Sample records for sliding friction coefficient

  1. Reciprocal Sliding Friction Model for an Electro-Deposited Coating and Its Parameter Estimation Using Markov Chain Monte Carlo Method

    PubMed Central

    Kim, Kyungmok; Lee, Jaewook

    2016-01-01

    This paper describes a sliding friction model for an electro-deposited coating. Reciprocating sliding tests using ball-on-flat plate test apparatus are performed to determine an evolution of the kinetic friction coefficient. The evolution of the friction coefficient is classified into the initial running-in period, steady-state sliding, and transition to higher friction. The friction coefficient during the initial running-in period and steady-state sliding is expressed as a simple linear function. The friction coefficient in the transition to higher friction is described with a mathematical model derived from Kachanov-type damage law. The model parameters are then estimated using the Markov Chain Monte Carlo (MCMC) approach. It is identified that estimated friction coefficients obtained by MCMC approach are in good agreement with measured ones. PMID:28773359

  2. A Simple Measurement of the Sliding Friction Coefficient

    ERIC Educational Resources Information Center

    Gratton, Luigi M.; Defrancesco, Silvia

    2006-01-01

    We present a simple computer-aided experiment for investigating Coulomb's law of sliding friction in a classroom. It provides a way of testing the possible dependence of the friction coefficient on various parameters, such as types of materials, normal force, apparent area of contact and sliding velocity.

  3. Nonlinear friction model for servo press simulation

    NASA Astrophysics Data System (ADS)

    Ma, Ninshu; Sugitomo, Nobuhiko; Kyuno, Takunori; Tamura, Shintaro; Naka, Tetsuo

    2013-12-01

    The friction coefficient was measured under an idealized condition for a pulse servo motion. The measured friction coefficient and its changing with both sliding distance and a pulse motion showed that the friction resistance can be reduced due to the re-lubrication during unloading process of the pulse servo motion. Based on the measured friction coefficient and its changes with sliding distance and re-lubrication of oil, a nonlinear friction model was developed. Using the newly developed the nonlinear friction model, a deep draw simulation was performed and the formability was evaluated. The results were compared with experimental ones and the effectiveness was verified.

  4. Measurement of Gear Tooth Dynamic Friction

    NASA Technical Reports Server (NTRS)

    Rebbechi, Brian; Oswald, Fred B.; Townsend, Dennis P.

    1996-01-01

    Measurements of dynamic friction forces at the gear tooth contact were undertaken using strain gages at the root fillets of two successive teeth. Results are presented from two gear sets over a range of speeds and loads. The results demonstrate that the friction coefficient does not appear to be significantly influenced by the sliding reversal at the pitch point, and that the friction coefficient values found are in accord with those in general use. The friction coefficient was found to increase at low sliding speeds. This agrees with the results of disc machine testing.

  5. Prediction of Sliding Friction Coefficient Based on a Novel Hybrid Molecular-Mechanical Model.

    PubMed

    Zhang, Xiaogang; Zhang, Yali; Wang, Jianmei; Sheng, Chenxing; Li, Zhixiong

    2018-08-01

    Sliding friction is a complex phenomenon which arises from the mechanical and molecular interactions of asperities when examined in a microscale. To reveal and further understand the effects of micro scaled mechanical and molecular components of friction coefficient on overall frictional behavior, a hybrid molecular-mechanical model is developed to investigate the effects of main factors, including different loads and surface roughness values, on the sliding friction coefficient in a boundary lubrication condition. Numerical modelling was conducted using a deterministic contact model and based on the molecular-mechanical theory of friction. In the contact model, with given external loads and surface topographies, the pressure distribution, real contact area, and elastic/plastic deformation of each single asperity contact were calculated. Then asperity friction coefficient was predicted by the sum of mechanical and molecular components of friction coefficient. The mechanical component was mainly determined by the contact width and elastic/plastic deformation, and the molecular component was estimated as a function of the contact area and interfacial shear stress. Numerical results were compared with experimental results and a good agreement was obtained. The model was then used to predict friction coefficients in different operating and surface conditions. Numerical results explain why applied load has a minimum effect on the friction coefficients. They also provide insight into the effect of surface roughness on the mechanical and molecular components of friction coefficients. It is revealed that the mechanical component dominates the friction coefficient when the surface roughness is large (Rq > 0.2 μm), while the friction coefficient is mainly determined by the molecular component when the surface is relatively smooth (Rq < 0.2 μm). Furthermore, optimal roughness values for minimizing the friction coefficient are recommended.

  6. Tribological behaviour of orthodontic archwires under dry and wet sliding conditions in-vitro. I--Frictional behaviour.

    PubMed

    Berradja, Abdenacer; Willems, Guy; Celis, Jean-Pierre

    2006-05-01

    To evaluate the frictional behaviour of orthodontic archwires in dry and wet conditions in-vitro. Two types of archwire materials were investigated: stainless steel and NiTi. A fretting wear tribometer fitted with an alumina ball was operated at 23 degrees C in three different environments: ambient air with 50 per cent relative humidity, 0.9 wt. per cent sodium chloride solution, and deionised water. NiTi archwires sliding against alumina exhibited high coefficients of friction (about 0.6) in the three environments. Stainless steel archwires sliding against alumina had relatively low coefficients of friction (0.3) in the solutions, but high coefficients (0.8) in air. The low frictional forces of the stainless steel wires sliding against alumina in the solutions were due to a lubricating effect of the solutions and corrosion-wear debris. The high frictional forces between the NiTi wires and alumina are attributed to an abrasive interfacial transfer film between the wires and alumina.

  7. Friction and wear of single-crystal manganese-zinc ferrite

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1979-01-01

    Sliding friction experiments were conducted with single crystal manganese-zinc ferrite in contact with itself and with transition metals. Results indicate mating highest atomic density directions (110) on matched crystallographic planes exhibit the lowest coefficient of friction, indicating that direction is important in the friction behavior of ferrite. Matched parallel high atomic density planes and crystallographic directions at the interface exhibit low coefficients of friction. The coefficients of friction for ferrite in contact with various metals are related to the relative chemical activity of these metals. The more active the metal, the higher the coefficient of friction. Cracking and the formation of hexagon- and rectangular-shaped platelet wear debris due to cleavages of (110) planes are observed on the ferrite surfaces as a result of sliding.

  8. Estimation of Road Friction Coefficient in Different Road Conditions Based on Vehicle Braking Dynamics

    NASA Astrophysics Data System (ADS)

    Zhao, You-Qun; Li, Hai-Qing; Lin, Fen; Wang, Jian; Ji, Xue-Wu

    2017-07-01

    The accurate estimation of road friction coefficient in the active safety control system has become increasingly prominent. Most previous studies on road friction estimation have only used vehicle longitudinal or lateral dynamics and often ignored the load transfer, which tends to cause inaccurate of the actual road friction coefficient. A novel method considering load transfer of front and rear axles is proposed to estimate road friction coefficient based on braking dynamic model of two-wheeled vehicle. Sliding mode control technique is used to build the ideal braking torque controller, which control target is to control the actual wheel slip ratio of front and rear wheels tracking the ideal wheel slip ratio. In order to eliminate the chattering problem of the sliding mode controller, integral switching surface is used to design the sliding mode surface. A second order linear extended state observer is designed to observe road friction coefficient based on wheel speed and braking torque of front and rear wheels. The proposed road friction coefficient estimation schemes are evaluated by simulation in ADAMS/Car. The results show that the estimated values can well agree with the actual values in different road conditions. The observer can estimate road friction coefficient exactly in real-time and resist external disturbance. The proposed research provides a novel method to estimate road friction coefficient with strong robustness and more accurate.

  9. Friction and wear of single-crystal and polycrystalline maganese-zinc ferrite in contact with various metals

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1977-01-01

    Sliding friction experiments were conducted with single-crystal (SCF) and hot-pressed polycrystalline (HPF) manganese-zinc ferrite in contact with various metals. Results indicate that the coefficients of friction for SCF and HPF are related to the relative chemical activity of those metals in high vacuum. The more active the metal, the higher the coefficient of friction. The coefficients of friction for both SCF and HPF were the same and much higher in vacuum than in argon at atmospheric pressure. All the metals tested transferred to the surface of both SCF and HPF in sliding. Both SCF and HPF exhibited cracking and fracture with sliding. Cracking in SCF is dependent on crystallographic characteristics. In HPF, cracking depends on the orientation of the individual crystallites.

  10. Friction and Surface Damage of Several Corrosion-resistant Materials

    NASA Technical Reports Server (NTRS)

    Peterson, Marshall B; Johnson, Robert L

    1952-01-01

    Friction and surface damage of several materials that are resistant to corrosion due to liquid metals was studied in air. The values of kinetic friction coefficient at low sliding velocities and photomicrographs of surface damage were obtained. Appreciable surface damage was evident for all materials tested. The friction coefficients for the combinations of steel, stainless steel, and monel sliding against steel, stainless steel, nickel, Iconel, and Nichrome ranged from 0.55 for the monel-Inconel combination to 0.97 for the stainless-steel-nickel combination; for steel, stainless steel, monel, and tungsten carbide against zirconium, the friction coefficient was approximately 0.47. Lower coefficients of friction (0.20 to 0.60) and negligible surface failure at light loads were obtained with tungsten carbide when used in combination with various plate materials.

  11. The friction coefficient evolution of a MoS2/WC multi-layer coating system during sliding wear

    NASA Astrophysics Data System (ADS)

    Chan, T. Y.; Hu, Y.; Gharbi, Mohammad M.; Politis, D. J.; Wang, L.

    2016-08-01

    This paper discusses the evolution of friction coefficient for the multi-layered Molybdenum Disulphide (MoS2) and WC coated substrate during sliding against Aluminium AA 6082 material. A soft MoS2 coating was prepared over a hard WC coated G3500 cast iron tool substrate and underwent friction test using a pin-on-disc tribometer. The lifetime of the coating was reduced with increasing load while the Aluminium debris accumulated on the WC hard coating surfaces, accelerated the breakdown of the coatings. The lifetime of the coating was represented by the friction coefficient and the sliding distance before MoS2 coating breakdown and was found to be affected by the load applied and the wear mechanism.

  12. Friction and wear behaviour of plasma sprayed Cr2O3-TiO2 coating

    NASA Astrophysics Data System (ADS)

    Bagde, Pranay; Sapate, S. G.; Khatirkar, R. K.; Vashishtha, Nitesh; Tailor, Satish

    2018-02-01

    Cr2O3-25TiO2 coating was deposited by atmospheric plasma spray (APS) coating technique. Effect of load (5-30 N) and sliding velocity (0.25, 0.75 m s-1) on friction coefficient and abrasive wear behaviour of the Cr2O3-25TiO2 coating was studied. Mechanical and microstructural characterization of the Cr2O3-25TiO2 coating was carried out. With an increase in sliding velocity, abrasive wear rate and friction coefficient (COF) decreased while wear rate and friction coefficient showed an increasing trend with the load. The worn out surfaces were analyzed by SEM, EDS and XRD. At lower sliding velocity, XRD analysis revealed peaks of Ti2O3, Ti3O5, CrO2 and CrO3. In addition, peak of Ti4O7 was also detected at higher sliding velocity and at 30 N load. At higher sliding velocity medium to severe tribo oxidation was observed. XPS analysis of worn surfaces at both the sliding velocities, showed surface film of oxides of titanium and chromium along with Cr(OH)3. Magneli phase titanium oxides with sub stoichiometric composition, along with surface films of chromium oxides and hydroxides altered the friction and wear behaviour of the coating. The decrease in friction coefficient with an increase in sliding velocity was attributed to tribo oxides and tribochemical reaction films having lower shear strength with good lubricating properties. The mechanism of material removal involved plastic deformation at lower load whereas inter-granular and trans-granular fracture, delamination cracking and splat fracture was observed with an increase load from 10 N to 30 N.

  13. Steady sliding frictional contact problem for a 2d elastic half-space with a discontinuous friction coefficient and related stress singularities

    NASA Astrophysics Data System (ADS)

    Ballard, Patrick

    2016-12-01

    The steady sliding frictional contact problem between a moving rigid indentor of arbitrary shape and an isotropic homogeneous elastic half-space in plane strain is extensively analysed. The case where the friction coefficient is a step function (with respect to the space variable), that is, where there are jumps in the friction coefficient, is considered. The problem is put under the form of a variational inequality which is proved to always have a solution which, in addition, is unique in some cases. The solutions exhibit different kinds of universal singularities that are explicitly given. In particular, it is shown that the nature of the universal stress singularity at a jump of the friction coefficient is different depending on the sign of the jump.

  14. Friction and wear behaviour of ion beam modified ceramics

    NASA Technical Reports Server (NTRS)

    Lankford, J.; Wei, W.; Kossowsky, R.

    1987-01-01

    In the present study, the sliding friction coefficients and wear rates of carbide, oxide, and nitride materials for potential use as sliding seals (ring/liner) were measured under temperature, environmental, velocity, and loading conditions representative of a diesel engine. In addition, silicon nitride and partially stabilized zirconia discs were modified by ion mixing with TiNi, nickel, cobalt and chromium, and subsequently run against carbide pins, with the objective of producing reduced friction via solid lubrication at elevated temperature. Unmodified ceramic sliding couples were characterized at all temperatures by friction coefficients of 0.24 and above. However, the coefficient at 800 C in an oxidizing environment was reduced to below 0.1, for certain material combinations, by the ion implantation of TiNi or cobalt. This beneficial effect was found to derive from lubricious titanium, nickel, and cobalt oxides.

  15. Systematic Breakdown of Amontons' Law of Friction for an Elastic Object Locally Obeying Amontons' Law

    PubMed Central

    Otsuki, Michio; Matsukawa, Hiroshi

    2013-01-01

    In many sliding systems consisting of solid object on a solid substrate under dry condition, the friction force does not depend on the apparent contact area and is proportional to the loading force. This behaviour is called Amontons' law and indicates that the friction coefficient, or the ratio of the friction force to the loading force, is constant. Here, however, using numerical and analytical methods, we show that Amontons' law breaks down systematically under certain conditions for an elastic object experiencing a friction force that locally obeys Amontons' law. The macroscopic static friction coefficient, which corresponds to the onset of bulk sliding of the object, decreases as pressure or system length increases. This decrease results from precursor slips before the onset of bulk sliding, and is consistent with the results of certain previous experiments. The mechanisms for these behaviours are clarified. These results will provide new insight into controlling friction. PMID:23545778

  16. Adhesion, friction, and wear of a copper bicrystal with (111) and (210) grains

    NASA Technical Reports Server (NTRS)

    Brainard, W. A.; Buckley, D. H.

    1973-01-01

    Sliding friction experiments were conducted in air with polycrystalline copper and ruby riders sliding against a copper bicrystal. Friction coefficient was measured across the bicrystal surface, and the initiation of adhesive wear was examined with scanning electron microscopy. Results indicate a marked increase in friction coefficient as the copper rider crossed the grain boundary from the (111) plane to the (210) plane of the bicrystal. Adhesion, friction, and initiation of adhesive wear was notably different in the adjacent grains of differing orientation. A slip-band adhesion-generated fracture mechanism for wear particle formation is proposed.

  17. Steady and transient sliding under rate-and-state friction

    NASA Astrophysics Data System (ADS)

    Putelat, Thibaut; Dawes, Jonathan H. P.

    2015-05-01

    The physics of dry friction is often modelled by assuming that static and kinetic frictional forces can be represented by a pair of coefficients usually referred to as μs and μk, respectively. In this paper we re-examine this discontinuous dichotomy and relate it quantitatively to the more general, and smooth, framework of rate-and-state friction. This is important because it enables us to link the ideas behind the widely used static and dynamic coefficients to the more complex concepts that lie behind the rate-and-state framework. Further, we introduce a generic framework for rate-and-state friction that unifies different approaches found in the literature. We consider specific dynamical models for the motion of a rigid block sliding on an inclined surface. In the Coulomb model with constant dynamic friction coefficient, sliding at constant velocity is not possible. In the rate-and-state formalism steady sliding states exist, and analysing their existence and stability enables us to show that the static friction coefficient μs should be interpreted as the local maximum at very small slip rates of the steady state rate-and-state friction law. Next, we revisit the often-cited experiments of Rabinowicz (J. Appl. Phys., 22:1373-1379, 1951). Rabinowicz further developed the idea of static and kinetic friction by proposing that the friction coefficient maintains its higher and static value μs over a persistence length before dropping to the value μk. We show that there is a natural identification of the persistence length with the distance that the block slips as measured along the stable manifold of the saddle point equilibrium in the phase space of the rate-and-state dynamics. This enables us explicitly to define μs in terms of the rate-and-state variables and hence link Rabinowicz's ideas to rate-and-state friction laws. This stable manifold naturally separates two basins of attraction in the phase space: initial conditions in the first one lead to the block eventually stopping, while in the second basin of attraction the sliding motion continues indefinitely. We show that a second definition of μs is possible, compatible with the first one, as the weighted average of the rate-and-state friction coefficient over the time the block is in motion.

  18. Friction and wear of plasma-deposited diamond films

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Wu, Richard L. C.; Garscadden, Alan; Barnes, Paul N.; Jackson, Howard E.

    1993-01-01

    Reciprocating sliding friction experiments in humid air and in dry nitrogen and unidirectional sliding friction experiments in ultrahigh vacuum were conducted with a natural diamond pin in contact with microwave-plasma-deposited diamond films. Diamond films with a surface roughness (R rms) ranging from 15 to 160 nm were produced by microwave-plasma-assisted chemical vapor deposition. In humid air and in dry nitrogen, abrasion occurred when the diamond pin made grooves in the surfaces of diamond films, and thus the initial coefficients of friction increased with increasing initial surface roughness. The equilibrium coefficients of friction were independent of the initial surface roughness of the diamond films. In vacuum the friction for diamond films contacting a diamond pin arose primarily from adhesion between the sliding surfaces. In these cases, the initial and equilibrium coefficients of friction were independent of the initial surface roughness of the diamond films. The equilibrium coefficients of friction were 0.02 to 0.04 in humid air and in dry nitrogen, but 1.5 to 1.8 in vacuum. The wear factor of the diamond films depended on the initial surface roughness, regardless of environment; it increased with increasing initial surface roughness. The wear factors were considerably higher in vacuum than in humid air and in dry nitrogen.

  19. Friction and oxidative wear of 440C ball bearing steels under high load and extreme bulk temperatures

    NASA Technical Reports Server (NTRS)

    Chaudhuri, Dilip K.; Slifka, Andrew J.; Siegwarth, James D.

    1993-01-01

    Unlubricated sliding friction and wear of 440C steels in an oxygen environment have been studied under a variety of load, speed, and temperature ranging from approximately -185 to 675 deg C. A specially designed test apparatus with a ball-on-flat geometry has been used for this purpose. The observed dependencies of the initial coefficient of friction, the average dynamic coefficient of friction, and the wear rate on load, speed, and test temperatures have been examined from the standpoint of existing theories of friction and wear. High contact temperatures are generated during the sliding friction, causing rapid oxidation and localized surface melting. A combination of fatigue, delamination, and loss of hardness due to tempering of the martensitic structure is responsible for the high wear rate observed and the coefficient of friction.

  20. X-ray photoelectron spectroscopy and friction studies of nickel-zinc and manganese-zinc ferrites in contact with metals

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1983-01-01

    X-ray photoelectron spectroscopy analysis and sliding friction experiments were conducted with hot-pressed, polycrystalline Ni-Zn and Mn-Zn ferrites in sliding contact with various transition metals at room temperature in a vacuum of 30 nPa. The results indicate that the coefficients of friction for Ni-Zn and Mn-Zn ferrites in contact with metals are related to the relative chemical activity in these metals: the more active the metal, the higher is the coefficient of friction. The coefficients of friction for the ferrites correlate with the free energy of formation of the lowest metal oxide. The interfacial bond can be regarded as a chemical bond between the metal atoms and the oxygen anions in the ferrite surfaces. The adsorption of oxygen on clean metal and ferrite surfaces increases the coefficients of friction for the Ni-Zn and Mn-Zn ferrite-metal interfaces.

  1. Determination of the frictional coefficient of the implant-antler interface: experimental approach.

    PubMed

    Hasan, Istabrak; Keilig, Ludger; Staat, Manfred; Wahl, Gerhard; Bourauel, Christoph

    2012-10-01

    The similar bone structure of reindeer antler to human bone permits studying the osseointegration of dental implants in the jawbone. As the friction is one of the major factors that have a significant influence on the initial stability of immediately loaded dental implants, it is essential to define the frictional coefficient of the implant-antler interface. In this study, the kinetic frictional forces at the implant-antler interface were measured experimentally using an optomechanical setup and a stepping motor controller under different axial loads and sliding velocities. The corresponding mean values of the static and kinetic frictional coefficients were within the range of 0.5-0.7 and 0.3-0.5, respectively. An increase in the frictional forces with increasing applied axial loads was registered. The measurements showed an evidence of a decrease in the magnitude of the frictional coefficient with increasing sliding velocity. The results of this study provide a considerable assessment to clarify the suitable frictional coefficient to be used in the finite element contact analysis of antler specimens.

  2. Effect of strain hardening on friction behavior of iron lubricated with benzyl structures

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.; Brainard, W. A.

    1974-01-01

    Sliding friction experiments were conducted with iron, copper, and aluminum in contact with iron in various states of strain. The surfaces were examined in dry sliding and with various benzyl compounds applied as lubricants. Friction experiments were conducted with a hemispherical rider contacting a flat disk at loads of from 50 to 600 grams with a sliding speed of 0.15 cm/min. Results indicate that straining increases friction for dry sliding and for surfaces lubricated with certain benzyl structures such as dibenzyl disulfide. With other benzyl compounds (e.g., benzyl formate), friction coefficients are lower for strained than for annealed iron.

  3. Research on the Mechanism of In-Plane Vibration on Friction Reduction

    PubMed Central

    Wang, Peng; Ni, Hongjian; Wang, Ruihe; Liu, Weili; Lu, Shuangfang

    2017-01-01

    A modified model for predicting the friction force between drill-string and borehole wall under in-plane vibrations was developed. It was found that the frictional coefficient in sliding direction decreased significantly after applying in-plane vibration on the bottom specimen. The friction reduction is due to the direction change of friction force, elastic deformation of surface asperities and the change of frictional coefficient. Normal load, surface topography, vibration direction, velocity ratio and interfacial shear factor are the main influence factors of friction force in sliding direction. Lower driving force can be realized for a pair of determinate rubbing surfaces under constant normal load by setting the driving direction along the minimum arithmetic average attack angle direction, and applying intense longitudinal vibration on the rubbing pair. The modified model can significantly improve the accuracy in predicting frictional coefficient under vibrating conditions, especially under the condition of lower velocity ratio. The results provide a theoretical gist for friction reduction technology by vibrating drill-string, and provide a reference for determination of frictional coefficient during petroleum drilling process, which has great significance for realizing digitized and intelligent drilling. PMID:28862679

  4. Friction and wear behaviour of Mo-W doped carbon-based coating during boundary lubricated sliding

    NASA Astrophysics Data System (ADS)

    Hovsepian, Papken Eh.; Mandal, Paranjayee; Ehiasarian, Arutiun P.; Sáfrán, G.; Tietema, R.; Doerwald, D.

    2016-03-01

    A molybdenum and tungsten doped carbon-based coating (Mo-W-C) was developed in order to provide low friction in boundary lubricated sliding condition at ambient and at high temperature. The Mo-W-C coating showed the lowest friction coefficient among a number of commercially available state-of-the-art DLC coatings at ambient temperature. At elevated temperature (200 °C), Mo-W-C coating showed a significant reduction in friction coefficient with sliding distance in contrast to DLC coatings. Raman spectroscopy revealed the importance of combined Mo and W doping for achieving low friction at both ambient and high temperature. The significant decrease in friction and wear rate was attributed to the presence of graphitic carbon debris (from coating) and 'in situ' formed metal sulphides (WS2 and MoS2, where metals were supplied from coating and sulphur from engine oil) in the transfer layer.

  5. Nanoscale wear and kinetic friction between atomically smooth surfaces sliding at high speeds

    NASA Astrophysics Data System (ADS)

    Rajauria, Sukumar; Canchi, Sripathi V.; Schreck, Erhard; Marchon, Bruno

    2015-02-01

    The kinetic friction and wear at high sliding speeds is investigated using the head-disk interface of hard disk drives, wherein the head and the disk are less than 10 nm apart and move at sliding speeds of 5-10 m/s relative to each other. While the spacing between the sliding surfaces is of the same order of magnitude as various AFM based fundamental studies on friction, the sliding speed is nearly six orders of magnitude larger, allowing a unique set-up for a systematic study of nanoscale wear at high sliding speeds. In a hard disk drive, the physical contact between the head and the disk leads to friction, wear, and degradation of the head overcoat material (typically diamond like carbon). In this work, strain gauge based friction measurements are performed; the friction coefficient as well as the adhering shear strength at the head-disk interface is extracted; and an experimental set-up for studying friction between high speed sliding surfaces is exemplified.

  6. Tribological properties of hydrophilic polymer brushes under wet conditions.

    PubMed

    Kobayashi, Motoyasu; Takahara, Atsushi

    2010-08-01

    This article demonstrates a water-lubrication system using high-density hydrophilic polymer brushes consisting of 2,3-dehydroxypropyl methacrylate (DHMA), vinyl alcohol, oligo(ethylene glycol)methyl ether methacrylate, 2-(methacryloyloxy)ethyltrimethylammonium chloride (MTAC), 3-sulfopropyl methacrylate potassium salt (SPMK), and 2-methacryloyloxyethyl phosphorylcholine (MPC) prepared by surface-initiated controlled radical polymerization. Macroscopic frictional properties of brush surfaces were characterized by sliding a glass ball probe in water using a ball-on-plate type tribotester under the load of 0.1-0.49 N at the sliding velocity of 10(-5)-10(-1) m s(-1) at 298 K. A poly(DHMA) brush showed a relatively larger friction coefficient in water, whereas the polyelectrolyte brushes, such as poly(SPMK) and poly(MPC), revealed significantly low friction coefficients below 0.02 in water and in humid air conditions. A drastic reduction in the friction coefficient of polyelectrolyte brushes in aqueous solution was observed at around 10(-3)-10(-2) m s(-1) owing to the hydrodynamic lubrication effect, however, an increase in salt concentration in the aqueous solution led to the increase in the friction coefficients of poly(MTAC) and poly(SPMK) brushes. The poly(SPMK) brush showed a stable and low friction coefficient in water even after sliding over 450 friction cycles, indicating a good wear resistance of the brush film. Copyright 2010 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.

  7. Friction behavior of glass and metals in contact with glass in various environments

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1973-01-01

    Sliding friction experiments have been conducted for heat-resistant glass and metals in contact with glass. These experiments were conducted in various environments including vacuum, moist air, dry air, octane, and stearic acid in hexadecane. Glass exhibited a higher friction force in moist air than it did in vacuum when in sliding contact with itself. The metals, aluminum, iron, and gold, all exhibited the same friction coefficient when sliding on glass in vacuum as glass sliding on glass. Gold-to-glass contacts were extremely sensitive to the environment despite the relative chemical inertness of gold.

  8. Friction and wear performance of bearing ball sliding against diamond-like carbon coatings

    NASA Astrophysics Data System (ADS)

    Wu, Shenjiang; Kousaka, Hiroyuki; Kar, Satyananda; Li, Dangjuan; Su, Junhong

    2017-01-01

    We have studied the tribological properties of bearing steel ball (Japan standard, SUJ2) sliding against tetrahedral amorphous carbon (ta-C) coatings and amorphous hydrogenated carbon (a-C:H) coatings. The reciprocating sliding testes are performed with ball-on-plate friction tester in ambient air condition. Analysis of friction coefficient, wear volume and microstructure in wear scar are carried out using optical microscopy, atom force morphology (AFM) and Raman spectroscopy. The results show the SUJ2 on ta-C coating has low friction coefficient (around 0.15) but high wear loss. In contrast, the low wear loss of SUJ2 on a-C:H coating with high (around 0.4) and unsteady friction coefficient. Some Fe2O3, FeO and graphitization have been found on the wear scar of SUJ2 sliding against ta-C coating. Nearly no oxide materials exist on the wear scar of SUJ2 against a-C:H coating. The mechanism and hypothesis of the wear behavior have been investigated according to the measurement results. This study will contribute to proper selection and understand the tribological performance of bearing steels against DLC coatings.

  9. The role of crystallographic texture in achieving low friction zinc oxide nanolaminate films

    NASA Astrophysics Data System (ADS)

    Mojekwu, Nneoma

    Metal oxide nanolaminate films are potential high temperature solid lubricants due to their ability to exhibit significant plasticity when grain size is reduced to the nanometer scale, and defective growth structure is achieved by condensation of oxygen vacancies to form intrinsic stacking faults. This is in contrast to conventional microcrystalline and single crystal oxides that exhibit brittle fracture during loading in a sliding contact. This study emphasizes the additional effect of growth orientation, in particular crystallographic texture, on determining the sliding friction behavior in nanocolumnar grain zinc oxide films grown by atomic layer deposition. It was determined that zinc oxide low (0002) versus higher (101¯3) surface energy crystallographic planes influenced the sliding friction coefficient. Texturing of the (0002) grains resulted in a decreased adhesive component of friction thereby lowering the sliding friction coefficient to ˜0.25, while the friction coefficient doubled to ˜0.5 with increasing contribution of surface (101¯3) grains. In addition, the variation of the x-ray grazing incident angle from 0.5° to 5° was studied to better understand the surface grain orientation as a function of ZnO layer thickness in one versus four bilayer nanolaminates where the under layer (seed layer) was load-bearing Zn(Ti,Zr)O3.

  10. Friction behavior of 304 stainless steel of varying hardness lubricated with benzene and some benzyl structures

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1974-01-01

    The lubricating properties of some benzyl and benzene structures were determined by using 304 stainless steel surfaces strained to various hardness. Friction coefficients and wear track widths were measured with a Bowden-Leben type friction apparatus by using a pin-on-disk specimen configuration. Results obtained indicate that benzyl monosulfide, dibenzyl disulfide, and benzyl alcohol resulted in the lowest friction coefficients for 304 stainless steel, while benzyl ether provided the least surface protection and gave the highest friction. Strainhardening of the 304 stainless steel prior to sliding resulted in reduced friction in dry sliding. With benzyl monosulfide, dibenzyl disulfide, and benzyl alcohol changes in 304 stainless steel hardness had no effect upon friction behavior.

  11. Effect of sliding velocity on the tribological behavior of copper and associated nanostructure development

    NASA Astrophysics Data System (ADS)

    Emge, Andrew

    The unlubricated sliding of metals is important in many mechanical devices covering a wide range of sliding velocities. However, the effect of sliding velocity on the tribological behavior of unlubricated metals has not been widely studied. Similarly, the relationship between microstructures developed at high sliding velocities and tribological behavior has not been studied in depth. Microstructures produced at low sliding velocities have been studied extensively and commonly include nanocrystalline or fine grained material near the sliding surface with heavily deformed microstructures further from the surface. The current research relates two aspects of the sliding friction of ductile metals, the effect of sliding velocity and the production of nanocrystalline tribomaterial. The project focused on the effects of sliding velocity on the frictional behavior of oxygen free high conductivity (OFHC) copper sliding against 440C stainless steel, Nitronic 40 stainless steel, and copper. Low velocity tests were performed with a pin on disk tribometer. High velocity tests were performed with a rotating barrel gas gun (RBGG) which combined impact with sliding. The RBGG provides sliding velocities as high as 5.5 m/s and impact velocities as high as 12 m/s while maintaining sliding times on the order of tens of microseconds. Changes in the coefficient of friction, microstructure, and composition were studied. Surface and subsurface microstructures of the worn samples were characterized with a range of instruments including scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS), focused ion beam (FIB) milling and imaging, transmission electron microscopy (TEM) with EDS, orientation imaging microscopy (OIM), and nanoindentation. In the case of self-mated copper the sliding velocity had little effect on the coefficient of friction for both experimental apparatuses. For the case of copper sliding against 440C stainless steel on the pin on disk system the friction was found to increase with sliding velocity and was strongly influenced by material transfer from the copper to the steel pin. An increase in the coefficient of friction with sliding velocity was observed for the sliding of OFHC copper against Nitronic 40 steel in RBGG tests. The increase in the coefficient of friction was correlated to an increase in subsurface plastic deformation and grain refinement. The growth of the nanocrystalline tribolayer in copper after sliding against 440C stainless steel at varying times was studied at sliding velocities of 0.05 and 1.0 m/s. A sliding velocity of 0.05 m/s produced a consistent nanocrystalline layer in as little as 10 s. The thickness of the nanocrystalline layer grew to an average thickness of 3 microm after 10 ks of sliding, but large variations in thickness were observed. A sliding velocity of 1.0 m/s produced a continuous nanocrystalline layer after 10 s of sliding. Ledges developed on the wear tracks at longer sliding times which greatly influenced the tribolayer thickness making it difficult to quantify. Dynamic recrystallization of the tribolayer also led to difficulties in measuring its thickness.

  12. Lubricating Properties of Ceramic-Bonded Calcium Fluoride Coatings on Nickel-Base Alloys from 75 to 1900 deg F

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.

    1962-01-01

    The endurance life and the friction coefficient of ceramic-bonded calcium fluoride (CaF2) coatings on nickel-base alloys were determined at temperatures from 75 F to 1900 F. The specimen configuration consisted of a hemispherical rider (3/16-in. rad.) sliding against the flat surface of a rotating disk. Increasing the ambient temperature (up to 1500 F) or the sliding velocity generally reduced the friction coefficient and improved coating life. Base-metal selection was critical above 1500 F. For instance, cast Inconel sliding against coated Inconel X was lubricated effectively to 1500 F, but at 1600 F severe blistering of the coatings occurred. However, good lubrication and adherence were obtained for Rene 41 sliding against coated Rene 41 at temperatures up to 1900 F; no blisters developed, coating wear life was fairly good, and the rider wear rate was significantly lower than for the unlubricated metals. Friction coefficients were 0.12 at 1500 F, 0.15 at 1700 F, and 0.17 at 1800 F and 1900 F. Because of its ready availability, Inconel X appears to be the preferred substrate alloy for applications in which the temperature does not exceed 1500 F. Rene 41 would have to be used in applications involving higher temperatures. Improved coating life was derived by either preoxidizing the substrate metals prior to the coating application or by applying a very thin (less than 0.0002 in.) burnished and sintered overlay to the surface of the coating. Preoxidation did not affect the friction coefficient. The overlay generally resulted in a higher friction coefficient than that obtained without the overlay. The combination of both modifications resulted in longer coating life and in friction coefficients intermediate between those obtained with either modification alone.

  13. Influence of the chemical surface structure on the nanoscale friction in plasma nitrided and post-oxidized ferrous alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freislebem, Márcia; Menezes, Caren M.; Cemin, Felipe

    2014-09-15

    Friction is a ubiquitous phenomenon in everyday activities spanning from vehicles where efficient brakes are mandatory up to mechanical devices where its minimum effects are pursued for energy efficiency issues. Recently, theoretical models succeed correlating the friction behavior with energy transference via phonons between sliding surfaces. Therefore, considering that the energy losses by friction are prompted through phonons, the chemical surface structure between sliding surfaces is very important to determine the friction phenomenon. In this work, we address the issue of friction between a conical diamond tip sliding on different functionalized flat steel surfaces by focusing the influence of themore » chemical bonds in the outermost layers on the sliding resistance. This geometry allows probing the coupling of the sharp tip with terminator species on the top and underneath material surface at in-depth friction measurements from 20 to 200 nm. Experimentally, the friction coefficient decreases when nitrogen atoms are substituted for oxygen in the iron network. This effect is interpreted as due to energy losses through phonons whilst lower vibrational frequency excitation modes imply lower friction coefficients and a more accurate adjustment is obtained when a theoretical model with longitudinal adsorbate vibration is used.« less

  14. Properties data for opening the Galileo's partially unfurled main antenna

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Pepper, Stephen V.

    1992-01-01

    An investigation was conducted into the friction and wear behavior of both unlubricated and dry-film-lubricated (Tiolube 460) titanium alloy (Ti-6Al-4V) in contact with an uncoated high-nickel-content superalloy (Inconel 718) both in vacuum and in air. The acquisition of friction and wear data for this sliding couple was motivated by the need for input data for the 'antenna stuck ribs model' effort to free Galileo's High Gain Antenna. The results of the investigation indicate that galling occurred in the unlubricated system in vacuum and that the coefficient of friction increased to 1.2. The abnormally high friction (1.45) was observed when relatively large wear debris clogged at the sliding interface. The coefficient of friction for the dry-film-lubricated system in vacuum is 0.04, while the value in air is 0.13. The endurance life of the dry-film lubricant is about three orders of magnitude greater in vacuum than in air. The worn surfaces of the dry-film-lubricated Ti-6Al-4V pin and Inconel 718 disk first run in humid air and then rerun in vacuum was completely different from that of the pin and disk run only in vacuum. When galling occurred in the humid-air and vacuum contact, coefficient of friction rose to 0.32 when sliding in humid air and to 1.4 when sliding in vacuum. The galling was accompanied by severe surface damage and extensive transfer of the Ti-6Al-4V to the Inconel 718, or vice versa. When spalling occurred in the dry-film-lubricated Ti-6Al-4V pin run only in vacuum, the coefficient of friction rose to 0.36 or greater. The wear damage caused by spalling can self-heal when rerun in vacuum - the coefficient of friction decreased to 0.05. The friction and wear data obtained can be used for the 'antenna stuck ribs model' effort to free Galileo's high gain antenna.

  15. Effects of high-temperature hydrogenation treatment on sliding friction and wear behavior of carbide-derived carbon films.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erdemir, A.; Kovalchenko, A.; McNallan, M. J.

    2004-01-01

    In this study, we investigated the effects of a high-temperature hydrogenation treatment on the sliding friction and wear behavior of nanostructured carbide-derived carbon (CDC) films in dry nitrogen and humid air environments. These films are produced on the surfaces of silicon carbide substrates by reacting the carbide phase with chlorine or chlorine-hydrogen gas mixtures at 1000 to 1100 C in a sealed tube furnace. The typical friction coefficients of CDC films in open air are in the range of 0.2 to 0.25, but in dry nitrogen, the friction coefficients are 0.15. In an effort to achieve lower friction on CDCmore » films, we developed and used a special hydrogenation process that was proven to be very effective in lowering friction of CDC films produced on SiC substrates. Specifically, the films that were post-hydrogen-treated exhibited friction coefficients as low as 0.03 in dry nitrogen, while the friction coefficients in humid air were 0.2. The wear of Si{sub 3}N{sub 4} counterface balls was hard to measure after the tests, while shallow wear tracks had formed on CDC films on SiC disks. Detailed mechanical and structural characterizations of the CDC films and sliding contact surfaces were done using a series of analytical techniques and these findings were correlated with the friction and wear behaviors of as-produced and hydrogen-treated CDC films.« less

  16. Compact friction and wear machine

    NASA Astrophysics Data System (ADS)

    Hannigan, James W.; Schwarz, Ricardo B.

    1988-08-01

    We have developed a compact ring-on-ring wear machine that measures the friction coefficient between large area surfaces as a function of time, normal stress, and sliding velocity. The machine measures the temperature of the sliding surfaces and collects the wear debris.

  17. Onset of frictional sliding of rubber–glass contact under dry and lubricated conditions

    PubMed Central

    Tuononen, Ari J.

    2016-01-01

    Rubber friction is critical in many applications ranging from automotive tyres to cylinder seals. The process where a static rubber sample transitions to frictional sliding is particularly poorly understood. The experimental and simulation results in this paper show a completely different detachment process from the static situation to sliding motion under dry and lubricated conditions. The results underline the contribution of the rubber bulk properties to the static friction force. In fact, simple Amontons’ law is sufficient as a local friction law to produce the correct detachment pattern when the rubber material and loading conditions are modelled properly. Simulations show that micro-sliding due to vertical loading can release initial shear stresses and lead to a high static/dynamic friction coefficient ratio, as observed in the measurements. PMID:27291939

  18. An Ice Track Equipped with Optical Sensors for Determining the Influence of Experimental Conditions on the Sliding Velocity

    NASA Astrophysics Data System (ADS)

    Lungevics, J.; Jansons, E.; Gross, K. A.

    2018-02-01

    The ability to slide on ice has previously focused on the measurement of friction coefficient rather than the actual sliding velocity that is affected by it. The performance can only be directly measured by the sliding velocity, and therefore the objective was to design and setup a facility to measure velo-city, and determine how experimental conditions affect it. Optical sensors were placed on an angled ice track to provide sliding velocity measurements along three sections and the velocity for the total sliding distance. Experimental conditions included the surface roughness, ambient temperature and load. The effect of roughness was best reported with a Criterion of Contact that showed a similar sliding velocity for metal blocks abraded with sand paper smoother than 600 grit. Searching for the effect of temperature, the highest sliding velocity coincided with the previously reported lowest coefficient of ice friction. Load showed the greatest velocity increase at temperatures closer to the ice melting point suggesting that in such conditions metal block overcame friction forces more easily than in solid friction. Further research needs to be conducted on a longer ice track, with larger metal surfaces, heavier loads and higher velocities to determine how laboratory experiments can predict real-life situations.

  19. The Influence of The Temperature on Dry Friction of AISI 3315 Steel Sliding Against AISI 3150 Steel

    NASA Astrophysics Data System (ADS)

    Odabas, D.

    2018-01-01

    In this paper, the effects the influence of frictional heating on the wear of AISI 3315 Steel were investigated experimentally using a pin-on-ring geometry. All the tests were carried out in air without any lubricant. In order to understand the variation in frictional coefficient and temperature with load and speed, the friction tests were carried out at a speed of 1 m/s and loads in the range 115-250 N, and at a speed range 1-4 m/s, a load of 115 N. The sliding distance was 1500 m. The bulk temperature of the specimen was measured from the interface surface at a distance of 1 mm from the contact surface by using type K thermocouples (Ni-Cr-Ni). The coefficient of friction was determined as a function of test load and speed. The steady state coefficient of friction of the test material decreases with increasing load and speed due to the oxide formation. But the unsteady state coefficient of friction increases with an increase in load and speed.

  20. A study of the 1963 Vajont landslide zonation by means of Lagrangian block modelling

    NASA Astrophysics Data System (ADS)

    Zaniboni, Filippo; Ausilia Paparo, Maria; Tinti, Stefano

    2017-04-01

    The 1963 landslide detaching from Mt. Toc (North-East Italy), that crashing on the underlying Vajont reservoir caused a huge wave that killed over 2000 people, is a well-known event that has been extensively and deeply investigated. Recently, studies appeared in the literature suggesting that the landslide dynamics can be explained in terms of a zonation of the moving mass. In this work, an additional support to the zonation hypothesis is given by focusing on the friction coefficient of the sliding surface, which is one of the chief parameters influencing the slide motion. Numerical simulations of the Vajont slide found in the literature assumed a homogenous value of the friction coefficient. We have systematically investigated a set of heterogeneous configurations. More specifically, we have divided the sliding surface into a number N of zones, and let the corresponding friction coefficient vary in the range 0-0.5. For each configuration we have run the numerical simulation via the Lagrangian block-based code UBO-BLOCK2 and have evaluated the configuration goodness by computing the misfit between the observed and the simulated deposits. The number of simulations required by this approach increases exponentially with the number N of zones. The main finding of this research is that a 4-sector zonation provides the best results in terms of deposit misfit. The zones can be roughly described as west-downhill (WD), west uphill (WU), east downhill (ED) and east uphill (EU). It is found that motion is mainly determined by friction in zones WD and EU, that friction coefficients in zone WD is remarkably smaller than in zone EU and that misfit is rather insensitive to the values of the friction coefficients in zones WU and ED.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajauria, Sukumar, E-mail: sukumar.rajauria@hgst.com; Canchi, Sripathi V., E-mail: sripathi.canchi@hgst.com; Schreck, Erhard

    The kinetic friction and wear at high sliding speeds is investigated using the head-disk interface of hard disk drives, wherein the head and the disk are less than 10 nm apart and move at sliding speeds of 5–10 m/s relative to each other. While the spacing between the sliding surfaces is of the same order of magnitude as various AFM based fundamental studies on friction, the sliding speed is nearly six orders of magnitude larger, allowing a unique set-up for a systematic study of nanoscale wear at high sliding speeds. In a hard disk drive, the physical contact between the head andmore » the disk leads to friction, wear, and degradation of the head overcoat material (typically diamond like carbon). In this work, strain gauge based friction measurements are performed; the friction coefficient as well as the adhering shear strength at the head-disk interface is extracted; and an experimental set-up for studying friction between high speed sliding surfaces is exemplified.« less

  2. General theory of frictional heating with application to rubber friction

    NASA Astrophysics Data System (ADS)

    Fortunato, G.; Ciaravola, V.; Furno, A.; Lorenz, B.; Persson, B. N. J.

    2015-05-01

    The energy dissipation in the contact regions between solids in sliding contact can result in high local temperatures which may strongly effect friction and wear. This is the case for rubber sliding on road surfaces at speeds above 1 mm s-1. We derive equations which describe the frictional heating for solids with arbitrary thermal properties. The theory is applied to rubber friction on road surfaces and we take into account that the frictional energy is partly produced inside the rubber due to the internal friction of rubber and in a thin (nanometer) interfacial layer at the rubber-road contact region. The heat transfer between the rubber and the road surface is described by a heat transfer coefficient which depends on the sliding speed. Numerical results are presented and compared to experimental data. We find that frictional heating results in a kinetic friction force which depends on the orientation of the sliding block, thus violating one of the two basic Leonardo da Vinci ‘laws’ of friction.

  3. General theory of frictional heating with application to rubber friction.

    PubMed

    Fortunato, G; Ciaravola, V; Furno, A; Lorenz, B; Persson, B N J

    2015-05-08

    The energy dissipation in the contact regions between solids in sliding contact can result in high local temperatures which may strongly effect friction and wear. This is the case for rubber sliding on road surfaces at speeds above 1 mm s(-1). We derive equations which describe the frictional heating for solids with arbitrary thermal properties. The theory is applied to rubber friction on road surfaces and we take into account that the frictional energy is partly produced inside the rubber due to the internal friction of rubber and in a thin (nanometer) interfacial layer at the rubber-road contact region. The heat transfer between the rubber and the road surface is described by a heat transfer coefficient which depends on the sliding speed. Numerical results are presented and compared to experimental data. We find that frictional heating results in a kinetic friction force which depends on the orientation of the sliding block, thus violating one of the two basic Leonardo da Vinci 'laws' of friction.

  4. Assembling of carbon nanotubes film responding to significant reduction wear and friction on steel surface

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Xue, Yong; Qiang, Li; Gao, Kaixong; Liu, Qiao; Yang, Baoping; Liang, Aiming; Zhang, Junyan

    2017-11-01

    Friction properties of carbon nanotubes have been widely studied and reported, however, the friction properties of carbon nanotubes related on state of itself. It is showing superlubricity under nanoscale, but indicates high shear adhesion as aligned carbon nanotube film. However, friction properties under high load (which is commonly in industry) of carbon nanotube films are seldom reported. In this paper, carbon nanotube films, via mechanical rubbing method, were obtained and its tribology properties were investigated at high load of 5 to 15 N. Though different couple pairs were employed, the friction coefficients of carbon nanotube films are nearly the same. Compared with bare stainless steel, friction coefficients and wear rates under carbon nanotube films lubrication reduced to, at least, 1/5 and 1/(4.3-14.5), respectively. Friction test as well as structure study were carried out to reveal the mechanism of the significant reduction wear and friction on steel surface. One can conclude that sliding and densifying of carbon nanotubes at sliding interface contribute to the sufficient decrease of friction coefficients and wear rates.

  5. Friction and wear of iron-base binary alloys in sliding contact with silicon carbide in vacuum

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1980-01-01

    Multipass sliding friction experiments were conducted with various iron base binary alloys in contact with a single crystal silicon carbide surface in vacuum. Results indicate that the atomic size and concentration of alloy elements play important roles in controlling the transfer and friction properties of iron base binary alloys. Alloys having high solute concentration produce more transfer than do alloys having low solute concentration. The coefficient of friction during multipass sliding generally increases with an increase in the concentration of alloying element. The change of friction with succeeding passes after the initial pass also increases as the solute to iron, atomic radius ratio increases or decreases from unity.

  6. Dry Sliding Tribological Studies of AA6061-B4C-Gr Hybrid Composites

    NASA Astrophysics Data System (ADS)

    Monikandan, V. V.; Joseph, M. A.; Rajendrakumar, P. K.

    2016-10-01

    The dry sliding behavior of stir-cast AA6061-10 wt.% B4C composites containing 2.5, 5 and 7.5 wt.% graphite particles was studied as a function of applied load, sliding speed and sliding distance on a pin-on-disk tribotester. The wear rate and friction coefficient increased with increase in applied load and sliding distance. The increase in graphite addition reduced the increase in wear rate and friction coefficient in the sliding speed range 2-2.5 m/s. Scanning electron microscopy of the worn pin revealed a graphite tribolayer, and transmission electron microscopy revealed overlapping deformation bands under 30 N applied load. Upon increasing the applied load to 40 N, welded region with fine crystalline structure was formed due to dynamic recrystallization of AA6061 alloy matrix.

  7. Sliding Seal Materials for Adiabatic Engines, Phase 2

    NASA Technical Reports Server (NTRS)

    Lankford, J.; Wei, W.

    1986-01-01

    An essential task in the development of the heavy-duty adiabatic diesel engine is identification and improvements of reliable, low-friction piston seal materials. In the present study, the sliding friction coefficients and wear rates of promising carbide, oxide, and nitride materials were measured under temperature, environmental, velocity, and loading conditions that are representative of the adiabatic engine environment. In addition, silicon nitride and partially stabilized zirconia disks were ion implanted with TiNi, Ni, Co, and Cr, and subsequently run against carbide pins, with the objective of producing reduced friction via solid lubrication at elevated temperature. In order to provide guidance needed to improve materials for this application, the program stressed fundamental understanding of the mechanisms involved in friction and wear. Electron microscopy was used to elucidate the micromechanisms of wear following wear testing, and Auger electron spectroscopy was used to evaluate interface/environment interactions which seemed to be important in the friction and wear process. Unmodified ceramic sliding couples were characterized at all temperatures by friction coefficients of 0.24 and above. The coefficient at 800 C in an oxidizing environment was reduced to below 0.1, for certain material combinations, by the ion implanation of TiNi or Co. This beneficial effect was found to derive from lubricious Ti, Ni, and Co oxides.

  8. Nonlinear shear wave interaction at a frictional interface: energy dissipation and generation of harmonics.

    PubMed

    Meziane, A; Norris, A N; Shuvalov, A L

    2011-10-01

    Analytical and numerical modeling of the nonlinear interaction of shear wave with a frictional interface is presented. The system studied is composed of two homogeneous and isotropic elastic solids, brought into frictional contact by remote normal compression. A shear wave, either time harmonic or a narrow band pulse, is incident normal to the interface and propagates through the contact. Two friction laws are considered and the influence on interface behavior is investigated: Coulomb's law with a constant friction coefficient and a slip-weakening friction law which involves static and dynamic friction coefficients. The relationship between the nonlinear harmonics and the dissipated energy, and the dependence on the contact dynamics (friction law, sliding, and tangential stress) and on the normal contact stress are examined in detail. The analytical and numerical results indicate universal type laws for the amplitude of the higher harmonics and for the dissipated energy, properly non-dimensionalized in terms of the pre-stress, the friction coefficient and the incident amplitude. The results suggest that measurements of higher harmonics can be used to quantify friction and dissipation effects of a sliding interface. © 2011 Acoustical Society of America

  9. Steady-state wear and friction in boundary lubrication studies

    NASA Technical Reports Server (NTRS)

    Loomis, W. R.; Jones, W. R., Jr.

    1980-01-01

    A friction and wear study was made at 20 C to obtain improved reproducibility and reliability in boundary lubrication testing. Ester-base and C-ether-base fluids were used to lubricate a pure iron rider in sliding contact with a rotating M-50 steel disk in a friction and wear apparatus. Conditions included loads of 1/2 and 1 kg and sliding velocities of 3.6 to 18.2 m/min in a dry air atmosphere and stepwise time intervals from 1 to 250 min for wear measurements. The wear rate results were compared with those from previous studies where a single 25 min test period was used. Satisfactory test conditions for studying friction and wear in boundary lubrication for this apparatus were found to be 1 kg load; sliding velocities of 7.1 to 9.1 m/min (50 rpm disk speed); and use of a time stepwise test procedure. Highly reproducible steady-state wear rates and steady-state friction coefficients were determined under boundary conditions. Wear rates and coefficients of friction were constant following initially high values during run-in periods.

  10. Friction and Wear Properties of Selected Solid Lubricating Films

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Iwaki, Masanori; Gotoh, Kenichi; Obara, Shingo; Imagawa, Kichiro

    1999-01-01

    To evaluate commercially developed solid film lubricants for aerospace bearing applications, we investigated the friction and wear behavior of bonded molybdenum disulfide (MoS2), magnetron-sputtered MoS2 and ion-plated silver films in sliding contact with 6-mm-diameter American Iron and Steel Institute (AISI) 440 C stainless steel balls. Unidirectional sliding friction experiments were conducted with a load of 5.9 N (600 g), a mean Herizian contact pressure of 0.79 GPa maximum 1.19 GPa), and a sliding velocity of 0.2 m/s at room temperature in three environments: ultrahigh vacuum (7x10 (exp -7Pa)), humid air (approx. 20 percent humidity), and dry nitrogen (less than 1 percent humidity). The resultant films were characterized by scanning electron microscopy, energy-dispersive x-ray spectroscopy, and surface profilometry. Marked differences in friction and wear resulted front the environmental conditions and the film materials. The main criteria for judging the performance were coefficient of friction and wear rate, which had to be less than 0.3 and on the order of 10 (exp -6mm exp 3/Nm or less), respectively. The bonded MoS2 and magnetron-sputtered MoS2 films met the criteria in all three environments. Also, the wear rates of the counterpart AISI 440 C stainless steel balls met that criterion in all three environments. The ion-plated silver films met the criteria only in ultrahigh vacuum. In ultrahigh vacuum the bonded MoS2 films were superior. In humid air the bonded MoS2 films had higher coefficient of friction and shorter wear life than did the magnetron-sputtered MoS2 films. The ion-plated silver films had a high coefficient of friction in humid air but relatively low coefficients of friction in the nonoxidative environments. Adhesion and plastic deformation played important roles in all three environments. All sliding involved adhesive transfer of materials.

  11. Coefficient of friction and wear rate effects of different composite nanolubricant concentrations on Aluminium 2024 plate

    NASA Astrophysics Data System (ADS)

    Zawawi, N. N. M.; Azmi, W. H.; Redhwan, A. A. M.; Sharif, M. Z.

    2017-10-01

    Wear of sliding parts and operational machine consistency enhancement can be avoided with good lubrication. Lubrication reduce wear between two contacting and sliding surfaces and decrease the frictional power losses in compressor. The coefficient of friction and wear rate effects study were carried out to measure the friction and anti-wear abilities of Al2O3-SiO2 composite nanolubricants a new type of compressor lubricant to enhanced the compressor performances. The tribology test rig employing reciprocating test conditions to replicate a piston ring contact in the compressor was used to measure the coefficient of friction and wear rate. Coefficient of friction and wear rate effects of different Al2O3-SiO2/PAG composite nanolubricants of Aluminium 2024 plate for 10-kg load at different speed were investigated. Al2O3 and SiO2 nanoparticles were dispersed in the Polyalkylene Glycol (PAG 46) lubricant using two-steps method of preparation. The result shows that the coefficient friction and wear rate of composite nanolubricants decreased compared to pure lubricant. The maximum reduction achievement for friction of coefficient and wear rate by Al2O3-SiO2 composite nanolubricants by 4.78% and 12.96% with 0.06% volume concentration. Therefore, 0.06% volume concentration is selected as the most enhanced composite nanolubricants with effective coefficient of friction and wear rate reduction compared to other volume concentrations. Thus, it is recommended to be used as the compressor lubrication to enhanced compressor performances.

  12. Friction and wear of tin and tin alloys from minus 100 C to 150 C

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1975-01-01

    Sliding friction experiments were conducted with an iron (110) single-crystal pin sliding on single and polycrystalline tin and tin alloys. Specimens were examined at various ambient temperatures from -100 to 150 C. Applied loads varied from 1 to 50 grams, and sliding velocity was constant at 0.7 mm/min. Results indicate that the crystal transformation of tin influences the friction coefficient. Friction was higher for the diamond structure (gray tin) than it was for the body-centered tetragonal structure (white tin). Bismuth arrested the crystal transformation, which resulted in constant friction over the temperature range -100 to 150 C. Both copper and aluminum enhanced the kinetics of transformation, with aluminum producing a nearly twofold change in friction with the crystal transformation.

  13. Study on Abrasive Wear of Brake Pad in the Large-megawatt Wind Turbine Brake Based on Deform Software

    NASA Astrophysics Data System (ADS)

    Zhang, Shengfang; Hao, Qiang; Sha, Zhihua; Yin, Jian; Ma, Fujian; Liu, Yu

    2017-12-01

    For the friction and wear issues of brake pads in the large-megawatt wind turbine brake during braking, this paper established the micro finite element model of abrasive wear by using Deform-2D software. Based on abrasive wear theory and considered the variation of the velocity and load in the micro friction and wear process, the Archard wear calculation model is developed. The influence rules of relative sliding velocity and friction coefficient in the brake pad and disc is analysed. The simulation results showed that as the relative sliding velocity increases, the wear will be more serious, while the larger friction coefficient lowered the contact pressure which released the wear of the brake pad.

  14. Tribological behaviors of UHMWPE composites with different counter surface morphologies

    NASA Astrophysics Data System (ADS)

    Wang, Yanzhen; Yin, Zhongwei; Li, Hulin; Gao, Gengyuan

    2017-12-01

    The influence of counter surface morphologies on hybrid glass fiber (GF) and carbon fiber (CF) filled ultrahigh molecular weight polyethylene (UHMWPE) were studied under various contact pressure and sliding speed against GCr15 steel in dry condition. The goals were to investigate the tribological behavior of GF/CF/UHMWPE composite as a kind of water lubricated journal bearing material. The friction and wear behavior of composites were examined using a pin-on-disc tribometer. The morphologies of the worn surface were examined by scanning electron microscopy (SEM) and laser 3D micro-imaging and profile measurement. Generally, the wear rate and friction coefficient of composites increase as the increment of counter surface roughness. The friction coefficient increases firstly and then decrease with an increase in sliding speed and contact pressure for counterface with Ra=0.2 and 3.5 μm, while the friction coefficient decreased for counterface with Ra=0.6 μm.

  15. Anisotropic frictional heating and defect generation in cyclotrimethylene-trinitramine molecular crystals

    NASA Astrophysics Data System (ADS)

    Rajak, Pankaj; Mishra, Ankit; Sheng, Chunyang; Tiwari, Subodh; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya

    2018-05-01

    Anisotropic frictional response and corresponding heating in cyclotrimethylene-trinitramine molecular crystals are studied using molecular dynamics simulations. The nature of damage and temperature rise due to frictional forces is monitored along different sliding directions on the primary slip plane, (010), and on non-slip planes, (100) and (001). Correlations between the friction coefficient, deformation, and frictional heating are established. We find that the friction coefficients on slip planes are smaller than those on non-slip planes. In response to sliding on a slip plane, the crystal deforms easily via dislocation generation and shows less heating. On non-slip planes, due to the inability of the crystal to deform via dislocation generation, a large damage zone is formed just below the contact area, accompanied by the change in the molecular ring conformation from chair to boat/half-boat. This in turn leads to a large temperature rise below the contact area.

  16. Surface chemistry, microstructure and friction properties of some ferrous-base metallic glasses at temperatures to 750 C

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1982-01-01

    X-ray photoelectron spectroscopy analysis, transmission electron microscopy, diffraction studies, and sliding friction experiments were conducted with ferrous-base metallic glasses in sliding contact with aluminum oxide at temperatures from room to 750 C in a vacuum of 30 nPa. The results indicate that there is a significant temperature influence on the friction properties, surface chemistry, and microstructure of metallic glasses. The relative concentrations of the various constituents at the surface of the sputtered specimens were very different from the normal bulk compositions. Contaminants can come from the bulk of the material to the surface upon heating and impart boric oxide and silicon oxide at 350 C and boron nitride above 500 C. The coefficient of friction increased with increasing temperature to 350 C. Above 500 C the coefficient of friction decreased rapidly. The segregation of contaminants may be responsible for the friction behavior.

  17. Friction and wear behavior of single-crystal silicon carbide in contact with titanium

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1977-01-01

    Sliding friction experiments were conducted with single crystal silicon carbide in sliding contact with titanium. Results indicate that the friction coefficient is greater in vacuum than in argon and that this is due to the greater adhesion or adhesive transfer in vacuum. Thin films of silicon carbide transferred to titanium also adhered to silicon carbide both in argon at atmospheric pressure and in high vacuum. Cohesive bonds fractured on both the silicon carbide and titanium surfaces. The wear debris of silicon carbide created by fracture plowed the silicon carbide surface in a plastic manner. The friction characteristics of titanium in contact with silicon carbide were sensitive to the surface roughness of silicon carbide, and the friction coefficients were higher for a rough surface of silicon carbide than for a smooth one. The difference in friction results was due to plastic deformation (plowing of titanium).

  18. A comparative study of tribological characteristics of hydrogenated DLC film sliding against ceramic mating materials for helium applications

    NASA Astrophysics Data System (ADS)

    Wu, Daheng; Ren, Siming; Pu, Jibin; Lu, Zhibin; Zhang, Guangan; Wang, Liping

    2018-05-01

    The tribological behaviors of hydrogenated DLC film sliding against Al2O3, ZrO2, Si3N4 and WC mating balls have been comparatively investigated by a ball-on-disk tribometer at 150 °C under helium and air (RH = 6%) conditions. The results showed that the mating material influenced the friction and wear behavior remarkably in helium atmosphere, where the wear rates were in inversely proportional to the friction coefficients (COF) of those tribo-pairs. Compared to the tests in helium, the tribological performance of DLC film significantly improved in air. Scanning electron microscope (SEM) and Raman spectroscopy were performed to study the friction behavior and wear mechanism of the film under different conditions. It suggested that the severe abrasion was caused by the strong interaction between the tribo-pairs in helium atmosphere at 150 °C, whereas the sufficient passivation of the dangling bonds of carbon atoms at sliding interface by chemically active molecules, such as water and oxygen, dominated the ultralow friction under air condition. Meanwhile, Hertz analysis was used to further elucidate the frictional mechanism of DLC film under helium and air conditions. It showed that the coefficient of friction was consistent with the varied tendency of the contact radius, namely, higher friction coefficient corresponded to the larger contact radius, which was the same with the relationship between the wear rate and the contact pressure. All of the results made better understanding of the essential mechanism of hydrogenated DLC film sliding against different pairs, which were able to guide the further application of DLC film in the industrial fields of helium atmosphere.

  19. Numerical Modeling of Earthquake-Induced Landslide Using an Improved Discontinuous Deformation Analysis Considering Dynamic Friction Degradation of Joints

    NASA Astrophysics Data System (ADS)

    Huang, Da; Song, Yixiang; Cen, Duofeng; Fu, Guoyang

    2016-12-01

    Discontinuous deformation analysis (DDA) as an efficient technique has been extensively applied in the dynamic simulation of discontinuous rock mass. In the original DDA (ODDA), the Mohr-Coulomb failure criterion is employed as the judgment principle of failure between contact blocks, and the friction coefficient is assumed to be constant in the whole calculation process. However, it has been confirmed by a host of shear tests that the dynamic friction of rock joints degrades. Therefore, the friction coefficient should be gradually reduced during the numerical simulation of an earthquake-induced rockslide. In this paper, based on the experimental results of cyclic shear tests on limestone joints, exponential regression formulas are fitted for dynamic friction degradation, which is a function of the relative velocity, the amplitude of cyclic shear displacement and the number of its cycles between blocks with an edge-to-edge contact. Then, an improved DDA (IDDA) is developed by implementing the fitting regression formulas and a modified removing technique of joint cohesion, in which the cohesion is removed once the `sliding' or `open' state between blocks appears for the first time, into the ODDA. The IDDA is first validated by comparing with the theoretical solutions of the kinematic behaviors of a sliding block on an inclined plane under dynamic loading. Then, the program is applied to model the Donghekou landslide triggered by the 2008 Wenchuan earthquake in China. The simulation results demonstrate that the dynamic friction degradation of joints has great influences on the runout and velocity of sliding mass. Moreover, the friction coefficient possesses higher impact than the cohesion of joints on the kinematic behaviors of the sliding mass.

  20. An analytical model of dynamic sliding friction during impact

    NASA Astrophysics Data System (ADS)

    Arakawa, Kazuo

    2017-01-01

    Dynamic sliding friction was studied based on the angular velocity of a golf ball during an oblique impact. This study used the analytical model proposed for the dynamic sliding friction on lubricated and non-lubricated inclines. The contact area A and sliding velocity u of the ball during impact were used to describe the dynamic friction force Fd = λAu, where λ is a parameter related to the wear of the contact area. A comparison with experimental results revealed that the model agreed well with the observed changes in the angular velocity during impact, and λAu is qualitatively equivalent to the empirical relationship, μN + μη‧dA/dt, given by the product between the frictional coefficient μ and the contact force N, and the additional term related to factor η‧ for the surface condition and the time derivative of A.

  1. Dynamic weakening is limited by granular dynamics

    NASA Astrophysics Data System (ADS)

    Kuwano, O.; Hatano, T.

    2011-12-01

    Earthquakes are the result of the frictional instability of faults containing fine rock powders called gouge derived from attrition in past fault motions. Understanding the frictional instability of granular matter in terms of constitutive laws is thus important. Because of the importance of granular matter for industries and engineering, the friction of granular matter has been studied in the field of solid earth science and other fields, such as statistical physics. In solid earth science, the rate- and state-dependent friction law was established by laboratory experiments at a very low sliding velocity (μm/s to mm/s). Recent experiments conducted at sub-seismic to seismic sliding velocities (mm/s to m/s), however, show that frictional properties are much richer than those predicted by the rate- and state-dependent friction law. One of the most important findings in such experiments is the remarkable weakening due to mechano-chemical effects by frictional heating [Tullis, 2007]. In statistical physics, another empirical law holds for much faster deformation than the former, showing positive shear-rate dependence. Until Recently, friction of granular matter has been investigated independently in the fields of solid earth science and statistical physics, and thus the relation between these distinct constitutive laws is not clear. Recently, some experimental studies have been reported to connect the achievements in these two fields. For example, a laboratory experiment on dry glass beads under very low normal stress (0.02 to 0.05 MPa) in which the frictional heat is negligible reveals the transition from velocity-weakening friction at low sliding velocities to velocity-strengthening friction at high sliding velocities [Kuwano et al., 2011]. Importantly, the velocity-strengthening nature at high sliding velocities is quantitatively the same as those observed in simulations. The inelastic deformation of the grains therefore plays a vital role at high sliding velocities. In this study, we report a friction experiment under higher pressure (0.1 to 0.9 MPa), in which the frictional heat is significant. To clarify the effect of frictional heat in high-speed friction systematically, we investigated both the pressure and the velocity dependence of the friction coefficient over a wide range of sliding velocities ranging from aseismic to seismic slip velocities. We observed considerable weakening, described well by a flash-heating theory, above the sliding velocity of 1 cm/s regardless of pressure. At higher velocities, the velocity strengthening behavior replaced the velocity weakening behavior. This strengthening at higher velocities agrees with data from numerical simulations on sheared granular matter and is therefore described in terms of energy dissipation due to the inelastic deformation of grains. We propose a unified steady-state friction law that well describes the velocity and pressure dependence of the steady-state friction coefficient.

  2. Being Careful with PASCO's Kinetic Friction Experiment: Uncovering Pre-Sliding Displacement?

    ERIC Educational Resources Information Center

    Lawlor, T. M.

    2008-01-01

    The widely used PASCO laboratory equipment is an excellent way to introduce students to many topics in physics. In one case, PASCO's equipment may be too good! Various experiments exist for calculating the kinetic coefficient of friction by measuring the acceleration of a sliding object under some constant force. With ever more accurate equipment,…

  3. Lowering coefficient of friction in Cu alloys with stable gradient nanostructures

    PubMed Central

    Chen, Xiang; Han, Zhong; Li, Xiuyan; Lu, K.

    2016-01-01

    The coefficient of friction (COF) of metals is usually high, primarily because frictional contacts induce plastic deformation underneath the wear surface, resulting in surface roughening and formation of delaminating tribolayers. Lowering the COF of metals is crucial for improving the reliability and efficiency of metal contacts in engineering applications but is technically challenging. Refining the metals’ grains to nanoscale cannot reduce dry-sliding COFs, although their hardness may be elevated many times. We report that a submillimeter-thick stable gradient nanograined surface layer enables a significant reduction in the COF of a Cu alloy under high-load dry sliding, from 0.64 (coarse-grained samples) to 0.29, which is smaller than the COFs of many ceramics. The unprecedented stable low COF stems from effective suppression of sliding-induced surface roughening and formation of delaminating tribolayer, owing to the stable gradient nanostructures that can accommodate large plastic strains under repeated sliding for more than 30,000 cycles. PMID:27957545

  4. Surface chemistry, friction, and wear of Ni-Zn and Mn-Zn ferrites in contact with metals

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1983-01-01

    X-ray photoelectron and Auger electron spectroscopy analysis were used in sliding friction experiments. These experiments were conducted with hot-pressed polycrystalline Ni-Zn and Mn-Zn ferrites, and single-crystal Mn-Zn ferrite in contact with various transition metals at room temperature in both vacuum and argon. The results indicate that Ni2O3 and Fe3O4 were present on the Ni-Zn ferrite surface in addition to the nominal bulk constituents, while MnO2 and Fe3O4 were present on the Mn-Zn ferrite surface in addition to the nominal bulk constituents. The coefficients of friction for the ferrites in contact with metals were related to the relative chemical activity of these metals. The more active the metal, the higher is the coefficient of friction. The coefficients of friction for the ferrites were correlated with the free energy of formation of the lowest metal oxide. The interfacial bond can be regarded as a chemical bond between the metal atoms and the oxygen anions in the ferrite surfaces. The adsorption of oxygen on clean metal and ferrite does strengthen the metal-ferrite contact and increase the friction. The ferrites exhibit local cracking and fracture with sliding under adhesive conditions. All the metals transferred to the surfaces of the ferrites in sliding. Previously announced in STAR as N83-19901

  5. Surface chemistry, friction and wear of Ni-Zn and Mn-Zn ferrites in contact with metals

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1982-01-01

    X-ray photoelectron and Auger electron spectroscopy analysis were used in sliding friction experiments. These experiments were conducted with hot-pressed polycrystalline Ni-Zn and Mn-Zn ferrites, and single-crystal Mn-Zn ferrite in contact with various transition metals at room temperature in both vacuum and argon. The results indicate that Ni2O3 and Fe3O4 were present on the Ni-Zn ferrite surface in addition to the nominal bulk constituents, while MnO2 and Fe3O4 were present on the Mn-Zn ferrite surface in addition to the nominal bulk constituents. The coefficients of friction for the ferrites in contact with metals were related to the relative chemical activity of these metals. The more active the metal, the higher is the coefficient of friction. The coefficients of friction for the ferrites were correlated with the free energy of formation of the lowest metal oxide. The interfacial bond can be regarded as a chemical bond between the metal atoms and the oxygen anions in the ferrite surfaces. The adsorption of oxygen on clean metal and ferrite does strengthen the metal-ferrite contact and increase the friction. The ferrites exhibit local cracking and fracture with sliding under adhesive conditions. All the metals transferred to he surfaces of the ferrites in sliding.

  6. Cerium Addition Improved the Dry Sliding Wear Resistance of Surface Welding AZ91 Alloy

    PubMed Central

    Zhao, Zhihao; Zhu, Qingfeng; Wang, Gaosong; Tao, Kai

    2018-01-01

    In this study, the effects of cerium (Ce) addition on the friction and wear properties of surface welding AZ91 magnesium alloys were evaluated by pin-on-disk dry sliding friction and wear tests at normal temperature. The results show that both the friction coefficient and wear rate of surfacing magnesium alloys decreased with the decrease in load and increase in sliding speed. The surfacing AZ91 alloy with 1.5% Ce had the lowest friction coefficient and wear rate. The alloy without Ce had the worst wear resistance, mainly because it contained a lot of irregularly shaped and coarse β-Mg17Al12 phases. During friction, the β phase readily caused stress concentration and thus formed cracks at the interface between β phase and α-Mg matrix. The addition of Ce reduced the size and amount of Mg17Al12, while generating Al4Ce phase with a higher thermal stability. The Al-Ce phase could hinder the grain-boundary sliding and migration and reduced the degree of plastic deformation of subsurface metal. Scanning electron microscopy observation showed that the surfacing AZ91 alloy with 1.5% Ce had a total of four types of wear mechanism: abrasion, oxidation, and severe plastic deformation were the primary mechanisms; delamination was the secondary mechanism. PMID:29415492

  7. Study on the property of low friction complex graphite-like coating containing tantalum

    NASA Astrophysics Data System (ADS)

    Wang, Zuoping; Feng, Lajun; Shen, Wenning

    2018-03-01

    In order to enhance equipment lifetime under low oil or even dry conditions, tantalum was introduced into the graphite-like coating (GLC) by sputtering mosaic targets. The results showed that the introduction of Ta obviously reduced the friction coefficient and hardness of the GLC, while improved the wearability. When the atomic percentage of Ta was larger than 3%, the steady friction coefficient was lower than 0.01, suggesting the coating exhibited super lubricity. When the content of Ta was about 5.0%, the average friction coefficient was 0.02 by a sliding friction test under load of 20 N in unlubricated condition. Its average friction coefficient reduced by 75%, compared with that of control GLC (0.0825).

  8. Microstructure and tribological properties of TiCu2Al intermetallic compound coating

    NASA Astrophysics Data System (ADS)

    Guo, Chun; Zhou, Jiansong; Zhao, Jierong; Wang, Linqian; Yu, Youjun; Chen, Jianmin; Zhou, Huidi

    2011-04-01

    TiCu2Al ternary intermetallic compound coating has been in situ synthesized successfully on pure Ti substrate by laser cladding. Tribological properties of the prepared TiCu2Al intermetallic compound coating were systematically evaluated. It was found that the friction coefficient and wear rate was closely related to the normal load and sliding speed, i.e., the friction coefficient of the prepared TiCu2Al intermetallic compound coating decreased with increasing normal load and sliding speed. The wear rate of the TiCu2Al intermetallic compound coating decreased rapidly with increasing sliding speed, while the wear rate first increased and then decreased at normal load from 5 to 15 N.

  9. Estimation of Dynamic Friction Process of the Akatani Landslide Based on the Waveform Inversion and Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Yamada, M.; Mangeney, A.; Moretti, L.; Matsushi, Y.

    2014-12-01

    Understanding physical parameters, such as frictional coefficients, velocity change, and dynamic history, is important issue for assessing and managing the risks posed by deep-seated catastrophic landslides. Previously, landslide motion has been inferred qualitatively from topographic changes caused by the event, and occasionally from eyewitness reports. However, these conventional approaches are unable to evaluate source processes and dynamic parameters. In this study, we use broadband seismic recordings to trace the dynamic process of the deep-seated Akatani landslide that occurred on the Kii Peninsula, Japan, which is one of the best recorded large slope failures. Based on the previous results of waveform inversions and precise topographic surveys done before and after the event, we applied numerical simulations using the SHALTOP numerical model (Mangeney et al., 2007). This model describes homogeneous continuous granular flows on a 3D topography based on a depth averaged thin layer approximation. We assume a Coulomb's friction law with a constant friction coefficient, i. e. the friction is independent of the sliding velocity. We varied the friction coefficients in the simulation so that the resulting force acting on the surface agrees with the single force estimated from the seismic waveform inversion. Figure shows the force history of the east-west components after the band-pass filtering between 10-100 seconds. The force history of the simulation with frictional coefficient 0.27 (thin red line) the best agrees with the result of seismic waveform inversion (thick gray line). Although the amplitude is slightly different, phases are coherent for the main three pulses. This is an evidence that the point-source approximation works reasonably well for this particular event. The friction coefficient during the sliding was estimated to be 0.38 based on the seismic waveform inversion performed by the previous study and on the sliding block model (Yamada et al., 2013), whereas the frictional coefficient estimated from the numerical simulation was about 0.27. This discrepancy may be due to the digital elevation model, to the other forces such as pressure gradients and centrifugal acceleration included in the model. However, quantitative interpretation of this difference requires further investigation.

  10. Breakdown of Amontons' Law of Friction in Sheared-Elastomer with Local Amontons' Friction

    NASA Astrophysics Data System (ADS)

    Matsukawa, Hiroshi; Otsuki, Michio

    2012-02-01

    It is well known that Amontons' law of friction i.e. the frictional force against the sliding motion of solid object is proportional to the loading force and not dependent on the contact area, holds well for various systems. Here we show, however, the breakdown of the Amontons' law for the elastic object which have local friction obeying Amontons' law and is under uniform pressure by FEM calculation The external shearing force applied to the trailing edge of the sample induces local slip. The range of the slip increases with the increasing external force adiabatically at first. When the range reaches the critical magnitude, the slips moves rapidly and reaches the leading edge of the sample then the whole system slides. These behaviors are consistent with the experiment by Rubinstein et.al. (Phys. Rev. Lett. 98, 226103). The static frictional coefficient, the ratio between the static frictional force for the whole system and the loading force, decreases with the increasing pressure. This means the breakdown of Amontons' law. The pressure dependence of the frictional coefficient is caused by the change of the critical length of the local slip. The behaviors of the local slip and the frictional coefficient are well explained by the 1 dimensional model analytically.

  11. Sliding mechanics of coated composite wires and the development of an engineering model for binding.

    PubMed

    Zufall, S W; Kusy, R P

    2000-02-01

    A tribological (friction and wear) study, which was designed to simulate clinical sliding mechanics, was conducted as part of an effort to determine the suitability of poly(chloro-p-xylylene) coatings for composite orthodontic archwires. Prototype composite wires, having stiffnesses similar to those of current initial and intermediate alignment wires, were tested against stainless steel and ceramic brackets in the passive and active configurations (with and without angulation). Kinetic coefficient of friction values, which were determined to quantify sliding resistances as functions of the normal forces of ligation, had a mean that was 72% greater than uncoated wire couples at 0.43. To improve analysis of the active configuration, a mathematical model was developed that related bracket angulation, bracket width, interbracket distance, wire geometry, and wire elastic modulus to sliding resistance. From this model, kinetic coefficients of binding were determined to quantify sliding resistances as functions of the normal forces of binding. The mean binding coefficient was the same as that of uncoated wire couples at 0.42. Although penetrations through the coating were observed on many specimens, the glass-fiber reinforcement within the composite wires was undamaged for all conditions tested. This finding implies that the risk of glass fiber release during clinical use would be eliminated by the coating. In addition, the frictional and binding coefficients were still within the limits outlined by conventional orthodontic wire-bracket couples. Consequently, the coatings were regarded as an improvement to the clinical acceptability of composite orthodontic archwires.

  12. Internally architectured materials with directionally asymmetric friction

    PubMed Central

    Bafekrpour, Ehsan; Dyskin, Arcady; Pasternak, Elena; Molotnikov, Andrey; Estrin, Yuri

    2015-01-01

    Internally Architectured Materials (IAMs) that exhibit different friction forces for sliding in the opposite directions are proposed. This is achieved by translating deformation normal to the sliding plane into a tangential force in a manner that is akin to a toothbrush with inclined bristles. Friction asymmetry is attained by employing a layered material or a structure with parallel ‘ribs’ inclined to the direction of sliding. A theory of directionally asymmetric friction is presented, along with prototype IAMs designed, fabricated and tested. The friction anisotropy (the ξ-coefficient) is characterised by the ratio of the friction forces for two opposite directions of sliding. It is further demonstrated that IAM can possess very high levels of friction anisotropy, with ξ of the order of 10. Further increase in ξ is attained by modifying the shape of the ribs to provide them with directionally dependent bending stiffness. Prototype IAMs produced by 3D printing exhibit truly giant friction asymmetry, with ξ in excess of 20. A novel mechanical rectifier, which can convert oscillatory movement into unidirectional movement by virtue of directionally asymmetric friction, is proposed. Possible applications include locomotion in a constrained environment and energy harvesting from oscillatory noise and vibrations. PMID:26040634

  13. Measurement of Vehicle Tire-to-Road Coefficient of Friction with a Portable Microcomputerized Transducer.

    DTIC Science & Technology

    1982-08-01

    Sliding Rubber and the Load Dependance of Road Tyre Friction," The Physics of Tire Tractio,’. Theory, and Experiment (Hays, D. F., and Brown, A. L...Saturation of Sliding Rubber and the Load Dependance of Road Tyre Friction," The Physics of Tire Traction, Theory, and Expe-iment (Hays, D. F., and...surfaces could be identified and evaluated before accidents happen or runway surfaces could be evaluated to determine if rubber or other contaminant

  14. Adhesive Wear Performance of CFRP Multilayered Polyester Composites Under Dry/wet Contact Conditions

    NASA Astrophysics Data System (ADS)

    Danaelan, D.; Yousif, B. F.

    The tribo-performance of a new engineering composite material based on coconut fibers was investigated. In this work, coconut fibers reinforced polyester (CFRP) composites were developed. The tribo-experiments were conducted by using pin-on-disc machine under dry and wet sliding contact condition against smooth stainless steel counterface. Worn surfaces were observed using optical microscope. Friction coefficient and specific wear rate were presented as a function of sliding distance (0-0.6 km) at different sliding velocities (0.1-0.28 m/s). The effect of applied load and sliding velocity was evaluated. The results showed that all test parameters have significant influence on friction and wear characteristics of the composites. Moreover, friction coefficient increased as the normal load and speed increased, the values were about 0.7-0.9 under dry contact condition. Meanwhile, under wet contact condition, there was a great reduction in the friction coefficient, i.e. the values were about 0.1-0.2. Furthermore, the specific wear rates were found to be around 2-4 (10-3) mm3/Nm under dry contact condition and highly reduced under wet condition. In other words, the presence of water as cleaner and polisher assisted to enhance the adhesive wear performance of CFRP by about 10%. The images from optical microscope showed evidence of adhesive wear mode with transition to abrasive wear mode at higher sliding velocities due to third body abrasion. On the other hand, optical images for wet condition showed less adhesive wear and smooth surfaces.

  15. Modeling and Investigation of the Wear Resistance of Salt Bath Nitrided Aisi 4140 via ANN

    NASA Astrophysics Data System (ADS)

    Ekinci, Şerafettin; Akdemir, Ahmet; Kahramanli, Humar

    2013-05-01

    Nitriding is usually used to improve the surface properties of steel materials. In this way, the wear resistance of steels is improved. We conducted a series of studies in order to investigate the microstructural, mechanical and tribological properties of salt bath nitrided AISI 4140 steel. The present study has two parts. For the first phase, the tribological behavior of the AISI 4140 steel which was nitrided in sulfinuz salt bath (SBN) was compared to the behavior of the same steel which was untreated. After surface characterization using metallography, microhardness and sliding wear tests were performed on a block-on-cylinder machine in which carbonized AISI 52100 steel discs were used as the counter face. For the examined AISI 4140 steel samples with and without surface treatment, the evolution of both the friction coefficient and of the wear behavior were determined under various loads, at different sliding velocities and a total sliding distance of 1000 m. The test results showed that wear resistance increased with the nitriding process, friction coefficient decreased due to the sulfur in salt bath and friction coefficient depended systematically on surface hardness. For the second part of this study, four artificial neural network (ANN) models were designed to predict the weight loss and friction coefficient of the nitrided and unnitrided AISI 4140 steel. Load, velocity and sliding distance were used as input. Back-propagation algorithm was chosen for training the ANN. Statistical measurements of R2, MAE and RMSE were employed to evaluate the success of the systems. The results showed that all the systems produced successful results.

  16. Improved Wear Resistance of Low Carbon Steel with Plasma Melt Injection of WC Particles

    NASA Astrophysics Data System (ADS)

    Liu, Aiguo; Guo, Mianhuan; Hu, Hailong

    2010-08-01

    Surface of a low carbon steel Q235 substrate was melted by a plasma torch, and tungsten carbide (WC) particles were injected into the melt pool. WC reinforced surface metal matrix composite (MMC) was synthesized. Dry sliding wear behavior of the surface MMC was studied and compared with the substrate. The results show that dry sliding wear resistance of low carbon steel can be greatly improved by plasma melt injection of WC particles. Hardness of the surface MMC is much higher than that of the substrate. The high hardness lowers the adhesion and abrasion of the surface MMC, and also the friction coefficient of it. The oxides formed in the sliding process also help to lower the friction coefficient. In this way, the dry sliding wear resistance of the surface MMC is greatly improved.

  17. Angle-dependent tribological properties of AlCrN coatings with microtextures induced by nanosecond laser under dry friction

    NASA Astrophysics Data System (ADS)

    Xing, Youqiang; Deng, Jianxin; Gao, Peng; Gao, Juntao; Wu, Ze

    2018-04-01

    Microtextures with different groove inclinations are fabricated on the AlCrN-coated surface by a nanosecond laser, and the tribological properties of the textured AlCrN samples sliding against AISI 1045 steel balls are investigated by reciprocating sliding friction tests under dry conditions. Results show that the microtextures can effectively improve the tribological properties of the AlCrN surface compared with the smooth surface. Meanwhile, the angle between the groove inclination and sliding direction has an important influence on the friction and wear properties. The textured sample with the small groove inclination may be beneficial to reducing the friction and adhesions, and the TC-0° sample exhibits the lowest friction coefficient and adhesions of the worn surface. The wear volume of the ball sliding against the TC-0° sample is smaller compared with the UTC sample and the sliding against the TC-45° and TC-90° samples is larger compared with the UTC sample. Furthermore, the mechanisms of the microtextures are discussed.

  18. Effect of Applied Load and Sliding Speed on Tribological Behavior of TiAl-Based Self-Lubricating Composites

    NASA Astrophysics Data System (ADS)

    Liu, Xiyao; Shen, Qiao; Shi, Xiaoliang; Zou, Jialiang; Huang, Yuchun; Zhang, Ao; Yan, Zhao; Deng, Xiaobin; Yang, Kang

    2018-01-01

    This article was dedicated to explore the combined lubrication of silver, MoS2 and carbon nanotubes (CNTs) based on the changes in applied loads and sliding speeds. The results showed that the formed lubricating films played the major role in undertaking the equivalent stress, as well as effectively reduced friction resistance and material loss. It led to small friction coefficient and less wear rate at 1.2 m/s. At 1.2 m/s-16 N, an integrated lubricating film containing Ag, CNTs and MoS2 was continuously formed, which well provided the excellent lubricating property, resulting in lower friction coefficient (0.19) and less wear rate (1.56 × 10-5 mm3/N m). The formation of Ag and CNTs enriched islands acted as the bearing areas and played the major role in resisting friction resistance. Meanwhile, solid lubricant MoS2 was enriched in the lubricating film and effectively protected lubricating film from being destroyed, resulting in small friction coefficient and less wear rate at 1.2 m/s-16 N.

  19. Friction and wear behavior of single-crystal silicon carbide in sliding contact with various metals

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1978-01-01

    Sliding friction experiments were conducted with single-crystal silicon carbide in contact with various metals. Results indicate the coefficient of friction is related to the relative chemical activity of the metals. The more active the metal, the higher the coefficient of friction. All the metals examined transferred to silicon carbide. The chemical activity of the metal and its shear modulus may play important roles in metal transfer, the form of the wear debris and the surface roughness of the metal wear scar. The more active the metal, and the less resistance to shear, the greater the transfer to silicon carbide and the rougher the wear scar on the surface of the metal. Hexagon shaped cracking and fracturing formed by cleavage of both prismatic and basal planes is observed on the silicon carbide surface.

  20. Prediction of static friction coefficient in rough contacts based on the junction growth theory

    NASA Astrophysics Data System (ADS)

    Spinu, S.; Cerlinca, D.

    2017-08-01

    The classic approach to the slip-stick contact is based on the framework advanced by Mindlin, in which localized slip occurs on the contact area when the local shear traction exceeds the product between the local pressure and the static friction coefficient. This assumption may be too conservative in the case of high tractions arising at the asperities tips in the contact of rough surfaces, because the shear traction may be allowed to exceed the shear strength of the softer material. Consequently, the classic frictional contact model is modified in this paper so that gross sliding occurs when the junctions formed between all contacting asperities are independently sheared. In this framework, when the contact tractions, normal and shear, exceed the hardness of the softer material on the entire contact area, the material of the asperities yields and the junction growth process ends in all contact regions, leading to gross sliding inception. This friction mechanism is implemented in a previously proposed numerical model for the Cattaneo-Mindlin slip-stick contact problem, which is modified to accommodate the junction growth theory. The frictionless normal contact problem is solved first, then the tangential force is gradually increased, until gross sliding inception. The contact problems in the normal and in the tangential direction are successively solved, until one is stabilized in relation to the other. The maximum tangential force leading to a non-vanishing stick area is the static friction force that can be sustained by the rough contact. The static friction coefficient is eventually derived as the ratio between the latter friction force and the normal force.

  1. Effects of friction layer characteristics on the tribological properties of Ni3Al solid-lubricating composites at different load conditions

    NASA Astrophysics Data System (ADS)

    Lu, Guanchen; Shi, Xiaoliang; Huang, Yuchun; Liu, Xiyao; Yang, Meijun

    2018-05-01

    This paper investigates the effects of friction layer characteristics of Ni3Al matrix self-lubricating composites (NMCs) on the tribological properties sliding against ceramic ball Si3N4 at dry friction process at the different load conditions. The characteristics of friction layer are performed in terms of hardness of wear scars, thickness and elemental distributions of friction layer. The results show that the microhardness of wear scars of NMCs increases with the increase of the sliding time and applied load, which results in friction coefficient reduced and wear rate decreased, indicating that the tribological performance of NMCs is obviously affected by microhardness of wear scar. However, under excessive applied load, the performance of friction layer of NMCs is deteriorated for the spalling of wear debris and deformation of contact surface. Therefore, selecting appropriate load conditions during the sliding contact, at the transition to the optimal properties of friction layer maybe occur. NMCs exhibits excellent tribological properties at 15N, which leads to the lowest friction coefficient (0.386) and wear rate (2.48 × 10‑5 mm3 N‑1 m‑1), as well as the smoothest surface of wear track compared with the other load conditions. Meanwhile, the elemental distributions analysis of cross-section of friction layer of NMCs shows that the frictional structures can be divided into three main layers. The thickness of the friction-affected layer varies with the changing of applied load. These results could provide a reference for preparing the solid-lubrication materials with better tribological properties.

  2. Friction and wear behaviors of MoS2/Zr coated HSS in sliding wear and in drilling processes

    NASA Astrophysics Data System (ADS)

    Deng, Jianxin; Yan, Pei; Wu, Ze

    2012-11-01

    MoS2 metal composite coatings have been successful used in dry turning, but its suitability for dry drilling has not been yet established. Therefore, it is necessary to study the friction and wear behaviors of MoS2/Zr coated HSS in sliding wear and in drilling processes. In the present study, MoS2/Zr composite coatings are deposited on the surface of W6Mo5Cr4V2 high speed steel(HSS). Microstructural and fundamental properties of these coatings are examined. Ball-on-disc sliding wear tests on the coated discs are carried out, and the drilling performance of the coated drills is tested. Test results show that the MoS2/Zr composite coatings exhibit decreases friction coefficient to that of the uncoated HSS in sliding wear tests. Energy dispersive X-ray(EDX) analysis on the wear surface indicates that there is a transfer layer formed on the counterpart ball during sliding wear processes, which contributes to the decreasing of the friction coefficient between the sliding couple. Drilling tests indicate that the MoS2/Zr coated drills show better cutting performance compared to the uncoated HSS drills, coating delamination and abrasive are found to be the main flank and rake wear mode of the coated drills. The proposed research founds the base of the application of MoS2 metal composite coatings on dry drilling.

  3. The frictional properties of a simulated gouge having a fractal particle distribution

    USGS Publications Warehouse

    Biegel, R.L.; Sammis, C.G.; Dieterich, J.H.

    1989-01-01

    The frictional properties of a layer of simulated Westerly granite fault gouge sandwiched between sliding blocks of Westerly granite have been measured in a high-speed servo-controlled double-direct shear apparatus. Most gouge layers were prepared to have a self-similar particle distribution with a fractal dimension of 2.6. The upper fractal limit was varied between 45 and 710 ??m. Some gouges were prepared with all particles in the range between 360 and 710 ??m. In each experiment the sliding velocity was cyclically alternated between 1 and 10 ??ms-1 and the coefficient of friction ??m and its transient parameters a, b and Dc were measured as functions of displacement. In addition to the particle size distribution, the following experimental variables were also investigated: the layer thickness (1 and 3 mm), the roughness of the sliding surfaces (Nos 60 and 600 grit) and the normal stress (10 and 25 MPa). Some of the sample assemblies were epoxy impregnated following a run so the gouge structure could be microscopically examined in thin section. We observed that gouges which were initially non-fractal evolved to a fractal distribution with dimension 2.6. Gouges which had an initial fractal distribution remained fractal. When the sliding blocks had smooth surfaces, the coefficient of friction was relatively low and was independent of the particle distribution. In these cases, strong velocity weakening was observed throughout the experiment and the transient parameters a, b and Dc, remained almost constant. When the sliding blocks had rough surfaces, the coefficient of friction was larger and more dependent on the particle distribution. Velocity strengthening was observed initially but evolved to velocity weakening with increased sliding displacement. All three transient parameters changed with increasing displacement. The a and b values were about three times as large for rough surfaces as for smooth. The characteristic displacement Dc was not sensitive to surface roughness but was the only transient parameter which was sensitive to the normal stress. For the case of rough surfaces, the coefficient of friction of the 1 mm thick gouge was significantly larger than that for the 3 mm thick layers. Many of these observations can be explained by a micromechanical model in which the stress in the gouge layer is heterogeneous. The applied normal and shear stresses are supported by 'grain bridges' which span the layer and which are continually forming and failing. In this model, the frictional properties of the gouge are largely determined by the dominant failure mode of the bridging structures. ?? 1989.

  4. XPS, AES and friction studies of single-crystal silicon carbide

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1982-01-01

    The surface chemistry and friction behavior of a single crystal silicon carbide surface parallel to the 0001 plane in sliding contact with iron at various temperatures to 1500 C in a vacuum of 3 x 10 nPa are investigated using X-ray photoelectron and Auger electron spectroscopy. Results show that graphite and carbide-type carbon are seen primarily on the silicon carbide surface in addition to silicon at temperatures to 800 C by both types of spectroscopy. The coefficients of friction for iron sliding against a silicon carbide surface parallel to the 0001 plane surface are found to be high at temperatures up to 800 C, with the silicon and carbide-type carbon at maximum intensity in the X-ray photoelectron spectroscopy at 800 C. The concentration of the graphite increases rapidly on the surface as the temperature is increased above 800 C, while the concentrations of the carbide-type carbon and silicon decrease rapidly and this presence of graphite is accompanied by a significant decrease in friction. Preheating the surfaces to 1500 C also gives dramatically lower coefficients of friction when reheating in the sliding temperature range of from room temperature to 1200 C, with this reduction in friction due to the graphite layer on the silicon carbide surface.

  5. Oxide Ceramic Films Grown on 55Ni-45Ti for NASA and Department of Defense Applications: Unidirectional Sliding Friction and Wear Evaluation

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Lukco, Dorothy; Cytron, Sheldon J.

    2004-01-01

    An investigation was conducted to examine the friction and wear behavior of the two types of oxide ceramic films furnished by the U.S. Army Research Laboratory, Development and Engineering Center (ARDEC) under Space Act Agreement SAA3 567. These two types of oxide ceramics were grown on 55Ni-45Ti (60 wt% Ni and 40 wt% Ti) substrates: one was a TiO2 with no other species (designated the B film) and the other was a TiO2 with additional species (designated the G film). Unidirectional ball-on-disk sliding friction experiments were conducted with the oxide films in contact with sapphire at 296 K (23 C) in approx. 50-percent relative humidity laboratory air in this investigation. All material characterization and sliding friction experiments were conducted at the NASA Glenn Research Center. The results indicate that both films greatly improve the surface characteristics of 55Ni-45Ti, enhancing its tribological characteristics. Both films decreased the coefficient of friction by a factor of 4 and increased wear resistance by a two-figure factor, though the B film was superior to the G film in wear resistance and endurance life. The levels of coefficient of friction and wear resistance of both films in sliding contact with sapphire were acceptable for NASA and Department of Defense tribological applications. The decrease in friction and increase in wear resistance will contribute to longer wear life for parts, lower energy consumption, reduced related breakdowns, decreased maintenance costs, and increased reliability.

  6. Evaluation and Description of Friction between an Electro-Deposited Coating and a Ceramic Ball under Fretting Condition

    PubMed Central

    Kim, Kyungmok

    2015-01-01

    This article describes fretting behavior of zirconia and silicon nitride balls on an electro-deposited coating. Fretting tests are performed using a ball-on-flat configuration. The evolution of the kinetic friction coefficient is determined, along with slip ratio. Experimental results show that the steady-state friction coefficient between ceramic balls (Si3N4 and ZrO2) and an electro-deposited coating is about 0.06, lower than the value between AISI 52100 ball and the coating. After a steady-state sliding, the transition of the friction coefficient is varied with a ball. The friction coefficient for ZrO2 balls became a critical value after higher fretting cycles than those for Si3N4 and AISI 52100 balls. In addition, it is identified that two parameters can describe the transition of the friction coefficient. Finally, the evolution of the friction coefficient is expressed as an exponential or a power-law form. PMID:28793471

  7. The effect of ion plated silver and sliding friction on tensile stress-induced cracking in aluminum oxide

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.; Spalvins, Talivaldis

    1991-01-01

    A Hertzian analysis of the effect of sliding friction on contact stresses in alumina is used to predict the critical load for crack generation. The results for uncoated alumina and alumina coated with ion plated silver are compared. Friction coefficient inputs to the analysis are determined experimentally with a scratch test instrument employing an 0.2 mm radius diamond stylus. A series of scratches were made at constant load increments on coated and uncoated flat alumina surfaces. Critical loads for cracking are detected by microscopic examination of cross sections of scratches made at various loads and friction coefficients. Acoustic emission (AE) and friction trends were also evaluated as experimental techniques for determining critical loads for cracking. Analytical predictions correlate well with micrographic evidence and with the lowest load at which AE is detected in multiple scratch tests. Friction/load trends are not good indicators of early crack formation. Lubrication with silver films reduced friction and thereby increased the critical load for crack initiation in agreement with analytical predictions.

  8. The effect of ion-plated silver and sliding friction on tensile stress-induced cracking in aluminum oxide

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.; Spalvins, Talivaldis

    1993-01-01

    A Hertzian analysis of the effect of sliding friction on contact stresses in alumina is used to predict the critical load for crack generation. The results for uncoated alumina and alumina coated with ion plated silver are compared. Friction coefficient inputs to the analysis are determined experimentally with a scratch test instrument employing an 0.2 mm radius diamond stylus. A series of scratches were made at constant load increments on coated and uncoated flat alumina surfaces. Critical loads for cracking are detected by microscopic examination of cross sections of scratches made at various loads and friction coefficients. Acoustic emission (AE) and friction trends were also evaluated as experimental techniques for determining critical loads for cracking. Analytical predictions correlate well with micrographic evidence and with the lowest load at which AE is detected in multiple scratch tests. Friction/load trends are not good indicators of early crack formation. Lubrication with silver films reduced friction and thereby increased the critical load for crack initiation in agreement with analytical predictions.

  9. A Study Of High Speed Friction Behavior Under Elastic Loading Conditions

    NASA Astrophysics Data System (ADS)

    Crawford, P. J.; Hammerberg, J. E.

    2005-03-01

    The role of interfacial dynamics under high strain-rate conditions is an important constitutive relationship in modern modeling and simulation studies of dynamic events (<100 μs in length). The frictional behavior occurring at the interface between two metal surfaces under high elastic loading and sliding speed conditions is studied using the Rotating Barrel Gas Gun (RBGG) facility. The RBGG utilizes a low-pressure gas gun to propel a rotating annular projectile towards an annular target rod. Upon striking the target, the projectile imparts both an axial and a torsional impulse into the target. Resulting elastic waves are measured using strain gauges attached to the target rod. The kinetic coefficient of friction is obtained through an analysis of the resulting strain wave data. Experiments performed using Cu/Cu, Cu/Stainless steel and Cu/Al interfaces provide some insight into the kinetic coefficient of friction behavior at varying sliding speeds and impact loads.

  10. Solid Lubrication by Multiwalled Carbon Nanotubes in Air and in Vacuum for Space and Aeronautics Applications

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Street, Kenneth W., Jr.; Andraws, Rodney; Jacques, David; VanderWal, Randy L.; Sayir, Ali

    2005-01-01

    To evaluate recently developed aligned multiwalled carbon nanotubes (MWNTs) and dispersed MWNTs for solid lubrication applications, unidirectional sliding friction experiments were conducted with 440 C stainless steel balls and hemispherical alumina-yttria stabilized zirconia pins in sliding contact with the MWNTs deposited on quartz disks in air and in vacuum. The results indicate that MWNTs have superior solid lubrication friction properties and endurance lives in air and vacuum under dry conditions. The coefficient of friction of the dispersed MWNTs is close to 0.05 and 0.009 in air and in vacuum, respectively, showing good dry lubricating ability. The wear life of MWNTs exceeds 1 million passes in both air and vacuum showing good durability. In general, the low coefficient of friction can be attributed to the combination of the transferred, agglomerated patches of MWNTs on the counterpart ball or pin surfaces and the presence of tubular MWNTs at interfaces.

  11. Sliding wear and friction behaviour of zircaloy-4 in water

    NASA Astrophysics Data System (ADS)

    Sharma, Garima; Limaye, P. K.; Jadhav, D. T.

    2009-11-01

    In water cooled nuclear reactors, the sliding of fuel bundles in fuel channel handling system can lead to severe wear and it is an important topic to study. In the present study, sliding wear behaviour of zircaloy-4 was investigated in water (pH ˜ 10.5) using ball-on-plate sliding wear tester. Sliding wear resistance zircaloy-4 against SS 316 was examined at room temperature. Sliding wear tests were carried out at different load and sliding frequencies. The coefficient of friction of zircaloy-4 was also measured during each tests and it was found to decrease slightly with the increase in applied load. The micro-mechanisms responsible for wear in zircaloy-4 were identified to be microcutting, micropitting and microcracking of deformed subsurface zones in water.

  12. Optimization of tribological behaviour on Al- coconut shell ash composite at elevated temperature

    NASA Astrophysics Data System (ADS)

    Siva Sankara Raju, R.; Panigrahi, M. K.; Ganguly, R. I.; Srinivasa Rao, G.

    2018-02-01

    In this study, determine the tribological behaviour of composite at elevated temperature i.e. 50 - 150 °C. The aluminium matrix composite (AMC) are prepared with compo casting route by volume of reinforcement of coconut shell ash (CSA) such as 5, 10 and 15%. Mechanical properties of composite has enhances with increasing volume of CSA. This study details to optimization of wear behaviour of composite at elevated temperatures. The influencing parameters such as temperature, sliding velocity and sliding distance are considered. The outcome response is wear rate (mm3/m) and coefficient of friction. The experiments are designed based on Taguchi [L9] array. All the experiments are considered as constant load of 10N. Analysis of variance (ANOVA) revealed that temperature is highest influencing factor followed by sliding velocity and sliding distance. Similarly, sliding velocity is most influencing factor followed by temperature and distance on coefficient of friction (COF). Finally, corroborates analytical and regression equation values by confirmation test.

  13. The Contact Ageing Effect on Fretting Damage of an Electro-Deposited Coating against an AISI52100 Steel Ball

    PubMed Central

    Kim, Kyungmok; Ko, Joon Soo

    2016-01-01

    This article investigates the effect of contact ageing on fretting damage of an epoxy-based cathodic electro-deposited coating for use on automotive seat slide tracks (made of cold-rolled high strength steel). Static normal load was induced at the contact between the coating and an AISI52100 ball for a certain duration. It was identified that plastically deformed contact area increased logarithmically as a function of time when the contact was under static normal load. Fretting tests after various durations of static contact were conducted using a ball-on-flat plate apparatus. All fretting tests were halted when the friction coefficient reached a critical value of 0.5, indicating complete coating failure. The total number of fretting cycles to the critical friction coefficient was found to vary with the duration of static contact before fretting. It was identified that the number of cycles to the critical friction coefficient decreased with the increased duration of static contact. Meanwhile, the friction coefficient at steady-state sliding was not greatly affected by the duration of static contact before fretting. Finally, the relation between coating thickness after indentation creep and the number of cycles to the critical friction coefficient was found to be linear. Obtained results show that the duration of static contact before fretting has an influence on the fretting lifetime of an electro-deposited coating. PMID:28773873

  14. The Contact Ageing Effect on Fretting Damage of an Electro-Deposited Coating against an AISI52100 Steel Ball.

    PubMed

    Kim, Kyungmok; Ko, Joon Soo

    2016-09-03

    This article investigates the effect of contact ageing on fretting damage of an epoxy-based cathodic electro-deposited coating for use on automotive seat slide tracks (made of cold-rolled high strength steel). Static normal load was induced at the contact between the coating and an AISI52100 ball for a certain duration. It was identified that plastically deformed contact area increased logarithmically as a function of time when the contact was under static normal load. Fretting tests after various durations of static contact were conducted using a ball-on-flat plate apparatus. All fretting tests were halted when the friction coefficient reached a critical value of 0.5, indicating complete coating failure. The total number of fretting cycles to the critical friction coefficient was found to vary with the duration of static contact before fretting. It was identified that the number of cycles to the critical friction coefficient decreased with the increased duration of static contact. Meanwhile, the friction coefficient at steady-state sliding was not greatly affected by the duration of static contact before fretting. Finally, the relation between coating thickness after indentation creep and the number of cycles to the critical friction coefficient was found to be linear. Obtained results show that the duration of static contact before fretting has an influence on the fretting lifetime of an electro-deposited coating.

  15. Viscous friction between crystalline and amorphous phase of dragline silk.

    PubMed

    Patil, Sandeep P; Xiao, Senbo; Gkagkas, Konstantinos; Markert, Bernd; Gräter, Frauke

    2014-01-01

    The hierarchical structure of spider dragline silk is composed of two major constituents, the amorphous phase and crystalline units, and its mechanical response has been attributed to these prime constituents. Silk mechanics, however, might also be influenced by the resistance against sliding of these two phases relative to each other under load. We here used atomistic molecular dynamics (MD) simulations to obtain friction forces for the relative sliding of the amorphous phase and crystalline units of Araneus diadematus spider silk. We computed the coefficient of viscosity of this interface to be in the order of 10(2) Ns/m(2) by extrapolating our simulation data to the viscous limit. Interestingly, this value is two orders of magnitude smaller than the coefficient of viscosity within the amorphous phase. This suggests that sliding along a planar and homogeneous surface of straight polyalanine chains is much less hindered than within entangled disordered chains. Finally, in a simple finite element model, which is based on parameters determined from MD simulations including the newly deduced coefficient of viscosity, we assessed the frictional behavior between these two components for the experimental range of relative pulling velocities. We found that a perfectly relative horizontal motion has no significant resistance against sliding, however, slightly inclined loading causes measurable resistance. Our analysis paves the way towards a finite element model of silk fibers in which crystalline units can slide, move and rearrange themselves in the fiber during loading.

  16. Viscous Friction between Crystalline and Amorphous Phase of Dragline Silk

    PubMed Central

    Patil, Sandeep P.; Xiao, Senbo; Gkagkas, Konstantinos; Markert, Bernd; Gräter, Frauke

    2014-01-01

    The hierarchical structure of spider dragline silk is composed of two major constituents, the amorphous phase and crystalline units, and its mechanical response has been attributed to these prime constituents. Silk mechanics, however, might also be influenced by the resistance against sliding of these two phases relative to each other under load. We here used atomistic molecular dynamics (MD) simulations to obtain friction forces for the relative sliding of the amorphous phase and crystalline units of Araneus diadematus spider silk. We computed the coefficient of viscosity of this interface to be in the order of 102 Ns/m2 by extrapolating our simulation data to the viscous limit. Interestingly, this value is two orders of magnitude smaller than the coefficient of viscosity within the amorphous phase. This suggests that sliding along a planar and homogeneous surface of straight polyalanine chains is much less hindered than within entangled disordered chains. Finally, in a simple finite element model, which is based on parameters determined from MD simulations including the newly deduced coefficient of viscosity, we assessed the frictional behavior between these two components for the experimental range of relative pulling velocities. We found that a perfectly relative horizontal motion has no significant resistance against sliding, however, slightly inclined loading causes measurable resistance. Our analysis paves the way towards a finite element model of silk fibers in which crystalline units can slide, move and rearrange themselves in the fiber during loading. PMID:25119288

  17. Friction and lubrication of pleural tissues.

    PubMed

    D'Angelo, Edgardo; Loring, Stephen H; Gioia, Magda E; Pecchiari, Matteo; Moscheni, Claudia

    2004-08-20

    The frictional behaviour of rabbit's visceral pleura sliding against parietal pleura was assessed in vitro while oscillating at physiological velocities and amplitudes under physiological normal forces. For sliding velocities up to 3 cm s(-1) and normal compressive loads up to 12 cm H2O, the average value of the coefficient of kinetic friction (mu) was constant at 0.019 +/- 0.002 (S.E.) with pleural liquid as lubricant. With Ringer-bicarbonate solution, mu was still constant, but significantly increased (Deltamu = 0.008 +/- 0.001; P < 0.001). Under these conditions, no damage of the sliding pleural surfaces was found on light and electron microscopy. Additional measurements, performed also on peritoneum, showed that changes in nominal contact area or strain of the mesothelia, temperature in the range 19-39 degrees C, and prolonged sliding did not affect mu. Gentle application of filter paper increased mu approximately 10-fold and irreversibly, suggesting alteration of the mesothelia. With packed the red blood cells (RBC) between the sliding mesothelia, mu increased appreciably but reversibly on removal of RBC suspension, whilst no ruptures of RBC occurred. In conclusion, the results indicate a low value of sliding friction in pleural tissues, partly related to the characteristics of the pleural liquid, and show that friction is independent of velocity, normal load, and nominal contact area, consistent with boundary lubrication.

  18. Stick-slip friction and wear of articular joints

    PubMed Central

    Lee, Dong Woog; Banquy, Xavier; Israelachvili, Jacob N.

    2013-01-01

    Stick-slip friction was observed in articular cartilage under certain loading and sliding conditions and systematically studied. Using the Surface Forces Apparatus, we show that stick-slip friction can induce permanent morphological changes (a change in the roughness indicative of wear/damage) in cartilage surfaces, even under mild loading and sliding conditions. The different load and speed regimes can be represented by friction maps—separating regimes of smooth and stick-slip sliding; damage generally occurs within the stick-slip regimes. Prolonged exposure of cartilage surfaces to stick-slip sliding resulted in a significant increase of surface roughness, indicative of severe morphological changes of the cartilage superficial zone. To further investigate the factors that are conducive to stick-slip and wear, we selectively digested essential components of cartilage: type II collagen, hyaluronic acid (HA), and glycosaminoglycans (GAGs). Compared with the normal cartilage, HA and GAG digestions modified the stick-slip behavior and increased surface roughness (wear) during sliding, whereas collagen digestion decreased the surface roughness. Importantly, friction forces increased up to 2, 10, and 5 times after HA, GAGs, and collagen digestion, respectively. Also, each digestion altered the friction map in different ways. Our results show that (i) wear is not directly related to the friction coefficient but (ii) more directly related to stick-slip sliding, even when present at small amplitudes, and that (iii) the different molecular components of joints work synergistically to prevent wear. Our results also suggest potential noninvasive diagnostic tools for sensing stick-slip in joints. PMID:23359687

  19. Tribological properties of boron nitride synthesized by ion beam deposition

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.; Spalvins, T.

    1985-01-01

    The adhesion and friction behavior of boron nitride films on 440 C bearing stainless steel substrates was examined. The thin films containing the boron nitride were synthesized using an ion beam extracted from a borazine plasma. Sliding friction experiments were conducted with BN in sliding contact with itself and various transition metals. It is indicated that the surfaces of atomically cleaned BN coating film contain a small amount of oxides and carbides, in addition to boron nitride. The coefficients of friction for the BN in contact with metals are related to the relative chemical activity of the metals. The more active the metal, the higher is the coefficient of friction. The adsorption of oxygen on clean metal and BN increases the shear strength of the metal - BN contact and increases the friction. The friction for BN-BN contact is a function of the shear strength of the elastic contacts. Clean BN surfaces exhibit relatively strong interfacial adhesion and high friction. The presence of adsorbates such as adventitious carbon contaminants on the BN surfaces reduces the shear strength of the contact area. In contrast, chemically adsorbed oxygen enhances the shear strength of the BN-BN contact and increases the friction.

  20. Friction and Wear of Monolithic and Fiber Reinforced Silicon-Ceramics Sliding Against IN-718 Alloy at 25 to 800 C in Atmospheric Air at Ambient Pressure

    NASA Technical Reports Server (NTRS)

    Deadmore, Daniel L.; Sliney, Harold E.

    1988-01-01

    The friction and wear of monolithic and fiber reinforced Si-ceramics sliding against the nickel base alloy IN-718 at 25 to 800 C was measured. The monolithic materials tested were silicon carbide (SiC), fused silica (SiO2), syalon, silicon nitride (Si3N4) with W and Mg additives, and Si3N4 with Y2O3 additive. At 25 C fused silica had the lowest friction while Si3N4 (W,Mg type) had the lowest wear. At 800 C syalon had the lowest friction while Si3N4 (W,Mg type) and syalon had the lowest wear. The SiC/IN-718 couple had the lowest total wear at 25 C. At 800 C the fused silica/IN-718 couple exhibited the least total wear. SiC fiber reinforced reaction bonded silicon nitride (RBSN) composite material with a porosity of 32 percent and a fiber content of 23 vol percent had a lower coefficient of friction and wear when sliding parallel to the fiber direction than in the perpendicular at 25 C. The coefficient of friction for the carbon fiber reinforced borosilicate composite was 0.18 at 25 C. This is the lowest of all the couples tested. Wear of this material was about two decades smaller than that of the monolithic fused silica. This illustrates the large improvement in tribological properties which can be achieved in ceramic materials by fiber reinforcement. At higher temperatures the oxidation products formed on the IN-718 alloy are transferred to the ceramic by sliding action and forms a thin, solid lubricant layer which decreases friction and wear for both the monolithic and fiber reinforced composites.

  1. Friction and Wear Properties of Selected Solid Lubricating Films. Part 3; Magnetron-Sputtered and Plasma-Assisted, Chemical-Vapor-Deposited Diamondlike Carbon Films

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Iwaki, Masanori; Gotoh, Kenichi; Obara, Shingo; Imagawa, Kichiro

    2000-01-01

    To evaluate commercially developed dry solid film lubricants for aerospace bearing applications, an investigation was conducted to examine the friction and wear behavior of magnetron-sputtered diamondlike carbon (MS DLC) and plasma-assisted, chemical-vapor-deposited diamondlike carbon (PACVD DLC) films in sliding contact with 6-mm-diameter American Iron and Steel Institute (AISI) 440C stainless steel balls. Unidirectional sliding friction experiments were conducted with a load of 5.9 N (600 g), a mean Hertzian contact pressure of 0.79 GPa (maximum Hertzian contact pressure of L-2 GPa), and a sliding velocity of 0.2 m/s. The experiments were conducted at room temperature in three environments: ultrahigh vacuum (vacuum pressure, 7x10(exp -7) Pa), humid air (relative humidity, approx.20 percent), and dry nitrogen (relative humidity, <1 percent). The resultant films were characterized by scanning electron microscopy, energy-dispersive x-ray spectroscopy, and surface profilometry. Marked differences in the friction and wear of the DLC films investigated herein resulted from the environmental conditions. The main criteria for judging the performance of the DLC films were coefficient of friction and wear rate, which had to be less than 0.3 and on the order of 10(exp -6) cu mm/N-m or less, respectively. MS DLC films and PACVD DLC films met the criteria in humid air and dry nitrogen but failed in ultrahigh vacuum, where the coefficients of friction were greater than the criterion, 0.3. In sliding contact with 440C stainless steel balls in all three environments the PACVD DLC films exhibited better tribological performance (i.e., lower friction and wear) than the MS DLC films. All sliding involved adhesive transfer of wear materials: transfer of DLC wear debris to the counterpart 440C stainless steel and transfer of 440C stainless steel wear debris to the counterpart DLC film.

  2. Micromechanics of Friction in a Detailed Study of Mg-rich Phyllosilicates

    NASA Astrophysics Data System (ADS)

    Sanchez Roa, C.; Faulkner, D.; Boulton, C. J.; Jimenez Millan, J.; Nieto, F.

    2016-12-01

    Phyllosilicate minerals commonly occur within faults, which may accommodate slip either aseismically via creep mechanisms or seismically in earthquakes. The Mg-rich phyllosilicates talc, saponite, sepiolite, and palygorskite have different crystallography and habits. Sepiolite and palygorskite are fibrous due to their discontinuous tetrahedral layers, while saponite and talc are platy due to the continuity of their TOT and water layers. Friction experiments were conducted in a triaxial apparatus under 95 MPa effective normal stress with water and argon as pore fluids. Results show a marked contrast between friction coefficients of fibrous phyllosilicates, 0.57 to 0.63 for argon experiments and 0.4 to 0.5 for water-saturated experiments, and platy Mg-rich phyllosilicates, as low as 0.22 for argon experiments and 0.04 for water-saturated experiments. During velocity steps (where sliding velocity is increased or decreased by one order of magnitude), the two mineral groups exhibit distinctly dissimilar behaviours. After the direct effect of the change in sliding rate, fibrous phyllosilicates show a rapid exponential decay towards a new friction coefficient (a positive b value). Meanwhile, the friction coefficient of the platy phyllosilicates has a more linear evolution (a zero, or negative b value). This effect could be related to a difference in the sliding strength of the contact asperities which would be much higher for crystal surfaces of fibrous minerals with an indented surface due to the silicon tetrahedra inversions. The fibre-shaped crystals may consequently require higher amounts of volumetric work against the normal stress (dilatancy). SEM and TEM observations of the deformed samples showed a well-developed network of R1 Riedel shears in the fibrous materials; planar phyllosilicates show a more homogeneous matrix and incipient development of P foliation. Planar phyllosilicate grains align on their basal planes facilitating intergranular sliding, in contrast, the fibrous phyllosilicates appear to form an interlocking grid-like network that may promote dilatancy during velocity steps. The contrasting strength of Mg-rich phyllosilicates and analysis of their microstructures imply that phyllosilicate habit strongly influences the micromechanics of frictional sliding.

  3. Temperature-Dependent Friction and Wear Behavior of PTFE and MoS 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babuska, T. F.; Pitenis, A. A.; Jones, M. R.

    2016-06-16

    We present an investigation of the temperature-dependent friction behavior of PTFE, MoS 2, and PTFE-on- MoS 2. Friction behavior was measured while continuously varying contact temperature in the range -150 to 175°C while sliding in dry nitrogen, as well as for self-mated PTFE immersed in liquid nitrogen. These results contrast with previous reports of monotonic inverse temperature dependent friction behavior, as well as reported high-friction transitions and plateaus at temperatures below about -20°C that were not observed, providing new insights about the molecular mechanisms of macro-scale friction. The temperature-dependent friction behavior characteristic of self-mated PTFE was found also on themore » PTFE-on-MoS 2 sliding contact, suggesting that PTFE friction was defined by sub-surface deformation mechanisms and internal friction even when sliding against a lamellar lubricant with extremely low friction coefficient (μ ~ 0.02). The various relaxation temperatures of PTFE were found in the temperature-dependent friction behavior, showing excellent agreement with reported values acquired using torsional techniques measuring internal friction. Additionally, hysteresis in friction behavior suggests an increase in near-surface crystallinity at upon exceeding the high temperature relaxation, T α~ 116°C.« less

  4. The effect of friction in coulombian damper

    NASA Astrophysics Data System (ADS)

    Wahad, H. S.; Tudor, A.; Vlase, M.; Cerbu, N.; Subhi, K. A.

    2017-02-01

    The study aimed to analyze the damping phenomenon in a system with variable friction, Stribeck type. Shock absorbers with limit and dry friction, is called coulombian shock-absorbers. The physical damping vibration phenomenon, in equipment, is based on friction between the cushioning gasket and the output regulator of the shock-absorber. Friction between them can be dry, limit, mixture or fluid. The friction is depending on the contact pressure and lubricant presence. It is defined dimensionless form for the Striebeck curve (µ friction coefficient - sliding speed v). The friction may damp a vibratory movement or can maintain it (self-vibration), depending on the µ with v (it can increase / decrease or it can be relative constant). The solutions of differential equation of movement are obtained for some work condition of one damper for automatic washing machine. The friction force can transfer partial or total energy or generates excitation energy in damper. The damping efficiency is defined and is determined analytical for the constant friction coefficient and for the parabolic friction coefficient.

  5. The XPS depth profiling and tribological characterization of ion-plated gold on various metals

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1983-01-01

    Friction properties were measured with a gold film; the graded interface between gold and nickel substrate; and the nickel substrate. All sliding was conducted against hard silicon carbide pins in two processes. In the adhesive process, friction arises primarily from adhesion between sliding surfaces. In the abrasion process, friction occurs as a result of the hard pin sliding against the film, indenting into it, and plowing a series of grooves. Copper and 440 C stainless steel substrates were also used. Results indicate that the friction related to both adhesion and abrasion is influenced by coating depth. The trends in friction behavior as a function of film depth are, however, just the opposite. The graded interface exhibited the highest adhesion and friction, while the graded interface resulted in the lowest abrasion and friction. The coefficient of friction due to abrasion is inversely related to the hardness. The greater the hardness of the surface, the lower is the abrasion and friction. The microhardness in the graded interface exhibited the highest hardness due to an alloy hardening effect. Almost no graded interface between the vapor-deposited gold film and the substrates was detected.

  6. Friction and wear of some ferrous-base metallic glasses

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1983-01-01

    Sliding friction experiments, X-ray photoelectron spectroscopy (XPS) analysis, and electron microscopy and diffraction studies were conducted with ferrous base metallic glasses (amorphous alloys) in contact with aluminum oxide at temperatures to 750 C in a vacuum. Sliding friction experiments were also conducted in argon and air atmospheres. The results of the investigation indicate that the coefficient of friction increases with increasing temperature to 350 C in vacuum. The increase in friction is due to an increase in adhesion resulting from surface segregation of boric oxide and/or silicon oxide to the surface of the foil. Above 500 C the coefficient of friction decreased rapidly. The decrease correlates with the segregation of boron nitride to the surface. Contaminants can come from the bulk of the material to the surface upon heating and impart boric oxide and/or silicon oxide at 350 C and boron nitride above 500 C. The segregation of contaminants is responsible for the friction behavior. The amorphous alloys have superior wear resistance to crystalline 304 stainless steel. The relative concentrations of the various constituents at the surfaces of the amorphous alloys are very different from the nominal bulk compositions.

  7. Modelling clustering of vertically aligned carbon nanotube arrays.

    PubMed

    Schaber, Clemens F; Filippov, Alexander E; Heinlein, Thorsten; Schneider, Jörg J; Gorb, Stanislav N

    2015-08-06

    Previous research demonstrated that arrays of vertically aligned carbon nanotubes (VACNTs) exhibit strong frictional properties. Experiments indicated a strong decrease of the friction coefficient from the first to the second sliding cycle in repetitive measurements on the same VACNT spot, but stable values in consecutive cycles. VACNTs form clusters under shear applied during friction tests, and self-organization stabilizes the mechanical properties of the arrays. With increasing load in the range between 300 µN and 4 mN applied normally to the array surface during friction tests the size of the clusters increases, while the coefficient of friction decreases. To better understand the experimentally obtained results, we formulated and numerically studied a minimalistic model, which reproduces the main features of the system with a minimum of adjustable parameters. We calculate the van der Waals forces between the spherical friction probe and bunches of the arrays using the well-known Morse potential function to predict the number of clusters, their size, instantaneous and mean friction forces and the behaviour of the VACNTs during consecutive sliding cycles and at different normal loads. The data obtained by the model calculations coincide very well with the experimental data and can help in adapting VACNT arrays for biomimetic applications.

  8. Friction and wear of some ferrous-base metallic glasses

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1984-01-01

    Sliding friction experiments, X-ray photoelectron spectroscopy (XPS) analysis, and electron microscopy and diffraction studies were conducted with ferrous base metallic glasses (amorphous alloys) in contact with aluminium oxide at temperatures to 750 C in a vacuum. Sliding friction experiments were also conducted in argon and air atmospheres. The results of the investigation indicate that the coefficient of friction increases with increasing temperature to 350 C in vacuum. The increase in friction is due to an increase in adhesion resulting from surface segregation of boric oxide and/or silicon oxide to the surface of the foil. Above 500 C the coefficient of friction decreased rapidly. The decrease correlates with the segregation of boron nitride to the surface. Contaminants can come from the bulk of the material to the surface upon heating and impart boric oxide and/or silicon oxide at 350 C and boron nitride above 500 C. The segregation of contaminants is responsible for the friction behavior. The amorphous alloys have superior wear resistance to crystalline 304 stainless steel. The relative concentrations of the various constituents at the surfaces of the amorphous alloys are very different from the nominal bulk compositions.

  9. Finger pad friction and its role in grip and touch

    PubMed Central

    Adams, Michael J.; Johnson, Simon A.; Lefèvre, Philippe; Lévesque, Vincent; Hayward, Vincent; André, Thibaut; Thonnard, Jean-Louis

    2013-01-01

    Many aspects of both grip function and tactile perception depend on complex frictional interactions occurring in the contact zone of the finger pad, which is the subject of the current review. While it is well established that friction plays a crucial role in grip function, its exact contribution for discriminatory touch involving the sliding of a finger pad is more elusive. For texture discrimination, it is clear that vibrotaction plays an important role in the discriminatory mechanisms. Among other factors, friction impacts the nature of the vibrations generated by the relative movement of the fingertip skin against a probed object. Friction also has a major influence on the perceived tactile pleasantness of a surface. The contact mechanics of a finger pad is governed by the fingerprint ridges and the sweat that is exuded from pores located on these ridges. Counterintuitively, the coefficient of friction can increase by an order of magnitude in a period of tens of seconds when in contact with an impermeably smooth surface, such as glass. In contrast, the value will decrease for a porous surface, such as paper. The increase in friction is attributed to an occlusion mechanism and can be described by first-order kinetics. Surprisingly, the sensitivity of the coefficient of friction to the normal load and sliding velocity is comparatively of second order, yet these dependencies provide the main basis of theoretical models which, to-date, largely ignore the time evolution of the frictional dynamics. One well-known effect on taction is the possibility of inducing stick–slip if the friction decreases with increasing sliding velocity. Moreover, the initial slip of a finger pad occurs by the propagation of an annulus of failure from the perimeter of the contact zone and this phenomenon could be important in tactile perception and grip function. PMID:23256185

  10. Getting Clever with the Sliding Ladder

    ERIC Educational Resources Information Center

    De, Subhranil

    2014-01-01

    The familiar system involving a uniform ladder sliding against a vertical wall and a horizontal floor is considered again. The floor is taken to be smooth and the wall to be possibly rough--a situation where no matter how large the static friction coefficient between the ladder and the wall, the ladder cannot lean at rest and must slide down.…

  11. Effect of Test Parameters on the Friction Behaviour of Anodized Aluminium Alloy

    PubMed Central

    Khalladi, A.; Elleuch, K.; De-Petris Wery, M.; Ayedi, H. F.

    2014-01-01

    The tribological behaviour of anodic oxide layer formed on Al5754, used in automotive applications, was investigated against test parameters. The friction coefficient under different normal loads, sliding speeds, and oxide thicknesses was studied using a pin on disc tribometer. Results show that the increase of load and sliding speed increase the friction coefficient. The rise of contact pressure and temperature seems to cause changes in wear mechanism. Glow-discharge optical emission spectroscopy (GDOES) was used to investigate the chemical composition of the oxide layer. Morphology and composition of the wear tracks were analyzed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). On the basis of these characterization techniques, a wear mechanism was proposed. The observed mechanical properties can be related to the morphology and the chemical composition of the layer. PMID:27437452

  12. Dynamics of static friction between steel and silicon

    PubMed Central

    Yang, Zhiping; Zhang, H. P.; Marder, M.

    2008-01-01

    We conducted experiments in which steel and silicon or quartz are clamped together. Even with the smallest tangential forces we could apply, we always found reproducible sliding motions on the nanometer scale. The velocities we study are thousands of times smaller than in previous investigations. The samples first slide and then lock up even when external forces hold steady. One might call the result “slip-stick” friction. We account for the results with a phenomenological theory that results from considering the rate and state theory of dynamic friction at low velocities. Our measurements lead us to set the instantaneous coefficient of static friction that normally enters rate and state theories to zero. PMID:18768792

  13. Friction. Macroscale superlubricity enabled by graphene nanoscroll formation.

    PubMed

    Berman, Diana; Deshmukh, Sanket A; Sankaranarayanan, Subramanian K R S; Erdemir, Ali; Sumant, Anirudha V

    2015-06-05

    Friction and wear remain as the primary modes of mechanical energy dissipation in moving mechanical assemblies; thus, it is desirable to minimize friction in a number of applications. We demonstrate that superlubricity can be realized at engineering scale when graphene is used in combination with nanodiamond particles and diamondlike carbon (DLC). Macroscopic superlubricity originates because graphene patches at a sliding interface wrap around nanodiamonds to form nanoscrolls with reduced contact area that slide against the DLC surface, achieving an incommensurate contact and substantially reduced coefficient of friction (~0.004). Atomistic simulations elucidate the overall mechanism and mesoscopic link bridging the nanoscale mechanics and macroscopic experimental observations. Copyright © 2015, American Association for the Advancement of Science.

  14. Adhesion and friction of transition metals in contact with nonmetallic hard materials

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1981-01-01

    Sliding friction experiments were conducted with the metals yttrium, titanium, tantalum, zirconium, vanadium, neodymium, iron, cobalt, nickel, tungsten, platinum, rhenium, ruthenium, and rhodium in sliding contact with single crystal diamond, silicon carbide, pyrolytic boron nitride, and ferrite. Auger electron spectroscopy analysis was conducted with the metals and nonmetals to determine the surface chemistry and the degree of surface cleanliness. The results of the investigation indicate the adhesion and friction of the transition metals in contact with diamond, silicon carbide, boron nitride, and ferrite are related to the relative chemical activity of the metals. The more chemically active the metal, the higher the coefficient of friction and the greater amount of transfer to the nonmetals.

  15. Determination of mechanical behavior of nanoscale materials using molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Heo, Seongjun

    It is important to understand the mechanical properties of nanometer-scale materials for use in such applications as microelectromechanical systems (MEMS) and nanoelectromechanical systems (NEMS). These properties are difficult to measure directly using experimental methods due to their small sizes. Computational simulations provide important insights that complement experimental data and lead to improved understanding of the mechanical properties of nanometer-scale systems. Molecular dynamics (MD) simulations, which are used to investigate the properties of materials at the atomic scale, is used in my research to determine (1) best thermostat managing way for acceptable mechanical behavior of nanoscale systems; (2) filling effect on the bending and compressive properties of carbon nanotubes (CNTs); (3) vibrational behavior of bridged and cantilevered CNT bombarded by external fluid atoms; (4) frictional behavior of filled CNT bundles and the effect of external molecules on friction; (5) effect of sliding orientations on the tribological properties of polyethylene (PE). In all the simulations the reactive empirical bond-order (REBO) potential combined with the Lennard Jones potential is applied to control inter-atomic interactions. During the MD simulations, thermostats are used to maintain the system temperature at a constant value. Tests indicate that the simulations describe the mechanical behavior of CNTs differently depending on the type of thermostat used, and the relative fraction of the system to which the thermostat is applied. The results indicate that Langevin and velocity rescaling thermostats are more reliable for temperature control than the Nose-Hoover thermostat. In examining CNT bending and compression, the simulations predict filled CNTs are more resistant to external bending and compressive forces than hollow CNTs. The mechanical properties deteriorate with increases in temperature and number of CNT wall defects. MD simulations of the vibrational behavior of bridged and cantilevered CNTs are found to match the results of continuum mechanics calculations. The principal vibration frequency of the CNT is predicted to decrease with increasing nanotube length, gas pressure, and the atomic mass of the external fluid. In studies of CNT tribology, simulations show that two layers of filled CNTs are more resistant to compressive forces and exhibit lower friction coefficients during sliding than unfilled CNTs. The friction coefficient increases with the thickness of the CNT layer due to the increase in effective friction interface. The addition of an external, molecular fluid of benzene molecules is predicted to reduce the friction coefficient of CNTs because of the lubricity of the molecules. Lastly, simulation results illustrate the effect of relative orientation on the tribological properties of polyethylene (PE) sliding surfaces. The friction coefficient of perpendicular sliding is much higher than that of parallel sliding based on the polymer chain orientation. The PE exhibits stick-slip motion during sliding regardless of the sliding orientation. In addition, the PE shows no surface morphology change due to the higher strength of the PE bonds, which is in contrast to the behavior of other polymers, such as polytetrafluoroethylene (PTFE), which exhibits bond breaking and realignment of surface chains along the sliding direction in the less favorable orientation.

  16. Excellent vacuum tribological properties of Pb/PbS film deposited by RF magnetron sputtering and ion sulfurizing.

    PubMed

    Guozheng, Ma; Binshi, Xu; Haidou, Wang; Shuying, Chen; Zhiguo, Xing

    2014-01-08

    Soft metal Pb film of 3 μm in thickness was deposited on AISI 440C steel by RF magnetron sputtering, and then some of the Pb film samples were treated by low-temperature ion sulfurizing (LTIS) and formed Pb/PbS composite film. Tribological properties of the Pb and Pb/PbS films were tested contrastively in vacuum and air condition using a self-developed tribometer (model of MSTS-1). Scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were adopted to analyze the microstructure and chemical construction of the films and their worn surfaces. The results show that a mass of Pb was changed to PbS during the process of LTIS. In air condition, owing to the severe oxidation effect, pure Pb film showed relatively high friction coefficients (0.6), and Pb/PbS composite film also lost its friction-reduction property after sliding for a short time. In a vacuum, the average friction coefficients of Pb film were about 0.1, but the friction coefficient curve fluctuated obviously. And the Pb/PbS composite film exhibited excellent tribological properties in vacuum condition. Its friction coefficients keep stable at a low value of about 0.07 for a long time. If takes the value of friction coefficients exceeding 0.2 continuously as a criterion of lubrication failure, the sliding friction life of Pb/PbS film was as long as 3.2 × 10(5) r, which is 8 times of that of the Pb film. It can be concluded that the Pb/PbS film has excellent vacuum tribological properties and important foreground for applying in space solid lubrication related fields.

  17. Dynamic Stability of the Rate, State, Temperature, and Pore Pressure Friction Model at a Rock Interface

    NASA Astrophysics Data System (ADS)

    Sinha, Nitish; Singh, Arun K.; Singh, Trilok N.

    2018-05-01

    In this article, we study numerically the dynamic stability of the rate, state, temperature, and pore pressure friction (RSTPF) model at a rock interface using standard spring-mass sliding system. This particular friction model is a basically modified form of the previously studied friction model namely the rate, state, and temperature friction (RSTF). The RSTPF takes into account the role of thermal pressurization including dilatancy and permeability of the pore fluid due to shear heating at the slip interface. The linear stability analysis shows that the critical stiffness, at which the sliding becomes stable to unstable or vice versa, increases with the coefficient of thermal pressurization. Critical stiffness, on the other hand, remains constant for small values of either dilatancy factor or hydraulic diffusivity, but the same decreases as their values are increased further from dilatancy factor (˜ 10^{ - 4} ) and hydraulic diffusivity (˜ 10^{ - 9} {m}2 {s}^{ - 1} ) . Moreover, steady-state friction is independent of the coefficient of thermal pressurization, hydraulic diffusivity, and dilatancy factor. The proposed model is also used for predicting time of failure of a creeping interface of a rock slope under the constant gravitational force. It is observed that time of failure decreases with increase in coefficient of thermal pressurization and hydraulic diffusivity, but the dilatancy factor delays the failure of the rock fault under the condition of heat accumulation at the creeping interface. Moreover, stiffness of the rock-mass also stabilizes the failure process of the interface as the strain energy due to the gravitational force accumulates in the rock-mass before it transfers to the sliding interface. Practical implications of the present study are also discussed.

  18. Frictional velocity-weakening in landslides on Earth and on other planetary bodies.

    PubMed

    Lucas, Antoine; Mangeney, Anne; Ampuero, Jean Paul

    2014-03-04

    One of the ultimate goals in landslide hazard assessment is to predict maximum landslide extension and velocity. Despite much work, the physical processes governing energy dissipation during these natural granular flows remain uncertain. Field observations show that large landslides travel over unexpectedly long distances, suggesting low dissipation. Numerical simulations of landslides require a small friction coefficient to reproduce the extension of their deposits. Here, based on analytical and numerical solutions for granular flows constrained by remote-sensing observations, we develop a consistent method to estimate the effective friction coefficient of landslides. This method uses a constant basal friction coefficient that reproduces the first-order landslide properties. We show that friction decreases with increasing volume or, more fundamentally, with increasing sliding velocity. Inspired by frictional weakening mechanisms thought to operate during earthquakes, we propose an empirical velocity-weakening friction law under a unifying phenomenological framework applicable to small and large landslides observed on Earth and beyond.

  19. An eight-legged tactile sensor to estimate coefficient of static friction.

    PubMed

    Wei Chen; Rodpongpun, Sura; Luo, William; Isaacson, Nathan; Kark, Lauren; Khamis, Heba; Redmond, Stephen J

    2015-08-01

    It is well known that a tangential force larger than the maximum static friction force is required to initiate the sliding motion between two objects, which is governed by a material constant called the coefficient of static friction. Therefore, knowing the coefficient of static friction is of great importance for robot grippers which wish to maintain a stable and precise grip on an object during various manipulation tasks. Importantly, it is most useful if grippers can estimate the coefficient of static friction without having to explicitly explore the object first, such as lifting the object and reducing the grip force until it slips. A novel eight-legged sensor, based on simplified theoretical principles of friction is presented here to estimate the coefficient of static friction between a planar surface and the prototype sensor. Each of the sensor's eight legs are straight and rigid, and oriented at a specified angle with respect to the vertical, allowing it to estimate one of five ranges (5 = 8/2 + 1) that the coefficient of static friction can occupy. The coefficient of friction can be estimated by determining whether the legs have slipped or not when pressed against a surface. The coefficients of static friction between the sensor and five different materials were estimated and compared to a measurement from traditional methods. A least-squares linear fit of the sensor estimated coefficient showed good correlation with the reference coefficient with a gradient close to one and an r(2) value greater than 0.9.

  20. Lateral-torsional response of base-isolated buildings with curved surface sliding system subjected to near-fault earthquakes

    NASA Astrophysics Data System (ADS)

    Mazza, Fabio

    2017-08-01

    The curved surface sliding (CSS) system is one of the most in-demand techniques for the seismic isolation of buildings; yet there are still important aspects of its behaviour that need further attention. The CSS system presents variation of friction coefficient, depending on the sliding velocity of the CSS bearings, while friction force and lateral stiffness during the sliding phase are proportional to the axial load. Lateral-torsional response needs to be better understood for base-isolated structures located in near-fault areas, where fling-step and forward-directivity effects can produce long-period (horizontal) velocity pulses. To analyse these aspects, a six-storey reinforced concrete (r.c.) office framed building, with an L-shaped plan and setbacks in elevation, is designed assuming three values of the radius of curvature for the CSS system. Seven in-plan distributions of dynamic-fast friction coefficient for the CSS bearings, ranging from a constant value for all isolators to a different value for each, are considered in the case of low- and medium-type friction properties. The seismic analysis of the test structures is carried out considering an elastic-linear behaviour of the superstructure, while a nonlinear force-displacement law of the CSS bearings is considered in the horizontal direction, depending on sliding velocity and axial load. Given the lack of knowledge of the horizontal direction at which near-fault ground motions occur, the maximum torsional effects and residual displacements are evaluated with reference to different incidence angles, while the orientation of the strongest observed pulses is considered to obtain average values.

  1. Viscous friction of hydrogen-bonded matter

    NASA Astrophysics Data System (ADS)

    Erbas, Aykut; Horinek, Dominik; Netz, Roland R.

    2012-02-01

    Amontons' law successfully describes friction between macroscopic solid bodies for a wide range of velocities and normal forces. For the diffusion and forced sliding of adhering or entangled macromolecules, proteins and biological complexes, temperature effects are invariably important and a similarly successful friction law at biological length and velocity scales is missing. Hydrogen bonds are key to the specific binding of bio-matter. Here we show that friction between hydrogen-bonded matter obeys in the biologically relevant low-velocity viscous regime a simple equations: the friction force is proportional to the number of hydrogen bonds, the sliding velocity, and a friction coefficient γHB. This law is deduced from atomistic molecular dynamics simulations for short peptide chains that are laterally pulled over hydroxylated substrates in the presence of water and holds for widely different peptides, surface polarities and applied normal forces. The value of γHB is extrapolated from simulations at sliding velocities in the range from v=10-2 m/s to 100 m/s by mapping on a simple stochastic model and turns out to be of the order of γHB˜10-8 kg/s. 3 hydrogen bonds act collectively.

  2. Wear Behavior of Medium Carbon Steel with Biomimetic Surface Under Starved Lubricated Conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Zhihui; Shao, Feixian; Liang, Yunhong; Lin, Pengyu; Tong, Xin; Ren, Luquan

    2017-07-01

    Friction and wear under starved lubrication condition are both key life-related factors for mechanical performance of many structural parts. In this paper, different surface morphologies on medium carbon steel were fabricated using laser, inspired by the surface coupling effect of biological system. The friction and sliding wear behaviors of biomimetic specimens (characterized by convex and concave units on the specimen surface) were studied under starved lubrication condition. The stress distribution on different sliding surfaces under sliding friction was studied using finite element method. The results showed that the tribological performance of studied surfaces under starved lubrication condition depended not only on the surface morphology but also on the structure of biomimetic units below surface (subsurface structure). The friction coefficient of biomimetic surface was effectively reduced by the concave unit depth, while the refined microstructure with higher hardness led to the much better wear resistance. In addition to lubricant reserving and wear debris trapping effect derived from the surface concave morphology, it was believed that the well-formed subsurface structure of biomimetic units could carry much heavy loads against tribopair, which enhanced the function of surface topography and resulted in complementary lubrication in the wear contact area. The uniform stress distribution on the entire biomimetic surface also played an important role in stabilizing the friction coefficient and reducing the wear cracks.

  3. The Effect of a Variable Disc Pad Friction Coefficient for the Mechanical Brake System of a Railway Vehicle

    PubMed Central

    Lee, Nam-Jin; Kang, Chul-Goo

    2015-01-01

    A brake hardware-in-the-loop simulation (HILS) system for a railway vehicle is widely applied to estimate and validate braking performance in research studies and field tests. When we develop a simulation model for a full vehicle system, the characteristics of all components are generally properly simplified based on the understanding of each component’s purpose and interaction with other components. The friction coefficient between the brake disc and the pad used in simulations has been conventionally considered constant, and the effect of a variable friction coefficient is ignored with the assumption that the variability affects the performance of the vehicle braking very little. However, the friction coefficient of a disc pad changes significantly within a range due to environmental conditions, and thus, the friction coefficient can affect the performance of the brakes considerably, especially on the wheel slide. In this paper, we apply a variable friction coefficient and analyzed the effects of the variable friction coefficient on a mechanical brake system of a railway vehicle. We introduce a mathematical formula for the variable friction coefficient in which the variable friction is represented by two variables and five parameters. The proposed formula is applied to real-time simulations using a brake HILS system, and the effectiveness of the formula is verified experimentally by testing the mechanical braking performance of the brake HILS system. PMID:26267883

  4. The Effect of a Variable Disc Pad Friction Coefficient for the Mechanical Brake System of a Railway Vehicle.

    PubMed

    Lee, Nam-Jin; Kang, Chul-Goo

    2015-01-01

    A brake hardware-in-the-loop simulation (HILS) system for a railway vehicle is widely applied to estimate and validate braking performance in research studies and field tests. When we develop a simulation model for a full vehicle system, the characteristics of all components are generally properly simplified based on the understanding of each component's purpose and interaction with other components. The friction coefficient between the brake disc and the pad used in simulations has been conventionally considered constant, and the effect of a variable friction coefficient is ignored with the assumption that the variability affects the performance of the vehicle braking very little. However, the friction coefficient of a disc pad changes significantly within a range due to environmental conditions, and thus, the friction coefficient can affect the performance of the brakes considerably, especially on the wheel slide. In this paper, we apply a variable friction coefficient and analyzed the effects of the variable friction coefficient on a mechanical brake system of a railway vehicle. We introduce a mathematical formula for the variable friction coefficient in which the variable friction is represented by two variables and five parameters. The proposed formula is applied to real-time simulations using a brake HILS system, and the effectiveness of the formula is verified experimentally by testing the mechanical braking performance of the brake HILS system.

  5. Granular self-organization by autotuning of friction.

    PubMed

    Kumar, Deepak; Nitsure, Nitin; Bhattacharya, S; Ghosh, Shankar

    2015-09-15

    A monolayer of granular spheres in a cylindrical vial, driven continuously by an orbital shaker and subjected to a symmetric confining centrifugal potential, self-organizes to form a distinctively asymmetric structure which occupies only the rear half-space. It is marked by a sharp leading edge at the potential minimum and a curved rear. The area of the structure obeys a power-law scaling with the number of spheres. Imaging shows that the regulation of motion of individual spheres occurs via toggling between two types of motion, namely, rolling and sliding. A low density of weakly frictional rollers congregates near the sharp leading edge whereas a denser rear comprises highly frictional sliders. Experiments further suggest that because the rolling and sliding friction coefficients differ substantially, the spheres acquire a local time-averaged coefficient of friction within a large range of intermediate values in the system. The various sets of spatial and temporal configurations of the rollers and sliders constitute the internal states of the system. Experiments demonstrate and simulations confirm that the global features of the structure are maintained robustly by autotuning of friction through these internal states, providing a previously unidentified route to self-organization of a many-body system.

  6. Diallyl disulphide as natural organosulphur friction modifier via the in-situ tribo-chemical formation of tungsten disulphide

    NASA Astrophysics Data System (ADS)

    Rodríguez Ripoll, Manel; Totolin, Vladimir; Gabler, Christoph; Bernardi, Johannes; Minami, Ichiro

    2018-01-01

    The present work shows a novel method for generating in-situ low friction tribofilms containing tungsten disulphide in lubricated contacts using diallyl disulphide as sulphur precursor. The approach relies on the tribo-chemical interaction between the diallyl disulphide and a surface containing embedded sub-micrometer tungsten carbide particles. The results show that upon sliding contact between diallyl disulphide and the tungsten-containing surface, the coefficient of friction drops to values below 0.05 after an induction period. The reason for the reduction in friction is due to tribo-chemical reactions that leads to the in-situ formation of a complex tribofilm that contains iron and tungsten components. X-ray photoelectron spectroscopy analyses indicate the presence of tungsten disulphide at the contact interface, thus justifying the low coefficient of friction achieved during the sliding experiments. It was proven that the low friction tribofilms can only be formed by the coexistence of tungsten and sulphur species, thus highlighting the synergy between diallyl disulphide and the tungsten-containing surface. The concept of functionalizing surfaces to react with specific additives opens up a wide range of possibilities, which allows tuning on-site surfaces to target additive interactions.

  7. Macroscale superlubricity enabled by graphene nanoscroll formation

    NASA Astrophysics Data System (ADS)

    Berman, Diana; Deshmukh, Sanket A.; Sankaranarayanan, Subramanian K. R. S.; Erdemir, Ali; Sumant, Anirudha V.

    2015-06-01

    Friction and wear remain as the primary modes of mechanical energy dissipation in moving mechanical assemblies; thus, it is desirable to minimize friction in a number of applications. We demonstrate that superlubricity can be realized at engineering scale when graphene is used in combination with nanodiamond particles and diamondlike carbon (DLC). Macroscopic superlubricity originates because graphene patches at a sliding interface wrap around nanodiamonds to form nanoscrolls with reduced contact area that slide against the DLC surface, achieving an incommensurate contact and substantially reduced coefficient of friction (~0.004). Atomistic simulations elucidate the overall mechanism and mesoscopic link bridging the nanoscale mechanics and macroscopic experimental observations.

  8. Friction and transfer behavior of pyrolytic boron nitride in contact with various metals

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1976-01-01

    Sliding friction experiments were conducted with pyrolytic boron nitride in sliding contact with itself and various metals. Auger emission spectroscopy was used to monitor transfer of pyrolytic boron nitride to metals and metals to pyrolytic boron nitride. Results indicate that the friction coefficient for pyrolytic boron nitride in contact with metals can be related to the chemical activity of the metals and more particularly to the d valence bond character of the metal. Transfer was found to occur to all metals except silver and gold and the amount of transfer was less in the presence than in the absence of metal oxide. Friction was less for pyrolytic boron nitride in contact with a metal in air than in vacuum.

  9. Tribological properties of ceramic-(Ti3Al-Nb) sliding couples for use as candidate seal materials to 700 C

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christhopher; Steinetz, Bruce M.; Brindley, Pamela K.

    1990-01-01

    Tribological properties of Ti3Al-Nb intermetallic disks sliding against alumina-boria-silicate fabric were ascertained in air at temperatures from 25 to 700 C. These materials are candidates for sliding seal applications for the National AeroSpace Plane. The tests were done using a pin on disk tribometer. Sliding was unidirectional at 0.27 m/sec under a nominal contact stress of 340 kPa. Gold sputter or ion plating deposited films were used to reduce friction and wear. Rhodium and palladium films were used beneath the gold lubricating films to prevent diffusion of the substrate into the gold at high temperature. The friction and wear of the unlubricated specimens was unacceptable. Friction coefficients were generally greater than 1.0. The ion plated gold films, when used with a rhodium diffusion barrier reduced friction by almost a factor of 2. Wear was also substantially reduced. The sputter deposited films were not adherent unless the substrate was sputter cleaned immediately prior to film deposition. Palladium did not function as a diffusion barrier.

  10. Friction law and hysteresis in granular materials

    PubMed Central

    Wyart, M.

    2017-01-01

    The macroscopic friction of particulate materials often weakens as the flow rate is increased, leading to potentially disastrous intermittent phenomena including earthquakes and landslides. We theoretically and numerically study this phenomenon in simple granular materials. We show that velocity weakening, corresponding to a nonmonotonic behavior in the friction law, μ(I), is present even if the dynamic and static microscopic friction coefficients are identical, but disappears for softer particles. We argue that this instability is induced by endogenous acoustic noise, which tends to make contacts slide, leading to faster flow and increased noise. We show that soft spots, or excitable regions in the materials, correspond to rolling contacts that are about to slide, whose density is described by a nontrivial exponent θs. We build a microscopic theory for the nonmonotonicity of μ(I), which also predicts the scaling behavior of acoustic noise, the fraction of sliding contacts χ, and the sliding velocity, in terms of θs. Surprisingly, these quantities have no limit when particles become infinitely hard, as confirmed numerically. Our analysis rationalizes previously unexplained observations and makes experimentally testable predictions. PMID:28811373

  11. Friction law and hysteresis in granular materials

    NASA Astrophysics Data System (ADS)

    DeGiuli, E.; Wyart, M.

    2017-08-01

    The macroscopic friction of particulate materials often weakens as the flow rate is increased, leading to potentially disastrous intermittent phenomena including earthquakes and landslides. We theoretically and numerically study this phenomenon in simple granular materials. We show that velocity weakening, corresponding to a nonmonotonic behavior in the friction law, μ(I), is present even if the dynamic and static microscopic friction coefficients are identical, but disappears for softer particles. We argue that this instability is induced by endogenous acoustic noise, which tends to make contacts slide, leading to faster flow and increased noise. We show that soft spots, or excitable regions in the materials, correspond to rolling contacts that are about to slide, whose density is described by a nontrivial exponent θs. We build a microscopic theory for the nonmonotonicity of μ(I), which also predicts the scaling behavior of acoustic noise, the fraction of sliding contacts χ, and the sliding velocity, in terms of θs. Surprisingly, these quantities have no limit when particles become infinitely hard, as confirmed numerically. Our analysis rationalizes previously unexplained observations and makes experimentally testable predictions.

  12. Tribological properties of ceramic/Ti3Al-Nb sliding couples for use as candidate seal materials to 700 deg C

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Steinetz, Bruce M.; Brindley, Pamela K.

    1989-01-01

    Tribological properties of Ti3Al-Nb intermetallic disks sliding against alumina-boria-silicate fabric were ascertained in air at temperatures from 25 to 700 C. These materials are candidates for sliding seal applications for the National AeroSpace Plane. The tests were done using a pin on disk tribometer. Sliding was unidirectional at 0.27 m/sec under a nominal contact stress of 340 kPa. Gold sputter or ion plating deposited films were used to reduce friction and wear. Rhodium and palladium films were used beneath the gold lubricating films to prevent diffusion of the substrate into the gold at high temperature. The friction and wear of the unlubricated specimens was unacceptable. Friction coefficients were generally greater than 1.0. The ion plated gold films, when used with a rhodium diffusion barrier reduced friction by almost a factor of 2. Wear was also substantially reduced. The sputter deposited films were not adherent unless the substrate was sputter cleaned immediately prior to film deposition. Palladium did not function as a diffusion barrier.

  13. Evaluation of the head-helmet sliding properties in an impact test.

    PubMed

    Trotta, Antonia; Ní Annaidh, Aisling; Burek, Roy Owen; Pelgrims, Bart; Ivens, Jan

    2018-05-18

    The scalp plays a crucial role in head impact biomechanics, being the first tissue involved in the impact and providing a sliding interface between the impactor and/or helmet and the skull. It is important to understand both the scalp-skull and the scalp-helmet sliding in order to determine the head response due to an impact. However, experimental data on the sliding properties of the scalp is lacking. The aim of this work was to identify the sliding properties of the scalp using cadaver heads, in terms of scalp-skull and scalp-liner (internal liner of the helmet) friction and to compare these values with that of widely used artificial headforms (HIII and magnesium EN960). The effect of the hair, the direction of sliding, the speed of the test and the normal load were considered. The experiments revealed that the sliding behaviour of the scalp under impact loading is characterised by three main phases: (1) the low friction sliding of the scalp over the skull (scalp-skull friction), (2) the tensioning effect of the scalp and (3) the sliding of the liner fabric over the scalp (scalp-liner friction). Results showed that the scalp-skull coefficient of friction (COF) is very low (0.06 ± 0.048), whereas the scalp-liner COF is 0.29 ± 0.07. The scalp-liner COF is statistically different from the value of the HIII-liner (0.75 ± 0.06) and the magnesium EN960-liner (0.16 ± 0.026). These data will lead to the improvement of current headforms for head impact standard tests, ultimately leading to more realistic head impact simulations and the optimization of helmet designs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Friction and wear of human hair fibres

    NASA Astrophysics Data System (ADS)

    Bowen, James; Johnson, Simon A.; Avery, Andrew R.; Adams, Michael J.

    2016-06-01

    An experimental study of the tribological properties of hair fibres is reported, and the effect of surface treatment on the evolution of friction and wear during sliding. Specifically, orthogonally crossed fibre/fibre contacts under a compressive normal load over a series of 10 000 cycle studies are investigated. Reciprocating sliding at a velocity of 0.4 mm s-1, over a track length of 0.8 mm, was performed at 18 °C and 40%-50% relative humidity. Hair fibres retaining their natural sebum were studied, as well as those stripped of their sebum via hexane cleaning, and hair fibres conditioned using a commercially available product. Surface topography modifications resulting from wear were imaged using scanning electron microscopy and quantified using white light interferometry. Hair fibres that presented sebum or conditioned product at the fibre/fibre junction exhibited initial coefficients of friction at least 25% lower than those that were cleaned with hexane. Coefficients of friction were observed to depend on the directionality of sliding for hexane cleaned hair fibres after sufficient wear cycles that cuticle lifting was present, typically on the order 1000 cycles. Cuticle flattening was observed for fibre/fibre junctions exposed to 10 mN compressive normal loads, whereas loads of 100 mN introduced substantial cuticle wear and fibre damage.

  15. The tribology of rosin

    NASA Astrophysics Data System (ADS)

    Smith, J. H.; Woodhouse, J.

    2000-08-01

    Rosin is well known for its ability to excite stick-slip vibration on a violin string but the precise characteristics of the material which enable it to exhibit this behaviour have not been studied in any detail. A method is described in which the coefficient of friction of rosin is measured during individual cycles of a stick-slip vibration. Friction versus sliding velocity characteristics deduced in this way exhibit hysteresis, similar to that found in other investigations using different materials. No part of the hysteresis loops follow the friction/velocity curve found from steady-sliding experiments. Possible constitutive laws are examined to describe this frictional behaviour. It is suggested by a variety of evidence that contact temperature plays an important role. Friction laws are developed by considering that the friction arises primarily from the shear of a softened or molten layer of rosin, with a temperature-dependent viscosity or shear strength. The temperature of the rosin layer is calculated by modelling the heat flow around the sliding contact. The temperature-based models are shown to reproduce some features of the measurements which are not captured in the traditional model, in which friction depends only on sliding speed. A model based on viscous behaviour of a thin melted layer of rosin gives predictions at variance with observations. However, a model based on plastic yielding at the surface of the rosin gives good agreement with these observations.

  16. Spontaneous Blinking from a Tribological Viewpoint.

    PubMed

    Pult, Heiko; Tosatti, Samuele G P; Spencer, Nicholas D; Asfour, Jean-Michel; Ebenhoch, Michael; Murphy, Paul J

    2015-07-01

    The mechanical forces between the lid wiper and the ocular surface, and between a contact lens and the lid wiper, are reported to be related to dry eye symptoms. Furthermore, the mechanical forces between these sliding partners are assumed to be related to the ocular signs of lid-wiper epitheliopathy (LWE) and lid-parallel conjunctival folds (LIPCOF). Recent literature provides some evidence that a contact lens with a low coefficient of friction (CoF) improves wearing comfort by reducing the mechanical forces between the contact lens surface and the lid wiper. This review discusses the mechanical forces during spontaneous blinks from a tribological perspective, at both low and high sliding velocities, in a healthy subject. It concludes that the coefficient of friction of the ocular surfaces appears to be strongly comparable to that of hydrophilic polymer brushes at low sliding velocity, and that, with increased sliding velocity, there is no wear at the sliding partners' surfaces thanks to the presence of a fluid film between the two sliding partners. In contrast, in the case of dry eye, the failure to maintain a full fluid film lubrication regime at high blinking speeds may lead to increased shear rates, resulting in deformation and wear of the sliding pairs. These shear rates are most likely related to tear film viscosity. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Sliding seal materials for adiabatic engines

    NASA Technical Reports Server (NTRS)

    Lankford, J.

    1985-01-01

    The sliding friction coefficients and wear rates of promising carbide, oxide, and nitride materials were measured under temperature, environmental, velocity, loading conditions that are representative of the adiabatic engine environment. In order to provide guidance needed to improve materials for this application, the program stressed fundamental understanding of the mechanisms involved in friction and wear. Microhardness tests were performed on the candidate materials at elevated temperatures, and in atmospheres relevant to the piston seal application, and optical and electron microscopy were used to elucidate the micromechanisms of wear following wear testing. X-ray spectroscopy was used to evaluate interface/environment interactions which seemed to be important in the friction and wear process. Electrical effects in the friction and wear processes were explored in order to evaluate the potential usefulness of such effects in modifying the friction and wear rates in service. However, this factor was found to be of negligible significance in controlling friction and wear.

  18. Seismic isolation of nuclear power plants using sliding isolation bearings

    NASA Astrophysics Data System (ADS)

    Kumar, Manish

    Nuclear power plants (NPP) are designed for earthquake shaking with very long return periods. Seismic isolation is a viable strategy to protect NPPs from extreme earthquake shaking because it filters a significant fraction of earthquake input energy. This study addresses the seismic isolation of NPPs using sliding bearings, with a focus on the single concave Friction Pendulum(TM) (FP) bearing. Friction at the sliding surface of an FP bearing changes continuously during an earthquake as a function of sliding velocity, axial pressure and temperature at the sliding surface. The temperature at the sliding surface, in turn, is a function of the histories of coefficient of friction, sliding velocity and axial pressure, and the travel path of the slider. A simple model to describe the complex interdependence of the coefficient of friction, axial pressure, sliding velocity and temperature at the sliding surface is proposed, and then verified and validated. Seismic hazard for a seismically isolated nuclear power plant is defined in the United States using a uniform hazard response spectrum (UHRS) at mean annual frequencies of exceedance (MAFE) of 10-4 and 10 -5. A key design parameter is the clearance to the hard stop (CHS), which is influenced substantially by the definition of the seismic hazard. Four alternate representations of seismic hazard are studied, which incorporate different variabilities and uncertainties. Response-history analyses performed on single FP-bearing isolation systems using ground motions consistent with the four representations at the two shaking levels indicate that the CHS is influenced primarily by whether the observed difference between the two horizontal components of ground motions in a given set is accounted for. The UHRS at the MAFE of 10-4 is increased by a design factor (≥ 1) for conventional (fixed base) nuclear structure to achieve a target annual frequency of unacceptable performance. Risk oriented calculations are performed for eight sites across the United States to show that the factor is equal to 1.0 for seismically isolated NPPs, if the risk is dominated by horizontal earthquake shaking. Response-history analyses using different models of seismically isolated NPPs are performed to understand the importance of the choice of friction model, model complexity and vertical ground motion for calculating horizontal displacement response across a wide range of sites and shaking intensities. A friction model for the single concave FP bearing should address heating. The pressure- and velocity-dependencies were not important for the models and sites studied. Isolation-system displacements can be computed using a macro model comprising a single FP bearing.

  19. Static coefficient of friction between stainless steel and PMMA used in cemented hip and knee implants.

    PubMed

    Nuño, N; Groppetti, R; Senin, N

    2006-11-01

    Design of cemented hip and knee implants, oriented to improve the longevity of artificial joints, is largely based on numerical models. The static coefficient of friction between the implant and the bone cement is necessary to characterize the interface conditions in these models and must be accurately provided. The measurement of this coefficient using a repeatable and reproducible methodology for materials used in total hip arthroplasty is missing from the literature. A micro-topographic surface analysis characterized the surfaces of the specimens used in the experiments. The coefficient of friction between stainless steel and bone cement in dry and wet conditions using bovine serum was determined using a prototype computerized sliding friction tester. The effects of surface roughness (polished versus matt) and of contact pressure on the coefficient of friction have also been investigated. The serum influences little the coefficient of friction for the matt steel surface, where the mechanical interactions due to higher roughness are still the most relevant factor. However, for polished steel surfaces, the restraining effect of proteins plays a very relevant role in increasing the coefficient of friction. When the coefficient of friction is used in finite element analysis, it is used for the debonded stem-cement situation. It can thus be assumed that serum will propagate between the stem and the cement mantle. The authors believe that the use of a static coefficient of friction of 0.3-0.4, measured in the present study, is appropriate in finite element models.

  20. Evaluation of the friction force generated by monocristalyne and policristalyne ceramic brackets in sliding mechanics.

    PubMed

    Pimentel, Roberta Ferreira; de Oliveira, Roberto Sotto Maior Fortes; Chaves, Maria das Graças Afonso Miranda; Elias, Carlos Nelson; Gravina, Marco Abdo

    2013-01-01

    To evaluate and compare "in vitro" the maximum friction force generated by three types of esthetic brackets, two types of polycrystalline conventional ceramic brackets (20/40 and InVu) and one type of sapphire monocrystalline bracket (Radiance) in dry and artificial saliva wet settings. Also, to evaluate the influence exerted by artificial saliva on the friction forces of those brackets. Tests were performed in dry and artificial saliva wet setting (Oral Balance) by using an EMIC DL 10000 testing machine, simulating a 2 mm slide of 0.019 x 0.025-in rectangular stainless steel wires over the pre-angulated and pre-torqued (right superior canine, Roth prescription, slot 0.022 x 0.030-in) brackets (n = 18 for each bracket). In order to compare groups in dry and wet settings, the ANOVA was used. For comparisons related to the dry versus wet setting, the student t test was used for each group. The results showed that in the absence of saliva the Radiance monocrystalline brackets showed the highest friction coefficients, followed by the 20/40 and the InVu polycrystalline brackets. In tests with artificial saliva, the Radiance and the 20/40 brackets had statistically similar friction coefficients and both were greater than that presented by the InVu brackets. The artificial saliva did not change the maximum friction force of the Radiance brackets, but, for the others (20/40 and InVu), an increase of friction was observed in its presence. The InVu brackets showed, in the absence and in the presence of saliva, the lowest friction coefficient.

  1. Friction and Wear Properties of Selected Solid Lubricating Films. Part 2; Ion-Plated Lead Films

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Iwaki, Masanori; Gotoh, Kenichi; Obara, Shingo; Imagawa, Kichiro

    2000-01-01

    To evaluate commercially developed dry solid film lubricants for aerospace bearing applications, an investigation was conducted to examine the friction and wear behavior of ion-plated lead films in sliding contact with 6-mm-diameter American Iron and Steel Institute (AISI) 440C stainless steel balls. Unidirectional sliding friction experiments were conducted with a load of 5.9 N (600 g), a mean Hertzian contact pressure of 0.79 GPa (maximum Hertzian contact pressure of 1.2 GPa), and a sliding velocity of 0.2 m/s. The experiments were conducted at room temperature in three environments: ultrahigh vacuum (vacuum pressure, 7 x 10(exp -7 Pa), humid air (relative humidity, approx. 20 percent), and dry nitrogen (relative humidity, less then 1 percent). The resultant films were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and surface profilometry. Marked differences in the friction and wear of the ion-plated lead films investigated herein resulted from the environmental conditions. The main criteria for judging the performance of the ion-plated lead films were coefficient of friction and wear rate, which had to be less than 0.3 and on the order of 1(exp -6) cu mm/N.m or less, respectively. The ion-plated lead films met both criteria only in ultrahigh vacuum but failed in humid air and in dry nitrogen, where the coefficient of friction was higher than the criterion. Both the lead film wear rate and the ball wear rate met that criterion in all three environments. Adhesion and plastic deformation played important roles in the friction and wear of the ion-plated lead films in contact with 440C stainless steel balls in the three environments. All sliding involved adhesive transfer of materials: transfer of lead wear debris to the counterpart 440C stainless steel and transfer of 440C stainless steel wear debris to the counterpart lead.

  2. Effects of simulated clay gouges on the sliding behavior of Tennessee sandston

    NASA Astrophysics Data System (ADS)

    Shimamoto, Toshihiko; Logan, John M.

    1981-06-01

    The effects of simulated fault gouge on the sliding behavior of Tennessee sandstone are studied experimentally with special reference to the stabilizing effect of clay minerals mixed into the gouge. About 30 specimens with gouge composed of pure clays, of homogeneously mixed clay and anhydrite, or of layered clay and anhydrite, along a 35° precut are deformed dry in a triaxial apparatus at a confining pressure of 100 MPa, with a shortening rate of about 5 · 10 -4/sec, and at room temperature. Pure clay gouges exhibit only stable sliding, and the ultimate frictional strength is very low for bentonite (mont-morillonite), intermediate for chlorite and illite, and considerably higher for kaolinite. Anhydrite gouge shows violent stick-slip at 100 MPa confining pressure. When this mineral is mixed homogeneously with clays, the frictional coefficient of the mixed gouge, determined at its ultimate frictional strength, decreases monotonically with an increase in the clay content. The sliding mode changes from stick-slip to stable sliding when the frictional coefficient of the mixed clay-anhydrite gouge is lowered down below 90-95% of the coefficient of anhydrite gouge. The stabilizing effect of clay in mixed gouge is closely related to the ultimate frictional strength of pure clays; that is, the effect is conspicuous only for a mineral with low frictional strength. Only 15-20% of bentonite suppresses the violent stick-slip of anhydrite gouge. In contrast, violent stick-slip occurs even if the gouge contains as much as 75% of kaolinite. The behavior of illite and chlorite is intermediate between that of kaolinite and bentonite. Bentonite—anhydrite two-layer gouge exhibits stable sliding even when the bentonite content is only 5%. Thus, the presence of a thin, clay-rich layer in a fault zone stabilizes the behavior much more effectively than do the clay minerals mixed homogeneously with the gouge. This result brings out the mechanical significance of internal structures of a fault zone in understanding the effects of intrafault materials on the fault motion. Based on the present experimental results incorporated with some other experimental data, it is argued that although the stabilizing effect of montmorillonite and vermiculite is indeed remarkable at room temperature, the effect should be much less pronounced at elevated temperatures, due perhaps to the dewatering of the clays. In most geological environments where shallow earthquakes occur, the stabilizing effect of clays is probably not so conspicuous as to completely suppress the unstable motion of a fault.

  3. Biomechanical investigation of thread designs and interface conditions of zirconia and titanium dental implants with bone: three-dimensional numeric analysis.

    PubMed

    Fuh, Lih-Jyh; Hsu, Jui-Ting; Huang, Heng-Li; Chen, Michael Y C; Shen, Yen-Wen

    2013-01-01

    Bone stress and interfacial sliding at the bone-implant interface (BII) were analyzed in zirconia and titanium implants with various thread designs and interface conditions (bonded BII and contact BIIs with different frictional coefficients) for both conventional and immediately loaded treatments. A total of 18 finite element models comprising two implant materials (zirconia and titanium), three thread designs (different shapes and pitches), and three interface conditions (bonded and contact BIIs) were analyzed to assess the effects on bone stresses and on sliding at the BII. The material properties of the bone model were anisotropic, and a lateral force of 130 N was applied as the loading condition. In the immediately loaded implant, the stress was highly concentrated at one site of the peri-implant bone. The peak bone stress was more than 20% lower in zirconia implants than in titanium implants for a bonded BII and 14% to 20% lower for a contact BII. The bone stresses did not differ significantly between implants with V-shaped threads and square threads. However, sliding at the BII was more than 25% lower with square-thread implants than with V-shaped-thread implants for titanium implants and 36% lower for zirconia implants. Reducing the thread size and pitch in cortical bone (via two V-shaped threads with different pitches) decreased the bone stress by 13%. Increasing the frictional coefficient reduced sliding at the BII in both zirconia and titanium implants. As an implant material, zirconia can reduce the bone stress in the crestal cortical region. Bone stress and sliding at the BII are heavily dependent on the thread design and the frictional coefficient at the BII of immediately loaded implants.

  4. Tribological Analysis of Copper-Coated Graphite Particle-Reinforced A359 Al/5 wt.% SiC Composites

    NASA Astrophysics Data System (ADS)

    Lin, C. B.; Wang, T. C.; Chang, Z. C.; Chu, H. Y.

    2013-01-01

    Copper-coated graphite particles can be mass-produced by the cementation process using simple equipment. Graphite particulates that were coated with electroless copper and 5 wt.% SiC particulates were introduced into an aluminum alloy by compocasting to make A359 Al/5 wt.% SiC(p) composite that contained 2, 4, 6, and 8 wt.% graphite particulate composite. The effects of SiC particles, quantity of graphite particles, normal loading, sliding speed and wear debris on the coefficient of friction, and the wear rate were investigated. The results thus obtained indicate that the wear properties were improved by adding small amounts of SiC and graphite particles into the A359 Al alloy. The coefficient of friction of the A359 Al/5 wt.% SiC(p) composite that contained 6.0 wt.% graphite particulates was reduced to 0.246 and the amount of graphite film that was released on the worn surface increased with the graphite particulate content. The coefficient of friction and the wear rate were insensitive to the variation in the sliding speed and normal loading.

  5. Role of friction in vertically oscillated granular materials

    NASA Astrophysics Data System (ADS)

    Moon, Sung Joon; Swift, J. B.; Swinney, Harry L.

    2002-11-01

    We use a previously validated molecular dynamics simulation of vertically oscillated granular layers to study how the contact friction affects standing wave patterns. Our collision model follows Walton(O. R. Walton, in Particulate Two-Phase Flow), edited by M. C. Roco (Butterworth-Heinemann, Boston, 1993), p. 884.: Dissipation in the normal component of colliding velocity is characterized by the normal coefficient of restitution e (0<= e < 1), and interaction in the tangential component by the tangential coefficient of restitution β = β(μ,e,Φ), where -1<= β <= β_0, μ is the static coefficient of friction on the surface of grains, Φ is the collision angle, and β0 corresponds to the crossover between static and sliding friction. We varied the above parameters independently for the grain-grain collisions and for the grain-wall collisions. The grain-grain friction changes the phase diagram of patterns significantly, and the patterns become fuzzy as the friction is decreased. The grain-wall friction is necessary to stabilize the patterns.

  6. Investigation of Wear and Friction Properties Under Sliding Conditions of Some Materials Suitable for Cages of Rolling-Contact Bearings

    NASA Technical Reports Server (NTRS)

    Johnson, Robert L; Swikert, Max A; Bisson, Edmond E

    1952-01-01

    An investigation of wear and friction properties of a number of materials sliding against SAE 52100 steel was conducted. These materials included brass, bronze, beryllium copper, monel, nichrome v, 24s-t aluminum, nodular iron, and gray cast iron. The metals investigated may be useful as possible cage (separator or retainer) materials for rolling-contact bearings of high-speed turbine engines. The ability of materials to form surface films that prevent welding is a most important factor in both dry friction and boundary lubrication. On the basis of wear and resistance to welding only, the cast irons were the most promising materials investigated; they showed the least wear and the least tendency to surface failure when run dry, and when boundary lubricated they showed the highest load capacity. On the basis of mechanical properties, nodular iron is superior to gray cast iron. Bronze had the lowest friction coefficient under dry sliding conditions. The results with brass, beryllium copper, and aluminum were poor and these materials do not appear, with regard to friction and wear, to be suitable for cages.

  7. Adhesion and friction of iron-base binary alloys in contact with silicon carbide in vacuum

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1980-01-01

    Single pass sliding friction experiments were conducted with various iron base binary alloys (alloying elements were Ti, Cr, Mn, Ni, Rh, and W) in contact with a single crystal silicon carbide /0001/ surface in vacuum. Results indicate that atomic size and concentration of alloying elements play an important role in controlling adhesion and friction properties of iron base binary alloys. The coefficient of friction generally increases with an increase in solute concentration. The coefficient of friction increases linearly as the solute to iron atomic radius ratio increases or decreases from unity. The chemical activity of the alloying elements was also an important parameter in controlling adhesion and friction of alloys, as these latter properties are highly dependent upon the d bond character of the elements.

  8. Superlubricity of Graphite Induced by Multiple Transferred Graphene Nanoflakes.

    PubMed

    Li, Jinjin; Gao, Tianyang; Luo, Jianbin

    2018-03-01

    2D or 3D layered materials, such as graphene, graphite, and molybdenum disulfide, usually exhibit superlubricity properties when sliding occurs between the incommensurate interface lattices. This study reports the superlubricity between graphite and silica under ambient conditions, induced by the formation of multiple transferred graphene nanoflakes on the asperities of silica surfaces after the initial frictional sliding. The friction coefficient can be reduced to as low as 0.0003 with excellent robustness and is independent of the surface roughness, sliding velocities, and rotation angles. The superlubricity mechanism can be attributed to the extremely weak interaction and easy sliding between the transferred graphene nanoflakes and graphite in their incommensurate contact. This finding has important implications for developing approaches to achieve superlubricity of layered materials at the nanoscale by tribointeractions.

  9. Superlubricity of Graphite Induced by Multiple Transferred Graphene Nanoflakes

    PubMed Central

    Gao, Tianyang; Luo, Jianbin

    2018-01-01

    Abstract 2D or 3D layered materials, such as graphene, graphite, and molybdenum disulfide, usually exhibit superlubricity properties when sliding occurs between the incommensurate interface lattices. This study reports the superlubricity between graphite and silica under ambient conditions, induced by the formation of multiple transferred graphene nanoflakes on the asperities of silica surfaces after the initial frictional sliding. The friction coefficient can be reduced to as low as 0.0003 with excellent robustness and is independent of the surface roughness, sliding velocities, and rotation angles. The superlubricity mechanism can be attributed to the extremely weak interaction and easy sliding between the transferred graphene nanoflakes and graphite in their incommensurate contact. This finding has important implications for developing approaches to achieve superlubricity of layered materials at the nanoscale by tribointeractions. PMID:29593965

  10. Experiments on Ultrasonic Lubrication Using a Piezoelectrically-assisted Tribometer and Optical Profilometer

    PubMed Central

    Dong, Sheng; Dapino, Marcelo

    2015-01-01

    Friction and wear are detrimental to engineered systems. Ultrasonic lubrication is achieved when the interface between two sliding surfaces is vibrated at a frequency above the acoustic range (20 kHz). As a solid-state technology, ultrasonic lubrication can be used where conventional lubricants are unfeasible or undesirable. Further, ultrasonic lubrication allows for electrical modulation of the effective friction coefficient between two sliding surfaces. This property enables adaptive systems that modify their frictional state and associated dynamic response as the operating conditions change. Surface wear can also be reduced through ultrasonic lubrication. We developed a protocol to investigate the dependence of friction force reduction and wear reduction on the linear sliding velocity between ultrasonically lubricated surfaces. A pin-on-disc tribometer was built which differs from commercial units in that a piezoelectric stack is used to vibrate the pin at 22 kHz normal to the rotating disc surface. Friction and wear metrics including effective friction force, volume loss, and surface roughness are measured without and with ultrasonic vibrations at a constant pressure of 1 to 4 MPa and three different sliding velocities: 20.3, 40.6, and 87 mm/sec. An optical profilometer is utilized to characterize the wear surfaces. The effective friction force is reduced by 62% at 20.3 mm/sec. Consistently with existing theories for ultrasonic lubrication, the percent reduction in friction force diminishes with increasing speed, down to 29% friction force reduction at 87 mm/sec. Wear reduction remains essentially constant (49%) at the three speeds considered. PMID:26436691

  11. Aluminum runway surface as possible aid to aircraft braking

    NASA Technical Reports Server (NTRS)

    Miller, C. D.; Pinkel, I. I.

    1973-01-01

    Several concepts are described for use singly or in combination to improve aircraft braking. All involve a thin layer of aluminum covering all or part of the runway. Advantage would derive from faster heat conduction from the tire-runway interface. Heating of tread surface with consequent softening and loss of friction coefficient should be reduced. Equations are developed indicating that at least 99 percent of friction heat should flow into the aluminum. Preliminary test results indicate a coefficient of sliding friction of 1.4, with predictably slight heating of tread. Elimination of conventional brakes is at least a remote possibility.

  12. Friction Properties of Polished Cvd Diamond Films Sliding against Different Metals

    NASA Astrophysics Data System (ADS)

    Lin, Zichao; Sun, Fanghong; Shen, Bin

    2016-11-01

    Owing to their excellent mechanical and tribological properties, like the well-known extreme hardness, low coefficient of friction and high chemical inertness, chemical vapor deposition (CVD) diamond films have found applications as a hard coating for drawing dies. The surface roughness of the diamond films is one of the most important attributes to the drawing dies. In this paper, the effects of different surface roughnesses on the friction properties of diamond films have been experimentally studied. Diamond films were fabricated using hot filament CVD. The WC-Co (Co 6wt.%) drawing dies were used as substrates. A gas mixture of acetone and hydrogen gas was used as the feedstock gas. The CVD diamond films were polished using mechanical polishing. Polished diamond films with three different surface roughnesses, as well as the unpolished diamond film, were fabricated in order to study the tribological performance between the CVD diamond films and different metals with oil lubrication. The unpolished and polished CVD diamond films are characterized with scanning electron microscope (SEM), atomic force microscope (AFM), surface profilometer, Raman spectrum and X-ray diffraction (XRD). The friction examinations were carried out by using a ball-on-plate type reciprocating friction tester. Low carbide steel, stainless steel, copper and aluminum materials were used as counterpart balls. Based on this study, the results presented the friction coefficients between the polished CVD films and different metals. The friction tests demonstrate that the smooth surface finish of CVD diamond films is beneficial for reducing their friction coefficients. The diamond films exhibit low friction coefficients when slid against the stainless steel balls and low carbide steel ball, lower than that slid against copper ball and aluminum ball, attributed to the higher ductility of copper and aluminum causing larger amount of wear debris adhering to the sliding interface and higher adhesive strength between the contacting surfaces.

  13. Friction and hardness of gold films deposited by ion plating and evaporation

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1983-01-01

    Sliding friction experiments were conducted with ion-plated and vapor-deposited gold films on various substrates in contact with a 0.025-mm-radius spherical silicon carbide rider in mineral oil. Hardness measurements were also made to examine the hardness depth profile of the coated gold on the substrate. The results indicate that the hardness is influenced by the depth of the gold coating from the surface. The hardness increases with an increase in the depth. The hardness is also related to the composition gradient in the graded interface between the gold coating and the substrate. The graded interface exhibited the highest hardness resulting from an alloy hardening effect. The coefficient of friction is inversely related to the hardness, namely, the load carrying capacity of the surface. The greater the hardness that the metal surface possesses, the lower is the coefficient of friction. The graded interface exhibited the lowest coefficient of friction.

  14. Unconventional Behavior of Friction at the Nanoscale beyond Amontons' Law.

    PubMed

    Chen, Jingrun; Gao, Wang

    2017-08-05

    By means of a many-body van der Waals (vdW)-corrected density functional theory approach, the atomic-scale friction of a prototypical tip-substrate system consisting of an Si tip and a graphene substrate is studied. In a loading-sliding process, the tip-substrate distance is found to be essential for nanofrictional behavior, through determining the competition between vdW contributions and electronic contributions. As the tip approaches the substrate, this competition results in a smooth transition of normal forces from attraction to repulsion, and the friction coefficient in turn undergoes a sign change from negative to positive with possible giant magnitude and strong anisotropy. The loading-sliding process does not introduce any chemical modification of the underlying system. These findings reveal the boundary of validity of Amontons' law, unify negative and giant friction coefficients, rationalize the experimentally observed anisotropy of nanofriction, and are universal when vdW interactions are crucial, all of which are helpful to establish a comprehensive picture of nanofriction. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Experimental observation of ballistic nanofriction on graphene

    NASA Astrophysics Data System (ADS)

    Blue, Brandon; Lodge, Michael; Tang, Chun; Hubbard, William; Martini, Ashlie; Dawson, Ben; Ishigami, Masa

    Recent calculations have predicted that gold nanocrystals slide on graphite with two radically different friction coefficients depending on their speeds. At high sliding speeds in the range of 100?m/s, nanocrystals are expected to behave radically differently in what is known as the ballistic nanofriction regime. In this work, we present a direct measurement of ballistic nanofriction for gold nanocrystals on graphene. Nanocrystals are deposited onto an oscillating graphene-coated quartz crystal microbalance (QCM) in-situ under UHV and allowed to periodically ring down. After deposition, frictional parameters are measured as a function of oscillatory velocity to investigate the predicted velocity dependence of friction. Lubricity beyond even the predictions of ballistic nanofriction is observed at much lower surface velocities than expected, with drag coefficients approaching 8.65*10-14 kg/s. In comparison to the theoretically-predicted value of 2.0*10-13 kg/s, our results suggest a much lower interaction strength than proposed in contemporary models of nanoscopic sliding contacts even at relatively low speeds. This work is based on research supported by the National Science Foundation, Grant No. 0955625 (MLS, BTB, BDD and MI) and Grant No. CMMI-1265594 (CT and AM). BDD and MI were also supported by the Intelligence Community Postdoctoral Fellowship.

  16. Friction is Fracture: a new paradigm for the onset of frictional motion

    NASA Astrophysics Data System (ADS)

    Fineberg, Jay

    Friction is generally described by a single degree of freedom, a `friction coefficient'. We experimentally study the space-time dynamics of the onset of dry and lubricated frictional motion when two contacting bodies start to slide. We first show that the transition from static to dynamic sliding is governed by rupture fronts (closely analogous to earthquakes) that break the contacts along the interface separating the two bodies. Moreover, the structure of these ''laboratory earthquakes'' is quantitatively described by singular solutions originally derived to describe the motion of rapid cracks under applied shear. We demonstrate that this framework quantitatively describes both earthquake motion and arrest. This framework also providing a new window into the hidden properties of the micron thick interface that governs a body's frictional properties. Using this window we show that lubricated interfaces, although ``slippery'', actually becomes tougher; lubricants significantly increase dissipated energy during rupture. The results establish a new (and fruitful) paradigm for describing friction. Israel Science Foundation, ERC.

  17. Water-vapor effects on friction of magnetic tape in contact with nickel-zinc ferrite

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1984-01-01

    The effects of humidity of moist nitrogen on the friction and deformation behavior of magnetic tape in contact with a nickel-zinc ferrite spherical pin were studied. The results indicate that the coefficient of friction is markedly dependent on the ambient relative humidity. Although the coefficient of friction remains low below 40-percent relative humidity, it increases rapidly with increasing relative humidity above 40 percent. The general ambient environment of the tape does not have any effect on the friction behavior if the area where the tape is in sliding contact with the ferrite pin is flooded with controlled nitrogen. The response time for the friction of the tape to humidity changes is about 10 sec. The effect of friction as a function of relative humidity on dehumidifying is very similar to that on humidifying. A surface softening of the tape due to water vapor increases the friction of the tape.

  18. Elastomers in Combined Rolling-Sliding Contact; Wear and its Underlying Mechanisms

    NASA Astrophysics Data System (ADS)

    Rowe, Kyle Gene

    Elastomeric materials, specifically rubbers, being both of a practical and scientific importance, have been the subjects of vast amounts of research spanning well over two centuries. There is currently a large effort by tire manufacturers to design new rubber compounds with lower rolling resistance, higher sliding friction, and reduced or predictable wear. At present, these efforts are primarily based on a few empirical rules and very costly trial and error testing; only a basic understanding of the mechanisms involved in the wear of elastomeric materials exists despite rigorous study. In general, the only well controlled experiments have been for simple loading and sliding schemes. The aim of this work is to characterize the tribological properties of a carbon black filled natural rubber sample. This work explores (1) its behavior in unidirectional sliding, (2) contact mechanics, (3) traction properties in combined rolling and sliding, (4) frictional heating response, and (5) wear. It was found that the friction coefficient of this material was dependent upon sliding velocity, contact pressure, and surface roughness. The high friction coefficients also lead to a bifurcation of the contact area into two different pressure regimes at sliding velocities greater than 10 mm/s . The traction response of this material in combined rolling and sliding exhibited similar behavior, being a function of the contact pressure, but not rolling velocity. The wear of this material was found to be linearly dependent upon the global slip condition and occurred preferentially on the sample. Investigations of the worn surface revealed that the most likely mechanism of wear is the degradation of surface material in a confined layer a few micrometers thick. A simple spring-mass model was developed to offer an explanation of localized wear. It was found that the coupling of system elements in the normal direction helped to shift the load from wearing elements to non-wearing ones. The result was a rapid and localized recession of material, driven by certain key system parameters such as wear rate, material stiffness, and friction. The system was also found to be sensitive to variability within these parameters, but to a lesser degree. This work demonstrates that laboratory scale tribological testing of elastomers can provide conclusive and repeatable results without recourse to macro-scale trials and experiments. The data and insights provided can be used as a tool for understanding the many contributions of materials and fillers on the friction and wear of elastomers, and in design and wear life predictions as well.

  19. Wear Behaviour of Al-6061/SiC Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Mishra, Ashok Kumar; Srivastava, Rajesh Kumar

    2017-04-01

    Aluminium Al-6061 base composites, reinforced with SiC particles having mesh size of 150 and 600, which is fabricated by stir casting method and their wear resistance and coefficient of friction has been investigated in the present study as a function of applied load and weight fraction of SiC varying from 5, 10, 15, 20, 25, 30, 35 and 40 %. The dry sliding wear properties of composites were investigated by using Pin-on-disk testing machine at sliding velocity of 2 m/s and sliding distance of 2000 m over a various loads of 10, 20 and 30 N. The result shows that the reinforcement of the metal matrix with SiC particulates up to weight percentage of 35 % reduces the wear rate. The result also show that the wear of the test specimens increases with the increasing load and sliding distance. The coefficient of friction slightly decreases with increasing weight percentage of reinforcements. The wear surfaces are examined by optical microscopy which shows that the large grooved regions and cavities with ceramic particles are found on the worn surface of the composite alloy. This indicates an abrasive wear mechanism, which is essentially a result of hard ceramic particles exposed on the worn surfaces. Further, it was found from the experimentation that the wear rate decreases linearly with increasing weight fraction of SiC and average coefficient of friction decreases linearly with increasing applied load, weight fraction of SiC and mesh size of SiC. The best result has been obtained at 35 % weight fraction and 600 mesh size of SiC.

  20. The X-ray photoelectron spectroscopy depth profiling and tribological characterization of ion-plated gold on various metals

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1983-01-01

    For the case of ion-plated gold, the graded interface between gold and a nickel substrate and a nickel substrate, such tribological properties as friction and microhardness are examined by means of X-ray photoelectron spectroscopy analysis and depth profiling. Sliding was conducted against SiC pins in both the adhesive process, where friction arises from adhesion between sliding surfaces, and abrasion, in which friction is due to pin indentation and groove-plowing. Both types of friction are influenced by coating depth, but with opposite trends: the graded interface exhibited the highest adhesion, but the lowest abrasion. The coefficient of friction due to abrasion is inversely related to hardness. Graded interface microhardness values are found to be the highest, due to an alloying effect. There is almost no interface gradation between the vapor-deposited gold film and the substrate.

  1. Numerical Studies of Friction Between Metallic Surfaces and of its Dependence on Electric Currents

    NASA Astrophysics Data System (ADS)

    Meintanis, Evangelos; Marder, Michael

    2009-03-01

    We will present molecular dynamics simulations that explore the frictional mechanisms between clean metallic surfaces. We employ the HOLA molecular dynamics code to run slider-on-block experiments. Both objects are allowed to evolve freely. We recover realistic coefficients of friction and verify the importance of cold-welding and plastic deformations in dry sliding friction. We also find that plastic deformations can significantly affect both objects, despite a difference in hardness. Metallic contacts have significant technological applications in the transmission of electric currents. To explore the effects of the latter to sliding, we had to integrate an electrodynamics solver into the molecular dynamics code. The disparate time scales involved posed a challenge, but we have developed an efficient scheme for such an integration. A limited electrodynamic solver has been implemented and we are currently exploring the effects of currents in the friction and wear of metallic contacts.

  2. Microstructure and tribological properties of TiAg intermetallic compound coating

    NASA Astrophysics Data System (ADS)

    Guo, Chun; Chen, Jianmin; Zhou, Jiansong; Zhao, Jierong; Wang, Linqian; Yu, Youjun; Zhou, Huidi

    2011-10-01

    TiAg intermetallic compound coating has been in situ synthesized successfully on pure Ti substrate by laser cladding using Ag powder as the precursor. It has been found that the prepared coating mainly comprised TiAg and Ti phases. The high resolution transmission electron microscopy results further conform the existence of TiAg intermetallic compound in the prepared coating. The magnified high resolution transmission electron microscopy images shown that the laser cladding coating contains TiAg nanocrystalline with the size of about 4 nm. Tribological properties of the prepared TiAg intermetallic compound coating were systematically evaluated. It was found that the friction coefficient and wear rate was closely related to the normal load and sliding speed, i.e., the friction coefficient of the prepared TiAg intermetallic compound coating decreased with increasing normal load and sliding speed. The wear rate of the TiAg intermetallic compound coating decreased rapidly with increasing sliding speed, while the wear rate increased as the normal load increased.

  3. Molecular dynamics simulations of metallic friction and of its dependence on electric currents - development and first results

    NASA Astrophysics Data System (ADS)

    Meintanis, Evangelos Anastasios

    We have extended the HOLA molecular dynamics (MD) code to run slider-on-block friction experiments for Al and Cu. Both objects are allowed to evolve freely and show marked deformation despite the hardness difference. We recover realistic coefficients of friction and verify the importance of cold-welding and plastic deformations in dry sliding friction. Our first data also show a mechanism for decoupling between load and friction at high velocities. Such a mechanism can explain an increase in the coefficient of friction of metals with velocity. The study of the effects of currents on our system required the development of a suitable electrodynamic (ED) solver, as the disparity of MD and ED time scales threatened the efficiency of our code. Our first simulations combining ED and MD are presented.

  4. Effects of Stone-Wales and vacancy defects in atomic-scale friction on defective graphite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xiao-Yu; Key Laboratory of Hubei Province for Water Jet Theory and New Technology, Wuhan University, Wuhan 430072; Wu, RunNi

    2014-05-05

    Graphite is an excellent solid lubricant for surface coating, but its performance is significantly weakened by the vacancy or Stone-Wales (SW) defect. This study uses molecular dynamics simulations to explore the frictional behavior of a diamond tip sliding over a graphite which contains a single defect or stacked defects. Our results suggest that the friction on defective graphite shows a strong dependence on defect location and type. The 5-7-7-5 structure of SW defect results in an effectively negative slope of friction. For defective graphite containing a defect in the surface, adding a single vacancy in the interior layer will decreasemore » the friction coefficients, while setting a SW defect in the interior layer may increase the friction coefficients. Our obtained results may provide useful information for understanding the atomic-scale friction properties of defective graphite.« less

  5. Probing superlubricity stability of hydrogenated diamond-like carbon film by varying sliding velocity

    NASA Astrophysics Data System (ADS)

    Liu, Yunhai; Yu, Bingjun; Cao, Zhongyue; Shi, Pengfei; Zhou, Ningning; Zhang, Bin; Zhang, Junyan; Qian, Linmao

    2018-05-01

    In this study, the superlubricity stability of hydrogenated diamond-like carbon (H-DLC) film in vacuum was investigated by varying the sliding velocity (30-700 mm/s). The relatively stable superlubricity state can be maintained for a long distance at low sliding velocity, whereas the superlubricity state quickly disappears and never recovers at high sliding velocity. Under superlubricity state, the transfer layer of H-DLC film was observed on the Al2O3 ball, which played a key role in obtaining ultra-low friction coefficient. Although the transfer layer can be generated at the beginning of the test, high-velocity sliding tends to accelerate the superlubricity failure and leads to the severe wear of H-DLC film. Analysis indicated that the main reason for superlubricity failure at high sliding velocity is not attributed to friction heat or the break of hydrogen passivation but to the absence of transfer layer on Al2O3 ball. The present study can enrich the understanding of superlubricity mechanism of H-DLC film.

  6. Revisiting the Least Force Required to Keep a Block from Sliding

    ERIC Educational Resources Information Center

    De, Subhranil

    2013-01-01

    This article pertains to a problem on static friction that concerns a block of mass "M" resting on a rough inclined plane. The coefficient of static friction is microsecond and the inclination angle theta is greater than tan[superscript -1] microsecond. This means that some force "F" must be applied (see Fig. 1) to keep the…

  7. Friction and wear of hydrogenated and hydrogen-free diamond-like carbon films: Relative humidity dependent character

    NASA Astrophysics Data System (ADS)

    Shi, Jing; Gong, Zhenbin; Wang, Yongfu; Gao, Kaixiong; Zhang, Junyan

    2017-11-01

    In this study, tribological properties of hydrogenated and hydrogen free diamond-like carbon films at various relative humidity (RH) were investigated to understand the friction mechanism in the presence of water molecules. At normal load of 2N, DLC-H film's friction coefficient was 0.06 at RH14% while DLC film's friction coefficient was 0.19 at RH17%. With the increase of RH, their friction coefficient converged to about 0.15. This character remained unaltered when the normal load was 5N. Results show that low friction of DLC-H film at low RH was attributed to the low shear force aroused by graphitic tribofilm at wear care center. However, the high friction of DLC film was mainly endowed by the high adhesive force aroused by σ dangling bonds. At high RH, solid-to-solid contact was isolated by water molecules confined between the counterfaces, where capillary was a dominant factor for friction. In addition to the capillary force, the absence of tribofilm was also accountable. These two factors lead to the level off of friction coefficient for DLC-H and DLC films. Moreover, for both DLC-H and DLC films, tribo-oxidization was proved to be closely related to wear rate with the assist of H2O molecules during sliding.

  8. Analysis of Carbon Nanotube Pull-out from a Polymer Matrix

    NASA Technical Reports Server (NTRS)

    Frankland, S. J. V.; Harik, V. M.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    Molecular dynamics (MD) simulations of carbon nanotube (NT) pull-out from a polymer matrix are carried out. As the NT pull-out develops in the simulation, variations in the displacement and velocities of the NT are monitored. The existence of a carbon-ring-based period in NT sliding during pull-out is identified. Linear trends in the NT velocity-force relation are observed and used to estimate an effective viscosity coefficient for interfacial sliding at the NT/polymer interface. As a result, the entire process of NT pull-out is characterized by an interfacial friction model that is based on a critical pull-out force, and an analog of Newton's friction law used to describe the NT/polymer interfacial sliding.

  9. The Effect of Humidity and Particle Characteristics on Friction and Stick-slip Instability in Granular Fault Gouge

    NASA Astrophysics Data System (ADS)

    Anthony, J. L.; Marone, C. J.

    2003-12-01

    Previous studies have shown that particle characteristics such as shape, dimension, and roughness affect friction in granular shear zones. Other work shows that humidity plays a key role in frictional healing and rate/state dependence within granular gouge. In order to improve our understanding of grain-scale deformation mechanisms within fault gouge, we performed laboratory experiments using a double-direct-shear testing apparatus. This assembly includes three rigid forcing blocks with two gouge layers sandwiched between rough or smooth surfaces. Roughened surfaces were triangular grooves 0.8 mm deep and 1 mm wavelength. These promote distributed shear throughout the layer undergoing cataclastic deformation. Smooth surfaces were mirror-finished hardened steel and were used to promote and isolate grain boundary sliding. The center block is forced at controlled displacement rate between the two side blocks to create frictional shear. We studied gouge layers 3-7 mm thick, consisting of either quartz rods sheared in 1-D and 2-D configurations and smooth glass beads mixed with varying amounts of rough sand particles. We report on particle diameters that range from 0.050-0.210 mm, and quartz rods 1 mm in diameter and 100 mm long. The experiments are run at room temperature, controlled relative humidity ranging from 5 to 100%, and shear displacement rates from 0.1 to 300 microns per second. Experiments are carried out under a normal stress of 5 MPa, a non-fracture loading regime where sliding friction for smooth spherical particles is measurably lower than for rough angular particles. We compare results from shear between smooth boundaries, where we hypothesize that grain boundary sliding is the mechanism influencing granular friction, to rough sample experiments where shear undergoes a transition from distributed, pervasive shear to progressively localized as a function of increasing strain. For shear within rough surfaces, stick-slip instability occurs in gouge that consists of less than 30% angular grains and begins once the coefficient of friction (shear stress divided by normal stress) reaches a value of 0.35-0.40. Peak friction during stick-slip cycles is 0.40-0.45. Each stick-slip event involves a small amount of quasi-static displacement prior to failure, which we refer to as pre-seismic slip. For unstable sliding regimes, we measure the amount of pre-seismic slip and the magnitude of dynamic stress drop. These parameters vary systematically with sliding velocity, particle characteristics, and bounding roughness. For shear within smooth surfaces, friction is very low (0.15-0.16 for spherical particles) and sliding is stable, without stick-slip instability. As more angular grains are mixed with spherical beads the coefficient of friction increases. This holds true for both the rough and smooth sample experiments. We expand on previous work done by Frye and Marone 2002 (JGR) to study the effect of humidity on 1-D, 2-D, and 3-D gouge layer configurations. Our data show that humidity has a significant effect on frictional strength and stability and that this effect is observed for both smooth surfaces, where grain boundary sliding is the dominant deformation mechanisms, and for shear within rough surfaces where gouge deformation occurs by rolling, dilation, compaction, and grain boundary sliding.

  10. Spectral analysis of the stick-slip phenomenon in "oral" tribological texture evaluation.

    PubMed

    Sanahuja, Solange; Upadhyay, Rutuja; Briesen, Heiko; Chen, Jianshe

    2017-08-01

    "Oral" tribology has become a new paradigm in food texture studies to understand complex texture attributes, such as creaminess, oiliness, and astringency, which could not be successfully characterized by traditional texture analysis nor by rheology. Stick-slip effects resulting from intermittent sliding motion during kinetic friction of oral mucosa could constitute an additional determining factor of sensory perception where traditional friction coefficient values and their Stribeck regimes fail in predicting different lubricant (food bolus and saliva) behaviors. It was hypothesized that the observed jagged behavior of most sliding force curves are due to stick-slip effects and depend on test velocity, normal load, surface roughness as well as lubricant type. Therefore, different measurement set-ups were investigated: sliding velocities from 0.01 to 40 mm/s, loads of 0.5 and 2.5 N as well as a smooth and a textured silicone contact surface. Moreover, dry contact measurements were compared to model food systems, such as water, oil, and oil-in-water emulsions. Spectral analysis permitted to extract the distribution of stick-slip magnitudes for specific wave numbers, characterizing the occurrence of jagged force peaks per unit sliding distance, similar to frequencies per unit time. The spectral features were affected by all the above mentioned tested factors. Stick-slip created vibration frequencies in the range of those detected by oral mechanoreceptors (0.3-400 Hz). The study thus provides a new insight into the use of tribology in food psychophysics. Dynamic spectral analysis has been applied for the first time to the force-displacement curves in "oral" tribology. Analyzing the stick-slip phenomenon in the dynamic friction provides new information that is generally overlooked or confused with machine noise and which may help to understand friction-related sensory attributes. This approach allows us to differentiate samples that have similar friction coefficient, but are perceived differently in the mouth. The next step of our research will be to combine spectral attributes, such as the magnitudes of specific wave number bands and possibly their evolution during sliding, together with friction coefficient and viscosity values of foods with sensory results. The highest potential lies in predicting smoothness in opposition to roughness of a surface, such as a rough tongue when eating astringent or dry foods, or of particles when eating grainy foods. The effects of food ingredients at the nano to macroscales can then be used to optimize a specific lubrication behavior. © 2017 Wiley Periodicals, Inc.

  11. Studies on centrifugal clutch judder behavior and the design of frictional lining materials

    NASA Astrophysics Data System (ADS)

    Li, Tse-Chang; Huang, Yu-Wen; Lin, Jen-Fin

    2016-01-01

    This study examines the judder behavior of a centrifugal clutch from the start of hot spots in the conformal contact, then the repeated developments of thermoelastic instability, and finally the formation of cyclic undulations in the vibrations, friction coefficient and torque. This behavior is proved to be consistent with the testing results. Using the Taguchi method, 18 kinds of frictional lining specimens were prepared in order to investigate their performance in judder resistance and establish a relationship between judder behavior and the Ts/Td (Ts: static torque; Td: dynamic torque) and dμ/dVx (μ: friction coefficient; Vx: relative sliding velocity of frictional lining and clutch drum) parameters. These specimens are also provided to examine the effects and profitability with regard to the centrifugal clutch, and find the relative importance of the various control factors. Theoretical models for the friction coefficient (μ), the critical sliding velocity (Vc) with clutch judder, and the contact pressure ratio p* /pbar (p*: pressure undulation w.r.t. pbar; pbar: mean contact pressure) and temperature corresponding to judder behavior are developed. The parameters of the contact pressure ratio and temperature are shown to be helpful to explain the occurrence of judder. The frictional torque and the rotational speeds of the driveline, clutch, and clutch drum as functions of engagement time for 100 clutch cycles are obtained experimentally to evaluate dμ/dVx and Ts/Td. A sharp rise in the maximum p* /pbar occurred when the relative sliding velocity reached the critical velocity, Vc. An increase in the maximum p* /pbar generally led to an increase of the (initially negative) dμ/dVx value, and thus the severity of judder. The fluctuation intensity of dμ/dVx becomes a governing factor of the growth of dμ/dVx itself in the engagement process. The mean values of dμ/dVx and Ts/Td for the clutching tests with 100 cycles can be roughly divided into three groups dependent on the fluctuation intensities of these two parameters, for each of which there is a linear relationship.

  12. Experimental Investigation of Friction and Wear Behavior of 304L Stainless Steel Sliding Against Different Counterface in Dry Contact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olofinjana, Bolutife; Ajayi, Oyelayo O.; Lorenzo-Martin, Cinta

    In this study, friction and wear behavior of 304L stainless steel sliding against different ball counterface under dry contact was investigated. Tests were conducted using a ball-on-flat contact configuration in reciprocating sliding with 440C stainless steel, Al alloy (2017) and bronze ball counterfaces under different loads. Detailed surface analysis was also done using 3-D profilometry technique and optical microscopy in order to determine wear mechanism and dimension. All the pairs exhibited initial rapid increase in coefficient of friction after which a variety of friction behavior, depending on the ball counterface, was observed. The flat and the ball counterface in 304Lmore » stainless steel-440C stainless steel pair showed wear that was proportional to applied load. In both 304L stainless steel-Al alloy (2017) and 304L stainless steel-bronze pairs, ball samples showed severe wear that was proportional to the applied load while material transfer from the different balls occurred in the flat. The study concluded that friction and wear were not material properties but a kind of responses that characterize a pair of surfaces in contact undergoing relative motion.« less

  13. Elevated temperature tribology of cobalt and tantalum-based alloys

    DOE PAGES

    Scharf, T. W.; Prasad, S. V.; Kotula, P. G.; ...

    2014-12-31

    This paper describes the friction and wear behavior of a Co–Cr alloy sliding on a Ta–W alloy. Measurements were performed in a pin-on-flat configuration with a hemispherically tipped Co-base alloy pin sliding on a Ta–W alloy flat from ambient to 430°C. Focused ion beam-scanning electron microscopy (FIB-SEM) and cross-sectional transmission electron microscopy (TEM) were used to identify the friction-induced changes to the chemistry and crystal structure in the subsurface regions of wear tracks. During sliding contact, transfer of material varied as a function of the test temperature, either from pin-to-flat, flat-to-pin, or both, resulting in either wear loss and/or volumemore » gain. Friction coefficients (μ) and wear rates also varied as a function of test temperature. The lowest friction coefficient (μ=0.25) and wear rate (1×10 –4 mm 3/N•m) were observed at 430°C in argon atmosphere. This was attributed to the formation of a Co-base metal oxide layer (glaze), predominantly (Co, Cr)O with Rocksalt crystal structure, on the pin surface. Part of this oxide film transferred to the wear track on Ta–W, providing a self-mated oxide-on-oxide contact. Once the oxide glaze is formed, it is able to provide friction reduction for the entire temperature range of this study, ambient to 430°C. Furthermore, the results of this study indicate that glazing the surfaces of Haynes alloys with continuous layers of cobalt chrome oxide prior to wear could protect the cladded surfaces from damage.« less

  14. Elevated temperature tribology of cobalt and tantalum-based alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scharf, T. W.; Prasad, S. V.; Kotula, P. G.

    This paper describes the friction and wear behavior of a Co–Cr alloy sliding on a Ta–W alloy. Measurements were performed in a pin-on-flat configuration with a hemispherically tipped Co-base alloy pin sliding on a Ta–W alloy flat from ambient to 430°C. Focused ion beam-scanning electron microscopy (FIB-SEM) and cross-sectional transmission electron microscopy (TEM) were used to identify the friction-induced changes to the chemistry and crystal structure in the subsurface regions of wear tracks. During sliding contact, transfer of material varied as a function of the test temperature, either from pin-to-flat, flat-to-pin, or both, resulting in either wear loss and/or volumemore » gain. Friction coefficients (μ) and wear rates also varied as a function of test temperature. The lowest friction coefficient (μ=0.25) and wear rate (1×10 –4 mm 3/N•m) were observed at 430°C in argon atmosphere. This was attributed to the formation of a Co-base metal oxide layer (glaze), predominantly (Co, Cr)O with Rocksalt crystal structure, on the pin surface. Part of this oxide film transferred to the wear track on Ta–W, providing a self-mated oxide-on-oxide contact. Once the oxide glaze is formed, it is able to provide friction reduction for the entire temperature range of this study, ambient to 430°C. Furthermore, the results of this study indicate that glazing the surfaces of Haynes alloys with continuous layers of cobalt chrome oxide prior to wear could protect the cladded surfaces from damage.« less

  15. Temperature-Dependent Effect of Boric Acid Additive on Surface Roughness and Wear Rate

    NASA Astrophysics Data System (ADS)

    Ekinci, Şerafettin

    Wear and friction hold an important place in engineering. Currently, scientific societies are struggling to control wear by means of studies on lubricants. Boric acid constitutes an important alternative with its good tribological properties similar to MO2S and graphite alongside with low environmental impacts. Boric acid can be used as a solid lubricant itself whereas it can be added or blended into mineral oils in order to yield better mechanical and tribological properties such as low shear stress due to the lamellar structure and low friction, wear and surface roughness rates. In this study, distinguishing from the literature, boric acid addition effect considering the temperature was investigated for the conventional ranges of internal combustion engines. Surface roughness, wear and friction coefficient values were used in order to determine tribological properties of boric acid as an environmentally friendly additive and mineral oil mixture in the present study. Wear experiments were conducted with a ball on disc experimental setup immersed in an oil reservoir at room temperature, 50∘C and 80∘C. The evolution of both the friction coefficient and wear behavior was determined under 10N load, at 2m/s sliding velocity and a total sliding distance of 9000m. Surface roughness was determined using atomic-force microscopy (AFM). Wear rate was calculated utilizing scanning electron microscope (SEM) visuals and data. The test results showed that wear resistance increased as the temperature increased, and friction coefficient decreased due to the presence of boric acid additive.

  16. Theory of friction based on brittle fracture

    USGS Publications Warehouse

    Byerlee, J.D.

    1967-01-01

    A theory of friction is presented that may be more applicable to geologic materials than the classic Bowden and Tabor theory. In the model, surfaces touch at the peaks of asperities and sliding occurs when the asperities fail by brittle fracture. The coefficient of friction, ??, was calculated from the strength of asperities of certain ideal shapes; for cone-shaped asperities, ?? is about 0.1 and for wedge-shaped asperities, ?? is about 0.15. For actual situations which seem close to the ideal model, observed ?? was found to be very close to 0.1, even for materials such as quartz and calcite with widely differing strengths. If surface forces are present, the theory predicts that ?? should decrease with load and that it should be higher in a vacuum than in air. In the presence of a fluid film between sliding surfaces, ?? should depend on the area of the surfaces in contact. Both effects are observed. The character of wear particles produced during sliding and the way in which ?? depends on normal load, roughness, and environment lend further support to the model of friction presented here. ?? 1967 The American Institute of Physics.

  17. Development and assessment of atomistic models for predicting static friction coefficients

    NASA Astrophysics Data System (ADS)

    Jahangiri, Soran; Heverly-Coulson, Gavin S.; Mosey, Nicholas J.

    2016-08-01

    The friction coefficient relates friction forces to normal loads and plays a key role in fundamental and applied areas of science and technology. Despite its importance, the relationship between the friction coefficient and the properties of the materials forming a sliding contact is poorly understood. We illustrate how simple relationships regarding the changes in energy that occur during slip can be used to develop a quantitative model relating the friction coefficient to atomic-level features of the contact. The slip event is considered as an activated process and the load dependence of the slip energy barrier is approximated with a Taylor series expansion of the corresponding energies with respect to load. The resulting expression for the load-dependent slip energy barrier is incorporated in the Prandtl-Tomlinson (PT) model and a shear-based model to obtain expressions for friction coefficient. The results indicate that the shear-based model reproduces the static friction coefficients μs obtained from first-principles molecular dynamics simulations more accurately than the PT model. The ability of the model to provide atomistic explanations for differences in μs amongst different contacts is also illustrated. As a whole, the model is able to account for fundamental atomic-level features of μs, explain the differences in μs for different materials based on their properties, and might be also used in guiding the development of contacts with desired values of μs.

  18. Phase diagram for inertial granular flows.

    PubMed

    DeGiuli, E; McElwaine, J N; Wyart, M

    2016-07-01

    Flows of hard granular materials depend strongly on the interparticle friction coefficient μ_{p} and on the inertial number I, which characterizes proximity to the jamming transition where flow stops. Guided by numerical simulations, we derive the phase diagram of dense inertial flow of spherical particles, finding three regimes for 10^{-4}≲I≲10^{-1}: frictionless, frictional sliding, and rolling. These are distinguished by the dominant means of energy dissipation, changing from collisional to sliding friction, and back to collisional, as μ_{p} increases from zero at constant I. The three regimes differ in their kinetics and rheology; in particular, the velocity fluctuations and the stress ratio both display nonmonotonic behavior with μ_{p}, corresponding to transitions between the three regimes of flow. We rationalize the phase boundaries between these regimes, show that energy balance yields scaling relations between microscopic properties in each of them, and derive the strain scale at which particles lose memory of their velocity. For the frictional sliding regime most relevant experimentally, we find for I≥10^{-2.5} that the growth of the macroscopic friction μ(I) with I is induced by an increase of collisional dissipation. This implies in that range that μ(I)-μ(0)∼I^{1-2b}, where b≈0.2 is an exponent that characterizes both the dimensionless velocity fluctuations L∼I^{-b} and the density of sliding contacts χ∼I^{b}.

  19. Adhesion, friction, and wear of binary alloys in contact with single-crystal silicon carbide

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1980-01-01

    Sliding friction experiments, conducted with various iron base alloys (alloying elements are Ti, Cr, Mn, Ni, Rh and W) in contact with a single crystal silicon carbide /0001/ surface in vacuum are discussed. Results indicate atomic size misfit and concentration of alloying elements play a dominant role in controlling adhesion, friction, and wear properties of iron-base binary alloys. The controlling mechanism of the alloy properties is as an intrinsic effect involving the resistance to shear fracture of cohesive bonding in the alloy. The coefficient of friction generally increases with an increase in solute concentration. The coefficient of friction increases as the solute-to-iron atomic radius ratio increases or decreases from unity. Alloys having higher solute concentration produce more transfer to silicon carbide than do alloys having low solute concentrations. The chemical activity of the alloying element is also an important parameter in controlling adhesion and friction of alloys.

  20. The physics of sliding cylinders and curling rocks

    NASA Astrophysics Data System (ADS)

    Penner, A. Raymond

    2001-03-01

    The lateral deflection of a rotating cylindrical shell sliding on one of its ends is considered and both theoretical and experimental results are presented. The coefficient of kinetic friction between a curling rock and an ice surface is then derived and compared with experiment. Current models of the motion of a curling rock are discussed and an alternate hypothesis is presented.

  1. The friction coefficient of shoulder joints remains remarkably low over 24 h of loading.

    PubMed

    Jones, Brian K; Durney, Krista M; Hung, Clark T; Ateshian, Gerard A

    2015-11-05

    The frictional response of whole human joints over durations spanning activities of daily living has not been reported previously. This study measured the friction of human glenohumeral joints during 24 h of reciprocal loading in a pendulum testing device, at moderate (0.2 mm/s, 4320 cycles) and low (0.02 mm/s, 432 cycles) sliding speeds, under a 200 N load. The effect of joint congruence was also investigated by testing human humeral heads against significantly larger mature bovine glenoids. Eight human joints and six bovine joints were tested in four combinations: human joints tested at moderate (hHCMS, n=6) and low speed (hHCLS, n=3), human humeral heads tested against bovine glenoids at moderate speed (LCMS, n=3), and bovine joints tested at moderate speed (bHCMS, n=3). In the first half hour the mean±standard deviation of the friction coefficient was hHCMS: 0.0016±0.0011, hHCLS: 0.0012±0.0002, LCMS: 0.0008±0.0002 and bHCMS: 0.0024±0.0008; in the last four hours it was hHCMS: 0.0057±0.0025, hHCLS: 0.0047±0.0017, LCMS: 0.0012±0.0003 and bHCMS: 0.0056±0.0016. The initial value was lower than the final value (p<0.0001). The value in LCMS was significantly lower than in hHCMS and bHCMS (p<0.01). No visual damage was observed in any of the specimens. These are the first results to demonstrate that the friction coefficient of natural human shoulders remains remarkably low (averaging as little as 0.0015 and no greater than 0.006) for up to 24 h of continuous loading. The sustained low friction coefficients observed in incongruent joints (~0.001) likely represent rolling rather than sliding friction. Copyright © 2015. Published by Elsevier Ltd.

  2. Optimum design of bridges with superelastic-friction base isolators against near-field earthquakes

    NASA Astrophysics Data System (ADS)

    Ozbulut, Osman E.; Hurlebaus, Stefan

    2010-04-01

    The seismic response of a multi-span continuous bridge isolated with novel superelastic-friction base isolator (S-FBI) is investigated under near-field earthquakes. The isolation system consists of a flat steel-Teflon sliding bearing and a superelastic NiTi shape memory alloy (SMA) device. Sliding bearings limit the maximum seismic forces transmitted to the superstructure to a certain value that is a function of friction coefficient of sliding interface. Superelastic SMA device provides restoring capability to the isolation system together with additional damping characteristics. The key design parameters of an S-FBI system are the natural period of the isolated, yielding displacement of SMA device, and the friction coefficient of the sliding bearings. The goal of this study is to obtain optimal values for each design parameter by performing sensitivity analyses of the isolated bridge. First, a three-span continuous bridge is modeled as a two-degrees-of-freedom with S-FBI system. A neuro-fuzzy model is used to capture rate-dependent nonlinear behavior of SMA device. A time-dependent method which employs wavelets to adjust accelerograms to match a target response spectrum with minimum changes on the other characteristics of ground motions is used to generate ground motions used in the simulations. Then, a set of nonlinear time history analyses of the isolated bridge is performed. The variation of the peak response quantities of the isolated bridge is shown as a function of design parameters. Also, the influence of temperature variations on the effectiveness of S-FBI system is evaluated. The results show that the optimum design of the isolated bridge with S-FBI system can be achieved by a judicious specification of design parameters.

  3. Friction behavior of network-structured CNT coating on pure titanium plate

    NASA Astrophysics Data System (ADS)

    Umeda, Junko; Fugetsu, Bunshi; Nishida, Erika; Miyaji, Hirofumi; Kondoh, Katsuyoshi

    2015-12-01

    Friction behavior of the network-structured CNTs coated pure Ti plate was evaluated by ball-on-disk wear test using SUS304 ball specimen under dry condition. The friction coefficient was significantly low and stable compared to the as-received Ti plate with no coating film. CNTs coating film had two important roles; self-lubrication and bearing effects to reduce the friction coefficient and carbon solid-solution hardening to improve the abrasive wear property of Ti plate. The annealing treatment at higher temperature (1123 K) was more effective to reduce the friction coefficient than that at lower temperature (973 K) because the Ti plate surface was uniformly covered with CNTs film even after sliding wear test. This is due to TiC interlayer formation via a reaction between Ti plate and carbon elements originated from CNTs during annealing. As a result, a strong interface bonding between CNTs film and Ti plate surface was obtained by higher temperature annealing treatment, and obstructed the detachment of CNTs film during wear test.

  4. Cyclic Behavior of Mortarless Brick Joints with Different Interlocking Shapes

    PubMed Central

    Liu, Hongjun; Liu, Peng; Lin, Kun; Zhao, Sai

    2016-01-01

    The framed structure infilled with a mortarless brick (MB) panel exhibits considerable in-plane energy dissipation because of the relative sliding between bricks and good out-of-plane stability resulting from the use of interlocking mechanisms. The cyclic behaviors of MB are investigated experimentally in this study. Two different types of bricks, namely non-interlocking mortarless brick (N-IMB) and interlocking mortarless brick (IMB), are examined experimentally. The cyclic behavior of all of the joints (N-IMB and IMB) are investigated in consideration of the effects of interlocking shapes, loading compression stress levels and loading cycles. The hysteretic loops of N-IMB and IMB joints are obtained, according to which a mechanical model is developed. The Mohr–Coulomb failure criterion is employed to describe the shear failure modes of all of the investigated joints. A typical frictional behavior is observed for the N-IMB joints, and a significant stiffening effect is observed for the IMB joints during their sliding stage. The friction coefficients of all of the researched joints increase with the augmentation of the compression stress level and improvement of the smoothness of the interlocking surfaces. An increase in the loading cycle results in a decrease in the friction coefficients of all of the joints. The degradation rate (DR) of the friction coefficients increases with the reduction in the smoothness of the interlocking surface. PMID:28773291

  5. Friction and wear of sintered Alpha SiC sliding against IN-718 alloy at 25 to 800 C in atmospheric air at ambient pressure

    NASA Technical Reports Server (NTRS)

    Deadmore, Daniel L.; Sliney, Harold E.

    1986-01-01

    The sliding friction and wear of the SiC-nickel based alloy IN-718 couple under line contact test conditions in atmospheric air at a linear velocity of 0.18 m/sec and a load of 6.8 kg (67N) was investigated at temperatures of 25 to 800 C. It was found that the coefficient of friction was 0.6 up to 350 C then decreased to 0.3 at 500 and 800 C. It is suggested that the sharp decrease in the friction in the range of 350 to 550 C is due to the lubrication value of oxidation products. The wear rate reaches a minimum of 1 x 10 to the -10 to 2 x 10 to the -10 cu cm/cm/kg at 400 to 600 C.

  6. Preparation and tribological properties of MoS2/graphene oxide composites

    NASA Astrophysics Data System (ADS)

    Song, Haojie; Wang, Biao; Zhou, Qiang; Xiao, Jiaxuan; Jia, Xiaohua

    2017-10-01

    A hydrothermal route is developed for the synthesis of MoS2/graphene oxide (GO) composites based on the hydrothermal reduction of Na2MoO4 and GO sheets with L-cysteine. The MoS2/GO composites in improving friction and wear of the sunshine oil on sliding steel surfaces under low or high applied load were demonstrated. In tests with sliding steel surfaces, the sunshine oil that contains small amounts of MoS2/GO composites exhibited the lowest specific friction coefficient and wear rate under all of the sliding conditions. Scanning electron microscopy and energy dispersive spectrometer performed to analyze the wear scar surfaces after friction confirmed that the outstanding lubrication performance of MoS2/GO composites could be attributed to their good dispersion stability and extremely thin laminated structure, which allow the MoS2/GO composites to easily enter the contact area, thereby preventing the rough surfaces from coming into direct contact.

  7. An Experimental Study on Normal Stress and Shear Rate Dependency of Basic Friction Coefficient in Dry and Wet Limestone Joints

    NASA Astrophysics Data System (ADS)

    Mehrishal, Seyedahmad; Sharifzadeh, Mostafa; Shahriar, Korosh; Song, Jae-Jon

    2016-12-01

    Among all parameters that affect the friction of rocks, variable normal stress and slip rate are the most important second-order parameters. The shear-rate- and normal-stress-dependent friction behavior of rock discontinuities may significantly influence the dynamic responses of rock mass. In this research, two limestone rock types, which were travertine and onyx marble with slickenside and grinded #80 surfaces, were prepared and CNL direct shear tests were performed on the joints under various shear conditions. The shearing rate varied from 0.1 to 50 mm/min under different normal stresses (from 2 to 30 % of UCS) in both dry and wet conditions. Experiments showed that the friction coefficient of slickensided and ground #80 surfaces of limestone increased with the increasing shear velocity and decreased with the increasing normal stress. Micro-asperity interlocking between ground #80 surfaces showed higher wear and an increase in friction coefficient ( µ) compared to slickensided surfaces. Slickensided samples with moist surfaces showed an increase in the coefficient of friction compared to dry surfaces; however, on ground #80 surfaces, the moisture decreased the coefficient of friction to a smaller value. Slickenside of limestone typically slides stably in a dry condition and by stick-slip on moist surfaces. The observed shear-rate- and normal-stress-dependent friction behavior can be explained by a similar framework to that of the adhesion theory of friction and a friction mechanism that involves the competition between microscopic dilatant slip and surface asperity deformation. The results have important implications for understanding the behavior of basic and residual friction coefficients of limestone rock surfaces.

  8. Pressure-Dependent Friction on Granular Slopes Close to Avalanche.

    PubMed

    Crassous, Jérôme; Humeau, Antoine; Boury, Samuel; Casas, Jérôme

    2017-08-04

    We investigate the sliding of objects on an inclined granular surface close to the avalanche threshold. Our experiments show that the stability is driven by the surface deformations. Heavy objects generate footprintlike deformations which stabilize the objects on the slopes. Light objects do not disturb the sandy surfaces and are also stable. For intermediate weights, the deformations of the surface generate a sliding of the objects. The solid friction coefficient does not follow the Amontons-Coulomb laws, but is found minimal for a characteristic pressure. Applications to the locomotion of devices and animals on sandy slopes as a function of their mass are proposed.

  9. Pressure-Dependent Friction on Granular Slopes Close to Avalanche

    NASA Astrophysics Data System (ADS)

    Crassous, Jérôme; Humeau, Antoine; Boury, Samuel; Casas, Jérôme

    2017-08-01

    We investigate the sliding of objects on an inclined granular surface close to the avalanche threshold. Our experiments show that the stability is driven by the surface deformations. Heavy objects generate footprintlike deformations which stabilize the objects on the slopes. Light objects do not disturb the sandy surfaces and are also stable. For intermediate weights, the deformations of the surface generate a sliding of the objects. The solid friction coefficient does not follow the Amontons-Coulomb laws, but is found minimal for a characteristic pressure. Applications to the locomotion of devices and animals on sandy slopes as a function of their mass are proposed.

  10. Friction behavior of a microstructured polymer surface inspired by snake skin.

    PubMed

    Baum, Martina J; Heepe, Lars; Gorb, Stanislav N

    2014-01-01

    The aim of this study was to understand the influence of microstructures found on ventral scales of the biological model, Lampropeltis getula californiae, the California King Snake, on the friction behavior. For this purpose, we compared snake-inspired anisotropic microstructured surfaces to other microstructured surfaces with isotropic and anisotropic geometry. To exclude that the friction measurements were influenced by physico-chemical variations, all friction measurements were performed on the same epoxy polymer. For frictional measurements a microtribometer was used. Original data were processed by fast Fourier transformation (FFT) with a zero frequency related to the average friction and other peaks resulting from periodic stick-slip behavior. The data showed that the specific ventral surface ornamentation of snakes does not only reduce the frictional coefficient and generate anisotropic frictional properties, but also reduces stick-slip vibrations during sliding, which might be an adaptation to reduce wear. Based on this extensive comparative study of different microstructured polymer samples, it was experimentally demonstrated that the friction-induced stick-slip behavior does not solely depend on the frictional coefficient of the contact pair.

  11. Precession of a Spinning Ball Rolling down an Inclined Plane

    ERIC Educational Resources Information Center

    Cross, Rod

    2015-01-01

    A routine problem in an introductory physics course considers a rectangular block at rest on a plane inclined at angle a to the horizontal. In order for the block not to slide down the incline, the coefficient of sliding friction, µ, must be at least tan a. The situation is similar for the case of a ball rolling down an inclined plane. In order…

  12. Constitutive equation of friction based on the subloading-surface concept

    PubMed Central

    Ueno, Masami; Kuwayama, Takuya; Suzuki, Noriyuki; Yonemura, Shigeru; Yoshikawa, Nobuo

    2016-01-01

    The subloading-friction model is capable of describing static friction, the smooth transition from static to kinetic friction and the recovery to static friction after sliding stops or sliding velocity decreases. This causes a negative rate sensitivity (i.e. a decrease in friction resistance with increasing sliding velocity). A generalized subloading-friction model is formulated in this article by incorporating the concept of overstress for viscoplastic sliding velocity into the subloading-friction model to describe not only negative rate sensitivity but also positive rate sensitivity (i.e. an increase in friction resistance with increasing sliding velocity) at a general sliding velocity ranging from quasi-static to impact sliding. The validity of the model is verified by numerical experiments and comparisons with test data obtained from friction tests using a lubricated steel specimen. PMID:27493570

  13. Rheological effects on friction in elastohydrodynamic lubrication

    NASA Technical Reports Server (NTRS)

    Trachman, E. G.; Cheng, H. S.

    1973-01-01

    An analytical and experimental investigation is presented of the friction in a rolling and sliding elastohydrodynamic lubricated contact. The rheological behavior of the lubricant is described in terms of two viscoelastic models. These models represent the separate effects of non-Newtonian behavior and the transient response of the fluid. A unified description of the non-Newtonian shear rate dependence of the viscosity is presented as a new hyperbolic liquid model. The transient response of viscosity, following the rapid pressure rise encountered in the contact, is described by a compressional viscoelastic model of the volume response of a liquid to an applied pressure step. The resulting momentum and energy equations are solved by an iterative numerical technique, and a friction coefficient is calculated. The experimental study was performed, with two synthetic paraffinic lubricants, to verify the friction predictions of the analysis. The values of friction coefficient from theory and experiment are in close agreement.

  14. Sliding friction and wear behavior of high entropy alloys at room and elevated temperatures

    NASA Astrophysics Data System (ADS)

    Kadhim, Dheyaa

    Structure-tribological property relations have been studied for five high entropy alloys (HEAs). Microhardness, room and elevated (100°C and 300°C) temperature sliding friction coefficients and wear rates were determined for five HEAs: Co0.5 Cr Cu0.5 Fe Ni1.5 Al Ti0.4; Co Cr Fe Ni Al0.25 Ti0.75; Ti V Nb Cr Al; Al0.3CoCrFeNi; and Al0.3CuCrFeNi2. Wear surfaces were characterized with scanning electron microscopy and micro-Raman spectroscopy to determine the wear mechanisms and tribochemical phases, respectively. It was determined that the two HEAs Co0.5 Cr Cu0.5 Fe Ni1.5 Al Ti0.4 and Ti V Nb Cr Al exhibit an excellent balance of high hardness, low friction coefficients and wear rates compared to 440C stainless steel, a currently used bearing steel. This was attributed to their more ductile body centered cubic (BCC) solid solution phase along with the formation of tribochemical Cr oxide and Nb oxide phases, respectively, in the wear surfaces. This study provides guidelines for fabricating novel, low-friction, and wear-resistant HEAs for potential use at room and elevated temperatures, which will help reduce energy and material losses in friction and wear applications.

  15. Change in Frictional Behavior during Olivine Serpentinization

    NASA Astrophysics Data System (ADS)

    Xing, T.; Zhu, W.; French, M. E.; Belzer, B.

    2017-12-01

    Hydration of mantle peridotites (serpentinization) is pervasive at plate boundaries. It is widely accepted that serpentinization is intrinsically linked to hydromechanical processes within the sub-seafloor, where the interplay between cracking, fluid supply and chemical reactions is responsible for a spectrum of fault slip, from earthquake swarms at the transform faults, to slow slip events at the subduction zone. Previous studies demonstrate that serpentine minerals can either promote slip or creep depend on many factors that include sliding velocity, temperature, pressure, interstitial fluids, etc. One missing link from the experimental investigation of serpentine to observations of tectonic faults is the extent of alteration necessary for changing the frictional behaviors. We quantify changes in frictional behavior due to serpentinization by conducting experiments after in-situ serpentinization of olivine gouge. In the sample configuration a layer of powder is sandwiched between porous sandstone blocks with 35° saw-cut surface. The starting material of fine-grained (63 120 µm) olivine powder is reacted with deionized water for 72 hours at 150°C before loading starts. Under the conventional triaxial configuration, the sample is stressed until sliding occurs within the gouge. A series of velocity-steps is then performed to measure the response of friction coefficient to variations of sliding velocity from which the rate-and-state parameters are deduced. For comparison, we measured the frictional behavior of unaltered olivine and pure serpentine gouges.Our results confirm that serpentinization causes reduced frictional strength and velocity weakening. In unaltered olivine gouge, an increase in frictional resistance with increasing sliding velocity is observed, whereas the serpentinized olivine and serpentine gouges favor velocity weakening behaviors at the same conditions. Furthermore, we observed that high pore pressures cause velocity weakening in olivine but velocity strengthening in serpentine. The alteration of frictional behavior is considerable even though the fraction of altered olivine is miniscule. Contrasting frictional responses between olivine and serpentine gouges in response to high pore pressure shed some light on faulting in ultramafic chemical environments.

  16. Trinity sure-II

    NASA Astrophysics Data System (ADS)

    Swartz, Clifford E.

    1998-11-01

    What could be simpler? Exert a force on a mass, and it accelerates. F=ma! You can work that formula into any number of problems about objects on inclined planes, or Atwood's machine, or blocks sliding along a surface with coefficient of friction, μ.

  17. Superlubricity of a Mixed Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Ma, Zhi-Zuo; Zhang, Chen-Hui; Luo, Jian-Bin; Lu, Xin-Chun; Wen, Shi-Zhu

    2011-05-01

    A super-low friction coefficient of 0.0028 is measured under a pressure of 300 MPa when the friction pair (the silicon nitride ball sliding on the silicate glass) is lubricated by the mixed aqueous solution of glycerol and boric acid. The morphorlogies of the hydroxylated glass plate are observed by an atomic force microscope (AFM) in deionized water, glycerol, boric acid and their mixed aqueous solution. Bonding peaks of the retained liquids adhered on the surface of the sliding track are detected by an infrared spectrum apparatus and a Raman spectrum apparatus. The mechanism of the superlubricity of the glycerol and boric acid mixed aqueous solution is discussed. It is deduced that the formation of the lubricant film has enough strength to support higher loads, the hydration effect offering the super lower shear resistance. Key words: superlubricity, water based lubricant, ultra-low friction

  18. Friction and morphology of magnetic tapes in sliding contact with nickel-zinc ferrite

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.; Bhushan, B.

    1984-01-01

    Friction and morphological studies were conducted with magnetic tapes containing a Ni-Zn ferrite hemispherical pin in laboratory air at a relative humidity of 40 percent and at 23 C. The results indicate that the binder plays a significant role in the friction properties, morphology, and microstructure of the tape. Comparisons were made with four binders: nitrocellulose; poly (vinyledene) chloride; cellulose acetate; and hydroxyl-terminated, low molecular weight polyester added to the base polymer, polyester-polyurethane. The coefficient of friction was lowest for the tape with the nitrocellulose binder and increased in the order hydroxylterminated, low molecular weight polyester resin; poly (vinyledene) chloride; and cellulose acetate. The degree of enclosure of the oxide particles by the binder was highest for hydroxyl-terminated, low molecular weight polyester and decreased in the order cellulose acetate, poly (vinyledene) chloride, and nitrocellulose. The nature of deformation of the tape was a factor in controlling friction. The coefficient of friction under elastic contact conditions was considerably lower than under conditions that produced plastic contacts.

  19. Anisotropic frictional heat dissipation in cyclotrimethylene trinitramine

    NASA Astrophysics Data System (ADS)

    Rajak, Pankaj; Kalia, Rajiv; Nakano, Aiichiro; Vashishta, Priya

    Anisotropic frictional response and corresponding heat dissipation from different crystallographic planes of RDX crystal is studied using molecular dynamics simulations. The effect of frictional force on the nature of damage and system temperature is monitored along different directions on primary slip plane, (010), of RDX and on non-slip planes, (100) and (001). The correlation between the friction coefficient, deformation and the frictional heating in these system is determined. It is observed that friction coefficients on slip planes are smaller than those of non-slip planes. In response to friction on slip plane, RDX crystal deforms via dislocation formation and shows less heating. On non-slip planes due to the inability of the system to deform by dislocation formation, large temperature rise is observed in the system just below the contact area of two surfaces. Frictional sliding on non-slip planes also lead to the formation of damage zone just below the contact area of two surfaces due to the change in RDX ring conformation from chair to boat/half-boat. This research is supported by the AFOSR Grant: FA9550-16- 1-0042.

  20. Static-dynamic friction transition of FRP esthetic orthodontic wires on various brackets by suspension-type friction test.

    PubMed

    Suwa, N; Watari, F; Yamagata, S; Iida, J; Kobayashi, M

    2003-11-15

    A new testing apparatus for the measurement of frictional properties was designed and the frictional coefficients were obtained and compared with each other in various combinations of brackets and orthodontic wires, including esthetic fiber-reinforced plastic (FRP) wire that was especially designed and manufactured. Three kinds of wires (stainless steel, nickel-titanium, and FRP) and four brackets (single-crystal alumina, polycrystalline alumina, polycarbonate, and stainless steel) were used. The testing was done under dry and wet conditions. The friction testing equipment was designed to attach the bracket to a C-shaped bar suspended with a variable mass, and sliding along a fixed wire. The transition between static and dynamic friction was measured as a breakaway force, with the use of a universal test machine. In addition to material properties, this testing fixture eliminates geometrical factors, such as the rotational moment at the edge of the bracket slot, deflection of the orthodontic wire, and tension of the ligature wire. Nearly ideal frictional properties between materials are obtained. The frictional properties of FRP wire were similar to those of metal wires on all brackets, except the polycrystalline alumina bracket. The frictional coefficient between the polycrystalline ceramic bracket and FRP wire was larger than that of other combinations. There was little difference in frictional coefficients between dry and wet conditions. Copyright 2003 Wiley Periodicals, Inc.

  1. Valuation of coefficient of rolling friction by the inclined plane method

    NASA Astrophysics Data System (ADS)

    Ciornei, F. C.; Alaci, S.; Ciogole, V. I.; Ciornei, M. C.

    2017-05-01

    A major objective of tribological researches is characterisation of rolling friction, due to various cases encountered in classical engineering applications, like gear transmissions and cam mechanisms or more recent examples met in bioengineering and biomedical devices. A characteristic of these examples consists in reduced dimensions of the contact zones, theoretically zero, the relative motion occurring between the contact points being either sliding or rolling. A characteristic parameter for the rolling motion is the coefficient of rolling friction. The paper proposes a method for estimation of coefficient of rolling friction by studying the motion of a body of revolution on an inclined plane. Assuming the hypothesis that moment of rolling friction is proportional to the normal reaction force, the law of motion for the body on the inclined plane is found under the premise of pure rolling. It is reached the conclusion that there is an uniformly accelerated motion, and thus for a known plane slope, it is sufficient to find the time during which the body runs a certain distance, starting from motionless situation. To obtain accurate results assumes finding precisely the time of motion. The coefficient of rolling friction was estimated for several slopes of the inclined plane and it is concluded that with increased slope, the values of coefficient of rolling friction increase, fact that suggest that the proportionality between the rolling torque and normal load is valid only for domains of limited variations of normal load.

  2. Fault Frictional Stability in a Nuclear Waste Repository

    NASA Astrophysics Data System (ADS)

    Orellana, Felipe; Violay, Marie; Scuderi, Marco; Collettini, Cristiano

    2016-04-01

    Exploitation of underground resources induces hydro-mechanical and chemical perturbations in the rock mass. In response to such disturbances, seismic events might occur, affecting the safety of the whole engineering system. The Mont Terri Rock Laboratory is an underground infrastructure devoted to the study of geological disposal of nuclear waste in Switzerland. At the site, it is intersected by large fault zones of about 0.8 - 3 m in thickness and the host rock formation is a shale rock named Opalinus Clay (OPA). The mineralogy of OPA includes a high content of phyllosilicates (50%), quartz (25%), calcite (15%), and smaller proportions of siderite and pyrite. OPA is a stiff, low permeable rock (2×10-18 m2), and its mechanical behaviour is strongly affected by the anisotropy induced by bedding planes. The evaluation of fault stability and associated fault slip behaviour (i.e. seismic vs. aseismic) is a major issue in order to ensure the long-term safety and operation of the repository. Consequently, experiments devoted to understand the frictional behaviour of OPA have been performed in the biaxial apparatus "BRAVA", recently developed at INGV. Simulated fault gouge obtained from intact OPA samples, were deformed at different normal stresses (from 4 to 30 MPa), under dry and fluid-saturated conditions. To estimate the frictional stability, the velocity-dependence of friction was evaluated during velocity steps tests (1-300 μm/s). Slide-hold-slide tests were performed (1-3000 s) to measure the amount of frictional healing. The collected data were subsequently modelled with the Ruina's slip dependent formulation of the rate and state friction constitutive equations. To understand the deformation mechanism, the microstructures of the sheared gouge were analysed. At 7 MPa normal stress and under dry conditions, the friction coefficient decreased from a peak value of μpeak,dry = 0.57 to μss,dry = 0.50. Under fluid-saturated conditions and same normal stress, the friction coefficient decreased from a peak value of μpeak,sat = 0.45 to μss,sat = 0.34. Additionally, it has been observed that the weakening distance Dw is smaller under fluid- saturated conditions (˜4 mm) compared to dry conditions (˜6 mm). Results showed a linear decrease of both peak friction and steady state friction when normal stress increases. When fluid- saturation degree of gouges is reduced, gouge samples underwent a transition from velocity strengthening to velocity weakening behaviour, thus indicating a potentially unstable frictional behaviour of the fault. Furthermore, under both saturated and dry conditions, the frictional healing rate showed a low recovery of the friction coefficient under different holding times. Our experiments indicate that the frictional behaviour of Opalinus Clay is characterized by complex processes depending upon normal stress, sliding velocity, and saturation degree of the samples. This complexity highlights the need for further experiments in order to better evaluate the seismic risk during long-term nuclear waste disposal within the OPA clay formation.

  3. Frictional slip of granite at hydrothermal conditions

    USGS Publications Warehouse

    Blanpied, M.L.; Lockner, D.A.; Byerlee, J.D.

    1995-01-01

    To measure the strength, sliding behavior, and friction constitutive properties of faults at hydrothermal conditions, laboratory granite faults containing a layer of granite powder (simulated gouge) were slid. The mechanical results define two regimes. The first regime includes dry granite up to at least 845?? and wet granite below 250??C. In this regime the coefficient of friction is high (?? = 0.7 to 0.8) and depends only modestly on temperature, slip rate, and PH2O. The second regime includes wet granite above ~350??C. In this regime friction decreases considerably with increasing temperature (temperature weakening) and with decreasing slip rate (velocity strengthening). These regimes correspond well to those identified in sliding tests on ultrafine quartz. The results highlight the importance of fluid-assisted deformation processes active in faults at depth and the need for laboratory studies on the roles of additional factors such as fluid chemistry, large displacements, higher concentrations of phyllosilicates, and time-dependent fault healing. -from Authors

  4. Investigation of Friction and Wear Properties of Electroless Ni-P-Cu Coating Under Dry Condition

    NASA Astrophysics Data System (ADS)

    Duari, Santanu; Mukhopadhyay, Arkadeb; Barman, Tapan Kr.; Sahoo, Prasanta

    This study presents the deposition and tribological characterization of electroless Ni-P-Cu coatings deposited on AISI 1040 steel specimens. After deposition, coatings are heat treated at 500∘C for 1h. Surface morphology study of the coatings reveals its typical cauliflower like appearance. Composition study of the coatings using energy dispersive X-ray analysis indicates that the deposit lies in the high phosphorus range. The coatings undergo crystallization on heat treatment. A significant improvement in microhardness of the coatings is also observed on heat treatment due to the precipitation of hard crystalline phases. The heat-treated coatings are subjected to sliding wear tests on a pin-on-disc type tribo-tester under dry condition by varying the applied normal load, sliding speed and sliding duration. The coefficient of friction (COF) increases with an increase in the applied normal load while it decreases with an increase in the sliding speed. The wear depth on the other hand increases with an increase in applied normal load as well as sliding speed. The worn surface morphology mainly indicates fracture of the nodules.

  5. Uniaxial Strain Redistribution in Corrugated Graphene: Clamping, Sliding, Friction, and 2D Band Splitting.

    PubMed

    Wang, Xuanye; Tantiwanichapan, Khwanchai; Christopher, Jason W; Paiella, Roberto; Swan, Anna K

    2015-09-09

    Graphene is a promising material for strain engineering based on its excellent flexibility and elastic properties, coupled with very high electrical mobility. In order to implement strain devices, it is important to understand and control the clamping of graphene to its support. Here, we investigate the limits of the strong van der Waals interaction on friction clamping. We find that the friction of graphene on a SiO2 substrate can support a maximum local strain gradient and that higher strain gradients result in sliding and strain redistribution. Furthermore, the friction decreases with increasing strain. The system used is graphene placed over a nanoscale SiO2 grating, causing strain and local strain variations. We use a combination of atomic force microscopy and Raman scattering to determine the friction coefficient, after accounting for compression and accidental charge doping, and model the local strain variation within the laser spot size. By using uniaxial strain aligned to a high crystal symmetry direction, we also determine the 2D Raman Grüneisen parameter and deformation potential in the zigzag direction.

  6. Pleural liquid and kinetic friction coefficient of mesothelium after mechanical ventilation.

    PubMed

    Bodega, Francesca; Sironi, Chiara; Porta, Cristina; Zocchi, Luciano; Agostoni, Emilio

    2015-01-15

    Volume and protein concentration of pleural liquid in anesthetized rabbits after 1 or 3h of mechanical ventilation, with alveolar pressure equal to atmospheric at end expiration, were compared to those occurring after spontaneous breathing. Moreover, coefficient of kinetic friction between samples of visceral and parietal pleura, obtained after spontaneous or mechanical ventilation, sliding in vitro at physiological velocity under physiological load, was determined. Volume of pleural liquid after mechanical ventilation was similar to that previously found during spontaneous ventilation. This finding is contrary to expectation of Moriondo et al. (2005), based on measurement of lymphatic and interstitial pressure. Protein concentration of pleural liquid after mechanical ventilation was also similar to that occurring after spontaneous ventilation. Coefficient of kinetic friction after mechanical ventilation was 0.023±0.001, similar to that obtained after spontaneous breathing. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Pad-mode-induced instantaneous mode instability for simple models of brake systems

    NASA Astrophysics Data System (ADS)

    Oberst, S.; Lai, J. C. S.

    2015-10-01

    Automotive disc brake squeal is fugitive, transient and remains difficult to predict. In particular, instantaneous mode squeal observed experimentally does not seem to be associated with mode coupling and its mechanism is not clear. The effects of contact pressures, friction coefficients as well as material properties (pressure and temperature dependency and anisotropy) for brake squeal propensity have not been systematically explored. By analysing a finite element model of an isotropic pad sliding on a plate similar to that of a previously reported experimental study, pad modes have been identified and found to be stable using conventional complex eigenvalue analysis. However, by subjecting the model to contact pressure harmonic excitation for a range of pressures and friction coefficients, a forced response analysis reveals that the dissipated energy for pad modes is negative and becomes more negative with increasing contact pressures and friction coefficients, indicating the potential for instabilities. The frequency of the pad mode in the sliding direction is within the range of squeal frequencies observed experimentally. Nonlinear time series analysis of the vibration velocity also confirms the evolution of instabilities induced by pad modes as the friction coefficient increases. By extending this analysis to a more realistic but simple brake model in the form of a pad-on-disc system, in-plane pad-modes, which a complex eigenvalue analysis predicts to be stable, have also been identified by negative dissipated energy for both isotropic and anisotropic pad material properties. The influence of contact pressures on potential instabilities has been found to be more dominant than changes in material properties owing to changes in pressure or temperature. Results here suggest that instantaneous mode squeal is likely caused by in-plane pad-mode instabilities.

  8. The Mohr-Coulomb criterion for intact rock strength and friction - a re-evaluation and consideration of failure under polyaxial stresses

    NASA Astrophysics Data System (ADS)

    Hackston, Abigail; Rutter, Ernest

    2016-04-01

    Darley Dale and Pennant sandstones were tested under conditions of both axisymmetric shortening and extension normal to bedding. These are the two extremes of loading under polyaxial stress conditions. Failure under generalized stress conditions can be predicted from the Mohr-Coulomb failure criterion under axisymmetric shortening conditions, provided the best form of polyaxial failure criterion is known. The sandstone data are best reconciled using the Mogi (1967) empirical criterion. Fault plane orientations produced vary greatly with respect to the maximum compressive stress direction in the two loading configurations. The normals to the Mohr-Coulomb failure envelopes do not predict the orientations of the fault planes eventually produced. Frictional sliding on variously inclined saw cuts and failure surfaces produced in intact rock samples was also investigated. Friction coefficient is not affected by fault plane orientation in a given loading configuration, but friction coefficients in extension were systematically lower than in compression for both rock types. Friction data for these and other porous sandstones accord well with the Byerlee (1978) generalization about rock friction being largely independent of rock type. For engineering and geodynamic modelling purposes, the stress-state-dependent friction coefficient should be used for sandstones, but it is not known to what extent this might apply to other rock types.

  9. A generalized law for brittle deformation of Westerly granite

    USGS Publications Warehouse

    Lockner, D.A.

    1998-01-01

    A semiempirical constitutive law is presented for the brittle deformation of intact Westerly granite. The law can be extended to larger displacements, dominated by localized deformation, by including a displacement-weakening break-down region terminating in a frictional sliding regime often described by a rate- and state-dependent constitutive law. The intact deformation law, based on an Arrhenius type rate equation, relates inelastic strain rate to confining pressure Pc, differential stress ????, inelastic strain ??i, and temperature T. The basic form of the law for deformation prior to fault nucleation is In ????i = c - (E*/RT) + (????/a??o)sin-??(???? i/2??o) where ??o and ??o are normalization constants (dependent on confining pressure), a is rate sensitivity of stress, and ?? is a shape parameter. At room temperature, eight experimentally determined coefficients are needed to fully describe the stress-strain-strain rate response for Westerly granite from initial loading to failure. Temperature dependence requires apparent activation energy (E* ??? 90 kJ/mol) and one additional experimentally determined coefficient. The similarity between the prefailure constitutive law for intact rock and the rate- and state-dependent friction laws for frictional sliding on fracture surfaces suggests a close connection between these brittle phenomena.

  10. Angle-dependent lubricated tribological properties of stainless steel by femtosecond laser surface texturing

    NASA Astrophysics Data System (ADS)

    Wang, Zhuo; Li, Yang-Bo; Bai, Feng; Wang, Cheng-Wei; Zhao, Quan-Zhong

    2016-07-01

    Lubricated tribological properties of stainless steel were investigated by femtosecond laser surface texturing. Regular-arranged micro-grooved textures with different spacing and micro-groove inclination angles (between micro-groove path and sliding direction) were produced on AISI 304L steel surfaces by an 800 nm femtosecond laser. The spacing of micro-groove was varied from 25 to 300 μm, and the inclination angles of micro-groove were measured as 90° and 45°. The tribological properties of the smooth and textured surfaces with micro-grooves were investigated by reciprocating ball-on-flat tests against Al2O3 ceramic balls under starved oil lubricated conditions. Results showed that the spacing of micro-grooves significantly affected the tribological property. With the increase of micro-groove spacing, the average friction coefficients and wear rates of textured surfaces initially decreased then increased. The tribological performance also depended on the inclination angles of micro-grooves. Among the investigated patterns, the micro-grooves perpendicular to the sliding direction exhibited the lowest average friction coefficient and wear rate to a certain extent. Femtosecond laser-induced surface texturing may remarkably improve friction and wear properties if the micro-grooves were properly distributed.

  11. Poroelasticity-driven lubrication in hydrogel interfaces.

    PubMed

    Reale, Erik R; Dunn, Alison C

    2017-01-04

    It is widely accepted that hydrogel surfaces are slippery, and have low friction, but dynamic applied stresses alter the hydrogel composition at the interface as water is displaced. The induced osmotic imbalance of compressed hydrogel which cannot swell to equilibrium should drive the resistance to slip against it. This paper demonstrates the driving role of poroelasticity in the friction of hydrogel-glass interfaces, specifically how poroelastic relaxation of hydrogels increases adhesion. We translate the work of adhesion into an effective surface energy density that increases with the duration of applied pressure from 10 to 50 mJ m -2 , as measured by micro-indentation. A model of static friction coefficient is derived from an area-based rules of mixture for the surface energies, and predicts the friction coefficient changes upon initiation of slip. For kinetic friction, the competition between duration of contact and relaxation time is quantified by a contacting Péclet number, Pe C . A single length parameter on the scale of micrometers fits these two models to experimental micro-friction data. These models predict how short durations of applied pressure and faster sliding speeds, do not disrupt interfacial hydration; this prevailing water maintains low friction. At low speeds where interface drainage dominates, the osmotic suction works against slip for higher friction. The prediction of friction coefficients after adhesion characterization by micro-indentation makes use of the interplay between poroelasticity, adhesion, and friction. This approach provides a starting point for prediction of, and design for, hydrogel interfacial friction.

  12. Large-Scale Biaxial Friction Experiments with an Assistance of the NIED Shaking Table

    NASA Astrophysics Data System (ADS)

    Fukuyama, E.; Mizoguchi, K.; Yamashita, F.; Togo, T.; Kawakata, H.; Yoshimitsu, N.; Shimamoto, T.; Mikoshiba, T.; Sato, M.; Minowa, C.

    2012-12-01

    We constructed a large-scale biaxial friction apparatus using a large shaking table working at NIED (table dimension is 15m x 15m). The actuator of the shaking table becomes the engine of the constant speed loading. We used a 1.5m long rock sample overlaid on a 2m one. Their height and width are both 0.5m. Therefore, the slip area is 1.5m x 0.5m. The 2m long sample moves with the shaking table and the 1.5m sample is fixed to the basement of the shaking table. Thus, the shaking table displacement controls the dislocation between two rock samples. The shaking table can generate 0.4m displacement with a velocity ranging between 0.0125mm/s and 1m/s. We used Indian gabbro for the rock sample of the present experiments. Original flatness of the sliding surface was formed less than 0.024mm undulation using a large-scale plane grinder. Surface roughness evolved as subsequent experiments were done. Wear material was generated during each experiment, whose grain size becomes bigger as the experiments proceed. This might suggest a damage evolution on the sliding surface. In some experiments we did not remove the gouge material before sliding to examine the effect of gouge layer. Normal stress can be applied up to 1.3MPa. The stiffness of this apparatus was measured experimentally and was of the order of 0.1GN/m. We first measured the coefficient of friction at low sliding velocity (0.1~1mm/s) where the steady state was achieved after the slip of ~5mm. The coefficient of friction was about 0.75 under the normal stress between 0.13 and 1.3MPa. This is consistent with those estimated by previous works using smaller rock samples. We observed that the coefficient of friction decreased gradually with increasing slip velocity, but simultaneously the friction curves at the higher velocities are characterized by stick-slip vibration. Our main aim of the experiments is to understand the rupture propagation from slow nucleation to fast unstable rupture during the loading of two contact surfaces. We recorded many unstable slip events that nucleated inside the sliding surface but did not reach the edge of the sliding surface until the termination of slip. These slip events simulate full rupture process during earthquake, including nucleation, propagation and termination of the rupture. We monitored these rupture progress using the strain change propagation measured by 16 semiconductor strain gauges recorded at a sampling rate of 1MHz. In addition, high frequency waves emitted from AE events was continuously observed by 8 piezo-electronic transducers (PZTs) at a sampling rate of 20MHz. These sensors were attached at the edge of the slipping area. The AE event started to occur where the slip was nucleated and the slip area started to expand. Unfortunately, we could not locate all AE events during the unstable rupture, because of the overprints of signals from multiple events in the PZT records. We also monitored the amplitudes of transmitted waves across the sliding surface. The amplitudes decreased just after the stick slip and recovered gradually, suggesting that the transmitted wave amplitudes might reflect the slipped area on the interface.

  13. [Dynamic forces of Mitkovic self-dinamysible trochanteric Internal fixators (SIF)].

    PubMed

    Mitković, Milan M; Manić, Miodrag T; Petković, Dusan Lj; Milenković, Sasa S; Mitković, Milorad B

    2013-01-01

    Dynamic trochanteric fractures implants allow fracture fragments to be compressed. Dynamisation can be realized if the axial pin force overcome friction force between pin and body of the implant. Examination of sliding iniciation forces in Mitkovic Selfdinamysible Trochanteric Internal Fixator (SIF). SIF was attached for angle block in the position with vertical orientation of pins. The transversal load of 5 kg was connected to pins by a rope. A dynamometer was used to measure force during the movement of angle block in up direction. Regression coefficients were a1 = 4,052 i b1 = 0,623 for SIF with 2 sliding screws with diameter of 7mm and a2 = 4,534 i b2 = 0,422 for SIF with 1 screw with diameter of 10 mm. Coefficients of determination were: r12 = 0,470 and r22 = 0,123. Sliding of SIF pins can be achieved for each analysed body weight of patient (50-130 kg). Early bearing of operated leg is significant for sliding initiation of SIF sliding screws.

  14. Estimation of the Friction Coefficient of a Nanostructured Composite Coating

    NASA Astrophysics Data System (ADS)

    Shil'ko, S. V.; Chernous, D. A.; Ryabchenko, T. V.; Hat'ko, V. V.

    2017-11-01

    The frictional-mechanical properties of a thin polymer-ceramic coating obtained by gas-phase impregnation of nanoporous anodic alumina with a fluoropolymer (octafluorocyclobutane) have been investigated. The coefficient of sliding friction of the coating is predicted based on an analysis of contact deformation within the framework of the Winkler elastic foundation hypothesis and a three-phase micromechanical model. It is shown that an acceptable prediction accuracy can be obtained considering the uniaxial strain state of the coating. It was found that, on impregnation by the method of plasmachemical treatment, the relative depth of penetration of the polymer increased almost in proportion to the processing time. The rate and maximum possible depth of penetration of the polymer into nanoscale pores grew with increasing porosity of the alumina substrate.

  15. Friction and wear with a single-crystal abrasive grit of silicon carbide in contact with iron base binary alloys in oil: Effects of alloying element and its content

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1979-01-01

    Sliding friction experiments were conducted with various iron-base binary alloys (alloying elements were Ti, Cr, Mn, Ni, Rh, and W) in contact with a rider of 0.025-millimeter-radius, single-crystal silicon carbide in mineral oil. Results indicate that atomic size and content of alloying element play a dominant role in controlling the abrasive-wear and -friction properties of iron-base binary alloys. The coefficient of friction and groove height (wear volume) general alloy decrease, and the contact pressure increases in solute content. There appears to be very good correlation of the solute to iron atomic radius ratio with the decreasing rate of coefficient of friction, the decreasing rate of groove height (wear volume), and the increasing rate of contact pressure with increasing solute content C. Those rates increase as the solute to iron atomic radius ratio increases from unity.

  16. The friction and wear of metals and binary alloys in contact with an abrasive grit of single-crystal silicon carbide

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1979-01-01

    Sliding friction experiments were conducted with various metals and iron-base binary alloys (alloying elements Ti, Cr, Mn, Ni, Rh and W) in contact with single crystal silicon carbide riders. Results indicate that the friction force in the plowing of metal and the groove height (corresponding to the wear volume of the groove) decrease linearly as the shear strength of the bulk metal increases. The coefficient of friction and groove height generally decrease, and the contact pressure increases with an increase in solute content of binary alloys. There appears to be very good correlation of the solute to iron atomic ratio with the decreasing rate of change of coefficient of friction, the decreasing rate of change of groove height and the increasing rate of change of contact pressure with increasing solute content. These rates of change increase as the solute to iron atomic radius ratio increases or decreases from unity.

  17. Evaluation of Wear on Macro-Surface Textures Generated by ns Fiber Laser

    NASA Astrophysics Data System (ADS)

    Harish, V.; Soundarapandian, S.; Vijayaraghavan, L.; Bharatish, A.

    2018-03-01

    The demand for improved performance and long term reliability of mechanical systems dictate the use of advanced materials and surface engineering techniques. A small change in the surface topography can lead to substantial improvements in the tribological behaviour of the contact surfaces. One way of altering the surface topography is by surface texturing by introducing dimples or channels on the surfaces. Surface texturing is already a successful technique which finds a wide area of applications ranging from heavy industries to small scale devices. This paper reports the effect of macro texture shapes generated using a nanosecond fiber laser on wear of high carbon chromium steel used in large size bearings having rolling contacts. Circular and square shaped dimples were generated on the surface to assess the effect of sliding velocities on friction coefficient. Graphite was used as solid lubricant to minimise the effect of wear on textured surfaces. The laser parameters such as power, scan speed and passes were optimised to obtain macro circular and square dimples which was characterised using a laser confocal microscope. The friction coefficients of the circular and square dimples were observed to lie in the same range due to minimum wear on the surface. On the contrary, at medium and higher sliding velocities, square dimples exhibited lower friction coefficient values compared to circular dimples. The morphology of textured specimen was characterised using Scanning Electron Microscope.

  18. The Sliding Wear and Friction Behavior of M50-Graphene Self-Lubricating Composites Prepared by Laser Additive Manufacturing at Elevated Temperature

    NASA Astrophysics Data System (ADS)

    Liu, Xiyao; Shi, Xiaoliang; Huang, Yuchun; Deng, Xiaobin; Lu, Guanchen; Yan, Zhao; Zhou, Hongyan; Xue, Bing

    2018-03-01

    M50 steel is widely applied to manufacture aircraft bearings where service lives are mainly determined by the friction and wear behaviors. The main purpose of this study is to investigate the tribological behaviors and wear mechanisms of M50-1.5 wt.% graphene composites (MGC) prepared by laser additive manufacturing (LAM) (MGC-LAM) sliding against Si3N4 ball from 25 to 550 °C at 18 N-0.2 m/s. XRD, EPMA, FESEM, and EDS mapping were conducted to understand the major mechanisms leading to the improvement in the sliding behavior of MGC-LAM. The results indicated that MGC-LAM showed the excellent friction and wear performance at 25-550 °C for the lower friction coefficient of 0.16-0.52 and less wear rate of 6.1-9.5 × 10-7 mm3 N-1 m-1. Especially at 350 °C, MGC-LAM obtained the best tribological performance (0.16, 6.1 × 10-7mm3 N-1 m-1). It was attributed to the dense coral-like microstructure, as well as the formed surface lubricating structure which is composed of the upper uniform lubricating film with massive graphene and the underneath compacted layer.

  19. Friction and wear performance of some thermoplastic polymers and polymer composites against unsaturated polyester

    NASA Astrophysics Data System (ADS)

    Unal, H.; Mimaroglu, A.; Arda, T.

    2006-09-01

    Wear experiments have been carried out with a range of unfilled and filled engineering thermoplastic polymers sliding against a 15% glass fibre reinforced unsaturated polyester polymer under 20, 40 and 60 N loads and 0.5 m/s sliding speed. Pin materials used in this experimental investigation are polyamide 66 (PA 66), poly-ether-ether-ketone (PEEK) and aliphatic polyketone (APK), glass fibre reinforced polyamide 46 (PA 46 + 30% GFR), glass fibre reinforced polytetrafluoroethylene (PTFE + 17% GFR), glass fibre reinforced poly-ether-ether-ketone (PEEK + 20% GFR), glass fibre reinforced poly-phylene-sulfide (PPS + 30% GFR), polytetrafluoroethylene filled polyamide 66 (PA 66 + 10% PTFE) and bronze filled pofytetrafluoroethylene (PTFE + 25% bronze) engineering polymers. The disc material is a 15% glass fibre reinforced unsaturated polyester thermoset polymer produced by Bulk Moulding Compound (BMC). Sliding wear tests were carried out on a pin-on-disc apparatus under 0.5 m/s sliding speed and load values of 20, 40 and 60 N. The results showed that the highest specific wear rate is for PPS + 30% GFR with a value of 1 × 10 -11 m 2/N and the lowest wear rate is for PTFE + 17% GFR with a value of 9.41 × 10 -15 m 2/N. For the materials and test conditions of this investigation, apart from polyamide 66 and PA 46 + 30% GFR polymers, the coefficient of friction and specific wear rates are not significantly affected by the change in load value. For polyamide 66 and PA 46 + 30% GFR polymers the coefficient of friction and specific wear rates vary linearly with the variation in load values.

  20. The experiment research of the friction sliding isolation structure

    NASA Astrophysics Data System (ADS)

    Zhang, Shirong; Li, Jiangle; Wang, Sheliang

    2018-04-01

    This paper investigated the theory of the friction sliding isolation structure, The M0S2 solid lubricant was adopted as isolation bearing friction materials, and a new sliding isolation bearing was designed and made. The formula of the friction factor and the compression stress was proposed. The feasibility of the material MoS2 used as the coating material in a friction sliding isolation system was tested on the 5 layers concrete frame model. Two application experiment conditions were presented. The results of the experiment research indicated that the friction sliding isolation technology have a good damping effect.

  1. Lithology-dependent minimum horizontal stress and in-situ stress estimate

    NASA Astrophysics Data System (ADS)

    Zhang, Yushuai; Zhang, Jincai

    2017-04-01

    Based on the generalized Hooke's law with coupling stresses and pore pressure, the minimum horizontal stress is solved with assumption that the vertical, minimum and maximum horizontal stresses are in equilibrium in the subsurface formations. From this derivation, we find that the uniaxial strain method is the minimum value or lower bound of the minimum stress. Using Anderson's faulting theory and this lower bound of the minimum horizontal stress, the coefficient of friction of the fault is derived. It shows that the coefficient of friction may have a much smaller value than what it is commonly assumed (e.g., μf = 0.6-0.7) for in-situ stress estimate. Using the derived coefficient of friction, an improved stress polygon is drawn, which can reduce the uncertainty of in-situ stress calculation by narrowing the area of the conventional stress polygon. It also shows that the coefficient of friction of the fault is dependent on lithology. For example, if the formation in the fault is composed of weak shales, then the coefficient of friction of the fault may be small (as low as μf = 0.2). This implies that this fault is weaker and more likely to have shear failures than the fault composed of sandstones. To avoid the weak fault from shear sliding, it needs to have a higher minimum stress and a lower shear stress. That is, the critically stressed weak fault maintains a higher minimum stress, which explains why a low shear stress appears in the frictionally weak fault.

  2. Effects of Heat Treatment on Corrosion and Wear Behaviors of Mg-6Gd-2Zn-0.4Zr Alloy in Simulated Body Fluid

    NASA Astrophysics Data System (ADS)

    Zhao, Li; Chen, Wei; Dai, Jianwei; Wang, Zhangzhong; Zhang, Xiaobo

    2017-11-01

    Mg-6Gd-2Zn-0.4Zr (wt.%, GZ62K) alloy was processed by solution treatment under different temperatures. The microstructure, hardness, corrosion and wear behaviors in simulated body fluid (SBF) have been studied. The results indicate that the (Mg, Zn)3Gd phase decreases, the precipitated phases gradually increase, and the long-period stacking ordered structure disappears with the increase of solution temperature. The alloy has better corrosion resistance after solution treatment, and that solution treated at 490 °C for 12 h shows the best corrosion resistance. The friction coefficient of the alloy under dry sliding condition decreases slightly, but the mass loss increases with increasing the solution temperature. The alloy solution treated at 460 °C for 12 h exhibits the lowest friction coefficient and mass loss in SBF, and it also has the best wear resistance under dry sliding condition.

  3. Friction and wear of selected metals and alloys in sliding contact with AISI 440 C stainless steel in liquid methane and in liquid natural gas

    NASA Technical Reports Server (NTRS)

    Wisander, D. W.

    1978-01-01

    Aluminum, titanium, beryllium, nickel, iron, copper, and several copper alloys were run in sliding contact with AISI 440C in liquid methane and natural gas. All of the metals run except copper and the copper alloys of tin and tin-lead showed severely galled wear scars. Friction coefficients varied from 0.2 to 1.0, the lowest being for copper, copper-17 wt. % tin, and copper-8 wt. % tin-22 wt. % lead. The wear rate for copper was two orders of magnitude lower than that of the other metals run. An additional order of magnitude of wear reduction was achieved by the addition of tin and/or lead to copper.

  4. Investigation of kinetic friction using an iPhone

    NASA Astrophysics Data System (ADS)

    Baldock, Clive; Johnson, Roger

    2016-11-01

    The iPhone is particularly suitable for mechanics experiments using the in-built acceleration sensor or accelerometer in-conjunction with the on-board data collection facility and a downloadable so-called ‘app’. In this work the iPhone has been used to investigate the acceleration due to gravity and determine the coefficient of kinetic friction, μ k of the iPhone as an object sliding down an inclined plane. This method is more accurate than that usually employed in the laboratory where the ‘fits and starts’ of the block sliding down the inclined plane potentially invalidate the required assumption that the velocity is constant. In its simplest form the measurement of acceleration is required to be undertaken for only 2 angles.

  5. Friction Durability of Extremely Thin Diamond-Like Carbon Films at High Temperature

    PubMed Central

    Miyake, Shojiro; Suzuki, Shota; Miyake, Masatoshi

    2017-01-01

    To clarify the friction durability, both during and after the high-temperature heating of nanometer-thick diamond-like carbon (DLC) films, deposited using filtered cathodic vacuum arc (FCVA) and plasma chemical vapor deposition (P-CVD) methods, the dependence of the friction coefficient on the load and sliding cycles of the DLC films, were evaluated. Cluster-I consisted of a low friction area in which the DLC film was effective, while cluster-II consisted of a high friction area in which the lubricating effect of the DLC film was lost. The friction durability of the films was evaluated by statistical cluster analysis. Extremely thin FCVA-DLC films exhibited an excellent wear resistance at room temperature, but their friction durability was decreased at high temperatures. In contrast, the durability of the P-CVD-DLC films was increased at high temperatures when compared with that observed at room temperature. This inverse dependence on temperature corresponded to the nano-friction results obtained by atomic force microscopy. The decrease in the friction durability of the FCVA-DLC films at high temperatures, was caused by a complex effect of temperature and friction. The tribochemical reaction produced by the P-CVD-DLC films reduced their friction coefficient, increasing their durability at high temperatures. PMID:28772520

  6. Friction Durability of Extremely Thin Diamond-Like Carbon Films at High Temperature.

    PubMed

    Miyake, Shojiro; Suzuki, Shota; Miyake, Masatoshi

    2017-02-10

    To clarify the friction durability, both during and after the high-temperature heating of nanometer-thick diamond-like carbon (DLC) films, deposited using filtered cathodic vacuum arc (FCVA) and plasma chemical vapor deposition (P-CVD) methods, the dependence of the friction coefficient on the load and sliding cycles of the DLC films, were evaluated. Cluster-I consisted of a low friction area in which the DLC film was effective, while cluster-II consisted of a high friction area in which the lubricating effect of the DLC film was lost. The friction durability of the films was evaluated by statistical cluster analysis. Extremely thin FCVA-DLC films exhibited an excellent wear resistance at room temperature, but their friction durability was decreased at high temperatures. In contrast, the durability of the P-CVD-DLC films was increased at high temperatures when compared with that observed at room temperature. This inverse dependence on temperature corresponded to the nano-friction results obtained by atomic force microscopy. The decrease in the friction durability of the FCVA-DLC films at high temperatures, was caused by a complex effect of temperature and friction. The tribochemical reaction produced by the P-CVD-DLC films reduced their friction coefficient, increasing their durability at high temperatures.

  7. Effect of pendent chains on the interfacial properties of thin polydimethylsiloxane (PDMS) networks.

    PubMed

    Landherr, Lucas J T; Cohen, Claude; Archer, Lynden A

    2011-05-17

    The interfacial properties of end-linked polydimethylsiloxane (PDMS) films on silicon are examined. Thin cross-linked PDMS films (∼10 μm thick) were synthesized over a self-assembled monolayer supported on a silicon wafer. By systematically varying the concentration of monofunctional PDMS in a mixture with telechelic precursor molecules, structures ranging from near-ideal elastic networks to poorly cross-linked networks composed of a preponderance of dangling/pendent chains were synthesized. Lateral force microscopy (LFM) employing bead probes was used to quantify the effect of network structure on the interfacial friction coefficient and residual force. Indentation measurements employing an AFM in force mode were used to characterize the elastic modulus and the pull-off force for the films as a function of pendent chain content. These measurements were complemented with conventional mechanical rheometry measurements on similar thick network films to determine their bulk rheological properties. All networks studied manifested interfacial friction coefficients substantially lower than that of bare silicon. PDMS networks with the lowest pendent chain content displayed friction coefficients close to 1 order of magnitude lower than that of bare silicon, whereas networks with the highest pendent chain content manifested friction coefficients about 3 times lower than that of bare silicon. At intermediate sliding velocities, a crossover in the interfacial friction coefficient was observed, wherein cross-linked PDMS films with the least amount of pendent chains exhibit the highest friction coefficient. These observations are discussed in terms of the structure of the films and relaxation dynamics of elastic strands and dangling chains in tethered network films.

  8. Improving friction performance of cast iron by laser shock peening

    NASA Astrophysics Data System (ADS)

    Feng, Xu; Zhou, Jianzhong; Huang, Shu; Sheng, Jie; Mei, Yufen; Zhou, Hongda

    2015-05-01

    According to different purpose, some high or low friction coefficient of the material surface is required. In this study, micro-dent texture was fabricated on cast iron specimens by a set of laser shock peening (LSP) experiments under different laser energy, with different patterns of micro dimples in terms of the depth over diameter. The mechanism of LSP was discussed and surface morphology of the micro dimples were investigated by utilizing a Keyence KS-1100 3D optical surface profilometer. The tests under the conditions of dry and lubricating sliding friction were accomplished on the UMT-2 apparatus. The performance of treated samples during friction and wear tests were characterized and analyzed. Based on theoretical analysis and experimental study, friction performance of textured and untextured samples were studied and compared. Morphological characteristics were observed by scanning electron microscope (SEM) and compared after friction tests under dry condition. The results showed that friction coefficient of textured samples were obvious changed than smooth samples. It can be seen that LSP is an effective way to improve the friction performance of cast iron by fabricating high quality micro dimples on its surface, no matter what kind of engineering application mentioned in this paper.

  9. A novel pendulum test for measuring roller chain efficiency

    NASA Astrophysics Data System (ADS)

    Wragge-Morley, R.; Yon, J.; Lock, R.; Alexander, B.; Burgess, S.

    2018-07-01

    This paper describes a novel pendulum decay test for determining the transmission efficiency of chain drives. The test involves releasing a pendulum with an initial potential energy and measuring its decaying oscillations: under controlled conditions the decay reveals the losses in the transmission to a high degree of accuracy. The main advantage over motorised rigs is that there are significantly fewer sources of friction and inertia and hence measurement error. The pendulum rigs have an accuracy around 0.6% for the measurement of the coefficient of friction, giving an accuracy of transmission efficiency measurement around 0.012%. A theoretical model of chain friction combined with the equations of motion enables the coefficient of friction to be determined from the decay rate of pendulum velocity. The pendulum rigs operate at relatively low speeds. However, they allow an accurate determination of the coefficient of friction to estimate transmission efficiency at higher speeds. The pendulum rig revealed a previously undetected rocking behaviour in the chain links at very small articulation angles. In this regime, the link interfaces were observed to roll against one another rather than slide. This observation indicates that a very high-efficiency transmission can be achieved if the articulation angle is very low.

  10. Mechanics of advancing pin-loaded contacts with friction

    NASA Astrophysics Data System (ADS)

    Sundaram, Narayan; Farris, T. N.

    2010-11-01

    This paper considers finite friction contact problems involving an elastic pin and an infinite elastic plate with a circular hole. Using a suitable class of Green's functions, the singular integral equations governing a very general class of conforming contact problems are formulated. In particular, remote plate stresses, pin loads, moments and distributed loading of the pin by conservative body forces are considered. Numerical solutions are presented for different partial slip load cases. In monotonic loading, the dependence of the tractions on the coefficient of friction is strongest when the contact is highly conforming. For less conforming contacts, the tractions are insensitive to an increase in the value of the friction coefficient above a certain threshold. The contact size and peak pressure in monotonic loading are only weakly dependent on the pin load distribution, with center loads leading to slightly higher peak pressure and lower peak shear than distributed loads. In contrast to half-plane cylinder fretting contacts, fretting behavior is quite different depending on whether or not the pin is allowed to rotate freely. If pin rotation is disallowed, the fretting tractions resemble half-plane fretting tractions in the weakly conforming regime but the contact resists sliding in the strongly conforming regime. If pin rotation is allowed, the shear traction behavior resembles planar rolling contacts in that one slip zone is dominant and the peak shear occurs at its edge. In this case, the effects of material dissimilarity in the strongly conforming regime are only secondary and the contact never goes into sliding. Fretting tractions in the forward and reversed load states show shape asymmetry, which persists with continued load cycling. Finally, the governing integro-differential equation for full sliding is derived; in the limiting case of no friction, the same equation governs contacts with center loading and uniform body force loading, resulting in identical pressures when their resultants are equal.

  11. Adhesion-dependent negative friction coefficient on chemically modified graphite at the nanoscale

    NASA Astrophysics Data System (ADS)

    Deng, Zhao; Smolyanitsky, Alex; Li, Qunyang; Feng, Xi-Qiao; Cannara, Rachel J.

    2012-12-01

    From the early tribological studies of Leonardo da Vinci to Amontons’ law, friction has been shown to increase with increasing normal load. This trend continues to hold at the nanoscale, where friction can vary nonlinearly with normal load. Here we present nanoscale friction force microscopy (FFM) experiments for a nanoscale probe tip sliding on a chemically modified graphite surface in an atomic force microscope (AFM). Our results demonstrate that, when adhesion between the AFM tip and surface is enhanced relative to the exfoliation energy of graphite, friction can increase as the load decreases under tip retraction. This leads to the emergence of an effectively negative coefficient of friction in the low-load regime. We show that the magnitude of this coefficient depends on the ratio of tip-sample adhesion to the exfoliation energy of graphite. Through both atomistic- and continuum-based simulations, we attribute this unusual phenomenon to a reversible partial delamination of the topmost atomic layers, which then mimic few- to single-layer graphene. Lifting of these layers with the AFM tip leads to greater deformability of the surface with decreasing applied load. This discovery suggests that the lamellar nature of graphite yields nanoscale tribological properties outside the predictive capacity of existing continuum mechanical models.

  12. Sliding friction and wear behaviors of surface-coated natural serpentine mineral powders as lubricant additive

    NASA Astrophysics Data System (ADS)

    Zhang, Baosen; Xu, Yi; Gao, Fei; Shi, Peijing; Xu, Binshi; Wu, Yixiong

    2011-01-01

    This work aims to investigate the friction and wear properties of surface-coated natural serpentine powders (SP) suspended in diesel engine oil using an Optimal SRV oscillating friction and wear tester. The worn surface was characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS). Results indicated that the additives can improve the wear resistance and decrease friction coefficient of carbon steel friction couples. The 0.5 wt% content of serpentine powders is found most efficient in reducing friction and wear at the load of 50 N. The SEM and XPS analysis results demonstrate that a tribofilm forms on the worn surface, which is responsible for the decrease in friction and wear, mainly with iron oxides, silicon oxides, graphite and organic compounds.

  13. A viscoelastic damage rheology and rate- and state-dependent friction

    NASA Astrophysics Data System (ADS)

    Lyakhovsky, Vladimir; Ben-Zion, Yehuda; Agnon, Amotz

    2005-04-01

    We analyse the relations between a viscoelastic damage rheology model and rate- and state-dependent (RS) friction. Both frameworks describe brittle deformation, although the former models localization zones in a deforming volume while the latter is associated with sliding on existing surfaces. The viscoelastic damage model accounts for evolving elastic properties and inelastic strain. The evolving elastic properties are related quantitatively to a damage state variable representing the local density of microcracks. Positive and negative changes of the damage variable lead, respectively, to degradation and recovery of the material in response to loading. A model configuration having an existing narrow zone with localized damage produces for appropriate loading and temperature-pressure conditions an overall cyclic stick-slip motion compatible with a frictional response. Each deformation cycle (limit cycle) can be divided into healing and weakening periods associated with decreasing and increasing damage, respectively. The direct effect of the RS friction and the magnitude of the frictional parameter a are related to material strengthening with increasing rate of loading. The strength and residence time of asperities (model elements) in the weakening stage depend on the rates of damage evolution and accumulation of irreversible strain. The evolutionary effect of the RS friction and overall change in the friction parameters (a-b) are controlled by the duration of the healing period and asperity (element) strengthening during this stage. For a model with spatially variable properties, the damage rheology reproduces the logarithmic dependency of the steady-state friction coefficient on the sliding velocity and the normal stress. The transition from a velocity strengthening regime to a velocity weakening one can be obtained by varying the rate of inelastic strain accumulation and keeping the other damage rheology parameters fixed. The developments unify previous damage rheology results on deformation localization leading to formation of new fault zones with detailed experimental results on frictional sliding. The results provide a route for extending the formulation of RS friction into a non-linear continuum mechanics framework.

  14. Modeling of Instabilities and Self-organization at the Frictional Interface

    NASA Astrophysics Data System (ADS)

    Mortazavi, Vahid

    The field of friction-induced self-organization and its practical importance remains unknown territory to many tribologists. Friction is usually thought of as irreversible dissipation of energy and deterioration; however, under certain conditions, friction can lead to the formation of new structures at the interface, including in-situ tribofilms and various patterns at the interface. This thesis studies self-organization and instabilities at the frictional interface, including the instability due to the temperature-dependency of the coefficient of friction, the transient process of frictional running-in, frictional Turing systems, the stick-and-slip phenomenon, and, finally, contact angle (CA) hysteresis as an example of solid-liquid friction and dissipation. All these problems are chosen to bridge the gap between fundamental interest in understanding the conditions leading to self-organization and practical motivation. We study the relationship between friction-induced instabilities and friction-induced self-organization. Friction is usually thought of as a stabilizing factor; however, sometimes it leads to the instability of sliding, in particular when friction is coupled with another process. Instabilities constitute the main mechanism for pattern formation. At first, a stationary structure loses its stability; after that, vibrations with increasing amplitude occur, leading to a limit cycle corresponding to a periodic pattern. The self-organization is usually beneficial for friction and wear reduction because the tribological systems tend to enter a state with the lowest energy dissipation. The introductory chapter starts with basic definitions related to self-organization, instabilities and friction, literature review, and objectives. We discuss fundamental concepts that provide a methodological tool to investigate, understand and enhance beneficial processes in tribosystems which might lead to self-organization. These processes could result in the ability of a frictional surface to exhibit "self-protection" and "self-healing" properties. Hence, this research is dealing with the fundamental concepts that allow the possibility of the development of a new generation of tribosystem and materials that reinforce such properties. In chapter 2, we investigate instabilities due to the temperature-dependency of the coefficient of friction. The temperature-dependency of the coefficient of friction can have a significant effect on the frictional sliding stability, by leading to the formation of "hot" and "cold" spots on the contacting surfaces. We formulate a stability criterion and perform a case study of a brake disk. In chapter 3, we study frictional running-in. Running-in is a transient period on the onset of the frictional sliding, in which friction and wear decrease to their stationary values. In this research, running-in is interpreted as friction-induced self-organization process. We introduce a theoretical model of running-in and investigate rough profile evolution assuming that its kinetics is driven by two opposite processes or events, i.e., smoothening which is typical for the deformation-driven friction and wear, and roughening which is typical for the adhesion-driven friction and wear. In chapter 4, we investigate the possibility of the so-called Turing-type pattern formation during friction. Turing or reaction-diffusion systems describe variations of spatial concentrations of chemical components with time due to local chemical reactions coupled with diffusion. During friction, the patterns can form at the sliding interface due to the mass transfer (diffusion), heat transfer, various tribochemical reactions, and wear. In chapter 5, we investigate how interfacial patterns including propagating trains of stick and slip zones form due to dynamic sliding instabilities. These can be categorized as self-organized patterns. We treat stick and slip as two phases at the interface, and study the effects related to phase transitions. Our results show how interfacial patterns form, how the transition between stick and slip zones occurs, and which parameters affect them. In chapter 6, we use Cellular Potts Model to study contact angle (CA) hysteresis as a measure of solid-liquid energy dissipation. We simulate CA hysteresis for a droplet over the tilted patterned surface, and a bubble placed under the surface immersed in liquid. We discuss the dependency of CA hysteresis on the surface structure and other parameters. This analysis allows decoupling of the 1D (pinning of the triple line) and 2D effects (adhesion hysteresis in the contact area) and obtain new insights on the nature of CA hysteresis. To summarize, we examine different cases in frictional interface and observe similar trends. We investigate and discus how these trends could be beneficial in design, synthesis and characterization of different materials and tribosystems. Furthermore, we describe how to utilize fundamental concepts for specific engineering applications. Finally, the main theme of this research is to find new applications of concept of self-organization to tribology and the role played by different physical and chemical interactions in modifying and controlling friction and wear. (Abstract shortened by UMI.)

  15. Tribological reactions of perfluoroalkyl polyether oils with stainless steel under ultrahigh vacuum conditions at room temperature

    NASA Technical Reports Server (NTRS)

    Mori, Shigeyuki; Morales, Wilfredo

    1989-01-01

    The reaction between three types of commercial perfluoroalkyl polyether (PFPE) oils and stainless steel 440C was investigated experimentally during sliding under ultrahigh vacuum conditions at room temperature. It is found that the tribological reaction of PFPE is mainly affected by the activity of the mechanically formed fresh surfaces of metals rather than the heat generated at the sliding contacts. The fluorides formed on the wear track act as a boundary layer, reducing the friction coefficient.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumpala, Ravikumar; Nano Functional Materials Technology Centre, Department of Physics, Indian Institute of Technology Madras, Chennai 600036; Kumar, N.

    Tribo-layer formation and frictional characteristics of the SiC ball were studied with the sliding test against nanocrystalline diamond coating under atmospheric test conditions. Unsteady friction coefficients in the range of 0.04 to 0.1 were observed during the tribo-test. Friction and wear characteristics were found to be influenced by the formation of cohesive tribo-layer (thickness ∼ 1.3 μm) in the wear track of nanocrystalline diamond coating. Hardness of the tribo-layer was measured using nanoindentation technique and low hardness of ∼ 1.2 GPa was observed. The presence of silicon and oxygen in the tribo-layer was noticed by the energy dispersive spectroscopy mappingmore » and the chemical states of the silicon were analyzed using X-ray photoelectron spectroscopy. Large amount of oxygen content in the tribo-layer indicated tribo-oxidation wear mechanism. - Highlights: • Sliding wear and friction characteristics of SiC were studied against NCD coating. • Silicon oxide tribo-layer formation was observed in the NCD coating wear track. • Low hardness 1.2 GPa of tribo-layer was measured using nanoindentation technique. • Chemical states of silicon were analyzed using X-ray photoelectron spectroscopy.« less

  17. Texturing of UHMWPE surface via NIL for low friction and wear properties

    NASA Astrophysics Data System (ADS)

    Suryadi Kustandi, Tanu; Choo, Jian Huei; Low, Hong Yee; Sinha, Sujeet K.

    2010-01-01

    Wear is a major obstacle limiting the useful life of implanted ultra-high molecular weight polyethylene (UHMWPE) components in total joint arthroplasty. It has been a continuous effort in the implant industry to reduce the frictional wear problem of UHMWPE by improving the structure, morphology and mechanical properties of the polymer. In this paper, a new paradigm that utilizes nanoimprint lithography (NIL) in producing textures on the surface of UHMWPE is proposed to efficiently improve the tribological properties of the polymer. Friction and wear experiments were conducted on patterned and controlled (non-patterned) UHMWPE surfaces using a commercial tribometer, mounted with a silicon nitride ball, under a dry-sliding condition with normal loads ranging from 60 to 200 mN. It has been shown that the patterned UHMWPE surface showed a reduction in the coefficient of friction between 8% and 35% as compared with the controlled (non-patterned) surface, depending on the magnitude of the normal load. Reciprocating wear experiments also showed that the presence of surface textures on the polymer resulted in lower wear depth and width, with minimal material transfer to the sliding surface.

  18. Friction and Wear Characteristics of Candidate Foil Bearing Materials from 25 C to 800 C

    NASA Technical Reports Server (NTRS)

    DellaCorte, C.; Laskowski, J. A.

    1996-01-01

    The friction and wear behavior of unlubricated metal/metal sliding couples was investigated to screen potential candidates for high temperature foil bearings. The tribo-tests were run in an induction-heated high temperature pin-on-disk tribometer in an air atmosphere at a load of 4.9 N and at a sliding velocity of 1 m/s. The friction and wear properties of several nickel based alloys (Rene'41, Inconel X-750, Inconel 713C), iron based alloys (MA956 and Inconel 909) and a ceramic (Al2O3) were tested at 25, 500, and 800 C. In general, at elevated temperatures the alloys oxidized and formed a tenacious and lubricous oxide surface film or layer. At 800 C, Inconel X-750 versus Rene'41 had the lowest friction coefficient (0.27) and at 500 C, Inconel X-750 versus Inconel 909 the lowest pin wear (2.84 x 10(exp -6)cu mm/N-m). Gouging and severe wear of the softer material occurred whenever a significant difference in hardness existed between the pin and disk specimens.

  19. Improved adaptability of polyaryl-ether-ether-ketone with texture pattern and graphite-like carbon film for bio-tribological applications

    NASA Astrophysics Data System (ADS)

    Ren, Siming; Huang, Jinxia; Cui, Mingjun; Pu, Jibin; Wang, Liping

    2017-04-01

    With the development of surface treatment technology, an increasing number of bearings, seals, dynamic friction drive or even biomedical devices involve a textured surface to improve lubrication and anti-wear. The present investigation has been conducted in order to evaluate the friction and wear behaviours of textured polyaryl-ether-ether-ketone (PEEK) coated with a graphite-like carbon (GLC) film sliding against stainless steel pin in biological medium. Compared with pure PEEK, the PEEK coated with GLC film shows excellent tribological performance with a low friction of 0.08 and long lifetime (wear volumes are about 3.78 × 10-4 mm3 for un-textured one and 2.60 × 10-4 mm3 for textured GLC film after 36,000 s of sliding) under physiological saline solution. In particular, the GLC film with appropriate dimple area density is effective to improve friction reduction and wear resistance properties of PEEK substrate under biological solution, which is attributed to the entrapment of wear debris in the dimples to inhibit the graphitization and the fluid dynamic pressure effect derived from the texture surface to increase the thickness in elastohydrodynamic lubrication (EHL) film during sliding motions. Moreover, the friction coefficient of GLC film under physiological saline solution decreases with the increase in the applied load. With the increasing applied load, the texture surface is responsible for accounting the improved wear resistance and a much lower graphitization of the GLC film during whole test.

  20. The Mohr-Coulomb criterion for intact rock strength and friction - a re-evaluation and consideration of failure under polyaxial stresses

    NASA Astrophysics Data System (ADS)

    Hackston, A.; Rutter, E.

    2015-12-01

    Abstract Darley Dale and Pennant sandstones were tested under conditions of both axisymmetric shortening and extension normal to bedding. These are the two extremes of loading under polyaxial stress conditions. Failure under generalized stress conditions can be predicted from the Mohr-Coulomb failure criterion under axisymmetric compression conditions provided the best form of polyaxial failure criterion is known. The sandstone data are best reconciled using the Mogi (1967) empirical criterion. Fault plane orientations produced vary greatly with respect to the maximum compression direction in the two loading configurations. The normals to the Mohr-Coulomb failure envelopes do not predict the orientations of the fault planes eventually produced. Frictional sliding on variously inclined sawcuts and failure surfaces produced in intact rock samples was also investigated. Friction coefficient is not affected by fault plane orientation in a given loading configuration, but friction coefficients in extension were systematically lower than in compression for both rock types and could be reconciled by a variant on the Mogi (1967) failure criterion. Friction data for these and other porous sandstones accord well with the Byerlee (1977) generalization about rock friction being largely independent of rock type. For engineering and geodynamic modelling purposes, the stress-state dependent friction coefficient should be used for sandstones, but it is not known to what extent this might apply to other rock types.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sibley, L.B.; Mace, A.E.; Grieser, D.R.

    Various ceramic and cermet materials were evaluated for unlubricated wear resistance at high sliding speed (100 to 200 fps) and low unit load (5to 50 psi) in 1000 to 1800 deg F air. A statistical correlation was obtained between the measured wear rates under these conditions and the coefficient of friction, the thermal-stress resistance, and the thermal dlffusivity of the mated materials on which wear predominated. A mechanism of wear was evolved based on the above correlation and on the experimental study of friction and wear surface- temperature fluctuations using special transducers and color-motion-picture photography. During high-speed sliding, wear appearsmore » to be induced by the inability of ceramic and cermet materials to resist thermal stresses produced by temperature gradients within each rubbing surface between small asperities or hot spots. in frictional contact and the body of the respective materials. In this situation the wear rate is influenced both by the configuration of the rubbing pants and by the thermalstress-resistance properties of the materials. Promising materials for high-temperature high-speed sliding bearings and seals include Al/ sub 2/O/sub 3/-Cr-Mo cermets, SiC ceramics, and TiC-Ni-Mo cermets. (auth)« less

  2. Tribological behaviour and statistical experimental design of sintered iron-copper based composites

    NASA Astrophysics Data System (ADS)

    Popescu, Ileana Nicoleta; Ghiţă, Constantin; Bratu, Vasile; Palacios Navarro, Guillermo

    2013-11-01

    The sintered iron-copper based composites for automotive brake pads have a complex composite composition and should have good physical, mechanical and tribological characteristics. In this paper, we obtained frictional composites by Powder Metallurgy (P/M) technique and we have characterized them by microstructural and tribological point of view. The morphology of raw powders was determined by SEM and the surfaces of obtained sintered friction materials were analyzed by ESEM, EDS elemental and compo-images analyses. One lot of samples were tested on a "pin-on-disc" type wear machine under dry sliding conditions, at applied load between 3.5 and 11.5 × 10-1 MPa and 12.5 and 16.9 m/s relative speed in braking point at constant temperature. The other lot of samples were tested on an inertial test stand according to a methodology simulating the real conditions of dry friction, at a contact pressure of 2.5-3 MPa, at 300-1200 rpm. The most important characteristics required for sintered friction materials are high and stable friction coefficient during breaking and also, for high durability in service, must have: low wear, high corrosion resistance, high thermal conductivity, mechanical resistance and thermal stability at elevated temperature. Because of the tribological characteristics importance (wear rate and friction coefficient) of sintered iron-copper based composites, we predicted the tribological behaviour through statistical analysis. For the first lot of samples, the response variables Yi (represented by the wear rate and friction coefficient) have been correlated with x1 and x2 (the code value of applied load and relative speed in braking points, respectively) using a linear factorial design approach. We obtained brake friction materials with improved wear resistance characteristics and high and stable friction coefficients. It has been shown, through experimental data and obtained linear regression equations, that the sintered composites wear rate increases with increasing applied load and relative speed, but in the same conditions, the frictional coefficients slowly decrease.

  3. Comparison of the tribological properties at 25 C of seven different polyimide films bonded to 301 stainless steel

    NASA Technical Reports Server (NTRS)

    Fusaro, R. L.

    1980-01-01

    A pin-on-disk type of friction and wear apparatus was used to study the tribological properties of seven different polyimide films bonded to AISI 301 stainless steel disks at 25 C. It was found that the substrate material was extremely influential in determining the lubricating ability of the polyimide films. All seven films spalled in less than 1000 cycles of sliding. This was believed to be caused by poor adherence to the 301 stainless steel or the inability of the films to withstand the high localized tensile stresses imparted by the deformation of the soft substrate under sliding conditions. The friction coefficients obtained for six of the polyimides varied between 0.21 to 0.32 while one varied between 0.32 to 0.39.

  4. Friction and wear performance of ion-beam deposited diamondlike carbon films on steel substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erdemir, A.; Nichols, F.A.; Pan, X.Z.

    1993-01-01

    In this study, we investigated the friction and wear performance of ion-beam-deposited diamondlike-carbon (DLC) films (1.5 {mu}m thick) on AISI 440C steel substrates. Furthermore, we ran a series of long-duration wear tests under 5, 10, and 20 N load to assess the load-bearing capacity and durability limits of these films under each load. Tests were performed on a ball-on-disk machine in open air at room temperature {approx} 22{plus_minus}1{degrees}C, and humidity, {approx} 30{plus_minus}5%. For the test conditions explored, we found that (1) the steady-state friction coefficients of pairs without a DLC film were in the range of 0.7 to 0.9 andmore » the average wear rates of 440C balls (9.55 mm diameter) sliding against uncoated 440C disks were on the order of 10{sup {minus}5} mm{sup 3}/N.m, depending on contact load; (2) DLC films reduced the steady-state friction coefficients of test pairs by factors of 6 to 8, and the wear rates of pins by factors of 500 to 2000; (3) The wear of disks coated with a DLC film was virtually unmeasurable while the wear of uncoated disks was quite substantial, (4) these DLC films were able to endure the range of loads, 5 to 20 N, without any delamination and to last over a million cycles before wearing out. During long-duration wear tests, the friction coefficients were initially on the order of 0.15, but decreased to some low values of 0.05 to 0.07 after sliding for 15 to 25 km, depending on the load, and remained low until wearing out. This low-friction regime was correlated with the formation of a carbon-rich transfer film on the wear scar of 440C balls. Micro-laser-Raman spectroscopy and scanning-electron microscopy were used to examine the structure and chemistry of worn surfaces and to elucidate the wear- and friction-reducing mechanisms of the DLC film.« less

  5. Friction and wear performance of ion-beam deposited diamondlike carbon films on steel substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erdemir, A.; Nichols, F.A.; Pan, X.Z.

    1993-01-01

    In this study, we investigated the friction and wear performance of ion-beam-deposited diamondlike-carbon (DLC) films (1.5 [mu]m thick) on AISI 440C steel substrates. Furthermore, we ran a series of long-duration wear tests under 5, 10, and 20 N load to assess the load-bearing capacity and durability limits of these films under each load. Tests were performed on a ball-on-disk machine in open air at room temperature [approx] 22[plus minus]1[degrees]C, and humidity, [approx] 30[plus minus]5%. For the test conditions explored, we found that (1) the steady-state friction coefficients of pairs without a DLC film were in the range of 0.7 tomore » 0.9 and the average wear rates of 440C balls (9.55 mm diameter) sliding against uncoated 440C disks were on the order of 10[sup [minus]5] mm[sup 3]/N.m, depending on contact load; (2) DLC films reduced the steady-state friction coefficients of test pairs by factors of 6 to 8, and the wear rates of pins by factors of 500 to 2000; (3) The wear of disks coated with a DLC film was virtually unmeasurable while the wear of uncoated disks was quite substantial, (4) these DLC films were able to endure the range of loads, 5 to 20 N, without any delamination and to last over a million cycles before wearing out. During long-duration wear tests, the friction coefficients were initially on the order of 0.15, but decreased to some low values of 0.05 to 0.07 after sliding for 15 to 25 km, depending on the load, and remained low until wearing out. This low-friction regime was correlated with the formation of a carbon-rich transfer film on the wear scar of 440C balls. Micro-laser-Raman spectroscopy and scanning-electron microscopy were used to examine the structure and chemistry of worn surfaces and to elucidate the wear- and friction-reducing mechanisms of the DLC film.« less

  6. Effect of Deformation Mode on the Wear Behavior of NiTi Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Yan, Lina; Liu, Yong

    2016-06-01

    Owing to good biocompatibility, good fatigue resistance, and excellent superelasticity, various types of bio-medical devices based on NiTi shape memory alloy (SMA) have been developed. Due to the complexity in deformation mode in service, for example NiTi implants, accurate assessment/prediction of the surface wear process is difficult. This study aims at providing a further insight into the effect of deformation mode on the wear behavior of NiTi SMA. In the present study, two types of wear testing modes were used, namely sliding wear mode and reciprocating wear mode, to investigate the effect of deformation mode on the wear behavior of NiTi SMA in both martensitic and austenitic states. It was found that, when in martensitic state and under high applied loads, sliding wear mode resulted in more surface damage as compared to that under reciprocating wear mode. When in austenitic state, although similar trends in the coefficient of friction were observed, the coefficient of friction and surface damage in general is less under reciprocating mode than under sliding mode. These observations were further discussed in terms of different deformation mechanisms involved in the wear tests, in particular, the reversibility of martensite variant reorientation and stress-induced phase transformation, respectively.

  7. Investigation of multi-scale flash-weakening of rock surfaces during high speed slip

    NASA Astrophysics Data System (ADS)

    Barbery, M. R.; Saber, O.; Chester, F. M.; Chester, J. S.

    2017-12-01

    A significant reduction in the coefficient of friction of rock can occur if sliding velocity approaches seismic rates as a consequence of weakening of microscopic sliding contacts by flash heating. Using a high-acceleration and -speed biaxial apparatus equipped with a high-speed Infra-Red (IR) camera to capture thermographs of the sliding surface, we have documented the heterogeneous distribution of temperature on flash-heated decimetric surfaces characterized by linear arrays of high-temperature, mm-size spots, and streaks. Numerical models that are informed by the character of flash heated surfaces and that consider the coupling of changes in temperature and changes in the friction of contacts, supports the hypothesis that independent mechanisms of flash weakening operate at different contact scales. Here, we report on new experiments that provide additional constraints on the life-times and rest-times of populations of millimeter-scale contacts. Rock friction experiments conducted on Westerly granite samples in a double-direct shear configuration achieve velocity steps from 1 mm/s to 900 mm/s at 100g accelerations over 2 mm of displacement with normal stresses of 22-36 MPa and 30 mm of displacement during sustained high-speed sliding. Sliding surfaces are machined to roughness similar to natural fault surfaces and that allow us to control the characteristics of millimeter-scale contact populations. Thermographs of the sliding surface show temperatures up to 200 C on millimeter-scale contacts, in agreement with 1-D heat conduction model estimates of 180 C. Preliminary comparison of thermal modeling results and experiment observations demonstrate that we can distinguish the different life-times and rest-times of contacts in thermographs and the corresponding frictional weakening behaviors. Continued work on machined surfaces that lead to different contact population characteristics will be used to test the multi-scale and multi-mechanism hypothesis for flash weakening during seismic slip on rough fault surfaces.

  8. Debris-bed friction of hard-bedded glaciers

    USGS Publications Warehouse

    Cohen, D.; Iverson, N.R.; Hooyer, T.S.; Fischer, U.H.; Jackson, M.; Moore, P.L.

    2005-01-01

    [1] Field measurements of debris-bed friction on a smooth rock tablet at the bed of Engabreen, a hard-bedded, temperate glacier in northern Norway, indicated that basal ice containing 10% debris by volume exerted local shear traction of up to 500 kPa. The corresponding bulk friction coefficient between the dirty basal ice and the tablet was between 0.05 and 0.08. A model of friction in which nonrotating spherical rock particles are held in frictional contact with the bed by bed-normal ice flow can account for these measurements if the power law exponent for ice flowing past large clasts is 1. A small exponent (n < 2) is likely because stresses in ice are small and flow is transient. Numerical calculations of the bed-normal drag force on a sphere in contact with a flat bed using n = 1 show that this force can reach values several hundred times that on a sphere isolated from the bed, thus drastically increasing frictional resistance. Various estimates of basal friction are obtained from this model. For example, the shear traction at the bed of a glacier sliding at 20 m a-1 with a geothermally induced melt rate of 0.006 m a-1 and an effective pressure of 300 kPa can exceed 100 kPa. Debris-bed friction can therefore be a major component of sliding resistance, contradicting the common assumption that debris-bed friction is negligible. Copyright 2005 by the American Geophysical Union.

  9. Effects of Material Combinations on Friction and Wear of PEEK/Steel Pairs under Oil-Lubricated Sliding Contacts

    NASA Astrophysics Data System (ADS)

    Akagaki, T.; Nakamura, T.; Hashimoto, Y.; Kawabata, M.

    2017-05-01

    The effects of material combinations on the friction and wear of PEEK/steel pairs are studied using blocks on a ring wear tester under oil-lubricated conditions. The rings are made of forged steel (SF540A) and a PEEK composite filled with 30 wt% carbon fibre. The surface roughness is 0.15 and 0.32 μm Ra, respectively. The blocks are also made of the same materials as the rings: the forged steel and the PEEK composite. Finished with an emery paper of #600, the surface roughness is 0.06 and 0.23 μm Ra, respectively. Sliding tests for 4 combinations of two materials are conducted. The load is increased up to 1177 N at 1 N s-1. The sliding velocity is varied in the range of 10 to 19 m s-1. In some cases, the ring temperature is measured with a thermocouple with a diameter of 0.5 mm, located 1 mm below the frictional surface. Results indicate that the forged steel’s ring and the PEEK composite’s block is the best combination among 4 combinations, because seizure does not occur under the increasing load up to 1177 N at the sliding velocity of 10-19 m s-1. In contrast, seizure occurs at 15 and 19 m s-1 in the other three combinations. However, the PEEK composite’s ring shows a lower friction coefficient as compared to the forged steel’s ring, when seizure does not occur. Wear scars are observed with a scanning electron microscope (SEM). The seizure mechanisms are then discussed.

  10. Friction Reduction in Powertrain Materials: Role of Tribolayers

    NASA Astrophysics Data System (ADS)

    Banerji, Anindya

    This study aims at understanding the micromechanisms responsible for reduction in friction and wear in the engine cylinder bore/liner materials when tested under lubricated and unlubricated conditions. The tribolayers formed in-situ during sliding contact are unique to each tribosystem and a detailed study of these tribolayers will shed light on the friction reduction mechanisms in powertrain materials. Boundary lubricated tribological performance of grey cast iron (CI) tested against non-hydrogenated diamond-like carbon coating (NH-DLC) resulted in 21% lower coefficient of friction (COF) and an order of magnitude lower volumetric wear compared to CI and steel counterfaces. Dilution of the engine oil by ethanol containing E85 biofuel, consisting of 85% ethanol and 15% gasoline, was beneficial as COF and volumetric wear losses were further reduced. TEM/EELS studies of the NH-DLC counterface provided evidence for OH adsorption of the dangling carbon bonds at the coating surface leading to low friction. Advantage of E85/engine oil blend was also evident during boundary lubricated sliding of eutectic Al-12.6% Si alloy against AISI 52100 steel. The oil residue layer (ORL) formed during boundary lubricated sliding incorporated nanocrystalline regions of Al, Si, ZnS, AlPO4 and ZnO surrounded by amorphous carbon regions. Higher proportions of Zn, S, and P antiwear compounds formed in the ORL when tested using the E85/oil (1:1) blend compared to the unmixed engine oil as the hydroxyl groups in ethanol molecules facilitated ZDDP degradation. Mico-Raman spectroscopy indicated two types of tribolayers formed during unlubricated sliding of thermally sprayed low carbon steel 1010 coating deposited on linerless Al 380 cylinder bore: i) Fe2O3 layer transformed from FeO during dry sliding and ii) Fe2O3 layer with a top amorphous carbon transfer layer when run against H-DLC coated TCR with COF of 0.18. The NH- and H-DLC coatings, that provide low friction under room temperature conditions, fail at temperatures > 200 °C. It was shown that W containing DLC (W-DLC) coatings offered low and stable COF of 0.07 at 400 °C while a Ti incorporated multilayer MoS2 (Ti-MoS2) coating maintained COF between 0.11 at 25 °C to 0.13 at 350 °C. The low friction provided by these coatings was attributed to formation of high temperature lubricious oxides: tungsten trioxide (WO3) in case of W-DLC and MoO3 in case of MoS2, as revealed by Raman analyses of the tribolayers formed on counterface surfaces. Tribolayer formation during sliding friction of multuilayered graphene (MLG), a potential lubricant, depended on the material transfer and relative humidity (RH). Sliding friction tests performed on MLG in air (10- 45% RH) and under a dry N2 atmosphere showed that progressively lower friction values were observed when the RH was increased, with maximum COF of 0.52 in dry N2 and lowest COF of about 0.10 at 45% RH. Microstructural studies including cross-sectional FIB/HR-TEM determined that sliding induced defects which comprised of edge fracture, fragmented/bent graphene stacks compared to pristine graphene and disordered regions between them. In summary, this work shows that delineating the micromechanisms responsible for reduction in friction and wear is critical for development of appropriate materials and coatings for powertrain components.

  11. Lubricating Properties of Some Bonded Fluoride and Oxide Coatings for Temperature to 1500 F

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.

    1960-01-01

    The lubricating properties of some experimental ceramic coatings, diffusion-bonded fluoride coatings, and ceramic-bonded fluoride coatings were determined. The experiments were conducted in an air atmosphere at a sliding velocity of 430 feet per minute and at temperatures from 75 to 1500 F. Several ceramic coatings provided substantial reductions in friction coefficient and rider wear (compared with the unlubricated metals). For example, a cobaltous oxide (CoO) base coating gave friction coefficients of 0.24 to 0.36 within the temperature range of 75 to 1400 F; serious galling and welding of the metal surfaces were prevented. The friction coefficients were higher than the arbitrary maximum (0.2) usually considered for effective boundary lubrication. However, when a moderately high friction coefficient can be tolerated, this type of coating may be a useful antiwear composition. Diffusion-bonded calcium fluoride (CaF2) on Haynes Stellite 21 and on Inconel X gave friction coefficients of 0.1 to 0.2 at 1500 F. Endurance life was dependent on the thermal history of the coating; life improved with increased exposure time at elevated temperatures prior to running. Promising results were obtained with ceramic-bonded CaF2 on Inconel X. Effective lubrication and good adherence were obtained with a 3 to 1 ratio of CaF2 to ceramic. A very thin sintered and burnished film of CaF2 applied to the surface of this coating further improved lubrication, particularly above 1350 F. The friction coefficient was 0.2 at 500 F and decreased with increasing temperature to 0.06-at 1500 F. It was 0.25 at 75 F and 0.22 at 250 F.

  12. Friction and wear study of NR/SBR blends with Si3N4Filler

    NASA Astrophysics Data System (ADS)

    GaneshKumar, A.; Balaganesan, G.; Sivakumar, M. S.

    2018-04-01

    The aim of this paper is to investigate mechanical and frictional properties of natural rubber/styrene butadiene rubber (NR/SBR) blends with and without silicon nitride (Si3N4) filler. The rubber is surface modified by silane coupling agent (Si-69) for enhancing hydrophobic property. The Si3N4of percentage 0 1, 3, 5 and 7, is incorporated into NR/SBR rubber compounds with 20% precipitated silica. The specimens with and without fillers are prepared as per standard for tensile and friction testing. Fourier transform infrared (FTIR) spectroscopy test is conducted and it is inferred that the coupling agent is covalently bonded on the surface of Si3N4 particles and an organic coating layer is formed. The co-efficient of friction and specific wear rate of NR/SBR blends are examined using an in-house built friction tester in a disc-on-plate (DOP) configuration. The specimens are tested to find coefficient of friction (COF) against steel grip antiskid plate under dry, mud, wet and oil environmental conditions. It is found that the increase in tensile strength and modulus at low percentage of Si3N4 dispersion. It is also observed that increase in sliding friction co-efficient and decrease in wear rate for 1% of Si3N4 dispersion in NR/SBR blends. The friction tested surfaces are inspected using Scanning Electron Microscope (SEM) and 3D non contact surface profiler.

  13. Optimization of friction and wear behaviour of Al7075-Al2O3-B4C metal matrix composites using Taguchi method

    NASA Astrophysics Data System (ADS)

    Dhanalakshmi, S.; Mohanasundararaju, N.; Venkatakrishnan, P. G.; Karthik, V.

    2018-02-01

    The present study deals with investigations relating to dry sliding wear behaviour of the Al 7075 alloy, reinforced with Al2O3 and B4C. The hybrid composites are produced through Liquid Metallurgy route - Stir casting method. The amount of Al2O3 particles is varied as 3, 6, 9, 12 and 15 wt% and the amount of B4C is kept constant as 3wt%. Experiments were conducted based on the plan of experiments generated through Taguchi’s technique. A L27 Orthogonal array was selected for analysis of the data. The investigation is to find the effect of applied load, sliding speed and sliding distance on wear rate and Coefficient of Friction (COF) of the hybrid Al7075- Al2O3-B4C composite and to determine the optimal parameters for obtaining minimum wear rate. The samples were examined using scanning electronic microscopy after wear testing and analyzed.

  14. Effect of Coulomb friction on orientational correlation and velocity distribution functions in a sheared dilute granular gas.

    PubMed

    Gayen, Bishakhdatta; Alam, Meheboob

    2011-08-01

    From particle simulations of a sheared frictional granular gas, we show that the Coulomb friction can have dramatic effects on orientational correlation as well as on both the translational and angular velocity distribution functions even in the Boltzmann (dilute) limit. The dependence of orientational correlation on friction coefficient (μ) is found to be nonmonotonic, and the Coulomb friction plays a dual role of enhancing or diminishing the orientational correlation, depending on the value of the tangential restitution coefficient (which characterizes the roughness of particles). From the sticking limit (i.e., with no sliding contact) of rough particles, decreasing the Coulomb friction is found to reduce the density and spatial velocity correlations which, together with diminished orientational correlation for small enough μ, are responsible for the transition from non-gaussian to gaussian distribution functions in the double limit of small friction (μ→0) and nearly elastic particles (e→1). This double limit in fact corresponds to perfectly smooth particles, and hence the maxwellian (gaussian) is indeed a solution of the Boltzmann equation for a frictional granular gas in the limit of elastic collisions and zero Coulomb friction at any roughness. The high-velocity tails of both distribution functions seem to follow stretched exponentials even in the presence of Coulomb friction, and the related velocity exponents deviate strongly from a gaussian with increasing friction.

  15. Is internal friction friction?

    USGS Publications Warehouse

    Savage, J.C.; Byerlee, J.D.; Lockner, D.A.

    1996-01-01

    Mogi [1974] proposed a simple model of the incipient rupture surface to explain the Coulomb failure criterion. We show here that this model can plausibly be extended to explain the Mohr failure criterion. In Mogi's model the incipient rupture surface immediately before fracture consists of areas across which material integrity is maintained (intact areas) and areas across which it is not (cracks). The strength of the incipient rupture surface is made up of the inherent strength of the intact areas plus the frictional resistance to sliding offered by the cracked areas. Although the coefficient of internal friction (slope of the strength versus normal stress curve) depends upon both the frictional and inherent strengths, the phenomenon of internal friction can be identified with the frictional part. The curvature of the Mohr failure envelope is interpreted as a consequence of differences in damage (cracking) accumulated in prefailure loading at different confining pressures.

  16. Friction and wear of selected metals and of carbons in liquid natural gas

    NASA Technical Reports Server (NTRS)

    Wisander, D. W.

    1971-01-01

    Friction and wear experiments were conducted with hemispherically tipped (4.76-mm radius) rider specimens in sliding contact with a rotating disk submerged in liquid natural gas (LNG). The program included metal combinations and carbon-metal combinations. These experiments revealed that the metal combinations were not lubricated by the LNG. Carbons had much lower wear in LNG than in liquid hydrogen or in liquid nitrogen. (Wear of carbon in liquid hydrogen was 100 times that in LNG.) The friction coefficients obtained in LNG (0.6 for metal-metal and 0.2 for carbon-metal) are similar to those obtained in liquid hydrogen.

  17. Chirality-dependent friction of bulk molecular solids.

    PubMed

    Yang, Dian; Cohen, Adam E

    2014-08-26

    We show that the solid-solid friction between bulk chiral molecular solids can depend on the relative chirality of the two materials. In menthol and 1-phenyl-1-butanol, heterochiral friction is smaller than homochiral friction, while in ibuprofen, heterochiral friction is larger. Chiral asymmetries in the coefficient of sliding friction vary with temperature and can be as large as 30%. In the three compounds tested, the sign of the difference between heterochiral and homochiral friction correlated with the sign of the difference in melting point between racemate (compound or conglomerate) and pure enantiomer. Menthol and ibuprofen each form a stable racemic compound, while 1-phenyl-1-butanol forms a racemic conglomerate. Thus, a difference between heterochiral and homochiral friction does not require the formation of a stable interfacial racemic compound. Measurements of chirality-dependent friction provide a unique means to distinguish the role of short-range intermolecular forces from all other sources of dissipation in the friction of bulk molecular solids.

  18. Study of tribological properties of natural rubber containing carbon nanotubes and carbon black as hybrid fillers

    NASA Astrophysics Data System (ADS)

    Harea, Evghenii; Stoček, Radek; Storozhuk, Liudmyla; Sementsov, Yurii; Kartel, Nikolai

    2018-04-01

    Dry friction and wear properties of natural rubber (NR), containing multi-walled carbon nanotubes (MWCNT) and carbon black (CB), were investigated. Natural rubber (NR)-based composites containing all common additives and curatives, and a fixed amount (30 phr—parts per 100 rubber by weight) of hybrid fillers (MWCNT x + CB30-x ) were prepared by simple mixing procedure and tested. The main goal was to study the behaviours of composites at different tribological testing conditions, such as friction speed and normal load. It was found that with an increase of concentration of MWCNT from x = 0 phr to x = 5 phr in studied composites, there was a decrease in the coefficient of friction (COF) with no significant change in wear in the framework of each used combination of testing parameters. Generally, higher friction speed at certain normal force led to the increase of COF of all the samples and wear reflected deliberate value fluctuation. Also, it was established that considerable growth of wear and unexpected reducing of friction coefficient ensued from increasing of applied load for every fixed sliding speed.

  19. A vacuum (10(exp -9) Torr) friction apparatus for determining friction and endurance life of MoSx films

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Honecy, Frank S.; Abel, Phillip B.; Pepper, Stephen V.; Spalvins, Talivaldis; Wheeler, Donald R.

    1992-01-01

    The first part of this paper describes an ultrahigh vacuum friction apparatus (tribometer). The tribometer can be used in a ball-on-disk configuration and is specifically designed to measure the friction and endurance life of solid lubricating films such as MoS(x) in vacuum at a pressure of 10 exp -7 Pa. The sliding mode is typically unidirectional at a constant rotating speed. The second part of this paper presents some representative friction and endurance life data for magnetron sputtered MoS(x) films (110 nm thick) deposited on sputter-cleaned 440 C stainless-steel disk substrates, which were slid against a 6-mm-diameter 440 C stainless-steel bearing ball. All experiments were conducted with loads of 0.49 to 3.6 N (average Hertzian contact pressure, 0.33 to 0.69 GPa), at a constant rotating speed of 120 rpm (sliding velocity ranging from 31 to 107 mm/s due to the range of wear track radii involved in the experiments), in a vacuum of 7 x 10 exp -7 Pa and at room temperature. The results indicate that there are similarities in friction behavior of MoS(x) films overs their life cycles regardless of load applied. The coefficient of friction (mu) decreases as load W increases according to mu = kW exp -1/3. The endurance life E of MoS(x) films decreases as the load W increases according to E = KW exp -1.4 for the load range. The load- (or contract-pressure-) dependent endurance life allows us to reduce the time for wear experiments and to accelerate endurance life testing of MoS(x) films. For the magnetron-sputtered MoS(x) films deposited on 440 C stainless-steel disks: the specific wear rate normalized to the load and the number of revolutions was 3 x 10 exp -8 mm exp 3/N-revolution; the specific wear rate normalized to the load and the total sliding distance was 8 x 10 exp -7 mm exp 3/N-m; and the nondimensional wear coefficient of was approximately 5 x 10 exp -6. The values are almost independent of load in the range 0.49 to 3.6 N (average Hertzian contact pressures of 0.33 to 0.69 GPa).

  20. Skin friction related behaviour of artificial turf systems.

    PubMed

    Tay, Sock Peng; Fleming, Paul; Hu, Xiao; Forrester, Steph

    2017-08-01

    The occurrence of skin friction related injuries is an issue for artificial turf sports pitches and remains a barrier to their acceptance. The purpose of this study was to evaluate the current industry standard Securisport® Sports Surface Tester that measures skin surface related frictional behaviour of artificial turf. Little research has been published about the device and its efficacy, despite its widespread use as a standard FIFA test instrument. To achieve a range of frictional behaviours, several "third generation" (3G) carpet and infill combinations were investigated; friction time profiles throughout the Securisport rotations were assessed in combination with independent measurements of skin roughness before and after friction testing via 3D surface scanning. The results indicated that carpets without infill had greatest friction (coefficients of friction 0.97-1.20) while those completely filled with sand or rubber had similar and lower values independent of carpet type (coefficient of friction (COF) ≈0.57). Surface roughness of a silicone skin (s-skin) decreased after friction testing, with the largest change on sand infilled surfaces, indicating an "abrasive" polishing effect. The combined data show that the s-skin is damaged in a surface-specific manner, thus the Securisport COF values appear to be a poor measure of the potential for skin abrasion. It is proposed that the change in s-skin roughness improves assessment of the potential for skin damage when players slide on artificial turf.

  1. An Electrochemical Processing Strategy for Improving Tribological Performance of Aisi 316 Stainless Steel Under Grease Lubrication

    NASA Astrophysics Data System (ADS)

    Zou, Jiaojuan; Li, Maolin; Lin, Naiming; Zhang, Xiangyu; Qin, Lin; Tang, Bin

    2014-12-01

    In order to improve the tribological performance of AISI 316 stainless steel (316 SS) under grease lubrication, electrochemical processing was conducted on it to obtain a rough (surface texturing-like) surface by making use of the high sensitivity of austenitic stainless steel to pitting corrosion in Cl--rich environment. Numerous corrosion pits or micro-ditches acted as micro-reservoirs on the obtained surface. While the grease could offer consistent lubrication, and then improve the tribological performance of 316 SS. Tribological behaviors of raw 316 SS and the treated sample were measured using a reciprocating type tribometer sliding against GCr15 steel counterpart under dry and grease lubrication conditions. The results showed that the mass losses of the two samples were in the same order of magnitude, and the raw sample exhibited lower friction coefficient in dry sliding. When the tests were conducted under grease lubrication condition, the friction coefficients and mass losses of the treated sample were far lower than those of the raw 316 SS. The tribological performance of 316 SS under grease lubrication was drastically improved after electrochemical processing.

  2. Static and sliding contact of rough surfaces: Effect of asperity-scale properties and long-range elastic interactions

    NASA Astrophysics Data System (ADS)

    Hulikal, Srivatsan; Lapusta, Nadia; Bhattacharya, Kaushik

    2018-07-01

    Friction in static and sliding contact of rough surfaces is important in numerous physical phenomena. We seek to understand macroscopically observed static and sliding contact behavior as the collective response of a large number of microscopic asperities. To that end, we build on Hulikal et al. (2015) and develop an efficient numerical framework that can be used to investigate how the macroscopic response of multiple frictional contacts depends on long-range elastic interactions, different constitutive assumptions about the deforming contacts and their local shear resistance, and surface roughness. We approximate the contact between two rough surfaces as that between a regular array of discrete deformable elements attached to a elastic block and a rigid rough surface. The deformable elements are viscoelastic or elasto/viscoplastic with a range of relaxation times, and the elastic interaction between contacts is long-range. We find that the model reproduces the main macroscopic features of evolution of contact and friction for a range of constitutive models of the elements, suggesting that macroscopic frictional response is robust with respect to the microscopic behavior. Viscoelasticity/viscoplasticity contributes to the increase of friction with contact time and leads to a subtle history dependence. Interestingly, long-range elastic interactions only change the results quantitatively compared to the meanfield response. The developed numerical framework can be used to study how specific observed macroscopic behavior depends on the microscale assumptions. For example, we find that sustained increase in the static friction coefficient during long hold times suggests viscoelastic response of the underlying material with multiple relaxation time scales. We also find that the experimentally observed proportionality of the direct effect in velocity jump experiments to the logarithm of the velocity jump points to a complex material-dependent shear resistance at the microscale.

  3. Atomistic Simulation of Frictional Sliding Between Cellulose Iß Nanocrystals

    Treesearch

    Xiawa Wu; Robert J. Moon; Ashlie Martini

    2013-01-01

    Sliding friction between cellulose Iß nanocrystals is studied using molecular dynamics simulation. The effects of sliding velocity, normal load, and relative angle between sliding surface are predicted, and the results analyzed in terms of the number of hydrogen bonds within and between the cellulose chains. We find that although the observed friction trends can be...

  4. Friction and Wear Properties of CrSiCN/SiC Tribopairs in Water Lubrication

    NASA Astrophysics Data System (ADS)

    Wu, Zhiwei; Zhou, Fei; Wang, Qianzhi

    2018-05-01

    CrSiCN coatings (3.4 at.% Si) were prepared on 316L stainless steels using unbalanced magnetron sputtering. According to the analysis results of x-ray diffractometer and x-ray photoelectrons spectroscopy, silicon in CrSiCN coatings mainly presented in the amorphous forms of a-SiN, a-SiCN and a-SiC. The hardness and Young's modulus of CrSiN coatings were 19.4 ± 0.6 and 306.1 ± 5.9 GPa, respectively. In addition, the ball-on-disk sliding tests of CrSiCN/SiC tribopairs were performed in distilled water at varying velocities (0.1-0.5 m/s) and loads (2-12 N). The friction coefficient of tribopairs presented a decreasing trend with respect to velocity at low applied loads (≤ 4 N). To be specific, the low friction coefficient of 0.05-0.14 accompanied with polished wear scar was obtained at high velocities and low loads. Finally, the wear mechanism map of CrSiCN/SiC tribopairs was proposed based on a combination of friction coefficient, wear scar morphology and wear rates of tribopairs.

  5. Nanofrictional behavior of amorphous, polycrystalline and textured Y-Cr-O films

    NASA Astrophysics Data System (ADS)

    Gervacio-Arciniega, J. J.; Flores-Ruiz, F. J.; Diliegros-Godines, C. J.; Broitman, E.; Enriquez-Flores, C. I.; Espinoza-Beltrán, F. J.; Siqueiros, J.; Cruz, M. P.

    2016-08-01

    Differences in friction coefficients (μ) of ferroelectric YCrO3, textured and polycrystalline films, and non-ferroelectric Y-Cr-O films are analyzed. The friction coefficient was evaluated by atomic force microscopy using a simple quantitative procedure where the dependence of friction force with the applied load is obtained in only one topographical image. A simple code was developed with the MATLAB® software to analyze the experimental data. The code includes a correction of the hysteresis in the forward and backward scanning directions. The quantification of load exerted on the sample surface was obtained by finite element analysis of the AFM cantilever starting from its experimental dynamic information. The results show that the ferroelectric YCrO3 film deposited on a Pt(150 nm)/TiO2(30 nm)/SiO2/Si (100) substrate is polycrystalline and has a lower friction coefficient than the deposited on SrTiO3 (110), which is highly textured. From a viewpoint of industrial application in ferroelectric memories, where the writing process is electrical or mechanically achieved by sliding AFM tips on the sample, polycrystalline YCrO3 films seem to be the best candidates due to their lower μ.

  6. Mechanical interlocking of cotton fibers on slightly textured surfaces of metallic cylinders

    PubMed Central

    Zhang, Youqiang; Tian, Yu; Meng, Yonggang

    2016-01-01

    Mechanical interlocking is widely applied in industry and general lives of human beings. In this work, we realized the control of locking or sliding states of cotton fibers on the metal surfaces with slightly different textures through traditional machining. Three types of sliding states, i.e., locking, one-way sliding, and two-way sliding have been achieved. It is found that the locking or sliding of the cotton fibers on the metallic cylinder depends on the friction coefficient and the ratio of cotton fiber diameter, 2r, to the height of the rough peaks, h, of metal surfaces. When the critical ratio h/r exceeds 1, the cotton fibers could tightly attach to the metallic surface through mechanical interlocking. This work provided a convenient and universal method for the control of interlocking or sliding of fiber-based materials on textured surfaces. PMID:27156720

  7. Frictional behavior of large displacement experimental faults

    USGS Publications Warehouse

    Beeler, N.M.; Tullis, T.E.; Blanpied, M.L.; Weeks, J.D.

    1996-01-01

    The coefficient of friction and velocity dependence of friction of initially bare surfaces and 1-mm-thick simulated fault gouges (400 mm at 25??C and 25 MPa normal stress. Steady state negative friction velocity dependence and a steady state fault zone microstructure are achieved after ???18 mm displacement, and an approximately constant strength is reached after a few tens of millimeters of sliding on initially bare surfaces. Simulated fault gouges show a large but systematic variation of friction, velocity dependence of friction, dilatancy, and degree of localization with displacement. At short displacement (<10 mm), simulated gouge is strong, velocity strengthening and changes in sliding velocity are accompanied by relatively large changes in dilatancy rate. With continued displacement, simulated gouges become progressively weaker and less velocity strengthening, the velocity dependence of dilatancy rate decreases, and deformation becomes localized into a narrow basal shear which at its most localized is observed to be velocity weakening. With subsequent displacement, the fault restrengthens, returns to velocity strengthening, or to velocity neutral, the velocity dependence of dilatancy rate becomes larger, and deformation becomes distributed. Correlation of friction, velocity dependence of friction and of dilatancy rate, and degree of localization at all displacements in simulated gouge suggest that all quantities are interrelated. The observations do not distinguish the independent variables but suggest that the degree of localization is controlled by the fault strength, not by the friction velocity dependence. The friction velocity dependence and velocity dependence of dilatancy rate can be used as qualitative measures of the degree of localization in simulated gouge, in agreement with previous studies. Theory equating the friction velocity dependence of simulated gouge to the sum of the friction velocity dependence of bare surfaces and the velocity dependence of dilatancy rate of simulated gouge fails to quantitatively account for the experimental observations.

  8. An investigation on the tribological properties of Co(ReO4)2/MoS2 composite as potential lubricating additive at various temperatures

    NASA Astrophysics Data System (ADS)

    Wang, Junhai; Lu, Bing; Zhang, Lixiu; Li, Ting; Yan, Tingting; Li, Mengxu

    2018-02-01

    The Co(ReO4)2 powder was fabricated via the aqueous solution method, and mixed with MoS2 powder using ball milling technique. A certain concentration of Co(ReO4)2/MoS2 composite additive was dispersed into the poly alpha olefin base oil with the assistance of surface active agents. The load-carrying property and lubricating behavior of base oil containing a certain content of Co(ReO4)2/MoS2 composite additive at various temperatures were evaluated by four-ball test and ball-on-disc sliding friction test. The physical properties and friction-reducing mechanism of synthesized composite were ascertained by a series of characterization techniques including X-ray diffraction, scanning electron microscopy-energy dispersive spectroscopy, X-ray photoelectron spectroscopy, and differential thermal analysis/thermogravimetry. The four-ball test results suggested the Co(ReO4)2/MoS2 composite additive could effectively promote the load-carrying capacity of base oil, and decrease the friction coefficient as well as wear scar diameter. Ball-on-disc sliding friction test results showed that the base oil with Co(ReO4)2/MoS2 composite additive possessed lower friction coefficients than that of base oil in the whole temperature range, particularly at high temperatures. The protective layer consisted of composite additive and native oxides from superalloy substrate formed on the worn surface to prevent the direct contact between friction pair. The Co(ReO4)2/MoS2 composite played a dominant role in friction-reducing function in the protective layer at elevated temperatures, and the reason for this was that MoS2 possessed layered structure and superior adsorption capacity, and Co(ReO4)2 had experienced thermal softening with elevated temperatures and maintained shear-susceptible hexagonal structure.

  9. Method and apparatus for imparting strength to a material using sliding loads

    DOEpatents

    Hughes, Darcy Anne; Dawson, Daniel B.; Korellis, John S.

    1999-01-01

    A method of enhancing the strength of metals by affecting subsurface zones developed during the application of large sliding loads. Stresses which develop locally within the near surface zone can be many times larger than those predicted from the applied load and the friction coefficient. These stress concentrations arise from two sources: 1) asperity interactions and 2) local and momentary bonding between the two surfaces. By controlling these parameters more desirable strength characteristics can be developed in weaker metals to provide much greater strength to rival that of steel, for example.

  10. Method And Apparatus For Imparting Strength To Materials Using Sliding Loads

    DOEpatents

    Hughes, Darcy Anne; Dawson, Daniel B.; Korellis, John S.

    1999-03-16

    A method of enhancing the strength of metals by affecting subsurface zones developed during the application of large sliding loads. Stresses which develop locally within the near surface zone can be many times larger than those predicted from the applied load and the friction coefficient. These stress concentrations arise from two sources: 1) asperity interactions and 2) local and momentary bonding between the two surfaces. By controlling these parameters more desirable strength characteristics can be developed in weaker metals to provide much greater strength to rival that of steel, for example.

  11. The effect of normal load on polytetrafluoroethylene tribology.

    PubMed

    Barry, Peter R; Chiu, Patrick Y; Perry, Scott S; Sawyer, W Gregory; Phillpot, Simon R; Sinnott, Susan B

    2009-04-08

    The tribological behavior of oriented poly(tetrafluoroethylene) (PTFE) sliding surfaces is examined as a function of sliding direction and applied normal load in classical molecular dynamics (MD) simulations. The forces are calculated with the second-generation reactive empirical bond-order potential for short-range interactions, and with a Lennard-Jones potential for long-range interactions. The range of applied normal loads considered is 5-30 nN. The displacement of interfacial atoms from their initial positions during sliding is found to vary by a factor of seven, depending on the relative orientation of the sliding chains. However, within each sliding configuration the magnitude of the interfacial atomic displacements exhibits little dependence on load over the range considered. The predicted friction coefficients are also found to vary with chain orientation and are in excellent quantitative agreement with experimental measurements.

  12. The effect of normal load on polytetrafluoroethylene tribology

    NASA Astrophysics Data System (ADS)

    Barry, Peter R.; Chiu, Patrick Y.; Perry, Scott S.; Sawyer, W. Gregory; Phillpot, Simon R.; Sinnott, Susan B.

    2009-04-01

    The tribological behavior of oriented poly(tetrafluoroethylene) (PTFE) sliding surfaces is examined as a function of sliding direction and applied normal load in classical molecular dynamics (MD) simulations. The forces are calculated with the second-generation reactive empirical bond-order potential for short-range interactions, and with a Lennard-Jones potential for long-range interactions. The range of applied normal loads considered is 5-30 nN. The displacement of interfacial atoms from their initial positions during sliding is found to vary by a factor of seven, depending on the relative orientation of the sliding chains. However, within each sliding configuration the magnitude of the interfacial atomic displacements exhibits little dependence on load over the range considered. The predicted friction coefficients are also found to vary with chain orientation and are in excellent quantitative agreement with experimental measurements.

  13. Tribological properties of graphite-fiber-reinforced, partially fluorinated polyimide composites

    NASA Technical Reports Server (NTRS)

    Fusaro, R. L.; Hady, W. F.

    1985-01-01

    Graphite-fiber-reinforced polyimide (GFRPI) composites were formulated from three new partially fluorinated polyimides and three types of graphite fiber. Nine composites were molded into pins and evaluated in a pin-on-disk tribometer. Friction coefficients, wear rates, pin wear surface morphology, and transfer film formation were assessed at 25 and 300 C. Also assessed was the effect of sliding speed on friction. Wear was up to two orders of magnitude lower at 25 C and up to one order of magnitude lower at 300 C than with previously formulated NASA GFRPI composites.

  14. Influence of surface passivation on the friction and wear behavior of ultrananocrystalline diamond and tetrahedral amorphous carbon thin films

    NASA Astrophysics Data System (ADS)

    Konicek, A. R.; Grierson, D. S.; Sumant, A. V.; Friedmann, T. A.; Sullivan, J. P.; Gilbert, P. U. P. A.; Sawyer, W. G.; Carpick, R. W.

    2012-04-01

    Highly sp3-bonded, nearly hydrogen-free carbon-based materials can exhibit extremely low friction and wear in the absence of any liquid lubricant, but this physical behavior is limited by the vapor environment. The effect of water vapor on friction and wear is examined as a function of applied normal force for two such materials in thin film form: one that is fully amorphous in structure (tetrahedral amorphous carbon, or ta-C) and one that is polycrystalline with <10 nm grains [ultrananocrystalline diamond (UNCD)]. Tribologically induced changes in the chemistry and carbon bond hybridization at the surface are correlated with the effect of the sliding environment and loading conditions through ex situ, spatially resolved near-edge x-ray absorption fine structure (NEXAFS) spectroscopy. At sufficiently high relative humidity (RH) levels and/or sufficiently low loads, both films quickly achieve a low steady-state friction coefficient and subsequently exhibit low wear. For both films, the number of cycles necessary to reach the steady-state is progressively reduced for increasing RH levels. Worn regions formed at lower RH and higher loads have a higher concentration of chemisorbed oxygen than those formed at higher RH, with the oxygen singly bonded as hydroxyl groups (C-OH). While some carbon rehybridization from sp3 to disordered sp2 bonding is observed, no crystalline graphite formation is observed for either film. Rather, the primary solid-lubrication mechanism is the passivation of dangling bonds by OH and H from the dissociation of vapor-phase H2O. This vapor-phase lubrication mechanism is highly effective, producing friction coefficients as low as 0.078 for ta-C and 0.008 for UNCD, and wear rates requiring thousands of sliding passes to produce a few nanometers of wear.

  15. Research on the dynamic response of high-contact-ratio spur gears influenced by surface roughness under EHL condition

    NASA Astrophysics Data System (ADS)

    Huang, Kang; Xiong, Yangshou; Wang, Tao; Chen, Qi

    2017-01-01

    Employing high-contact-ratio (HCR) gear is an effective method of decreasing the load on a single tooth, as well as reducing vibration and noise. While the spindlier tooth leads to greater relative sliding, having more teeth participate in contact at the same time makes the HCR gear more sensitive to the surface quality. Available literature regarding HCR gear primarily investigates the geometrical optimization, load distribution, or efficiency calculation. Limited work has been conducted on the effect of rough surfaces on the dynamic performance of HCR gear. For this reason, a multi-degree-of-freedom (MDOF) model is presented mathematically to characterize the static transmission error based on fractal theory, investigate the relative sliding friction using an EHL-based friction coefficient formula, and detail the time-varying friction coefficient suitable for HCR gear. Based on numerical results, the surface roughness has little influence on system response in terms of the dynamic transmission error but has a large effect on the motion in off-line-of-action (OLOA) direction and friction force. The impact of shaft-bearing stiffness and damping ratio is also explored with results revealing that a greater shaft-bearing stiffness is beneficial in obtaining a more stable motion in OLOA direction, and a larger damping ratio results in a smaller effective friction force. The theory presented in this report outlines a new method of analyzing the dynamics of HCR gear in respect of introducing surface roughness into MDOF model directly, as well as establishing an indirect relationship between dynamic responses and surface roughness. This method is expected to guide surface roughness design and manufacturing in the future.

  16. Friction Properties of Surface-Fluorinated Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Wal, R. L. Vander; Miyoshi, K.; Street, K. W.; Tomasek, A. J.; Peng, H.; Liu, Y.; Margrave, J. L.; Khabashesku, V. N.

    2005-01-01

    Surface modification of the tubular or sphere-shaped carbon nanoparticles through chemical treatment, e.g., fluorination, is expected to significantly affect their friction properties. In this study, a direct fluorination of the graphene-built tubular (single-walled carbon nanotubes) structures has been carried out to obtain a series of fluorinated nanotubes (fluoronanotubes) with variable C(n)F (n =2-20) stoichiometries. The friction coefficients for fluoronanotubes, as well as pristine and chemically cut nanotubes, were found to reach values as low as 0.002-0.07, according to evaluation tests run in contact with sapphire in air of about 40% relative humidity on a ball-on-disk tribometer which provided an unidirectional sliding friction motion. These preliminary results demonstrate ultra-low friction properties and show a promise in applications of surface modified nanocarbons as a solid lubricant.

  17. Tribological properties of glass fiber filled polytetrafluoroethylene sliding against stainless steel under dry and aqueous environments: enhanced tribological performance in sea water

    NASA Astrophysics Data System (ADS)

    Jebran Khan, Mohammad; Wani, M. F.; Gupta, Rajat

    2018-05-01

    The present study aims at investigating the tribological behavior of glass fiber filled PTFE on sliding against AISI 420 stainless steel in ambient air, distilled water and natural sea water. The friction and wear tests were carried out using a pin-on-disc configuration at room temperature on 25 wt% glass fiber filled PTFE at a normal load of 10 N. The glass fiber filled PTFE showed superior tribological performance in sea water compared to dry sliding and distilled water environment conditions. The lowest average coefficient of friction of 0.028 and lowest specific wear rate of 5.85 × 10‑6 mm3 Nm‑1 was observed under sea water environment. The worn surfaces were examined using Optical microscopy, SEM, EDS and Raman spectroscopy to reveal the wear mechanisms. It was revealed that the superior tribological performance of glass fiber filled PTFE in sea water is due to the formation of a lubricating film on the surface of glass fiber filled PTFE in sea water. The profilometric traces of the counterface after tribological tests were taken using an optical 3D surface profilometer to investigate the effect of indirect corrosive wear on the friction and wear of glass fiber filled PTFE under sea water environment.

  18. Tribological characteristics of nitrogen (N+) implanted iron

    NASA Technical Reports Server (NTRS)

    Jones, W. R.; Ferrante, J.

    1982-01-01

    The effect of implantation of nitrogen ions (1.5 MeV) on the friction and wear characteristics of pure ion sliding against M-50 steel (unimplanted) was studied in a pin-on-disk sliding friction apparatus. Test conditions included room temperature (25 C), a dry air atmosphere, a load of 1/2 kg (4.9 N), sliding velocities of 0.043 to 0.078 m/sec (15 to 25 rpm), a pure hydrocarbon lubricant (n-hexadecane), or a U.S.P. mineral oil and nitrogen ion implantation doses of 5x10 to the 15th power and 5x10 to the 17th power ions/sq cm. No differences in wear rates were observed in the low dose experiments. In the high dose experiments, small reductions in initial (40 percent) and steady state (20 percent) wear rates were observed for nitrogen implanted iron riders as compared with unimplanted controls. No differences in average friction coefficients were noted for either dose. Auger electron spectroscopy combined with argon ion bombardment revealed a subsurface Gaussian nitrogen distribution with a maximum concentration of 6 atomic percent at a depth of 0.8 microns. Similar analysis within the wear scar of an implanted rider after 20 microns of wear yielded only background nitrogen concentration. No inward migration of nitrogen ions was observed.

  19. Friction and Wear of Unlubricated NiTiHf with Nitriding Surface Treatments

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm K.

    2018-01-01

    The unlubricated friction and wear properties of the superelastic materials NiTi and NiTiHf, treated by either gas nitriding or plasma nitriding, have been investigated. Pin on disk testing of the studied materials was performed at sliding speeds from 0.01 to 1m/s at normal loads of 1, 5 or 10N. For all of the studied friction pairs (NiTiHf pins vs. NiTi and NiTiHf disks) over the given parameters, the steady-state coefficients of friction varied from 0.22 to 1.6. Pin wear factors ranged from approximately 1E-6 against the NiTiHf and plasma nitrided disks to approximately 1E-4 for the gas nitrided disks. The plasma nitrided disks provided wear protection in several cases and tended to wear by adhesion. The gas nitrided treatment generated the most pin wear but had essentially no disk wear except at the most severe of the studied conditions (1N load and 1m/s sliding speed). The results of this study are expected to provide guidance for design of components such as gears and fasteners.

  20. A comparative study to evaluate the effects of ligation methods on friction in sliding mechanics using 0.022" slot brackets in dry state: An In-vitro study

    PubMed Central

    Vinay, K; Venkatesh, M J; Nayak, Rabindra S; Pasha, Azam; Rajesh, M; Kumar, Pradeep

    2014-01-01

    Background: Friction between archwires and brackets is assuming greater importance for finishing with increased use of sliding mechanics in orthodontics as friction impedes the desired tooth movement. The following study is conducted to compare and evaluate the effect of ligation on friction in sliding mechanics using 0.022" slot bracket in dry condition. Materials & Methods: In the study 48 combinations of brackets, archwires and different ligation techniques were tested in order to provide best combination that offers less friction during sliding mechanics. Instron- 4467 machine was used to evaluate static and kinetic friction force values and the results were subjected to Statistical Analysis and Anova test. Results: The results of the study showed that 0.022" metal brackets, Stainless steel wires and Slick modules provided the optimum frictional resistance to sliding mechanics. It is observed that frictional forces of 0.019" x 0.025" were higher when compared with 0.016" x 0.022" Stainless steel archwire due to the increase in dimension. Self-ligating brackets offered least friction followed by mini twin, variable force, regular stainless steel, ceramic with metal insert bracket and ceramic brackets. The stainless steel ligature offered less resistance than slick and grey modules, and TMA wires recorded maximum friction. Conclusion: The stainless steel archwire of 0.019" x 0.025" dimension are preferred during sliding mechanics, these archwires with variable force brackets ligated with Slick Modules offer decreased friction and is cost effective combination which can be utilized during sliding mechanics. How to cite the article: Vinay K, Venkatesh MJ, Nayak RS, Pasha A, Rajesh M, Kumar P. A comparative study to evaluate the effects of ligation methods on friction in sliding mechanics using 0.022" slot brackets in dry state: An In-vitro study. J Int Oral Health 2014;6(2):76-83. PMID:24876706

  1. A comparative study to evaluate the effects of ligation methods on friction in sliding mechanics using 0.022" slot brackets in dry state: An In-vitro study.

    PubMed

    Vinay, K; Venkatesh, M J; Nayak, Rabindra S; Pasha, Azam; Rajesh, M; Kumar, Pradeep

    2014-04-01

    Friction between archwires and brackets is assuming greater importance for finishing with increased use of sliding mechanics in orthodontics as friction impedes the desired tooth movement. The following study is conducted to compare and evaluate the effect of ligation on friction in sliding mechanics using 0.022" slot bracket in dry condition. In the study 48 combinations of brackets, archwires and different ligation techniques were tested in order to provide best combination that offers less friction during sliding mechanics. Instron- 4467 machine was used to evaluate static and kinetic friction force values and the results were subjected to Statistical Analysis and Anova test. The results of the study showed that 0.022" metal brackets, Stainless steel wires and Slick modules provided the optimum frictional resistance to sliding mechanics. It is observed that frictional forces of 0.019" x 0.025" were higher when compared with 0.016" x 0.022" Stainless steel archwire due to the increase in dimension. Self-ligating brackets offered least friction followed by mini twin, variable force, regular stainless steel, ceramic with metal insert bracket and ceramic brackets. The stainless steel ligature offered less resistance than slick and grey modules, and TMA wires recorded maximum friction. The stainless steel archwire of 0.019" x 0.025" dimension are preferred during sliding mechanics, these archwires with variable force brackets ligated with Slick Modules offer decreased friction and is cost effective combination which can be utilized during sliding mechanics. How to cite the article: Vinay K, Venkatesh MJ, Nayak RS, Pasha A, Rajesh M, Kumar P. A comparative study to evaluate the effects of ligation methods on friction in sliding mechanics using 0.022" slot brackets in dry state: An In-vitro study. J Int Oral Health 2014;6(2):76-83.

  2. Strongly Modulated Friction of a Film-Terminated Ridge-Channel Structure.

    PubMed

    He, Zhenping; Hui, Chung-Yuen; Levrard, Benjamin; Bai, Ying; Jagota, Anand

    2016-05-26

    Natural contacting surfaces have remarkable surface mechanical properties, which has led to the development of bioinspired surface structures using rubbery materials with strongly enhanced adhesion and static friction. However, sliding friction of structured rubbery surfaces is almost always significantly lower than that of a flat control, often due to significant loss of contact. Here we show that a film-terminated ridge-channel structure can strongly enhance sliding friction. We show that with properly chosen materials and geometrical parameters the near surface structure undergoes mechanical instabilities along with complex folding and sliding of internal interfaces, which is responsible for the enhancement of sliding friction. Because this structure shows no enhancement of adhesion under normal indentation by a sphere, it breaks the connection between energy loss during normal and shear loading. This makes it potentially interesting in many applications, for instance in tires, where one wishes to minimize rolling resistance (normal loading) while maximizing sliding friction (shear loading).

  3. Slipping and Rolling on an Inclined Plane

    ERIC Educational Resources Information Center

    Aghamohammadi, Cina; Aghamohammadi, Amir

    2011-01-01

    In the first part of the paper, using a direct calculation two-dimensional motion of a particle sliding on an inclined plane is investigated for general values of friction coefficient ([mu]). A parametric equation for the trajectory of the particle is also obtained. In the second part of the paper, the motion of a sphere on the inclined plane is…

  4. Influence of Nitrogen Flow Rate on Friction Coefficient and Surface Roughness of TiN Coatings Deposited on Tool Steel Using Arc Method

    NASA Astrophysics Data System (ADS)

    Hamzah, Esah; Ourdjini, Ali; Ali, Mubarak; Akhter, Parvez; Hj. Mohd Toff, Mohd Radzi; Abdul Hamid, Mansor

    In the present study, the effect of various N2 gas flow rates on friction coefficient and surface roughness of TiN-coated D2 tool steel was examined by a commercially available cathodic arc physical vapor deposition (CAPVD) technique. A Pin-on-Disc test was carried out to study the Coefficient of friction (COF) versus sliding distance. A surface roughness tester measured the surface roughness parameters. The minimum values for the COF and surface roughness were recorded at a N2 gas flow rate of 200 sccm. The increase in the COF and surface roughness at a N2 gas flow rate of 100 sccm was mainly attributed to an increase in both size and number of titanium particles, whereas the increase at 300 sccm was attributed to a larger number of growth defects generated during the coating process. These ideas make it possible to optimize the coating properties as a function of N2 gas flow rate for specific applications, e.g. cutting tools for automobiles, aircraft, and various mechanical parts.

  5. The coupled effects of environmental composition, temperature and contact size-scale on the tribology of molybdenum disulfide

    NASA Astrophysics Data System (ADS)

    Khare, Harmandeep S.

    Liquid lubricants are precluded in an exceedingly large number of consumer as well as extreme applications as a means to reduce friction and wear at the sliding interface of two bodies. The extraterrestrial environment is one such example of an extreme environment which has motivated the development of advanced solid lubricant materials. Mechanical systems for space require fabrication, assembly, transportation and testing on earth before launch and deployment. Solid lubricants for space are expected to not only operate efficiently in the hard vacuum of space but also withstand interactions with moisture or oxygen during the terrestrial storage, transportation and assembly prior to deployment and launch. Molybdenum disulfide (MoS2) is considered the gold standard in solid lubricants for space due to its excellent tribological properties in ultra-high vacuum. However in the presence of environmental species such as water and oxygen or at elevated temperatures, the lubricity and endurance of MoS2 is severely limited. Past studies have offered several hypotheses for the breakdown of lubrication of MoS2 under the influence of water and oxygen, although exact mechanisms remain unknown. Furthermore, it is unclear if temperature acts as a driver solely for oxidation or for thermally activated slip and thermally activated desorption as well. The answers to these questions are of fundamental importance to improving the reliability of existing MoS2-based solid lubricants for space, as well as for guiding the design of advanced lamellar solid lubricant coatings. This dissertation aims to elucidate: (1) the role of water on MoS2 oxidation, (2) the role of water on MoS2 friction, (3) the role of oxygen on MoS2 friction, (4) the contribution of thermal activation to ambient-temperature friction, and (5) effects of length-scale. The results of this study showed that water does not cause oxidation of MoS2. Water increases ambient-temperature friction of MoS2 directly through a combination of both surface adsorption and diffusion into the coating subsurface. Thermally activated desiccation effectively dries the bulk of the coating, yielding low values of friction coefficient even at ambient humidity and temperature. Friction of MoS2 decreases with increasing temperature between 25°C and 100°C in the presence of environmental water and increases in the presence of oxygen alone. At temperatures greater than 100°C, friction generally increases with temperature only in the presence of environmental oxygen; at these elevated temperatures, friction decreases with increasing humidity. The transition from room-temperature increase to elevated-temperature decrease in friction with increasing humidity is found to be a strong function of the contact history as well as coating microstructure. Lastly, the contribution of nanoscale tribofilms to macroscale friction was studied through nanotribometry. Friction measured on the worn MoS2 coating with a nano-scale AFM probe showed direct and quantifiable evidence of sliding-induced surface modification of MoS2; friction measured on the perfectly ordered single crystal MoS2 was nearly an order of magnitude lower than friction on worn MoS2. Although friction coefficients measured with a nanoscale probe showed high surface sensitivity, micron-sized AFM probes gave friction coefficients similar to those obtained in the macroscale, suggesting the formation of surface films in-situ during sliding with the colloidal probe. A reduction in friction is observed after annealing for both the nanoscale and microscale probes, suggesting a strong overriding effect of the desiccated bulk over surface adsorption in driving the friction response at these length-scales.

  6. Effects of nano-LaF3 on the friction and wear behaviors of PTFE-based bonded solid lubricating coatings under different lubrication conditions

    NASA Astrophysics Data System (ADS)

    Jia, Yulong; Wan, Hongqi; Chen, Lei; Zhou, Huidi; Chen, Jianmin

    2016-09-01

    Influence of nanometer lanthanum fluoride (nano-LaF3) on the tribological behaviors of polytetrafluoroethylene (PTFE) bonded solid lubricating coatings were investigated using a ring-on-block friction-wear tester under dry friction and RP-3 jet fuel lubrication conditions. The worn surfaces and transfer films formed on the counterpart steel rings were observed by scanning electron microscope (SEM) and optical microscope (OM), respectively. The microstructures of the nano-LaF3 modified coatings and the distribution states of nano-LaF3 were studied by field-emission scanning electron microscope (FESEM) and transmission electron microscopy (TEM), respectively. The results show that incorporation of nano-LaF3 improves the microhardness and the friction-reduced and anti-wear abilities of PTFE bonded solid lubricating coatings. The wear life of the modified coating is about 6 times longer than that of the coating without nano-LaF3 filler at a relatively low applied load (200 N) and rotary speed (1000 rev/min) under dry friction condition. The friction coefficient and wear life of the modified coating decrease with increase of applied load under dry friction, but the friction coefficient has hardly any variation and wear life decreases under RP-3 jet fuel lubrication condition. In addition, the friction coefficient of the modified coating reduces with the rotary speed increasing under dry sliding but has little change under RP-3 lubrication, the wear life increases firstly and then decreases. The results indicated that the wear failure mechanism is dominated by applied load, which plays an important role in guidance of application of nano-LaF3 modified PTFE bonded coating under different working environment.

  7. Contrasting frictional behaviour of fault gouges containing Mg-rich phyllosilicates

    NASA Astrophysics Data System (ADS)

    Sanchez Roa, C.; Faulkner, D.; Jimenez Millan, J.; Nieto, F.

    2015-12-01

    The clay mineralogy of fault gouges has important implications on frictional properties and stability of fault planes. We studied the specific case of the Galera fault zone where fault gouges containing Mg-rich phyllosilicates appear as hydrothermal deposits related to high salinity fluids enriched in Mg2+. These deposits are dominated by sepiolite and palygorskite, both fibrous clay minerals with similar composition to Mg-smectite. The frictional strengths of sepiolite and palygorskite have not yet been determined, however, as they are part of the clay mineral group, it has been assumed that their frictional behaviour would be in line with platy clay minerals. We performed frictional sliding experiments on powdered pure standards and fault rocks in order to establish the frictional behaviour of sepiolite and palygorskite using a triaxial deformation apparatus with a servo-controlled axial loading system and fluid pressure pump. Friction coefficients for palygorskite and sepiolite as monomineralic samples were found to be 0.65 to 0.7 for dry experiments, and 0.45 to 0.5 for water-saturated experiments. Although these fibrous minerals are part of the phyllosilicates group, they show higher friction coefficients and their mechanical behaviour is less stable than platy clay minerals. This difference is a consequence of their stronger structural framework and the discontinuity of water layers. Our results present a contrast in mechanical behaviour between Mg-rich fibrous and platy clay minerals in fault gouges, where smectite is known to considerably reduce friction coefficients and to increase the stability of the fault plane leading to creeping processes. Transformations between saponite and sepiolite have been previously observed and could modify the deformation regime of a fault zone. Constraining the stability conditions and possible mineral reactions or transformations in fault gouges could help us understand the general role of clay minerals in fault stability.

  8. Friction and wear behaviour of Ni-Cr-B hardface coating on 316LN stainless steel in liquid sodium at elevated temperature

    NASA Astrophysics Data System (ADS)

    Kumar, Hemant; Ramakrishnan, V.; Albert, S. K.; Bhaduri, A. K.; Ray, K. K.

    2017-11-01

    The sliding friction and wear behaviour of Ni-Cr-B hardface coating made on 316LN stainless steel were evaluated in liquid sodium at 823 K by using a fabricated reciprocating-type tribometer. The test parameters have been selected based on operational conditions prevailing in the Indian sodium cooled fast breeder reactors (FBRs). Accordingly, the tests were carried out at sliding speeds of 2 and 16 mm/s under contact stresses of 10 and 40 MPa respectively using Ni-Cr-B coated pin and disc specimens. The static and dynamic friction coefficients are found to be in the ranges of 0.03-0.07 and 0.01-0.02 respectively under the imposed test conditions. The estimated wear rates (WR) are found to be in the range of 0.62 × 10-12 - 3.07 × 10-12 m3/m; the magnitude of WR increases with increase in the contact stress. The examination of the worn disc specimens by confocal laser scanning microscopy indicated higher damage in specimens tested at 40 MPa compared to that in specimens tested at 10 MPa; the quantitative estimation of damage was made by the number of scars and their depth. These observations corroborate well with the morphological features of the worn surfaces of the pin specimens examined by scanning electron microscopy. The results unambiguously indicate superior friction coefficients and wear resistance of Ni-Cr-B coatings in liquid sodium compared to that in air under identical test conditions.

  9. History-dependent friction and slow slip from time-dependent microscopic junction laws studied in a statistical framework

    NASA Astrophysics Data System (ADS)

    Thøgersen, Kjetil; Trømborg, Jørgen Kjoshagen; Sveinsson, Henrik Andersen; Malthe-Sørenssen, Anders; Scheibert, Julien

    2014-05-01

    To study how macroscopic friction phenomena originate from microscopic junction laws, we introduce a general statistical framework describing the collective behavior of a large number of individual microjunctions forming a macroscopic frictional interface. Each microjunction can switch in time between two states: a pinned state characterized by a displacement-dependent force and a slipping state characterized by a time-dependent force. Instead of tracking each microjunction individually, the state of the interface is described by two coupled distributions for (i) the stretching of pinned junctions and (ii) the time spent in the slipping state. This framework allows for a whole family of microjunction behavior laws, and we show how it represents an overarching structure for many existing models found in the friction literature. We then use this framework to pinpoint the effects of the time scale that controls the duration of the slipping state. First, we show that the model reproduces a series of friction phenomena already observed experimentally. The macroscopic steady-state friction force is velocity dependent, either monotonic (strengthening or weakening) or nonmonotonic (weakening-strengthening), depending on the microscopic behavior of individual junctions. In addition, slow slip, which has been reported in a wide variety of systems, spontaneously occurs in the model if the friction contribution from junctions in the slipping state is time weakening. Next, we show that the model predicts a nontrivial history dependence of the macroscopic static friction force. In particular, the static friction coefficient at the onset of sliding is shown to increase with increasing deceleration during the final phases of the preceding sliding event. We suggest that this form of history dependence of static friction should be investigated in experiments, and we provide the acceleration range in which this effect is expected to be experimentally observable.

  10. History-dependent friction and slow slip from time-dependent microscopic junction laws studied in a statistical framework.

    PubMed

    Thøgersen, Kjetil; Trømborg, Jørgen Kjoshagen; Sveinsson, Henrik Andersen; Malthe-Sørenssen, Anders; Scheibert, Julien

    2014-05-01

    To study how macroscopic friction phenomena originate from microscopic junction laws, we introduce a general statistical framework describing the collective behavior of a large number of individual microjunctions forming a macroscopic frictional interface. Each microjunction can switch in time between two states: a pinned state characterized by a displacement-dependent force and a slipping state characterized by a time-dependent force. Instead of tracking each microjunction individually, the state of the interface is described by two coupled distributions for (i) the stretching of pinned junctions and (ii) the time spent in the slipping state. This framework allows for a whole family of microjunction behavior laws, and we show how it represents an overarching structure for many existing models found in the friction literature. We then use this framework to pinpoint the effects of the time scale that controls the duration of the slipping state. First, we show that the model reproduces a series of friction phenomena already observed experimentally. The macroscopic steady-state friction force is velocity dependent, either monotonic (strengthening or weakening) or nonmonotonic (weakening-strengthening), depending on the microscopic behavior of individual junctions. In addition, slow slip, which has been reported in a wide variety of systems, spontaneously occurs in the model if the friction contribution from junctions in the slipping state is time weakening. Next, we show that the model predicts a nontrivial history dependence of the macroscopic static friction force. In particular, the static friction coefficient at the onset of sliding is shown to increase with increasing deceleration during the final phases of the preceding sliding event. We suggest that this form of history dependence of static friction should be investigated in experiments, and we provide the acceleration range in which this effect is expected to be experimentally observable.

  11. Integrated Data Collection and Analysis Project: Friction Correlation Study

    DTIC Science & Technology

    2015-08-01

    methods authorized in AOP-7 include Pendulum Friction, Rotary Friction, Sliding Friction (ABL), BAM Friction and Steel/Fiber Shoe Methods. The...sensitivity can be obtained by Pendulum Friction, Rotary Friction, Sliding Friction (such as the ABL), BAM Friction and Steel/Fiber Shoe Methods.3, 4 Within...Figure 4.16 A variable compressive force is applied downward through the wheel hydraulically (50-1995 psi). The 5 kg pendulum impacts (8 ft/sec is the

  12. Tribological properties of Ag/Ti films on Al2O3 ceramic substrates

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Pepper, Stephen V.; Honecy, Frank S.

    1991-01-01

    Ag solid lubricant films, with a thin Ti interlayer for enhanced adhesion, were sputter deposited on Al2O3 substrate disks to reduce friction and wear. The dual Ag/Ti films were tested at room temperature in a pin-on-disk tribometer sliding against bare, uncoated Al2O3 pins under a 4.9 N load at a sliding velocity of 1 m/s. The Ag/Ti films reduced the friction coefficient by 50 percent to about 0.41 compared to unlubricated baseline specimens. Pin wear was reduced by a factor of 140 and disk wear was reduced by a factor of 2.5 compared to the baseline. These films retain their good tribological properties including adhesion after heat treatments at 850 C and thus may be able to lubricate over a wide temperature range. This lubrication technique is applicable to space lubrication, advanced heat engines, and advanced transportation systems.

  13. Frictional Properties of Simulated Fault Gouges from the Seismogenic Groningen Gas Field Under In Situ P-T -Chemical Conditions

    NASA Astrophysics Data System (ADS)

    Hunfeld, L. B.; Niemeijer, A. R.; Spiers, C. J.

    2017-11-01

    We investigated the frictional properties of simulated fault gouges derived from the main lithologies present in the seismogenic Groningen gas field (NE Netherlands), employing in situ P-T conditions and varying pore fluid salinity. Direct shear experiments were performed on gouges prepared from the Carboniferous shale/siltstone substrate, the Upper Rotliegend Slochteren sandstone reservoir, the overlying Ten Boer claystone, and the Basal Zechstein anhydrite-carbonate caprock, at 100°C, 40 MPa effective normal stress, and sliding velocities of 0.1-10 μm/s. As pore fluids, we used pure water, 0.5-6.2 M NaCl solutions, and a 6.9 M mixed chloride brine mimicking the formation fluid. Our results show a marked mechanical stratigraphy, with a maximum friction coefficient (μ) of 0.66 for the Basal Zechstein, a minimum of 0.37 for the Ten Boer claystone, 0.6 for the reservoir sandstone, and 0.5 for the Carboniferous. Mixed gouges showed intermediate μ values. Pore fluid salinity had no effect on frictional strength. Most gouges showed velocity-strengthening behavior, with little systematic effect of pore fluid salinity or sliding velocity on (a-b). However, Basal Zechstein gouge showed velocity weakening at low salinities and/or sliding velocities, as did 50:50 mixtures with sandstone gouge, tested with the 6.9 M reservoir brine. From a rate and state friction viewpoint, our results imply that faults incorporating Basal Zechstein anhydrite-carbonate material at the top of the reservoir are the most prone to accelerating slip, that is, have the highest seismogenic potential. The results are equally relevant to other Rotliegend fields in the Netherlands and N. Sea region and to similar sequences globally.

  14. Solid friction between soft filaments.

    PubMed

    Ward, Andrew; Hilitski, Feodor; Schwenger, Walter; Welch, David; Lau, A W C; Vitelli, Vincenzo; Mahadevan, L; Dogic, Zvonimir

    2015-06-01

    Any macroscopic deformation of a filamentous bundle is necessarily accompanied by local sliding and/or stretching of the constituent filaments. Yet the nature of the sliding friction between two aligned filaments interacting through multiple contacts remains largely unexplored. Here, by directly measuring the sliding forces between two bundled F-actin filaments, we show that these frictional forces are unexpectedly large, scale logarithmically with sliding velocity as in solid-like friction, and exhibit complex dependence on the filaments' overlap length. We also show that a reduction of the frictional force by orders of magnitude, associated with a transition from solid-like friction to Stokes's drag, can be induced by coating F-actin with polymeric brushes. Furthermore, we observe similar transitions in filamentous microtubules and bacterial flagella. Our findings demonstrate how altering a filament's elasticity, structure and interactions can be used to engineer interfilament friction and thus tune the properties of fibrous composite materials.

  15. Solid friction between soft filaments

    NASA Astrophysics Data System (ADS)

    Ward, Andrew; Hilitski, Feodor; Schwenger, Walter; Welch, David; Lau, A. W. C.; Vitelli, Vincenzo; Mahadevan, L.; Dogic, Zvonimir

    2015-06-01

    Any macroscopic deformation of a filamentous bundle is necessarily accompanied by local sliding and/or stretching of the constituent filaments. Yet the nature of the sliding friction between two aligned filaments interacting through multiple contacts remains largely unexplored. Here, by directly measuring the sliding forces between two bundled F-actin filaments, we show that these frictional forces are unexpectedly large, scale logarithmically with sliding velocity as in solid-like friction, and exhibit complex dependence on the filaments’ overlap length. We also show that a reduction of the frictional force by orders of magnitude, associated with a transition from solid-like friction to Stokes’s drag, can be induced by coating F-actin with polymeric brushes. Furthermore, we observe similar transitions in filamentous microtubules and bacterial flagella. Our findings demonstrate how altering a filament’s elasticity, structure and interactions can be used to engineer interfilament friction and thus tune the properties of fibrous composite materials.

  16. Solid friction between soft filaments

    DOE PAGES

    Ward, Andrew; Hilitski, Feodor; Schwenger, Walter; ...

    2015-03-02

    Any macroscopic deformation of a filamentous bundle is necessarily accompanied by local sliding and/or stretching of the constituent filaments. Yet the nature of the sliding friction between two aligned filaments interacting through multiple contacts remains largely unexplored. Here, by directly measuring the sliding forces between two bundled F-actin filaments, we show that these frictional forces are unexpectedly large, scale logarithmically with sliding velocity as in solid-like friction, and exhibit complex dependence on the filaments’ overlap length. We also show that a reduction of the frictional force by orders of magnitude, associated with a transition from solid-like friction to Stokes’s drag,more » can be induced by coating F-actin with polymeric brushes. Furthermore, we observe similar transitions in filamentous microtubules and bacterial flagella. In conclusion, our findings demonstrate how altering a filament’s elasticity, structure and interactions can be used to engineer interfilament friction and thus tune the properties of fibrous composite materials.« less

  17. Sliding temperatures of ice skates

    NASA Astrophysics Data System (ADS)

    Colbeck, S. C.; Najarian, L.; Smith, H. B.

    1997-06-01

    The two theories developed to explain the low friction of ice, pressure melting and frictional heating, require opposite temperature shifts at the ice-skate interface. The arguments against pressure melting are strong, but only theoretical. A set of direct temperature measurements shows that frictional heating is the dominant mechanism because temperature behaves in the manner predicted by the theory of frictional heating. Like snow skis, ice skates are warmed by sliding and then cool when the sliding stops. The temperature increases with speed and with thermal insulation. The sliding leaves a warm track on the ice surface behind the skate and the skate sprays warm ejecta.

  18. Frictional weakening of Landslides in the Solar System

    NASA Astrophysics Data System (ADS)

    Lucas, Antoine; Mangeney, Anne; Ampuero, Jean-Paul

    2014-05-01

    Landslides are an important phenomenon that shapes the surface morphology of solid planetary bodies, including planets and small bodies. In addition, landslide science aims to predict the maximum distance travelled and the maximum velocity reached by a potential landslide in order to quantify the damage it may cause. On the one hand, observations show that the so-called Heim's ratio (i.e. the ratio between the difference of the height of the initial mass and that of the deposit, and the traveling distance) decreases with increasing volume for landslides observed on Earth [1] and other planets like Mars and icy moons like Iapetus [2], but whether this quantity is a good representation of the effective friction during the flow is still a controversial issue. On the other hand, numerical simulations (either continuous or discrete) of real landslides commonly require the assumption of very small friction coefficient to reproduce the extension of deposits [2-5]. We investigate if a common origin can explain the characteristics of landslides in such variety of planetary environments. Based on analytical and numerical solutions for granular flows constrained by remote-sensing observations [3, 7], we developed a consistent method to estimate the effective friction coefficient of landslides, i.e., the constant basal friction coefficient that reproduces their first-order properties. We show that: i) the Heim's ratio is not equivalent to the effective friction coefficient; ii) the friction coefficient decreases with increasing volume or, more fundamentally, with increasing sliding velocity. Inspired by frictional weakening mechanisms thought to operate during earthquakes [8], we propose an empirical velocity-weakening friction law under an unifying phenomenological framework applicable to small to large landslides observed on Earth and beyond (including icy moons of giant planets) whatever the environment and material involved. References: [1] Legros, Eng. Geol. 2002; [2] Lucas, Nat. Geosc. News & Views, 2012. [3] Lucas & Mangeney, GRL, 2007. [4] Pudasaini & Hutter, Springer, 2007. [5] Campbell et al., JGR, 1995. [6] Smart et al., AGU Fall Meeting, 2010. [7] Lucas et al., JGR, 2011. [8] Rice, JGR, 2006. N.B. This work is subject to press embargo.

  19. Wear behaviour and morphology of stir cast aluminium/SiC nanocomposites

    NASA Astrophysics Data System (ADS)

    Tanwir Alam, Md; Arif, Sajjad; Husain Ansari, Akhter

    2018-04-01

    Wear and friction play a vital role in the service life of components. Aluminium matrix nanocomposites possess tremendous potential for a number of applications in addition to their present uses. It is valuable to the field of newer materials for better performance in tribological applications. In this work, dry sliding wear, friction coefficient and morphology of aluminium alloy (A356) reinforced with silicon carbide nanoparticles (SiCn) were investigated. A356/SiCn nanocomposites (AMNCs) containing 1–5 weight percentage of SiCn were prepared through two-step stir casting process via mechanical ball milling. The wear test was conducted on pin-on-disc test apparatus. Regression analysis was performed to develop mathematical functions to fit the experimental data points. Morphological studies of Al and SiCn as-received, wear debris and worn surfaces were further analysed by SEM along with EDS. The occurrence of oxide layers was observed on worn surfaces. Iron trace was identified by wear debris. It was found that the wear loss and friction coefficient were strongly influenced by mechanical milling and SiCn content. The results exhibited that the friction coefficient reduces with the addition of SiCn as well as with the increase in load. However, wear resistance increases as the reinforcement content increases because of the embedding and wettability effects.

  20. Rapid Prototyping for In Vitro Knee Rig Investigations of Prosthetized Knee Biomechanics: Comparison with Cobalt-Chromium Alloy Implant Material

    PubMed Central

    Schröder, Christian; Steinbrück, Arnd; Müller, Tatjana; Woiczinski, Matthias; Chevalier, Yan; Müller, Peter E.; Jansson, Volkmar

    2015-01-01

    Retropatellar complications after total knee arthroplasty (TKA) such as anterior knee pain and subluxations might be related to altered patellofemoral biomechanics, in particular to trochlear design and femorotibial joint positioning. A method was developed to test femorotibial and patellofemoral joint modifications separately with 3D-rapid prototyped components for in vitro tests, but material differences may further influence results. This pilot study aims at validating the use of prostheses made of photopolymerized rapid prototype material (RPM) by measuring the sliding friction with a ring-on-disc setup as well as knee kinematics and retropatellar pressure on a knee rig. Cobalt-chromium alloy (standard prosthesis material, SPM) prostheses served as validation standard. Friction coefficients between these materials and polytetrafluoroethylene (PTFE) were additionally tested as this latter material is commonly used to protect pressure sensors in experiments. No statistical differences were found between friction coefficients of both materials to PTFE. UHMWPE shows higher friction coefficient at low axial loads for RPM, a difference that disappears at higher load. No measurable statistical differences were found in knee kinematics and retropatellar pressure distribution. This suggests that using polymer prototypes may be a valid alternative to original components for in vitro TKA studies and future investigations on knee biomechanics. PMID:25879019

  1. Method and apparatus for imparting strength to a material using sliding loads

    DOEpatents

    Hughes, D.A.; Dawson, D.B.; Korellis, J.S.

    1999-03-16

    A method of enhancing the strength of metals by affecting subsurface zones developed during the application of large sliding loads is disclosed. Stresses which develop locally within the near surface zone can be many times larger than those predicted from the applied load and the friction coefficient. These stress concentrations arise from two sources: (1) asperity interactions and (2) local and momentary bonding between the two surfaces. By controlling these parameters more desirable strength characteristics can be developed in weaker metals to provide much greater strength to rival that of steel, for example. 11 figs.

  2. Research on friction torque analysis of planetary roller screw mechanism considering load distribution

    NASA Astrophysics Data System (ADS)

    Gan, Fajin; Mao, Pengcheng; Zheng, Shicheng; Li, Guangliang; Xin, Shupeng

    2018-04-01

    Based on the Hertzian contact theory, frictional moment of planetary roller screw mechanism (RSM) caused by elastic hysteresis, roller's spinning sliding, and differential sliding was analyzed, which were considering load distribution of rollers threads. The relationship between friction torque of screw pairs and its input axial load were obtained. Finally, the frictional moment of the screw pairs under the situation overstress will created at some localized contact surfaces were discussed. Results shows that the frictional moment caused by elastic hysteresis gives the greatest rise to the total frictional moment and that due to differential sliding can be ignored. The stress uniformity has great influence on the frictional moment.

  3. Rolling Contact Fatigue and Wear Behavior of High-Performance Railway Wheel Steels Under Various Rolling-Sliding Contact Conditions

    NASA Astrophysics Data System (ADS)

    Faccoli, Michela; Petrogalli, Candida; Lancini, Matteo; Ghidini, Andrea; Mazzù, Angelo

    2017-07-01

    An experimental investigation was carried out to study and compare the response to cyclic loading of the high-performance railway wheel steels ER8 EN13262 and SUPERLOS®. Rolling contact tests were performed with the same contact pressure, rolling speed and sliding/rolling ratio, varying the lubrication regime to simulate different climatic conditions. The samples, machined out of wheel rims at two depths within the reprofiling layer, were coupled with UIC 900A rail steel samples. The wear rates, friction coefficients and hardness were correlated with the deformation beneath the contact surface. The crack morphology was studied, and the damage mechanisms were identified. The distribution of crack length and depth at the end of the dry tests was analyzed to quantify the damage. The main difference between the steels lies in the response of the external samples to dry contact: SUPERLOS® is subjected to a higher wear and lower friction coefficient than ER8, and this reduces the density of surface cracks that can propagate under wet contact conditions. The analysis of feedback data from in-service wheels confirmed the experimental results.

  4. Impact of laser power density on tribological properties of Pulsed Laser Deposited DLC films

    NASA Astrophysics Data System (ADS)

    Gayathri, S.; Kumar, N.; Krishnan, R.; AmirthaPandian, S.; Ravindran, T. R.; Dash, S.; Tyagi, A. K.; Sridharan, M.

    2013-12-01

    Fabrication of wear resistant and low friction carbon films on the engineered substrates is considered as a challenging task for expanding the applications of diamond-like carbon (DLC) films. In this paper, pulsed laser deposition (PLD) technique is used to deposit DLC films on two different types of technologically important class of substrates such as silicon and AISI 304 stainless steel. Laser power density is one of the important parameter used to tailor the fraction of sp2 bonded amorphous carbon (a-C) and tetrahedral amorphous carbon (ta-C) made by sp3 domain in the DLC film. The I(D)/I(G) ratio decreases with the increasing laser power density which is associated with decrease in fraction of a-C/ta-C ratio. The fraction of these chemical components is quantitatively analyzed by EELS which is well supported to the data obtained from the Raman spectroscopy. Tribological properties of the DLC are associated with chemical structure of the film. However, the super low value of friction coefficient 0.003 is obtained when the film is predominantly constituted by a-C and sp2 fraction which is embedded within the clusters of ta-C. Such a particular film with super low friction coefficient is measured while it was deposited on steel at low laser power density of 2 GW/cm2. The super low friction mechanism is explained by low sliding resistance of a-C/sp2 and ta-C clusters. Combination of excellent physical and mechanical properties of wear resistance and super low friction coefficient of DLC films is desirable for engineering applications. Moreover, the high friction coefficient of DLC films deposited at 9GW/cm2 is related to widening of the intergrain distance caused by transformation from sp2 to sp3 hybridized structure.

  5. Elucidation of atomic scale mechanisms for polytetrafluoroethylene tribology using molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Barry, Peter R.

    Polytetrafluoroethylene (PTFE) is a polymer that has been widely exploited commercially as a result of its low friction, 'non-stick' properties. The polymer has found usage as 'non-stick,' chemically resistant coatings for bearings, valves, rollers and pipe linings with applications in industries ranging from food and chemical processing to construction, automotive and aerospace. The major drawback of PTFE in low friction applications involves its excessive wear rate. For decades, scientists and engineers have sought to improve the polymer's wear resistance while maintaining its low sliding friction by reinforcing the polymer matrix with a host of filler materials ranging from fibril to particulate. In this study, a different approach is taken in which the atomic scale phenomena between two crystalline PTFE surfaces in sliding contact are examined. The goal is to obtain atomic-level insights into PTFE's low friction and high wear rate to aid in the designing of effective polymer based tribological composites for extreme condition applications. To accomplish this, several tribological conditions were varied. These included sliding direction of the two polymer surfaces with respect to their chain alignment, sliding velocity, degree of crystalline phase rigidity, interfacial contact pressure, sample temperature and the presence of fluorocarbon fluids between the two crystalline PTFE surfaces. From these studies, it was found that crystalline PTFE-PTFE sliding demonstrates friction anisotropy. Low friction and molecular wear was observed when sliding in the direction of the chain alignment with high friction and wear behavior dominating when sliding in a direction perpendicular to the chain alignment. For the range of cross-link density (average linear density of 6.2 to 11.1 A) and sliding rate (5 m/s to 20 m/s) explored, a significant change in friction behavior or wear mechanisms was not observed. Under conditions of increased normal load or low temperature however, the frictional force increased linearly. Additionally, the inclusion of fluorocarbon molecular fluids at the sliding interface between the two crystalline PTFE surfaces resulted in a significant decrease in both the friction and wear of the surfaces.

  6. Microstructure and wear resistance of Ti-Cu-N composite coating prepared via laser cladding/laser nitriding technology on Ti-6Al-4V alloy

    NASA Astrophysics Data System (ADS)

    Yang, Yuling; Cao, Shiyin; Zhang, Shuai; Xu, Chuan; Qin, Gaowu

    2017-07-01

    Ti-Cu-N coatings with three different Cu contents on Ti-6Al-4V alloy (TC4) were obtained via laser cladding together with laser nitriding (LC/LN) technology. Phase constituents, microstructure, microhardness, and wear resistance of the coatings were investigated. The evolution of the coefficients of friction for the three coatings was measured under dry sliding conditions as a function of the revolutions until the coating failure. The results show that the coatings are mainly composed of TiN, CuTi3 and some TiO6 phases dispersed in the matrix. A good metallurgical bonding between the coating and substrate has been successfully obtained. The prepared Ti-Cu-N composite coatings almost doubly enhance the microhardness of the TC4 alloy and reduce the friction down to 1/4-1/2 of the TC4 alloy, and thus significantly improve the wear resistance. The coefficient of friction depends on the Cu content in the coating.

  7. Length scale effects of friction in particle compaction using atomistic simulations and a friction scaling model

    NASA Astrophysics Data System (ADS)

    Stone, T. W.; Horstemeyer, M. F.

    2012-09-01

    The objective of this study is to illustrate and quantify the length scale effects related to interparticle friction under compaction. Previous studies have shown as the length scale of a specimen decreases, the strength of a single crystal metal or ceramic increases. The question underlying this research effort continues the thought—If there is a length scale parameter related to the strength of a material, is there a length scale parameter related to friction? To explore the length scale effects of friction, molecular dynamics (MD) simulations using an embedded atom method potential were performed to analyze the compression of two spherical FCC nickel nanoparticles at different contact angles. In the MD model study, we applied a macroscopic plastic contact formulation to determine the normal plastic contact force at the particle interfaces and used the average shear stress from the MD simulations to determine the tangential contact forces. Combining this information with the Coulomb friction law, we quantified the MD interparticle coefficient of friction and showed good agreement with experimental studies and a Discrete Element Method prediction as a function of contact angle. Lastly, we compared our MD simulation friction values to the tribological predictions of Bhushan and Nosonovsky (BN), who developed a friction scaling model based on strain gradient plasticity and dislocation-assisted sliding that included a length scale parameter. The comparison revealed that the BN elastic friction scaling model did a much better job than the BN plastic scaling model of predicting the coefficient of friction values obtained from the MD simulations.

  8. Operando formation of an ultra-low friction boundary film from synthetic magnesium silicon hydroxide additive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Qiuying; Rudenko, Pavlo; Miller, Dean J.

    The paper reports the operando and self-healing formation of DLC films at sliding contact surfaces by the addition of synthetic magnesium silicon hydroxide (MSH) nanoparticles to base oil. The formation of such films leads to a reduction of the coefficient of friction by nearly an order of magnitude and substantially reduces wear losses. The ultralow friction layer characterized by transmission electron microscope (TEM), electron energy loss spectroscopy (EELS), and Raman spectroscopy consists of amorphous DLC containing SiOx that forms in a continuous and self-repairing manner during operation. This environmentally benign and simple approach offers promise for significant advances in lubricationmore » and reduced energy losses in engines and other mechanical systems.« less

  9. Atomic-scale friction modulated by potential corrugation in multi-layered graphene materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhuang, Chunqiang, E-mail: chunqiang.zhuang@bjut.edu.cn; Liu, Lei

    2015-03-21

    Friction is an important issue that has to be carefully treated for the fabrication of graphene-based nano-scale devices. So far, the friction mechanism of graphene materials on the atomic scale has not yet been clearly presented. Here, first-principles calculations were employed to unveil the friction behaviors and their atomic-scale mechanism. We found that potential corrugations on sliding surfaces dominate the friction force and the friction anisotropy of graphene materials. Higher friction forces correspond to larger corrugations of potential energy, which are tuned by the number of graphene layers. The friction anisotropy is determined by the regular distributions of potential energy.more » The sliding along a fold-line path (hollow-atop-hollow) has a relatively small potential energy barrier. Thus, the linear sliding observed in macroscopic friction experiments may probably be attributed to the fold-line sliding mode on the atomic scale. These findings can also be extended to other layer-structure materials, such as molybdenum disulfide (MoS{sub 2}) and graphene-like BN sheets.« less

  10. Tribological behavior of polytetrafluoroethylene coating reinforced with black phosphorus nanoparticles

    NASA Astrophysics Data System (ADS)

    Peng, Shiguang; Guo, Yue; Xie, Guoxin; Luo, Jianbin

    2018-05-01

    This study compares the tribological performance of polytetrafluoroethylene (PTFE) thin film coating reinforced with black phosphorus (BP) or ball-milled graphite (BMG) nanoparticles, so as to elucidate their mechanism of action under reciprocating sliding test conditions. PTFE coatings with 0.5 wt.% BMG (BMG/PTFE) and 0.5 wt.% BP (BP/PTFE) were prepared on GCr15 bearing steel disk by using a spin coater. The friction and wear tests were carried out by using the ball-on-disk tribometer under a normal load of 1 N (contact pressure: 780 MPa), a frequency of 2 Hz, and 4.2 mm sliding displacement amplitude. The surface roughness, wear volume and surface morphology of the coatings were characterized by the three-dimensional white light, and Energy Dispersive X-ray Detector (EDX) analysis coupled with environmental scanning electron microscope (ESEM). It is found that BP/PTFE coating has better anti-wear and anti-friction performances than those of pure PTFE or BMG/PTFE coating. The coating with BP nanoparticles shows excellent tribological properties with the wear volume decreased from 3.52 × 106 μm3 to 1.64 × 106 μm3 and the coefficient of friction (COF) decreased from 0.117 to 0.046. More importantly, the BP layer probably expands and absorbs much energy due to its negative Poisson's ratio phenomenon under reciprocating sliding, and effectively reducing furrow and adhesive wear.

  11. Surface Chemistry, Friction, and Wear Properties of Untreated and Laser-Annealed Surfaces of Pulsed-Laser-Deposited WS(sub 2) Coatings

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Wheeler, Donald R.; Zabinski, Jeffrey S.

    1996-01-01

    An investigation was conducted to examine the surface chemistry, friction, and wear behavior of untreated and annealed tungsten disulfide (WS2) coatings in sliding contact with a 6-mm-diameter 440C stainless-steel ball. The WS2 coatings and annealing were performed using the pulsed-laser-deposition technique. All sliding friction experiments were conducted with a load of 0.98 N (100 g), an average Hertzian contact pressure of 0.44 GPa, and a constant rotating speed of 120 rpm. The sliding velocity ranged from 31 to 107 mm/s because of the range of wear track radii involved in the experiments. The experiment was performed at room temperature in three environments: ultrahigh vacuum (vacuum pressure, 7X(exp -10) Pa), dry nitrogen (relative humidity, less than 1 percent), and humid air (relative humidity, 15 to 40 percent). Analytical techniques, including scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDX), x-ray photo electron spectroscopy (XPS), surface profilometry, and Vickers hardness testing, were used to characterize the tribological surfaces of WS2 coatings. The results of the investigation indicate that the laser annealing decreased the wear of a WS2 coating in an ultrahigh vacuum. The wear rate was reduced by a factor of 30. Thus, the laser annealing increased the wear life and resistance of the WS2 coating. The annealed WS 2 coating had a low coefficient of friction (less than O.1) and a low wear rate ((10(exp -7) mm(exp 3)/N-m)) both of which are favorable in an ultrahigh vacuum.

  12. The frictional response of patterned soft polymer surfaces

    NASA Astrophysics Data System (ADS)

    Rand, Charles J.

    2008-10-01

    Friction plays an intricate role in our everyday lives, it is therefore critical to understand the underlying features of friction to better help control and manipulate the response anywhere two surfaces in contact move past each other by a sliding motion. Here we present results targeting a thorough understanding of soft material friction and how it can be manipulated with patterns. We found that the naturally occurring length scale or periodicity (lambda) of frictionally induced patterns, Schallamach waves, could be described using two materials properties (critical energy release rate Gc and complex modulus (E*), i.e. lambdainfinity Gc /E*). Following this, we evaluated the effect of a single defect at a sliding interface. Sliding over a defect can be used to model the sliding from one feature to another in a patterned surface. Defects decreased the sliding frictional force by as much as 80% sliding and this decrease was attributed to changes in tangential stiffness of the sliding interface. The frictional response of surface wrinkles, where multiple edges or defects are acting in concert, was also evaluated. Wrinkles were shown to decrease friction (F) and changes in contact area (A) could not describe this decrease. A tangential stiffness correction factor (fx) and changes in the critical energy release rate were used to describe this deviation (F infinity Gc *A*fx/ℓ, where ℓ is a materials defined length scale of dissipation). This scaling can be used to describe the friction of any topographically patterned surface including the Gecko's foot, where the feature size is smaller than ℓ and thus replaces ℓ, increasing the friction compared to a flat surface. Also, mechanically-induced surface defects were used to align osmotically driven surface wrinkles by creating stress discontinuities that convert the global biaxial stress state to local uniaxial stresses. Defect spacing was used to control the alignment process at the surface of the wrinkled rigid film/soft elastomer interface. These aligned wrinkled surfaces can be used to tune the adhesion and friction of an interface. The work presented here gives insight into tuning the friction of a soft polymeric surface as well as understanding the friction of complex hierarchical structures.

  13. Friction and dynamics of rock avalanches travelling on glaciers

    NASA Astrophysics Data System (ADS)

    De Blasio, Fabio Vittorio

    2014-05-01

    Rock avalanches travelling on glaciers often exhibit effective friction coefficient lower than those on a rocky terrain. After briefly considering some data of rock avalanches on glaciers, the physics of sliding of solid objects on icy surfaces is reviewed, and a model is put forward for the mechanics of rock avalanche sliding on ice accounting for the formation of a natural lubricating layer. It is suggested that at the beginning of the flow of a rock avalanche, friction results from rocky blocks ploughing on ice. As the erosion continues, a gouge of ice particles results, which clogs the interstices between blocks and may partially melt as a consequence of the production of frictional heat. This conceptual model is numerically investigated for a slab travelling on ice. The results show an increase in mobility as a function of slab thickness, travelled length, and the gravity field, in agreement with case studies. The results are useful to interpret the peculiar features of rock avalanches travelling on icy surfaces such as digitations, out-runner blocks, and longitudinal furrows. The lubrication theory for landslides on ice proposed here may provide a framework for understanding landslides on Earth and for future modelling; in addition, it may help elucidate the presence of similar landslide deposits on the surface of Mars.

  14. Static and dynamic friction in sliding colloidal monolayers

    PubMed Central

    Vanossi, Andrea; Manini, Nicola; Tosatti, Erio

    2012-01-01

    In a pioneer experiment, Bohlein et al. realized the controlled sliding of two-dimensional colloidal crystals over laser-generated periodic or quasi-periodic potentials. Here we present realistic simulations and arguments that besides reproducing the main experimentally observed features give a first theoretical demonstration of the potential impact of colloid sliding in nanotribology. The free motion of solitons and antisolitons in the sliding of hard incommensurate crystals is contrasted with the soliton–antisoliton pair nucleation at the large static friction threshold Fs when the two lattices are commensurate and pinned. The frictional work directly extracted from particles’ velocities can be analyzed as a function of classic tribological parameters, including speed, spacing, and amplitude of the periodic potential (representing, respectively, the mismatch of the sliding interface and the corrugation, or “load”). These and other features suggestive of further experiments and insights promote colloid sliding to a unique friction study instrument. PMID:23019582

  15. Wear behavior of carbide tool coated with Yttria-stabilized zirconia nano particles.

    NASA Astrophysics Data System (ADS)

    Jadhav, Pavandatta M.; Reddy, Narala Suresh Kumar

    2018-04-01

    Wear mechanism takes predominant role in reducing the tool life during machining of Titanium alloy. Challenges of wear mechanisms such as variation in chip, high pressure loads and spring back are responsible for tool wear. In addition, many tool materials are inapt for machining due to low thermal conductivity and volume specific heat of these materials results in high cutting temperature during machining. To confront this issue Electrostatic Spray Coating (ESC) coating technique is utilized to enhance the tool life to an acceptable level. The Yttria Stabilized Zirconia (YSZ) acts as a thermal barrier coating having high thermal expansion coefficient and thermal shock resistance. This investigation focuses on the influence of YSZ nanocoating on the tungsten carbide tool material and improve the machinability of Ti-6Al-4V alloy. YSZ nano powder was coated on the tungsten carbide pin by using ESC technique. The coatings have been tested for wear and friction behavior by using a pin-on-disc tribological tester. The dry sliding wear test was performed on Titanium alloy (Ti-6Al-4V) disc and YSZ coated tungsten carbide (pin) at ambient atmosphere. The performance parameters like wear rate and temperature rise were considered upon performing the dry sliding test on Ti-6Al-4V alloy disc. The performance parameters were calculated by using coefficient of friction and frictional force values which were obtained from the pin on disc test. Substantial resistance to wear was achieved by the coating.

  16. Biofilms inducing ultra-low friction on titanium.

    PubMed

    Souza, J C M; Henriques, M; Oliveira, R; Teughels, W; Celis, J-P; Rocha, L A

    2010-12-01

    Biofilm formation is widely reported in the literature as a problem in the healthcare, environmental, and industrial sectors. However, the role of biofilms in sliding contacts remains unclear. Friction during sliding was analyzed for titanium covered with mixed biofilms consisting of Streptococcus mutans and Candida albicans. The morphology of biofilms on titanium surfaces was evaluated before, during, and after sliding tests. Very low friction was recorded on titanium immersed in artificial saliva and sliding against alumina in the presence of biofilms. The complex structure of biofilms, which consist of microbial cells and their hydrated exopolymeric matrix, acts like a lubricant. A low friction in sliding contacts may have major significance in the medical field. The composition and structure of biofilms are shown to be key factors for an understanding of friction behavior of dental implant connections and prosthetic joints. For instance, a loss of mechanical integrity of dental implant internal connections may occur as a consequence of the decrease in friction caused by biofilm formation. Consequently, the study of the exopolymeric matrix can be important for the development of high-performance novel joint-based systems for medical and other engineering applications.

  17. Stick-slip nanofriction in cold-ion traps

    NASA Astrophysics Data System (ADS)

    Mandelli, Davide; Vanossi, Andrea; Tosatti, Erio

    2013-03-01

    Trapped cold ions are known to form linear or planar zigzag chains, helices or clusters depending on trapping conditions. They may be forced to slide over a laser induced corrugated potential, a mimick of sliding friction. We present MD simulations of an incommensurate 101 ions chain sliding subject to an external electric field. As expected with increasing corrugation, we observe the transition from a smooth-sliding, highly lubric regime to a strongly dissipative stick-slip regime. Owing to inhomogeneity the dynamics shows features reminiscent of macroscopic frictional behaviors. While the chain extremities are pinned, the incommensurate central part is initially free to slide. The onset of global sliding is preceded by precursor events consisting of partial slips of chain portions further from the center. We also look for frictional anomalies expected for the chain sliding across the linear-zigzag structural phase transition. Although the chain is too short for a proper critical behavior, the sliding friction displays a frank rise near the transition, due to opening of a new dissipative channel via excitations of transverse modes. Research partly sponsored by Sinergia Project CRSII2 136287/1.

  18. Effect of Substrate Bias on Friction Coefficient, Adhesion Strength and Hardness of TiN-COATED Tool Steel

    NASA Astrophysics Data System (ADS)

    Hamzah, Esah; Ali, Mubarak; Toff, Mohd Radzi Hj. Mohd

    In the present study, TiN coatings have been deposited on D2 tool steel substrates by using cathodic arc physical vapor deposition technique. The objective of this research work is to determine the usefulness of TiN coatings in order to improve the micro-Vickers hardness and friction coefficient of TiN coating deposited on D2 tool steel, which is widely used in tooling applications. A Pin-on-Disc test was carried out to study the coefficient of friction versus sliding distance of TiN coating deposited at various substrate biases. The standard deviation parameter during tribo-test result showed that the coating deposited at substrate bias of -75 V was the most stable coating. A significant increase in micro-Vickers hardness was recorded, when substrate bias was reduced from -150 V to zero. Scratch tester was used to compare the critical loads for coatings deposited at different bias voltages and the adhesion achievable was demonstrated with relevance to the various modes, scratch macroscopic analysis, critical load, acoustic emission and penetration depth. A considerable improvement in TiN coatings was observed as a function of various substrate bias voltages.

  19. Time-dependent friction and the mechanics of stick-slip

    USGS Publications Warehouse

    Dieterich, J.H.

    1978-01-01

    Time-dependent increase of static friction is characteristic of rock friction undera variety of experimental circumstances. Data presented here show an analogous velocity-dependent effect. A theor of friction is proposed that establishes a common basis for static and sliding friction. Creep at points of contact causes increases in friction that are proportional to the logarithm of the time that the population of points of contact exist. For static friction that time is the time of stationary contact. For sliding friction the time of contact is determined by the critical displacement required to change the population of contacts and the slip velocity. An analysis of a one-dimensional spring and slider system shows that experimental observations establishing the transition from stable sliding to stick-slip to be a function of normal stress, stiffness and surface finish are a consequence of time-dependent friction. ?? 1978 Birkha??user Verlag.

  20. Toward low friction in water for Mo2N/Ag coatings by tailoring the wettability

    NASA Astrophysics Data System (ADS)

    Dai, Xuan; Wen, Mao; Huang, Keke; Wang, Xin; Yang, Lina; Wang, Jia; Zhang, Kan

    2018-07-01

    Increasing demands for robust surfaces in harsh conditions, such as erosion, abrasion and sea-water, has stimulated the development of self-lubricated protective coatings. Meanwhile, due to the oil crisis, research in water lubrication again attracts much attention from both academics and practical engineers. Here, a higher hydrophilicity accompanying with a remarkable drop of friction coefficient in water environment was achieved successfully in Mo2N/Ag coatings by increasing Ag content. To do these, the Mo2N/Ag coatings with different Ag content were deposited by co-sputtering, which exhibit a nanocomposite structure consisting of precipitate Ag embedded in the Mo2N matrix. The high hydrophilicity can be ascribed to the combined contributions of the partial oxidation of Mo2N and high polarity of Ag precipitates. The decrease of friction coefficient is illustrated by the colloidal friction products and a mode with electric double layer. In which, enhanced hydrophilicity will result in forming a thin "water film" layer between the interface of counterpart and the coatings. And the MoOx/Ag2Mo4O13 derived from the hydrolysis action of Mo2N/Ag sliding in water could function as lubricant phase. Meanwhile, these negative charged MoOx/Ag2Mo4O13 colloidal particles induce the rearrangement of positive ions in the "water film" and form an electric double layer, which also contributes to the decrease of friction coefficient.

  1. Dynamics of a homogeneous ball on a horizontal plane with sliding, spinning, and rolling friction taken into account

    NASA Astrophysics Data System (ADS)

    Ishkhanyan, M. V.; Karapetyan, A. V.

    2010-04-01

    We analyze the dynamics of a homogeneous ball on a horizontal plane with friction of all kinds, namely, sliding, spinning, and rolling friction, taken into account. The qualitative-analytic study of the ball dynamics is supplemented with numerical experiments. The problem on the motion of a homogeneous ball on a horizontal plane with friction was apparently first studied in 1758 by I. Euler (Leonard Euler's son) with sliding friction taken into account in the framework of the Coulomb model. I. Euler showed that the ball sliding ceases in finite time, after which the ball uniformly rolls along a fixed straight line and uniformly spins about the vertical. This result has long become classical and is described in many textbooks on theoretical mechanics. In 1998, V. F. Zhuravlev considered the problem of motion of a homogeneous ball on a horizontal plane with sliding and spinning friction taken into account in the framework of the Contensou-Zhuravlev model [1, 2] and showed that the ball sliding and spinning cease simultaneously, after which the ball uniformly rolls along a fixed straight line. The Contensou-Zhuravlev theory was further developed in [3-7]. In the present paper, we consider themotion of a homogeneous ball on a horizontal plane with friction of all kinds taken into account in the framework of the model proposed in [8]. We show that, in one and the same time, both the sliding velocity and the angular velocity of the ball become zero. Our studies are based on the results obtained in [2], the properties of the friction model proposed in [8], and the method for qualitative analysis of dynamics of dissipative systems [9, 10]. The qualitative-analytic study is supplemented with numerical experiments.

  2. Shear localization and effective wall friction in a wall bounded granular flow

    NASA Astrophysics Data System (ADS)

    Artoni, Riccardo; Richard, Patrick

    2017-06-01

    In this work, granular flow rheology is investigated by means of discrete numerical simulations of a torsional, cylindrical shear cell. Firstly, we focus on azimuthal velocity profiles and study the effect of (i) the confining pressure, (ii) the particle-wall friction coefficient, (iii) the rotating velocity of the bottom wall and (iv) the cell diameter. For small cell diameters, azimuthal velocity profiles are nearly auto-similar, i.e. they are almost linear with the radial coordinate. Different strain localization regimes are observed : shear can be localized at the bottom, at the top of the shear cell, or it can be even quite distributed. This behavior originates from the competition between dissipation at the sidewalls and dissipation in the bulk of the system. Then we study the effective friction at the cylindrical wall, and point out the strong link between wall friction, slip and fluctuations of forces and velocities. Even if the system is globally below the sliding threshold, force fluctuations trigger slip events, leading to a nonzero wall slip velocity and an effective wall friction coefficient different from the particle-wall one. A scaling law was found linking slip velocity, granular temperature in the main flow direction and effective friction. Our results suggest that fluctuations are an important ingredient for theories aiming to capture the interface rheology of granular materials.

  3. Dry friction aspects of Ni-based self-fluxing flame sprayed coatings

    NASA Astrophysics Data System (ADS)

    Paulin, C.; Chicet, D.; Paleu, V.; Benchea, M.; Lupescu, Ş.; Munteanu, C.

    2017-08-01

    In this paper we present the results tribological obtained in the course of dry wear tests on samples coated with three types of coatings produced from self-fluxing Ni-based powders. In this purpose were used three commercial NiCrBSi powders produced by various manufacturers, which have been sprayed against a low alloyed steel substrate using the flame spray thermal deposition method followed by flame remelting, resulting three different samples, denoted as: A, M and P. The first test was conducted on an Amsler type machine, with rolling motion between tribological contacts of third class. The analysed coating was deposited on the generator of the low alloy steel disc and the shoe was realized from a grindstone. The test was conducted for two situations: (a) constant load of 10 kg and 6 kg applied for 5 hours; (b) progressive load starting from 2 to 10 kg for two different speeds of rotation of the disc. The second test was the one of sliding wear and it was conducted on the UMTR 2M-CTR tribometer. The analysed layers were deposited on the flat surface of a low alloy steel lamella, and the friction was achieved with a conical grinding stone. The working parameters were as follows: 20N constant load, constant speed of 10 mm / s, sliding linear length of 30mm, the test duration being 45 minutes. After conducting the tests and after analysing the results, the following conclusions are drawn: a) during the first test has been obtained a global friction coefficient between 0.3 and 0.4 - typical for dry friction, highlighting some lower values in the case of sample A, in which case there were recorded smaller mass losses; b) at the second test was recorded an approximately linear behaviour of the three samples, with a gradual increase of the friction coefficient and a superficial wear mark revealed both by SEM microscopy and by profilometry.

  4. Friction enhancement in concertina locomotion of snakes

    PubMed Central

    Marvi, Hamidreza; Hu, David L.

    2012-01-01

    Narrow crevices are challenging terrain for most organisms and biomimetic robots. Snakes move through crevices using sequential folding and unfolding of their bodies in the manner of an accordion or concertina. In this combined experimental and theoretical investigation, we elucidate this effective means of moving through channels. We measure the frictional properties of corn snakes, their body kinematics and the transverse forces they apply to channels of varying width and inclination. To climb channels inclined at 60°, we find snakes use a combination of ingenious friction-enhancing techniques, including digging their ventral scales to double their frictional coefficient and pushing channel walls transversely with up to nine times body weight. Theoretical modelling of a one-dimensional n-linked crawler is used to calculate the transverse force factor of safety: we find snakes push up to four times more than required to prevent sliding backwards, presumably trading metabolic energy for an assurance of wall stability. PMID:22728386

  5. Tribological Behavior of IN718 Superalloy Coating Fabricated by Laser Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Zhang, Yaocheng; Pan, Qiyong; Yang, Li; Li, Ruifeng; Dai, Jun

    2017-12-01

    The tribological behavior of laser manufactured IN718 superalloy coating are investigated with different applied loads, sliding speeds and lubricating mediums. The wear resistance of laser manufactured IN718 coating is increased by heat treatment due to higher microhardness and homogeneous brittle phase distribution. The principal factors for the wear rate are applied load and lubricating medium. The worn surface of laser manufactured IN718 coating consists of the grooves, crack, wear debris and material delamination generated by the fatigue wear associated with adhesive wear and abrasive wear. The friction coefficients are influenced by the tribological noise decrescence by the tribo-oxidant and the liquid lubricant. The real contact temperature between coating sample and frictional counterpart is higher than the solid-solution temperature of IN718 superalloy, and the effect of surface contact temperature on the orientational microstructure and wear resistance for dry friction and wet friction process is indistinct.

  6. Wettability and friction coefficient of micro-magnet arrayed surface

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Liao, Sijie; Wang, Xiaolei

    2012-01-01

    Surface coating is an important part of surface engineering and it has been successfully used in many applications to improve the performance of surfaces. In this paper, magnetic arrayed films with different thicknesses were fabricated on the surface of 316 stainless steel disks. Controllable colloid - ferrofluids (FF) was chosen as lubricant, which can be adsorbed on the magnetic surface. The wettability of the micro-magnet arrayed surface was evaluated by measuring the contract angle of FF drops on surface. Tribological experiments were carried out to investigate the effects of magnetic film thickness on frictional properties when lubricated by FF under plane contact condition. It was found that the magnetic arrayed surface with thicker magnetic films presented larger contract angle. The frictional test results showed that samples with thicker magnetic films could reduce friction and wear more efficiently at higher sliding velocity under the lubrication of FF.

  7. Friction enhancement in concertina locomotion of snakes.

    PubMed

    Marvi, Hamidreza; Hu, David L

    2012-11-07

    Narrow crevices are challenging terrain for most organisms and biomimetic robots. Snakes move through crevices using sequential folding and unfolding of their bodies in the manner of an accordion or concertina. In this combined experimental and theoretical investigation, we elucidate this effective means of moving through channels. We measure the frictional properties of corn snakes, their body kinematics and the transverse forces they apply to channels of varying width and inclination. To climb channels inclined at 60°, we find snakes use a combination of ingenious friction-enhancing techniques, including digging their ventral scales to double their frictional coefficient and pushing channel walls transversely with up to nine times body weight. Theoretical modelling of a one-dimensional n-linked crawler is used to calculate the transverse force factor of safety: we find snakes push up to four times more than required to prevent sliding backwards, presumably trading metabolic energy for an assurance of wall stability.

  8. Thermodynamics of a Block Sliding across a Frictional Surface

    ERIC Educational Resources Information Center

    Mungan, Carl E.

    2007-01-01

    The following idealized problem is intended to illustrate some basic thermodynamic concepts involved in kinetic friction. A block of mass m is sliding on top of a frictional, flat-topped table of mass M. The table is magnetically levitated, so that it can move without thermal contact and friction across a horizontal floor. The table is initially…

  9. Adhesion and transfer of PTFE to metals studied by auger emission spectroscopy

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.; Buckley, D. H.

    1972-01-01

    The adhesion and transfer of polytetrafluoroethylene (PTFE) to metals in ultrahigh vacuum has been studied using Auger emission spectroscopy. The transfer was effected both by compressive static contact and by sliding contact. The transfer observed after static contact was independent of the chemical constitution of the substrate. Electron induced desorption of the fluorine in the transferred PTFE showed that the fluorine had no chemical interaction with the metal substrate. The coefficient of friction on metals was independent of the chemical constitution of the substrate. However, sliding PTFE on soft metals such as aluminum, generated wear fragments that lodged in the PTFE and machined the substrate.

  10. Adhesion and transfer of polytetrafluorethylene to metals studied by Auger emission spectroscopy

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.; Buckley, D. H.

    1972-01-01

    The adhesion and transfer of polytetrafluoroethylene (PTFE) to metals in ultrahigh vacuum were studied. The transfer was effected both by compressive static contact and by sliding contact. The transfer observed after static contact was independent of the chemical constitution of the substrate. Electron-induced desorption of the fluorine in the transferred PTFE showed that the fluorine had no chemical interaction with the metal substrate. The coefficient of friction on metals was independent of the chemical constitution of the substrate. However, sliding PTFE on soft metals, such as aluminum, generated wear fragments that lodged in the PTFE and machined the substrate.

  11. Friction of marble under seismic deformation conditions in the presence of fluids

    NASA Astrophysics Data System (ADS)

    Violay, M. E.; Nielsen, S. B.; Cinti, D.; Spagnuolo, E.; Di Toro, G.; Smith, S.

    2011-12-01

    Physical and chemical fluid/rock interactions control seismic rupture nucleation, propagation, arrest and recurrence. Several experimental studies explored the effects of pore fluid pressure (Pp) on the sliding behavior of faults. Most of them were performed with bi and tri-axial apparatus at high temperature and high confining pressure. However, due to the experimental configuration, laboratory measurements were limited in terms of slip rate (< 1 mm/s) and displacement (< 1 cm) compared to natural earthquakes (e.g., average slip rate about 1 m/s). Insight on the physical and chemical role of fluids during earthquakes can be gained using a rotary shear configuration which allows large displacements (nominally infinite) and seismic slip rates. Here we present results from the tests performed with SHIVA (Slow to HIgh Velocity Apparatus) equipped with a pore fluid vessel designed to reach 15 MPa of pore pressure on Carrara (98% calcite) marble. This rock was selected because most seismic ruptures in Italy propagate in fluid-rich (usually H2O and CO2), calcite-bearing fault zones (e.g. L'Aquila Mw 6.3, 2009 earthquake). Tests were conducted on hollow cylinders (50/30 mm ext/int diameter) at velocities of 1- 6.5 m/s, normal stresses up to 40 MPa and fluid (H2O in chemical equilibrium with the marble) pressure comprised between 0 (room-humidity conditions) and 15 MPa (fluid-saturated conditions). Fluid chemistry (Mg2+, Ca2+, HCO3-, pH, etc.) was determined before and after the experiments. Under these deformation conditions, the friction coefficient decays exponentially from a peak (= static) μp~ 0.8 at the initiation of sliding towards a steady-state μss~ 0.1. Once sliding stops, the friction coefficient recovers almost instantaneously a coefficient of friction μf = 0.2-0.6 (fault healing). The experimental data suggest that: 1) μp and μss are independent of the presence of fluids for a given imposed effective stress (σneff = σn- Pp = 10 MPa); 2) though μp and μss are similar for experiments performed under the same effective normal stress under room-humidity (σneff = σn= 10 MPa) and fluid-saturated conditions (σneff = σn- Pp =10 MPa), a comparison of the friction coefficient vs. slip curves shows that the decay is more abrupt in the case of room-humidity experiments: the presence of H2O slightly buffers dynamic weakening during seismic slip; 3) sample shortens in the presence of fluids and under room-humidity conditions; 4) fault healing is smaller in the case of experiments performed in the presence of fluids; 5) the fluid (H2O) after the experiment is enriched in Mg2+ and HCO3-: this chemical evolution suggest breakdown reactions (decarbonation of calcite) in the presence of H2O as observed in springs after some large earthquakes in carbonate rocks.

  12. Effect of High Strain-Rate Deformation and Aging Temperature on the Evolution of Structure, Microhardness, and Wear Resistance of Low-Alloyed Cu-Cr-Zr Alloy

    NASA Astrophysics Data System (ADS)

    Kheifets, A. E.; Khomskaya, I. V.; Korshunov, L. G.; Zel'dovich, V. I.; Frolova, N. Yu.

    2018-04-01

    The effect of the preliminary high strain-rate deformation, performed via the method of dynamic channel-angular pressing (DCAP), and subsequent annealings on the tribological properties of a dispersionhardened Cu-0.092 wt % Cr-0.086 wt % Zr alloy has been investigated. It has been shown that the surfacelayer material of the alloy with a submicrocrystalline (SMC) structure obtained by the DCAP method can be strengthened using severe plastic deformation by sliding friction at the expense of creating a nanocrystalline structure with crystallites of 15-60 nm in size. It has been shown that the SMC structure obtained by the high strain-rate DCAP deformation decreases the wear rate of the samples upon sliding friction by a factor of 1.4 compared to the initial coarse-grained state. The maximum values of the microhardness and minimum values of the coefficient of friction and shear strength have been obtained in the samples preliminarily subjected to DCAP and aging at 400°C. The attained level of microhardness is 3350 MPa, which exceeds the microhardness of the alloy in the initial coarse-grained state by five times.

  13. Tribological properties of alumina-boria-silicate fabric from 25 to 850 C

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher

    1988-01-01

    Demanding tribological properties are required of the materials used for the sliding seal between the sidewalls and the lower wall of the variable area hypersonic engine. Temperatures range from room temperature and below to operating temperatures of 1000 C in an environment of air, hydrogen, and water vapor. Candidate sealing materials for this application are an alumina-boria-silicate, ceramic, fabric rope sliding against the engine walls which may be made from copper- or nickel-based alloys. Using a pin-on-disk tribometer, the friction and wear properties of some of these potential materials and possible lubrication methods are evaluated. The ceramic fabric rope displayed unacceptably high friction coefficients (0.6 to 1.3) and, thus, requires lubrication. Sputtered thin films of gold, silver, and CaF2 reduced the friction by a factor of two. Sprayed coatings of boride nitride did not effectively lubricate the fabric. Static heat treatment tests at 950 C indicate that the fabric is chemically attacked by large quantities of silver, CaF2, and boron nitride. Sputtered films or powder impregnation of the fabric with gold may provide adequate lubrication up to 1000 C without showing any chemical attack.

  14. Temperature effect of friction and wear characteristics for solid lubricating graphite

    NASA Astrophysics Data System (ADS)

    Kim, Yeonwook; Kim, Jaehoon

    2015-03-01

    Graphite is one of the effective lubricant additives due to its excellent high-temperature endurance and self-lubricating properties. In this study, wear behavior of graphite used as sealing materials to cut off hot gas is evaluated at room and elevated temperature. Wear occurs on graphite seal due to the friction of driving shaft and graphite. Thus, a reciprocating wear test to evaluate the wear generated for the graphite by means of the relative motion between a shaft material and a graphite seal was carried out. The friction coefficient and specific wear rate for the changes of applied load and sliding speed were compared under different temperature conditions considering the actual operating environment. Through SEM observation of the worn surface, the lubricating film was observed and compared with test conditions.

  15. Fracture and Friction

    NASA Astrophysics Data System (ADS)

    Gerde, Eric; Marder, Michael

    2001-03-01

    We present an atomic scale description of a self-healing crack steadily traveling along a compressed interface between dissimilar solids. The motion is similar to the wrinkle-like Weertman pulse observed by Anooshehpoor in recent foam-rubber sliding experiments. In contrast to the theoretical models of Weertman and Adams, and the numerical calculations of Andrews and Ben-Zion, we do not employ a frictional constitutive law on the interface. Yet the restrictive conditions under which these cracks can propagate make the interface appear to have a static coefficient of friction. By analytically linking atomic and continuum fields, we are able to efficiently and exhaustively explore the conditions under which self-healing cracks can propagate. To a good approximation, they are sustainable only when the interfacial shear stresses are 0.4 times the compressive stresses.

  16. Tribological Behavior of Oil-Lubricated Laser Textured Steel Surfaces in Conformal Flat and Non-Conformal Contacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovalchenko, A. M.; Erdemir, A.; Ajayi, O. O.

    Changing the surface texture of sliding surfaces is an effective way to manipulate friction and wear of lubricated surfaces. Having realized its potential, we have done very extensive studies on the effects of laser surface texturing (LST, which involves the creation of an array of microdimples on a surface) on friction and wear behavior of oil-lubricated steel surfaces in the early 2000s. In this paper, we reviewed some of our research accomplishments and assessed future directions of the laser texturing field in many diverse industrial applications. Our studies specifically addressed the impact of laser texturing on friction and wear ofmore » both the flat conformal and initial non-conformal point contact configurations using a pin-on-disk test rig under fully-flooded synthetic oil lubricants with different viscosities. Electrical resistance measurement between pin and LST disks was also used to determine the operating lubrication regimes in relation to friction. In conformal contact, we confirmed that LST could significantly expand the operating conditions for hydrodynamic lubrication to significantly much higher loads and slower speeds. In particular, with LST and higher viscosity oils, the low-friction full hydrodynamic regime was shifted to the far left in the Stribeck diagram. Overall, the beneficial effects of laser surface texturing were more pronounced at higher speeds and loads and with higher viscosity oil. LST was also observed to reduce the magnitude of friction coefficients in the boundary regime. For the non-conformal contact configuration, we determined that LST would produce more abrasive wear on the rubbing counterface compared to the untreated surfaces due to a reduction in lubricant fluid film thickness, as well as the highly uneven and rough nature of the textured surfaces. However, this higher initial wear rate has led to faster generation of a conformal contact, and thus transition from the high-friction boundary to lower friction mixed lubrication regime, resulting in a rapid reduction in the friction coefficient with increased ball wear. Higher density of LST, lower oil viscosity, and hardness of counterface steel surface facilitate an increase of the initial wear, which promotes friction reduction. This phenomenon can be beneficial if the initial accelerated wear on the counterface is acceptable in intended applications. This paper summarizes our experimental investigation of the effect of LST on friction properties and lubrication regime transitions in a unidirectional sliding contact.« less

  17. Strength of the San Andreas Fault Zone: Insight From SAFOD Cuttings and Core

    NASA Astrophysics Data System (ADS)

    Tembe, S.; Lockner, D. A.; Solum, J. G.; Morrow, C. A.; Wong, T.; Moore, D. E.

    2005-12-01

    Cuttings acquired during drilling of the SAFOD scientific hole near Parkfield, California offer a continuous physical record of the lithology across the San Andreas fault (SAF) zone and provide the only complete set of samples available for laboratory testing. Guided by XRD clay mineral analysis and velocity and gamma logs, we selected washed cuttings from depths spanning the main hole from 1.85 to 3.0 km true vertical depth. Cuttings were chosen to represent primary lithologic units as well as significant shear zones, including candidates for the currently active SAF. To determine frictional properties triaxial sliding tests were conducted on cylindrical granite blocks containing sawcuts inclined at 30° and filled with 1 mm-thick sample gouge layers. Tests were run at constant effective normal stresses of 10 and 40 MPa and constant pore pressure of 1 MPa. Samples were sheared up to 10.4 mm at room temperature and velocities of 1, 0.1 and 0.01 μm/s. Stable sliding behavior and overall strain hardening were observed in all tests. The coefficient of friction typically showed a modest decrease with increasing effective normal stress and mostly velocity strengthening was observed. Preliminary results yield coefficients of friction, μ, which generally fell into two clusters spanning the range of 0.45 to 0.8. The higher values of friction (~0.7 - 0.8) corresponded to quartzofeldspathic samples derived from granodiorites and arkoses encountered in the drill hole. Lower values of friction (0.45 - 0.55) were observed at depth intervals interpreted as shear zones based on enriched clay content, reduced seismic velocities and increased gamma radiation. Arguments for a weak SAF suggest coseismic frictional strength of μ = 0.1 to 0.2 yet the actual fault zone materials studied here appear consistently stronger. At least two important limitations exist for inferring in-situ fault strength from cuttings. (1) Clays and weak minerals are preferentially lost during drilling and therefore undersampled in the cuttings and (2) cuttings are mixed as they travel up the borehole. To test the validity of this approach sliding tests were conducted on core samples obtained from a prominent fault zone at 2.56 km (10062 ft measured depth). Coefficient of friction was measured to be 0.42-0.5, notably weaker than that for cuttings tested at this depth (~0.6) but similar to values obtained for other shear zones. This difference between core and cuttings from the equivalent depth is likely due to mixing, resulting in the averaging of mechanical properties over a 1 to 10 foot interval. Nevertheless, we find good agreement in the strength of materials obtained from shallow shear zones, an indication that some weak mineral phases are preserved in the cuttings. While our findings indicate that meaningful mechanical data can be derived from the cuttings, it should be noted that these observations do not represent an exhaustive study of SAF frictional strength. We continue to explore the effectiveness of the present technique by a variety of methods. For example, estimates of lost clay fractions determined from XRD analysis of unwashed cuttings can be used in the application of approximate mixing laws to correct friction measurements. In addition, comparisons of strength of cuttings and corresponding sidewall cores will help refine our results. While the analysis of cuttings provides the best fault zone strength data to date, unresolved questions show the importance of collecting continuous core in Phase 3 drilling planned for 2007.

  18. Effects of intraoral aging of arch-wires on frictional forces: An ex vivo study.

    PubMed

    Kumar, Avinash; Khanam, Arifa; Ghafoor, Hajra

    2016-01-01

    Archwires act as gears to move teeth with light, continuous forces. However, the intraoral use of orthodontic archwires is liable to surface deposits which alter the mechanical properties of archwires, causing an increase in the friction coefficient. To evaluate the surface changes of the stainless steel archwires after 6 weeks of intraoral use and its influence on frictional resistance during sliding mechanics. As-received rectangular 0.019" × 0.025" stainless steel orthodontic archwires (control) were compared with the archwires retrieved after the final phase of leveling and alignment stage of orthodontic treatment collected after 6 weeks of intraoral exposure (test samples) from 10 patients undergoing treatment. The control and test samples were used to evaluate surface debris using Scanning Electron Microscopy, surface roughness was assessed using Atomic Force Microscope and frictional forces were measured using Instron Universal Testing Machine in the buccal inter-bracket region that slides through the molar tube for space closure. Unpaired t -test and Pearson correlation tests were used for statistical analysis ( P < 0.05 level of significance). Significant increase was observed in the level of debris ( P = 0.0001), surface roughness ( P = 0.0001), and friction resistance ( P = 0.001) of orthodontic archwires after their intraoral exposure. Significant positive correlations ( P < 0.05) were also observed between these three variables. Stainless steel test archwires showed a significant increase in the degree of debris and surface roughness, increasing the frictional forces between the archwire-bracket interfaces which would considerably reduce the normal orthodontic forces. Thus, continuing the same archwire after levelling and alignment for space closure is not recommended.

  19. Particle interaction and rheological behavior of cement-based materials at micro- and macro-scales

    NASA Astrophysics Data System (ADS)

    Lomboy, Gilson Rescober

    Rheology of cement based materials is controlled by the interactions at the particle level. The present study investigates the particle interactions and rheological properties of cement-based materials in the micro- and macro-scales. The cementitious materials studied are Portland cement (PC), fly ash (FA), ground granulated blast furnace slag (GGBFS) and densified silica fume (SF). At the micro-scale, aside from the forces on particles due to collisions, interactions of particles in a flowing system include the adhesion and friction. Adhesion is due to the attraction between materials and friction depends on the properties of the sliding surfaces. Atomic Force Microscopy (AFM) is used to measure the adhesion force and coefficient of friction. The adhesion force is measured by pull-off force measurements and is used to calculate Hamaker constants. The coefficient of friction is measured by increasing the deflection set-points on AFM probes with sliding particles, thereby increasing normal loads and friction force. AFM probes were commercial Si3N4 tips and cementitious particles attached to the tips of probe cantilevers. SF was not included in the micro-scale tests due to its limiting size when attaching it to the AFM probes. Other materials included in the tests were silica, calcite and mica, which were used for verification of the developed test method for the adhesion study. The AFM experiments were conducted in dry air and fluid environments at pH levels of 7, 8, 9, 11 and 13. The results in dry air indicate that the Hamaker constant of Class F FA can be similar to PC, but Class C FA can have a high Hamaker constant, also when in contact with other cementitious materials. The results in fluid environments showed low Hamaker constants for Class F fly ashes compared to PC and also showed high Hamaker constants for PC and Class C fly ash. The results for the friction test in dry air indicated that the coefficient of friction of PC is lower than fly ashes, which is attributed to the asperities present on the particle surface. At the macro-scale, flow of cementitious materials may be in its dry or wet state, during transport and handling or when it is used in concrete mixtures, respectively. Hence, the behavior of bulk cementitious materials in their dry state and wet form are studied. In the dry state, the compression, recompression and swell indices, and stiffness modulus of plain and blended cementitious materials are determined by confined uniaxial compression. The coefficients of friction of the bulk materials studied are determined by a direct shear test. The results indicate that shape of particles has a great influence on the compression and shear parameters. The indices for PC blends with FA do not change with FA replacement, while it increases with GGBFS replacement. Replacement with GGBFS slightly decreases coefficient of friction, while replacement with FA significantly decreases coefficient of friction. At low SF replacement, coefficient of friction decreases. In wet state, unary, binary, ternary and quaternary mixes with w/b of 0.35, 0.45 and 0.55 were tested for yield stress, viscosity and thixotropy. It is found that fly ash replacement lowers the rheological properties and replacement with GGBFS and SF increases rheological properties. The distinct element method (DEM) was employed to model particle interaction and bulk behavior. The AFM force curve measurement is simulated to validate the adhesion model in the DEM. The contact due to asperities was incorporated by considering the asperities as a percentage of the radius of the contacting particles. The results of the simulation matches the force-curve obtained from actual AFM experiments. The confined uniaxial compression test is simulated to verify the use of DEM to relate micro-scale properties to macros-scale behavior. The bulk stiffness from the physical experiments is matched in the DEM simulation. The particle stiffness and coefficient of friction are found to have a direct relation to bulk stiffness.

  20. Effect of Metal Ion Etching on the Tribological, Mechanical and Microstructural Properties of TiN-COATED d2 Tool Steel Using Cae Pvd Technique

    NASA Astrophysics Data System (ADS)

    Ali, Mubarak; Hamzah, Esah Binti; Hj. Mohd Toff, Mohd Radzi

    A study has been made on TiN coatings deposited on D2 tool steel substrates by using commercially available cathodic arc evaporation, physical vapor deposition technique. The goal of this work is to determine the usefulness of TiN coatings in order to improve the micro-Vickers hardness, coefficient of friction and surface roughness of TiN coating deposited on tool steel, which is vastly use in tool industry for various applications. A pin-on-disc test was carried out to study the coefficient of friction versus sliding distance of TiN coating at various ion etching rates. The tribo-test showed that the minimum value recorded for friction coefficient was 0.386 and 0.472 with standard deviation of 0.056 and 0.036 for the coatings deposited at zero and 16 min ion etching. The differences in friction coefficient and surface roughness was mainly associated with the macrodroplets, which was produced during etching stage. The coating deposited for 16 min metal ion etching showed the maximum hardness, i.e., about five times higher than uncoated one and 1.24 times to the coating deposited at zero ion etching. After friction test, the wear track was observed by using field emission scanning electron microscope. The coating deposited for zero ion etching showed small amounts of macrodroplets as compared to the coating deposited for 16 min ion etching. The elemental composition on the wear scar were investigated by means of energy dispersive X-ray, indicate no further TiN coating on wear track. A considerable improvement in TiN coatings was recorded as a function of various ion etching rates.

  1. Friction and Wear of Ion-Beam-Deposited Diamondlike Carbon on Chemical-Vapor-Deposited, Fine-Grain Diamond

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Wu, Richard L. C.; Lanter, William C.

    1996-01-01

    Friction and wear behavior of ion-beam-deposited diamondlike carbon (DLC) films coated on chemical-vapor-deposited (CVD), fine-grain diamond coatings were examined in ultrahigh vacuum, dry nitrogen, and humid air environments. The DLC films were produced by the direct impact of an ion beam (composed of a 3:17 mixture of Ar and CH4) at ion energies of 1500 and 700 eV and an RF power of 99 W. Sliding friction experiments were conducted with hemispherical CVD diamond pins sliding on four different carbon-base coating systems: DLC films on CVD diamond; DLC films on silicon; as-deposited, fine-grain CVD diamond; and carbon-ion-implanted, fine-grain CVD diamond on silicon. Results indicate that in ultrahigh vacuum the ion-beam-deposited DLC films on fine-grain CVD diamond (similar to the ion-implanted CVD diamond) greatly decrease both the friction and wear of fine-grain CVD diamond films and provide solid lubrication. In dry nitrogen and in humid air, ion-beam-deposited DLC films on fine-grain CVD diamond films also had a low steady-state coefficient of friction and a low wear rate. These tribological performance benefits, coupled with a wider range of coating thicknesses, led to longer endurance life and improved wear resistance for the DLC deposited on fine-grain CVD diamond in comparison to the ion-implanted diamond films. Thus, DLC deposited on fine-grain CVD diamond films can be an effective wear-resistant, lubricating coating regardless of environment.

  2. Effects of atmosphere on the tribological properties of a chromium carbide based coating for use to 760 deg C

    NASA Technical Reports Server (NTRS)

    Dellacorte, Chris; Sliney, Harold E.

    1986-01-01

    The effect of atmosphere on the tribological properties of a plasma-sprayed chromium carbide based self-lubricating coating is reported. The coating contains bonded chromium carbide as the wear resistant base stock to which the lubricants silver and barium fluoride/calcium fluoride eutectic are added. It has been denoted as NASA PS200. Potential applications for the PS200 coating are cylinder wall/piston ring couples for Stirling engines and foil bearing journal lubrication. Friction and wear studies were performed in helium, hydrogen, and moist air at temperatures from 25 to 760 C. In general, the atmosphere had a significant effect on both the friction and the wear of the coating and counterface material. Specimens tested in hydrogen, a reducing environment, exhibited the best tribological properties. Friction and wear increased in helium and air but are still within acceptable limits for intended applications. A variety of X-ray analyses was performed on the test specimens in an effort to explain the results. The following conclusions are made: (1) As the test atmosphere becomes less reducing, the coating experiences a higher concentration level of chromic oxide at the sliding interface which increases both the friction and wear. (2) Beneficial silver transfer from the parent coating to the counter-face material is less effective in air than in helium or hydrogen. (3) There may be a direct relationship between chromic oxide level present at the sliding interface and the friction coefficient.

  3. The effects of atmosphere on the tribological properties of a chromium carbide based coating for use to 760 C

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Sliney, Harold E.

    1988-01-01

    The effect of atmosphere on the tribological properties of a plasma-sprayed chromium carbide based self-lubricating coating is reported. The coating contains bonded chromium carbide as the wear resistant base stock to which the lubricants silver and barium fluoride/calcium fluoride eutectic are added. It has been denoted as NASA PS200. Potential applications for the PS200 coating are cylinder wall/piston ring couples Stirling engines and foil bearing journal lubrication. Friction and wear studies were performed in helium, hydrogen, and moist air at temperatures from 25 to 760 C. In general, the atmosphere had a significant effect on both the friction and the wear of the coating and counterface material. Specimens tested in hydrogen, a reducing environment, exhibited the best tribological properties. Friction and wear increased in helium and air but are still within acceptable limits for intended applications. A variety of X-ray analyses was performed on the test specimens in an effort to explain the results. The following conclusions are made: (1) As the test atmosphere becomes less reducing, the coating experiences a higher concentration level of chromic oxide at the sliding interface which increases both the friction and wear. (2) Beneficial silver transfer from the parent coating to the counter-face material is less effective in air than in helium or hydrogen. (3) There may be a direct relationship between chromic oxide level present at the sliding interface and the friction coefficient.

  4. Self-organization Effects on Tribosystems when Lubricated with a Metal-plating Additive „Valena”

    NASA Astrophysics Data System (ADS)

    Kandeva, M.; Karastoyanov, D.; Grozdanova, T.; Kalichin, Zh.; Balabanov, V.; Chikurtev, D.

    2018-01-01

    The external appearance of self-organization is very low friction and wear, and in some cases there is lack of wear, so a friction effect without wear is observed. In the present study are examined tribosystems of different materials - steel, spheroidal graphite cast iron micro alloyed with 0.051% of tin, bronze and other materials under conditions of border lubrication with grease “Litol 24” with a metal-plated additive “Valena”. A unique multifunctional tribotester has been developed that allows varying load and slide speed across wide ranges and research different types of contact - point, ring, plane. Studies have been carried out on different friction modes and results have been obtained for friction coefficient and the parameters of wear of the specimens and the counter body depend of the friction times. Conditions have been established to produce a No-wear effect due to the formation of a metal-plated copper film on the surfaces of the body and the counter body.

  5. Nonmonotonicity of the Frictional Bimaterial Effect

    NASA Astrophysics Data System (ADS)

    Aldam, Michael; Xu, Shiqing; Brener, Efim A.; Ben-Zion, Yehuda; Bouchbinder, Eran

    2017-10-01

    Sliding along frictional interfaces separating dissimilar elastic materials is qualitatively different from sliding along interfaces separating identical materials due to the existence of an elastodynamic coupling between interfacial slip and normal stress perturbations in the former case. This bimaterial coupling has important implications for the dynamics of frictional interfaces, including their stability and rupture propagation along them. We show that while this bimaterial coupling is a monotonically increasing function of the bimaterial contrast, when it is coupled to interfacial shear stress perturbations through a friction law, various physical quantities exhibit a nonmonotonic dependence on the bimaterial contrast. In particular, we show that for a regularized Coulomb friction, the maximal growth rate of unstable interfacial perturbations of homogeneous sliding is a nonmonotonic function of the bimaterial contrast and provides analytic insight into the origin of this nonmonotonicity. We further show that for velocity-strengthening rate-and-state friction, the maximal growth rate of unstable interfacial perturbations of homogeneous sliding is also a nonmonotonic function of the bimaterial contrast. Results from simulations of dynamic rupture along a bimaterial interface with slip-weakening friction provide evidence that the theoretically predicted nonmonotonicity persists in nonsteady, transient frictional dynamics.

  6. Tribological properties and lubrication mechanism of in situ graphene-nickel matrix composite impregnated with lubricating oil

    NASA Astrophysics Data System (ADS)

    Lei, Yu; Du, Jinfang; Pang, Xianjuan; Wang, Haizhong; Yang, Hua; Jiang, Jinlong

    2018-05-01

    A solid-liquid synergetic lubricating system has been designed to develop a novel self-lubricating nickel matrix composite. The graphene-nickel (G-Ni) matrix composite with porous structure was fabricated by in situ growing graphene in bulk nickel using a powder metallurgy method. The porous structures of the composite were used to store polyalphaolefin (PAO) oil for self-lubricating. It is found that the G-Ni matrix composite under oil lubrication condition exhibited superior tribological properties as compared to pure nickel and the composite under dry sliding condition. The prestored oil was released from pores to the sliding surface forming a lubricating oil film during friction process. This lubricating oil film can protect the worn surface from severe oxidation, and help the formation and transfer of a carbon-based solid tribofilm derived from graphene and lubricating oil. This solid (graphene)-liquid (oil) synergistic lubricating mechanism is responsible for the reduction of friction coefficient and improvement of wear resistance of the in situ fabricated G-Ni matrix composite.

  7. Analysis of rotational and sliding collapse modes of masonry arches via Durand-Claye's method

    NASA Astrophysics Data System (ADS)

    Barsotti, Riccardo; Aita, Danila; Bennati, Stefano

    2017-11-01

    In this paper the mechanical behavior of circular and pointed masonry arches subject to their own weight is examined in order to determine their collapse modes. Different arch's shapes and thicknesses are considered; the influence of the friction coefficient on the arch collapse is analyzed as well. The safety level of arches is investigated by suitably reworking in semi-analytical form the stability area graphical method proposed by a renowned 19th century French scholar, Durand-Claye. Our analysis enables accounting for any given eccentricity of the thrust at the crown; furthermore, also the strength of masonry is taken into account. According to Durand-Claye's method, the arch is safe if along any given joint both the bending moment and the shear force do not exceed some given limit values. It is shown that attainment of a limit condition according to Durand-Claye corresponds to the onset of a collapse mechanism characterized by either relative rotation or sliding between masonry units. All possible symmetric collapse modes for an arch are thoroughly described. As it was expected, pointed and circular arches show different collapse behaviors. Limit values of arch thickness and friction coefficient are assessed. The results obtained are compared with those given by Michon in 1857.

  8. Determination of the Basic Friction Angle of Rock Surfaces by Tilt Tests

    NASA Astrophysics Data System (ADS)

    Jang, Hyun-Sic; Zhang, Qing-Zhao; Kang, Seong-Seung; Jang, Bo-An

    2018-04-01

    Samples of Hwangdeung granite from Korea and Berea sandstone from USA, both containing sliding planes, were prepared by saw-cutting or polishing using either #100 or #600 grinding powders. Their basic friction angles were measured by direct shear testing, triaxial compression testing, and tilt testing. The direct shear tests and triaxial compression tests on the saw-cut, #100, and #600 surfaces indicated that the most reliable results were obtained from the #100 surface: basic friction angle of 29.4° for granite and 34.1° for sandstone. To examine the effect of surface conditions on the friction angle in tilt tests, the sliding angles were measured 50 times with two surface conditions (surfaces cleaned and not cleaned after each measurement). The initial sliding angles were high regardless of rock type and surface conditions and decreased exponentially as measurements continued. The characteristics of the sliding angles, differences between tilt tests, and dispersion between measurements in each test indicated that #100 surface produced the most reliable basic friction angle measurement. Without cleaning the surfaces, the average angles for granite (32 measurements) and sandstone (23 measurements) were similar to the basic friction angle. When 20-50 measurements without cleaning were averaged, the basic friction angle was within ± 2° for granite and ± 3° for sandstone. Sliding angles using five different tilting speeds were measured but the average was similar, indicating that tilting speed (between 0.2° and 1.6°/s) has little effect on the sliding angle. Sliding angles using four different sample sizes were measured with the best results obtained for samples larger than 8 × 8 cm.

  9. Frictional Behavior of Altered Basement Approaching the Nankai Trough

    NASA Astrophysics Data System (ADS)

    Saffer, D. M.; Ikari, M.; Rooney, T. O.; Marone, C.

    2017-12-01

    The frictional behavior of basement rocks plays an important role in subduction zone faulting and seismicity. This includes earthquakes seaward of the trench, large megathrust earthquakes where seamounts are subducting, or where the plate interface steps down to basement. In exhumed subduction zone rocks such as the Shimanto complex in Japan, slivers of basalt are entrained in mélange which is evidence of basement involvement in the fault system. Scientific drilling during the Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) recovered basement rock from two reference sites (C0011 and C0012) located seaward of the trench offshore the Kii Peninsula during Integrated Ocean Discovery Program (IODP) Expeditions 322 and 333. The basement rocks are pillow basalts that appear to be heterogeneously altered, resulting in contrasting dense blue material and more vesicular gray material. Major element geochemistry shows differences in silica, calcium oxides and loss-on-ignition between the two types of samples. Minor element geochemistry reveals significant differences in vanadium, chromium, and barium. X-ray diffraction on a bulk sample powder representing an average composition shows a phyllosilicate content of 20%, most of which is expandable clays. We performed laboratory friction experiments in a biaxial testing apparatus as either intact sample blocks, or as gouge powders. We combine these experiments with measurements of Pennsylvania slate for comparison, including a mixed-lithology intact block experiment. Intact Nankai basement blocks exhibit a coefficient of sliding friction of 0.73; for Nankai basement powder, slate powder, slate blocks and slate-on-basement blocks the coefficient of sliding friction ranges from 0.44 to 0.57. At slip rates ranging from 3x10-8 to 3x10-4 m/s we observe predominantly velocity-strengthening frictional behavior, indicating a tendency for stable slip. At rates of < 1x10-6 m/s some velocity-weakening was observed, specifically in intact rock-on-rock experiments. Our results show that basement alteration tends to reduce the tendency for unstable slip, but that the altered Nankai basement may still exhibit seismogenic behavior in the case of localized slip in competent rock.

  10. Tribological Performance of M50-Ag-TiC Self-Lubricating Composites at Elevated Temperature

    NASA Astrophysics Data System (ADS)

    Zhou, Hongyan; Shi, Xiaoliang; Huang, Yuchun; Liu, Xiyao; Li, Ben

    2018-05-01

    M50 steel is widely used in aero-engine bearings and other high-temperature bearings. However, the poor wear of M50 steel resistance restrains its further applications. In this paper, the sliding tribological behaviors of M50 steel, M50-Ag composites (MAC) and M50-Ag-TiC composites (MATC) against Si3N4 ball were investigated from 150 to 600 °C at 15 N-0.2 m/s. MATC showed better tribological properties in comparison with M50 and MAC. Especially at 450 °C, MATC obtained the lowest friction coefficient of 0.15 and smallest wear rate of 1.3 × 10-5 mm3 N-1 m-1. The excellent tribological performance of MATC during the friction test was attributed to the continuous lubricating film containing lubricant Ag and reinforcement TiC, as well as the subsurface compacted layer that could well support the lubricating film to prevent it from being destroyed. At 600 °C, because of the tribo-chemical reaction between Ag and Mo oxide during sliding process, the newly formed Ag2MoO4 lubricating film was well spread out on the friction surface, which could continuously improve the tribological behavior of MATC. This investigation was meaningful to improve the anti-friction and wear resistance of M50 matrix bearing over a wide temperature range.

  11. Ceramic-like wear behaviour of human dental enamel.

    PubMed

    Arsecularatne, J A; Hoffman, M

    2012-04-01

    This paper reports a transmission electron microscopy (TEM) analysis of subsurfaces of enamel specimens following in vitro reciprocating wear tests with an enamel cusp sliding on a flat enamel specimen under hydrated conditions. The obtained results show that crack formation occurred in the wear scar subsurface. The path followed by these cracks seems to be dictated either by the histological structure of enamel or by the contact stress field. Moreover, the analysis of a set of enamel wear results obtained from the literature and application of fracture-based models, originally developed for ceramics, correlate well, confirming the similar wear processes taking place in these materials. This analysis also reveals a marked influence of coefficient of friction on the enamel wear rate: for a higher coefficient of friction value, enamel wear can be severe even under forces generated during normal operation of teeth. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Low wear partially fluorinated polyimides

    NASA Technical Reports Server (NTRS)

    Fusaro, R. L.; Hady, W. F.

    1984-01-01

    Tribological studies were conducted on five different polyimide solid bodies formulated from the diamine 2,2-bis 4-(4-aminophenoxy)phenyl hexafluoropropane (4-BDAF) and the dianhydrides pyromellitic acid (PMDS) and benzophenonetetracarboxylic acid (BTDA). The following polyimides were evaluated 4-BDAF/PMDA, 4-BDAF/BTDA, 4-BDAF/80 mole percent PMDA, 20 mole percent BTDA, 4-BDAF/60 mole percent BTDA. Friction coefficients, polyimide wear rates, polyimide surface morphology and transfer films were evaluated at sliding speeds of 0.31 to 11.6 m/s and at temperatures of 25 C to 300 C. The results indicate that the tribological properties are highly dependent on the composition of the polyimide and on the experimental conditions. Two polyimides were found which produced very low wear rates but very high friction coefficients (greater than 0.85) under ambient conditions. They offer considerable potential for high traction types of application such as brakes.

  13. Ion-Implanted Diamond Films and Their Tribological Properties

    NASA Technical Reports Server (NTRS)

    Wu, Richard L. C.; Miyoshi, Kazuhisa; Korenyi-Both, Andras L.; Garscadden, Alan; Barnes, Paul N.

    1993-01-01

    This paper reports the physical characterization and tribological evaluation of ion-implanted diamond films. Diamond films were produced by microwave plasma, chemical vapor deposition technique. Diamond films with various grain sizes (0.3 and 3 microns) and roughness (9.1 and 92.1 nm r.m.s. respectively) were implanted with C(+) (m/e = 12) at an ion energy of 160 eV and a fluence of 6.72 x 10(exp 17) ions/sq cm. Unidirectional sliding friction experiments were conducted in ultrahigh vacuum (6.6 x 10(exp -7)Pa), dry nitrogen and humid air (40% RH) environments. The effects of C(+) ion bombardment on fine and coarse-grained diamond films are as follows: the surface morphology of the diamond films did not change; the surface roughness increased (16.3 and 135.3 nm r.m.s.); the diamond structures were damaged and formed a thin layer of amorphous non-diamond carbon; the friction coefficients dramatically decreased in the ultrahigh vacuum (0.1 and 0.4); the friction coefficients decreased slightly in the dry nitrogen and humid air environments.

  14. Influence of the ferritic-pearlitic steel microstructure on surface roughness in broaching of automotive steels

    NASA Astrophysics Data System (ADS)

    Arrieta, I.; Courbon, C.; Cabanettes, F.; Arrazola, P.-J.; Rech, J.

    2017-10-01

    The aim of this work is to characterize the effect of microstructural parameters on surface roughness in dry broaching with a special emphasis on the ferrite-pearlite (FP) ratio. An experimental approach combining cutting and tribological tests has been developed on three grades 27MnCr5, C45, C60 covering a wide range of FP ratio. Fundamental broaching tests have been performed with a single tooth to analyse the resulting surface quality with uncoated M35 HSS tools. A specially designed open tribometer has been used to characterize the friction coefficient at the tool-chip-workpiece interface under appropriate conditions. Specific phenomena have been observed depending on the FP ratio and an interesting correlation with the tribological tests has been found. This clearly shows that friction has an important contribution in broaching and that phase distribution has to be highly considered when cutting a FP steel at a microscopic scale. This work also provides quantitative data of the friction coefficient depending on the sliding velocity and FP content which can be implemented in any analytical or numerical model of a broaching operation.

  15. Static and kinetic friction of granite at high normal stress

    USGS Publications Warehouse

    Byerlee, J.D.

    1970-01-01

    Frictional sliding on ground surfaces of granite, angle of sliding planes 30?? and 45??, was investigated as a function of confining pressure. Over the normal stress range of 2-12 kb, the static frictional shear stress ??s follows the relationship ??s = 0??5 + 0?? ??n and the kinetic frictional shear stress ??k was calculated to be ??k = 0??25 + 0??47 ??n. ?? 1970.

  16. Experimental results of a hydrodynamic friction behaviour of a linear contact at low sliding velocity

    NASA Astrophysics Data System (ADS)

    Bouzana, A.; Guermat, A.; Belarifi, F.

    2018-01-01

    We propose in this work the experimental results of the lubricated friction behavior of linear contact (finite length) in isoviscous hydrodynamic regime. This study was made on a tribometer Plint - Cameron TE77, using a pure mineral oil lubricant (N175). without additives for three loads 20, 40 and 80 Newton. and a velocity, range varying from 0.05 to 0.4 ms-1, trials are held in pure sliding mode for a total distance of displacement L = 15mm. The studied contact is a cylinder/cylinder. The geometry of test pieces is part of a piston ring and a liner of a real engine. The first cylinder represents the male part with material of MKJet nuance having undergoes a surface coating by thermal projection (HVOF). the second cylinder represents the female part whose material is cast iron of nuance FGL, without surface treatment, and whose dimensions were adapted to minimize the computational error on the speed of sliding and the force of friction which is lower than 5%. Processing the results recorded for ten cycles with four hundred points per cycle to the extraction of average curves, enables us to plot the curves of friction according to velocity and thereafter the curve of Stribeck. The results show that we can get a total isoviscous regime for loads 20 and 40N, however for load 80N, this regime is partial, as it comes off the final curve from a speed value 0.1 m / s. the values of the friction coefficient varies for the three loads used between 0.004 and 0.017. These results show the possibility of obtaining a hydrodynamic regime with high load and low speed, with treatments suitable surfaces and are made to reduce wear and increase the lifetime of the mechanism.

  17. Tribo-performance of epoxy hybrid composites reinforced with carbon fibers and potassium titanate whiskers

    NASA Astrophysics Data System (ADS)

    Suresha, B.; Harshavardhan, B.; Ravishankar, R.

    2018-04-01

    The present investigation deals with the fabrication and characterization of epoxy reinforced with bidirectional carbon fiber mat (CF/Ep) and filled with 2.5, 5 and 7.5 wt% potassium titanate whiskers (PTw) composites. The effect of PTw loading on hardness, tensile properties and dry sliding wear behaviour of CF/Ep composite were carefully investigated in expectation of providing valuable information for the application of hybrid CF/Ep composites. Results indicated that the incorporation of PTw actually improved the hardness, tensile strength and tensile modulus of CF/Ep composites. Meanwhile, the specific wear rate of CF/Ep filled by 5 wt % PTw reached to 6.3× 10-14 m3/N-m, which is 41% lower than that of CF/Ep composite at the same dry sliding condition. It also seen that the fiber and filler worked synergistically to enhance the wear resistance. Further, for all composites the friction coefficient increases with increase in load and sliding velocity. However, PTw reinforced CF/Ep exhibited considerably higher coefficient of friction compared to unfilled ones, while PTw filler loading of 5 wt% was effective in reducing the specific wear rate of CF/Ep composite. The carbon fiber carried the applied load between the contact surfaces and protected the epoxy from severe abrasion of the counterface. At the same time, the exposed PTw out of the epoxy matrix around the fiber inhibited the direct scraping between the fiber and counterface so that the fibers could be less directly impacted during the subsequent wear process and they were protected from severe damage.

  18. Study of Nanoscale Friction Behaviors of Graphene on Gold Substrates Using Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Zhu, Pengzhe; Li, Rui

    2018-02-01

    In this paper, we investigate the friction behaviors of graphene flakes sliding on a gold substrate using molecular dynamics simulations. The effects of flake size, flake shape, relative rotation angle between flake and substrate, and crystal orientation of substrate on the friction process are thoroughly studied. It is found that under the same load, the average friction forces per atom are smaller for a bigger graphene flake, which exhibits an obvious size effect. It is also shown that flake shape is critical in determining the friction in the sliding process. The average friction forces per atom for the square flake are much bigger than those for the triangular and round flakes. Moreover, the average friction forces per atom for the triangular flake are the smallest. We also find that the orientation of graphene flake relative to gold substrate plays a vital role in the friction process. The friction forces for the graphene flake sliding along the armchair direction are much bigger than those for the flakes with rotation. In addition, it is also found that single crystalline gold substrate exhibits a significant anisotropic effect of friction, which is attributed to the anisotropic effect of potential energy corrugation. These understandings not only shed light on the underlying mechanisms of graphene flake sliding on the gold substrates but also may guide the design and fabrication of nanoscale graphene-based devices.

  19. An Additive to Improve the Wear Characteristics of Perfluoropolyether Based Greases

    NASA Technical Reports Server (NTRS)

    Jones, David G. V.; Fowzy, Mahmoud A.; Landry, James F.; Jones, William R., Jr.; Shogrin, Bradley A.; Nguyen, QuynhGiao

    1999-01-01

    The friction and wear characteristics of two formulated perfluoropolyether based greases were compared to their non-additive base greases. One grease was developed for the electronics industry (designated as GXL-296A) while the other is for space applications (designated as GXL-320A). The formulated greases (GXL-296B and GXL-320B) contained a proprietary antiwear additive at an optimized concentration. Tests were conducted using a vacuum four-ball tribometer. AISI 52100 steel specimens were used for all GXL-296 tests. Both AISI 52100 steel and 440C stainless steel were tested with the GXL-320 greases. Test conditions included: a pressure less than 6.7 x 10(exp )-4 Pa, a 200N load, a sliding velocity of 28.8 mm/sec (100 rpm) and room temperature (approximately equal to 23 C). Wear rates for each grease were determined from the slope of the wear volume as a function of sliding distance. Both non-additive base greases yielded relatively high wear rates on the order of 10(exp -8) cu mm using AISI 52100 steel specimens. Formulated grease GXL-296B yielded a reduction in wear rate by a factor of approximately 21, while grease GXL-320B had a reduction of approximately 12 times. Lower wear rates (-50%) were observed with both GXL-320 greases using 440C stainless steel. Mean friction coefficients were slightly higher for both formulated greases compared to their base greases. The GXL-296 series (higher base oil viscosity) yielded much higher friction coefficients compared to their GXL-320 series (lower base oil viscosity) counterparts.

  20. Effect of oxygen, methyl mercaptan, and methyl chloride on friction behavior of copper-iron contacts

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1978-01-01

    Sliding friction experiments were conducted with an iron rider on a copper disk and a copper rider on an iron disk. The sputter cleaned iron and copper disk surfaces were saturated with oxygen, methyl mercaptan, and methyl chloride at atmospheric pressure. Auger emission spectroscopy was used to monitor the surfaces. Lower friction was obtained in all experiments with the copper rider sliding on the iron disk than when the couple was reversed. For both iron and copper disks, methyl mercaptan gave the best surface coverage and was most effective in reducing friction. For both iron and copper disks, methyl chloride was the least effective in reducing friction. With sliding, copper transferred to iron and iron to copper.

  1. The friction and wear of ceramic/ceramic and ceramic/metal combinations in sliding contact

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.; Dellacorte, Christopher

    1993-01-01

    The tribological characteristics of ceramics sliding on ceramics are compared to those of ceramics sliding on a nickel based turbine alloy. The friction and wear of oxide ceramics and silicon-based ceramics in air at temperatures from room ambient to 900 C (in a few cases to 1200 C) were measured for a hemispherically-tipped pin on a flat sliding contact geometry. In general, especially at high temperature, friction and wear were lower for ceramic/metal combinations than for ceramic/ceramic combinations. The better tribological performance for ceramic/metal combinations is attributed primarily to the lubricious nature of the oxidized surface of the metal.

  2. Experimental investigation into biomechanical and biotribological properties of a real intestine and their significance for design of a spiral-type robotic capsule.

    PubMed

    Zhou, Hao; Alici, Gursel; Than, Trung D; Li, Weihua

    2014-03-01

    This article reports on the results and implications of our experimental investigation into the biomechanical and biotribological properties of a real intestine for the optimal design of a spiral-type robotic capsule. Dynamic shear experiments were conducted to evaluate how the storage and loss moduli and damping factor of the small intestine change with the speed or the angular frequency. The sliding friction between differently shaped test pieces, with a topology similar to that of the spirals, and the intestine sample was experimentally determined. Our findings demonstrate that the intestine's biomechanical and biotribological properties are coupled, suggesting that the sliding friction is strongly related to the internal friction of the intestinal tissue. The significant implication of this finding is that one can predict the reaction force between the capsule with a spiral-type traction topology and the intestine directly from the intestine's biomechanical measurements rather than employing complicated three-dimensional finite element analysis or an inaccurate analytical model. Sliding friction experiments were also conducted with bar-shaped solid samples to determine the sliding friction between the samples and the small intestine. This sliding friction data will be useful in determining spiral material for an optimally designed robotic capsule.

  3. Attraction induced frictionless sliding of rare gas monolayer on metallic surfaces: an efficient strategy for superlubricity.

    PubMed

    Sun, Junhui; Zhang, Yanning; Lu, Zhibin; Xue, Qunji; Wang, Liping

    2017-05-10

    Friction on a nanoscale revealed rich load-dependent behavior, which departs strongly from the long-standing Amonton's law. Whilst electrostatic repulsion-induced friction collapse for rare gas sliding over metallic surfaces in a high-load regime was reported by Righi et al. (Phys. Rev. Lett., 2007, 99, 176101), the significant role of attraction on frictional properties has not been reported to date. In this study, the frictional motion of Xe/Cu(111), Xe/Pd(111) and Ar/Cu(111) was studied using van der Waals corrected density functional calculations. An attraction-induced zero friction, which is a signal of superlubricity, was found for the sliding systems. The superlubric state results from the disappearance of the potential corrugation along the favored sliding path as a consequence of the potential crossing in the attractive regime when the interfacial pressure approaches a critical-value. The finding of an attraction-driven friction drop, together with the repulsion-induced collapse in the high-load regime, which breaks down the classic Amonton's law, provides a distinct approach for the realization of inherent superlubricity in some adsorbate/substrate interfaces.

  4. Friction and wear behavior of aluminum and composite airplane skins

    NASA Technical Reports Server (NTRS)

    Jackson, K. E.

    1984-01-01

    Friction and wear behavior was determined for small skin specimens under abrasive loading conditions typical of those occurring on the underside of a transport airplane during emergency belly landing. A test apparatus consisting of a standard belt sander provided the sliding surface. Small test specimens constructed of aluminum, standard graphite-epoxy composite, aramid-epoxy composite, and toughened-resin composites were tested undar a range of pressures, belt velocities, and belt-surface textures. The effects of these test variables on the wear rate and the coefficient of friction are discussed and comparisons are made between the composite materials and aluminum. The effect of fiber orientation in the composite materials on wear rate was also investigated. In addition, tests were performed in which thermocouples were imbedded into the various test specimens to obtain temperature-time histories during abrasion.

  5. Boundary lubrication of formulated C-ethers in air to 300 C. 2: Organic acid additives

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.

    1973-01-01

    Friction and wear measurements were made on CVM M-50 steel lubricated with three C-ether (modified polyphenyl ether) formulations in dry and moist air. Results were compared to those obtained with a formulated Type 2 ester and the C-ether base fluid. A ball-on-disk sliding friction apparatus was used. Experimental conditions were a 1-kilogram load, a 17-meter/minute surface speed, and a 25 to 300 C (77 to 572 F) disk temperature range. The three C-ether formulations yielded better boundary lubricating characteristics than the Type 2 ester under most test conditions. All C-ether formulations exhibited higher friction coefficients than the ester from 150 to 300 C (302 to 572 F) and similar or lower values from 25 to 150 C (77 to 302 F).

  6. Rubber friction directional asymmetry

    NASA Astrophysics Data System (ADS)

    Tiwari, A.; Dorogin, L.; Steenwyk, B.; Warhadpande, A.; Motamedi, M.; Fortunato, G.; Ciaravola, V.; Persson, B. N. J.

    2016-12-01

    In rubber friction studies it is usually assumed that the friction force does not depend on the sliding direction, unless the substrate has anisotropic properties, like a steel surface grinded in one direction. Here we will present experimental results for rubber friction, where we observe a strong asymmetry between forward and backward sliding, where forward and backward refer to the run-in direction of the rubber block. The observed effect could be very important in tire applications, where directional properties of the rubber friction could be induced during braking.

  7. Mechanical energy absorber

    NASA Technical Reports Server (NTRS)

    Wesselski, Clarence J. (Inventor)

    1993-01-01

    An energy absorbing system for controlling the force where a moving object engages a stationary stop and where the system utilized telescopic tubular members, energy absorbing diaphragm elements, force regulating disc springs, and a return spring to return the telescoping member to its start position after stroking is presented. The energy absorbing system has frusto-conical diaphragm elements frictionally engaging the shaft and are opposed by a force regulating set of disc springs. In principle, this force feedback mechanism serves to keep the stroking load at a reasonable level even if the friction coefficient increases greatly. This force feedback device also serves to desensitize the singular and combined effects of manufacturing tolerances, sliding surface wear, temperature changes, dynamic effects, and lubricity.

  8. How graphene slides: measurement and theory of strain-dependent frictional forces between graphene and SiO2.

    PubMed

    Kitt, Alexander L; Qi, Zenan; Rémi, Sebastian; Park, Harold S; Swan, Anna K; Goldberg, Bennett B

    2013-06-12

    Strain, bending rigidity, and adhesion are interwoven in determining how graphene responds when pulled across a substrate. Using Raman spectroscopy of circular, graphene-sealed microchambers under variable external pressure, we demonstrate that graphene is not firmly anchored to the substrate when pulled. Instead, as the suspended graphene is pushed into the chamber under pressure, the supported graphene outside the microchamber is stretched and slides, pulling in an annulus. Analyzing Raman G band line scans with a continuum model extended to include sliding, we extract the pressure dependent sliding friction between the SiO2 substrate and mono-, bi-, and trilayer graphene. The sliding friction for trilayer graphene is directly proportional to the applied load, but the friction for monolayer and bilayer graphene is inversely proportional to the strain in the graphene, which is in violation of Amontons' law. We attribute this behavior to the high surface conformation enabled by the low bending rigidity and strong adhesion of few layer graphene.

  9. Adaptive integral backstepping sliding mode control for opto-electronic tracking system based on modified LuGre friction model

    NASA Astrophysics Data System (ADS)

    Yue, Fengfa; Li, Xingfei; Chen, Cheng; Tan, Wenbin

    2017-12-01

    In order to improve the control accuracy and stability of opto-electronic tracking system fixed on reef or airport under friction and external disturbance conditions, adaptive integral backstepping sliding mode control approach with friction compensation is developed to achieve accurate and stable tracking for fast moving target. The nonlinear observer and slide mode controller based on modified LuGre model with friction compensation can effectively reduce the influence of nonlinear friction and disturbance of this servo system. The stability of the closed-loop system is guaranteed by Lyapunov theory. The steady-state error of the system is eliminated by integral action. The adaptive integral backstepping sliding mode controller and its performance are validated by a nonlinear modified LuGre dynamic model of the opto-electronic tracking system in simulation and practical experiments. The experiment results demonstrate that the proposed controller can effectively realise the accuracy and stability control of opto-electronic tracking system.

  10. Finite-time adaptive sliding mode force control for electro-hydraulic load simulator based on improved GMS friction model

    NASA Astrophysics Data System (ADS)

    Kang, Shuo; Yan, Hao; Dong, Lijing; Li, Changchun

    2018-03-01

    This paper addresses the force tracking problem of electro-hydraulic load simulator under the influence of nonlinear friction and uncertain disturbance. A nonlinear system model combined with the improved generalized Maxwell-slip (GMS) friction model is firstly derived to describe the characteristics of load simulator system more accurately. Then, by using particle swarm optimization (PSO) algorithm ​combined with the system hysteresis characteristic analysis, the GMS friction parameters are identified. To compensate for nonlinear friction and uncertain disturbance, a finite-time adaptive sliding mode control method is proposed based on the accurate system model. This controller has the ability to ensure that the system state moves along the nonlinear sliding surface to steady state in a short time as well as good dynamic properties under the influence of parametric uncertainties and disturbance, which further improves the force loading accuracy and rapidity. At the end of this work, simulation and experimental results are employed to demonstrate the effectiveness of the proposed sliding mode control strategy.

  11. Friction and wear of iron and nickel in sodium hydroxide solutions

    NASA Technical Reports Server (NTRS)

    Rengstorff, G. W. P.; Miyoshi, K.; Buckley, D. H.

    1982-01-01

    A loaded spherical aluminum oxider rider was made to slide, while in various solutions, on a flat iron or nickel surface reciprocate a distance of 1 cm. Time of experiments was 1 hr during which the rider passed over the rider passed over the center section of the track 540 times. Coefficients of friction were measured throughout the experiments. Wear was measured by scanning the track with a profilometer. Analysis of some of the wear tracks included use of the SEM (scanning electron microscrope) and XPS (X-ray photoelectron spectroscopy). Investigated were the effect of various concentractions of NaOH and of water. On iron, increasing NaOH concentration above 0.01 N caused the friction and wear to decrease. This decrease is accompanied by a decrease in surface concentration of ferric oxide (Fe2O3) while more complex iron-oxygen compounds, not clearly identified, also form. At low concentrations of NaOH, such as 0.01 N, where the friction is high, the wear track is badely torn up and the surface is broken. At high concentration, such as 10 N, where the friction is low, the wear track is smooth. The general conclusion is that NaOH forms a protective, low friction film on iron which is destroyed by wear at low concentrations but remains intact at high concentrations of NaOH. Nickel behaves differently than iron in that only a little NaOH gives a low coefficient of friction and a surface which, although roughened in the wear track, remains intact.

  12. Au/Cr Sputter Coating for the Protection of Alumina During Sliding at High Temperatures

    NASA Technical Reports Server (NTRS)

    Benoy, Patricia A.; Dellacorte, Christopher

    1995-01-01

    A sputter deposited bilayer coating of gold and chromium was investigated as a potential solid lubricant to protect alumina substrates in applications involving sliding at high temperature. The proposed lubricant was tested in a pin-on-disk tribometer with coated alumina disks sliding against uncoated alumina pins. Three test parameters; temperature, load, and sliding velocity were varied over a wide range in order to determine the performance envelope on the gold/chromium (Au/Cr) solid lubricant film. The tribo-tests were run in an air atmosphere at temperatures of 25 to 1000 C, under loads of 4.9 to 49.0 N and at sliding velocities from 1 to 15 m/sec. Post test analyses included surface profilometry, wear factor determination and scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) examination of worn surfaces. Compared to unlubricated Al2O3 sliding, the use of the Au/Cr film reduced friction by 30 to 50 percent and wear by one to two orders of magnitude. Increases in test temperature resulted in lower friction and the Au/Cr film continued to provide low friction, about 0.3, even at 1000 C. Pin wear factors and friction were largely unaffected by increasing loads up to 29.4 N. Sliding velocity had essentially no effect on friction, however, increased velocity reduced coating life (total sliding distance). Based upon these research results, the Au/Cr film is a promising lubricant for moderately loaded, low speed applications operating at temperatures as high as 1000 C.

  13. Open System Tribology and Influence of Weather Condition.

    PubMed

    Lyu, Yezhe; Bergseth, Ellen; Olofsson, Ulf

    2016-08-30

    The tribology of an open system at temperatures ranging between 3 °C and -35 °C, with and without snow, was investigated using a pin-on-disc tribometer mounted in a temperature-controlled environmental chamber. The relationship between the microstructure and ductility of the materials and the tribology at the contacting surfaces was investigated. The study shows that during continuous sliding, pressure causes snow particles to melt into a liquid-like layer, encouraging the generation of oxide flakes on the contact path. The friction coefficient and wear rate are dramatically reduced through an oxidative friction and wear mechanism. In the absence of snow, the tribological process is controlled by the low temperature brittleness of steel in the temperature range from 3 °C to -15 °C. At these temperatures, cracks are prone to form and extend on the worn surfaces, resulting in the spalling of bulk scraps, which are crushed into debris that increases the friction coefficient and wear rate due to strong abrasion. When the temperature falls to -25 °C, an ice layer condenses on the metal surfaces and relaxes the tribological process in the same way as the added snow particles, which significantly decreases the friction and wear.

  14. Open System Tribology and Influence of Weather Condition

    PubMed Central

    Lyu, Yezhe; Bergseth, Ellen; Olofsson, Ulf

    2016-01-01

    The tribology of an open system at temperatures ranging between 3 °C and −35 °C, with and without snow, was investigated using a pin-on-disc tribometer mounted in a temperature-controlled environmental chamber. The relationship between the microstructure and ductility of the materials and the tribology at the contacting surfaces was investigated. The study shows that during continuous sliding, pressure causes snow particles to melt into a liquid-like layer, encouraging the generation of oxide flakes on the contact path. The friction coefficient and wear rate are dramatically reduced through an oxidative friction and wear mechanism. In the absence of snow, the tribological process is controlled by the low temperature brittleness of steel in the temperature range from 3 °C to −15 °C. At these temperatures, cracks are prone to form and extend on the worn surfaces, resulting in the spalling of bulk scraps, which are crushed into debris that increases the friction coefficient and wear rate due to strong abrasion. When the temperature falls to −25 °C, an ice layer condenses on the metal surfaces and relaxes the tribological process in the same way as the added snow particles, which significantly decreases the friction and wear. PMID:27573973

  15. Explicit Solvent Simulations of Friction between Brush Layers of Charged and Neutral Bottle-Brush Macromolecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrillo, Jan-Michael; Brown, W Michael; Dobrynin, Andrey

    2012-01-01

    We study friction between charged and neutral brush layers of bottle-brush macromolecules using molecular dynamics simulations. In our simulations the solvent molecules were treated explicitly. The deformation of the bottle-brush macromolecules under the shear were studied as a function of the substrate separation and shear stress. For charged bottle-brush layers we study effect of the added salt on the brush lubricating properties to elucidate factors responsible for energy dissipation in charged and neutral brush systems. Our simulations have shown that for both charged and neutral brush systems the main deformation mode of the bottle-brush macromolecule is associated with the backbonemore » deformation. This deformation mode manifests itself in the backbone deformation ratio, , and shear viscosity, , to be universal functions of the Weissenberg number W. The value of the friction coefficient, , and viscosity, , are larger for the charged bottle-brush coatings in comparison with those for neutral brushes at the same separation distance, D, between substrates. The additional energy dissipation generated by brush sliding in charged bottle-brush systems is due to electrostatic coupling between bottle-brush and counterion motion. This coupling weakens as salt concentration, cs, increases resulting in values of the viscosity, , and friction coefficient, , approaching corresponding values obtained for neutral brush systems.« less

  16. Tribological Properties of Water-lubricated Rubber Materials after Modification by MoS2 Nanoparticles

    PubMed Central

    Dong, Conglin; Yuan, Chengqing; Wang, Lei; Liu, Wei; Bai, Xiuqin; Yan, Xinping

    2016-01-01

    Frictional vibration and noise caused by water-lubricated rubber stern tube bearings, which are generated under extreme conditions, severely threaten underwater vehicles’ survivability and concealment performance. This study investigates the effect of flaky and spherical MoS2 nanoparticles on tribological properties and damping capacity of water-lubricated rubber materials, with the aim of decreasing frictional noise. A CBZ-1 tribo-tester was used to conduct the sliding tests between rubber ring-discs and ZCuSn10Zn2 ring-discs with water lubrication. These materials’ typical mechanical properties were analysed and compared. Coefficients of friction (COFs), wear rates, and surface morphologies were evaluated. Frictional noise and critical velocities of generating friction vibration were examined to corroborate above analysis. Results showed that spherical MoS2 nanoparticles enhanced rubber material’s mechanical and tribological properties and, in turn, reduced the friction noise and critical velocity. Flaky MoS2 nanoparticles reduced COF but did not enhance their mechanical properties, i.e., the damping capacity, wear resistance property; thus, these nanoparticles did not reduce the critical velocity obviously, even though increased the frictional noise at high load. The knowledge gained in the present work will be useful for optimizing friction pairs under extreme conditions to decrease frictional noise of water-lubricated rubber stern tube bearings. PMID:27713573

  17. Influence of sliding friction on leveling force of superelastic NiTi arch wire: A computational analysis

    NASA Astrophysics Data System (ADS)

    Razali, M. F.; Mahmud, A. S.; Mokhtar, N.; Abdullah, J.

    2017-10-01

    This study investigated the influence of sliding friction toward the effective force of superelastic NiTi arch wire applied in orthodontic bracing for tooth leveling. A three-dimensional finite-element model integrated with superelastic subroutine and contact interaction was used to predict the contribution of friction on force-deflection curve of NiTi wire in three brackets bending configuration. It was found that the friction between the wire and the bracket increased proportionally as a function of wire deflection, thus transforming the constant force characteristic of NiTi material into a slope. The highest magnitude of sliding friction was measured to be 3.1 N and 2.2 N with respect to the activation and deactivation of the arch wire.

  18. Linear complementarity formulation for 3D frictional sliding problems

    USGS Publications Warehouse

    Kaven, Joern; Hickman, Stephen H.; Davatzes, Nicholas C.; Mutlu, Ovunc

    2012-01-01

    Frictional sliding on quasi-statically deforming faults and fractures can be modeled efficiently using a linear complementarity formulation. We review the formulation in two dimensions and expand the formulation to three-dimensional problems including problems of orthotropic friction. This formulation accurately reproduces analytical solutions to static Coulomb friction sliding problems. The formulation accounts for opening displacements that can occur near regions of non-planarity even under large confining pressures. Such problems are difficult to solve owing to the coupling of relative displacements and tractions; thus, many geomechanical problems tend to neglect these effects. Simple test cases highlight the importance of including friction and allowing for opening when solving quasi-static fault mechanics models. These results also underscore the importance of considering the effects of non-planarity in modeling processes associated with crustal faulting.

  19. Resistance to Sliding in Clear and Metallic Damon 3 and Conventional Edgewise Brackets: an In vitro Study.

    PubMed

    Karim Soltani, Mohammad; Golfeshan, Farzaneh; Alizadeh, Yoones; Mehrzad, Jabraiel

    2015-03-01

    Frictional forces are considered as important counterforce to orthodontic tooth movement. It is claimed that self-ligating brackets reduce the frictional forces. The aim of this study was to compare the resistance to sliding in metallic and clear Damon brackets with the conventional brackets in a wet condition. The samples included 4 types of brackets; metallic and clear Damon brackets and metallic and clear conventional brackets (10 brackets in each group). In this study, stainless steel wires sized 0.019×0.025 were employed and the operator's saliva was used to simulate the conditions of oral cavity. The tidy-modified design was used for simulation of sliding movement. The resistance to sliding and static frictional forces was measured by employing Testometric machine and load cell. The mean (±SD) of resistance to sliding was 194.88 (±26.65) and 226.62 (±39.9) g in the esthetic and metallic Damon brackets, while these values were 187.81(±27.84) and 191.17(±66.68) g for the clear and metallic conventional brackets, respectively. Static frictional forces were 206.4(±42.45) and 210.38(±15.89) g in the esthetic and metallic Damon brackets and 220.63(±49.29) and 215.13(±62.38) g in the clear and metallic conventional brackets. According to two-way ANOVA, no significant difference was observed between the two bracket materials (clear and metal) and the two types of bracket (self-ligating versus conventional) regarding resistance to sliding (p= 0.17 and p= 0.23, respectively) and static frictional forces (p= 0.55 and p= 0.96, respectively). Neither the type of bracket materials nor their type of ligation made difference in resistance to sliding and static friction.

  20. Buckling of a Flexible Strip Sliding on a Frictional Base

    NASA Astrophysics Data System (ADS)

    Huynen, Alexandre; Marck, Julien; Denoel, Vincent; Detournay, Emmanuel

    2013-03-01

    The main motivation for this contribution is the buckling of a drillstring sliding on the bottom of the horizontal section of borehole. The open questions that remain today are related to the determination of the onset of instability, and to the conditions under which different modes of constrained buckling occur. In this presentation, we are concerned by a two-dimensional version of this problem; namely, the sliding of a flexible strip being fed inside a conduit. The ribbon, which has a flexural rigidity EI and a weight per unit length w, is treated as an inextensible elastica of negligible thickness. The contact between the ribbon and the wall of the conduit is characterized by a friction coefficient μ. First, we report the result of a stability analysis that aims at determining the critical inserted length of the ribbon l* (μ) (scaled by the characteristic length λ =(EI / w) 1 / 3) at which there is separation between the strip and the conduit bottom, as well as the buckling mode. Next, the relationship between the feeding force F and the inserted length l after bifurcation is computed. Finally, the results of a ``kitchen table'' experiment involving a strip of silicon rubber being pushed on a plank are reported and compared with predictions.

  1. Interaction of sulfuric acid corrosion and mechanical wear of iron

    NASA Technical Reports Server (NTRS)

    Rengstorff, G. W. P.; Miyoshi, K.; Buckley, D. H.

    1986-01-01

    Friction and wear experiment were conducted with elemental iron sliding on aluminum oxide in aerated sulfuric acid at concentrations ranging from very dilute (0.00007 N; i.e., 4 ppm) to very concentrated (96 percent acid). Load and reciprocating sliding speed were kept constant. With the most dilute acid concentration of 0.00007 to 0.0002 N, a complex corrosion product formed that was friable and often increased friction and wear. At slightly higher concentrations of 0.001 N, metal losses were essentially by wear alone. Because no buildup of corrosion products occurred, this acid concentration became the standard from which to separate metal loss from direct corrosion and mechanical wear losses. When the acid concentration was increased to 5 percent (1 N), the well-established high corrosion rate of iron in sulfuric acid strongly dominated the total wear loss. This strong corrosion increased to 30 percent acid and decreased somewhat to 50 percent acid in accordance with expectations. However, the low corrosion of iron expected at acid concentrations of 65 to 96 percent was not observed in the wear area. It was apparent that the normal passivating film was being worn away and a galvanic cell established that rapidly attacked the wear area. Under the conditions where direct corrosion losses were highest, the coefficient of friction was the lowest.

  2. Development of low friction snake-inspired deterministic textured surfaces

    NASA Astrophysics Data System (ADS)

    Cuervo, P.; López, D. A.; Cano, J. P.; Sánchez, J. C.; Rudas, S.; Estupiñán, H.; Toro, A.; Abdel-Aal, H. A.

    2016-06-01

    The use of surface texturization to reduce friction in sliding interfaces has proved successful in some tribological applications. However, it is still difficult to achieve robust surface texturing with controlled designer-functionalities. This is because the current existing gap between enabling texturization technologies and surface design paradigms. Surface engineering, however, is advanced in natural surface constructs especially within legless reptiles. Many intriguing features facilitate the tribology of such animals so that it is feasible to discover the essence of their surface construction. In this work, we report on the tribological behavior of a novel class of surfaces of which the spatial dimensions of the textural patterns originate from micro-scale features present within the ventral scales of pre-selected snake species. Mask lithography was used to produce implement elliptical texturizing patterns on the surface of titanium alloy (Ti6Al4V) pins. To study the tribological behavior of the texturized pins, pin-on-disc tests were carried out with the pins sliding against ultra-high molecular weight polyethylene discs with no lubrication. For comparison, two non-texturized samples were also tested under the same conditions. The results show the feasibility of the texturization technique based on the coefficient of friction of the textured surfaces to be consistently lower than that of the non-texturized samples.

  3. Interaction of sulfuric acid corrosion and mechanical wear of iron

    NASA Technical Reports Server (NTRS)

    Rengstorff, G. W. P.; Miyoshi, K.; Buckley, D. H.

    1984-01-01

    Friction and wear experiments were conducted with elemental iron sliding on aluminum oxide in aerated sulfuric acid at concentrations ranging from very dilute (0.00007 N; i.e., 4 ppm) to very concentrated (96 percent acid). Load and reciprocating sliding speed were kept constant. With the most dilute acid concentration of 0.00007 to 0.0002 N, a complex corrosion product formed that was friable and often increased friction and wear. At slightly higher concentrations of 0.001 N, metal losses were essentially by wear alone. Because no buildup of corrosion products occurred, this acid concentration became the standard from which to separate metal loss from direct corrosion and mechanical wear losses. When the acid concentration was increased to 5 percent (1 N), the well-established high corrosion rate of iron in sulfuric acid strongly dominated the total wear loss. This strong corrosion increased to 30 percent acid and decreased somewhat to 50 percent acid in accordance with expectations. However, the low corrosion of iron expected at acid concentrations of 65 to 96 percent was not observed in the wear area. It was apparent that the normal passivating film was being worn away and a galvanic cell established that rapidly attacked the wear area. Under the conditions where direct corrosion losses were highest, the coefficient of friction was the lowest.

  4. The Shear Properties of Langmuir-Blodgett Layers

    NASA Astrophysics Data System (ADS)

    Briscoe, B. J.; Evans, D. C. B.

    1982-04-01

    The sliding friction between two highly oriented monolayers has been studied by using molecularly smooth mica substrates in the form of contacting orthogonal cylinders. The monolayers in the form of various normal alipathic carboxylic acids and their soaps were deposited with the aid of the Langmuir-Blodgett technique by transfer from aqueous substrates. The normal alkyl group has been varied in length from 14 to 22 methylene repeat units. Data are reported also on the influence of partial saponification of the carboxylic acid and fluorination of the alkyl chain. Most of the investigation has been confined to two contacting single monolayers although a limited amount of data is presented for multilayers sliding over one another. The character of the sliding motion depends not only on the machine but also on the monolayers, particularly their chemistry. Most of the monolayers studied provide a continuous rate of energy dissipation. However, a small number, such as certain soaps, show discontinuous or stick-slip motion. The experimental arrangement allows simultaneous measurement of the sliding frictional force, contact area and film thickness to be made during sliding. In some experiments this friction is the monotonic sliding friction but in others it is the mean maximum value during the stick phase. The film thickness measurement is accurate to 0.2 mm which allows a precise assessment of the shear plane during sliding. In all cases the monolayers and multilayers were found to be extremely durable and shear invariably occurred at the original interface between the monolayers. The sliding friction data are presented as the dynamic specific friction force or interface shear strength, and a number of contact variables have been examined. These include the applied normal load per unit contact area or mean contact pressure, the temperature and the sliding velocity. The interface shear strength is found, to a good approximation, to increase linearly with mean contact pressure but to decrease linearly with temperature in the ranges studied. The influence of sliding velocity is more complex. In the case where intermittent motion is detected the mean maximum values decrease linearly with the logarithm of the velocity.

  5. MoS2 solid-lubricating film fabricated by atomic layer deposition on Si substrate

    NASA Astrophysics Data System (ADS)

    Huang, Yazhou; Liu, Lei; Lv, Jun; Yang, Junjie; Sha, Jingjie; Chen, Yunfei

    2018-04-01

    How to reduce friction for improving efficiency in the usage of energy is a constant challenge. Layered material like MoS2 has long been recognized as an effective surface lubricant. Due to low interfacial shear strengths, MoS2 is endowed with nominal frictional coefficient. In this work, MoS2 solid-lubricating film was directly grown by atomic layer deposition (ALD) on Si substrate using MoCl5 and H2S. Various methods were used to observe the grown MoS2 film. Moreover, nanotribological properties of the film were observed by an atomic force microscope (AFM). Results show that MoS2 film can effectively reduce the friction force by about 30-45% under different loads, indicating the huge application value of the film as a solid lubricant. Besides the interlayer-interfaces-sliding, the smaller capillary is another reason why the grown MoS2 film has smaller friction force than that of Si.

  6. Frictional strength of wet and dry montmorillonite

    USGS Publications Warehouse

    Morrow, Carolyn A.; Moore, Diane E.; Lockner, David A.

    2017-01-01

    Montmorillonite is a common mineral in fault zones, and its low strength relative to other common gouge minerals is important in many models of fault rheology. However, the coefficient of friction, μ, varies with degree of saturation and is not well constrained in the literature due to the difficulty of establishing fully drained or fully dried states in the laboratory. We measured μ of both saturated and oven-dried montmorillonite at normal stresses up to 700 MPa. Care was taken to shear saturated samples slowly enough to avoid pore fluid overpressure. For saturated samples, μ increased from 0.10 to 0.28 with applied effective normal stress, while for dry samples μ decreased from 0.78 to 0.45. The steady state rate dependence of friction, (a − b), was positive, promoting stable sliding. The wide disparity in reported frictional strengths can be attributed to experimental procedures that promote differing degrees of partial saturation or overpressured pore fluid conditions.

  7. The Load and Time Dependence of Chemical Bonding-Induced Frictional Ageing of Silica at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Tian, K.; Gosvami, N. N.; Goldsby, D. L.; Carpick, R. W.

    2015-12-01

    Rate and state friction (RSF) laws are empirical relationships that describe the frictional behavior of rocks and other materials in experiments, and reproduce a variety of observed natural behavior when employed in earthquake models. A pervasive observation from rock friction experiments is the linear increase of static friction with the log of contact time, or 'ageing'. Ageing is usually attributed to an increase in real area of contact associated with asperity creep. However, recent atomic force microscopy (AFM) experiments demonstrate that ageing of nanoscale silica-silica contacts is due to progressive formation of interfacial chemical bonds in the absence of plastic deformation, in a manner consistent with the multi-contact ageing behavior of rocks [Li et al., 2011]. To further investigate chemical bonding-induced ageing, we explored the influence of normal load (and thus contact normal stress) and contact time on ageing. Experiments that mimic slide-hold-slide rock friction experiments were conducted in the AFM for contact loads and hold times ranging from 23 to 393 nN and 0.1 to 100 s, respectively, all in humid air (~50% RH) at room temperature. Experiments were conducted by sequentially sliding the AFM tip on the sample at a velocity V of 0.5 μm/s, setting V to zero and holding the tip stationary for a given time, and finally resuming sliding at 0.5 μm/s to yield a peak value of friction followed by a drop to the sliding friction value. Chemical bonding-induced ageing, as measured by the peak friction minus the sliding friction, increases approximately linearly with the product of normal load and the log of the hold time. Theoretical studies of the roles of reaction energy barriers in nanoscale ageing indicate that frictional ageing depends on the total number of reaction sites and the hold time [Liu & Szlufarska, 2012]. We combine chemical kinetics analyses with contact mechanics models to explain our results, and develop a new approach for curve fitting ageing vs. load data which shows that the friction drop data points all fall on a master curve. The analysis yields physically reasonable values for the activation energy and activation volume of the chemical bonding process. Our study provides a basis to hypothesize that the kinetic processes in chemical bonding-induced ageing do not depend strongly on normal load.

  8. Nonlinear friction dynamics on polymer surface under accelerated movement

    NASA Astrophysics Data System (ADS)

    Aita, Yuuki; Asanuma, Natsumi; Takahashi, Akira; Mayama, Hiroyuki; Nonomura, Yoshimune

    2017-04-01

    Nonlinear phenomena on the soft material surface are one of the most exciting topics of chemical physics. However, only a few reports exist on the friction phenomena under accelerated movement, because friction between two solid surfaces is considered a linear phenomenon in many cases. We aim to investigate how nonlinear accelerated motion affects friction on solid surfaces. In the present study, we evaluate the frictional forces between two polytetrafluoroethylene (PTFE) resins using an advanced friction evaluation system. On PTFE surfaces, the normalized delay time δ, which is the time lag in the response of the friction force to the accelerated movement, is observed in the pre-sliding friction process. Under high-velocity conditions, kinetic friction increases with velocity. Based on these experimental results, we propose a two-phase nonlinear model including a pre-sliding process (from the beginning of sliding of a contact probe to the establishment of static friction) and a kinetic friction process. The present model consists of several factors including velocity, acceleration, stiffness, viscosity, and vertical force. The findings reflecting the viscoelastic properties of soft material is useful for various fields such as in the fabrication of clothes, cosmetics, automotive materials, and virtual reality systems as well as for understanding friction phenomena on soft material surfaces.

  9. Interference assembly and fretting wear analysis of hollow shaft.

    PubMed

    Han, Chuanjun; Zhang, Jie

    2014-01-01

    Fretting damage phenomenon often appears in the interference fit assembly. The finite element model of hollow shaft and shaft sleeve was established, and the equivalent stress and contact stress were computed after interference assembly. The assembly body of hollow shaft and shaft sleeve was in whirling bending load, and the contact status (sticking, sliding, and opening) and the distribution of stress along one typical contact line were computed under different loads, interferences, hollow degrees, friction coefficient, and wear quantity. Judgment formula of contact state was fixed by introducing the corrected coefficient k. The computation results showed that the "edge effect" appears in the contact surface after interference fit. The size of slip zone is unchanged along with the increase of bending load. The greater the interference value, the bigger the wear range. The hollow degree does not influence the size of stick zone but controls the position of the junction point of slip-open. Tangential contact stress increases with the friction coefficient, which has a little effect on normal contact stress. The relationship between open size and wear capacity is approximately linear.

  10. Structure formation of 5083 alloy during friction stir welding

    NASA Astrophysics Data System (ADS)

    Zaikina, A. A.; Kolubaev, A. V.; Sizova, O. V.; Ivanov, K. V.; Filippov, A. V.; Kolubaev, E. A.

    2017-12-01

    This paper provides a comparative study of structures obtained by friction stir welding and sliding friction of 5083 Al alloy. Optical and electron microscopy reveals identical fine-grained structures with a grain size of ˜5 µm both in the weld nugget zone and subsurface layer in friction independently of the initial grain size of the alloy. It has been suggested that the grain boundary sliding is responsible for the specific material flow pattern in both techniques considered.

  11. Large-scale landslide simulations: Global deformation, velocities and basal friction

    NASA Technical Reports Server (NTRS)

    Campbell, Charles S.; Cleary, Paul W.; Hopkins, Mark

    1995-01-01

    The cause of the apparent small friction exhibited by long runout landslides has long been speculated upon. In an attempt to provide some insight into the matter, this paper describes results obtained from a discrete particle computer simulation of landslides composed of up to 1,000,000 two-dimensional discs. While simplified, the results show many of the characteristics of field data (the volumetric effect on runout, preserved strata, etc.) and with allowances made for the two-dimensional nature of the simulation, the runouts compare well with those of actual landslides. The results challenge the current view that landslides travel as a nearly solid block riding atop a low friction basal layer. Instead, they show that the mass is completely shearing and indicate that the apparent friction coefficient is an increasing function of shear rate. The volumetric effect can then be understood. With all other conditions being equal, different size slides appear to travel with nearly the same average velocity; however, as the larger landslides are thicker, they experience smaller shear rates and correspondingly smaller frictional resistance.

  12. Frictional and morphological properties of Au-MoS2 films sputtered from a compact target

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1984-01-01

    AuMoS2 films 0.02 to 1.2 microns thick were sputtered from target compacted from 5 wt % Au + 95 wt % MoS2, to investigate the frictional and morphological film growth characteristics. The gold dispersion effects in MoS2 films are of interest to increase the densitification and strengthening of the film structure. Three microstructural growth stages were identified on the nano-micro-macrostructural level. During sliding both sputtered Au-MoS2 and MoS2 films have a tendency to break within the columner region. The remaining or effective film, about 0.2 microns thick, performs the lubrication. The Au-MoS2 films displayed a lower friction coefficient with a high degree of frictional stability and less wear debris generation as compared to pure MoS2 films. The more favorable frictional characteristics of the Au-MoS2 films are attributed to the effective film thickness and the high density packed columner zone which has a reduced effect on the fragmentation of the tapered crystallites during fracture.

  13. Carbon Fiber Reinforced Carbon–Al–Cu Composite for Friction Material

    PubMed Central

    Luo, Ruiying; Ma, Denghao

    2018-01-01

    A carbon/carbon–Al–Cu composite reinforced with carbon fiber 2.5D-polyacrylonitrile-based preforms was fabricated using the pressureless infiltration technique. The Al–Cu alloy liquids were successfully infiltrated into the C/C composites at high temperature and under vacuum. The mechanical and metallographic properties, scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS) of the C/C–Al–Cu composites were analyzed. The results showed that the bending property of the C/C–Al–Cu composites was 189 MPa, whereas that of the pure carbon slide material was only 85 MPa. The compressive strength of C/C–Al–Cu was 213 MPa, whereas that of the pure carbon slide material was only 102 MPa. The resistivity of C/C–Al–Cu was only 1.94 μΩm, which was lower than that of the pure carbon slide material (29.5 μΩm). This finding can be attributed to the “network conduction” structure. Excellent wettability was observed between Al and the carbon matrix at high temperature due to the existence of Al4C3. The friction coefficients of the C/C, C/C–Al–Cu, and pure carbon slide composites were 0.152, 0.175, and 0.121, respectively. The wear rate of the C/C–Al–Cu composites reached a minimum value of 2.56 × 10−7 mm3/Nm. The C/C–Al–Cu composite can be appropriately used as railway current collectors for locomotives. PMID:29614723

  14. Carbon Fiber Reinforced Carbon-Al-Cu Composite for Friction Material.

    PubMed

    Cui, Lihui; Luo, Ruiying; Ma, Denghao

    2018-03-31

    A carbon/carbon-Al-Cu composite reinforced with carbon fiber 2.5D-polyacrylonitrile-based preforms was fabricated using the pressureless infiltration technique. The Al-Cu alloy liquids were successfully infiltrated into the C/C composites at high temperature and under vacuum. The mechanical and metallographic properties, scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS) of the C/C-Al-Cu composites were analyzed. The results showed that the bending property of the C/C-Al-Cu composites was 189 MPa, whereas that of the pure carbon slide material was only 85 MPa. The compressive strength of C/C-Al-Cu was 213 MPa, whereas that of the pure carbon slide material was only 102 MPa. The resistivity of C/C-Al-Cu was only 1.94 μΩm, which was lower than that of the pure carbon slide material (29.5 μΩm). This finding can be attributed to the "network conduction" structure. Excellent wettability was observed between Al and the carbon matrix at high temperature due to the existence of Al₄C₃. The friction coefficients of the C/C, C/C-Al-Cu, and pure carbon slide composites were 0.152, 0.175, and 0.121, respectively. The wear rate of the C/C-Al-Cu composites reached a minimum value of 2.56 × 10 -7 mm³/Nm. The C/C-Al-Cu composite can be appropriately used as railway current collectors for locomotives.

  15. Choose Wisely: Static or Kinetic Friction--The Power of Dimensionless Plots

    ERIC Educational Resources Information Center

    Ludwigsen, Daniel; Svinarich, Kathryn

    2009-01-01

    Consider a problem of sliding blocks, one stacked atop the other, resting on a frictionless table. If the bottom block is pulled horizontally, nature makes a choice: if the applied force is small, static friction between the blocks accelerates the blocks together, but with a large force the blocks slide apart. In that case, kinetic friction still…

  16. Rubber friction: role of the flash temperature

    NASA Astrophysics Data System (ADS)

    Persson, B. N. J.

    2006-08-01

    When a rubber block is sliding on a hard rough substrate, the substrate asperities will exert time-dependent deformations of the rubber surface resulting in viscoelastic energy dissipation in the rubber, which gives a contribution to the sliding friction. Most surfaces of solids have roughness on many different length scales, and when calculating the friction force it is necessary to include the viscoelastic deformations on all length scales. The energy dissipation will result in local heating of the rubber. Since the viscoelastic properties of rubber-like materials are extremely strongly temperature dependent, it is necessary to include the local temperature increase in the analysis. At very low sliding velocity the temperature increase is negligible because of heat diffusion, but already for velocities of order 10-2 m s-1 the local heating may be very important. Here I study the influence of the local heating on the rubber friction, and I show that in a typical case the temperature increase results in a decrease in rubber friction with increasing sliding velocity for v>0.01 m s-1. This may result in stick-slip instabilities, and is of crucial importance in many practical applications, e.g. for tyre-road friction and in particular for ABS braking systems.

  17. Single-Molecule Luminescence and High Efficiency Photovoltaic Cells Based on Percolated Conducting Carbon Nanotubes Scaffolds Templated with Light-Harvesting Conjugated Polymers and Nanohybrids

    DTIC Science & Technology

    2009-01-14

    force during the nanoplastic flow. The friction coefficient ζT associated with a sliding chain going through a mixture of semidilute MWCNTs ...prepared the novel photoelectric material, poly (2-methoxy-5-(2’-ethylhexyloxy)-1, 4-phenylene vinylene)-grafted MWCNTs ((MEH-PPV)-grafted MWCNTs ...was synthesized via a surface grafting method. The (MEH-PPV)-grafted MWCNTs exhibited photo-excited phenomenon and generated significant

  18. Sliding contact fracture of dental ceramics: Principles and validation

    PubMed Central

    Ren, Linlin; Zhang, Yu

    2014-01-01

    Ceramic prostheses are subject to sliding contact under normal and tangential loads. Accurate prediction of the onset of fracture at two contacting surfaces holds the key to greater long-term performance of these prostheses. In this study, building on stress analysis of Hertzian contact and considering fracture criteria for linear elastic materials, a constitutive fracture mechanics relation was developed to incorporate the critical fracture load with the contact geometry, coefficient of friction and material fracture toughness. Critical loads necessary to cause fracture under a sliding indenter were calculated from the constitutive equation, and compared with the loads predicted from elastic stress analysis in conjunction with measured critical load for frictionless normal contact—a semi-empirical approach. The major predictions of the models were calibrated with experimentally determined critical loads of current and future dental ceramics after contact with a rigid spherical slider. Experimental results conform with the trends predicted by the models. PMID:24632538

  19. Friction and wear of plasma-sprayed coatings containing cobalt alloys from 25 deg to 650 deg in air

    NASA Technical Reports Server (NTRS)

    Sliney, H. E.; Jacobson, T. P.

    1979-01-01

    Four different compositions of self-lubricating, plasma-sprayed, composite coatings with calcium fluoride dispersed throughout cobalt alloy-silver matrices were evaluated on a friction and wear apparatus. In addition, coatings of the cobalt alloys alone and one coating with a nickel alloy-silver matrix were evaluated for comparison. The wear specimens consisted of two, diametrically opposed, flat rub shoes sliding on the coated, cylindrical surface of a rotating disk. Two of the cobalt composite coatings gave a friction coefficient of about 0.25 and low wear at room temperature, 400 and 650 C. Wear rates were lower than those of the cobalt alloys alone or the nickel alloy composite coating. However, oxidation limited the maximum useful temperature of the cobalt composite coating to about 650 C compared to about 900 C for the nickel composite coating.

  20. Cold-welding test environment

    NASA Technical Reports Server (NTRS)

    Wang, J. T.

    1972-01-01

    A flight test was conducted and compared with ground test data. Sixteen typical spacecraft material couples were mounted on an experimental research satellite in which a motor intermittently drove the spherical moving specimens across the faces of the fixed flat specimens in an oscillating motion. Friction coefficients were measured over a period of 14-month orbital time. Surface-to-surface sliding was found to be the controlling factor of generating friction in a vacuum environment. Friction appears to be independent of passive vacuum exposure time. Prelaunch and postlaunch tests identical to the flight test were performed in an oil-diffusion-pumped ultrahigh vacuum chamber. Only 50% of the resultant data agreed with the flight data owing to pump oil contamination. Identical ground tests were run in an ultrahigh vacuum facility and a ion-pumped vacuum chamber. The agreement (90%) between data from these tests and flight data established the adequacy of these test environments and facilities.

  1. Friction and wear behavior of aluminum and composite I-beam stiffened airplane skins

    NASA Technical Reports Server (NTRS)

    Jackson, K. E.

    1985-01-01

    Friction and wear behavior was determined for I-beam stiffened skins constructed of aluminum, graphite-epoxy composite, and glass hybrid composite under abrasive loading conditions typical of those occurring on the underside of a transport airplane during an emergency belly landing. A test apparatus was developed to abrade the test specimens on actual runway surface under a range of pressures (2-5 psi) and velocities (16-50 mph). These parameters were chosen to fall within the range of conditions typical of an airframe sliding on a runway surface. The effects of the test variables on the wear rate and the coefficient of friction are discussed and comparisons are made between the composite materials and aluminum. In addition, the test apparatus was equipped to monitor the temperature variations on the backside of the skins during abrasion and these results are presented.

  2. Friction between various self-ligating brackets and archwire couples during sliding mechanics.

    PubMed

    Stefanos, Sennay; Secchi, Antonino G; Coby, Guy; Tanna, Nipul; Mante, Francis K

    2010-10-01

    The aim of this study was to evaluate the frictional resistance between active and passive self-ligating brackets and 0.019 × 0.025-in stainless steel archwire during sliding mechanics by using an orthodontic sliding simulation device. Maxillary right first premolar active self-ligating brackets In-Ovation R, In-Ovation C (both, GAC International, Bohemia, NY), and SPEED (Strite Industries, Cambridge, Ontario, Canada), and passive self-ligating brackets SmartClip (3M Unitek, Monrovia, Calif), Synergy R (Rocky Mountain Orthodontics, Denver, Colo), and Damon 3mx (Ormco, Orange, Calif) with 0.022-in slots were used. Frictional force was measured by using an orthodontic sliding simulation device attached to a universal testing machine. Each bracket-archwire combination was tested 30 times at 0° angulation relative to the sliding direction. Statistical comparisons were performed with 1-way analysis of variance (ANOVA) followed by Dunn multiple comparisons. The level of statistical significance was set at P <0.05. The Damon 3mx brackets had significantly the lowest mean static frictional force (8.6 g). The highest mean static frictional force was shown by the SPEED brackets (83.1 g). The other brackets were ranked as follows, from highest to lowest, In-Ovation R, In-Ovation C, SmartClip, and Synergy R. The mean static frictional forces were all statistically different. The ranking of the kinetic frictional forces of bracket-archwire combinations was the same as that for static frictional forces. All bracket-archwire combinations showed significantly different kinetic frictional forces except SmartClip and In-Ovation C, which were not significantly different from each other. Passive self-ligating brackets have lower static and kinetic frictional resistance than do active self-ligating brackets with 0.019 × 0.025-in stainless steel wire. Copyright © 2010 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  3. Time-lapse nanoscopy of friction in the non-Amontons and non-Coulomb regime.

    PubMed

    Ishida, Tadashi; Sato, Takaaki; Ishikawa, Takahiro; Oguma, Masatsugu; Itamura, Noriaki; Goda, Keisuke; Sasaki, Naruo; Fujita, Hiroyuki

    2015-03-11

    Originally discovered by Leonard da Vinci in the 15th century, the force of friction is directly proportional to the applied load (known as Amontons' first law of friction). Furthermore, kinetic friction is independent of the sliding speed (known as Coulomb's law of friction). These empirical laws break down at high normal pressure (due to plastic deformation) and low sliding speed (in the transition regime between static friction and kinetic friction). An important example of this phenomenon is friction between the asperities of tectonic plates on the Earth. Despite its significance, little is known about the detailed mechanism of friction in this regime due to the lack of experimental methods. Here we demonstrate in situ time-lapse nanoscopy of friction between asperities sliding at ultralow speed (∼0.01 nm/s) under high normal pressure (∼GPa). This is made possible by compressing and rubbing a pair of nanometer-scale crystalline silicon anvils with electrostatic microactuators and monitoring its dynamical evolution with a transmission electron microscope. Our analysis of the time-lapse movie indicates that superplastic behavior is induced by decrystallization, plastic deformation, and atomic diffusion at the asperity-asperity interface. The results hold great promise for a better understanding of quasi-static friction under high pressure for geoscience, materials science, and nanotechnology.

  4. Effect of heat input on microstructure, wear and friction behavior of (wt.-%) 50FeCrC-20FeW-30FeB coating on AISI 1020 produced by using PTA welding.

    PubMed

    Özel, Cihan; Gürgenç, Turan

    2018-01-01

    In this study, AISI 1020 steel surface was coated in different heat inputs with (wt.-%) 50FeCrC-20FeW-30FeB powder mixture by using plasma transferred arc (PTA) welding method. The microstructure of the coated samples were investigated by using optical microscope (OM), scanning electron microscope (SEM), X-ray diffraction (XRD) and energy dispersive X-ray (EDS). The hardness was measured with micro hardness test device. The dry sliding wear and friction coefficient properties were determined using a block-on-disk type wear test device. Wear tests were performed at 19.62 N, 39.24 N, 58.86 N load and the sliding distance of 900 m. The results were shown that different microstructures formed due to the heat input change. The highest average micro hardness value was measured at 1217 HV on sample coated with low heat input. It was determined that the wear resistance decreased with increasing heat input.

  5. Friction and Wear of Nanoadditive-Based Biolubricants in Steel-Steel Sliding Contacts: A Comparative Study

    NASA Astrophysics Data System (ADS)

    Gupta, Rajeev Nayan; Harsha, A. P.

    2018-02-01

    The present work deals with the study of tribo-pair interaction in lubricated sliding contacts. By considering the environmental issues, the sunflower oil was extracted from the sunflower seeds and used as a base lubricant. The two types of the nanoadditives, i.e., CuO and CeO2, varying concentrations from 0.10 to 0.50% w/v were used to formulate the nanolubricants. The compatibility/synergism of the nanoadditives was examined from antifriction and antiwear behavior study with four-ball tester. Also, sunflower oil was modified by the chemical method to improve its fatty acid structure. A comparative tribological and compatibility study was also done in modified oil at similar concentration levels with both types of nanoparticles. The tribological test result exhibits 0.10% w/v concentration of the nanoadditive as optimum due to lowest wear scar and coefficient of friction. Higher concentration of the nanoparticles impaired the base oil performance. Different analytical tools were used to characterize the oil modification and worn surfaces. Moreover, the role of subsurface of the contacting material with the tribological performance has been reported.

  6. Tribological properties and surface chemistry of silicon carbide at temperatures to 1500 C

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1981-01-01

    Silicon carbide surfaces were heated to 1500 C in a vacuum and analyzed at room temperature with X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). The basic unit of the surfaces was considered as a plane of a tetrahedron of either SiC4 and CSi4 composition. AES spectra were obtained from 250-1500 C, with an analysis depth of 1 nm revealed the presence of little Si and mostly graphite. XPS analysis depth was 2 nm or less, and Si was found in the second 1 nm. Sliding friction tests with single-crystal silicon carbide in contact with iron in a vacuum were characterized by a stock-slip value. The coefficient of friction increased with increasing temperature up to 400 C, then decreased with increasing temperature from 400-600 C. Reheating surfaces to 800 C after preheating them to that temperature produced no changes in AES readings. It is concluded that the maximum density of silicon and silicon-carbide is at 800 C, and the higher the sliding temperature, the more metal that is transferred.

  7. Effect of heat input on microstructure, wear and friction behavior of (wt.-%) 50FeCrC-20FeW-30FeB coating on AISI 1020 produced by using PTA welding

    PubMed Central

    Gürgenç, Turan

    2018-01-01

    In this study, AISI 1020 steel surface was coated in different heat inputs with (wt.-%) 50FeCrC-20FeW-30FeB powder mixture by using plasma transferred arc (PTA) welding method. The microstructure of the coated samples were investigated by using optical microscope (OM), scanning electron microscope (SEM), X-ray diffraction (XRD) and energy dispersive X-ray (EDS). The hardness was measured with micro hardness test device. The dry sliding wear and friction coefficient properties were determined using a block-on-disk type wear test device. Wear tests were performed at 19.62 N, 39.24 N, 58.86 N load and the sliding distance of 900 m. The results were shown that different microstructures formed due to the heat input change. The highest average micro hardness value was measured at 1217 HV on sample coated with low heat input. It was determined that the wear resistance decreased with increasing heat input. PMID:29324875

  8. The influence of surface friction on the AA2024 microstructure

    NASA Astrophysics Data System (ADS)

    Eliseev, A. A.; Kolubaev, E. A.; Fortuna, S. V.

    2017-12-01

    This work is devoted to the study of the effect of sliding at velocities close to those achieved during friction stir welding or friction drilling on the microstructural evolution of 2024 aluminum alloy. The distribution of both solid solution grains and intermetallic precipitates is analyzed. No layers of recrystallized grains depleted by precipitates, which is a common finding in FSW or friction drilling, are found below the worn surface independently of the sliding velocity. A small precipitate content and size changes alone are observed.

  9. Effect of sterilization irradiation on friction and wear of ultrahigh-molecular-weight polyethylene

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Hady, W. F.; Crugnola, A.

    1979-01-01

    The effect of sterilization gamma irradiation on the friction and wear properties of ultrahigh molecular weight polyethylene (UHMWPE) sliding against 316L stainless steel in dry air at 23 C was determined. A pin-on-disk apparatus was used. Experimental conditions included a 1-kilogram load, a 0.061- to 0.27-meter-per-second sliding velocity, and a 32000- to 578000-meter sliding distance. Although sterilization doses of 2.5 and 5.0 megarads greatly altered the average molecular weight and the molecular weight distribution, the friction and wear properties of the polymer were not significantly changed.

  10. Constitutive modelling of lubricants in concentrated contacts at high slide to roll ratios

    NASA Technical Reports Server (NTRS)

    Tevaarwerk, J. L.

    1985-01-01

    A constitutive lubricant friction model for rolling/sliding concentrated contacts such as gears and cams was developed, based upon the Johnson and Tevaarwerk fluid rheology model developed earlier. The friction model reported herein differs from the earlier rheological models in that very large slide to roll ratios can now be accommodated by modifying the thermal response of the model. Also the elastic response of the fluid has been omitted from the model, thereby making it much simpler for use in the high slide to roll contacts. The effects of this simplification are very minimal on the outcome of the predicted friction losses (less than 1%). In essence then the lubricant friction model developed for the high slide to roll ratios treats the fluid in the concentrated contact as consisting of a nonlinear viscous element that is pressure, temperature, and strain rate dependent in its shear response. The fluid rheological constants required for the prediction of the friction losses at different contact conditions are obtained by traction measurements on several of the currently used gear lubricants. An example calculation, using this model and the fluid parameters obtained from the experiments, shows that it correctly predicts trends and magnitude of gear mesh losses measured elsewhere for the same fluids tested here.

  11. The influence of micro-scale dimples and nano-sized grains on the fretting characteristics generated by laser pulses.

    PubMed

    Amanov, Auezhan; Watabe, Tsukasa; Sasaki, Shinya

    2013-12-01

    The tribological characteristics of micro-scale dimpled Cu-based alloy specimen generated using a laser surface texturing (LST) were assessed and compared with that of the untextured specimen. The objective of this study is to improve the tribological characteristics of internal combustion engine (ICE) bearings and bushings made of Cu-based alloy by generating micro-scale dimples using an LST. Fretting wear tests were performed by sliding a hardened SAE52100 steel ball against the untextured and LSTed specimens at a normal load of 5 N under oil-lubricated conditions. The friction force and relative movement between the specimens were measured simultaneously during the fretting tests. The test results showed that the LSTed specimens showed a reduction in friction coefficient and an enhancement in fretting wear resistance compared to that of the untextured specimen. The friction coefficient and fretting wear volume increased with increasing frequency for both untextured and LSTed specimens. The improved tribological properties of the LSTed specimen may be attributed to the micro-scale dimples, refined grain size and high lattice strain. In addition, a model for the nanocrystallization mechanism of the LSTed specimen was proposed.

  12. Dynamic friction and wear of a solid film lubricant during radiation exposure in a nuclear reactor

    NASA Technical Reports Server (NTRS)

    Jacobson, T. P.

    1972-01-01

    The effect of nuclear reactor radiation on the performance of a solid film lubricant was studied. The film consisted of molybdenum disulfide and graphite in a sodium silicate binder. Radiation levels of fast neutrons (E or = 1 MeV) were fluxed up to 3.5 times 10 to the 12th power n/sq cm-sec (intensity) and fluences up to 2 times 10 to the 18th power n/sq cm (total exposure). Coating wear lives were much shorter and friction coefficients higher in a high flux region of the reactor than in a low flux region. The amount of total exposure did not affect lubrication behavior as severely as the radiation intensity during sliding.

  13. On the Similarity of Deformation Mechanisms During Friction Stir Welding and Sliding Friction of the AA5056 Alloy

    NASA Astrophysics Data System (ADS)

    Kolubaev, A. V.; Zaikina, A. A.; Sizova, O. V.; Ivanov, K. V.; Filippov, A. V.; Kolubaev, E. A.

    2018-04-01

    A comparative investigation of the structure of an aluminum-manganese alloy is performed after its friction stir welding and sliding friction. Using the methods of optical and electron microscopy, it is shown that during friction identical ultrafine-grained structures are formed in the weld nugget and in the surface layer, in which the grains measure 5 μm irrespective of the initial grain size of the alloy. An assumption is made that the microstructure during both processes under study is formed by the mechanism of rotational plasticity.

  14. Friction and Wear on the Atomic Scale

    NASA Astrophysics Data System (ADS)

    Gnecco, Enrico; Bennewitz, Roland; Pfeiffer, Oliver; Socoliuc, Anisoara; Meyer, Ernst

    Friction has long been the subject of research: the empirical da Vinci-Amontons friction laws have been common knowledge for centuries. Macroscopic experiments performed by the school of Bowden and Tabor revealed that macroscopic friction can be related to the collective action of small asperities. Over the last 15 years, experiments performed with the atomic force microscope have provided new insights into the physics of single asperities sliding over surfaces. This development, together with the results from complementary experiments using surface force apparatus and the quartz microbalance, have led to the new field of nanotribology. At the same time, increasing computing power has permitted the simulation of processes that occur during sliding contact involving several hundreds of atoms. It has become clear that atomic processes cannot be neglected when interpreting nanotribology experiments. Even on well-defined surfaces, experiments have revealed that atomic structure is directly linked to friction force. This chapter will describe friction force microscopy experiments that reveal, more or less directly, atomic processes during sliding contact.

  15. Effect of load on the tribological properties of hypereutectic Al-Si alloy under boundary lubrication conditions

    NASA Astrophysics Data System (ADS)

    Kumar, Parveen; Wani, M. F.

    2017-11-01

    Researchers reported that the IC engine components (piston, cylinder liner etc) fail due to the friction losses (~45%) and wear losses (~25-40%). So the demand of light weight, low friction and wear resistance alloys increases day by day, which reduces the emission and increases the efficiency of the IC engine. In this connection, tribological tests on hypereutectic Al-25Si alloy were performed using a ball-on-disk configuration under dry and lubricated sliding conditions. Hypereutectic Al-25Si alloy was prepared by rapid solidification process with T6 condition. T6 condition improves the friction, wear and mechanical properties of the alloy. Friction coefficient and wear rate of the alloy was measured under high loads ranging from 100 to 300 N. It was found that the friction coefficient (COF) and wear rate of hypereutectic Al-25Si alloy/steel tribo pair increased with increase in load. Significant reduction in COF and wear rate was accomplished with SAE20W50 engine oil and Si particles act as solid lubricant. Optical microscope, 3D surface profilometer and scanning electron microscope (SEM) coupled with an energy dispersive spectrometer (EDS) were used for characterization the worn surface morphologies. The morphology, size and distribution of high Si particles due to its fabrication process caused the improvements in COF and wear rate under lubricated conditions. Adhesive wear, abrasive wear and plastic deformation acted as the dominant wear mechanism for hypereutectic Al-25Si alloy.

  16. The frequency response of dynamic friction: Enhanced rate-and-state models

    NASA Astrophysics Data System (ADS)

    Cabboi, A.; Putelat, T.; Woodhouse, J.

    2016-07-01

    The prediction and control of friction-induced vibration requires a sufficiently accurate constitutive law for dynamic friction at the sliding interface: for linearised stability analysis, this requirement takes the form of a frictional frequency response function. Systematic measurements of this frictional frequency response function are presented for small samples of nylon and polycarbonate sliding against a glass disc. Previous efforts to explain such measurements from a theoretical model have failed, but an enhanced rate-and-state model is presented which is shown to match the measurements remarkably well. The tested parameter space covers a range of normal forces (10-50 N), of sliding speeds (1-10 mm/s) and frequencies (100-2000 Hz). The key new ingredient in the model is the inclusion of contact stiffness to take into account elastic deformations near the interface. A systematic methodology is presented to discriminate among possible variants of the model, and then to identify the model parameter values.

  17. Friction behavior of a multi-interface system and improved performance by AlMgB 14–TiB 2–C and diamond-like-carbon coatings

    DOE PAGES

    Qu, Jun; Blau, Peter J.; Higdon, Clifton; ...

    2016-03-29

    We investigated friction behavior of a bearing system with two interfaces involved: a roller component experiencing rolling–sliding interaction against twin cylinders under point contacts while simultaneously undergoing pure sliding interaction against a socket under a conformal contact. Lubrication modeling predicted a strong correlation between the roller's rolling condition and the system's friction behavior. Experimental observations first validated the analytical predictions using steel and iron components. Diamond-like-carbon (DLC) coating and AlMgB 14–TiB 2 coating with a carbon topcoat (BAMC) were then applied to the roller and twin cylinders, respectively. In conclusion, testing and analysis results suggest that the coatings effectively decreasedmore » the slip ratio for the roller–cylinder contact and the sliding friction at both bearing interfaces and, as a result, significantly reduced the system frictional torque.« less

  18. Imaging high-speed friction at the nanometer scale

    PubMed Central

    Thorén, Per-Anders; de Wijn, Astrid S.; Borgani, Riccardo; Forchheimer, Daniel; Haviland, David B.

    2016-01-01

    Friction is a complicated phenomenon involving nonlinear dynamics at different length and time scales. Understanding its microscopic origin requires methods for measuring force on nanometer-scale asperities sliding at velocities reaching centimetres per second. Despite enormous advances in experimental technique, this combination of small length scale and high velocity remain elusive. We present a technique for rapidly measuring the frictional forces on a single asperity over a velocity range from zero to several centimetres per second. At each image pixel we obtain the velocity dependence of both conservative and dissipative forces, revealing the transition from stick-slip to smooth sliding friction. We explain measurements on graphite using a modified Prandtl–Tomlinson model, including the damped elastic deformation of the asperity. With its improved force sensitivity and small sliding amplitude, our method enables rapid and detailed surface mapping of the velocity dependence of frictional forces with less than 10 nm spatial resolution. PMID:27958267

  19. Friction and Wear Properties of As-Deposited and Carbon Ion-Implanted Diamond Films

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1996-01-01

    Recent work on the friction and wear properties of as-deposited and carbon ion-implanted diamond films was reviewed. Diamond films were produced by the microwave plasma chemical vapor deposition (CVD) technique. Diamond films with various grain sizes and surface roughnesses were implanted with carbon ions at 60 keV ion energy, resulting in a dose of 1.2 x 10(exp 17) carbon ions per cm(exp 2). Various analytical techniques, including Raman spectroscopy, proton recoil analysis, Rutherford backscattering, transmission and scanning electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction, were utilized to characterize the diamond films. Sliding friction experiments were conducted with a polished natural diamond pin in contact with diamond films in the three environments: humid air (40% relative humidity), dry nitrogen (less than 1 percent relative humidity), and ultrahigh vacuum (10(exp -7) Pa). The CVD diamond films indeed have friction and wear properties similar to those of natural diamond in the three environments. The as-deposited, fine-grain diamond films can be effectively used as self-lubricating, wear-resistant coatings that have low coefficients of friction (0.02 to 0.04) and low wear rates (10(exp -7) to lO(exp -8) mm(exp 3) N(exp -1) m(exp -1)) in both humid air and dry nitrogen. However, they have high coefficients of friction (1.5 to 1.7) and a high wear rate (10(exp -4) mm(exp 7) N(exp -1) m(exp -1)) in ultrahigh vacuum. The carbon ion implantation produced a thin surficial layer (less than 0.1 micron thick) of amorphous, non-diamond carbon on the diamond films. In humid air and dry nitrogen, the ion-implanted, fine and coarse-grain diamond films have a low coefficient of friction (around 0.1) and a low wear rate (10(exp -7) mm(exp 3) N(exp -1) m(exp-1)). Even in ultrahigh vacuum, the presence of the non-diamond carbon layer reduced the coefficient of friction of fine-grain diamond films to 0.1 or lower and the wear rate to 10(exp -6) mm(exp 3) N(exp -1) m(exp -1). Thus, the carbon ion-implanted, fine-grain diamond films can be effectively used as wear-resistant, self-lubricating coatings not only in air and dry nitrogen, but also in ultrahigh vacuum.

  20. Tribological evaluation of an Al2O3-SiO2 ceramic fiber candidate for high temperature sliding seals

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Steinetz, Bruce

    1994-01-01

    A test program to determine the relative sliding durability of an alumina-silica candidate ceramic fiber for high temperature sliding seal applications is described. Pin-on-disk tests were used to evaluate the potential seal material by sliding a tow or bundle of the candidate ceramic fiber against a superalloy test disk. Friction was measured during the tests and fiber wear, indicated by the extent of fibers broken in the tow or bundle, was measured at the end of each test. Test variables studied included ambient temperatures from 25 to 900 C, loads from 1.3 to 21.2 N, and sliding velocities from 0.025 to 0.25 m/sec. In addition, the effects of fiber diameter and elastic modulus on friction and wear were measured. Thin gold films deposited on the superalloy disk surface were evaluated in an effort to reduce friction and wear of the fibers. In most cases, wear increased with test temperature. Friction ranged from 0.36 at 500 C and low velocity (0.025 m/sec) to over 1.1 at 900 C and high velocity (0.25 m/sec). The gold films resulted in satisfactory lubrication of the fibers at 25 C. At elevated temperatures diffusion of substrate elements degraded the films. These results indicate that the alumina-silica (Al2O3-SiO2) fiber is a good candidate material system for high temperature sliding seal applications. More work is needed to reduce friction.

  1. Rate-Dependent Behavior of the Amorphous Phase of Spider Dragline Silk

    PubMed Central

    Patil, Sandeep P.; Markert, Bernd; Gräter, Frauke

    2014-01-01

    The time-dependent stress-strain behavior of spider dragline silk was already observed decades ago, and has been attributed to the disordered sequences in silk proteins, which compose the soft amorphous matrix. However, the actual molecular origin and magnitude of internal friction within the amorphous matrix has remained inaccessible, because experimentally decomposing the mechanical response of the amorphous matrix from the embedded crystalline units is challenging. Here, we used atomistic molecular dynamics simulations to obtain friction forces for the relative sliding of peptide chains of Araneus diadematus spider silk within bundles of these chains as a representative unit of the amorphous matrix in silk fibers. We computed the friction coefficient and coefficient of viscosity of the amorphous phase to be in the order of 10−6 Ns/m and 104 Ns/m2, respectively, by extrapolating our simulation data to the viscous limit. Finally, we used a finite element method for the amorphous phase, solely based on parameters derived from molecular dynamics simulations including the newly determined coefficient of viscosity. With this model the time scales of stress relaxation, creep, and hysteresis were assessed, and found to be in line with the macroscopic time-dependent response of silk fibers. Our results suggest the amorphous phase to be the primary source of viscosity in silk and open up the avenue for finite element method studies of silk fiber mechanics including viscous effects. PMID:24896131

  2. Tribological performance of polycrystalline tantalum-carbide-incorporated diamond films on silicon substrates

    NASA Astrophysics Data System (ADS)

    Ullah, Mahtab; Rana, Anwar Manzoor; Ahmed, E.; Malik, Abdul Sattar; Shah, Z. A.; Ahmad, Naseeb; Mehtab, Ujala; Raza, Rizwan

    2018-05-01

    Polycrystalline tantalum-carbide-incorporated diamond coatings have been made on unpolished side of Si (100) wafer by hot filament chemical vapor deposition process. Morphology of the coatings has been found to vary from (111) triangular-facetted to predominantly (111) square-faceted by increasing the concentration of tantalum carbide. The results have been compared to those of a diamond reference coating with no tantalum content. An increase in roughness has been observed with the increase of tantalum carbide (TaC) due to change in morphology of the diamond films. It is noticed that roughness of the coatings increases as grains become more square-faceted. It is found that diamond coatings involving tantalum carbide are not as resistant as diamond films with no TaC content and the coefficient of friction for such coatings with microcrystalline grains can be manipulated to 0·33 under high vacuum of 10-7 Torr. Such a low friction coefficient value enhances tribological behavior of unpolished Si substrates and can possibly be used in sliding applications.

  3. Comparative study of the tribological behavior under hybrid lubrication of diamond-like carbon films with different adhesion interfaces

    NASA Astrophysics Data System (ADS)

    Costa, R. P. C.; Lima-Oliveira, D. A.; Marciano, F. R.; Lobo, A. O.; Corat, E. J.; Trava-Airoldi, V. J.

    2013-11-01

    This paper reports the influence of the adhesion interlayer between stainless steel and diamond-like carbon (DLC) films in two different contact conditions: in dry air and deionized water. The water was the liquid used to understand the mechanism and chemical reactions of the tribolayer formation under boundary lubrication. The effect of silicon and carbonitride adhesion interlayer was investigated on uncoated and coated DLC films. The results show that DLC/DLC pairs using carbonitride in air (30% RH) showed 60% less friction coefficient and wear less than three orders of magnitude than DLC/DLC pairs using silicon as interlayer. In deionized water, DLC/DLC pairs using carbonitride as interlayer showed 31% less friction coefficient when compared to DLC/DLC pairs with silicon. Raman related the chemical and structural changes in the DLC films during sliding in air and in the presence of water. Scratch tests showed a critical load of 14 N and 33 N in DLC films with silicon and carbonitride, respectively.

  4. Morphology and frictional properties of scales of Pseudopus apodus (Anguidae, Reptilia).

    PubMed

    Spinner, Marlene; Bleckmann, Horst; Westhoff, Guido

    2015-06-01

    In the lizard family Anguidae different levels of limb reduction exist up to a completely limbless body. The locomotion patterns of limbless anguid lizards are similar to the undulating and concertina movements of snakes. Additionally, anguid lizards frequently use a third mode of locomotion, called slide-pushing. During slide-pushing the undulating moving body slides on the ground, while the posterior part of the body is pressed against the substrate. Whereas the macroscopic and microscopic adaptations of snake scales to limbless locomotion are well described, the micromorphology of anguid lizard scales has never been examined. Therefore we studied the macro- and micromorphology of the scales of Pseudopus apodus, an anguid lizard with a snakelike body. In addition, we measured the frictional properties of Pseudopus scales. Our data show that the microstructures of the ventral scales of this anguid lizard are less developed than in snakes. We found, however, a rostro-caudal gradient in macroscopic structuring. Whereas the ventral side of the anterior body was nearly unstructured, the tail had macroscopic longitudinal ridges. Our frictional measurements on rough substrates revealed that the ridges provide a frictional anisotropy: friction was higher in the lateral than in the rostral direction. The observed frictional properties are advantageous for a tail-based slide-pushing locomotion, for which a tail with a high lateral friction is most effective in generating propulsion. Copyright © 2015 Elsevier GmbH. All rights reserved.

  5. Rate-dependent frictional adhesion in natural and synthetic gecko setae

    PubMed Central

    Gravish, Nick; Wilkinson, Matt; Sponberg, Simon; Parness, Aaron; Esparza, Noe; Soto, Daniel; Yamaguchi, Tetsuo; Broide, Michael; Cutkosky, Mark; Creton, Costantino; Autumn, Kellar

    2010-01-01

    Geckos owe their remarkable stickiness to millions of dry, hard setae on their toes. In this study, we discovered that gecko setae stick more strongly the faster they slide, and do not wear out after 30 000 cycles. This is surprising because friction between dry, hard, macroscopic materials typically decreases at the onset of sliding, and as velocity increases, friction continues to decrease because of a reduction in the number of interfacial contacts, due in part to wear. Gecko setae did not exhibit the decrease in adhesion or friction characteristic of a transition from static to kinetic contact mechanics. Instead, friction and adhesion forces increased at the onset of sliding and continued to increase with shear speed from 500 nm s−1 to 158 mm s−1. To explain how apparently fluid-like, wear-free dynamic friction and adhesion occur macroscopically in a dry, hard solid, we proposed a model based on a population of nanoscopic stick–slip events. In the model, contact elements are either in static contact or in the process of slipping to a new static contact. If stick–slip events are uncorrelated, the model further predicted that contact forces should increase to a critical velocity (V*) and then decrease at velocities greater than V*. We hypothesized that, like natural gecko setae, but unlike any conventional adhesive, gecko-like synthetic adhesives (GSAs) could adhere while sliding. To test the generality of our results and the validity of our model, we fabricated a GSA using a hard silicone polymer. While sliding, the GSA exhibited steady-state adhesion and velocity dependence similar to that of gecko setae. Observations at the interface indicated that macroscopically smooth sliding of the GSA emerged from randomly occurring stick–slip events in the population of flexible fibrils, confirming our model predictions. PMID:19493896

  6. Effects of smectite to illite transformation on the frictional strength and sliding stability of intact marine mudstones

    USGS Publications Warehouse

    Saffer, Demian M.; Lockner, David A.; McKiernan, Alex

    2012-01-01

    At subduction zones, earthquake nucleation and coseismic slip occur only within a limited depth range, known as the “seismogenic zone”. One leading hypothesis for the upper aseismic-seismic transition is that transformation of smectite to illite at ∼100–150°C triggers a change from rate-strengthening frictional behavior that allows only stable sliding, to rate weakening behavior considered a prerequisite for unstable slip. Previous studies on powdered gouges have shown that changes in clay mineralogy alone are unlikely to control this transition, but associated fabric and cementation developed during diagenesis remain possible candidates. We conducted shearing experiments designed specifically to evaluate this hypothesis, by using intact wafers of mudstone from Ocean Drilling Program Site 1174, offshore SW Japan, which have undergone progressive smectite transformation in situ. We sheared specimens along a sawcut in a triaxial configuration, oriented parallel to bedding, at normal stresses of ∼20–150 MPa and a pore pressure of 1 MPa. During shearing, we conducted velocity-stepping tests to measure the friction rate parameter (a-b). Friction coefficient ranges from 0.28–0.40 and values of (a-b) are uniformly positive; both are independent of clay transformation progress. Our work represents the most direct and comprehensive test of the clay transformation hypothesis to date, and suggests that neither illitization, nor accompanying fabric development and cementation, trigger a transition to unstable frictional behavior. We suggest that strain localization, in combination with precipitation of calcite and quartz, is a viable alternative that is consistent with both field observations and recent conceptual models of a heterogeneous seismogenic zone.

  7. Friction testing of a new ligature

    NASA Astrophysics Data System (ADS)

    Mantel, Alison R.

    Objective. To determine if American Orthodontics' (AO) new, experimental ligature demonstrates less friction in vitro when compared to four other ligatures on the market. Methods. Four brackets were mounted on a custom metal fixture allowing an 0.018-in stainless steel wire attached to an opposite fixture with one bracket to be passively centered in the bracket slot. The wire was ligated to the bracket using one of five types of ligatures including the low friction test ligatures (AO), conventional ligatures (AO), Sili-Ties(TM) Silicone Infused Ties (GAC), SynergyRTM Low-Friction Ligatures (RMO), and SuperSlick ligatures (TP Orthodontics). Resistance to sliding was measured over a 7 mm sliding distance using a universal testing machine (Instron) with a 50 Newton load cell and a crosshead speed of 5 mm/min. The initial resistance to sliding (static) was determined by the peak force needed to initiate movement and the kinetic resistance to sliding was taken as the force at 5 mm of wire/bracket sliding. Fifteen unique tests were run for each ligature group in both dry and wet (saliva soaked for 24 hours with one drop prior to testing) conditions. Results. In the dry state, the SuperSlick ligature demonstrated more static friction than all of the other ligatures, while SuperSlick and Sili-Ties demonstrated more kinetic friction than the AO conventional, AO experimental and Synergy ligatures. In the wet condition, SuperSlick and the AO experimental ligature demonstrated the least static friction, followed by the AO conventional and Sili-Ties. The most static friction was observed with the Synergy ligatures. In the wet condition, the SuperSlick, AO experimental and AO conventional exhibited less kinetic friction than the Sili-Ties and Synergy ligatures. Conclusions. AO's experimental ligature exhibits less friction in the wet state than conventional ligatures, Sili-Ties and Synergy and is comparable to the SuperSlick ligature. These preliminary results suggest that the AO experimental ligature and the SuperSlick ligature create less friction, but direct conclusions regarding in vivo performance cannot be made and randomized controlled clinical trials are needed to determine if these ligatures have clinical significance in treatment efficiency.

  8. Tribological and mechanical behaviours of rattan-fibre-reinforced friction materials under dry sliding conditions

    NASA Astrophysics Data System (ADS)

    Ma, Yunhai; Wu, Siyang; Tong, Jin; Zhao, Xiaolou; Zhuang, Jian; Liu, Yucheng; Qi, Hongyan

    2018-03-01

    This work was mainly aimed to study the physical, mechanical and tribological behaviours of the friction materials reinforced by different contents of rattan fibre. These friction materials were fabricated by a compression moulder and tested using a constant speed tester at different friction temperatures. It was found that the friction coefficients of the friction materials added with rattan fibre were relatively stable and no obvious fade was observed in comparison with specimen F-0 (containing 0 wt.% rattan fibres). The fade ratio of specimen F-5 (containing 5 wt.% rattan fibres) was 10.3% and its recovery ratio was 92.4%, indicating the excellent performances of fade resistance and recovery. And the specimen F-5 exhibited the lowest wear rate (0.541 × 10‑7 cm3(N · m)‑1 at 350 °C) among all tested specimens. The worn surface morphologies of the friction materials showed that the appropriate addition of rattan fibres effectively reduced abrasive wear and adhesion wear. The specimen F-5 had a smooth worn surface (Sa = 1.885 μm) with the superior fibre-matrix interfacial adhesion and a lot of secondary contact plateaus, which indicated the highest wear resistance property. The rattan-fibre-reinforced friction materials could be widely applied to automotive friction brake field according to their economic, environmental and social benefits.

  9. Finite Element Simulation Methods for Dry Sliding Wear

    DTIC Science & Technology

    2008-03-27

    effects of wear only occur on a microscopic level (3; 14; 17). A third reason that wear is not well understood is that it involves many different...material or one with a higher coefficient of friction there will be more of a problem with high pressure points. A third possibility is to spread the...For the local model the rail is modeled as a deformable body , and a small, 1 mm, square is taken from the slipper as the submodel. 5.2 The Global

  10. Deposition of Coatings for Raising the Wear Resistance of Friction Surfaces of Spherical Sliding Bearings

    NASA Astrophysics Data System (ADS)

    Gorlenko, A. O.; Davydov, S. V.

    2018-01-01

    The process of finishing plasma hardening with deposition of a multilayer amorphous coating of the Si - O - C - N system is considered as applied to hardening of the friction surfaces of spherical sliding bearings. The microrelief, the submicrorelief, and the tribological characteristics of the deposited wear-resistant antifriction amorphous coating, which are responsible for the elevated wear resistance of spherical sliding bearings, are investigated.

  11. Load-Dependent Friction Hysteresis on Graphene.

    PubMed

    Ye, Zhijiang; Egberts, Philip; Han, Gang Hee; Johnson, A T Charlie; Carpick, Robert W; Martini, Ashlie

    2016-05-24

    Nanoscale friction often exhibits hysteresis when load is increased (loading) and then decreased (unloading) and is manifested as larger friction measured during unloading compared to loading for a given load. In this work, the origins of load-dependent friction hysteresis were explored through atomic force microscopy (AFM) experiments of a silicon tip sliding on chemical vapor deposited graphene in air, and molecular dynamics simulations of a model AFM tip on graphene, mimicking both vacuum and humid air environmental conditions. It was found that only simulations with water at the tip-graphene contact reproduced the experimentally observed hysteresis. The mechanisms underlying this friction hysteresis were then investigated in the simulations by varying the graphene-water interaction strength. The size of the water-graphene interface exhibited hysteresis trends consistent with the friction, while measures of other previously proposed mechanisms, such as out-of-plane deformation of the graphene film and irreversible reorganization of the water molecules at the shearing interface, were less correlated to the friction hysteresis. The relationship between the size of the sliding interface and friction observed in the simulations was explained in terms of the varying contact angles in front of and behind the sliding tip, which were larger during loading than unloading.

  12. Temperature dependence of ice-on-rock friction at realistic glacier conditions

    PubMed Central

    Savage, H.; Nettles, M.

    2017-01-01

    Using a new biaxial friction apparatus, we conducted experiments of ice-on-rock friction in order to better understand basal sliding of glaciers and ice streams. A series of velocity-stepping and slide–hold–slide tests were conducted to measure friction and healing at temperatures between −20°C and melting. Experimental conditions in this study are comparable to subglacial temperatures, sliding rates and effective pressures of Antarctic ice streams and other glaciers, with load-point velocities ranging from 0.5 to 100 µm s−1 and normal stress σn = 100 kPa. In this range of conditions, temperature dependences of both steady-state friction and frictional healing are considerable. The friction increases linearly with decreasing temperature (temperature weakening) from μ = 0.52 at −20°C to μ = 0.02 at melting. Frictional healing increases and velocity dependence shifts from velocity-strengthening to velocity-weakening behaviour with decreasing temperature. Our results indicate that the strength and stability of glaciers and ice streams may change considerably over the range of temperatures typically found at the ice–bed interface. This article is part of the themed issue ‘Microdynamics of ice’. PMID:28025297

  13. Rubber friction: role of the flash temperature.

    PubMed

    Persson, B N J

    2006-08-16

    When a rubber block is sliding on a hard rough substrate, the substrate asperities will exert time-dependent deformations of the rubber surface resulting in viscoelastic energy dissipation in the rubber, which gives a contribution to the sliding friction. Most surfaces of solids have roughness on many different length scales, and when calculating the friction force it is necessary to include the viscoelastic deformations on all length scales. The energy dissipation will result in local heating of the rubber. Since the viscoelastic properties of rubber-like materials are extremely strongly temperature dependent, it is necessary to include the local temperature increase in the analysis. At very low sliding velocity the temperature increase is negligible because of heat diffusion, but already for velocities of order 10(-2) m s(-1) the local heating may be very important. Here I study the influence of the local heating on the rubber friction, and I show that in a typical case the temperature increase results in a decrease in rubber friction with increasing sliding velocity for v>0.01 m s(-1). This may result in stick-slip instabilities, and is of crucial importance in many practical applications, e.g. for tyre-road friction and in particular for ABS braking systems.

  14. Surface friction of hydrogels with well-defined polyelectrolyte brushes.

    PubMed

    Ohsedo, Yutaka; Takashina, Rikiya; Gong, Jian Ping; Osada, Yoshihito

    2004-08-03

    Hydrogels of poly(2-hydroxyethyl methacrylate) (PHEMA) with well-defined polyelectrolyte brushes of poly(sodium 4-styrenesulfonate) (PNaSS) of various molecular weights were synthesized, keeping the distance between the polymer brushes constant at ca. 20 nm. The effect of polyelectrolyte brush length on the sliding friction against a glass plate, an electrorepulsive solid substrate, was investigated in water in a velocity range of 7.5 x 10(-5) to 7.5 x 10(-2) m/s. It is found that the presence of polymer brush can dramatically reduce the friction when the polymer brushes are short. With an increase in the length of the polymer brush, this drag reduction effect only works at a low sliding velocity, and the gel with long polymer brushes even shows a higher friction than that of a normal network gel at a high sliding velocity. The strong polymer length and sliding velocity dependence indicate a dynamic mechanism of the polymer brush effect.

  15. Resistance to Sliding in Clear and Metallic Damon 3 and Conventional Edgewise Brackets: an In vitro Study

    PubMed Central

    Karim Soltani, Mohammad; Golfeshan, Farzaneh; Alizadeh, Yoones; Mehrzad, Jabraiel

    2015-01-01

    Statement of the Problem Frictional forces are considered as important counterforce to orthodontic tooth movement. It is claimed that self-ligating brackets reduce the frictional forces. Purpose The aim of this study was to compare the resistance to sliding in metallic and clear Damon brackets with the conventional brackets in a wet condition. Materials and Method The samples included 4 types of brackets; metallic and clear Damon brackets and metallic and clear conventional brackets (10 brackets in each group). In this study, stainless steel wires sized 0.019×0.025 were employed and the operator’s saliva was used to simulate the conditions of oral cavity. The tidy-modified design was used for simulation of sliding movement. The resistance to sliding and static frictional forces was measured by employing Testometric machine and load cell. Results The mean (±SD) of resistance to sliding was 194.88 (±26.65) and 226.62 (±39.9) g in the esthetic and metallic Damon brackets, while these values were 187.81(±27.84) and 191.17(±66.68) g for the clear and metallic conventional brackets, respectively. Static frictional forces were 206.4(±42.45) and 210.38(±15.89) g in the esthetic and metallic Damon brackets and 220.63(±49.29) and 215.13(±62.38) g in the clear and metallic conventional brackets. According to two-way ANOVA, no significant difference was observed between the two bracket materials (clear and metal) and the two types of bracket (self-ligating versus conventional) regarding resistance to sliding (p= 0.17 and p= 0.23, respectively) and static frictional forces (p= 0.55 and p= 0.96, respectively). Conclusion Neither the type of bracket materials nor their type of ligation made difference in resistance to sliding and static friction. PMID:26106630

  16. Transverse thermal depinning and nonlinear sliding friction of an adsorbed monolayer.

    PubMed

    Granato, E; Ying, S C

    2000-12-18

    We study the response of an adsorbed monolayer under a driving force as a model of sliding friction phenomena between two crystalline surfaces with a boundary lubrication layer. Using Langevin-dynamics simulation, we determine the nonlinear response in the direction transverse to a high symmetry direction along which the layer is already sliding. We find that below a finite transition temperature there exist a critical depinning force and hysteresis effects in the transverse response in the dynamical state when the adlayer is sliding smoothly along the longitudinal direction.

  17. Comparison of dry sliding wear and friction behavior of Al6061/SiC PMMC with Al6061 alloy

    NASA Astrophysics Data System (ADS)

    Murthy, A. G. Shankara; Mehta, N. K.; Kumar, Pradeep

    2018-04-01

    Dry sliding wear and friction behavior tests were conducted on Al6061 alloy and Al6061/SiC particle reinforced metal matrix composites (PMMCs) reinforced with fine particles of 5, 10 and 15 µm size having 5,7.5 and 10% weight content fabricated by stir-casting route. Cylindrical sample pins produced as per ASTM standard were tested for various parameters like SiC size, weight content, load and sliding distance affecting the wear rate or resistance and friction. Results indicated that Al6061/SiCp composites exhibited good wear resistance compared to Al6061 alloy for the tested parameters.

  18. Quasi-equilibrium melting of quartzite upon extreme friction

    NASA Astrophysics Data System (ADS)

    Lee, Sung Keun; Han, Raehee; Kim, Eun Jeong; Jeong, Gi Young; Khim, Hoon; Hirose, Takehiro

    2017-06-01

    The friction on fault planes that controls how rocks slide during earthquakes decreases significantly as a result of complex fault-lubrication processes involving frictional melting. Fault friction has been characterized in terms of the preferential melting of minerals with low melting points--so-called disequilibrium melting. Quartz, which has a high melting temperature of about 1,726 °C and is a major component of crustal rocks, is not expected to melt often during seismic slip. Here we use high-velocity friction experiments on quartzite to show that quartz can melt at temperatures of 1,350 to 1,500 °C. This implies that quartz within a fault plane undergoing rapid friction sliding could melt at substantially lower temperatures than expected. We suggest that depression of the melting temperature is caused by the preferential melting of ultra-fine particles and metastable melting of β-quartz at about 1,400 °C during extreme frictional slip. The results for quartzite are applicable to complex rocks because of the observed prevalence of dynamic grain fragmentation, the preferential melting of smaller grains and the kinetic preference of β-quartz formation during frictional sliding. We postulate that frictional melting of quartz on a fault plane at temperatures substantially below the melting temperature could facilitate slip-weakening and lead to large earthquakes.

  19. Graphene nanoribbons on gold: understanding superlubricity and edge effects

    NASA Astrophysics Data System (ADS)

    Gigli, L.; Manini, N.; Benassi, A.; Tosatti, E.; Vanossi, A.; Guerra, R.

    2017-12-01

    We address the atomistic nature of the longitudinal static friction against sliding of graphene nanoribbons (GNRs) deposited on gold, a system whose structural and mechanical properties have been recently the subject of intense experimental investigation. By means of numerical simulations and modeling we show that the GNR interior is structurally lubric (‘superlubric’) so that the static friction is dominated by the front/tail regions of the GNR, where the residual uncompensated lateral forces arising from the interaction with the underneath gold surface opposes the free sliding. As a result of this edge pinning the static friction does not grow with the GNR length, but oscillates around a fairly constant mean value. These friction oscillations are explained in terms of the GNR-Au(111) lattice mismatch: at certain GNR lengths close to an integer number of the beat (or moiré) length there is good force compensation and superlubric sliding; whereas close to half odd-integer periods there is significant pinning of the edge with larger friction. These results make qualitative contact with recent state-of-the-art atomic force microscopy experiment, as well as with the sliding of other different incommensurate systems.

  20. Tribochemical synthesis of nano-lubricant films from adsorbed molecules at sliding solid interface: Tribo-polymers from α-pinene, pinane, and n-decane

    NASA Astrophysics Data System (ADS)

    He, Xin; Barthel, Anthony J.; Kim, Seong H.

    2016-06-01

    The mechanochemical reactions of adsorbed molecules at sliding interfaces were studied for α-pinene (C10H16), pinane (C10H18), and n-decane (C10H22) on a stainless steel substrate surface. During vapor phase lubrication, molecules adsorbed at the sliding interface could be activated by mechanical shear. Under the equilibrium adsorption condition of these molecules, the friction coefficient of sliding steel surfaces was about 0.2 and a polymeric film was tribochemically produced. The synthesis yield of α-pinene tribo-polymers was about twice as much as pinane tribo-polymers. In contrast to these strained bicyclic hydrocarbons, n-decane showed much weaker activity for tribo-polymerization at the same mechanical shear condition. These results suggested that the mechanical shear at tribological interfaces could induce the opening of the strained ring structure of α-pinene and pinane, which leads to polymerization of adsorbed molecules at the sliding track. On a stainless steel surface, such polymerization reactions of adsorbed molecules do not occur under typical surface reaction conditions. The mechanical properties and boundary lubrication efficiency of the produced tribo-polymer films are discussed.

  1. Effect of triangular texture on the tribological performance of die steel with TiN coatings under lubricated sliding condition

    NASA Astrophysics Data System (ADS)

    Chen, Ping; Xiang, Xin; Shao, Tianmin; La, Yingqian; Li, Junling

    2016-12-01

    The friction and wear of stamping die surface can affect the service life of stamping die and the quality of stamping products. Surface texturing and surface coating have been widely used to improve the tribological performance of mechanical components. This study experimentally investigated the effect of triangular surface texture on the friction and wear properties of the die steel substrate with TiN coatings under oil lubrication. TiN coatings were deposited on a die steel (50Cr) substrate through a multi-arc ion deposition system, and then triangular surface texturing was fabricated by a laser surface texturing. The friction and wear test was conducted by a UMT-3 pin-on-disk tribometer under different sliding speeds and different applied loads, respectively. The adhesion test was performed to evaluate the effectiveness of triangular texturing on the interfacial bonding strength between the TiN coating and the die steel substrate. Results show that the combination method of surface texturing process and surface coating process has excellent tribological properties (the lowest frictional coefficient and wear volume), compared with the single texturing process or the single coating process. The tribological performance is improved resulting from the high hardness and low elastic modulus of TiN coatings, and the generation of hydrodynamic pressure, function of micro-trap for wear debris and micro-reservoirs for lubricating oil of the triangular surface texture. In addition, the coating bonding strength of the texturing sample is 3.63 MPa, higher than that of the single coating sample (3.48 MPa), but the mechanisms remain to be further researched.

  2. 3D DEM analyses of the 1963 Vajont rock slide

    NASA Astrophysics Data System (ADS)

    Boon, Chia Weng; Houlsby, Guy; Utili, Stefano

    2013-04-01

    The 1963 Vajont rock slide has been modelled using the distinct element method (DEM). The open-source DEM code, YADE (Kozicki & Donzé, 2008), was used together with the contact detection algorithm proposed by Boon et al. (2012). The critical sliding friction angle at the slide surface was sought using a strength reduction approach. A shear-softening contact model was used to model the shear resistance of the clayey layer at the slide surface. The results suggest that the critical sliding friction angle can be conservative if stability analyses are calculated based on the peak friction angles. The water table was assumed to be horizontal and the pore pressure at the clay layer was assumed to be hydrostatic. The influence of reservoir filling was marginal, increasing the sliding friction angle by only 1.6˚. The results of the DEM calculations were found to be sensitive to the orientations of the bedding planes and cross-joints. Finally, the failure mechanism was investigated and arching was found to be present at the bend of the chair-shaped slope. References Boon C.W., Houlsby G.T., Utili S. (2012). A new algorithm for contact detection between convex polygonal and polyhedral particles in the discrete element method. Computers and Geotechnics, vol 44, 73-82, doi.org/10.1016/j.compgeo.2012.03.012. Kozicki, J., & Donzé, F. V. (2008). A new open-source software developed for numerical simulations using discrete modeling methods. Computer Methods in Applied Mechanics and Engineering, 197(49-50), 4429-4443.

  3. Mathematical and computational aspects of nonuniform frictional slip modeling

    NASA Astrophysics Data System (ADS)

    Gorbatikh, Larissa

    2004-07-01

    A mechanics-based model of non-uniform frictional sliding is studied from the mathematical/computational analysis point of view. This problem is of a key importance for a number of applications (particularly geomechanical ones), where materials interfaces undergo partial frictional sliding under compression and shear. We show that the problem is reduced to Dirichlet's problem for monotonic loading and to Riemman's problem for cyclic loading. The problem may look like a traditional crack interaction problem, however, it is confounded by the fact that locations of n sliding intervals are not known. They are to be determined from the condition for the stress intensity factors: KII=0 at the ends of the sliding zones. Computationally, it reduces to solving a system of 2n coupled non-linear algebraic equations involving singular integrals with unknown limits of integration.

  4. Note: A rigid piezo motor with large output force and an effective method to reduce sliding friction force.

    PubMed

    Guo, Ying; Hou, Yubin; Lu, Qingyou

    2014-05-01

    We present a completely practical TunaDrive piezo motor. It consists of a central piezo stack sandwiched by two arm piezo stacks and two leg piezo stacks, respectively, which is then sandwiched and spring-clamped by a pair of parallel polished sapphire rods. It works by alternatively fast expanding and contracting the arm/leg stacks while slowly expanding/contracting the central stack simultaneously. The key point is that sufficiently fast expanding and contracting a limb stack can make its two sliding friction forces well cancel, resulting in the total sliding friction force is <10% of the total static friction force, which can help increase output force greatly. The piezo motor's high compactness, precision, and output force make it perfect in building a high-quality harsh-condition (vibration resistant) atomic resolution scanning probe microscope.

  5. The friction and wear of TPS fibers

    NASA Technical Reports Server (NTRS)

    Bascom, W. D.; Wong, S.

    1987-01-01

    The sliding friction behavior of single filaments of SiO2, SiC, and an aluminoborosilicate has been determined. These fibers are used in thermal protection systems (TPS) and are subject to damage during weaving and aero-maneuvering. All fibers exhibited stick-slip friction indicating the successive formation and rupture of strong junctions between the contacting filaments. The static frictional resistance of the sized SiC filament was 4X greater than for the same filament after heat cleaning. This result suggests that the sizing is an organic polymer with a high shear yield strength. Heat cleaning exposes the SiC surface and/or leaves an inorganic residue so that the adhesional contact between filaments has a low fracture energy and frictional sliding occurs by brittle fracture. The frictional resistances of the sized and heat cleaned SiO2 and glass filaments were all comparable to that of the heat cleaned SiC. It would appear that the sizings as well as the heat cleaned surfaces of the silica and glass have low fracture energies so that the sliding resistance is determined by brittle fracture.

  6. Enhancing Variable Friction Tactile Display Using an Ultrasonic Travelling Wave.

    PubMed

    Ghenna, Sofiane; Vezzoli, Eric; Giraud-Audine, Christophe; Giraud, Frederic; Amberg, Michel; Lemaire-Semail, Betty

    2017-01-01

    In Variable Friction Tactile Displays, an ultrasonic standing wave can be used to reduce the friction coefficient between a user's finger sliding and a vibrating surface. However, by principle, the effect is limited by a saturation due to the contact mechanics, and very low friction levels require very high vibration amplitudes. Besides, to be effective, the user's finger has to move. We present a device which uses a travelling wave rather than a standing wave. We present a control that allows to realize such a travelling wave in a robust way, and thus can be implemented on various plane surfaces. We show experimentally that the force produced by the travelling wave has two superimposed contributions. The first one is equal to the friction reduction produced by a standing of the same vibration amplitude. The second produces a driving force in the opposite direction of the travelling wave. As a result, the modulation range of the tangential force on the finger can be extended to zero and even negative values. Moreover, the effect is dependant on the relative direction of exploration with regards to the travelling wave, which is perceivable and confirmed by a psycho-physical study.

  7. Oil-Soluble Polymer Brush Grafted Nanoparticles as Effective Lubricant Additives for Friction and Wear Reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Roger A. E.; Wang, Kewei; Qu, Jun

    Developments of high performance lubricants are driven by increasingly growing industrial demands and environmental concerns. We demonstrate oil-soluble polymer brush-grafted inorganic nanoparticles (hairy NPs) as highly effective lubricant additives for friction and wear reduction. A series of oil-miscible poly(lauryl methacrylate) brush-grafted silica and titania NPs were synthesized by surface-initiated atom transfer radical polymerization. Moreover, these hairy NPs showed exceptional stability in poly(alphaolefin) (PAO) base oil; no change in transparency was observed after being kept at -20, 22, and 100°C for ≥55 days. High-contact stress ball-on-flat reciprocating sliding tribological tests at 100°C showed that addition of 1 wt% of hairy NPsmore » into PAO led to significant reductions in coefficient of friction (up to ≈40%) and wear volume (up to ≈90%). The excellent lubricating properties of hairy NPs were further elucidated by the characterization of the tribofilm formed on the flat. These hairy NPs represent a new type of lubricating oil additives with high efficiency in friction and wear reduction.« less

  8. Oil-Soluble Polymer Brush Grafted Nanoparticles as Effective Lubricant Additives for Friction and Wear Reduction

    DOE PAGES

    Wright, Roger A. E.; Wang, Kewei; Qu, Jun; ...

    2016-06-06

    Developments of high performance lubricants are driven by increasingly growing industrial demands and environmental concerns. We demonstrate oil-soluble polymer brush-grafted inorganic nanoparticles (hairy NPs) as highly effective lubricant additives for friction and wear reduction. A series of oil-miscible poly(lauryl methacrylate) brush-grafted silica and titania NPs were synthesized by surface-initiated atom transfer radical polymerization. Moreover, these hairy NPs showed exceptional stability in poly(alphaolefin) (PAO) base oil; no change in transparency was observed after being kept at -20, 22, and 100°C for ≥55 days. High-contact stress ball-on-flat reciprocating sliding tribological tests at 100°C showed that addition of 1 wt% of hairy NPsmore » into PAO led to significant reductions in coefficient of friction (up to ≈40%) and wear volume (up to ≈90%). The excellent lubricating properties of hairy NPs were further elucidated by the characterization of the tribofilm formed on the flat. These hairy NPs represent a new type of lubricating oil additives with high efficiency in friction and wear reduction.« less

  9. Influence of Surface Texture and Roughness of Softer and Harder Counter Materials on Friction During Sliding

    NASA Astrophysics Data System (ADS)

    Menezes, Pradeep L.; Kishore; Kailas, Satish V.; Lovell, Michael R.

    2015-01-01

    Surface texture influences friction during sliding contact conditions. In the present investigation, the effect of surface texture and roughness of softer and harder counter materials on friction during sliding was analyzed using an inclined scratch testing system. In the experiments, two test configurations, namely (a) steel balls against aluminum alloy flats of different surface textures and (b) aluminum alloy pins against steel flats of different surface textures, are utilized. The surface textures were classified into unidirectionally ground, 8-ground, and randomly polished. For a given texture, the roughness of the flat surfaces was varied using grinding or polishing methods. Optical profilometer and scanning electron microscope were used to characterize the contact surfaces before and after the experiments. Experimental results showed that the surface textures of both harder and softer materials are important in controlling the frictional behavior. The softer material surface textures showed larger variations in friction between ground and polished surfaces. However, the harder material surface textures demonstrated a better control over friction among the ground surfaces. Although the effect of roughness on friction was less significant when compared to textures, the harder material roughness showed better correlations when compared to the softer material roughness.

  10. Tribological evaluation of PS300: A new chrome oxide based solid lubricant coating sliding against Al2O3 From 25 to 650 C

    NASA Technical Reports Server (NTRS)

    DellaCorte, C.; Laskowski, J. A.

    1996-01-01

    This paper presents the tribological characteristics of Al203 sliding against PS300; a chrome oxide based self lubricating coating. Al203 pins were slid against PS300 coated superalloy disks in air, under a 4.9 N load at velocities of 1 to 8 m/s. At a sliding velocity of 1 m/s, friction ranged from 0.6 at 25 C to 0.2 at 650 C. Wear factors for the Al203 pins were in the 10(exp -7) mm(exp 3)/N-m range and for the PS300 coating was in the 10(exp -5) mm(exp 3)/N-m range. The test results suggest that increased surface temperature resulting from either frictional heating, generated by increased sliding velocity, or ambient heating caused a reduction in friction and wear of the sliding couple. Based upon these results, the tested material combination is a promising candidate for high temperature wear applications.

  11. Friction and wear characteristics of wire-brush skids

    NASA Technical Reports Server (NTRS)

    Dreher, R. C.

    1979-01-01

    The testing technique consisted of towing the skids with a ground test vehicle over asphalt and concrete surfaces at ground speeds up to 80 km/hr (50 mph) and bearing pressures up to 689 kPa (100 psi) over sliding distances up to 1585 m (5200 ft). Results indicate that the friction coefficient developed by wire brush skids is essentially independent of ground speed, is slightly increased with increasing bearing pressure, is noticeably affected by surface texture, and is not degraded by surface wetness. Skid wear is shown to increase with increasing bearing pressure and with increasing ground speed and is dependent on the nature of the surface. Runway surface damage caused by the skids was in the form of an abrasive scrubbing action rather than physical damage.

  12. Microtribological Mechanisms of Tungsten and Aluminum Nitride Films

    NASA Astrophysics Data System (ADS)

    Zhao, Hongjian; Mu, Chunyan; Ye, Fuxing

    2016-04-01

    Microtribology experiments were carried out on the W1- x Al x N films, deposited by radio frequency magnetron reactive sputtering on 304 stainless steel substrates and Si(100). Film wear mechanisms were investigated from the evolution of the friction coefficient and scanning electron microscopy observations. The results show that the WAlN films consist of a mixture of face-centered cubic W(Al)N and hexagonal wurtzite structure AlN phases and the preferred orientation changes from (111) to (200). The film damage after sliding test is mainly attributed to the composition and microstructure of the films. The amount of debris generated by friction is linked to the crack resistance. The better tribological properties for W1- x Al x N films ( x < 0.4) are mainly determined by the higher toughness.

  13. Plasma-sprayed coatings for lubrication of a titanium alloy in air at 430 deg C

    NASA Technical Reports Server (NTRS)

    Sliney, H. E.; Wisander, D. H.

    1979-01-01

    Plasma sprayed coatings of pure silver and of composite materials containing silver were investigated as possible self lubricating coatings for titanium alloys in air at 430 C. Pure silver provided low friction but was prone to severe plastic deformation and excessive transfer except in coating thicknesses of 0.02 mm or less. Additions of nichrome, calcium fluoride, and glass to silver were all beneficial in reducing plastic deformation and otherwise improving the coatings. The longest coating wear life, low wear of Ti alloy pins in sliding contact with the coatings, and a steady friction coefficient of 0.19 were obtained with a four component coating of 0.17 mm thickness. The coating composition, in weight percent is 30 nichrome-30 Ag-25 CaF2-15 glass.

  14. The friction and wear of carbon-carbon composites for aircraft brakes

    NASA Astrophysics Data System (ADS)

    Hutton, Toby

    Many carbon-carbon composite aircraft brakes encounter high wear rates during low energy braking operations. The work presented in this thesis addresses this issue, but it also elucidates the microstructural changes and wear mechanisms that take place in these materials during all braking conditions encountered by aircraft brakes. A variety of investigations were conducted using friction and wear testing, as well as examination of wear surfaces and wear debris using OM, SEM, X-RD, TGA and Density Gradient Separation (DOS). Friction and wear tests were conducted on a PAN fibre/CVI matrix carbon-carbon composite (Dunlop) and a pitch fibre/Resin-CVI matrix carbon-carbon composite (Bendix). Extensive testing was undertaken on the Dunlop composites to asses the effects of composite architecture, fibre orientation and heat treatment temperatures on friction and wear. Other friction and wear tests, conducted on the base Dunlop composite, were used to investigate the relative influences of temperature and sliding speed. It was found that the effect of temperature was dominant over composite architecture, fibre orientation and sliding speed in governing the friction and wear performance of the Dunlop composites. The development of bulk temperatures in excess of 110 C by frictional heating resulted in smooth friction and a low wear rate. Reducing heat treatment temperature also reduced the thermal conductivity producing high interface temperatures, low smooth friction coefficients and low wear rates under low energy braking conditions. However, this was at the expense of high oxidative wear rates under higher energy braking conditions. The Bendix composites had lower thermal conductivities than the fully heat treated Dunlop composite and exhibited similar friction and wear behaviour to Dunlop composites heat treated to lower temperatures. Examination of the wear surfaces using OM and SEM revealed particulate or Type I surface debris on wear surfaces tested under low energy conditions. Type I debris was stable on the wear surfaces to a temperature of 110C, after which it was gradually converted to film material or Type II surface debris by the action of heat and shear. Type I debris was associated with high erratic friction coefficients (ja.=0.55- 0.65) and high wear rates (~ 8 mg/min), whereas. Type II debris was associated low smooth friction (|LI=0.35-0.45) and low wear rates (~ 4 mg/min). Analysis of the wear debris produced from testing on large dynamometers under the simulated conditions of taxiing and landing indicated that the structure of the wear debris became highly disordered as a result of the wear process. However, evidence from XRD, TGA and DGS suggested that, under very high energy conditions, such as those encountered in a rejected take off (RTO), the wear debris was partially regraphitised at the wear face by the action of heat and shear. The results from analysis of the wear surfaces and the wear debris supported the theory that a regenerative process or friction film formation, delamination and repair operated on the wear surfaces of these brake materials.

  15. High-temperature friction and wear studies of Fe-Cu-Sn alloy with graphite as solid lubricant under dry sliding conditions

    NASA Astrophysics Data System (ADS)

    Mushtaq, Shuhaib; Wani, M. F.

    2018-02-01

    Solid lubricants are particularly used in the advanced mechanical motion systems with extreme conditions such as (high temperature, vacuum, radiation, extreme contact pressure, etc). The main focus of this paper is to study the dry sliding friction and wear behavior of Fe-Cu-Sn alloy with varying wt% of graphite at high temperature up to 423 K. The influence of temperature, sliding distance and load on friction and wear behavior of Fe-Cu-Sn alloy against EN8 steel was studied using ball (EN8) on disc (Fe-Cu-Sn alloy). Lower wear and lower friction of Fe-Cu-Sn alloy were observed at high temperature, as compared to room temperature. Surface morphological and surface analytical studies of fresh and worn surfaces were carried out using optical microscopy, 3D profilometer, scanning electron microscope, energy dispersive x-ray spectroscopy, XRD, and Raman spectroscopy to understand the friction and wear behavior.

  16. Friction Forces during Sliding of Various Brackets for Malaligned Teeth: An In Vitro Study

    PubMed Central

    Crincoli, Vito; Di Bisceglie, Maria Beatrice; Balsamo, Antonio; Serpico, Vitaliano; Chiatante, Francesco; Pappalettere, Carmine; Boccaccio, Antonio

    2013-01-01

    Aims. To measure the friction force generated during sliding mechanics with conventional, self-ligating (Damon 3 mx, Smart Clip, and Time 3) and low-friction (Synergy) brackets using different archwire diameters and ligating systems in the presence of apical and buccal malalignments of the canine. Methods. An experimental setup reproducing the right buccal segment of the maxillary arch was designed to measure the friction force generated at the bracket/wire and wire/ligature interfaces of different brackets. A complete factorial plan was drawn up and a three-way analysis of variance (ANOVA) was carried out to investigate whether the following factors affect the values of friction force: (i) degree of malalignment, (ii) diameter of the orthodontic wire, and (iii) bracket/ligature combination. Tukey post hoc test was also conducted to evaluate any statistically significant differences between the bracket/ligature combinations analyzed. Results. ANOVA showed that all the above factors affect the friction force values. The friction force released during sliding mechanics with conventional brackets is about 5-6times higher than that released with the other investigated brackets. A quasilinear increase of the frictional forces was observed for increasing amounts of apical and buccal malalignments. Conclusion. The Synergy bracket with silicone ligature placed around the inner tie-wings appears to yield the best performance. PMID:23533364

  17. Carbon Displacement-Induced Single Carbon Atomic Chain Formation and its Effects on Sliding of SiC Fibers in SiC/graphene/SiC Composite

    DOE PAGES

    Wallace, Joseph B.; Chen, Di; Shao, Lin

    2015-11-03

    Understanding radiation effects on the mechanical properties of SiC composites is important to their application in advanced reactor designs. By means of molecular dynamics simulations, we found that due to strong interface bonding between the graphene layers and SiC, the sliding friction of SiC fibers is largely determined by the frictional behavior between graphene layers. Upon sliding, carbon displacements between graphene layers can act as seed atoms to induce the formation of single carbon atomic chains (SCACs) by pulling carbon atoms from the neighboring graphene planes. The formation, growth, and breaking of SCACs determine the frictional response to irradiation.

  18. Femtosecond laser full and partial texturing of steel surfaces to reduce friction in lubricated contact

    NASA Astrophysics Data System (ADS)

    Ancona, Antonio; Carbone, Giuseppe; De Filippis, Michele; Volpe, Annalisa; Lugarà, Pietro Mario

    2014-12-01

    Minimizing mechanical losses and friction in vehicle engines would have a great impact on reducing fuel consumption and exhaust emissions, to the benefit of environmental protection. With this scope, laser surface texturing (LST) with femtosecond pulses is an emerging technology, which consists of creating, by laser ablation, an array of high-density microdimples on the surface of a mechanical device. The microtexture decreases the effective contact area and, in case of lubricated contact, acts as oil reservoir and trap for wear debris, leading to an overall friction reduction. Depending on the lubrication regime and on the texture geometry, several mechanisms may concur to modify friction such as the local reduction of the shear stress, the generation of a hydrodynamic lift between the surfaces or the formation of eddy-like flows at the bottom of the dimple cavities. All these effects have been investigated by fabricating and characterizing several LST surfaces by femtosecond laser ablation with different features: partial/full texture, circular/elliptical dimples, variable diameters, and depths but equivalent areal density. More than 85% of friction reduction has been obtained from the circular dimple geometry, but the elliptical texture allows adjusting the friction coefficient by changing its orientation with respect to the sliding direction.

  19. Superlubricity and tribochemistry of polyhydric alcohols

    NASA Astrophysics Data System (ADS)

    Matta, C.; Joly-Pottuz, L.; de Barros Bouchet, M. I.; Martin, J. M.; Kano, M.; Zhang, Qing; Goddard, W. A., III

    2008-08-01

    The anomalous low friction of diamondlike carbon coated surfaces lubricated by pure glycerol was observed at 80°C . Steel surfaces were coated with an ultrahard 1 µm thick hydrogen-free tetrahedral coordinated carbon (ta-C) layer produced by physical vapor deposition. In the presence of glycerol, the friction coefficient is below 0.01 at steady state, corresponding to the so-called superlubricity regime (when sliding is then approaching pure rolling). This new mechanism of superlow friction is attributed to easy glide on triboformed OH-terminated surfaces. In addition to the formation of OH-terminated surfaces but at a lower temperature, we show here some evidence, by coupling experimental and computer simulations, that superlow friction of polyhydric alcohols could also be associated with triboinduced degradation of glycerol, producing a nanometer-thick film containing organic acids and water. Second, we show outstanding superlubricity of steel surfaces directly lubricated by a solution of myo-inositol (also called vitamin Bh) in glycerol at ambient temperature (25°C) . For the first time, under boundary lubrication at high contact pressure, friction of steel is below 0.01 in the absence of any long chain polar molecules. The mechanism is still unknown but could be associated with friction-induced dissociation of glycerol and interaction of waterlike species with steel surface.

  20. Confinement-Dependent Friction in Peptide Bundles

    PubMed Central

    Erbaş, Aykut; Netz, Roland R.

    2013-01-01

    Friction within globular proteins or between adhering macromolecules crucially determines the kinetics of protein folding, the formation, and the relaxation of self-assembled molecular systems. One fundamental question is how these friction effects depend on the local environment and in particular on the presence of water. In this model study, we use fully atomistic MD simulations with explicit water to obtain friction forces as a single polyglycine peptide chain is pulled out of a bundle of k adhering parallel polyglycine peptide chains. The whole system is periodically replicated along the peptide axes, so a stationary state at prescribed mean sliding velocity V is achieved. The aggregation number is varied between k = 2 (two peptide chains adhering to each other with plenty of water present at the adhesion sites) and k = 7 (one peptide chain pulled out from a close-packed cylindrical array of six neighboring peptide chains with no water inside the bundle). The friction coefficient per hydrogen bond, extrapolated to the viscous limit of vanishing pulling velocity V → 0, exhibits an increase by five orders of magnitude when going from k = 2 to k = 7. This dramatic confinement-induced friction enhancement we argue to be due to a combination of water depletion and increased hydrogen-bond cooperativity. PMID:23528088

  1. Non-equilibrium phase behavior and friction of confined molecular films under shear: A non-equilibrium molecular dynamics study.

    PubMed

    Maćkowiak, Sz; Heyes, D M; Dini, D; Brańka, A C

    2016-10-28

    The phase behavior of a confined liquid at high pressure and shear rate, such as is found in elastohydrodynamic lubrication, can influence the traction characteristics in machine operation. Generic aspects of this behavior are investigated here using Non-equilibrium Molecular Dynamics (NEMD) simulations of confined Lennard-Jones (LJ) films under load with a recently proposed wall-driven shearing method without wall atom tethering [C. Gattinoni et al., Phys. Rev. E 90, 043302 (2014)]. The focus is on thick films in which the nonequilibrium phases formed in the confined region impact on the traction properties. The nonequilibrium phase and tribological diagrams are mapped out in detail as a function of load, wall sliding speed, and atomic scale surface roughness, which is shown can have a significant effect. The transition between these phases is typically not sharp as the external conditions are varied. The magnitude of the friction coefficient depends strongly on the nonequilibrium phase adopted by the confined region of molecules, and in general does not follow the classical friction relations between macroscopic bodies, e.g., the frictional force can decrease with increasing load in the Plug-Slip (PS) region of the phase diagram owing to structural changes induced in the confined film. The friction coefficient can be extremely low (∼0.01) in the PS region as a result of incommensurate alignment between a (100) face-centered cubic wall plane and reconstructed (111) layers of the confined region near the wall. It is possible to exploit hysteresis to retain low friction PS states well into the central localization high wall speed region of the phase diagram. Stick-slip behavior due to periodic in-plane melting of layers in the confined region and subsequent annealing is observed at low wall speeds and moderate external loads. At intermediate wall speeds and pressure values (at least) the friction coefficient decreases with increasing well depth of the LJ potential between the wall atoms, but increases when the attractive part of the potential between wall atoms and confined molecules is made larger.

  2. Adhesion and friction between glass and rubber in the dry state and in water: role of contact hydrophobicity.

    PubMed

    Kawasaki, S; Tada, T; Persson, B N J

    2018-06-27

    We study the contact mechanics between 3 different tire tread compounds and a smooth glass surface in water. We study both adhesion and sliding friction at low-sliding speeds. For 2 of the compounds the rubber-glass contact in water is hydrophobic and we observe adhesion, and slip-stick sliding friction dynamics. For one compound the contact is hydrophilic, resulting in vanishing adhesion, and steady-state (or smooth) sliding dynamics. We also show the importance of dynamical scrape, both on the macroscopic level and at the asperity level, which reduces the water film thickness between the solids during slip. The experiments show that the fluid is removed much faster from the rubber-glass asperity contact regions for a hydrophobic contact than for a hydrophilic contact. We also study friction on sandblasted glass in water. In this case all the compounds behave similarly and we conclude that no dewetting occur in the asperity contact regions. We propose that this is due to the increased surface roughness which reduces the rubber-glass binding energy.

  3. Plate-rate laboratory friction experiments reveal potential slip instability on weak faults

    NASA Astrophysics Data System (ADS)

    Ikari, M.; Kopf, A.

    2016-12-01

    In earthquake science, it is commonly assumed that earthquakes nucleate on strong patches or "asperities", and data from laboratory friction experiments indicate a tendency for unstable slip (exhibited as velocity-weakening frictional behavior) in strong geologic materials. However, an overwhelming amount of these experiments were conducted at driving velocities ranging from 0.1 µm/s to over 1 m/s. Less data exists for shearing experiments driven at slow velocities on the order of cm/yr (nm/s), approximating plate tectonic rates which represent the natural driving condition on plate boundary faults. Recent laboratory work using samples recovered from the Tohoku region at the Japan Trench, within the high coseismic slip region of the 2011 M9 Tohoku earthquake, showed that the fault is extremely weak with a friction coefficient < 0.2. At sliding velocities of at least 0.1 µm/s mostly velocity-strengthening friction is observed, which is favorable for stable creep, consistent with earlier work. However, shearing at an imposed rate of 8.5 cm/yr produced both velocity-weakening friction and discrete slow slip events, which are likely instances of frictional instabilities or quasi-instabilities. Here, we expand on the Tohoku experiment by conducting cm/yr friction experiments on natural gouges obtained from a variety of other major fault zones obtained by scientific drilling; these include the San Andreas Fault, Costa Rica subduction zone, Nankai Trough (Japan), Barbados subduction zone, Alpine Fault (New Zealand), southern Cascadia, and Woodlark Basin (Papua New Guinea). We focus here on weak fault materials having a friction coefficient of < 0.5. At conventional laboratory driving rates of 0.1-30 µm/s, velocity strengthening is common. However, at cm/yr driving rates we commonly observe velocity-weakening friction and slow slip events, with most samples exhibit both behaviors. These results demonstrate when fault samples are sheared at plate tectonic rates in the laboratory, which best replicates natural forcing conditions, a tendency for unstable slip is revealed. Thus, weak faults should not be considered frictionally stable, but have the ability to participate in earthquake rupture or generate events themselves.

  4. A comparison of the lubrication behavior of whey protein model foods using tribology in linear and elliptical movement.

    PubMed

    Campbell, Caroline L; Foegeding, E Allen; van de Velde, Fred

    2017-08-01

    Lubrication is an important factor in the sensory evaluation of food products. Tribology provides a theoretical framework and instrumental methods for evaluating frictional properties between two moving surfaces and the lubrication behavior of products between these surfaces. Relating frictional measurements to sensory properties detected during oral processing requires careful and pertinent choices in surface materials and testing conditions. The aims of this study were to investigate: (a) differences in lubrication behavior of a range of food textures and (b) the differences between linear and elliptical movement and added saliva to understand the contribution of food structure to friction. Six whey protein model food samples, ranging in texture from fluid to semisolid to soft solid, were analyzed using a pin on disk tribometer to determine the coefficient of friction (COF) across a range of sliding speeds. The samples were analyzed in their initial form and post-oral processing (n = 4) in both linear and elliptical movements. Elliptical movement slightly decreased coefficients of friction and extended the shape of the friction curve. Increases in test food viscosity decreased the COF but differences in viscosity were not apparent when test foods were mixed with saliva. Data correction for viscosity shifted the friction curves horizontally, indicating that lubrication had a greater impact upon friction than viscosity. This study provides initial insights for further comparison of linear and elliptical movement with a variety of sample compositions. Sensory perception of smoothness and creaminess are often major contributors to overall hedonic food liking and are a major reason why products high in fat and sugar are more highly preferred over other foods. These parameters are influenced by friction and lubrication between the tongue, palate, teeth, food products, and saliva during oral processing. Tribology provides an instrumental method to evaluate friction between moving surfaces that mimic oral surfaces and the lubrication behavior of foods. Trends in frictional measurements can be correlated with sensory ratings of the same foods to better understand why preferences exist for certain foods or food compositions and how to effectively improve the acceptability and enjoyment of healthier foods. © 2017 Wiley Periodicals, Inc.

  5. Tribological properties of sintered polycrystalline and single crystal silicon carbide

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.; Srinivasan, M.

    1982-01-01

    Tribological studies and X-ray photoelectron spectroscopy analyses were conducted with sintered polycrystalline and single crystal silicon carbide surfaces in sliding contact with iron at various temperatures to 1500 C in a vacuum of 30 nPa. The results indicate that there is a significant temperature influence on both the friction properties and the surface chemistry of silicon carbide. The main contaminants on the as received sintered polycrystalline silicon carbide surfaces are adsorbed carbon, oxygen, graphite, and silicon dioxide. The surface revealed a low coefficient of friction. This is due to the presence of the graphite on the surface. At temperatures of 400 to 600 C graphite and copious amount of silicon dioxide were observed on the polycrystalline silicon carbide surface in addition to silicon carbide. At 800 C, the amount of the silicon dioxide decreased rapidly and the silicon carbide type silicon and carbon peaks were at a maximum intensity in the XPS spectra. The coefficients of friction were high in the temperature range 400 to 800 C. Small amounts of carbon and oxygen contaminants were observed on the as received single crystal silicon carbide surface below 250 C. Silicon carbide type silicon and carbon peaks were seen on the silicon carbide in addition to very small amount of graphite and silicon dioxide at temperatures of 450 to 800 C.

  6. The rheology of non-suspended sediment transport mediated by a Newtonian fluid

    NASA Astrophysics Data System (ADS)

    Pähtz, Thomas; Durán, Orencio

    2017-04-01

    Using a coupled DEM/RANS numerical model of non-suspended sediment transport in a Newtonian fluid (Durán et al., POF 103306, 2012), we find that the gas-like part of the granular transport flow can be described by a universal condition that constrains the average geometry of interparticle collisions. We show that this condition corresponds to a constant sliding friction coefficient μ at an appropriately defined bed surface, thus explaining the success of Bagnold's old idea to describe the sediment transport in analogy to sliding friction. We are currently exploring whether this rheology applies to gas-like granular flows in general. We further find a transition of the gas-like flow to either a solid-like flow (solid-to-gas transition), which is typical for aeolian sediment transport ('saltation'), or a liquid-like flow (liquid-to-gas transition), which is typical for subaqueous sediment transport ('bedload'). The transition occurs at about the location of maximal particle collision frequency. If there is a liquid-like flow below the transition, we find that it can be described by a μ(I) rheology, where I is the visco-intertial number, an appropriately defined average of the viscous and intertial number.

  7. Tribological Behavior and the Mild–Severe Wear Transition of Mg97Zn1Y2 Alloy with a LPSO Structure Phase

    PubMed Central

    Sun, Wei; Xuan, Xihua; Li, Liang; An, Jian

    2018-01-01

    Dry friction and wear tests were performed on as-cast Mg97Zn1Y2 alloy using a pin-on-disc configuration. Coefficients of friction and wear rates were measured as a function of applied load at sliding speeds of 0.2, 0.8 and 3.0 m/s. The wear mechanisms were identified in the mild and severe wear regimes by means of morphological observation and composition analysis of worn surfaces using scanning electron microscope (SEM) and energy dispersive X-ray spectrometer (EDS). Analyses of microstructure and hardness changes in subsurfaces verified the microstructure transformation from the deformed to the dynamically recrystallized, and properties changed from the strain hardening to dynamic crystallization (DRX) softening before and after the mild–severe wear transition. The mild–severe wear transition can be determined by a proposed contact surface DRX temperature criterion, from which the critical DRX temperatures at different sliding speeds are calculated using DRX dynamics; hence transition loads can also be calculated using a transition load model. The calculated transition loads are in good agreement with the measured ones, demonstrating the validity and applicability of the contact surface DRX temperature criterion. PMID:29584692

  8. Sliding friction of nanocomposite WC1-x/C coatings: transfer film and its influence on tribology.

    PubMed

    Liu, Y; Gubisch, M; Spiess, L; Schaefer, J A

    2009-06-01

    The transfer film on steel spheres formed in reciprocating sliding against nanocomposite coatings based on nanocrystalline WC1-x in amorphous carbon matrix is characterized and correlated with the tribological properties measured by a precision microtribometer. With the presence of transfer film, a coefficient of friction approximately 0.13 and a depth wear rate approximately 0.35 x 10(-10) m/N.Pass were obtained. The central zone of the transfer film covering approximately 25% of the Hertz contact area is intact while cracks and wear debris are found in the vast peripheral area. It is also heavily oxidized due to the absence of carbon, which is located at the peripherals and acts as lubricants. We propose that the oxidation of WC and adhesion of the oxides to the surface of sphere is the main mechanism for the buildup of the transfer films. With the thickening of the film, the internal stress increases. Under the shear stress, spalling and cracking of the transfer film take place. The overall tribological performance of the coatings is therefore a competing process of buildup and spalling of transfer films.

  9. Optimization of damping in the passive automotive suspension system with using two quarter-car models

    NASA Astrophysics Data System (ADS)

    Lozia, Z.; Zdanowicz, P.

    2016-09-01

    The paper presents the optimization of damping in the passive suspension system of a motor vehicle moving rectilinearly with a constant speed on a road with rough surface of random irregularities, described according to the ISO classification. Two quarter-car 2DoF models, linear and non-linear, were used; in the latter, nonlinearities of spring characteristics of the suspension system and pneumatic tyres, sliding friction in the suspension system, and wheel lift-off were taken into account. The smoothing properties of vehicle tyres were represented in both models. The calculations were carried out for three roads of different quality, with simulating four vehicle speeds. Statistical measures of vertical vehicle body vibrations and of changes in the vertical tyre/road contact force were used as the criteria of system optimization and model comparison. The design suspension displacement limit was also taken into account. The optimum suspension damping coefficient was determined and the impact of undesirable sliding friction in the suspension system on the calculation results was estimated. The results obtained make it possible to evaluate the impact of the structure and complexity of the model used on the results of the optimization.

  10. Geometrical aspects of the tribological properties of graphite fiber reinforced polymide composites

    NASA Technical Reports Server (NTRS)

    Fusaro, R. L.

    1982-01-01

    A latin square statistical experimental test design was used to evaluate the effect of temperature, load and sliding speed on the tribological properties of graphite fiber reinforced polymide (GFRPI) composite specimens. Hemispherically tipped composite riders were slid against 440 C HT stainless steel disks. comparisons were made to previous studies in which hemispherically tipped 440 C HT stainless steel riders were slid against GFRPI composite disks and to studies in which GFRPI was used as a liner in plain spherical bearings. The results indicate that sliding surface geometry is especially important, in that different geometries can give completely different friction and wear results. Load, temperature, and sliding distance were found to influence the friction and wear results but sliding speed was found to have little effect. Experiments on GFRPI riders with 10 weight percent additions of graphite fluoride showed that this addition has no effect on friction and wear.

  11. Friction of ice. [on Ganymede, Callisto, and Europa surfaces

    NASA Technical Reports Server (NTRS)

    Beeman, M.; Durham, W. B.; Kirby, S. H.

    1988-01-01

    Frictional sliding experiments were performed on saw-cut samples of laboratory-made polycrystalline water ice, prepared in the same way as the material used by Kirby et al. (1987) in ice deformation experiments. The data show that the maximum frictional stress is a function of the normal stress but is not measurably dependent on temperature or sliding rate over the ranges covered in these experiments (77-115 K and 0.0003-0.03 mm/s, respectively). The sliding behavior was invariably stick slip, with the sliding surfaces exhibiting only minor gouge development. In samples with anomalously low strength, a curious arrangement of densely packed short vertical fractures was observed. The results of these experiments were applied to a model of near-surface tectonic activity on Ganymede, one of Jupiter's icy moons. The results indicate that a global expansion on Ganymede of 3 linear percent will cause extensional movement on preexisting faults at depths to 7 + or - 3 km.

  12. Slow-slip events on the Whillans Ice Plain, Antarctica, described using rate-and-state friction as an ice stream sliding law

    NASA Astrophysics Data System (ADS)

    Lipovsky, Bradley Paul; Dunham, Eric M.

    2017-04-01

    The Whillans Ice Plain (WIP), Antarctica, experiences twice daily tidally modulated stick-slip cycles. Slip events last about 30 min, have sliding velocities as high as ˜0.5 mm/s (15 km/yr), and have total slip ˜0.5 m. Slip events tend to occur during falling ocean tide: just after high tide and just before low tide. To reproduce these characteristics, we use rate-and-state friction, which is commonly used to simulate tectonic faulting, as an ice stream sliding law. This framework describes the evolving strength of the ice-bed interface throughout stick-slip cycles. We present simulations that resolve the cross-stream dimension using a depth-integrated treatment of an elastic ice layer loaded by tides and steady ice inflow. Steady sliding with rate-weakening friction is conditionally stable with steady sliding occurring for sufficiently narrow ice streams relative to a nucleation length. Stick-slip cycles occur when the ice stream is wider than the nucleation length or, equivalently, when effective pressures exceed a critical value. Ice streams barely wider than the nucleation length experience slow-slip events, and our simulations suggest that the WIP is in this slow-slip regime. Slip events on the WIP show a sense of propagation, and we reproduce this behavior by introducing a rate-strengthening region in the center of the otherwise rate-weakening ice stream. If pore pressures are raised above a critical value, our simulations predict that the WIP would exhibit quasi-steady tidally modulated sliding as observed on other ice streams. This study validates rate-and-state friction as a sliding law to describe ice stream sliding styles.

  13. Evidence of Self-Organized Criticality in Dry Sliding Friction

    NASA Technical Reports Server (NTRS)

    Zypman, Fredy R.; Ferrante, John; Jansen, Mark; Scanlon, Kathleen; Abel, Phillip

    2003-01-01

    This letter presents experimental results on unlubricated friction, which suggests that stick-slip is described by self-organized criticality (SOC). The data, obtained with a pin-on-disc tribometer examines the variation of the friction force as a function of time-or sliding distance. This is the first time that standard tribological equipment has been used to examine the possibility of SOC. The materials were matching pins and discs of aluminium loaded with 250, 500 and 1000 g masses, and matching M50 steel couples loaded with a 1000 g mass. An analysis of the data shows that the probability distribution of slip sizes follows a power law. We perform a careful analysis of all the properties, beyond the two just mentioned, which are required to imply the presence of SOC. Our data strongly support the existence of SOC for stick-slip in dry sliding friction.

  14. Note: A rigid piezo motor with large output force and an effective method to reduce sliding friction force

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Ying; Lu, Qingyou, E-mail: qxl@ustc.edu.cn; Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026

    2014-05-15

    We present a completely practical TunaDrive piezo motor. It consists of a central piezo stack sandwiched by two arm piezo stacks and two leg piezo stacks, respectively, which is then sandwiched and spring-clamped by a pair of parallel polished sapphire rods. It works by alternatively fast expanding and contracting the arm/leg stacks while slowly expanding/contracting the central stack simultaneously. The key point is that sufficiently fast expanding and contracting a limb stack can make its two sliding friction forces well cancel, resulting in the total sliding friction force is <10% of the total static friction force, which can help increasemore » output force greatly. The piezo motor's high compactness, precision, and output force make it perfect in building a high-quality harsh-condition (vibration resistant) atomic resolution scanning probe microscope.« less

  15. Frictional lubricity enhanced by quantum mechanics.

    PubMed

    Zanca, Tommaso; Pellegrini, Franco; Santoro, Giuseppe E; Tosatti, Erio

    2018-04-03

    The quantum motion of nuclei, generally ignored in the physics of sliding friction, can affect in an important manner the frictional dissipation of a light particle forced to slide in an optical lattice. The density matrix-calculated evolution of the quantum version of the basic Prandtl-Tomlinson model, describing the dragging by an external force of a point particle in a periodic potential, shows that purely classical friction predictions can be very wrong. The strongest quantum effect occurs not for weak but for strong periodic potentials, where barriers are high but energy levels in each well are discrete, and resonant Rabi or Landau-Zener tunneling to states in the nearest well can preempt classical stick-slip with nonnegligible efficiency, depending on the forcing speed. The resulting permeation of otherwise unsurmountable barriers is predicted to cause quantum lubricity, a phenomenon which we expect should be observable in the recently implemented sliding cold ion experiments.

  16. Evaluation of boundary lubricants using steady-state wear and friction

    NASA Technical Reports Server (NTRS)

    Loomis, W. R.; Jones, W. R., Jr.

    1981-01-01

    A friction and wear study was made at 20 C to establish operating limits and procedures for obtaining improved reproducibility and reliability in boundary lubrication testing. Ester base and C-other base fluids were used to lubricate a pure iron rider in sliding contact with a rotating M-50 steel disk in a pin-on-disk apparatus. Results of a parametric study with varying loads and speeds slowed that satisfactory test conditions for studying the direction and wear characteristics in the boundary lubrication regime with this test device were found to be 1 kilogram load; 7 to 9 meters-per-minute (50 rpm) surface speed; dry air test atmosphere (less than 100 ppm H2O); and use of a time stepwise procedure for measuring wear. Highly reproducible steady-state wear rates resulted from the two fluid studies which had a linearity of about 99 percent after initially higher wear rates and friction coefficients during run-in periods of 20 to 40 minutes.

  17. The high-speed sliding friction of graphene and novel routes to persistent superlubricity

    PubMed Central

    Liu, Yilun; Grey, François; Zheng, Quanshui

    2014-01-01

    Recent experiments on microscopic graphite mesas demonstrate reproducible high-speed microscale superlubricity, even under ambient conditions. Here, we explore the same phenomenon on the nanoscale, by studying a graphene flake sliding on a graphite substrate, using molecular dynamics. We show that superlubricity is punctuated by high-friction transients as the flake rotates through successive crystallographic alignments with the substrate. Further, we introduce two novel routes to suppress frictional scattering and achieve persistent superlubricity. We use graphitic nanoribbons to eliminate frictional scattering by constraining the flake rotation, an approach we call frictional waveguides. We can also effectively suppress frictional scattering by biaxial stretching of the graphitic substrate. These new routes to persistent superlubricity at the nanoscale may guide the design of ultra-low dissipation nanomechanical devices. PMID:24786521

  18. Rate-dependent behavior of the amorphous phase of spider dragline silk.

    PubMed

    Patil, Sandeep P; Markert, Bernd; Gräter, Frauke

    2014-06-03

    The time-dependent stress-strain behavior of spider dragline silk was already observed decades ago, and has been attributed to the disordered sequences in silk proteins, which compose the soft amorphous matrix. However, the actual molecular origin and magnitude of internal friction within the amorphous matrix has remained inaccessible, because experimentally decomposing the mechanical response of the amorphous matrix from the embedded crystalline units is challenging. Here, we used atomistic molecular dynamics simulations to obtain friction forces for the relative sliding of peptide chains of Araneus diadematus spider silk within bundles of these chains as a representative unit of the amorphous matrix in silk fibers. We computed the friction coefficient and coefficient of viscosity of the amorphous phase to be in the order of 10(-6) Ns/m and 10(4) Ns/m(2), respectively, by extrapolating our simulation data to the viscous limit. Finally, we used a finite element method for the amorphous phase, solely based on parameters derived from molecular dynamics simulations including the newly determined coefficient of viscosity. With this model the time scales of stress relaxation, creep, and hysteresis were assessed, and found to be in line with the macroscopic time-dependent response of silk fibers. Our results suggest the amorphous phase to be the primary source of viscosity in silk and open up the avenue for finite element method studies of silk fiber mechanics including viscous effects. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Friction properties and deformation mechanisms of halite(-mica) gouges from low to high sliding velocities

    NASA Astrophysics Data System (ADS)

    Buijze, Loes; Niemeijer, André R.; Han, Raehee; Shimamoto, Toshihiko; Spiers, Christopher J.

    2017-01-01

    The evolution of friction as a function of slip rate is important in understanding earthquake nucleation and propagation. Many laboratory experiments investigating friction of fault rocks are either conducted in the low velocity regime (10-8-10-4 ms-1) or in the high velocity regime (0.01-1 m s-1). Here, we report on the evolution of friction and corresponding operating deformation mechanisms in analog gouges deformed from low to high slip rates, bridging the gap between these low and high velocity regimes. We used halite and halite-muscovite gouges to simulate processes, governing friction, active in upper crustal quartzitic fault rocks, at conditions accessible in the laboratory. The gouges were deformed over a 7 orders of magnitude range of slip rate (10-7-1 m s-1) using a low-to-high velocity rotary shear apparatus, using a normal stress of 5 MPa and room-dry humidity. Microstructural analysis was conducted to study the deformation mechanisms. Four frictional regimes as a function of slip rate could be recognized from the mechanical data, showing a transitional regime and stable sliding (10-7-10-6 m s-1), unstable sliding and weakening (10-6-10-3 m s-1), hardening (10-2-10-1 m s-1) and strong weakening (10-1-1 m s-1). Each of the four regimes can be associated with a distinct microstructure, reflecting a transition from mainly brittle deformation accompanied by pressure solution healing to temperature activated deformation mechanisms. Additionally, the frictional response of a sliding gouge to a sudden acceleration of slip rate to seismic velocities was investigated. These showed an initial strengthening, the amount of which depended on the friction level at which the step was made, followed by strong slip weakening.

  20. Dynamics of the Wulong landslide revealed by broadband seismic records

    NASA Astrophysics Data System (ADS)

    Li, Zhengyuan; Huang, Xinghui; Xu, Qiang; Yu, Dan; Fan, Junyi; Qiao, Xuejun

    2017-02-01

    The catastrophic Wulong landslide occurred at 14:51 (Beijing time, UTC+8) on 5 June 2009, in Wulong Prefecture, Southwest China. This rockslide occurred in a complex topographic environment. Seismic signals generated by this event were recorded by the seismic network deployed in the surrounding area, and long-period signals were extracted from 8 broadband seismic stations within 250 km to obtain source time functions by inversion. The location of this event was simultaneously acquired using a stepwise refined grid search approach, with an error of 2.2 km. The estimated source time functions reveal that, according to the movement parameters, this landslide could be divided into three stages with different movement directions, velocities, and increasing inertial forces. The sliding mass moved northward, northeastward and northward in the three stages, with average velocities of 6.5, 20.3, and 13.8 m/s, respectively. The maximum movement velocity of the mass reached 35 m/s before the end of the second stage. The basal friction coefficients were relatively small in the first stage and gradually increasing; large in the second stage, accompanied by the largest variability; and oscillating and gradually decreasing to a stable value, in the third stage. Analysis shows that the movement characteristics of these three stages are consistent with the topography of the sliding zone, corresponding to the northward initiation, eastward sliding after being stopped by the west wall, and northward debris flowing after collision with the east slope of the Tiejianggou valley. The maximum movement velocity of the sliding mass results from the largest height difference of the west slope of the Tiejianggou valley. The basal friction coefficients of the three stages represent the thin weak layer in the source zone, the dramatically varying topography of the west slope of the Tiejianggou valley, and characteristics of the debris flow along the Tiejianggou valley. Based on the above results, it is recognized that the inverted source time functions are consistent with the topography of the sliding zone. Special geological and topographic conditions can have a focusing effect on landslides and are key factors in inducing the major disasters, which may follow from them. This landslide was of an unusual nature, and it will be worthwhile to pursue research into its dynamic characteristics more deeply.[Figure not available: see fulltext.

  1. Frictional behavior of atomically thin sheets: hexagonal-shaped graphene islands grown on copper by chemical vapor deposition.

    PubMed

    Egberts, Philip; Han, Gang Hee; Liu, Xin Z; Johnson, A T Charlie; Carpick, Robert W

    2014-05-27

    Single asperity friction experiments using atomic force microscopy (AFM) have been conducted on chemical vapor deposited (CVD) graphene grown on polycrystalline copper foils. Graphene substantially lowers the friction force experienced by the sliding asperity of a silicon AFM tip compared to the surrounding oxidized copper surface by a factor ranging from 1.5 to 7 over loads from the adhesive minimum up to 80 nN. No damage to the graphene was observed over this range, showing that friction force microscopy serves as a facile, high contrast probe for identifying the presence of graphene on Cu. Consistent with studies of epitaxially grown, thermally grown, and mechanically exfoliated graphene films, the friction force measured between the tip and these CVD-prepared films depends on the number of layers of graphene present on the surface and reduces friction in comparison to the substrate. Friction results on graphene indicate that the layer-dependent friction properties result from puckering of the graphene sheet around the sliding tip. Substantial hysteresis in the normal force dependence of friction is observed with repeated scanning without breaking contact with a graphene-covered region. Because of the hysteresis, friction measured on graphene changes with time and maximum applied force, unless the tip slides over the edge of the graphene island or contact with the surface is broken. These results also indicate that relatively weak binding forces exist between the copper foil and these CVD-grown graphene sheets.

  2. Some Landing Studies Pertinent to Glider-Reentry Vehicles

    NASA Technical Reports Server (NTRS)

    Houbolt, John C.; Batterson, Sidney A.

    1960-01-01

    Results are presented of some landing studies that may serve as guidelines in the consideration of landing problems of glider-reentry configurations. The effect of the initial conditions of sinking velocity, angle of attack, and pitch rate on impact severity and the effect of locating the rear gear in various positions are discussed. Some information is included regarding the influence of landing-gear location on effective masses. Preliminary experimental results on the slideout phase of landing include sliding and rolling friction coefficients that have been determined from tests of various skids and all-metal wheels.

  3. Contact problem for a solid indenter and a viscoelastic half-space described by the spectrum of relaxation and retardation times

    NASA Astrophysics Data System (ADS)

    Stepanov, F. I.

    2018-04-01

    The mechanical properties of a material which is modeled by an exponential creep kernel characterized by a spectrum of relaxation and retardation times are studied. The research is carried out considering a contact problem for a solid indenter sliding over a viscoelastic half-space. The contact pressure, indentation depth of the indenter, and the deformation component of the friction coefficient are analyzed with respect to the case of half-space material modeled by single relaxation and retardation times.

  4. Friction and Wear Properties of As-deposited and Carbon Ion-implanted Diamond Films

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1994-01-01

    Recent work on the friction and wear properties of as-deposited and carbon ion-implanted diamond films was reviewed. Diamond films were produced by the microwave plasma chemical vapor deposition (CVD) technique. Diamond films with various grain sizes and surface roughnesses were implanted with carbon ions at 60 ke V ion energy, resulting in a dose of 1.2310(exp 17) carbon ions/cm(exp 2). Various analytical techniques, including Raman spectroscopy, proton recoil analysis, Rutherford backscattering, transmission and scanning electron microscopy, x-ray photoelectron spectroscopy, and x-ray diffraction, were utilized to characterize the diamond films. Sliding friction experiments were conducted with a polished natural diamond pin in contact with diamond films in the three environments: humid air (40 percent relative humidity), dry nitrogen (less than 1 percent relative humidity), and ultrahigh vacuum (10(exp -7) Pa). The CVD diamond films indeed have friction and were properties similar to those of natural diamond in the three environments. The as-deposited, fine-grain diamond films can be effectively used as self-lubricating, wear-resistant coatings that have low coefficients of friction (0.02 to 0.04) and low wear rates (10(exp -7) to 10(exp -8)mm(exp 3)/N-m) in both humid air and dry nitrogen. However, they have high coefficients of friction (1.5 to 1.7) and a high wear rate (10(exp -4)mm(exp 3/N-m) in ultrahigh vacuum. The carbon ion implanation produced a thin surficial layer (less than 0.1 micron thick) of amorphous, nondiamond carbon on the diamond films. In humid air and dry nitrogen, the ion-implanted, fine- and coarse-grain diamond films have a low coefficient of friction (around 0.1) and a low wear rate (10(exp -7)mm(exp 3/N-m). Even in ultrahigh vacuum, the presence of the nondiamond carbon layer reduced the coefficient of friction of fine-grain diamond films to 0.1 or lower and the wear rate to 10(exp -6)mm(exp 3)/N-m. Thus, the carbon ion-implanted, fine-grain diamond films can be effectively used as wear-resistant, self-lubricating coatings not only in air and dry nitrogen, but also in ultrahigh vacuum. The wear mechanism of diamond films is that of small fragments chipping off the surface. The size of wear particles is related to the extent of wear rates.

  5. Two feasible approaches to enhance the wear behaviors of NiCrBSi coating in atmosphere and aqueous environments

    NASA Astrophysics Data System (ADS)

    Ye, Yuwei; Wang, Chunting; Zheng, Wenru; Xiong, Wei; Wang, Yongxin; Li, Xiaogang

    2017-09-01

    NiCrBSi coating was deposited successfully on the surface of 316 stainless steel substrate by means of plasma spraying. The microstructures and mechanical property were analyzed by scanning electron microscopy, x-ray diffraction, and a Vickers hardness tester. The wear performances of the coatings sliding against the GCr15 ball under ambient air and water conditions were investigated, and two feasible approaches (tungsten carbide (WC)-doping and heat treatment) were used to improve the tribological performance. Results showed that the hardness of the NiCrBSi coating increased by 12.5% and 28.5% and the porosity decreased by 26.1% and 47.8%, respectively, after WC-doping and heat treatment. During dry friction, the friction coefficient and wear rate of the NiCrBSi coating were about 0.47 and 1.4  ×  10-5 mm3 N-1 m-1, respectively. These values were higher than those obtained on other coatings. In water conditions, all coatings showed a lower friction and wear rate than that in ambient air, which was as a result of the lubrication effect of water. Significantly, with WC-doping and heat treatment, the friction coefficients of both coatings were about 18.5% and 36.7%, respectively, lower than that of the NiCrBSi coating. Furthermore, the wear rates of both coatings were about 20% and 70%, respectively, lower than that of the NiCrBSi coating.

  6. Friction and universal contact area law for randomly rough viscoelastic contacts.

    PubMed

    Scaraggi, M; Persson, B N J

    2015-03-18

    We present accurate numerical results for the friction force and the contact area for a viscoelastic solid (rubber) in sliding contact with hard, randomly rough substrates. The rough surfaces are self-affine fractal with roughness over several decades in length scales. We calculate the contribution to the friction from the pulsating deformations induced by the substrate asperities. We also calculate how the area of real contact, A(v, p), depends on the sliding speed v and on the nominal contact pressure p, and we show how the contact area for any sliding speed can be obtained from a universal master curve A(p). The numerical results are found to be in good agreement with the predictions of an analytical contact mechanics theory.

  7. Effects of shear load on frictional healing

    NASA Astrophysics Data System (ADS)

    Ryan, K. L.; Marone, C.

    2014-12-01

    During the seismic cycle of repeated earthquake failure, faults regain strength in a process known as frictional healing. Laboratory studies have played a central role in illuminating the processes of frictional healing and fault re-strengthening. These studies have also provided the foundation for laboratory-derived friction constitutive laws, which have been used extensively to model earthquake dynamics. We conducted laboratory experiments to assess the affect of shear load on frictional healing. Frictional healing is quantified during slide-hold-slide (SHS) tests, which serve as a simple laboratory analog for the seismic cycle in which earthquakes (slide) are followed by interseismic quiescence (hold). We studied bare surfaces of Westerly granite and layers of Westerly granite gouge (thickness of 3 mm) at normal stresses from 4-25 MPa, relative humidity of 40-60%, and loading and unloading velocities of 10-300 μm/s. During the hold period of SHS tests, shear stress on the sample was partially removed to investigate the effects of shear load on frictional healing and to isolate time- and slip-dependent effects on fault healing. Preliminary results are consistent with existing works and indicate that frictional healing increases with the logarithm of hold time and decreases with normalized shear stress τ/τf during the hold. During SHS tests with hold periods of 100 seconds, healing values ranged from (0.013-0.014) for τ/τf = 1 to (0.059-0.063) for τ/τf = 0, where τ is the shear stress during the hold period and τf is the shear stress during steady frictional sliding. Experiments on bare rock surfaces and with natural and synthetic fault gouge materials are in progress. Conventional SHS tests (i.e. τ/τf = 1) are adequately described by the rate and state friction laws. However, previous experiments in granular quartz suggest that zero-stress SHS tests are not well characterized by either the Dieterich or Ruina state evolution laws. We are investigating the processes that produce shear stress dependent frictional healing, alternate forms of the state evolution law, and comparing results for friction of bare rock surfaces and granular fault gouge.

  8. A Low-Wear Driving Method of Ultrasonic Motors

    NASA Astrophysics Data System (ADS)

    Ishii, Takaaki; Takahashi, Hisanori; KentaroNakamura, KentaroNakamura; Ueha, Sadayuki

    1999-05-01

    The life of ultrasonic motors is limited by the wear of friction materials used for the contact surfaces. In order to reduce the wear of the friction material, we have to reduce the sliding speed between the sliding surfaces of the motor. In this report, we propose a new driving method to reduce the sliding speed of the motor by shaping the vibration speed waveform. The sliding loss was calculated and wear reduction effect was confirmed. A wear test was carried out under no-load condition. This method prolongs the life of an ultrasonic motor by about 3.4-fold. The results and wear reduction effects are also described.

  9. Contact geometry and mechanics predict friction forces during tactile surface exploration.

    PubMed

    Janko, Marco; Wiertlewski, Michael; Visell, Yon

    2018-03-20

    When we touch an object, complex frictional forces are produced, aiding us in perceiving surface features that help to identify the object at hand, and also facilitating grasping and manipulation. However, even during controlled tactile exploration, sliding friction forces fluctuate greatly, and it is unclear how they relate to the surface topography or mechanics of contact with the finger. We investigated the sliding contact between the finger and different relief surfaces, using high-speed video and force measurements. Informed by these experiments, we developed a friction force model that accounts for surface shape and contact mechanical effects, and is able to predict sliding friction forces for different surfaces and exploration speeds. We also observed that local regions of disconnection between the finger and surface develop near high relief features, due to the stiffness of the finger tissues. Every tested surface had regions that were never contacted by the finger; we refer to these as "tactile blind spots". The results elucidate friction force production during tactile exploration, may aid efforts to connect sensory and motor function of the hand to properties of touched objects, and provide crucial knowledge to inform the rendering of realistic experiences of touch contact in virtual reality.

  10. Time Dependent Frictional Changes in Ice due to Contact Area Changes

    NASA Astrophysics Data System (ADS)

    Sevostianov, V.; Lipovsky, B. P.; Rubinstein, S.; Dillavou, S.

    2017-12-01

    Sliding processes along the ice-bed interface of Earth's great ice sheets are the largest contributor to our uncertainty in future sea level rise. Laboratory experiments that have probed sliding processes have ubiquitously shown that ice-rock interfaces strengthen while in stationary contact (Schulson and Fortt, 2013; Zoet et al., 2013; McCarthy et al., 2017). This so-called frictional ageing effect may have profound consequences for ice sheet dynamics because it introduces the possibility of basal strength hysteresis. Furthermore this effect is quite strong in ice-rock interfaces (more than an order of magnitude more pronounced than in rock-rock sliding) and can double in frictional strength in a matter of minutes, much faster than most frictional aging (Dieterich, 1972; Baumberger and Caroli, 2006). Despite this importance, the underling physics of frictional ageing of ice remain poorly understood. Here we conduct laboratory experiments to image the microscopic points of contact along an ice-glass interface. We optically measure changes in the real area of contact over time using measurements of this reflected optical light intensity. We show that contact area increases with time of stationary contact. This result suggests that thermally enhanced creep of microscopic icy contacts is responsible for the much larger frictional ageing observed in ice-rock versus rock-rock interfaces. Furthermore, this supports a more physically detailed description of the thermal dependence of basal sliding than that used in the current generation of large scale ice sheet models.

  11. Strength of Wet and Dry Montmorillonite

    NASA Astrophysics Data System (ADS)

    Morrow, C. A.; Lockner, D. A.; Moore, D. E.

    2015-12-01

    Montmorillonite, an expandable smectite clay, is a common mineral in fault zones to a depth of around 3 km. Its low strength relative to other common fault gouge minerals is important in many models of fault rheology. However, the coefficient of friction is not well constrained in the literature due to the difficulty of establishing fully drained or fully dried states in the laboratory. For instance, in some reported studies, samples were either partially saturated or possibly over pressured, leading to wide variability in reported shear strength. In this study, the coefficient of friction, μ, of both saturated and oven-dried (at 150°C) Na-montmorillonite was measured at normal stresses up to 680 MPa at room temperature and shortening rates from 1.0 to 0.01 μm/s. Care was taken to shear saturated samples slowly enough to avoid pore fluid overpressure in the clay layers. Coefficients of friction are reported after 8 mm of axial displacement in a triaxial apparatus on saw-cut samples containing a layer of montmorillonite gouge, with either granite or sandstone driving blocks. For saturated samples, μ increased from around 0.1 at low pressure to 0.25 at the highest test pressures. In contrast, values for oven-dried samples decreased asymptotically from approximately 0.78 at 10 MPa normal stress to around 0.45 at 400-680 MPa. While wet and dry strengths approached each other with increasing effective normal stress, wet strength remained only about half of the dry strength at 600 MPa effective normal stress. The increased coefficient of friction can be correlated with a reduction in the number of loosely bound lubricating surface water layers on the clay platelets due to applied normal stress under saturated conditions. The steady-state rate dependence of friction, a-b, was positive and dependent on normal stress. For saturated samples, a-b increased linearly with applied normal stress from ~0 to 0.004, while for dry samples a-b decreased with increasing normal stress from 0.008 to 0.002. All values were either neutral or rate strengthening, indicating a tendency for stable sliding.

  12. Micromechanics of ice friction

    NASA Astrophysics Data System (ADS)

    Sammonds, P. R.; Bailey, E.; Lishman, B.; Scourfield, S.

    2015-12-01

    Frictional mechanics are controlled by the ice micro-structure - surface asperities and flaws - but also the ice fabric and permeability network structure of the contacting blocks. Ice properties are dependent upon the temperature of the bulk ice, on the normal stress and on the sliding velocity and acceleration. This means the shear stress required for sliding is likewise dependent on sliding velocity, acceleration, and temperature. We aim to describe the micro-physics of the contacting surface. We review micro-mechanical models of friction: the elastic and ductile deformation of asperities under normal loads and their shear failure by ductile flow, brittle fracture, or melting and hydrodynamic lubrication. Combinations of these give a total of six rheological models of friction. We present experimental results in ice mechanics and physics from laboratory experiments to understand the mechanical models. We then examine the scaling relations of the slip of ice, to examine how the micro-mechanics of ice friction can be captured simple reduced-parameter models, describing the mechanical state and slip rate of the floes. We aim to capture key elements that they may be incorporated into mid and ocean-basin scale modelling.

  13. Switching sliding mode force tracking control of piezoelectric-hydraulic pump-based friction element actuation systems for automotive transmissions

    NASA Astrophysics Data System (ADS)

    Kim, Gi-Woo; Wang, K. W.

    2009-08-01

    In this study, a nonlinear sliding-mode controller is designed for force tracking of a piezoelectric-hydraulic pump (PHP)-based actuation system, which is developed to replace the current electro-hydraulic actuation systems for automatic transmission (AT) friction elements, such as band brakes or clutches. By utilizing the PHP, one can eliminate the various hydraulic components (oil pump, regulating valve and control valve) in current ATs and achieve a simpler configuration with more efficient operation. With the derived governing equation of motion of the PHP-based actuation system integrated with the friction element (band brake), a switching control law is synthesized based on the sliding-mode theory. To evaluate the effectiveness of the proposed control law, its force tracking performance for the engagement of a friction element during an AT 1\\to 2 up-shift is examined experimentally. It is shown that one can successfully track the desired force trajectory for AT shift control with small tracking error. This study demonstrates the potential of the PHP as a new controllable actuation system for AT friction elements.

  14. High precision tracking control of a servo gantry with dynamic friction compensation.

    PubMed

    Zhang, Yangming; Yan, Peng; Zhang, Zhen

    2016-05-01

    This paper is concerned with the tracking control problem of a voice coil motor (VCM) actuated servo gantry system. By utilizing an adaptive control technique combined with a sliding mode approach, an adaptive sliding mode control (ASMC) law with friction compensation scheme is proposed in presence of both frictions and external disturbances. Based on the LuGre dynamic friction model, a dual-observer structure is used to estimate the unmeasurable friction state, and an adaptive control law is synthesized to effectively handle the unknown friction model parameters as well as the bound of the disturbances. Moreover, the proposed control law is also implemented on a VCM servo gantry system for motion tracking. Simulations and experimental results demonstrate good tracking performance, which outperform traditional control approaches. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Effects of post-heat treatment on microstructure and properties of laser cladded composite coatings on titanium alloy substrate

    NASA Astrophysics Data System (ADS)

    Li, G. J.; Li, J.; Luo, X.

    2015-01-01

    The composite coatings were produced on the Ti6Al4V alloy substrate by laser cladding. Subsequently, the coatings were heated at 500 °C for 1 h and 2 h and then cooled in air. Effects of post-heat treatment on microstructure, microhardness and fracture toughness of the coatings were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), optical microscopy (OM). Wear resistance of the coatings was evaluated under the dry sliding reciprocating friction condition at room temperature. The results indicated that the coatings mainly consist of a certain amount of coarse white equiaxed WC particles surrounded by the white-bright W2C, a great deal of fine dark spherical TiC particles and the matrix composed of the α(Ti), Ti2Ni and TiNi phases. Effects of the post-heat treatment on phase constituents and microstructure of the coatings were almost negligible due to the low temperature. However, the post-heat treatment could decrease the residual stress and increase fracture toughness of the coatings, and fracture toughness of the coatings was improved from 2.77 MPa m1/2 to 3.80 MPa m1/2 and 4.43 MPa m1/2 with the heat treatment for 1 h and 2 h, respectively. The mutual role would contribute to the reduction in cracking susceptibility. Accompanied with the increase in fracture toughness, microhardness of the coatings was reduced slightly. The dominant wear mechanism for all the coatings was abrasive wear, characterized by micro-cutting or micro-plowing. The heat treatment could significantly decrease the average friction coefficient and reduce the fluctuation of the friction coefficient with the change in sliding time. The appropriate heat treatment time (approximately 1 h) had a minimal effect on wear mass loss and volume loss. Moreover, the improvement in fracture toughness will also be beneficial to wear resistance of the coatings under the long service.

  16. An evaluation of surface properties and frictional forces generated from Al-Mo-Ni coating on piston ring

    NASA Astrophysics Data System (ADS)

    Karamış, M. B.; Yıldızlı, K.; Çakırer, H.

    2004-05-01

    Surface properties of the Al-Mo-Ni coating plasma sprayed on the piston ring material and the frictional forces obtained by testing carried out under different loads, temperatures and frictional conditions were evaluated. Al-Mo-Ni composite material was deposited on the AISI 440C test steel using plasma spraying method. The coated and uncoated samples were tested by being exposed to frictional testing under dry and lubricated conditions. Test temperatures of 25, 100, 200, and 300 °C and loads of 83, 100, 200, and 300 N were applied during the tests in order to obtain the frictional response of the coating under conditions similar to real piston ring/cylinder friction conditions. Gray cast iron was used as a counterface material. All the tests were carried out with a constant sliding speed of 1 m/s. The properties of the coating were determined by using EDX and SEM analyses. Hardness distribution on the cross-section of the coating was also determined. In addition, the variations of the surface roughness after testing with test temperatures and loads under dry and lubricated conditions were recorded versus sliding distance. It was determined that the surface roughness increased with increasing loads. It increased with temperature up to 200 °C and then decreased at 300 °C under dry test conditions. Under lubricated conditions, the roughness decreased under the loads of 100 N and then increased. The roughness decreased at 200 °C but below and above this point it increased with the test temperature. Frictional forces observed under dry and lubricated test conditions increased with load at running-in period of the sliding. The steady-state period was then established with the sliding distance as a normal situation. However, the frictional forces were generally lower at a higher test temperature than those at a lower test temperature. Surprisingly, the test temperature of 200 °C was a critical point for frictional forces and surface roughness.

  17. Friction and wear behavior of graphite fiber reinforced polymide composites

    NASA Technical Reports Server (NTRS)

    Fusaro, R. L.; Sliney, H. E.

    1977-01-01

    The friction and wear rate characteristics of 50/50 (weight percent) graphite fiber polyimide composites were studied by sliding metallic hemispherically tipped riders against disks made from the composites. Two different polyimides and two different graphite fibers were evaluated. Also studied were such variables as the effect of moisture in an air atmosphere; the effect of temperature; and the effect of different sliding speeds. In general, wear to the the metallic riders was negligible, and composite wear increased at a constant rate as a function of number of sliding cycles.

  18. Effect of electrical current on the tribological behavior of the Cu-WS2-G composites in air and vacuum

    NASA Astrophysics Data System (ADS)

    Qian, Gang; Feng, Yi; Li, Bin; Huang, Shiyin; Liu, Hongjuan; Ding, Kewang

    2013-03-01

    As the traditional graphite-based composites cannot meet the requirement of rapid developing modern industry, novel sliding electrical contact materials with high self-lubricating performance in multiple environments are eagerly required. Herein a copper-based composite with WS2 and graphite as solid lubricant are fabricated by powder metallurgy hot-pressed method. The friction and wear behaviors of the composites with and without current are investigated under the condition with sliding velocity of 10 m/s and normal load of 2.5 N/cm2 in both air and vacuum. Morphologies of the worn surfaces are observed by optical microscope and compositions of the lubricating films are analyzed by XPS. Surface profile curves and roughness of the worn surfaces are obtained by 2205 surface profiler. The results of wear tests show that the friction coefficient and wear volume loss of the composites with current are greater than that without current in both air and vacuum due to the adverse effects of electrical current which damaged the lubricating film partially and roughed the worn surfaces. XPS results demonstrate that the lubricating film formed in air is composed of oxides of Cu, WS2, elemental S and graphite, while the lubricating film formed in vacuum is composed of Cu, WS2 and graphite. Because of the synergetic lubricating action of oxides of Cu, WS2 and graphite, the composites show low friction coefficient and wear volume loss in air condition. Owing to the fact that graphite loses its lubricity which makes WS2 become the only lubricant, severe adhesive and abrasive wear occur and result in a high value of wear rate in vacuum condition. The formation of the lubricating film on the contact interface between the brush and ring is one of the factors which can greatly affect the wear performance of the brushes. The low contact voltage drop of the composites in vacuum condition is attributed to the high content of Cu in the surface film. This study fabricated a kind of new sliding electrical contact self-lubricating composite with dual-lubricant which can work well in both air and vacuum environments and provides a comprehensive analysis on the lubrication mechanisms of the composite.

  19. Friction of hard surfaces and its application in earthquakes and rock slope stability

    NASA Astrophysics Data System (ADS)

    Sinha, Nitish; Singh, Arun K.; Singh, Trilok N.

    2018-05-01

    In this article, we discuss the friction models for hard surfaces and their applications in earth sciences. The rate and state friction (RSF) model, which is basically modified form of the classical Amontons-Coulomb friction laws, is widely used for explaining the crustal earthquakes and the rock slope failures. Yet the RSF model has further been modified by considering the role of temperature at the sliding interface known as the rate, state and temperature friction (RSTF) model. Further, if the pore pressure is also taken into account then it is stated as the rate, state, temperature and pore pressure friction (RSTPF) model. All the RSF models predict a critical stiffness as well as a critical velocity at which sliding behavior becomes stable/unstable. The friction models are also used for predicting time of failure of the rock mass on an inclined plane. Finally, the limitation and possibilities of the proposed friction models are also highlighted.

  20. Wedge geometry, frictional properties and interseismic coupling of the Java megathrust

    NASA Astrophysics Data System (ADS)

    Koulali, Achraf; McClusky, Simon; Cummins, Phil; Tregoning, Paul

    2018-06-01

    The mechanical interaction between rocks at fault zones is a key element for understanding how earthquakes nucleate and propagate. Therefore, estimating frictional properties along fault planes allows us to infer the degree of elastic strain accumulation throughout the seismic cycle. The Java subduction zone is an active plate boundary where high seismic activity has long been documented. However, very little is known about the seismogenic processes of the megathrust, especially its shallowest portion where onshore geodetic networks are insensitive to recover the pattern of elastic strain. Here, we use the geometry of the offshore accretionary prism to infer frictional properties along the Java subduction zone, using Coulomb critical taper theory. We show that large portions of the inner wedge in the eastern part of the Java subduction megathrust are in a critical state, where the wedge is on the verge of failure everywhere. We identify four clusters with an internal coefficient of friction μint of ∼ 0.8 and hydrostatic pore pressure within the wedge. The average effective coefficient of friction ranges between 0.3 and 0.4, reflecting a strong décollement. Our results also show that the aftershock sequence of the 1994 Mw 7.9 earthquake halted adjacent to a critical segment of the wedge, suggesting that critical taper wedge areas in the eastern Java subduction interface may behave as a permanent barrier to large earthquake rupture. In contrast, in western Java topographic slope and slab dip profiles suggest that the wedge is mechanically stable, i.e deformation is restricted to sliding along the décollement, and likely to coincide with a seismogenic portion of the megathrust. We discuss the seismic hazard implications and highlight the importance of considering the segmentation of the Java subduction zone when assessing the seismic hazard of this region.

Top