Sample records for slightly distorted square

  1. Synthesis and Fluorescence Properties of Structurally Characterized Heterobimetalic Cu(II)⁻Na(I) Bis(salamo)-Based Complex Bearing Square Planar, Square Pyramid and Triangular Prism Geometries of Metal Centers.

    PubMed

    Dong, Xiu-Yan; Zhao, Qing; Wei, Zhi-Li; Mu, Hao-Ran; Zhang, Han; Dong, Wen-Kui

    2018-04-25

    A novel heterotrinuclear complex [Cu₂(L)Na( µ -NO₃)]∙CH₃OH∙CHCl₃ derived from a symmetric bis(salamo)-type tetraoxime H₄L having a naphthalenediol unit, was prepared and structurally characterized via means of elemental analyses, UV-Vis, FT-IR, fluorescent spectra and single-crystal X-ray diffraction. The heterobimetallic Cu(II)⁻Na(I) complex was acquired via the reaction of H₄L with 2 equivalents of Cu(NO₃)₂·2H₂O and 1 equivalent of NaOAc. Clearly, the heterotrinuclear Cu(II)⁻Na(I) complex has a 1:2:1 ligand-to-metal (Cu(II) and Na(I)) ratio. X-ray diffraction results exhibited the different geometric behaviors of the Na(I) and Cu(II) atoms in the heterotrinuclear complex; the both Cu(II) atoms are sited in the N₂O₂ coordination environments of fully deprotonated (L) 4− unit. One Cu(II) atom (Cu1) is five-coordinated and possesses a geometry of slightly distorted square pyramid, while another Cu(II) atom (Cu2) is four-coordination possessing a square planar coordination geometry. Moreover, the Na(I) atom is in the O₆ cavity and adopts seven-coordination with a geometry of slightly distorted single triangular prism. In addition, there are abundant supramolecular interactions in the Cu(II)⁻Na(I) complex. The fluorescence spectra showed the Cu(II)⁻Na(I) complex possesses a significant fluorescent quenching and exhibited a hypsochromic-shift compared with the ligand H₄L.

  2. Magnetic vortex excitation as spin torque oscillator and its unusual trajectories

    NASA Astrophysics Data System (ADS)

    Natarajan, Kanimozhi; Muthuraj, Ponsudana; Rajamani, Amuda; Arumugam, Brinda

    2018-05-01

    We report an interesting observation of unusual trajectories of vortex core oscillations in a spin valve pillar. Micromagnetic simulation in the composite free layer spin valve nano-pillar shows magnetic vortex excitation under critical current density. When current density is slightly increased and wave vector is properly tuned, for the first time we observe a star like and square gyration. Surprisingly this star like and square gyration also leads to steady, coherent and sustained oscillations. Moreover, the frequency of gyration is also very high for this unusual trajectories. The power spectral analysis reveals that there is a marked increase in output power and frequency with less distortions. Our investigation explores the possibility of these unusual trajectories to exhibit spin torque oscillations.

  3. Chloridotetra­kis(pyridine-4-carb­alde­hyde-κN)copper(II) chloride

    PubMed Central

    Meng, Xiu-Jin; Zhang, Shu-Hua; Yang, Ge-Ge; Huang, Xue-Ren; Jiang, Yi-Min

    2009-01-01

    In the mol­ecular structure of the title compound, [CuCl(C6H5NO)4]Cl, the CuII atom is coordinated by four N atoms of four pyridine-4-carboxaldehyde ligands and one chloride anion in a slightly distorted square-pyramidal coordination geometry. There is also a non-coordinating Cl− anion in the crystal structure. The CuII atom and both Cl atoms are situated on fourfold rotation axes. A weak C—H⋯Cl inter­action is also present. PMID:21578129

  4. Di­chlorido­[N-(N,N-di­methyl­carbamimido­yl)-N′,N′,4-tri­methyl­benzohydrazonamide]­platinum(II) nitro­methane hemisolvate

    PubMed Central

    Bolotin, Dmitrii S.; Bokach, Nadezha A.; Haukka, Matti

    2014-01-01

    In the title compound, [PtCl2(C13H21N5)]·0.5CH3NO2, the PtII atom is coordinated in a slightly distorted square-planar geometry by two Cl atoms and two N atoms of the bidentate ligand. The (1,3,5-tri­aza­penta­diene)PtII metalla ring is slightly bent and does not conjugate with the aromatic ring. In the crystal, N—H⋯Cl hydrogen bonds link the complex mol­ecules, forming chains along [001]. The nitromethane solvent molecule shows half-occupancy and is disordered over two sets of sites about an inversion centre. PMID:24826095

  5. Bis(2,4-dibromo-6-formyl­phenolato-κ2 O,O′)copper(II)

    PubMed Central

    Li, Guang Zhao; Zhang, Shu Hua; Liu, Zheng

    2008-01-01

    In the title compound, [Cu(C7H3Br2O2)2], the CuII atom, which lies on an inversion centre, is coordinated by four O atoms from two chelating bidentate 2,4-dibromo-6-formyl­phenolate ligands in a slightly distorted square-planar coordination geometry. In the crystal structure, short inter­molecular Br⋯Br [3.516 (4) and 3.653 (4) Å] and Cu⋯Br [3.255 (1) Å] contacts together with C—H⋯O hydrogen bonds generate a three-dimensional network. PMID:21200624

  6. Analysis of tractable distortion metrics for EEG compression applications.

    PubMed

    Bazán-Prieto, Carlos; Blanco-Velasco, Manuel; Cárdenas-Barrera, Julián; Cruz-Roldán, Fernando

    2012-07-01

    Coding distortion in lossy electroencephalographic (EEG) signal compression methods is evaluated through tractable objective criteria. The percentage root-mean-square difference, which is a global and relative indicator of the quality held by reconstructed waveforms, is the most widely used criterion. However, this parameter does not ensure compliance with clinical standard guidelines that specify limits to allowable noise in EEG recordings. As a result, expert clinicians may have difficulties interpreting the resulting distortion of the EEG for a given value of this parameter. Conversely, the root-mean-square error is an alternative criterion that quantifies distortion in understandable units. In this paper, we demonstrate that the root-mean-square error is better suited to control and to assess the distortion introduced by compression methods. The experiments conducted in this paper show that the use of the root-mean-square error as target parameter in EEG compression allows both clinicians and scientists to infer whether coding error is clinically acceptable or not at no cost for the compression ratio.

  7. Crystal structure of (2-{[(8-aminona-phthalen-1-yl)imino]-meth-yl}-4,6-di-tert-butyl-phenolato-κ3N,N',O)bromido-nickel(II).

    PubMed

    O'Brien, Patrick; Zeller, Matthias; Lee, Wei-Tsung

    2018-04-01

    The title compound, [NiBr(C 25 H 29 N 2 O)], contains an Ni II atom with a slightly distorted square-planar coordination environment defined by one O and two N atoms from the 2-{[(8-aminona-phthalen-1-yl)imino]-meth-yl}-4,6-di- tert -butyl-phenolate ligand and a bromide anion. The Ni-O and Ni-N bond lengths are slightly longer than those observed in the phenyl backbone counterpart, which can be attributed to the larger steric hindrance of the naphthyl group in the structure of the title compound. The mol-ecule as a whole is substanti-ally distorted, with both the planar naphthalene-1,8-di-amine and imino-meth-yl-phenolate substitutents rotated against the NiN 2 OBr plane by 38.92 (7) and 37.22 (8)°, respectively, giving the mol-ecule a twisted appearance. N-H⋯Br hydrogen bonds and N-H⋯C(π) contacts connect the mol-ecules into dimers, and additional C-H⋯Br contacts, C-H⋯π inter-actions, and an offset stacking inter-action between naphthyl units inter-connect these dimers into a three-dimensional network.

  8. Crystal structure and Hirshfeld surface analysis of aqua-bis-(nicotinamide-κN)bis-(4-sulfamoylbenzoato-κO1)copper(II).

    PubMed

    Hökelek, Tuncer; Yavuz, Vijdan; Dal, Hakan; Necefoğlu, Hacali

    2018-01-01

    In the crystal of the title complex, [Cu(C 7 H 6 NO 4 S) 2 (C 6 H 6 N 2 O) 2 (H 2 O)], the Cu II cation and the O atom of the coordinated water mol-ecule reside on a twofold rotation axis. The Cu II ion is coordinated by two carboxyl-ate O atoms of the two symmetry-related 4-sulfamoylbenzoate (SB) anions and by two N atoms of the two symmetry-related nicotinamide (NA) mol-ecules at distances of 1.978 (2) and 2.025 (3) Å, respectively, forming a slightly distorted square-planar arrangement. The distorted square-pyramidal coordination environment is completed by the water O atom in the axial position at a distance of 2.147 (4) Å. In the crystal, the mol-ecules are linked via O-H⋯O and N-H⋯O hydrogen bonds with R 2 2 (8) and R 2 2 (18) ring motifs, forming a three-dimensional architecture. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯O/O⋯H (42.2%), H⋯H (25.7%) and H⋯C/C⋯H (20.0%) inter-actions.

  9. [1,2-Bis(diisopropyl-phosphan-yl)ethane-κ(2) P,P'](carbonato-κ(2) O,O')nickel(II).

    PubMed

    Morales-Becerril, Illan; Flores-Alamo, Marcos; Garcia, Juventino J

    2013-04-01

    In the crystal of the title compound, [Ni(CO3)(C14H32P2)], the metal center in each of three independent mol-ecules shows slight tetra-hedral distortion from ideal square-planar coordination geometry, with angles between the normals to the planes defined by the cis-P-Ni-P and cis-O-Ni-O fragments of 3.92 (17), 0.70 (16) and 2.17 (14)° in the three mol-ecules. In the crystal, there are inter-molecular C-H⋯O hydrogen bonds that show a laminar growth in the ab plane.

  10. Structural and electrical properties of large area epitaxial VO2 films grown by electron beam evaporation

    NASA Astrophysics Data System (ADS)

    Théry, V.; Boulle, A.; Crunteanu, A.; Orlianges, J. C.; Beaumont, A.; Mayet, R.; Mennai, A.; Cosset, F.; Bessaudou, A.; Fabert, M.

    2017-02-01

    Large area (up to 4 squared inches) epitaxial VO2 films, with a uniform thickness and exhibiting an abrupt metal-insulator transition with a resistivity ratio as high as 2.85 × 10 4 , have been grown on (001)-oriented sapphire substrates by electron beam evaporation. The lattice distortions (mosaicity) and the level of strain in the films have been assessed by X-ray diffraction. It is demonstrated that the films grow in a domain-matching mode where the distortions are confined close to the interface which allows growth of high-quality materials despite the high film-substrate lattice mismatch. It is further shown that a post-deposition high-temperature oxygen annealing step is crucial to ensure the correct film stoichiometry and provide the best structural and electrical properties. Alternatively, it is possible to obtain high quality films with a RF discharge during deposition, which hence do not require the additional annealing step. Such films exhibit similar electrical properties and only slightly degraded structural properties.

  11. Diaqua­bis­(4-meth­oxy­benzoato-κO 1)bis­(nicotinamide-κN 1)cobalt(II) dihydrate

    PubMed Central

    Hökelek, Tuncer; Dal, Hakan; Tercan, Barış; Tenlik, Erdinç; Necefoğlu, Hacali

    2010-01-01

    In the mononuclear title compound, [Co(C8H7O3)2(C6H6N2O)2(H2O)2]·2H2O, the CoII ion is located on a crystallographic inversion center. The asymmetric unit is completed by one 4-meth­oxy­benzoate anion, one nicotinamide (NA) ligand and one coordinated and one uncoordinated water mol­ecule. All ligands act in a monodentate mode. The four O atoms in the equatorial plane around the CoII ion form a slightly distorted square-planar arrangement, while the slightly distorted octa­hedral coordination is completed by the two pyridine N atoms of the NA ligands in the axial positions. The dihedral angle between the carboxyl­ate group and the attached benzene ring is 6.47 (7)°, while the pyridine and benzene rings are oriented at a dihedral angle of 72.80 (4)°. An O—H⋯O hydrogen bond links the uncoordinated water mol­ecule to one of the carboxyl­ate groups. In the crystal structure, inter­molecular O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network. PMID:21588149

  12. Crystal structure and Hirshfeld surface analysis of aqua­bis­(nicotinamide-κN)bis­(4-sulfamoylbenzoato-κO 1)copper(II)

    PubMed Central

    Hökelek, Tuncer; Yavuz, Vijdan; Dal, Hakan; Necefoğlu, Hacali

    2018-01-01

    In the crystal of the title complex, [Cu(C7H6NO4S)2(C6H6N2O)2(H2O)], the CuII cation and the O atom of the coordinated water mol­ecule reside on a twofold rotation axis. The CuII ion is coordinated by two carboxyl­ate O atoms of the two symmetry-related 4-sulfamoylbenzoate (SB) anions and by two N atoms of the two symmetry-related nicotinamide (NA) mol­ecules at distances of 1.978 (2) and 2.025 (3) Å, respectively, forming a slightly distorted square-planar arrangement. The distorted square-pyramidal coordination environment is completed by the water O atom in the axial position at a distance of 2.147 (4) Å. In the crystal, the mol­ecules are linked via O—H⋯O and N—H⋯O hydrogen bonds with R 2 2(8) and R 2 2(18) ring motifs, forming a three-dimensional architecture. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯O/O⋯H (42.2%), H⋯H (25.7%) and H⋯C/C⋯H (20.0%) inter­actions. PMID:29416889

  13. [1,2-Bis(diisopropyl­phosphan­yl)ethane-κ2 P,P′](carbonato-κ2 O,O′)nickel(II)

    PubMed Central

    Morales-Becerril, Illan; Flores-Alamo, Marcos; Garcia, Juventino J.

    2013-01-01

    In the crystal of the title compound, [Ni(CO3)(C14H32P2)], the metal center in each of three independent mol­ecules shows slight tetra­hedral distortion from ideal square-planar coordination geometry, with angles between the normals to the planes defined by the cis-P—Ni—P and cis-O—Ni—O fragments of 3.92 (17), 0.70 (16) and 2.17 (14)° in the three mol­ecules. In the crystal, there are inter­molecular C—H⋯O hydrogen bonds that show a laminar growth in the ab plane. PMID:23633999

  14. Optimization and Prediction of Angular Distortion and Weldment Characteristics of TIG Square Butt Joints

    NASA Astrophysics Data System (ADS)

    Narang, H. K.; Mahapatra, M. M.; Jha, P. K.; Biswas, P.

    2014-05-01

    Autogenous arc welds with minimum upper weld bead depression and lower weld bead bulging are desired as such welds do not require a second welding pass for filling up the upper bead depressions (UBDs) and characterized with minimum angular distortion. The present paper describes optimization and prediction of angular distortion and weldment characteristics such as upper weld bead depression and lower weld bead bulging of TIG-welded structural steel square butt joints. Full factorial design of experiment was utilized for selecting the combinations of welding process parameter to produce the square butts. A mathematical model was developed to establish the relationship between TIG welding process parameters and responses such as upper bead width, lower bead width, UBD, lower bead height (bulging), weld cross-sectional area, and angular distortions. The optimal welding condition to minimize UBD and lower bead bulging of the TIG butt joints was identified.

  15. Tetra­kis(1,1,1-trifluoro­acetyl­acetonato-κ2 O,O′)hafnium(IV) toluene disolvate

    PubMed Central

    Viljoen, J. Augustinus; Muller, Alfred; Roodt, Andreas

    2008-01-01

    In the title compound, [Hf(C5H4F3O2)4]·2C7H8, the HfIV atom, lying on a twofold rotation axis, is coordinated by eight O atoms from four 1,1,1-trifluoro­acetyl­acetonate ligands with an average Hf—O distance of 2.173 (1) Å and O—Hf—O bite angles of 75.69 (5) and 75.54 (5)°. The coordination polyhedron shows a slightly distorted Archimedean square antiprismatic geometry. The asymmetric unit contains a toluene solvent mol­ecule. The crystal structure involves C—H⋯.F hydrogen bonds. PMID:21202519

  16. Emergence of periodic order in electric-field-driven planar nematic liquid crystals: An exclusive ac effect absent in static fields

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, K. S.; Kumar, Pramoda

    2007-11-01

    We report, for a nematic liquid crystal with a low conductivity anisotropy, an ac field generated transition from a uniformly planar to a periodically modulated director configuration with the wave vector parallel to the initial director. Significantly, with unblocked electrodes, this instability is not excited by dc fields. Additionally, in very low frequency square wave fields, it occurs transiently after each polarity reversal, vanishing completely during field constancy. The time of occurrence of maximum distortion after polarity reversal decreases exponentially with voltage. The time dependence of optical phase change during transient distortion is nearly Gaussian. The pattern threshold Vc is linear in f , f denoting the frequency; the critical wave number qc of the modulation scales nearly linearly as f to a peak at ˜50Hz before falling slightly thereafter. The observed Vc(f) and qc(f) characteristics differ from the predictions of the standard model (SM). The instability may be interpreted as a special case of the Carr-Helfrich distortion suppressed in static fields due to weak charge focusing and strong charge injection. Its transient nature in the low frequency regime is suggestive of the possible role of gradient flexoelectric effect in its occurrence. The study includes measurement of certain elastic and viscosity parameters relevant to the application of the SM.

  17. Crystal structure of (pyridine-κN)bis(quinolin-2-olato-κ2 N,O)copper(II) monohydrate

    PubMed Central

    Hawks, Benjamin; Yan, Jingjing; Basa, Prem; Burdette, Shawn

    2015-01-01

    The title complex, [Cu(C9H6NO)2(C5H4N)]·H2O, adopts a slightly distorted square-pyramidal geometry in which the axial pyridine ligand exhibits a long Cu—N bond of 2.305 (3) Å. The pyridine ligand forms dihedral angles of 79.5 (5) and 88.0 (1)° with the planes of the two quinolin-2-olate ligands, while the dihedral angle between the quinoline groups of 9.0 (3)° indicates near planarity. The water mol­ecule connects adjacent copper complexes through O—H⋯O hydrogen bonds to phenolate O atoms, forming a network inter­connecting all the complexes in the crystal lattice. PMID:25878845

  18. Structural characterization and antioxidant properties of Cu(II) and Ni(II) complexes derived from dicyandiamide

    NASA Astrophysics Data System (ADS)

    Kertmen, Seda Nur; Gonul, Ilyas; Kose, Muhammet

    2018-01-01

    New Cu(II) and Ni(II) complexes derived from dicyandiamide were synthesized and characterised by spectroscopic and analytical methods. Molecular structures of the complexes were determined by single crystal X-ray diffraction studies. In the complexes, the Cu(II) or Ni(II) ions are four-coordinate with a slight distorted square planar geometry. The ligands (L-nPen and L-iPen) derived from dicyandiamide formed via nucleophilic addition of alcohol solvent molecule in the presence Cu(II) or Ni(II) ions. Complexes were stabilised by intricate array of hydrogen bonding interactions. Antioxidant activity of the complexes was evaluated by DPPH radical scavenging and CUPRAC methods. The complexes exhibit antioxidant activity, however, their activities were much lower than standard antioxidants (Vitamin C and trolox).

  19. Synthesis and crystal structure of the rhodium(I) cyclooctadiene complex with bis(3-tert-butylimidazol-2-ylidene)borate ligand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, F.; Shao, K.-J.; Xiao, Y.-C.

    2015-12-15

    The rhodium(I) cyclooctadiene complex with the bis(3-tert-butylimidazol-2-ylidene)borate ligand [H{sub 2}B(Im{sup t}Bu){sup 2}]Rh(COD) C{sup 22}H{sup 36}BN{sup 4}Rh, has been prepared, and its crystal structure is determined by X-ray diffraction. Complex exhibits slightly distorted square planar configurations around the metal center, which is coordinated by the bidentate H{sup 2}B(Im{sup t}Bu){sub 2} and one cyclooctadiene group. The Rh–C{sub carbene} bond lengths are 2.043(4) and 2.074(4) Å, and the bond angle C–Rh1–C is 82.59°. The dihedral angle between two imidazol-2-ylidene rings is 67.30°.

  20. Lattice distortion of square iron nitride monolayers induced by changing symmetry of substrate

    NASA Astrophysics Data System (ADS)

    Hattori, Takuma; Iimori, Takushi; Miyamachi, Toshio; Komori, Fumio

    2018-04-01

    Rectangular iron nitride monatomic layers are fabricated on the threefold symmetric Cu(111) substrate by taking advantage of the stability of the square nitride film. Two different ordered structures are observed on the Cu(111) substrate by scanning tunneling microscopy after annealing at 510 K and 580 K. Their chemical composition and lattice symmetry are investigated by x-ray photoelectron spectroscopy and low energy electron diffraction. The monolayer film prepared at 580 K is a distorted Fe2N monolayer analogous to a ferromagnetic square Fe2N monolayer with a clock reconstruction on the Cu(001) substrate. The lattice deformation of the square Fe2N monolayer is induced by using Cu(111) with threefold symmetry.

  1. Magnetic properties of a quasi-two-dimensional S =1/2 Heisenberg antiferromagnet with distorted square lattice

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Hironori; Tamekuni, Yusuke; Iwasaki, Yoshiki; Otsuka, Rei; Hosokoshi, Yuko; Kida, Takanori; Hagiwara, Masayuki

    2017-06-01

    We successfully synthesize single crystals of the verdazyl radical α -2 ,3 ,5 -Cl3 -V. Ab initio molecular orbital calculations indicate that the two dominant antiferromagnetic interactions, J1 and J2 (α =J2/J1≃0.56 ), form an S =1 /2 distorted square lattice. We explain the magnetic properties based on the S =1 /2 square lattice Heisenberg antiferromagnet using the quantum Monte Carlo method, and examine the effects of the lattice distortion and the interplane interaction contribution. In the low-temperature regions below 6.4 K, we observe anisotropic magnetic behavior accompanied by a phase transition to a magnetically ordered state. The electron spin resonance signals exhibit anisotropic behavior in the temperature dependence of the resonance field and the linewidth. We explain the frequency dependence of the resonance fields in the ordered phase using a mean-field approximation with out-of-plane easy-axis anisotropy, which causes a spin-flop phase transition at approximately 0.4 T for the field perpendicular to the plane. Furthermore, the anisotropic dipole field provides supporting information regarding the presence of the easy-axis anisotropy. These results demonstrate that the lattice distortion, anisotropy, and interplane interaction of this model are sufficiently small that they do not affect the intrinsic behavior of the S =1 /2 square lattice Heisenberg antiferromagnet.

  2. Least-Squares Camera Calibration Including Lens Distortion and Automatic Editing of Calibration Points

    NASA Technical Reports Server (NTRS)

    Gennery, D. B.

    1998-01-01

    A method is described for calibrating cameras including radial lens distortion, by using known points such as those measured from a calibration fixture. The distortion terms are relative to the optical axis, which is included in the model so that it does not have to be orthogonal to the image sensor plane.

  3. Resonances and bound states in the continuum on periodic arrays of slightly noncircular cylinders

    NASA Astrophysics Data System (ADS)

    Hu, Zhen; Lu, Ya Yan

    2018-02-01

    Optical bound states in the continuum (BICs), especially those on periodic structures, have interesting properties and potentially important applications. Existing theoretical and numerical studies for optical BICs are mostly for idealized structures with simple and perfect geometric features, such as circular holes, rectangular cylinders and spheres. Since small distortions are always present in actual fabricated structures, we perform a high accuracy numerical study for BICs and resonances on a simple periodic structure with small distortions, i.e., periodic arrays of slightly noncircular cylinders. Our numerical results confirm that symmetries are important not only for the so-called symmetry-protected BICs, but also for the majority of propagating BICs which do not have a symmetry mismatch with the outgoing radiation waves. Typically, the BICs continue to exist if the small distortions keep the relevant symmetries, and they become resonant modes with finite quality factors if the small distortions break a required symmetry.

  4. Spline function approximation techniques for image geometric distortion representation. [for registration of multitemporal remote sensor imagery

    NASA Technical Reports Server (NTRS)

    Anuta, P. E.

    1975-01-01

    Least squares approximation techniques were developed for use in computer aided correction of spatial image distortions for registration of multitemporal remote sensor imagery. Polynomials were first used to define image distortion over the entire two dimensional image space. Spline functions were then investigated to determine if the combination of lower order polynomials could approximate a higher order distortion with less computational difficulty. Algorithms for generating approximating functions were developed and applied to the description of image distortion in aircraft multispectral scanner imagery. Other applications of the techniques were suggested for earth resources data processing areas other than geometric distortion representation.

  5. Improved volumetric measurement of brain structure with a distortion correction procedure using an ADNI phantom.

    PubMed

    Maikusa, Norihide; Yamashita, Fumio; Tanaka, Kenichiro; Abe, Osamu; Kawaguchi, Atsushi; Kabasawa, Hiroyuki; Chiba, Shoma; Kasahara, Akihiro; Kobayashi, Nobuhisa; Yuasa, Tetsuya; Sato, Noriko; Matsuda, Hiroshi; Iwatsubo, Takeshi

    2013-06-01

    Serial magnetic resonance imaging (MRI) images acquired from multisite and multivendor MRI scanners are widely used in measuring longitudinal structural changes in the brain. Precise and accurate measurements are important in understanding the natural progression of neurodegenerative disorders such as Alzheimer's disease. However, geometric distortions in MRI images decrease the accuracy and precision of volumetric or morphometric measurements. To solve this problem, the authors suggest a commercially available phantom-based distortion correction method that accommodates the variation in geometric distortion within MRI images obtained with multivendor MRI scanners. The authors' method is based on image warping using a polynomial function. The method detects fiducial points within a phantom image using phantom analysis software developed by the Mayo Clinic and calculates warping functions for distortion correction. To quantify the effectiveness of the authors' method, the authors corrected phantom images obtained from multivendor MRI scanners and calculated the root-mean-square (RMS) of fiducial errors and the circularity ratio as evaluation values. The authors also compared the performance of the authors' method with that of a distortion correction method based on a spherical harmonics description of the generic gradient design parameters. Moreover, the authors evaluated whether this correction improves the test-retest reproducibility of voxel-based morphometry in human studies. A Wilcoxon signed-rank test with uncorrected and corrected images was performed. The root-mean-square errors and circularity ratios for all slices significantly improved (p < 0.0001) after the authors' distortion correction. Additionally, the authors' method was significantly better than a distortion correction method based on a description of spherical harmonics in improving the distortion of root-mean-square errors (p < 0.001 and 0.0337, respectively). Moreover, the authors' method reduced the RMS error arising from gradient nonlinearity more than gradwarp methods. In human studies, the coefficient of variation of voxel-based morphometry analysis of the whole brain improved significantly from 3.46% to 2.70% after distortion correction of the whole gray matter using the authors' method (Wilcoxon signed-rank test, p < 0.05). The authors proposed a phantom-based distortion correction method to improve reproducibility in longitudinal structural brain analysis using multivendor MRI. The authors evaluated the authors' method for phantom images in terms of two geometrical values and for human images in terms of test-retest reproducibility. The results showed that distortion was corrected significantly using the authors' method. In human studies, the reproducibility of voxel-based morphometry analysis for the whole gray matter significantly improved after distortion correction using the authors' method.

  6. Current pulse amplifier transmits detector signals with minimum distortion and attenuation

    NASA Technical Reports Server (NTRS)

    Bush, N. E.

    1967-01-01

    Amplifier translates the square pulses generated by a boron-trifluoride neutron sensitive detector located adjacent to a nuclear reactor to slower, long exponential decay pulses. These pulses are transmitted over long coaxial cables with minimum distortion and loss of frequency.

  7. Simultaneous adaptation to size, distance, and curvature underwater.

    PubMed

    Vernoy, M W

    1989-02-01

    Perceptual adaptation to underwater size, distance, and curvature distortion was measured for four different adaptation conditions. These conditions consisted of (a) playing Chinese checkers underwater, (b) swimming with eyes open underwater, (c) viewing a square underwater, and (d) an air control. Significant adaptation to underwater distortions was recorded in all except the air control condition. In the viewing square condition a positive correlation between size and distance adaptation was noted. It was suggested that adaptation to curvature may have mediated the positive correlation. Possible applications for the training of divers are discussed.

  8. Using Extended Huckel Theory as a Platform to Introduce Jahn-Teller Distortion: The Spontaneous Distortion of 1,3,5,7-Cyclooctatetraene from a Perfect Octagon

    ERIC Educational Resources Information Center

    Sohlberg, Karl; Liu, Xiang

    2013-01-01

    Herein, a slightly enhanced version of extended Huckel molecular orbital theory is applied to demonstrate the spontaneous distortion of 1,3,5,7-cyclooctatetraene from a perfect octagon, a consequence of the Jahn-Teller effect. The exercise is accessible to students who have been introduced to basic quantum mechanics and extended Huckel molecular…

  9. Precise calibration of spatial phase response nonuniformity arising in liquid crystal on silicon.

    PubMed

    Xu, Jingquan; Qin, SiYi; Liu, Chen; Fu, Songnian; Liu, Deming

    2018-06-15

    In order to calibrate the spatial phase response nonuniformity of liquid crystal on silicon (LCoS), we propose to use a Twyman-Green interferometer to characterize the wavefront distortion, due to the inherent curvature of the device. During the characterization, both the residual carrier frequency introduced by the Fourier transform evaluation method and the lens aberration are error sources. For the tilted phase error introduced by residual carrier frequency, the least mean square fitting method is used to obtain the tilted phase error. Meanwhile, we use Zernike polynomials fitting based on plane mirror calibration to mitigate the lens aberration. For a typical LCoS with 1×12,288 pixels after calibration, the peak-to-valley value of the inherent wavefront distortion is approximately 0.25λ at 1550 nm, leading to a half-suppression of wavefront distortion. All efforts can suppress the root mean squares value of the inherent wavefront distortion to approximately λ/34.

  10. Attenuation of the Squared Canonical Correlation Coefficient under Varying Estimates of Score Reliability

    ERIC Educational Resources Information Center

    Wilson, Celia M.

    2010-01-01

    Research pertaining to the distortion of the squared canonical correlation coefficient has traditionally been limited to the effects of sampling error and associated correction formulas. The purpose of this study was to compare the degree of attenuation of the squared canonical correlation coefficient under varying conditions of score reliability.…

  11. Frequency modulation television analysis: Distortion analysis

    NASA Technical Reports Server (NTRS)

    Hodge, W. H.; Wong, W. H.

    1973-01-01

    Computer simulation is used to calculate the time-domain waveform of standard T-pulse-and-bar test signal distorted in passing through an FM television system. The simulator includes flat or preemphasized systems and requires specification of the RF predetection filter characteristics. The predetection filters are modeled with frequency-symmetric Chebyshev (0.1-db ripple) and Butterworth filters. The computer was used to calculate distorted output signals for sixty-four different specified systems, and the output waveforms are plotted for all sixty-four. Comparison of the plotted graphs indicates that a Chebyshev predetection filter of four poles causes slightly more signal distortion than a corresponding Butterworth filter and the signal distortion increases as the number of poles increases. An increase in the peak deviation also increases signal distortion. Distortion also increases with the addition of preemphasis.

  12. Spectroscopic characterization, antioxidant and antitumour studies of novel bromo substituted thiosemicarbazone and its copper(II), nickel(II) and palladium(II) complexes

    NASA Astrophysics Data System (ADS)

    Jagadeesh, M.; Lavanya, M.; Kalangi, Suresh K.; Sarala, Y.; Ramachandraiah, C.; Varada Reddy, A.

    2015-01-01

    A new, slightly distorted octahedral complex of copper(II), square planar complexes of nickel(II) and palladium(II) with 2,4‧-dibromoacetophenone thiosemicarbazone (DBAPTSC) are synthesized. The ligand and the complexes are characterized by FT-IR, FT-Raman, powder X-ray diffraction studies. The IR and Raman data are correlated for the presence of the functional groups which specifically helped in the confirmation of the compounds. In addition, the free ligand is unambiguously characterized by 1H and 13C NMR spectroscopy while the copper(II) complex is characterized by electron paramagnetic resonance spectroscopy (EPR). The g values for the same are found to be 2.246 (g1), 2.012 (g2) and 2.005 (g3) which suggested rhombic distortions. The HOMO-LUMO band gap calculations for these compounds are found to be in between 0.5 and 4.0 eV and these compounds are identified as semiconducting materials. The synthesized ligand and its copper(II), nickel(II) and palladium(II) complexes are subjected to antitumour activity against the HepG2 human hepatoblastoma cell lines. Among all the compounds, nickel(II) complex is found to exert better antitumour activity with 57.6% of cytotoxicity.

  13. Synthesis and crystal structure of the iridium(I) carbene complex with a pair of hydrogen wing tips

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, H.-Y.; Chen, Z.-M.; Wang, Y.

    The iridium(I) cyclooctadiene complex with two (3-tert-butylimidazol-2-ylidene) ligands [(H-Im{sup t}Bu){sub 2}Ir(COD)]{sup +}PF{sub 6}{sup −} (C{sub 22}H{sub 32}PF{sub 6}IrN{sub 4}) has been prepared, and its crystal structure is determined by X-ray diffraction. Complex exhibits slightly distorted square planar configurations around the metal atom, which is coordinated by two H-Im{sup t}Bu ligands and one cyclooctadiene group. The new iridium carbene complex has a pair of hydrogen wing tips. The Ir−C{sub carbene} bond lengths are 2.066(5) and 2.052(5) Å, and the bond angle C−Ir−C between these bonds is 95.54(19)°. The dihedral angle between two imidazol-2-ylidene rings is 86.42°.

  14. Impacts of oil spills on altimeter waveforms and radar backscatter cross section

    NASA Astrophysics Data System (ADS)

    Cheng, Yongcun; Tournadre, Jean; Li, Xiaofeng; Xu, Qing; Chapron, Bertrand

    2017-05-01

    Ocean surface films can damp short capillary-gravity waves, reduce the surface mean square slope, and induce "sigma0 blooms" in satellite altimeter data. No study has ascertained the effect of such film on altimeter measurements due to lack of film data. The availability of Environmental Response Management Application (ERMA) oil cover, daily oil spill extent, and thickness data acquired during the Deepwater Horizon (DWH) oil spill accident provides a unique opportunity to evaluate the impact of surface film on altimeter data. In this study, the Jason-1/2 passes nearest to the DWH platform are analyzed to understand the waveform distortion caused by the spill as well as the variation of σ0 as a function of oil thickness, wind speed, and radar band. Jason-1/2 Ku-band σ0 increased by 10 dB at low wind speed (<3 m s-1) in the oil-covered area. The mean σ0 in Ku and C bands increased by 1.0-3.5 dB for thick oil and 0.9-2.9 dB for thin oil while the waveforms are strongly distorted. As the wind increases up to 6 m s-1, the mean σ0 bloom and waveform distortion in both Ku and C bands weakened for both thick and thin oil. When wind exceeds 6 m s-1, only does the σ0 in Ku band slightly increase by 0.2-0.5 dB for thick oil. The study shows that high-resolution altimeter data can certainly help better evaluate the thickness of oil spill, particularly at low wind speeds.

  15. Least-squares model-based halftoning

    NASA Astrophysics Data System (ADS)

    Pappas, Thrasyvoulos N.; Neuhoff, David L.

    1992-08-01

    A least-squares model-based approach to digital halftoning is proposed. It exploits both a printer model and a model for visual perception. It attempts to produce an 'optimal' halftoned reproduction, by minimizing the squared error between the response of the cascade of the printer and visual models to the binary image and the response of the visual model to the original gray-scale image. Conventional methods, such as clustered ordered dither, use the properties of the eye only implicitly, and resist printer distortions at the expense of spatial and gray-scale resolution. In previous work we showed that our printer model can be used to modify error diffusion to account for printer distortions. The modified error diffusion algorithm has better spatial and gray-scale resolution than conventional techniques, but produces some well known artifacts and asymmetries because it does not make use of an explicit eye model. Least-squares model-based halftoning uses explicit eye models and relies on printer models that predict distortions and exploit them to increase, rather than decrease, both spatial and gray-scale resolution. We have shown that the one-dimensional least-squares problem, in which each row or column of the image is halftoned independently, can be implemented with the Viterbi's algorithm. Unfortunately, no closed form solution can be found in two dimensions. The two-dimensional least squares solution is obtained by iterative techniques. Experiments show that least-squares model-based halftoning produces more gray levels and better spatial resolution than conventional techniques. We also show that the least- squares approach eliminates the problems associated with error diffusion. Model-based halftoning can be especially useful in transmission of high quality documents using high fidelity gray-scale image encoders. As we have shown, in such cases halftoning can be performed at the receiver, just before printing. Apart from coding efficiency, this approach permits the halftoner to be tuned to the individual printer, whose characteristics may vary considerably from those of other printers, for example, write-black vs. write-white laser printers.

  16. Analysis and application of Fourier transform spectroscopy in atmospheric remote sensing

    NASA Technical Reports Server (NTRS)

    Park, J. H.

    1984-01-01

    An analysis method for Fourier transform spectroscopy is summarized with applications to various types of distortion in atmospheric absorption spectra. This analysis method includes the fast Fourier transform method for simulating the interferometric spectrum and the nonlinear least-squares method for retrieving the information from a measured spectrum. It is shown that spectral distortions can be simulated quite well and that the correct information can be retrieved from a distorted spectrum by this analysis technique.

  17. Stereochemistry of complexes with double and triple metal-ligand bonds: a continuous shape measures analysis.

    PubMed

    Alvarez, Santiago; Menjón, Babil; Falceto, Andrés; Casanova, David; Alemany, Pere

    2014-11-17

    To each coordination polyhedron we can associate a normalized coordination polyhedron that retains the angular orientation of the central atom-ligand bonds but has all the vertices at the same distance from the center. The use of shape measures of these normalized coordination polyhedra provides a simple and efficient way of discriminating angular and bond distance distortions from an ideal polyhedron. In this paper we explore the applications of such an approach to analyses of several stereochemical problems. Among others, we discuss how to discern the off-center displacement of the metal from metal-ligand bond shortening distortions in families of square planar biscarbene and octahedral dioxo complexes. The normalized polyhedron approach is also shown to be very useful to understand stereochemical trends with the help of shape maps, minimal distortion pathways, and ligand association/dissociation pathways, illustrated by the Berry and anti Berry distortions of triple-bonded [X≡ML4] complexes, the square pyramidal geometries of Mo coordination polyhedra in oxido-reductases, the coordination geometries of actinyl complexes, and the tetrahedricity of heavy atom-substituted carbon centers.

  18. Evaluation of the efficacy of rotary vs. hand files in root canal preparation of primary teeth in vitro using CBCT.

    PubMed

    Musale, P K; Mujawar, S A V

    2014-04-01

    This in vitro study aimed to evaluate the efficacy of rotary ProFile, ProTaper, Hero Shaper and K-files in shaping ability, cleaning efficacy, preparation time and instrument distortion in primary molars. Sixty extracted primary mandibular second molars were divided into four equal groups: Group I K-file, Group II ProFile, Group III ProTaper file and Group IV Hero Shaper file. The shaping ability was determined by comparing pre- and post-instrumentation CBCT scans and data analysed with SPSS program using the Chi-square test. Cleaning efficacy was evaluated by the degree of India ink removal from the canal walls under stereomicroscopy. Instrumentation times were calculated for each tooth and instrument distortion was visually checked and duly noted. The cleaning efficacy and instrumentation time were determined using ANOVA with Tukey's correction. Instrument distortion was analysed using Chi-square test. The canal taper was significantly more conical for rotary files as compared to K-files with Chi-square test (p < 0.05). Cleaning efficacy of rotary files with average scores (Groups II- 0.68, III- 0.48 and IV- 0.58) was significantly better than K-files (Group I- 0.93) (p < 0.05). Mean instrumentation time with K-file (20.7 min) was significantly higher than rotary files (Groups II 8.9, III 5.6, and IV 8.1 min) (p < 0.05). Instrument distortion was observed in Group I (4.3%), while none of the rotary files were distorted. Rotary files prepared more conical canals in primary teeth than manual instruments. Reduced preparation time with rotary files enhances patient cooperation especially in young children.

  19. Application of Least-Squares Adjustment Technique to Geometric Camera Calibration and Photogrammetric Flow Visualization

    NASA Technical Reports Server (NTRS)

    Chen, Fang-Jenq

    1997-01-01

    Flow visualization produces data in the form of two-dimensional images. If the optical components of a camera system are perfect, the transformation equations between the two-dimensional image and the three-dimensional object space are linear and easy to solve. However, real camera lenses introduce nonlinear distortions that affect the accuracy of transformation unless proper corrections are applied. An iterative least-squares adjustment algorithm is developed to solve the nonlinear transformation equations incorporated with distortion corrections. Experimental applications demonstrate that a relative precision on the order of 40,000 is achievable without tedious laboratory calibrations of the camera.

  20. Some observations of the effects of radial distortions on performance of a transonic rotating blade row

    NASA Technical Reports Server (NTRS)

    Sandercock, D. M.; Sanger, N. L.

    1974-01-01

    A single rotating blade row was tested with two magnitudes of tip radial distortion and two magnitudes of hub radial distortion imposed on the inlet flow. The rotor was about 50 centimeters (20 in.) in diameter and had a design operating tip speed of approximately 420 meters per second (1380 ft/sec). Overall performance at 60, 80, and 100 percent of equivalent design speed generally showed a decrease (compared to undistorted flow) in rotor stall margin with tip radial distortion but no change, or a slight increase, in rotor stall margin with hub radial distortion. At design speed there was a decrease in rotor overall total pressure ratio and choke flow with all inlet flow distortions. Radial distributions of blade element parameters are presented for selected operating conditions at design speed.

  1. Synthesis, characterization and electrochemical studies of heterometallic manganese(IV)-zinc(II) and manganese(IV)-copper(II) complexes derived from bis(2-hydroxy-1-naphthaldehyde)oxaloyldihydrazone

    NASA Astrophysics Data System (ADS)

    Koch, Angira; Phukan, Arnab; Chanu, Oinam B.; Kumar, A.; Lal, R. A.

    2014-02-01

    Five manganese(IV) complexes [Mn(L)(bpy)] (1) and heterobimetallic complexes [MMn(L)Cl2(H2O)4]·1.5H2O (M = ZnII(2), CuII(3)) and [MnM(L)(bpy)Cl2] (M = ZnII(4), CuII(5)] have been synthesized from bis(2-hydroxy-1-naphthaldehyde)oxaloyldihydrazone (H4L) in methanol medium. The composition of the complexes have been established based on the data obtained from analytical, thermoanalytical and mass spectral studies. The structures of the complexes have been discussed in the light of molar conductance, magnetic moment, electronic, EPR, IR, FT-IR spectroscopic studies and transmission electron microscopies. The molar conductance values of these complexes in DMSO suggest their non-electrolytic nature. The μeff value for the complexes (1), (2) and (4) fall in the range 3.82-4.12 BM characteristic of the presence of the manganese(IV) in them. The complex (3) has μeff value of 3.70 BM at RT indicating considerable antiferromagnetic interaction between Mn(IV) and Cu(II). The μeff value of 4.72 BM for complex (5) is slightly lower than 4.90 BM for S = 2 ground state. In the complex (1) to (3), the ligand is coordinated to the metal centres as tetradentate ligand while in the complexes (4) and (5) as hexadentate ligand. Manganese(IV) has distorted octahedral stereochemistry in all complexes. Copper(II) has distorted octahedral and square planar stereochemistry in complexes (3) and (5) while zinc has distorted octahedral and tetrahedral stereochemistry, respectively. EPR studies of the complexes are also reported. The electron transfer reactions of the complexes have also been investigated by cyclic voltammetry.

  2. Contour sensitive saliency and depth application in image retargeting

    NASA Astrophysics Data System (ADS)

    Lu, Hongju; Yue, Pengfei; Zhao, Yanhui; Liu, Rui; Fu, Yuanbin; Zheng, Yuanjie; Cui, Jia

    2018-04-01

    Image retargeting technique requires important information preservation and less edge distortion during increasing/decreasing image size. The major existed content-aware methods perform well. However, there are two problems should be improved: the slight distortion appeared at the object edges and the structure distortion in the nonsalient area. According to psychological theories, people evaluate image quality based on multi-level judgments and comparison between different areas, both image content and image structure. The paper proposes a new standard: the structure preserving in non-salient area. After observation and image analysis, blur (slight blur) is generally existed at the edge of objects. The blur feature is used to estimate the depth cue, named blur depth descriptor. It can be used in the process of saliency computation for balanced image retargeting result. In order to keep the structure information in nonsalient area, the salient edge map is presented in Seam Carving process, instead of field-based saliency computation. The derivative saliency from x- and y-direction can avoid the redundant energy seam around salient objects causing structure distortion. After the comparison experiments between classical approaches and ours, the feasibility of our algorithm is proved.

  3. Computer modeling of fan-exit-splitter spacing effects on F100 response to distortion

    NASA Technical Reports Server (NTRS)

    Shaw, M.; Murdoch, R. W.

    1982-01-01

    The distortion response of the F100(3) engine was effected by the fan exit splitter configuration. The sensitivity for a proximate splitter fan is calculated to be slightly greater than a remote splitter configuration with identical airfoils. Predicted response was based upon a multiple segment parallel compressor Model modified to include a bypass ratio representation that effects the performance characteristics of the last rotor and intermediate case struts. The predicted distortion response required an accurate definition of row pre- and post-stall undistorted operation.

  4. Chirality in distorted square planar Pd(O,N)2 compounds.

    PubMed

    Brunner, Henri; Bodensteiner, Michael; Tsuno, Takashi

    2013-10-01

    Salicylidenimine palladium(II) complexes trans-Pd(O,N)2 adopt step and bowl arrangements. A stereochemical analysis subdivides 52 compounds into 41 step and 11 bowl types. Step complexes with chiral N-substituents and all the bowl complexes induce chiral distortions in the square planar system, resulting in Δ/Λ configuration of the Pd(O,N)2 unit. In complexes with enantiomerically pure N-substituents ligand chirality entails a specific square chirality and only one diastereomer assembles in the lattice. Dimeric Pd(O,N)2 complexes with bridging N-substituents in trans-arrangement are inherently chiral. For dimers different chirality patterns for the Pd(O,N)2 square are observed. The crystals contain racemates of enantiomers. In complex two independent molecules form a tight pair. The (RC) configuration of the ligand induces the same Δ chirality in the Pd(O,N)2 units of both molecules with varying square chirality due to the different crystallographic location of the independent molecules. In complexes and atrop isomerism induces specific configurations in the Pd(O,N)2 bowl systems. The square chirality is largest for complex [(Diop)Rh(PPh3 )Cl)], a catalyst for enantioselective hydrogenation. In the lattice of two diastereomers with the same (RC ,RC) configuration in the ligand Diop but opposite Δ and Λ square configurations co-crystallize, a rare phenomenon in stereochemistry. © 2013 Wiley Periodicals, Inc.

  5. Processing techniques development, volume 3

    NASA Technical Reports Server (NTRS)

    Landgrebe, D. A. (Principal Investigator); Anuta, P. E.; Hixson, M. M.; Swain, P. H.

    1978-01-01

    The author has identified the following significant results. Analysis of the geometric characteristics of the aircraft synthetic aperture radar (SAR) relative to LANDSAT indicated that relatively low order polynominals would model the distortions to subpixel accuracy to bring SAR into registration for good quality imagery. Also the area analyzed was small, about 10 miles square, so this is an additional constraint. For the Air Force/ERIM data, none of the tested methods could achieve subpixel accuracy. Reasons for this is unknown; however, the noisy (high scintillation) nature of the data and attendent unrecognizability of features contribute to this error. It is concluded that the quadratic model would adequately provide distortion modeling for small areas, i.e., 10 to 20 miles square.

  6. Recognition Memory for Movement in Photographs: A Developmental Study.

    ERIC Educational Resources Information Center

    Futterweit, Lorelle R.; Beilin, Harry

    1994-01-01

    Investigated whether children's recognition memory for movement in photographs is distorted forward in the direction of implied motion. When asked whether the second photograph was the same as or different from the first, subjects made more errors for test photographs showing the action slightly forward in time, compared with slightly backward in…

  7. Internal process: what is abstraction and distortion process?

    NASA Astrophysics Data System (ADS)

    Fiantika, F. R.; Budayasa, I. K.; Lukito, A.

    2018-03-01

    Geometry is one of the branch of mathematics that plays a major role in the development of science and technology. Thus, knowing the geometry concept is needed for students from their early basic level of thinking. A preliminary study showed that the elementary students have difficulty in perceiving parallelogram shape in a 2-dimention of a cube drawing as a square shape. This difficulty makes the students can not solve geometrical problems correctly. This problem is related to the internal thinking process in geometry. We conducted the exploration of students’ internal thinking processes in geometry particularly in distinguishing the square and parallelogram shape. How the students process their internal thinking through distortion and abstraction is the main aim of this study. Analysis of the geometrical test and deep interview are used in this study to obtain the data. The result of this study is there are two types of distortion and abstraction respectively in which the student used in their internal thinking processes.

  8. The Assessment of Distortion in Neurosurgical Image Overlay Projection.

    PubMed

    Vakharia, Nilesh N; Paraskevopoulos, Dimitris; Lang, Jozsef; Vakharia, Vejay N

    2016-02-01

    Numerous studies have demonstrated the superiority of neuronavigation during neurosurgical procedures compared to non-neuronavigation-based procedures. Limitations to neuronavigation systems include the need for the surgeons to avert their gaze from the surgical field and the cost of the systems, especially for hospitals in developing countries. Overlay projection of imaging directly onto the patient allows localization of intracranial structures. A previous study using overlay projection demonstrated the accuracy of image coregistration for a lesion in the temporal region but did not assess image distortion when projecting onto other anatomical locations. Our aim is to quantify this distortion and establish which regions of the skull would be most suitable for overlay projection. Using the difference in size of a square grid when projected onto an anatomically accurate model skull and a flat surface, from the same distance, we were able to calculate the degree of image distortion when projecting onto the skull from the anterior, posterior, superior, and lateral aspects. Measuring the size of a square when projected onto a flat surface from different distances allowed us to model change in lesion size when projecting a deep structure onto the skull surface. Using 2 mm as the upper limit for distortion, our results show that images can be accurately projected onto the majority (81.4%) of the surface of the skull. Our results support the use of image overlay projection in regions with ≤2 mm distortion to assist with localization of intracranial lesions at a fraction of the cost of existing methods. © The Author(s) 2015.

  9. Internal flow characteristics of a multistage compressor with inlet pressure distortion. [J85-13 turbojet engine studies

    NASA Technical Reports Server (NTRS)

    Debogdan, C. E.; Moss, J. E., Jr.; Braithwaite, W. M.

    1977-01-01

    The measured distribution of compressor interstage pressures and temperatures resulting from a 180 deg inlet-total-pressure distortion for a J85-13 turbojet engine is reported. Extensive inner stage instrumentation combined with stepwise rotation of the inlet distortion gave data of high circumferential resolution. The steady-state pressures and temperatures along with the amplitude, extent, and location of the distorted areas are given. Data for 80, 90, and 100 percent of rotor design speed are compared with clean (undistorted) inlet flow conditions to show pressure and temperature behavior within the compressor. Both overall and stagewise compressor performances vary only slightly when clean and distorted inlet conditions are compared. Total and static pressure distortions increase in amplitude in the first few stages of the compressor and then attenuate fairly uniformly to zero at the discharge. Total-temperature distortion induced by the pressure distortion reached a maximum amplitude by the first two stages and decayed only a little through the rest of the compressor. Distortion amplitude tended to peak in line with the screen edges, and, except for total and static pressure in the tip zone, there was little swirl in the axial direction.

  10. Least squares reconstruction of non-linear RF phase encoded MR data.

    PubMed

    Salajeghe, Somaie; Babyn, Paul; Sharp, Jonathan C; Sarty, Gordon E

    2016-09-01

    The numerical feasibility of reconstructing MRI signals generated by RF coils that produce B1 fields with a non-linearly varying spatial phase is explored. A global linear spatial phase variation of B1 is difficult to produce from current confined to RF coils. Here we use regularized least squares inversion, in place of the usual Fourier transform, to reconstruct signals generated in B1 fields with non-linear phase variation. RF encoded signals were simulated for three RF coil configurations: ideal linear, parallel conductors and, circular coil pairs. The simulated signals were reconstructed by Fourier transform and by regularized least squares. The Fourier reconstruction of simulated RF encoded signals from the parallel conductor coil set showed minor distortions over the reconstruction of signals from the ideal linear coil set but the Fourier reconstruction of signals from the circular coil set produced severe geometric distortion. Least squares inversion in all cases produced reconstruction errors comparable to the Fourier reconstruction of the simulated signal from the ideal linear coil set. MRI signals encoded in B1 fields with non-linearly varying spatial phase may be accurately reconstructed using regularized least squares thus pointing the way to the use of simple RF coil designs for RF encoded MRI. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  11. Estimating maximum instantaneous distortion from inlet total pressure rms and PSD measurements. [Root Mean Square and Power Spectral Density methods

    NASA Technical Reports Server (NTRS)

    Melick, H. C., Jr.; Ybarra, A. H.; Bencze, D. P.

    1975-01-01

    An inexpensive method is developed to determine the extreme values of instantaneous inlet distortion. This method also provides insight into the basic mechanics of unsteady inlet flow and the associated engine reaction. The analysis is based on fundamental fluid dynamics and statistical methods to provide an understanding of the turbulent inlet flow and quantitatively relate the rms level and power spectral density (PSD) function of the measured time variant total pressure fluctuations to the strength and size of the low pressure regions. The most probable extreme value of the instantaneous distortion is then synthesized from this information in conjunction with the steady state distortion. Results of the analysis show the extreme values to be dependent upon the steady state distortion, the measured turbulence rms level and PSD function, the time on point, and the engine response characteristics. Analytical projections of instantaneous distortion are presented and compared with data obtained by a conventional, highly time correlated, 40 probe instantaneous pressure measurement system.

  12. Multi-element array signal reconstruction with adaptive least-squares algorithms

    NASA Technical Reports Server (NTRS)

    Kumar, R.

    1992-01-01

    Two versions of the adaptive least-squares algorithm are presented for combining signals from multiple feeds placed in the focal plane of a mechanical antenna whose reflector surface is distorted due to various deformations. Coherent signal combining techniques based on the adaptive least-squares algorithm are examined for nearly optimally and adaptively combining the outputs of the feeds. The performance of the two versions is evaluated by simulations. It is demonstrated for the example considered that both of the adaptive least-squares algorithms are capable of offsetting most of the loss in the antenna gain incurred due to reflector surface deformations.

  13. The Role of Configural Processing in Face Classification by Race: An ERP Study

    PubMed Central

    Lv, Jing; Yan, Tianyi; Tao, Luyang; Zhao, Lun

    2015-01-01

    The current study investigated the time course of the other-race classification advantage (ORCA) in the subordinate classification of normally configured faces and distorted faces by race. Slightly distorting the face configuration delayed the categorization of own-race faces and had no conspicuous effects on other-race faces. The N170 was sensitive neither to configural distortions nor to faces' races. The P3 was enhanced for other-race than own-race faces and reduced by configural manipulation only for own-race faces. We suggest that the source of ORCA is the configural analysis applied by default while processing own-race faces. PMID:26733850

  14. Maritime Adaptive Optics Beam Control

    DTIC Science & Technology

    2010-09-01

    Liquid Crystal LMS Least Mean Square MIMO Multiple- Input Multiple-Output MMDM Micromachined Membrane Deformable Mirror MSE Mean Square Error...determine how the beam is distorted, a control computer to calculate the correction to be applied, and a corrective element, usually a deformable mirror ...during this research, an overview of the system modification is provided here. Using additional mirrors and reflecting the beam to and from an

  15. Linear Least Squares for Correlated Data

    NASA Technical Reports Server (NTRS)

    Dean, Edwin B.

    1988-01-01

    Throughout the literature authors have consistently discussed the suspicion that regression results were less than satisfactory when the independent variables were correlated. Camm, Gulledge, and Womer, and Womer and Marcotte provide excellent applied examples of these concerns. Many authors have obtained partial solutions for this problem as discussed by Womer and Marcotte and Wonnacott and Wonnacott, which result in generalized least squares algorithms to solve restrictive cases. This paper presents a simple but relatively general multivariate method for obtaining linear least squares coefficients which are free of the statistical distortion created by correlated independent variables.

  16. Investigation on centrifugal impeller in an axial-radial combined compressor with inlet distortion

    NASA Astrophysics Data System (ADS)

    Li, Du; Yang, Ce; Zhao, Ben; Zhou, Mi; Qi, Mingxu; Zhang, Jizhong

    2011-12-01

    Assembling an axial rotor and a stator at centrifugal compressor upstream to build an axial-radial combined compressor could achieve high pressure ratio and efficiency by appropriate size augment. Then upstream potential flow and wake effect appear at centrifugal impeller inlet. In this paper, the axial-radial compressor is unsteadily simulated by three-dimensional Reynolds averaged Navier-Stokes equations with uniform and circumferential distorted total pressure inlet condition to investigate upstream effect on radial rotor. The results show that span-wise nonuniform total pressure distribution is generated and radial and circumferential combined distortion is formed at centrifugal rotor inlet. The upstream stator wake deflects to rotor rotation direction and decreases with blade span increases. Circumferential distortion causes different separated flow formations at different pitch positions. The tip leakage vortex is suppressed in centrifugal blade passages. Under distorted inlet condition, flow direction of centrifugal impeller leading edge upstream varies evidently near hub and shroud but varies slightly at mid-span. In addition, compressor stage inlet distortion produces remarkable effect on blade loading of centrifugal blade both along chordwise and pitchwise.

  17. Effects of atmospheric turbulence on the imaging performance of optical system

    NASA Astrophysics Data System (ADS)

    Al-Hamadani, Ali H.; Zainulabdeen, Faten Sh.; Karam, Ghada Sabah; Nasir, Eman Yousif; Al-Saedi, Abaas

    2018-05-01

    Turbulent effects are very complicated and still not entirely understood. Light waves from an astronomical object are distorted as they pass through the atmosphere. The refractive index fluctuations in the turbulent atmosphere induce an optical path difference (OPD) between different parts of the wavefront, distorted wavefronts produce low-quality images and degrade the image beyond the diffraction limit. In this paper the image degradation due to 2-D Gaussian atmospheric turbulence is considered in terms of the point spread function (PSF), and Strehl ratio as an image quality criteria for imaging systems with different apertures using the pupil function teqneque. A general expression for the degraded PSF in the case of circular and square apertures (with half diagonal = √{π/2 } , and 1) diffraction limited and defocused optical system is considered. Based on the derived formula, the effect of the Gaussian atmospheric turbulence on circular and square pupils has been studied with details. Numerical results show that the performance of optical systems with square aperture is more efficient at high levels of atmospheric turbulence than the other apertures.

  18. Quasi-static shape adjustment of a 15 meter diameter space antenna

    NASA Technical Reports Server (NTRS)

    Belvin, W. Keith; Herstrom, Catherine L.; Edighoffer, Harold H.

    1987-01-01

    A 15 meter diameter Hoop-Column antenna has been analyzed and tested to study shape adjustment of the reflector surface. The Hoop-Column antenna concept employs pretensioned cables and mesh to produce a paraboloidal reflector surface. Fabrication errors and thermal distortions may significantly reduce surface accuracy and consequently degrade electromagnetic performance. Thus, the ability to adjust the surface shape is desirable. The shape adjustment algorithm consisted of finite element and least squares error analyses to minimize the surface distortions. Experimental results verified the analysis. Application of the procedure resulted in a reduction of surface error by 38 percent. Quasi-static shape adjustment has the potential for on-orbit compensation for a variety of surface shape distortions.

  19. The deformation of flux tubes in the solar wind with applications to the structure of magnetic clouds and CMEs

    NASA Technical Reports Server (NTRS)

    Cargill, Peter J.; Chen, James; Spicer, D. S.; Zalesak, S. T.

    1994-01-01

    Two dimensional magnetohydrodynamic simulations of the distortion of a magnetic flux tube, accelerated through ambient solar wind plasma, are presented. Vortices form on the trailing edge of the flux tube, and couple strongly to its interior. If the flux tube azimuthal field is weak, it deforms into an elongated banana-like shape after a few Alfven transit times. A significant azimuthal field component inhibits this distortion. In the case of magnetic clouds in the solar wind, it is suggested that the shape observed at 1 AU was determined by distortion of the cloud in the inner heliosphere. Distortion of the cloud beyond 1 AU takes many days. It is estimated that effective drag coefficients slightly greater than unity are appropriate for modeling flux tube propagation. Synthetic magnetic field profiles as would be seen by a spacecraft traversing the cloud are presented.

  20. Novel quantitative assessment of metamorphopsia in maculopathy.

    PubMed

    Wiecek, Emily; Lashkari, Kameran; Dakin, Steven C; Bex, Peter

    2014-11-18

    Patients with macular disease often report experiencing metamorphopsia (visual distortion). Although typically measured with Amsler charts, more quantitative assessments of perceived distortion are desirable to effectively monitor the presence, progression, and remediation of visual impairment. Participants with binocular (n = 33) and monocular (n = 50) maculopathy across seven disease groups, and control participants (n = 10) with no identifiable retinal disease completed a modified Amsler grid assessment (presented on a computer screen with eye tracking to ensure fixation compliance) and two novel assessments to measure metamorphopsia in the central 5° of visual field. A total of 81% (67/83) of participants completed a hyperacuity task where they aligned eight dots in the shape of a square, and 64% (32/50) of participants with monocular distortion completed a spatial alignment task using dichoptic stimuli. Ten controls completed all tasks. Horizontal and vertical distortion magnitudes were calculated for each of the three assessments. Distortion magnitudes were significantly higher in patients than controls in all assessments. There was no significant difference in magnitude of distortion across different macular diseases. There were no significant correlations between overall magnitude of distortion among any of the three measures and no significant correlations in localized measures of distortion. Three alternative quantifications of monocular spatial distortion in the central visual field generated uncorrelated estimates of visual distortion. It is therefore unlikely that metamorphopsia is caused solely by retinal displacement, but instead involves additional top-down information, knowledge about the scene, and perhaps, cortical reorganization. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.

  1. The recovery of weak impulsive signals based on stochastic resonance and moving least squares fitting.

    PubMed

    Jiang, Kuosheng; Xu, Guanghua; Liang, Lin; Tao, Tangfei; Gu, Fengshou

    2014-07-29

    In this paper a stochastic resonance (SR)-based method for recovering weak impulsive signals is developed for quantitative diagnosis of faults in rotating machinery. It was shown in theory that weak impulsive signals follow the mechanism of SR, but the SR produces a nonlinear distortion of the shape of the impulsive signal. To eliminate the distortion a moving least squares fitting method is introduced to reconstruct the signal from the output of the SR process. This proposed method is verified by comparing its detection results with that of a morphological filter based on both simulated and experimental signals. The experimental results show that the background noise is suppressed effectively and the key features of impulsive signals are reconstructed with a good degree of accuracy, which leads to an accurate diagnosis of faults in roller bearings in a run-to failure test.

  2. Ball-morph: definition, implementation, and comparative evaluation.

    PubMed

    Whited, Brian; Rossignac, Jaroslaw Jarek

    2011-06-01

    We define b-compatibility for planar curves and propose three ball morphing techniques between pairs of b-compatible curves. Ball-morphs use the automatic ball-map correspondence, proposed by Chazal et al., from which we derive different vertex trajectories (linear, circular, and parabolic). All three morphs are symmetric, meeting both curves with the same angle, which is a right angle for the circular and parabolic. We provide simple constructions for these ball-morphs and compare them to each other and other simple morphs (linear-interpolation, closest-projection, curvature-interpolation, Laplace-blending, and heat-propagation) using six cost measures (travel-distance, distortion, stretch, local acceleration, average squared mean curvature, and maximum squared mean curvature). The results depend heavily on the input curves. Nevertheless, we found that the linear ball-morph has consistently the shortest travel-distance and the circular ball-morph has the least amount of distortion.

  3. SQUARE WAVE AMPLIFIER

    DOEpatents

    Leavitt, M.A.; Lutz, I.C.

    1958-08-01

    An amplifier circuit is described for amplifying sigmals having an alternating current component superimposed upon a direct current component, without loss of any segnnent of the alternating current component. The general circuit arrangement includes a vibrator, two square wave amplifiers, and recombination means. The amplifier input is connected to the vibrating element of the vibrator and is thereby alternately applied to the input of each square wave amplifier. The detailed circuitry of the recombination means constitutes the novelty of the annplifier and consists of a separate, dual triode amplifier coupled to the output of each square wave amplifier with a recombination connection from the plate of one amplifier section to a grid of one section of the other amplifier. The recombination circuit has provisions for correcting distortion caused by overlapping of the two square wave voltages from the square wave amplifiers.

  4. Comparison of methods for quantitative evaluation of endoscopic distortion

    NASA Astrophysics Data System (ADS)

    Wang, Quanzeng; Castro, Kurt; Desai, Viraj N.; Cheng, Wei-Chung; Pfefer, Joshua

    2015-03-01

    Endoscopy is a well-established paradigm in medical imaging, and emerging endoscopic technologies such as high resolution, capsule and disposable endoscopes promise significant improvements in effectiveness, as well as patient safety and acceptance of endoscopy. However, the field lacks practical standardized test methods to evaluate key optical performance characteristics (OPCs), in particular the geometric distortion caused by fisheye lens effects in clinical endoscopic systems. As a result, it has been difficult to evaluate an endoscope's image quality or assess its changes over time. The goal of this work was to identify optimal techniques for objective, quantitative characterization of distortion that are effective and not burdensome. Specifically, distortion measurements from a commercially available distortion evaluation/correction software package were compared with a custom algorithm based on a local magnification (ML) approach. Measurements were performed using a clinical gastroscope to image square grid targets. Recorded images were analyzed with the ML approach and the commercial software where the results were used to obtain corrected images. Corrected images based on the ML approach and the software were compared. The study showed that the ML method could assess distortion patterns more accurately than the commercial software. Overall, the development of standardized test methods for characterizing distortion and other OPCs will facilitate development, clinical translation, manufacturing quality and assurance of performance during clinical use of endoscopic technologies.

  5. Computer-assisted map projection research

    USGS Publications Warehouse

    Snyder, John Parr

    1985-01-01

    Computers have opened up areas of map projection research which were previously too complicated to utilize, for example, using a least-squares fit to a very large number of points. One application has been in the efficient transfer of data between maps on different projections. While the transfer of moderate amounts of data is satisfactorily accomplished using the analytical map projection formulas, polynomials are more efficient for massive transfers. Suitable coefficients for the polynomials may be determined more easily for general cases using least squares instead of Taylor series. A second area of research is in the determination of a map projection fitting an unlabeled map, so that accurate data transfer can take place. The computer can test one projection after another, and include iteration where required. A third area is in the use of least squares to fit a map projection with optimum parameters to the region being mapped, so that distortion is minimized. This can be accomplished for standard conformal, equalarea, or other types of projections. Even less distortion can result if complex transformations of conformal projections are utilized. This bulletin describes several recent applications of these principles, as well as historical usage and background.

  6. Detailed intermolecular structure of molecular liquids containing slightly distorted tetrahedral molecules with C(3v) symmetry: chloroform, bromoform, and methyl-iodide.

    PubMed

    Pothoczki, Szilvia; Temleitner, László; Pusztai, László

    2011-01-28

    Analyses of the intermolecular structure of molecular liquids containing slightly distorted tetrahedral molecules of the CXY(3)-type are described. The process is composed of the determination of several different distance-dependent orientational correlation functions, including ones that are introduced here. As a result, a complete structure classification could be provided for CXY(3) molecular liquids, namely for liquid chloroform, bromoform, and methyl-iodide. In the present work, the calculations have been conducted on particle configurations resulting from reverse Monte Carlo computer modeling: these particle arrangements have the advantage that they are fully consistent with structure factors from neutron and x-ray diffraction measurements. It has been established that as the separation between neighboring molecules increases, the dominant mutual orientations change from face-to-face to edge-to-edge, via the edge-to-face arrangements. Depending on the actual liquid, these geometrical elements (edges and faces of the distorted tetrahedra) were found to contain different atoms. From the set of liquids studied here, the structure of methyl-iodide was found to be easiest to describe on the basis of pure steric effects (molecular shape, size, and density) and the structure of liquid chloroform seems to be the furthest away from the corresponding "flexible fused hard spheres" like reference system.

  7. Anisotropic crystal structure distortion of the monoclinic polymorph of acetaminophen at high hydrostatic pressures.

    PubMed

    Boldyreva, E V; Shakhtshneider, T P; Vasilchenko, M A; Ahsbahs, H; Uchtmann, H

    2000-04-01

    The anisotropy of structural distortion of the monoclinic polymorph of acetaminophen induced by hydrostatic pressure up to 4.0 GPa was studied by single-crystal X-ray diffraction in a Merrill-Bassett diamond anvil cell (DAC). The space group (P2(1)/n) and the general structural pattern remained unchanged with pressure. Despite the overall decrease in the molar volume with pressure, the structure expanded in particular crystallographic directions. One of the linear cell parameters (c) passed through a minimum as the pressure increased. The intramolecular bond lengths changed only slightly with pressure, but the changes in the dihedral and torsion angles were very large. The compressibility of the intermolecular hydrogen bonds NH...O and OH...O was measured. NH...O bonds were shown to be slightly more compressible than OH...O bonds. The anisotropy of structural distortion was analysed in detail in relation to the pressure-induced changes in the molecular conformations, to the compression of the hydrogen-bond network, and to the changes in the orientation of molecules with respect to each other in the pleated sheets in the structure. Dirichlet domains were calculated in order to analyse the relative shifts of the centroids of the hydrogen-bonded cycles and of the centroids of the benzene rings with pressure.

  8. Outlier Resistant Predictive Source Encoding for a Gaussian Stationary Nominal Source.

    DTIC Science & Technology

    1987-09-18

    breakdown point and influence function . The proposed sequence of predictive encoders attains strictly positive breakdown point and uniformly bounded... influence function , at the expense of increased mean difference-squared distortion and differential entropy, at the Gaussian nominal source.

  9. Electrohydrodynamic distortion of sample streams in continuous flow electrophoresis

    NASA Technical Reports Server (NTRS)

    Rhodes, Percy H.; Snyder, Robert S.; Roberts, Glyn O.

    1989-01-01

    Continuous flow electrophoresis experiments were carried out, using an electrolyte and a sample both made of aqueous solutions of phosphate buffer (with polystyrene latex added for visibility), to investigate causes of the sample spreading in this procedure. It is shown theoretically that an electric field perpendicular to a circular filament of conducting fluid surrounded by a fluid of different conductivity produces an electrohydrodynamic flow, which distorts the filament into an ellipse. Experimental results were found to be fully consistent with theretical predictions. It was found that the rate of distortion of the sample stream into a ribbon was proportional to the square of the applied voltage gradient. Furthermore, the orientation of the ribbon depends on the ratios of dielectric constant and electrical conductivity between the buffer and the sample.

  10. Unexpected Huge Dimerization Ratio in One-Dimensional Carbon Atomic Chains.

    PubMed

    Lin, Yung-Chang; Morishita, Shigeyuki; Koshino, Masanori; Yeh, Chao-Hui; Teng, Po-Yuan; Chiu, Po-Wen; Sawada, Hidetaka; Suenaga, Kazutomo

    2017-01-11

    Peierls theory predicted atomic distortion in one-dimensional (1D) crystal due to its intrinsic instability in 1930. Free-standing carbon atomic chains created in situ in transmission electron microscope (TEM)1-3 are an ideal example to experimentally observe the dimerization behavior of carbon atomic chain within a finite length. We report here a surprisingly huge distortion found in the free-standing carbon atomic chains at 773 K, which is 10 times larger than the value expected in the system. Such an abnormally distorted phase only dominates at the elevated temperatures, while two distinct phases, distorted and undistorted, coexist at lower or ambient temperatures. Atom-by-atom spectroscopy indeed shows considerable variations in the carbon 1s spectra at each atomic site but commonly observes a slightly downshifted π* peak, which proves its sp 1 bonding feature. These results suggest that the simple model, relaxed and straight, is not fully adequate to describe the realistic 1D structure, which is extremely sensitive to perturbations such as external force or boundary conditions.

  11. Real-Time Correction By Optical Tracking with Integrated Geometric Distortion Correction for Reducing Motion Artifacts in fMRI

    NASA Astrophysics Data System (ADS)

    Rotenberg, David J.

    Artifacts caused by head motion are a substantial source of error in fMRI that limits its use in neuroscience research and clinical settings. Real-time scan-plane correction by optical tracking has been shown to correct slice misalignment and non-linear spin-history artifacts, however residual artifacts due to dynamic magnetic field non-uniformity may remain in the data. A recently developed correction technique, PLACE, can correct for absolute geometric distortion using the complex image data from two EPI images, with slightly shifted k-space trajectories. We present a correction approach that integrates PLACE into a real-time scan-plane update system by optical tracking, applied to a tissue-equivalent phantom undergoing complex motion and an fMRI finger tapping experiment with overt head motion to induce dynamic field non-uniformity. Experiments suggest that including volume by volume geometric distortion correction by PLACE can suppress dynamic geometric distortion artifacts in a phantom and in vivo and provide more robust activation maps.

  12. Centrifugal distortion and the ring puckering vibration in the microwave spectrum of 2,3-dihydrofuran

    NASA Astrophysics Data System (ADS)

    Cervellati, R.; Degli Esposti, A.; Lister, D. G.; Lopez, J. C.; Alonso, J. L.

    1986-10-01

    The microwave spectrum of 2,3-dihydrofuran has been reinvestigated and measurements for the ground and first five excited states of the ring puckering vibration have been extended to higher frequencies and rotational quantum numbers in order to study the vibrational dependence of the rotational and centrifugal distortion constants. The ring puckering potential function derived by Green from the far infrared spectrum does not reproduce the vibrational dependence of the rotational constants well. A slightly different potential function is derived which gives a reasonable fit both to the far infrared spectrum and the rotational constants. This changes the barrier to ring inversion from 1.00 kJ mol -1 to 1.12 kJ mol -1. The vibrational dependence of the centrifugal distortion constants is accounted for satisfactorily by the theory developed by Creswell and Mills. An attempt to reproduce the vibrational dependence of the rotational and centrifugal distortion constants using the ring puckering potential function and a simple model for this vibration has very limited success.

  13. Double-spin-echo diffusion weighting with a modified eddy current adjustment.

    PubMed

    Finsterbusch, Jürgen

    2010-04-01

    Magnetic field inhomogeneities like eddy current-related gradient fields cause geometric distortions in echo-planar imaging (EPI). This in particular affects diffusion-weighted imaging where these distortions vary with the direction of the diffusion weighting and hamper the accurate determination of diffusion parameters. The double-spin-echo preparation often used aims to reduce the cumulative eddy current effect by adjusting the diffusion-weighting gradient pulse durations to the time constant of the dominant eddy current contribution. However, eddy currents with a variety of time constants may be present and cause residual distortions. Here, a modification is proposed where the two bipolar gradient pairs of the preparation are adjusted independently to different time constants. At the expense of a slightly prolonged echo time, residual geometric distortions and correspondingly increased values of the diffusion anisotropy can be reduced as is demonstrated in phantoms and the human brain. Thus, it may help to improve the reliability of diffusion-weighted EPI. Copyright 2010 Elsevier Inc. All rights reserved.

  14. Electromagnetic tracking system with reduced distortion using quadratic excitation.

    PubMed

    Bien, Tomasz; Li, Mengfei; Salah, Zein; Rose, Georg

    2014-03-01

    Electromagnetic tracking systems, frequently used in minimally invasive surgery, are affected by conductive distorters. The influence of conductive distorters on electromagnetic tracking system accuracy can be reduced through magnetic field modifications. This approach was developed and tested. The voltage induced directly by the emitting coil in the sensing coil without additional influence by the conductive distorter depends on the first derivative of the voltage on the emitting coil. The voltage which is induced indirectly by the emitting coil across the conductive distorter in the sensing coil, however, depends on the second derivative of the voltage on the emitting coil. The electromagnetic tracking system takes advantage of this difference by supplying the emitting coil with a quadratic excitation voltage. The method is adaptive relative to the amount of distortion cause by the conductive distorters. This approach is evaluated with an experimental setup of the electromagnetic tracking system. In vitro testing showed that the maximal error decreased from 10.9 to 3.8 mm when the quadratic voltage was used to excite the emitting coil instead of the sinusoidal voltage. Furthermore, the root mean square error in the proximity of the aluminum disk used as a conductive distorter was reduced from 3.5 to 1.6 mm when the electromagnetic tracking system used the quadratic instead of sinusoidal excitation. Electromagnetic tracking with quadratic excitation is immune to the effects of a conductive distorter, especially compared with sinusoidal excitation of the emitting coil. Quadratic excitation of electromagnetic tracking for computer-assisted surgery is promising for clinical applications.

  15. Tidal disruption of dissipative planetesimals

    NASA Technical Reports Server (NTRS)

    Mizuno, H.; Boss, A. P.

    1985-01-01

    A self-consistent numerical model is developed for the tidal disruption of a solid planetesimal. The planetesimal is treated as a highly viscous, slightly compressible fluid whose disturbed parts are an inviscid, pressureless fluid undergoing distortion and disruption. The distortions were constrained to being symmetrical above and below the equatorial plane. The tidal potential is expanded in terms of Legendre polynomials, which eliminates the center of mass acceleration effects, permitting definition of equations of motion in a noninertial frame. Consideration is given to viscous dissipation and to characteristics of the solid-atmosphere boundary. The model is applied to sample cases in one, two and three dimensions.

  16. Combined approach to the Hubble Space Telescope wave-front distortion analysis

    NASA Astrophysics Data System (ADS)

    Roddier, Claude; Roddier, Francois

    1993-06-01

    Stellar images taken by the HST at various focus positions have been analyzed to estimate wave-front distortion. Rather than using a single algorithm, we found that better results were obtained by combining the advantages of various algorithms. For the planetary camera, the most accurate algorithms consistently gave a spherical aberration of -0.290-micron rms with a maximum deviation of 0.005 micron. Evidence was found that the spherical aberration is essentially produced by the primary mirror. The illumination in the telescope pupil plane was reconstructed and evidence was found for a slight camera misalignment.

  17. Speech evaluation in children with temporomandibular disorders.

    PubMed

    Pizolato, Raquel Aparecida; Fernandes, Frederico Silva de Freitas; Gavião, Maria Beatriz Duarte

    2011-10-01

    The aims of this study were to evaluate the influence of temporomandibular disorders (TMD) on speech in children, and to verify the influence of occlusal characteristics. Speech and dental occlusal characteristics were assessed in 152 Brazilian children (78 boys and 74 girls), aged 8 to 12 (mean age 10.05 ± 1.39 years) with or without TMD signs and symptoms. The clinical signs were evaluated using the Research Diagnostic Criteria for TMD (RDC/TMD) (axis I) and the symptoms were evaluated using a questionnaire. The following groups were formed: Group TMD (n=40), TMD signs and symptoms (Group S and S, n=68), TMD signs or symptoms (Group S or S, n=33), and without signs and symptoms (Group N, n=11). Articulatory speech disorders were diagnosed during spontaneous speech and repetition of the words using the "Phonological Assessment of Child Speech" for the Portuguese language. It was also applied a list of 40 phonological balanced words, read by the speech pathologist and repeated by the children. Data were analyzed by descriptive statistics, Fisher's exact or Chi-square tests (α=0.05). A slight prevalence of articulatory disturbances, such as substitutions, omissions and distortions of the sibilants /s/ and /z/, and no deviations in jaw lateral movements were observed. Reduction of vertical amplitude was found in 10 children, the prevalence being greater in TMD signs and symptoms children than in the normal children. The tongue protrusion in phonemes /t/, /d/, /n/, /l/ and frontal lips in phonemes /s/ and /z/ were the most prevalent visual alterations. There was a high percentage of dental occlusal alterations. There was no association between TMD and speech disorders. Occlusal alterations may be factors of influence, allowing distortions and frontal lisp in phonemes /s/ and /z/ and inadequate tongue position in phonemes /t/; /d/; /n/; /l/.

  18. Di-μ-acetato-bis­[(acetato-κ2 O,O′)bis­(iso­nicotinamide-κN)copper(II)

    PubMed Central

    Perec, Mireille; Baggio, Ricardo

    2010-01-01

    The title centrosymmetric bimetallic complex, [Cu2(C2H3O2)4(C6H6N2O)4], is composed of two copper(II) cations, four acetate anions and four isonicotinamide (INA) ligands. The asymmetric unit contains one copper cation to which two acetate units bind asymmetrically; one of the Cu—O distances is rather long [2.740 (2) Å], almost at the limit of coordination. These Cu—O bonds define an equatorial plane to which the Cu—N bonds to the INA ligands are almost perpendicular, the Cu—N vectors subtending angles of 2.4 (1) and 2.3 (1)° to the normal to the plane. The metal coordination geometry can be described as a slightly distorted trigonal bipyramid if the extremely weak Cu—O bond is disregarded, or as a highly distorted square bipyramid if it is not. The double acetate bridge between the copper ions is not coplanar with the CuO4 equatorial planes, the dihedral angle between the (O—C—O)2 and O—Cu—O groups being 34.3 (1)°, resulting in a sofa-like conformation for the 8-member bridging loop. In the crystal, N—H⋯O hydrogen bonds occur, some of which generate a head-to tail-linkage between INA units, giving raise to chains along [101]; the remaining ones make inter-chain contacts, defining a three-dimensional network. There are in addition a number of C—H⋯O bonds involving aromatic H atoms. Probably due to steric hindrance, the aromatic rings are not involved in significant π⋯π inter­actions. PMID:21580223

  19. Adaptively combined FIR and functional link artificial neural network equalizer for nonlinear communication channel.

    PubMed

    Zhao, Haiquan; Zhang, Jiashu

    2009-04-01

    This paper proposes a novel computational efficient adaptive nonlinear equalizer based on combination of finite impulse response (FIR) filter and functional link artificial neural network (CFFLANN) to compensate linear and nonlinear distortions in nonlinear communication channel. This convex nonlinear combination results in improving the speed while retaining the lower steady-state error. In addition, since the CFFLANN needs not the hidden layers, which exist in conventional neural-network-based equalizers, it exhibits a simpler structure than the traditional neural networks (NNs) and can require less computational burden during the training mode. Moreover, appropriate adaptation algorithm for the proposed equalizer is derived by the modified least mean square (MLMS). Results obtained from the simulations clearly show that the proposed equalizer using the MLMS algorithm can availably eliminate various intensity linear and nonlinear distortions, and be provided with better anti-jamming performance. Furthermore, comparisons of the mean squared error (MSE), the bit error rate (BER), and the effect of eigenvalue ratio (EVR) of input correlation matrix are presented.

  20. Thermal emergence of laser-induced spin dynamics for a Ni4 cluster

    NASA Astrophysics Data System (ADS)

    Sold, S.; Lefkidis, G.; Kamble, B.; Berakdar, J.; Hübner, W.

    2018-05-01

    We investigate the thermodynamic behavior of laser-induced spin dynamics of a perfect and a distorted Ni4 square in combination with an external thermal bath, by using the Lindblad-superoperator formalism. The energies of the planar molecules are determined with highly correlated ab initio quantum-chemistry calculations. When the distorted structure couples to the thermal bath a unique spin dynamics, i.e., a spin flip, emerges, due to the interplay of optically and thermally induced electronic transitions. The charge and spin relaxation times in dependence on the coupling strength and the bath temperature are determined and compared.

  1. SU-E-J-112: Intensity-Based Pulmonary Image Registration: An Evaluation Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, F; Meyer, J; Sandison, G

    2015-06-15

    Purpose: Accurate alignment of thoracic CT images is essential for dose tracking and to safely implement adaptive radiotherapy in lung cancers. At the same time it is challenging given the highly elastic nature of lung tissue deformations. The objective of this study was to assess the performances of three state-of-art intensity-based algorithms in terms of their ability to register thoracic CT images subject to affine, barrel, and sinusoid transformation. Methods: Intensity similarity measures of the evaluated algorithms contained sum-of-squared difference (SSD), local mutual information (LMI), and residual complexity (RC). Five thoracic CT scans obtained from the EMPIRE10 challenge database weremore » included and served as reference images. Each CT dataset was distorted by realistic affine, barrel, and sinusoid transformations. Registration performances of the three algorithms were evaluated for each distortion type in terms of intensity root mean square error (IRMSE) between the reference and registered images in the lung regions. Results: For affine distortions, the three algorithms differed significantly in registration of thoracic images both visually and nominally in terms of IRMSE with a mean of 0.011 for SSD, 0.039 for RC, and 0.026 for LMI (p<0.01; Kruskal-Wallis test). For barrel distortion, the three algorithms showed nominally no significant difference in terms of IRMSE with a mean of 0.026 for SSD, 0.086 for RC, and 0.054 for LMI (p=0.16) . A significant difference was seen for sinusoid distorted thoracic CT data with mean lung IRMSE of 0.039 for SSD, 0.092 for RC, and 0.035 for LMI (p=0.02). Conclusion: Pulmonary deformations might vary to a large extent in nature in a daily clinical setting due to factors ranging from anatomy variations to respiratory motion to image quality. It can be appreciated from the results of the present study that the suitability of application of a particular algorithm for pulmonary image registration is deformation-dependent.« less

  2. Crystal structure of fac-tri-carbonyl-chlorido-bis-(4-hy-droxy-pyridine)-rhenium(I)-pyridin-4(1H)-one (1/1).

    PubMed

    Argibay-Otero, Saray; Carballo, Rosa; Vázquez-López, Ezequiel M

    2017-10-01

    The asymmetric unit of the title compound, [ReCl(C 5 H 5 NO) 2 (CO) 3 ]·C 5 H 5 NO, contains one mol-ecule of the complex fac -[ReCl(4-pyOH) 2 (CO) 3 ] (where 4-pyOH represents 4-hy-droxy-pyridine) and one mol-ecule of pyridin-4(1 H )-one (4-HpyO). In the mol-ecule of the complex, the Re atom is coordinated to two N atoms of the two 4-pyOH ligands, three carbonyl C atoms, in a facial configuration, and the Cl atom. The resulting geometry is slightly distorted octa-hedral. In the crystal structure, both fragments are associated by hydrogen bonds; two 4-HpyO mol-ecules bridge between two mol-ecules of the complex using the O=C group as acceptor for two different HO- groups of coordinated 4-pyOH from two neighbouring metal complexes. The resulting square arrangements are extented into infinite chains by hydrogen bonds involving the N-H groups of the 4-HpyO mol-ecule and the chloride ligands. The chains are further stabilized by π-stacking inter-actions.

  3. Redetermination of (2,2'-bipyridine-κN,N')dichlorido-palladium(II) dichloro-methane solvate.

    PubMed

    Kim, Nam-Ho; Hwang, In-Chul; Ha, Kwang

    2009-05-07

    In the title compound, [PdCl(2)(C(10)H(8)N(2))]·CH(2)Cl(2), the Pd(2+) ion is four-coordinated in a slightly distorted square-planar environment by two N atoms of the 2,2'-bipyridine (bipy) ligand and two chloride ions. The compound displays intra-molecular C-H⋯Cl hydrogen bonds and pairs of complex mol-ecules are connected by inter-molecular C-H⋯Cl hydrogen bonds. Inter-molecular π-π inter-actions are present between the pyridine rings of the ligand, the shortest centroid-centroid distance being 4.096 (3) Å. As a result of the electronic nature of the chelate ring, it is possible to create π-π inter-actions to its symmetry-related counterpart [3.720 (2) Å] and also with a pyridine ring [3.570 (3) Å] of the bipy unit. The present structure is a redetermination of a previous structure [Vicente et al. (1997 ▶). Private communication (refcode PYCXMN02). CCDC, Cambridge, England]. In the new structure refinement all H atoms were located in a difference Fourier synthesis. Their coordinates were refined freely, together with isotropic displacement parameters.

  4. Dipotassium tetra­kis­(thio­cyanato-κS)palladate(II)–(2,2′-bipyrimidine-κ2 N 1,N 1′)bis­(thio­cyanato-κS)palladium(II) (1/2)

    PubMed Central

    Ha, Kwang

    2012-01-01

    The asymmetric unit of the title compound, K2[Pd(NCS)4]·2[Pd(NCS)2(C8H6N4)], contains two crystallographically independent half-mol­ecules of the anionic PdII complex, two K+ cations and two independent neutral PdII complexes; an inversion centre is located at the centroid of each anionic complex. In the anionic complexes, each PdII ion is four-coordinated in an almost regular square-planar environment by four S atoms from four SCN− anions, and the PdS4 unit is exactly planar. In the neutral complexes, the PdII ion has a slightly distorted square-planar coordination environment defined by two pyrimidine N atoms derived from a chelating 2,2′-bipyrimidine ligand and two mutually cis S atoms from two SCN− anions. Both 2,2′-bipyrimidine ligands are almost planar [dihedral angle between the rings = 3.98 (16) and 4.57 (17)°] and also chelate to a potassium ion from their other two N atoms. In the crystal, the K+ ions inter­act with various S and N atoms of the ligands, forming a three-dimensional polymeric network, in which the shortest K⋯K contacts between the KN7S polyhedra are 4.4389 (17) and 4.4966 (18) Å. Intra- and inter­molecular C—H⋯S and C—H⋯N hydrogen bonds are also observed. PMID:22590117

  5. Frequency shifts in distortion-product otoacoustic emissions evoked by swept tones

    PubMed Central

    Shera, Christopher A.; Abdala, Carolina

    2016-01-01

    When distortion-product otoacoustic emissions (DPOAEs) are evoked using stimuli whose instantaneous frequencies change rapidly and continuously with time (swept tones), the oscillatory interference pattern known as distortion-product fine structure shifts slightly along the frequency axis in the same direction as the sweep. By analogy with the temporal mechanisms thought to underlie the differing efficacies of up- and down-swept stimuli as perceptual maskers (e.g., Schroeder-phase complexes), fine-structure shifts have been ascribed to the phase distortion associated with dispersive wave propagation in the cochlea. This paper tests an alternative hypothesis and finds that the observed shifts arise predominantly as a methodological side effect of the analysis procedures commonly used to extract delayed emissions from the measured time waveform. Approximate expressions for the frequency shifts of DPOAE distortion and reflection components are derived, validated with computer simulations, and applied to account for DPOAE fine-structure shifts measured in human subjects. Component magnitudes are shown to shift twice as much as component phases. Procedures for compensating swept-tone measurements to obtain estimates of the total DPOAE and its components measured at other sweep rates or in the sinusoidal steady state are presented. PMID:27586726

  6. Borderline features are associated with inaccurate trait self-estimations.

    PubMed

    Morey, Leslie C

    2014-01-01

    Many treatments for Borderline Personality Disorder (BPD) are based upon the hypothesis that gross distortion in perceptions and attributions related to self and others represent a core mechanism for the enduring difficulties displayed by such patients. However, available experimental evidence of such distortions provides equivocal results, with some studies suggesting that BPD is related to inaccuracy in such perceptions and others indicative of enhanced accuracy in some judgments. The current study uses a novel methodology to explore whether individuals with BPD features are less accurate in estimating their levels of universal personality characteristics as compared to community norms. One hundred and four students received course instruction on the Five Factor Model of personality, and then were asked to estimate their levels of these five traits relative to community norms. They then completed the NEO-Five Factor Inventory and the Personality Assessment Inventory-Borderline Features scale (PAI-BOR). Accuracy of estimates was calculated by computing squared differences between self-estimated trait levels and norm-referenced standardized scores in the NEO-FFI. There was a moderately strong relationship between PAI-BOR score and inaccuracy of trait level estimates. In particular, high BOR individuals dramatically overestimated their levels of Agreeableness and Conscientiousness, estimating themselves to be slightly above average on each of these characteristics but actually scoring well below average on both. The accuracy of estimates of levels of Neuroticism were unrelated to BOR scores, despite the fact that BOR scores were highly correlated with Neuroticism. These findings support the hypothesis that a key feature of BPD involves marked perceptual distortions of various aspects of self in relationship to others. However, the results also indicate that this is not a global perceptual deficit, as high BOR scorers accurately estimated that their emotional responsiveness was well above average. However, such individuals appear to have limited insight into their relative disadvantages in the capacity for cooperative relationships, or their limited ability to approach life in a planful and non-impulsive manner. Such results suggest important targets for treatments addressing problems in self-other representations.

  7. Beyond face value: does involuntary emotional anticipation shape the perception of dynamic facial expressions?

    PubMed

    Palumbo, Letizia; Jellema, Tjeerd

    2013-01-01

    Emotional facial expressions are immediate indicators of the affective dispositions of others. Recently it has been shown that early stages of social perception can already be influenced by (implicit) attributions made by the observer about the agent's mental state and intentions. In the current study possible mechanisms underpinning distortions in the perception of dynamic, ecologically-valid, facial expressions were explored. In four experiments we examined to what extent basic perceptual processes such as contrast/context effects, adaptation and representational momentum underpinned the perceptual distortions, and to what extent 'emotional anticipation', i.e. the involuntary anticipation of the other's emotional state of mind on the basis of the immediate perceptual history, might have played a role. Neutral facial expressions displayed at the end of short video-clips, in which an initial facial expression of joy or anger gradually morphed into a neutral expression, were misjudged as being slightly angry or slightly happy, respectively (Experiment 1). This response bias disappeared when the actor's identity changed in the final neutral expression (Experiment 2). Videos depicting neutral-to-joy-to-neutral and neutral-to-anger-to-neutral sequences again produced biases but in opposite direction (Experiment 3). The bias survived insertion of a 400 ms blank (Experiment 4). These results suggested that the perceptual distortions were not caused by any of the low-level perceptual mechanisms (adaptation, representational momentum and contrast effects). We speculate that especially when presented with dynamic, facial expressions, perceptual distortions occur that reflect 'emotional anticipation' (a low-level mindreading mechanism), which overrules low-level visual mechanisms. Underpinning neural mechanisms are discussed in relation to the current debate on action and emotion understanding.

  8. Beyond Face Value: Does Involuntary Emotional Anticipation Shape the Perception of Dynamic Facial Expressions?

    PubMed Central

    Palumbo, Letizia; Jellema, Tjeerd

    2013-01-01

    Emotional facial expressions are immediate indicators of the affective dispositions of others. Recently it has been shown that early stages of social perception can already be influenced by (implicit) attributions made by the observer about the agent’s mental state and intentions. In the current study possible mechanisms underpinning distortions in the perception of dynamic, ecologically-valid, facial expressions were explored. In four experiments we examined to what extent basic perceptual processes such as contrast/context effects, adaptation and representational momentum underpinned the perceptual distortions, and to what extent ‘emotional anticipation’, i.e. the involuntary anticipation of the other’s emotional state of mind on the basis of the immediate perceptual history, might have played a role. Neutral facial expressions displayed at the end of short video-clips, in which an initial facial expression of joy or anger gradually morphed into a neutral expression, were misjudged as being slightly angry or slightly happy, respectively (Experiment 1). This response bias disappeared when the actor’s identity changed in the final neutral expression (Experiment 2). Videos depicting neutral-to-joy-to-neutral and neutral-to-anger-to-neutral sequences again produced biases but in opposite direction (Experiment 3). The bias survived insertion of a 400 ms blank (Experiment 4). These results suggested that the perceptual distortions were not caused by any of the low-level perceptual mechanisms (adaptation, representational momentum and contrast effects). We speculate that especially when presented with dynamic, facial expressions, perceptual distortions occur that reflect ‘emotional anticipation’ (a low-level mindreading mechanism), which overrules low-level visual mechanisms. Underpinning neural mechanisms are discussed in relation to the current debate on action and emotion understanding. PMID:23409112

  9. Syntheses, structures, and magnetic properties of a family of heterometallic heptanuclear [Cu5Ln2] (Ln = Y(III), Lu(III), Dy(III), Ho(III), Er(III), and Yb(III)) complexes: observation of SMM behavior for the Dy(III) and Ho(III) analogues.

    PubMed

    Chandrasekhar, Vadapalli; Dey, Atanu; Das, Sourav; Rouzières, Mathieu; Clérac, Rodolphe

    2013-03-04

    Sequential reaction of the multisite coordination ligand (LH3) with Cu(OAc)2·H2O, followed by the addition of a rare-earth(III) nitrate salt in the presence of triethylamine, afforded a series of heterometallic heptanuclear complexes containing a [Cu5Ln2] core {Ln = Y(1), Lu(2), Dy(3), Ho(4), Er(5), and Yb(6)}. Single-crystal X-ray crystallography reveals that all the complexes are dicationic species that crystallize with two nitrate anions to compensate the charge. The heptanuclear aggregates in 1-6 are centrosymmetrical complexes, with a hexagonal-like arrangement of six peripheral metal ions (two rare-earth and four copper) around a central Cu(II) situated on a crystallographic inversion center. An all-oxygen environment is found to be present around the rare-earth metal ions, which adopt a distorted square-antiprismatic geometry. Three different Cu(II) sites are present in the heptanuclear complexes: two possess a distorted octahedral coordination sphere while the remaining one displays a distorted square-pyramidal geometry. Detailed static and dynamic magnetic properties of all the complexes have been studied and revealed the single-molecule magnet behavior of the Dy(III) and Ho(III) derivatives.

  10. Geometric calibration of lens and filter distortions for multispectral filter-wheel cameras.

    PubMed

    Brauers, Johannes; Aach, Til

    2011-02-01

    High-fidelity color image acquisition with a multispectral camera utilizes optical filters to separate the visible electromagnetic spectrum into several passbands. This is often realized with a computer-controlled filter wheel, where each position is equipped with an optical bandpass filter. For each filter wheel position, a grayscale image is acquired and the passbands are finally combined to a multispectral image. However, the different optical properties and non-coplanar alignment of the filters cause image aberrations since the optical path is slightly different for each filter wheel position. As in a normal camera system, the lens causes additional wavelength-dependent image distortions called chromatic aberrations. When transforming the multispectral image with these aberrations into an RGB image, color fringes appear, and the image exhibits a pincushion or barrel distortion. In this paper, we address both the distortions caused by the lens and by the filters. Based on a physical model of the bandpass filters, we show that the aberrations caused by the filters can be modeled by displaced image planes. The lens distortions are modeled by an extended pinhole camera model, which results in a remaining mean calibration error of only 0.07 pixels. Using an absolute calibration target, we then geometrically calibrate each passband and compensate for both lens and filter distortions simultaneously. We show that both types of aberrations can be compensated and present detailed results on the remaining calibration errors.

  11. Magneto-structural correlation in Co0.8Cu0.2Cr2O4 cubic spinel

    NASA Astrophysics Data System (ADS)

    Kumar, Ram; Rayaprol, S.; Siruguri, V.; Xiao, Y.; Ji, W.; Pal, D.

    2018-05-01

    Neutron and X-ray diffraction, magnetic susceptibility, and specific heat measurements have been used to investigate the magneto-structural phase transitions in 20% Cu substituted multiferroic CoCr2O4 spinel. The Jahn-Teller active Cu2+ ion in the tetrahedral A-site of the spinel configuration induces the Jahn-Teller distortion slightly above the Néel temperature. In this compound, we observe a Jahn-Teller distortion of the crystal structure at 90 K. It was further observed that the high temperature cubic (Fd 3 ‾ m) structure coexists with the low temperature orthorhombic (Fddd) structure till the lowest temperature of measurement.

  12. Influence of the least-squares phase on optical vortices in strongly scintillated beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Mingzhou; Roux, Filippus S.; National Laser Centre, CSIR, P.O. Box 395, Pretoria 0001

    2009-07-15

    The optical vortices that exist in strongly scintillated beams make it difficult for conventional adaptive optics systems to remove the phase distortions. When the least-squares reconstructed phase is removed, the vortices still remain. However, we found that the removal of the least-squares phase induces a portion of the vortices to be annihilated during subsequent propagation, causing a reduction in the total number of vortices. This can be understood in terms of the restoration of equilibrium between explicit vortices, which are visible in the phase function, and vortex bound states, which are somehow encoded in the continuous phase fluctuations. Numerical simulationsmore » are provided to show that the total number of optical vortices in a strongly scintillated beam can be reduced significantly after a few steps of least-squares phase corrections.« less

  13. Observing the contour profile of a Kerr-Sen black hole

    NASA Astrophysics Data System (ADS)

    Lan, X. G.; Pu, J.

    2018-06-01

    In this paper, the shadow and the corresponding naked singularity cast by a Kerr-Sen black hole are studied. It is found that the shadow of a rotating black hole would be a dark zone surrounded by a deformed circle, and the shadow is distorted more away from a circle when the black hole approaches the extremal case. Besides, it is shown that the mean radius of the shadow decreases and distortion parameter increases with the increasing of charge, respectively. However, the mean radius and the distortion parameter vary complicatedly with the change of spin parameter. In the beginning, both observables decrease rapidly with the increasing of specific angular momentum, nevertheless, they increase slightly in the latter part. These results show that there would be a significant effect of the spin on the shadows, which would be of great importance for probing the nature of the black hole.

  14. Use of ssq rotational invariant of magnetotelluric impedances for estimating informative properties for galvanic distortion

    NASA Astrophysics Data System (ADS)

    Rung-Arunwan, T.; Siripunvaraporn, W.; Utada, H.

    2017-06-01

    Several useful properties and parameters—a model of the regional mean one-dimensional (1D) conductivity profile, local and regional distortion indicators, and apparent gains—were defined in our recent paper using two rotational invariants (det: determinant and ssq: sum of squared elements) from a set of magnetotelluric (MT) data obtained by an array of observation sites. In this paper, we demonstrate their characteristics and benefits through synthetic examples using 1D and three-dimensional (3D) models. First, a model of the regional mean 1D conductivity profile is obtained using the average ssq impedance with different levels of galvanic distortion. In contrast to the Berdichevsky average using the average det impedance, the average ssq impedance is shown to yield a reliable estimate of the model of the regional mean 1D conductivity profile, even when severe galvanic distortion is contained in the data. Second, the local and regional distortion indicators were found to indicate the galvanic distortion as expressed by the splitting and shear parameters and to quantify their strengths in individual MT data and in the dataset as a whole. Third, the apparent gain was also shown to be a good approximation of the site gain, which is generally claimed to be undeterminable without external information. The model of the regional mean 1D profile could be used as an initial or a priori model in higher-dimensional inversions. The local and regional distortion indicators and apparent gains could be used to examine the existence and to guess the strength of the galvanic distortion. Although these conclusions were derived from synthetic tests using the Groom-Bailey distortion model, additional tests with different distortion models indicated that these conclusions are not strongly dependent on the choice of distortion model. These galvanic-distortion-related parameters would also assist in judging if a proper treatment is needed for the galvanic distortion when an MT dataset is given. Hence, this information derived from the dataset would be useful in MT data analysis and inversion.

  15. Further evaluation of the constrained least squares electromagnetic compensation method

    NASA Technical Reports Server (NTRS)

    Smith, William T.

    1991-01-01

    Technologies exist for construction of antennas with adaptive surfaces that can compensate for many of the larger distortions caused by thermal and gravitational forces. However, as the frequency and size of reflectors increase, the subtle surface errors become significant and degrade the overall electromagnetic performance. Electromagnetic (EM) compensation through an adaptive feed array offers means for mitigation of surface distortion effects. Implementation of EM compensation is investigated with the measured surface errors of the NASA 15 meter hoop/column reflector antenna. Computer simulations are presented for: (1) a hybrid EM compensation technique, and (2) evaluating the performance of a given EM compensation method when implemented with discretized weights.

  16. Off-Resonance Acoustic Levitation Without Rotation

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Allen, J. L.

    1984-01-01

    Orthogonal acoustic-levitation modes excited at slightly different frequencies to control rotation. Rotation of object in square cross-section acoustic-levitation chamber stopped by detuning two orthogonal (x and y) excitation drivers in plane of square cross section. Detuning done using fundamental degenerate modes or odd harmonic modes.

  17. Shapes on a plane: Evaluating the impact of projection distortion on spatial binning

    USGS Publications Warehouse

    Battersby, Sarah E.; Strebe, Daniel “daan”; Finn, Michael P.

    2017-01-01

    One method for working with large, dense sets of spatial point data is to aggregate the measure of the data into polygonal containers, such as political boundaries, or into regular spatial bins such as triangles, squares, or hexagons. When mapping these aggregations, the map projection must inevitably distort relationships. This distortion can impact the reader’s ability to compare count and density measures across the map. Spatial binning, particularly via hexagons, is becoming a popular technique for displaying aggregate measures of point data sets. Increasingly, we see questionable use of the technique without attendant discussion of its hazards. In this work, we discuss when and why spatial binning works and how mapmakers can better understand the limitations caused by distortion from projecting to the plane. We introduce equations for evaluating distortion’s impact on one common projection (Web Mercator) and discuss how the methods used generalize to other projections. While we focus on hexagonal binning, these same considerations affect spatial bins of any shape, and more generally, any analysis of geographic data performed in planar space.

  18. NAS Report Reveals Dangers From SST

    ERIC Educational Resources Information Center

    Fowler, Jo Ann V.

    1973-01-01

    Reported are some harmful effects of supersonic travel on humans and other living organisms. Slight decreases in ozone concentration as a result of emissions from the SST aircrafts reduce absorption of ultraviolet radiation. Effects of this may include skin cancer, distort balance of activity in cells and have a deleterious effect on insects and…

  19. PREVIEW: Computer Assistance for Visual Management of Forested Landscapes

    Treesearch

    Erik Myklestad; J. Alan Wagar

    1976-01-01

    The PREVIEW computer program facilitates visual management of forested landscapes by generating perspective drawings that show proposed timber harvesting and regrowth throughout a rotation. Drawings show how changes would appear from selected viewing points and show landscapes as either a grid of distorted squares or by symbols representing trees, clearings, water,...

  20. Numerical Simulations of Aero-Optical Distortions Around Various Turret Geometries

    DTIC Science & Technology

    2013-06-12

    arbi trary cell topologies. The spatial operator uses the exact Riemann Solver of Gottlieb and Groth, least squares gradient cal- culations using QR...Unstructured Euler/Navier-Stokes Flow Solver ," in A/AA Paper 1999-0786, 1999. [9] J. J. Gottlieb and C. P. T. Groth, "Assessment of Riemann Solvers

  1. A comparative quantitative analysis of the IDEAL (iterative decomposition of water and fat with echo asymmetry and least-squares estimation) and the CHESS (chemical shift selection suppression) techniques in 3.0 T L-spine MRI

    NASA Astrophysics Data System (ADS)

    Kim, Eng-Chan; Cho, Jae-Hwan; Kim, Min-Hye; Kim, Ki-Hong; Choi, Cheon-Woong; Seok, Jong-min; Na, Kil-Ju; Han, Man-Seok

    2013-03-01

    This study was conducted on 20 patients who had undergone pedicle screw fixation between March and December 2010 to quantitatively compare a conventional fat suppression technique, CHESS (chemical shift selection suppression), and a new technique, IDEAL (iterative decomposition of water and fat with echo asymmetry and least squares estimation). The general efficacy and usefulness of the IDEAL technique was also evaluated. Fat-suppressed transverse-relaxation-weighed images and longitudinal-relaxation-weighted images were obtained before and after contrast injection by using these two techniques with a 1.5T MR (magnetic resonance) scanner. The obtained images were analyzed for image distortion, susceptibility artifacts and homogenous fat removal in the target region. The results showed that the image distortion due to the susceptibility artifacts caused by implanted metal was lower in the images obtained using the IDEAL technique compared to those obtained using the CHESS technique. The results of a qualitative analysis also showed that compared to the CHESS technique, fewer susceptibility artifacts and more homogenous fat removal were found in the images obtained using the IDEAL technique in a comparative image evaluation of the axial plane images before and after contrast injection. In summary, compared to the CHESS technique, the IDEAL technique showed a lower occurrence of susceptibility artifacts caused by metal and lower image distortion. In addition, more homogenous fat removal was shown in the IDEAL technique.

  2. The Least Mean Squares Adaptive FIR Filter for Narrow-Band RFI Suppression in Radio Detection of Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Szadkowski, Zbigniew; Głas, Dariusz

    2017-06-01

    Radio emission from the extensive air showers (EASs), initiated by ultrahigh-energy cosmic rays, was theoretically suggested over 50 years ago. However, due to technical limitations, successful collection of sufficient statistics can take several years. Nowadays, this detection technique is used in many experiments consisting in studying EAS. One of them is the Auger Engineering Radio Array (AERA), located within the Pierre Auger Observatory. AERA focuses on the radio emission, generated by the electromagnetic part of the shower, mainly in geomagnetic and charge excess processes. The frequency band observed by AERA radio stations is 30-80 MHz. Thus, the frequency range is contaminated by human-made and narrow-band radio frequency interferences (RFIs). Suppression of contaminations is very important to lower the rate of spurious triggers. There are two kinds of digital filters used in AERA radio stations to suppress these contaminations: the fast Fourier transform median filter and four narrow-band IIR-notch filters. Both filters have worked successfully in the field for many years. An adaptive filter based on a least mean squares (LMS) algorithm is a relatively simple finite impulse response (FIR) filter, which can be an alternative for currently used filters. Simulations in MATLAB are very promising and show that the LMS filter can be very efficient in suppressing RFI and only slightly distorts radio signals. The LMS algorithm was implemented into a Cyclone V field programmable gate array for testing the stability, RFI suppression efficiency, and adaptation time to new conditions. First results show that the FIR filter based on the LMS algorithm can be successfully implemented and used in real AERA radio stations.

  3. High loading, 1800 ft/sec tip speed, transonic compressor fan stage. 2: Final report

    NASA Technical Reports Server (NTRS)

    Morris, A. L.; Sulam, D. H.

    1972-01-01

    Tests were conducted on a 0.5 hub/tip ratio, single-stage fan-compressor designed to produce a pressure ratio of 2.285 an efficiency of 84 percent with a rotor tip speed of 1800 feet per second. A peak efficiency of 82 percent was achieved by the stage at a stall margin of 6.5 percent. Tests showed that stall-limit line was slightly sensitive to tip-radial distortion, but stall-line improvements were noted when the stage was subjected to circumferential and hub-radial flow distortions. Rotor blade passage and trailing edge shock positions were inferred from static pressure contours over the rotor tips.

  4. Analytical and experimental design and analysis of an optimal processor for image registration

    NASA Technical Reports Server (NTRS)

    Mcgillem, C. D. (Principal Investigator); Svedlow, M.; Anuta, P. E.

    1976-01-01

    The author has identified the following significant results. A quantitative measure of the registration processor accuracy in terms of the variance of the registration error was derived. With the appropriate assumptions, the variance was shown to be inversely proportional to the square of the effective bandwidth times the signal to noise ratio. The final expressions were presented to emphasize both the form and simplicity of their representation. In the situation where relative spatial distortions exist between images to be registered, expressions were derived for estimating the loss in output signal to noise ratio due to these spatial distortions. These results are in terms of a reduction factor.

  5. Synthesis, Photochemical, and Redox Properties of Gold(I) and Gold(III) Pincer Complexes Incorporating a 2,2′:6′,2″-Terpyridine Ligand Framework

    PubMed Central

    2015-01-01

    Reaction of [Au(C6F5)(tht)] (tht = tetrahydrothiophene) with 2,2′:6′,2″-terpyridine (terpy) leads to complex [Au(C6F5)(η1-terpy)] (1). The chemical oxidation of complex (1) with 2 equiv of [N(C6H4Br-4)3](PF6) or using electrosynthetic techniques affords the Au(III) complex [Au(C6F5)(η3-terpy)](PF6)2 (2). The X-ray diffraction study of complex 2 reveals that the terpyridine acts as tridentate chelate ligand, which leads to a slightly distorted square-planar geometry. Complex 1 displays fluorescence in the solid state at 77 K due to a metal (gold) to ligand (terpy) charge transfer transition, whereas complex 2 displays fluorescence in acetonitrile due to excimer or exciplex formation. Time-dependent density functional theory calculations match the experimental absorption spectra of the synthesized complexes. In order to further probe the frontier orbitals of both complexes and study their redox behavior, each compound was separately characterized using cyclic voltammetry. The bulk electrolysis of a solution of complex 1 was analyzed by spectroscopic methods confirming the electrochemical synthesis of complex 2. PMID:26496068

  6. Structural and magnetic characterization of a tetranuclear copper(II) cubane stabilized by intramolecular metal cation-π interactions.

    PubMed

    Papadakis, Raffaello; Rivière, Eric; Giorgi, Michel; Jamet, Hélène; Rousselot-Pailley, Pierre; Réglier, Marius; Simaan, A Jalila; Tron, Thierry

    2013-05-20

    A novel tetranuclear copper(II) complex (1) was synthesized from the self-assembly of copper(II) perchlorate and the ligand N-benzyl-1-(2-pyridyl)methaneimine (L(1)). Single-crystal X-ray diffraction studies revealed that complex 1 consists of a Cu4(OH)4 cubane core, where the four copper(II) centers are linked by μ3-hydroxo bridges. Each copper(II) ion is in a distorted square-pyramidal geometry. X-ray analysis also evidenced an unusual metal cation-π interaction between the copper ions and phenyl substituents of the ligand. Calculations based on the density functional theory method were used to quantify the strength of this metal-π interaction, which appears as an important stabilizing parameter of the cubane core, possibly acting as a driving parameter in the self-aggregation process. In contrast, using the ligand N-phenethyl-1-(2-pyridyl)methaneimine (L(2)), which only differs from L(1) by one methylene group, the same synthetic procedure led to a binuclear bis(μ-hydroxo)copper(II) complex (2) displaying intermolecular π-π interactions or, by a slight variation of the experimental conditions, to a mononuclear complex (3). These complexes were studied by X-ray diffraction techniques. The magnetic properties of complexes 1 and 2 are reported and discussed.

  7. Structural characterization of two solvates of a luminescent copper(II) bis­(pyridine)-substituted benzimidazole complex

    PubMed Central

    DeStefano, Matthew R.; Lewis, Robert A.

    2017-01-01

    Copper(II) complexes of benzimidazole are known to exhibit biological activity that makes them of inter­est for chemotherapeutic and other pharmaceutical uses. The complex bis­(acetato-κO){5,6-dimethyl-2-(pyridin-2-yl)-1-[(pyridin-2-yl)meth­yl]-1H-benzimidazole-κ2 N 2,N 3}copper(II), has been prepared. The absorption spectrum has features attributed to intra­ligand and ligand-field transitions and the complex exhibits ligand-centered room-temperature luminescence in solution. The aceto­nitrile monosolvate, [Cu(C2H3O2)2(C20H18N4)]·C2H3N (1), and the ethanol hemisolvate, [Cu(C2H3O2)2(C20H18N4)]·0.5C2H6O (2), have been structurally characterized. Compound 2 has two copper(II) complexes in the asymmetric unit. In both 1 and 2, distorted square-planar N2O2 coordination geometries are observed and the Cu—N(Im) bond distance is slightly shorter than the Cu—N(py) bond distance. Inter­molecular π–π inter­actions are found in 1 and 2. A weak C—H⋯π inter­action is observed in 1. PMID:29152336

  8. Chi-square analysis of the reduction of ATP levels in L-02 hepatocytes by hexavalent chromium.

    PubMed

    Yuan, Yang; Peng, Li; Gong-Hua, Hu; Lu, Dai; Xia-Li, Zhong; Yu, Zhou; Cai-Gao, Zhong

    2012-06-01

    This study explored the reduction of adenosine triphosphate (ATP) levels in L-02 hepatocytes by hexavalent chromium (Cr(VI)) using chi-square analysis. Cells were treated with 2, 4, 8, 16, or 32 μM Cr(VI) for 12, 24, or 36 h. Methyl thiazolyl tetrazolium (MTT) experiments and measurements of intracellular ATP levels were performed by spectrophotometry or bioluminescence assays following Cr(VI) treatment. The chi-square test was used to determine the difference between cell survival rate and ATP levels. For the chi-square analysis, the results of the MTT or ATP experiments were transformed into a relative ratio with respect to the control (%). The relative ATP levels increased at 12 h, decreased at 24 h, and increased slightly again at 36 h following 4, 8, 16, 32 μM Cr(VI) treatment, corresponding to a "V-shaped" curve. Furthermore, the results of the chi-square analysis demonstrated a significant difference of the ATP level in the 32-μM Cr(VI) group (P < 0.05). The results suggest that the chi-square test can be applied to analyze the interference effects of Cr(VI) on ATP levels in L-02 hepatocytes. The decreased ATP levels at 24 h indicated disruption of mitochondrial energy metabolism and the slight increase of ATP levels at 36 h indicated partial recovery of mitochondrial function or activated glycolysis in L-02 hepatocytes.

  9. Iodine Incorporation in Calcite: Insights from Computational and Experimental Study

    NASA Astrophysics Data System (ADS)

    Feng, X.; Redfern, S. A. T.

    2016-12-01

    The incorporation of iodine into calcite is important both in the context of radioactive waste disposal (carbonates seem to be the principal host for iodine at the Hnaford site) as well as in paleoproxy methods applied in paleo-oceanography, where iodine content has been proposed as a proxy for fO2. Here, we report on studies of iodine incorporation into calcite carried out by a combination of earlier X-Ray absorption spectroscopy, Raman spectroscopy, X-Ray diffraction and new ab initio DFT calculations (using VASP). Our results show that iodine is principally incorporated into the calcite lattice as IO3, replacing carbon in the carbonate group. The much larger size of iodine, and different outer shell electronic configuration, leads to a distortion of the calcite structure locally. Our DFT results show that the adjacent layers of CO3 groups are significantly distorted, over a length scale of around 0.5 nm, and that this distortion leads to a slight increase in enthalpy associated with the iodine point defect. The relationship to the distorted structure of calcite II is considered, and the role of iodine as an agent of "internal pressure" will be discussed.

  10. An adaptive optics approach for laser beam correction in turbulence utilizing a modified plenoptic camera

    NASA Astrophysics Data System (ADS)

    Ko, Jonathan; Wu, Chensheng; Davis, Christopher C.

    2015-09-01

    Adaptive optics has been widely used in the field of astronomy to correct for atmospheric turbulence while viewing images of celestial bodies. The slightly distorted incoming wavefronts are typically sensed with a Shack-Hartmann sensor and then corrected with a deformable mirror. Although this approach has proven to be effective for astronomical purposes, a new approach must be developed when correcting for the deep turbulence experienced in ground to ground based optical systems. We propose the use of a modified plenoptic camera as a wavefront sensor capable of accurately representing an incoming wavefront that has been significantly distorted by strong turbulence conditions (C2n <10-13 m- 2/3). An intelligent correction algorithm can then be developed to reconstruct the perturbed wavefront and use this information to drive a deformable mirror capable of correcting the major distortions. After the large distortions have been corrected, a secondary mode utilizing more traditional adaptive optics algorithms can take over to fine tune the wavefront correction. This two-stage algorithm can find use in free space optical communication systems, in directed energy applications, as well as for image correction purposes.

  11. 3-D residual eddy current field characterisation: applied to diffusion weighted magnetic resonance imaging.

    PubMed

    O'Brien, Kieran; Daducci, Alessandro; Kickler, Nils; Lazeyras, Francois; Gruetter, Rolf; Feiweier, Thorsten; Krueger, Gunnar

    2013-08-01

    Clinical use of the Stejskal-Tanner diffusion weighted images is hampered by the geometric distortions that result from the large residual 3-D eddy current field induced. In this work, we aimed to predict, using linear response theory, the residual 3-D eddy current field required for geometric distortion correction based on phantom eddy current field measurements. The predicted 3-D eddy current field induced by the diffusion-weighting gradients was able to reduce the root mean square error of the residual eddy current field to ~1 Hz. The model's performance was tested on diffusion weighted images of four normal volunteers, following distortion correction, the quality of the Stejskal-Tanner diffusion-weighted images was found to have comparable quality to image registration based corrections (FSL) at low b-values. Unlike registration techniques the correction was not hindered by low SNR at high b-values, and results in improved image quality relative to FSL. Characterization of the 3-D eddy current field with linear response theory enables the prediction of the 3-D eddy current field required to correct eddy current induced geometric distortions for a wide range of clinical and high b-value protocols.

  12. Decoupling the Lattice Distortion and Charge Doping Effects on the Phase Transition Behavior of VO2 by Titanium (Ti4+) Doping

    PubMed Central

    Wu, Yanfei; Fan, Lele; Liu, Qinghua; Chen, Shi; Huang, Weifeng; Chen, Feihu; Liao, Guangming; Zou, Chongwen; Wu, Ziyu

    2015-01-01

    The mechanism for regulating the critical temperature (TC) of metal-insulator transition (MIT) in ions-doped VO2 systems is still a matter of debate, in particular, the unclear roles of lattice distortion and charge doping effects. To rule out the charge doping effect on the regulation of TC, we investigated Ti4+-doped VO2 (TixV1-xO2) system. It was observed that the TC of TixV1-xO2 samples first slightly decreased and then increased with increasing Ti concentration. X-ray absorption fine structure (XAFS) spectroscopy was used to explore the electronic states and local lattice structures around both Ti and V atoms in TixV1-xO2 samples. Our results revealed the local structure evolution from the initial anatase to the rutile-like structure around the Ti dopants. Furthermore, the host monoclinic VO2 lattice, specifically, the VO6 octahedra would be subtly distorted by Ti doping. The distortion of VO6 octahedra and the variation of TC showed almost the similar trend, confirming the direct effect of local structural perturbations on the phase transition behavior. By comparing other ion-doping systems, we point out that the charge doping is more effective than the lattice distortion in modulating the MIT behavior of VO2 materials. PMID:25950809

  13. Effect of aluminum on the local structure of silicon in zeolites as studied by Si K edge X-ray absorption near-edge fine structure: spectra simulation with a non-muffin tin atomic background.

    PubMed

    Bugaev, Lusegen A; Bokhoven, Jeroen A van; Khrapko, Valerii V

    2009-04-09

    Experimental Si K edge X-ray absorption near-edge fine structure (XANES) of zeolite faujasite, mordenite, and beta are interpreted by means of the FEFF8 code, replacing the theoretical atomic background mu(0) by a background that was extracted from an experimental spectrum. To some extent, this diminished the effect of the inaccuracy introduced by the MT potential and accounted for the intrinsic loss of photoelectrons. The agreement of the theoretical and experimental spectra at energies above the white lines enabled us to identify structural distortion around silicon, which occurs with increasing aluminum content. The Si K edge XANES spectra are very sensitive to slight distortions in the silicon coordination. Placing an aluminum atom on a nearest neighboring T site causes a distortion in the silicon tetrahedron, shortening one of the silicon-oxygen bonds relative to the other three.

  14. Rate distortion optimal bit allocation methods for volumetric data using JPEG 2000.

    PubMed

    Kosheleva, Olga M; Usevitch, Bryan E; Cabrera, Sergio D; Vidal, Edward

    2006-08-01

    Computer modeling programs that generate three-dimensional (3-D) data on fine grids are capable of generating very large amounts of information. These data sets, as well as 3-D sensor/measured data sets, are prime candidates for the application of data compression algorithms. A very flexible and powerful compression algorithm for imagery data is the newly released JPEG 2000 standard. JPEG 2000 also has the capability to compress volumetric data, as described in Part 2 of the standard, by treating the 3-D data as separate slices. As a decoder standard, JPEG 2000 does not describe any specific method to allocate bits among the separate slices. This paper proposes two new bit allocation algorithms for accomplishing this task. The first procedure is rate distortion optimal (for mean squared error), and is conceptually similar to postcompression rate distortion optimization used for coding codeblocks within JPEG 2000. The disadvantage of this approach is its high computational complexity. The second bit allocation algorithm, here called the mixed model (MM) approach, mathematically models each slice's rate distortion curve using two distinct regions to get more accurate modeling at low bit rates. These two bit allocation algorithms are applied to a 3-D Meteorological data set. Test results show that the MM approach gives distortion results that are nearly identical to the optimal approach, while significantly reducing computational complexity.

  15. An analysis of optical effects caused by thermally induced mirror deformations.

    PubMed

    Ogrodnik, R F

    1970-09-01

    This paper analyzes thermally induced mirror deformations and their resulting wavefront distortions which occur under the conditions of radially nonuniform mirror heating. The analysis is adaptable to heating produced by any radially nonuniform incident radiation. Specific examples of radiation distributions which are considered are the cosine squared and the gaussian and TEM(0, 1) laser distributions. Deformation effects are examined from two aspects, the first of which is the reflected wavefront radial phase distortion profile caused by the thermally induced surface irregularities at the mirror face. These phase distortion effects appear as aberrations in noncoherent optical applications and as the loss of spatial coherence in coherent applications. The second aspect is the gross wavefront bending due to mirror curvature effects. The analysis considers substrate material, geometry, and cooling in order to determine potential deformation controlling factors. Substrate materials are compared, and performance indicators are suggested to aid in selecting an optimum material for a given heating condition. Deformation examples are given for materials of interest and specific absorbed power levels.

  16. Photogrammetric Method and Software for Stream Planform Identification

    NASA Astrophysics Data System (ADS)

    Stonedahl, S. H.; Stonedahl, F.; Lohberg, M. M.; Lusk, K.; Miller, D.

    2013-12-01

    Accurately characterizing the planform of a stream is important for many purposes, including recording measurement and sampling locations, monitoring change due to erosion or volumetric discharge, and spatial modeling of stream processes. While expensive surveying equipment or high resolution aerial photography can be used to obtain planform data, our research focused on developing a close-range photogrammetric method (and accompanying free/open-source software) to serve as a cost-effective alternative. This method involves securing and floating a wooden square frame on the stream surface at several locations, taking photographs from numerous angles at each location, and then post-processing and merging data from these photos using the corners of the square for reference points, unit scale, and perspective correction. For our test field site we chose a ~35m reach along Black Hawk Creek in Sunderbruch Park (Davenport, IA), a small, slow-moving stream with overhanging trees. To quantify error we measured 88 distances between 30 marked control points along the reach. We calculated error by comparing these 'ground truth' distances to the corresponding distances extracted from our photogrammetric method. We placed the square at three locations along our reach and photographed it from multiple angles. The square corners, visible control points, and visible stream outline were hand-marked in these photos using the GIMP (open-source image editor). We wrote an open-source GUI in Java (hosted on GitHub), which allows the user to load marked-up photos, designate square corners and label control points. The GUI also extracts the marked pixel coordinates from the images. We also wrote several scripts (currently in MATLAB) that correct the pixel coordinates for radial distortion using Brown's lens distortion model, correct for perspective by forcing the four square corner pixels to form a parallelogram in 3-space, and rotate the points in order to correctly orient all photos of the same square location. Planform data from multiple photos (and multiple square locations) are combined using weighting functions that mitigate the error stemming from the markup-process, imperfect camera calibration, etc. We have used our (beta) software to mark and process over 100 photos, yielding an average error of only 1.5% relative to our 88 measured lengths. Next we plan to translate the MATLAB scripts into Python and release their source code, at which point only free software, consumer-grade digital cameras, and inexpensive building materials will be needed for others to replicate this method at new field sites. Three sample photographs of the square with the created planform and control points

  17. History, Pseudo-History, Anti-History: How Public School Textbooks Treat Religion. Policy Studies in Education.

    ERIC Educational Resources Information Center

    Bryan, Robert

    American schools use history textbooks that distort history by slighting the influence of religion on customs and institutions. The textbooks used in Montgomery County, Maryland--a highly regarded district--may be considered a sample of those used in the nation's best schools. Yet among these texts there is a remarkable consensus that, after 1700,…

  18. Simulation Study on Fit Indexes in CFA Based on Data with Slightly Distorted Simple Structure

    ERIC Educational Resources Information Center

    Beauducel, Andre; Wittmann, Werner W.

    2005-01-01

    Fit indexes were compared with respect to a specific type of model misspecification. Simple structure was violated with some secondary loadings that were present in the true models that were not specified in the estimated models. The c2 test, Comparative Fit Index, Goodness-of-Fit Index, Incremental Fit Index, Nonnormed Fit Index, root mean…

  19. Orbital angular momentum (OAM) spectrum correction in free space optical communication.

    PubMed

    Liu, Yi-Dong; Gao, Chunqing; Qi, Xiaoqing; Weber, Horst

    2008-05-12

    Orbital angular momentum (OAM) of laser beams has potential application in free space optical communication, but it is sensitive against pointing instabilities of the beam, i.e. shift (lateral displacement) and tilt (deflection of the beam). This work proposes a method to correct the distorted OAM spectrum by using the mean square value of the orbital angular momentum as an indicator. Qualitative analysis is given, and the numerical simulation is carried out for demonstration. The results show that the mean square value can be used to determine the beam axis of the superimposed helical beams. The initial OAM spectrum can be recovered.

  20. Chemical complexity induced local structural distortion in NiCoFeMnCr high-entropy alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fuxiang; Tong, Yang; Jin, Ke

    In order to study chemical complexity-induced lattice distortion in high-entropy alloys, the static Debye–Waller (D-W) factor of NiCoFeMnCr solid solution alloy is measured with low temperature neutron diffraction, ambient X-ray diffraction, and total scattering methods. Here, the static atomic displacement parameter of the multi-element component alloy at 0 K is 0.035–0.041 Å, which is obvious larger than that of element Ni (~0 Å). The atomic pair distance between individual atoms in the alloy investigated with extended X-ray absorption fine structure (EXAFS) measurements indicates that Mn has a slightly larger bond distance (~0.4%) with neighbor atoms than that of others.

  1. Syntheses, Raman spectroscopy and crystal structures of alkali hexa­fluorido­rhenates(IV) revisited

    PubMed Central

    Louis-Jean, James; Salamat, Ashkan; Pham, Chien Thang; Poineau, Frederic

    2018-01-01

    The A 2[ReF6] (A = K, Rb and Cs) salts are isotypic and crystallize in the trigonal space group type P m1, adopting the K2[GeF6] structure type. Common to all A 2[ReF6] structures are slightly distorted octa­hedral [ReF6]2− anions with an average Re—F bond length of 1.951 (8) Å. In those salts, symmetry lowering on the local [ReF6]2− anions from Oh (free anion) to D 3d (solid-state structure) occur. The distortions of the [ReF6]2− anions, as observed in their Raman spectra, are correlated to the size of the counter-cations.

  2. Chemical complexity induced local structural distortion in NiCoFeMnCr high-entropy alloy

    DOE PAGES

    Zhang, Fuxiang; Tong, Yang; Jin, Ke; ...

    2018-06-16

    In order to study chemical complexity-induced lattice distortion in high-entropy alloys, the static Debye–Waller (D-W) factor of NiCoFeMnCr solid solution alloy is measured with low temperature neutron diffraction, ambient X-ray diffraction, and total scattering methods. Here, the static atomic displacement parameter of the multi-element component alloy at 0 K is 0.035–0.041 Å, which is obvious larger than that of element Ni (~0 Å). The atomic pair distance between individual atoms in the alloy investigated with extended X-ray absorption fine structure (EXAFS) measurements indicates that Mn has a slightly larger bond distance (~0.4%) with neighbor atoms than that of others.

  3. Syntheses, Raman spectroscopy and crystal structures of alkali hexafluoridorhenates(IV) revisited

    DOE PAGES

    Louis-Jean, James; Mariappan Balasekaran, Samundeeswari; Smith, Dean; ...

    2018-04-06

    The A 2[ReF 6] (A = K, Rb and Cs) salts are isotypic and crystallize in the trigonal space group type Pmore » $$\\bar{3}$$m1, adopting the K 2[GeF 6] structure type. Common to all A 2[ReF 6] structures are slightly distorted octa­hedral [ReF 6] 2- anions with an average Re—F bond length of 1.951 (8) Å. In these salts, symmetry lowering on the local [ReF 6] 2- anions from O h (free anion) to D 3d (solid-state structure) occur. The distortions of the [ReF 6] 2- anions, as observed in their Raman spectra, are correlated to the size of the counter-cations.« less

  4. Noncircular features in Saturn's rings I: The edge of the B ring

    NASA Astrophysics Data System (ADS)

    Nicholson, Philip D.; French, Richard G.; Hedman, Matthew M.; Marouf, Essam A.; Colwell, Joshua E.

    2014-01-01

    A comprehensive investigation of all available radio and stellar occultation data for the outer edge of Saturn's B ring, spanning the period 1980-2010, confirms that the m = 2 distortion due to the strong Mimas 2:1 inner Lindblad resonance circulates slowly relative to Mimas in a prograde direction, with a frequency ΩL = 0.1819° d-1. Our best-fitting model implies that the radial amplitude of this distortion ranges from a minimum of 3 km to a maximum of 71 km, with short-lived minima recurring every 5.42 yrs. In addition to the dominant m = 2 pattern, the edge of the B ring also exhibits at least four other perturbations. An m = 1 component with a radial amplitude of ˜20 km rotates at a rate very close to the expected local apsidal precession rate of ϖ˜5.059° d-1, while smaller perturbations are seen with m = 3 (amplitude 12.5 km), m = 4 (5.9 km), and m = 5 (5.6 km), each of which has a pattern speed consistent with that expected for a spontaneously-generated "normal mode" (French, R.G. et al. [1988]. Icarus 73, 349-378). Our results for m = 1, m = 2 and m = 3 are compatible with those obtained by Spitale and Porco (Spitale, J.N., Porco, C.C. [2010]. Astron. J. 140, 1747-1757), which were based on Cassini imaging data. The pattern speed of each normal mode slightly exceeds that expected at the mean edge radius, supporting their conclusion that they may represent a series of free modes, each of which is trapped in a narrow region between the mode's resonant radius and the ring's edge. However, both our model and that of Spitale and Porco fail to provide complete descriptions of this surprisingly complex feature, with post-fit root-mean-square residuals of ˜8 km considerably exceeding typical measurement errors of 1 km or less.

  5. Speech evaluation in children with temporomandibular disorders

    PubMed Central

    PIZOLATO, Raquel Aparecida; FERNANDES, Frederico Silva de Freitas; GAVIÃO, Maria Beatriz Duarte

    2011-01-01

    Objectives The aims of this study were to evaluate the influence of temporomandibular disorders (TMD) on speech in children, and to verify the influence of occlusal characteristics. Material and methods Speech and dental occlusal characteristics were assessed in 152 Brazilian children (78 boys and 74 girls), aged 8 to 12 (mean age 10.05 ± 1.39 years) with or without TMD signs and symptoms. The clinical signs were evaluated using the Research Diagnostic Criteria for TMD (RDC/TMD) (axis I) and the symptoms were evaluated using a questionnaire. The following groups were formed: Group TMD (n=40), TMD signs and symptoms (Group S and S, n=68), TMD signs or symptoms (Group S or S, n=33), and without signs and symptoms (Group N, n=11). Articulatory speech disorders were diagnosed during spontaneous speech and repetition of the words using the "Phonological Assessment of Child Speech" for the Portuguese language. It was also applied a list of 40 phonological balanced words, read by the speech pathologist and repeated by the children. Data were analyzed by descriptive statistics, Fisher's exact or Chi-square tests (α=0.05). Results A slight prevalence of articulatory disturbances, such as substitutions, omissions and distortions of the sibilants /s/ and /z/, and no deviations in jaw lateral movements were observed. Reduction of vertical amplitude was found in 10 children, the prevalence being greater in TMD signs and symptoms children than in the normal children. The tongue protrusion in phonemes /t/, /d/, /n/, /l/ and frontal lips in phonemes /s/ and /z/ were the most prevalent visual alterations. There was a high percentage of dental occlusal alterations. Conclusions There was no association between TMD and speech disorders. Occlusal alterations may be factors of influence, allowing distortions and frontal lisp in phonemes /s/ and /z/ and inadequate tongue position in phonemes /t/; /d/; /n/; /l/. PMID:21986655

  6. An Undergraduate Experiment for the Measurement of the Speed of Sound in Air: Phenomena and Discussion

    ERIC Educational Resources Information Center

    Yang, Hujiang; Zhao, Xiaohong; Wang, Xin; Xiao, Jinghua

    2012-01-01

    In this paper, we present and discuss some phenomena in an undergraduate experiment for the measurement of the speed of sound in air. A square wave distorts when connected to a piezoelectric transducer. Moreover, the amplitude of the receiving signal varies with the driving frequency. Comparing with the Gibbs phenomenon, these phenomena can be…

  7. Comparative study of copper(II)-curcumin complexes as superoxide dismutase mimics and free radical scavengers.

    PubMed

    Barik, Atanu; Mishra, Beena; Kunwar, Amit; Kadam, Ramakant M; Shen, Liang; Dutta, Sabari; Padhye, Subhash; Satpati, Ashis K; Zhang, Hong-Yu; Indira Priyadarsini, K

    2007-04-01

    Two stoichiometrically different copper(II) complexes of curcumin (stoichiometry, 1:1 and 1:2 for copper:curcumin), were examined for their superoxide dismutase (SOD) activity, free radical-scavenging ability and antioxidant potential. Both the complexes are soluble in lipids and DMSO. The formation constants of the complexes were determined by voltammetry. EPR spectra of the complexes in DMSO at 77K showed that the 1:2 Cu(II)-curcumin complex is square planar and the 1:1 Cu(II)-curcumin complex is distorted orthorhombic. Cu(II)-curcumin complex (1:1) with larger distortion from square planar structure shows higher SOD activity. These complexes inhibit gamma-radiation induced lipid peroxidation in liposomes and react with DPPH acting as free radical scavengers. One-electron oxidation of the two complexes by radiolytically generated azide radicals in Tx-100 micellar solutions produced phenoxyl radicals, indicating that the phenolic moiety of curcumin in the complexes participates in free radical reactions. Depending on the structure, these two complexes possess different SOD activities, free radical neutralizing abilities and antioxidant potentials. In addition, quantum chemical calculations with density functional theory have been performed to support the experimental observations.

  8. Development of 1-m primary mirror for a spaceborne camera

    NASA Astrophysics Data System (ADS)

    Kihm, Hagyong; Yang, Ho-Soon; Rhee, Hyug-Gyo; Lee, Yun-Woo

    2015-09-01

    We present the development of a 1-m lightweight mirror system for a spaceborne electro-optical camera. The mirror design was optimized to satisfy the performance requirements under launch loads and space environment. The mirror made of Zerodur® has pockets at the back surface and three square bosses at the rim. Metallic bipod flexures support the mirror at the bosses and adjust the mirror's surface distortion due to gravity. We also show an analytical formulation of the bipod flexure, where compliance and stiffness matrices of the bipod flexure are derived to estimate theoretical performance and to make initial design guidelines. Optomechanical performances such as surface distortions due to gravity is explained. Environmental verification of the mirror is achieved by vibration tests.

  9. An Integrated approach (thermodynamic, structural, and computational) to the study of complexation of alkali-metal cations by a lower-rim calix[4]arene amide derivative in acetonitrile.

    PubMed

    Horvat, Gordan; Stilinović, Vladimir; Hrenar, Tomica; Kaitner, Branko; Frkanec, Leo; Tomišić, Vladislav

    2012-06-04

    The calix[4]arene secondary-amide derivative L was synthesized, and its complexation with alkali-metal cations in acetonitrile (MeCN) was studied by means of spectrophotometric, NMR, conductometric, and microcalorimetric titrations at 25 °C. The stability constants of the 1:1 (metal/ligand) complexes determined by different methods were in excellent agreement. For the complexation of M(+) (M = Li, Na, K) with L, both enthalpic and entropic contributions were favorable, with their values and mutual relations being quite strongly dependent on the cation. The enthalpic and overall stability was the largest in the case of the sodium complex. Molecular and crystal structures of free L, its methanol and MeCN solvates, the sodium complex, and its MeCN solvate were determined by single-crystal X-ray diffraction. The inclusion of a MeCN molecule in the calixarene hydrophobic cavity was observed both in solution and in the solid state. This specific interaction was found to be stronger in the case of metal complexes compared to the free ligand because of the better preorganization of the hydrophobic cone to accept the solvent molecule. Density functional theory calculations showed that the flattened cone conformation (C(2) point group) of L was generally more favorable than the square cone conformation (C(4) point group). In the complex with Na(+), L was in square cone conformation, whereas in its adduct with MeCN, the conformation was slightly distorted from the full symmetry. These conformations were in agreement with those observed in the solid state. The classical molecular dynamics simulations indicated that the MeCN molecule enters the L hydrophobic cavity of both the free ligand and its alkali-metal complexes. The inclusion of MeCN in the cone of free L was accompanied by the conformational change from C(2) to C(4) symmetry. As in solution studies, in the case of ML(+) complexes, an allosteric effect was observed: the ligand was already in the appropriate square cone conformation to bind the solvent molecule, allowing it to more easily and faster enter the calixarene cavity.

  10. Constraints on μ-distortion fluctuations and primordial non-Gaussianity from Planck data

    NASA Astrophysics Data System (ADS)

    Khatri, Rishi; Sunyaev, Rashid

    2015-09-01

    We use the Planck HFI channel maps to make an all sky map of μ-distortion fluctuations. Our μ-type distortion map is dominated by the y-type distortion contamination from the hot gas in the low redshift Universe and we can thus only place upper limits on the μ-type distortion fluctuations. For the amplitude of μ-type distortions on 10' scales we get the limit on root mean square (rms) value μrms10'< 6.4× 10-6, a limit 14 times stronger than the COBE-FIRAS (95% confidence) limit on the mean of langle μ rangle<90× 10-6. Using our maps we also place strong upper limits on the auto angular power spectrum of μ, Clμμ and the cross angular power spectrum of μ with the CMB temperature anisotropies, Clμ T. The strongest observational limits are on the largest scales, l(l+1)/(2π)Clμμ|l=2-26<(2.3± 1.0)× 10-12 and l(l+1)/(2π)Clμ T|l=2-26<(2.6± 2.6)× 10-12 K. Our observational limits can be used to constrain new physics which can create spatially varying energy release in the early Universe between redshifts 5× 104lesssim zlesssim 2× 106. We specifically apply our observational results to constrain the primordial non-Gaussianity of the local type, when the source of μ-distortion is Silk damping, for very squeezed configurations with the wavenumber for the short wavelength mode 46 lesssim kS lesssim 104 Mpc-1 and for the long wavelength mode kL≈ 10-3 Mpc-1. Our limits on the primordial non-Gaussianity parameters are fNL<105, τNL<1.4× 1011 for kS/kL≈ 5× 104- 107. We also give a new derivation of the evolution of the μ-distortion fluctuations through the y-distortion era and the recombination epoch until today resulting in very simple expressions for the cross and auto power spectra in the squeezed limit. We also introduce mixing of Bose-Einstein spectra due to Silk damping and yBE-type distortions. The μ-type distortion map and masks are now publicly available.

  11. Intelligent correction of laser beam propagation through turbulent media using adaptive optics

    NASA Astrophysics Data System (ADS)

    Ko, Jonathan; Wu, Chensheng; Davis, Christopher C.

    2014-10-01

    Adaptive optics methods have long been used by researchers in the astronomy field to retrieve correct images of celestial bodies. The approach is to use a deformable mirror combined with Shack-Hartmann sensors to correct the slightly distorted image when it propagates through the earth's atmospheric boundary layer, which can be viewed as adding relatively weak distortion in the last stage of propagation. However, the same strategy can't be easily applied to correct images propagating along a horizontal deep turbulence path. In fact, when turbulence levels becomes very strong (Cn 2>10-13 m-2/3), limited improvements have been made in correcting the heavily distorted images. We propose a method that reconstructs the light field that reaches the camera, which then provides information for controlling a deformable mirror. An intelligent algorithm is applied that provides significant improvement in correcting images. In our work, the light field reconstruction has been achieved with a newly designed modified plenoptic camera. As a result, by actively intervening with the coherent illumination beam, or by giving it various specific pre-distortions, a better (less turbulence affected) image can be obtained. This strategy can also be expanded to much more general applications such as correcting laser propagation through random media and can also help to improve designs in free space optical communication systems.

  12. Distortion of CAD-CAM-fabricated implant-fixed titanium and zirconia complete dental prosthesis frameworks.

    PubMed

    Al-Meraikhi, Hadi; Yilmaz, Burak; McGlumphy, Edwin; Brantley, William A; Johnston, William M

    2018-01-01

    Computer-aided design and computer-aided manufacturing (CAD-CAM)-fabricated titanium and zirconia implant-supported fixed dental prostheses have become increasingly popular for restoring patients with complete edentulism. However, the distortion level of these frameworks is not well known. The purpose of this in vitro study was to compare the 3-dimensional (3D) distortion of CAD-CAM zirconia and titanium implant-fixed screw-retained complete dental prostheses. A master edentulous model with 4 implants at the positions of the maxillary first molars and canines was used. Multiunit abutments (Nobel Biocare) secured to the model were digitally scanned using scan bodies and a laboratory scanner (S600 ARTI; Zirkonzahn). Titanium (n=5) and zirconia (n=5) frameworks were milled using a CAD-CAM system (Zirkonzahn M1; Zirkonzahn). All frameworks were scanned using an industrial computed tomography (CT) scanner (Nikon/X-Tek XT H 225kV MCT Micro-Focus). The direct CT scans were reconstructed to generate standard tessellation language (STL) files. To calculate the 3D distortion of the frameworks, STL files of the CT scans were aligned to the CAD model using a sum of the least squares best-fit algorithm. Surface comparison points were placed on the CAD model on the midfacial aspect of all teeth. The 3D distortion of each direct scan to the CAD model was calculated. In addition, color maps of the scan-to-CAD comparison were constructed using a ±0.500 mm color scale range. Both materials exhibited distortion; however, no significant difference was found in the amount of distortion from the CAD model between the materials (P=.747). Absolute values of deviations from the CAD model were evident in the x and y plane and less so in the z direction. Zirconia and titanium frameworks showed similar 3D distortion compared with the CAD model for the tested CAD-CAM and implant systems. The distortion was more pronounced in the horizontal and sagittal plane than in the vertical plane. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  13. Radargrammetric DSM generation in mountainous areas through adaptive-window least squares matching constrained by enhanced epipolar geometry

    NASA Astrophysics Data System (ADS)

    Dong, Yuting; Zhang, Lu; Balz, Timo; Luo, Heng; Liao, Mingsheng

    2018-03-01

    Radargrammetry is a powerful tool to construct digital surface models (DSMs) especially in heavily vegetated and mountainous areas where SAR interferometry (InSAR) technology suffers from decorrelation problems. In radargrammetry, the most challenging step is to produce an accurate disparity map through massive image matching, from which terrain height information can be derived using a rigorous sensor orientation model. However, precise stereoscopic SAR (StereoSAR) image matching is a very difficult task in mountainous areas due to the presence of speckle noise and dissimilar geometric/radiometric distortions. In this article, an adaptive-window least squares matching (AW-LSM) approach with an enhanced epipolar geometric constraint is proposed to robustly identify homologous points after compensation for radiometric discrepancies and geometric distortions. The matching procedure consists of two stages. In the first stage, the right image is re-projected into the left image space to generate epipolar images using rigorous imaging geometries enhanced with elevation information extracted from the prior DEM data e.g. SRTM DEM instead of the mean height of the mapped area. Consequently, the dissimilarities in geometric distortions between the left and right images are largely reduced, and the residual disparity corresponds to the height difference between true ground surface and the prior DEM. In the second stage, massive per-pixel matching between StereoSAR epipolar images identifies the residual disparity. To ensure the reliability and accuracy of the matching results, we develop an iterative matching scheme in which the classic cross correlation matching is used to obtain initial results, followed by the least squares matching (LSM) to refine the matching results. An adaptively resizing search window strategy is adopted during the dense matching step to help find right matching points. The feasibility and effectiveness of the proposed approach is demonstrated using Stripmap and Spotlight mode TerraSAR-X stereo data pairs covering Mount Song in central China. Experimental results show that the proposed method can provide a robust and effective matching tool for radargrammetry in mountainous areas.

  14. Scalable L-infinite coding of meshes.

    PubMed

    Munteanu, Adrian; Cernea, Dan C; Alecu, Alin; Cornelis, Jan; Schelkens, Peter

    2010-01-01

    The paper investigates the novel concept of local-error control in mesh geometry encoding. In contrast to traditional mesh-coding systems that use the mean-square error as target distortion metric, this paper proposes a new L-infinite mesh-coding approach, for which the target distortion metric is the L-infinite distortion. In this context, a novel wavelet-based L-infinite-constrained coding approach for meshes is proposed, which ensures that the maximum error between the vertex positions in the original and decoded meshes is lower than a given upper bound. Furthermore, the proposed system achieves scalability in L-infinite sense, that is, any decoding of the input stream will correspond to a perfectly predictable L-infinite distortion upper bound. An instantiation of the proposed L-infinite-coding approach is demonstrated for MESHGRID, which is a scalable 3D object encoding system, part of MPEG-4 AFX. In this context, the advantages of scalable L-infinite coding over L-2-oriented coding are experimentally demonstrated. One concludes that the proposed L-infinite mesh-coding approach guarantees an upper bound on the local error in the decoded mesh, it enables a fast real-time implementation of the rate allocation, and it preserves all the scalability features and animation capabilities of the employed scalable mesh codec.

  15. Breast tissue decomposition with spectral distortion correction: A postmortem study

    PubMed Central

    Ding, Huanjun; Zhao, Bo; Baturin, Pavlo; Behroozi, Farnaz; Molloi, Sabee

    2014-01-01

    Purpose: To investigate the feasibility of an accurate measurement of water, lipid, and protein composition of breast tissue using a photon-counting spectral computed tomography (CT) with spectral distortion corrections. Methods: Thirty-eight postmortem breasts were imaged with a cadmium-zinc-telluride-based photon-counting spectral CT system at 100 kV. The energy-resolving capability of the photon-counting detector was used to separate photons into low and high energy bins with a splitting energy of 42 keV. The estimated mean glandular dose for each breast ranged from 1.8 to 2.2 mGy. Two spectral distortion correction techniques were implemented, respectively, on the raw images to correct the nonlinear detector response due to pulse pileup and charge-sharing artifacts. Dual energy decomposition was then used to characterize each breast in terms of water, lipid, and protein content. In the meantime, the breasts were chemically decomposed into their respective water, lipid, and protein components to provide a gold standard for comparison with dual energy decomposition results. Results: The accuracy of the tissue compositional measurement with spectral CT was determined by comparing to the reference standard from chemical analysis. The averaged root-mean-square error in percentage composition was reduced from 15.5% to 2.8% after spectral distortion corrections. Conclusions: The results indicate that spectral CT can be used to quantify the water, lipid, and protein content in breast tissue. The accuracy of the compositional analysis depends on the applied spectral distortion correction technique. PMID:25281953

  16. Comparison of the plenoptic sensor and the Shack-Hartmann sensor.

    PubMed

    Ko, Jonathan; Davis, Christopher C

    2017-05-01

    Adaptive optics has been successfully used for decades in the field of astronomy to correct for atmospheric turbulence. A well-developed example involves sensing the slightly distorted wavefronts with a Shack-Hartmann sensor and then correcting them with a phase conjugate device. While the Shack-Hartmann sensor has proven effective for astronomical purposes, it has been less successful for use in deep turbulence conditions often found in ground-to-ground-based optical systems. We have studied an alternative way to sense and correct distorted wavefronts using a plenoptic sensor. We review the design of the plenoptic sensor and directly compare it with the well-known Shack-Hartmann sensor. An experimental comparison of the plenoptic sensor and the Shack-Hartmann sensor is performed to highlight their differences in real-world atmospheric turbulence conditions.

  17. Cortical dipole imaging using truncated total least squares considering transfer matrix error.

    PubMed

    Hori, Junichi; Takeuchi, Kosuke

    2013-01-01

    Cortical dipole imaging has been proposed as a method to visualize electroencephalogram in high spatial resolution. We investigated the inverse technique of cortical dipole imaging using a truncated total least squares (TTLS). The TTLS is a regularization technique to reduce the influence from both the measurement noise and the transfer matrix error caused by the head model distortion. The estimation of the regularization parameter was also investigated based on L-curve. The computer simulation suggested that the estimation accuracy was improved by the TTLS compared with Tikhonov regularization. The proposed method was applied to human experimental data of visual evoked potentials. We confirmed the TTLS provided the high spatial resolution of cortical dipole imaging.

  18. Peelle's pertinent puzzle using the Monte Carlo technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawano, Toshihiko; Talou, Patrick; Burr, Thomas

    2009-01-01

    We try to understand the long-standing problem of the Peelle's Pertinent Puzzle (PPP) using the Monte Carlo technique. We allow the probability density functions to be any kind of form to assume the impact of distribution, and obtain the least-squares solution directly from numerical simulations. We found that the standard least squares method gives the correct answer if a weighting function is properly provided. Results from numerical simulations show that the correct answer of PPP is 1.1 {+-} 0.25 if the common error is multiplicative. The thought-provoking answer of 0.88 is also correct, if the common error is additive, andmore » if the error is proportional to the measured values. The least squares method correctly gives us the most probable case, where the additive component has a negative value. Finally, the standard method fails for PPP due to a distorted (non Gaussian) joint distribution.« less

  19. Cost-Sharing of Ecological Construction Based on Trapezoidal Intuitionistic Fuzzy Cooperative Games.

    PubMed

    Liu, Jiacai; Zhao, Wenjian

    2016-11-08

    There exist some fuzziness and uncertainty in the process of ecological construction. The aim of this paper is to develop a direct and an effective simplified method for obtaining the cost-sharing scheme when some interested parties form a cooperative coalition to improve the ecological environment of Min River together. Firstly, we propose the solution concept of the least square prenucleolus of cooperative games with coalition values expressed by trapezoidal intuitionistic fuzzy numbers. Then, based on the square of the distance in the numerical value between two trapezoidal intuitionistic fuzzy numbers, we establish a corresponding quadratic programming model to obtain the least square prenucleolus, which can effectively avoid the information distortion and uncertainty enlargement brought about by the subtraction of trapezoidal intuitionistic fuzzy numbers. Finally, we give a numerical example about the cost-sharing of ecological construction in Fujian Province in China to show the validity, applicability, and advantages of the proposed model and method.

  20. Coordination polyhedron and chemical vapor deposition of Cu(hfacac)2(t-BuNH2).

    PubMed

    Woo, Kyoungja; Paek, Hojeong; Lee, Wan In

    2003-10-06

    A new pentacoordinate Cu(II) complex, Cu(hfacac)(2)(t-BuNH(2)) [hfacac = CF(3)C(O)CHC(O)CF(3)(-), t-BuNH(2) = tert-butylamine], has been synthesized and structurally characterized. Interestingly, the structure of a single crystal occurred as square pyramidal with one O atom at the apical position and one N and three O atoms at the basal positions, showing a serious degree of distortion. This contrasts with the square-pyramidal structure of Cu(hfacac)(2)L (L = H(2)O and pyrazine), which has the L ligand at the axial position. In the Cu(hfacac)(2)(t-BuNH(2)) complex, the t-BuNH(2) ligand is placed at an equatorial position with a lowered angle by 19.9(2) degrees from the basal plane. This distortion seems to reduce sigma influence and steric hindrance and so stabilizes the square-pyramidal geometry. This precursor has a lower melting point and superior stability to air, moisture, and heat than the Cu(hfacac)(2)(xH(2)O) precursor. The deposition rate of copper oxide film on a Pt layer above 450 degrees C was nearly constant with increasing temperature, indicating a mass transport limited reaction. Therefore it would be a useful metal organic chemical vapor deposition precursor for the fabrication of copper oxide film or superconducting materials. Crystal data for Cu(hfacac)(2)(t-BuNH(2)): 293(2) K, a = 9.6699(4) A, b = 18.0831(10) A, c = 12.8864(11) A, beta = 111.839(5) degrees, monoclinic, space group P2(1)/c, Z = 4.

  1. TESTS OF LOW-FREQUENCY GEOMETRIC DISTORTIONS IN LANDSAT 4 IMAGES.

    USGS Publications Warehouse

    Batson, R.M.; Borgeson, W.T.; ,

    1985-01-01

    Tests were performed to investigate the geometric characteristics of Landsat 4 images. The first set of tests was designed to determine the extent of image distortion caused by the physical process of writing the Landsat 4 images on film. The second was designed to characterize the geometric accuracies inherent in the digital images themselves. Test materials consisted of film images of test targets generated by the Laser Beam Recorders at Sioux Falls, the Optronics* Photowrite film writer at Goddard Space Flight Center, and digital image files of a strip 600 lines deep across the full width of band 5 of the Washington, D. C. Thematic Mapper scene. The tests were made by least-squares adjustment of an array of measured image points to a corresponding array of control points.

  2. High Reynolds Number Investigation of a Flush-Mounted, S-Duct Inlet With Large Amounts of Boundary Layer Ingestion

    NASA Technical Reports Server (NTRS)

    Berrier, Bobby L.; Carter, Melissa B.; Allan, Brian G.

    2005-01-01

    An experimental investigation of a flush-mounted, S-duct inlet with large amounts of boundary layer ingestion has been conducted at Reynolds numbers up to full scale. The study was conducted in the NASA Langley Research Center 0.3-Meter Transonic Cryogenic Tunnel. In addition, a supplemental computational study on one of the inlet configurations was conducted using the Navier-Stokes flow solver, OVERFLOW. Tests were conducted at Mach numbers from 0.25 to 0.83, Reynolds numbers (based on aerodynamic interface plane diameter) from 5.1 million to 13.9 million (full-scale value), and inlet mass-flow ratios from 0.29 to 1.22, depending on Mach number. Results of the study indicated that increasing Mach number, increasing boundary layer thickness (relative to inlet height) or ingesting a boundary layer with a distorted profile decreased inlet performance. At Mach numbers above 0.4, increasing inlet airflow increased inlet pressure recovery but also increased distortion. Finally, inlet distortion was found to be relatively insensitive to Reynolds number, but pressure recovery increased slightly with increasing Reynolds number.

  3. Volume and tissue composition preserving deformation of breast CT images to simulate breast compression in mammographic imaging

    NASA Astrophysics Data System (ADS)

    Han, Tao; Chen, Lingyun; Lai, Chao-Jen; Liu, Xinming; Shen, Youtao; Zhong, Yuncheng; Ge, Shuaiping; Yi, Ying; Wang, Tianpeng; Shaw, Chris C.

    2009-02-01

    Images of mastectomy breast specimens have been acquired with a bench top experimental Cone beam CT (CBCT) system. The resulting images have been segmented to model an uncompressed breast for simulation of various CBCT techniques. To further simulate conventional or tomosynthesis mammographic imaging for comparison with the CBCT technique, a deformation technique was developed to convert the CT data for an uncompressed breast to a compressed breast without altering the breast volume or regional breast density. With this technique, 3D breast deformation is separated into two 2D deformations in coronal and axial views. To preserve the total breast volume and regional tissue composition, each 2D deformation step was achieved by altering the square pixels into rectangular ones with the pixel areas unchanged and resampling with the original square pixels using bilinear interpolation. The compression was modeled by first stretching the breast in the superior-inferior direction in the coronal view. The image data were first deformed by distorting the voxels with a uniform distortion ratio. These deformed data were then deformed again using distortion ratios varying with the breast thickness and re-sampled. The deformation procedures were applied in the axial view to stretch the breast in the chest wall to nipple direction while shrinking it in the mediolateral to lateral direction re-sampled and converted into data for uniform cubic voxels. Threshold segmentation was applied to the final deformed image data to obtain the 3D compressed breast model. Our results show that the original segmented CBCT image data were successfully converted into those for a compressed breast with the same volume and regional density preserved. Using this compressed breast model, conventional and tomosynthesis mammograms were simulated for comparison with CBCT.

  4. Using a plenoptic camera to measure distortions in wavefronts affected by atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Eslami, Mohammed; Wu, Chensheng; Rzasa, John; Davis, Christopher C.

    2012-10-01

    Ideally, as planar wave fronts travel through an imaging system, all rays, or vectors pointing in the direction of the propagation of energy are parallel, and thus the wave front is focused to a particular point. If the wave front arrives at an imaging system with energy vectors that point in different directions, each part of the wave front will be focused at a slightly different point on the sensor plane and result in a distorted image. The Hartmann test, which involves the insertion of a series of pinholes between the imaging system and the sensor plane, was developed to sample the wavefront at different locations and measure the distortion angles at different points in the wave front. An adaptive optic system, such as a deformable mirror, is then used to correct for these distortions and allow the planar wave front to focus at the point desired on the sensor plane, thereby correcting the distorted image. The apertures of a pinhole array limit the amount of light that reaches the sensor plane. By replacing the pinholes with a microlens array each bundle of rays is focused to brighten the image. Microlens arrays are making their way into newer imaging technologies, such as "light field" or "plenoptic" cameras. In these cameras, the microlens array is used to recover the ray information of the incoming light by using post processing techniques to focus on objects at different depths. The goal of this paper is to demonstrate the use of these plenoptic cameras to recover the distortions in wavefronts. Taking advantage of the microlens array within the plenoptic camera, CODE-V simulations show that its performance can provide more information than a Shack-Hartmann sensor. Using the microlens array to retrieve the ray information and then backstepping through the imaging system provides information about distortions in the arriving wavefront.

  5. JPEG 2000 Encoding with Perceptual Distortion Control

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Liu, Zhen; Karam, Lina J.

    2008-01-01

    An alternative approach has been devised for encoding image data in compliance with JPEG 2000, the most recent still-image data-compression standard of the Joint Photographic Experts Group. Heretofore, JPEG 2000 encoding has been implemented by several related schemes classified as rate-based distortion-minimization encoding. In each of these schemes, the end user specifies a desired bit rate and the encoding algorithm strives to attain that rate while minimizing a mean squared error (MSE). While rate-based distortion minimization is appropriate for transmitting data over a limited-bandwidth channel, it is not the best approach for applications in which the perceptual quality of reconstructed images is a major consideration. A better approach for such applications is the present alternative one, denoted perceptual distortion control, in which the encoding algorithm strives to compress data to the lowest bit rate that yields at least a specified level of perceptual image quality. Some additional background information on JPEG 2000 is prerequisite to a meaningful summary of JPEG encoding with perceptual distortion control. The JPEG 2000 encoding process includes two subprocesses known as tier-1 and tier-2 coding. In order to minimize the MSE for the desired bit rate, a rate-distortion- optimization subprocess is introduced between the tier-1 and tier-2 subprocesses. In tier-1 coding, each coding block is independently bit-plane coded from the most-significant-bit (MSB) plane to the least-significant-bit (LSB) plane, using three coding passes (except for the MSB plane, which is coded using only one "clean up" coding pass). For M bit planes, this subprocess involves a total number of (3M - 2) coding passes. An embedded bit stream is then generated for each coding block. Information on the reduction in distortion and the increase in the bit rate associated with each coding pass is collected. This information is then used in a rate-control procedure to determine the contribution of each coding block to the output compressed bit stream.

  6. Estimators of The Magnitude-Squared Spectrum and Methods for Incorporating SNR Uncertainty

    PubMed Central

    Lu, Yang; Loizou, Philipos C.

    2011-01-01

    Statistical estimators of the magnitude-squared spectrum are derived based on the assumption that the magnitude-squared spectrum of the noisy speech signal can be computed as the sum of the (clean) signal and noise magnitude-squared spectra. Maximum a posterior (MAP) and minimum mean square error (MMSE) estimators are derived based on a Gaussian statistical model. The gain function of the MAP estimator was found to be identical to the gain function used in the ideal binary mask (IdBM) that is widely used in computational auditory scene analysis (CASA). As such, it was binary and assumed the value of 1 if the local SNR exceeded 0 dB, and assumed the value of 0 otherwise. By modeling the local instantaneous SNR as an F-distributed random variable, soft masking methods were derived incorporating SNR uncertainty. The soft masking method, in particular, which weighted the noisy magnitude-squared spectrum by the a priori probability that the local SNR exceeds 0 dB was shown to be identical to the Wiener gain function. Results indicated that the proposed estimators yielded significantly better speech quality than the conventional MMSE spectral power estimators, in terms of yielding lower residual noise and lower speech distortion. PMID:21886543

  7. [Locally weighted least squares estimation of DPOAE evoked by continuously sweeping primaries].

    PubMed

    Han, Xiaoli; Fu, Xinxing; Cui, Jie; Xiao, Ling

    2013-12-01

    Distortion product otoacoustic emission (DPOAE) signal can be used for diagnosis of hearing loss so that it has an important clinical value. Continuously using sweeping primaries to measure DPOAE provides an efficient tool to record DPOAE data rapidly when DPOAE is measured in a large frequency range. In this paper, locally weighted least squares estimation (LWLSE) of 2f1-f2 DPOAE is presented based on least-squares-fit (LSF) algorithm, in which DPOAE is evoked by continuously sweeping tones. In our study, we used a weighted error function as the loss function and the weighting matrixes in the local sense to obtain a smaller estimated variance. Firstly, ordinary least squares estimation of the DPOAE parameters was obtained. Then the error vectors were grouped and the different local weighting matrixes were calculated in each group. And finally, the parameters of the DPOAE signal were estimated based on least squares estimation principle using the local weighting matrixes. The simulation results showed that the estimate variance and fluctuation errors were reduced, so the method estimates DPOAE and stimuli more accurately and stably, which facilitates extraction of clearer DPOAE fine structure.

  8. A 2 epoch proper motion catalogue from the UKIDSS Large Area Survey

    NASA Astrophysics Data System (ADS)

    Smith, Leigh; Lucas, Phil; Burningham, Ben; Jones, Hugh; Pinfield, David; Smart, Ricky; Andrei, Alexandre

    2013-04-01

    The UKIDSS Large Area Survey (LAS) began in 2005, with the start of the UKIDSS program as a 7 year effort to survey roughly 4000 square degrees at high galactic latitudes in Y, J, H and K bands. The survey also included a significant quantity of 2-epoch J band observations, with epoch baselines ranging from 2 to 7 years. We present a proper motion catalogue for the 1500 square degrees of the 2 epoch LAS data, which includes some 800,000 sources with motions detected above the 5σ level. We developed a bespoke proper motion pipeline which applies a source-unique second order polynomial transformation to UKIDSS array coordinates of each source to counter potential local non-uniformity in the focal plane. Our catalogue agrees well with the proper motion data supplied in the current WFCAM Science Archive (WSA) DR9 catalogue where there is overlap, and in various optical catalogues, but it benefits from some improvements. One improvement is that we provide absolute proper motions, using LAS galaxies for the relative to absolute correction. Also, by using unique, local, 2nd order polynomial tranformations, as opposed to the linear transformations in the WSA, we correct better for any local distortions in the focal plane, not including the radial distortion that is removed by their pipeline.

  9. A masked least-squares smoothing procedure for artifact reduction in scanning-EMG recordings.

    PubMed

    Corera, Íñigo; Eciolaza, Adrián; Rubio, Oliver; Malanda, Armando; Rodríguez-Falces, Javier; Navallas, Javier

    2018-01-11

    Scanning-EMG is an electrophysiological technique in which the electrical activity of the motor unit is recorded at multiple points along a corridor crossing the motor unit territory. Correct analysis of the scanning-EMG signal requires prior elimination of interference from nearby motor units. Although the traditional processing based on the median filtering is effective in removing such interference, it distorts the physiological waveform of the scanning-EMG signal. In this study, we describe a new scanning-EMG signal processing algorithm that preserves the physiological signal waveform while effectively removing interference from other motor units. To obtain a cleaned-up version of the scanning signal, the masked least-squares smoothing (MLSS) algorithm recalculates and replaces each sample value of the signal using a least-squares smoothing in the spatial dimension, taking into account the information of only those samples that are not contaminated with activity of other motor units. The performance of the new algorithm with simulated scanning-EMG signals is studied and compared with the performance of the median algorithm and tested with real scanning signals. Results show that the MLSS algorithm distorts the waveform of the scanning-EMG signal much less than the median algorithm (approximately 3.5 dB gain), being at the same time very effective at removing interference components. Graphical Abstract The raw scanning-EMG signal (left figure) is processed by the MLSS algorithm in order to remove the artifact interference. Firstly, artifacts are detected from the raw signal, obtaining a validity mask (central figure) that determines the samples that have been contaminated by artifacts. Secondly, a least-squares smoothing procedure in the spatial dimension is applied to the raw signal using the not contaminated samples according to the validity mask. The resulting MLSS-processed scanning-EMG signal (right figure) is clean of artifact interference.

  10. Effects of Mn Substitution on the Thermoelectric Properties and Thermal Excitations of the Electron-doped Perovskite Sr1-xLaxTiO3

    NASA Astrophysics Data System (ADS)

    Okuda, Tetsuji; Hata, Hiroto; Eto, Takahiro; Sobaru, Shogo; Oda, Ryosuke; Kaji, Hiroki; Nishina, Kousuke; Kuwahara, Hideki; Nakamura, Mitsutaka; Kajimoto, Ryoichi

    2016-09-01

    We studied how Mn substitution affects the thermoelectric properties and thermal excitations of the electron-doped perovskite Sr1-xLaxTiO3 by measuring its electrical and thermal transport properties, magnetization, specific heat, and inelastic neutron scattering. Slight Mn substitution with the lattice defects enhanced the Seebeck coefficient, perhaps because of coupling between itinerant electrons and localized spins or between itinerant electrons and local lattice distortion around Mn3+ ions, while it enhanced anharmonic lattice vibrations, which effectively suppressed thermal conductivity in a state of high electrical conductivity. Consequently, slight Mn substitution increased the dimensionless thermoelectric figure of merit for Sr1-xLaxTiO3 near room temperature.

  11. Modified plenoptic camera for phase and amplitude wavefront sensing

    NASA Astrophysics Data System (ADS)

    Wu, Chensheng; Davis, Christopher C.

    2013-09-01

    Shack-Hartmann sensors have been widely applied in wavefront sensing. However, they are limited to measuring slightly distorted wavefronts whose local tilt doesn't surpass the numerical aperture of its micro-lens array and cross talk of incident waves on the mrcro-lens array should be strictly avoided. In medium to strong turbulence cases of optic communication, where large jitter in angle of arrival and local interference caused by break-up of beam are common phenomena, Shack-Hartmann sensors no longer serve as effective tools in revealing distortions in a signal wave. Our design of a modified Plenoptic Camera shows great potential in observing and extracting useful information from severely disturbed wavefronts. Furthermore, by separating complex interference patterns into several minor interference cases, it may also be capable of telling regional phase difference of coherently illuminated objects.

  12. [N,N-Bis(2,6-diisopropyl­phen­yl)pent-2-ene-2,4-diiminato(1−)]bis­(1,2,4-diaza­phosphol-1-yl)aluminium(III)

    PubMed Central

    Yang, Dongming; Pi, Chengfu; Ding, Yuqiang; Zheng, Wenjun

    2010-01-01

    In the title compound, [Al(C29H41N2)(C2H2N2P)2], the AlIII atom is coordinated by four N atoms from β-diketiminate and 1,2,4-diaza­phospho­lide ligands in a slightly distorted tetra­hedral fashion. PMID:21589338

  13. Geometric isomerism in pentacoordinate Cu2+ complexes: equilibrium, kinetic, and density functional theory studies reveal the existence of equilibrium between square pyramidal and trigonal bipyramidal forms for a tren-derived ligand.

    PubMed

    Algarra, Andrés G; Basallote, Manuel G; Castillo, Carmen E; Clares, M Paz; Ferrer, Armando; García-España, Enrique; Llinares, José M; Máñez, M Angeles; Soriano, Conxa

    2009-02-02

    A ligand (L1) (bis(aminoethyl)[2-(4-quinolylmethyl)aminoethyl]amine) containing a 4-quinolylmethyl group attached to one of the terminal amino groups of tris(2-aminoethyl)amine (tren) has been prepared, and its protonation constants and stability constants for the formation of Cu(2+) complexes have been determined. Kinetic studies on the formation of Cu(2+) complexes in slightly acidic solutions and on the acid-promoted complex decomposition strongly suggest that the Cu(2+)-L1 complex exists in solution as a mixture of two species, one of them showing a trigonal bipyramidal (tbp) coordination environment with an absorption maximum at 890 nm in the electronic spectrum, and the other one being square pyramidal (sp) with a maximum at 660 nm. In acidic solution only a species with tbp geometry is formed, whereas in neutral and basic solutions a mixture of species with tbp and sp geometries is formed. The results of density functional theory (DFT) calculations indicate that these results can be rationalized by invoking the existence of an equilibrium of hydrolysis of the Cu-N bond with the amino group supporting the quinoline ring so that CuL1(2+) would be actually a mixture of tbp [CuL1(H(2)O)](2+) and sp [CuL1(H(2)O)(2)](2+). As there are many Cu(2+)-polyamine complexes with electronic spectra that show two overlapping bands at wavelengths close to those observed for the Cu(2+)-L1 complex, the existence of this kind of equilibrium between species with two different geometries can be quite common in the chemistry of these compounds. A correlation found between the position of the absorption maximum and the tau parameter measuring the distortion from the idealized tbp and sp geometries can be used to estimate the actual geometry in solution of this kind of complex.

  14. JASMINE -- Japan Astrometry Satellite Mission for INfrared Exploration: Data Analysis and Accuracy Assessment with a Kalman Filter

    NASA Astrophysics Data System (ADS)

    Yamada, Y.; Shimokawa, T.; Shinomoto, S. Yano, T.; Gouda, N.

    2009-09-01

    For the purpose of determining the celestial coordinates of stellar positions, consecutive observational images are laid overlapping each other with clues of stars belonging to multiple plates. In the analysis, one has to estimate not only the coordinates of individual plates, but also the possible expansion and distortion of the frame. This problem reduces to a least-squares fit that can in principle be solved by a huge matrix inversion, which is, however, impracticable. Here, we propose using Kalman filtering to perform the least-squares fit and implement a practical iterative algorithm. We also estimate errors associated with this iterative method and suggest a design of overlapping plates to minimize the error.

  15. Response functions for dimers and square-symmetric molecules in four-wave-mixing experiments with polarized light

    NASA Astrophysics Data System (ADS)

    Smith, Eric Ryan; Farrow, Darcie A.; Jonas, David M.

    2005-07-01

    Four-wave-mixing nonlinear-response functions are given for intermolecular and intramolecular vibrations of a perpendicular dimer and intramolecular vibrations of a square-symmetric molecule containing a doubly degenerate state. A two-dimensional particle-in-a-box model is used to approximate the electronic wave functions and obtain harmonic potentials for nuclear motion. Vibronic interactions due to symmetry-lowering distortions along Jahn-Teller active normal modes are discussed. Electronic dephasing due to nuclear motion along both symmetric and asymmetric normal modes is included in these response functions, but population transfer between states is not. As an illustration, these response functions are used to predict the pump-probe polarization anisotropy in the limit of impulsive excitation.

  16. Drawing road networks with focus regions.

    PubMed

    Haunert, Jan-Henrik; Sering, Leon

    2011-12-01

    Mobile users of maps typically need detailed information about their surroundings plus some context information about remote places. In order to avoid that the map partly gets too dense, cartographers have designed mapping functions that enlarge a user-defined focus region--such functions are sometimes called fish-eye projections. The extra map space occupied by the enlarged focus region is compensated by distorting other parts of the map. We argue that, in a map showing a network of roads relevant to the user, distortion should preferably take place in those areas where the network is sparse. Therefore, we do not apply a predefined mapping function. Instead, we consider the road network as a graph whose edges are the road segments. We compute a new spatial mapping with a graph-based optimization approach, minimizing the square sum of distortions at edges. Our optimization method is based on a convex quadratic program (CQP); CQPs can be solved in polynomial time. Important requirements on the output map are expressed as linear inequalities. In particular, we show how to forbid edge crossings. We have implemented our method in a prototype tool. For instances of different sizes, our method generated output maps that were far less distorted than those generated with a predefined fish-eye projection. Future work is needed to automate the selection of roads relevant to the user. Furthermore, we aim at fast heuristics for application in real-time systems. © 2011 IEEE

  17. Doping effects on structural and magnetic properties of Heusler alloys Fe2Cr1-xCoxSi

    NASA Astrophysics Data System (ADS)

    Liu, Yifan; Ren, Lizhu; Zheng, Yuhong; He, Shikun; Liu, Yang; Yang, Ping; Yang, Hyunsoo; Teo, Kie Leong

    2018-05-01

    In this work, 30nm Fe2Cr1-xCoxSi (FCCS) magnetic films were deposited on Cr buffered MgO (100) substrates by sputtering. Fe2Cr0.5Co0.5Si exhibits the largest magnetization and optimal ordered L21 cubic structure at in-situ annealing temperature (Tia) of 450°C. The Co composition dependence of crystalline structures, surface morphology, defects, lattice distortions and their correlation with the magnetic properties are analyzed in detail. The Co-doped samples show in-plane M-H loops with magnetic squareness ratio of 1 and increasing anisotropy energy density with Co composition. Appropriate Co doping composition promotes L21 phase but higher Co composition converts L21 to B2 phase. Doping effect and lattice mismatch both are proved to increase the defect density. In addition, distortions of the FCCS lattice are found to be approximately linear with Co composition. The largest lattice distortion (c/a) is 0.969 for Fe2Cr0.25Co0.75Si and the smallest is 0.983 for Fe2CrSi. Our analyses suggest that these tetragonal distortions mainly induced by an elastic stress from Cr buffer account for the large in-plane anisotropy energy. This work paves the way for further tailoring the magnetic and structural properties of quaternary Heusler alloys.

  18. Grids in topographic maps reduce distortions in the recall of learned object locations.

    PubMed

    Edler, Dennis; Bestgen, Anne-Kathrin; Kuchinke, Lars; Dickmann, Frank

    2014-01-01

    To date, it has been shown that cognitive map representations based on cartographic visualisations are systematically distorted. The grid is a traditional element of map graphics that has rarely been considered in research on perception-based spatial distortions. Grids do not only support the map reader in finding coordinates or locations of objects, they also provide a systematic structure for clustering visual map information ("spatial chunks"). The aim of this study was to examine whether different cartographic kinds of grids reduce spatial distortions and improve recall memory for object locations. Recall performance was measured as both the percentage of correctly recalled objects (hit rate) and the mean distance errors of correctly recalled objects (spatial accuracy). Different kinds of grids (continuous lines, dashed lines, crosses) were applied to topographic maps. These maps were also varied in their type of characteristic areas (LANDSCAPE) and different information layer compositions (DENSITY) to examine the effects of map complexity. The study involving 144 participants shows that all experimental cartographic factors (GRID, LANDSCAPE, DENSITY) improve recall performance and spatial accuracy of learned object locations. Overlaying a topographic map with a grid significantly reduces the mean distance errors of correctly recalled map objects. The paper includes a discussion of a square grid's usefulness concerning object location memory, independent of whether the grid is clearly visible (continuous or dashed lines) or only indicated by crosses.

  19. Structural and dynamic characteristics in monolayer square ice.

    PubMed

    Zhu, YinBo; Wang, FengChao; Wu, HengAn

    2017-07-28

    When water is constrained between two sheets of graphene, it becomes an intriguing monolayer solid with a square pattern due to the ultrahigh van der Waals pressure. However, the square ice phase has become a matter of debate due to the insufficient experimental interpretation and the slightly rhomboidal feature in simulated monolayer square-like structures. Here, we performed classical molecular dynamics simulations to reveal monolayer square ice in graphene nanocapillaries from the perspective of structure and dynamic characteristics. Monolayer square-like ice (instantaneous snapshot), assembled square-rhombic units with stacking faults, is a long-range ordered structure, in which the square and rhombic units are assembled in an order of alternative distribution, and the other rhombic unit forms stacking faults (polarized water chains). Spontaneous flipping of water molecules in monolayer square-like ice is intrinsic and induces transformations among different elementary units, resulting in the structural evolution of monolayer square ice in dynamics. The existence of stacking faults should be attributed to the spontaneous flipping behavior of water molecules under ambient temperature. Statistical averaging results (thermal average positions) demonstrate the inherent square characteristic of monolayer square ice. The simulated data and insight obtained here might be significant for understanding the topological structure and dynamic behavior of monolayer square ice.

  20. Quaternary rare-earth arsenides REAg{sub 1−x}Zn{sub y}As{sub 2} (RE=La–Nd, Sm, Gd–Dy) with tetragonal SrZnBi{sub 2}- and HfCuSi{sub 2}-type structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramachandran, Krishna K.; Genet, Clément; Mar, Arthur, E-mail: arthur.mar@ualberta.ca

    2015-11-15

    Reactions of the elements at 800 °C with the nominal compositions REAg{sub 1−x}Zn{sub x}As{sub 2} resulted in quaternary arsenides REAg{sub 1−x}Zn{sub y}As{sub 2} in which the combined Ag and Zn content deviates increasingly from unity in the Zn-richer phases, reflecting the transition from the fully stoichiometric ternary silver-containing arsenides REAgAs{sub 2} to the substoichiometric zinc-containing ones REZn{sub 0.67}As{sub 2}. Powder X-ray diffraction analysis indicated SrZnBi{sub 2}-type (space group I4/mmm, Z=4; RE=La, Ce) and HfCuSi{sub 2}-type structures (space group P4/nmm, Z=2; RE=Pr, Nd, Sm, Gd, Tb, Dy). Single-crystal X-ray diffraction analysis performed on LaAg{sub 0.5}Zn{sub 0.5}As{sub 2}, PrAg{sub 0.5}Zn{sub 0.5}As{sub 2},more » and NdAg{sub 0.5}Zn{sub 0.5}As{sub 2} indicated that the Ag and Zn atoms are disordered within metal-centred tetrahedra and provided no evidence for distortion of the square As nets. The small electron excess tolerated in these quaternary arsenides and the absence of distortion in the square nets can be traced to the occurrence of As–As states that are only weakly antibonding near the Fermi level. PrAg{sub 0.5}Zn{sub 0.5}As{sub 2} and NdAg{sub 0.5}Zn{sub 0.5}As{sub 2} are paramagnetic with effective magnetic moments consistent with trivalent RE species. - Graphical abstract: On proceeding from fully stoichiometric REAgAs{sub 2} to substoichiometric REZn{sub 0.67}As{sub 2}, deficiencies in Zn content become increasingly prominent in quaternary arsenides REAg{sub 1−x}Zn{sub y}As{sub 2}. - Highlights: • Ag and Zn atoms are disordered within quaternary arsenides REAg{sub 1−x}Zn{sub y}As{sub 2}. • In Zn-richer phases, Zn deficiencies develop to counteract electron excess. • Distortions of square As net appear to be suppressed.« less

  1. Cost-Sharing of Ecological Construction Based on Trapezoidal Intuitionistic Fuzzy Cooperative Games

    PubMed Central

    Liu, Jiacai; Zhao, Wenjian

    2016-01-01

    There exist some fuzziness and uncertainty in the process of ecological construction. The aim of this paper is to develop a direct and an effective simplified method for obtaining the cost-sharing scheme when some interested parties form a cooperative coalition to improve the ecological environment of Min River together. Firstly, we propose the solution concept of the least square prenucleolus of cooperative games with coalition values expressed by trapezoidal intuitionistic fuzzy numbers. Then, based on the square of the distance in the numerical value between two trapezoidal intuitionistic fuzzy numbers, we establish a corresponding quadratic programming model to obtain the least square prenucleolus, which can effectively avoid the information distortion and uncertainty enlargement brought about by the subtraction of trapezoidal intuitionistic fuzzy numbers. Finally, we give a numerical example about the cost-sharing of ecological construction in Fujian Province in China to show the validity, applicability, and advantages of the proposed model and method. PMID:27834830

  2. Strain-Mediated Modification of Phagraphene Dirac Cones

    DOE PAGES

    Lopez-Bezanilla, Alejandro

    2016-07-07

    We present a first-principles study on the electronic and dynamical properties of phagraphene [Nano Lett., 2015, 15 (9), pp 6182]. This carbon allotrope exhibits a square unit cell, Dirac cones, and robustness against uniaxial deformation. By analyzing the contribution of each carbon atom orbital in the formation of the electronic states, we conclude that only the pz orbitals of eight out of the twenty atoms in the square unit cell are responsible of the formation of the nano-structure Dirac cones. Spatial symmetry breaking of the underlying honeycomb-like network upon shear stress application leads to a band gap opening. The analysismore » of the phonon spectra demonstrates that the dynamical stability of phagraphene is guaranteed for small distortion angles. Phagraphene is identified here as the first all-C graphitic monolayer with Dirac cones modifiable by a small and realistic physical deformation. The analysis and conclusions of this study can be applied to other monolayered materials exhibiting Dirac cones in square lattices.« less

  3. Design Rules and Scaling for Solar Sails

    NASA Technical Reports Server (NTRS)

    Zeiders, Glenn W.

    2005-01-01

    Useful design rules and simple scaling models have been developed for solar sails. Chief among the conclusions are: 1. Sail distortions contribute to the thrust and moments primarily though the mean squared value of their derivatives (slopes), and the sail behaves like a flat sheet if the value is small. The RMS slope is therefore an important figure of merit, and sail distortion effects on the spacecraft can generally be disregarded if the RMS slope is less than about 10% or so. 2. The characteristic slope of the sail distortion varies inversely with the tension in the sail, and it is the tension that produces the principle loading on the support booms. The tension is not arbitrary, but rather is the value needed to maintain the allowable RMS slope. That corresponds to a halyard force about equal to three times the normal force on the supported sail area. 3. Both the AEC/SRS and L Garde concepts appear to be structurally capable of supporting sail sizes up to a kilometer or more with 1AU solar flux, but select transverse dimensions must be changed to do so. Operational issues such as fabrication, handling, storage and deployment will be the limiting factors.

  4. A new DWT/MC/DPCM video compression framework based on EBCOT

    NASA Astrophysics Data System (ADS)

    Mei, L. M.; Wu, H. R.; Tan, D. M.

    2005-07-01

    A novel Discrete Wavelet Transform (DWT)/Motion Compensation (MC)/Differential Pulse Code Modulation (DPCM) video compression framework is proposed in this paper. Although the Discrete Cosine Transform (DCT)/MC/DPCM is the mainstream framework for video coders in industry and international standards, the idea of DWT/MC/DPCM has existed for more than one decade in the literature and the investigation is still undergoing. The contribution of this work is twofold. Firstly, the Embedded Block Coding with Optimal Truncation (EBCOT) is used here as the compression engine for both intra- and inter-frame coding, which provides good compression ratio and embedded rate-distortion (R-D) optimization mechanism. This is an extension of the EBCOT application from still images to videos. Secondly, this framework offers a good interface for the Perceptual Distortion Measure (PDM) based on the Human Visual System (HVS) where the Mean Squared Error (MSE) can be easily replaced with the PDM in the R-D optimization. Some of the preliminary results are reported here. They are also compared with benchmarks such as MPEG-2 and MPEG-4 version 2. The results demonstrate that under specified condition the proposed coder outperforms the benchmarks in terms of rate vs. distortion.

  5. Calculation of optical and K pre-edge absorption spectra for ferrous iron of distorted sites in oxide crystals

    NASA Astrophysics Data System (ADS)

    Vercamer, Vincent; Hunault, Myrtille O. J. Y.; Lelong, Gérald; Haverkort, Maurits W.; Calas, Georges; Arai, Yusuke; Hijiya, Hiroyuki; Paulatto, Lorenzo; Brouder, Christian; Arrio, Marie-Anne; Juhin, Amélie

    2016-12-01

    Advanced semiempirical calculations have been performed to compute simultaneously optical absorption and K pre-edge x-ray absorption spectra of Fe2 + in four distinct site symmetries found in minerals. The four symmetries, i.e., a distorted octahedron, a distorted tetrahedron, a square planar site, and a trigonal bipyramidal site, are representative of the Fe2 + sites found in crystals and glasses. A particular attention has been paid to the definition of the p -d hybridization Hamiltonian which occurs for noncentrosymmetric symmetries in order to account for electric dipole transitions. For the different sites under study, an excellent agreement between calculations and experiments was found for both optical and x-ray absorption spectra, in particular in terms of relative intensities and energy positions of electronic transitions. To our knowledge, these are the first calculations of optical absorption spectra on Fe2 + placed in such diverse site symmetries, including centrosymmetric sites. The proposed theoretical model should help to interpret the features of both the optical absorption and the K pre-edge absorption spectra of 3 d transition metal ions and to go beyond the usual fingerprint interpretation.

  6. Digital Self-Interference Cancellation for Asynchronous In-Band Full-Duplex Underwater Acoustic Communication.

    PubMed

    Qiao, Gang; Gan, Shuwei; Liu, Songzuo; Ma, Lu; Sun, Zongxin

    2018-05-24

    To improve the throughput of underwater acoustic (UWA) networking, the In-band full-duplex (IBFD) communication is one of the most vital pieces of research. The major drawback of IBFD-UWA communication is Self-Interference (SI). This paper presents a digital SI cancellation algorithm for asynchronous IBFD-UWA communication system. We focus on two issues: one is asynchronous communication dissimilar to IBFD radio communication, the other is nonlinear distortion caused by power amplifier (PA). First, we discuss asynchronous IBFD-UWA signal model with the nonlinear distortion of PA. Then, we design a scheme for asynchronous IBFD-UWA communication utilizing the non-overlapping region between SI and intended signal to estimate the nonlinear SI channel. To cancel the nonlinear distortion caused by PA, we propose an Over-Parameterization based Recursive Least Squares (RLS) algorithm (OPRLS) to estimate the nonlinear SI channel. Furthermore, we present the OPRLS with a sparse constraint to estimate the SI channel, which reduces the requirement of the length of the non-overlapping region. Finally, we verify our concept through simulation and the pool experiment. Results demonstrate that the proposed digital SI cancellation scheme can cancel SI efficiently.

  7. Comparison of the Manganese Cluster in Oxygen-Evolving Photosystem II with Distorted Cubane Manganese Compounds through X-ray Absorption Spectroscopy

    PubMed Central

    Cinco, Roehl M.; Rompel, Annette; Visser, Hendrik; Aromí, Guillem; Christou, George; Sauer, Kenneth; Klein, Melvin P.; Yachandra, Vittal K.

    2014-01-01

    X-ray absorption spectroscopy has been employed to assess the degree of similarity between the oxygen-evolving complex (OEC) in photosystem II (PS II) and a family of synthetic manganese complexes containing the distorted cubane [Mn4O3X] core (X = benzoate, acetate, methoxide, hydroxide, azide, fluoride, chloride, or bromide). These [Mn4(μ3-O)3(μ3-X)] cubanes possess C3v symmetry except for the X = benzoate species, which is slightly more distorted with only Cs symmetry. In addition, Mn4O3Cl complexes containing three or six terminal Cl ligands at three of the Mn were included in this study. The Mn K-edge X-ray absorption near edge structure (XANES) from the oxygen-ligated complexes begin to resemble general features of the PS II (S1 state) spectrum, although the second derivatives are distinct from those in PS II. The extended X-ray absorption fine structure (EXAFS) of these Mn compounds also displays superficial resemblance to that of PS II, but major differences emerge on closer examination of the phases and amplitudes. The most obvious distinction is the smaller magnitude of the Fourier transform (FT) of the PS II EXAFS compared to the FTs from the distorted cubanes. Curve fitting of the Mn EXAFS spectra verifies the known core structures of the Mn cubanes, and shows that the number of the crucial 2.7 and 3.3 Å Mn–Mn distances differs from that observed in the OEC. The EXAFS method detects small changes in the core structures as X is varied in this series, and serves to exclude the distorted cubane of C3v symmetry as a topological model for the Mn catalytic cluster of the OEC. Instead, the method shows that even more distortion of the cubane framework, altering the ratio of the Mn–Mn distances, is required to resemble the Mn cluster in PS II. PMID:11671305

  8. Prospects for measuring cosmic microwave background spectral distortions in the presence of foregrounds

    NASA Astrophysics Data System (ADS)

    Abitbol, Maximilian H.; Chluba, Jens; Hill, J. Colin; Johnson, Bradley R.

    2017-10-01

    Measurements of cosmic microwave background (CMB) spectral distortions have profound implications for our understanding of physical processes taking place over a vast window in cosmological history. Foreground contamination is unavoidable in such measurements and detailed signal-foreground separation will be necessary to extract cosmological science. In this paper, we present Markov chain Monte Carlo based spectral distortion detection forecasts in the presence of Galactic and extragalactic foregrounds for a range of possible experimental configurations, focusing on the Primordial Inflation Explorer (PIXIE) as a fiducial concept. We consider modifications to the baseline PIXIE mission (operating ≃ 12 months in distortion mode), searching for optimal configurations using a Fisher approach. Using only spectral information, we forecast an extended PIXIE mission to detect the expected average non-relativistic and relativistic thermal Sunyaev-Zeldovich distortions at high significance (194σ and 11σ, respectively), even in the presence of foregrounds. The ΛCDM Silk damping μ-type distortion is not detected without additional modifications of the instrument or external data. Galactic synchrotron radiation is the most problematic source of contamination in this respect, an issue that could be mitigated by combining PIXIE data with future ground-based observations at low frequencies (ν ≲ 15-30 GHz). Assuming moderate external information on the synchrotron spectrum, we project an upper limit of |μ| < 3.6 × 10-7 (95 per cent c.l.), slightly more than one order of magnitude above the fiducial ΛCDM signal from the damping of small-scale primordial fluctuations, but a factor of ≃250 improvement over the current upper limit from COBE/Far Infrared Absolute Spectrophotometer. This limit could be further reduced to |μ| < 9.4 × 10-8 (95 per cent c.l.) with more optimistic assumptions about extra low-frequency information and would rule out many alternative inflation models and provide new constraints on decaying particle scenarios.

  9. Watching the brain recalibrate: Neural correlates of renormalization during face adaptation.

    PubMed

    Kloth, Nadine; Rhodes, Gillian; Schweinberger, Stefan R

    2017-07-15

    The face perception system flexibly adjusts its neural responses to current face exposure, inducing aftereffects in the perception of subsequent faces. For instance, adaptation to expanded faces makes undistorted faces appear compressed, and adaptation to compressed faces makes undistorted faces appear expanded. Such distortion aftereffects have been proposed to result from renormalization, in which the visual system constantly updates a prototype according to the adaptors' characteristics and evaluates subsequent faces relative to that. However, although consequences of adaptation are easily observed in behavioral aftereffects, it has proven difficult to observe renormalization during adaptation itself. Here we directly measured brain responses during adaptation to establish a neural correlate of renormalization. Given that the face-evoked occipito-temporal P2 event-related brain potential has been found to increase with face prototypicality, we reasoned that the adaptor-elicited P2 could serve as an electrophysiological indicator for renormalization. Participants adapted to sequences of four distorted (compressed or expanded) or undistorted faces, followed by a slightly distorted test face, which they had to classify as undistorted or distorted. We analysed ERPs evoked by each of the adaptors and found that P2 (but not N170) amplitudes evoked by consecutive adaptor faces exhibited an electrophysiological pattern of renormalization during adaptation to distorted faces: P2 amplitudes evoked by both compressed and expanded adaptors significantly increased towards asymptotic levels as adaptation proceeded. P2 amplitudes were smallest for the first adaptor, significantly larger for the second, and yet larger for the third adaptor. We conclude that the sensitivity of the occipito-temporal P2 to the perceived deviation of a face from the norm makes this component an excellent tool to study adaptation-induced renormalization. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Eddy current-nulled convex optimized diffusion encoding (EN-CODE) for distortion-free diffusion tensor imaging with short echo times.

    PubMed

    Aliotta, Eric; Moulin, Kévin; Ennis, Daniel B

    2018-02-01

    To design and evaluate eddy current-nulled convex optimized diffusion encoding (EN-CODE) gradient waveforms for efficient diffusion tensor imaging (DTI) that is free of eddy current-induced image distortions. The EN-CODE framework was used to generate diffusion-encoding waveforms that are eddy current-compensated. The EN-CODE DTI waveform was compared with the existing eddy current-nulled twice refocused spin echo (TRSE) sequence as well as monopolar (MONO) and non-eddy current-compensated CODE in terms of echo time (TE) and image distortions. Comparisons were made in simulations, phantom experiments, and neuro imaging in 10 healthy volunteers. The EN-CODE sequence achieved eddy current compensation with a significantly shorter TE than TRSE (78 versus 96 ms) and a slightly shorter TE than MONO (78 versus 80 ms). Intravoxel signal variance was lower in phantoms with EN-CODE than with MONO (13.6 ± 11.6 versus 37.4 ± 25.8) and not different from TRSE (15.1 ± 11.6), indicating good robustness to eddy current-induced image distortions. Mean fractional anisotropy values in brain edges were also significantly lower with EN-CODE than with MONO (0.16 ± 0.01 versus 0.24 ± 0.02, P < 1 x 10 -5 ) and not different from TRSE (0.16 ± 0.01 versus 0.16 ± 0.01, P = nonsignificant). The EN-CODE sequence eliminated eddy current-induced image distortions in DTI with a TE comparable to MONO and substantially shorter than TRSE. Magn Reson Med 79:663-672, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  11. Morphologies of mid-IR variability-selected AGN host galaxies

    NASA Astrophysics Data System (ADS)

    Polimera, Mugdha; Sarajedini, Vicki; Ashby, Matthew L. N.; Willner, S. P.; Fazio, Giovanni G.

    2018-05-01

    We use multi-epoch 3.6 and 4.5 μm data from the Spitzer Extended Deep Survey (SEDS) to probe the AGN population among galaxies to redshifts ˜3 via their mid-IR variability. About 1 per cent of all galaxies in our survey contain varying nuclei, 80 per cent of which are likely to be AGN. Twenty-three per cent of mid-IR variables are also X-ray sources. The mid-IR variables have a slightly greater fraction of weakly disturbed morphologies compared to a control sample of normal galaxies. The increased fraction of weakly distorted hosts becomes more significant when we remove the X-ray emitting AGN, while the frequency of strongly disturbed hosts remains similar to the control galaxy sample. These results suggest that mid-IR variability identifies a unique population of obscured, Compton-thick AGN revealing elevated levels of weak distortion among their host galaxies.

  12. Bounds on the performance of a class of digital communication systems

    NASA Technical Reports Server (NTRS)

    Polk, D. R.; Gupta, S. C.; Cohn, D. L.

    1973-01-01

    Bounds on the capacity of a class of digital communication channels are derived. Equating the bounds on capacity to rate-distortion functions of (typical) sources in turn produces bounds on the performance of a class of digital communication systems. For ratios of squared quantization level to noise variance much less than one, the power requirements for this class of digital communication systems are shown to be within approximately 3 dB of the theoretical optimum.

  13. Using CMB spectral distortions to distinguish between dark matter solutions to the small-scale crisis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diacoumis, James A.D.; Wong, Yvonne Y.Y., E-mail: j.diacoumis@unsw.edu.au, E-mail: yvonne.y.wong@unsw.edu.au

    The dissipation of small-scale perturbations in the early universe produces a distortion in the blackbody spectrum of cosmic microwave background photons. In this work, we propose to use these distortions as a probe of the microphysics of dark matter on scales 1 Mpc{sup -1}∼< k ∼< 10{sup 4} Mpc{sup -1}. We consider in particular models in which the dark matter is kinetically coupled to either neutrinos or photons until shortly before recombination, and compute the photon heating rate and the resultant μ-distortion in both cases. We show that the μ-parameter is generally enhanced relative to ΛCDM for interactions with neutrinos,more » and may be either enhanced or suppressed in the case of interactions with photons. The deviations from the ΛCDM signal are potentially within the sensitivity reach of a PRISM-like experiment if σ{sub DM-γ} ∼> 1.1 × 10{sup -30} (m{sub DM}/GeV) cm{sup 2} and σ{sub DM-ν} ∼> 4.8 × 10{sup -32} (m{sub DM}/GeV) cm{sup 2} for time-independent cross sections, and σ{sup 0}{sub DM-γ} ∼> 1.8 × 10{sup -40} (m{sub DM}/GeV) cm{sup 2} and σ{sup 0}{sub DM-ν} ∼> 2.5 × 10{sup -47} (m{sub DM}/GeV) cm{sup 2} for cross sections scaling as temperature squared, coinciding with the parameter regions in which late kinetic decoupling may serve as a solution to the small-scale crisis. Furthermore, these μ-distortion signals differ from those of warm dark matter (no deviation from ΛCDM) and a suppressed primordial power spectrum (a strongly suppressed or negative μ-parameter), demonstrating that CMB spectral distortion can potentially be used to distinguish between solutions to the small-scale crisis.« less

  14. Millimeter-wave spectroscopy of syn formyl azide (HC(O)N3) in seven vibrational states

    NASA Astrophysics Data System (ADS)

    Walters, Nicholas A.; Amberger, Brent K.; Esselman, Brian J.; Woods, R. Claude; McMahon, Robert J.

    2017-01-01

    Millimeter-wave spectra for formyl azide (HC(O)N3) were obtained from 240 to 360 GHz at ambient temperature. For the ground state of syn formyl azide, over 1500 independent rotational transitions were measured and least-squares fit to a complete S-reduced 8th order centrifugal distortion/rigid rotor Hamiltonian. The decomposition of formyl azide was monitored over a period of several hours, the half-life (t½ = 30 min) was determined, and its decomposition products were investigated. Transitions from five vibrational satellites of syn formyl azide (ν9, ν12, 2ν9, ν9 + ν12, and ν11) were observed, measured, and least-squares fit to complete or nearly complete octic centrifugally-distorted, single-state S-reduced models. A less complete single-state fit of 3ν9 (509.3 cm-1) was obtained from an unperturbed subset of its assignable transitions. This state is apparently coupled to the fundamental ν8 (489.4 cm-1) and the overtone 2ν12 (503.6 cm-1), but the coupling remains unanalyzed. Anharmonic CCSD(T)/ANO1 estimates of the vibrational frequencies of syn formyl azide were in close agreement with previously published experimental and computational values. Experimentally determined vibration-rotation interaction (αi) values were in excellent agreement with coupled-cluster predicted αi values for the fundamentals ν9, ν12, and ν11.

  15. The Crystal Structure of Ba 17Sm 10Cl 64

    NASA Astrophysics Data System (ADS)

    Liu, Guo; Eick, Harry A.

    1999-08-01

    The structure of Ba17Sm10Cl64, prepared by solvolytic extraction of a program-cooled 1:1 BaCl2:SmCl3 molar mixture sealed in a quartz tube and heated to 750°C, was determined from single-crystal X-ray diffraction data. The compound exhibits cubic symmetry, space group Pa3 (No. 205) with a=21.366(2) Å and Z=4. Refinement effected with I>2σ(I) yielded R1= 0.0926 and wR2=0.216. One Ba atom is 12-coordinated by Cl atoms in a distorted icosahedral arrangement; the three other Ba atoms are 10-coordinated in a distorted bicapped cubic arrangement. There are two Sm atom sites. The coordination around one Sm atom is best described as square antiprismatic, but one Sm-Cl distance is too long for effective bonding. The other Sm atom site, occupied statistically by {1}/{3}Ba and {2}/{3}Sm atoms, is 9-coordinated by Cl atoms in a monocapped square antiprismatic arrangement. The two types of Sm sites combine to form an M6Cl37 cuboctahedral cluster of the composition BaSm5Cl37. It is shown that the cβ phase identified previously in the Yb-F and related fluoride systems is probably isostructural with Ba17Sm10Cl64.

  16. Evaluation of image quality and radiation dose by adaptive statistical iterative reconstruction technique level for chest CT examination.

    PubMed

    Hong, Sun Suk; Lee, Jong-Woong; Seo, Jeong Beom; Jung, Jae-Eun; Choi, Jiwon; Kweon, Dae Cheol

    2013-12-01

    The purpose of this research is to determine the adaptive statistical iterative reconstruction (ASIR) level that enables optimal image quality and dose reduction in the chest computed tomography (CT) protocol with ASIR. A chest phantom with 0-50 % ASIR levels was scanned and then noise power spectrum (NPS), signal and noise and the degree of distortion of peak signal-to-noise ratio (PSNR) and the root-mean-square error (RMSE) were measured. In addition, the objectivity of the experiment was measured using the American College of Radiology (ACR) phantom. Moreover, on a qualitative basis, five lesions' resolution, latitude and distortion degree of chest phantom and their compiled statistics were evaluated. The NPS value decreased as the frequency increased. The lowest noise and deviation were at the 20 % ASIR level, mean 126.15 ± 22.21. As a result of the degree of distortion, signal-to-noise ratio and PSNR at 20 % ASIR level were at the highest value as 31.0 and 41.52. However, maximum absolute error and RMSE showed the lowest deviation value as 11.2 and 16. In the ACR phantom study, all ASIR levels were within acceptable allowance of guidelines. The 20 % ASIR level performed best in qualitative evaluation at five lesions of chest phantom as resolution score 4.3, latitude 3.47 and the degree of distortion 4.25. The 20 % ASIR level was proved to be the best in all experiments, noise, distortion evaluation using ImageJ and qualitative evaluation of five lesions of a chest phantom. Therefore, optimal images as well as reduce radiation dose would be acquired when 20 % ASIR level in thoracic CT is applied.

  17. Gamma model and its analysis for phase measuring profilometry.

    PubMed

    Liu, Kai; Wang, Yongchang; Lau, Daniel L; Hao, Qi; Hassebrook, Laurence G

    2010-03-01

    Phase measuring profilometry is a method of structured light illumination whose three-dimensional reconstructions are susceptible to error from nonunitary gamma in the associated optical devices. While the effects of this distortion diminish with an increasing number of employed phase-shifted patterns, gamma distortion may be unavoidable in real-time systems where the number of projected patterns is limited by the presence of target motion. A mathematical model is developed for predicting the effects of nonunitary gamma on phase measuring profilometry, while also introducing an accurate gamma calibration method and two strategies for minimizing gamma's effect on phase determination. These phase correction strategies include phase corrections with and without gamma calibration. With the reduction in noise, for three-step phase measuring profilometry, analysis of the root mean squared error of the corrected phase will show a 60x reduction in phase error when the proposed gamma calibration is performed versus 33x reduction without calibration.

  18. Role of the local structure in superconductivity of LaO0.5F0.5BiS2-x Se x system

    NASA Astrophysics Data System (ADS)

    Paris, E.; Mizuguchi, Y.; Hacisalihoglu, M. Y.; Hiroi, T.; Joseph, B.; Aquilanti, G.; Miura, O.; Mizokawa, T.; Saini, N. L.

    2017-04-01

    We have studied the local structure of LaO0.5F0.5BiS2-x Se x by Bi L1-edge extended x-ray absorption fine structure (EXAFS). We find a significant effect of Se substitution on the local atomic correlations with a gradual elongation of average in-plane Bi-S bondlength. The associated mean square relative displacement, measuring average local distortions in the BiS2 plane, hardly shows any change for small Se substitution, but decreases significantly for x≥slant 0.6 . The Se substitution appears to suppress the local distortions within the BiS2 plane that may optimize in-plane orbital hybridization and hence the superconductivity. The results suggest that the local structure of the BiS2-layer is one of the key ingredients to control the physical properties of the BiS2-based dichalcogenides.

  19. Bonding Thin Mirror Segments Without Distortion for the International X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Evans, Tyler C.; Chan, Kai-Wing; Saha, Timo T.

    2011-01-01

    The International X-Ray Observatory (IXO) uses thin glass optics to maximize large effective area and precise low angular resolution. The thin glass mirror segments must be transferred from their fabricated state to a permanent structure without imparting distortion. IXO will incorporate about fourteen thousand thin mirror segments to achieve the mission goal of 3.0 square meters of effective area at 1.25 keV with an angular resolution of five arcseconds. To preserve figure and alignment, the mirror segment must be bonded with sub-micron movement at each corner. Recent advances in technology development have produced significant x-ray test results of a bonded pair of mirrors. Three specific bonding cycles will be described highlighting the improvements in procedure, temperature control, and precision bonding. This paper will highlight the recent advances in alignment and permanent bonding as well as the results they have produced.

  20. A family of chaotic pure analog coding schemes based on baker's map function

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Li, Jing; Lu, Xuanxuan; Yuen, Chau; Wu, Jun

    2015-12-01

    This paper considers a family of pure analog coding schemes constructed from dynamic systems which are governed by chaotic functions—baker's map function and its variants. Various decoding methods, including maximum likelihood (ML), minimum mean square error (MMSE), and mixed ML-MMSE decoding algorithms, have been developed for these novel encoding schemes. The proposed mirrored baker's and single-input baker's analog codes perform a balanced protection against the fold error (large distortion) and weak distortion and outperform the classical chaotic analog coding and analog joint source-channel coding schemes in literature. Compared to the conventional digital communication system, where quantization and digital error correction codes are used, the proposed analog coding system has graceful performance evolution, low decoding latency, and no quantization noise. Numerical results show that under the same bandwidth expansion, the proposed analog system outperforms the digital ones over a wide signal-to-noise (SNR) range.

  1. Crosstalk mitigation using pilot assisted least square algorithm in OFDM-carrying orbital angular momentum multiplexed free-space-optical communication links.

    PubMed

    Sun, Tengfen; Liu, Minwen; Li, Yingchun; Wang, Min

    2017-10-16

    In this paper, we experimentally investigate the performance of crosstalk mitigation for 16-ary quadrature amplitude modulation orthogonal frequency division multiplexing (16QAM-OFDM) signals carrying orbital angular momentum (OAM) multiplexed free-space-optical communication (FSO) links using the pilot assisted Least Square (LS) algorithm. At the demodulating spatial light modulators (SLMs), we launch the distorted phase holograms which have the information of atmospheric turbulence obeying the modified Hill spectrum. And crosstalk can be introduced by these holograms with the experimental verification. The pilot assisted LS algorithm can efficiently improve the quality of system performance, the points of constellations get closer to the reference points and around two orders of magnitude improvement of bit-error rate (BER) is obtained.

  2. Nickel(II) and copper(II) complexes of N,N-dialkyl-N‧-3-chlorobenzoylthiourea: Synthesis, characterization, crystal structures, Hirshfeld surfaces and antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Binzet, Gun; Gumus, Ilkay; Dogen, Aylin; Flörke, Ulrich; Kulcu, Nevzat; Arslan, Hakan

    2018-06-01

    We synthesized four new N,N-dialkyl-N‧-3-chlorobenzoylthiourea ligands (Alkyl: Dimethyl, diethyl, di-n-propyl and di-n-butyl) and their metal complexes with copper and nickel atoms. The structure of all synthesized compounds was fully characterized by physicochemical, spectroscopic and single crystal X-ray diffraction analysis techniques. The physical, spectral and analytical data of the newly synthesized metal complexes have shown the formation of 1:2 (metal:ligand) ratio. The benzoylthiourea ligands coordinate with metal atoms through oxygen and sulphur atoms. The metal atoms are in slightly distorted square-planar coordination geometry in Ni(II) or Cu(II) complex. Two oxygen and two sulphur atoms are mutually cis to each other in Ni(II) or Cu(II) complex. The intermolecular contacts in the compounds, which are HL1 and HL3, were examined by Hirshfeld surfaces and fingerprint plots using the data obtained from X-ray single crystal diffraction measurement. Besides these, their antimicrobial activities against Gram-positive bacteria (Bacillus subtilis, Staphylococcus aureus, Streptococcus pyogenes and Enterococcus faecalis) and Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) and anti-yeast activity (Candida glabrata, Candida parapsilosis and Candida albicans) were investigated. This exhibited some promising results towards testing organism. Among all the compounds, Ni(L1)2 complex showed high activity against Bacillus subtilis with MIC values at 7.81 μg/mL.

  3. Geotomography using refraction fan shots

    NASA Astrophysics Data System (ADS)

    Pavlis, Gary L.

    1986-05-01

    This paper introduces a new method for imaging lateral variations in the seismic velocity structure of the earth. The discussion is centered around the geometry of a pilot experiment conducted in Salt Creek valley near Bloomington, Indiana, but the methodology is more general in scope. In the pilot experiment, 24 explosions were fired at equal intervals around a circular area 190 m in diameter and recorded by geophones positioned diametrically opposite the source. Travel time residuals for the fan shots are inverted to estimate lateral velocity variations in a two-dimensional, bowl-shaped image reconstruction region under the circular array. A simple damped least squares inversion worked poorly when delay times were included as additional free parameters in the solution. A parameter separation procedure was more successful. The value of these data in determining structure was analyzed using synthetic data and resolving power calculations. Structure could be determined to high accuracy with little distortion in the center of the circular region where rays crossed from all directions, but results were comparatively poor near the fringes of the region where angular coverage was more limited. Inversion of the Salt Creek data indicates the observed variations in the residuals can be almost completely accounted for by variations in the weathered layer. The refractor velocity is nearly constant to a precision of 0.005 s/km, but there is a suggestion of a slight velocity decrease in the refractor at higher elevations above the water table.

  4. μ-Carbonato-κ(4) O,O':O',O''-bis-{[2'-(di-tert-butyl-phosphan-yl)biphenyl-2-yl-κ(2) P,C (1)]palladium(II)} dichloro-methane monosolvate.

    PubMed

    Muller, Alfred; Holzapfel, Cedric W

    2012-12-01

    The title compound, [(μ2-CO3){Pd(P(t-C4H9)2(C12H8)}2]·CH2Cl2, the first CO3-bridged palladium dimer complex reported to date, was obtained while preparing the Pd(0) complex with (2-biphen-yl)P( (t) Bu)2. In the crystal, each palladium dimer is accompanied by a dichloro-methane solvent mol-ecule. Coordination of the carbonate and chelated phosphane ligands gives distorted square-planar environments at the Pd atoms. Important geometrical parameters include Pd-P(av.) = 2.2135 (4) Å, Pd-C(av.) = 1.9648 (16) Å and P-Pd-C = 84.05 (5) and 87.98 (5)°, and O-Pd-O' = 60.56 (4) and 61.13 (4)°. Bonding with the carbonate O atoms shows values of 2.1616 (11) and 2.1452 (11) Å for the Pd-O-Pd bridge, whereas other Pd-O distances are slightly longer at 2.2136 (11) and 2.1946 (11) Å. One of the tert-butyl groups is disordered over two set of sites with an occupancy ratio of 0.723 (6):0.277 (6). Weak C-H⋯O interactions are observed propagating the molecules along the [100] direction.

  5. μ-Carbonato-κ4 O,O′:O′,O′′-bis­{[2′-(di-tert-butyl­phosphan­yl)biphenyl-2-yl-κ2 P,C 1]palladium(II)} dichloro­methane monosolvate

    PubMed Central

    Muller, Alfred; Holzapfel, Cedric W.

    2012-01-01

    The title compound, [(μ2-CO3){Pd(P(t-C4H9)2(C12H8)}2]·CH2Cl2, the first CO3-bridged palladium dimer complex reported to date, was obtained while preparing the Pd0 complex with (2-biphen­yl)P(tBu)2. In the crystal, each palladium dimer is accompanied by a dichloro­methane solvent mol­ecule. Coordination of the carbonate and chelated phosphane ligands gives distorted square-planar environments at the Pd atoms. Important geometrical parameters include Pd—P(av.) = 2.2135 (4) Å, Pd—C(av.) = 1.9648 (16) Å and P—Pd—C = 84.05 (5) and 87.98 (5)°, and O—Pd—O′ = 60.56 (4) and 61.13 (4)°. Bonding with the carbonate O atoms shows values of 2.1616 (11) and 2.1452 (11) Å for the Pd—O—Pd bridge, whereas other Pd—O distances are slightly longer at 2.2136 (11) and 2.1946 (11) Å. One of the tert-butyl groups is disordered over two set of sites with an occupancy ratio of 0.723 (6):0.277 (6). Weak C—H⋯O interactions are observed propagating the molecules along the [100] direction. PMID:23468771

  6. Advantages of soft versus hard constraints in self-modeling curve resolution problems. Alternating least squares with penalty functions.

    PubMed

    Gemperline, Paul J; Cash, Eric

    2003-08-15

    A new algorithm for self-modeling curve resolution (SMCR) that yields improved results by incorporating soft constraints is described. The method uses least squares penalty functions to implement constraints in an alternating least squares algorithm, including nonnegativity, unimodality, equality, and closure constraints. By using least squares penalty functions, soft constraints are formulated rather than hard constraints. Significant benefits are (obtained using soft constraints, especially in the form of fewer distortions due to noise in resolved profiles. Soft equality constraints can also be used to introduce incomplete or partial reference information into SMCR solutions. Four different examples demonstrating application of the new method are presented, including resolution of overlapped HPLC-DAD peaks, flow injection analysis data, and batch reaction data measured by UV/visible and near-infrared spectroscopy (NIR). Each example was selected to show one aspect of the significant advantages of soft constraints over traditionally used hard constraints. Incomplete or partial reference information into self-modeling curve resolution models is described. The method offers a substantial improvement in the ability to resolve time-dependent concentration profiles from mixture spectra recorded as a function of time.

  7. Synthesis, spectroscopic characterization, first order nonlinear optical properties and DFT calculations of novel Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes with 1,3-diphenyl-4-phenylazo-5-pyrazolone ligand

    NASA Astrophysics Data System (ADS)

    Abdel-Latif, Samir A.; Mohamed, Adel A.

    2018-02-01

    Novel Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) metal ions with 1,3-diphenyl-4-phenylazo-5-pyrazolone (L) have been prepared and characterized using different analytical and spectroscopic techniques. 1:1 Complexes of Mn(II), Co(II) and Zn(II) are distorted octahedral whereas Ni(II) complex is square planar and Cu(II) is distorted trigonal bipyramid. 1:2 Complexes of Mn(II), Co(II), Cu(II) and Zn(II) are distorted trigonal bipyramid whereas Ni(II) complex is distorted tetrahedral. All complexes behave as non-ionic in dimethyl formamide (DMF). The electronic structure and nonlinear optical parameters (NLO) of the complexes were investigated theoretically at the B3LYP/GEN level of theory. Molecular stability and bond strengths have been investigated by applying natural bond orbital (NBO) analysis. The geometries of the studied complexes are non-planner. DFT calculations have been also carried out to calculate the global properties; hardness (η), global softness (S) and electronegativity (χ). The calculated small energy gap between HOMO and LUMO energies shows that the charge transfer occurs within the complexes. The total static dipole moment (μtot), the mean polarizability (<α>), the anisotropy of the polarizability (Δα) and the mean first-order hyperpolarizability (<β>) were calculated and compared with urea as a reference material. The complexes show implying optical properties.

  8. A Modal Analysis of Submerged Composite Plates Using Digital Speckle Pattern Interferometry

    DTIC Science & Technology

    1991-05-01

    the drive point. The underwater mode shapes were slightly deformed compared to the in- air modes which is probably due to modal coupling by the dense...modes according to Leissa. The mode shapes in water are very similar to those in air with a small amount of distortion due to modal coupling by the fluid...and cantilever boundarv conditions is described in this thesis. The vibrations of the plates are studies in air and when Submerged in a water tank to

  9. Convection-induced distortion of a solid-liquid interface

    NASA Technical Reports Server (NTRS)

    Schaefer, R. J.; Coriell, S. R.

    1984-01-01

    Measurements of convective flow fields and solid-liquid interface shapes during the solidification of a pure and a slightly alloyed transparent material reveal that the convective transport of solute can cause a macroscopic depression to develop in the solid-liquid interface. This effect occurs under conditions close to those which are predicted to produce morphological instability of a planar interface. A cellular or dendritic microstructure later develops within the interface depression. The convection is attributed to the effect of radial temperature gradients in the crystal growth apparatus.

  10. Fac-Re(bpy)(CO){sub 3}(COOMe): A model metallocarboxylate complex of rhenium with a bipyridyl ligand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibson, D.H.; Sleadd, B.A.; Vij, A.

    1999-05-01

    The title compound fac-(2,2{prime}-bipyridyl)(carbomethoxy)rhenium tricarbonyl, crystallizes in the monoclinic system, space group P2{sub 1}/c with the following crystal data: a = 8.37551(1), b = 6.6934(1), c = 26.2098(1) {angstrom}, V({angstrom}{sup 3}) = 1,535.93(3), Z = 4, and {beta} = 90.0971(2). The metal environment is slightly distorted octahedral with a chelating bipyridyl ligand and a facial arrangement of the carbon monoxide ligands.

  11. More about the moment of inertia of Mars

    NASA Technical Reports Server (NTRS)

    Kaula, William M.; Sleep, Norman H.; Phillips, Roger J.

    1989-01-01

    Differences between Mars and other terrestrial planets are discussed. Unlike other terrestrial planets, Mars has two nonhydrostatic components of moments of inertia that are nearly equal. The most probable value of I/MR-squared is slightly less than 0.3650.

  12. Bis[bis­(diphenyl­thio­phosphin­yl)amido-κ2 S,S′]platinum(II)

    PubMed Central

    Güzelsoylu, Cemal; Irişli, Sevil; Büyükgüngör, Orhan

    2011-01-01

    In the title compound, [Pt(C24H20NP2S2)2], the Pt atom is in a distorted square-planar environment and contains two six-membered carbon-free chelate rings, one in twist-boat and the other in a half-chair conformation. Two phenyl groups are disordered over two set of sites in ratios of 0.721 (13):0.279 (13) and 0.71 (7):0.29 (7). PMID:21753991

  13. Zinc ascorbate: a combined experimental and computational study for structure elucidation

    NASA Astrophysics Data System (ADS)

    Ünaleroǧlu, C.; Zümreoǧlu-Karan, B.; Mert, Y.

    2002-03-01

    The structure of Zn(HA)2·4H2O (HA=ascorbate) has been examined by a number of techniques (13C NMR, 1H NMR, IR, EI/MS and TGA) and also modeled by the semi-empirical PM3 method. The experimental and computational results agreed on a five-fold coordination around Zn(II) where one ascorbate binds monodentately, the other bidentately and two water molecules occupy the remaining sites of a distorted square pyramid.

  14. Implementation and Evaluation of Two Design Concepts of the Passive Ring Resonator Laser Gyroscope.

    DTIC Science & Technology

    1983-12-01

    The cavity mirrors consist of 23 dielec- tric layers on a Zerodur substrate (Ref 1). The reflectivity of each mirror is 0.99995 (Ref 1). The...Conditions at the Cavity Input Mirror ...II1-8 6 Cavity Power Transmission vs. Frequency.. ........ II-10 7 Spatial Phase Distortion of the Reflected...32 16 Piano-Spherical Square vty.........II3 17 Astigmatism of a Spherical Mirror in a Ring 18 Case Is Circular-Circular Mode Match..........e...II

  15. Efficiency of Different Sampling Tools for Aquatic Macroinvertebrate Collections in Malaysian Streams

    PubMed Central

    Ghani, Wan Mohd Hafezul Wan Abdul; Rawi, Che Salmah Md; Hamid, Suhaila Abd; Al-Shami, Salman Abdo

    2016-01-01

    This study analyses the sampling performance of three benthic sampling tools commonly used to collect freshwater macroinvertebrates. Efficiency of qualitative D-frame and square aquatic nets were compared to a quantitative Surber sampler in tropical Malaysian streams. The abundance and diversity of macroinvertebrates collected using each tool evaluated along with their relative variations (RVs). Each tool was used to sample macroinvertebrates from three streams draining different areas: a vegetable farm, a tea plantation and a forest reserve. High macroinvertebrate diversities were recorded using the square net and Surber sampler at the forested stream site; however, very low species abundance was recorded by the Surber sampler. Relatively large variations in the Surber sampler collections (RVs of 36% and 28%) were observed for the vegetable farm and tea plantation streams, respectively. Of the three sampling methods, the square net was the most efficient, collecting a greater diversity of macroinvertebrate taxa and a greater number of specimens (i.e., abundance) overall, particularly from the vegetable farm and the tea plantation streams (RV<25%). Fewer square net sample passes (<8 samples) were sufficient to perform a biological assessment of water quality, but each sample required a slightly longer processing time (±20 min) compared with those gathered via the other samplers. In conclusion, all three apparatuses were suitable for macroinvertebrate collection in Malaysian streams and gathered assemblages that resulted in the determination of similar biological water quality classes using the Family Biotic Index (FBI) and the Biological Monitoring Working Party (BMWP). However, despite a slightly longer processing time, the square net was more efficient (lowest RV) at collecting samples and more suitable for the collection of macroinvertebrates from deep, fast flowing, wadeable streams with coarse substrates. PMID:27019685

  16. High Reynolds Number Investigation of a Flush Mounted, S-Duct Inlet With Large Amounts of Boundary Layer Ingestion

    NASA Technical Reports Server (NTRS)

    Berrier, Bobby L.; Carter, Melissa B.; Allan, Brian G.

    2005-01-01

    An experimental investigation of a flush-mounted, S-duct inlet with large amounts of boundary layer ingestion has been conducted at Reynolds numbers up to full scale. The study was conducted in the NASA Langley Research Center 0.3-Meter Transonic Cryogenic Tunnel. In addition, a supplemental computational study on one of the inlet configurations was conducted using the Navier-Stokes flow solver, OVERFLOW. Tests were conducted at Mach numbers from 0.25 to 0.83, Reynolds numbers (based on aerodynamic interface plane diameter) from 5.1 million to 13.9 million (full-scale value), and inlet mass-flow ratios from 0.29 to 1.22, depending on Mach number. Results of the study indicated that increasing Mach number, increasing boundary layer thickness (relative to inlet height) or ingesting a boundary layer with a distorted profile decreased inlet performance. At Mach numbers above 0.4, increasing inlet airflow increased inlet pressure recovery but also increased distortion. Finally, inlet distortion was found to be relatively insensitive to Reynolds number, but pressure recovery increased slightly with increasing Reynolds number.This CD-ROM supplement contains inlet data including: Boundary layer data, Duct static pressure data, performance-AIP (fan face) data, Photos, Tunnel wall P-PTO data and definitions.

  17. A library least-squares approach for scatter correction in gamma-ray tomography

    NASA Astrophysics Data System (ADS)

    Meric, Ilker; Anton Johansen, Geir; Valgueiro Malta Moreira, Icaro

    2015-03-01

    Scattered radiation is known to lead to distortion in reconstructed images in Computed Tomography (CT). The effects of scattered radiation are especially more pronounced in non-scanning, multiple source systems which are preferred for flow imaging where the instantaneous density distribution of the flow components is of interest. In this work, a new method based on a library least-squares (LLS) approach is proposed as a means of estimating the scatter contribution and correcting for this. The validity of the proposed method is tested using the 85-channel industrial gamma-ray tomograph previously developed at the University of Bergen (UoB). The results presented here confirm that the LLS approach can effectively estimate the amounts of transmission and scatter components in any given detector in the UoB gamma-ray tomography system.

  18. Symbol signal-to-noise ratio loss in square-wave subcarrier downconversion

    NASA Technical Reports Server (NTRS)

    Feria, Y.; Statman, J.

    1993-01-01

    This article presents the simulated results of the signal-to-noise ratio (SNR) loss in the process of a square-wave subcarrier down conversion. In a previous article, the SNR degradation was evaluated at the output of the down converter based on the signal and noise power change. Unlike in the previous article, the SNR loss is defined here as the difference between the actual and theoretical symbol SNR's for the same symbol-error rate at the output of the symbol matched filter. The results show that an average SNR loss of 0.3 dB can be achieved with tenth-order infinite impulse response (IIR) filters. This loss is a 0.2-dB increase over the SNR degradation in the previous analysis where neither the signal distortion nor the symbol detector was considered.

  19. Diagnosing and dealing with multicollinearity.

    PubMed

    Schroeder, M A

    1990-04-01

    The purpose of this article was to increase nurse researchers' awareness of the effects of collinear data in developing theoretical models for nursing practice. Collinear data distort the true value of the estimates generated from ordinary least-squares analysis. Theoretical models developed to provide the underpinnings of nursing practice need not be abandoned, however, because they fail to produce consistent estimates over repeated applications. It is also important to realize that multicollinearity is a data problem, not a problem associated with misspecification of a theorectical model. An investigator must first be aware of the problem, and then it is possible to develop an educated solution based on the degree of multicollinearity, theoretical considerations, and sources of error associated with alternative, biased, least-square regression techniques. Decisions based on theoretical and statistical considerations will further the development of theory-based nursing practice.

  20. Weight Vector Fluctuations in Adaptive Antenna Arrays Tuned Using the Least-Mean-Square Error Algorithm with Quadratic Constraint

    NASA Astrophysics Data System (ADS)

    Zimina, S. V.

    2015-06-01

    We present the results of statistical analysis of an adaptive antenna array tuned using the least-mean-square error algorithm with quadratic constraint on the useful-signal amplification with allowance for the weight-coefficient fluctuations. Using the perturbation theory, the expressions for the correlation function and power of the output signal of the adaptive antenna array, as well as the formula for the weight-vector covariance matrix are obtained in the first approximation. The fluctuations are shown to lead to the signal distortions at the antenna-array output. The weight-coefficient fluctuations result in the appearance of additional terms in the statistical characteristics of the antenna array. It is also shown that the weight-vector fluctuations are isotropic, i.e., identical in all directions of the weight-coefficient space.

  1. Magnetochemistry of the tetrahaloferrate (III) ions. 7. Crystal structure and magnetic ordering in (pyridinium){sub 3}Fe{sub 2}Br{sub 9}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowe, C.B.; Shaviv, R.; Carlin, R.L.

    1994-07-06

    A monoclinic crystal structure was found by X-ray diffraction for bis [pyridinium tetrabromferrate(III)]-pyridinium bromide. The double salt contains two slightly distorted [FeBr{sub 4}]{sup -} tetrahedra, three pyridinium rings, and an uncoordinated halide in each asymmetric unit, as is characteristic of the A{sub 3}Fe{sub 2}X{sub 9} series of compounds. Unit cell parameters, monoclinic space group P2{sub 1}, are a = 7.656(3) {angstrom}, b = 14.237(5) {angstrom}, c = 13.725(5) {angstrom}, {beta} = 93.42(3){degrees}, and V = 1493(1) {angstrom}{sup 3}, using Mo K{alpha} radiation {lambda} = 0.710 69 {angstrom}, {rho}{sub calc} = 2.38 g cm{sup -3}, and Z = 2. The tetrahedramore » are aligned with their 3-fold axes parallel to the crystallographic c axis. Bond lengths (Fe-Br) range from 2.271(9) {angstrom} to 2.379(9) {angstrom} for the two different slightly distorted tetrahedral units. Magnetic susceptibility studies show that the material orders three-dimensionally at 7.4 {+-} 0.2 K. The data are compared to a HTS expansion of 1/{sub {chi}} for the S = 5/2 three-dimensional Heisenberg model antiferromagnet for a sc lattice with g = 1.98 and J/k{sub B} = -0.43 K. The specific heat measurements indicate two odd-shaped {lambda} features, at 7.3 and 8 K.« less

  2. Constraints on μ-distortion fluctuations and primordial non-Gaussianity from Planck data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khatri, Rishi; Sunyaev, Rashid, E-mail: khatri@mpa-garching.mpg.de, E-mail: sunyaev@mpa-garching.mpg.de

    2015-09-01

    We use the Planck HFI channel maps to make an all sky map of μ-distortion fluctuations. Our μ-type distortion map is dominated by the y-type distortion contamination from the hot gas in the low redshift Universe and we can thus only place upper limits on the μ-type distortion fluctuations. For the amplitude of μ-type distortions on 10' scales we get the limit on root mean square (rms) value μ{sub rms}{sup 10'}< 6.4× 10{sup −6}, a limit 14 times stronger than the COBE-FIRAS (95% confidence) limit on the mean of ( μ )<90× 10{sup −6}. Using our maps we also place strong upper limits on themore » auto angular power spectrum of μ, C{sub ℓ}{sup μμ} and the cross angular power spectrum of μ with the CMB temperature anisotropies, C{sub ℓ}{sup μ T}. The strongest observational limits are on the largest scales, ℓ(ℓ+1)/(2π)C{sub ℓ}{sup μμ}|{sub ℓ=2−26}<(2.3± 1.0)× 10{sup −12} and ℓ(ℓ+1)/(2π)C{sub ℓ}{sup μ T}|{sub ℓ=2−26}<(2.6± 2.6)× 10{sup −12} K. Our observational limits can be used to constrain new physics which can create spatially varying energy release in the early Universe between redshifts 5× 10{sup 4∼<} z∼< 2× 10{sup 6}. We specifically apply our observational results to constrain the primordial non-Gaussianity of the local type, when the source of μ-distortion is Silk damping, for very squeezed configurations with the wavenumber for the short wavelength mode 46 ∼< k{sub S} ∼< 10{sup 4} Mpc{sup −1} and for the long wavelength mode k{sub L}≈ 10{sup −3} Mpc{sup −1}. Our limits on the primordial non-Gaussianity parameters are f{sub NL}<10{sup 5}, τ{sub NL}<1.4× 10{sup 11} for k{sub S}/k{sub L}≈ 5× 10{sup 4}− 10{sup 7}. We also give a new derivation of the evolution of the μ-distortion fluctuations through the y-distortion era and the recombination epoch until today resulting in very simple expressions for the cross and auto power spectra in the squeezed limit. We also introduce mixing of Bose-Einstein spectra due to Silk damping and y{sup BE}-type distortions. The μ-type distortion map and masks are now publicly available.« less

  3. Wireless Power Transfer for Distributed Estimation in Sensor Networks

    NASA Astrophysics Data System (ADS)

    Mai, Vien V.; Shin, Won-Yong; Ishibashi, Koji

    2017-04-01

    This paper studies power allocation for distributed estimation of an unknown scalar random source in sensor networks with a multiple-antenna fusion center (FC), where wireless sensors are equipped with radio-frequency based energy harvesting technology. The sensors' observation is locally processed by using an uncoded amplify-and-forward scheme. The processed signals are then sent to the FC, and are coherently combined at the FC, at which the best linear unbiased estimator (BLUE) is adopted for reliable estimation. We aim to solve the following two power allocation problems: 1) minimizing distortion under various power constraints; and 2) minimizing total transmit power under distortion constraints, where the distortion is measured in terms of mean-squared error of the BLUE. Two iterative algorithms are developed to solve the non-convex problems, which converge at least to a local optimum. In particular, the above algorithms are designed to jointly optimize the amplification coefficients, energy beamforming, and receive filtering. For each problem, a suboptimal design, a single-antenna FC scenario, and a common harvester deployment for colocated sensors, are also studied. Using the powerful semidefinite relaxation framework, our result is shown to be valid for any number of sensors, each with different noise power, and for an arbitrarily number of antennas at the FC.

  4. Deconvolution of the PSF of a seismic lens

    NASA Astrophysics Data System (ADS)

    Yu, Jianhua; Wang, Yue; Schuster, Gerard T.

    2002-12-01

    We show that if seismic data d is related to the migration image by mmig = LTd. then mmig is a blurred version of the actual reflectivity distribution m, i.e., mmig = (LTL)m. Here L is the acoustic forward modeling operator under the Born approximation where d = Lm. The blurring operator (LTL), or point spread function, distorts the image because of defects in the seismic lens, i.e., small source-receiver recording aperture and irregular/coarse geophone-source spacing. These distortions can be partly suppressed by applying the deblurring operator (LTL)-1 to the migration image to get m = (LTL)-1mmig. This deblurred image is known as a least squares migration (LSM) image if (LTL)-1LT is applied to the data d using a conjugate gradient method, and is known as a migration deconvolved (MD) image if (LTL)-1 is directly applied to the migration image mmig in (kx, ky, z) space. The MD algorithm is an order-of-magnitude faster than LSM, but it employs more restrictive assumptions. We also show that deblurring can be used to filter out coherent noise in the data such as multiple reflections. The procedure is to, e.g., decompose the forward modeling operator into both primary and multiple reflection operators d = (Lprim + Lmulti)m, invert for m, and find the primary reflection data by dprim = Lprimm. This method is named least squares migration filtering (LSMF). The above three algorithms (LSM, MD and LSMF) might be useful for attacking problems in optical imaging.

  5. Measurement of aerosol optical properties by cw cavity enhanced spectroscopy

    NASA Astrophysics Data System (ADS)

    Jie, Guo; Ye, Shan-Shan; Yang, Xiao; Han, Ye-Xing; Tang, Huai-Wu; Yu, Zhi-Wei

    2016-10-01

    The CAPS (Cavity Attenuated Phase shift Spectroscopy) system, which detects the extinction coefficients within a 10 nm bandpass centered at 532 nm, comprises a green LED with center wavelength in 532nm, a resonant optical cavity (36 cm length), a Photo Multiplier Tube detector, and a lock in amplifier. The square wave modulated light from the LED passes through the optical cavity and is detected as a distorted waveform which is characterized by a phase shift with respect to the initial modulation. Extinction coefficients are determined from changes in the phase shift of the distorted waveform of the square wave modulated LED light that is transmitted through the optical cavity. The performance of the CAPS system was evaluated by using measurements of the stability and response of the system. The minima ( 0.1 Mm-1) in the Allan plots show the optimum average time ( 100s) for optimum detection performance of the CAPS system. In the paper, it illustrates that extinction coefficient was correlated with PM2.5 mass (0.91). These figures indicate that this method has the potential to become one of the most sensitive on-line analytical techniques for extinction coefficient detection. This work aims to provide an initial validation of the CAPS extinction monitor in laboratory and field environments. Our initial results presented in this paper show that the CAPS extinction monitor is capable of providing state-of-the-art performance while dramatically reducing the complexity of optical instrumentation for directly measuring the extinction coefficients.

  6. AMLSA Algorithm for Hybrid Precoding in Millimeter Wave MIMO Systems

    NASA Astrophysics Data System (ADS)

    Liu, Fulai; Sun, Zhenxing; Du, Ruiyan; Bai, Xiaoyu

    2017-10-01

    In this paper, an effective algorithm will be proposed for hybrid precoding in mmWave MIMO systems, referred to as alternating minimization algorithm with the least squares amendment (AMLSA algorithm). To be specific, for the fully-connected structure, the presented algorithm is exploited to minimize the classical objective function and obtain the hybrid precoding matrix. It introduces an orthogonal constraint to the digital precoding matrix which is amended subsequently by the least squares after obtaining its alternating minimization iterative result. Simulation results confirm that the achievable spectral efficiency of our proposed algorithm is better to some extent than that of the existing algorithm without the least squares amendment. Furthermore, the number of iterations is reduced slightly via improving the initialization procedure.

  7. Revisiting the polytopal rearrangements in penta-coordinate d7-metallocomplexes: modified Berry pseudorotation, octahedral switch, and butterfly isomerization.

    PubMed

    Asatryan, Rubik; Ruckenstein, Eli; Hachmann, Johannes

    2017-08-01

    This paper provides a first-principles theoretical investigation of the polytopal rearrangements and fluxional behavior of five-coordinate d 7 -transition metal complexes. Our work is primarily based on a potential energy surface analysis of the iron tetracarbonyl hydride radical HFe˙(CO) 4 . We demonstrate the existence of distorted coordination geometries in this prototypical system and, for the first time, introduce three general rearrangement mechanisms, which account for the non-ideal coordination. The first of these mechanisms constitutes a modified version of the Berry pseudorotation via a square-based pyramidal C 4v transition state that connects two chemically identical edge-bridged tetrahedral stereoisomers of C 2v symmetry. It differs from the classical Berry mechanism, which involves two regular D 3h equilibrium structures and a C 4v transition state. The second mechanism is related to the famous "tetrahedral jump" hypothesis, postulated by Muetterties for a number of d 6 HML 4 and H 2 ML 4 complexes. Here, our study suggests two fluxional rearrangement pathways via distinct types of C 2v transition states. Both pathways of this mechanism can be described as a single-ligand migration to a vacant position of an "octahedron", thus interchanging (switching) the apical and basal ligands of the initial quasi-square pyramidal isomer, which is considered as an idealized octahedron with a vacancy. Accordingly, we call this mechanism "octahedral switch". The third mechanism follows a butterfly-type isomerization featuring a key-angle deformation, and we thus call it "butterfly isomerization". It connects the quasi-square pyramidal and edge-bridged tetrahedral isomers of HFe˙(CO) 4 through a distorted edge-bridged tetrahedral transition state of C s symmetry. Our paper discusses the overall features of the isomers and rearrangement mechanisms as well as their implications. We rationalize the existence of each stationary point through an electronic structure analysis and argue their relevance for isolobal analogues of HFe˙(CO) 4 .

  8. Essays on price cap regulation and yardstick competition

    NASA Astrophysics Data System (ADS)

    Noronha, Vernon Andrew

    This dissertation presents three papers on the regulation of monopoly firms in the same industry using yardstick competition to determine prices. In the first paper, "Yardstick Competition for Diversified Firms," we extend Shleifer's (1985) model to the case of diversified firms, and find that the social optimum, in which firms would need to produce at lower marginal cost than in Shleifer's model, is unlikely to be attained through profit maximization. In the second paper, "Cost Reduction under a Regression-Based Revenue Cap Regime," we identify certain hitherto unexplored and potentially undesirable properties for the form of yardstick competition that is widely applied. Allowed revenue totals for monopoly utility firms are determined by a regression of all firms' current costs on their cost drivers. It is shown that this mechanism induces firms to invest less in cost-reducing technology than if prices are determined purely exogenously, and that such cost-distorting behavior is not uniform across the industry. In particular, firms whose sizes are most different from the industry-mean elevate their costs proportionately much more than firms of similar size to the mean. However, this distortion vanishes as the number of firms grows large. In the third paper, "Predicted Cost-Distorting Conduct by UK Electricity Distribution Firms," by undertaking numerical examples using data on the UK electricity distribution industry, we discover that although the currently employed system of yardstick competition may have theoretical shortcomings, in practice, these are of slight consequence. There is found to be relatively little predicted distortion of costs for the majority of firms. In fact, this system is shown to generate greater social welfare than a similar system in which firms would not have any incentive to distort costs, unless consumer surplus enjoys a very high weight relative to industry profits. It is also shown that mergers within the industry could have an unexpected beneficial effect by reducing the extent of cost-distorting behavior by larger firms, although the industry-wide net effect has to be judged on a case-by-case basis.

  9. Quantitative model validation of manipulative robot systems

    NASA Astrophysics Data System (ADS)

    Kartowisastro, Iman Herwidiana

    This thesis is concerned with applying the distortion quantitative validation technique to a robot manipulative system with revolute joints. Using the distortion technique to validate a model quantitatively, the model parameter uncertainties are taken into account in assessing the faithfulness of the model and this approach is relatively more objective than the commonly visual comparison method. The industrial robot is represented by the TQ MA2000 robot arm. Details of the mathematical derivation of the distortion technique are given which explains the required distortion of the constant parameters within the model and the assessment of model adequacy. Due to the complexity of a robot model, only the first three degrees of freedom are considered where all links are assumed rigid. The modelling involves the Newton-Euler approach to obtain the dynamics model, and the Denavit-Hartenberg convention is used throughout the work. The conventional feedback control system is used in developing the model. The system behavior to parameter changes is investigated as some parameters are redundant. This work is important so that the most important parameters to be distorted can be selected and this leads to a new term called the fundamental parameters. The transfer function approach has been chosen to validate an industrial robot quantitatively against the measured data due to its practicality. Initially, the assessment of the model fidelity criterion indicated that the model was not capable of explaining the transient record in term of the model parameter uncertainties. Further investigations led to significant improvements of the model and better understanding of the model properties. After several improvements in the model, the fidelity criterion obtained was almost satisfied. Although the fidelity criterion is slightly less than unity, it has been shown that the distortion technique can be applied in a robot manipulative system. Using the validated model, the importance of friction terms in the model was highlighted with the aid of the partition control technique. It was also shown that the conventional feedback control scheme was insufficient for a robot manipulative system due to high nonlinearity which was inherent in the robot manipulator.

  10. Probing the anisotropic vortex lattice in the Fe-based superconductor KFe2As2 using small angle neutron scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debeer-Schmitt, Lisa M; Dewhurst, Charles; Kikuchi, Hiroko

    Using small angle neutron scattering, the anisotropy of the magnetic vortex lattice (VL), in the heavily hole-doped pnictide superconductor, KFe2As2, was studied. Well-ordered VL scattering patterns were measured with elds applied in directions between B k c and the basal plane, rotating either towards [100] or [110]. Slightly distorted hexagonal patterns were observed when B k c. However, the scattering pattern distorted strongly as the eld was rotated away from the c- axis. At low eld, the arrangement of vortices is strongly aected by the anisotropy of penetration depth in the plane perpendicular to the eld. By tting the distortionmore » with the anisotropic London model, we obtained an estimate of 3:4 for the anisotropy factor, , between the in-plane and c-axis penetration depths at the lowest temperature studied. The results further reveal VL phase transitions as a function of eld direction. We discuss these transitions using the "Hairy Ball" theorem.« less

  11. Co3(PO4)2·4H2O

    PubMed Central

    Lee, Young Hoon; Clegg, Jack K.; Lindoy, Leonard F.; Lu, G. Q. Max; Park, Yu-Chul; Kim, Yang

    2008-01-01

    Single crystals of Co3(PO4)2·4H2O, tricobalt(II) bis­[ortho­phosphate(V)] tetra­hydrate, were obtained under hydro­thermal conditions. The title compound is isotypic with its zinc analogue Zn3(PO4)2·4H2O (mineral name hopeite) and contains two independent Co2+ cations. One Co2+ cation exhibits a slightly distorted tetra­hedral coordination, while the second, located on a mirror plane, has a distorted octa­hedral coordination environment. The tetra­hedrally coordinated Co2+ is bonded to four O atoms of four PO4 3− anions, whereas the six-coordinate Co2+ is cis-bonded to two phosphate groups and to four O atoms of four water mol­ecules (two of which are located on mirror planes), forming a framework structure. In addition, hydrogen bonds of the type O—H⋯O are present throughout the crystal structure. PMID:21200978

  12. Applicability of regular particle shapes in light scattering calculations for atmospheric ice particles.

    PubMed

    Macke, A; Mishchenko, M I

    1996-07-20

    We ascertain the usefulness of simple ice particle geometries for modeling the intensity distribution of light scattering by atmospheric ice particles. To this end, similarities and differences in light scattering by axis-equivalent, regular and distorted hexagonal cylindric, ellipsoidal, and circular cylindric ice particles are reported. All the results pertain to particles with sizes much larger than a wavelength and are based on a geometrical optics approximation. At a nonabsorbing wavelength of 0.55 µm, ellipsoids (circular cylinders) have a much (slightly) larger asymmetry parameter g than regular hexagonal cylinders. However, our computations show that only random distortion of the crystal shape leads to a closer agreement with g values as small as 0.7 as derived from some remote-sensing data analysis. This may suggest that scattering by regular particle shapes is not necessarily representative of real atmospheric ice crystals at nonabsorbing wavelengths. On the other hand, if real ice particles happen to be hexagonal, they may be approximated by circular cylinders at absorbing wavelengths.

  13. Antiprismatic Coordination about Xenon: The Structure of Nitrosonium Octafluoroxenate(VI).

    PubMed

    Peterson, S W; Holloway, J H; Coyle, B A; Williams, J M

    1971-09-24

    The structure of nitrosonium octafluoroxenate(VI), 2NOF . XeF(6), has been determined by means of single-crystal x-ray counter methods (R-index = 0.046, weighted R-index = 0.042). The space group is Pnma, with a = 8.914(10) angstroms, b = 5.945(10) angstroms, and c = 12.83(2) angstroms (the numbers in parentheses are the standard deviations to the least significant digit or digits); the calculated density (rho) is 3.354 grams per cubic centimeter, and there are four formula units per unit cell. The material consists of well-separated NO(+) and (XeF(8))(2-) ions; the structural formula is thus (NO)(2) (XeF(8)). The anion configuration is that of a slightly distorted Archimedean antiprism. The observed distortion appears incompatible with a lone-pair repulsion model. Xenon-fluorine bond lengths of 1.971(7), 1.946(5), 1.958(7), 2.052(5), and 2.099(5) angstroms were found.

  14. A2TiF 5· nH 2O ( A=K, Rb, or Cs; n=0 or 1): Synthesis, structure, characterization, and calculations of three new uni-dimensional titanium fluorides

    NASA Astrophysics Data System (ADS)

    Jo, Vinna; Woo Lee, Dong; Koo, Hyun-Joo; Ok, Kang Min

    2011-04-01

    Three new uni-dimensional alkali metal titanium fluoride materials, A2TiF 5· nH 2O ( A=K, Rb, or Cs; n=0 or 1) have been synthesized by hydrothermal reactions. The structures of A2TiF 5· nH 2O have been determined by single-crystal X-ray diffraction. The Ti 4+ cations have been reduced to Ti 3+ during the synthesis reactions. All three A2TiF 5· nH 2O materials contain novel 1-D chain structures that are composed of the slightly distorted Ti 3+F 6 corner-sharing octahedra attributable to the Jahn-Teller distortion. The coordination environment of the alkali metal cations plays an important role to determine the degree of turning in the chain structures. Complete structural analyses, Infrared and UV-vis diffuse reflectance spectra, and thermal analyses are presented, as are electronic structure calculations.

  15. The XRD Study of the Effect of Slight Change in Structure on the Superconductivity of Y-Ba-Cu-O System Material

    NASA Astrophysics Data System (ADS)

    Huaqin, Wang; Shiyuan, Zhang; Tongzheng, Jin; Shiying, Han; Dirong, Qiu; Hao, Wang; Ningsheng, Zhou

    In this paper the differences in diffraction intensities from some crystal planes in the X-ray diffraction patterns of high Tc Y-Ba-Cu-O system superconductors prepared by different processing conditions and the difference among various structure cells in references are interpreted using computer fitting. The results suggest that there exists two structure cells in the single phase YBa2Cu3O7-x samples. Both structure cells have the same crystal symmetry and almost the same lattice parameters, a=3.821Å, b=3.892Å and c=11.676Å, but the different distortion degree of Cu2-O plane. According to EPR spectra measured on the same samples, it is considered that the improvement of superconductivity for the samples prepared by two-step annealing in flowing oxygen may be related to concentration of the structure cell with more serious distortion on the Cu2-O plane.

  16. Solvothermal synthesis and structural characterization of a three-dimensional metal organic polymer [NaZn(1,2,4-BTC)] (1,2,4-BTC=1,2,4-benzenetricarboxylate)

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Shi, Zhan; Li, Guanghua; Fan, Yong; Fu, Wensheng; Feng, Shouhua

    2004-01-01

    A new three-dimensional metal-organic polymer, [NaZn(1,2,4-BTC)] (where 1,2,4-BTC=1,2,4-benzenetricarboxylate), has been prepared under solvothermal conditions and characterized by single crystal X-ray diffraction. The compound crystallizes in the monoclinic space group P2 1/ c, with cell parameters: a=9.7706(4) Å, b=12.3549(5) Å, c=6.8897(3) Å, β=91.640(2)°, V=831.35(6) Å 3 and Z=4. In the three-dimensional structure of the compound, each Zn atom is five-coordinated in distorted trigonal bipyramidal geometry, while the sixfold coordination of Na corresponds to a slightly distorted triangular prism. The organic ligand, 1,2,4-BTC, shows a novel and unprecedented coordination mode: 11 bonds to 10 metals with each carboxylate function exhibiting different linkages. It remains stable when desolvated and when heated up to 410 °C.

  17. Detecting signatures of cosmological recombination and reionization in the cosmic radio background

    NASA Astrophysics Data System (ADS)

    Subrahmanyan, Ravi; Shankar Narayana Rao, Udaya; Sathyanarayana Rao, Mayuri; Singh, Saurabh

    2015-08-01

    Evolution of the baryons during the Epochs of cosmological Recombination and Reionization has left traces in the cosmic radio background in the form of spectral distortions (Sunyaev & Chluba 2008 Astron. Nachrichten, 330, 657; Pritchard & Loeb 2012 Rep Prog Phys 75(8):086901). The spectral signature depends on the evolution in the ionization state in hydrogen and helium and on the spin temperature of hydrogen. These probe the physics of energy release beyond the last scattering surface at redshifts exceeding 1090 and the nature of the first sources and gas evolution down to redshift about 6. The spectral distortions are sensitive to the nature of the first stars, ultra-dwarf galaxies, accreting compact objects, and the evolving ambient radiation field: X-rays and UV from the first sources. Detection of the all-sky or global spectral distortions in the radio background is hence a probe of cosmological recombination and reionization.We present new spectral radiometers that we have purpose designed for precision measurements of spectral distortions at radio wavelengths. New antenna elements include frequency independent and electrically small fat-dipole (Raghunathan et al. 2013 IEEE TAP, 61, 3411) and monopole designs. Receiver configurations have been devised that are self-calibratable (Patra et al. 2013 Expt Astron, 36, 319) so that switching of signal paths and of calibration noise sources provide real time calibration for systematics and receiver noise. Observing strategies (Patra et al. arXiv:1412.7762) and analysis methods (Satyanarayana Rao et al. arXiv:1501.07191) have been evolved that are capable of discriminating between the cosmological signals and the substantially brighter foregrounds. We have also demonstrated the value of system designs that exploit advantages of interferometer detection (Mahesh et al. arXiv:1406.2585) of global spectral distortions.Finally we discuss how the Square Kilometer Array stations may be outfitted with precision spectral radiometer outriggers (Subrahmanyan et al. arXiv:1501.04340) to provide the zero-spacing measurement sets, complement the interferometer visibilities and give the SKA a capability for measurements of cosmic radio background spectral distortions.

  18. Manufacturing Distortions of Curved Composite Panels

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr. (Technical Monitor); Ochinero, T. T.; Hyer, M. W.

    2002-01-01

    This papa briefly discusses the influences of through-thickness thermal expansion, a misaligned ply, and a resin-rich slightly thicker ply on the deformations of a curved composite laminate during cool down from tbc cure temperature. Both two-dimensional and three-dimensional level finite-element analyses are used. The deformations are categorized as to radial and tangential deformations and twist, and for each of the three influences, these deformations are quantified. An additional outcome of the study is an indication of the level of analysis needed to study each of these three influences.

  19. Optical wave distortion at perturbations of air density near aircrafts with subsonic velocities

    NASA Astrophysics Data System (ADS)

    Banakh, V. A.; Sukharev, A. A.

    2017-11-01

    The mean intensity, intensity fluctuations, and regular and random displacements of optical beams propagating through a zone of increased density formed at subsonic airflow about a turret in the turbulent atmosphere have been analyzed. It has been shown that the presence of perturbations around a turret due to the subsonic velocity of aircraft affects slightly the studied characteristics of the beam. Data illustrating changes in the studied beam characteristics for paths of different geometry and different turbulent conditions of radiation propagation are presented.

  20. Photon-counting hexagonal pixel array CdTe detector: Spatial resolution characteristics for image-guided interventional applications

    PubMed Central

    Shrestha, Suman; Karellas, Andrew; Shi, Linxi; Gounis, Matthew J.; Bellazzini, Ronaldo; Spandre, Gloria; Brez, Alessandro; Minuti, Massimo

    2016-01-01

    Purpose: High-resolution, photon-counting, energy-resolved detector with fast-framing capability can facilitate simultaneous acquisition of precontrast and postcontrast images for subtraction angiography without pixel registration artifacts and can facilitate high-resolution real-time imaging during image-guided interventions. Hence, this study was conducted to determine the spatial resolution characteristics of a hexagonal pixel array photon-counting cadmium telluride (CdTe) detector. Methods: A 650 μm thick CdTe Schottky photon-counting detector capable of concurrently acquiring up to two energy-windowed images was operated in a single energy-window mode to include photons of 10 keV or higher. The detector had hexagonal pixels with apothem of 30 μm resulting in pixel pitch of 60 and 51.96 μm along the two orthogonal directions. The detector was characterized at IEC-RQA5 spectral conditions. Linear response of the detector was determined over the air kerma rate relevant to image-guided interventional procedures ranging from 1.3 nGy/frame to 91.4 μGy/frame. Presampled modulation transfer was determined using a tungsten edge test device. The edge-spread function and the finely sampled line spread function accounted for hexagonal sampling, from which the presampled modulation transfer function (MTF) was determined. Since detectors with hexagonal pixels require resampling to square pixels for distortion-free display, the optimal square pixel size was determined by minimizing the root-mean-squared-error of the aperture functions for the square and hexagonal pixels up to the Nyquist limit. Results: At Nyquist frequencies of 8.33 and 9.62 cycles/mm along the apothem and orthogonal to the apothem directions, the modulation factors were 0.397 and 0.228, respectively. For the corresponding axis, the limiting resolution defined as 10% MTF occurred at 13.3 and 12 cycles/mm, respectively. Evaluation of the aperture functions yielded an optimal square pixel size of 54 μm. After resampling to 54 μm square pixels using trilinear interpolation, the presampled MTF at Nyquist frequency of 9.26 cycles/mm was 0.29 and 0.24 along the orthogonal directions and the limiting resolution (10% MTF) occurred at approximately 12 cycles/mm. Visual analysis of a bar pattern image showed the ability to resolve close to 12 line-pairs/mm and qualitative evaluation of a neurovascular nitinol-stent showed the ability to visualize its struts at clinically relevant conditions. Conclusions: Hexagonal pixel array photon-counting CdTe detector provides high spatial resolution in single-photon counting mode. After resampling to optimal square pixel size for distortion-free display, the spatial resolution is preserved. The dual-energy capabilities of the detector could allow for artifact-free subtraction angiography and basis material decomposition. The proposed high-resolution photon-counting detector with energy-resolving capability can be of importance for several image-guided interventional procedures as well as for pediatric applications. PMID:27147324

  1. Photon-counting hexagonal pixel array CdTe detector: Spatial resolution characteristics for image-guided interventional applications.

    PubMed

    Vedantham, Srinivasan; Shrestha, Suman; Karellas, Andrew; Shi, Linxi; Gounis, Matthew J; Bellazzini, Ronaldo; Spandre, Gloria; Brez, Alessandro; Minuti, Massimo

    2016-05-01

    High-resolution, photon-counting, energy-resolved detector with fast-framing capability can facilitate simultaneous acquisition of precontrast and postcontrast images for subtraction angiography without pixel registration artifacts and can facilitate high-resolution real-time imaging during image-guided interventions. Hence, this study was conducted to determine the spatial resolution characteristics of a hexagonal pixel array photon-counting cadmium telluride (CdTe) detector. A 650 μm thick CdTe Schottky photon-counting detector capable of concurrently acquiring up to two energy-windowed images was operated in a single energy-window mode to include photons of 10 keV or higher. The detector had hexagonal pixels with apothem of 30 μm resulting in pixel pitch of 60 and 51.96 μm along the two orthogonal directions. The detector was characterized at IEC-RQA5 spectral conditions. Linear response of the detector was determined over the air kerma rate relevant to image-guided interventional procedures ranging from 1.3 nGy/frame to 91.4 μGy/frame. Presampled modulation transfer was determined using a tungsten edge test device. The edge-spread function and the finely sampled line spread function accounted for hexagonal sampling, from which the presampled modulation transfer function (MTF) was determined. Since detectors with hexagonal pixels require resampling to square pixels for distortion-free display, the optimal square pixel size was determined by minimizing the root-mean-squared-error of the aperture functions for the square and hexagonal pixels up to the Nyquist limit. At Nyquist frequencies of 8.33 and 9.62 cycles/mm along the apothem and orthogonal to the apothem directions, the modulation factors were 0.397 and 0.228, respectively. For the corresponding axis, the limiting resolution defined as 10% MTF occurred at 13.3 and 12 cycles/mm, respectively. Evaluation of the aperture functions yielded an optimal square pixel size of 54 μm. After resampling to 54 μm square pixels using trilinear interpolation, the presampled MTF at Nyquist frequency of 9.26 cycles/mm was 0.29 and 0.24 along the orthogonal directions and the limiting resolution (10% MTF) occurred at approximately 12 cycles/mm. Visual analysis of a bar pattern image showed the ability to resolve close to 12 line-pairs/mm and qualitative evaluation of a neurovascular nitinol-stent showed the ability to visualize its struts at clinically relevant conditions. Hexagonal pixel array photon-counting CdTe detector provides high spatial resolution in single-photon counting mode. After resampling to optimal square pixel size for distortion-free display, the spatial resolution is preserved. The dual-energy capabilities of the detector could allow for artifact-free subtraction angiography and basis material decomposition. The proposed high-resolution photon-counting detector with energy-resolving capability can be of importance for several image-guided interventional procedures as well as for pediatric applications.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vedantham, Srinivasan; Shrestha, Suman; Karellas, Andrew, E-mail: andrew.karellas@umassmed.edu

    Purpose: High-resolution, photon-counting, energy-resolved detector with fast-framing capability can facilitate simultaneous acquisition of precontrast and postcontrast images for subtraction angiography without pixel registration artifacts and can facilitate high-resolution real-time imaging during image-guided interventions. Hence, this study was conducted to determine the spatial resolution characteristics of a hexagonal pixel array photon-counting cadmium telluride (CdTe) detector. Methods: A 650 μm thick CdTe Schottky photon-counting detector capable of concurrently acquiring up to two energy-windowed images was operated in a single energy-window mode to include photons of 10 keV or higher. The detector had hexagonal pixels with apothem of 30 μm resulting in pixelmore » pitch of 60 and 51.96 μm along the two orthogonal directions. The detector was characterized at IEC-RQA5 spectral conditions. Linear response of the detector was determined over the air kerma rate relevant to image-guided interventional procedures ranging from 1.3 nGy/frame to 91.4 μGy/frame. Presampled modulation transfer was determined using a tungsten edge test device. The edge-spread function and the finely sampled line spread function accounted for hexagonal sampling, from which the presampled modulation transfer function (MTF) was determined. Since detectors with hexagonal pixels require resampling to square pixels for distortion-free display, the optimal square pixel size was determined by minimizing the root-mean-squared-error of the aperture functions for the square and hexagonal pixels up to the Nyquist limit. Results: At Nyquist frequencies of 8.33 and 9.62 cycles/mm along the apothem and orthogonal to the apothem directions, the modulation factors were 0.397 and 0.228, respectively. For the corresponding axis, the limiting resolution defined as 10% MTF occurred at 13.3 and 12 cycles/mm, respectively. Evaluation of the aperture functions yielded an optimal square pixel size of 54 μm. After resampling to 54 μm square pixels using trilinear interpolation, the presampled MTF at Nyquist frequency of 9.26 cycles/mm was 0.29 and 0.24 along the orthogonal directions and the limiting resolution (10% MTF) occurred at approximately 12 cycles/mm. Visual analysis of a bar pattern image showed the ability to resolve close to 12 line-pairs/mm and qualitative evaluation of a neurovascular nitinol-stent showed the ability to visualize its struts at clinically relevant conditions. Conclusions: Hexagonal pixel array photon-counting CdTe detector provides high spatial resolution in single-photon counting mode. After resampling to optimal square pixel size for distortion-free display, the spatial resolution is preserved. The dual-energy capabilities of the detector could allow for artifact-free subtraction angiography and basis material decomposition. The proposed high-resolution photon-counting detector with energy-resolving capability can be of importance for several image-guided interventional procedures as well as for pediatric applications.« less

  3. Enhancement of the Wear Particle Monitoring Capability of Oil Debris Sensors Using a Maximal Overlap Discrete Wavelet Transform with Optimal Decomposition Depth

    PubMed Central

    Li, Chuan; Peng, Juan; Liang, Ming

    2014-01-01

    Oil debris sensors are effective tools to monitor wear particles in lubricants. For in situ applications, surrounding noise and vibration interferences often distort the oil debris signature of the sensor. Hence extracting oil debris signatures from sensor signals is a challenging task for wear particle monitoring. In this paper we employ the maximal overlap discrete wavelet transform (MODWT) with optimal decomposition depth to enhance the wear particle monitoring capability. The sensor signal is decomposed by the MODWT into different depths for detecting the wear particle existence. To extract the authentic particle signature with minimal distortion, the root mean square deviation of kurtosis value of the segmented signal residue is adopted as a criterion to obtain the optimal decomposition depth for the MODWT. The proposed approach is evaluated using both simulated and experimental wear particles. The results show that the present method can improve the oil debris monitoring capability without structural upgrade requirements. PMID:24686730

  4. Arc Second Alignment of International X-Ray Observatory Mirror Segments in a Fixed Structure

    NASA Technical Reports Server (NTRS)

    Evans, Tyler C.; Chan, Kai-Wing

    2009-01-01

    The optics for the International X-Ray Observatory (IXO) require alignment and integration of about fourteen thousand thin mirror segments to achieve the mission goal of 3.0 square meters of effective area at 1.25 keV with an angular resolution of five arc seconds. These mirror segments are 0.4mm thick, and 200 to 400mm in size, which makes it hard not to impart distortion at the subarc second level. This paper outlines the precise alignment, verification testing, and permanent bonding techniques developed at NASA's Goddard Space Flight Center (GSFC). These techniques are used to overcome the challenge of transferring thin mirror segments from a temporary mount to a fixed structure with arc second alignment and minimal figure distortion. Recent advances in technology development in addition to the automation of several processes have produced significant results. This paper will highlight the recent advances in alignment, testing, and permanent bonding techniques as well as the results they have produced.

  5. A hybrid method for synthetic aperture ladar phase-error compensation

    NASA Astrophysics Data System (ADS)

    Hua, Zhili; Li, Hongping; Gu, Yongjian

    2009-07-01

    As a high resolution imaging sensor, synthetic aperture ladar data contain phase-error whose source include uncompensated platform motion and atmospheric turbulence distortion errors. Two previously devised methods, rank one phase-error estimation algorithm and iterative blind deconvolution are reexamined, of which a hybrid method that can recover both the images and PSF's without any a priori information on the PSF is built to speed up the convergence rate by the consideration in the choice of initialization. To be integrated into spotlight mode SAL imaging model respectively, three methods all can effectively reduce the phase-error distortion. For each approach, signal to noise ratio, root mean square error and CPU time are computed, from which we can see the convergence rate of the hybrid method can be improved because a more efficient initialization set of blind deconvolution. Moreover, by making a further discussion of the hybrid method, the weight distribution of ROPE and IBD is found to be an important factor that affects the final result of the whole compensation process.

  6. Geometric accuracy of Landsat-4 and Landsat-5 Thematic Mapper images.

    USGS Publications Warehouse

    Borgeson, W.T.; Batson, R.M.; Kieffer, H.H.

    1985-01-01

    The geometric accuracy of the Landsat Thematic Mappers was assessed by a linear least-square comparison of the positions of conspicuous ground features in digital images with their geographic locations as determined from 1:24 000-scale maps. For a Landsat-5 image, the single-dimension standard deviations of the standard digital product, and of this image with additional linear corrections, are 11.2 and 10.3 m, respectively (0.4 pixel). An F-test showed that skew and affine distortion corrections are not significant. At this level of accuracy, the granularity of the digital image and the probable inaccuracy of the 1:24 000 maps began to affect the precision of the comparison. The tested image, even with a moderate accuracy loss in the digital-to-graphic conversion, meets National Horizontal Map Accuracy standards for scales of 1:100 000 and smaller. Two Landsat-4 images, obtained with the Multispectral Scanner on and off, and processed by an interim software system, contain significant skew and affine distortions. -Authors

  7. Temperature-Driven Shape Changes of the Near Earth Asteroid Scout Solar Sail

    NASA Technical Reports Server (NTRS)

    Stohlman, Olive R.; Loper, Erik R.; Lockett, Tiffany E.

    2017-01-01

    Near Earth Asteroid Scout (NEA Scout) is a NASA deep space Cubesat, scheduled to launch on the Exploration Mission 1 flight of the Space Launch System. NEA Scout will use a deployable solar sail as its primary propulsion system. The sail is a square membrane supported by rigid metallic tapespring booms, and analysis predicts that these booms will experience substantial thermal warping if they are exposed to direct sunlight in the space environment. NASA has conducted sunspot chamber experiments to confirm the thermal distortion of this class of booms, demonstrating tip displacement of between 20 and 50 centimeters in a 4-meter boom. The distortion behavior of the boom is complex and demonstrates an application for advanced thermal-structural analysis. The needs of the NEA Scout project were supported by changing the solar sail design to keep the booms shaded during use of the solar sail, and an additional experiment in the sunspot chamber is presented in support of this solution.

  8. Spitzer Instrument Pointing Frame (IPF) Kalman Filter Algorithm

    NASA Technical Reports Server (NTRS)

    Bayard, David S.; Kang, Bryan H.

    2004-01-01

    This paper discusses the Spitzer Instrument Pointing Frame (IPF) Kalman Filter algorithm. The IPF Kalman filter is a high-order square-root iterated linearized Kalman filter, which is parametrized for calibrating the Spitzer Space Telescope focal plane and aligning the science instrument arrays with respect to the telescope boresight. The most stringent calibration requirement specifies knowledge of certain instrument pointing frames to an accuracy of 0.1 arcseconds, per-axis, 1-sigma relative to the Telescope Pointing Frame. In order to achieve this level of accuracy, the filter carries 37 states to estimate desired parameters while also correcting for expected systematic errors due to: (1) optical distortions, (2) scanning mirror scale-factor and misalignment, (3) frame alignment variations due to thermomechanical distortion, and (4) gyro bias and bias-drift in all axes. The resulting estimated pointing frames and calibration parameters are essential for supporting on-board precision pointing capability, in addition to end-to-end 'pixels on the sky' ground pointing reconstruction efforts.

  9. Arc-Second Alignment of International X-Ray Observatory Mirror Segments in a Fixed Structure

    NASA Technical Reports Server (NTRS)

    Evans, Tyler C.; Chan, Kai-Wing; Saha, Timo T.

    2010-01-01

    The optics for the International X-Ray Observatory (IXO) require alignment and integration of about fourteen thousand thin mirror segments to achieve the mission goal of 3.0 square meters of effective area at 1.25 keV with an angular resolution of five arc-seconds. These mirror segments are 0.4 mm thick, and 200 to 400 mm in size, which makes it hard not to impart distortion at the subare- second level. This paper outlines the precise alignment, verification testing, and permanent bonding techniques developed at NASA's Goddard Space Flight Center (GSFC). These techniques are used to overcome the challenge of transferring thin mirror segments from a temporary mount to a fixed structure with arc-second alignment and minimal figure distortion. Recent advances in technology development in addition to the automation of several processes have produced significant results. This paper will highlight the recent advances in alignment, testing, and permanent bonding techniques as well as the results they have produced.

  10. Enhancement of the wear particle monitoring capability of oil debris sensors using a maximal overlap discrete wavelet transform with optimal decomposition depth.

    PubMed

    Li, Chuan; Peng, Juan; Liang, Ming

    2014-03-28

    Oil debris sensors are effective tools to monitor wear particles in lubricants. For in situ applications, surrounding noise and vibration interferences often distort the oil debris signature of the sensor. Hence extracting oil debris signatures from sensor signals is a challenging task for wear particle monitoring. In this paper we employ the maximal overlap discrete wavelet transform (MODWT) with optimal decomposition depth to enhance the wear particle monitoring capability. The sensor signal is decomposed by the MODWT into different depths for detecting the wear particle existence. To extract the authentic particle signature with minimal distortion, the root mean square deviation of kurtosis value of the segmented signal residue is adopted as a criterion to obtain the optimal decomposition depth for the MODWT. The proposed approach is evaluated using both simulated and experimental wear particles. The results show that the present method can improve the oil debris monitoring capability without structural upgrade requirements.

  11. Shearing-induced asymmetry in entorhinal grid cells.

    PubMed

    Stensola, Tor; Stensola, Hanne; Moser, May-Britt; Moser, Edvard I

    2015-02-12

    Grid cells are neurons with periodic spatial receptive fields (grids) that tile two-dimensional space in a hexagonal pattern. To provide useful information about location, grids must be stably anchored to an external reference frame. The mechanisms underlying this anchoring process have remained elusive. Here we show in differently sized familiar square enclosures that the axes of the grids are offset from the walls by an angle that minimizes symmetry with the borders of the environment. This rotational offset is invariably accompanied by an elliptic distortion of the grid pattern. Reversing the ellipticity analytically by a shearing transformation removes the angular offset. This, together with the near-absence of rotation in novel environments, suggests that the rotation emerges through non-coaxial strain as a function of experience. The systematic relationship between rotation and distortion of the grid pattern points to shear forces arising from anchoring to specific geometric reference points as key elements of the mechanism for alignment of grid patterns to the external world.

  12. The ultimate quantum limits on the accuracy of measurements

    NASA Technical Reports Server (NTRS)

    Yuen, Horace P.

    1992-01-01

    A quantum generalization of rate-distortion theory from standard communication and information theory is developed for application to determining the ultimate performance limit of measurement systems in physics. For the estimation of a real or a phase parameter, it is shown that the root-mean-square error obtained in a measurement with a single-mode photon level N cannot do better than approximately N exp -1, while approximately exp(-N) may be obtained for multi-mode fields with the same photon level N. Possible ways to achieve the remarkable exponential performance are indicated.

  13. Propagation of a laser beam in a plasma

    NASA Technical Reports Server (NTRS)

    Chapman, J. M.; Kevorkian, J.; Steinhauer, L. C.; Vagners, J.

    1975-01-01

    This paper shows that for a nonabsorbing medium with a prescribed index of refraction, the effects of beam stability, line focusing, and beam distortion can be predicted from simple ray optics. When the paraxial approximation is used, diffraction effects are examined for Gaussian, Lorentzian, and square beams. Most importantly, it is shown that for a Gaussian beam, diffraction effects can be included simply by adding imaginary solutions to the paraxial ray equations. Also presented are several procedures to extend the paraxial approximation so that the solution will have a domain of validity of greater extent.

  14. Theoretical and subjective bit assignments in transform picture

    NASA Technical Reports Server (NTRS)

    Jones, H. W., Jr.

    1977-01-01

    It is shown that all combinations of symmetrical input distributions with difference distortion measures give a bit assignment rule identical to the well-known rule for a Gaussian input distribution with mean-square error. Published work is examined to show that the bit assignment rule is useful for transforms of full pictures, but subjective bit assignments for transform picture coding using small block sizes are significantly different from the theoretical bit assignment rule. An intuitive explanation is based on subjective design experience, and a subjectively obtained bit assignment rule is given.

  15. Zr-92(d,p)Zr-93 and Zr-92(d,t)Zr-91

    NASA Technical Reports Server (NTRS)

    Baron, N.; Fink, C. L.; Christensen, P. R.; Nickels, J.; Torsteinsen, T.

    1972-01-01

    The structures of Zr-93 and Zr-91 were studied by the stripping reaction Zr-92(d,p)Zr-93 and the pick-up reaction Zr-92(d,t)Zr-91 using 13 MeV incident deuterons. The reaction product particles were detected by counter telescope. Typical spectra from the reactions were analyzed by a nonlinear least squares peak fitting program which included a background search. Spin and parity assignments to observed excited levels were made by comparing experimental angular distributions with distorted wave Born approximation calculations.

  16. Synthesis and Characterization of Mononuclear, Pseudotetrahedral Cobalt(III) Compounds

    PubMed Central

    2015-01-01

    The preparation and characterization of two mononuclear cobalt(III) tropocoronand complexes, [Co(TC-5,5)](BF4) and [Co(TC-6,6)](BPh4), are reported. The cobalt(III) centers exist in rare pseudotetrahedral conformations, with twist angles of 65° and 74° for the [Co(TC-5,5]+ and [Co(TC-6,6)]+ species, respectively. Structural and electrochemical characteristics are compared with those of newly synthesized [Ga(TC-5,5)](GaCl4) and [Ga(TC-6,6)](GaCl4) analogues. The spin state of the pseudotetrahedral [Co(TC-6,6)](BPh4) compound was determined to be S = 2, a change in spin state from the value of S = 1 that occurs in the square-planar and distorted square-planar complexes, [Co(TC-3,3)](X) (X = BPh4, BAr′4) and [Co(TC-4,4)](BPh4), respectively. PMID:25531129

  17. Lattice-like collagen fiber meshwork in the iris stroma of the cat: a possible mechanism to generate the tension directed towards the iris root which is required for pupillary dilatation in the sympathectomized eye.

    PubMed

    Sakuraba, M; Yun, S; Ichinohe, N; Yonekura, H; Shoumura, K

    1999-10-01

    NaOH digestion technique for collagen fiber dissection and scanning electron microscopy demonstrated a lattice-like meshwork in the anterior surface of the iris stroma of the cat. The mesh threads were made of collagen fibril bundles. In the constricted pupil, the meshes were square to rhomboid with the diagonals in the direction of the radius or circumference of the iris. In the dilated pupil, however, the meshes were strongly flattened rhomboid or ellipse with a longer diagnoal or axis in the circumferential direction. At the mesh corners facing the pupillary margin or the iris root, the collagen fibril bundles were strongly bent in the iris of the constricted pupil, while they were almost straight or slightly wavy in the iris of the dilated pupil. Accumulation of elasticity tension generated by this small distortion of the iris-mesh threads in the constricted pupil was considered to generate a tension directed towards the iris root, which is required for pupillary dilatation in the sympathectomized eye. On the posterior surface of the iris stroma, numerous thin pleats tightly woven with collagen fibrils traversed straightway through the radial length of the ciliary zone of the iris in both constricted and dilated pupils. The structural changes of these pleats in miosis and mydriasis were very small compared with the meshwork of the anterior aspect of the iris. Therefore, they were considered to work mainly as an iris skeleton.

  18. Synthesis, crystal structures and properties of new homoleptic Ni(II)/Pd(II) β-oxodithioester chelates

    NASA Astrophysics Data System (ADS)

    Yadav, Chote L.; Manar, Krishna K.; Yadav, Manoj K.; Tiwari, Neeraj; Singh, Rakesh K.; Drew, Michael G. B.; Singh, Nanhai

    2018-05-01

    Six new cis-chelate complexes, [M(L)2] (L = methyl-3-hydroxy-3-(furyl)-2-propenedithioate L1, M = Ni(II) 1, Pd(II) 4; methyl-3-hydroxy-3-(thiophenyl)-2-propenedithioate L2, M = Ni(II) 2, Pd(II) 5 and methyl-3-hydroxy-3-(phenyl)-2-propenedithioate L3, M = Ni(II) 3, Pd(II) 6 have been prepared and characterized by elemental analyses, spectroscopy (IR, UV-Vis., 1H and 13C{1H} NMR). The structures of 2-6 have been revealed by X-ray crystallography. In all the crystal structures, the metal has four-coordinate slightly distorted square planar geometry with a cis-configuration of the ligands. Anti-leishmanial properties of the complexes have been studied; 2, 3 and 6 showed potential anti-promastigote and anti-amastigote activities with IC50 values of 1.70 ± 0.50, 1.62 ± 0.19, 9.20 ± 2.16 μg/mL and IC50 2.50 ± 0.10, 2.05 ± 0.40, 12.84 ± 3.46 μg/mL respectively. Cytotoxicity assays on these complexes showed toxicity on the promastigotes but less toxicity against RAW 264.7 cell lines at different concentrations. Palladium complexes 4, 5 and 6 show luminescent characteristics in CH2Cl2 solution at room temperature. Complexes 1-6 are weakly conducting (σrt = 10-4-10-6 S cm-1, Ea = 0.19-1.13 eV) but show semiconducting behavior in the solid phase.

  19. On square-integrability of solutions of the stationary Schrödinger equation for the quantum harmonic oscillator in two dimensional constant curvature spaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noguera, Norman, E-mail: norman.noguera@ucr.ac.cr; Rózga, Krzysztof, E-mail: krzysztof.rozga@upr.edu

    In this work, one provides a justification of the condition that is usually imposed on the parameters of the hypergeometric equation, related to the solutions of the stationary Schrödinger equation for the harmonic oscillator in two-dimensional constant curvature spaces, in order to determine the solutions which are square-integrable. One proves that in case of negative curvature, it is a necessary condition of square integrability and in case of positive curvature, a necessary condition of regularity. The proof is based on the analytic continuation formulas for the hypergeometric function. It is observed also that the same is true in case ofmore » a slightly more general potential than the one for harmonic oscillator.« less

  20. WE-G-204-03: Photon-Counting Hexagonal Pixel Array CdTe Detector: Optimal Resampling to Square Pixels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrestha, S; Vedantham, S; Karellas, A

    Purpose: Detectors with hexagonal pixels require resampling to square pixels for distortion-free display of acquired images. In this work, the presampling modulation transfer function (MTF) of a hexagonal pixel array photon-counting CdTe detector for region-of-interest fluoroscopy was measured and the optimal square pixel size for resampling was determined. Methods: A 0.65mm thick CdTe Schottky sensor capable of concurrently acquiring up to 3 energy-windowed images was operated in a single energy-window mode to include ≥10 KeV photons. The detector had hexagonal pixels with apothem of 30 microns resulting in pixel spacing of 60 and 51.96 microns along the two orthogonal directions.more » Images of a tungsten edge test device acquired under IEC RQA5 conditions were double Hough transformed to identify the edge and numerically differentiated. The presampling MTF was determined from the finely sampled line spread function that accounted for the hexagonal sampling. The optimal square pixel size was determined in two ways; the square pixel size for which the aperture function evaluated at the Nyquist frequencies along the two orthogonal directions matched that from the hexagonal pixel aperture functions, and the square pixel size for which the mean absolute difference between the square and hexagonal aperture functions was minimized over all frequencies up to the Nyquist limit. Results: Evaluation of the aperture functions over the entire frequency range resulted in square pixel size of 53 microns with less than 2% difference from the hexagonal pixel. Evaluation of the aperture functions at Nyquist frequencies alone resulted in 54 microns square pixels. For the photon-counting CdTe detector and after resampling to 53 microns square pixels using quadratic interpolation, the presampling MTF at Nyquist frequency of 9.434 cycles/mm along the two directions were 0.501 and 0.507. Conclusion: Hexagonal pixel array photon-counting CdTe detector after resampling to square pixels provides high-resolution imaging suitable for fluoroscopy.« less

  1. Jahn-Teller distortion of Mn3+-occupied octahedra in red beryl from Utah indicated by optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Fridrichová, Jana; Bačík, Peter; Ertl, Andreas; Wildner, Manfred; Dekan, Július; Miglierini, Marcel

    2018-01-01

    Red beryl from Utah is chemically homogeneous and contains only Fe < 0.163, Mn < 0.018, and Mg < 0.016 apfu. Channel sites contain only up to Cs 0.011, K 0.009, Rb 0.004, and Na 0.004 apfu. This suggests only very slight tetrahedral (Cs,K,Rb)Li□-1Be-1 substitution, octahedral Na(Fe2+,Mg)□-1Al-1 substitution can be excluded. Fe and Mn are trivalent as documented by Mössbauer spectroscopy and optical absorption spectroscopy. Red beryl optimized formula is ∼[(Cs,Rb,K)0.02□0.98]Σ1.00□1.00(Al1.79Fe3+0.16Mn3+0.02Ti4+0.02Mg0.01)Σ2.00Be3(Si6O18). Location of Mn3+ was estimated to the octahedral Al3+ site, other choices are improbable due to the bond-length requirements. No Mn3+-induced Jahn-Teller structural distortion was detected due to site symmetry restrictions and small Mn3+ content. However, optical spectroscopy shows broad band at ∼7190 cm-1 assigned to the excited level of the spin-allowed pseudo-tetragonal split E ground state of elongated six-fold Mn3+ coordination. Crystal field calculations indicate that the local Mn3+ environment complies well with crystal chemical expectations for Jahn-Teller distorted Mn3+O6 octahedra.

  2. Rounding corners of nano-square patches for multispectral plasmonic metamaterial absorbers.

    PubMed

    Ayas, Sencer; Bakan, Gokhan; Dana, Aykutlu

    2015-05-04

    Multispectral metamaterial absorbers based on metal-insulator-metal nano-square patch resonators are studied here. For a geometry consisting of perfectly nano-square patches and vertical sidewalls, double resonances in the visible regime are observed due to simultaneous excitation of electric and magnetic plasmon modes. Although slightly modifying the sizes of the square patches makes the resonance wavelengths simply shift, rounding corners of the square patches results in emergence of a third resonance due to excitation of the circular cavity modes. Sidewall angle of the patches are also observed to affect the absorption spectra significantly. Peak absorption values for the triple resonance structures are strongly affected as the sidewall angle varies from 90 to 50 degrees. Rounded corners and slanted sidewalls are typical imperfections for lithographically fabricated metamaterial structures. The presented results suggest that imperfections caused during fabrication of the top nano-structures must be taken into account when designing metamaterial absorbers. Furthermore, it is shown that these fabrication imperfections can be exploited for improving resonance properties and bandwidths of metamaterials for various potential applications such as solar energy harvesting, thermal emitters, surface enhanced spectroscopies and photodetection.

  3. Synthesis, and structural characterization of mixed ligand copper(II) complexes of N,N,N‧,N'-tetramethylethylenediamine incorporating carboxylates

    NASA Astrophysics Data System (ADS)

    Batool, Syeda Shahzadi; Gilani, Syeda Rubina; Tahir, Muhammad Nawaz; Rüffer, Tobias

    2017-11-01

    Two ternary copper(II) complexes of N,N,N‧,N'-tetramethylethylenediamine (tmen = C6H16N2) with benzoic acid and p-aminobenzoic acid, having the formula [Cu(tmen)(BA)2(H2O)2] (1), and [Cu(tmen)(pABA)2]. 1/2 CH3OH (2) {(Where BA1- = benzoate1- (C6H5CO21-), pABA1- = p-aminobenzoate1- (p-H2NC6H5CO21-)} have been prepared and characterized by elemental combustion analysis, Uv-Visible spectroscopy, FT-IR spectroscopy, thermal, and single crystal X-ray diffraction analyses. The complex 1 is a monomer with distorted octahedral geometry. In its CuN2O4 chromophore, the Cu(II) centre is coordinated by two N atoms of a symmetrically chelating tmen ligand, by two carboxylate-O atoms from two monodentate benzoate1- anions, and by two apical aqua-O atoms, which define the distorted octahedral structure. The complex 2 is a monomer with a distorted square planar coordination geometry. In CuN2O2 chromophore, tmen is coordinated to Cu(II) ion in a chelating bidentate fashion, while the two p-aminobenzoate1- anions coordinate to Cu(II) centre through their carboxylate-O atoms in a monodentate manner, forming a square planar structure. The observed difference between asymmetric ѵas(OCO) and symmetric ѵs(OCO) stretching IR vibrations of the carboxylate moieties for 1 and 2 is 220 cm-1 and 232 cm-1, respectively, which suggests monodentate coordination mode (Δν OCO>200) of the carboxylate groups to Cu(II) ion. Thermogravimetric studies of 1 indicates removal of two water molecules at 171 °C, elimination of a tmen upto 529 °C and of two benzoate groups upto 931 °C. In tga curve of 2, methanol is lost upto 212 °C, while tmen is lost from 212 to 993 °C. The antibacterial activities of these new compounds against various bacterial strains were also investigated.

  4. Family Typology and Appraisal of Preschoolers' Behavior by Female Caregivers.

    PubMed

    Coke, Sallie P; Moore, Leslie C

    2015-01-01

    Children with vulnerable caregivers may be at risk for being labeled as having behavior problems when typical behaviors are viewed by their caregivers as problematic, and therefore, research examining the accuracy of the caregivers' perceptions of children's behaviors is needed. The purpose of this study was to use the resiliency model of family stress, adjustment, and adaptation as the theoretical foundation to explore family factors associated with the primary female caregiver's appraisal of her child's behavior, the extent to which the primary female caregiver's appraisal of her child's behavior may be distorted, and the child's level of risk of having a behavioral problem. A cross-sectional, correlational design was used. Data were collected from female caregivers of preschoolers (N = 117). Family factors, demographic characteristics, comfort in parenting, appraisal of behaviors, daily stress, parenting stress, depressive symptoms, social support, ratings of children's behaviors, and distortion in the ratings were measured. Associations were studied using ANOVA, ANCOVA, and chi-squared tests. Family typology was not associated with the female caregiver's appraisals of her child's behavior (p = .31). Distortion of the caregiver's rating of her child's behavior was not associated with family hardiness (high or low; p = .20.) but was associated with having a child with an elevated risk for behavioral problems (p < .01). Families classified as vulnerable were significantly more likely to have a child with elevated risks of having behavioral problems than families classified as secure or regenerative. Findings emphasized the association between family factors (hardiness and coherence) and young children's behaviors. Additional research is needed into how these factors affect the young child's behavior and what causes a caregiver to have a distorted view of her child's behavior.

  5. Wireless visual sensor network resource allocation using cross-layer optimization

    NASA Astrophysics Data System (ADS)

    Bentley, Elizabeth S.; Matyjas, John D.; Medley, Michael J.; Kondi, Lisimachos P.

    2009-01-01

    In this paper, we propose an approach to manage network resources for a Direct Sequence Code Division Multiple Access (DS-CDMA) visual sensor network where nodes monitor scenes with varying levels of motion. It uses cross-layer optimization across the physical layer, the link layer and the application layer. Our technique simultaneously assigns a source coding rate, a channel coding rate, and a power level to all nodes in the network based on one of two criteria that maximize the quality of video of the entire network as a whole, subject to a constraint on the total chip rate. One criterion results in the minimal average end-to-end distortion amongst all nodes, while the other criterion minimizes the maximum distortion of the network. Our approach allows one to determine the capacity of the visual sensor network based on the number of nodes and the quality of video that must be transmitted. For bandwidth-limited applications, one can also determine the minimum bandwidth needed to accommodate a number of nodes with a specific target chip rate. Video captured by a sensor node camera is encoded and decoded using the H.264 video codec by a centralized control unit at the network layer. To reduce the computational complexity of the solution, Universal Rate-Distortion Characteristics (URDCs) are obtained experimentally to relate bit error probabilities to the distortion of corrupted video. Bit error rates are found first by using Viterbi's upper bounds on the bit error probability and second, by simulating nodes transmitting data spread by Total Square Correlation (TSC) codes over a Rayleigh-faded DS-CDMA channel and receiving that data using Auxiliary Vector (AV) filtering.

  6. Detector response function of an energy-resolved CdTe single photon counting detector.

    PubMed

    Liu, Xin; Lee, Hyoung Koo

    2014-01-01

    While spectral CT using single photon counting detector has shown a number of advantages in diagnostic imaging, knowledge of the detector response function of an energy-resolved detector is needed to correct the signal bias and reconstruct the image more accurately. The objective of this paper is to study the photo counting detector response function using laboratory sources, and investigate the signal bias correction method. Our approach is to model the detector response function over the entire diagnostic energy range (20 keV

  7. Accurate frequency domain measurement of the best linear time-invariant approximation of linear time-periodic systems including the quantification of the time-periodic distortions

    NASA Astrophysics Data System (ADS)

    Louarroudi, E.; Pintelon, R.; Lataire, J.

    2014-10-01

    Time-periodic (TP) phenomena occurring, for instance, in wind turbines, helicopters, anisotropic shaft-bearing systems, and cardiovascular/respiratory systems, are often not addressed when classical frequency response function (FRF) measurements are performed. As the traditional FRF concept is based on the linear time-invariant (LTI) system theory, it is only approximately valid for systems with varying dynamics. Accordingly, the quantification of any deviation from this ideal LTI framework is more than welcome. The “measure of deviation” allows us to define the notion of the best LTI (BLTI) approximation, which yields the best - in mean square sense - LTI description of a linear time-periodic LTP system. By taking into consideration the TP effects, it is shown in this paper that the variability of the BLTI measurement can be reduced significantly compared with that of classical FRF estimators. From a single experiment, the proposed identification methods can handle (non-)linear time-periodic [(N)LTP] systems in open-loop with a quantification of (i) the noise and/or the NL distortions, (ii) the TP distortions and (iii) the transient (leakage) errors. Besides, a geometrical interpretation of the BLTI approximation is provided, leading to a framework called vector FRF analysis. The theory presented is supported by numerical simulations as well as real measurements mimicking the well-known mechanical Mathieu oscillator.

  8. Mitigation of Adverse Effects Caused by Shock Wave Boundary Layer Interactions Through Optimal Wall Shaping

    NASA Technical Reports Server (NTRS)

    Liou, May-Fun; Lee, Byung Joon

    2013-01-01

    It is known that the adverse effects of shock wave boundary layer interactions in high speed inlets include reduced total pressure recovery and highly distorted flow at the aerodynamic interface plane (AIP). This paper presents a design method for flow control which creates perturbations in geometry. These perturbations are tailored to change the flow structures in order to minimize shock wave boundary layer interactions (SWBLI) inside supersonic inlets. Optimizing the shape of two dimensional micro-size bumps is shown to be a very effective flow control method for two-dimensional SWBLI. In investigating the three dimensional SWBLI, a square duct is employed as a baseline. To investigate the mechanism whereby the geometric elements of the baseline, i.e. the bottom wall, the sidewall and the corner, exert influence on the flow's aerodynamic characteristics, each element is studied and optimized separately. It is found that arrays of micro-size bumps on the bottom wall of the duct have little effect in improving total pressure recovery though they are useful in suppressing the incipient separation in three-dimensional problems. Shaping sidewall geometry is effective in re-distributing flow on the side wall and results in a less distorted flow at the exit. Subsequently, a near 50% reduction in distortion is achieved. A simple change in corner geometry resulted in a 2.4% improvement in total pressure recovery.

  9. Bcc and Fcc transition metals and alloys: a central role for the Jahn-Teller effect in explaining their ideal and distorted structures.

    PubMed

    Lee, Stephen; Hoffmann, Roald

    2002-05-01

    Transition metal elements, alloys, and intermetallic compounds often adopt the body centered cubic (bcc) and face centered cubic (fcc) structures. By comparing quantitative density functional with qualitative tight-binding calculations, we analyze the electronic factors which make the bcc and fcc structures energetically favorable. To do so, we develop a tight-binding function, DeltaE(star), a function that measures the energetic effects of transferring electrons within wave vector stars. This function allows one to connect distortions in solids to the Jahn-Teller effect in molecules and to provide an orbital perspective on structure determining deformations in alloys. We illustrate its use by considering first a two-dimensional square net. We then turn to three-dimensional fcc and bcc structures, and distortions of these. Using DeltaE(star), we rationalize the differences in energy of these structures. We are able to deduce which orbitals are responsible for instabilities in seven to nine valence electron per atom (e(-)/a) bcc systems and five and six e(-)/a fcc structures. Finally we demonstrate that these results account for the bcc and fcc type structures found in both the elements and binary intermetallic compounds of group 4 through 9 transition metal atoms. The outline of a theory of metal structure deformations based on loss of point group operation rather than translational symmetry is presented.

  10. A look-up-table digital predistortion technique for high-voltage power amplifiers in ultrasonic applications.

    PubMed

    Gao, Zheng; Gui, Ping

    2012-07-01

    In this paper, we present a digital predistortion technique to improve the linearity and power efficiency of a high-voltage class-AB power amplifier (PA) for ultrasound transmitters. The system is composed of a digital-to-analog converter (DAC), an analog-to-digital converter (ADC), and a field-programmable gate array (FPGA) in which the digital predistortion (DPD) algorithm is implemented. The DPD algorithm updates the error, which is the difference between the ideal signal and the attenuated distorted output signal, in the look-up table (LUT) memory during each cycle of a sinusoidal signal using the least-mean-square (LMS) algorithm. On the next signal cycle, the error data are used to equalize the signal with negative harmonic components to cancel the amplifier's nonlinear response. The algorithm also includes a linear interpolation method applied to the windowed sinusoidal signals for the B-mode and Doppler modes. The measurement test bench uses an arbitrary function generator as the DAC to generate the input signal, an oscilloscope as the ADC to capture the output waveform, and software to implement the DPD algorithm. The measurement results show that the proposed system is able to reduce the second-order harmonic distortion (HD2) by 20 dB and the third-order harmonic distortion (HD3) by 14.5 dB, while at the same time improving the power efficiency by 18%.

  11. Millimeter-Wave Spectroscopy, X-ray Crystal Structure, and Quantum Chemical Studies of Diketene: Resolving Ambiguities Concerning the Structure of the Ketene Dimer.

    PubMed

    Orr, Vanessa L; Esselman, Brian J; Dorman, P Matisha; Amberger, Brent K; Guzei, Ilia A; Woods, R Claude; McMahon, Robert J

    2016-10-06

    The pure rotational spectrum of diketene has been studied in the millimeter-wave region from ∼240 to 360 GHz. For the ground vibrational state and five vibrationally excited satellites (ν 24 , 2ν 24 , 3ν 24 , 4ν 24 , and ν 16 ), the observed spectrum allowed for the measurement, assignment, and least-squares fitting a total of more than 10 000 distinct rotational transitions. In each case, the transitions were fit to single-state, complete or near-complete sextic centrifugally distorted rotor models to near experimental error limits using Kisiel's ASFIT. Additionally, we obtained less satisfactory least-squares fits to single-state centrifugally distorted rotor models for three additional vibrational states: ν 24 + ν 16 , ν 23 , and 5ν 24 . The structure of diketene was optimized at the CCSD(T)/ANO1 level, and the vibration-rotation interaction (α i ) values for each normal mode were determined with a CCSD(T)/ANO1 VPT2 anharmonic frequency calculation. These α i values were helpful in identifying the previously unreported ν 16 and ν 23 fundamental states. We obtained a single-crystal X-ray structure of diketene at -173 °C. The bond distances are increased in precision by more than an order of magnitude compared to those in the 1958 X-ray crystal structure. The improved accuracy of the crystal structure geometry resolves the discrepancy between previous computational and experimental structures. The rotational transition frequencies provided herein should be useful for a millimeter-wave or terahertz search for diketene in the interstellar medium.

  12. Anisotropic CMB distortions from non-Gaussian isocurvature perturbations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ota, Atsuhisa; Sekiguchi, Toyokazu; Tada, Yuichiro

    2015-03-01

    We calculate the CMB μ-distortion, (μ), and the angular power spectrum of its cross-correlation with the temperature anisotropy, (μT), in the presence of the non-Gaussian neutrino isocurvature density (NID) mode. While the pure Gaussian NID perturbations give merely subdominant contributions to (μ) and do not create (μT), we show large (μT) can be realized in case where, especially, the NID perturbations S(x) are proportional to the square of a Gaussian field g(x), i.e. S(x)∝ g{sup 2}(x). Such Gaussian-squared perturbations contribute to not only the power spectrum, but also the bispectrum of CMB anisotropies. The constraints from the power spectrum ismore » given by P{sub SS}(k{sub 0})∼P{sub g}{sup 2}(k{sub 0})∼<10{sup −10} at k{sub 0}=0.05 Mpc{sup −1}. We also forecast constraints from the CMB temperature and E-mode polarisation bispectra, and show that P{sub g}(k{sub 0})∼<10{sup −5} would be allowed from the Planck data. We find that (μ) and |l(l+1)C{sup μT}{sub l}| can respectively be as large as 10{sup −9} and 10{sup −14} with uncorrelated scale-invariant NID perturbations for P{sub g}(k{sub 0})=10{sup −5}. When the spectrum of the Gaussian field is blue-tilted (with spectral index n{sub g}≅1.5), (μT) can be enhanced by an order of magnitude.« less

  13. Experimental investigation of flow characteristics around four square-cylinder arrays at subcritical Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Liu, Mingyue; Xiao, Longfei; Yang, Lijun

    2015-09-01

    The Deep Draft Semi-Submersible (DDS) concepts are known for their favourable vertical motion performance. However, the DDS may experience critical Vortex-Induced Motion (VIM) stemming from the fluctuating forces on the columns. In order to investigate the current-induced excitation forces of VIM, an experimental study of flow characteristics around four square-section cylinders in a square configuration is presented. A number of column spacing ratios and array attack angles were considered to investigate the parametric influences. The results comprise flow patterns, drag and lift forces, as well as Strouhal numbers. It is shown that both the drag and lift forces acting on the cylinders are slightly different between the various L/D values, and the fluctuating forces peak at L/D = 4.14. The lift force of downstream cylinders reaches its maximum at around α = 15°. Furthermore, the flow around circular-section-cylinder arrays is also discussed in comparison with that of square cylinders.

  14. A Parameterized Inversion Model for Soil Moisture and Biomass from Polarimetric Backscattering Coefficients

    NASA Technical Reports Server (NTRS)

    Truong-Loi, My-Linh; Saatchi, Sassan; Jaruwatanadilok, Sermsak

    2012-01-01

    A semi-empirical algorithm for the retrieval of soil moisture, root mean square (RMS) height and biomass from polarimetric SAR data is explained and analyzed in this paper. The algorithm is a simplification of the distorted Born model. It takes into account the physical scattering phenomenon and has three major components: volume, double-bounce and surface. This simplified model uses the three backscattering coefficients ( sigma HH, sigma HV and sigma vv) at low-frequency (P-band). The inversion process uses the Levenberg-Marquardt non-linear least-squares method to estimate the structural parameters. The estimation process is entirely explained in this paper, from initialization of the unknowns to retrievals. A sensitivity analysis is also done where the initial values in the inversion process are varying randomly. The results show that the inversion process is not really sensitive to initial values and a major part of the retrievals has a root-mean-square error lower than 5% for soil moisture, 24 Mg/ha for biomass and 0.49 cm for roughness, considering a soil moisture of 40%, roughness equal to 3cm and biomass varying from 0 to 500 Mg/ha with a mean of 161 Mg/ha

  15. Hexakis(N,N-dimethyl­formamide-κO)cobalt(II) bis­(perchlorate)

    PubMed Central

    Eissmann, Frank; Böhle, Tony; Mertens, Florian O. R. L.; Weber, Edwin

    2010-01-01

    The asymmetric unit of the title complex, [Co(DMF)6](ClO4)2 (DMF = N,N-dimethyl­formamide, C3H7NO), consists of two half complex cations with the Co2+ metal ions located on centers of inversion and two perchlorate anions. In the crystal packing, each Co2+ ion is coordinated by six mol­ecules of DMF in a slightly distorted octa­hedral geometry. The crystal structure is mainly stabilized by coordinative, ionic and C—H⋯O hydrogen-bonding inter­actions. PMID:21580225

  16. cis-Bis(O-methyl-dithio-carbonato-κ(2) S,S')bis-(tri-phenyl-phosphane-κP)ruthenium(II).

    PubMed

    Valerio-Cárdenas, Cintya; Hernández-Ortega, Simón; Reyes-Martínez, Reyna; Morales-Morales, David

    2013-01-01

    In the title compound, [Ru(CH3OCS2)2(C18H15P)2], the Ru(II) atom is in a distorted octa-hedral coordination by two xanthate anions (CH3OCS2) and two tri-phenyl-phosphane (PPh3) ligands. Both bidentate xanthate ligands coordinate the Ru(II) atom with two slightly different Ru-S bond lengths but with virtually equal bite angles [71.57 (4) and 71.58 (3)°]. The packing of the complexes is assured by C-H⋯O and C-H⋯π inter-actions.

  17. Synthesis, characterization and electrochemical studies of some Ni(II)Cu(II) heterobimetallic complexes derived from succinoyldihydrazones.

    PubMed

    Borthakur, R; Kumar, A; Lal, R A

    2015-10-05

    Synthesis, structural characterization and redox properties of three heterobimetallic complexes with formule {[NiCu(L(n))(CH3OH)3]·CH3OH} using [Cu(H2L(n))(H2O)] as metalloligand have been demonstrated in the present paper. Electronic spectroscopy suggests that the copper center has a pseudo square pyramidal stereochemistry in all the complexes while the nickel center has a distorted octahedral stereochemistry. The electron transfer reactions of the complexes have been investigated by cyclic voltammetry. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Poly[[[μ3-N′-(carboxymethyl)ethylene­di­amine-N,N,N′-triacetato]dysprosium(III)] trihydrate

    PubMed Central

    Zhuang, Xiaomei; Long, Qingping; Wang, Jun

    2010-01-01

    In the title coordination polymer, {[Dy(C10H13N2O8)]·3H2O}n, the dysprosium(III) ion is coordinated by two N atoms and six O atoms from three different (carb­oxy­meth­yl)ethyl­ene­diamine­triacetate ligands in a distorted square-anti­prismatic geometry. The ligands connect the metal atoms, forming layers parallel to the ab plane. O—H⋯O hydrogen bonds further assemble adjacent layers into a three-dimensional supra­molecular network. PMID:21588859

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chumakov, Yu. M.; Tsapkov, V. I., E-mail: vtsapkov@gmail.com; Antosyak, B. Ya.

    Nitrato-4-bromo-2-[(2-hydroxyethylimino)methyl]phenolatoimidazolecopper and nitrato-4-chloro-2-[(2-hydroxyethylimino)methyl]phenolatoimidazolecopper were synthesized and studied by X-ray diffraction. The crystals are isostructural. The coordination polyhedron of the copper atom can be described as a distorted square pyramid whose basal plane is formed by the phenolic and alcoholic oxygen atoms and the nitrogen atom of the monodeprotonated tridentate azomethine molecule and the imidazole nitrogen atom. The apex of the copper polyhedron is occupied by the oxygen atom of the nitrato group. The complexes are linked together by hydrogen bonds with the participation of the nitrato groups to form a three-dimensional framework.

  20. Estimated spectrum adaptive postfilter and the iterative prepost filtering algirighms

    NASA Technical Reports Server (NTRS)

    Linares, Irving (Inventor)

    2004-01-01

    The invention presents The Estimated Spectrum Adaptive Postfilter (ESAP) and the Iterative Prepost Filter (IPF) algorithms. These algorithms model a number of image-adaptive post-filtering and pre-post filtering methods. They are designed to minimize Discrete Cosine Transform (DCT) blocking distortion caused when images are highly compressed with the Joint Photographic Expert Group (JPEG) standard. The ESAP and the IPF techniques of the present invention minimize the mean square error (MSE) to improve the objective and subjective quality of low-bit-rate JPEG gray-scale images while simultaneously enhancing perceptual visual quality with respect to baseline JPEG images.

  1. A cascaded model of spectral distortions due to spectral response effects and pulse pileup effects in a photon-counting x-ray detector for CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cammin, Jochen, E-mail: jcammin1@jhmi.edu, E-mail: ktaguchi@jhmi.edu; Taguchi, Katsuyuki, E-mail: jcammin1@jhmi.edu, E-mail: ktaguchi@jhmi.edu; Xu, Jennifer

    Purpose: Energy discriminating, photon-counting detectors (PCDs) are an emerging technology for computed tomography (CT) with various potential benefits for clinical CT. The photon energies measured by PCDs can be distorted due to the interactions of a photon with the detector and the interaction of multiple coincident photons. These effects result in distorted recorded x-ray spectra which may lead to artifacts in reconstructed CT images and inaccuracies in tissue identification. Model-based compensation techniques have the potential to account for the distortion effects. This approach requires only a small number of parameters and is applicable to a wide range of spectra andmore » count rates, but it needs an accurate model of the spectral distortions occurring in PCDs. The purpose of this study was to develop a model of those spectral distortions and to evaluate the model using a PCD (model DXMCT-1; DxRay, Inc., Northridge, CA) and various x-ray spectra in a wide range of count rates. Methods: The authors hypothesize that the complex phenomena of spectral distortions can be modeled by: (1) separating them into count-rate independent factors that we call the spectral response effects (SRE), and count-rate dependent factors that we call the pulse pileup effects (PPE), (2) developing separate models for SRE and PPE, and (3) cascading the SRE and PPE models into a combined SRE+PPE model that describes PCD distortions at both low and high count rates. The SRE model describes the probability distribution of the recorded spectrum, with a photo peak and a continuum tail, given the incident photon energy. Model parameters were obtained from calibration measurements with three radioisotopes and then interpolated linearly for other energies. The PPE model used was developed in the authors’ previous work [K. Taguchi et al., “Modeling the performance of a photon counting x-ray detector for CT: Energy response and pulse pileup effects,” Med. Phys. 38(2), 1089–1102 (2011)]. The agreement between the x-ray spectra calculated by the cascaded SRE+PPE model and the measured spectra was evaluated for various levels of deadtime loss ratios (DLR) and incident spectral shapes, realized using different attenuators, in terms of the weighted coefficient of variation (COV{sub W}), i.e., the root mean square difference weighted by the statistical errors of the data and divided by the mean. Results: At low count rates, when DLR < 10%, the distorted spectra measured by the DXMCT-1 were in agreement with those calculated by SRE only, with COV{sub W}'s less than 4%. At higher count rates, the measured spectra were also in agreement with the ones calculated by the cascaded SRE+PPE model; with PMMA as attenuator, COV{sub W} was 5.6% at a DLR of 22% and as small as 6.7% for a DLR as high as 55%. Conclusions: The x-ray spectra calculated by the proposed model agreed with the measured spectra over a wide range of count rates and spectral shapes. The SRE model predicted the distorted, recorded spectra with low count rates over various types and thicknesses of attenuators. The study also validated the hypothesis that the complex spectral distortions in a PCD can be adequately modeled by cascading the count-rate independent SRE and the count-rate dependent PPE.« less

  2. A cascaded model of spectral distortions due to spectral response effects and pulse pileup effects in a photon-counting x-ray detector for CT

    PubMed Central

    Cammin, Jochen; Xu, Jennifer; Barber, William C.; Iwanczyk, Jan S.; Hartsough, Neal E.; Taguchi, Katsuyuki

    2014-01-01

    Purpose: Energy discriminating, photon-counting detectors (PCDs) are an emerging technology for computed tomography (CT) with various potential benefits for clinical CT. The photon energies measured by PCDs can be distorted due to the interactions of a photon with the detector and the interaction of multiple coincident photons. These effects result in distorted recorded x-ray spectra which may lead to artifacts in reconstructed CT images and inaccuracies in tissue identification. Model-based compensation techniques have the potential to account for the distortion effects. This approach requires only a small number of parameters and is applicable to a wide range of spectra and count rates, but it needs an accurate model of the spectral distortions occurring in PCDs. The purpose of this study was to develop a model of those spectral distortions and to evaluate the model using a PCD (model DXMCT-1; DxRay, Inc., Northridge, CA) and various x-ray spectra in a wide range of count rates. Methods: The authors hypothesize that the complex phenomena of spectral distortions can be modeled by: (1) separating them into count-rate independent factors that we call the spectral response effects (SRE), and count-rate dependent factors that we call the pulse pileup effects (PPE), (2) developing separate models for SRE and PPE, and (3) cascading the SRE and PPE models into a combined SRE+PPE model that describes PCD distortions at both low and high count rates. The SRE model describes the probability distribution of the recorded spectrum, with a photo peak and a continuum tail, given the incident photon energy. Model parameters were obtained from calibration measurements with three radioisotopes and then interpolated linearly for other energies. The PPE model used was developed in the authors’ previous work [K. Taguchi , “Modeling the performance of a photon counting x-ray detector for CT: Energy response and pulse pileup effects,” Med. Phys. 38(2), 1089–1102 (2011)]. The agreement between the x-ray spectra calculated by the cascaded SRE+PPE model and the measured spectra was evaluated for various levels of deadtime loss ratios (DLR) and incident spectral shapes, realized using different attenuators, in terms of the weighted coefficient of variation (COVW), i.e., the root mean square difference weighted by the statistical errors of the data and divided by the mean. Results: At low count rates, when DLR < 10%, the distorted spectra measured by the DXMCT-1 were in agreement with those calculated by SRE only, with COVW's less than 4%. At higher count rates, the measured spectra were also in agreement with the ones calculated by the cascaded SRE+PPE model; with PMMA as attenuator, COVW was 5.6% at a DLR of 22% and as small as 6.7% for a DLR as high as 55%. Conclusions: The x-ray spectra calculated by the proposed model agreed with the measured spectra over a wide range of count rates and spectral shapes. The SRE model predicted the distorted, recorded spectra with low count rates over various types and thicknesses of attenuators. The study also validated the hypothesis that the complex spectral distortions in a PCD can be adequately modeled by cascading the count-rate independent SRE and the count-rate dependent PPE. PMID:24694136

  3. Determination of formal redox potentials in aqueous solution of copper(II) complexes with ligands having nitrogen and oxygen donor atoms and comparison with their EPR and UV-Vis spectral features.

    PubMed

    Tabbì, Giovanni; Giuffrida, Alessandro; Bonomo, Raffaele P

    2013-11-01

    Formal redox potentials in aqueous solution were determined for copper(II) complexes with ligands having oxygen and nitrogen as donor atoms. All the chosen copper(II) complexes have well-known stereochemistries (pseudo-octahedral, square planar, square-based pyramidal, trigonal bipyramidal or tetrahedral) as witnessed by their reported spectroscopic, EPR and UV-visible (UV-Vis) features, so that a rough correlation between the measured redox potential and the typical geometrical arrangement of the copper(II) complex could be established. Negative values have been obtained for copper(II) complexes in tetragonally elongated pseudo-octahedral geometries, when measured against Ag/AgCl reference electrode. Copper(II) complexes in tetrahedral environments (or flattened tetrahedral geometries) show positive redox potential values. There is a region, always in the field of negative redox potentials which groups the copper(II) complexes exhibiting square-based pyramidal arrangements. Therefore, it is suggested that a measurement of the formal redox potential could be of great help, when some ambiguities might appear in the interpretation of spectroscopic (EPR and UV-Vis) data. Unfortunately, when the comparison is made between copper(II) complexes in square-based pyramidal geometries and those in square planar environments (or a pseudo-octahedral) a little perturbed by an equatorial tetrahedral distortion, their redox potentials could fall in the same intermediate region. In this case spectroscopic data have to be handled with great care in order to have an answer about a copper complex geometrical characteristics. © 2013.

  4. A variety of characteristic behaviour of resonant KL23L23 Auger decays following Si K-shell photoexcitation of SiCl4

    NASA Astrophysics Data System (ADS)

    Suzuki, I. H.; Kono, Y.; Sakai, K.; Kimura, M.; Ueda, K.; Tamenori, Y.; Takahashi, O.; Nagaoka, S.

    2013-04-01

    Spectator resonant Auger electron spectra with the Si 1s photoexcitation of SiCl4 have been measured using an electron spectroscopic technique combined with undulator radiation. The transition with the highest intensity in the total ion yield (TIY) spectrum, coming from excitation of a 1s electron into the 9t2 valence orbital, generates the resonant Auger decay in which the excited electron remains in the 9t2 orbital. A TIY peak positioned slightly above the 1s ionization threshold induces Auger decay in which the slow photoelectron is re-captured into a higher lying Rydberg orbital or the normal Auger peak shape is distorted due to a post-collision interaction effect. Another structure above the threshold, originating from a doubly excited state, yields the normal Auger peak with the distortion of peak shape and a resonant Auger peak with a higher kinetic energy. These findings provide a clear understanding of the properties of the excited orbitals which were ambiguous previously.

  5. Crystal structure of cis-aqua­bis­(2,2′-bi­pyridine-κ2 N,N′)chlorido­chromium(III) tetra­chlorido­zincate determined from synchrotron data

    PubMed Central

    Moon, Dohyun; Ryoo, Keon Sang; Choi, Jong-Ha

    2016-01-01

    The structure of the title salt, [CrCl(C10H8N2)2(H2O)][ZnCl4], has been determined from synchrotron data. The CrIII ion is coordinated by four N atoms from two 2,2′-bi­pyridine (bipy) ligands, one O atom from a water mol­ecule and a chloride anion in a cis arrangement, displaying a distorted octa­hedral geometry. The tetra­hedral [ZnCl4]2− anion is slightly distorted owing to its involvement in O—H⋯Cl hydrogen bonding with the coordinating water mol­ecule. The Cr—N(bipy) bond lengths are in the range 2.0485 (13)–2.0632 (12) Å, while the Cr—Cl and Cr—(OH2) bond lengths are 2.2732 (6) and 1.9876 (12) Å, respectively. In the crystal, mol­ecules are stacked along the a axis. PMID:27006786

  6. Zn2+ selectively stabilizes FdU-substituted DNA through a unique major groove binding motif

    PubMed Central

    Ghosh, Supratim; Salsbury, Freddie R.; Horita, David A.; Gmeiner, William H.

    2011-01-01

    We report, based on semi-empirical calculations, that Zn2+ binds duplex DNA containing consecutive FdU–dA base pairs in the major groove with distorted trigonal bipyramidal geometry. In this previously uncharacterized binding motif, O4 and F5 on consecutive FdU are axial ligands while three water molecules complete the coordination sphere. NMR spectroscopy confirmed Zn2+ complexation occurred with maintenance of base pairing while a slight hypsochromic shift in circular dichroism (CD) spectra indicated moderate structural distortion relative to B-form DNA. Zn2+ complexation inhibited ethidium bromide (EtBr) intercalation and stabilized FdU-substituted duplex DNA (ΔTm > 15°C). Mg2+ neither inhibited EtBr complexation nor had as strong of a stabilizing effect. DNA sequences that did not contain consecutive FdU were not stabilized by Zn2+. A lipofectamine preparation of the Zn2+–DNA complex displayed enhanced cytotoxicity toward prostate cancer cells relative to the individual components prepared as lipofectamine complexes indicating the potential utility of Zn2+–DNA complexes for cancer treatment. PMID:21296761

  7. Effect of conventional and square stores on the longitudinal aerodynamic characteristics of a fighter aircraft model at supersonic speeds. [in the langley unitary plan wind tunnel

    NASA Technical Reports Server (NTRS)

    Monta, W. J.

    1980-01-01

    The effects of conventional and square stores on the longitudinal aerodynamic characteristics of a fighter aircraft configuration at Mach numbers of 1.6, 1.8, and 2.0 was investigated. Five conventional store configurations and six arrangements of a square store configuration were studied. All configurations of the stores produced small, positive increments in the pitching moment throughout the angle-of-attack range, but the configuration with area ruled wing tanks also had a slight decrease on stability at the higher angles of attack. There were some small changes in lift coefficient because of the addition of the stores, causing the drag increment to vary with the lift coefficient. As a result, there were corresponding changes in the increments of the maximum lift drag ratios. The store drag coefficient based on the cross sectional area of the stores ranged from a maximum of 1.1 for the configuration with three Maverick missiles to a minimum of about .040 for the two MK-84 bombs and the arrangements with four square stores touching or two square stores in tandem. Square stores located side by side yielded about 0.50 in the aft position compared to 0.74 in the forward position.

  8. Biomass estimators for thinned second-growth ponderosa pine trees.

    Treesearch

    P.H. Cochran; J.W. Jennings; C.T. Youngberg

    1984-01-01

    Usable estimates of the mass of live foliage and limbs of sapling and pole-sized ponderosa pine in managed stands in central Oregon can be obtained with equations using the logarithm of diameter as the only independent variable. These equations produce only slightly higher root mean square deviations than equations that include additional independent variables. A...

  9. Edge-preserving image compression for magnetic-resonance images using dynamic associative neural networks (DANN)-based neural networks

    NASA Astrophysics Data System (ADS)

    Wan, Tat C.; Kabuka, Mansur R.

    1994-05-01

    With the tremendous growth in imaging applications and the development of filmless radiology, the need for compression techniques that can achieve high compression ratios with user specified distortion rates becomes necessary. Boundaries and edges in the tissue structures are vital for detection of lesions and tumors, which in turn requires the preservation of edges in the image. The proposed edge preserving image compressor (EPIC) combines lossless compression of edges with neural network compression techniques based on dynamic associative neural networks (DANN), to provide high compression ratios with user specified distortion rates in an adaptive compression system well-suited to parallel implementations. Improvements to DANN-based training through the use of a variance classifier for controlling a bank of neural networks speed convergence and allow the use of higher compression ratios for `simple' patterns. The adaptation and generalization capabilities inherent in EPIC also facilitate progressive transmission of images through varying the number of quantization levels used to represent compressed patterns. Average compression ratios of 7.51:1 with an averaged average mean squared error of 0.0147 were achieved.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lepori, Francesca; Viel, Matteo; Baccigalupi, Carlo

    We investigate the Alcock Paczy'nski (AP) test applied to the Baryon Acoustic Oscillation (BAO) feature in the galaxy correlation function. By using a general formalism that includes relativistic effects, we quantify the importance of the linear redshift space distortions and gravitational lensing corrections to the galaxy number density fluctuation. We show that redshift space distortions significantly affect the shape of the correlation function, both in radial and transverse directions, causing different values of galaxy bias to induce offsets up to 1% in the AP test. On the other hand, we find that the lensing correction around the BAO scale modifiesmore » the amplitude but not the shape of the correlation function and therefore does not introduce any systematic effect. Furthermore, we investigate in details how the AP test is sensitive to redshift binning: a window function in transverse direction suppresses correlations and shifts the peak position toward smaller angular scales. We determine the correction that should be applied in order to account for this effect, when performing the test with data from three future planned galaxy redshift surveys: Euclid, the Dark Energy Spectroscopic Instrument (DESI) and the Square Kilometer Array (SKA).« less

  11. A New Quaternion-Based Kalman Filter for Real-Time Attitude Estimation Using the Two-Step Geometrically-Intuitive Correction Algorithm.

    PubMed

    Feng, Kaiqiang; Li, Jie; Zhang, Xiaoming; Shen, Chong; Bi, Yu; Zheng, Tao; Liu, Jun

    2017-09-19

    In order to reduce the computational complexity, and improve the pitch/roll estimation accuracy of the low-cost attitude heading reference system (AHRS) under conditions of magnetic-distortion, a novel linear Kalman filter, suitable for nonlinear attitude estimation, is proposed in this paper. The new algorithm is the combination of two-step geometrically-intuitive correction (TGIC) and the Kalman filter. In the proposed algorithm, the sequential two-step geometrically-intuitive correction scheme is used to make the current estimation of pitch/roll immune to magnetic distortion. Meanwhile, the TGIC produces a computed quaternion input for the Kalman filter, which avoids the linearization error of measurement equations and reduces the computational complexity. Several experiments have been carried out to validate the performance of the filter design. The results demonstrate that the mean time consumption and the root mean square error (RMSE) of pitch/roll estimation under magnetic disturbances are reduced by 45.9% and 33.8%, respectively, when compared with a standard filter. In addition, the proposed filter is applicable for attitude estimation under various dynamic conditions.

  12. A New Quaternion-Based Kalman Filter for Real-Time Attitude Estimation Using the Two-Step Geometrically-Intuitive Correction Algorithm

    PubMed Central

    Feng, Kaiqiang; Li, Jie; Zhang, Xiaoming; Shen, Chong; Bi, Yu; Zheng, Tao; Liu, Jun

    2017-01-01

    In order to reduce the computational complexity, and improve the pitch/roll estimation accuracy of the low-cost attitude heading reference system (AHRS) under conditions of magnetic-distortion, a novel linear Kalman filter, suitable for nonlinear attitude estimation, is proposed in this paper. The new algorithm is the combination of two-step geometrically-intuitive correction (TGIC) and the Kalman filter. In the proposed algorithm, the sequential two-step geometrically-intuitive correction scheme is used to make the current estimation of pitch/roll immune to magnetic distortion. Meanwhile, the TGIC produces a computed quaternion input for the Kalman filter, which avoids the linearization error of measurement equations and reduces the computational complexity. Several experiments have been carried out to validate the performance of the filter design. The results demonstrate that the mean time consumption and the root mean square error (RMSE) of pitch/roll estimation under magnetic disturbances are reduced by 45.9% and 33.8%, respectively, when compared with a standard filter. In addition, the proposed filter is applicable for attitude estimation under various dynamic conditions. PMID:28925979

  13. A Moiré Pattern-Based Thread Counter

    NASA Astrophysics Data System (ADS)

    Reich, Gary

    2017-10-01

    Thread count is a term used in the textile industry as a measure of how closely woven a fabric is. It is usually defined as the sum of the number of warp threads per inch (or cm) and the number of weft threads per inch. (It is sometimes confusingly described as the number of threads per square inch.) In recent years it has also become a subject of considerable interest and some controversy among consumers. Many consumers consider thread count to be a key measure of the quality or fineness of a fabric, especially bed sheets, and they seek out fabrics that advertise high counts. Manufacturers in turn have responded to this interest by offering fabrics with ever higher claimed thread counts (sold at ever higher prices), sometime achieving the higher counts by distorting the definition of the term with some "creative math." In 2005 the Federal Trade Commission noted the growing use of thread count in advertising at the retail level and warned of the potential for consumers to be misled by distortions of the definition.

  14. An improved finger-vein recognition algorithm based on template matching

    NASA Astrophysics Data System (ADS)

    Liu, Yueyue; Di, Si; Jin, Jian; Huang, Daoping

    2016-10-01

    Finger-vein recognition has became the most popular biometric identify methods. The investigation on the recognition algorithms always is the key point in this field. So far, there are many applicable algorithms have been developed. However, there are still some problems in practice, such as the variance of the finger position which may lead to the image distortion and shifting; during the identification process, some matching parameters determined according to experience may also reduce the adaptability of algorithm. Focus on above mentioned problems, this paper proposes an improved finger-vein recognition algorithm based on template matching. In order to enhance the robustness of the algorithm for the image distortion, the least squares error method is adopted to correct the oblique finger. During the feature extraction, local adaptive threshold method is adopted. As regard as the matching scores, we optimized the translation preferences as well as matching distance between the input images and register images on the basis of Naoto Miura algorithm. Experimental results indicate that the proposed method can improve the robustness effectively under the finger shifting and rotation conditions.

  15. 3D High Resolution Mesh Deformation Based on Multi Library Wavelet Neural Network Architecture

    NASA Astrophysics Data System (ADS)

    Dhibi, Naziha; Elkefi, Akram; Bellil, Wajdi; Amar, Chokri Ben

    2016-12-01

    This paper deals with the features of a novel technique for large Laplacian boundary deformations using estimated rotations. The proposed method is based on a Multi Library Wavelet Neural Network structure founded on several mother wavelet families (MLWNN). The objective is to align features of mesh and minimize distortion with a fixed feature that minimizes the sum of the distances between all corresponding vertices. New mesh deformation method worked in the domain of Region of Interest (ROI). Our approach computes deformed ROI, updates and optimizes it to align features of mesh based on MLWNN and spherical parameterization configuration. This structure has the advantage of constructing the network by several mother wavelets to solve high dimensions problem using the best wavelet mother that models the signal better. The simulation test achieved the robustness and speed considerations when developing deformation methodologies. The Mean-Square Error and the ratio of deformation are low compared to other works from the state of the art. Our approach minimizes distortions with fixed features to have a well reconstructed object.

  16. Real-time holographic deconvolution techniques for one-way image transmission through an aberrating medium: characterization, modeling, and measurements.

    PubMed

    Haji-Saeed, B; Sengupta, S K; Testorf, M; Goodhue, W; Khoury, J; Woods, C L; Kierstead, J

    2006-05-10

    We propose and demonstrate a new photorefractive real-time holographic deconvolution technique for adaptive one-way image transmission through aberrating media by means of four-wave mixing. In contrast with earlier methods, which typically required various codings of the exact phase or two-way image transmission for correcting phase distortion, our technique relies on one-way image transmission through the use of exact phase information. Our technique can simultaneously correct both amplitude and phase distortions. We include several forms of image degradation, various test cases, and experimental results. We characterize the performance as a function of the input beam ratios for four metrics: signal-to-noise ratio, normalized root-mean-square error, edge restoration, and peak-to-total energy ratio. In our characterization we use false-color graphic images to display the best beam-intensity ratio two-dimensional region(s) for each of these metrics. Test cases are simulated at the optimal values of the beam-intensity ratios. We demonstrate our results through both experiment and computer simulation.

  17. [15]aneN4S: synthesis, thermodynamic studies and potential applications in chelation therapy.

    PubMed

    Torres, Nuno; Gonçalves, Sandrina; Fernandes, Ana S; Machado, J Franco; de Brito, Maria J Villa; Oliveira, Nuno G; Castro, Matilde; Costa, Judite; Cabral, Maria F

    2014-01-03

    The purpose of this work was to synthesize and characterize the thiatetraaza macrocycle 1-thia-4,7,10,13-tetraazacyclopentadecane ([15]aneN4S). Its acid-base behaviour was studied by potentiometry at 25 °C and ionic strength 0.10 M in KNO3. The protonation sequence of this ligand was investigated by 1H-NMR titration that also allowed the determination of protonation constants in D2O. Binding studies of [15]aneN4S with Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+ and Pb2+ metal ions were further performed under the same experimental conditions. The results demonstrated that this compound has a higher selectivity and thermodynamic stability for Hg2+ and Cu2+, followed by Ni2+. The UV-visible-near IR spectroscopies and magnetic moment data for the Co(II) and Ni(II) complexes indicated a tetragonal distorted coordination geometry for both metal centres. The value of magnetic moment and the X-band EPR spectra of the Cu(II) complex are consistent with a distorted square pyramidal geometry.

  18. Super-luminescent jet light generated by femtosecond laser pulses

    PubMed Central

    Xu, Zhijun; Zhu, Xiaonong; Yu, Yang; Zhang, Nan; Zhao, Jiefeng

    2014-01-01

    Phenomena of nonlinear light-matter interaction that occur during the propagation of intense ultrashort laser pulses in continuous media have been extensively studied in ultrafast optical science. In this vibrant research field, conversion of the input laser beam into optical filament(s) is commonly encountered. Here, we demonstrate generation of distinctive single or double super-luminescent optical jet beams as a result of strong spatial-temporal nonlinear interaction between focused 50 fs millijoule laser pulses and their induced micro air plasma. Such jet-like optical beams, being slightly divergent and coexisting with severely distorted conical emission of colored speckles, are largely different from optical filaments, and obtainable when the focal lens of proper f-number is slightly tilted or shifted. Once being collimated, the jet beams can propagate over a long distance in air. These beams not only reveal a potentially useful approach to coherent optical wave generation, but also may find applications in remote sensing. PMID:24463611

  19. Stability Improvement of High-Pressure-Ratio Turbocharger Centrifugal Compressor by Asymmetric Flow Control-Part I: Non-Axisymmetrical Flow in Centrifugal Compressor.

    PubMed

    Yang, Mingyang; Zheng, Xinqian; Zhang, Yangjun; Bamba, Takahiro; Tamaki, Hideaki; Huenteler, Joern; Li, Zhigang

    2013-03-01

    This is Part I of a two-part paper documenting the development of a novel asymmetric flow control method to improve the stability of a high-pressure-ratio turbocharger centrifugal compressor. Part I focuses on the nonaxisymmetrical flow in a centrifugal compressor induced by the nonaxisymmetrical geometry of the volute while Part II describes the development of an asymmetric flow control method to avoid the stall on the basis of the characteristic of nonaxisymmetrical flow. To understand the asymmetries, experimental measurements and corresponding numerical simulation were carried out. The static pressure was measured by probes at different circumferential and stream-wise positions to gain insights about the asymmetries. The experimental results show that there is an evident nonaxisymmetrical flow pattern throughout the compressor due to the asymmetric geometry of the overhung volute. The static pressure field in the diffuser is distorted at approximately 90 deg in the rotational direction of the volute tongue throughout the diffuser. The magnitude of this distortion slightly varies with the rotational speed. The magnitude of the static pressure distortion in the impeller is a function of the rotational speed. There is a significant phase shift between the static pressure distributions at the leading edge of the splitter blades and the impeller outlet. The numerical steady state simulation neglects the aforementioned unsteady effects found in the experiments and cannot predict the phase shift, however, a detailed asymmetric flow field structure is obviously obtained.

  20. Whiplash-type neck distortion in restrained car drivers: frequency, causes and long-term results.

    PubMed

    Richter, M; Otte, D; Pohlemann, T; Krettek, C; Blauth, M

    2000-04-01

    An analysis was made of 1176 whiplash-type neck distortions taken from a total of 3838 restrained car driver incident reports. The percentage of whiplash-type neck distortion among injured drivers increased from less than 10% in 1985 to over 30% in 1997. Most occurred in head-on crashes or crashes with multiple collisions; only 15% occurred in rear-end collisions. More than 1,000 questionnaires were sent to the injured to find out about the duration and type of complaints caused by their cervical spine injury. Although only 138 (12%) returned the questionnaire, which may not be a representative sample, a further analysis was carried out. Of the 138, 121 (88%) indicated that they had suffered or were still suffering from their symptoms. The percentages of the various complaints were as follows: pain (74%), tension (6%) and stiffness (5%) in the head (27%), neck (55%) and shoulder (8%). The duration of the complaints was longest after multiple collisions and when the onset of complaints was longer than 24 h after trauma. Women and elderly persons predominated slightly in the group with longer duration of complaints. A correlation between the severity of the accompanying injuries and duration of complaints was found. Lack of adequate follow-up for patients with less severe injuries posed considerable difficulties for this retrospective study. In order to better evaluate this problem, prospective studies are necessary, with documentation including diagnosis, treatments, complaint duration and type.

  1. Can partial coherence interferometry be used to determine retinal shape?

    PubMed

    Atchison, David A; Charman, W Neil

    2011-05-01

    To determine likely errors in estimating retinal shape using partial coherence interferometric instruments when no allowance is made for optical distortion. Errors were estimated using Gullstrand no. 1 schematic eye and variants which included a 10 diopter (D) axial myopic eye, an emmetropic eye with a gradient-index lens, and a 10.9 D accommodating eye with a gradient-index lens. Performance was simulated for two commercial instruments, the IOLMaster (Carl Zeiss Meditec) and the Lenstar LS 900 (Haag-Streit AG). The incident beam was directed toward either the center of curvature of the anterior cornea (corneal-direction method) or the center of the entrance pupil (pupil-direction method). Simple trigonometry was used with the corneal intercept and the incident beam angle to estimate retinal contour. Conics were fitted to the estimated contours. The pupil-direction method gave estimates of retinal contour that were much too flat. The cornea-direction method gave similar results for IOLMaster and Lenstar approaches. The steepness of the retinal contour was slightly overestimated, the exact effects varying with the refractive error, gradient index, and accommodation. These theoretical results suggest that, for field angles ≤30°, partial coherence interferometric instruments are of use in estimating retinal shape by the corneal-direction method with the assumptions of a regular retinal shape and no optical distortion. It may be possible to improve on these estimates out to larger field angles by using optical modeling to correct for distortion.

  2. Vibration measurement with nonlinear converter in the presence of noise

    NASA Astrophysics Data System (ADS)

    Mozuras, Almantas

    2017-10-01

    Conventional vibration measurement methods use the linear properties of physical converters. These methods are strongly influenced by nonlinear distortions, because ideal linear converters are not available. Practically, any converter can be considered as a linear one, when an output signal is very small. However, the influence of noise increases significantly and signal-to-noise ratio decreases at lower signals. When the output signal is increasing, the nonlinear distortions are also augmenting. If the wide spectrum vibration is measured, conventional methods face a harmonic distortion as well as intermodulation effects. Purpose of this research is to develop a measurement method of wide spectrum vibration by using a converter described by a nonlinear function of type f(x), where x =x(t) denotes the dependence of coordinate x on time t due to the vibration. Parameter x(t) describing the vibration is expressed as Fourier series. The spectral components of the converter output f(x(t)) are determined by using Fourier transform. The obtained system of nonlinear equations is solved using the least squares technique that permits to find x(t) in the presence of noise. This method allows one to carry out the absolute or relative vibration measurements. High resistance to noise is typical for the absolute vibration measurement, but it is necessary to know the Taylor expansion coefficients of the function f(x). If the Taylor expansion is not known, the relative measurement of vibration parameters is also possible, but with lower resistance to noise. This method allows one to eliminate the influence of nonlinear distortions to the measurement results, and consequently to eliminate harmonic distortion and intermodulation effects. The use of nonlinear properties of the converter for measurement gives some advantages related to an increased frequency range of the output signal (consequently increasing the number of equations) that allows one to decrease the noise influence on the measurement results. The greater is the nonlinearity the lower is noise. This method enables the use of the converters that are normally not suitable due to the high nonlinearity.

  3. Re-examination of radiofrequency mass spectrometers: Center Director's Discretionary Fund

    NASA Technical Reports Server (NTRS)

    Carruth, M. R., Jr.

    1989-01-01

    The three-stage, two-cycle, Bennett mass spectrometers in use in space and ground experiments today are of the same physical configuration as developed by Bennett in 1950. Sine-wave radiofrequency (RF) is also still used. The literature indicates that the electronics and physical manufacturing capabilities of 1950 technology may have limited the use of other improvements at that time. Therefore, a study, experimental and analytical, was undertaken to examine previously rejected RF approaches as well as new ones. The results of this study indicate there are other approaches which use fewer grids and square wave or a combination of square-wave and sine-wave RF. In regard to suppression of harmonics, none performed better than the three-stage, two-cycle, Bennett mass spectrometer. Use of square-wave RF in the Bennett approach can provide a slightly more compact configuration but no increase in throughput.

  4. Novel red phosphors KBaEu(XO4)3 (X = Mo, W) show high color purity and high thermostability from a disordered chained structure.

    PubMed

    Wang, G Q; Gong, X H; Chen, Y J; Huang, J H; Lin, Y F; Luo, Z D; Huang, Y D

    2017-05-23

    Two novel red phosphors KBaEu(XO 4 ) 3 (X = Mo, W) have been synthesized by high-temperature solid-state reactions and the crystal structures were determined for the first time. Single-crystal X-ray diffraction data reveal that their space groups are C2/c. The crystalline structure is constituted of K/BaO 8 distorted square antiprisms and distorted EuO 8 polyhedra which form chains lying along the c-axis and two kinds of distorted XO 4 tetrahedra. This high disorder of K/Ba which might lower the crystal field symmetry around Eu 3+ results in the high purity of red emission around 615 nm originating from 5 D 0 → 7 F 2 transition under near-ultraviolet (NUV) excitation. With increasing temperature, the luminescence of KBaEu(XO 4 ) 3 (X = Mo, W) phosphors decreases almost linearly with subtle alteration for the CIE coordinate. As the temperature reaches 550 K, the red emission intensity decreases to 37.3% and 50.7% of that at 300 K for KBaEu(MoO 4 ) 3 and KBaEu(WO 4 ) 3 , respectively. The analysis of the decay curves of the 5 D 0 → 7 F 2 emission at variable temperatures indicates the weak cross relaxation and non-radiative energy transfer between Eu 3+ ions. These results demonstrate that the investigated phosphors are attractive for application in high power NUV excited white LEDs.

  5. Determination of lattice parameters, strain state and composition in semipolar III-nitrides using high resolution X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Frentrup, Martin; Hatui, Nirupam; Wernicke, Tim; Stellmach, Joachim; Bhattacharya, Arnab; Kneissl, Michael

    2013-12-01

    In group-III-nitride heterostructures with semipolar or nonpolar crystal orientation, anisotropic lattice and thermal mismatch with the buffer or substrate lead to a complex distortion of the unit cells, e.g., by shearing of the lattice. This makes an accurate determination of lattice parameters, composition, and strain state under assumption of the hexagonal symmetry impossible. In this work, we present a procedure to accurately determine the lattice constants, strain state, and composition of semipolar heterostructures using high resolution X-ray diffraction. An analysis of the unit cell distortion shows that four independent lattice parameters are sufficient to describe this distortion. Assuming only small deviations from an ideal hexagonal structure, a linear expression for the interplanar distances dhkl is derived. It is used to determine the lattice parameters from high resolution X-ray diffraction 2ϑ-ω-scans of multiple on- and off-axis reflections via a weighted least-square fit. The strain and composition of ternary alloys are then evaluated by transforming the elastic parameters (using Hooke's law) from the natural crystal-fixed coordinate system to a layer-based system, given by the in-plane directions and the growth direction. We illustrate our procedure taking an example of (112¯2) AlκGa1-κN epilayers with Al-contents over the entire composition range. We separately identify the in-plane and out-of-plane strains and discuss origins for the observed anisotropy.

  6. Transient, polarity-dependent dielectric response in a twisted nematic liquid crystal under very low frequency excitation.

    PubMed

    Krishnamurthy, K S

    2015-09-01

    The electric Freedericksz transition is a second-order quadratic effect, which, in a planarly aligned nematic liquid crystal layer, manifests above a threshold field as a homogeneous symmetric distortion with maximum director-tilt in the midplane. We find that, upon excitation by a low frequency (<0.2Hz) square-wave field, the instability becomes spatially and temporally varying. This is demonstrated using calamitic liquid crystals, initially in the 90°-twisted planar configuration. The distortion occurs close to the negative electrode following each polarity switch and, for low-voltage amplitudes, decays completely in time. We use the elastically favorable geometry of Brochard-Leger walls to establish the location of maximum distortion. Thus, at successive polarity changes, the direction of extension of both annular and open walls switches between the alignment directions at the two substrates. For high voltages, this direction is largely along the midplane director, while remaining marginally oscillatory. These results are broadly understood by taking into account the time-varying and inhomogeneous field conditions that prevail soon after the polarity reverses. Polarity dependence of the instability is traced to the formation of intrinsic double layers that lead to an asymmetry in field distribution in the presence of an external bias. Momentary field elevation near the negative electrode following a voltage sign reversal leads to locally enhanced dielectric and gradient flexoelectric torques, which accounts for the surface-like phenomenon observed at low voltages. These spatiotemporal effects, also found earlier for other instabilities, are generic in nature.

  7. Three-dimensional holoscopic image coding scheme using high-efficiency video coding with kernel-based minimum mean-square-error estimation

    NASA Astrophysics Data System (ADS)

    Liu, Deyang; An, Ping; Ma, Ran; Yang, Chao; Shen, Liquan; Li, Kai

    2016-07-01

    Three-dimensional (3-D) holoscopic imaging, also known as integral imaging, light field imaging, or plenoptic imaging, can provide natural and fatigue-free 3-D visualization. However, a large amount of data is required to represent the 3-D holoscopic content. Therefore, efficient coding schemes for this particular type of image are needed. A 3-D holoscopic image coding scheme with kernel-based minimum mean square error (MMSE) estimation is proposed. In the proposed scheme, the coding block is predicted by an MMSE estimator under statistical modeling. In order to obtain the signal statistical behavior, kernel density estimation (KDE) is utilized to estimate the probability density function of the statistical modeling. As bandwidth estimation (BE) is a key issue in the KDE problem, we also propose a BE method based on kernel trick. The experimental results demonstrate that the proposed scheme can achieve a better rate-distortion performance and a better visual rendering quality.

  8. A series of binuclear lanthanide(III) complexes: Crystallography, antimicrobial activity and thermochemistry properties studies

    NASA Astrophysics Data System (ADS)

    Zhang, Ying-Ying; Ren, Ning; Xu, Su-Ling; Zhang, Jian-Jun; Zhang, Da-Hai

    2015-02-01

    A series of novel lanthanide complexes with the general formula [Ln(3,4-DClBA)3phen]2 (Ln = Ho(1), Nd(2), Sm(3), Dy(4), Eu(5), Tb(6), Yb(7) and Er(8), 3,4-DClBA = 3,4-dichlorobenzoate, phen = 1,10-phenanthroline) were prepared at room temperature and characterized. The crystal structures of complexes 1-8 have been determined by single crystal X-ray diffraction. These complexes are isomorphous and lanthanide ions are all eight-coordinated to oxygen atoms and nitrogen atoms with distorted square-antiprism geometry. The thermal decomposition mechanism and TG-FTIR spectra of gaseous products of thermal decomposition processes for complexes 1-8 were acquired through TG/DSC-FTIR system. The heat capacities of complexes 1-8 were measured using DSC technology and fitted to a polynomial equation by the least-squares method. Complexes 3-6 display characteristic lanthanide emission bands in the visible region. Meanwhile, these complexes exhibit in good antimicrobial activity against Candida albicans, Escherichia coli, and Staphylococcus aureu.

  9. Synthesis and molecular structure of [Cu(NH3)4][Ni(CN)4]: A missing piece in the [Cu(NH3)n][Ni(CN)4] story

    NASA Astrophysics Data System (ADS)

    Solanki, Dina; Hogarth, Graeme

    2015-11-01

    Reaction of CuCl2·2H2O and K2[Ni(CN)4]·2H2O in aqueous ammonia gave blue rod-like crystals of [Cu(NH3)4][Ni(CN)4]. An X-ray crystallographic reveals that square-planar anions and cations are weakly associated through coordination of a cis pair of cyanide ligands to copper, with one short and one long contact and thus the copper centre is best described as a square-based pyramid. Crystals lose ammonia readily upon removal from the solvent and this has been probed by TGA and DSC measurements. For comparison we have also re-determined the structure of the related ethylenediamine (en) complex [Cu(en)2][Ni(CN)4] at 150 K. This consists of a 1D chain in which a trans pair of cyanide ligands bind to copper such that the latter has an overall tetragonally distorted octahedral coordination geometry.

  10. Toward accurate prediction of pKa values for internal protein residues: the importance of conformational relaxation and desolvation energy.

    PubMed

    Wallace, Jason A; Wang, Yuhang; Shi, Chuanyin; Pastoor, Kevin J; Nguyen, Bao-Linh; Xia, Kai; Shen, Jana K

    2011-12-01

    Proton uptake or release controls many important biological processes, such as energy transduction, virus replication, and catalysis. Accurate pK(a) prediction informs about proton pathways, thereby revealing detailed acid-base mechanisms. Physics-based methods in the framework of molecular dynamics simulations not only offer pK(a) predictions but also inform about the physical origins of pK(a) shifts and provide details of ionization-induced conformational relaxation and large-scale transitions. One such method is the recently developed continuous constant pH molecular dynamics (CPHMD) method, which has been shown to be an accurate and robust pK(a) prediction tool for naturally occurring titratable residues. To further examine the accuracy and limitations of CPHMD, we blindly predicted the pK(a) values for 87 titratable residues introduced in various hydrophobic regions of staphylococcal nuclease and variants. The predictions gave a root-mean-square deviation of 1.69 pK units from experiment, and there were only two pK(a)'s with errors greater than 3.5 pK units. Analysis of the conformational fluctuation of titrating side-chains in the context of the errors of calculated pK(a) values indicate that explicit treatment of conformational flexibility and the associated dielectric relaxation gives CPHMD a distinct advantage. Analysis of the sources of errors suggests that more accurate pK(a) predictions can be obtained for the most deeply buried residues by improving the accuracy in calculating desolvation energies. Furthermore, it is found that the generalized Born implicit-solvent model underlying the current CPHMD implementation slightly distorts the local conformational environment such that the inclusion of an explicit-solvent representation may offer improvement of accuracy. Copyright © 2011 Wiley-Liss, Inc.

  11. Synthesis, spectroscopic characterization, electrochemical behavior and computational analysis of mixed diamine ligand gold(III) complexes: antiproliferative and in vitro cytotoxic evaluations against human cancer cell lines.

    PubMed

    Al-Jaroudi, Said S; Monim-ul-Mehboob, M; Altaf, Muhammad; Al-Saadi, Abdulaziz A; Wazeer, Mohammed I M; Altuwaijri, Saleh; Isab, Anvarhusein A

    2014-12-01

    The gold(III) complexes of the type [(DACH)Au(en)]Cl3, 1,2-Diaminocyclohexane ethylenediamine gold(III) chloride [where 1,2-DACH = cis-, trans-1,2- and S,S-1,2diaminocyclohexane and en = ethylenediamine] have been synthesized and characterized using various analytical and spectroscopic techniques including elemental analysis, UV-Vis and FTIR spectra; and solution as well as solid-state NMR measurements. The solid-state (13)C NMR shows that 1,2-diaminocyclohexane (1,2-DACH) and ethylenediamine (en) are strongly bound to the gold(III) center via N donor atoms. The stability of the mixed diamine ligand gold(III) was determined by (1)H and (13)C NMR spectra. Their electrochemical behavior was studied by cyclic voltammetry. The structural details and relative stabilities of the four possible isomers of the complexes were also reported at the B3LYP/LANL2DZ level of theory. The coordination sphere of these complexes around gold(III) center adopts distorted square planar geometry. The computational study also demonstrates that trans- conformations is slightly more stable than the cis-conformations. The antiproliferative effects and cytotoxic properties of the mixed diamine ligand gold(III) complexes were evaluated in vitro on human gastric SGC7901 and prostate PC3 cancer cells using MTT assay. The antiproliferative study of the gold(III) complexes on PC3 and SGC7901 cells indicate that complex 1 is the most effective antiproliferative agent among mixed ligand based gold(III) complexes 1-3. The IC50 data reveal that the in vitro cytotoxicity of complexes 1 and 3 against SGC7901 cancer cells are fairly better than that of cisplatin.

  12. Surrogate immiscible liquid pairs with refractive indexes matchable over a wide range of density and viscosity ratios

    NASA Astrophysics Data System (ADS)

    Saksena, Rajat; Christensen, Kenneth T.; Pearlstein, Arne J.

    2015-08-01

    In liquid-liquid flows, use of optical diagnostics is limited by interphase refractive index mismatch, which leads to optical distortion and complicates data interpretation, and sometimes also by opacity. Both problems can be eliminated using a surrogate pair of immiscible index-matched transparent liquids, whose density and viscosity ratios match corresponding ratios for the original liquid pair. We show that a wide range of density and viscosity ratios is accessible using aqueous solutions of 1,2-propanediol and CsBr (for which index, density, and viscosity are available), and solutions of light and heavy silicone oils and 1-bromooctane (for which we measured the same properties at 119 compositions). For each liquid phase, polynomials in the composition variables, least-squares fitted to index and density and to the logarithm of kinematic viscosity, were used to determine accessible density and viscosity ratios for each matchable index. Index-matched solution pairs can be prepared with density and viscosity ratios equal to those for water-liquid CO2 at 0 °C over a range of pressure (allowing water-liquid CO2 behavior at inconveniently high pressure to be simulated by 1-bar experiments), and for water-crude oil and water-trichloroethylene (avoiding opacity and toxicity problems, respectively), each over a range of temperature. For representative index-matched solutions, equilibration changes index, density, and viscosity only slightly, and mass spectrometry and elemental analysis show that no component of either phase has significant interphase solubility. Finally, procedures are described for iteratively reducing the residual index mismatch in surrogate solution pairs prepared on the basis of approximate polynomial fits to experimental data, and for systematically dealing with nonzero interphase solubility.

  13. Structural, vibrational, and electronic properties of an uncoordinated pseudoephedrine derivative and its mononuclear and trinuclear copper(II)-coordinated compounds: A combined theoretical and experimental study

    NASA Astrophysics Data System (ADS)

    Valencia, Israel; Ávila-Torres, Yenny; Barba-Behrens, Norah; Garzón, Ignacio L.

    2014-11-01

    Multicopper oxidases are fundamental in a variety of biological processes in bacteria, fungi and vertebrates. The catalytic center in these enzymes is formed basically by three copper ions, bridged by oxygen bonds. In order to get insights into the reactivity of these complex systems, biomimetic compounds are usually synthesized. Accordingly, in this work, we studied structural, vibrational, and electronic properties of an uncoordinated pseudoephedrine derivative, as well as its corresponding mononuclear and trinuclear copper(II)-coordinated complexes by means of density functional theory. The calculations are compared with experimental results using measurements of the infrared spectra. It is obtained that the molecular configuration of the pseudoephedrine amino-alcohol derivative is stabilized by hydrogen bonding Osbnd H⋯N and by Csbnd H⋯π interactions that are not present in the mononuclear and trinuclear compounds. The coordination compounds show octahedral and square pyramid geometries, respectively, which are slightly distorted by Jahn-Teller effects. The analysis of their theoretical and experimental IR spectra reveals signals related with hydrogen bonding as well as metal-ligand vibrational modes. Regarding the electronic structure, the density of states was calculated in order to analyze the atomic orbital contributions present in these compounds. This analysis would provide useful insights about the optical behavior, for example, in the visible region of the spectrum of the coordinated compounds. At these energies, the optical absorption would be influenced by the orbital interaction of the Cu2+d orbitals with sp ones of the ligand, reflecting a decrease of the HOMO-LUMO gap of the organic ligand due to the presence of the copper(II) ions.

  14. Poly[[sesqui[mu2-1,4-bis(imidazol-1-ylmethyl)benzene-kappa(2)N:N'](carbonato-kappa(2)O,O')copper(II)] 1,4-bis(imidazol-1-ylmethyl)benzene hemisolvate pentahydrate].

    PubMed

    Dai, Yu-Mei; Tang, En; Huang, Jin-Feng; Yang, Qiu-Yan

    2008-10-01

    The asymmetric unit of the title compound, {[Cu(CO(3))(C(14)H(14)N(4))(1.5)] x 0.5 C(14)H(14)N(4) x 5 H(2)O}(n), contains one Cu(II) cation in a slightly distorted square-pyramidal coordination environment, one CO(3)(2-) anion, one full and two half 1,4-bis(imidazol-1-ylmethyl)benzene (bix) ligands, one half-molecule of which is uncoordinated, and five uncoordinated water molecules. One of the coordinated bix ligands and the uncoordinated bix molecule are situated about centers of symmetry, located at the centers of the benzene rings. The coordinated bix ligands link the copper(II) ions into a [Cu(bix)(1.5)](n) molecular ladder. These molecular ladders do not form interpenetrated ladders but are arranged in an ABAB parallel terrace, i.e. with the ladders arranged one above another, with sequence A translated with respect to B by 8 A. To best of our knowledge, this arrangement has not been observed in any of the molecular ladder frameworks synthesized to date. The coordination environment of the Cu(II) atom is completed by two O atoms of the CO(3)(2-) anion. The framework is further strengthened by extensive O-H...O and O-H...N hydrogen bonds involving the water molecules, the O atoms of the CO(3)(2-) anion and the N atoms of the bix ligands. This study describes the first example of a molecular ladder coordination polymer based on bix and therefore demonstrates further the usefulness of bix as a versatile multidentate ligand for constructing coordination polymers with interesting architectures.

  15. Fabric geometry distortion during composites processing

    NASA Technical Reports Server (NTRS)

    Chen, Julie

    1994-01-01

    Waviness and tow misalignment are often cited as possible causes of data scatter and lower compression stiffness and strength in textile composites. Strength differences of as much as 40 percent have been seen in composites that appear to have the same basic material and structural properties -- i.e., yarn orientation, yarn size, interlacing geometry. Fabric geometry distortion has been suggested as a possible reason for this discrepancy, but little quantitative data or substantial evidence exists. The focus of this research is to contribute to the present understanding of the causes and effects of geometric distortion in textile composites. The initial part of the study was an attempt to gather qualitative information on a variety of textile structures. Existing and new samples confirmed that structures with a significant direction presence would be more susceptible to distortion due to the compaction process. Thus, uniweaves (fiber vol frac: 54-72 percent) biaxial braids (vf: 34-58 percent) demonstrated very little fabric geometry distortion. In stitched panels, only slight buckling of z-direction stitches was observed, primarily near the surface. In contrast, for structures with high compaction ratios -- e.g., large cylindrical yarns (2.5:1) orpowder towpreg (4:1) -- there were visible distortions where previously smooth and periodic undulations were transformed to abrupt changes in direction. A controlled study of the effect of forming pressure on distortion was conducted on type 162 glass plain weave fabrics. Panels (6 x 6 in) were produced via a resin infusion type setup, but with an EPON 815 epoxy resin. Pressures ranging from hand layup to 200 psi were used (vf: 34-54 percent). Photomicrographs indicated that at pressures up to 50 psi, large changes in thickness were due primarily to resin squeeze out. At higher pressures, when intimate contact was made between the layers, there was some tow flattening and in-plane shifting to optimize nesting. However, even at 200 psi the period and amplitude of the tow undulation remained constant, suggesting that for this relatively fine fabric, distortions from compaction were not a problem. Because of the interest in using larger tows (to reduce cost) and more complex structures, tests were also run on 2D triaxial glass braid (113 yd/lb at 0, 225 yd/lb at +/- 45). Forming pressures of 20, 50, 200, and 500 psi were used, and short block compression tests were run. The 500 psi specimen had a 10 percent decrease in modulus and an almost 50 percent decrease in strength (vs. 20 psi). Because the total fiber wgt/panel was kept constant, the thickness varied from 0.32 to 0.22 in (49-70 percent vf). Yet, the strength value is clearly below what would be expected, even with the decrease in thickness. Photomicrographs of these samples will be taken to determine if more fabric distortion exists in the 500 psi specimens. Finally, because the ultimate goal is to be able to predict and control distortion in a variety of textile structures, a model compaction test was developed to directly measure the deformation of the tows during compaction. Layers of dry glass fabric were placed in a mold with a clear plexiglass window. The yarn amplitude and period was then calculated using image analysis of the videotaped deformation. Preliminary tests demonstrated the feasibility of this technique for simple fabrics with large tows.

  16. Preprocessing Inconsistent Linear System for a Meaningful Least Squares Solution

    NASA Technical Reports Server (NTRS)

    Sen, Syamal K.; Shaykhian, Gholam Ali

    2011-01-01

    Mathematical models of many physical/statistical problems are systems of linear equations. Due to measurement and possible human errors/mistakes in modeling/data, as well as due to certain assumptions to reduce complexity, inconsistency (contradiction) is injected into the model, viz. the linear system. While any inconsistent system irrespective of the degree of inconsistency has always a least-squares solution, one needs to check whether an equation is too much inconsistent or, equivalently too much contradictory. Such an equation will affect/distort the least-squares solution to such an extent that renders it unacceptable/unfit to be used in a real-world application. We propose an algorithm which (i) prunes numerically redundant linear equations from the system as these do not add any new information to the model, (ii) detects contradictory linear equations along with their degree of contradiction (inconsistency index), (iii) removes those equations presumed to be too contradictory, and then (iv) obtain the minimum norm least-squares solution of the acceptably inconsistent reduced linear system. The algorithm presented in Matlab reduces the computational and storage complexities and also improves the accuracy of the solution. It also provides the necessary warning about the existence of too much contradiction in the model. In addition, we suggest a thorough relook into the mathematical modeling to determine the reason why unacceptable contradiction has occurred thus prompting us to make necessary corrections/modifications to the models - both mathematical and, if necessary, physical.

  17. Preprocessing in Matlab Inconsistent Linear System for a Meaningful Least Squares Solution

    NASA Technical Reports Server (NTRS)

    Sen, Symal K.; Shaykhian, Gholam Ali

    2011-01-01

    Mathematical models of many physical/statistical problems are systems of linear equations Due to measurement and possible human errors/mistakes in modeling/data, as well as due to certain assumptions to reduce complexity, inconsistency (contradiction) is injected into the model, viz. the linear system. While any inconsistent system irrespective of the degree of inconsistency has always a least-squares solution, one needs to check whether an equation is too much inconsistent or, equivalently too much contradictory. Such an equation will affect/distort the least-squares solution to such an extent that renders it unacceptable/unfit to be used in a real-world application. We propose an algorithm which (i) prunes numerically redundant linear equations from the system as these do not add any new information to the model, (ii) detects contradictory linear equations along with their degree of contradiction (inconsistency index), (iii) removes those equations presumed to be too contradictory, and then (iv) obtain the . minimum norm least-squares solution of the acceptably inconsistent reduced linear system. The algorithm presented in Matlab reduces the computational and storage complexities and also improves the accuracy of the solution. It also provides the necessary warning about the existence of too much contradiction in the model. In addition, we suggest a thorough relook into the mathematical modeling to determine the reason why unacceptable contradiction has occurred thus prompting us to make necessary corrections/modifications to the models - both mathematical and, if necessary, physical.

  18. Nuclear Matter Properties with the Re-evaluated Coefficients of Liquid Drop Model

    NASA Astrophysics Data System (ADS)

    Chowdhury, P. Roy; Basu, D. N.

    2006-06-01

    The coefficients of the volume, surface, Coulomb, asymmetry and pairing energy terms of the semiempirical liquid drop model mass formula have been determined by furnishing best fit to the observed mass excesses. Slightly different sets of the weighting parameters for liquid drop model mass formula have been obtained from minimizations of \\chi 2 and mean square deviation. The most recent experimental and estimated mass excesses from Audi-Wapstra-Thibault atomic mass table have been used for the least square fitting procedure. Equation of state, nuclear incompressibility, nuclear mean free path and the most stable nuclei for corresponding atomic numbers, all are in good agreement with the experimental results.

  19. Probe shapes that measure time-averaged streamwise momentum and cross-stream turbulence intensity

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J. (Inventor)

    1993-01-01

    A method and apparatus for directly measuring the time-averaged streamwise momentum in a turbulent stream use a probe which has total head response which varies as the cosine-squared of the angle of incidence. The probe has a nose with a slight indentation on its front face for providing the desired response. The method of making the probe incorporates unique design features. Another probe may be positioned in a side-by-side relationship to the first probe to provide a direct measurement of the total pressure. The difference between the two pressures yields the sum of the squares of the cross-stream components of the turbulence level.

  20. Making High-Pass Filters For Submillimeter Waves

    NASA Technical Reports Server (NTRS)

    Siegel, Peter H.; Lichtenberger, John A.

    1991-01-01

    Micromachining-and-electroforming process makes rigid metal meshes with cells ranging in size from 0.002 in. to 0.05 in. square. Series of steps involving cutting, grinding, vapor deposition, and electroforming creates self-supporting, electrically thick mesh. Width of holes typically 1.2 times cutoff wavelength of dominant waveguide mode in hole. To obtain sharp frequency-cutoff characteristic, thickness of mesh made greater than one-half of guide wavelength of mode in hole. Meshes used as high-pass filters (dichroic plates) for submillimeter electromagnetic waves. Process not limited to square silicon wafers. Round wafers also used, with slightly more complication in grinding periphery. Grid in any pattern produced in electroforming mandrel. Any platable metal or alloy used for mesh.

  1. [4,6-Dimethyl­pyrimidine-2(1H)-thione-κS]iodidobis(triphenyl­phosphane-κP)copper(I)

    PubMed Central

    Pakawatchai, Chaveng; Wattanakanjana, Yupa; Choto, Patcharanan; Nimthong, Ruthairat

    2012-01-01

    In the mononuclear title complex, [CuI(C6H8N2S)(C18H15P)2], the CuI ion is in a slightly distorted tetra­hedral coordination geometry formed by two P atoms from two triphenyl­phosphane ligands, one S atom from a 4,6-dimethyl­pyrimidine-2(1H)-thione ligand and one iodide ion. There is an intra­molecular N—H⋯I hydrogen bond. In the crystal, π–π stacking inter­actions [centroid–centroid distance = 3.594 (1) Å] are observed. PMID:22719327

  2. Macular function and morphology in acute retinal pigment epithelitis.

    PubMed

    Gundogan, Fatih C; Diner, Oktay; Tas, Ahmet; Ilhan, Abdullah; Yolcu, Umit

    2014-12-01

    A 20-year-old man applied with vision loss in the left eye. Right eye examination was unremarkable. Best-corrected visual acuity (BCVA) in the left eye was 20/200. Fundus examination revealed a few yellow spots within a round-shaped macular lesion. Autofluorescence imaging showed hyperautofluorescence in the lesion. Central amplitudes in multifocal electroretinogram (mfERG) were depressed. The patient reported a rhinopharyngitis 7-10 days before the visual loss. The patient was diagnosed as acute retinal pigment epithelitis. BCVA improved gradually up to 20/20 in 4 weeks. mfERG amplitudes returned to normal. A slight pigmentary distortion was the only residual fundus finding.

  3. Dichlorido[2-(phenyl­imino­meth­yl)quinoline-N,N′]palladium(II)

    PubMed Central

    Motswainyana, William M.; Onani, Martin O.; Madiehe, Abram M.

    2012-01-01

    In the title complex, [PdCl2(C16H12N2)], the PdII ion is coordinated by two N atoms [Pd—N 2.039 (2), 2.073 (2) Å] from a bidentate ligand and two chloride anions [Pd—Cl 2.2655 (7), 2.2991 (7) Å] in a distorted square-planar geometry. In the crystal, π–π inter­actions between the six-membered rings of the quinoline fragments [centroid–centroid distances = 3.815 (5), 3.824 (5) Å] link two mol­ecules into centrosymmetric dimers. PMID:22589771

  4. [1,1′-Diphenyl-3,3′-(propane-1,3-diyldinitrilo)dibut-1-enolato]copper(II)

    PubMed Central

    Salehi, Mehdi; Meghdadi, Soraia; Amirnasr, Mehdi; Mereiter, Kurt

    2009-01-01

    The title compound, [Cu(C23H24N2O2)] or [Cu{(BA)2pn}], where (BA)2pn is 1,1′-diphenyl-3,3′-(propane-1,3-diyldinitrilo)dibut-1-enolate, is a mononuclear copper(II) complex, located on a twofold axis. The four-coordinate CuII atom is in a tetra­hedrally distorted square plane defined by the N and O atoms of the Schiff base ligand. In the tetra­dentate ligand, the two chelate rings are twisted relative to each other, making a dihedral angle of 36.57 (3)°. PMID:21581795

  5. Caps Seal Boltholes On Vacuum-System Flanges

    NASA Technical Reports Server (NTRS)

    Roman, Robert F.

    1993-01-01

    Sealing caps devised for boltholes on vacuum-system flanges. Used in place of leak-prone gaskets, and provide solid metal-to-metal interfaces. Each sealing cap contains square-cut circular groove in which O-ring placed. Mounted on studs protruding into access ports, providing positive seal around each bolthole. Each cap mates directly with surface of flange, in solid metal-to-metal fit, with O-ring completely captured in groove. Assembly immune to misalignment, leakage caused by vibration, and creeping distortion caused by weight of port. O-ring material chosen for resistance to high temperature; with appropriate choice of material, temperature raised to as much as 315 degrees C.

  6. Colorimetric detection of hydrogen peroxide by dioxido-vanadium(V) complex containing hydrazone ligand: synthesis and crystal structure

    NASA Astrophysics Data System (ADS)

    Kurbah, Sunshine D.; Syiemlieh, Ibanphylla; Lal, Ram A.

    2018-03-01

    Dioxido-vanadium(V) complex has been synthesized in good yield, the complex was characterized by IR, UV-visible and 1H NMR spectroscopy. Single crystal X-ray crystallography techniques were used to assign the structure of the complex. Complex crystallized with monoclinic P21/c space group with cell parameters a (Å) = 39.516(5), b (Å) = 6.2571(11), c (Å) = 17.424(2), α (°) = 90, β (°) = 102.668(12) and γ (°) = 90. The hydrazone ligand is coordinate to metal ion in tridentate fashion through -ONO- donor atoms forming a distorted square pyramidal geometry around the metal ion.

  7. Aqua­[1,8-bis­(pyridin-2-yl)-3,6-dithia­octane-κ4 N,S,S′,N′]copper(II) dinitrate acetonitrile monosolvate

    PubMed Central

    Manzanera-Estrada, Mayra; Flores-Alamo, Marcos; Grevy M., Jean-Michel; Ruiz-Azuara, Lena; Ortiz-Frade, Luis

    2012-01-01

    In the title compound, [Cu(C16H20N2S2)(H2O)](NO3)2·CH3CN, the CuII atom displays a distorted square-pyramidal coordination, in which a water mol­ecule occupies the apical position and the basal plane is formed by two N atoms and two S atoms of a 1,8-bis­(pyridin-2-yl)-3,6-dithia­octane ligand. The crystal packing is stabilized by O—H⋯O and C—H⋯O hydrogen bonds. PMID:22346819

  8. Assembly of Colloidal Aggregates by Electrohydrodynamic Flow: Kinetic Experiments and Scaling Analysis

    NASA Technical Reports Server (NTRS)

    Ristenpart, W. D.; Aksay, I. A.; Saville, D. A.

    2004-01-01

    Electric fields generate transverse flows near electrodes that sweep colloidal particles into densely packed assemblies. We interpret this behavior in terms of electrohydrodynamic motion stemming from distortions of the field by the particles that alter the body force distribution in the electrode charge polarization layer. A scaling analysis shows how the action of the applied electric field generates fluid motion that carries particles toward one another. The resulting fluid velocity is proportional to the square of the applied field and decreases inversely with frequency. Experimental measurements of the particle aggregation rate accord with the electrohydrodynamic theory over a wide range of voltages and frequencies.

  9. Dichlorido{[2-(diphenyl­phosphino)phenyl­imino­meth­yl]ferrocene-κ2 N,P}palladium(II) dichloro­methane hemi­solvate

    PubMed Central

    Liu, Huanyu; Shen, Dongsheng

    2009-01-01

    There are two independent PdII complex mol­ecules in the asymmetric unit of the title compound, [PdCl2{Fe(C5H5)(C24H19NP)}]·0.5CH2Cl2. One ferrocenyl ring of one complex mol­ecule is disordered over two sites with half-occupancy for each component. Both PdII cations adopt a distorted square-planar coordination geometry with a bidentate [2-(diphenyl­phosphino)phenyl­imino­meth­yl]ferrocene ligand and two chloride anions. PMID:21581545

  10. Microwave spectroscopy of HCOO13CH3 in the second methyl torsional excited state

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kaori; Kuwahara, Takuro; Tachi, Haruka; Urata, Yuki; Tsunekawa, Shozo; Hayashi, Naoto; Higuchi, Hiroyuki; Fujitake, Masaharu; Ohashi, Nobukimi

    2018-01-01

    The new experimental results and analysis of the microwave spectra of HCOO13CH3 in the second methyl torsional excited state are reported. Pseudo-principal axis method (pseudo-PAM) was successfully applied to the normal methyl formate in the second torsional excited state and again applied to this isotopologue. We succeeded to assign 536 A-species transitions up to J = 33 and Ka = 15 and 417 E-species transitions up to J = 32 and Ka = 14. Thirty parameters were used to do the least-squares-analysis by using the pseudo-PAM Hamiltonian consisting of rotational, centrifugal distortion, and internal-rotational constants.

  11. Image-based spectral distortion correction for photon-counting x-ray detectors

    PubMed Central

    Ding, Huanjun; Molloi, Sabee

    2012-01-01

    Purpose: To investigate the feasibility of using an image-based method to correct for distortions induced by various artifacts in the x-ray spectrum recorded with photon-counting detectors for their application in breast computed tomography (CT). Methods: The polyenergetic incident spectrum was simulated with the tungsten anode spectral model using the interpolating polynomials (TASMIP) code and carefully calibrated to match the x-ray tube in this study. Experiments were performed on a Cadmium-Zinc-Telluride (CZT) photon-counting detector with five energy thresholds. Energy bins were adjusted to evenly distribute the recorded counts above the noise floor. BR12 phantoms of various thicknesses were used for calibration. A nonlinear function was selected to fit the count correlation between the simulated and the measured spectra in the calibration process. To evaluate the proposed spectral distortion correction method, an empirical fitting derived from the calibration process was applied on the raw images recorded for polymethyl methacrylate (PMMA) phantoms of 8.7, 48.8, and 100.0 mm. Both the corrected counts and the effective attenuation coefficient were compared to the simulated values for each of the five energy bins. The feasibility of applying the proposed method to quantitative material decomposition was tested using a dual-energy imaging technique with a three-material phantom that consisted of water, lipid, and protein. The performance of the spectral distortion correction method was quantified using the relative root-mean-square (RMS) error with respect to the expected values from simulations or areal analysis of the decomposition phantom. Results: The implementation of the proposed method reduced the relative RMS error of the output counts in the five energy bins with respect to the simulated incident counts from 23.0%, 33.0%, and 54.0% to 1.2%, 1.8%, and 7.7% for 8.7, 48.8, and 100.0 mm PMMA phantoms, respectively. The accuracy of the effective attenuation coefficient of PMMA estimate was also improved with the proposed spectral distortion correction. Finally, the relative RMS error of water, lipid, and protein decompositions in dual-energy imaging was significantly reduced from 53.4% to 6.8% after correction was applied. Conclusions: The study demonstrated that dramatic distortions in the recorded raw image yielded from a photon-counting detector could be expected, which presents great challenges for applying the quantitative material decomposition method in spectral CT. The proposed semi-empirical correction method can effectively reduce these errors caused by various artifacts, including pulse pileup and charge sharing effects. Furthermore, rather than detector-specific simulation packages, the method requires a relatively simple calibration process and knowledge about the incident spectrum. Therefore, it may be used as a generalized procedure for the spectral distortion correction of different photon-counting detectors in clinical breast CT systems. PMID:22482608

  12. The Pattern Glare Test: a review and determination of normative values.

    PubMed

    Evans, B J W; Stevenson, S J

    2008-07-01

    Pattern glare is characterised by symptoms of visual perceptual distortions and visual stress on viewing striped patterns. People with migraine or Meares-Irlen syndrome (visual stress) are especially prone to pattern glare. The literature on pattern glare is reviewed, and the goal of this study was to develop clinical norms for the Wilkins and Evans Pattern Glare Test. This comprises three test plates of square wave patterns of spatial frequency 0.5, 3 and 12 cycles per degree (cpd). Patients are shown the 0.5 cpd grating and the number of distortions that are reported in response to a list of questions is recorded. This is repeated for the other patterns. People who are prone to pattern glare experience visual perceptual distortions on viewing the 3 cpd grating, and pattern glare can be quantified as either the sum of distortions reported with the 3 cpd pattern or as the difference between the number of distortions with the 3 and 12 cpd gratings, the '3-12 cpd difference'. In study 1, 100 patients consulting an optometrist performed the Pattern Glare Test and the 95th percentile of responses was calculated as the limit of the normal range. The normal range for the number of distortions was found to be <4 on the 3 cpd grating and <2 for the 3-12 cpd difference. Pattern glare was similar in both genders but decreased with age. In study 2, 30 additional participants were given the test in the reverse of the usual testing order and were compared with a sub-group from study 1, matched for age and gender. Participants experienced more distortions with the 12 cpd grating if it was presented after the 3 cpd grating. However, the order did not influence the two key measures of pattern glare. In study 3, 30 further participants who reported a medical diagnosis of migraine were compared with a sub-group of the participants in study 1 who did not report migraine or frequent headaches, matched for age and gender. The migraine group reported more symptoms on viewing all gratings, particularly the 3 cpd grating. The only variable to be significantly different between the groups was the 3-12 cpd difference. In conclusion, people have an abnormal degree of pattern glare if they have a Pattern Glare Test score of >3 on the 3 cpd grating or a score of >1 on the 3-12 cpd difference. The literature suggests that these people are likely to have visual stress in everyday life and may therefore benefit from interventions designed to alleviate visual stress, such as precision tinted lenses.

  13. Three-Dimensional Aerodynamic Instabilities In Multi-Stage Axial Compressors

    NASA Technical Reports Server (NTRS)

    Tan, Choon S.; Gong, Yifang; Suder, Kenneth L. (Technical Monitor)

    2001-01-01

    This thesis presents the conceptualization and development of a computational model for describing three-dimensional non-linear disturbances associated with instability and inlet distortion in multistage compressors. Specifically, the model is aimed at simulating the non-linear aspects of short wavelength stall inception, part span stall cells, and compressor response to three-dimensional inlet distortions. The computed results demonstrated the first-of-a-kind capability for simulating short wavelength stall inception in multistage compressors. The adequacy of the model is demonstrated by its application to reproduce the following phenomena: (1) response of a compressor to a square-wave total pressure inlet distortion; (2) behavior of long wavelength small amplitude disturbances in compressors; (3) short wavelength stall inception in a multistage compressor and the occurrence of rotating stall inception on the negatively sloped portion of the compressor characteristic; (4) progressive stalling behavior in the first stage in a mismatched multistage compressor; (5) change of stall inception type (from modal to spike and vice versa) due to IGV stagger angle variation, and "unique rotor tip incidence" at these points where the compressor stalls through short wavelength disturbances. The model has been applied to determine the parametric dependence of instability inception behavior in terms of amplitude and spatial distribution of initial disturbance, and intra-blade-row gaps. It is found that reducing the inter-blade row gaps suppresses the growth of short wavelength disturbances. It is also concluded from these parametric investigations that each local component group (rotor and its two adjacent stators) has its own instability point (i.e. conditions at which disturbances are sustained) for short wavelength disturbances, with the instability point for the compressor set by the most unstable component group. For completeness, the methodology has been extended to describe finite amplitude disturbances in high-speed compressors. Results are presented for the response of a transonic compressor subjected to inlet distortions.

  14. Acquisition of shape information in working memory, as a function of viewing time and number of consecutive images: evidence for a succession of discrete storage classes.

    PubMed

    Ninio, J

    1998-07-01

    The capacity of visual working memory was investigated using abstract images that were slightly distorted NxN (with generally N=8) square lattices of black or white randomly selected elements. After viewing an image, or a sequence of images, the subjects viewed couples of images containing the test image and a distractor image derived from the first one by changing the black or white value of q randomly selected elements. The number q was adjusted in each experiment to the difficulty of the task and the abilities of the subject. The fraction of recognition errors, given q and N was used to evaluate the number M of bits memorized by the subject. For untrained subjects, this number M varied in a biphasic manner as a function of the time t of presentation of the test image: it was on average 13 bits for 1 s, 16 bits for 2 to 5 s, and 20 bits for 8 s. The slow pace of acquisition, from 1 to 8 s, seems due to encoding difficulties, and not to channel capacity limitations. Beyond 8 s, M(t), accurately determined for one subject, followed a square root law, in agreement with 19th century observations on the memorization of lists of digits. When two consecutive 8x8 images were viewed and tested in the same order, the number of memorized bits was downshifted by a nearly constant amount, independent of t, and equal on average to 6-7 bits. Across the subjects, the shift was independent of M. When two consecutive test images were related, the recognition errors decreased for both images, whether the testing was performed in the presentation or the reverse order. Studies involving three subjects, indicate that, when viewing m consecutive images, the average amount of information captured per image varies with m in a stepwise fashion. The first two step boundaries were around m=3 and m=9-12. The data are compatible with a model of organization of working memory in several successive layers containing increasing numbers of units, the more remote a unit, the lower the rate at which it may acquire encoded information. Copyright 1998 Elsevier Science B.V.

  15. Range Estimation Algorithm Comparison in 3-D Flash LADAR Data

    DTIC Science & Technology

    2009-03-01

    formed from LADAR intensity data viewed at sample 10. Target is about 70 meters from receiver and normal to line of sight. White square indicates region...that when averaged form a pulse that is slightly wider than the individual returns. . . . . . . . 35 4.1 Examples of simulated LADAR waveforms of...varying widths used for PWE tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.2 Simulated noiseless data buffered through LADAR sytem

  16. One-pot hydrothermal synthesis of zeolite/sodium tantalate composite and its photodegradation of methyl orange

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Xiaoli; Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096; Lu, Haiqiang

    2015-08-15

    Highlights: • Sodalite/NaTaO{sub 3} composite is prepared by a one-pot hydrothermal synthesis. • Enhanced photodegradation is achieved due to the heterogeneous doping effect. • Structure distortion is found for NaTaO{sub 3} after removing sodalite by acid washing. - Abstract: Sodalite/NaTaO{sub 3} composite was prepared by a one-pot hydrothermal synthesis method. Sodalite and NaTaO{sub 3} grow interpenetrated, and the resulting composites have similar morphology as the pure sodalite. The sodalite/NaTaO{sub 3} composite has a lower band gap of 3.35 eV due to the heterogeneous doping effect, and exhibits an enhanced photodegradation of methyl orange under UV irradiation as compared to themore » pure NaTaO{sub 3}. A slight structure distortion is found for NaTaO{sub 3} after removing sodalite by acid washing the sodalite/NaTaO{sub 3} composite, and such result further confirms the co-growth of the two crystals. This one-pot hydrothermal method opens up new avenues for the preparation of photocatalytic composites.« less

  17. Crystal structure of cis-aqua­chlorido­bis­(1,10-phenanthroline-κ2 N,N′)chromium(III) tetra­chlorido­zincate monohydrate from synchrotron data

    PubMed Central

    Moon, Dohyun; Choi, Jong-Ha

    2015-01-01

    The structure of the title compound, [CrCl(C12H8N2)2(H2O)][ZnCl4]·H2O, has been determined from synchrotron data. The CrIII ion is bonded to four N atoms from two 1,10-phenanthroline (phen) ligands, one water mol­ecule and a Cl atom in a cis arrangement, displaying an overall distorted octa­hedral coordination environment. The Cr—N(phen) bond lengths are in the range of 2.0495 (18) to 2.0831 (18) Å, while the Cr—Cl and Cr—(OH2) bond lengths are 2.2734 (7) and 1.9986 (17) Å, respectively. The tetra­hedral [ZnCl4]2− anion is slightly distorted owing to its involvement in O—H⋯Cl hydrogen bonding with coordinating and non-coordinating water mol­ecules. The two types of water mol­ecules also inter­act through O—H⋯O hydrogen bonds. The observed hydrogen-bonding pattern leads to the formation of a three-dimensional network structure. PMID:25844190

  18. Crystal structure of bis-[tetra-kis-(tetra-hydro-furan-κO)lithium] bis[μ-2,2',2''-methanetriyltris(4,6-di-tert-butylphenolato)-κ4O,O':O',O'']-dimagnesiate.

    PubMed

    Zhou, Hongyan; Wang, Lei

    2017-07-01

    The title ion-association metal complex, [Li(C 4 H 8 O) 4 ] 2 [Mg 2 (C 43 H 61 O 3 ) 2 ], has been synthesized from the tridentate phenolic ligand tris-(3,5-di- tert -butyl-2-hy-droxy-phen-yl)methane in tetra-hydro-furan (THF). The aryl-oxo magnesiate complex anion is binuclear with each Mg 2 O 4 complex unit inversion-related and bridged through the two tridentate chelating phenolate O-donors of the ligand. The complex centres have a distorted tetra-hedral stereochemistry [Mg-O range 1.8796 (17)-2.0005 (16) Å] and an Mg⋯Mg separation of 2.9430 (14) Å]. The LiO 4 coodination sphere of the cation comprises four THF O-donor atoms and has a slightly distorted tetra-hedral conformation [Li-O range 1.899 (5)- 1.953 (5) Å]. In the crystal, a number of stabilizing intra-anion C-H⋯O hydrogen-bonding inter-actions are present but no inter-species associations are found.

  19. Surface Control of Cold Hibernated Elastic Memory Self-Deployable Structure

    NASA Technical Reports Server (NTRS)

    Sokolowski, Witold M.; Ghaffarian, Reza

    2006-01-01

    A new class of simple, reliable, lightweight, low packaging volume and cost, self-deployable structures has been developed for use in space and commercial applications. This technology called 'cold hibernated elastic memory' (CHEM) utilizes shape memory polymers (SMP)in open cellular (foam) structure or sandwich structures made of shape memory polymer foam cores and polymeric composite skins. Some of many potential CHEM space applications require a high precision deployment and surface accuracy during operation. However, a CHEM structure could be slightly distorted by the thermo-mechanical processing as well as by thermal space environment Therefore, the sensor system is desirable to monitor and correct the potential surface imperfection. During these studies, the surface control of CHEM smart structures was demonstrated using a Macro-Fiber Composite (MFC) actuator developed by the NASA LaRC and US Army ARL. The test results indicate that the MFC actuator performed well before and after processing cycles. It reduced some residue compressive strain that in turn corrected very small shape distortion after each processing cycle. The integrated precision strain gages were detecting only a small flat shape imperfection indicating a good recoverability of original shape of the CHEM test structure.

  20. Anisotropy and multiband superconductivity in Sr 2 RuO 4 determined by small-angle neutron scattering studies of the vortex lattice [Anisotropy and multiband superconductivity in Sr 2 RuO 4

    DOE PAGES

    Kuhn, S. J.; Morgenlander, W.; Louden, E. R.; ...

    2017-11-14

    Despite numerous studies the exact nature of the order parameter in superconducting Sr 2RuO 4 remains unresolved. We have extended previous small-angle neutron scattering studies of the vortex lattice in this material to a wider field range, higher temperatures, and with the field applied close to both the <100> and <110> basal plane directions. Measurements at high field were made possible by the use of both spin polarization and analysis to improve the signal-to-noise ratio. Rotating the field towards the basal plane causes a distortion of the square vortex lattice observed for H // <001> and also a symmetry changemore » to a distorted triangular symmetry for fields close to <100>.The vortex lattice distortion allows us to determine the intrinsic superconducting anisotropy between the c axis and the Ru-O basal plane, yielding a value of ~60 at low temperature and low to intermediate fields. This greatly exceeds the upper critical field anisotropy of ~20 at low temperature, reminiscent of Pauli limiting. Indirect evidence for Pauli paramagnetic effects on the unpaired quasiparticles in the vortex cores are observed, but a direct detection lies below the measurement sensitivity. The superconducting anisotropy is found to be independent of temperature but increases for fields > 1 T, indicating multiband superconductvity in Sr 2RuO 4. Lastly, the temperature dependence of the scattered intensity provides further support for gap nodes or deep minima in the superconducting gap.« less

  1. Anisotropy and multiband superconductivity in Sr 2 RuO 4 determined by small-angle neutron scattering studies of the vortex lattice [Anisotropy and multiband superconductivity in Sr 2 RuO 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhn, S. J.; Morgenlander, W.; Louden, E. R.

    Despite numerous studies the exact nature of the order parameter in superconducting Sr 2RuO 4 remains unresolved. We have extended previous small-angle neutron scattering studies of the vortex lattice in this material to a wider field range, higher temperatures, and with the field applied close to both the <100> and <110> basal plane directions. Measurements at high field were made possible by the use of both spin polarization and analysis to improve the signal-to-noise ratio. Rotating the field towards the basal plane causes a distortion of the square vortex lattice observed for H // <001> and also a symmetry changemore » to a distorted triangular symmetry for fields close to <100>.The vortex lattice distortion allows us to determine the intrinsic superconducting anisotropy between the c axis and the Ru-O basal plane, yielding a value of ~60 at low temperature and low to intermediate fields. This greatly exceeds the upper critical field anisotropy of ~20 at low temperature, reminiscent of Pauli limiting. Indirect evidence for Pauli paramagnetic effects on the unpaired quasiparticles in the vortex cores are observed, but a direct detection lies below the measurement sensitivity. The superconducting anisotropy is found to be independent of temperature but increases for fields > 1 T, indicating multiband superconductvity in Sr 2RuO 4. Lastly, the temperature dependence of the scattered intensity provides further support for gap nodes or deep minima in the superconducting gap.« less

  2. Method of orthogonally splitting imaging pose measurement

    NASA Astrophysics Data System (ADS)

    Zhao, Na; Sun, Changku; Wang, Peng; Yang, Qian; Liu, Xintong

    2018-01-01

    In order to meet the aviation's and machinery manufacturing's pose measurement need of high precision, fast speed and wide measurement range, and to resolve the contradiction between measurement range and resolution of vision sensor, this paper proposes an orthogonally splitting imaging pose measurement method. This paper designs and realizes an orthogonally splitting imaging vision sensor and establishes a pose measurement system. The vision sensor consists of one imaging lens, a beam splitter prism, cylindrical lenses and dual linear CCD. Dual linear CCD respectively acquire one dimensional image coordinate data of the target point, and two data can restore the two dimensional image coordinates of the target point. According to the characteristics of imaging system, this paper establishes the nonlinear distortion model to correct distortion. Based on cross ratio invariability, polynomial equation is established and solved by the least square fitting method. After completing distortion correction, this paper establishes the measurement mathematical model of vision sensor, and determines intrinsic parameters to calibrate. An array of feature points for calibration is built by placing a planar target in any different positions for a few times. An terative optimization method is presented to solve the parameters of model. The experimental results show that the field angle is 52 °, the focus distance is 27.40 mm, image resolution is 5185×5117 pixels, displacement measurement error is less than 0.1mm, and rotation angle measurement error is less than 0.15°. The method of orthogonally splitting imaging pose measurement can satisfy the pose measurement requirement of high precision, fast speed and wide measurement range.

  3. Wake orientation and its influence on the performance of diffusers with inlet distortion

    NASA Astrophysics Data System (ADS)

    Coffman, Jesse M.

    Distortion at the inlet to diffusers is very common in internal flow applications. Inlet velocity distortion influences the pressure recovery and flow regimes of diffusers. This work introduced a centerline wake at the square inlet of a plane wall diffuser in two orthogonal orientations to investigate its influence on the diffuser performance. Two different wakes were generated. One was from a mesh strip which produced a velocity deficit with low turbulence intensity and two shear layers. The other wake generator was a D-shaped cylinder which produced a wake with high turbulence intensity and large length scales. These inlet conditions were generated for a diffuser with a diffusion angle of 3° and 6°. A pair of RANS simulations were used to investigate the influence of the orthogonal inlet orientations on the solution. The inlet conditions were taken from the inlet velocity field measured for the mesh strip. The flow development and exit conditions showed some similarities and some differences with the experimental results. The performance of a diffuser is typically measured through the static pressure recovery coefficient and the total pressure losses. The definition of these metrics commonly found in the literature were insufficient to discern differences between the wake orientations. New metrics were derived using the momentum flux profile parameter which related the static pressure recovery, the total pressure losses, and the velocity uniformity at the inlet and exit of the diffuser. These metrics revealed a trade-off between the total pressure losses and the uniformity of the velocity field.

  4. Wavefront detection method of a single-sensor based adaptive optics system.

    PubMed

    Wang, Chongchong; Hu, Lifa; Xu, Huanyu; Wang, Yukun; Li, Dayu; Wang, Shaoxin; Mu, Quanquan; Yang, Chengliang; Cao, Zhaoliang; Lu, Xinghai; Xuan, Li

    2015-08-10

    In adaptive optics system (AOS) for optical telescopes, the reported wavefront sensing strategy consists of two parts: a specific sensor for tip-tilt (TT) detection and another wavefront sensor for other distortions detection. Thus, a part of incident light has to be used for TT detection, which decreases the light energy used by wavefront sensor and eventually reduces the precision of wavefront correction. In this paper, a single Shack-Hartmann wavefront sensor based wavefront measurement method is presented for both large amplitude TT and other distortions' measurement. Experiments were performed for testing the presented wavefront method and validating the wavefront detection and correction ability of the single-sensor based AOS. With adaptive correction, the root-mean-square of residual TT was less than 0.2 λ, and a clear image was obtained in the lab. Equipped on a 1.23-meter optical telescope, the binary stars with angle distance of 0.6″ were clearly resolved using the AOS. This wavefront measurement method removes the separate TT sensor, which not only simplifies the AOS but also saves light energy for subsequent wavefront sensing and imaging, and eventually improves the detection and imaging capability of the AOS.

  5. Spectral, biological screening of metal chelates of chalcone based Schiff bases of N-(3-aminopropyl) imidazole.

    PubMed

    Kalanithi, M; Rajarajan, M; Tharmaraj, P; Sheela, C D

    2012-02-15

    Tridentate chelate complexes of Co(II), Ni(II), Cu(II) and Zn(II) have been synthesized from the chalcone based ligands 2-[1-(3-(1H-imidazol-1-yl)propylimino)-3-(phenylallyl)]phenol(HL(1)), 2-[1-(3-(1H-imidazol-1-yl)propylimino)-3-p-tolylallyl]phenol(HL(2)), 2-[1-(3-(1H-imidazol-1-yl)propylimino)-3-4-nitrophenylallyl]phenol(HL(3)). Microanalytical data, UV-vis spectrophotometric method, magnetic susceptibility measurements, IR, 1H NMR, Mass, and EPR techniques were used to characterize the structure of chelates. The electronic absorption spectra and magnetic susceptibility measurements suggest a distorted square planar geometry for the copper(II) ion. The other metal complexes show distorted tetrahedral geometry. The coordination of the ligands with metal(II) ions was further confirmed by solution fluorescence spectrum. The antimicrobial activity of the ligands and metal(II) complexes against the species Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Candida albigans and Aspergillus niger has been carried out and compared. The electrochemical behavior of copper(II) complex is studied by cyclic voltammetry. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Dispersion compensation of fiber optic communication system with direct detection using artificial neural networks (ANNs)

    NASA Astrophysics Data System (ADS)

    Maghrabi, Mahmoud M. T.; Kumar, Shiva; Bakr, Mohamed H.

    2018-02-01

    This work introduces a powerful digital nonlinear feed-forward equalizer (NFFE), exploiting multilayer artificial neural network (ANN). It mitigates impairments of optical communication systems arising due to the nonlinearity introduced by direct photo-detection. In a direct detection system, the detection process is nonlinear due to the fact that the photo-current is proportional to the absolute square of the electric field intensity. The proposed equalizer provides the most efficient computational cost with high equalization performance. Its performance is comparable to the benchmark compensation performance achieved by maximum-likelihood sequence estimator. The equalizer trains an ANN to act as a nonlinear filter whose impulse response removes the intersymbol interference (ISI) distortions of the optical channel. Owing to the proposed extensive training of the equalizer, it achieves the ultimate performance limit of any feed-forward equalizer (FFE). The performance and efficiency of the equalizer is investigated by applying it to various practical short-reach fiber optic communication system scenarios. These scenarios are extracted from practical metro/media access networks and data center applications. The obtained results show that the ANN-NFFE compensates for the received BER degradation and significantly increases the tolerance to the chromatic dispersion distortion.

  7. Regression analysis for LED color detection of visual-MIMO system

    NASA Astrophysics Data System (ADS)

    Banik, Partha Pratim; Saha, Rappy; Kim, Ki-Doo

    2018-04-01

    Color detection from a light emitting diode (LED) array using a smartphone camera is very difficult in a visual multiple-input multiple-output (visual-MIMO) system. In this paper, we propose a method to determine the LED color using a smartphone camera by applying regression analysis. We employ a multivariate regression model to identify the LED color. After taking a picture of an LED array, we select the LED array region, and detect the LED using an image processing algorithm. We then apply the k-means clustering algorithm to determine the number of potential colors for feature extraction of each LED. Finally, we apply the multivariate regression model to predict the color of the transmitted LEDs. In this paper, we show our results for three types of environmental light condition: room environmental light, low environmental light (560 lux), and strong environmental light (2450 lux). We compare the results of our proposed algorithm from the analysis of training and test R-Square (%) values, percentage of closeness of transmitted and predicted colors, and we also mention about the number of distorted test data points from the analysis of distortion bar graph in CIE1931 color space.

  8. Tolerance for distorted faces: challenges to a configural processing account of familiar face recognition.

    PubMed

    Sandford, Adam; Burton, A Mike

    2014-09-01

    Face recognition is widely held to rely on 'configural processing', an analysis of spatial relations between facial features. We present three experiments in which viewers were shown distorted faces, and asked to resize these to their correct shape. Based on configural theories appealing to metric distances between features, we reason that this should be an easier task for familiar than unfamiliar faces (whose subtle arrangements of features are unknown). In fact, participants were inaccurate at this task, making between 8% and 13% errors across experiments. Importantly, we observed no advantage for familiar faces: in one experiment participants were more accurate with unfamiliars, and in two experiments there was no difference. These findings were not due to general task difficulty - participants were able to resize blocks of colour to target shapes (squares) more accurately. We also found an advantage of familiarity for resizing other stimuli (brand logos). If configural processing does underlie face recognition, these results place constraints on the definition of 'configural'. Alternatively, familiar face recognition might rely on more complex criteria - based on tolerance to within-person variation rather than highly specific measurement. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Simulation analysis of the unconfined aquifer, Raft River geothermal area, Idaho-Utah

    USGS Publications Warehouse

    Nichols, William D.

    1979-01-01

    This study covers about 1,000 mi2 (2,600 km2 ) of the southern Raft River drainage basin in south-central Idaho and northwest Utah. The main area of interest, approximately 200 mi2 (520 km2 ) of semiarid agricultural and rangeland in the southern Raft River Valley that includes the known Geothermal Resource Area near Bridge, Idaho, was modelled numerically to evaluate the hydrodynamics of the unconfined aquifer. Computed and estimated transmissivity values range from 1,200 feet squared per day (110 meters squared per day) to 73,500 feet squared per day (6,830 meters squared per day). Water budgets, including ground-water recharge and discharge for approximate equilibrium conditions, have been computed by several previous investigators; their estimates of available ground-water recharge range from about 46,000 acre-feet per year (57 cubic hectometers per year) to 100,000 acre-feet per year (123 cubic hectometers per year).Simulation modeling of equilibrium conditions represented by 1952 water levels suggests: (1) recharge to the water-table aquifer is about 63,000 acre-feet per year (77 cubic hectometers per year); (2) a significant volume of ground water is discharged through evapotranspiration by phreatophytes growing on the valley bottomlands; (3) the major source of recharge may be from upward leakage of water from a deeper, confined reservoir; and (4) the aquifer transmissivity probably does not exceed about 12,000 feet squared per day (3,100 meters squared per day). Additional analysis carried out by simulating transient conditions from 1952 to 1965 strongly suggests that aquifer transmissivity does not exceed about 7,700 feet squared per day (700 meters squared per day). The model was calibrated using slightly modified published pumpage data; it satisfactorily reproduced the historic water-level decline over the period 1952-65.

  10. Nonlinear least-squares data fitting in Excel spreadsheets.

    PubMed

    Kemmer, Gerdi; Keller, Sandro

    2010-02-01

    We describe an intuitive and rapid procedure for analyzing experimental data by nonlinear least-squares fitting (NLSF) in the most widely used spreadsheet program. Experimental data in x/y form and data calculated from a regression equation are inputted and plotted in a Microsoft Excel worksheet, and the sum of squared residuals is computed and minimized using the Solver add-in to obtain the set of parameter values that best describes the experimental data. The confidence of best-fit values is then visualized and assessed in a generally applicable and easily comprehensible way. Every user familiar with the most basic functions of Excel will be able to implement this protocol, without previous experience in data fitting or programming and without additional costs for specialist software. The application of this tool is exemplified using the well-known Michaelis-Menten equation characterizing simple enzyme kinetics. Only slight modifications are required to adapt the protocol to virtually any other kind of dataset or regression equation. The entire protocol takes approximately 1 h.

  11. 4′,5-Dihy­droxy-7-meth­oxy­flavanone dihydrate

    PubMed Central

    Brito, Iván; Bórquez, Jorge; Simirgiotis, Mario; Cárdenas, Alejandro; López-Rodríguez, Matías

    2012-01-01

    The title compound, C16H14O5·2H2O [systematic name: 5-hy­droxy-2-(4-hy­droxy­phen­yl)-7-meth­oxy­chroman-4-one dihydrate], is a natural phytoalexin flavone isolated from the native chilean species Heliotropium taltalense and crystallizes with an organic mol­ecule and two water mol­ecules in the asymmetric unit. The 5-hy­droxy group forms a strong intra­molecular hydrogen bond with the carbonyl group, resulting in a six-membered ring. In the crystal, the components are linked by O—H⋯O hydrogen bonds, forming a three-dimensional network. The 4-hy­droxy­phenyl benzene ring is bonded equatorially to the pyrone ring, which adopts a slightly distorted sofa conformation. The title compound is the hydrated form of a previously reported structure [Shoja (1990 ▶). Acta Cryst. C46, 1969–1971]. There are only slight variations in the mol­ecular geometry between the two compounds. PMID:22259537

  12. Fuel cell end plate structure

    DOEpatents

    Guthrie, Robin J.; Katz, Murray; Schroll, Craig R.

    1991-04-23

    The end plates (16) of a fuel cell stack (12) are formed of a thin membrane. Pressure plates (20) exert compressive load through insulation layers (22, 26) to the membrane. Electrical contact between the end plates (16) and electrodes (50, 58) is maintained without deleterious making and breaking of electrical contacts during thermal transients. The thin end plate (16) under compressive load will not distort with a temperature difference across its thickness. Pressure plate (20) experiences a low thermal transient because it is insulated from the cell. The impact on the end plate of any slight deflection created in the pressure plate by temperature difference is minimized by the resilient pressure pad, in the form of insulation, therebetween.

  13. High performance zinc anode for battery applications

    NASA Technical Reports Server (NTRS)

    Casey, John E., Jr. (Inventor)

    1998-01-01

    An improved zinc anode for use in a high density rechargeable alkaline battery is disclosed. A process for making the zinc electrode comprises electrolytic loading of the zinc active material from a slightly acidic zinc nitrate solution into a substrate of nickel, copper or silver. The substrate comprises a sintered plaque having very fine pores, a high surface area, and 80-85 percent total initial porosity. The residual porosity after zinc loading is approximately 25-30%. The electrode of the present invention exhibits reduced zinc mobility, shape change and distortion, and demonstrates reduced dendrite buildup cycling of the battery. The disclosed battery is useful for applications requiring high energy density and multiple charge capability.

  14. Simple and versatile heterodyne whole-field interferometer for phase optics characterization.

    PubMed

    Silva, D M; Barbosa, E A; Wetter, N U

    2012-10-01

    A wavefront sensor for thermally induced lens and passive lens characterization based on low-coherence digital speckle interferometry was developed and studied. By illuminating the optical setup with two slightly detuned red diode lasers, whole-field contour interference fringes were generated according to the resulting synthetic wavelength. For fringe pattern visualization the optical setup used the light transmitted through a ground glass plate as object beam. The performance of the sensor was investigated and its versatility was demonstrated by measuring the thermal lens induced in an Er-doped glass sample pumped by a 1.76-W diode laser emitting at 976 nm and by evaluating the wavefront distortion introduced by an ophthalmic progressive lens.

  15. Thymic cystic degeneration, pseudoepitheliomatous hyperplasia, and hemorrhage in a dog with brodifacoum toxicosis.

    PubMed

    Rickman, B H; Gurfield, N

    2009-05-01

    Thymic cysts with pseudoepitheliomatous hyperplasia are described in a 7-month-old female American Eskimo Dog that died of complications from brodifacoum poisoning. Grossly, there was hemothorax with marked cranial mediastinal hemorrhage. Histologically, thymic lobules were expanded and distorted by irregular cysts, lined by single to multiple layers of plump to slightly attenuated polygonal squamous epithelial cells supported by a basement membrane (pseudoepitheliomatous hyperplasia). The thymus had a paucity of lymphocytes and lacked corticomedullary differentiation. Extensive hemorrhage within the cysts and thymic parenchyma extended into the adjacent adipose tissue. To the authors' knowledge, this is the first report of cystic thymic degeneration with pseudoepitheliomatous hyperplasia in a nonhuman species.

  16. 4-[2-(4-cyanophenyl)ethenyl]-N-methylpyridinium tetraphenylborate.

    PubMed

    Jin, Dan; Zhang, De Chun

    2005-11-01

    In the title compound, C(15)H(13)N(2)(+).C(24)H(20)B(-), the pyridyl ring of the cation makes a dihedral angle of 1.6 degrees with the benzene ring. Each is rotated in the same direction with respect to the central -C-CH=CH-C- linkage, by 3.8 and 5.3 degrees, respectively. The anions have a slightly distorted tetrahedral geometry. Molecular packing analysis was carried out using the packing energy portioning scheme in the program OPEC. Around each anion in the crystal structure there are eight anions, which interact with the central anion through C-H...pi interactions. The cations are hydrogen bonded in a head-to-tail fashion, forming chains along [101].

  17. cis-Bis(O-methyl­dithio­carbonato-κ2 S,S′)bis­(tri­phenyl­phosphane-κP)ruthenium(II)

    PubMed Central

    Valerio-Cárdenas, Cintya; Hernández-Ortega, Simón; Reyes-Martínez, Reyna; Morales-Morales, David

    2013-01-01

    In the title compound, [Ru(CH3OCS2)2(C18H15P)2], the RuII atom is in a distorted octa­hedral coordination by two xanthate anions (CH3OCS2) and two tri­phenyl­phosphane (PPh3) ligands. Both bidentate xanthate ligands coordinate the RuII atom with two slightly different Ru—S bond lengths but with virtually equal bite angles [71.57 (4) and 71.58 (3)°]. The packing of the complexes is assured by C—H⋯O and C—H⋯π inter­actions. PMID:24046578

  18. Use of Partial Least Squares improves the efficacy of removing unwanted variability in differential expression analyses based on RNA-Seq data.

    PubMed

    Chakraborty, Sutirtha

    2018-05-26

    RNA-Seq technology has revolutionized the face of gene expression profiling by generating read count data measuring the transcript abundances for each queried gene on multiple experimental subjects. But on the downside, the underlying technical artefacts and hidden biological profiles of the samples generate a wide variety of latent effects that may potentially distort the actual transcript/gene expression signals. Standard normalization techniques fail to correct for these hidden variables and lead to flawed downstream analyses. In this work I demonstrate the use of Partial Least Squares (built as an R package 'SVAPLSseq') to correct for the traces of extraneous variability in RNA-Seq data. A novel and thorough comparative analysis of the PLS based method is presented along with some of the other popularly used approaches for latent variable correction in RNA-Seq. Overall, the method is found to achieve a substantially improved estimation of the hidden effect signatures in the RNA-Seq transcriptome expression landscape compared to other available techniques. Copyright © 2017. Published by Elsevier Inc.

  19. Wavefront reconstruction algorithm based on Legendre polynomials for radial shearing interferometry over a square area and error analysis.

    PubMed

    Kewei, E; Zhang, Chen; Li, Mengyang; Xiong, Zhao; Li, Dahai

    2015-08-10

    Based on the Legendre polynomials expressions and its properties, this article proposes a new approach to reconstruct the distorted wavefront under test of a laser beam over square area from the phase difference data obtained by a RSI system. And the result of simulation and experimental results verifies the reliability of the method proposed in this paper. The formula of the error propagation coefficients is deduced when the phase difference data of overlapping area contain noise randomly. The matrix T which can be used to evaluate the impact of high-orders Legendre polynomial terms on the outcomes of the low-order terms due to mode aliasing is proposed, and the magnitude of impact can be estimated by calculating the F norm of the T. In addition, the relationship between ratio shear, sampling points, terms of polynomials and noise propagation coefficients, and the relationship between ratio shear, sampling points and norms of the T matrix are both analyzed, respectively. Those research results can provide an optimization design way for radial shearing interferometry system with the theoretical reference and instruction.

  20. Synthesis, characterization, X-ray crystal structure and conductometry studying of a number of new Schiff base complexes; a new example of binuclear square pyramidal geometry of Cu(II) complex bridged with an oxo group

    NASA Astrophysics Data System (ADS)

    Golbedaghi, Reza; Alavipour, Ehsan

    2015-11-01

    Three new binuclear Cu(II), Mn(II), Co(II) complexes [Cu2(L) (ClO4)](ClO4)2 (1), [Mn2(L) (ClO4)](ClO4)2 (2), and [Co2(L) (ClO4)](ClO4)2 (3), {L = 1,3-bis(2-((Z)-(2-aminopropylimino)methyl)phenoxy)propan-2-ol} have been synthesized. Single crystal X-ray structure analysis of complex 1 showed that the complex is binuclear and all nitrogen and oxygen atoms of ligand (N4O3) are coordinated to two Cu(II) center ions. In addition, the crystal structure studying shows, a perchlorate ion has been bridged to the Cu(II) metal centers. However, two distorted square pyramidal Cu(II) ions are bridged asymmetrically by a perchlorate ion and oxygen of hydroxyl group of Schiff base ligand. In addition, the conductometry behaviors of all complexes were studied in acetonitrile solution.

  1. The crystal structures of potassium and cesium trivanadates

    USGS Publications Warehouse

    Evans, H.T.; Block, S.

    1966-01-01

    Potassium and cesium trivanadates are monoclinic and isomorphous, space group P21/m, with the following dimensions (Z = 2): KV3O8, a = 7.640 A, b = 8.380 A, c = 4.979 A, ??= 96?? 57???; CsV3O8, a = 8.176 A, b = 8.519 A, c = 4.988 A, ?? = 95?? 32???. The crystal structure of KV3O8 has been determined from hk0, 0kl, and h0l Weissenberg data with an R factor of 0.15. The structure of CsV3O8 has been refined with 1273 hkl Weissenberg data to an R factor of 0.089. The structures consist of corrugated sheets based on a linkage of distorted VO6, octahedra. Two of the vanadium atoms lie in double, square-pyramid groups V2O8, which are linked through opposite basal corners into chains along the b axis. The chains are joined laterally along the c axis into sheets by the third vanadium atom in VO groups, also forming part of a square-pyramid coordination. Various aspects of these structures are compared with other known oxovanadate structures.

  2. A variable-step-size robust delta modulator.

    NASA Technical Reports Server (NTRS)

    Song, C. L.; Garodnick, J.; Schilling, D. L.

    1971-01-01

    Description of an analytically obtained optimum adaptive delta modulator-demodulator configuration. The device utilizes two past samples to obtain a step size which minimizes the mean square error for a Markov-Gaussian source. The optimum system is compared, using computer simulations, with a linear delta modulator and an enhanced Abate delta modulator. In addition, the performance is compared to the rate distortion bound for a Markov source. It is shown that the optimum delta modulator is neither quantization nor slope-overload limited. The highly nonlinear equations obtained for the optimum transmitter and receiver are approximated by piecewise-linear equations in order to obtain system equations which can be transformed into hardware. The derivation of the experimental system is presented.

  3. Flux-dependent anti-crossing of resonances in parallel non-coupled double quantum dots

    NASA Astrophysics Data System (ADS)

    Joe, Yong S.; Hedin, Eric R.; Kim, Jiseok

    2008-08-01

    We present novel resonant phenomena through parallel non-coupled double quantum dots (QDs) embedded in each arm of an Aharonov-Bohm (AB) ring with magnetic flux passing through its center. The electron transmission through this AB ring with each QD formed by two short-range potential barriers is calculated using a scattering matrix at each junction and a transfer matrix in each arm. We show that as the magnetic flux modulates, a distortion of the grid-like square transmission occurs and an anti-crossing of the resonances appears. Hence, the modulation of magnetic flux in this system can have an equivalent effect to the control of inter-dot coupling between the two QDs.

  4. Iterative Overlap FDE for Multicode DS-CDMA

    NASA Astrophysics Data System (ADS)

    Takeda, Kazuaki; Tomeba, Hiromichi; Adachi, Fumiyuki

    Recently, a new frequency-domain equalization (FDE) technique, called overlap FDE, that requires no GI insertion was proposed. However, the residual inter/intra-block interference (IBI) cannot completely be removed. In addition to this, for multicode direct sequence code division multiple access (DS-CDMA), the presence of residual interchip interference (ICI) after FDE distorts orthogonality among the spreading codes. In this paper, we propose an iterative overlap FDE for multicode DS-CDMA to suppress both the residual IBI and the residual ICI. In the iterative overlap FDE, joint minimum mean square error (MMSE)-FDE and ICI cancellation is repeated a sufficient number of times. The bit error rate (BER) performance with the iterative overlap FDE is evaluated by computer simulation.

  5. [μ-10,21-Dimethyl-3,6,14,17-tetra-za-tricyclo-[17.3.1.1]tetra-cosa-1(23),2,6,8,10,12 (24),13,17,19,21-deca-ene-23,24-diolato-κN,N,O,O:κN,N,O,O]bis-(perchlorato-κO)dimanganese(II).

    PubMed

    Liu, Jing; Pan, Zhi-Quan; Zhou, Hong; Li, Yi-Zhi

    2008-11-08

    In the centrosymmetric and dinuclear title complex, [Mn(2)(C(22)H(22)N(4)O(2))(ClO(4))(2)], the two Mn atoms are bridged by two phenolate O atoms of the N(4)O(2) macrocycle with an Mn⋯Mn distance of 2.9228 (11) Å. The distorted square-pyramidal N(2)O(3) coordination geometry is completed by an O atom derived from a perchlorate anion.

  6. Real-Space Analysis of Scanning Tunneling Microscopy Topography Datasets Using Sparse Modeling Approach

    NASA Astrophysics Data System (ADS)

    Miyama, Masamichi J.; Hukushima, Koji

    2018-04-01

    A sparse modeling approach is proposed for analyzing scanning tunneling microscopy topography data, which contain numerous peaks originating from the electron density of surface atoms and/or impurities. The method, based on the relevance vector machine with L1 regularization and k-means clustering, enables separation of the peaks and peak center positioning with accuracy beyond the resolution of the measurement grid. The validity and efficiency of the proposed method are demonstrated using synthetic data in comparison with the conventional least-squares method. An application of the proposed method to experimental data of a metallic oxide thin-film clearly indicates the existence of defects and corresponding local lattice distortions.

  7. Phase discrepancy induced from least squares wavefront reconstruction of wrapped phase measurements with high noise or large localized wavefront gradients

    NASA Astrophysics Data System (ADS)

    Steinbock, Michael J.; Hyde, Milo W.

    2012-10-01

    Adaptive optics is used in applications such as laser communication, remote sensing, and laser weapon systems to estimate and correct for atmospheric distortions of propagated light in real-time. Within an adaptive optics system, a reconstruction process interprets the raw wavefront sensor measurements and calculates an estimate for the unwrapped phase function to be sent through a control law and applied to a wavefront correction device. This research is focused on adaptive optics using a self-referencing interferometer wavefront sensor, which directly measures the wrapped wavefront phase. Therefore, its measurements must be reconstructed for use on a continuous facesheet deformable mirror. In testing and evaluating a novel class of branch-point- tolerant wavefront reconstructors based on the post-processing congruence operation technique, an increase in Strehl ratio compared to a traditional least squares reconstructor was noted even in non-scintillated fields. To investigate this further, this paper uses wave-optics simulations to eliminate many of the variables from a hardware adaptive optics system, so as to focus on the reconstruction techniques alone. The simulation results along with a discussion of the physical reasoning for this phenomenon are provided. For any applications using a self-referencing interferometer wavefront sensor with low signal levels or high localized wavefront gradients, understanding this phenomena is critical when applying a traditional least squares wavefront reconstructor.

  8. [Atmospheric parameter estimation for LAMOST/GUOSHOUJING spectra].

    PubMed

    Lu, Yu; Li, Xiang-Ru; Yang, Tan

    2014-11-01

    It is a key task to estimate the atmospheric parameters from the observed stellar spectra in exploring the nature of stars and universe. With our Large Sky Area Multi-Object Fiber Spectroscopy Telescope (LAMOST) which begun its formal Sky Survey in September 2012, we are obtaining a mass of stellar spectra in an unprecedented speed. It has brought a new opportunity and a challenge for the research of galaxies. Due to the complexity of the observing system, the noise in the spectrum is relatively large. At the same time, the preprocessing procedures of spectrum are also not ideal, such as the wavelength calibration and the flow calibration. Therefore, there is a slight distortion of the spectrum. They result in the high difficulty of estimating the atmospheric parameters for the measured stellar spectra. It is one of the important issues to estimate the atmospheric parameters for the massive stellar spectra of LAMOST. The key of this study is how to eliminate noise and improve the accuracy and robustness of estimating the atmospheric parameters for the measured stellar spectra. We propose a regression model for estimating the atmospheric parameters of LAMOST stellar(SVM(lasso)). The basic idea of this model is: First, we use the Haar wavelet to filter spectrum, suppress the adverse effects of the spectral noise and retain the most discrimination information of spectrum. Secondly, We use the lasso algorithm for feature selection and extract the features of strongly correlating with the atmospheric parameters. Finally, the features are input to the support vector regression model for estimating the parameters. Because the model has better tolerance to the slight distortion and the noise of the spectrum, the accuracy of the measurement is improved. To evaluate the feasibility of the above scheme, we conduct experiments extensively on the 33 963 pilot surveys spectrums by LAMOST. The accuracy of three atmospheric parameters is log Teff: 0.006 8 dex, log g: 0.155 1 dex, [Fe/H]: 0.104 0 dex.

  9. Deflection and Distortion of CME internal magnetic flux rope due to the interaction with a structured solar wind

    NASA Astrophysics Data System (ADS)

    Shiota, D.; Iju, T.; Hayashi, K.; Fujiki, K.; Tokumaru, M.; Kusano, K.

    2016-12-01

    CMEs are the most violent driver of geospace disturbances, and therefore their arrival to the Earth position is an important factor in space weather forecast. The dynamics of CME propagation is strongly affected by the interaction with background solar wind. To understand the interaction between a CME and background solar wind, we performed three-dimensional MHD simulations of the propagation of a CME with internal twisted magnetic flux rope into a structured bimodal solar wind. We compared three different cases in which an identical CME is launched into an identical bimodal solar wind but the launch dates of the CME are different. Each position relative to the boundary between slow and fast solar winds becomes almost in the slow wind stream region, almost in the fast wind stream region, or in vicinity of the boundary of the fast and slow solar wind stream (that grows to CIR). It is found that the CME is most distorted and deflected eastward in the case near the CIR, in contrast to the other two cases. The maximum strength of southward magnetic field at the Earth position is also highest in the case near CIR. The results are interpreted that the dynamic pressure gradient due to the back reaction from pushing the ahead slow wind stream and due to the collision behind fast wind stream hinders the expansion of the CME internal flux rope into the direction of the solar wind velocity gradient. As a result, the expansion into the direction to the velocity gradient is slightly enhanced and results in the enhanced deflection and distortion of the CME and its internal flux rope. These results support the pileup accident hypothesis proposed by Kataoka et al. (2015) to form unexpectedly geoeffective solar wind structure.

  10. Do the Most Massive Black Holes at z = 2 Grow via Major Mergers?

    NASA Astrophysics Data System (ADS)

    Mechtley, M.; Jahnke, K.; Windhorst, R. A.; Andrae, R.; Cisternas, M.; Cohen, S. H.; Hewlett, T.; Koekemoer, A. M.; Schramm, M.; Schulze, A.; Silverman, J. D.; Villforth, C.; van der Wel, A.; Wisotzki, L.

    2016-10-01

    The most frequently proposed model for the origin of quasars holds that the high accretion rates seen in luminous active galactic nuclei (AGN) are primarily triggered during major mergers between gas-rich galaxies. While plausible for decades, this model has only begun to be tested with statistical rigor in the past few years. Here, we report on a Hubble Space Telescope study to test this hypothesis for z = 2 quasars with high supermassive black hole masses ({M}{BH}={10}9{--}{10}10 {M}⊙ ), which dominate cosmic black hole growth at this redshift. We compare Wide Field Camera 3 F160W (rest-frame V-band) imaging of 19 point source-subtracted quasar hosts to a matched sample of 84 inactive galaxies, testing whether the quasar hosts have greater evidence for strong gravitational interactions. Using an expert ranking procedure, we find that the quasar hosts are uniformly distributed within the merger sequence of inactive galaxies, with no preference for quasars in high-distortion hosts. Using a merger/non-merger cutoff approach, we recover distortion fractions of {f}{{m},{qso}}=0.39+/- 0.11 for quasar hosts and {f}{{m},{gal}}=0.30+/- 0.05 for inactive galaxies (distribution modes, 68% confidence intervals), with both measurements subjected to the same observational conditions and limitations. The slight enhancement in distorted fraction for quasar hosts over inactive galaxies is not significant, with a probability that the quasar fraction is higher P({f}{{m},{qso}}\\gt {f}{{m},{gal}})=0.78 (0.78σ ), in line with results for lower mass and lower z AGN. We find no evidence that major mergers are the primary triggering mechanism for the massive quasars that dominate accretion at the peak of cosmic quasar activity.

  11. American Samoa Analysis Brief

    EIA Publications

    2016-01-01

    American Samoa, the southernmost territory of the United States, is part of a tropical island chain located about halfway between Hawaii and New Zealand. It consists of the adjacent islands of Tutuila and Aunu'u; the Manu'a group of Ta'u, Ofu, and Olosega; and two coral atolls, Swains and Rose islands. The total land area, 76 square miles, is slightly larger than that of Washington, DC. Following Polynesian tradition, most land is communally owned by extended families.

  12. Pluto's Atmospheric Figure from the P131.1 Stellar Occultation

    NASA Astrophysics Data System (ADS)

    Person, M. J.; Elliot, J. L.; Clancy, K. B.; Kern, S. D.; Salyk, C. V.; Tholen, D. J.; Pasachoff, J. M.; Babcock, B. A.; Souza, S. P.; Ticehurst, D. R.; Hall, D.; Roberts, L. C., Jr.; Bosh, A. S.; Buie, M. W.; Dunham, E. W.; Olkin, C. B.; Taylor, B.; Levine, S. E.; Eikenberry, S. S.; Moon, D.-S.; Osip, D. J.

    2003-05-01

    The stellar occultation by Pluto of the 15th magnitude star designated P131.1 (McDonald and Elliot, AJ, 119, 1999) on 2002 August 21 (UT) provided the first significant chance to compare Pluto's atmospheric structure to that determined from the 1988 occultation of P8 (Millis, et al., Icarus, 105, 282). The P131.1 occultation was observed from several stations in Hawaii and the western United States (Elliot et al., Nature, in press, 2003). Numerous occultation chords were obtained enabling us to examine Pluto's atmospheric figure. The light curves from the observations were analyzed together in the occultation coordinate system of Elliot et al., (AJ, 106, 2544). The Mauna Kea and Lick datasets straddle the center of Pluto's figure, providing strong constraints on model fits to cross sections of the atmospheric shape. In 1988, Millis (et al., Icarus, 105, 282) did not report any deviation from sphericity in Pluto's atmospheric figure. From the 2002 data, Pluto;s isobars at the radii probed by the occultation ( 1250 km) appear to be distorted from a circular cross-section. Least-squares fits to this cross-section by elliptical models reveal ellipticities in the range 0.05-0.08 although the shape may be more complex than ellipsoidal. The orientation of the distortion appears uncorrelated with Pluto;s rotational axis. Taken at face value, this ellipticity could imply wind speeds of up to twice the sonic speed ( 200 m/s), which would be difficult to explain. Similar distortions have been reported for Triton's atmosphere (Elliot, J. L., et al., Icarus 148, 347). This work has been supported in part by Research Corporation, the Air Force Research Laboratory, NSF, and NASA.

  13. Introducing a model of pairing based on base pair specific interactions between identical DNA sequences

    NASA Astrophysics Data System (ADS)

    (O' Lee, Dominic J.

    2018-02-01

    At present, there have been suggested two types of physical mechanism that may facilitate preferential pairing between DNA molecules, with identical or similar base pair texts, without separation of base pairs. One mechanism solely relies on base pair specific patterns of helix distortion being the same on the two molecules, discussed extensively in the past. The other mechanism proposes that there are preferential interactions between base pairs of the same composition. We introduce a model, built on this second mechanism, where both thermal stretching and twisting fluctuations are included, as well as the base pair specific helix distortions. Firstly, we consider an approximation for weak pairing interactions, or short molecules. This yields a dependence of the energy on the square root of the molecular length, which could explain recent experimental data. However, analysis suggests that this approximation is no longer valid at large DNA lengths. In a second approximation, for long molecules, we define two adaptation lengths for twisting and stretching, over which the pairing interaction can limit the accumulation of helix disorder. When the pairing interaction is sufficiently strong, both adaptation lengths are finite; however, as we reduce pairing strength, the stretching adaptation length remains finite but the torsional one becomes infinite. This second state persists to arbitrarily weak values of the pairing strength; suggesting that, if the molecules are long enough, the pairing energy scales as length. To probe differences between the two pairing mechanisms, we also construct a model of similar form. However, now, pairing between identical sequences solely relies on the intrinsic helix distortion patterns. Between the two models, we see interesting qualitative differences. We discuss our findings, and suggest new work to distinguish between the two mechanisms.

  14. A Flexible Parameterization for Shortwave Optical Properties of Ice Crystals

    NASA Technical Reports Server (NTRS)

    VanDiedenhoven, Bastiaan; Ackerman, Andrew S.; Cairns, Brian; Fridlind, Ann M.

    2014-01-01

    A parameterization is presented that provides extinction cross section sigma (sub e), single-scattering albedo omega, and asymmetry parameter (g) of ice crystals for any combination of volume, projected area, aspect ratio, and crystal distortion at any wavelength in the shortwave. Similar to previous parameterizations, the scheme makes use of geometric optics approximations and the observation that optical properties of complex, aggregated ice crystals can be well approximated by those of single hexagonal crystals with varying size, aspect ratio, and distortion levels. In the standard geometric optics implementation used here, sigma (sub e) is always twice the particle projected area. It is shown that omega is largely determined by the newly defined absorption size parameter and the particle aspect ratio. These dependences are parameterized using a combination of exponential, lognormal, and polynomial functions. The variation of (g) with aspect ratio and crystal distortion is parameterized for one reference wavelength using a combination of several polynomials. The dependences of g on refractive index and omega are investigated and factors are determined to scale the parameterized (g) to provide values appropriate for other wavelengths. The parameterization scheme consists of only 88 coefficients. The scheme is tested for a large variety of hexagonal crystals in several wavelength bands from 0.2 to 4 micron, revealing absolute differences with reference calculations of omega and (g) that are both generally below 0.015. Over a large variety of cloud conditions, the resulting root-mean-squared differences with reference calculations of cloud reflectance, transmittance, and absorptance are 1.4%, 1.1%, and 3.4%, respectively. Some practical applications of the parameterization in atmospheric models are highlighted.

  15. Combined MCD/DFT/TDDFT Study of the Electronic Structure of Axially Pyridine Coordinated Metallocorroles.

    PubMed

    Rhoda, Hannah M; Crandall, Laura A; Geier, G Richard; Ziegler, Christopher J; Nemykin, Victor N

    2015-05-18

    A series of metallocorroles were investigated by UV-vis and magnetic circular dichroism spectroscopies. The diamagnetic distorted square-pyramidal main-group corrole Ga(tpfc)py (2), the diamagnetic distorted octahedral transition-metal adduct Co(tpfc)(py)2 (3), and paramagnetic distorted octahedral transition-metal complex Fe(tpfc)(py)2 (4) [H3tpfc = tris(perfluorophenyl)corrole] were studied to investigate similarities and differences in the electronic structure and spectroscopy of the closed- and open-shell metallocorroles. Similar to the free-base H3tpfc (1), inspection of the MCD Faraday B-terms for all of the macrocycles presented in this report revealed that a ΔHOMO < ΔLUMO [ΔHOMO is the energy difference between two highest energy corrole-centered π-orbitals and ΔLUMO is the energy difference between two lowest energy corrole-centered π*-orbitals originating from ML ± 4 and ML ± 5 pairs of perimeter] condition is present for each complex, which results in an unusual sign-reversed sequence for π-π* transitions in their MCD spectra. In addition, the MCD spectra of the cobalt and the iron complexes were also complicated by a number of charge-transfer states in the visible region. Iron complex 4 also exhibits a low-energy absorption in the NIR region (1023 nm). DFT and TDDFT calculations were used to elaborate the electronic structures and provide band assignments in UV-vis and MCD spectra of the metallocorroles. DFT and TDDFT calculations predict that the orientation of the axial pyridine ligand(s) has a very minor influence on the calculated electronic structures and absorption spectra in the target systems.

  16. Evaluating transition state structures of vanadium-phosphatase protein complexes using shape analysis.

    PubMed

    Sánchez-Lombardo, Irma; Alvarez, Santiago; McLauchlan, Craig C; Crans, Debbie C

    2015-06-01

    Shape analysis of coordination complexes is well-suited to evaluate the subtle distortions in the trigonal bipyramidal (TBPY-5) geometry of vanadium coordinated in the active site of phosphatases and characterized by X-ray crystallography. Recent studies using the tau (τ) analysis support the assertion that vanadium is best described as a trigonal bipyramid, because this geometry is the ideal transition state geometry of the phosphate ester substrate hydrolysis (C.C. McLauchlan, B.J. Peters, G.R. Willsky, D.C. Crans, Coord. Chem. Rev. http://dx.doi.org/10.1016/j.ccr.2014.12.012 ; D.C. Crans, M.L. Tarlton, C.C. McLauchlan, Eur. J. Inorg. Chem. 2014, 4450-4468). Here we use continuous shape measures (CShM) analysis to investigate the structural space of the five-coordinate vanadium-phosphatase complexes associated with mechanistic transformations between the tetrahedral geometry and the five-coordinate high energy TBPY-5 geometry was discussed focusing on the protein tyrosine phosphatase 1B (PTP1B) enzyme. No evidence for square pyramidal geometries was observed in any vanadium-protein complexes. The shape analysis positioned the metal ion and the ligands in the active site reflecting the mechanism of the cleavage of the organic phosphate in a phosphatase. We identified the umbrella distortions to be directly on the reaction path between tetrahedral phosphate and the TBPY-5-types of high-energy species. The umbrella distortions of the trigonal bipyramid are therefore identified as being the most relevant types of transition state structures for the phosphoryl group transfer reactions for phosphatases and this may be related to the possibility that vanadium is an inhibitor for enzymes that support both exploded and five-coordinate transition states. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. 3T diffusion-weighted MRI of the thyroid gland with reduced distortion: preliminary results

    PubMed Central

    Nagala, S; Priest, A N; McLean, M A; Jani, P; Graves, M J

    2013-01-01

    Objective: Single-shot diffusion-weighted (DW) echo planar imaging (EPI), which is commonly used for imaging the thyroid, is characterised by severe blurring and distortion. The objectives of this work were: 1, to show that a reduced-field of view (r-FOV) DW EPI technique can improve image quality; and 2, to investigate the effect of different reconstruction strategies on the resulting apparent diffusion coefficients (ADCs). Methods: We implemented a single-shot, r-FOV DW EPI technique with a two-dimensional radiofrequency excitation pulse for DW imaging of the thyroid at 3T. Images were reconstructed using root sum of squares (SOS) and an optimal-B1 reconstruction (OBR). Phantom and in vivo experiments were performed to compare r-FOV and conventional full-FOV DW EPI with root SOS and OBR. Results: r-FOV with OBR substantially improved image quality at 3T. In phantoms, r-FOV gave more accurate ADCs than full-FOV. In vivo r-FOV always gave lower ADC values with respect to the full-FOV technique irrespective of the reconstruction used and whether only two or multiple b-values were used to compute the ADCs. Conclusion: r-FOV DW EPI can reduce image blurring and distortion at the expense of a low signal-to-noise ratio. OBR is a promising reconstruction technique for accurate ADC measurements in lower signal-to-noise ratio regimes, although further studies are needed to characterise its performance. Advances in knowledge: DW imaging of the thyroid at 3T could potentially benefit from r-FOV acquisition strategies, such as the r-FOV DW EPI technique proposed in this paper. PMID:23770539

  18. Formation, stability and crystal structure of mullite-type Al{sub 6−x}B{sub x}O{sub 9}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffmann, K., E-mail: Kristin.Hoffmann@uni-bremen.de; Institut für Anorganische Chemie und Kristallographie, FB02, Leobener Straße/NW2, Universität Bremen, D-28359 Bremen; Hooper, T.J.N.

    2016-11-15

    Mullite-type Al{sub 6−x}B{sub x}O{sub 9} compounds were studied by means of powder diffraction and spectroscopic methods. The backbones of this structure are chains of edge-connected AlO{sub 6} octahedra crosslinked by AlO- and BO-polyhedra. Rietveld refinements show that the a and b lattice parameters can be well resolved, thus representing an orthorhombic metric. A continuous decrease of the lattice parameters most pronounced in c-direction indicates a solid solution for Al{sub 6−x}B{sub x}O{sub 9} with 1.09≤x≤2. A preference of boron in 3-fold coordination is confirmed by {sup 11}B MAS NMR spectroscopy and Fourier calculations based on neutron diffraction data collected at 4more » K. Distance Least Squares modeling was performed to simulate a local geometry avoiding long B-O distances linking two octahedral chains by planar BO{sub 3} groups yielding split positions for the oxygen atoms and a strong distortion in the octahedral chains. The lattice thermal expansion was calculated using the Grüneisen first-order equation of state Debye-Einstein-Anharmonicity model. - Graphical abstract: Local distortion induced by boron linking the octahedral chains. - Highlights: • Decreasing lattice parameters indicate a solid solution for Al{sub 6−x}B{sub x}O{sub 9} (1.09≤x≤2). • B-atoms induce a local distortion of neighboring AlO{sub 6} octahedra. • A preference of boron in BO{sub 3} coordination is confirmed by {sup 11}B MAS NMR spectroscopy. • An optimized structural model for Al{sub 6−x}B{sub x}O{sub 9} is presented.« less

  19. Distortion correction of OCT images of the crystalline lens: gradient index approach.

    PubMed

    Siedlecki, Damian; de Castro, Alberto; Gambra, Enrique; Ortiz, Sergio; Borja, David; Uhlhorn, Stephen; Manns, Fabrice; Marcos, Susana; Parel, Jean-Marie

    2012-05-01

    To propose a method to correct optical coherence tomography (OCT) images of posterior surface of the crystalline lens incorporating its gradient index (GRIN) distribution and explore its possibilities for posterior surface shape reconstruction in comparison to existing methods of correction. Two-dimensional images of nine human lenses were obtained with a time-domain OCT system. The shape of the posterior lens surface was corrected using the proposed iterative correction method. The parameters defining the GRIN distribution used for the correction were taken from a previous publication. The results of correction were evaluated relative to the nominal surface shape (accessible in vitro) and compared with the performance of two other existing methods (simple division, refraction correction: assuming a homogeneous index). Comparisons were made in terms of posterior surface radius, conic constant, root mean square, peak to valley, and lens thickness shifts from the nominal data. Differences in the retrieved radius and conic constant were not statistically significant across methods. However, GRIN distortion correction with optimal shape GRIN parameters provided more accurate estimates of the posterior lens surface in terms of root mean square and peak values, with errors <6 and 13 μm, respectively, on average. Thickness was also more accurately estimated with the new method, with a mean discrepancy of 8 μm. The posterior surface of the crystalline lens and lens thickness can be accurately reconstructed from OCT images, with the accuracy improving with an accurate model of the GRIN distribution. The algorithm can be used to improve quantitative knowledge of the crystalline lens from OCT imaging in vivo. Although the improvements over other methods are modest in two dimension, it is expected that three-dimensional imaging will fully exploit the potential of the technique. The method will also benefit from increasing experimental data of GRIN distribution in the lens of larger populations.

  20. Gradient nonlinearity calibration and correction for a compact, asymmetric magnetic resonance imaging gradient system.

    PubMed

    Tao, S; Trzasko, J D; Gunter, J L; Weavers, P T; Shu, Y; Huston, J; Lee, S K; Tan, E T; Bernstein, M A

    2017-01-21

    Due to engineering limitations, the spatial encoding gradient fields in conventional magnetic resonance imaging cannot be perfectly linear and always contain higher-order, nonlinear components. If ignored during image reconstruction, gradient nonlinearity (GNL) manifests as image geometric distortion. Given an estimate of the GNL field, this distortion can be corrected to a degree proportional to the accuracy of the field estimate. The GNL of a gradient system is typically characterized using a spherical harmonic polynomial model with model coefficients obtained from electromagnetic simulation. Conventional whole-body gradient systems are symmetric in design; typically, only odd-order terms up to the 5th-order are required for GNL modeling. Recently, a high-performance, asymmetric gradient system was developed, which exhibits more complex GNL that requires higher-order terms including both odd- and even-orders for accurate modeling. This work characterizes the GNL of this system using an iterative calibration method and a fiducial phantom used in ADNI (Alzheimer's Disease Neuroimaging Initiative). The phantom was scanned at different locations inside the 26 cm diameter-spherical-volume of this gradient, and the positions of fiducials in the phantom were estimated. An iterative calibration procedure was utilized to identify the model coefficients that minimize the mean-squared-error between the true fiducial positions and the positions estimated from images corrected using these coefficients. To examine the effect of higher-order and even-order terms, this calibration was performed using spherical harmonic polynomial of different orders up to the 10th-order including even- and odd-order terms, or odd-order only. The results showed that the model coefficients of this gradient can be successfully estimated. The residual root-mean-squared-error after correction using up to the 10th-order coefficients was reduced to 0.36 mm, yielding spatial accuracy comparable to conventional whole-body gradients. The even-order terms were necessary for accurate GNL modeling. In addition, the calibrated coefficients improved image geometric accuracy compared with the simulation-based coefficients.

  1. Does Gender Influence Colour Choice in the Treatment of Visual Stress?

    PubMed Central

    Conway, Miriam L.; Evans, Bruce J. W.; Evans, Josephine C.; Suttle, Catherine M.

    2016-01-01

    Purpose Visual Stress (VS) is a condition in which words appear blurred, in motion, or otherwise distorted when reading. Some people diagnosed with VS find that viewing black text on white paper through coloured overlays or precision tinted lenses (PTLs) reduces symptoms attributed to VS. The aim of the present study is to determine whether the choice of colour of overlays or PTLs is influenced by a patient’s gender. Methods Records of all patients attending a VS assessment in two optometry practices between 2009 and 2014 were reviewed retrospectively. Patients who reported a significant and consistent reduction in symptoms with either overlay and or PTL were included in the analysis. Overlays and PTLs were categorized as stereotypical male, female or neutral colours based on gender preferences as described in the literature. Chi-square analysis was carried out to determine whether gender (across all ages or within age groups) was associated with overlay or PTL colour choice. Results 279 patients (133 males and 146 females, mean age 17 years) consistently showed a reduction in symptoms with an overlay and were included. Chi-square analysis revealed no significant association between the colour of overlay chosen and male or female gender (Chi-square 0.788, p = 0.674). 244 patients (120 males and 124 females, mean age 24.5 years) consistently showed a reduction in symptoms with PTLs and were included. Chi-square analysis revealed a significant association between stereotypical male/female/neutral colours of PTLs chosen and male/female gender (Chi-square 6.46, p = 0.040). More males preferred stereotypical male colour PTLs including blue and green while more females preferred stereotypical female colour PTLs including pink and purple. Conclusions For some VS patients, the choice of PTL colour is influenced not only by the alleviation of symptoms but also by other non-visual factors such as gender. PMID:27648842

  2. Does Gender Influence Colour Choice in the Treatment of Visual Stress?

    PubMed

    Conway, Miriam L; Evans, Bruce J W; Evans, Josephine C; Suttle, Catherine M

    2016-01-01

    Visual Stress (VS) is a condition in which words appear blurred, in motion, or otherwise distorted when reading. Some people diagnosed with VS find that viewing black text on white paper through coloured overlays or precision tinted lenses (PTLs) reduces symptoms attributed to VS. The aim of the present study is to determine whether the choice of colour of overlays or PTLs is influenced by a patient's gender. Records of all patients attending a VS assessment in two optometry practices between 2009 and 2014 were reviewed retrospectively. Patients who reported a significant and consistent reduction in symptoms with either overlay and or PTL were included in the analysis. Overlays and PTLs were categorized as stereotypical male, female or neutral colours based on gender preferences as described in the literature. Chi-square analysis was carried out to determine whether gender (across all ages or within age groups) was associated with overlay or PTL colour choice. 279 patients (133 males and 146 females, mean age 17 years) consistently showed a reduction in symptoms with an overlay and were included. Chi-square analysis revealed no significant association between the colour of overlay chosen and male or female gender (Chi-square 0.788, p = 0.674). 244 patients (120 males and 124 females, mean age 24.5 years) consistently showed a reduction in symptoms with PTLs and were included. Chi-square analysis revealed a significant association between stereotypical male/female/neutral colours of PTLs chosen and male/female gender (Chi-square 6.46, p = 0.040). More males preferred stereotypical male colour PTLs including blue and green while more females preferred stereotypical female colour PTLs including pink and purple. For some VS patients, the choice of PTL colour is influenced not only by the alleviation of symptoms but also by other non-visual factors such as gender.

  3. Masses of the visual components and black holes in X-ray novae: Effects of proximity of the components

    NASA Astrophysics Data System (ADS)

    Petrov, V. S.; Antokhina, E. A.; Cherepashchuk, A. M.

    2017-05-01

    It is shown that the approximation of the complex, tidally distorted shape of a star as a circular disc with local line profiles and a linear limb-darkening law, which is usually applied when deriving equatorial stellar rotation velocities from line profiles, leads to overestimation of the equatorial velocity V rot sin i and underestimation of the component mass ratio q = M x / M v . A formula enabling correction of the effect of these simplifying assumptions on the shape of a star is used to re-determine the mass ratios q and the masses of the black holes M x and visual components M v in low-mass X-ray binary systems containing black holes. Taking into account the tidal-rotational distortion of the stellar shape can significantly increase the mass ratios q = M x / M v , reducing M v , while M x changes only slightly. The resulting distribution of M v attains its maximum near M v ≃ 0.35 M ⊙, in disagreement with the results of population synthesis computations realizing standard models for Galactic X-ray novae with black holes. Possible ways to overcome this inconsistency are discussed. The derived distribution of M x also differs strongly from the mass distribution for massive stars in the Galaxy.

  4. A parallel approach of COFFEE objective function to multiple sequence alignment

    NASA Astrophysics Data System (ADS)

    Zafalon, G. F. D.; Visotaky, J. M. V.; Amorim, A. R.; Valêncio, C. R.; Neves, L. A.; de Souza, R. C. G.; Machado, J. M.

    2015-09-01

    The computational tools to assist genomic analyzes show even more necessary due to fast increasing of data amount available. With high computational costs of deterministic algorithms for sequence alignments, many works concentrate their efforts in the development of heuristic approaches to multiple sequence alignments. However, the selection of an approach, which offers solutions with good biological significance and feasible execution time, is a great challenge. Thus, this work aims to show the parallelization of the processing steps of MSA-GA tool using multithread paradigm in the execution of COFFEE objective function. The standard objective function implemented in the tool is the Weighted Sum of Pairs (WSP), which produces some distortions in the final alignments when sequences sets with low similarity are aligned. Then, in studies previously performed we implemented the COFFEE objective function in the tool to smooth these distortions. Although the nature of COFFEE objective function implies in the increasing of execution time, this approach presents points, which can be executed in parallel. With the improvements implemented in this work, we can verify the execution time of new approach is 24% faster than the sequential approach with COFFEE. Moreover, the COFFEE multithreaded approach is more efficient than WSP, because besides it is slightly fast, its biological results are better.

  5. Induced polarization: Simulation and inversion of nonlinear mineral electrodics

    NASA Astrophysics Data System (ADS)

    Agunloye, Olu

    1983-02-01

    Graph-theoretic representations are used to model nonlinear electrodics, while forward and inverse simulations are based on reaction rate theory. The electrodic responses are presented as distorted elliptical Lissajous shapes obtained from dynamic impedance over a full cycle. Simulations show that asymmetry in reaction energy barrier causes slight asymmetry in the shape of the response ellipse and hardly affects the phase angle of the complex electrode impedance. The charge transfer resistance and the diffusion constraints tend to have opposite effects. The former causes reduction in the phase angle, tending to make the impedance purely resistive. Both of these mechanisms show saturation effects. Charge transfer resistance at its limit forces a thin S-type symmetry on the Lissajous patterns, while with diffusion control the size of the Lissajous patterns begins to reduce after saturation. The fixed layer causes substantial increase in the phase angle and tends to “enlarge” the Lissajous patterns. It is responsible for the hysteresis-like shapes of the Lissajous patterns when superimposed on strong charge transfer resistance. This study shows that it is quite possible to deduce the mechanisms that control the electrodic processes by inverting electrodic parameters from “observed” distorted, nonelliptical Lissajous patterns characteristic of nonlinear electrodics. The results and qualities of the inversion technique are discussed.

  6. Effects of contralateral white noise stimulation on distortion product otoacoustic emissions in myasthenic patients.

    PubMed

    Di Girolamo, S; d'Ecclesia, A; Quaranta, N; Garozzo, A; Evoli, A; Paludetti, G

    2001-12-01

    Myasthenia gravis (MG) induces a reduction of transient evoked otoacoustic emissions (TEOAEs) and distortion product otoacoustic emissions (DPOAEs) that reverses partially after administration of an acetylcholinesterase (AChE) inhibitor. In normal subjects a contralateral acoustic stimulation (CAS) produces an amplitude reduction of TEOAEs and DPOAEs. This effect, called contralateral suppression (CS), is mediated by the efferent auditory system. Twenty subjects affected by MG underwent DPOAE recording with and without contralateral white noise in a drug-free baseline period ('basal') and 1 h ('post') after administration of a reversible AChE inhibitor. In 'basal' condition CAS did not induce significant DPOAE amplitude changes but a paradoxical slight increase was observed. After drug administration, CAS produced a significant decrease of DPOAE amplitudes for middle frequencies (f(2) between 1306 and 2600 Hz). In normal controls CAS caused a significant decrease (P<0.001) for all frequencies. The amount of CS in controls and in the MG 'post' condition was not significantly different. The increased acetylcholine (ACh) availability following drug consumption seems to partially restore outer hair cell function and enhances their electromotility; a further influx of ACh due to CAS yields to restoration of the CS. These findings also suggest that DPOAEs may be useful in the diagnosis of MG and for monitoring the effectiveness of treatment.

  7. Heme Structural Perturbation of PEG-Modified Horseradish Peroxidase C in Aromatic Organic Solvents Probed by Optical Absorption and Resonance Raman Dispersion Spectroscopy

    PubMed Central

    Huang, Qing; Al-Azzam, Wasfi; Griebenow, Kai; Schweitzer-Stenner, Reinhard

    2003-01-01

    The heme structure perturbation of poly(ethylene glycol)-modified horseradish peroxidase (HRP-PEG) dissolved in benzene and toluene has been probed by resonance Raman dispersion spectroscopy. Analysis of the depolarization ratio dispersion of several Raman bands revealed an increase of rhombic B1g distortion with respect to native HRP in water. This finding strongly supports the notion that a solvent molecule has moved into the heme pocket where it stays in close proximity to one of the heme's pyrrole rings. The interactions between the solvent molecule, the heme, and the heme cavity slightly stabilize the hexacoordinate high spin state without eliminating the pentacoordinate quantum mixed spin state that is dominant in the resting enzyme. On the contrary, the model substrate benzohydroxamic acid strongly favors the hexacoordinate quantum mixed spin state and induces a B2g-type distortion owing to its position close to one of the heme methine bridges. These results strongly suggest that substrate binding must have an influence on the heme geometry of HRP and that the heme structure of the enzyme-substrate complex (as opposed to the resting state) must be the key to understanding the chemical reactivity of HRP. PMID:12719258

  8. Phase and amplitude beam shaping with two deformable mirrors implementing input plane and Fourier plane phase modifications.

    PubMed

    Wu, Chensheng; Ko, Jonathan; Rzasa, John R; Paulson, Daniel A; Davis, Christopher C

    2018-03-20

    We find that ideas in optical image encryption can be very useful for adaptive optics in achieving simultaneous phase and amplitude shaping of a laser beam. An adaptive optics system with simultaneous phase and amplitude shaping ability is very desirable for atmospheric turbulence compensation. Atmospheric turbulence-induced beam distortions can jeopardize the effectiveness of optical power delivery for directed-energy systems and optical information delivery for free-space optical communication systems. In this paper, a prototype adaptive optics system is proposed based on a famous image encryption structure. The major change is to replace the two random phase plates at the input plane and Fourier plane of the encryption system, respectively, with two deformable mirrors that perform on-demand phase modulations. A Gaussian beam is used as an input to replace the conventional image input. We show through theory, simulation, and experiments that the slightly modified image encryption system can be used to achieve arbitrary phase and amplitude beam shaping within the limits of stroke range and influence function of the deformable mirrors. In application, the proposed technique can be used to perform mode conversion between optical beams, generate structured light signals for imaging and scanning, and compensate atmospheric turbulence-induced phase and amplitude beam distortions.

  9. Capping Parallel β-Sheets of Acetyl(Ala)6NH2 with an Acetyl(Ala)5ProNH2 Can Arrest the Growth of the Sheet, Suggesting a Potential for Curtailing Amyloid Growth. An ONIOM and Density Functional Theory Study

    PubMed Central

    2015-01-01

    We present ONIOM calculations using B3LYP/d95(d,p) as the high level and AM1 as the medium level on parallel β-sheets containing four strands of Ac-AAAAAA-NH2 capped with either Ac-AAPAAA-NH2 or Ac-AAAPAA-NH2. Because Pro can form H-bonds from only one side of the peptide linkage (that containing the C=O H-bond acceptor), only one of the two Pro-containing strands can favorably add to the sheet on each side. Surprisingly, when the sheet is capped with AAPAAA-NH2 at one edge, the interaction between the cap and sheet is slightly more stabilizing than that of another all Ala strand. Breaking down the interaction enthalpies into H-bonding and distortion energies shows the favorable interaction to be due to lower distortion energies in both the strand and the four-stranded sheet. Because another strand would be inhibited for attachment to the other side of the capping (Pro-containing) strand, we suggest the possible use of Pro residues in peptides designed to arrest the growth of many amyloids. PMID:24422496

  10. New highly linear tunable transconductor circuits with low number of MOS transistors

    NASA Astrophysics Data System (ADS)

    Yucel, Firat; Yuce, Erkan

    2016-08-01

    In this article, two new highly linear tunable transconductor circuits are proposed. The transconductors employ only six MOS transistors operated in saturation region. The second transconductor is derived from the first one with a slight modification. Transconductance of both transconductors can be tuned by a control voltage. Both of the transconductors do not need any additional bias voltages and currents. Another important feature of the transconductors is their high input and output impedances for cascadability with other circuits. Besides, total harmonic distortions are less than 1.5% for both transconductors. A positive lossless grounded inductor simulator with a grounded capacitor is given as an application example of the transconductors. Simulation and experimental test results are included to show effectiveness of the proposed circuits.

  11. Tetra­chlorido[(diphenyl­phosphino)diphenyl­phosphine oxide-κO]zirconium(IV) benzene monosolvate

    PubMed Central

    Ogawa, Takahiko; Kajita, Yuji; Masuda, Hideki

    2009-01-01

    In the title centrosymmetric mononuclear ZrIV compound, [ZrCl4{P(O)(C6H5)2P(C6H5)2}2]·C6H6, the central ZrIV ion is coordinated by two O atoms from two symmetry-related (diphenyl­phosphino)diphenyl­phosphine ligands and four Cl atoms in a distorted octahedral geometry with the four Cl atoms in the equatorial positions. The mol­ecule lies about a center of inversion and the benzene solvent mol­ecule about another center of inversion. The P=O bond [1.528 (2) Å] is slightly longer than a typical P=O double bond (average 1.500 ). PMID:21577468

  12. Tetra­kis(aceto­nitrile)copper(I) hydrogen oxalate–oxalic acid–aceto­nitrile (1/0.5/0.5)

    PubMed Central

    Royappa, A. Timothy; Stepherson, Jacob R.; Vu, Oliver D.; Royappa, Andrew D.; Stern, Charlotte L.; Müller, Peter

    2013-01-01

    In the title compound, [Cu(CH3CN)4](C2HO4)·0.5C2H2O4·0.5CH3CN, the CuI ion is coordinated by the N atoms of four aceto­nitrile ligands in a slightly distorted tetra­hedral environment. The oxalic acid mol­ecule lies across an inversion center. The aceto­nitrile solvent mol­ecule is disordered across an inversion center and was refined with half occupancy. In the crystal, the hydrogen oxalate anions and oxalic acid mol­ecules are linked via O—H⋯O hydrogen bonds, forming chains along [010]. PMID:24098175

  13. Fish-eye view of Williams, Searfoss and Pawelczyk on middeck during meal

    NASA Image and Video Library

    1998-05-15

    STS090-351-009 (17 April - 3 May 1998) --- Three members of the Neurolab crew were photographed during off-duty time on the mid-deck aboard the Earth-orbiting Space Shuttle Columbia. Left to right are James A. (Jim) Pawelczyk, payload specialist, and astronauts Richard A. Searfoss, mission commander; and Richard M. Linnehan, payload commander. Linnehan is in the hatchway of the tunnel that connected the crew members to the Spacelab Science Module in Columbia's cargo bay. A "fish-eye" lens on a 35mm camera gives the scene a slightly distorted look. Five NASA astronauts and two payload specialists went on to spend a little more than 16-days in Earth-orbit in support of the Neurolab mission.

  14. K2Ho(PO4)(WO4)

    PubMed Central

    Terebilenko, Katherina V.; Zatovsky, Igor V.; Baumer, Vyacheslav N.; Slobodyanik, Nikolay S.; Shishkin, Oleg V.

    2008-01-01

    A new compound, dipotassium holmium(III) phosphate(V) tungstate(VI), K2Ho(PO4)(WO4), has been obtained during investigation of the K2O–P2O5–WO3–HoF3 phase system using the flux technique. The compound is isotypic with K2Bi(PO4)(WO4). Its framework structure consists of flat ∞ 2[HoPO4] layers parallel to (100) that are made up of ∞ 1[HoO8] zigzag chains inter­linked via slightly distorted PO4 tetra­hedra. WO4 tetra­hedra are attached above and below these layers, leaving space for the K+ counter-cations. The HoO8, PO4 and WO4 units exhibit 2 symmetry. PMID:21580811

  15. Crystal structure of the co-crystal fac-tri-aqua-tris(thio-cyanato-κN)iron(III)-2,3-di-methyl-pyrazine (1/3).

    PubMed

    Kucheriv, Olesia I; Shylin, Sergii I; Ilina, Tetiana A; Dechert, Sebastian; Gural'skiy, Il'ya A

    2015-04-01

    In the crystal of the title compound, [Fe(NCS)3(H2O)3]·3C6H8N2, the Fe(III) cation is located on a threefold rotation axis and is coordinated by three N atoms of the thiocyanate anions and three water mol-ecules in a fac arrangement, forming a slightly distorted N3O3 octa-hedron. Stabilization within the crystal structure is provided by O-H⋯N hydrogen bonds; the H atoms from coordinating water mol-ecules act as donors to the N atoms of guest 2,3-di-methyl-pyrazine mol-ecules, leading to a three-dimensional supra-molecular framework.

  16. 1′-Methyl-4′-(1-naphth­yl)-3′′-(1-naphthyl­methyl­ene)acenaphthene-1-spiro-2′-pyrrolidine-3′-spiro-1′′-cyclo­hexane-2,2′′-dione

    PubMed Central

    Athimoolam, S.; Radha, V. Anu; Bahadur, S. Asath; Kumar, R. Ranjith; Perumal, S.

    2008-01-01

    In the title compound, C42H33NO2, the six-membered cyclo­hexa­none ring adopts a slightly distorted chair conformation and the five-membered pyrrolidine ring is in an envelope conformation. The mol­ecular structure features four intra­molecular C—H⋯O inter­actions and an intra­molecular C—H⋯π inter­action. Furthermore, the crystal packing is stabilized by an inter­molecular C—H⋯O and three inter­molecular C—H⋯π inter­actions. PMID:21200972

  17. Highly mobile type II twin boundary in Ni-Mn-Ga five-layered martensite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sozinov, A.; Lanska, N.; Soroka, A.

    2011-09-19

    Twin relationships and stress-induced reorientation were studied in Ni{sub 2}Mn{sub 1.14}Ga{sub 0.86} single crystal with five-layered modulated martensite crystal structure. Very low twinning stress of about 0.1 MPa was found for twin boundaries which deviated a few degrees from the (011) crystallographic plane. However, twin boundaries oriented exactly parallel to the (011) plane exhibited considerably higher level of twinning stress, above 1 MPa. X-ray diffraction experiments and calculations based on approximation of the martensite crystal lattice as a tetragonal lattice with a slight monoclinic distortion identified the two different kinds of twin interfaces as type II and type I twinmore » boundaries.« less

  18. High pressure synthesis, crystal growth and magnetic properties of TiOF

    NASA Astrophysics Data System (ADS)

    Cumby, J.; Burchell, M. B.; Attfield, J. P.

    2018-06-01

    Polycrystalline samples of TiOF have been prepared at 1300 °C and 8 GPa, with small single crystals grown at the same conditions. The crystal structure remains tetragonal rutile-type down to at least 90 K (space group P42/mnm, a = 4.6533 (2) Å and c = 3.0143 (2) Å at 90 K) and the Ti(O,F)6 octahedra are slightly compressed, consistent with Jahn-Teller distortion of 3d1 Ti3+. Diffuse scattering reveals disordered structural correlations that may arise from local cis-order of oxide anions driven by covalency. TiOF is paramagnetic down to 5 K and observation of a small paramagnetic moment and a substantial Pauli term indicates that the d-electrons are partially delocalised.

  19. Cluster Lensing with the BTC

    NASA Astrophysics Data System (ADS)

    Fischer, P.

    1997-12-01

    Weak distortions of background galaxies are rapidly emerging as a powerful tool for the measurement of galaxy cluster mass distributions. Lensing based studies have the advantage of being direct measurements of mass and are not model-dependent as are other techniques (X-ray, radial velocities). To date studies have been limited by CCD field size meaning that full coverage of the clusters out to the virial radii and beyond has not been possible. Probing this large radius region is essential for testing models of large scale structure formation. New wide field CCD mosaics, for the first time, allow mass measurements out to very large radius. We have obtained images for a sample of clusters with the ``Big Throughput Camera'' (BTC) on the CTIO 4m. This camera comprises four thinned SITE 2048(2) CCDs, each 15arcmin on a side for a total area of one quarter of a square degree. We have developed an automated reduction pipeline which: 1) corrects for spatial distortions, 2) corrects for PSF anisotropy, 3) determines relative scaling and background levels, and 4) combines multiple exposures. In this poster we will present some preliminary results of our cluster lensing study. This will include radial mass and light profiles and 2-d mass and galaxy density maps.

  20. Combining phase-field crystal methods with a Cahn-Hilliard model for binary alloys

    NASA Astrophysics Data System (ADS)

    Balakrishna, Ananya Renuka; Carter, W. Craig

    2018-04-01

    Diffusion-induced phase transitions typically change the lattice symmetry of the host material. In battery electrodes, for example, Li ions (diffusing species) are inserted between layers in a crystalline electrode material (host). This diffusion induces lattice distortions and defect formations in the electrode. The structural changes to the lattice symmetry affect the host material's properties. Here, we propose a 2D theoretical framework that couples a Cahn-Hilliard (CH) model, which describes the composition field of a diffusing species, with a phase-field crystal (PFC) model, which describes the host-material lattice symmetry. We couple the two continuum models via coordinate transformation coefficients. We introduce the transformation coefficients in the PFC method to describe affine lattice deformations. These transformation coefficients are modeled as functions of the composition field. Using this coupled approach, we explore the effects of coarse-grained lattice symmetry and distortions on a diffusion-induced phase transition process. In this paper, we demonstrate the working of the CH-PFC model through three representative examples: First, we describe base cases with hexagonal and square symmetries for two composition fields. Next, we illustrate how the CH-PFC method interpolates lattice symmetry across a diffuse phase boundary. Finally, we compute a Cahn-Hilliard type of diffusion and model the accompanying changes to lattice symmetry during a phase transition process.

  1. An ultrashort throw ratio projection lens design based on a catadioptric structure

    NASA Astrophysics Data System (ADS)

    Wang, Hsiu-Cheng; Pan, Jui-Wen

    2018-07-01

    In this paper, we present a rotational symmetry for an ultrashort throw (UST) lens with offset field. The UST lens has a throw ratio of 0.23 and a total track of 195 mm. The optical elements of the UST lens are comprised of two parts. First, a catadioptric projection lens where the catadioptric function permits reaching an ultrashort throw ratio, short total track, while at the same time requiring fewer lens elements. The second part is a collimating lens which takes advantage of the telecentric condition to generate uniform total internal reflection (TIR) in the TIR prism. With this design, an effective focal length of -1.96 mm and a f-number of 2.4 can be obtained. The root mean square spot size and lateral colour of all fields are smaller than one pixel in size. The maximum optical distortion of -0.97% and TV distortion of 0.2% are acceptable. In terms of image quality, the modulation transfer function (MTF) values for all fields are above 0.65 at 0.245 line pairs/mm. Even when the tolerance error is considered, the MTF values for all fields are still above 0.3. The suitability of the novel UST lens design for projection applications is discussed.

  2. Microwave spectrum, structure and dipole moment of 4-fluorophenylacetylene (4FPA)

    NASA Astrophysics Data System (ADS)

    Jang, Heesu; Ka, Soohyun; Dikkumbura, Asela S.; Peebles, Rebecca A.; Peebles, Sean A.; Oh, Jung Jin

    2017-04-01

    Using a chirped-pulse Fourier-transform microwave (CP-FTMW) spectrometer, a 6-18 GHz spectrum of 4-fluorophenylacetylene (4FPA) was measured and only a-type R-branch transitions were observed up to J = 9. Rotational constants and quartic centrifugal distortion constants for the normal isotopic species were determined based on Watson-S reduction: A = 5652.812(22) MHz, B = 966.92885(11) MHz, C = 825.67680(11) MHz, DJ = 0.01377(60) kHz, and DJK = 0.2468(61) kHz, with other three distortion constants fixed as DK = 0.6629 kHz, d1 = 2.386 Hz, and d2 = 0.989 Hz from ab initio results. For six kinds of carbon-13 isotopic species, 10-15 transitions were detected by a resonant cavity FTMW spectrometer in natural abundance, and rotational constants of each species were also determined by fitting transition frequencies. Gaseous molecular structures of 4FPA were derived via the least-squares fitting (r0) and substitution (rs) methods, and ab initio optimization (re). They were compared to the structures of benzene derivatives having fluorine and the acetylenic group as substituents. In addition, dipole moment component of 4FPA was also determined to be μa = μtotal = 0.8935(9) D from Stark effect measurements.

  3. Structural, theoretical and corrosion inhibition studies on some transition metal complexes derived from heterocyclic system

    NASA Astrophysics Data System (ADS)

    Gupta, Shraddha Rani; Mourya, Punita; Singh, M. M.; Singh, Vinod P.

    2017-06-01

    A Schiff base, (E)-N‧-((1H-indol-3-yl)methylene)-2-aminobenzohydrazide (Iabh) and its Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes have been synthesized. These compounds have been characterized by different physico-chemical and spectroscopic tools (UV-Vis, IR, NMR and ESI-Mass). The molecular structure of Iabh is determined by single crystal X-ray diffraction technique. The ligand Iabh displays E-configuration about the >Cdbnd N- bond. The structure of ligand is stabilized by intra-molecular H-bonding. In all the metal complexes the ligand coordinates through azomethine-N and carbonyl-O resulting a distorted octahedral geometry for Mn(II), Co(II) and Cu(II) complexes in which chloride ions occupy axial positions. Ni(II) and Zn(II) complexes, however, form 4-coordinate distorted square planer and tetrahedral geometry around metal ion, respectively. The structures of the complexes have been satisfactorily modeled by calculations based on density functional theory (DFT) and time dependent-DFT (TD-DFT). The corrosion inhibition study of the compounds have been performed against mild steel in 0.5 M H2SO4 solution at 298 K by using weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). They show appreciable corrosion inhibition property.

  4. Tools for experimental characterization of the non-uniform rotational distortion in intravascular OCT probes

    NASA Astrophysics Data System (ADS)

    Dufour, Marc L.; Bisaillon, Charles-Etienne; Lamouche, Guy; Vergnole, Sebastien; Hewko, Mark; D'Amours, Frédéric; Padioleau, Christian; Sowa, Michael

    2011-03-01

    The Industrial Material Institute (IMI) together with the Institute for Biodiagnostic (IBD) has developed its own optical catheters for cardiovascular imaging applications. Those catheters have been used experimentally in the in vitro coronary artery model of the Langendorff beating heart and in a percutaneous coronary intervention procedure in a porcine model. For some catheter designs, non-uniform rotational distortion (NURD) can be observed as expected from past experience with intra-vascular ultrasound (IVUS) catheters. A two-dimensional (2D) coronary artery test bench that simulates the path into the coronary arteries has been developed. The presence or absence of NURD can be assessed with the test bench using a custom-built cardiovascular Optical Coherence Tomography (OCT) imaging system. A square geometry instead of the circular shape of an artery is used to simulate the coronary arteries. Thereby, it is easier to visualize NURD when it is present. The accumulated torsion induced by the friction on the catheter is measured along the artery path. NURD is induced by the varying friction force that is balanced by the accumulated torsion force. The pullback force is measured and correlated with NURD observed in the 2D test bench. Finally, a model is presented to help understanding the mechanical constraint that leads to the friction force variations.

  5. Multiple Aromaticity and Antiaromaticity in Silicon Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Hua JIN.; Kuznetsov, A E.; Boldyrev, Alexander I.

    A series of silicon clusters containing four atoms but with different charge states (Si{sub 4}{sup 2+}, Si{sub 4}, Si{sub 4}{sup 2-}, and NaSi{sub 4}{sup -}) were studied by photoelectron spectroscopy and ab initio calculations. Structure evolution and chemical bonding in this series were interpreted in terms of aromaticity and antiaromaticity, which allowed the prediction of how structures of the four-atom silicon clusters change upon addition or removal of two electrons. It is shown that Si{sub 4}{sup 2+} is square-planar, analogous to the recently discovered aromatic Al{sub 4}{sup 2-} cluster. Upon addition of two electrons, neutral Si{sub 4} becomes {sigma}-antiaromatic andmore » exhibits a rhombus distortion. Adding two more electrons to Si{sub 4} leads to two energetically close structures of Si{sub 4}{sup 2-}: either a double antiaromatic parallelogram structure or an aromatic system with a butterfly distortion. Because of the electronic instability of doubly charged Si{sub 4}{sup 2-}, a stabilizing cation (Na{sup +}) was used to produce Si{sub 4}{sup 2-} in the gas phase in the form of Na{sup +}[Si{sub 4}{sup 2-}], which was characterized experimentally by photoelectron spectroscopy. Multiple antiaromaticity in the parallelogram Na{sup +}[Si{sub 4}{sup 2-}] species is highly unusual.« less

  6. Evidence for multisensory spatial-to-motor transformations in aiming movements of children.

    PubMed

    King, Bradley R; Kagerer, Florian A; Contreras-Vidal, Jose L; Clark, Jane E

    2009-01-01

    The extant developmental literature investigating age-related differences in the execution of aiming movements has predominantly focused on visuomotor coordination, despite the fact that additional sensory modalities, such as audition and somatosensation, may contribute to motor planning, execution, and learning. The current study investigated the execution of aiming movements toward both visual and acoustic stimuli. In addition, we examined the interaction between visuomotor and auditory-motor coordination as 5- to 10-yr-old participants executed aiming movements to visual and acoustic stimuli before and after exposure to a visuomotor rotation. Children in all age groups demonstrated significant improvement in performance under the visuomotor perturbation, as indicated by decreased initial directional and root mean squared errors. Moreover, children in all age groups demonstrated significant visual aftereffects during the postexposure phase, suggesting a successful update of their spatial-to-motor transformations. Interestingly, these updated spatial-to-motor transformations also influenced auditory-motor performance, as indicated by distorted movement trajectories during the auditory postexposure phase. The distorted trajectories were present during auditory postexposure even though the auditory-motor relationship was not manipulated. Results suggest that by the age of 5 yr, children have developed a multisensory spatial-to-motor transformation for the execution of aiming movements toward both visual and acoustic targets.

  7. Crystal structure of dimanganese(II) zinc bis­[ortho­phosphate(V)] monohydrate

    PubMed Central

    Alhakmi, Ghaleb; Assani, Abderrazzak; Saadi, Mohamed; El Ammari, Lahcen

    2015-01-01

    The title compound, Mn2Zn(PO4)2·H2O, was obtained under hydro­thermal conditions. The structure is isotypic with other transition metal phosphates of the type M 3− xM′x(PO4)2·H2O, but shows no statistical disorder of the three metallic sites. The principal building units are distorted [MnO6] and [MnO5(H2O)] octa­hedra, a distorted [ZnO5] square pyramid and two regular PO4 tetra­hedra. The connection of the polyhedra leads to a framework structure. Two types of layers parallel to (-101) can be distinguished in this framework. One layer contains [Zn2O8] dimers linked to PO4 tetra­hedra via common edges. The other layer is more corrugated and contains [Mn2O8(H2O)2] dimers and [MnO6] octa­hedra linked together by common edges. The PO4 tetra­hedra link the two types of layers into a framework structure with channels parallel to [101]. The H atoms of the water mol­ecules point into the channels and form O—H⋯O hydrogen bonds (one of which is bifurcated) with framework O atoms across the channels. PMID:25878806

  8. Optical coherence tomography visualizes neurons in human entorhinal cortex

    PubMed Central

    Magnain, Caroline; Augustinack, Jean C.; Konukoglu, Ender; Frosch, Matthew P.; Sakadžić, Sava; Varjabedian, Ani; Garcia, Nathalie; Wedeen, Van J.; Boas, David A.; Fischl, Bruce

    2015-01-01

    Abstract. The cytoarchitecture of the human brain is of great interest in diverse fields: neuroanatomy, neurology, neuroscience, and neuropathology. Traditional histology is a method that has been historically used to assess cell and fiber content in the ex vivo human brain. However, this technique suffers from significant distortions. We used a previously demonstrated optical coherence microscopy technique to image individual neurons in several square millimeters of en-face tissue blocks from layer II of the human entorhinal cortex, over 50  μm in depth. The same slices were then sectioned and stained for Nissl substance. We registered the optical coherence tomography (OCT) images with the corresponding Nissl stained slices using a nonlinear transformation. The neurons were then segmented in both images and we quantified the overlap. We show that OCT images contain information about neurons that is comparable to what can be obtained from Nissl staining, and thus can be used to assess the cytoarchitecture of the ex vivo human brain with minimal distortion. With the future integration of a vibratome into the OCT imaging rig, this technique can be scaled up to obtain undistorted volumetric data of centimeter cube tissue blocks in the near term, and entire human hemispheres in the future. PMID:25741528

  9. Crystal structure of catena-poly[[aquadi-n-propyl­tin(IV)]-μ-oxalato

    PubMed Central

    Reichelt, Martin; Reuter, Hans

    2014-01-01

    The title compound, [Sn(C3H7)2(H2O)(C2O4)]n, represents the first diorganotin(IV) oxalate hydrate to be structurally characterized. The tin(IV) atom of the one-dimensional coordination polymer is located on a twofold rotation axis and is coordinated by two chelating oxalate ligands with two slightly different Sn—O bond lengths of 2.290 (2) and 2.365 (2) Å, two symmetry-related n-propyl groups with a Sn—C bond lengths of 2.127 (3) Å, and a water mol­ecule with a Sn—O bond length of 2.262 (2) Å. The coordination polyhedron around the SnIV atom is a slightly distorted penta­gonal bipyramid with a nearly linear axis between the trans-oriented n-propyl groups [C—Sn—C = 176.8 (1)°]. The bond angles between the oxygen atoms of the equatorial plane range from 70.48 (6)° to 76.12 (8)°. A one-dimensional coordination polymer results from the less asymmetric bilateral coordination of the centrosymmetric oxalate anion, inter­nally reflected by two slightly different C—O bond lengths of 1.248 (3) and 1.254 (3) Å. The chains of the polymer propagate parallel to [001] and are held together by hydrogen bonds between water mol­ecules and oxalate anions of neighboring chains, leading to a two-dimensional network parallel to (100). PMID:25249862

  10. Di-tert-butyl-chlorido(N,N-dibenzyl-dithio-carbamato)tin(IV).

    PubMed

    Abdul Muthalib, Amirah Faizah; Baba, Ibrahim; Mohamed Tahir, Mohamed Ibrahim; Tiekink, Edward R T

    2011-02-26

    The Sn(IV) atom in the title diorganotin dithio-carbamate, [Sn(C(4)H(9))(2)(C(15)H(14)NS(2))Cl], is penta-coordinated by an asymmetrically coordinating dithio-carbamate ligand, a Cl atom and two C atoms of the Sn-bound tert-butyl groups. The resulting C(2)ClS(2) donor set defines a coordination geometry inter-mediate between square pyramidal and trigonal bipyramidal with a slight tendency towards the former.

  11. Consensus structures of the Mo(v) sites of sulfite-oxidizing enzymes derived from variable frequency pulsed EPR spectroscopy, isotopic labelling and DFT calculations.

    PubMed

    Enemark, John H

    2017-10-10

    Sulfite-oxidizing enzymes from eukaryotes and prokaryotes have five-coordinate distorted square-pyramidal coordination about the molybdenum atom. The paramagnetic Mo(v) state is easily generated, and over the years four distinct CW EPR spectra have been identified, depending upon enzyme source and the reaction conditions, namely high and low pH (hpH and lpH), phosphate inhibited (P i ) and sulfite (or blocked). Extensive studies of these paramagnetic forms of sulfite-oxidizing enzymes using variable frequency pulsed electron spin echo (ESE) spectroscopy, isotopic labeling and density functional theory (DFT) calculations have led to the consensus structures that are described here. Errors in some of the previously proposed structures are corrected.

  12. A Novel Multilevel DC - AC Converter from Green Energy Power Generators Using Step-Square Waving and PWM Technique

    NASA Astrophysics Data System (ADS)

    Fajingbesi, F. E.; Midi, N. S.; Khan, S.

    2017-06-01

    Green energy sources or renewable energy system generally utilize modular approach in their design. This sort of power sources are generally in DC form or in single cases AC. Due to high fluctuation in the natural origin of this energy (wind & solar) source they are stored as DC. DC power however are difficult to transfer over long distances hence DC to AC converters and storage system are very important in green energy system design. In this work we have designed a novel multilevel DC to AC converter that takes into account the modular design of green energy systems. A power conversion efficiency of 99% with reduced total harmonic distortion (THD) was recorded from our simulated system design.

  13. HIGH-RESOLUTION FOURIER TRANSFORM INFRARED SPECTRUM OF THE ν2 + ν12 BAND OF ETHYLENE (12C2H4)

    NASA Astrophysics Data System (ADS)

    Lebron, G. B.; Tan, T. L.

    2013-09-01

    The high-resolution Fourier transform infrared absorption spectrum of the ν2 + ν12 combination band of normal ethylene (12C2H4) in the 3050-3105 cm-1 region was recorded at a resolution of 0.0063 cm-1 and at an ambient temperature of 296 K. Upper state rovibrational analysis was carried out using a standard Watson's Hamiltonian in asymmetric reduction in Ir representation. The band center, rotational constants and centrifugal distortion constants up to quartic terms of the upper ν2 + ν12 = 1 state were determined from the final fit that included 102 infrared transitions. The root-mean-square deviation of the fit was 0.000729 cm-1.

  14. An automated exploration of the isomerization and dissociation pathways of (E)-1,2-dichloroethene cations and anions

    NASA Astrophysics Data System (ADS)

    Kishimoto, Naoki; Nishi, Yuito

    2017-04-01

    Isomerization and dissociation pathways after the photoionization or electron attachment of (E)-1,2-dichloroethene were calculated with an automated exploration method utilizing a scaled hypersphere search of the anharmonic downward distortion following algorithm at the UB3LYP/6-311G(2d,d,p) level of theory. The potential energies of transition states and dissociation channels were calculated by a composite method ((RO)CBS-QB3) and compared with the breakdown diagrams and electron attachment spectra observed in previous spectroscopic studies. The results of single point calculations with several DFT and post-SCF methods are compared using the root mean square deviations from the (RO)CBS-QB3 energies for six states of anionic dichloroethene.

  15. Sequential deconvolution from wave-front sensing using bivariate simplex splines

    NASA Astrophysics Data System (ADS)

    Guo, Shiping; Zhang, Rongzhi; Li, Jisheng; Zou, Jianhua; Xu, Rong; Liu, Changhai

    2015-05-01

    Deconvolution from wave-front sensing (DWFS) is an imaging compensation technique for turbulence degraded images based on simultaneous recording of short exposure images and wave-front sensor data. This paper employs the multivariate splines method for the sequential DWFS: a bivariate simplex splines based average slopes measurement model is built firstly for Shack-Hartmann wave-front sensor; next, a well-conditioned least squares estimator for the spline coefficients is constructed using multiple Shack-Hartmann measurements; then, the distorted wave-front is uniquely determined by the estimated spline coefficients; the object image is finally obtained by non-blind deconvolution processing. Simulated experiments in different turbulence strength show that our method performs superior image restoration results and noise rejection capability especially when extracting the multidirectional phase derivatives.

  16. Clustering in the SDSS Redshift Survey

    NASA Astrophysics Data System (ADS)

    Zehavi, I.; Blanton, M. R.; Frieman, J. A.; Weinberg, D. H.; SDSS Collaboration

    2002-05-01

    We present measurements of clustering in the Sloan Digital Sky Survey (SDSS) galaxy redshift survey. Our current sample consists of roughly 80,000 galaxies with redshifts in the range 0.02 < z < 0.2, covering about 1200 square degrees. We measure the clustering in redshift space and in real space. The two-dimensional correlation function ξ (rp,π ) shows clear signatures of redshift distortions, both the small-scale ``fingers-of-God'' effect and the large-scale compression. The inferred real-space correlation function is well described by a power law. The SDSS is especially suitable for investigating the dependence of clustering on galaxy properties, due to the wealth of information in the photometric survey. We focus on the dependence of clustering on color and on luminosity.

  17. Note: Demodulation of spectral signal modulated by optical chopper with unstable modulation frequency.

    PubMed

    Zhang, Shengzhao; Li, Gang; Wang, Jiexi; Wang, Donggen; Han, Ying; Cao, Hui; Lin, Ling; Diao, Chunhong

    2017-10-01

    When an optical chopper is used to modulate the light source, the rotating speed of the wheel may vary with time and subsequently cause jitter of the modulation frequency. The amplitude calculated from the modulated signal would be distorted when the frequency fluctuations occur. To precisely calculate the amplitude of the modulated light flux, we proposed a method to estimate the range of the frequency fluctuation in the measurement of the spectrum and then extract the amplitude based on the sum of power of the signal in the selected frequency range. Experiments were designed to test the feasibility of the proposed method and the results showed lower root means square error than the conventional way.

  18. Quasielastic neutrino charged-current scattering off 12C: Effects of the meson exchange currents and large nucleon axial mass

    NASA Astrophysics Data System (ADS)

    Butkevich, A. V.; Luchuk, S. V.

    2018-04-01

    The quasielastic scattering of muon neutrino and electrons on a carbon target are analyzed using the relativistic distorted-wave impulse approximation (RDWIA). We also evaluate the contribution of the two-particle and two-hole meson exchange current (2 p -2 h MEC) to electroweak response functions. The nuclear model dependence of the (anti)neutrino cross sections is studied within the RDWIA+MEC approach and RDWIA model with the large nucleon axial mass. It is shown that the results for the squared momentum transfer distribution d σ /d Q2 and for invariant mass of the final hadronic system distribution d σ /d W obtained within these models are substantially different.

  19. Bis(2,1,3-benzoselenadiazole-κN)dibromidocopper(II)

    PubMed Central

    Fun, Hoong-Kun; Goh, Jia Hao; Maity, Annada C.; Goswami, Shyamaprosad

    2011-01-01

    In the title complex, [CuBr2(C6H4N2Se)2], the CuII ion is tetra­coordinated by two bromide anions and two N atoms in a distorted square-planar geometry. The two essentially planar 2,1,3-benzoselenadiazole ligands [maximum deviations = 0.012 (2) and 0.030 (2) Å] are approximately coplanar [dihedral angle = 6.14 (6)°]. In the crystal, short inter­molecular Se⋯Br, Se⋯N and N⋯N inter­actions are observed. These short inter­actions and inter­molecular C—H⋯Br hydrogen bonds link the complex mol­ecules into two-dimensional arrays parallel to the ac plane. PMID:21522854

  20. Bubble deformations and segmented flows in corrugated microchannels at large capillary numbers

    NASA Astrophysics Data System (ADS)

    Sauzade, Martin; Cubaud, Thomas

    2018-03-01

    We experimentally investigate the interaction between individual bubble deformations and collective distortions of segmented flows in nonlinear microfluidic geometries. Using highly viscous carrier fluids, we study the evolution of monodisperse trains of gas bubbles from a square to a smoothly corrugated microchannel characterized with a series of extensions and constrictions along the flow path. The hysteresis in the bubble shape between accelerating and decelerating flow fields is shown to increase with the capillary number. Measurements of instantaneous bubble velocities reveal the presence of a capillary pull that produces a nonmonotonic behavior for the front velocity in accelerating flow regions. Functional relationships are developed for predicting the morphology and dynamics of viscous multiphase flow patterns at the pore scale.

  1. Accounting for mean-flow periodicity in turbulence closures

    NASA Astrophysics Data System (ADS)

    Younis, Bassam A.; Zhou, Ye

    2006-01-01

    Measurements of the turbulence energy spectrum in the unsteady wakes of bodies in uniform incident streams clearly show the presence of a distinct peak in energy supply that occurs at the Strouhal frequency and whose presence implies a strong and direct interaction between the organized mean-flow unsteadiness and the random turbulence motions. It is argued here that the well-documented failure of conventional turbulence closures in capturing the main features of unsteady flows is largely due to their inability to properly account for the modifications in the energy spectrum wrought by these interactions. We derive a simple modification to the turbulence length-scale determining equation based on analysis of a distorted energy spectrum, and verify the result by computations of vortex shedding behind a square cylinder.

  2. Fast and nondestructive determination of protein content in rapeseeds (Brassica napus L.) using Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS).

    PubMed

    Lu, Yuzhen; Du, Changwen; Yu, Changbing; Zhou, Jianmin

    2014-08-01

    Fast and non-destructive determination of rapeseed protein content carries significant implications in rapeseed production. This study presented the first attempt of using Fourier transform mid-infrared photoacoustic spectroscopy (FTIR-PAS) to quantify protein content of rapeseed. The full-spectrum model was first built using partial least squares (PLS). Interval selection methods including interval partial least squares (iPLS), synergy interval partial least squares (siPLS), backward elimination interval partial least squares (biPLS) and dynamic backward elimination interval partial least squares (dyn-biPLS) were then employed to select the relevant band or band combination for PLS modeling. The full-spectrum PLS model achieved an ratio of prediction to deviation (RPD) of 2.047. In comparison, all interval selection methods produced better results than full-spectrum modeling. siPLS achieved the best predictive accuracy with an RPD of 3.215 when the spectrum was sectioned into 25 intervals, and two intervals (1198-1335 and 1614-1753 cm(-1) ) were selected. iPLS excelled biPLS and dyn-biPLS, and dyn-biPLS performed slightly better than biPLS. FTIR-PAS was verified as a promising analytical tool to quantify rapeseed protein content. Interval selection could extract the relevant individual band or synergy band associated with the sample constituent of interest, and then improve the prediction accuracy of the full-spectrum model. © 2013 Society of Chemical Industry.

  3. Real-valued composite filters for correlation-based optical pattern recognition

    NASA Technical Reports Server (NTRS)

    Rajan, P. K.; Balendra, Anushia

    1992-01-01

    Advances in the technology of optical devices such as spatial light modulators (SLMs) have influenced the research and growth of optical pattern recognition. In the research leading to this report, the design of real-valued composite filters that can be implemented using currently available SLMs for optical pattern recognition and classification was investigated. The design of real-valued minimum average correlation energy (RMACE) filter was investigated. Proper selection of the phase of the output response was shown to reduce the correlation energy. The performance of the filter was evaluated using computer simulations and compared with the complex filters. It was found that the performance degraded only slightly. Continuing the above investigation, the design of a real filter that minimizes the output correlation energy and the output variance due to noise was developed. Simulation studies showed that this filter had better tolerance to distortion and noise compared to that of the RMACE filter. Finally, the space domain design of RMACE filter was developed and implemented on the computer. It was found that the sharpness of the correlation peak was slightly reduced but the filter design was more computationally efficient than the complex filter.

  4. A Two-Step Bayesian Approach for Propensity Score Analysis: Simulations and Case Study.

    PubMed

    Kaplan, David; Chen, Jianshen

    2012-07-01

    A two-step Bayesian propensity score approach is introduced that incorporates prior information in the propensity score equation and outcome equation without the problems associated with simultaneous Bayesian propensity score approaches. The corresponding variance estimators are also provided. The two-step Bayesian propensity score is provided for three methods of implementation: propensity score stratification, weighting, and optimal full matching. Three simulation studies and one case study are presented to elaborate the proposed two-step Bayesian propensity score approach. Results of the simulation studies reveal that greater precision in the propensity score equation yields better recovery of the frequentist-based treatment effect. A slight advantage is shown for the Bayesian approach in small samples. Results also reveal that greater precision around the wrong treatment effect can lead to seriously distorted results. However, greater precision around the correct treatment effect parameter yields quite good results, with slight improvement seen with greater precision in the propensity score equation. A comparison of coverage rates for the conventional frequentist approach and proposed Bayesian approach is also provided. The case study reveals that credible intervals are wider than frequentist confidence intervals when priors are non-informative.

  5. Coherent structures and flow topology of transitional separated-reattached flow over two and three dimensional geometrical shapes

    NASA Astrophysics Data System (ADS)

    Diabil, Hayder Azeez; Li, Xin Kai; Abdalla, Ibrahim Elrayah

    2017-09-01

    Large-scale organized motions (commonly referred to coherent structures) and flow topology of a transitional separated-reattached flow have been visualised and investigated using flow visualisation techniques. Two geometrical shapes including two-dimensional flat plate with rectangular leading edge and three-dimensional square cylinder are chosen to shed a light on the flow topology and present coherent structures of the flow over these shapes. For both geometries and in the early stage of the transition, two-dimensional Kelvin-Helmholtz rolls are formed downstream of the leading edge. They are observed to be twisting around the square cylinder while they stay flat in the case of the two-dimensional flat plate. For both geometrical shapes, the two-dimensional Kelvin-Helmholtz rolls move downstream of the leading edge and they are subjected to distortion to form three-dimensional hairpin structures. The flow topology in the flat plate is different from that in the square cylinder. For the flat plate, there is a merging process by a pairing of the Kelvin-Helmholtz rolls to form a large structure that breaks down directly into many hairpin structures. For the squire cylinder case, the Kelvin-Helmholtz roll evolves topologically to form a hairpin structure. In the squire cylinder case, the reattachment length is much shorter and a forming of the three-dimensional structures is closer to the leading edge than that in the flat plate case.

  6. Elastic excitations in BaTiO3 single crystals and ceramics: Mobile domain boundaries and polar nanoregions observed by resonant ultrasonic spectroscopy

    NASA Astrophysics Data System (ADS)

    Salje, Ekhard K. H.; Carpenter, Michael A.; Nataf, Guillaume F.; Picht, Gunnar; Webber, Kyle; Weerasinghe, Jeevaka; Lisenkov, S.; Bellaiche, L.

    2013-01-01

    The dynamic properties of elastic domain walls in BaTiO3 were investigated using resonance ultrasonic spectroscopy (RUS). The sequence of phase transitions is characterized by minima in the temperature dependence of RUS resonance frequencies and changes in Q factors (resonance damping). Damping is related to the friction of mobile twin boundaries (90° ferroelectric walls) and distorted polar nanoregions (PNRs) in the cubic phase. Damping is largest in the tetragonal phase of ceramic materials but very low in single crystals. Damping is also small in the low-temperature phases of the ceramic sample and slightly increases with decreasing temperature in the single crystal. The phase angle between the real and imaginary part of the dynamic response function changes drastically in the cubic and tetragonal phases and remains constant in the orthorhombic phase. Other phases show a moderate dependence of the phase angle on temperature showing systematic changes of twin microstructures. Mobile twin boundaries (or sections of twin boundaries such as kinks inside twin walls) contribute strongly to the energy dissipation of the forced oscillation while the reduction in effective modulus due to relaxing twin domains is weak. Single crystals and ceramics show strong precursor softening in the cubic phase related to polar nanoregions (PNRs). The effective modulus decreases when the transition point of the cubic-tetragonal transformation is approached from above. The precursor softening follows temperature dependence very similar to recent results from Brillouin scattering. Between the Burns temperature (≈586 K) and Tc at 405 K, we found a good fit of the squared RUS frequency [˜Δ (C11-C12)] to a Vogel-Fulcher process with an activation energy of ˜0.2 eV. Finally, some first-principles-based effective Hamiltonian computations were carried out in BaTiO3 single domains to explain some of these observations in terms of the dynamics of the soft mode and central mode.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wulff, J; Huggins, A

    Purpose: The shape of a single beam in proton PBS influences the resulting dose distribution. Spot profiles are modelled as two-dimensional Gaussian (single/ double) distributions in treatment planning systems (TPS). Impact of slight deviations from an ideal Gaussian on resulting dose distributions is typically assumed to be small due to alleviation by multiple Coulomb scattering (MCS) in tissue and superposition of many spots. Quantitative limits are however not clear per se. Methods: A set of 1250 deliberately deformed profiles with sigma=4 mm for a Gaussian fit were constructed. Profiles and fit were normalized to the same area, resembling output calibrationmore » in the TPS. Depth-dependent MCS was considered. The deviation between deformed and ideal profiles was characterized by root-mean-squared deviation (RMSD), skewness/ kurtosis (SK) and full-width at different percentage of maximum (FWxM). The profiles were convolved with different fluence patterns (regular/ random) resulting in hypothetical dose distributions. The resulting deviations were analyzed by applying a gamma-test. Results were compared to measured spot profiles. Results: A clear correlation between pass-rate and profile metrics could be determined. The largest impact occurred for a regular fluence-pattern with increasing distance between single spots, followed by a random distribution of spot weights. The results are strongly dependent on gamma-analysis dose and distance levels. Pass-rates of >95% at 2%/2 mm and 40 mm depth (=70 MeV) could only be achieved for RMSD<10%, deviation in FWxM at 20% and root of quadratic sum of SK <0.8. As expected the results improve for larger depths. The trends were well resembled for measured spot profiles. Conclusion: All measured profiles from ProBeam sites passed the criteria. Given the fact, that beam-line tuning can result shape distortions, the derived criteria represent a useful QA tool for commissioning and design of future beam-line optics.« less

  8. (Na,□)5[MnO2]13 nanorods: a new tunnel structure for electrode materials determined ab initio and refined through a combination of electron and synchrotron diffraction data

    PubMed Central

    Mugnaioli, Enrico; Gemmi, Mauro; Merlini, Marco; Gregorkiewitz, Michele

    2016-01-01

    (Nax□1 − x)5[MnO2]13 has been synthesized with x = 0.80 (4), corresponding to Na0.31[MnO2]. This well known material is usually cited as Na0.4[MnO2] and is believed to have a romanèchite-like framework. Here, its true structure is determined, ab initio, by single-crystal electron diffraction tomography (EDT) and refined both by EDT data applying dynamical scattering theory and by the Rietveld method based on synchrotron powder diffraction data (χ2 = 0.690, R wp = 0.051, R p = 0.037, R F2 = 0.035). The unit cell is monoclinic C2/m, a = 22.5199 (6), b = 2.83987 (6), c = 14.8815 (4) Å, β = 105.0925 (16)°, V = 918.90 (4) Å3, Z = 2. A hitherto unknown [MnO2] framework is found, which is mainly based on edge- and corner-sharing octahedra and comprises three types of tunnels: per unit cell, two are defined by S-shaped 10-rings, four by egg-shaped 8-rings, and two by slightly oval 6-rings of Mn polyhedra. Na occupies all tunnels. The so-determined structure excellently explains previous reports on the electrochemistry of (Na,□)5[MnO2]13. The trivalent Mn3+ ions concentrate at two of the seven Mn sites where larger Mn—O distances and Jahn–Teller distortion are observed. One of the Mn3+ sites is five-coordinated in a square pyramid which, on oxidation to Mn4+, may easily undergo topotactic transformation to an octahedron suggesting a possible pathway for the transition among different tunnel structures. PMID:27910840

  9. Cyclopalladation of dimesityl selenide: synthesis, reactivity, structural characterization, isolation of an intermediate complex with C-H···Pd intra-molecular interaction and computational studies.

    PubMed

    Kolay, Siddhartha; Wadawale, Amey; Das, Dasarathi; Kisan, Hemanta K; Sunoj, Raghavan B; Jain, Vimal K

    2013-08-14

    The reaction of dimesityl selenide (Mes2Se) with either PdCl2(PhCN)2 in toluene or PdCl2 in toluene-acetonitrile yields a chloro-bridged binuclear palladium complex, [Pd2Cl2(μ-Cl)2(Mes2Se)2] (1), whereas with Na2PdCl4 in refluxing ethanol, a cyclometallated palladium complex, [Pd2(μ-Cl)2{MesSeC6H2(Me2)CH2}2] (2) is afforded. 2 can also be obtained when 1 is refluxed in ethanol. On treatment with Pb(Epy)2 in dichloromethane, 2 afforded the Epy-bridged binuclear complexes, [Pd2(μ-Epy)2{MesSeC6H2(Me2)CH2}2] (3; E = S (3a) or Se (3b)). Treatment of 2 with PPh3 yields a bridge-cleaved monomeric complex, [PdCl{MesSeC6H2(Me2)CH2}(PPh3)]. The molecular structures of 1-3 were established by X-ray diffraction analyses. All the complexes are dimeric, with the palladium atoms acquiring a distorted square planar configuration. There are intra-molecular C-H···Pd interactions (d(M-H): 2.75 Å and

  10. Silver(I) complexes with hydantoins and allantoin: synthesis, crystal and molecular structure, cytotoxicity and pharmacokinetics.

    PubMed

    Puszyńska-Tuszkanow, Mariola; Grabowski, Tomasz; Daszkiewicz, Marek; Wietrzyk, Joanna; Filip, Beata; Maciejewska, Gabriela; Cieślak-Golonka, Maria

    2011-01-01

    Coordination polymers [Ag(L(1,3))](n) (L(1)=hydantoin, L(3)=5,5-dimethylhydantoin), {[Ag(L(2))](.)0.5H(2)O}(n) (L(2)=1-methylhydantoin) and [Ag(NH(3))(L(4))](n) (L(4)=allantoin) were prepared and characterized by elemental analysis, spectroscopic (IR, FTIR and NMR), thermal and mass spectrometry methods. The crystal structure of {[Ag(1-methylhydantoin)]·0,5H(2)O}(n) was determined and analyzed. Three 1-methylhydantoinate ligands create a T-shape (CN=3) coordination sphere around the Ag(+) ion. Additionally, a short Ag⋯Ag distance of 2.997Å was found in the structure resulting in the expanded [3+2] environment of a distorted square shape. The [Ag(L(2))] entities are bound to each other by the bridging organic ligands. Thus a two-dimensional coordination polymer is created with water molecules located between the layers. In contrast to hydantoins, the allantoin complex contains an additional ammonia molecule in the coordination sphere. Moreover, in the Ag-alla complex the M-organic ligand binding site is shifted to the N-atom of the ureid chain. Free ligands are cytotoxically inactive against human MCF-7 and A549 cancer cell lines and mouse fibroblasts Balb/3T3. The silver hydantoin complexes exhibit a very strong activity against these lines. (The introduction of the methyl groups to the ring slightly increases resistance only against the A549 cell line.) In contrast, the silver complex of allantoin shows only a weak activity which may be related to the presence of the cytotoxic ammonia group in the composition of the compound and/or the different binding site of the ligand. Calculated in silico physiochemical parameters are promising for the future application of the complexes as drugs. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Synthesis, Structure, Characterization, and Decomposition of Nickel Dithiocarbamates: Effect of Precursor Structure and Processing Conditions on Solid-State Products

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Kulis, Michael J.; McNatt, Jeremiah S.; Duffy, Norman V.; Hoops, Michael D.; Gorse, Elizabeth; Fanwick, Philip E.; Masnovi, John; Cowen, Jonathan E.; Dominey, Raymond N.

    2016-01-01

    Single-crystal X-ray structures of four nickel dithiocarbamate complexes, the homoleptic mixed-organic bis-dithiocarbamates Ni[S2CN(isopropyl)(benzyl)]2, Ni[S2CN(ethyl)(n-butyl)]2, and Ni[S2CN(phenyl)(benzyl)]2, as well as the heteroleptic mixed-ligand complex NiCl[P(phenyl)3][(S2CN(phenyl)(benzyl)], were determined. Synthetic, spectroscopic, structural, thermal, and sulfide materials studies are discussed in light of prior literature. The spectroscopic results are routine. A slightly distorted square-planar nickel coordination environment was observed for all four complexes. The organic residues adopt conformations to minimize steric interactions. Steric effects also may determine puckering, if any, about the nickel and nitrogen atoms, both of which are planar or nearly so. A trans-influence affects the Ni-S bond distances. Nitrogen atoms interact with the CS2 carbons with a bond order of about 1.5, and the other substituents on nitrogen display transoid conformations. There are no strong intermolecular interactions, consistent with prior observations of the volatility of nickel dithiocarbamate complexes. Thermogravimetric analysis of the homoleptic species under inert atmosphere is consistent with production of 1:1 nickel sulfide phases. Thermolysis of nickel dithiocarbamates under flowing nitrogen produced hexagonal or -NiS as the major phase; thermolysis under flowing forming gas produced millerite (-NiS) at 300 C, godlevskite (Ni9S8) at 325 and 350 C, and heazlewoodite (Ni3S2) at 400 and 450 C. Failure to exclude oxygen results in production of nickel oxide. Nickel sulfide phases produced seem to be primarily influenced by processing conditions, in agreement with prior literature. Nickel dithiocarbamate complexes demonstrate significant promise to serve as single-source precursors to nickel sulfides, a quite interesting family of materials with numerous potential applications.

  12. Preparation and Anti-Tumour Activity of Some Arylbismuth(III) Oxine Complexes

    PubMed Central

    Smith, Katharine A.; Deacon, Glen B.; Jackson, W. Roy; Tiekink, Edward R. T.; Rainone, Silvina; Webster, Lorraine K.

    1998-01-01

    New arylbismuth(lll) oxinates, PhBi(MeOx)2, (p-MeC6H4)Bi(Ox)2, (p-MeC6H4)Bi(MeOx)2, (p-ClC6H4)Bi(Ox)2, and (p-ClC6H4)Bi(MeOx)2 (Ox− = quinolin-8-olate and MeOx−=2-methylquinolin-8-olate) have been prepared by reaction of the appropriate diarylbismuth chlorides with Na(Ox) or Na(MeOx) in the presence of 15-crown-5. An X-ray crystallographic study has shown PhBi(MeOx)2 to be a five coordinate monomer with distorted square pyramidal stereochemistry. Chelating MeOx ligands have a cisoid arrangement in the square plane and the phenyl group is apical. The lattice is stabilised by significant π-π interactions between centrosymmetric molecules. A range of these complexes has been shown to have high in vitro biological activity (comparable with or better than cisplatin) against L1210 leukaemia, the corresponding cisplatin resistant line, and a human ovarian cell line, SKOV-3. However, initial in vivo testing against a solid mouse plasmacytoma (PC6) and P388 leukaemia has not revealed significant activity. PMID:18475861

  13. Simulation and Spectrum Extraction in the Spectroscopic Channel of the SNAP Experiment

    NASA Astrophysics Data System (ADS)

    Tilquin, Andre; Bonissent, A.; Gerdes, D.; Ealet, A.; Prieto, E.; Macaire, C.; Aumenier, M. H.

    2007-05-01

    A pixel-level simulation software is described. It is composed of two modules. The first module applies Fourier optics at each active element of the system to construct the PSF at a large variety of wavelengths and spatial locations of the point source. The input is provided by the engineer's design program (Zemax). It describes the optical path and the distortions. The PSF properties are compressed and interpolated using shapelets decomposition and neural network techniques. A second module is used for production jobs. It uses the output of the first module to reconstruct the relevant PSF and integrate it on the detector pixels. Extended and polychromatic sources are approximated by a combination of monochromatic point sources. For the spectrum extraction, we use a fast simulator based on a multidimensional linear interpolation of the pixel response tabulated on a grid of values of wavelength, position on sky and slice number. The prediction of the fast simulator is compared to the observed pixel content, and a chi-square minimization where the parameters are the bin contents is used to build the extracted spectrum. The visible and infrared arms are combined in the same chi-square, providing a single spectrum.

  14. Calibration of Magnetometers with GNSS Receivers and Magnetometer-Aided GNSS Ambiguity Fixing

    PubMed Central

    Henkel, Patrick

    2017-01-01

    Magnetometers provide compass information, and are widely used for navigation, orientation and alignment of objects. As magnetometers are affected by sensor biases and eventually by systematic distortions of the Earth magnetic field, a calibration is needed. In this paper, a method for calibration of magnetometers with three Global Navigation Satellite System (GNSS) receivers is presented. We perform a least-squares estimation of the magnetic flux and sensor biases using GNSS-based attitude information. The attitude is obtained from the relative positions between the GNSS receivers in the North-East-Down coordinate frame and prior knowledge of these relative positions in the platform’s coordinate frame. The relative positions and integer ambiguities of the periodic carrier phase measurements are determined with an integer least-squares estimation using an integer decorrelation and sequential tree search. Prior knowledge on the relative positions is used to increase the success rate of ambiguity fixing. We have validated the proposed method with low-cost magnetometers and GNSS receivers on a vehicle in a test drive. The calibration enabled a consistent heading determination with an accuracy of five degrees. This precise magnetometer-based attitude information allows an instantaneous GNSS integer ambiguity fixing. PMID:28594369

  15. Pd (II) complexes of bidentate chalcone ligands: Synthesis, spectral, thermal, antitumor, antioxidant, antimicrobial, DFT and SAR studies

    NASA Astrophysics Data System (ADS)

    Gaber, Mohamed; Awad, Mohamed K.; Atlam, Faten M.

    2018-05-01

    The ligation behavior of two chalcone ligands namely, (E)-3-(4-chlorophenyl)-1-(pyridin-2-yl)prop-2-en-1-one (L1) and (E)-3-(4-methoxyphenyl)-1-(pyridin-2-yl)prop-2-en-1-one (L2), towards the Pd(II) ion is determined. The structures of the complexes are elucidated by elemental analysis, spectral methods (IR, electronic and NMR spectra) as well as the conductance measurements and thermal analysis. The metal complexes exhibit a square planar geometrical arrangement. The kinetic and thermodynamic parameters for some selected decomposition steps have been calculated. The antimicrobial, antioxidant and anticancer activities of the chalcones and their Pd(II) complexes have been evaluated. Molecular orbital computations are performed using DFT at B3LYP level with 6-31 + G(d) and LANL2DZ basis sets to access reliable results to the experimental values. The calculations are performed to obtain the optimized molecular geometry, charge density distribution, extent of distortion from regular geometry. Thermodynamic parameters for the investigated compounds are also studied. The calculations confirm that the investigated complexes have square planner geometry, which is in a good agreement with the experimental observation.

  16. Highly Efficient Compression Algorithms for Multichannel EEG.

    PubMed

    Shaw, Laxmi; Rahman, Daleef; Routray, Aurobinda

    2018-05-01

    The difficulty associated with processing and understanding the high dimensionality of electroencephalogram (EEG) data requires developing efficient and robust compression algorithms. In this paper, different lossless compression techniques of single and multichannel EEG data, including Huffman coding, arithmetic coding, Markov predictor, linear predictor, context-based error modeling, multivariate autoregression (MVAR), and a low complexity bivariate model have been examined and their performances have been compared. Furthermore, a high compression algorithm named general MVAR and a modified context-based error modeling for multichannel EEG have been proposed. The resulting compression algorithm produces a higher relative compression ratio of 70.64% on average compared with the existing methods, and in some cases, it goes up to 83.06%. The proposed methods are designed to compress a large amount of multichannel EEG data efficiently so that the data storage and transmission bandwidth can be effectively used. These methods have been validated using several experimental multichannel EEG recordings of different subjects and publicly available standard databases. The satisfactory parametric measures of these methods, namely percent-root-mean square distortion, peak signal-to-noise ratio, root-mean-square error, and cross correlation, show their superiority over the state-of-the-art compression methods.

  17. LUNASKA experiments using the Australia Telescope Compact Array to search for ultrahigh energy neutrinos and develop technology for the lunar Cherenkov technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, C. W.; Protheroe, R. J.; Ekers, R. D.

    2010-02-15

    We describe the design, performance, sensitivity and results of our recent experiments using the Australia Telescope Compact Array (ATCA) for lunar Cherenkov observations with a very wide (600 MHz) bandwidth and nanosecond timing, including a limit on an isotropic neutrino flux. We also make a first estimate of the effects of small-scale surface roughness on the effective experimental aperture, finding that contrary to expectations, such roughness will act to increase the detectability of near-surface events over the neutrino energy-range at which our experiment is most sensitive (though distortions to the time-domain pulse profile may make identification more difficult). The aimmore » of our 'Lunar UHE Neutrino Astrophysics using the Square Kilometre Array' (LUNASKA) project is to develop the lunar Cherenkov technique of using terrestrial radio telescope arrays for ultrahigh energy (UHE) cosmic ray (CR) and neutrino detection, and, in particular, to prepare for using the Square Kilometre Array (SKA) and its path-finders such as the Australian SKA Pathfinder (ASKAP) and the Low Frequency Array (LOFAR) for lunar Cherenkov experiments.« less

  18. Calibration of Magnetometers with GNSS Receivers and Magnetometer-Aided GNSS Ambiguity Fixing.

    PubMed

    Henkel, Patrick

    2017-06-08

    Magnetometers provide compass information, and are widely used for navigation, orientation and alignment of objects. As magnetometers are affected by sensor biases and eventually by systematic distortions of the Earth magnetic field, a calibration is needed. In this paper, a method for calibration of magnetometers with three Global Navigation Satellite System (GNSS) receivers is presented. We perform a least-squares estimation of the magnetic flux and sensor biases using GNSS-based attitude information. The attitude is obtained from the relative positions between the GNSS receivers in the North-East-Down coordinate frame and prior knowledge of these relative positions in the platform's coordinate frame. The relative positions and integer ambiguities of the periodic carrier phase measurements are determined with an integer least-squares estimation using an integer decorrelation and sequential tree search. Prior knowledge on the relative positions is used to increase the success rate of ambiguity fixing. We have validated the proposed method with low-cost magnetometers and GNSS receivers on a vehicle in a test drive. The calibration enabled a consistent heading determination with an accuracy of five degrees. This precise magnetometer-based attitude information allows an instantaneous GNSS integer ambiguity fixing.

  19. Synthesis, characterization, single crystal X-ray determination, fluorescence and electrochemical studies of new dinuclear nickel(II) and oxovanadium(IV) complexes containing double Schiff base ligands

    NASA Astrophysics Data System (ADS)

    Shafaatian, Bita; Ozbakzaei, Zahra; Notash, Behrouz; Rezvani, S. Ahmad

    2015-04-01

    A series of new bimetallic complexes of nickel(II) and vanadium(IV) have been synthesized by the reaction of the new double bidentate Schiff base ligands with nickel acetate and vanadyl acetylacetonate in 1:1 M ratio. In nickel and also vanadyl complexes the ligands were coordinated to the metals via the imine N and enolic O atoms. The complexes have been found to possess 1:1 metals to ligands stoichiometry and the molar conductance data revealed that the metal complexes were non-electrolytes. The nickel and vanadyl complexes exhibited distorted square planar and square pyramidal coordination geometries, respectively. The emission spectra of the ligands and their complexes were studied in methanol. Electrochemical properties of the ligands and their metal complexes were also investigated in DMSO solvent at 150 mV s-1 scan rate. The ligands and metal complexes showed both quasi-reversible and irreversible processes at this scan rate. The Schiff bases and their complexes have been characterized by FT-IR, 1H NMR, UV/Vis spectroscopies, elemental analysis and conductometry. The crystal structure of the nickel complex has been determined by single crystal X-ray diffraction.

  20. The response of ionization chambers to relativistic heavy nuclei

    NASA Technical Reports Server (NTRS)

    Newport, B. J.; Stone, E. C.; Waddington, C. J.; Binns, W. R.; Fixsen, D. J.; Garrard, T. L.; Grimm, G.; Israel, M. H.; Klarmann, J.

    1985-01-01

    As part of a recent calibration at the LBL Bevalac for the Heavy Nuclei Experiment on HEAO-3, the response of a set of laboratory ionization chambers were compared to beams of 26Fe, 36 Kr, 54Xe, 67 Ho, and 79 Au nuclei at maximum energies ranging from 1666 MeV/amu for Fe to 1049 MeV/amu for Au. The response of these chambers shows a significant deviation from the expected energy dependence, but only a slight deviation from Z squared scaling.

  1. Di-tert-butyl­chlorido(N,N-dibenzyl­dithio­carbamato)tin(IV)

    PubMed Central

    Abdul Muthalib, Amirah Faizah; Baba, Ibrahim; Mohamed Tahir, Mohamed Ibrahim; Tiekink, Edward R. T.

    2011-01-01

    The SnIV atom in the title diorganotin dithio­carbamate, [Sn(C4H9)2(C15H14NS2)Cl], is penta­coordinated by an asymmetrically coordinating dithio­carbamate ligand, a Cl atom and two C atoms of the Sn-bound tert-butyl groups. The resulting C2ClS2 donor set defines a coordination geometry inter­mediate between square pyramidal and trigonal bipyramidal with a slight tendency towards the former. PMID:21522304

  2. EPR Studies of the Binding Properties, Guest Dynamics, and Inner-Space Dimensions of a Water-Soluble Resorcinarene Capsule.

    PubMed

    Ayhan, Mehmet Menaf; Casano, Gilles; Karoui, Hakim; Rockenbauer, Antal; Monnier, Valérie; Hardy, Micaël; Tordo, Paul; Bardelang, David; Ouari, Olivier

    2015-11-09

    Nitroxide free radicals have been used to study the inner space of one of Rebek's water-soluble capsules. EPR and (1) H NMR spectroscopy, ESI-MS, and DFT calculations showed a preference for the formation of 1:2 complexes. EPR titrations allowed us to determine binding constants (Ka ) in the order of 10(7)  M(-2) . EPR spectral-shape analysis provided information on the guest rotational dynamics within the capsule. The interplay between optimum hydrogen bonding upon capsule formation and steric strain for guest accommodation highlights some degree of flexibility for guest inclusion, particularly at the center of the capsule where the hydrogen bond seam can be barely distorted or slightly disturbed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Shadow of noncommutative geometry inspired black hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Shao-Wen; Cheng, Peng; Zhong, Yi

    2015-08-01

    In this paper, the shadow casted by the rotating black hole inspired by noncommutative geometry is investigated. In addition to the dimensionless spin parameter a/M{sub 0} with M{sub 0} black hole mass and inclination angle i, the dimensionless noncommutative parameter √θ/M{sub 0} is also found to affect the shape of the black hole shadow. The result shows that the size of the shadow slightly decreases with the parameter √θ/M{sub 0}, while the distortion increases with it. Compared to the Kerr black hole, the parameter √θ/M{sub 0} increases the deformation of the shadow. This may offer a way to distinguish noncommutativemore » geometry inspired black hole from Kerr one via astronomical instruments in the near future.« less

  4. Measured performance of a 1089 K (1500 deg F) heat storage device for sun-shade orbital missions

    NASA Technical Reports Server (NTRS)

    Namkoong, D.

    1972-01-01

    Tubes designed for a solar heat receiver to serve as an energy source for a Brayton power system were tested for 2002 hours and 1251 sun-shade cycles. The tubes were designed to transfer a constant thermal input to the Brayton system during an orbit. Excess solar energy during a sun period is stored as heat of fusion of lithium fluoride. The niobium - 1% zirconium tubes accommodate the 23 percent volume decrease of LiF during freezing. Test results showed slight, local distortions. The gas discharge temperature varied from 16 K (29 F) below to 28 K (50 F) above the nominal value of 1089 K (1500 F). The tube surface temperatures ranged from 1039 K (1410 F) to 1183 K (1670 F).

  5. Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses.

    PubMed

    Okhrimchuk, Andrey; Mezentsev, Vladimir; Shestakov, Alexander; Bennion, Ian

    2012-02-13

    A depressed cladding waveguide with record low loss of 0.12 dB/cm is inscribed in YAG:Nd(0.3at.%) crystal by femtosecond laser pulses with an elliptical beam waist. The waveguide is formed by a set of parallel tracks which constitute the depressed cladding. It is a key element for compact and efficient CW waveguide laser operating at 1064 nm and pumped by a multimode laser diode. Special attention is paid to mechanical stress resulting from the inscription process. Numerical calculation of mode distribution and propagation loss with the elasto-optical effect taken into account leads to the conclusion that the depressed cladding is a dominating factor in waveguide mode formation, while the mechanical stress only slightly distorts waveguide modes.

  6. Manipulating femtosecond pulse shape using liquid crystals infiltrated one-dimensional graded index photonic crystal waveguides composed of coupled-cavities

    NASA Astrophysics Data System (ADS)

    Fathollahi Khalkhali, T.; Bananej, A.

    2017-10-01

    In this paper, we investigate the transmission of a 10-femtosecond pulse through an ordinary and graded index coupled-cavity waveguide, using finite-difference time-domain and transfer matrix method. The ordinary structure is composed of dielectric/liquid crystal layers in which four defect layers are placed symmetrically. Next, we introduce a graded structure based on the ordinary system in which dielectric refractive index slightly increases with a constant step value from the beginning to the end of the structure while liquid crystal layers are maintained unchanged. Simulation results reveal that by applying an external static electric field and controlling liquid crystal refractive index in graded structure, it is possible to transmit an ultrashort pulse with negligible distortion and attenuation.

  7. First-Order System Least Squares for the Stokes Equations, with Application to Linear Elasticity

    NASA Technical Reports Server (NTRS)

    Cai, Z.; Manteuffel, T. A.; McCormick, S. F.

    1996-01-01

    Following our earlier work on general second-order scalar equations, here we develop a least-squares functional for the two- and three-dimensional Stokes equations, generalized slightly by allowing a pressure term in the continuity equation. By introducing a velocity flux variable and associated curl and trace equations, we are able to establish ellipticity in an H(exp 1) product norm appropriately weighted by the Reynolds number. This immediately yields optimal discretization error estimates for finite element spaces in this norm and optimal algebraic convergence estimates for multiplicative and additive multigrid methods applied to the resulting discrete systems. Both estimates are uniform in the Reynolds number. Moreover, our pressure-perturbed form of the generalized Stokes equations allows us to develop an analogous result for the Dirichlet problem for linear elasticity with estimates that are uniform in the Lame constants.

  8. Statistical fluctuations in cooperative cyclotron radiation

    NASA Astrophysics Data System (ADS)

    Anishchenko, S. V.; Baryshevsky, V. G.

    2018-01-01

    Shot noise is the cause of statistical fluctuations in cooperative cyclotron radiation generated by an ensemble of electrons oscillating in magnetic field. Autophasing time - the time required for the cooperative cyclotron radiation power to peak - is the critical parameter characterizing the dynamics of electron-oscillators interacting via the radiation field. It is shown that premodulation of charged particles leads to a considerable narrowing of the autophasing time distribution function for which the analytic expression is obtained. When the number of particles Ne exceeds a certain value that depends on the degree to which the particles have been premodulated, the relative root-mean-square deviation (RMSD) of the autophasing time δT changes from a logarithmic dependence on Ne (δT ∼ 1 / lnNe) to square-root (δT ∼ 1 /√{Ne }). A slight energy spread (∼4%) results in a twofold drop of the maximum attainable power of cooperative cyclotron radiation.

  9. Poly[bis­[μ2-1,4-bis­(1H-imidazol-1-yl)butane]­dichloridonickel(II)

    PubMed Central

    Zhang, Jia; Song, Jiang-Feng

    2011-01-01

    The asymmetric unit of the title compound, [NiCl2(C10H14N4)2]n, consists of one Ni2+ ion which is located on an inversion center, one 1,4-bis­(imidazol-1-yl)butane (bimb) and one chloride ion. The Ni2+ ion exhibits a distorted octa­hedral coordination environment defined by four N atoms from four bimb ligands in the equatorial plane and two chloride ions in axial positions. The bridging coordination mode of the bimb ligands leads to the formation of inter­penetrating square Ni4(bimb)4 units that are arranged parallel to (001). The separation between the Ni atoms in these units is 13.740 (3) Å. PMID:22219855

  10. Filter distortion effects on telemetry signal-to-noise ratio

    NASA Technical Reports Server (NTRS)

    Sadr, R.; Hurd, W.

    1987-01-01

    The effect of filtering on the Signal-to-Noise Ratio (SNR) of a coherently demodulated band-limited signal is determined in the presence of worse-case amplitude ripple. The problem is formulated mathematically as an optimization problem in the L2-Hilbert space. The form of the worst-cast amplitude ripple is specified, and the degradation in the SNR is derived in a closed form expression. It is shown that when the maximum passband amplitude ripple is 2 delta (peak to peak), the SNR is degraded by at most (1 - delta squared), even when the ripple is unknown or uncompensated. For example, an SNR loss of less than 0.01 dB due to amplitude ripple can be assured by keeping the amplitude ripple to under 0.42 dB.

  11. Investigations on the hierarchy of reference frames in geodesy and geodynamics

    NASA Technical Reports Server (NTRS)

    Grafarend, E. W.; Mueller, I. I.; Papo, H. B.; Richter, B.

    1979-01-01

    Problems related to reference directions were investigated. Space and time variant angular parameters are illustrated in hierarchic structures or towers. Using least squares techniques, model towers of triads are presented which allow the formation of linear observation equations. Translational and rotational degrees of freedom (origin and orientation) are discussed along with and the notion of length and scale degrees of freedom. According to the notion of scale parallelism, scale factors with respect to a unit length are given. Three-dimensional geodesy was constructed from the set of three base vectors (gravity, earth-rotation and the ecliptic normal vector). Space and time variations are given with respect to a polar and singular value decomposition or in terms of changes in translation, rotation, deformation (shear, dilatation or angular and scale distortions).

  12. Development Roadmap for an Adjustable X-Ray Optics Observatory

    NASA Technical Reports Server (NTRS)

    Schwartz, Dan; Brissenden, R.; Bookbinder, J.; Davis, W.; Forman, W.; Freeman, M.; O'Dell, S.; Ramsey, B.; Reid, P.; Romaine, S.; hide

    2011-01-01

    We are developing adjustable X-ray optics to use on a mission such as SMART-X (see posters 38.02, 38.03 and Presentation 30.03). To satisfy the science problems expected to be posed by the next decadal survey, we anticipate requiring effective area greater than 1 square meter and Chandra-like angular resolution: approximately equal to 0.5 inches. To achieve such precise resolution we are developing adjustable mirror technology for X-ray astronomy application. This uses a thin film of piezoelectric material deposited on the back surface of the mirror to correct for figure distortions, including manufacturing errors and deflections due to gravity and thermal effects. We present here a plan to raise this technology from its current Level 2, to Level 6, by 2018.

  13. Synthesis and characterization of a novel schiff base of 1,2-diaminopropane with substituted salicyaldehyde and its transition metal complexes: Single crystal structures and biological activities

    NASA Astrophysics Data System (ADS)

    Tadavi, Samina K.; Yadav, Abhijit A.; Bendre, Ratnamala S.

    2018-01-01

    A novel schiff base H2L derived from simple condensation of 2-hydroxy-6-isopropyl-3-methyl benzaldehyde and 1,2-diaminopropane in 2:1 M ratio and its [MnL], [CoL] and [NiL]2 complexes have been prepared and characterized by spectroscopic technique, elemental analysis, SEM-EDX analysis, and cyclic voltammetry. Additionally, single crystal X-ray diffraction technique has been applied to the schiff base ligand H2L and its nickel complex. The structure of nickel complex exhibited dimeric form with formula [NiL]2 with distorted square planar geometry around each nickel center. Furthermore, all the synthesized compounds were screened for their antimicrobial and antioxidant and DNA cleavage activities.

  14. Acoustically induced oscillation and rotation of a large drop in space

    NASA Astrophysics Data System (ADS)

    Jacobi, N.; Croonquist, A. P.; Elleman, D. D.; Wang, T. G.

    1982-03-01

    A 2.5 cm diameter water drop was successfully deployed and manipulated in a triaxial acoustic resonance chamber during a 240 sec low-gravity SPAR rocket flight. Oscillation and rotation were induced by modulating and phase shifting the signals to the speakers. Portions of the film record were digitized and analyzed. Spectral analysis brought out the n = 2, 3, 4 free oscillation modes of the drop, its very low-frequency center-of-mass motion in the acoustic potential well, and the forced oscillation frequency. The drop boundaries were least-square fitted to general ellipses, providing eccentricities of the distorted drop. The normalized equatorial area of the rotating drop was plotted vs a rotational parameter, and was in excellent agreement with values derived from the theory of equilibrium shapes of rotating liquid drops.

  15. Investigations of the Rayleigh-Taylor and Richtmyer-Meshkov Instabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riccardo Bonazza; Mark Anderson; Jason Oakley

    2008-03-14

    The present program is centered on the experimental study of shock-induced interfacial fluid instabilities. Both 2-D (near-sinusoids) and 3-D (spheres) initial conditions are studied in a large, vertical square shock tube facility. The evolution of the interface shape, its distortion, the modal growth rates and the mixing of the fluids at the interface are all objectives of the investigation. In parallel to the experiments, calculations are performed using the Raptor code, on platforms made available by LLNL. These flows are of great relevance to both ICF and stockpile stewardship. The involvement of four graduate students is in line with themore » national laboratories' interest in the education of scientists and engineers in disciplines and technologies consistent with the labs' missions and activities.« less

  16. Investigation of the Richtmyer-Meshkov instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riccardo Bonazza; Mark Anderson; Jason Oakley

    2008-12-22

    The present program is centered on the experimental study of shock-induced interfacial fluid instabilities. Both 2-D (near-sinusoids) and 3-D (spheres) initial conditions are studied in a large, vertical square shock tube facility. The evolution of the interface shape, its distortion, the modal growth rates and the mixing of the fluids at the interface are all objectives of the investigation. In parallel to the experiments, calculations are performed using the Raptor code, on platforms made available by LLNL. These flows are of great relevance to both ICF and stockpile stewardship. The involvement of three graduate students is in line with themore » national laboratories' interest in the education of scientists and engineers in disciplines and technologies consistent with the labs' missions and activities.« less

  17. Validating data analysis of broadband laser ranging

    NASA Astrophysics Data System (ADS)

    Rhodes, M.; Catenacci, J.; Howard, M.; La Lone, B.; Kostinski, N.; Perry, D.; Bennett, C.; Patterson, J.

    2018-03-01

    Broadband laser ranging combines spectral interferometry and a dispersive Fourier transform to achieve high-repetition-rate measurements of the position of a moving surface. Telecommunications fiber is a convenient tool for generating the large linear dispersions required for a dispersive Fourier transform, but standard fiber also has higher-order dispersion that distorts the Fourier transform. Imperfections in the dispersive Fourier transform significantly complicate the ranging signal and must be dealt with to make high-precision measurements. We describe in detail an analysis process for interpreting ranging data when standard telecommunications fiber is used to perform an imperfect dispersive Fourier transform. This analysis process is experimentally validated over a 27-cm scan of static positions, showing an accuracy of 50 μm and a root-mean-square precision of 4.7 μm.

  18. Size dependence of magneto-optical activity in silver nanoparticles with dimensions between 10 and 60 nm studied by MCD spectroscopy.

    PubMed

    Shiratsu, Taisuke; Yao, Hiroshi

    2018-02-07

    Size-dependent magneto-optical activity in Ag nanoparticles with dimensions from 10 to 60 nm is demonstrated with magnetic circular dichroism (MCD) spectroscopy. The Ag nanoparticles are prepared on the basis of a seeded-growth strategy using sodium citrate and/or tannic acid as reducing agents in aqueous solution. The obtained nanoparticles are roughly spherical, but those larger than ∼28 nm have a slight diversity of shapes with quasi-spherical polyhedrons. They exhibit a derivative-like MCD response in the localized surface plasmon resonance (LSPR) region, which originates from two circular modes of surface magnetoplasmons. With an increase in the nanoparticle diameter, the bisignated MCD signal is strongly distorted and weakened. Such a distortion for large-sized Ag nanoparticles can be phenomenologically simulated on the basis of both spectral inhomogeneity and MCD signal lobe asymmetry. Then the maximum value of MCD amplitude (MCD max ), which is obtained by normalization of the amplitude to the LSPR peak absorbance, first increases with increasing particle diameter and then decreases with a maximum for the 23 nm nanoparticle. Interestingly, the MCD max values are inversely correlated with the spectral bandwidth of LSPR extinction. This behaviour is discussed from a viewpoint of inhomogeneous effects of both spectral and size/shape distributions. We believe the present results will advance the design and application of optical devices based on magnetoplasmonics.

  19. Evaluating Continuous-Time Slam Using a Predefined Trajectory Provided by a Robotic Arm

    NASA Astrophysics Data System (ADS)

    Koch, B.; Leblebici, R.; Martell, A.; Jörissen, S.; Schilling, K.; Nüchter, A.

    2017-09-01

    Recently published approaches to SLAM algorithms process laser sensor measurements and output a map as a point cloud of the environment. Often the actual precision of the map remains unclear, since SLAMalgorithms apply local improvements to the resulting map. Unfortunately, it is not trivial to compare the performance of SLAMalgorithms objectively, especially without an accurate ground truth. This paper presents a novel benchmarking technique that allows to compare a precise map generated with an accurate ground truth trajectory to a map with a manipulated trajectory which was distorted by different forms of noise. The accurate ground truth is acquired by mounting a laser scanner on an industrial robotic arm. The robotic arm is moved on a predefined path while the position and orientation of the end-effector tool are monitored. During this process the 2D profile measurements of the laser scanner are recorded in six degrees of freedom and afterwards used to generate a precise point cloud of the test environment. For benchmarking, an offline continuous-time SLAM algorithm is subsequently applied to remove the inserted distortions. Finally, it is shown that the manipulated point cloud is reversible to its previous state and is slightly improved compared to the original version, since small errors that came into account by imprecise assumptions, sensor noise and calibration errors are removed as well.

  20. Distortion-product otoacoustic emission reflection-component delays and cochlear tuning: estimates from across the human lifespan.

    PubMed

    Abdala, Carolina; Guérit, François; Luo, Ping; Shera, Christopher A

    2014-04-01

    A consistent relationship between reflection-emission delay and cochlear tuning has been demonstrated in a variety of mammalian species, as predicted by filter theory and models of otoacoustic emission (OAE) generation. As a step toward the goal of studying cochlear tuning throughout the human lifespan, this paper exploits the relationship and explores two strategies for estimating delay trends-energy weighting and peak picking-both of which emphasize data at the peaks of the magnitude fine structure. Distortion product otoacoustic emissions (DPOAEs) at 2f1-f2 were recorded, and their reflection components were extracted in 184 subjects ranging in age from prematurely born neonates to elderly adults. DPOAEs were measured from 0.5-4 kHz in all age groups and extended to 8 kHz in young adults. Delay trends were effectively estimated using either energy weighting or peak picking, with the former method yielding slightly shorter delays and the latter somewhat smaller confidence intervals. Delay and tuning estimates from young adults roughly match those obtained from SFOAEs. Although the match is imperfect, reflection-component delays showed the expected bend (apical-basal transition) near 1 kHz, consistent with a break in cochlear scaling. Consistent with other measures of tuning, the term newborn group showed the longest delays and sharpest tuning over much of the frequency range.

  1. Crystal structure of bis­[trans-(ethane-1,2-di­amine-κ2 N,N′)bis­(thio­cyanato-κN)chromium(III)] tetra­chlorido­zincate from synchrotron data

    PubMed Central

    Moon, Dohyun; Choi, Jong-Ha

    2015-01-01

    The structure of the title compound, [Cr(NCS)2(C2H8N2)2]2[ZnCl4], has been determined from synchrotron data. In the asymmetric unit, there are four independent halves of the CrIII complex cations, each of which lies on an inversion centre, and one tetra­chlorido­zincate anion in a general position. The CrIII atoms are coordinated by the four N atoms of two ethane-1,2-di­amine (en) ligands in the equatorial plane and two N-bound NCS− anions in a trans arrangement, displaying a slightly distorted octa­hedral geometry with crystallographic inversion symmetry. The Cr—N(en) and Cr—N(NCS) bond lengths range from 2.0653 (10) to 2.0837 (10) Å and from 1.9811 (10) to 1.9890 (10) Å, respectively. The five-membered metalla-rings are in stable gauche conformations. The [ZnCl4]2− anion has a distorted tetra­hedral geometry. The crystal structure is stabilized by inter­molecular hydrogen bonds involving the en NH2 or CH2 groups as donors and chloride ligands of the anion and S atoms of NCS− ligands as acceptors. PMID:25705463

  2. Synchrotron-based XAS on structure investigation of La0.99-xSrx(Na, K, Ba)0.01MnO3 nanoparticles: Evidence of magnetic properties

    NASA Astrophysics Data System (ADS)

    Daengsakul, Sujittra; Saengplot, Saowalak; Kidkhunthod, Pinit; Pimsawat, Adulphan; Maensiri, Santi

    2018-04-01

    This work presents the structural study of La0.99-xSrx(Na, K, Ba)0.01MnO3 or LSAM nanoparticles synthesized using thermal-hydro decomposition method where A denotes Na, K, Sr and Ba, respectively. The effect of ionic radii size of A dopants or rA from the substitution of A for La and Sr on the MnO6 octrahedral structure, where the average size of the cations occupying in A-site or 〈rA〉 is fixed at ∼ 1.24 Å, is focused. The LSAM nanoparticles are carefully studied using X-ray diffraction (XRD) including Rietveld refinement and X-ray Absorption Spectroscopy (XAS) including X-ray Absorption Near edge Structure (XANES) and X-ray Absorption Fine Structure (EXAFS). The Rietveld refinement shows all nano-powder samples have rhombohedral structure. By XANES technique we found that the effect of A substitutions at A-site causes a slight change of mean oxidation state of Mn between 3.54 and 3.60. Furthermore, the structural distortion of MnO6 octrahedral in samples is analysed and obtained from EXAFS. The observed trend of ferromagnetism for all LSAM samples can be clearly explained by evidences of A-site doping, structural distortion around Mn atoms and mixing Mn3+/Mn4+ valence states.

  3. Asymmetric bubble collapse

    NASA Astrophysics Data System (ADS)

    Lai, Lipeng; Turitsyn, Konstantin S.; Zhang, Wendy W.

    2008-11-01

    Recent studies reveal that an inertial implosion, analogous to the collapse of a large cavity in water, governs how a submerged air bubble disconnects from a nozzle. For the bubble, slight asymmetries in the initial neck shape give rise to vibrations that grow pronounced over time. These results motivate our study of the final stage of asymmetric cavity collapse. We are particularly interested in the generic situation where the initial condition is sufficiently well-focused that a cavity can implode inwards energetically. Yet, because the initial condition is not perfectly symmetric, the implosion fails to condense all the energy. We consider cavity shapes in the slender-body limit, for which the collapse dynamics is quasi two-dimensional. In this limit, each cross-section of the cavity evolves as if it were a distorted void immersed in an inviscid and irrotational fluid. Simulations of a circular void distorted by an elongation-compression vibrational mode reveal that a variety of outcomes are possible in the 2D problem. Opposing sides of the void surface can curve inwards and contact smoothly in a finite amount of time. Depending on the phase of the vibration excited, the contact can be either north-south or east-west. Phase values that lie in the transition zone from one orientation to the other give rise to final shapes with large lengthscale separation. We show also that the final outcome varies non-monotonically with the initial amplitude of the vibrational mode.

  4. Inference Control Mechanism for Statistical Database: Frequency-Imposed Data Distortions.

    ERIC Educational Resources Information Center

    Liew, Chong K.; And Others

    1985-01-01

    Introduces two data distortion methods (Frequency-Imposed Distortion, Frequency-Imposed Probability Distortion) and uses a Monte Carlo study to compare their performance with that of other distortion methods (Point Distortion, Probability Distortion). Indications that data generated by these two methods produce accurate statistics and protect…

  5. Prediction of valid acidity in intact apples with Fourier transform near infrared spectroscopy.

    PubMed

    Liu, Yan-De; Ying, Yi-Bin; Fu, Xia-Ping

    2005-03-01

    To develop nondestructive acidity prediction for intact Fuji apples, the potential of Fourier transform near infrared (FT-NIR) method with fiber optics in interactance mode was investigated. Interactance in the 800 nm to 2619 nm region was measured for intact apples, harvested from early to late maturity stages. Spectral data were analyzed by two multivariate calibration techniques including partial least squares (PLS) and principal component regression (PCR) methods. A total of 120 Fuji apples were tested and 80 of them were used to form a calibration data set. The influences of different data preprocessing and spectra treatments were also quantified. Calibration models based on smoothing spectra were slightly worse than that based on derivative spectra, and the best result was obtained when the segment length was 5 nm and the gap size was 10 points. Depending on data preprocessing and PLS method, the best prediction model yielded correlation coefficient of determination (r2) of 0.759, low root mean square error of prediction (RMSEP) of 0.0677, low root mean square error of calibration (RMSEC) of 0.0562. The results indicated the feasibility of FT-NIR spectral analysis for predicting apple valid acidity in a nondestructive way.

  6. Modeling and Simulation of Linear and Nonlinear MEMS Scale Electromagnetic Energy Harvesters for Random Vibration Environments

    PubMed Central

    Sassani, Farrokh

    2014-01-01

    The simulation results for electromagnetic energy harvesters (EMEHs) under broad band stationary Gaussian random excitations indicate the importance of both a high transformation factor and a high mechanical quality factor to achieve favourable mean power, mean square load voltage, and output spectral density. The optimum load is different for random vibrations and for sinusoidal vibration. Reducing the total damping ratio under band-limited random excitation yields a higher mean square load voltage. Reduced bandwidth resulting from decreased mechanical damping can be compensated by increasing the electrical damping (transformation factor) leading to a higher mean square load voltage and power. Nonlinear EMEHs with a Duffing spring and with linear plus cubic damping are modeled using the method of statistical linearization. These nonlinear EMEHs exhibit approximately linear behaviour under low levels of broadband stationary Gaussian random vibration; however, at higher levels of such excitation the central (resonant) frequency of the spectral density of the output voltage shifts due to the increased nonlinear stiffness and the bandwidth broadens slightly. Nonlinear EMEHs exhibit lower maximum output voltage and central frequency of the spectral density with nonlinear damping compared to linear damping. Stronger nonlinear damping yields broader bandwidths at stable resonant frequency. PMID:24605063

  7. Prediction of valid acidity in intact apples with Fourier transform near infrared spectroscopy*

    PubMed Central

    Liu, Yan-de; Ying, Yi-bin; Fu, Xia-ping

    2005-01-01

    To develop nondestructive acidity prediction for intact Fuji apples, the potential of Fourier transform near infrared (FT-NIR) method with fiber optics in interactance mode was investigated. Interactance in the 800 nm to 2619 nm region was measured for intact apples, harvested from early to late maturity stages. Spectral data were analyzed by two multivariate calibration techniques including partial least squares (PLS) and principal component regression (PCR) methods. A total of 120 Fuji apples were tested and 80 of them were used to form a calibration data set. The influences of different data preprocessing and spectra treatments were also quantified. Calibration models based on smoothing spectra were slightly worse than that based on derivative spectra, and the best result was obtained when the segment length was 5 nm and the gap size was 10 points. Depending on data preprocessing and PLS method, the best prediction model yielded correlation coefficient of determination (r 2) of 0.759, low root mean square error of prediction (RMSEP) of 0.0677, low root mean square error of calibration (RMSEC) of 0.0562. The results indicated the feasibility of FT-NIR spectral analysis for predicting apple valid acidity in a nondestructive way. PMID:15682498

  8. Arc-Second Alignment of International X-Ray Observatory Mirror Segments in a Fixed Structure

    NASA Technical Reports Server (NTRS)

    Evans, Tyler, C.; Chan, Kai-Wing; Saha, Timo T.

    2010-01-01

    The optics for the International X-Ray Observatory (IXO) require alignment and integration of about fourteen thousand thin mirror segments to achieve the mission goal of 3.0 square meters of effective area at 1.25 keV with an angular resolution of five arc-seconds. These mirror segments are 0.4 mm thick, and 200 to 400 mm in size, which makes it hard to meet the strict angular resolution requirement of 5 arc-seconds for the telescope. This paper outlines the precise alignment, verification testing, and permanent bonding techniques developed at NASA's Goddard Space Flight Center (GSFC). These techniques are used to overcome the challenge of transferring thin mirror segments from a temporary mount to a fixed structure with arc-second alignment and minimal figure distortion. Recent advances in technology development in addition to the automation of several processes have produced significant results. Recent advances in the mirror fixture process known as the suspension mount has allowed for a mirror to be mounted to a fixture with minimal distortion. Once on the fixture, mirror segments have been aligned to around 5 arc-seconds which is halfway to the goal of 2.5 arc-seconds per mirror segment. This paper will highlight the recent advances in alignment, testing, and permanent bonding techniques as well as the results they have produced.

  9. A Bridge to Coordination Isomer Selection in Lanthanide(III) DOTA-tetraamide Complexes

    PubMed Central

    Vipond, Jeff; Woods, Mark; Zhao, Piyu; Tircso, Gyula; Ren, Jimin; Bott, Simon G.; Ogrin, Doug; Kiefer, Garry E.; Kovacs, Zoltan; Sherry, A.Dean

    2008-01-01

    Interest in macrocyclic lanthanide complexes such as DOTA is driven largely through interest in their use as contrast agents for MRI. The lanthanide tetraamide derivatives of DOTA have shown considerable promise as PARACEST agents, taking advantage of the slow water exchange kinetics of this class of complex. We postulated that water exchange in these tetraamide complexes could be slowed even further by introducing a group to sterically encumber the space above the water coordination site, thereby hindering the departure and approach of water molecules to the complex. The ligand 8O2-bridged-DOTAM was synthesized in a 34% yield from cyclen. It was found that the lanthanide complexes of this ligand did not possess a water molecule in the inner coordination sphere of the bound lanthanide. The crystal structure of the ytterbium complex revealed that distortions to the coordination sphere were induced by the steric constraints imposed on the complex by the bridging unit. The extent of the distortion was found to increase with increasing ionic radius of the lanthanide ion, eventually resulting in a complete loss of symmetry in the complex. Because this ligand system is bicyclic, the conformation of each ring in the system is constrained by that of the other, in consequence inclusion of the bridging unit in the complexes means only a twisted square antiprismatic coordination geometry is observed for complexes of 8O2-bridged-DOTAM. PMID:17295475

  10. Output MSE and PSNR prediction in DCT-based lossy compression of remote sensing images

    NASA Astrophysics Data System (ADS)

    Kozhemiakin, Ruslan A.; Abramov, Sergey K.; Lukin, Vladimir V.; Vozel, Benoit; Chehdi, Kacem

    2017-10-01

    Amount and size of remote sensing (RS) images acquired by modern systems are so large that data have to be compressed in order to transfer, save and disseminate them. Lossy compression becomes more popular for aforementioned situations. But lossy compression has to be applied carefully with providing acceptable level of introduced distortions not to lose valuable information contained in data. Then introduced losses have to be controlled and predicted and this is problematic for many coders. In this paper, we analyze possibilities of predicting mean square error or, equivalently, PSNR for coders based on discrete cosine transform (DCT) applied either for compressing singlechannel RS images or multichannel data in component-wise manner. The proposed approach is based on direct dependence between distortions introduced due to DCT coefficient quantization and losses in compressed data. One more innovation deals with possibility to employ a limited number (percentage) of blocks for which DCT-coefficients have to be calculated. This accelerates prediction and makes it considerably faster than compression itself. There are two other advantages of the proposed approach. First, it is applicable for both uniform and non-uniform quantization of DCT coefficients. Second, the approach is quite general since it works for several analyzed DCT-based coders. The simulation results are obtained for standard test images and then verified for real-life RS data.

  11. A Novel Error Model of Optical Systems and an On-Orbit Calibration Method for Star Sensors.

    PubMed

    Wang, Shuang; Geng, Yunhai; Jin, Rongyu

    2015-12-12

    In order to improve the on-orbit measurement accuracy of star sensors, the effects of image-plane rotary error, image-plane tilt error and distortions of optical systems resulting from the on-orbit thermal environment were studied in this paper. Since these issues will affect the precision of star image point positions, in this paper, a novel measurement error model based on the traditional error model is explored. Due to the orthonormal characteristics of image-plane rotary-tilt errors and the strong nonlinearity among these error parameters, it is difficult to calibrate all the parameters simultaneously. To solve this difficulty, for the new error model, a modified two-step calibration method based on the Extended Kalman Filter (EKF) and Least Square Methods (LSM) is presented. The former one is used to calibrate the main point drift, focal length error and distortions of optical systems while the latter estimates the image-plane rotary-tilt errors. With this calibration method, the precision of star image point position influenced by the above errors is greatly improved from 15.42% to 1.389%. Finally, the simulation results demonstrate that the presented measurement error model for star sensors has higher precision. Moreover, the proposed two-step method can effectively calibrate model error parameters, and the calibration precision of on-orbit star sensors is also improved obviously.

  12. Real-Time Multi-Target Localization from Unmanned Aerial Vehicles

    PubMed Central

    Wang, Xuan; Liu, Jinghong; Zhou, Qianfei

    2016-01-01

    In order to improve the reconnaissance efficiency of unmanned aerial vehicle (UAV) electro-optical stabilized imaging systems, a real-time multi-target localization scheme based on an UAV electro-optical stabilized imaging system is proposed. First, a target location model is studied. Then, the geodetic coordinates of multi-targets are calculated using the homogeneous coordinate transformation. On the basis of this, two methods which can improve the accuracy of the multi-target localization are proposed: (1) the real-time zoom lens distortion correction method; (2) a recursive least squares (RLS) filtering method based on UAV dead reckoning. The multi-target localization error model is established using Monte Carlo theory. In an actual flight, the UAV flight altitude is 1140 m. The multi-target localization results are within the range of allowable error. After we use a lens distortion correction method in a single image, the circular error probability (CEP) of the multi-target localization is reduced by 7%, and 50 targets can be located at the same time. The RLS algorithm can adaptively estimate the location data based on multiple images. Compared with multi-target localization based on a single image, CEP of the multi-target localization using RLS is reduced by 25%. The proposed method can be implemented on a small circuit board to operate in real time. This research is expected to significantly benefit small UAVs which need multi-target geo-location functions. PMID:28029145

  13. Phase transitions and thermal entanglement of the distorted Ising-Heisenberg spin chain: topology of multiple-spin exchange interactions in spin ladders

    NASA Astrophysics Data System (ADS)

    Arian Zad, Hamid; Ananikian, Nerses

    2017-11-01

    We consider a symmetric spin-1/2 Ising-XXZ double sawtooth spin ladder obtained from distorting a spin chain, with the XXZ interaction between the interstitial Heisenberg dimers (which are connected to the spins based on the legs via an Ising-type interaction), the Ising coupling between nearest-neighbor spins of the legs and rungs spins, respectively, and additional cyclic four-spin exchange (ring exchange) in the square plaquette of each block. The presented analysis supplemented by results of the exact solution of the model with infinite periodic boundary implies a rich ground state phase diagram. As well as the quantum phase transitions, the characteristics of some of the thermodynamic parameters such as heat capacity, magnetization and magnetic susceptibility are investigated. We prove here that among the considered thermodynamic and thermal parameters, solely heat capacity is sensitive versus the changes of the cyclic four-spin exchange interaction. By using the heat capacity function, we obtain a singularity relation between the cyclic four-spin exchange interaction and the exchange coupling between pair spins on each rung of the spin ladder. All thermal and thermodynamic quantities under consideration should be investigated by regarding those points which satisfy the singularity relation. The thermal entanglement within the Heisenberg spin dimers is investigated by using the concurrence, which is calculated from a relevant reduced density operator in the thermodynamic limit.

  14. Real-Time Multi-Target Localization from Unmanned Aerial Vehicles.

    PubMed

    Wang, Xuan; Liu, Jinghong; Zhou, Qianfei

    2016-12-25

    In order to improve the reconnaissance efficiency of unmanned aerial vehicle (UAV) electro-optical stabilized imaging systems, a real-time multi-target localization scheme based on an UAV electro-optical stabilized imaging system is proposed. First, a target location model is studied. Then, the geodetic coordinates of multi-targets are calculated using the homogeneous coordinate transformation. On the basis of this, two methods which can improve the accuracy of the multi-target localization are proposed: (1) the real-time zoom lens distortion correction method; (2) a recursive least squares (RLS) filtering method based on UAV dead reckoning. The multi-target localization error model is established using Monte Carlo theory. In an actual flight, the UAV flight altitude is 1140 m. The multi-target localization results are within the range of allowable error. After we use a lens distortion correction method in a single image, the circular error probability (CEP) of the multi-target localization is reduced by 7%, and 50 targets can be located at the same time. The RLS algorithm can adaptively estimate the location data based on multiple images. Compared with multi-target localization based on a single image, CEP of the multi-target localization using RLS is reduced by 25%. The proposed method can be implemented on a small circuit board to operate in real time. This research is expected to significantly benefit small UAVs which need multi-target geo-location functions.

  15. Generic distortion model for metrology under optical microscopes

    NASA Astrophysics Data System (ADS)

    Liu, Xingjian; Li, Zhongwei; Zhong, Kai; Chao, YuhJin; Miraldo, Pedro; Shi, Yusheng

    2018-04-01

    For metrology under optical microscopes, lens distortion is the dominant source of error. Previous distortion models and correction methods mostly rely on the assumption that parametric distortion models require a priori knowledge of the microscopes' lens systems. However, because of the numerous optical elements in a microscope, distortions can be hardly represented by a simple parametric model. In this paper, a generic distortion model considering both symmetric and asymmetric distortions is developed. Such a model is obtained by using radial basis functions (RBFs) to interpolate the radius and distortion values of symmetric distortions (image coordinates and distortion rays for asymmetric distortions). An accurate and easy to implement distortion correction method is presented. With the proposed approach, quantitative measurement with better accuracy can be achieved, such as in Digital Image Correlation for deformation measurement when used with an optical microscope. The proposed technique is verified by both synthetic and real data experiments.

  16. Influence of global and local distortion on magnetic properties of cubic La0.6Ba0.4-xCaxCoO3

    NASA Astrophysics Data System (ADS)

    Chang, Hong; Gao, Yu; Wu, Qiang; Dong, Xiaohua; Li, Yunfei; Pang, Yanbo

    2015-12-01

    The magnetic and structural study of the La0.6Ba0.4-xCaxCoO3 (x=0.0, 0.1, 0.2, 0.3, and 0.4) compounds with the lowest global or local distortion are studied. The compounds with x=0, 0.1, 0.2 and 0.3 is crystallized in the structure with the space group Pm-3m, and that with x=0.4 is Pnma. A ferromagnetic-like transition is observed and the Curie temperature, ranging from 235 K to 220 K, decreases slightly with the increasing Ca2+ content for x≤0.3, and the transition temperature is as low as 175 K with x=0.4. A hump, with the hump temperature slightly increase with the Ca2+ content, is observed in the thermal magnetization curves of all of the compounds at the ZFC state, and it is owing to the magnetic frustration because of the coexistence of the FM and the AFM interaction. Above the transition temperature, the magnetic susceptibility versus the temperature is fitted with the ferromagnetic Curie-Weiss law for the compounds with x≤0.3, and that with x=0.4 coincides with the ferrimagnetic Weiss-mean-field model. The absolute values of the exchange constants J1 in the compounds with x≤0.3 and those of J CO 3+CO 3+ ,J CO 3+CO4+ ,JCO4+CO4+ of La0.6Ca0.4CoO3 are deduced from the fitting. The results indicate that (i) the ferromagnetic exchange constants J1 increases with the Ca2+ content x≤0.3; (ii) the ferromagnetic interaction, JCo3+Co4+, plays a main role in the magnetic properties of La0.6Ca0.4CoO3; (iii) the antiferromagnetic interactions, JCo3+Co3+, JCo4+Co4+, are not negligible in the compound x=0.4. The unsaturated magnetization at 70 kOe and the high coercive field in the hysteretic magnetization curve supports the existence of the antiferromagnetic interaction, and the percentage of the antiferromagnetic domain is calculated.

  17. SU-G-TeP2-11: Initial Evaluation of a Novel Split-Filter Dual-Energy CT for Use in Radiation Oncology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, J; Huang, J; Szczykutowicz, T

    2016-06-15

    Purpose: To perform an initial evaluation of a novel split-filter dual-energy CT (DECT) system with the goal of understanding the clinical utility and limitations of the system for radiation therapy. Methods: Several phantoms were imaged using the split-filter DECT technique on the Siemens Edge CT scanner using a range of clinically-relevant doses. The optimum-contrast reconstruction, the mixed reconstruction, and the monoenergetic reconstructions (ranging from 40 keV to 190 keV) were evaluated. Each image was analyzed for CT number accuracy, uniformity, noise, low-contrast visibility (LCV), spatial resolution and geometric distortion. For comparison purposes, all parameters were evaluated on 120 kVp single-energymore » CT (SECT) scans used for treatment planning, as well as, a sequential-scan DECT technique for corresponding doses. Results: For all DECT reconstructions no observable geometric distortion was found. Both the optimal-contrast and mixed images demonstrated slight improvements in LCV and noise when compared to the SECT, and slight reductions in CT number accuracy and spatial resolution. The CT numbers trended as expected for the monoenergetic reconstructions, with CT number accuracy within 50 HU for materials of density <2 g/cm3. Spatial resolution increased with energy, and for monoenergetic reconstructions >70 keV the spatial resolution exceeded that of the SECT. The noise in the monoenergetic reconstructions increased with decreasing energy. Thus, the image uniformity, signal-to-noise ratio and LCV were diminished at lower energies (70 keV). Applying iterative reconstruction techniques to the low-energy images reduced noise and improved LCV. The signal-to-noise ratio was stable for energies >100 keV. Conclusion: The initial commissioning of the novel split-filter DECT technology demonstrated favorable results for clinical implementation. The mixed reconstruction showed potential as a replacement for the treatment planning SECT. The image parameters for the monoenergetic reconstructions varied appropriately with energy. This work provides an initial understanding of the limitations and potential applications for monoenergetic imaging.« less

  18. Mixed-ligand Cu II complexes with Me 5dien and heterocyclic acids. Synthesis, antioxidant and anti-inflammatory activity. Crystal structure of [Cu(Me 5dien)(tpaa)(H 2O)](ClO 4)

    NASA Astrophysics Data System (ADS)

    Christidis, Panayiotis C.; Georgousis, Zacharias D.; Hadjipavlou-Litina, Dimitra; Bolos, Christos A.

    2008-01-01

    The reaction of sodium salt of 2-thiophenecarboxylic acid (tpca), 2-thiopheneacetic acid (tpaa), 2-furoic acid (fa) and picolinic acid (pica), with [Cu(Me 5dien)(ClO 4) 2] ( 1) (Me 5dien = N, N, N', N″ N″-pentamethyldiethylenetriamine) in a 1:1 molar ratio, afforded new mixed-ligand compounds of the type [Cu(Me 5dien)(tpca)(H 2O)](ClO 4) ( 2), [Cu(Me 5dien)(tpaa)(H 2O)](ClO 4) ( 3), [Cu(Me 5dien)(fa)](BPh 4) ( 4) and [Cu(Me 5dien)(pica)](ClO 4) ( 5). The new mixed-ligand complexes are mononuclear, paramagnetic, conductive compounds with a distorted square pyramidal geometry. The square pyramidal stereochemistry proposed by spectroscopic (IR, UV-vis) data was further confirmed by the X-ray structure analysis of the compound ( 3) in which the Cu atom is coordinated by the three N atoms from the Me 5dien ligand, one O atom from the mono-carboxylate anion, lying on the equatorial square plane, and one O atom from the water molecule, occupying the axial position. The two Cu sbnd O bond distances are 1.955(2) and 2.212(2) Ǻ, respectively. The complexes were tested for antioxidant/anti-inflammatory activity. Complex 4 is the most active against soybean lipoxygenase with IC 50 = 100 μM. The presence of a furoic ring leads to higher lipoxygenase inhibition, whereas the picolinyl-ring supports scavenging activity.

  19. Distortions in memory for visual displays

    NASA Technical Reports Server (NTRS)

    Tversky, Barbara

    1989-01-01

    Systematic errors in perception and memory present a challenge to theories of perception and memory and to applied psychologists interested in overcoming them as well. A number of systematic errors in memory for maps and graphs are reviewed, and they are accounted for by an analysis of the perceptual processing presumed to occur in comprehension of maps and graphs. Visual stimuli, like verbal stimuli, are organized in comprehension and memory. For visual stimuli, the organization is a consequence of perceptual processing, which is bottom-up or data-driven in its earlier stages, but top-down and affected by conceptual knowledge later on. Segregation of figure from ground is an early process, and figure recognition later; for both, symmetry is a rapidly detected and ecologically valid cue. Once isolated, figures are organized relative to one another and relative to a frame of reference. Both perceptual (e.g., salience) and conceptual factors (e.g., significance) seem likely to affect selection of a reference frame. Consistent with the analysis, subjects perceived and remembered curves in graphs and rivers in maps as more symmetric than they actually were. Symmetry, useful for detecting and recognizing figures, distorts map and graph figures alike. Top-down processes also seem to operate in that calling attention to the symmetry vs. asymmetry of a slightly asymmetric curve yielded memory errors in the direction of the description. Conceptual frame of reference effects were demonstrated in memory for lines embedded in graphs. In earlier work, the orientation of map figures was distorted in memory toward horizontal or vertical. In recent work, graph lines, but not map lines, were remembered as closer to an imaginary 45 deg line than they had been. Reference frames are determined by both perceptual and conceptual factors, leading to selection of the canonical axes as a reference frame in maps, but selection of the imaginary 45 deg as a reference frame in graphs.

  20. A study of substrate-liquid crystal interaction

    NASA Astrophysics Data System (ADS)

    Zhang, Baoshe

    This thesis concerns the study of substrate-liquid crystal interaction from two different angles. In one approach, we used the IPS (in-plane switching) technique to investigate the liquid crystal alignment by rubbed polyimide films. The IPS mode of liquid crystal cell operation is facilitated through comb electrodes capable of producing planar electric field. We have fabricated comb electrodes with a periodicity of 2 mum in order to confine the planar electric field close to the liquid crystal-substrate interface. Through optical transmittance measurements and comparison with theoretical predictions based on the Ladau-de Gennes formalism, we found the experimental data to be consistent with the physical picture of soft anchoring, in which the liquid crystal director at the substrate interface is rotated azimuthally under the planar electric field. As a result, we were able to obtain the azimuthal anchoring strength as a fitting parameter of the theory. This part of the thesis thus presents evidence(s) for director switching at the liquid crystal-substrate interface, as well as a method for measuring the azimuthal anchoring strength through optical means. In the second approach, we used nano-lithographic technique to fabricate textured two dimensional periodic patterns on silicon wafers, and examined the resulting liquid crystal alignment effect of such textured substrates. It was found that with decreasing periodicity, there exists an orientational transition from a state in which the liquid crystal alignment copies the substrate pattern at larger periodicity, to a state of uniform alignment at smaller periodicity. In our system, this transition occurs at a periodicity between 0.4 mum and 0.8 mum. Through theoretical simulations based on the model of competition between the elastic distortion energy and the interfacial anchoring potential, it was found that there is indeed a first-order abrupt transition when the periodicity is decreased. This is due to the fact that the elastic distortion energy scales as the inverse of the periodicity squared. Hence when the periodicity is decreased, the elastic distortion energy increases rapidly. At the critical periodicity the elastic distortion energy crosses the interfacial anchoring potential, below which the uniform alignment becomes the lower energy state. The uniform-aligned state was confirmed by the excellent theory-experiment agreement on spectral measurements, in conjunction with the optical microscope observations. In the uniform-aligned state, a large pretilt angle (35°) was obtained.

  1. Gradient nonlinearity calibration and correction for a compact, asymmetric magnetic resonance imaging gradient system

    PubMed Central

    Tao, S; Trzasko, J D; Gunter, J L; Weavers, P T; Shu, Y; Huston, J; Lee, S K; Tan, E T; Bernstein, M A

    2017-01-01

    Due to engineering limitations, the spatial encoding gradient fields in conventional magnetic resonance imaging cannot be perfectly linear and always contain higher-order, nonlinear components. If ignored during image reconstruction, gradient nonlinearity (GNL) manifests as image geometric distortion. Given an estimate of the GNL field, this distortion can be corrected to a degree proportional to the accuracy of the field estimate. The GNL of a gradient system is typically characterized using a spherical harmonic polynomial model with model coefficients obtained from electromagnetic simulation. Conventional whole-body gradient systems are symmetric in design; typically, only odd-order terms up to the 5th-order are required for GNL modeling. Recently, a high-performance, asymmetric gradient system was developed, which exhibits more complex GNL that requires higher-order terms including both odd- and even-orders for accurate modeling. This work characterizes the GNL of this system using an iterative calibration method and a fiducial phantom used in ADNI (Alzheimer’s Disease Neuroimaging Initiative). The phantom was scanned at different locations inside the 26-cm diameter-spherical-volume of this gradient, and the positions of fiducials in the phantom were estimated. An iterative calibration procedure was utilized to identify the model coefficients that minimize the mean-squared-error between the true fiducial positions and the positions estimated from images corrected using these coefficients. To examine the effect of higher-order and even-order terms, this calibration was performed using spherical harmonic polynomial of different orders up to the 10th-order including even- and odd-order terms, or odd-order only. The results showed that the model coefficients of this gradient can be successfully estimated. The residual root-mean-squared-error after correction using up to the 10th-order coefficients was reduced to 0.36 mm, yielding spatial accuracy comparable to conventional whole-body gradients. The even-order terms were necessary for accurate GNL modeling. In addition, the calibrated coefficients improved image geometric accuracy compared with the simulation-based coefficients. PMID:28033119

  2. Optimization of the transmission of observable expectation values and observable statistics in continuous-variable teleportation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albano Farias, L.; Stephany, J.

    2010-12-15

    We analyze the statistics of observables in continuous-variable (CV) quantum teleportation in the formalism of the characteristic function. We derive expressions for average values of output-state observables, in particular, cumulants which are additive in terms of the input state and the resource of teleportation. Working with a general class of teleportation resources, the squeezed-bell-like states, which may be optimized in a free parameter for better teleportation performance, we discuss the relation between resources optimal for fidelity and those optimal for different observable averages. We obtain the values of the free parameter of the squeezed-bell-like states which optimize the central momentamore » and cumulants up to fourth order. For the cumulants the distortion between in and out states due to teleportation depends only on the resource. We obtain optimal parameters {Delta}{sub (2)}{sup opt} and {Delta}{sub (4)}{sup opt} for the second- and fourth-order cumulants, which do not depend on the squeezing of the resource. The second-order central momenta, which are equal to the second-order cumulants, and the photon number average are also optimized by the resource with {Delta}{sub (2)}{sup opt}. We show that the optimal fidelity resource, which has been found previously to depend on the characteristics of input, approaches for high squeezing to the resource that optimizes the second-order momenta. A similar behavior is obtained for the resource that optimizes the photon statistics, which is treated here using the sum of the squared differences in photon probabilities of input versus output states as the distortion measure. This is interpreted naturally to mean that the distortions associated with second-order momenta dominate the behavior of the output state for large squeezing of the resource. Optimal fidelity resources and optimal photon statistics resources are compared, and it is shown that for mixtures of Fock states both resources are equivalent.« less

  3. SU-D-204-06: Dose and Image Quality Evaluation of a Low-Dose Slot-Scanning X-Ray System for Pediatric Orthopedic Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Z; Hoerner, M; Lamoureux, R

    Purpose: Children in early teens with scoliosis require repeated radiographic exams over a number of years. The EOS (EOS imaging S.A., Paris, France) is a novel low-dose slot-scanning digital radiographic system designed to produce full-spine images of a free-standing patient. The radiation dose and image quality characteristics of the EOS were evaluated relative to those of a Computed Radiography (CR) system for scoliosis imaging. Methods: For dose evaluation, a full-torso anthropomorphic phantom was scanned five times using the default standard clinical protocols for both the EOS and a CR system, which include both posteroanterior and lateral full-spine views. Optically stimulatedmore » luminescent dosimeters (OSLDs), also known as nanoDots™ (Landauer, Inc., Glenwood, IL), were placed on the phantom’s surface to measure entrance skin dose. To assess image quality, MTF curves were generated from sampling the noise levels within the high-contrast regions of a line-pair phantom. Vertical and horizontal distortions were measured for the square line-pair phantom with the EOS system to evaluate the effects of geometric magnification and misalignment with the indicated imaging plane. Results: The entrance skin dose was measured to be 0.4 to 1.1 mGy for the EOS, and 0.7 to 3.6 mGy for the CR study. MTF comparison shows that CR greatly outperforms the EOS, despite both systems having a limiting resolution at 1.8 line-pairs per mm. Vertical distortion was unaffected by phantom positioning, because of the EOS slot-scanning geometry. Horizontal distortion increased linearly with miscentering distance. Conclusion: The EOS system resulted in approximately 70% lower radiation dose than CR for full-spine images. Image quality was found to be inferior to CR. Further investigation is required to see if EOS system is an acceptable modality for performing clinically diagnostic scoliosis examinations.« less

  4. Linear energy relationships for the octahedral preference of Mg, Ca and transition metal ions.

    PubMed

    Pontikis, George; Borden, James; Martínek, Václav; Florián, Jan

    2009-04-16

    The geometry, atomic charges, force constants, and relative energies of the symmetric and distorted M(2+)(H(2)O)(4)(F(-))(2), M(3+)(H(2)O)(4)(F(-))(2), M(2+)(H(2)O)(3)(F(-))(2), and M(3+)(H(2)O)(3)(F(-))(2) metal complexes, M = Mg, Ca, Co, Cu, Fe, Mn, Ni, Zn, Cr, V, were calculated by using the B3LYP/TZVP density functional method in both gas phase and aqueous solution, modeled using the polarized continuum model. The deformation energy associated with moving one water ligand 12 degrees from the initial "octahedral" arrangement, in which all O-M-O, O-M-F, and F-M-F angles are either 90 degrees or 180 degrees, was calculated to examine the angular ligand flexibility. For all M(2+)(H(2)O)(4)(F(-))(2) complexes, this distortion increased the energy of the complex in proportion to the electrostatic potential-derived (ESP) charge of the metal, and in proportion to D(-10), where D is the distance from the distorted ligand to its closest neighbor. The octahedral stability was further examined by calculating the energies for the removal of a water ligand from the octahedral complex to form a square-pyramidal or trigonal-bipyramidal complex. The octahedral preference, defined as the negative of the corresponding binding energy of the ligand, was found to linearly correlate with the ESP charge of the metal in both the gas phase and aqueous solution. The obtained results indicate that quantum-mechanical covalent effects are of secondary importance for both the flexibility and the octahedral preference of M(2+)(H(2)O)(4)(F(-))(2) and M(3+)(H(2)O)(4)(F(-))(2) complexes. This conclusion and supporting data are important for the development of consistent molecular mechanical force fields of the studied metal ions.

  5. Georeferencing CAMS data: Polynomial rectification and beyond

    NASA Astrophysics Data System (ADS)

    Yang, Xinghe

    The Calibrated Airborne Multispectral Scanner (CAMS) is a sensor used in the commercial remote sensing program at NASA Stennis Space Center. In geographic applications of the CAMS data, accurate geometric rectification is essential for the analysis of the remotely sensed data and for the integration of the data into Geographic Information Systems (GIS). The commonly used rectification techniques such as the polynomial transformation and ortho rectification have been very successful in the field of remote sensing and GIS for most remote sensing data such as Landsat imagery, SPOT imagery and aerial photos. However, due to the geometric nature of the airborne line scanner which has high spatial frequency distortions, the polynomial model and the ortho rectification technique in current commercial software packages such as Erdas Imagine are not adequate for obtaining sufficient geometric accuracy. In this research, the geometric nature, especially the major distortions, of the CAMS data has been described. An analytical step-by-step geometric preprocessing has been utilized to deal with the potential high frequency distortions of the CAMS data. A generic sensor-independent photogrammetric model has been developed for the ortho-rectification of the CAMS data. Three generalized kernel classes and directional elliptical basis have been formulated into a rectification model of summation of multisurface functions, which is a significant extension to the traditional radial basis functions. The preprocessing mechanism has been fully incorporated into the polynomial, the triangle-based finite element analysis as well as the summation of multisurface functions. While the multisurface functions and the finite element analysis have the characteristics of localization, piecewise logic has been applied to the polynomial and photogrammetric methods, which can produce significant accuracy improvement over the global approach. A software module has been implemented with full integration of data preprocessing and rectification techniques under Erdas Imagine development environment. The final root mean square (RMS) errors for the test CAMS data are about two pixels which are compatible with the random RMS errors existed in the reference map coordinates.

  6. Cationic aza-macrocyclic complexes of germanium(II) and silicon(IV).

    PubMed

    Everett, Matthew; Jolleys, Andrew; Levason, William; Light, Mark E; Pugh, David; Reid, Gillian

    2015-12-28

    [GeCl2(dioxane)] reacts with the neutral aza-macrocyclic ligands L, L = Me3tacn (1,4,7-trimethyl-1,4,7-triazacyclononane), Me4cyclen (1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclododecane) or Me4cyclam (1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane) and two mol. equiv. of Me3SiO3SCF3 in thf solution to yield the unusual and hydrolytically very sensitive [Ge(L)][O3SCF3]2 as white solids in moderate yield. Using shorter reaction times [Ge(Me3tacn)]Cl2 and [Ge(Me3tacn)]Cl[O3SCF3] were also isolated; the preparation of [Ge(Me4cyclen)][GeCl3]2 is also described. The structures of the Me3tacn complexes show κ(3)-coordination of the macrocycle, with the anions interacting only weakly to produce very distorted five- or six-coordination at germanium. In contrast, the structure of [Ge(Me4cyclen)][O3SCF3]2 shows no anion interactions, and a distorted square planar geometry at germanium from coordination to the tetra-aza macrocycle. Crystal structures of the Si(iv) complexes, [SiCl3(Me3tacn)]Y (Y = O3SCF3, BAr(F); [B{3,5-(CF3)2C6H3}4]) and [SiHCl2(Me3tacn)][BAr(F)], obtained from reaction of SiCl4 or SiHCl3 with Me3tacn, followed by addition of either Me3SiO3SCF3 or Na[BAr(F)], contain distorted octahedral cations, with facialκ(3)-coordinated Me3tacn. The open-chain triamine, Me2NCH2CH2N(Me)CH2CH2NMe2 (pmdta), forms [SiCl3(pmdta)][BAr(F)] and [SiBr3(pmdta)][BAr(F)] under similar conditions, containing mer-octahedral cations.

  7. Equalization and detection for digital communication over nonlinear bandlimited satellite communication channels. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Gutierrez, Alberto, Jr.

    1995-01-01

    This dissertation evaluates receiver-based methods for mitigating the effects due to nonlinear bandlimited signal distortion present in high data rate satellite channels. The effects of the nonlinear bandlimited distortion is illustrated for digitally modulated signals. A lucid development of the low-pass Volterra discrete time model for a nonlinear communication channel is presented. In addition, finite-state machine models are explicitly developed for a nonlinear bandlimited satellite channel. A nonlinear fixed equalizer based on Volterra series has previously been studied for compensation of noiseless signal distortion due to a nonlinear satellite channel. This dissertation studies adaptive Volterra equalizers on a downlink-limited nonlinear bandlimited satellite channel. We employ as figure of merits performance in the mean-square error and probability of error senses. In addition, a receiver consisting of a fractionally-spaced equalizer (FSE) followed by a Volterra equalizer (FSE-Volterra) is found to give improvement beyond that gained by the Volterra equalizer. Significant probability of error performance improvement is found for multilevel modulation schemes. Also, it is found that probability of error improvement is more significant for modulation schemes, constant amplitude and multilevel, which require higher signal to noise ratios (i.e., higher modulation orders) for reliable operation. The maximum likelihood sequence detection (MLSD) receiver for a nonlinear satellite channel, a bank of matched filters followed by a Viterbi detector, serves as a probability of error lower bound for the Volterra and FSE-Volterra equalizers. However, this receiver has not been evaluated for a specific satellite channel. In this work, an MLSD receiver is evaluated for a specific downlink-limited satellite channel. Because of the bank of matched filters, the MLSD receiver may be high in complexity. Consequently, the probability of error performance of a more practical suboptimal MLSD receiver, requiring only a single receive filter, is evaluated.

  8. Insight into inhibition of the human amyloid beta protein precursor (APP: PDB ID ) using (E)-N-(pyridin-2-ylmethylene)arylamine (LR) models: structure elucidation of a family of ZnX2-LR complexes.

    PubMed

    Basu Baul, Tushar S; Kundu, Sajal; Singh, Palwinder; Shaveta; Guedes da Silva, M Fátima C

    2015-02-07

    The amyloid beta precursor protein (APP) and its neurotoxic cleavage product amyloid beta (Aβ) are a cause of Alzheimer's disease and appear essential for neuronal development and cell homeostasis. Proteolytic processing of APP is influenced by metal ions and protein ligands, however the structural and functional mechanism of APP regulation is not known so far. In this context, molecular modeling studies were performed to understand the molecular behavior of (E)-N-(pyridin-2-ylmethylene)arylamines (LR) with an E2 domain of the APP in its complex with zinc (APP; PDB ID: ). Docking results indeed confirmed that the LR interacts with Zn in the binding site of the protein between two α-helical chains. In view of these findings, LR was further investigated for complexation reactions with Zn(2+) in order to establish the structural models in solution and in the solid state. Five new Zn(2+) complexes of compositions viz. [Zn(Br)2(L2-Me)] (), [Zn(Br)2(L2-OMe)] (), [Zn(i)2(L2-OMe)] (), [Zn(NO3)2(L2-OMe)(H2O)] () and [Zn(L4-Me)2(H2O)2](NO3)2 () were synthesized and their structures were ascertained by microanalysis, IR and (1)H NMR spectroscopy, and single-crystal X-ray diffraction. The zinc atom in complex exhibits a distorted tetrahedral geometry while the crystal structures of complexes and show distorted square pyramidal geometries. The zinc cation in and has an octahedral coordination environment, but in the zinc coordination geometry is less distorted. The Zn(ii) cations take part in one ( and ) or two () 5-membered metallacycles imposed by the NN or NNO chelation modes of LR. The significant intermolecular ππ interactions are also discussed.

  9. Environmental Assessment of Short-Term Construction Projects at the 150th Fighter Wing, New Mexico Air National Guard, Kirtland Air Force Base, New Mexico

    DTIC Science & Technology

    2003-01-01

    level scs Soil Conservation Service DOD Department of Defense SF square foot DOPAA Description of the Proposed SHPO State Historic Preservation...relatively level and most of the area has already been developed. Consequently, most surface soils have been previously disturbed or paved over. Surface... soils arc well drained sands and lo<\\ffiS with slight to moderate hazard of wind and water erosion. As a tenant organization. Nl’vtANG is required to

  10. [A quickly methodology for drug intelligence using profiling of illicit heroin samples].

    PubMed

    Zhang, Jianxin; Chen, Cunyi

    2012-07-01

    The aim of the paper was to evaluate a link between two heroin seizures using a descriptive method. The system involved the derivation and gas chromatographic separation of samples followed by a fully automatic data analysis and transfer to a database. Comparisons used the square cosine function between two chromatograms assimilated to vectors. The method showed good discriminatory capabilities. The probability of false positives was extremely slight. In conclusion, this method proved to be efficient and reliable, which appeared suitable for estimating the links between illicit heroin samples.

  11. Viking bistatic radar observations of the hellas basin on Mars: preliminary results.

    PubMed

    Simpson, R A; Tyler, G L; Brenkle, J P; Sue, M

    1979-01-05

    Preliminary reduction of Viking bistatic radar data gives root-mean-square surface slopes in the Hellas basin on Mars of about 4 degrees on horizontal scales averaged over 10 centimeters to 100 meters. This roughness decreases slightly with position along the ground track, south to north. The dielectric constant in this area appears to be approximately 3.1, greater than the martian average. These values are characteristic of lunar maria and are similar to those found near the Viking lander site in Chryse with the use of Earth-based radar.

  12. (N-Benzyl-N-ethyl-dithio-carbamato)di-tert-butyl-chloridotin(IV).

    PubMed

    Abdul Muthalib, Amirah Faizah; Baba, Ibrahim; Mohamed Tahir, Mohamed Ibrahim; Tiekink, Edward R T

    2011-02-26

    The Sn(IV) atom in the title diorganotin dithio-carbamate, [Sn(C(4)H(9))(2)Cl(C(10)H(12)NS(2))], is penta-coordinated by an asymmetrically coordinating dithio-carbamate ligand, a Cl and two C atoms of the Sn-bound tert-butyl groups. The resulting C(2)ClS(2) donor set defines a coordination geometry inter-mediate between square pyramidal and trigonal bipyramidal with a slight tendency towards the former. In the crystal structure, C-H⋯π contacts link centrosymmetrically related mol-ecules into dimeric aggregates.

  13. Correcting bias in the rational polynomial coefficients of satellite imagery using thin-plate smoothing splines

    NASA Astrophysics Data System (ADS)

    Shen, Xiang; Liu, Bin; Li, Qing-Quan

    2017-03-01

    The Rational Function Model (RFM) has proven to be a viable alternative to the rigorous sensor models used for geo-processing of high-resolution satellite imagery. Because of various errors in the satellite ephemeris and instrument calibration, the Rational Polynomial Coefficients (RPCs) supplied by image vendors are often not sufficiently accurate, and there is therefore a clear need to correct the systematic biases in order to meet the requirements of high-precision topographic mapping. In this paper, we propose a new RPC bias-correction method using the thin-plate spline modeling technique. Benefiting from its excellent performance and high flexibility in data fitting, the thin-plate spline model has the potential to remove complex distortions in vendor-provided RPCs, such as the errors caused by short-period orbital perturbations. The performance of the new method was evaluated by using Ziyuan-3 satellite images and was compared against the recently developed least-squares collocation approach, as well as the classical affine-transformation and quadratic-polynomial based methods. The results show that the accuracies of the thin-plate spline and the least-squares collocation approaches were better than the other two methods, which indicates that strong non-rigid deformations exist in the test data because they cannot be adequately modeled by simple polynomial-based methods. The performance of the thin-plate spline method was close to that of the least-squares collocation approach when only a few Ground Control Points (GCPs) were used, and it improved more rapidly with an increase in the number of redundant observations. In the test scenario using 21 GCPs (some of them located at the four corners of the scene), the correction residuals of the thin-plate spline method were about 36%, 37%, and 19% smaller than those of the affine transformation method, the quadratic polynomial method, and the least-squares collocation algorithm, respectively, which demonstrates that the new method can be more effective at removing systematic biases in vendor-supplied RPCs.

  14. Low-spin manganese(II) and high-spin manganese(III) complexes derived from disalicylaldehyde oxaloyldihydrazone: Synthesis, spectral characterization and electrochemical studies

    NASA Astrophysics Data System (ADS)

    Syiemlieh, Ibanphylla; Kumar, Arvind; Kurbah, Sunshine D.; De, Arjune K.; Lal, Ram A.

    2018-01-01

    Low-spin manganese(II) complexes [MnII(H2slox)].H2O (1), [MnII(H2slox)(SL)] (where SL (secondary ligand) = pyridine (py, 2), 2-picoline (2-pic, 3), 3-picoline (3-pic, 4), and 4-picoline (4-pic, 5) and high-spin manganese(III) complex Na(H2O)4[MnIII(slox)(H2O)2].2.5H2O have been synthesized from disalicyaldehyde oxaloyldihydrazone in methanolic - water medium. The composition of complexes has been established by elemental analyses and thermoanalytical data. The structures of the complexes have been discussed on the basis of data obtained from molar conductance, UV visible, 1H NMR, infrared spectra, magnetic moment and electron paramagnetic resonance spectroscopic studies. Conductivity measurements in DMF suggest that the complexes (1-5) are non-electrolyte while the complex (6) is 1:1 electrolyte. The electronic spectral studies and magnetic moment data suggest five - coordinate square pyramidal structure for the complexes (2-5) and square planar geometry for manganese(II) in complex (1). In complex (6), both sodium and manganese(III) have six coordinate octahedral geometry. IR spectral studies reveal that the dihydrazone coordinates to the manganese centre in keto form in complexes (1-5) and in enol form in complex (6). In all complexes, the ligand is present in anti-cis configuration. Magnetic moment and EPR studies indicate manganese in +2 oxidation state in complexes (1-5), with low-spin square planar complex (1) and square pyramidal stereochemistries complexes (2-5) while in +3 oxidation state in high-spin distorted octahedral stereochemistry in complex (6). The complex (1) involves significant metal - metal interaction in the solid state. All of the complexes show only one metal centred electron transfer reaction in DMF solution in cyclic voltammetric studies. The complexes (1-5) involve MnII→MnI redox reaction while the complex (6) involves MnIII→MnII redox reaction, respectively.

  15. Distortion and Residual Stress Control in Integrally Stiffened Structure Produced by Direct Metal Deposition

    NASA Technical Reports Server (NTRS)

    Lin, Shih-Yung; Hoffman, Eric K.; Domack, Marcia S.

    2007-01-01

    2-D thermo-mechanical model developed to characterize distortion and residual stresses in integral structure produced by DMD. Demonstrated as a tool to guide experimental development of DMD fabrication process for aero structures. Distortion and residual stresses are local to deposit. Most distortion develops during deposition of the first few layers; Little change in distortion or residual stresses after fifth deposit layer Most of distortion is localized just beneath the build. Thicker build plates and the use of build lands results in greatest decrease in levels of distortion. Pre-straining shown to reduce distortion. Difficult to implement, particularly for complex stiffener arrays. Clamp position has complex effect on distortion and stresses. Overall distortion reduced with decreasing clamp clearance. Larger clamp clearances induce bending. Use of pre-heat and active cooling show minor influence on panel distortion. Generate changes in thermal gradients in the build plate.

  16. Synthesis, crystal structure and spectroscopic and electrochemical properties of bridged trisbenzoato copper-zinc heterobinuclear complex of 2,2‧-bipyridine

    NASA Astrophysics Data System (ADS)

    Koch, Angira; Kumar, Arvind; Singh, Suryabhan; Borthakur, Rosmita; Basumatary, Debajani; Lal, Ram A.; Shangpung, Sankey

    2015-03-01

    The synthesis of the heterobinuclear copper-zinc complex [CuZn(bz)3(bpy)2]ClO4 (bz = benzoate) from benzoic acid and bipyridine is described. Single crystal X-ray diffraction studies of the heterobinuclear complex reveals the geometry of the benzoato bridged Cu(II)-Zn(II) centre. The copper or zinc atom is pentacoordinate, with two oxygen atoms from bridging benzoato groups and two nitrogen atoms from one bipyridine forming an approximate plane and a bridging oxygen atom from a monodentate benzoate group. The Cu-Zn distance is 3.345 Å. The complex is normal paramagnetic having μeff value equal to 1.75 BM, ruling out the possibility of Cu-Cu interaction in the structural unit. The ESR spectrum of the complex in CH3CN at RT exhibit an isotropic four line spectrum centred at g = 2.142 and hyperfine coupling constants Aav = 63 × 10-4 cm-1, characteristic of a mononuclear square-pyramidal copper(II) complexes. At LNT, the complex shows an isotropic spectrum with g|| = 2.254 and g⊥ = 2.071 and A|| = 160 × 10-4 cm-1. The Hamiltonian parameters are characteristic of distorted square pyramidal geometry. Cyclic voltammetric studies of the complex have indicated quasi-reversible behaviour in acetonitrile solution.

  17. Modeling protein conformational changes by iterative fitting of distance constraints using reoriented normal modes.

    PubMed

    Zheng, Wenjun; Brooks, Bernard R

    2006-06-15

    Recently we have developed a normal-modes-based algorithm that predicts the direction of protein conformational changes given the initial state crystal structure together with a small number of pairwise distance constraints for the end state. Here we significantly extend this method to accurately model both the direction and amplitude of protein conformational changes. The new protocol implements a multisteps search in the conformational space that is driven by iteratively minimizing the error of fitting the given distance constraints and simultaneously enforcing the restraint of low elastic energy. At each step, an incremental structural displacement is computed as a linear combination of the lowest 10 normal modes derived from an elastic network model, whose eigenvectors are reorientated to correct for the distortions caused by the structural displacements in the previous steps. We test this method on a list of 16 pairs of protein structures for which relatively large conformational changes are observed (root mean square deviation >3 angstroms), using up to 10 pairwise distance constraints selected by a fluctuation analysis of the initial state structures. This method has achieved a near-optimal performance in almost all cases, and in many cases the final structural models lie within root mean square deviation of 1 approximately 2 angstroms from the native end state structures.

  18. Crystal structure, thermochromic and magnetic properties of organic-inorganic hybrid compound: (C7H7N2S)2CuCl4

    NASA Astrophysics Data System (ADS)

    Vishwakarma, Ashok K.; Kumari, Reema; Ghalsasi, Prasanna S.; Arulsamy, Navamoney

    2017-08-01

    The synthesis, thermal analysis, crystal structure and magnetic properties of (2-aminobenzothiazolium)2CuCl4, organic-inorganic hybrid compound, have been described. The compound crystallizes in the monoclinic space group P21/c with two formula units in a unit cell of dimensions a = 6.9522(4) Å, b = 9.6979(4) Å, c = 13.9633(6) Å, β = 97.849(3)° and volume 930.83(8) Å3 at 150(2) K. The structure consists of isolated nearly square planer [CuC14]2- units, with somewhat longer than normal Cusbnd Cl bond lengths [Cusbnd Cl (average) = 2.2711 Å]. The magnetic measurements of (2-aminobenzothiazolium)2CuCl4 using SQUID magnetometer show paramagnetic nature of the compound. Thermal measurements (TG-DTA and DSC) on this compound showed reversible phase transition at 83 °C. This transition is accompanied by the reversible change in colour of the prismatic crystal from green to dark brown, thermochromic behaviour. Temperature dependent EPR measurements on powdered sample ascertain change in coordination sphere around Cu(II) with shift in g|| = 2.150 and g⊥ = 2.071 at room temperature, typical of square planar, to g|| = 2.201 and g⊥ = 2.182 at 170 °C, typical of distorted tetrahedral geometry.

  19. Modelling local GPS/levelling geoid undulations using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Kavzoglu, T.; Saka, M. H.

    2005-04-01

    The use of GPS for establishing height control in an area where levelling data are available can involve the so-called GPS/levelling technique. Modelling of the GPS/levelling geoid undulations has usually been carried out using polynomial surface fitting, least-squares collocation (LSC) and finite-element methods. Artificial neural networks (ANNs) have recently been used for many investigations, and proven to be effective in solving complex problems represented by noisy and missing data. In this study, a feed-forward ANN structure, learning the characteristics of the training data through the back-propagation algorithm, is employed to model the local GPS/levelling geoid surface. The GPS/levelling geoid undulations for Istanbul, Turkey, were estimated from GPS and precise levelling measurements obtained during a field study in the period 1998-99. The results are compared to those produced by two well-known conventional methods, namely polynomial fitting and LSC, in terms of root mean square error (RMSE) that ranged from 3.97 to 5.73 cm. The results show that ANNs can produce results that are comparable to polynomial fitting and LSC. The main advantage of the ANN-based surfaces seems to be the low deviations from the GPS/levelling data surface, which is particularly important for distorted levelling networks.

  20. A motion compensation technique using sliced blocks and its application to hybrid video coding

    NASA Astrophysics Data System (ADS)

    Kondo, Satoshi; Sasai, Hisao

    2005-07-01

    This paper proposes a new motion compensation method using "sliced blocks" in DCT-based hybrid video coding. In H.264 ? MPEG-4 Advance Video Coding, a brand-new international video coding standard, motion compensation can be performed by splitting macroblocks into multiple square or rectangular regions. In the proposed method, on the other hand, macroblocks or sub-macroblocks are divided into two regions (sliced blocks) by an arbitrary line segment. The result is that the shapes of the segmented regions are not limited to squares or rectangles, allowing the shapes of the segmented regions to better match the boundaries between moving objects. Thus, the proposed method can improve the performance of the motion compensation. In addition, adaptive prediction of the shape according to the region shape of the surrounding macroblocks can reduce overheads to describe shape information in the bitstream. The proposed method also has the advantage that conventional coding techniques such as mode decision using rate-distortion optimization can be utilized, since coding processes such as frequency transform and quantization are performed on a macroblock basis, similar to the conventional coding methods. The proposed method is implemented in an H.264-based P-picture codec and an improvement in bit rate of 5% is confirmed in comparison with H.264.

  1. Detection and Rectification of Distorted Fingerprints.

    PubMed

    Si, Xuanbin; Feng, Jianjiang; Zhou, Jie; Luo, Yuxuan

    2015-03-01

    Elastic distortion of fingerprints is one of the major causes for false non-match. While this problem affects all fingerprint recognition applications, it is especially dangerous in negative recognition applications, such as watchlist and deduplication applications. In such applications, malicious users may purposely distort their fingerprints to evade identification. In this paper, we proposed novel algorithms to detect and rectify skin distortion based on a single fingerprint image. Distortion detection is viewed as a two-class classification problem, for which the registered ridge orientation map and period map of a fingerprint are used as the feature vector and a SVM classifier is trained to perform the classification task. Distortion rectification (or equivalently distortion field estimation) is viewed as a regression problem, where the input is a distorted fingerprint and the output is the distortion field. To solve this problem, a database (called reference database) of various distorted reference fingerprints and corresponding distortion fields is built in the offline stage, and then in the online stage, the nearest neighbor of the input fingerprint is found in the reference database and the corresponding distortion field is used to transform the input fingerprint into a normal one. Promising results have been obtained on three databases containing many distorted fingerprints, namely FVC2004 DB1, Tsinghua Distorted Fingerprint database, and the NIST SD27 latent fingerprint database.

  2. Studies of the spin Hamiltonian parameters and local structure for ZnO:Cu2+.

    PubMed

    Wu, Shao-Yi; Wei, Li-Hua; Zhang, Zhi-Hong; Wang, Xue-Feng; Hu, Yue-Xia

    2008-12-15

    The spin Hamiltonian parameters (the g factors and the hyperfine structure constants) and local structure for ZnO:Cu2+ are theoretically studied from the perturbation formulas of these parameters for a 3d9 ion under trigonally distorted tetrahedra. The ligand orbital and spin-orbit coupling contributions are taken into account from the cluster approach due to the significant covalency of the [CuO4](6-) cluster. According to the investigations, the impurity Cu2+ is suggested not to locate on the ideal Zn2+ site in ZnO but to undergo a slight outward displacement (approximately 0.01 angstroms) away from the ligand triangle along C3 axis. The calculated spin Hamiltonian parameters are in good agreement with the observed values. The validity of the above impurity displacement is also discussed.

  3. Ultrasensitive ppb-level NO2 gas sensor based on WO3 hollow nanosphers doped with Fe

    NASA Astrophysics Data System (ADS)

    Zhang, Ziyue; haq, Mahmood; Wen, Zhen; Ye, Zhizhen; Zhu, Liping

    2018-03-01

    WO3 mesoporous hollow nanospheres doped with Fe synthesized by a facile method have mesoporous hollow nanospherical like morphology, small grain size (10 nm), high crystalline quality and ultrahigh surface area (165 m2/g). XRD spectra and Raman spectra indicate the Fe doping leading to the smaller cell parameters as compared to pure WO3, and the slight distortion in the crystal lattice produces a number of defects, making it a better candidate for gas sensing. XPS analysis shows that Fe-doped WO3 mesoporous hollow nanospheres have more oxygen vacancies than pure WO3, which is beneficial to the adsorption of oxygen and NO2 and its surface reaction. The gas sensor based on Fe-WO3 exhibited excellent low ppb-level (10 ppb) NO2 detecting performance and outstanding selectivity.

  4. Investigating interfacial contact configuration and behavior of single-walled carbon nanotube-based nanodevice with atomistic simulations

    NASA Astrophysics Data System (ADS)

    Cui, Jianlei; Zhang, Jianwei; He, Xiaoqiao; Mei, Xuesong; Wang, Wenjun; Yang, Xinju; Xie, Hui; Yang, Lijun; Wang, Yang

    2017-03-01

    Carbon nanotubes (CNTs), including single-walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs), are considered to be the promising candidates for next-generation interconnects with excellent physical and chemical properties ranging from ultrahigh mechanical strength, to electrical properties, to thermal conductivity, to optical properties, etc. To further study the interfacial contact configurations of SWNT-based nanodevice with a 13.56-Å diameter, the corresponding simulations are carried out with the molecular dynamic method. The nanotube collapses dramatically into the surface with the complete collapse on the Au/Ag/graphite electrode surface and slight distortion on the Si/SiO2 substrate surface, respectively. The related dominant mechanism is studied and explained. Meanwhile, the interfacial contact configuration and behavior, depended on other factors, are also analyzed in this article.

  5. A structural analysis of small vapor-deposited 'multiply twinned' gold particles

    NASA Technical Reports Server (NTRS)

    Yang, C. Y.; Heinemann, K.; Yacaman, M. J.; Poppa, H.

    1979-01-01

    High resolution selected zone dark field, Bragg reflection imaging and weak beam dark field techniques of transmission electron microscopy were used to determine the structure of small gold particles vapor deposited on NaCl substrates. Attention was focused on the analysis of those particles in the 50-150 A range that have pentagonal or hexagonal bright field profiles. These particles have been previously described as multiply twinned crystallites composed of face-centered cubic tetrahedra. The experimental evidence of the present studies can be interpreted on the assumption that the particle structure is a regular icosahedron or decahedron for the hexagonal or the pentagonal particles respectively. The icosahedron is a multiply twinned rhombohedral crystal and the decahedron is a multiply twinned body-centered orthorhombic crystal, each of which constitutes a slight distortion from the face-centered cubic structure.

  6. Bis(tetra­phenyl­phospho­nium) tris­[N-(methyl­sulfon­yl)dithio­carbimato(2−)-κ2 S,S′]stannate(IV)

    PubMed Central

    Barolli, João P.; Oliveira, Marcelo R. L.; Corrêa, Rodrigo S.; Ellena, Javier

    2009-01-01

    In the title complex, (C24H20P)2[Sn(C2H3NO2S3)3], the SnIV atom is coordinated by three N-(methyl­sulfon­yl)dithio­carbimate bidentate ligands through the anionic S atoms in a slightly distorted octa­hedral coordination geometry. There is one half-mol­ecule in the asymmetric unit; the complex is located on a crystallographic twofold rotation axis passing through the cation and bis­ecting one of the (non-symmetric) ligands, which appears thus disordered over two sites of equal occupancy. In the crystal structure, weak inter­molecular C—H⋯O and C—H⋯S inter­actions contribute to the packing stabilization. PMID:21577695

  7. Bis(tetraphenylarsonium) hexachloridozirconate(IV) acetonitrile tetrasolvate

    DOE PAGES

    Borjas, Rosendo; Mariappan Balasekaran, Samundeeswari; Poineau, Frederic

    2018-04-06

    The bis(tetraphenylarsonium) hexachloridozirconate(IV) salt, (AsPh 4 ) 2 [ZrCl 6 ] (Ph = C 6 H 5 ), was prepared more than 25 years ago [Esmadi & Sutcliffe (1991). Indian J. Chem. 30 A , 99–101], but its crystal structure was never reported. By following a similar experimental procedure, the compound was synthesized and its crystal structure was investigated as a acetonitrile tetrasolvate, (As(C 6 H 5 ) 4 ) 2 [ZrCl 6 ]·4CH 3 CN, by single-crystal X –ray diffraction. The [ZrCl 6 ] 2− anion adopts a slightly distorted octahedral coordination sphere, with Zr—Cl bond lengths of 2.4586 (6), 2.4723 (6),more » and 2.4818 (5) Å, and Cl—Zr—Cl angles ranging from 89.602 (19) to 90.397 (19)°.« less

  8. New observational constraints on f ( R ) gravity from cosmic chronometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nunes, Rafael C.; Pan, Supriya; Saridakis, Emmanuel N.

    We use the recently released cosmic chronometer data and the latest measured value of the local Hubble parameter, combined with the latest joint light curves of Supernovae Type Ia, and Baryon Acoustic Oscillation distance measurements, in order to impose constraints on the viable and most used f ( R ) gravity models. We consider four f ( R ) models, namely the Hu-Sawicki, the Starobinsky, the Tsujikawa, and the exponential one, and we parametrize them introducing a distortion parameter b that quantifies the deviation from ΛCDM cosmology. Our analysis reveals that a small but non-zero deviation from ΛCDM cosmology ismore » slightly favored, with the corresponding fittings exhibiting very efficient AIC and BIC Information Criteria values. Clearly, f ( R ) gravity is consistent with observations, and it can serve as a candidate for modified gravity.« less

  9. A minimax technique for time-domain design of preset digital equalizers using linear programming

    NASA Technical Reports Server (NTRS)

    Vaughn, G. L.; Houts, R. C.

    1975-01-01

    A linear programming technique is presented for the design of a preset finite-impulse response (FIR) digital filter to equalize the intersymbol interference (ISI) present in a baseband channel with known impulse response. A minimax technique is used which minimizes the maximum absolute error between the actual received waveform and a specified raised-cosine waveform. Transversal and frequency-sampling FIR digital filters are compared as to the accuracy of the approximation, the resultant ISI and the transmitted energy required. The transversal designs typically have slightly better waveform accuracy for a given distortion; however, the frequency-sampling equalizer uses fewer multipliers and requires less transmitted energy. A restricted transversal design is shown to use the least number of multipliers at the cost of a significant increase in energy and loss of waveform accuracy at the receiver.

  10. Bis(tetraphenylarsonium) hexachloridozirconate(IV) acetonitrile tetrasolvate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borjas, Rosendo; Mariappan Balasekaran, Samundeeswari; Poineau, Frederic

    The bis(tetraphenylarsonium) hexachloridozirconate(IV) salt, (AsPh 4 ) 2 [ZrCl 6 ] (Ph = C 6 H 5 ), was prepared more than 25 years ago [Esmadi & Sutcliffe (1991). Indian J. Chem. 30 A , 99–101], but its crystal structure was never reported. By following a similar experimental procedure, the compound was synthesized and its crystal structure was investigated as a acetonitrile tetrasolvate, (As(C 6 H 5 ) 4 ) 2 [ZrCl 6 ]·4CH 3 CN, by single-crystal X –ray diffraction. The [ZrCl 6 ] 2− anion adopts a slightly distorted octahedral coordination sphere, with Zr—Cl bond lengths of 2.4586 (6), 2.4723 (6),more » and 2.4818 (5) Å, and Cl—Zr—Cl angles ranging from 89.602 (19) to 90.397 (19)°.« less

  11. Illustration of TRAPPIST-1 Planets as of Feb. 2018

    NASA Image and Video Library

    2018-02-05

    This illustration shows the seven Earth-size planets of TRAPPIST-1, an exoplanet system about 40 light-years away, based on data current as of February 2018. The image shows the planets' relative sizes but does not represent their orbits to scale. The art highlights possibilities for how the surfaces of these intriguing worlds might look based on their newly calculated properties. The seven planets of TRAPPIST-1 are all Earth-sized and terrestrial. TRAPPIST-1 is an ultra-cool dwarf star in the constellation Aquarius, and its planets orbit very close to it. In the background, slightly distorted versions the familiar constellations of Orion and Taurus are shown as they would appear from the location of TRAPPIST-1 (courtesy of California Academy of Sciences/Dan Tell). https://photojournal.jpl.nasa.gov/catalog/PIA22097

  12. Effects of Mn substitution on the thermoelectric properties of the electron-doped perovskite Sr1-xLaxTiO3

    NASA Astrophysics Data System (ADS)

    Okuda, T.; Hata, H.; Eto, T.; Nishina, K.; Kuwahara, H.; Nakamura, M.; Kajimoto, R.

    2014-12-01

    We have tried to improve the n-type thermoelectric properties of the electron- doped Perovskite Sr1-xLaxTiO3 by a Mn substitution. The 1 ~ 2 % Mn substitution enhances the Seebeck coefficient (S) and reduces the thermal conductivity (κ) by about 50 % at room temperature (RT) without largely increasing the resistivity for the 5 % electron-doped SrTiO3. Consequently, the power factor at RT keeps a large value comparable to that of Bi2Te3 and the dimensionless figure-of-merits at RT increases twofold by the slight Mn substitution. Such a large reduction of κ at RT is perhaps due to the effect of Jahn-Teller active Mn3+ ions, around which dynamical local lattice distortion may occur.

  13. Bis[4-(4-pyridyl)pyridinium] (4-carboxy­pyridine-2,6-dicarboxyl­ato-κ3 O 2,N,O 6)(pyridine-2,4,6-tricarboxyl­ato-κ3 O 2,N,O 6)ferrate(III) trihydrate

    PubMed Central

    Zhao, Li; Dong, You-Ren; Xie, Hong-Zhen

    2009-01-01

    In the title salt, (C10H9N2)2[Fe(C8H2NO6)(C8H3NO6)]·3H2O, the FeIII atom is O,N,O′-chelated by dianionic and trianionic ligands in a slightly distorted octa­hedral coordination geometry. The cations and ferrate anions are linked into a layered structure; the layers are connected through the uncoordinated water mol­ecules into a hydrogen-bonded three-dimensional supra­molecular structure. One of the uncoordinated water molecules is disordered around an inversion centre and was refined with half-occupancy for each position. PMID:21582387

  14. Automatic evaluation of interferograms

    NASA Technical Reports Server (NTRS)

    Becker, F.

    1982-01-01

    A system for the evaluation of interference patterns was developed. For digitizing and processing of the interferograms from classical and holographic interferometers a picture analysis system based upon a computer with a television digitizer was installed. Depending on the quality of the interferograms, four different picture enhancement operations may be used: Signal averaging; spatial smoothing, subtraction of the overlayed intensity function and the removal of distortion-patterns using a spatial filtering technique in the frequency spectrum of the interferograms. The extraction of fringe loci from the digitized interferograms is performed by a foating-threshold method. The fringes are numbered using a special scheme after the removal of any fringe disconnections which appeared if there was insufficient contrast in the holograms. The reconstruction of the object function from the fringe field uses least squares approximation with spline fit. Applications are given.

  15. Real time characterization of hydrodynamics in optically trapped networks of micro-particles.

    PubMed

    Curran, Arran; Yao, Alison M; Gibson, Graham M; Bowman, Richard; Cooper, Jon M; Padgett, Miles L

    2010-04-01

    The hydrodynamic interactions of micro-silica spheres trapped in a variety of networks using holographic optical tweezers are measured and characterized in terms of their predicted eigenmodes. The characteristic eigenmodes of the networks are distinguishable within 20-40 seconds of acquisition time. Three different multi-particle networks are considered; an eight-particle linear chain, a nine-particle square grid and, finally, an eight-particle ring. The eigenmodes and their decay rates are shown to behave as predicted by the Oseen tensor and the Langevin equation, respectively. Finally, we demonstrate the potential of using our micro-ring as a non-invasive sensor to the local environmental viscosity, by showing the distortion of the eigenmode spectrum due to the proximity of a planar boundary. ((c) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).

  16. Nonlinear dynamic phenomena in the space shuttle thermal protection system

    NASA Technical Reports Server (NTRS)

    Housner, J. M.; Edighoffer, H. H.; Park, K. C.

    1981-01-01

    The development of an analysis for examining the nonlinear dynamic phenomena arising in the space shuttle orbiter tile/pad thermal protection system is presented. The tile/pad system consists of ceramic tiles bonded to the aluminum skin of the orbiter through a thin nylon felt pad. The pads are a soft nonlinear material which permits large strains and displays both hysteretic and nonlinear viscous damping. Application of the analysis to a square tile subjected to transverse sinusoidal motion of the orbiter skin is presented and the following nonlinear dynamic phenomena are considered: highly distorted wave forms, amplitude-dependent resonant frequencies which initially decrease and then increase with increasing amplitude of motion, magnification of substrate motion which is higher than would be expected in a similarly highly damped linear system, and classical parametric resonance instability.

  17. On Solving "Problems"

    NASA Astrophysics Data System (ADS)

    Ghez, Richard

    2006-04-01

    Counting and estimating are no doubt ancient survival skills. And yet, present educational methods tend to downplay these very skills. This breeds senseless innumeracy and social disruption. Jumbling inches with centimeters, for example, can cause a Mars mission to fail. With minor distortion, elementary and high schools (and beyond) teach that all fractions are simple, that all square roots are rational, and that trigonometric functions need be evaluated only for 30, 45, and 60 degrees. We thus inflict threefold damage on our children and students. First, they come to believe that numbers beyond 10 (except for current account deficits) are intuitively inaccessible; second, that answers to all mathematical questions are "formulas"; and third, that the art of estimation merely requires punching keys on a calculator—a dismal sort of black magic. These beliefs I wish to expose in the form of eight short numerical tales.

  18. Evolution of the linear-polarization-angle-dependence of the radiation-induced magnetoresistance-oscillations with microwave power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Tianyu; Mani, R. G.; Wegscheider, W.

    2014-11-10

    We examine the role of the microwave power in the linear polarization angle dependence of the microwave radiation induced magnetoresistance oscillations observed in the high mobility GaAs/AlGaAs two dimensional electron system. The diagonal resistance R{sub xx} was measured at the fixed magnetic fields of the photo-excited oscillatory extrema of R{sub xx} as a function of both the microwave power, P, and the linear polarization angle, θ. Color contour plots of such measurements demonstrate the evolution of the lineshape of R{sub xx} versus θ with increasing microwave power. We report that the non-linear power dependence of the amplitude of the radiation-inducedmore » magnetoresistance oscillations distorts the cosine-square relation between R{sub xx} and θ at high power.« less

  19. Ferromagnetic dinuclear mixed-valence Mn(II)/Mn(III) complexes: building blocks for the higher nuclearity complexes. structure, magnetic properties, and density functional theory calculations.

    PubMed

    Hänninen, Mikko M; Välivaara, Juha; Mota, Antonio J; Colacio, Enrique; Lloret, Francesc; Sillanpää, Reijo

    2013-02-18

    A series of six mixed-valence Mn(II)/Mn(III) dinuclear complexes were synthesized and characterized by X-ray diffraction. The reactivity of the complexes was surveyed, and structures of three additional trinuclear mixed-valence Mn(III)/Mn(II)/Mn(III) species were resolved. The magnetic properties of the complexes were studied in detail both experimentally and theoretically. All dinuclear complexes show ferromagnetic intramolecular interactions, which were justified on the basis of the electronic structures of the Mn(II) and Mn(III) ions. The large Mn(II)-O-Mn(III) bond angle and small distortion of the Mn(II) cation from the ideal square pyramidal geometry were shown to enhance the ferromagnetic interactions since these geometrical conditions seem to favor the orthogonal arrangement of the magnetic orbitals.

  20. Adaptive optics for confocal laser scanning microscopy with adjustable pinhole

    NASA Astrophysics Data System (ADS)

    Yoo, Han Woong; van Royen, Martin E.; van Cappellen, Wiggert A.; Houtsmuller, Adriaan B.; Verhaegen, Michel; Schitter, Georg

    2016-04-01

    The pinhole plays an important role in confocal laser scanning microscopy (CLSM) for adaptive optics (AO) as well as in imaging, where the size of the pinhole denotes a trade-off between out-of-focus rejection and wavefront distortion. This contribution proposes an AO system for a commercial CLSM with an adjustable square pinhole to cope with such a trade-off. The proposed adjustable pinhole enables to calibrate the AO system and to evaluate the imaging performance. Experimental results with fluorescence beads on the coverslip and at a depth of 40 μm in the human hepatocellular carcinoma cell spheroid demonstrate that the proposed AO system can improve the image quality by the proposed calibration method. The proposed pinhole intensity ratio also indicates the image improvement by the AO correction in intensity as well as resolution.

Top