landslides under extreme rainfall conditions. However, the transition from slide - debris flow process is not well revealed, except

  5. Adaptive fuzzy sliding mode control scheme for uncertain systems

    NASA Astrophysics Data System (ADS)

    Noroozi, Navid; Roopaei, Mehdi; Jahromi, M. Zolghadri

    2009-11-01

    Most physical systems inherently contain nonlinearities which are commonly unknown to the system designer. Therefore, in modeling and analysis of such dynamic systems, one needs to handle unknown nonlinearities and/or uncertain parameters. This paper proposes a new adaptive tracking fuzzy sliding mode controller for a class of nonlinear systems in the presence of uncertainties and external disturbances. The main contribution of the proposed method is that the structure of the controlled system is partially unknown and does not require the bounds of uncertainty and disturbance of the system to be known; meanwhile, the chattering phenomenon that frequently appears in the conventional variable structure systems is also eliminated without deteriorating the system robustness. The performance of the proposed approach is evaluated for two well-known benchmark problems. The simulation results illustrate the effectiveness of our proposed controller.

  6. Turbocharger with sliding piston, and having vanes and leakage dams

    DOEpatents

    Roberts, Quentin; Alnega, Ahmed

    2011-12-06

    A turbocharger having a sliding piston for regulating exhaust gas flow into the turbine wheel includes a set of first vanes mounted on a fixed first wall of the turbine nozzle and projecting axially toward an opposite second wall of the nozzle, and/or a set of second vanes mounted on the end of the piston and projecting in an opposite axial direction toward the first wall of the nozzle. For the/each set of vanes, there are leakage dams formed on the wall that is adjacent the vane tips when the piston is closed. The leakage dams are closely adjacent the vane tips and discourage exhaust gas from leaking in a generally radial direction past the vane tips as the piston just begins to open from its fully closed position.

  7. Efficient segmentation of skin epidermis in whole slide histopathological images.

    PubMed

    Xu, Hongming; Mandal, Mrinal

    2015-08-01

    Segmentation of epidermis areas is an important step towards automatic analysis of skin histopathological images. This paper presents a robust technique for epidermis segmentation in whole slide skin histopathological images. The proposed technique first performs a coarse epidermis segmentation using global thresholding and shape analysis. The epidermis thickness is then estimated by a series of line segments perpendicular to the main axis of the initially segmented epidermis mask. If the segmented epidermis mask has a thickness greater than a predefined threshold, the segmentation is suspected to be inaccurate. A second pass of fine segmentation using k-means algorithm is then carried out over these coarsely segmented result to enhance the performance. Experimental results on 64 different skin histopathological images show that the proposed technique provides a superior performance compared to the existing techniques. PMID:26737135

  8. Fault stability inferred from granite sliding experiments at hydrothermal conditions

    USGS Publications Warehouse

    Blanpied, M.L.; Lockner, D.A.; Byerlee, J.D.

    1991-01-01

    Seismicity on crustal faults is concentrated in the depth interval 1-3 to 12-15 km. Tse and Rice (1986) suggested that the lower bound on seismicity is due to a switch with increasing temperature from velocity weakening (destabilizing) to velocity strengthening (stabilizing) friction. New data is presented from sliding experiments on granite at elevated T (23?? to 600??C) plus elevated PH2O(100 MPa). Results show velocity strengthening at room temperature, but velocity weakening from 100?? to 350??C (except at 250??). From 350?? to 600?? there are systematic trends from velocity weakening to strong velocity strengthening, and from high to low friction; neither trend was seen in tests on dry granite. The velocity dependence data imply the potential for unstable slip in the interval 100?? to 350??. Using a geotherm to map temperature to depth, this interval closely matches the observed earthquake distribution. -from Authors

  9. Mechanical protection of DLC films on fused silica slides

    NASA Technical Reports Server (NTRS)

    Nir, D.

    1985-01-01

    Measurements were made with a new test for improved quantitative estimation of the mechanical protection of thin films on optical materials. The mechanical damage was induced by a sand blasting system using spherical glass beads. Development of the surface damage was measured by the changes in the specular transmission and reflection, and by inspection using a surface profilometer and a scanning electron microscope. The changes in the transmittance versus the duration of sand blasting was measured for uncoated fused silica slides and coated ones. It was determined that the diamond like carbon films double the useful optical lifetime of the fused silica. Theoretical expressions were developed to describe the stages in surface deterioration. Conclusions were obtained for the SiO2 surface mechanism and for the film removal mechanism.

  10. Splice Sites Seldom Slide: Intron Evolution in Oomycetes

    PubMed Central

    Sêton Bocco, Steven; Csűrös, Miklós

    2016-01-01

    We examine exon junctions near apparent amino acid insertions and deletions in alignments of orthologous protein-coding genes. In 1,917 ortholog families across nine oomycete genomes, 10–20% of introns are near an alignment gap, indicating at first sight that splice-site displacements are frequent. We designed a robust algorithmic procedure for the delineation of intron-containing homologous regions, and combined it with a parsimony-based reconstruction of intron loss, gain, and splice-site shift events on a phylogeny. The reconstruction implies that 12% of introns underwent an acceptor-site shift, and 10% underwent a donor-site shift. In order to offset gene annotation problems, we amended the procedure with the reannotation of intron boundaries using alignment evidence. The corresponding reconstruction involves much fewer intron gain and splice-site shift events. The frequency of acceptor- and donor-side shifts drops to 4% and 3%, respectively, which are not much different from what one would expect by random codon insertions and deletions. In other words, gaps near exon junctions are mostly artifacts of gene annotation rather than evidence of sliding intron boundaries. Our study underscores the importance of using well-supported gene structure annotations in comparative studies. When transcription evidence is not available, we propose a robust ancestral reconstruction procedure that corrects misannotated intron boundaries using sequence alignments. The results corroborate the view that boundary shifts and complete intron sliding are only accidental in eukaryotic genome evolution and have a negligible impact on protein diversity. PMID:27412607

  11. Splice Sites Seldom Slide: Intron Evolution in Oomycetes.

    PubMed

    Sêton Bocco, Steven; Csűrös, Miklós

    2016-01-01

    We examine exon junctions near apparent amino acid insertions and deletions in alignments of orthologous protein-coding genes. In 1,917 ortholog families across nine oomycete genomes, 10-20% of introns are near an alignment gap, indicating at first sight that splice-site displacements are frequent. We designed a robust algorithmic procedure for the delineation of intron-containing homologous regions, and combined it with a parsimony-based reconstruction of intron loss, gain, and splice-site shift events on a phylogeny. The reconstruction implies that 12% of introns underwent an acceptor-site shift, and 10% underwent a donor-site shift. In order to offset gene annotation problems, we amended the procedure with the reannotation of intron boundaries using alignment evidence. The corresponding reconstruction involves much fewer intron gain and splice-site shift events. The frequency of acceptor- and donor-side shifts drops to 4% and 3%, respectively, which are not much different from what one would expect by random codon insertions and deletions. In other words, gaps near exon junctions are mostly artifacts of gene annotation rather than evidence of sliding intron boundaries. Our study underscores the importance of using well-supported gene structure annotations in comparative studies. When transcription evidence is not available, we propose a robust ancestral reconstruction procedure that corrects misannotated intron boundaries using sequence alignments. The results corroborate the view that boundary shifts and complete intron sliding are only accidental in eukaryotic genome evolution and have a negligible impact on protein diversity. PMID:27412607

  12. Ferguson rock slide buries California State Highway near Yosemite National Park

    USGS Publications Warehouse

    Harp, E.L.; Reid, M.E.; Godt, J.W.; DeGraff, J.V.; Gallegos, A.J.

    2008-01-01

    During spring 2006, talus from the toe area of a rock-block slide of about 800,000 m3 buried California State Highway 140, one of the main routes into heavily-visited Yosemite National Park, USA. Closure of the highway for 92 days caused business losses of about 4.8 million USD. The rock slide, composed of slate and phyllite, moved slowly downslope from April to June 2006, creating a fresh head scarp with 9-12 m of displacement. Movement of the main rock slide, a re-activation of an older slide, was triggered by an exceptionally wet spring 2006, following a very wet spring 2005. As of autumn 2006, most of the main slide appeared to be at rest, although rocks occasionally continued to fall from steep, fractured rock masses at the toe area of the slide. Future behavior of the slide is difficult to predict, but possible scenarios range from continued scattered rock fall to complete rapid failure of the entire mass. Although unlikely except under very destabilizing circumstances, a worst-case, rapid failure of the entire rock slide could extend across the Merced River, damming the river and creating a reservoir. As a temporary measure, traffic has been rerouted to the opposite side of the Merced River at about the same elevation as the buried section of Highway 140. A state-of-the-art monitoring system has been installed to detect movement in the steep talus slope, movement of the main slide mass, local strong ground motion from regional earthquakes, and sudden changes in stream levels, possibly indicating damming of the river by slide material. ?? 2008 Springer-Verlag.

  13. Ferguson rock slide buries California State Highway near Yosemite National Park

    USGS Publications Warehouse

    Harp, Edwin L.; Reid, Mark E.; Godt, Jonathan W.; DeGraff, Jerome V.; Gallegos, Alan J.

    2008-01-01

    During spring 2006, talus from the toe area of a rock-block slide of about 800,000 m3 buried California State Highway 140, one of the main routes into heavily-visited Yosemite National Park, USA. Closure of the highway for 92 days caused business losses of about 4.8 million USD. The rock slide, composed of slate and phyllite, moved slowly downslope from April to June 2006, creating a fresh head scarp with 9-12 m of displacement. Movement of the main rock slide, a re-activation of an older slide, was triggered by an exceptionally wet spring 2006, following a very wet spring 2005. As of autumn 2006, most of the main slide appeared to be at rest, although rocks occasionally continued to fall from steep, fractured rock masses at the toe area of the slide. Future behavior of the slide is difficult to predict, but possible scenarios range from continued scattered rock fall to complete rapid failure of the entire mass. Although unlikely except under very destabilizing circumstances, a worst-case, rapid failure of the entire rock slide could extend across the Merced River, damming the river and creating a reservoir. As a temporary measure, traffic has been rerouted to the opposite side of the Merced River at about the same elevation as the buried section of Highway 140. A state-of-the-art monitoring system has been installed to detect movement in the steep talus slope, movement of the main slide mass, local strong ground motion from regional earthquakes, and sudden changes in stream levels, possibly indicating damming of the river by slide material.

  14. Attributes and origins of ancient submarine slides and filled embayments: Examples from the Gulf Coast basin

    SciTech Connect

    Morton, R.A. )

    1993-06-01

    Large submarine slides and associated shelf margin embayments represent an intermediate member in the continuum of unstable shelf margin features. On seismic profiles, they may resemble submarine canyons, but are different in their size, morphology, origin, and hydrocarbon exploration potential. Two large Neogene submarine slides, located in the northwestern Gulf Coast Basin, formed on the upper slope and flanks of prominent shelf-margin deltas. The basal detachment surface of each slide is a structural discontinuity that may be misinterpreted as an erosional unconformity and misidentified as a stratigraphic boundary separating depositional sequences. Regional stratigraphic correlations indicate that both slides were initiated after the continental platform was flooded. The condensed sections deposited during the rise in relative sea level contain the basal detachment surfaces. The relationships between the slides and sea level fluctuations are uncertain. The shelf-margin embayments created by the slides apparently were partly excavated during periods of lowered relative sea level and were filled during sea level rise and highstand. Eventually the preslide morphology of the shelf margin was restored by coalsced prograding deltas. Submarine slides exhibit landward dipping, wavy, mounded, and chaotic seismic reflection that are manifestations of slump blocks and other mass transport material. Composition of these internally derived slide deposits depends on th composition of the pre-existing shelf margin. Embayment fill above the slide consists mostly of externally derived mudstones and sandstones deposited by various disorganized slope processes, as well as more organized submarine channel-level systems. Thickest slope sandstones, which are potential hydrocarbon reservoirs, commonly occur above the basal slide mudstones where seismic reflections change from chaotic patterns to overlying wavy or subhorizontal reflections. 46 refs., 10 figs., 1 tab.

  15. A new date for a large pre-Holocene Storegga Slide

    NASA Astrophysics Data System (ADS)

    Watts, Millie; Talling, Peter; Hunt, James; Xuan, Chuang; van Peer, Tim

    2016-04-01

    Submarine landslides represent one of the most hazardous geological events to impact North European margins. Whilst infrequent, ancient events have generated large tsunamis, a repeat of which today would cause significant damage. A sediment piston core suite collected in 2014 from the Aegir Ridge contains a record of two turbidites sourced from very large-volume slides (over 3,000 km3). The youngest turbidite is dated to 8.2 ka BP and geo- chemically confirmed as sourced from the Storegga Slide Complex. The Storegga Tsunami has been recorded across the North Atlantic and was 5m high in Scotland, and waves in excess of 20 m in the Faroes. The younger 8.2 ka turbidite is interpreted as a distal deposit from the Holocene Storegga Slide. The lower turbidite is sub- stantially larger in thickness, yet geochemically similar, indicating a common source with the Storegga turbidite. Through a multi-proxy approach to dating, including radiocarbon analysis, paleomagnetic stratigraphy and coccol- ith biostratigraphy, the date of emplacement has been constrained to 50-65 ka BP. This lower event is interpreted as a pre-Holocene failure from the Storegga Slide Complex, the most recent of which has been previously identified as the Tampen Slide, initially dated to 130 ka BP. The new date applied to this slide challenges the existing theory that mega-slides from the Storegga Slide Complex require a full glacial cycle to build up enough sediment for a tsunamigenic landslide. The slide occurred during late MIS 3, characterised by periods of rapid warming of up to 15◦ within 200 years. The exact timing will be further refined to assess the relationship between catastrophic slides and periods of rapid climate change. The implications of this event are significant. The deposit from this event is between 2.5 to 4 times larger, implying the potential for significantly larger waves, at a higher frequency than previously thought.

  16. Were the Trænadjupet and Nyk Slides multi-staged?

    NASA Astrophysics Data System (ADS)

    Allin, Joshua; Mozzato, Alessandro; Tappin, David; Talling, Peter; Hunt, James

    2016-04-01

    Submarine landslides originating from active and extinct trough mouth fans are some of the largest single mass movements evident on Earth. These landslides are capable of damaging offshore infrastructure and can also trigger far-reaching tsunamis. For these reasons understanding the timing, dynamics, and triggering mechanisms of large submarine landslides is important for regional geohazard assessment. The Trænadjupet Slide occurred 4,000 ca. years ago and originated from the Trænadjupet paleo-ice stream on the Central Norwegian margin. The Trænadjupet Slide partially buried the deposits of a previous slide originating from the same section of the Norwegian margin; the Nyk Slide, which occurred at 16,000 ca years ago. Although the Trænadjupet Slide had an estimated volume of 900 km3 and originated from a shallow water depth, it does not appear to have triggered a tsunami. This is in contrast to the comparably-sized Storegga Slide, which produced a tsunami that devastated coastal areas as far away as Scotland. The apparent absence of a tsunami suggests that the failure dynamics for the Trænadjupet slide were different to that of other large slides along the Norwegian Margin. The deposits of both the Trænadjupet and Nyk Slides consist of several blocky lobes extending out into the Lofoten Basin. The lobate morphology of the deposits may imply that both slides occurred in a number of different and possibly temporally-disparate stages. Importantly, multi-staged failures have a much lower tsunamigenic potential due to the lower initial volume displacement. These staggered failures consisting of smaller sediment volumes might explain why no contemporaneous onshore tsunami deposits are found on nearby coastlines, particularly in the case of the post-glacial Trænadjupet Slide. Here we present a new sediment core dataset collected from the previously un-sampled lobes of the Trænadjupet and Nyk Slides. These cores will help us better characterise the deposit types

  17. In vitro evaluation of resistance to sliding in self-ligating and conventional bracket systems during dental alignment

    PubMed Central

    Cordasco, Giancarlo; Lo Giudice, Antonino; Militi, Angela; Nucera, Riccardo; Triolo, Giuseppe

    2012-01-01

    Objective To investigate the resistance to sliding (RS) in self-ligating and conventional ligation bracket systems at 5 different second-order bracket angulations by using low-stiffness alignment wires in a 3-bracket experimental model and to verify the performance of the main RS components in both systems when these wires are used. Methods Interactive self-ligating brackets with closed and open slides were used for the self-ligating (SL) and conventional ligation (CL) groups, respectively; elastomeric ligatures (1 mm inner diameter) were used in the latter system. The alignment wire used was 0.014 inch heat-activated NiTi (austenitic finish temperature set at 36℃ by the manufacturer). A custom-made testing machine was used to measure frictional resistance. Tests were repeated 5 times at every angulation simulated. All data were analyzed statistically. Results The RS increased significantly with increasing angulation in both SL and CL groups (p < 0.0001). However, the RS values were significantly higher at every angulation (p < 0.0001) in the CL group. Conclusions Despite the relevance of the binding phenomenon, ligation forces predominantly affect the RS when low-stiffness alignment wires are used. PMID:23112953

  18. Revisit the classical Newmark displacement method for earthquake-induced wedge slide

    NASA Astrophysics Data System (ADS)

    Yang, Che-Ming; Cheng, Hui-Yun; Wu, Wen-Jie; Hsu, Chang-Hsuan; Dong, Jia-Jyun; Lee, Chyi-Tyi

    2016-04-01

    Newmark displacement method has been widely used to study the earthquake-induced landslides and adopted to explore the initiation and kinematics of catastrophic planar failure in recent years. However, surprisingly few researchers utilize the Newmark displacement method to study the earthquake-induced wedge slide. The classical Newmark displacement method for earthquake-induced wedge sliding assumed the wedge is rigid and the vertical acceleration, as well as the horizontal acceleration perpendicular to the sliding direction, is neglected. Moreover, the friction coefficients on the weak planes are assumed as unchanged during sliding. The purpose of this study is to test the reasonableness of the aforementioned assumptions. This study uses Newmark displacement method incorporating the rigid wedge method (RWM) and maximum shear stress method (MSSM) to evaluate the influence of wedge deformation. We design the geometry of the wedge and input the synthetic seismicity to trigger the wedge slide. The influence for neglecting the vertical and horizontal (perpendicular to the sliding direction) accelerations is also assessed. Besides, this research incorporates the velocity-displacement dependent friction law in the analysis to evaluate the influence of constant friction coefficient assumption. Result of this study illustrated that the aforementioned assumptions have significant effects on the calculated permeant displacement, moving speed, and failure initiation. To conclude, this study provides new insights on the initiation and kinematics of an earthquake induced wedge slide.

  19. Automated robust registration of grossly misregistered whole-slide images with varying stains

    NASA Astrophysics Data System (ADS)

    Litjens, G.; Safferling, K.; Grabe, N.

    2016-03-01

    Cancer diagnosis and pharmaceutical research increasingly depend on the accurate quantification of cancer biomarkers. Identification of biomarkers is usually performed through immunohistochemical staining of cancer sections on glass slides. However, combination of multiple biomarkers from a wide variety of immunohistochemically stained slides is a tedious process in traditional histopathology due to the switching of glass slides and re-identification of regions of interest by pathologists. Digital pathology now allows us to apply image registration algorithms to digitized whole-slides to align the differing immunohistochemical stains automatically. However, registration algorithms need to be robust to changes in color due to differing stains and severe changes in tissue content between slides. In this work we developed a robust registration methodology to allow for fast coarse alignment of multiple immunohistochemical stains to the base hematyoxylin and eosin stained image. We applied HSD color model conversion to obtain a less stain color dependent representation of the whole-slide images. Subsequently, optical density thresholding and connected component analysis were used to identify the relevant regions for registration. Template matching using normalized mutual information was applied to provide initial translation and rotation parameters, after which a cost function-driven affine registration was performed. The algorithm was validated using 40 slides from 10 prostate cancer patients, with landmark registration error as a metric. Median landmark registration error was around 180 microns, which indicates performance is adequate for practical application. None of the registrations failed, indicating the robustness of the algorithm.

  20. Efficient Sample Preparation from Complex Biological Samples Using a Sliding Lid for Immobilized Droplet Extractions

    PubMed Central

    2015-01-01

    Sample preparation is a major bottleneck in many biological processes. Paramagnetic particles (PMPs) are a ubiquitous method for isolating analytes of interest from biological samples and are used for their ability to thoroughly sample a solution and be easily collected with a magnet. There are three main methods by which PMPs are used for sample preparation: (1) removal of fluid from the analyte-bound PMPs, (2) removal of analyte-bound PMPs from the solution, and (3) removal of the substrate (with immobilized analyte-bound PMPs). In this paper, we explore the third and least studied method for PMP-based sample preparation using a platform termed Sliding Lid for Immobilized Droplet Extractions (SLIDE). SLIDE leverages principles of surface tension and patterned hydrophobicity to create a simple-to-operate platform for sample isolation (cells, DNA, RNA, protein) and preparation (cell staining) without the need for time-intensive wash steps, use of immiscible fluids, or precise pinning geometries. Compared to other standard isolation protocols using PMPs, SLIDE is able to perform rapid sample preparation with low (0.6%) carryover of contaminants from the original sample. The natural recirculation occurring within the pinned droplets of SLIDE make possible the performance of multistep cell staining protocols within the SLIDE by simply resting the lid over the various sample droplets. SLIDE demonstrates a simple easy to use platform for sample preparation on a range of complex biological samples. PMID:24927449