Service temperature study for asphaltic concrete.
DOT National Transportation Integrated Search
1964-10-01
The Service Temperature Study was undertaken to supplement a pilot study started in 1959 which indicated that service temperatures obtained on Louisiana highways are slightly higher than those used for testing purposes. : Temperature recorders were i...
Guan, Ming; Jin, Zexin; Li, Junmin; Pan, Xiaocui; Wang, Suizi; Li, Yuelin
2016-01-01
The aim of this study was to investigate the effects of temperature and Cu on the morphological and physiological traits of Elsholtzia haichowensis grown in soils amended with four Cu concentrations (0, 50, 500, and 1000 mg kg(-1)) under ambient temperature and slight warming. At the same Cu concentration, the height, shoot dry weight, total plant dry weight, and root morphological parameters such as length, surface area and tip number of E. haichowensis increased due to the slight warming. The net photosynthetic rate, stomatal conductance, transpiration, light use efficiency were also higher under the slight warming than under ambient temperature. The increased Cu concentrations, total Cu uptake, bioaccumulation factors and tolerance indexes of shoots and roots were also observed at the slight warming. The shoot dry weight, root dry weight, total plant dry weight and the bioaccumulation factors of shoots and roots at 50 mg Cu kg(-1) were significantly higher than those at 500 and 1000 mg Cu kg(-1) under the slight warming. Therefore, the climate warming may improve the ability of E. haichowensis to phytoremediate Cu-contaminated soil, and the ability improvement greatly depended on the Cu concentrations in soils.
Xu, Juan; Luo, Hui; López, Claudia; Xiao, Jing; Chang, Yanhong
2015-10-01
The main goal of the present work is to investigate a novel process of purification and immobilization of a thermophilic catalase at high temperatures. The catalase, originated from Bacillus sp., was overexpressed in a recombinant Escherichia coli BL21(DE3)/pET28-CATHis and efficiently purified by heat treatment, achieving a threefold purification. The purified catalase was then immobilized onto an epoxy support at different temperatures (25, 40, and 55 °C). The immobilizate obtained at higher temperatures reached its maximum activity in a shorter time than that obtained at lower temperatures. Furthermore, immobilization at higher temperatures required a lower ionic strength than immobilization at lower temperatures. The characteristics of immobilized enzymes prepared at different temperatures were investigated. The high-temperature immobilizate (55 °C) showed the highest thermal stability, followed by the 40 °C immobilizate. And the high-temperature immobilizate (55 °C) had slightly higher operational stability than the 25 °C immobilizate. All of the immobilized catalase preparations showed higher stability than the free enzyme at alkaline pH 10.0, while the alkali resistance of the 25 °C immobilizate was slightly better than that of the 40 and 55 °C immobilizates.
An Impact Triggered Runaway Greenhouse on Mars
NASA Technical Reports Server (NTRS)
Segura, T. L.; McKay, C. P.; Toon, O. B.
2004-01-01
When a planet is in radiative equilibrium, the incoming solar flux balances the outgoing longwave flux. If something were to perturb the system slightly, say the incoming solar flux increased, the planet would respond by radiating at a higher surface temperature. Since any radiation that comes in must go out, if the incoming is increased, the outgoing must also increase, and this increase manifests itself as a warmer equilibrium temperature. The increase in solar flux would correspond to an increase in temperature, which would increase the amount of water vapor in the atmosphere due to increased evaporation. Since water vapor is a greenhouse gas, it would absorb more radiation in the atmosphere leading to a yet warmer equilibrium temperature. The planet would reach radiative equilibrium at this new temperature. There exists a point, however, past which this positive feedback leads to a "runaway" situation. In this case, the planet does not simply evaporate a little more water and eventually come to a slightly higher equilibrium temperature. Instead, the planet keeps evaporating more and more water until all of the planet's available liquid and solid water is in the atmosphere. The reason for this is generally understood. If the planet's temperature increases, evaporation of water increases, and the absorption of radiation increases. This increases the temperature and the feedback continues until all water is in the atmosphere. The resulting equilibrium temperature is very high, much higher than the equilibrium temperature of a point with slightly lower solar flux. One can picture that as solar flux increases, planetary temperature also increases until the runaway point where temperature suddenly "jumps" to a higher value, in response to all the available water now residing in the atmosphere. This new equilibrium is called a "runaway greenhouse" and it has been theorized that this is what happened to the planet Venus, where the surface temperature is more than 700 K (427 C).
NASA Astrophysics Data System (ADS)
Dong, Zhihua; Li, Wei; Long, Mujun; Gui, Lintao; Chen, Dengfu; Huang, Yunwei; Vitos, Levente
2015-08-01
The influence of temperature reversion in secondary cooling and its reversion rate on hot ductility and flow stress-strain curve of C-Mn steel has been investigated. Tensile specimens were cooled at various regimes. One cooling regime involved cooling at a constant rate of 100 °C min-1 to the test temperature, while the others involved temperature reversion processes at three different reversion rates before deformation. After hot tensile test, the evolution of mechanical properties of steel was analyzed at various scales by means of microstructure observation, ab initio prediction, and thermodynamic calculation. Results indicated that the temperature reversion in secondary cooling led to hot ductility trough occurring at higher temperature with greater depth. With increasing temperature reversion rate, the low temperature end of ductility trough extended toward lower temperature, leading to wider hot ductility trough with slightly reducing depth. Microstructure examinations indicated that the intergranular fracture related to the thin film-like ferrite and (Fe,Mn)S particles did not changed with varying cooling regimes; however, the Widmanstatten ferrite surrounding austenite grains resulted from the temperature reversion process seriously deteriorated the ductility. In addition, after the temperature reversion in secondary cooling, the peak stress on the flow curve slightly declined and the peak of strain to peak stress occurred at higher temperature. With increasing temperature reversion rate, the strain to peak stress slightly increased, while the peak stress showed little variation. The evolution of plastic modulus and strain to peak stress of austenite with varying temperature was in line with the theoretical prediction on Fe.
Evaluation of Additive Manufacturing for Stainless Steel Components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peter, William H.; Lou, Xiaoyuan; List, III, Frederick Alyious
This collaboration between Oak Ridge National Laboratory and General Electric Company aimed to evaluate the mechanical properties, microstructure, and porosity of the additively manufactured 316L stainless steel by ORNL’s Renishaw AM250 machine for nuclear application. The program also evaluated the stress corrosion cracking and corrosion fatigue crack growth rate of the same material in high temperature water environments. Results show the properties of this material to be similar to the properties of 316L stainless steel fabricated additively with equipment from other manufacturers with slightly higher porosity. The stress corrosion crack growth rate is similar to that for wrought 316L stainlessmore » steel for an oxygenated high temperature water environment and slightly higher for a hydrogenated high temperature water environment. Optimized heat treatment of this material is expected to improve performance in high temperature water environments.« less
Densitometric evaluation of Soludent and GBX developers.
Patel, J R
1985-01-01
A quick-developing solution (Soludent) and a new developer (Kodak GBX) were compared with a standard x-ray liquid developer. Of the three solutions evaluated, Kodak GBX solution produced slightly greater useful densities in the radiograph at all temperatures evaluated. The rapid-developing solution produced acceptable radiographs in 80% less time, with only slightly higher film fog.
Characterization of commercial supercapacitors for low temperature applications
NASA Astrophysics Data System (ADS)
Iwama, E.; Taberna, P. L.; Azais, P.; Brégeon, L.; Simon, P.
2012-12-01
Electrochemical characterizations at low temperature and floating tests have been performed on 600F commercial supercapacitor (SC) for acetonitrile (AN)-based and AN + methyl acetate (MA) mixed electrolytes. From -40 to +20 °C, AN electrolyte showed slightly higher capacitance than those of AN + MA mixed electrolytes (25 and 33 vol.% of MA). At -55 °C, however, AN electrolyte did not cycle at all, while MA mixed electrolyte normally cycled with a slight decrease in their capacitance. From electrochemical impedance spectroscopy measurements, the whole resistance for AN-based cells at -55 °C was found to be about 10,000 times higher than that of +20 °C, while a 40-fold increase in the cell resistance was obtained for the MA mixture between 20 and -55 °C. From the results of floating tests at 2.7 V and 60 °C for 1 month, the 25 vol.% MA mixture showed no change and slight decreased but stable capacitance.
A study of helium atmospheric-pressure guided streamers for potential biological applications
NASA Astrophysics Data System (ADS)
Gazeli, K.; Noël, C.; Clément, F.; Daugé, C.; Svarnas, P.; Belmonte, T.
2013-04-01
The origin of differences in the rotational temperatures of various molecules and ions ( N_{2}^{+} (B), OH(A) and N2(C)) is studied in helium atmospheric-pressure guided streamers. The rotational temperature of N_{2}^{+} (B) is room temperature. It is estimated from the emission band of the first negative system at 391.4 nm, and it is governed by the temperature of N2(X) in the surrounding air. N2(X) is ionized by direct electron impact in the outer part of the plasma. N_{2}^{+} (B) is deactivated by collisions with N2 and O2. The rotational temperature of OH(A), estimated from the OH band at 306.4 nm, is slightly higher than that of N_{2}^{+} (B). OH(A) is excited by electron impact with H2O during the first 100 ns of the applied voltage pulse. Next, OH(A) is produced by electron impact with OH(X) created by the quenching of OH(A) by N2 and O2. H2O diffuses deeper than N2 into the plasma ring and the rotational temperature of OH(A) is slightly higher than that of N_{2}^{+} (B). The rotational temperature of N2(C), estimated from the emission of the second positive system at 315.9 nm, is governed by its collisions with helium. The gas temperature of helium at the beginning of the pulse is predicted to be several hundred kelvin higher than room temperature.
Lorentzen, Marit Sjo; Moe, Elin; Jouve, Hélène Marie; Willassen, Nils Peder
2006-10-01
The gene encoding catalase from the psychrophilic marine bacterium Vibrio salmonicida LFI1238 was identified, cloned and expressed in the catalase-deficient Escherichia coli UM2. Recombinant catalase from V. salmonicida (VSC) was purified to apparent homogeneity as a tetramer with a molecular mass of 235 kDa. VSC contained 67% heme b and 25% protoporphyrin IX. VSC was able to bind NADPH, react with cyanide and form compounds I and II as other monofunctional small subunit heme catalases. Amino acid sequence alignment of VSC and catalase from the mesophilic Proteus mirabilis (PMC) revealed 71% identity. As for cold adapted enzymes in general, VSC possessed a lower temperature optimum and higher catalytic efficiency (k (cat)/K (m)) compared to PMC. VSC have higher affinity for hydrogen peroxide (apparent K (m)) at all temperatures. For VSC the turnover rate (k (cat)) is slightly lower while the catalytic efficiency is slightly higher compared to PMC over the temperature range measured, except at 4 degrees C. Moreover, the catalytic efficiency of VSC and PMC is almost temperature independent, except at 4 degrees C where PMC has a twofold lower efficiency compared to VSC. This may indicate that VSC has evolved to maintain a high efficiency at low temperatures.
2017-06-03
used and the test cell had been thoroughly purged of the previous fuel, and to provide fuel properties needed to run the test. Posttest fuel samples...altitude hot day generator load. All tests were run at actual engine conditions (not scaled). Fuel flows were adjusted to provide a constant heat input...blends had slightly higher temperatures at the blade tip location and slightly lower temperatures at the blade hub location, but these differences are
Overcharge and overdischarge protection of ambient temperature secondary lithium cells
NASA Technical Reports Server (NTRS)
Huang, Chen-Kuo (Inventor); Surampudi, Subbarao (Inventor); Attia, Alan I. (Inventor); Halpert, Gerald (Inventor)
1994-01-01
A cathode additive is provided for protecting an ambient temperature secondary lithium cell from overcharging or overdischarging. The cathode additive is chosen to create an upper voltage plateau which is slightly higher than a characteristic charge cutoff voltage of the cathode of the cell. The cathode additive additionally creates a lower voltage plateau which is slightly lower than the characteristic discharge cutoff voltage of the cell. Preferably, the cathode additive is a transition metal oxide or a sulfide and may, for example, include a mixture of Li2Mn2O4 and Li(0.1)MoO2.
Plant molecular responses to the elevated ambient temperatures expected under global climate change.
Fei, Qionghui; Li, Jingjing; Luo, Yunhe; Ma, Kun; Niu, Bingtao; Mu, Changjun; Gao, Huanhuan; Li, Xiaofeng
2018-01-02
Environmental temperatures affect plant distribution, growth, and development. The Intergovernmental Panel on Climate Change (IPCC) predicts that global temperatures will rise by at least 1.5°C by the end of this century. Global temperature changes have already had a discernable impact on agriculture, phenology, and ecosystems. At the molecular level, extensive literature exists on the mechanism controlling plant responses to high temperature stress. However, few studies have focused on the molecular mechanisms behind plant responses to mild increases in ambient temperature. Previous research has found that moderately higher ambient temperatures can induce hypocotyl elongation and early flowering. Recent evidence demonstrates roles for the phytohormones auxin and ethylene in adaptive growth of plant roots to slightly higher ambient temperatures.
Variation of the channel temperature in the transmission of lightning leader
NASA Astrophysics Data System (ADS)
Chang, Xuan; Yuan, Ping; Cen, Jianyong; Wang, Xuejuan
2017-06-01
According to the time-resolved spectra of the lightning stepped leader and dart leader processes, the channel temperature, its evolution characteristics with time and the variation along the channel height in the transmission process were analyzed. The results show that the stepped leader tip has a slightly higher temperature than the trailing end, which should be caused by a large amount of electric charges on the leader tip. In addition, both temperature and brightness are enhanced at the position of the channel node. The dart leader has a higher channel temperature than the stepped leader but a lower temperature than the return stroke. Meanwhile, the channel temperature of the dart leader obviously increases when the dart leader propagates to the ground.
McDonnell, Laura H.; Chapman, Lauren J.
2015-01-01
Tropical inland fishes are predicted to be especially vulnerable to thermal stress because they experience small temperature fluctuations that may select for narrow thermal windows. In this study, we measured resting metabolic rate (RMR), critical oxygen tension (Pcrit) and critical thermal maximum (CTMax) of the widespread African cichlid (Pseudocrenilabrus multicolor victoriae) in response to short-term acclimation to temperatures within and above their natural thermal range. Pseudocrenilabrus multicolor collected in Lake Kayanja, Uganda, a population living near the upper thermal range of the species, were acclimated to 23, 26, 29 and 32°C for 3 days directly after capture, and RMR and Pcrit were then quantified. In a second group of P. multicolor from the same population, CTMax and the thermal onset of agitation were determined for fish acclimated to 26, 29 and 32°C for 7 days. Both RMR and Pcrit were significantly higher in fish acclimated to 32°C, indicating decreased tolerance to hypoxia and increased metabolic requirements at temperatures only slightly (∼1°C) above their natural thermal range. The CTMax increased with acclimation temperature, indicating some degree of thermal compensation induced by short-term exposure to higher temperatures. However, agitation temperature (likely to represent an avoidance response to increased temperature during CTMax trials) showed no increase with acclimation temperature. Overall, the results of this study demonstrate that P. multicolor is able to maintain its RMR and Pcrit across the range of temperatures characteristic of its natural habitat, but incurs a higher cost of resting metabolism and reduced hypoxia tolerance at temperatures slightly above its present range. PMID:27293734
Room temperature mechanical properties of electron beam welded zircaloy-4 sheet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parga, C. J.; Rooyen, I. J.; Coryell, B. D.
Room temperature mechanical properties of electron beam welded and plain Zircaloy-4 sheet (1.6mm thick) have been measured and compared. Various welding parameters were utilized to join sheet material. Electron beam welded specimens and as-received sheet specimens show comparable mechanical properties. Zr-4 sheet displays anisotropy; tensile properties measured for transverse display higher elastic modulus, yield strength, reduction of area and slightly lower ductility than for the longitudinal (rolling direction). Higher welding power increases the alloy’s hardness, elastic modulus and yield strength, with a corresponding decrease in tensile strength and ductility. The hardness measured at weld is comparable to the parent metalmore » hardness. Hardness at heat-affected-zone is slightly higher. Electron microscopic examination shows distinct microstructure morphology and grain size at the weld zone, HAZ and parent metal. A correlation between welding parameters, mechanical properties and microstructural features was established for electron beam welded Zircaloy-4 sheet material.« less
Room temperature mechanical properties of electron beam welded zircaloy-4 sheet
Parga, C. J.; Rooyen, I. J.; Coryell, B. D.; ...
2017-11-04
Room temperature mechanical properties of electron beam welded and plain Zircaloy-4 sheet (1.6mm thick) have been measured and compared. Various welding parameters were utilized to join sheet material. Electron beam welded specimens and as-received sheet specimens show comparable mechanical properties. Zr-4 sheet displays anisotropy; tensile properties measured for transverse display higher elastic modulus, yield strength, reduction of area and slightly lower ductility than for the longitudinal (rolling direction). Higher welding power increases the alloy’s hardness, elastic modulus and yield strength, with a corresponding decrease in tensile strength and ductility. The hardness measured at weld is comparable to the parent metalmore » hardness. Hardness at heat-affected-zone is slightly higher. Electron microscopic examination shows distinct microstructure morphology and grain size at the weld zone, HAZ and parent metal. A correlation between welding parameters, mechanical properties and microstructural features was established for electron beam welded Zircaloy-4 sheet material.« less
Temperature-dependent surface density of alkylthiol monolayers on gold nanocrystals
NASA Astrophysics Data System (ADS)
Liu, Xuepeng; Lu, Pin; Zhai, Hua; Wu, Yucheng
2018-03-01
Atomistic molecular dynamics (MD) simulations are performed to study the surface density of passivating monolayers of alkylthiol chains on gold nanocrystals at temperatures ranging from 1 to 800 K. The results show that the surface density of alkylthiol monolayer reaches a maximum value at near room temperature (200-300 K), while significantly decreases with increasing temperature in the higher temperature region (> 300 {{K}}), and slightly decreases with decreasing temperature at low temperature (< 200 {{K}}). We find that the temperature dependence of surface ligand density in the higher temperature region is attributed to the substantial ligand desorption induced by the thermal fluctuation, while that at low temperature results from the reduction in entropy caused by the change in the ordering of passivating monolayer. These results are expected helpful to understand the temperature-dependent surface coverage of gold nanocrystals.
Molecular deformation and stress-strain behavior of poly(bisphenol-A-diphenyl sulfone)
NASA Technical Reports Server (NTRS)
Hong, S.-D.; Chung, S. Y.; Fedors, R. F.
1983-01-01
The strain-birefringence response of poly(bisphenol-A-diphenyl sulfone) is found to be independent of temperature at temperatures below -100 C; at higher temperatures, the response becomes slightly dependent on temperature, with lower birefringence seen at higher temperatures. The stress-strain behavior and the stress-birefringence response both depend on temperature over the entire testing temperature range (-179 C to 150 C) studied; this dependence, however, is not pronounced. The evidence is seen as suggesting that the polymer molecules respond to deformation by undergoing conformational rearrangements; the mode of the molecular deformation remains unchanged for temperatures of -100 C or lower. At higher temperatures, the average length of the chain segments involved in the rearrangement increases. The stress-strain response is attributed mainly to chain orientation. The entropic contribution deriving from chain orientation at temperatures below -100 C is still substantial. The modest temperature dependence of the stress-strain response suggests that the energy barriers for the chain segments involved in the rearrangement are relatively low.
Wang, Sen; Wang, Wen-chun; Yang, De-zheng; Liu, Zhi-jie; Zhang, Shuai
2014-10-15
In this study, a bipolar nanosecond pulse with 20ns rising time is employed to generate air gas-liquid diffuse discharge plasma with room gas temperature in quartz tube at atmospheric pressure. The image of the discharge and optical emission spectra of active species in the plasma are recorded. The plasma gas temperature is determined to be approximately 390K by compared the experimental spectra with the simulated spectra, which is slightly higher than the room temperature. The result indicated that the gas temperature rises gradually with pulse peak voltage increasing, while decreases slightly with the electrode gap distance increasing. As an important application, bipolar nanosecond pulse discharge is used to sterilize the common microorganisms (Actinomycetes, Candida albicans and Escherichia coli) existing in drinking water, which performs high sterilization efficiency. Copyright © 2014 Elsevier B.V. All rights reserved.
Thermal properties of polyethylene reinforced with recycled–poly (ethylene terephthalate) flakes.
NASA Astrophysics Data System (ADS)
Ruqiyah Nik Hassan, Nik; Mazni Ismail, Noor; Ghazali, Suriati; Nuruzzaman, Dewan Muhammad
2018-04-01
In this study, recycled plastic bottles (RPET) were used as a filler in high density polyethylene (HDPE) thermoplastic. The plastic sheet of RPET/HDPE was prepared by using hot and cold press machine. The effects of RPET addition and hot press process to the thermal properties of the composite RPET/HDPE were investigated using differential scanning calorimetry (DSC) and thermogravimetric (TGA). Results from DSC analysis show that the melting point of HDPE slightly shifted to a higher temperature for about 2°C to 4°C with the addition of RPET as a filler. The starting degradation temperature of RPET/HDPE composite examined from TGA analysis also seen to be slightly increased. It was observed that the incorporation of recycled PET flakes into HDPE is achievable using hot press process with slight improvement seen in both melting point and thermal stability of the composite compared to the neat HDPE.
Indoor air quality in an automotive assembly plant in Selangor, Malaysia.
Edimansyah, B A; Rusli, B N; Naing, L; Azwan, B A; Aziah, B D
2009-01-01
The purpose of this study was to determine the indoor air quality (IAQ) status of an automotive assembly plant in Rawang, Selangor, Malaysia using selected IAQ parameters, such as carbon dioxide (CO2), carbon monoxide (CO), temperature, relative humidity (RH) and respirable particulate matter (PM10). A cross-sectional study was conducted in the paint shop and body shop sections of the plant in March 2005. The Q-TRAK Plus IAQ Monitor was used to record the patterns of CO, CO2, RH and temperature; whilst PM10 was measured using DUSTTRAK Aerosol Monitor over an 8-hour time weight average (8-TWA). It was found that the average temperatures, RH and PM10 in the paint shop section and body shop sections exceeded the Department of Safety and Health (DOSH) standards. The average concentrations of RH and CO were slightly higher in the body shop section than in the paint shop section, while the average concentrations of temperature and CO2 were slightly higher in the paint shop section than in the body shop section. There was no difference in the average concentrations of PM10 between the two sections.
Temperature tolerance of young-of-the-year cisco, Coregonus artedii
Edsall, Thomas A.; Colby, Peter J.
1970-01-01
Young-of-the-year ciscoes (Coregonus artedii) acclimated to 2, 5, 10, 20 and 25 C and tested for tolerance to high and low temperatures provide the first detailed description of the thermal tolerance of coregonids in North America. The upper ultimate lethal temperature of the young ciscoes was 26 C (6 C higher than the maximum sustained temperature tolerated by adult ciscoes in nature) and the ultimate lower lethal temperature approached 0 C (near that commonly tolerated in nature by adult ciscoes). The temperature of 26 C is slightly higher than the lowest ultimate upper lethal temperature recorded for North American freshwater fishes; however, published information on the depth distributions of fishes in the Great Lakes suggests that some of the other coregonids may be less tolerant of high temperatures than the cisco.
Effect of sodium and calcium ingestion on thermoregulation during exercise in man
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.; Brock, P. J.; Morse, J. T.; Van Beaumont, W.; Montgomery, L. D.; Convertino, V. A.; Mangseth, G. R.
1978-01-01
The effects of hypertonic sodium and calcium ingestion on body temperature during exercise in cool and hot environments are investigated. Rectal and mean skin temperatures, sweat rates and arm and leg total blood flows were measured in men during periods of rest, submaximal exercise and recovery at temperatures of 26.5 C and 39.4 C after ingestion of NaCl and CaCl2 solutions. In both environments, higher rectal temperatures are observed after hypertonic sodium ingestion, which is also associated with attenuated blood flow in the extremities, lower sweat rates and slightly higher skin temperature in the heat, indicating significant thermoregulatory responses. Hypertonic calcium and isotonic sodium cause no temperature change, although calcium caused a reduction of blood flow in the extremities.
Pluto's atmosphere - Models based on refraction, inversion, and vapor-pressure equilibrium
NASA Technical Reports Server (NTRS)
Eshleman, Von R.
1989-01-01
Viking spacecraft radio-occultation measurements indicate that, irrespective of substantial differences, the polar ice cap regions on Mars have inversions similar to those of Pluto, and may also share vapor pressure equilibrium characteristics at the surface. This temperature-inversion phenomenon occurs in a near-surface boundary layer; surface pressure-temperature may correspond to the vapor-pressure equilibrium with CH4 ice, or the temperature may be slightly higher to match the value derived from IRAS data.
NASA Astrophysics Data System (ADS)
Alnot, M.; Ehrhardt, J. J.
1993-05-01
Adsorption of platinum atoms on Pt(110)(1×2) at low temperature has been studied by LEED, photoemission of adsorbed xenon (PAX) and Δφ measurements. Deposition of half a monolayer of platinum at 150 K produces a sharp (1×1) LEED pattern. A possible structural disorder of the as-grown surface is discussed. The (1×1) → (1×2) reconstruction is observed after annealing at a temperature slightly higher than 300 K.
NASA Technical Reports Server (NTRS)
Maile, K.
1982-01-01
The influence of different parameters on the creep-fatigue behavior of several steel alloys was investigated. The higher the temperature the lower the crack initiation value. Pauses during the cycle reduce the damage. Oxidation reduces and protective gas increases the lifetime. Prior loading and prior deformation reduce the lifetime. Short annealing slightly affects the cycle stress behavior. The test results do not satisfactorily agree with methods of extrapolation and damage accumulation.
NASA Astrophysics Data System (ADS)
Syafiq, W. M.; Afendi, M.; Daud, R.; Mazlee, M. N.; Majid, M. S. Abdul; Lee, Y. S.
2017-10-01
This paper described the mechanical properties from hardness testing and tensile testing of Friction Stir Welded (FSW) materials. In this project, two materials of aluminium and steel are welded using conventional milling machine and tool designed with different profile and shoulder size. During welding the temperature along the weld line is collected using thermocouples. Threaded pins was found to produce stronger joints than cylindrical pins. 20 mm diameter shoulder tool welded a slightly stronger joint than 18 mm diameter one, as well as softer nugget zone due to higher heat input. Threaded pins also contributed to higher weld temperature than cylindrical pins due to increase in pin contact surface. Generally, higher temperatures were recorded in aluminium side due to pin offset away from steel.
Temperature dependent lattice constant of InSb above room temperature
NASA Astrophysics Data System (ADS)
Breivik, Magnus; Nilsen, Tron Arne; Fimland, Bjørn-Ove
2013-10-01
Using temperature dependent X-ray diffraction on two InSb single crystalline substrates, the bulk lattice constant of InSb was determined between 32 and 325 °C. A polynomial function was fitted to the data: a(T)=6.4791+3.28×10-5×T+1.02×10-8×T2 Å (T in °C), which gives slightly higher values than previously published (which go up to 62 °C). From the fit, the thermal expansion of InSb was calculated to be α(T)=5.062×10-6+3.15×10-9×T K-1 (T in °C). We found that the thermal expansion coefficient is higher than previously published values above 100 °C (more than 10% higher at 325 °C).
Effects of Storage Temperature and Semen Extender on Stored Canine Semen
HORI, Tatsuya; YOSHIKUNI, Ryuta; KOBAYASHI, Masanori; KAWAKAMI, Eiichi
2013-01-01
ABSTRACT The objective of the present study was to determine an optimum temperature and extender for short-term transport of canine ejaculated semen. There was no significant difference in the qualities of semen diluted with two kinds of extender, egg yolk Tris-citrate fructose (EYT-FC) or glucose (EYT-GC) extender, between the 2, 8 or 12 and the 4°C control groups during storage for up to 48 hr, while the 16–24°C groups showed decreased sperm motility during storage for 48 hr. However, the 2°C group showed slightly lower sperm motility and slightly higher sperm abnormality than the 4°C group. Therefore, we concluded that semen qualities can be maintained for up to 48 hr when canine semen samples are extended with EYT-FC or EYT-GC and stored at a temperature in the range of 4–12°C. PMID:24088408
Hao, Jiuxiao; Wang, Hui
2015-01-01
The volatile fatty acids (VFAs) productions, as well as hydrolases activities, microbial communities, and homoacetogens, of mesophilic and thermophilic sludge anaerobic fermentation were investigated to reveal the microbial responses to different fermentation temperatures. Thermophilic fermentation led to 10-fold more accumulation of VFAs compared to mesophilic fermentation. α-glucosidase and protease had much higher activities in thermophilic reactor, especially protease. Illumina sequencing manifested that raising fermentation temperature increased the abundances of Clostridiaceae, Microthrixaceae and Thermotogaceae, which could facilitate either hydrolysis or acidification. Real-time PCR analysis demonstrated that under thermophilic condition the relative abundance of homoacetogens increased in batch tests and reached higher level at stable fermentation, whereas under mesophilic condition it only increased slightly in batch tests. Therefore, higher fermentation temperature increased the activities of key hydrolases, raised the proportions of bacteria involved in hydrolysis and acidification, and promoted the relative abundance of homoacetogens, which all resulted in higher VFAs production. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Lingxiangyu; Fernández-Cruz, María Luisa; Connolly, Mona; Schuster, Michael; Navas, José María
2015-01-01
Here, the effects of incubation temperature and particle size on the dissolution and aggregation behavior of copper nanoparticles (CuNPs) in culture media were investigated over 96 h, equivalent to the time period for acute cell toxicity tests. Three CuNPs with the nominal sizes of 25, 50, and 100 nm and one type of micro-sized particles (MPs, 500 nm) were examined in culture media used for human and fish hepatoma cell lines acute tests. A large decrease in sizes of CuNPs in the culture media was observed in the first 24 h incubation, and subsequently the sizes of CuNPs changed slightly over the following 72 h. Moreover, the decreasing rate in size was significantly dependent on the incubation temperature; the higher the incubation temperature, the larger the decreasing rate in size. In addition to that, we also found that the release of copper ions depended on the incubation temperature. Moreover, the dissolution rate of Cu particles increased very fast in the first 24 h, with a slight increase over the following 72 h.
Rodrigues, Elsa Teresa; Moreno, António; Mendes, Tito; Palmeira, Carlos; Pardal, Miguel Ângelo
2015-08-01
Research on the effects of thermal stress is currently pertinent as climate change is expected to cause more severe climate-driven events. Carcinus maenas, a recognised estuarine model organism, was selected to test temperature-dependence of azoxystrobin toxicity, a widely applied fungicide. Crabs' responses were assessed after a 10-d acclimation at different temperatures (5°C, 22°C, and 27°C) of which the last 72h were of exposure to an environmental concentration of azoxystrobin. SOD and GST activities, mitochondrial oxygen consumption rates and protein content, as well as the Coupling Index were determined. The hypothesis proposed that extreme temperatures (5°C and 27°C) and azoxystrobin would affect crabs' responses. Results showed statistically significant different effects of SOD and all oxygen rates measured promoted by temperature, and that neither 30.3μgL(-1) of azoxystrobin nor the combined effect were crab-responsive. Protein content at 5°C was statistically higher when compared with the control temperature (22°C). The Coupling Index revealed both a slight and a drastic decrease of this index promoted by 5°C and 27°C, respectively. Regarding azoxystrobin effects, at 22°C, this index only decreased slightly. However, at extreme temperatures it fell 47% at 5°C and slightly increased at 27°C. Results provided evidence that crabs' responses to cope with low temperatures were more effective than their responses to cope with high temperatures, which are expected in future climate projections. Moreover, crabs are capable of handling environmental concentrations of azoxystrobin. However, the Coupling Index showed that combined stress factors unbalance crabs' natural capability to handle a single stressor. Copyright © 2015 Elsevier Ltd. All rights reserved.
GISS Analysis of Surface Temperature Changes
NASA Technical Reports Server (NTRS)
Hansen, J.; Ruedy, R.; Glascoe, J.; Sato, M.
1999-01-01
We describe the current GISS analysis of surface temperature change based primarily on meteorological station measurements. The global surface temperature in 1998 was the warmest in the period of instrumental data. The rate of temperature change is higher in the past 25 years than at any previous time in the period of instrumental data. The warmth of 1998 is too large and pervasive to be fully accounted for by the recent El Nino, suggesting that global temperature may have moved to a higher level, analogous to the increase that occurred in the late 1970s. The warming in the United States over the past 50 years is smaller than in most of the world, and over that period there is a slight cooling trend in the Eastern United States and the neighboring Atlantic ocean. The spatial and temporal patterns of the temperature change suggest that more than one mechanism is involved in this regional cooling.
Differences in reported linguistic thermal sensation between Bangla and Japanese speakers.
Khatun, Aklima; Hasib, Md Abdul; Nagano, Hisaho; Taimura, Akihiro
2017-06-05
Thermal sensation is a fundamental variable used to determine thermal comfort and is most frequently evaluated through the use of subjective reports in the field of environmental physiology. However, there has been little study of the relationship between the semantics of the words used to describe thermal sensation and the climatic background. The present study investigates the linguistic differences in thermal reports from native speakers of Bangla and Japanese. A total of 1141 university students (932 in Bangladesh and 209 in Japan) responded to a questionnaire survey consisting of 20 questions. Group differences between Bangladeshi and Japanese respondents were then tested with a chi-square test in a crosstab analysis using SPSS (version 21). For the Bangla-speaking respondents, the closest feeling of thermal comfort was "neutral" (66.6%) followed by "slightly cool" (10.2%), "slightly cold" (6.0%), "slightly hot" (4.1%), and "cold" (3.8%). For the Japanese respondents, the closest feeling of thermal comfort was "cool" (38.3%) followed by "slightly cool" (20.4%), "neutral" (14.6%), "slightly warm" (13.1%), and "warm" (10.7%). Of the Bangladeshi respondents, 37.7% reported that they were sensitive to cold weather and 18.1% reported that they were sensitive to hot weather. Of the Japanese respondents, 20.6% reported that they were sensitive to cold weather and 29.2% reported that they were sensitive to hot weather. Of the Bangladeshi respondents, 51.4% chose "higher than 29 °C" as hot weather and 38.7% of the Japanese respondents chose "higher than 32 °C" as hot weather. In the case of cold weather, 43.1% of the Bangladeshi respondents selected "lower than 15 °C" as cold weather and 53.4% of the Japanese respondents selected "lower than 10 °C" as cold weather. Most of the Bangla-speaking respondents chose "neutral" as the most comfortable temperature, and most of the Japanese respondents chose "cool." Most of the Bangladeshi respondents reported that they were sensitive to "cold temperatures," but most of the Japanese respondents reported that they were sensitive to "hot temperatures."
Plasmaspheric H+, He+, O+, He++, and O++ Densities and Temperatures
NASA Technical Reports Server (NTRS)
Gallagher, D. L.; Craven, P. D.; Comfort H.
2013-01-01
Thermal plasmaspheric densities and temperatures for five ion species have recently become available, even though these quantities were derived some time ago from the Retarding Ion Mass Spectrometer onboard the Dynamics Explorer 1 satellite over the years 1981-1984. The quantitative properties will be presented. Densities are found to have one behavior with lessor statistical variation below about L=2 and another with much greater variability above that Lshell. Temperatures also have a behavior difference between low and higher L-values. The density ratio He++/H+ is the best behaved with values of about 0.2% that slightly increase with increasing L. Unlike the He+/H+ density ratio that on average decreases with increasing Lvalue, the O+/H+ and O++/H+ density ratios have decreasing values below about L=2 and increasing average ratios at higher L-values. Hydrogen ion temperatures range from about 0.2 eV to several 10s of eV for a few measurements, although the bulk of the observations are of temperatures below 3 eV, again increasing with L-value. The temperature ratios of He+/H+ are tightly ordered around 1.0 except for the middle plasmasphere between L=3.5 and 4.5 where He+ temperatures can be significantly higher. The temperatures of He++, O+, and O++ are consistently higher than H+.
Plasmaspheric H+, He+, He++, O+, and O++ Densities and Temperatures
NASA Technical Reports Server (NTRS)
Gallagher, G. L.; Craven, P. D.; Comfort, R. H.
2013-01-01
Thermal plasmaspheric densities and temperatures for five ion species have recently become available, even though these quantities were derived some time ago from the Retarding Ion Mass Spectrometer onboard the Dynamics Explorer 1 satellite over the years 1981-1984. The quantitative properties will be presented. Densities are found to have one behavior with lessor statistical variation below about L=2 and another with much greater variability above that Lshell. Temperatures also have a behavior difference between low and higher L-values. The density ratio He++/H+ is the best behaved with values of about 0.2% that slightly increase with increasing L. Unlike the He+/H+ density ratio that on average decreases with increasing Lvalue, the O+/H+ and O++/H+ density ratios have decreasing values below about L=2 and increasing average ratios at higher L-values. Hydrogen ion temperatures range from about 0.2 eV to several 10s of eV for a few measurements, although the bulk of the observations are of temperatures below 3 eV, again increasing with L-value. The temperature ratios of He+/H+ are tightly ordered around 1.0 except for the middle plasmasphere between L=3.5 and 4.5 where He+ temperatures can be significantly higher. The temperatures of He++, O+, and O++ are consistently higher than H+.
POMC neurons in heat: A link between warm temperatures and appetite suppression.
Vicent, Maria A; Mook, Conor L; Carter, Matthew E
2018-05-01
When core body temperature increases, appetite and food consumption decline. A higher core body temperature can occur during exercise, during exposure to warm environmental temperatures, or during a fever, yet the mechanisms that link relatively warm temperatures to appetite suppression are unknown. A recent study in PLOS Biology demonstrates that neurons in the mouse hypothalamus that express pro-opiomelanocortin (POMC), a neural population well known to suppress food intake, also express a temperature-sensitive ion channel, transient receptor potential vanilloid 1 (TRPV1). Slight increases in body temperature cause a TRPV1-dependent increase in activity in POMC neurons, which suppresses feeding in mice. Taken together, this study suggests a novel mechanism linking body temperature and food-seeking behavior.
EVIDENCE FOR POLAR X-RAY JETS AS SOURCES OF MICROSTREAM PEAKS IN THE SOLAR WIND
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neugebauer, Marcia, E-mail: mneugeb@lpl.arizona.edu
2012-05-01
It is proposed that the interplanetary manifestations of X-ray jets observed in solar polar coronal holes during periods of low solar activity are the peaks of the so-called microstreams observed in the fast polar solar wind. These microstreams exhibit velocity fluctuations of {+-}35 km s{sup -1}, higher kinetic temperatures, slightly higher proton fluxes, and slightly higher abundances of the low-first-ionization-potential element iron relative to oxygen ions than the average polar wind. Those properties can all be explained if the fast microstreams result from the magnetic reconnection of bright-point loops, which leads to X-ray jets which, in turn, result in solarmore » polar plumes. Because most of the microstream peaks are bounded by discontinuities of solar origin, jets are favored over plumes for the majority of the microstream peaks.« less
Numerical Study of Pyrolysis of Biomass in Fluidized Beds
NASA Technical Reports Server (NTRS)
Bellan, Josette; Lathouwers, Danny
2003-01-01
A report presents a numerical-simulation study of pyrolysis of biomass in fluidized-bed reactors, performed by use of the mathematical model described in Model of Fluidized Bed Containing Reacting Solids and Gases (NPO-30163), which appears elsewhere in this issue of NASA Tech Briefs. The purpose of the study was to investigate the effect of various operating conditions on the efficiency of production of condensable tar from biomass. The numerical results indicate that for a fixed particle size, the fluidizing-gas temperature is the foremost parameter that affects the tar yield. For the range of fluidizing-gas temperatures investigated, and under the assumption that the pyrolysis rate exceeds the feed rate, the optimum steady-state tar collection was found to occur at 750 K. In cases in which the assumption was not valid, the optimum temperature for tar collection was found to be only slightly higher. Scaling up of the reactor was found to exert a small negative effect on tar collection at the optimal operating temperature. It is also found that slightly better scaling is obtained by use of shallower fluidized beds with greater fluidization velocities.
Guo, Xin; Ye, Xingqian; Sun, Yujing; Wu, Dan; Wu, Nian; Hu, Yaqin; Chen, Shiguo
2014-02-05
The effects of ultrasound on the molecular weight, structure, and antioxidant potential of a fucoidan found in Isostichopus badionotus were investigated. The results showed the molecular weight (Mw) of fucoidan decreased obviously after ultrasound treatment. Higher ultrasonic intensity, lower temperature, and lower fucoidan concentrations led to a more effective sonochemical effect. The kinetic model for fucoidan degradation fitted to 1/M(wt)-1/M(w0) = kt at the tested temperature. The optimized degradation conditions by response surface methodology (RSM) were temperature, 12 °C, and intensity, 508 W/cm². Structural analysis by FTIR and NMR indicated the fucoidan kept the linear tetrasaccharide repeating units as the original polysaccharides after the ultrasound treatment, with only slight destruction of the middle nonsulfated fucose units. Antioxidant activity assay showed the antioxidant activity was slightly improved by the ultrasound treatment. The results suggested that ultrasound treatment is an effective approach to decrease the M(w) of fucoidan with only minor structural destruction.
Strength advantages of chemically polished boron fibers before and after reaction with aluminum
NASA Technical Reports Server (NTRS)
Dicarlo, J. A.; Smith, R. J.
1982-01-01
In order to determine their strength potential, the fracture properties of different types of commercial boron fibers were measured before and after application of secondary strengthening treatments. The principal treatments employed were a slight chemical polish, which removed low strength surface flaws, and a heat treatment in oxygen, which contracted the fibers and thereby compressed intrinsic bulk flaws. Those fiber types most significantly strengthened were 200 to 400 micrometers (8 to 16 mil) diameter boron on tungsten fibers produced in a single chemical vapor deposition reactor. The slight polish increased average tensile strenghts from 3.4 to 4.4 CN/m2 (500 to 640 ksi) and reduced coefficients of variation from about 15 to 3 percent. The oxygen heat treatment plus slight polish further improved average strengths to 5.5 GN/m2 (800 ksi) with coefficients near 3 percent. To ascertain whether these excellent properties could be retained after fabrication of B/Al composites, as produced and polished 203 micrometers (8 mil) fibers were thinly coated with aluminum, heat treated at B/Al fabrication temperatures, and then tested in tension and flexure at room temperature. The pre-polished fibers were observed to retain their superior strengths to higher temperatures than the as-produced fibers even though both were subjected to the same detrimental reaction with aluminum.
A Cooling System for Impermeable Clothing
Gleeson, J. P.; Pisani, J. F.
1967-01-01
A self-contained conditioning unit for use with impermeable protective clothing is described. The pack-mounted unit weighing 10 lb. (4·5 kg.) will enable a wearer to work for approximately one hour at temperatures in the zone of evaporative regulation. At 40·6°C. (105°F.), the temperature at which the unit was tested, the heat load imposed by the complete assembly of suit, conditioning unit, and ducting is only slightly higher than that imposed by the wearing of shorts. Images PMID:6028716
Liu, Yun; Zhong, Zhang-cheng; Wang, Xiao-xue; Xie, Jun; Yang, Wen-ying
2011-03-01
A field research was conducted on the photosynthesis and transpiration characteristics of dioecious Trichosanthes kirilowii individuals at four key development stages. At vegetative growth stage, the photosynthesis rate, transpiration rate, stomatal conductance, and water use efficiency of male individuals were higher than those of female individuals, and hence, male individuals entered into reproductive growth stage 22 days earlier than female individuals. After entering into reproductive growth stage, male individuals had higher photosynthesis rate, transpiration rate, and stomatal conductance, but slightly lower water use efficiency than female individuals. As the female individuals started to reproductive growth, their photosynthesis rate and water use efficiency were significantly lower, while the transpiration rate and stomatal conductance were higher than those of the male individuals. The effects of climate factors on the growth and development of T. kirilowii mainly occurred at its vegetative growth and early reproductive growth stages, and weakened at later reproductive growth stages. Higher temperature and lower relative humidity benefited the growth and development of T. kirilowii, and illumination could enhance the photosynthesis rate of T. kirilowii, especially its male individuals. After entering into reproductive growth stage, the photosynthesis rate of male individuals increased significantly with increasing illumination, but that of female individuals only had a slight increase, and the transpiration rate of male individuals as well as the photosynthesis rate of female individuals all increased significantly with increasing temperature.
Neutron Resonance Spectrometry Shock Temperatures in Molybdenum
NASA Astrophysics Data System (ADS)
Swift, Damian; Seifter, Achim; Holtkamp, David; Yuan, Vincent; Clark, David; Buttler, William
2007-06-01
Neutron resonance spectrometry (NRS) has been used to measure the temperature in Mo during shock loading, giving temperatures higher than expected. The effect of plastic flow and non-ideal projectile behavior were assessed. Plastic flow was estimated to contribute a temperature rise of 55K compared with hydrodynamic flow, and 100-150K on release, consistent with pyrometry measurements. Simulations were performed of the HE flyer system used to induce the shock in the Mo sample. The simulations predicted that the flyer was slightly curved on impact. The resulting spatial variations in load, including radial components of velocity, were predicted to increase the apparent NRS temperature by 160K. These corrections are sufficient to reconcile the apparent temperatures deduced using NRS with the accepted properties of Mo.
Thermal effects on fish ecology
Coutant, Charles C.
1976-01-01
Of all the environmental factors that influence aquatic organisms, temperature is the most all-pervasive. There is always an environmental temperature while other factors may or may not be present to exert their effects. Fish are, for all practical purposes, thermal conformers, or obligate poikilotherms. That is, they are able to exert little significant influence on maintaining a certain body temperature by specialized metabolic or behavioral means. Their body temperature thus fluctuates nearly in concert with the temperature of their aquatic medium (although particularly large, actively-moving fish such as tuna have deep muscle temperatures slightly higher than the water). Intimate contact at the gills of body fluids with the outside water and the high specific heat of water provide a very efficient heat exchanger that insures this near identity of internal and external temperatures.
Continued development of abradable gas path seals. [for gas turbine engines
NASA Technical Reports Server (NTRS)
Shiembob, L. T.
1975-01-01
Major program objectives were the continued development of NiCrAlY feltmetal and honeycomb systems for knife edge seal applications in the 1144 to 1366 K temperature range, and to initiate abradable seal material evaluation for blade tip seal applications in the 1366 to 1589 K temperature range. Larger fiber size, higher density feltmetal showed greatly improved erosion resistance with a slight reduction in abradability compared to the baseline feltmetal. Pack aluminide coating of the honeycomb extended the oxidation resistance and slightly improved the abradability of this material. Evaluation through selected abradability, erosion and oxidation testing, and pertinent metallography led to selection of a plasma sprayed yttria stabilized zirconia (ZrO2)/CoCrAlY layered system as the system with the most potential to meet the 1589 K requirement for blade tip seals. This system demonstrated structural integrity, erosion resistance, and some degree of abradability.
Enhancement of thermal stability of porous bodies comprised of stainless steel or an alloy
Bischoff, Brian L.; Sutton, Theodore G.; Judkins, Roddie R.; Armstrong, Timothy R.; Adcock, Kenneth D.
2010-11-09
A method for treating a porous item constructed of metal powder, such as a powder made of Series 400 stainless steel, involves a step of preheating the porous item to a temperature of between about 700 and 900.degree. C. degrees in an oxidizing atmosphere and then sintering the body in an inert or reducing atmosphere at a temperature which is slightly below the melting temperature of the metal which comprises the porous item. The thermal stability of the resulting item is enhanced by this method so that the item retains its porosity and metallic characteristics, such as ductility, at higher (e.g. near-melting) temperatures.
Rabadán, Adrián; Álvarez-Ortí, Manuel; Pardo, José Emilio; Alvarruiz, Andrés
2018-09-01
Chemical composition and stability parameters of three cold-pressed nut oils (almond, walnut and pistachio) were monitored for up to 16 months of storage at 5 °C, 10 °C, 20 °C and room temperature. Freshly pressed pistachio oil had lower peroxide value than almond oil and higher induction period than almond and walnut oils, indicating a higher stability. The peroxide values increased faster at room temperature than at lower temperatures during the storage time, and the highest increase was for pistachio oil stored at room temperature exposed to daylight. The induction period decreased for all three nut oils during the storage time, regardless of the storage conditions. Pistachio oil remained the most stable oil at the end of the storage time, followed by almond oil. The percentage of polyunsaturated fatty acids decreased slightly throughout the storage. Copyright © 2018 Elsevier Ltd. All rights reserved.
Tensile and compressive creep behavior of extruded Mg–10Gd–3Y–0.5Zr (wt.%) alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, H.; The State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240; Wang, Q.D., E-mail: wangqudong@sjtu.edu.cn
2015-01-15
The tensile and compressive creep behavior of an extruded Mg–10Gd–3Y–0.5Zr (wt.%) alloy was investigated at temperatures ranging from 200 °C to 300 °C and under stresses ranging from 30 MPa to 120 MPa. There existed an asymmetry in the tensile and compressive creep properties. The minimum creep rate of the alloy was slightly greater in tension than in compression. The measured values of the transient strain and initial creep rate in compression were greater than those in tension. The creep stress exponent was approximately 2.5 at low temperatures (T < 250 °C) and 3.4 at higher temperatures both in tensionmore » and in compression. The compression creep activation energy at low temperatures and high temperatures was 83.4 and 184.3 kJ/mol respectively, while one activation energy (184 kJ/mol) represented the tensile–creep behavior over the temperature range examined. Dislocation creep was suggested to be the main mechanism in tensile creep and in the high-temperature regime in compressive creep, while grain boundary sliding was suggested to dominate in the low-temperature regime in compressive creep. Precipitate free zones were observed near grain boundaries perpendicular to the loading direction in tension and parallel to the loading direction in compression. Electron backscattered diffraction analysis revealed that the texture changed slightly during creep. Non-basal slip was suggested to contribute to the deformation after basal slip was introduced. In the tensile–creep ruptured specimens, intergranular cracks were mainly observed at general high-angle boundaries. - Highlights: • Creep behavior of an extruded Mg–RE alloy was characterized by EBSD. • T5 aging treatment enhanced the tension–compression creep asymmetry. • The grains grew slightly during tensile creep, but not for compressive creep. • Precipitate free zones (PFZs) were observed at specific grain boundaries. • Intergranular fracture was dominant and cracks mainly originated at GHABs.« less
Collins, Scott L; Ladwig, Laura M; Petrie, Matthew D; Jones, Sydney K; Mulhouse, John M; Thibault, James R; Pockman, William T
2017-03-01
Global environmental change is altering temperature, precipitation patterns, resource availability, and disturbance regimes. Theory predicts that ecological presses will interact with pulse events to alter ecosystem structure and function. In 2006, we established a long-term, multifactor global change experiment to determine the interactive effects of nighttime warming, increased atmospheric nitrogen (N) deposition, and increased winter precipitation on plant community structure and aboveground net primary production (ANPP) in a northern Chihuahuan Desert grassland. In 2009, a lightning-caused wildfire burned through the experiment. Here, we report on the interactive effects of these global change drivers on pre- and postfire grassland community structure and ANPP. Our nighttime warming treatment increased winter nighttime air temperatures by an average of 1.1 °C and summer nighttime air temperature by 1.5 °C. Soil N availability was 2.5 times higher in fertilized compared with control plots. Average soil volumetric water content (VWC) in winter was slightly but significantly higher (13.0% vs. 11.0%) in plots receiving added winter rain relative to controls, and VWC was slightly higher in warmed (14.5%) compared with control (13.5%) plots during the growing season even though surface soil temperatures were significantly higher in warmed plots. Despite these significant treatment effects, ANPP and plant community structure were highly resistant to these global change drivers prior to the fire. Burning reduced the cover of the dominant grasses by more than 75%. Following the fire, forb species richness and biomass increased significantly, particularly in warmed, fertilized plots that received additional winter precipitation. Thus, although unburned grassland showed little initial response to multiple ecological presses, our results demonstrate how a single pulse disturbance can interact with chronic alterations in resource availability to increase ecosystem sensitivity to multiple drivers of global environmental change. © 2016 John Wiley & Sons Ltd.
Effects of heat treating PM Rene' 95 slightly below the gamma-prime solvus
NASA Technical Reports Server (NTRS)
Dreshfield, R. L.
1977-01-01
An investigation was performed on As-HIP Rene' 95 to obtain additional information on the variation of the amount of gamma-prime with solutioning temperatures near the gamma-prime solvus temperature and the resulting effects on tensile and stress rupture strengths of As-HIP Rene' 95. The amount of gamma-prime phase was found to increase at a rate of about 0.5% per degree Celsius as the temperature decreased from the solvus temperature to about 50 C below the gamma-prime solvus temperature. The change in the amount of gamma-prime phase with decreasing solutioning temperature was observed to be primarily associated with decreasing solubilities of Al+Ti+Nb and increasing solubility of Cr in the gamma phase. For As-HIP Rene' 95 solutioned at either 1107 or 1135 C and subsequently water-quenched and double aged for 4 hours at 815 C followed by 24 hours at 650 C, the higher solution temperature resulted in significantly greater yield strengths at room temperature and 650 C as well as a greater room-temperature ultimate strength. Also, longer stress rupture lives at 650 C were associated with the higher solution temperature.
Ferromagnetism appears in nitrogen implanted nanocrystalline diamond films
NASA Astrophysics Data System (ADS)
Remes, Zdenek; Sun, Shih-Jye; Varga, Marian; Chou, Hsiung; Hsu, Hua-Shu; Kromka, Alexander; Horak, Pavel
2015-11-01
The nanocrystalline diamond films turn to be ferromagnetic after implanting various nitrogen doses on them. Through this research, we confirm that the room-temperature ferromagnetism of the implanted samples is derived from the measurements of magnetic circular dichroism (MCD) and superconducting quantum interference device (SQUID). Samples with larger crystalline grains as well as higher implanted doses present more robust ferromagnetic signals at room temperature. Raman spectra indicate that the small grain-sized samples are much more disordered than the large grain-sized ones. We propose that a slightly large saturated ferromagnetism could be observed at low temperature, because the increased localization effects have a significant impact on more disordered structure.
Resolution enhancement of fiber Bragg grating temperature sensor using a cavity ring-down technique
NASA Astrophysics Data System (ADS)
Yarai, Atsushi; Hara, Katsuyuki
2018-02-01
A new technique for enhancing the measurement resolution of a fiber Bragg grating (FBG) temperature sensor is proposed. This technique uses a cavity ring-down approach to amplify optical intensity by accumulating unremarkable intensity changes. A wavelength-stabilized optical pulse with a width of 10 ns rotates several times inside an optical fiber loop that contains a FBG sensor. In other words, the loop system functions as an integrator of slight intensity transition. A temperature resolution of at least 0.02 °C was achieved at 20.0 °C. Resolution with this technique is at least five times higher than previous techniques.
Catalytic chemical amide synthesis at room temperature: one more step toward peptide synthesis.
Mohy El Dine, Tharwat; Erb, William; Berhault, Yohann; Rouden, Jacques; Blanchet, Jérôme
2015-05-01
An efficient method has been developed for direct amide bond synthesis between carboxylic acids and amines via (2-(thiophen-2-ylmethyl)phenyl)boronic acid as a highly active bench-stable catalyst. This catalyst was found to be very effective at room temperature for a large range of substrates with slightly higher temperatures required for challenging ones. This methodology can be applied to aliphatic, α-hydroxyl, aromatic, and heteroaromatic acids as well as primary, secondary, heterocyclic, and even functionalized amines. Notably, N-Boc-protected amino acids were successfully coupled in good yields with very little racemization. An example of catalytic dipeptide synthesis is reported.
Low temperature tungsten spectroscopy on a Penning Ionization Discharge
NASA Astrophysics Data System (ADS)
Kumar, Deepak; Englesbe, Alexander; Stutman, Dan; Finkenthal, Michael
2011-10-01
Complete Tungsten divertor operation is being planned on many tokamaks including Tore Supra and ITER. Thus, low temperature tungsten spectroscopy is important for aiding the divertor diagnostics on larger machines. A Penning Ionization Discharge (PID) at the Johns Hopkins University produces steady state plasmas with Te ~ 2 eV, ne ~1013 cm-3 and a fast electron fraction at ~ 10 s eV. Similar bi-Maxwellian distributions, but with slightly higher electron temperatures, are found in the divertor plasmas of tokamaks. The two significant populating mechanisms for higher charge states in the PID are: (a) collisional excitation from bulk electrons, and (b) inner shell ionization from the fast electrons. The PID is diagnosed in a wide wavelength range - XUV, VUV and visible, to differentiate the two populating mechanisms. W is introduced in the PID by the sputtering of cathodes made of CuW alloy. Spectral emission from significantly higher charge states of W (up to W IV) has been observed in the experiment. This poster will describe results indicating the populating mechanism of W ions and also describe plans on upgrading the experiment to achieve higher temperatures which are closer to the divertor conditions. Supported by USDOE.
Ultrafast X-ray diffraction probe of terahertz field-driven soft mode dynamics in SrTiO 3
Kozina, M.; van Driel, T.; Chollet, M.; ...
2017-05-03
We use ultrafast x-ray pulses to characterize the lattice response of SrTiO 3 when driven by strong terahertz (THz) fields. We observe transient changes in the diffraction intensity with a delayed onset with respect to the driving field. Fourier analysis reveals two frequency components corresponding to the two lowest energy zone-center optical modes in SrTiO 3. Lastly, the lower frequency mode exhibits clear softening as the temperature is decreased while the higher frequency mode shows slight temperature dependence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gargarella, P., E-mail: piter@ufscar.br; Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rodovia Washington Luiz, Km 235, 13565-905 São Carlos, São Paulo; Pauly, S.
The structural evolution of Ti{sub 50}Cu{sub 43}Ni{sub 7} and Ti{sub 55}Cu{sub 35}Ni{sub 10} metallic glasses during heating was investigated by in-situ synchrotron X-ray diffraction. The width of the most intense diffraction maximum of the glassy phase decreases slightly during relaxation below the glass transition temperature. Significant structural changes only occur above the glass transition manifesting in a change in the respective peak positions. At even higher temperatures, nanocrystals of the shape memory B2-Ti(Cu,Ni) phase precipitate, and their small size hampers the occurrence of a martensitic transformation.
Ultrafast X-ray diffraction probe of terahertz field-driven soft mode dynamics in SrTiO 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozina, M.; van Driel, T.; Chollet, M.
We use ultrafast x-ray pulses to characterize the lattice response of SrTiO 3 when driven by strong terahertz (THz) fields. We observe transient changes in the diffraction intensity with a delayed onset with respect to the driving field. Fourier analysis reveals two frequency components corresponding to the two lowest energy zone-center optical modes in SrTiO 3. Lastly, the lower frequency mode exhibits clear softening as the temperature is decreased while the higher frequency mode shows slight temperature dependence.
Mazor, E.; Levitte, D.; Truesdell, A.H.; Healy, J.; Nissenbaum, A.
1980-01-01
No indications are available for the existence of above-boiling geothermal systems in the Jordan Rift Valley. Slightly higher than observed temperatures are concluded for a deep component at the springs of Hammat Gader (67°C), Gofra (68°C), the Russian Garden (40°C), and the Yesha well (53–65°C). These temperatures may encourage further developments for spas and bathing installations and, to a limited extent, for space heating, but are not favorable for geothermal power generation.
NASA Astrophysics Data System (ADS)
Dusenge, M. E.; Stinziano, J. R.; Warren, J.; Ward, E. J.; Wullschleger, S.; Hanson, P. J.; Way, D.
2017-12-01
Boreal forests are often assumed to be temperature-limited, and warming is therefore expected to stimulate their carbon uptake. However, much of our information on the ability of boreal conifers to acclimate photosynthesis and respiration to rising temperatures comes from seedlings. We measured net CO2 assimilation rates (A) and dark respiration (R) at 25 °C (A25 and R25) and at prevailing growth temperatures (Ag and Rg) in mature Picea mariana (spruce) and Larix laricina (tamarack) exposed to ambient, +2.25, +4.5, +6.75 and +9 °C warming treatments in open top chambers in the field at the SPRUCE experiment (MN, USA). In spruce, A25 and Ag were similar across plots in May and June. In August, spruce in warmer treatments had higher A25, an effect that was offset by warmer leaf temperatures in the Ag data. In tamarack, A25 was stimulated by warming in both June and August, an effect that was mainly offset by higher leaf temperatures when Ag was assessed in June, while in August, Ag was still slightly higher in the warmest treatments (+6.75 and +9) compared to the ambient plots. In spruce, R25 was enhanced in warm-grown trees in May, but was similar across treatments in June and August, indicating little acclimation of R. Rg slightly increased with warming treatments across the season in spruce. In contrast, R in tamarack thermally acclimated, as R25 decreased with warming. But while this acclimation generated homeostatic Rg in June, Rg in August was still highest in the warmest treatments. Our work suggests that the capacity for thermal acclimation in both photosynthesis and respiration varies among boreal tree species, which may lead to shifts in the performance of these species as the climate warms.
A ˜50 ka record of monsoonal variability in the Darjeeling foothill region, eastern Himalayas
NASA Astrophysics Data System (ADS)
Ghosh, Ruby; Bera, Subir; Sarkar, Anindya; Paruya, Dipak Kumar; Yao, Yi-Feng; Li, Cheng-Sen
2015-04-01
Pollen, phytoliths and δ 13C signatures of soil organic matter from two fluvial sedimentary sequences of the Darjeeling foothill region, eastern Himalayas are used to portray palaeoclimatic oscillations and their impact on regional plant communities over the last ˜50 ka. Quantitative palaeoclimate estimation using coexistence approach on pollen data and other proxies indicate significant oscillations in precipitation during the late part of MIS 3 (46.4-25.9 ka), early and middle part of MIS 2 (25.9-15.6 ka), and 5.4 to 3.5 ka. Middle to late MIS 3 (ca 46.4-31 ka.) was characterized by a comparatively low monsoonal activity and slightly higher temperature than that during ca 31 ka onwards. Simultaneous expansion of deciduous trees and chloridoid grasses also imply a drier and warmer phase. Between 31 and 22.3 ka (late MIS 3 to mid-MIS 2), higher precipitation and a slightly cooler temperature led to an increase in evergreen elements over deciduous taxa and wet-loving panicoid grasses over dry-loving chloridoid grasses than earlier. After ca 22.3 ka, shrinking of forest cover, expansion of C4 chloridoid grasses, Asteraceae and Cheno-ams in the vegetation with lowering of temperature and precipitation characterized the onset of the LGM which continued till 18.3 ka. End of the LGM is manifested by a restoration in the forest cover and in the temperature and precipitation regime. Later, during 5.4 to 4.3 ka, a strong monsoonal activity supported a dense moist evergreen forest cover that subsequently declined during 4.3 to 3.5 ka. A further increase in deciduous elements and non-arboreals might be a consequence of reduced precipitation and higher temperature during this phase. A comparison between monsoonal rainfall, MAT and palaeoatmospheric CO2 with floral dynamics since last ˜50 ka indicates that these fluctuations in plant succession were mainly driven by monsoonal variations.
The physics behind a simple demonstration of the greenhouse effect
NASA Astrophysics Data System (ADS)
Buxton, Gavin A.
2014-03-01
A simple, and popular, demonstration of the greenhouse effect involves a higher temperature being observed in a container with an elevated concentration of CO2 inside than in a container with just air enclosed, when subject to direct light. The CO2 absorbs outgoing thermal radiation and causes the air inside the container to be warmer. However, in some variations of this experiment an additional positive effect can arise from artefacts in the experiment, such as the slightly heavier CO2 forming a layer at the bottom of the container and suppressing convection. Therefore, the physics of this demonstration is elucidated in a system that does not suffer from such artefacts. In particular, the absorption of infrared radiation due to the enclosed CO2 is measured, and a one-dimensional model of heat transfer is solved. It is found that the temperature of the enclosed air is significantly higher inside the container with an elevated concentration of CO2 inside, but that the temperature of the container itself is not appreciably higher.
Being cool: how body temperature influences ageing and longevity.
Keil, Gerald; Cummings, Elizabeth; de Magalhães, João Pedro
2015-08-01
Temperature is a basic and essential property of any physical system, including living systems. Even modest variations in temperature can have profound effects on organisms, and it has long been thought that as metabolism increases at higher temperatures so should rates of ageing. Here, we review the literature on how temperature affects longevity, ageing and life history traits. From poikilotherms to homeotherms, there is a clear trend for lower temperature being associated with longer lifespans both in wild populations and in laboratory conditions. Many life-extending manipulations in rodents, such as caloric restriction, also decrease core body temperature. Nonetheless, an inverse relationship between temperature and lifespan can be obscured or reversed, especially when the range of body temperatures is small as in homeotherms. An example is observed in humans: women appear to have a slightly higher body temperature and yet live longer than men. The mechanisms involved in the relationship between temperature and longevity also appear to be less direct than once thought with neuroendocrine processes possibly mediating complex physiological responses to temperature changes. Lastly, we discuss species differences in longevity in mammals and how this relates to body temperature and argue that the low temperature of the long-lived naked mole-rat possibly contributes to its exceptional longevity.
Wang, Yanfei; Zhou, Zhiling; Wu, Weijie; Gong, Jianming
2017-01-01
Plastic pre-strains were applied to the metastable 304L austenitic stainless steel at both room temperature (20 °C) and higher temperatures (i.e., 50, 80 and 100 °C), and then the hydrogen embrittlement (HE) susceptibility of the steel was evaluated by cathodically hydrogen-charging and tensile testing. The 20 °C pre-strain greatly strengthened the steel, but simultaneously significantly increased the HE susceptibility of the steel, since α′ martensite was induced by the pre-strain, causing the pre-existence of α′ martensite, which provided “highways” for hydrogen to transport deep into the steel during the hydrogen-charging. Although the warm pre-strains did not strengthen the steel as significantly as the 20 °C pre-strain, they retained the HE resistance of the steel. This is because the higher temperatures, particularly 80 and 100 °C, suppressed the α′ martensite transformation during the pre-straining. Pre-strain at a temperature slightly higher than room temperature has a potential to strengthen the metastable 304L austenitic stainless steel without compromising its initial HE resistance. PMID:29160830
Kogkaki, Efstathia A; Natskoulis, Pantelis I; Magan, Naresh; Panagou, Efstathios Z
2015-04-01
The effect of water activity (0.90, 0.94, and 0.98 aw) and temperature (15, 20, and 25 °C) on the in vitro interactions between three ochratoxigenic strains of Aspergillus carbonarius (Ac-28, Ac-29, and Ac-33) and eleven non ochratoxigenic grape-associated fungal strains was assessed in this study. Fungal strains were allowed to grow in dual cultures on Synthetic Grape-juice Medium (SGM) for 15 days and fungal interactions were given a numerical score to obtain an Index of Dominance (ID) for each fungus. Results showed that in most cases A. carbonarius toxigenic strains were dominant against other fungal species. However, A. carbonarius presented mutual antagonism with A. section Nigri strains regardless of water activity (aw) and temperature. Moreover, interactions with Penicillium spinulosum and Cladosporium spp. at 15 °C, as well as Botrytis cinerea at 20 °C, showed that the antagonists were more competitive against A. carbonarius. In some cases, growth rates of A. carbonarius strains were either slightly stimulated or inhibited after interaction in dual cultures, depending on temperature, aw and competing species. Regarding OTA production, the presence of other species sometimes decreased the production or slightly enhanced it, depending on fungal competitor and environmental conditions. Overall, OTA production was higher at 15 °C/0.98 aw and 20 °C/0.98 aw for all target strains and at 20 °C/0.94 aw for Ac-33 strain only, but decreased at higher temperatures regardless of aw and interacting species. Copyright © 2014 Elsevier Ltd. All rights reserved.
Engine performance with a hydrogenated safety fuel
NASA Technical Reports Server (NTRS)
Schey, Oscar W; Young, Alfred W
1933-01-01
This report presents the results of an investigation to determine the engine performance obtained with a hydrogenated safety fuel developed to eliminate fire hazard. The tests were made on a single-cylinder universal test engine at compression ratios of 5.0, 5.5, and 6.0. Most of the tests were made with a fuel-injection system, although one set of runs was made with a carburetor when using gasoline to establish comparative performance. The tests show that the b.m.e.p. obtained with safety fuel when using a fuel-injection system is slightly higher than that obtained with gasoline when using a carburetor, although the fuel consumption with safety fuel is higher. When the fuel-injection system is used with each fuel and with normal engine temperatures the b.m.e.p. with safety fuel is from 2 to 4 percent lower than with gasoline and the fuel consumption about 25 to 30 percent higher. However, a few tests at an engine coolant temperature of 250 F have shown a specific fuel consumption approximating that obtained with gasoline with only a slight reduction in power. The idling of the test engine was satisfactory with the safety fuel. Starting was difficult with a cold engine but could be readily accomplished when the jacket water was hot. It is believed that the use of the safety fuel would practically eliminate crash fires.
Moestedt, J; Rönnberg, J; Nordell, E
2017-12-01
This project was initiated to evaluate the effect of alternative process temperatures to 38 °C at the anaerobic digestion step in a Swedish wastewater treatment plant (WWTP) treating mixed sludge. The efficiency of the different temperatures was evaluated with respect to biogas production, volume of sludge produced and nutrient content in the reject water to find the optimum temperature for the WWTP as a whole. Three temperatures, 34 °C, 38 °C and 42 °C, were compared in laboratory scale. Increasing the process temperature to 42 °C resulted in process instability, reduced methane yield, accumulation of volatile fatty acids and higher treatment costs of the reject water. By decreasing the temperature to 34 °C, slightly higher sludge mass was observed and a lower gas production rate, while the specific methane produced remained unchanged compared to 38 °C but foaming was observed at several occasions. In summary 38 °C was proved to be the most favourable temperature for the anaerobic digestion process treating mixed sludge when the evaluation included effects such as foaming, sludge mass and quality of the reject water.
Petrowsky, Matt; Fleshman, Allison; Frech, Roger
2012-05-17
The temperature dependence of ionic conductivity and the static dielectric constant is examined for 0.30 m TbaTf- or LiTf-1-alcohol solutions. Above ambient temperature, the conductivity increases with temperature to a greater extent in electrolytes whose salt has a charge-protected cation. Below ambient temperature, the dielectric constant changes only slightly with temperature in electrolytes whose salt has a cation that is not charge-protected. The compensated Arrhenius formalism is used to describe the temperature-dependent conductivity in terms of the contributions from both the exponential prefactor σo and Boltzmann factor exp(-Ea/RT). This analysis explains why the conductivity decreases with increasing temperature above 65 °C for the LiTf-dodecanol electrolyte. At higher temperatures, the decrease in the exponential prefactor is greater than the increase in the Boltzmann factor.
Armored instrumentation cable for geothermal well logging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennis, B.R.; Johnson, J.; Todd, B.
1981-01-01
Multiconductor armored well-logging cable is used extensively by the oil and natural gas industry to lower various instruments used to measure the geological and geophysical parameters into deep wellbores. Advanced technology in oil-well drilling makes it possible to achieve borehole depths of 9 km (30,000 ft). The higher temperatures in these deeper boreholes demand advancements in the design and manufacturing of wireline cable and in the electrical insulating and armoring materials used as integral components. If geothermal energy is proved an abundant economic resource, drilling temperatures approaching and exceeding 300/sup 0/C will become commonplace. The adaptation of teflons as electricalmore » insulating material permitted use of armored cable in geothermal wellbores where temperatures are slightly in excess of 200/sup 0/C, and where the concentrations of corrosive minerals and gases are high. Teflon materials presently used in wireline cables, however, are not capable of continuous operation at the anticipated higher temperatures.« less
Cong, Xin; Li, Fasheng; Kelly, Ryan M; Xue, Nandong
2018-04-01
The distribution of pollutants in waste clay bricks from an organochlorine pesticide-contaminated site was investigated, and removal of the pollutants using a thermal desorption technology was studied. The results showed that the contents of HCHs in both the surface and the inner layer of the bricks were slightly higher than those of DDTs. The total pore volume of the bricks was 37.7 to 41.6% with an increase from external to internal surfaces. The removal efficiency by thermal treatment was within 62 to 83% for HCHs and DDTs in bricks when the temperature was raised from 200 to 250 °C after 1 h. HCHs were more easily removed than DDTs with a higher temperature. Either intraparticle or surface diffusion controls the desorption processes of pollutants in bricks. It was feasible to use the polluted bricks after removal of the pollutants by low-temperature thermal desorption technology.
Kwon, Young; Shen, Wei L; Shim, Hye-Seok; Montell, Craig
2010-08-04
Animals select their optimal environmental temperature, even when faced with alternatives that differ only slightly. This behavior is critical as small differences in temperature of only several degrees can have a profound effect on the survival and rate of development of poikilothermic animals, such as the fruit fly. Here, we demonstrate that Drosophila larvae choose their preferred temperature of 17.5 degrees C over slightly cooler temperatures (14-16 degrees C) through activation of chordotonal neurons. Mutations affecting a transient receptor potential (TRP) vanilloid channel, Inactive (Iav), which is expressed specifically in chordotonal neurons, eliminated the ability to choose 17.5 degrees C over 14-16 degrees C. The impairment in selecting 17.5 degrees C resulted from absence of an avoidance response, which is normally mediated by an increase in turns at the lower temperatures. We conclude that the decision to select the preferred over slightly cooler temperatures requires iav and is achieved by activating chordotonal neurons, which in turn induces repulsive behaviors, due to an increase in high angle turns.
Kwon, Young; Shen, Wei L.; Shim, Hye-Seok; Montell, Craig
2012-01-01
Animals select their optimal environmental temperature, even when faced with alternatives that differ only slightly. This behavior is critical as small differences in temperature of only several degrees can have a profound effect on the survival and rate of development of poikilothermic animals, such as the fruit fly. Here, we demonstrate that Drosophila larvae choose their preferred temperature of 17.5°C over slightly cooler temperatures (14–16°C) through activation of chordotonal neurons. Mutations affecting a transient receptor potential (TRP) vanilloid channel, Inactive (Iav), which is expressed specifically in chordotonal neurons, eliminated the ability to choose 17.5°C over 14–16°C. The impairment in selecting 17.5°C resulted from absence of an avoidance response, which is normally mediated by an increase in turns at the lower temperatures. We conclude that the decision to select the preferred over slightly cooler temperatures requires iav and is achieved by activating chordotonal neurons, which in turn induces repulsive behaviors, due to an increase in high angle turns. PMID:20685989
Matsumoto, Hikaru; Ikoma, Yoshinori
2012-10-03
To elucidate the effect of different postharvest temperatures on the accumulation of sugars, organic acids, and amino acids and to determine the best temperature to minimize their postharvest change, their content after harvest was investigated at 5, 10, 20, and 30 °C for 14 days in the juice sacs of Satsuma mandarin (Citrus unshiu Marc. cv. Aoshima-unshiu) fruit. In all sugars, the changes were negligible at all temperatures. Organic acids decreased slightly at all temperatures, with the exception of malic acid at 30 °C, which increased slightly. Two amino acids, ornithine and glutamine, increased at 5 °C, but they did not increase at other temperatures. In 11 amino acids (phenylalanine, tryptophan, tyrosine, isoleucine, leucine, valine, threonine, lysine, methionine, histidine, and γ-amino butyric acid), the content was higher at 20 and 30 °C than at other temperatures. Thus, the content of amino acids was more variable than that of sugars and organic acids in response to temperatures. Moreover, amino acids responded to temperature differently: two amino acids were cold responsive, and 11 were heat-responsive. The best temperature to minimize the postharvest changes in amino acid profiles in the juice sacs of Aoshima-unshiu was 10 °C. The responsiveness to temperatures in two cold-responsive (ornithine and glutamine) and five heat-responsive (phenylalanine, tryptophan, valine, lysine, and histidine) amino acids was conserved among three different Satsuma mandarin cultivars, Aoshima-unshiu (late-maturing cultivar), Silverhill (midmaturing cultivar), and Miyagawa-wase (early-maturing cultivar). The metabolic responsiveness to temperature stress was discussed on the basis of the changes in the amino acid profile.
Ortiz, Jaime; Lemus-Mondaca, Roberto; Vega-Gálvez, Antonio; Ah-Hen, Kong; Puente-Diaz, Luis; Zura-Bravo, Liliana; Aubourg, Santiago
2013-08-15
In this work the drying kinetics of Atlantic salmon (Salmo salar L.) fillets and the influence of air drying temperature on colour, firmness and biochemical characteristics were studied. Experiments were conducted at 40, 50 and 60°C. Effective moisture diffusivity increased with temperature from 1.08×10(-10) to 1.90×10(-10) m(2) s(-1). The colour difference, determined as ΔE values (from 9.3 to 19.3), as well as firmness (from 25 to 75 N mm(-1)) of dried samples increased with dehydration temperature. The lightness value L(∗) and yellowness value b(∗) indicated formation of browning products at higher drying temperatures, while redness value a(∗) showed dependence on astaxanthin value. Compared with fresh fish samples, palmitic acid and tocopherol content decreased in a 20% and 40%, respectively, with temperature. While eicosapentaenoic acid (EPA) content remained unchanged and docosahexaenoic acid (DHA) content changed slightly. Anisidine and thiobarbituric acid values indicated the formation of secondary lipid oxidation products, which is more relevant for longer drying time than for higher drying temperatures. Copyright © 2013 Elsevier Ltd. All rights reserved.
Can hydrothermal pretreatment improve anaerobic digestion for biogas from lignocellulosic biomass?
Wang, Dou; Shen, Fei; Yang, Gang; Zhang, Yanzong; Deng, Shihuai; Zhang, Jing; Zeng, Yongmei; Luo, Tao; Mei, Zili
2018-02-01
Hydrothermally-pretreated rice straw (HPRS) from various pretreatment temperatures was anaerobically-digested in whole slurry. Results indicated promoting pretreatment temperature significantly deconstructed rice straw, and facilitated the conversion of insoluble fractions to soluble fractions. Although 306.6 mL/g TS biogas was maximally yielded in HPRS-90 and HPRS-180, respectively, via digestion in whole slurry, it was only 3% promotion compared to the unpretreated rice straw. HPRS-210 yielded 208.5 mL/g TS biogas, which was 30% reduction with longer lag period of 19.8 d, suggesting serious inhibitions happened. Through slightly increasing organic loading, more serious acidification and reduction on biogas yield, especially at higher pretreatment temperatures, indicated the soluble fractions controlled digestion performances. Pearson correlation analysis suggested negative relationship existed between methane yield and the soluble fractions including soluble carbohydrates, formic acid and furfural. Hydrothermal pretreatment, especially at higher temperature, did not improve anaerobic digestion, thereby, was not recommended, however, lower temperature can be considered potentially. Copyright © 2017 Elsevier Ltd. All rights reserved.
Diffuse X-ray emission from the Dumbbell Nebula?
NASA Technical Reports Server (NTRS)
Chu, You-Hua; Kwitter, Karen B.; Kaler, James B.
1993-01-01
We have analyzed ROSAT Position Sensitive Proportional Counter pointed observations of the Dumbbell Nebula and find that the previously reported 'extended' X-ray emission is an instrumental electronic ghost image at the softest energy band. At slightly higher energy bands, the image of the Dumbbell is not very different from that of the white dwarf HZ43. We conclude that the X-ray emission of the Dumbbell Nebula comes from its central star. A blackbody model is fitted to the spectrum and the best-fit temperature of not greater than 136,000 +/- 10,000 K is in excellent agreement with the Zanstra temperatures.
Fjelsted, L; Christensen, A G; Larsen, J E; Kjeldsen, P; Scheutz, C
2018-05-28
An unmanned aerial vehicle (UAV)-mounted thermal infrared (TIR) camera's ability to delineate landfill gas (LFG) emission hotspots was evaluated in a field test at two Danish landfills (Hedeland landfill and Audebo landfill). At both sites, a test area of 100 m 2 was established and divided into about 100 measuring points. The relationship between LFG emissions and soil surface temperatures were investigated through four to five measuring campaigns, in order to cover different atmospheric conditions along with increasing, decreasing and stable barometric pressure. For each measuring campaign, a TIR image of the test area was obtained followed by the measurement of methane (CH 4 ) and carbon dioxide (CO 2 ) emissions at each measuring point, using a static flux chamber. At the same time, soil temperatures measured on the surface, at 5 cm and 10 cm depths, were registered. At the Hedeland landfill, no relationship was found between LFG emissions and surface temperatures. In addition, CH 4 emissions were very limited, on average 0.92-4.52 g CH 4 m -2 d -1 , and only measureable on the two days with decreasing barometric pressure. TIR images from Hedeland did not show any significant temperature differences in the test area. At the Audebo landfill, an area with slightly higher surface temperatures was found in the TIR images, and the same pattern with slightly higher temperatures was found at a depth of 10 cm. The main LFG emissions were found in the area with the higher surface temperatures. LFG emissions at Audebo were influenced significantly by changes in barometric pressure, and the average CH 4 emissions varied between 111 g m -2 d -1 and 314 g m -2 d -1 , depending on whether the barometric pressure gradient had increased or decreased, respectively. The temperature differences observed in the TIR images from both landfills were limited to between 0.7 °C and 1.2 °C. The minimum observable CH 4 emission for the TIR camera to identify an emission hotspot was 150 g CH 4 m -2 d -1 from an area of more than 1 m 2 . Copyright © 2018 Elsevier Ltd. All rights reserved.
Comparison of gamma-gamma Phase Coarsening Responses of Three Powder Metal Disk Superalloys
NASA Technical Reports Server (NTRS)
Gabb, T. P.; Gayda, J.; Johnson, D. F.; MacKay, R. A.; Rogers, R. B.; Sudbrack, C. K.; Garg, A.; Locci, I. E.; Semiatin, S. L.; Kang, E.
2016-01-01
The phase microstructures of several powder metal (PM) disk superalloys were quantitatively evaluated. Contents, chemistries, and lattice parameters of gamma and gamma strengthening phase were determined for conventionally heat treated Alloy 10, LSHR, and ME3 superalloys, after electrolytic phase extractions. Several of long term heat treatments were then performed, to allow quantification of the precipitation, content, and size distribution of gamma at a long time interval to approximate equilibrium conditions. Additional coarsening heat treatments were performed at multiple temperatures and shorter time intervals, to allow quantification of the precipitation, contents and size distributions of gamma at conditions diverging from equilibrium. Modest differences in gamma and gamma lattice parameters and their mismatch were observed among the alloys, which varied with heat treatment. Yet, gamma coarsening rates were very similar for all three alloys in the heat treatment conditions examined. Alloy 10 had higher gamma dissolution and formation temperatures than LSHR and ME3, but a lower lattice mismatch, which was slightly positive for all three alloys at room temperature. The gamma precipitates of Alloy 10 appeared to remain coherent at higher temperatures than for LSHR and ME3. Higher coarsening rates were observed for gamma precipitates residing along grain boundaries than for those within grains in all three alloys, during slow-moderate quenching from supersolvus solution heat treatments, and during aging at temperatures of 843 C and higher.
NASA Astrophysics Data System (ADS)
Shanmugharaj, A. M.; Bhowmick, Anil K.
2004-01-01
The rheological properties of styrene-butadiene rubber (SBR) loaded with dual phase filler were measured using Monsanto Processability Tester (MPT) at three different temperatures (100°C, 110°C and 130°C) and four different shear rates (61.3, 306.3, 613, and 1004.5 s -1). The effect of electron beam modification of dual phase filler in absence and presence of trimethylol propane triacrylate (TMPTA) or triethoxysilylpropyltetrasulphide (Si-69) on melt flow properties of SBR was also studied. The viscosity of all the systems decreases with shear rate indicating their pseudoplastic or shear thinning nature. The higher shear viscosity for the SBR loaded with the electron beam modified filler is explained in terms of variation in structure of the filler upon electron beam irradiation. Die swell of the modified filler loaded SBR is slightly higher than that of the unmodified filler loaded rubber, which is explained by calculating normal stress difference for the systems. Activation energy of the modified filler loaded SBR systems is also slightly higher than that of the control filler loaded SBR system.
Improvement Design of Parabolic Trough
NASA Astrophysics Data System (ADS)
Ihsan, S. I.; Safian, M. A. I. M.; Taufek, M. A. M.; Mohiuddin, A. K. M.
2017-03-01
The performance of parabolic trough solar collector (PTSC) has been evaluated using different heat transfer working fluids; namely water and SAE20 W50 engine oil. New and slightly improved PTSC was developed to run the experimental study. Under the meteorological conditions of Malaysia, authors found that PTSC can operate at a higher temperature than water collector but the performance efficiency of collector using engine oil is much lower than the water collector.
Behavior of ceramic particles at the solid-liquid metal interface in metal matrix composites
NASA Technical Reports Server (NTRS)
Stefanescu, D. M.; Dhindaw, B. K.; Kacar, S. A.; Moitra, A.
1988-01-01
Directional solidification results were obtained in order to investigate particle behavior at the solid-liquid interface in Al-2 pct Mg (cellular interface) and Al-6.1 pct Ni (eutectic interface) alloys. It is found that particles can be entrapped in the solid if adequate solidification rates and temperature gradients are used. Model results showed critical velocity values slightly higher than those obtained experimentally.
Enantio-selective molecular dynamics of (±)-o,p-DDT uptake and degradation in water-sediment system.
Ali, Imran; Alharbi, Omar M L; Alothman, Zeid A; Alwarthan, Abdulrahman
2018-01-01
Enantio-selective molecular dynamics of (±)-o,p-DDT uptake and degradation in water-sediment system is described. Both uptake and degradation processes of (-)-o,p-DDT were slightly higher than (+)-o,p-DDT enantiomer. The optimized parameters for uptake were 7.0μgL -1 concentration of o,p-DDT, 60min contact time, 5.0pH, 6.0gL -1 amount of reverine sediment and 25°C temperature. The maximum degradation of both (-)- and (+)-o,p-DDT was obtained with 16 days, 0.4μgL -1 concentration of o,p-DDT, pH 7 and 35°C temperature. Both uptake and degraded process followed first order rate reaction. Thermodynamic parameters indicated exothermic nature of uptake and degradation processes. Both uptake and degradation were slightly higher for (-)-enantiomer in comparison to (+)-enantiomer of o,p-DDT. It was concluded that both uptake and degradation processes are responsible for the removal of o,p-DDT from nature but uptake plays a crucial role. The percentage degradations of (-)- and (+)-o,p-DDT were 30.1 and 29.5, respectively. This study may be useful to manage o,p-DDT contamination of our earth's ecosystem. Copyright © 2017. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Mariappan, R.; Ponnuswamy, V.; Chandra Bose, A.; Suresh, R.; Ragavendar, M.
2014-09-01
Yttrium doped Zinc Oxide (YxZn1-xO) thin films deposited at a substrate temperature 400 °C. The effect of substrate temperature on the structural, surface morphology, compositional, optical and electrical properties of YxZn1-xO thin films was studied. X-ray diffraction studies show that all films are polycrystalline in nature with hexagonal crystal structure having highly textured (002) plane parallel to the surface of the substrate. The structural parameters, such as lattice constants (a and c), crystallite size (D), dislocation density (δ), microstrain (σ) and texture coefficient were calculated for different yttrium doping concentrations (x). High resolution scanning electron microscopy measurements reveal that the surface morphology of the films change from platelet like grains to hexagonal structure with grain size increase due to the yttrium doping. Energy dispersive spectroscopy confirms the presence of Y, Zn and O elements in the films prepared. Optical studies showed that all samples have a strong optical transmittance higher than 70% in the visible range. A slight shift of the absorption edge towards the large wavelengths was observed as the Y doping concentration increased. This result shows that the band gap is slightly decreased from 3.10 to 2.05 eV with increase of the yttrium doping concentrations (up to 7.5%) and then slightly increased. Room temperature PL measurements were done and the band-to-band emission energies of films were determined and reported. The complex impedance of the 10%Y doped ZnO film shows two distinguished semicircles and the diameter of the arcs got decreased in diameter as the temperature increases from 70 to 175 °C.
van der Meer, Pieter F; Cancelas, Jose A; Cardigan, Rebecca; Devine, Dana V; Gulliksson, Hans; Sparrow, Rosemary L; Vassallo, Ralph R; de Wildt-Eggen, Janny; Baumann-Baretti, Bärbel; Hess, John R
2011-01-01
Whole blood (WB) can be held at room temperature (18-25°C) up to 8 hours after collection; thereafter the unit must be refrigerated, rendering it unsuitable for platelet (PLT) production. Overnight hold at room temperature before processing has logistic advantages, and we evaluated this process in an international multicenter study for both buffy coat (BC)- and PLT-rich plasma (PRP)-based blood components and compared three red blood cell (RBC) additive solutions (ASs) for their ability to offset effects of overnight hold. Nine centers participated; seven used the BC method, and two used the PRP method. Four WB units were pooled and split; 1 unit was processed less than 8 hours from collection (Group A), and the other three (Groups B, C, and D) were held at room temperature and processed after 24 to 26 hours. RBCs in Groups A and B were resuspended in saline-adenine-glucose-mannitol, Group C in phosphate-adenine-guanosine-glucose-saline-mannitol, and Group D in ErythroSol-4 RBCs were stored at 2 to 6°C for 49 days. RBCs from overnight-held WB had lower 2,3-diphosphoglycerate (2,3-DPG) and higher adenosine triphosphate (ATP). At the end of storage there were no differences between groups, apart from a slightly higher hemolysis in Group B. ErythroSol-4 showed a slightly higher initial ATP and 2,3-DPG content, but at the end of storage no differences were found. Overnight hold of WB before processing has no lasting deleterious effects on in vitro quality of subsequently prepared components. The use of different RBC ASs did not appear to offer significant advantages in terms of RBC quality at the end, regardless of the processing method. © 2010 American Association of Blood Banks.
Posa, Mihalj; Pilipović, Ana; Lalić, Mladena; Popović, Jovan
2011-02-15
Linear dependence between temperature (t) and retention coefficient (k, reversed phase HPLC) of bile acids is obtained. Parameters (a, intercept and b, slope) of the linear function k=f(t) highly correlate with bile acids' structures. Investigated bile acids form linear congeneric groups on a principal component (calculated from k=f(t)) score plot that are in accordance with conformations of the hydroxyl and oxo groups in a bile acid steroid skeleton. Partition coefficient (K(p)) of nitrazepam in bile acids' micelles is investigated. Nitrazepam molecules incorporated in micelles show modified bioavailability (depo effect, higher permeability, etc.). Using multiple linear regression method QSAR models of nitrazepams' partition coefficient, K(p) are derived on the temperatures of 25°C and 37°C. For deriving linear regression models on both temperatures experimentally obtained lipophilicity parameters are included (PC1 from data k=f(t)) and in silico descriptors of the shape of a molecule while on the higher temperature molecular polarisation is introduced. This indicates the fact that the incorporation mechanism of nitrazepam in BA micelles changes on the higher temperatures. QSAR models are derived using partial least squares method as well. Experimental parameters k=f(t) are shown to be significant predictive variables. Both QSAR models are validated using cross validation and internal validation method. PLS models have slightly higher predictive capability than MLR models. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Samulionis, V.; Macutkevic, J.; Banys, J.; Belovickis, J.; Shenderova, O.
2015-07-01
The ultrasonic and dielectric temperature investigations were performed in polydi- methylsiloxane (PDMS) with zinc oxide (ZnO) and onion-like carbon (OLC) nanocomposites. In the glass transition region, the ultrasonic velocity dispersion and large ultrasonic attenuation maxima were observed. The positions of ultrasonic attenuation peaks were slightly shifted to higher temperatures after doping PDMS with OLC and ZnO nanoparticles. The ultrasonic relaxation was compared to that of dielectric and such behaviour was described by Vogel- Fulcher law. The upshift of the glass transition temperature with addition of nanoparticles was confirmed by both methods. The additional increase of ultrasonic attenuation in composites doped with OLC and ZnO was observed at room temperature and such behaviour we attributed to ultrasound-nanofiller interaction in polymer matrix.
Retrospective study of the prevalence of postanaesthetic hypothermia in dogs.
Redondo, J I; Suesta, P; Serra, I; Soler, C; Soler, G; Gil, L; Gómez-Villamandos, R J
2012-10-13
The anaesthetic records of 1525 dogs were examined to determine the prevalence of postanaesthetic hypothermia, its clinical predictors and consequences. Temperature was recorded throughout the anaesthesia. At the end of the procedure, details coded in were: hyperthermia (>39.50°C), normothermia (38.50°C-39.50°C), slight (38.49°C-36.50°C), moderate (36.49°C-34.00°C) and severe hypothermia (<34.00°C). Statistical analysis consisted of multiple regression to identify the factors that are associated with the temperature at the end of the procedure. Before premedication, the temperature was 38.7 ± 0.6°C (mean ± sd). At 60, 120 and 180 minutes from induction, the temperature was 36.7 ± 1.3°C, 36.1 ± 1.4°C and 35.8 ± 1.5°C, respectively. The prevalence of hypothermia was: slight, 51.5 per cent (95 per cent CI 49.0 to 54.0 per cent); moderate, 29.3 per cent (27.1-31.7 per cent) and severe: 2.8% (2.0-3.7%). The variables that associated with a decrease in the temperature recorded at the end of the anaesthesia were: duration of the preanesthetic time, duration of the anaesthesia, physical condition (ASA III and ASA IV dogs showed lower temperatures than ASA I dogs), the reason for anaesthesia (anaesthesia for diagnostic procedures or thoracic surgery reduce the temperature when compared with minor procedures), and the recumbency during the procedure (sternal and dorsal recumbencies showed lower temperatures than lateral recumbency). The temperature before premedication and the body surface (BS) were associated with a higher temperature at the end of the anaesthesia, and would be considered as protective factors.
Carvalho, Pedro J; Ventura, Sónia P M; Batista, Marta L S; Schröder, Bernd; Gonçalves, Fernando; Esperança, José; Mutelet, Fabrice; Coutinho, João A P
2014-02-14
The influence of the cation's central atom in the behavior of pairs of ammonium- and phosphonium-based ionic liquids was investigated through the measurement of densities, viscosities, melting temperatures, activity coefficients at infinite dilution, refractive indices, and toxicity against Vibrio fischeri. All the properties investigated are affected by the cation's central atom nature, with ammonium-based ionic liquids presenting higher densities, viscosities, melting temperatures, and enthalpies. Activity coefficients at infinite dilution show the ammonium-based ionic liquids to present slightly higher infinite dilution activity coefficients for non-polar solvents, becoming slightly lower for polar solvents, suggesting that the ammonium-based ionic liquids present somewhat higher polarities. In good agreement these compounds present lower toxicities than the phosphonium congeners. To explain this behavior quantum chemical gas phase DFT calculations were performed on isolated ion pairs at the BP-TZVP level of theory. Electronic density results were used to derive electrostatic potentials of the identified minimum conformers. Electrostatic potential-derived CHelpG and Natural Population Analysis charges show the P atom of the tetraalkylphosphonium-based ionic liquids cation to be more positively charged than the N atom in the tetraalkylammonium-based analogous IL cation, and a noticeable charge delocalization occurring in the tetraalkylammonium cation, when compared with the respective phosphonium congener. It is argued that this charge delocalization is responsible for the enhanced polarity observed on the ammonium based ionic liquids explaining the changes in the thermophysical properties observed.
NASA Astrophysics Data System (ADS)
Carvalho, Pedro J.; Ventura, Sónia P. M.; Batista, Marta L. S.; Schröder, Bernd; Gonçalves, Fernando; Esperança, José; Mutelet, Fabrice; Coutinho, João A. P.
2014-02-01
The influence of the cation's central atom in the behavior of pairs of ammonium- and phosphonium-based ionic liquids was investigated through the measurement of densities, viscosities, melting temperatures, activity coefficients at infinite dilution, refractive indices, and toxicity against Vibrio fischeri. All the properties investigated are affected by the cation's central atom nature, with ammonium-based ionic liquids presenting higher densities, viscosities, melting temperatures, and enthalpies. Activity coefficients at infinite dilution show the ammonium-based ionic liquids to present slightly higher infinite dilution activity coefficients for non-polar solvents, becoming slightly lower for polar solvents, suggesting that the ammonium-based ionic liquids present somewhat higher polarities. In good agreement these compounds present lower toxicities than the phosphonium congeners. To explain this behavior quantum chemical gas phase DFT calculations were performed on isolated ion pairs at the BP-TZVP level of theory. Electronic density results were used to derive electrostatic potentials of the identified minimum conformers. Electrostatic potential-derived CHelpG and Natural Population Analysis charges show the P atom of the tetraalkylphosphonium-based ionic liquids cation to be more positively charged than the N atom in the tetraalkylammonium-based analogous IL cation, and a noticeable charge delocalization occurring in the tetraalkylammonium cation, when compared with the respective phosphonium congener. It is argued that this charge delocalization is responsible for the enhanced polarity observed on the ammonium based ionic liquids explaining the changes in the thermophysical properties observed.
Effects of increased temperatures on Gammarus fossarum under the influence of copper sulphate.
Schmidlin, Lara; von Fumetti, Stefanie; Nagel, Peter
2015-03-01
The specialised fauna of freshwater springs will have to cope with a possible temperature rise owing to Global Change. It is affected additionally by contamination of the water with xenobiotics from human activities in the surrounding landscape. We assessed the combined effects of temperature increase and exposure to toxins in laboratory experiments by using copper sulphate as a model substance and Gammarus fossarum Koch, 1835, as the model organism. This amphipod is a common representative of the European spring fauna and copper ions are widespread contaminants, mainly from agricultural practice. The experiments were conducted in boxes placed in flow channels and the water temperatures were varied. The gammarids were fed with conditioned beech leaf discs. The feeding activity of the amphipods was quantified on the level of the organism; and the respiratory electron transport system (ETS) assay was conducted in order to determine changes on the cellular level in the test organisms. The results show that the feeding activity increased slightly with higher water temperature. The sub-lethal copper dose had no significant effect other than a trend towards lower feeding activity. The ETS activity was significantly higher at the higher water temperatures, and the copper ions significantly lowered the ETS activity of the organisms. The combination of the two methods was useful when testing for combined effects of environmental changes and pollutants on a species. From the results one can reasonably infer a higher risk of adverse effects with increase in water temperature and exposure to a particular heavy metal.
NASA Technical Reports Server (NTRS)
Bigelow, Glen S.; Gaydosh, Darrell; Garg, Anita; Padula, Santo A., II; Noebe, Ronald D.
2007-01-01
High-temperature shape memory NiTiPd and NiTiPdX (X=Au, Pt, Hf) alloys were produced with titanium equivalent (Ti+Hf) compositions of 50.5, 50.0, 49.5, and 49.0 at.%. Thermo-mechanical testing in compression was used to evaluate the transformation temperatures, transformation strain, work output, and permanent deformation behavior of each alloy to study the effects of quaternary alloying and stoichiometry on high-temperature shape memory alloy behavior. Microstructural evaluation showed the presence of second phases for all alloy compositions. No load transformation temperatures in the stoichiometric alloys were relatively unchanged by Au and Pt substitutions, while the substitution of Hf for Ti causes a drop in transformation temperatures. The NiTiPd, NiTiPdAu and NiTiPdHf alloys exhibited transformation temperatures that were highest in the Ti-rich compositions, slightly lower at stoichiometry, and significantly reduced when the Ti equivalent composition was less than 50 at.%. For the NiTiPdPt alloy, transformation temperatures were highest for the Ti-rich compositions, lowest at stoichiometry, and slightly higher in the Ni-rich composition. When thermally cycled under constant stresses of up to 300 MPa, all of the alloys had transformation strains, and therefore work outputs, which increased with increasing stress. In each series of alloys, the transformation strain and thus work output was highest for stoichiometric or Ti-rich compositions while permanent strain associated with the constant-load thermal cycling was lowest for alloys with Ni-equivalent-rich compositions. Based on these results, basic rules for optimizing the composition of NiTiPd alloys for actuator performance will be discussed.
NASA Astrophysics Data System (ADS)
Formenti, Damiano; Ludwig, Nicola; Rossi, Alessio; Trecroci, Athos; Alberti, Giampietro; Gargano, Marco; Merla, Arcangelo; Ammer, Kurt; Caumo, Andrea
2017-03-01
The most common method to derive a temperature value from a thermal image in humans is the calculation of the average of the temperature values of all the pixels confined within a demarcated boundary defined region of interest (ROI). Such summary measure of skin temperature is denoted as Troi in this study. Recently, an alternative method for the derivation of skin temperature from the thermal image has been developed. Such novel method (denoted as Tmax) is based on an automated (software-driven) selection of the warmest pixels within the ROI. Troi and Tmax have been compared under basal, steady-state conditions, resulting very well correlated and characterized by a bias of approximately 1 °C (Tmax > Troi). Aim of this study was to investigate the relationship between Tmax and Troi under the nonsteady-state conditions induced by physical exercise. Thermal images of quadriceps of 13 subjects performing a squat exercise were recorded for 120 s before (basal steady state) and for 480 s after the initiation of the exercise (nonsteady state). The thermal images were then analysed to extract Troi and Tmax. Troi and Tmax changed almost in parallel during the nonstead -state. At a closer inspection, it was found that during the nonsteady state the bias between the two methods slightly increased (from 0.7 to 1.1 °C) and the degree of association between them slightly decreased (from Pearson's r = 0.96 to 0.83). Troi and Tmax had different relationships with the skin temperature histogram. Whereas Tmax was the mean, which could be interpreted as the centre of gravity of the histogram, Tmax was related with the extreme upper tail of the histogram. During the nonsteady state, the histogram increased its spread and became slightly more asymmetric. As a result, Troi deviated a little from the 50th percentile, while Tmax remained constantly higher than the 95th percentile. Despite their differences, Troi and Tmax showed a substantial agreement in assessing the changes in skin temperature following physical exercise. Further studies are needed to clarify the relationship existing among Tmax, Troi and cutaneous blood flow during physical exercise.
Pillai, Krishna; Al-Alem, Ihssan; Akhter, Javed; Chua, Terence C; Shehata, Mena; Morris, David L
2015-06-01
Percutaneous bipolar radiofrequency ablation (RFA) is a minimally invasive technique for treating liver tumors. It is not always possible to insert the bipolar probes parallel to each other on either side of tumor, since it restricts maneuverability away from vital structures or ablate certain tumor shape. Therefore, we investigated how nonparallel placement of probes affected ablation. Bipolar RFA in parallel and in divergent positions were submerged in tissue model (800 mL egg white) at 37°C and ablated. Temperature probes, T1 and T2 were placed 8.00 mm below the tip of the probes, T3 in between the probe coil elements and T4 and T5 at water inlet and outlet, respectively. Both models with heat sink (+HS) and without (-HS) were investigated. The mean ablated tissue volume, mass, density and height increased linearly with unit angle increase for -HS model. With +HS, a smaller increase in mean volume and mass, a slightly greater increase in mean density but a reduction in height of tissue was seen. The mean ablation time and duration of maximum temperature with +HS was slightly larger, compared with -HS, while -HS ablated at a slightly higher temperature. The heat sink present was minimal for probes in parallel position compared to nonparallel positions. Divergence from parallel insertion of bipolar RFA probes increased the mean volume, mass, and density of tissue ablated. However, the presence of large heat sinks may limit the application of this technique, when tumors border on larger vessels. © The Author(s) 2014.
Quantum molecular dynamics study on the structures and dc conductivity of warm dense silane
NASA Astrophysics Data System (ADS)
Sun, Huayang; Kang, Dongdong; Dai, Jiayu; Zeng, Jiaolong; Yuan, Jianmin
2014-02-01
The ionic and electronic structures of warm dense silane at the densities of 1.795, 2.260, 3.382, and 3.844 g/cm3 have been studied with temperatures from 1000 K to 3 eV using quantum molecular dynamics simulations. At all densities, the structures are melted above 1000 K. The matter states are characterized as polymeric from 1000 to 4000 K and become dense plasma states with further increasing temperature to 1 eV. At two lower densities of 1.795 and 2.260 g/cm3, silane first dissociates and then becomes the polymeric state via a chain state from the initial crystalline structure. At higher densities, however, no dissociation stage was found. These findings can help us understand how the warm dense matter forms. A rise is found for the direct current electric conductivity at T ˜1000 K, indicating the nonmetal-to-metal transition. The conductivity decreases slightly with the increase of temperature, which is due to the more disordered structures at higher temperatures.
Effects of cryogenic temperature on dynamic fragmentation of laser shock-loaded metal foils
NASA Astrophysics Data System (ADS)
de Rességuier, T.; Lescoute, E.; Loison, D.; Chevalier, J. M.; Ducasse, F.
2011-12-01
Although shock-induced fracture and fragmentation of materials at low temperatures are issues of considerable interest for many applications, such as the protection from hypervelocity impacts in outer space or the ongoing development of high energy laser facilities aiming at inertial confinement fusion, little data can be found on the subject yet. In this paper, laser driven shock experiments are performed on gold and aluminum samples at both ambient and cryogenic (down to about 30 K) temperatures. Complementary techniques including transverse optical shadowgraphy, time-resolved velocity measurements, and post-recovery analyses are combined to assess the effects of target temperature upon the processes of microjetting, spallation, and dynamic punching, which are expected to govern fragments generation and ejection. The results indicate that cryogenic temperature tends to reduce the resistance to tensile and shear stresses, promotes brittle fracture, and leads to slightly higher fragments ejection velocities.
Thermal analysis of a conceptual design for a 250 We GPHS/FPSE space power system
NASA Technical Reports Server (NTRS)
Mccomas, Thomas J.; Dugan, Edward T.
1991-01-01
A thermal analysis has been performed for a 250-We space nuclear power system which combines the US Department of Energy's general purpose heat source (GPHS) modules with a state-of-the-art free-piston Stirling engine (FPSE). The focus of the analysis is on the temperature of the indium fuel clad within the GPHS modules. The thermal analysis results indicate fuel clad temperatures slightly higher than the design goal temperature of 1573 K. The results are considered favorable due to numerous conservative assumptions used. To demonstrate the effects of the conservatism, a brief sensitivity analysis is performed in which a few of the key system parameters are varied to determine their effect on the fuel clad temperatures. It is shown that thermal analysis of a more detailed thermal mode should yield fuel clad temperatures below 1573 K.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maier-Kiener, Verena; Schuh, Benjamin; George, Easo P.
A CrMnFeCoNi high-entropy alloy was investigated by nanoindentation from room temperature to 400 °C in the nanocrystalline state and cast plus homogenized coarse-grained state. In the latter case a < 100 >-orientated grain was selected by electron back scatter diffraction for nanoindentation. It was found that hardness decreases more strongly with increasing temperature than Young’s modulus, especially for the coarse-grained state. The modulus of the nanocrystalline state was slightly higher than that of the coarse-grained one. For the coarse-grained sample a strong thermally activated deformation behavior was found up to 100–150 °C, followed by a diminishing thermally activated contribution atmore » higher testing temperatures. For the nanocrystalline state, different temperature dependent deformation mechanisms are proposed. At low temperatures, the governing processes appear to be similar to those in the coarse-grained sample, but with increasing temperature, dislocation-grain boundary interactions likely become more dominant. Finally, at 400 °C, decomposition of the nanocrystalline alloy causes a further reduction in thermal activation. Furthermore, this is rationalized by a reduction of the deformation controlling internal length scale by precipitate formation in conjunction with a diffusional contribution.« less
Treatment of greywater by forward osmosis technology: role of the operating temperature.
Wang, Ce; Li, Yongmei; Wang, Yanqiang
2018-06-04
Effects of operating conditions were investigated in terms of water flux, reverse salt flux (RSF) and pollutant rejection in a forward osmosis (FO) membrane system treating synthetic greywater. Changing cross-flow velocity had a slight impact on the performance of the FO membrane. Elevating operating temperature was more effective than increasing draw solution concentration to enhance the water flux. Further observation on the effect of heating mode showed that when the temperature was increased from 20 to 30°C, heating the feed solution (FS) side was better than heating the draw solution (DS) side or heating both sides; further increasing the temperature to 40 and 50°C, heating both the FS and DS achieved much higher water flux compared with only increasing the FS or DS temperature. Under isothermal conditions, a higher water flux and a lower RSF were achieved at 40°C than at other temperatures. Changing either FS or DS temperature had similar influences on water flux and RSF. The FO process revealed high rejection of nitrate (95.7%-100%), ammonia nitrogen (98.8%-100%), total nitrogen (97.4%-99.9%), linear alkylbenzene sulfonate (100%) and Mg (97.5%-100%). A mathematical model that could well simulate the water flux evolution in the present FO system was recommended.
NASA Astrophysics Data System (ADS)
Wasterlain, S.; Candusso, D.; Hissel, D.; Harel, F.; Bergman, P.; Menard, P.; Anwar, M.
A single PEMFC has been operated by varying the assembly temperature, the air dew point temperature and the anode/cathode stoichiometry rates with the aim to identify the parameters and combinations of factors affecting the cell performance. Some of the experiments were conducted with low humidified reactants (relative humidity of 12%). The FC characterizations tests have been conducted using in situ electrochemical methods based on load current and cell voltage signal analysis, namely: polarization curves, EIS measurements, cyclic and linear sweep voltammetries (CV and LSV). The impacts of the parameters on the global FC performances were observed using the polarization curves whereas EIS, CV and LSV test results were used to discriminate the different voltage loss sources. The test results suggest that some parameter sets allow maximal output voltages but can also induce material degradation. For instance, higher FC temperature and air flow values can induce significant electrical efficiency benefits, notably by increasing the reversible potential and the reaction kinetics. However, raising the cell temperature can also gradually dry the FC and increase the risk of membrane failure. LSV has also shown that elevated FC temperature and relative humidity can also accelerate the electrolyte degradation (i.e. slightly higher fuel crossover rate) and reduce the lifetime consequently.
NASA Astrophysics Data System (ADS)
Zhang, Damao; Wang, Zhien; Luo, Tao; Yin, Yan; Flynn, Connor
2017-03-01
Ice particle formation in slightly supercooled stratiform clouds is not well documented or understood. In this study, 4 years of combined lidar depolarization and radar reflectivity (Ze) measurements are analyzed to distinguish between cold drizzle and ice crystal formations in slightly supercooled Arctic stratiform clouds over the Atmospheric Radiation Measurement Program Climate Research Facility North Slope of Alaska Utqiaġvik ("Barrow") site. Ice particles are detected and statistically shown to be responsible for the strong precipitation in slightly supercooled Arctic stratiform clouds at cloud top temperatures as high as -4°C. For ice precipitating Arctic stratiform clouds, the lidar particulate linear depolarization ratio (δpar_lin) correlates well with radar Ze at each temperature range, but the δpar_lin-Ze relationship varies with temperature ranges. In addition, lidar depolarization and radar Ze observations of ice generation characteristics in Arctic stratiform clouds are consistent with laboratory-measured temperature-dependent ice growth habits.
Comparison of 2c- and 3cLIF droplet temperature imaging
NASA Astrophysics Data System (ADS)
Palmer, Johannes; Reddemann, Manuel A.; Kirsch, Valeri; Kneer, Reinhold
2018-06-01
This work presents "pulsed 2D-3cLIF-EET" as a measurement setup for micro-droplet internal temperature imaging. The setup relies on a third color channel that allows correcting spatially changing energy transfer rates between the two applied fluorescent dyes. First measurement results are compared with results of two slightly different versions of the recent "pulsed 2D-2cLIF-EET" method. Results reveal a higher temperature measurement accuracy of the recent 2cLIF setup. Average droplet temperature is determined by the 2cLIF setup with an uncertainty of less than 1 K and a spatial deviation of about 3.7 K. The new 3cLIF approach would become competitive, if the existing droplet size dependency is anticipated by an additional calibration and if the processing algorithm includes spatial measurement errors more appropriately.
NASA Technical Reports Server (NTRS)
Bond, Aleck C.; Rumsey, Charles B.
1957-01-01
Skin temperatures and surface pressures have been measured on a slightly blunted cone-cylinder-flare configuration to a maximum Mach number of 9.89 with a rocket-propelled model. The cone had a t o t a l angle of 25 deg and the flare had a 10 deg half-angle. Temperature data were obtained at eight cone locations, four cylinder locations, and seven flare locations; pressures were measured at one cone location, one cylinder location, and three flare locations. Four stages of propulsion were utilized and a reentry type of trajectory was employed in which the high-speed portion of flight was obtained by firing the last two stages during the descent of the model from a peak altitude of 99,400 feet. The Reynolds number at peak Mach number was 1.2 x 10(exp 6) per foot of model length. The model length was 6.68 feet. During the higher speed portions of flight, temperature measurements along one element of the nose cone indicated that the boundary layer was probably laminar, whereas on the opposite side of the nose the measurements indicated transitional or turbulent flow. Temperature distributions along one meridian of the model showed the flare to have the highest temperatures and the cylinder generally to have the lowest. A maximum temperature of 970 F was measured on the cone element showing the transitional or turbulent flow; along the opposite side of the model, the maximum temperatures of the cone, cylinder, and flare were 545 F, 340 F, and 680 F, respectively, at the corresponding time.
Synthesis and thermoluminescence characterizations of Sr2B5O9Cl:Dy3+ phosphor for TL dosimetry.
Oza, Abha H; Dhoble, N S; Park, K; Dhoble, S J
2015-09-01
The photoluminescence (PL) and thermoluminescence (TL) displayed by Dy-activated strontium haloborate (Sr2 B5 O9 Cl) were studied. A modified solid-state reaction was employed for the preparation of the phosphor. Photoluminescence spectra showed blue (484 nm) and yellow (575 nm) emissions due to incorporation of Dy(3+) into host matrix. The Dy-doped (0.5 mol%) Sr2 B5 O9 Cl was studied after exposure to γ-irradiation and revealed a prominent glow curve at 261°C with a small hump around 143°C indicating that two types of traps were generated. The glow peak at the higher temperature side (261°C) was more stable than the lower temperature glow peak. The TL intensity was 1.17 times less than that of the standard CaSO4 :Dy thermoluminescence dosimetry (TLD) phosphor, the phosphor showed a linear dose-response curve for different γ-ray irradiation doses (0.002-1.25 Gy) and fading of 5-7% was observed for higher temperature peaks upon storage. Trapping parameters and their estimated error values have been calculated by Chen's peak shape method and by the initial rise method. Values of activation energies estimated by both these techniques were comparable. The slight difference in activation energy values calculated by Chen's peak shape method indicated the formation of two kinds of traps Furthermore, slight differences in frequency values are due to various escaping and retrapping probabilities. Copyright © 2014 John Wiley & Sons, Ltd.
Supercritical CO2 Power Cycles: Design Considerations for Concentrating Solar Power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neises, Ty; Turchi, Craig
2014-09-01
A comparison of three supercritical CO2 Brayton cycles: the simple cycle, recompression cycle and partial-cooling cycle indicates the partial-cooling cycle is favored for use in concentrating solar power (CSP) systems. Although it displays slightly lower cycle efficiency versus the recompression cycle, the partial-cooling cycle is estimated to have lower total recuperator size, as well as a lower maximum s-CO2 temperature in the high-temperature recuperator. Both of these effects reduce recuperator cost. Furthermore, the partial-cooling cycle provides a larger temperature differential across the turbine, which translates into a smaller, more cost-effective thermal energy storage system. The temperature drop across the turbinemore » (and by extension, across a thermal storage system) for the partial-cooling cycle is estimated to be 23% to 35% larger compared to the recompression cycle of equal recuperator conductance between 5 and 15 MW/K. This reduces the size and cost of the thermal storage system. Simulations by NREL and Abengoa Solar indicate the partial-cooling cycle results in a lower LCOE compared with the recompression cycle, despite the former's slightly lower cycle efficiency. Advantages of the recompression cycle include higher thermal efficiency and potential for a smaller precooler. The overall impact favors the use of a partial-cooling cycle for CSP compared to the more commonly analyzed recompression cycle.« less
High-capacity NO2 denuder systems operated at various temperatures (298-473 K).
Wolf, Jan-Christoph; Niessner, Reinhard
2012-12-01
In this study, we investigated several coatings for high-temperature, high-capacity, and high-efficiency denuder-based NO(2) removal, with the scope to face the harsh conditions and requirements of automotive exhaust gas sampling. As first coating, we propose a potassium iodide (KI)/polyethylene glycol coating with a high removal efficiency (ε > 98%) for about 2 h and 50 ppm NO(2) at room temperature (298 K). At elevated temperatures (423 K), the initial capacity (100 ppmh) is decreased to 15 ppmh. Furthermore, this is the first proposal of the ionic liquid methyl-butyl-imidazolium iodide ([BMIm(+)][I(-)]) as denuder coating material. At room temperature, this ionic liquid exhibits far greater capacity (300 ppmh) and NO(2) removal efficiency (ε > 99.9%) than KI. Nevertheless, KI exhibits a slightly (~10%) higher capacity at elevated temperatures than [BMIm(+)][I(-)]. Both coatings presented are suitable for applications requiring selective denuding of NO(2) at temperatures up to 423 K.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bellgraph, Brian J.; Carter, Kathleen M.; Chamness, Michele A.
High mortality of hatchery-reared juvenile fall Chinook salmon emigrating from the Clearwater River was previously measured at the confluence of the Snake and Clearwater rivers; however, the causative mechanism of mortality is unknown. To elucidate potential mechanisms, the predation susceptibility of juvenile fall Chinook salmon was assessed during simulated passage from the Clearwater River and through the confluence of the Clearwater and Snake rivers, with and without cool water flow augmentation. Emigrant-sized juvenile salmon were acclimated to temperatures typical of the Clearwater River when cool water augmentation is discharged from Dworshak Dam (10°C to 17°C) and during temperatures that wouldmore » be present without augmentation (17°C to 24°C), and were then exposed to smallmouth bass within temperatures typical of the Snake River in summer (17°C to 24°C). Slightly supersaturated total dissolved gas concentrations of 105% were also simulated to more closely approximate gas conditions of both rivers in summer. Predation susceptibility of juvenile salmon acclimated at 10°C or 17°C and exposed to predators at 17°C did not differ. However, for salmon exposed to predators at 24°C, predation susceptibility was arguably higher for juvenile salmon acclimated at 10°C (a 14°C increase) than for salmon acclimated at 17°C or 24°C (7°C and 0°C increases, respectively). These results indicate that predation susceptibility may be higher when a relatively large temperature difference exists between the Clearwater and Snake rivers; that is, when cool water flow augmentation is occurs in summer. However, further research is needed to determine if high confluence mortality measured in previous studies is related to cool water augmentation and, ultimately, whether or not this mortality has a population-level effect on the dynamics of wild Snake River fall Chinook salmon.« less
Chemical characteristics of hadal waters in the Izu-Ogasawara Trench of the western Pacific Ocean.
Gamo, Toshitaka; Shitashima, Kiminori
2018-01-01
Vertical profiles of potential temperature, salinity, and some chemical components were obtained at a trench station (29°05'N, 142°51'E; depth = 9768 m) in the Izu-Ogasawara (Bonin) Trench in 1984 and 1994 to characterize the hadal waters below ∼6000 m depth. We compared portions of both the 1984 and 1994 profiles with nearby data obtained between 1976 and 2013. Results demonstrated that the hadal waters had slightly higher potential temperature and nitrate and lower dissolved oxygen than waters at sill depths (∼6000 m) outside the trench, probably due to the effective accumulation of geothermal heat and active biological processes inside the trench. The silicate, iron, and manganese profiles in 1984 showed slight but significant increases below ∼6000 m depth, suggesting that these components may have been intermittently supplied from the trench bottom. Significant amounts of 222 Rn in excess over 226 Ra were detected in the hadal waters up to 2675 m from the bottom, reflecting laterally supplied 222 Rn from the trench walls.
Huang, Shaohua; Wu, Rui; Bai, Zhengwu; Yang, Ying; Li, Suying; Dou, Xiaowei
2014-09-01
Polyvinylpyrrolidone (PVP) was used as a virtual stationary phase to separate p-xylene, benzyl alcohol, and p-methylphenol by the chromatographic NMR technique. The effects of concentration and weight-average molecular weight (Mw) of PVP, solvent viscosity, solvent polarity, and sample temperature on the resolution of these components were investigated. It was found that both higher PVP concentration and higher PVP Mw caused the increase of diffusion resolution for the three components. Moreover, the diffusion resolution did not change at viscosity-higher solvents. Moreover, the three components showed different resolution at different solvents. As temperature increased, the diffusion resolution between p-xylene and benzyl alcohol gradually increased, and the one between p-xylene and p-methylphenol slightly increased from 278 to 298 K and then decreased above 298 K. It was also found that the polarity of the analytes played an important role for the separation by affecting the diffusion coefficient. Copyright © 2014 John Wiley & Sons, Ltd.
Biology of Crassicutis cichlasomae, a parasite of cichlid fishes in Mexico and Central America.
Scholz, T; Pech-Ek, M C; Rodriguez-Canul, R
1995-03-01
Field study on the biology of Crassicutis cichlasomae Manter, 1936 (Digenea: Homalometridae) was carried out in a small swamp in a limestone factory near Mérida, Yucatán, Mexico. Aquatic snails, Littorina (Littoridinopis) angulifera, harbouring C. cichlasomae rediae, cercariae and metacercariae, served both as the first and second intermediate hosts. Feeding experiments confirmed the conspecificity of metacercariae from naturally infected snails with adults from naturally infected fish. Gravid C. cichlasomae worms were obtained from experimentally infected fish 19 days post exposure at 22-24 degrees C. Examination of fish from the swamp in Mitza and other localities in the Yucatan Peninsula showed that the cichlids Cichlasoma urophthalmus and C. meeki were definitive hosts of C. cichlasomae. There was no pronounced preference of C. cichlasomae adults for the site of their location in the intestine of the definitive host; a slightly higher proportion (41%) of worms was only found in the anterior third of the gut. The time of miracidium development varied from 18.5 to 27.5 days; different temperature (20.1-35.7 degrees C) or light/darkness regimes influenced only slightly the rate of embryonic development, with shorter development times at higher temperature (34.8-35.7 degrees C) and constant darkness and/or light. With the exception of the sporocyst, all developmental stages are described and figured.
NASA Astrophysics Data System (ADS)
Knist, Sebastian; Goergen, Klaus; Simmer, Clemens
2018-02-01
We perform simulations with the WRF regional climate model at 12 and 3 km grid resolution for the current and future climates over Central Europe and evaluate their added value with a focus on the daily cycle and frequency distribution of rainfall and the relation between extreme precipitation and air temperature. First, a 9 year period of ERA-Interim driven simulations is evaluated against observations; then global climate model runs (MPI-ESM-LR RCP4.5 scenario) are downscaled and analyzed for three 12-year periods: a control, a mid-of-century and an end-of-century projection. The higher resolution simulations reproduce both the diurnal cycle and the hourly intensity distribution of precipitation more realistically compared to the 12 km simulation. Moreover, the observed increase of the temperature-extreme precipitation scaling from the Clausius-Clapeyron (C-C) scaling rate of 7% K-1 to a super-adiabatic scaling rate for temperatures above 11 °C is reproduced only by the 3 km simulation. The drop of the scaling rates at high temperatures under moisture limited conditions differs between sub-regions. For both future scenario time spans both simulations suggest a slight decrease in mean summer precipitation and an increase in hourly heavy and extreme precipitation. This increase is stronger in the 3 km runs. Temperature-extreme precipitation scaling curves in the future climate are projected to shift along the 7% K-1 trajectory to higher peak extreme precipitation values at higher temperatures. The curves keep their typical shape of C-C scaling followed by super-adiabatic scaling and a drop-off at higher temperatures due to moisture limitation.
NASA Astrophysics Data System (ADS)
Depczyński, Wojciech; Piasecki, Artur; Piasecka, Magdalena; Strąk, Kinga
2017-10-01
This paper focuses on identification of the impact of porous heated surface on flow boiling heat transfer in a rectangular minichannel. The heated element for Fluorinert FC-72 was a thin plate made of Haynes-230. Infrared thermography was used to determine changes in the temperature on its outer smooth side. The porous surface in contact with the fluid in the minichannel was produced in two processes: sintering or soldering of Fe powder to the plate. The results were presented as relationships between the heat transfer coefficient and the distance from the minichannel inlet and as boiling curves. Results obtained for using a smooth heated plate at the saturated boiling region were also presented to compare. In the subcooled boiling region, at a higher heat flux, the heat transfer coefficient was slightly higher for the surface prepared via soldering. In the saturated boiling region, the local heat transfer coefficients obtained for the smooth plate surface were slightly higher than those achieved from the sintered plate surface. The porous structures formed have low thermal conductivity. This may induce noticeable thermal resistance at the diffusion bridges of the sintered structures, in particular within the saturated boiling region.
EFFECT OF TEMPERATURE ON THE COMPOSITION OF FATTY ACIDS IN ESCHERICHIA COLI
Marr, Allen G.; Ingraham, John L.
1962-01-01
Marr, Allen G. (University of California, Davis) and John L. Ingraham. Effect of temperature on composition of fatty acids in Escherichia coli. J. Bacteriol. 84:1260–1267. 1962.—Variations in the temperature of growth and in the composition of the medium alter the proportions of individual fatty acids in the lipids of Escherichia coli. As the temperature of growth is lowered, the proportion of unsaturated fatty acids (hexadecenoic and octadecenoic acids) increases. The increase in content of unsaturated acids with a decrease in temperature of growth occurs in both minimal and complex media. Cells harvested in the stationary phase contained large amounts of cyclopropane fatty acids (methylenehexadecanoic and methylene octadecanoic acids) in comparison with cells harvested during exponential growth. Cells grown in a chemostat, limited by the concentration of ammonium salts, show a much higher content of saturated fatty acids (principally palmitic acid) than do cells harvested from an exponentially-growing batch culture in the same medium. Cells grown in a chemostat, limited by the concentration of glucose, show a slightly higher content of unsaturated fatty acids than cells from the corresponding batch culture. The results do not indicate a direct relation between fatty acid composition and minimal growth temperature. PMID:16561982
Study of ceria-carbonate nanocomposite electrolytes for low-temperature solid oxide fuel cells.
Fan, L; Wang, C; Di, J; Chen, M; Zheng, J; Zhu, B
2012-06-01
Composite and nanocomposite samarium doped ceria-carbonates powders were prepared by solid-state reaction, citric acid-nitrate combustion and modified nanocomposite approaches and used as electrolytes for low temperature solid oxide fuel cells. X-ray Diffraction, Scanning Electron Microscope, low-temperature Nitrogen Adsorption/desorption Experiments, Electrochemical Impedance Spectroscopy and fuel cell performance test were employed in characterization of these materials. All powders are nano-size particles with slight aggregation and carbonates are amorphous in composites. Nanocomposite electrolyte exhibits much lower impedance resistance and higher ionic conductivity than those of the other electrolytes at lower temperature. Fuel cell using the electrolyte prepared by modified nanocomposite approach exhibits the best performance in the whole operation temperature range and achieves a maximum power density of 839 mW cm(-2) at 600 degrees C with H2 as fuel. The excellent physical and electrochemical performances of nanocomposite electrolyte make it a promising candidate for low-temperature solid oxide fuel cells.
Food grade microemulsion systems: canola oil/lecithin:n-propanol/water.
Abbasi, Soleiman; Radi, Mohsen
2016-03-01
In this study, the capability of a natural surfactant, lecithin, and the influence of ionic strength, pH, and temperature on some properties of a food grade microemulsion system were evaluated. For this purpose, the pseudoternary phase diagrams of canola oil/lecithin:n-propanol/water microemulsions in the presence of different salts (NaCl and CaCl2), ionic strengths, pHs, and temperatures were constructed. Our findings showed that the presence of salts slightly increased the W/O areas on the phase diagrams, whereas pH variation was not effective on the microemulsion formation. The expansion of microemulsion areas with temperature indicated the greater triglycerides solubilization capacity of lecithin based microemulsions at higher temperatures. These findings revealed the efficiency of lecithin-based microemulsion system for solubilization of triglycerides which can potentially be used for extraction of edible vegetable oils particularly canola oil. Copyright © 2015 Elsevier Ltd. All rights reserved.
Antimony-Doped Tin Oxide Thin Films Grown by Home Made Spray Pyrolysis Technique
NASA Astrophysics Data System (ADS)
Yusuf, Gbadebo; Babatola, Babatunde Keji; Ishola, Abdulahi Dimeji; Awodugba, Ayodeji O.; Solar cell Collaboration
2016-03-01
Transparent conducting antimony-doped tin oxide (ATO) films have been deposited on glass substrates by home made spray pyrolysis technique. The structural, electrical and optical properties of the ATO films have been investigated as a function of Sb-doping level and annealing temperature. The optimum target composition for high conductivity and low resistivity was found to be 20 wt. % SnSb2 + 90 wt. ATO. Under optimized deposition conditions of 450oC annealing temperature, electrical resistivity of 5.2×10-4 Ω -cm, sheet resistance of 16.4 Ω/sq, average optical transmittance of 86% in the visible range, and average optical band-gap of 3.34eV were obtained. The film deposited at lower annealing temperature shows a relatively rough, loosely bound slightly porous surface morphology while the film deposited at higher annealing temperature shows uniformly distributed grains of greater size. Keywords: Annealing, Doping, Homemade spray pyrolysis, Tin oxide, Resistivity
Experimental Study of Hydrogasification of Lignite and Subbituminous Coal Chars
Gil, Stanisław
2015-01-01
The experimental facility for pressure hydrogasification research was adapted to the pressure of 10 MPa and temperature of 1300 K, which ensured repeatability of results and hydrogen heating to the process temperature. A hydrogasification reaction of chars produced from two rank coals was investigated at temperatures up to 1173 K, pressures up to 8 MPa, and the gas flow rates of 0.5–5 dmn 3/min. Reactivity of the “Szczerców” lignite char was found to be slightly higher than that of the subbituminous “Janina” coal char produced under the same conditions. A high value of the char reactivity was observed to a certain carbon conversion degree, above which a sharp drop took place. It was shown that, to achieve proper carbon conversion, the hydrogasification reaction must proceed at a temperature above 1200 K. PMID:26065028
Improved performance of high indium InGaAs photodetectors with InAlAs barrier
NASA Astrophysics Data System (ADS)
Du, Ben; Gu, Yi; Chen, Xing-You; Ma, Ying-Jie; Shi, Yan-Hui; Zhang, Jian; Zhang, Yong-Gang
2018-06-01
We report on the demonstration of an InP-based In0.83Ga0.17As photodetector with an In0.83Al0.17As barrier, which is lattice-matched to the absorption layer. According to the comprehensive comparison with the photodetector without the barrier, the dark current is markedly reduced by inserting the InAlAs barrier. Although the photoresponse slightly decreases for the device with the InAlAs barrier, the detectivity remains higher than that of the reference device at room temperature and significantly increases at lower temperatures. These results indicate that InAlAs is a promising barrier layer in high-indium InGaAs photodetectors.
NASA Technical Reports Server (NTRS)
Fusaro, R. L.
1982-01-01
The tribological properties of seven polyimide films applied to 440 C high temperature stainless steel substrates were studied at 25 C with a pin-on-disk type of friction and were apparatus. The polyimides fell into two groups according to friction and wear properties. Group I polyimides had slightly lower friction but much higher wear than group II polyimides. The wear mechanism was predominately adhesion, but the wear particles were larger for group I polyimides. For most of the polyimides the transfer films consisted of clumps of compacted wear particles. One polyimide composition produced a very thin transfer film that sheared plastically in the contact area.
NASA Astrophysics Data System (ADS)
Osman, Marisol; Vera, C. S.
2017-10-01
This work presents an assessment of the predictability and skill of climate anomalies over South America. The study was made considering a multi-model ensemble of seasonal forecasts for surface air temperature, precipitation and regional circulation, from coupled global circulation models included in the Climate Historical Forecast Project. Predictability was evaluated through the estimation of the signal-to-total variance ratio while prediction skill was assessed computing anomaly correlation coefficients. Both indicators present over the continent higher values at the tropics than at the extratropics for both, surface air temperature and precipitation. Moreover, predictability and prediction skill for temperature are slightly higher in DJF than in JJA while for precipitation they exhibit similar levels in both seasons. The largest values of predictability and skill for both variables and seasons are found over northwestern South America while modest but still significant values for extratropical precipitation at southeastern South America and the extratropical Andes. The predictability levels in ENSO years of both variables are slightly higher, although with the same spatial distribution, than that obtained considering all years. Nevertheless, predictability at the tropics for both variables and seasons diminishes in both warm and cold ENSO years respect to that in all years. The latter can be attributed to changes in signal rather than in the noise. Predictability and prediction skill for low-level winds and upper-level zonal winds over South America was also assessed. Maximum levels of predictability for low-level winds were found were maximum mean values are observed, i.e. the regions associated with the equatorial trade winds, the midlatitudes westerlies and the South American Low-Level Jet. Predictability maxima for upper-level zonal winds locate where the subtropical jet peaks. Seasonal changes in wind predictability are observed that seem to be related to those associated with the signal, especially at the extratropics.
Critical Casimir effect in a polymer chain in supercritical solvents.
Sumi, Tomonari; Imazaki, Nobuyuki; Sekino, Hideo
2009-03-01
Density fluctuation effects on the conformation of a polymer chain in a supercritical solvent were investigated by performing a multiscale simulation based on the density-functional theory. We found (a) a universal swelling of the polymer chain near the critical point, irrespective of whether the polymer chain is solvophilic or solvophobic, and (b) a characteristic collapse of the polymer chain having a strong solvophilicity at a temperature slightly higher than the critical point, where the isothermal compressibility becomes less than the ideal one.
PVD TBC experience on GE aircraft engines
NASA Technical Reports Server (NTRS)
Bartz, A.; Mariocchi, A.; Wortman, D. J.
1995-01-01
The higher performance levels of modern gas turbine engines present significant challenges in the reliability of materials in the turbine. The increased engine temperatures required to achieve the higher performance levels reduce the strength of the materials used in the turbine sections of the engine. Various forms of Thermal Barrier Coatings (TBC's) have been used for many years to increase the reliability of gas turbine engine components. Recent experience with the Physical Vapor Deposition (PVD) process using ceramic material has demonstrated success in extending the service life of turbine blades and nozzles. Engine test results of turbine components with a 125 micrometer (0.005 in) PVD TBC have demonstrated component operating temperatures of 56-83 C (100-150 F) lower than uncoated components. Engine testing has also revealed the TBC is susceptible to high angle particle impact damage. Sand particles and other engine debris impact the TBC surface at the leading edge of airfoils and fracture the PVD columns. As the impacting continues the TBC erodes away in local areas. Analysis of the eroded areas has shown a slight increase in temperature over a fully coated area, however, a significant temperature reduction was realized over an airfoil without any TBC.
PVD TBC experience on GE aircraft engines
NASA Technical Reports Server (NTRS)
Maricocchi, Antonio; Bartz, Andi; Wortman, David
1995-01-01
The higher performance levels of modern gas turbine engines present significant challenges in the reliability of materials in the turbine. The increased engine temperatures required to achieve the higher performance levels reduce the strength of the materials used in the turbine sections of the engine. Various forms of thermal barrier coatings (TBC's) have been used for many years to increase the reliability of gas turbine engine components. Recent experience with the physical vapor deposition (PVD) process using ceramic material has demonstrated success in extending the service life of turbine blades and nozzles. Engine test results of turbine components with a 125 micron (0.005 in) PVD TBC have demonstrated component operating temperatures of 56-83 C (100-150 F) lower than non-PVD TBC components. Engine testing has also revealed the TBC is susceptible to high angle particle impact damage. Sand particles and other engine debris impact the TBC surface at the leading edge of airfoils and fracture the PVD columns. As the impacting continues, the TBC erodes away in local areas. Analysis of the eroded areas has shown a slight increase in temperature over a fully coated area, however a significant temperature reduction was realized over an airfoil without TBC.
PVD TBC experience on GE aircraft engines
NASA Astrophysics Data System (ADS)
Maricocchi, A.; Bartz, A.; Wortman, D.
1997-06-01
The higher performance levels of modern gas turbine engines present significant challenges in the reli-ability of materials in the turbine. The increased engine temperatures required to achieve the higher per-formance levels reduce the strength of the materials used in the turbine sections of the engine. Various forms of thermal barrier coatings have been used for many years to increase the reliability of gas turbine engine components. Recent experience with the physical vapor deposition process using ceramic material has demonstrated success in extending the service life of turbine blades and nozzles. Engine test results of turbine components with a 125 μm (0.005 in.) PVD TBC have demonstrated component operating tem-peratures of 56 to 83 °C (100 to 150 °F) lower than non-PVD TBC components. Engine testing has also revealed that TBCs are susceptible to high angle particle impact damage. Sand particles and other engine debris impact the TBC surface at the leading edge of airfoils and fracture the PVD columns. As the impacting continues, the TBC erodes in local areas. Analysis of the eroded areas has shown a slight increase in temperature over a fully coated area ; however, a significant temperature reduc-tion was realized over an airfoil without TBC.
Effect of storage temperature and time on the nutritional quality of walnut male inflorescences.
Zhang, Wen-E; Wang, Chang-Lei; Shi, Bin-Bin; Pan, Xue-Jun
2017-04-01
The objective of this study was to investigate the effect of storage temperature and time on nutrients, bioactive compounds, and antioxidant activities of walnut male inflorescences. The results showed that the moisture, saccharides, fat, protein, amino acids, ascorbic acid, phenolic and flavonoid compound contents, and antioxidant activities of walnut male inflorescences were markedly influenced by storage temperature, and different degrees of decrease in these parameters were observed during the entire storage period. Moreover, higher storage temperature had a more significant effect on the nutrients, bioactive compounds, and antioxidant activities of walnut male flowers, and the loss rate of these components at 25°C was higher than that determined at 4°C. However, the results also presented that the ash and mineral contents did not appear to be influenced significantly by the storage temperature, and slightly significant changes were observed in crude fiber throughout storage, which indicated that the influence of storage on the individual mineral and crude fiber content was minimal. Based on the findings in this study, in order to maximize nutrients concentration, walnut male inflorescences should be kept at 4°C for <6 days and be consumed as fresh as possible. Copyright © 2016. Published by Elsevier B.V.
Allegaert, Karel; Casteels, Kristina; van Gorp, Ilse; Bogaert, Guy
2014-01-01
Introduction Body temperature measurement in children is of clinical relevance. Although rectal measurement is the gold standard, less invasive tools have become available. We aimed to describe the accuracy of tympanic, infrared skin, or temporal artery scan thermometers compared with rectal measurement to reflect core temperature. Methods Rectal (Filac 3000; Covidien, Mechelen, Belgium), tympanic (AccuSystem Genius2 Typmanic Infrared Ear Thermometer, Covidien, Mechelen, Belgium), temporal artery scan (Exergen, Exergen Corp, Watertown, Massachusetts), and infrared (ThermoFlash Contactless Medical Electronic Thermometer, Visiomedlab, Paris, France) body temperature measurements were randomly performed and readings were collected once. Temperature readings were described as median and range, and observations were compared with rectal temperature readings (using Wilcoxon, Bland-Altman, sensitivity, and specificity tests). The child’s comfort was assessed by the child, parent, and nurse (using Likert scales) and ease of use was assessed by nurses (using visual analog scale). Results Based on observations in 294 (median age = 3.2 years, range = 0.02–17 years) children, the mean difference was 0.49°C (tympanic scan; P < 0.0001), 0.34°C (infrared skin scan; P < 0.0001), and 0°C (temporal artery scan; P = 0.9288), respectively, when compared with rectal temperature readings. Based on visual inspection of Bland-Altman plots, all tools overestimated the temperature at lower body temperature and underestimated the temperature at higher body temperature, resulting in a sensitivity of 22% to 41% and a specificity of 98% to 100% for rectal temperatures above 38°C. The Likert scale scores and the visual analog scale scores for rectal measurement were only slightly higher when compared with the other methods. Conclusions All noninvasive techniques underperformed compared with rectal measurement. The temporal artery scan deviations were smallest, but all noninvasive techniques overestimate lower temperatures and underestimate higher temperatures compared with rectal measurement. In our hands, temporal artery scan measurement seems to be second best, but not yet ideal. PMID:25067984
Touch Temperature Coating for Off-the-Shelf Electrical Equipment Used on Spacecraft
NASA Technical Reports Server (NTRS)
Ungar, Eugene K.; Brady, Timothy K.
2010-01-01
Off-the-shelf electrical equipment is frequently used in space-based applications to control costs. However, the reduced heat transfer in the spacecraft microgravity environment causes the equipment to operate at significantly higher temperatures than it would in terrestrial applications. This creates touch temperature issues where items particularly metallic ones become too hot for the crew to handle safely. A touch temperature coating layup has been developed that can be added to spacebased electrically powered hardware. The coating allows the crew to safely handle the hardware, but only slightly impedes the heat transfer from the component during normal operation. In the present work, the coating generic requirements are developed and a layup is described that meets these specifications. Analytical and experimental results are presented that demonstrate the ability of the coating layup to increase the allowable limits of touch temperature while only marginally degrading heat transfer to the environment. This allows the spacecraft crew to handle objects that, if not coated, would be hot enough to cause pain or skin damage.
Topological Defects in Double Exchange Materials and Anomalous Hall Resistance.
NASA Astrophysics Data System (ADS)
Calderón, M. J.; Brey, L.
2000-03-01
Recently it has been proposed that the anomalous Hall effect observed in Double Exchange materials is due to Berry phase effects caused by carrier hopping in a nontrivial spins background (J.Ye et al.) Phys.Rev.Lett. 83, 3737 1999.In order to study this possibility we have performed Monte Carlo simulations of the Double Exchange model and we have computed, as a function of the temperature, the number of topological defects in the system and the internal gauge magnetic field associated with these defects. In the simplest Double Exchange model the gauge magnetic field is random, and its average value is zero. The inclusion in the problem of spin-orbit coupling privileges the opposite direction of the magnetization and an anomalous Hall resistance (AHR) effect arises. We have computed the AHR, and we have obtained its temperature dependence. In agreement with previous experiments we obtain that AHR increases exponentially at low temperature and presents a maximum at a temperature slightly higher than the critical temperature.
Li, Fangfei; Li, Min; Cui, Qiliang; Cui, Tian; He, Zhi; Zhou, Qiang; Zou, Guangtian
2009-10-07
The high temperature and high pressure Brillouin scattering studies of liquid ammonia have been performed in a diamond anvil cell. Acoustic velocity, refractive index, adiabatic bulk modulus, and the equation of state of liquid ammonia were determined at temperatures up to 410 K and at pressures up to the solidification point. Velocity and refractive index increase smoothly with increasing pressure along isothermals but decrease slightly with the temperature increase. The bulk modulus increases linearly with pressure and its slope dB/dP decreases slightly with increasing temperature from 6.67 at 297 K to 5.94 at 410 K.
Magnetic properties of GdMnO3 nanoparticles embedded in mesoporous silica
NASA Astrophysics Data System (ADS)
Tajiri, Takayuki; Mito, Masaki; Deguchi, Hiroyuki; Kohno, Atsushi
2018-05-01
Perovskite manganite GdMnO3 nanoparticles were synthesized using mesoporous silica as a template, and their magnetic properties and crystal structure were investigated. Powder X-ray diffraction data indicated successful synthesis of the GdMnO3 nanoparticles, with mean particle sizes of 13.9 and 20.9 nm. The lattice constants for the nanoparticles were slightly different from those for the bulk material and varied with the particle size. The magnetic transition temperatures for the nanoparticles were higher than those of the bulk crystal. The synthesized GdMnO3 nanoparticles exhibited superparamagnetic behaviors: The blocking temperature, coercive field, and transition temperature depended on the particle size. Magnetic measurements and crystal structure analysis suggest that the changes in the magnetic properties for GdMnO3 nanoparticles can be attributed to the modulation of the crystallographic structure.
Development of a low-pressure materials pre-treatment process for improved energy efficiency
NASA Astrophysics Data System (ADS)
Lee, Kwanghee; You, Byung Don
2017-09-01
Low pressure materials pre-treatment process has been developed as an alternative to the existing high-temperature sludge drying, limestone calcination, and limonite dehydroxylation. Using the thermodynamic equilibrium relationship between temperature and pressure represented by the Clausius-Clapeyron equation, the operational temperature of these reactions could be lowered at reduced pressure for increased energy efficiency. For industrial sludge drying, the evaporation rate was controlled by interfacial kinetics showing a constant rate with time and significant acceleration in the reaction could be observed with reduced pressure. At this modified reaction rate under low pressure, the rate was also partially controlled by mass transfer. Temperature of limestone calcination was lowered, but the reaction was limited at the calculated equilibrium temperature of the Clausius-Clapeyron equation and slightly higher temperatures were required. The energy consumption during limestone calcination and limonite dehydroxylation were evaluated, where lower processing pressures could enhance the energy efficiency for limestone calcination, but limonite dehydroxylation could not achieve energy-savings due to the greater power consumption of the vacuum pump under lower pressure and reduced temperatures.
Conductivity Analysis of Membranes for High-Temperature PEMFC Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, R.; Turner, J.A.
2005-01-01
Low-temperature operation requirements for per-fluorinated membranes are one factor that limits the viability of current fuel cell technology for transportation and other uses. Because of this, high-temperature membrane materials are being researched. The protonic conductivity of organic/inorganic hybrid composites, Nafion® analog material, and heteropoly acid doped Nafion membranes were studied using a BekkTech® conductivity test cell as a hydrogen pump. The goal was to find a high-temperature membrane with sufficient enough conductive properties to replace the currently implemented low-temperature membranes, such as Nafion. Four-point conductivity measurements were taken using a hydrogen pump experiment. Results showed that one of the organic/inorganicmore » membranes that we tested had similar protonic conductivity to Nafion. Nafion analog membranes were shown to have similar to slightly better conductivity than Nafion at high-temperatures. However, like Nafion, performance dropped upon dehydration of the membrane at higher temperatures. Of the heteropoly acid doped Nafion membranes studied, silicotungstic acid was found to be, overall, the most promising for use as a dopant.« less
Citadini, Jessyca Michele; Navas, Carlos Arturo
2013-07-01
Although many studies assessed the influence of temperature on the behavior of ectotermic vertebrates, little attention has been given to interindividual variation in the defensive responses of reptiles. In the present study we investigated the defensive behavior of the snake Tomodon dorsatus, in order to test the hypotheses that (1) individuals differ in their antipredator behavior consistently with the concept of behavioral syndromes, (2) temperature influences the defensive behavior, and (3) these two factors interact with each other. There was significant interindividual variation in defensive behavior, as well as consistently aggressive, passive or evasive behaviors. Temperature influenced aggressiveness, which was slightly higher when body temperature was lower, but this trend was only evident in animals with aggressive disposition. Our results corroborate the hypothesis of interaction between individuality of behavior and temperature-dependent defensive behavior in T. dorsatus. These results, together with results from previous studies, suggest that the evolution of temperature-dependent defensive behavior differs among lineages of ectothermic tetrapods. This article is part of a Special Issue entitled: insert SI title. Copyright © 2013 Elsevier B.V. All rights reserved.
Maula, H; Hongisto, V; Östman, L; Haapakangas, A; Koskela, H; Hyönä, J
2016-04-01
The aim of the study was to determine the effect of a temperature of 29°C on performance in tasks involving different cognitive demands and to assess the effect on perceived performance, subjective workload, thermal comfort, perceived working conditions, cognitive fatigue, and somatic symptoms in a laboratory with realistic office environment. A comparison was made with a temperature of 23°C. Performance was measured on the basis of six different tasks that reflect different stages of cognitive performance. Thirty-three students participated in the experiment. The exposure time was 3.5 h in both thermal conditions. Performance was negatively affected by slightly warm temperature in the N-back working memory task. Temperature had no effect on performance in other tasks focusing on psychomotor, working memory, attention, or long-term memory capabilities. Temperature had no effect on perceived performance. However, slightly warm temperature caused concentration difficulties. Throat symptoms were found to increase over time at 29°C, but no temporal change was seen at 23°C. No effect of temperature on other symptoms was found. As expected, the differences in thermal comfort were significant. Women perceived a temperature of 23°C colder than men. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Clofibric acid degradation in UV254/H2O2 process: effect of temperature.
Li, Wenzhen; Lu, Shuguang; Qiu, Zhaofu; Lin, Kuangfei
2010-04-15
The degradation of clofibric acid (CA) in UV(254)/H(2)O(2) process under three temperature ranges, i.e. T1 (9.0-11.5 degrees C), T2 (19.0-21.0 degrees C) and T3 (29.0-30.0 degrees C) was investigated. The effects of solution constituents including NO(3)(-) and HCO(3)(-) anions, and humic acid (HA) on CA degradation were evaluated in Milli-Q waters. CA degradation behaviors were simulated with the pseudo-first-order kinetic model and the apparent rate constant (k(ap)) and half-life time (t(1/2)) were calculated. The results showed that higher temperature would favor CA degradation, and CA degradation was taken place mostly by indirect oxidation through the formation of OH radicals in UV(254)/H(2)O(2) process. In addition, the effects of both NO(3)(-) and HCO(3)(-) anions at two selected concentrations (1.0x10(-3) and 0.1 mol L(-1)) and HA (20 mg L(-1)) on CA degradation were investigated. The results showed that HA had negative effect on CA degradation, and this effect was much more apparent under low temperature condition. On the other hand, the inhibitive effect on CA degradation at both lower and higher concentrations of bicarbonate was observed, and this inhibitive effect was much more apparent at higher bicarbonate concentration and lower temperature condition. While, at higher nitrate concentration the inhibitive effect on CA degradation under three temperature ranges was observed, and with the temperature increase this negative effect was apparently weakened. However, at lower nitrate concentration a slightly positive effect on CA degradation was found under T2 and T3 conditions. Moreover, when using a real wastewater treatment plant (WWTP) effluent spiked with CA over 99% of CA removal could be achieved under 30 degrees C within only 15 min compared with 40 and 80 min under 20 and 10 degrees C respectively, suggesting a significant promotion in CA degradation under higher temperature condition. Therefore, it can be concluded that temperature plays an important role in CA degradation in UV/H(2)O(2) process. 2009 Elsevier B.V. All rights reserved.
Physiological and subjective responses to standing showers, sitting showers, and sink baths.
Ohnaka, T; Tochihara, Y; Kubo, M; Yamaguchi, C
1995-09-01
The purpose of this study was to investigate physiological and subjective responses during and after bathing in three different bathing methods. Eight healthy males bathed for 10 minutes, and then rested for 30 minutes. Three kinds of bathing methods - standing shower, sitting shower and sink bath - were adopted in this experiment. Water temperature and flow volume of the showers were kept at 41 degrees C and 11 liter/min, while water temperature of the bath was kept at 40 degrees C. Rectal temperature, skin temperatures and heart rate of the subjects were measured continuously during bathing and the subsequent 30-minute rest. Blood pressure and votes for thermal sensations were recorded before bathing, after 5 and 10 minutes of bathing, and 5, 10, 20 and 30 minutes after bathing. The following results were obtained. 1) Although rectal temperature rose, on the average, by 0.15 degrees C in all bathing methods, there were no significant differences among the three bathing methods at any time in the experiment. 2) Mean skin temperature (Tsk) during the sink bath was significantly higher than that in the standing or sitting shower. After bathing, Tsk of sink bath was slightly higher than those of the remaining conditions, but did not significantly differ among the bathing methods. 3) Heart rate increased gradually during all the bathing methods, however, only HR in the standing shower exceeded 100 beats/min which was significantly higher than those of the two remaining bathing methods. 4) Blood pressure (BP) decreased rapidly during the sink bath in contrast to an increased BP in the sitting and standing showers.
Temperature dependence of piezoelectric properties for textured SBN ceramics.
Kimura, Masahiko; Ogawa, Hirozumi; Kuroda, Daisuke; Sawada, Takuya; Higuchi, Yukio; Takagi, Hiroshi; Sakabe, Yukio
2007-12-01
Temperature dependences of piezoelectric properties were studied for h001i textured ceramics of bismuth layer-structured ferroelectrics, SrBi(2)Nb(2)O(9) (SBN). The textured ceramics with varied orientation degrees were fabricated by templated, grain-growth method, and the temperature dependences of resonance frequency were estimated. Excellent temperature stability of resonance frequency was obtained for the 76% textured ceramics. The resonance frequency of the 76% textured specimens varied almost linearly over a wide temperature range. Therefore, the variation was slight, even in a high temperature region above 150 degrees C. Temperature stability of a quartz crystal oscillator is generally higher than that of a ceramic resonator around room temperature. The variation of resonance frequency for the 76% textured SrBi(2)Nb(2)O(9) was larger than that of oscillation frequency for a typical quartz oscillator below 150 degrees C also in this study. However, the variation of the textured SrBi(2)Nb(2)O(9) was smaller than that of the quartz oscillator over a wide temperature range from -50 to 250 degrees C. Therefore, textured SrBi(2)Nb(2)O(9) ceramics is a major candidate material for the resonators used within a wide temperature range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nobel, P.S.
Soil conditions were evaluated over the rooting depths for Agave deserti and Ferocactus acanthodes from the northwestern Sonoran Desert. These succulents have mean root depths of only 10 cm when adults and even shallower distribution when seedlings, which often occur is association with the nurse plant Hilaria rigida, which also has shallow roots. Maximum soil temperatures in the 2 cm beneath bare ground were predicted to exceed 65 C, which is lethal to the roots of A. deserti and F. acanthodes, whereas H. rigida reduced the maximum surface temperatures by over 10 C, providing a microhabitat suitable for seedling establishment.more » Water Availability was defined as the soil-to-plant drop in water potential, for periods when the plants could take up water, integrated over time. Below 4 cm under bare ground, simulated Water Availability increased slightly with depth (to 35 cm) for a wet year, was fairly constant for an average year, and decreased for a dry year, indicating that the shallow rooting habit is more advantageous in drier years. Water uptake by H. rigida substantially reduced Water Availability for seedlings associated with this nurse plant. On the other hand, a 66-90% higher soil nitrogen level occurred under H. rigida, possibly representing its harvesting of this macronutrient from a wide ground area. Phosphorus was slightly less abundant in the soil under H. rigida compared with under bare ground, the potassium level was substantially higher, and the sodium level was substantially lower. All four elements varied greatly with depth, N and K decreasing and P and Na increasing. Based on the known growth responses of A. deserti and F. acanthodes to these four elements, growth was predicted to be higher for plants in soil from the shallower layers, most of the differences being due to nitrogen.« less
Do American dippers obtain a survival benefit from altitudinal migration?
Green, David J; Whitehorne, Ivy B J; Middleton, Holly A; Morrissey, Christy A
2015-01-01
Studies of partial migrants provide an opportunity to assess the cost and benefits of migration. Previous work has demonstrated that sedentary American dippers (residents) have higher annual productivity than altitudinal migrants that move to higher elevations to breed. Here we use a ten-year (30 period) mark-recapture dataset to evaluate whether migrants offset their lower productivity with higher survival during the migration-breeding period when they occupy different habitat, or early and late-winter periods when they coexist with residents. Mark-recapture models provide no evidence that apparent monthly survival of migrants is higher than that of residents at any time of the year. The best-supported model suggests that monthly survival is higher in the migration-breeding period than winter periods. Another well-supported model suggested that residency conferred a survival benefit, and annual apparent survival (calculated from model weighted monthly apparent survival estimates using the Delta method) of residents (0.511 ± 0.038SE) was slightly higher than that of migrants (0.487 ± 0.032). Winter survival of American dippers was influenced by environmental conditions; monthly apparent survival increased as maximum daily flow rates increased and declined as winter temperatures became colder. However, we found no evidence that environmental conditions altered differences in winter survival of residents and migrants. Since migratory American dippers have lower productivity and slightly lower survival than residents our data suggests that partial migration is likely an outcome of competition for limited nest sites at low elevations, with less competitive individuals being forced to migrate to higher elevations in order to breed.
NASA Astrophysics Data System (ADS)
Makos, Michał; Dzierżek, Jan; Nitychoruk, Jerzy; Zreda, Marek
2014-07-01
During the Last Glacial Maximum (LGM), long valley glaciers developed on the northern and southern sides of the High Tatra Mountains, Poland and Slovakia. Chlorine-36 exposure dating of moraine boulders suggests two major phases of moraine stabilization, at 26-21 ka (LGM I - maximum) and at 18 ka (LGM II). The dates suggest a significantly earlier maximum advance on the southern side of the range. Reconstructing the geometry of four glaciers in the Sucha Woda, Pańszczyca, Mlynicka and Velicka valleys allowed determining their equilibrium-line altitudes (ELAs) at 1460, 1460, 1650 and 1700 m asl, respectively. Based on a positive degree-day model, the mass balance and climatic parameter anomaly (temperature and precipitation) has been constrained for LGM I advance. Modeling results indicate slightly different conditions between northern and southern slopes. The N-S ELA gradient finds confirmation in slightly higher temperature (at least 1 °C) or lower precipitation (15%) on the south-facing glaciers during LGM I. The precipitation distribution over the High Tatra Mountains indicates potentially different LGM atmospheric circulation than at the present day, with reduced northwesterly inflow and increased southerly and westerly inflows of moist air masses.
Killpack, Tess L; Karasov, William H
2012-06-01
Birds have evolved phenotypic plasticity in growth and developmental patterns in order to respond to fluctuating environmental conditions and to mitigate the impact of poor feeding on fitness. Chronic food shortage can occur during chick development in the wild, and the responses of altricial birds have not been thoroughly studied. House sparrow (Passer domesticus) nestlings were raised in the laboratory on age-specific meal sizes (controls) or meal sizes 25% less than age-specific amounts (food-restricted) and analyzed at 6, 9 and 12 days post-hatch for differences in growth and development. Food-restricted birds had significantly reduced body mass and body temperature, but skeletal growth was maintained with respect to controls. Muscle mass was significantly reduced and muscle water content was slightly, though not significantly, higher in food-restricted birds, which may reflect slight developmental immaturity. Assimilation organ masses, summed enzymatic capacity of the intestine and lipid content of the liver were significantly reduced in food-restricted birds. Findings from this study indicate that altricial birds experiencing chronic, moderate food restriction throughout the nestling period may allocate resources to structural growth through energy-saving reductions in mass of assimilation organs and body temperature.
Investigation of Radiation and Chemical Resistance of Flexible HLW Transfer Hose
DOE Office of Scientific and Technical Information (OSTI.GOV)
E. Skidmore; Billings, K.; Hubbard, M.
A chemical transfer hose constructed of an EPDM (ethylene-propylene diene monomer) outer covering with a modified cross-linked polyethylene (XLPE) lining was evaluated for use in high level radioactive waste transfer applications. Laboratory analysis involved characterization of the hose liner after irradiation to doses of 50 to 300 Mrad and subsequent exposure to 25% NaOH solution at 93 C for 30 days, simulating 6 months intermittent service. The XLPE liner mechanical and structural properties were characterized at varying dose levels. Burst testing of irradiated hose assemblies was also performed. Literature review and test results suggest that radiation effects below doses ofmore » 100 kGy are minimal, with acceptable property changes to 500 kGy. Higher doses may be feasible. At a bounding dose of 2.5 MGy, the burst pressure is reduced to the working pressure (1.38 MPa) at room temperature. Radiation exposure slightly reduces liner tensile strength, with more significant decrease in liner elongation. Subsequent exposure to caustic solutions at elevated temperature slightly increases elongation, suggesting an immersion/hydrolytic effect or possible thermal annealing of radiation damage. This paper summarizes the laboratory results and recommendations for field deployment.« less
Thermogravimetric analysis and fast pyrolysis of Milkweed.
Kim, Seung-Soo; Agblevor, Foster A
2014-10-01
Pyrolysis of Milkweed was carried out in a thermogravimetric analyzer and a bubbling fluidized bed reactor. Total liquid yield of Milkweed pyrolysis was between 40.74% and 44.19 wt% between 425 °C and 550 °C. The gas yield increased from 27.90 wt% to 33.33 wt% with increasing reaction temperature. The higher heating values (HHV) of the Milkweed bio-oil were relatively high (30.33-32.87 MJ/kg) and varied with reaction temperature, feeding rate and fluidization velocity. The selectivity for CO2 was highest within non-condensable gases, and the molar ratio of CO2/CO was about 3 at the different reaction conditions. The (13)C NMR analysis, of the bio-oil showed that the relative concentration carboxylic group and its derivatives was higher at 425 °C than 475 °C, which resulted in slightly higher oxygen content in bio-oil. The pH of aqueous phase obtained at 475 °C was 7.37 which is the highest reported for any lignocellulosic biomass pyrolysis oils. Copyright © 2014 Elsevier Ltd. All rights reserved.
Temporal changes in climatic variables and their impact on crop yields in southwestern China
NASA Astrophysics Data System (ADS)
Liu, Hong-Bin; Gou, Yu; Wang, Hong-Ye; Li, Hong-Mei; Wu, Wei
2014-08-01
Knowledge of variability in climatic variables changes and its impact on crop yields is important for farmers and policy makers, especially in southwestern China where rainfed agriculture is dominant. In the current study, six climatic parameters (mean temperature, rainfall, relative humidity, sunshine hours, temperature difference, and rainy days) and aggregated yields of three main crops (rice: Oryza sativa L., oilseed rape: Brassica napus L., and tobacco: Nicotiana tabacum L.) during 1985-2010 were collected and analyzed for Chongqing—a large agricultural municipality of China. Climatic variables changes were detected by Mann-Kendall test. Increased mean temperature and temperature difference and decreased relative humidity were found in annual and oilseed rape growth time series ( P < 0.05). Increased sunshine hours were observed during the oilseed rape growth period ( P < 0.05). Rainy days decreased slightly in annual and oilseed rape growth time series ( P < 0.10). Correlation analysis showed that yields of all three crops could benefit from changes in climatic variables in this region. Yield of rice increased with rainfall ( P < 0.10). Yield of oilseed rape increased with mean temperature and temperature difference but decreased with relative humidity ( P < 0.01). Tobacco yield increased with mean temperature ( P < 0.05). Path analysis provided additional information about the importance and contribution paths of climatic variables to crop yields. Temperature difference and sunshine hours had higher direct and indirect effects via other climatic variables on yields of rice and tobacco. Mean temperature, relative humidity, rainy days, and temperature difference had higher direct and indirect effects via others on yield of oilseed rape.
Temporal changes in climatic variables and their impact on crop yields in southwestern China.
Liu, Hong-Bin; Gou, Yu; Wang, Hong-Ye; Li, Hong-Mei; Wu, Wei
2014-08-01
Knowledge of variability in climatic variables changes and its impact on crop yields is important for farmers and policy makers, especially in southwestern China where rainfed agriculture is dominant. In the current study, six climatic parameters (mean temperature, rainfall, relative humidity, sunshine hours, temperature difference, and rainy days) and aggregated yields of three main crops (rice: Oryza sativa L., oilseed rape: Brassica napus L., and tobacco: Nicotiana tabacum L.) during 1985-2010 were collected and analyzed for Chongqing-a large agricultural municipality of China. Climatic variables changes were detected by Mann-Kendall test. Increased mean temperature and temperature difference and decreased relative humidity were found in annual and oilseed rape growth time series (P<0.05). Increased sunshine hours were observed during the oilseed rape growth period (P<0.05). Rainy days decreased slightly in annual and oilseed rape growth time series (P<0.10). Correlation analysis showed that yields of all three crops could benefit from changes in climatic variables in this region. Yield of rice increased with rainfall (P<0.10). Yield of oilseed rape increased with mean temperature and temperature difference but decreased with relative humidity (P<0.01). Tobacco yield increased with mean temperature (P<0.05). Path analysis provided additional information about the importance and contribution paths of climatic variables to crop yields. Temperature difference and sunshine hours had higher direct and indirect effects via other climatic variables on yields of rice and tobacco. Mean temperature, relative humidity, rainy days, and temperature difference had higher direct and indirect effects via others on yield of oilseed rape.
Glass Coats For Hot Isostatic Pressing
NASA Technical Reports Server (NTRS)
Ecer, Gunes M.
1989-01-01
Surface voids sealed from pressurizing gas. Coating technique enables healing of surface defects by hot isostatic pressing (HIP). Internal pores readily closed by HIP, but surface voids like cracks and pores in contact with pressurizing gas not healed. Applied to casting or weldment as thick slurry of two glass powders: one melts at temperature slightly lower than used for HIP, and another melts at higher temperature. For example, powder is glass of 75 percent SiO2 and 25 percent Na2O, while other powder SiO2. Liquid component of slurry fugitive organic binder; for example, mixture of cellulose acetate and acetone. Easy to apply, separates voids from surrounding gas, would not react with metal part under treatment, and easy to remove after pressing.
Cisneros, Fausto H; Paredes, Daniel; Arana, Adrian; Cisneros-Zevallos, Luis
2014-06-04
The effect of roasting of Sacha-inchi (Plukenetia volubilis L.) seeds on the oxidative stability and composition of its oil was investigated. The seeds were subjected to light, medium and high roasting intensities. Oil samples were subjected to high-temperature storage at 60 °C for 30 days and evaluated for oxidation (peroxide value and p-anisidine), antioxidant activity (total phenols and DPPH assay), and composition (tocopherol content and fatty acid profile). Results showed that roasting partially increased oil oxidation and its antioxidant capacity, slightly decreased tocopherol content, and did not affect the fatty acid profile. During storage, oxidation increased for all oil samples, but at a slower rate for oils from roasted seeds, likely due to its higher antioxidant capacity. Also, tocopherol content decreased significantly, and a slight modification of the fatty acid profile suggested that α-linolenic acid oxidized more readily than other fatty acids present.
Xu, Wei; Dang, Wei; Geng, Jun; Lu, Hong-Liang
2015-10-01
The thermal acclimatory capacity of a particular species may determine its resilience to environmental change. Evaluating the physiological acclimatory responses of economically important species is useful for determining their optimal culture conditions. Here, juvenile Chinese three-keeled pond turtles (Mauremys reevesii) were acclimated to one of three different temperatures (17, 25 or 33°C) for four weeks to assess the effects of thermal acclimation on some physiological traits. Thermal acclimation significantly affected thermal resistance, but not thermal preference, of juvenile M. reevesii. Turtles acclimated to 17°C were less resistant to high temperatures than those acclimated to 25°C and 33°C. However, turtles increased resistance to low temperatures with decreasing acclimation temperature. The acclimation response ratio of the critical thermal minimum (CTMin) was lower than that of the critical thermal maximum (CTMax) for acclimation temperatures between 17 and 25°C, but slightly higher between 25 and 33°C. The thermal resistance range (i.e., the difference between CTMax and CTMin) was widest in turtles acclimated to the intermediate temperature (25°C), and narrowest in those acclimated to low temperature (17°C). The standard metabolic rate increased as body temperature and acclimation temperature increased, and the temperature quotient (Q10) between acclimation temperatures 17 and 25°C was higher than the Q10 between 25 and 33°C. Our results suggest that juvenile M. reevesii may have a greater resistance under mild thermal conditions resembling natural environments, and better physiological performance at relatively warm temperatures. Copyright © 2015 Elsevier Ltd. All rights reserved.
Carmo-Silva, A Elizabete; Salvucci, Michael E
2012-11-01
The temperature optimum of photosynthesis coincides with the average daytime temperature in a species' native environment. Moderate heat stress occurs when temperatures exceed the optimum, inhibiting photosynthesis and decreasing productivity. In the present study, the temperature response of photosynthesis and the potential for heat acclimation was evaluated for Camelina sativa, a bioenergy crop. The temperature optimum of net CO(2) assimilation rate (A) under atmospheric conditions was 30-32 °C and was only slightly higher under non-photorespiratory conditions. The activation state of Rubisco was closely correlated with A at supra-optimal temperatures, exhibiting a parallel decrease with increasing leaf temperature. At both control and elevated temperatures, the modeled response of A to intercellular CO(2) concentration was consistent with Rubisco limiting A at ambient CO(2). Rubisco activation and photochemical activities were affected by moderate heat stress at lower temperatures in camelina than in the warm-adapted species cotton and tobacco. Growth under conditions that imposed a daily interval of moderate heat stress caused a 63 % reduction in camelina seed yield. Levels of cpn60 protein were elevated under the higher growth temperature, but acclimation of photosynthesis was minimal. Inactivation of Rubisco in camelina at temperatures above 35 °C was consistent with the temperature response of Rubisco activase activity and indicated that Rubisco activase was a prime target of inhibition by moderate heat stress in camelina. That photosynthesis exhibited no acclimation to moderate heat stress will likely impact the development of camelina and other cool season Brassicaceae as sources of bioenergy in a warmer world.
The mass and speed dependence of meteor air plasma temperatures
NASA Technical Reports Server (NTRS)
Jenniskens, Peter; Laux, Christophe O.; Wilson, Michael A.; Schaller, Emily L.
2004-01-01
The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.
The mass and speed dependence of meteor air plasma temperatures.
Jenniskens, Peter; Laux, Christophe O; Wilson, Michael A; Schaller, Emily L
2004-01-01
The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.
Arzbacher, Stefan; Petrasch, Jörg; Ostermann, Alexander; Loerting, Thomas
2016-08-08
Clathrate hydrates are inclusion compounds in which guest molecules are trapped in a host lattice formed by water molecules. They are considered an interesting option for future energy supply and storage technologies. In the current paper, time lapse 3D micro computed tomographic (µCT) imaging with ice and tetrahydrofuran (THF) clathrate hydrate particles is carried out in conjunction with an accurate temperature control and pressure monitoring. µCT imaging reveals similar behavior of the ice and the THF clathrate hydrate at low temperatures while at higher temperatures (3 K below the melting point), significant differences can be observed. Strong indications for micropores are found in the ice as well as the THF clathrate hydrate. They are stable in the ice while unstable in the clathrate hydrate at temperatures slightly below the melting point. Significant transformations in surface and bulk structure can be observed within the full temperature range investigated in both the ice and the THF clathrate hydrate. Additionally, our results point towards an uptake of molecular nitrogen in the THF clathrate hydrate at ambient pressures and temperatures from 230 K to 271 K.
Optical gain in 1.3-μm electrically driven dilute nitride VCSOAs
2014-01-01
We report the observation of room-temperature optical gain at 1.3 μm in electrically driven dilute nitride vertical cavity semiconductor optical amplifiers. The gain is calculated with respect to injected power for samples with and without a confinement aperture. At lower injected powers, a gain of almost 10 dB is observed in both samples. At injection powers over 5 nW, the gain is observed to decrease. For nearly all investigated power levels, the sample with confinement aperture gives slightly higher gain. PMID:24417791
[Atopic eczema: psychophysiological reactivity with standardized stressors].
Münzel, K; Schandry, R
1990-11-01
In 18 atopic eczema patients with active symptomatology and 15 control subjects a comparison of reactivity to psychological stressors was made. The physiological measures were heart rate, peripheral vasomotor response, skin resistance level, spontaneous fluctuations of the skin resistance, and forearm skin temperature. In addition, self-ratings of subjective state, situational anxiety, and social anxiety were assessed. Mental arithmetic performed undisturbed and in distracting conditions, and anticipation of the latter and of having to speak in public served as stressors. The results show higher reaction values of the eczema patients for heart rate, peripheral vasomotor response, fluctuations of skin resistance and subjective tension. A subgroup of patients with extreme skin irritation (itching) reacted with an elevation of skin temperature, in contrast to control subjects and patients with less marked itching, in whom skin temperature dropped slightly. The results suggest that atopic eczema may have a psychophysiological component.
AN EMPIRICISM FOR ESTABLISHING THE TRANSITION TEMPERATURES OF SUPERCONDUCTING ALLOYS AND COMPOUNDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gold, L.
1964-01-01
The preparation of superconductive alloys may be guided by a form of empiricism based upon the isotope law. For a series of alloys having a common structure, the critical temperatures of its members are presumed so interrelated. The reduced mass of a compound becomes somewhat obscure for stoichiometry other than 50 to 50 at.%. Several possible definitions of reduced mass permit setting of upper and lower bounds on the transition point in general. Theoretical calculations are presented for Nb/sub 3/In with evidence that the experimental values for this substance and Nb/sub 3/Ga may require slight revision. In line with themore » quest for alloys with higher critical temperatures than N/b/sub 3/Sn, a prediction is made that Nb/sub 3/Si (were it to exist and be of the BETA - tungsten structure) would be a promising prospect. (auth)« less
NASA Astrophysics Data System (ADS)
Vodičková, Věra; Hanus, Pavel; Vlasák, Tomáš; Švec, Martin
2018-03-01
Iron aluminides were developed as an alternative to stainless steels after World War II. The main intended impact was to save strategic elements (chromium or nickel). The result of these investigations was development of registered alloys as Pyroferal (Czechoslovak Republic), Thugal (Soviet Union) or Thermagal (France). The investigation of these type alloys continued in the nineties thanks to technological progress. In this time iron aluminides seems to be promising material with very good corrosive and environment resistivity. The mechanical properties of binary iron aluminides (Fe-Al) are average at higher temperatures but strengthening effect of alloying elements is significant. The aim of the article is to show influence of non-critical additives (such as C, Ti, Zr) and also “slightly critical” elements as e.g. Ce, Nb on high temperature creep properties of alloys.
Effect of molecular weight on polyphenylquinoxaline properties
NASA Technical Reports Server (NTRS)
Jensen, Brian J.
1991-01-01
A series of polyphenyl quinoxalines with different molecular weight and end-groups were prepared by varying monomer stoichiometry. Thus, 4,4'-oxydibenzil and 3,3'-diaminobenzidine were reacted in a 50/50 mixture of m-cresol and xylenes. Reaction concentration, temperature, and stir rate were studied and found to have an effect on polymer properties. Number and weight average molecular weights were determined and correlated well with viscosity data. Glass transition temperatures were determined and found to vary with molecular weight and end-groups. Mechanical properties of films from polymers with different molecular weights were essentially identical at room temperature but showed significant differences at 232 C. Diamine terminated polymers were found to be much less thermooxidatively stable than benzil terminated polymers when aged at 316 C even though dynamic thermogravimetric analysis revealed only slight differences. Lower molecular weight polymers exhibited better processability than higher molecular weight polymers.
NASA Technical Reports Server (NTRS)
Wanjek, Christopher
2003-01-01
In June, NASA plans to launch the Microwave Anisotropy Probe (MAP) to survey the ancient radiation in unprecedented detail. MAP will map slight temperature fluctuations within the microwave background that vary by only 0.00001 C across a chilly radiation that now averages 2.73 C above absolute zero. The temperature differences today point back to density differences in the fiery baby universe, in which there was a little more matter here and a little less matter there. Areas of slightly enhanced density had stronger gravity than low-density areas. The high-density areas pulled back on the background radiation, making it appear slightly cooler in those directions.
Dielectric behavior and transport properties of ZnO nanorods
NASA Astrophysics Data System (ADS)
Soosen Samuel, M.; Koshy, Jiji; Chandran, Anoop; George, K. C.
2011-08-01
Highly optical, good crystalline and randomly aligned ZnO nanorods were synthesized by the hydrothermal method. The dielectric properties of ZnO nanorods were attributed to the interfacial polarization at low frequencies (below 10 kHz) and orientational polarization at higher frequencies. The observed ω( n-1) dependence of dielectric loss was discussed on the basis of the Universal model of dielectric response. Dielectric loss peak was composed of the Debye like loss peak at higher frequencies and interfacial loss peak at lower frequencies. Charge transport through the grain and grain boundary region was investigated by impedance spectroscopy. At higher temperatures the conductivity of the nanorod was mainly through the grain interior and the overall impedance was contributed by the grain boundary region. The activation energy of nanorod was calculated as 0.078 eV, which is slightly higher than the reported bulk value.
Impact of temperature on mortality in Hubei, China: a multi-county time series analysis
NASA Astrophysics Data System (ADS)
Zhang, Yunquan; Yu, Chuanhua; Bao, Junzhe; Li, Xudong
2017-03-01
We examined the impact of extreme temperatures on mortality in 12 counties across Hubei Province, central China, during 2009-2012. Quasi-Poisson generalized linear regression combined with distributed lag non-linear model was first applied to estimate county-specific relationship between temperature and mortality. A multivariable meta-analysis was then used to pool the estimates of county-specific mortality effects of extreme cold temperature (1st percentile) and hot temperature (99th percentile). An inverse J-shaped relationship was observed between temperature and mortality at the provincial level. Heat effect occurred immediately and persisted for 2-3 days, whereas cold effect was 1-2 days delayed and much longer lasting. Higher mortality risks were observed among females, the elderly aged over 75 years, persons dying outside the hospital and those with high education attainment, especially for cold effects. Our data revealed some slight differences in heat- and cold- related mortality effects on urban and rural residents. These findings may have important implications for developing locally-based preventive and intervention strategies to reduce temperature-related mortality, especially for those susceptible subpopulations. Also, urbanization should be considered as a potential influence factor when evaluating temperature-mortality association in future researches.
Brange, J; Havelund, S; Hougaard, P
1992-06-01
Formation of covalent, higher molecular weight transformation (HMWT) products during storage of insulin preparations at 4-45 degrees C was studied by size exclusion chromatography. The main products are covalent insulin dimers (CID), but in protamine-containing preparations the concurrent formation of covalent insulin-protamine (CIP) products takes place. At temperatures greater than or equal to 25 degrees C parallel or consecutive formation of covalent oligo- and polymers can also be observed. Rate of HMWT is only slightly influenced by species of insulin but varies with composition and formulation, and for isophane (NPH) preparations, also with the strength of preparation. Temperature has a pronounced effect on CID, CIP, and, especially, covalent oligo- and polymer formation. The CIDs are apparently formed between molecules within the hexameric unit common for all types of preparations and rate of formation is generally faster in glycerol-containing preparations. Compared with insulin hydrolysis reactions (see the preceding paper), HMWT is one order of magnitude slower, except for NPH preparations.
NASA Astrophysics Data System (ADS)
Mauzerall, D. L.; Sultan, B.; Kim, N.; Bradford, D.
2003-12-01
To address the problem of elevated O3 concentrations throughout the northeastern United States in summer, a NOx cap-and-trade program was implemented that reduced NOx emissions from large point sources by nearly 50%. To determine whether this program has been successful, we examine O3, NO and temperature measurements collected in the EPA-AIRS network prior to and after the cap-and-trade program went into effect in 1999. Ambient NO concentrations as measured in the EPA-AIRS network are lower in the post-cap period in all months except July. We find that the upper half of the distribution of O3 concentrations within the region is essentially unchanged (or slightly higher) in May and June, modestly reduced in July and August (except the highest concentrations which are larger in August), and significantly lower in September (ranging from 0-20 ppb lower between the mean and highest concentrations) in the 1999-2001 post-cap period relative to the 1995-1998 pre-cap period. Except for September, the frequency with which the 80ppb 8-hour NAAQS standard for O3 is exceeded has not decreased. Temperatures during the post-cap period were slightly higher in June, July and August, and slightly lower in September - likely contributing to reduced O3 levels during September in the post-cap period. To explore the possibility that trading, or selective emissions over the course of the summer, could influence regional O3 concentrations, we conduct chemical transport modeling experiments using the CAMx regional model. Even within May-September for a single year, demands for electrical power and hence NOx emissions are greater during hot than cool periods. We demonstrate that substantially more O3 is produced from identical NOx emissions from a single power plant on high temperature than on low temperature days in July 1995. Thus a lack of temporal restrictions on when in a single summer month NOx emissions may occur can result in higher O3 levels. We also demonstrate that identical NOx emissions in regions of high (low) isoprene emission result in greater (lesser) O3 production. This indicates that NOx trades from locations with low to high isoprene emissions likely result in increases in O3 production. Since the objective of reducing O3 concentrations is to reduce the impact elevated O3 has on human health and welfare, we examine the mortalities that result from the O3 produced from a fixed NOx emission in the two cases described above as well as in regions of high and low population. We estimate substantially higher mortality rates from a unit NOx emission as a result of elevated O3 concentrations for high temperature days, in regions of high isoprene emissions, and for emissions occurring upwind of large populations. We attempt to assign a monetary value to the loss of life resulting from the enhanced O3 concentrations that result from these NOx emissions. We propose, as an alternative to NOx emissions cap and trade programs, a system by which NOx emitters are charged for the marginal damage they cause as a result of the O3 produced from the NOx they emit. Rather than resulting in a reduction in total NOx emissions without necessarily reducing O3 concentrations (as a cap-and-trade program does), this alternative system provides a direct incentive to reduce NOx emissions at times and places where they cause the most harm.
Temperature dependence of the size distribution function of InAs quantum dots on GaAs(001)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arciprete, F.; Fanfoni, M.; Patella, F.
2010-04-15
We present a detailed atomic-force-microscopy study of the effect of annealing on InAs/GaAs(001) quantum dots grown by molecular-beam epitaxy. Samples were grown at a low growth rate at 500 deg. C with an InAs coverage slightly greater than critical thickness and subsequently annealed at several temperatures. We find that immediately quenched samples exhibit a bimodal size distribution with a high density of small dots (<50 nm{sup 3}) while annealing at temperatures greater than 420 deg. C leads to a unimodal size distribution. This result indicates a coarsening process governing the evolution of the island size distribution function which is limitedmore » by the attachment-detachment of the adatoms at the island boundary. At higher temperatures one cannot ascribe a single rate-determining step for coarsening because of the increased role of adatom diffusion. However, for long annealing times at 500 deg. C the island size distribution is strongly affected by In desorption.« less
Liao, Yanfen; Cao, Yawen; Chen, Tuo; Ma, Xiaoqian
2015-10-01
Bagasse is utilized as fuel in the biggest biomass power plant of China, however, alkalis in the fuel created severe agglomeration and slagging problems. Alkalis transfer characteristic, agglomeration causes in engineering practice, additive improvement effects and mechanism during bagasse combustion were investigated via experiments and simulations. Only slight agglomeration occurs in ash higher than 800°C. Serious agglomeration in practical operation should be attributed to the gaseous alkalis evaporating at high temperature and condensing on the cooler grain surfaces in CFB. It can be speculated that ash caking can be avoided with temperature lower than 750°C and heating surface corrosion caused by alkali metal vapor can be alleviated with temperature lower than 850°C. Kaolin added into the bagasse has an apparent advantage over CaO additive both in enhancing ash fusion point and relieving alkali-chloride corrosion by locking alkalis in dystectic solid compounds over the whole temperature range. Copyright © 2015 Elsevier Ltd. All rights reserved.
Patterns of coral bleaching: Modeling the adaptive bleaching hypothesis
Ware, J.R.; Fautin, D.G.; Buddemeier, R.W.
1996-01-01
Bleaching - the loss of symbiotic dinoflagellates (zooxanthellae) from animals normally possessing them - can be induced by a variety of stresses, of which temperature has received the most attention. Bleaching is generally considered detrimental, but Buddemeier and Fautin have proposed that bleaching is also adaptive, providing an opportunity for recombining hosts with alternative algal types to form symbioses that might be better adapted to altered circumstances. Our mathematical model of this "adaptive bleaching hypothesis" provides insight into how animal-algae symbioses might react under various circumstances. It emulates many aspects of the coral bleaching phenomenon including: corals bleaching in response to a temperature only slightly greater than their average local maximum temperature; background bleaching; bleaching events being followed by bleaching of lesser magnitude in the subsequent one to several years; higher thermal tolerance of corals subject to environmental variability compared with those living under more constant conditions; patchiness in bleaching; and bleaching at temperatures that had not previously resulted in bleaching. ?? 1996 Elsevier Science B.V. All rights reserved.
Adamczak, Beata; Kogut, Mateusz; Czub, Jacek
2018-04-25
Although osmolytes are known to modulate the folding equilibrium, the molecular mechanism of their effect on thermal denaturation of proteins is still poorly understood. Here, we simulated the thermal denaturation of a small model protein (Trp-cage) in the presence of denaturing (urea) and stabilizing (betaine) osmolytes, using the all-atom replica exchange molecular dynamics simulations. We found that urea destabilizes Trp-cage by enthalpically-driven association with the protein, acting synergistically with temperature to induce unfolding. In contrast, betaine is sterically excluded from the protein surface thereby exerting entropic depletion forces that contribute to the stabilization of the native state. In fact, we find that while at low temperatures betaine slightly increases the folding free energy of Trp-cage by promoting another near-native conformation, it protects the protein against temperature-induced denaturation. This, in turn, can be attributed to enhanced exclusion of betaine at higher temperatures that arises from less attractive interactions with the protein surface.
Wang, Haimiao; Chen, Yinglong; Xu, Bingjie; Hu, Wei; Snider, John L; Meng, Yali; Chen, Binglin; Wang, Youhua; Zhao, Wenqing; Wang, Shanshan; Zhou, Zhiguo
2018-02-01
Short-term waterlogging and chronic elevated temperature occur frequently in the Yangtze River Valley, yet the effects of these co-occurring environments on nitrogen metabolism of the subtending leaf (a major source leaf for boll development) have received little attention. In this study, plants were exposed to two temperature regimes (31.6/26.5 °C and 34.1/29.0 °C) and waterlogging events (0 d, 3 d, 6 d) during flowering and boll development. The results showed that the effects of waterlogging stress and elevated temperature in isolation on nitrogen metabolism were quite different. Waterlogging stress not only limited NR (EC 1.6.6.1) and GS (EC 6.3.1.2) activities through the down-regulation of GhNR and GhGS expression for amino acid synthesis, but also promoted protein degradation by enhanced protease activity and peptidase activity, leading to lower organ and total biomass (reduced by 12.01%-27.63%), whereas elevated temperature inhibited protein degradation by limited protease activity and peptidase activity, promoting plant biomass accumulation. Furthermore, 2-3 °C chronic elevated temperature alleviated the negative impacts of a brief (3 d) waterlogging stress on cotton leaves, with the expression of GhNiR up-regulated, the activities of NR, GS and GOGAT (EC 1.4.7.1) increased and the activities of protease and peptidase decreased, leading to higher protein concentration and enhanced leaf biomass for EW 3 relative to AW 3 . The results of the study suggested that exposure to slightly elevated air temperature improves the cotton plants' ability to recover from short-term (3 d) waterlogging stress by sustaining processes associated with nitrogen assimilation. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Kozlov, Mikhail; McCarthy, Thomas J
2004-10-12
The adsorption of poly(vinyl alcohol) (PVOH) from aqueous solutions to a silicon-supported fluoroalkyl monolayer is described. Thickness, wettability, and roughness of adsorbed films are studied as a function of polymer molecular weight, degree of hydrolysis (from the precursor, poly(vinyl acetate)), polymer concentration, salt type and concentration, and temperature. The data suggest a two-stage process for adsorption of the polymer: physisorption due to a hydrophobic effect (decrease in interfacial free energy) and subsequent stabilization of the adsorbed layer due to crystallization of the polymer. Adsorption of lower-molecular-weight polymers results in thicker films than those prepared with a higher molecular weight; this is ascribed to better crystallization of more mobile short chains. Higher contents of unhydrolyzed acetate groups on the poly(vinyl alcohol) chain lead to thicker adsorbed films. Residual acetate groups partition to the outermost surface of the films and determine wettability. Salts, including sodium chloride and sodium sulfate, promote adsorption, which results in thicker films; at the same time, their presence over a wide concentration range leads to formation of rough coatings. Sodium thiocyanate has little effect on PVOH adsorption, only slightly reducing the thickness in a 2 M salt solution. Increased temperature promotes adsorption in the presence of salt, but has little effect on salt-free solutions. Evidently, higher temperatures favor adsorption but cause crystallization to be less thermodynamically favorable. These competing effects result in the smoothest coatings being formed in an intermediate temperature range. Copyright 2004 American Chemical Society
Processing effects on physicochemical properties of creams formulated with modified milk fat.
Bolling, J C; Duncan, S E; Eigel, W N; Waterman, K M
2005-04-01
Type of thermal process [high temperature, short time pasteurization (HTST) or ultra-high temperature pasteurization (UHT)] and homogenization sequence (before or after pasteurization) were examined for influence on the physicochemical properties of natural cream (20% milk fat) and creams formulated with 20% low-melt, fractionated butteroil emulsified with skim milk, or buttermilk and butter-derived aqueous phase. Homogenization sequence influenced physicochemical makeup of the creams. Creams homogenized before pasteurization contained more milk fat surface material, higher phospholipid levels, and less protein at the milk fat interface than creams homogenized after pasteurization. Phosphodiesterase I activity was higher (relative to protein on lipid globule surface) when cream was homogenized before pasteurization. Creams formulated with skim milk and modified milk fat had relatively more phospholipid adsorbed at the milk fat interface. Ultra-high-temperature-pasteurized natural and reformulated creams were higher in viscosity at all shear rates investigated compared with HTST-pasteurized creams. High-temperature, short time-pasteurized natural cream was more viscous than HTST-pasteurized reformulated creams at most shear rates investigated. High-temperature, short time-pasteurized creams had better emulsion stability than UHT-pasteurized creams. Cream formulated with buttermilk had creaming stability most comparable to natural cream, and cream formulated with skim milk and modified butteroil was least stable to creaming. Most creams feathered in a pH range of 5.00 to 5.20, indicating that they were moderately stable to slightly unstable emulsions. All processing sequences yielded creams within sensory specifications with the exception of treatments homogenized before UHT pasteurization and skim milk formulations homogenized after UHT pasteurization.
Fracture Strength of Single-Crystal Silicon Carbide Microspecimens at Room and Elevated Temperature
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.; Sharpe, William N., Jr.; Beheim, Glenn M.; Evans, Laura J.; Jadaan, Osama M.
2007-01-01
Three shapes of tensile specimens were tested--curved with a very low stress concentration factor and straight with either a circular hole or an elliptical hole. The nominal thickness was 125 micron with a net section 100 micron wide; the overall length of these microspecimens was 3.1 mm. They were fabricated by an improved version of deep reactive ion etching, which produced specimens with smooth sidewalls and cross-sections having a slightly trapezoidal shape that was exaggerated inside the holes. The novel test setup used a vertical load train extending into a resistance furnace. The specimens had wedge-shaped ends which fit into ceramic grips. The fixed grip was mounted on a ceramic post, and the movable grip was connected to a load cell and actuator outside the furnace with a ceramic-encased nichrome wire. The same arrangement was used for tests at 24 and at 1000 C. The strengths of the curved specimens for two batches of material (made with slightly different processes) were 0.66+/-0.12 GPa and 0.45+/-0.20 GPa respectively at 24 C with identical values at 1000 C. The fracture strengths of the circular-hole and elliptical-hole specimens (computed from the stress concentration factors and measured loads at failure) were approximately 1.2 GPa with slight decreases at the higher temperature. Fractographic examinations showed failures initiating on the surface--primarily at corners. Weibull predictions of fracture strengths for the hole specimens based on the properties of the curved specimens were reasonably effective for the circular holes, but not for the elliptical holes.
Temperature and Precipitation trends in Kashmir valley, North Western Himalayas
NASA Astrophysics Data System (ADS)
Shafiq, Mifta Ul; Rasool, Rehana; Ahmed, Pervez; Dimri, A. P.
2018-01-01
Climate change has emerged as an important issue ever to confront mankind. This concern emerges from the fact that our day-to-day activities are leading to impacts on the Earth's atmosphere that has the potential to significantly alter the planet's shield and radiation balance. Developing countries particularly whose income is particularly derived from agricultural activities are at the forefront of bearing repercussions due to changing climate. The present study is an effort to analyze the changing trends of precipitation and temperature variables in Kashmir valley along different elevation zones in the north western part of India. As the Kashmir valley has a rich repository of glaciers with its annual share of precipitation, slight change in the temperature and precipitation regime has far reaching environmental and economic consequences. The results from Indian Meteorological Department (IMD) data of the period 1980-2014 reveals that the annual mean temperature of Kashmir valley has increased significantly. Accelerated warming has been observed during 1980-2014, with intense warming in the recent years (2001-2014). During the period 1980-2014, steeper increase, in annual mean maximum temperature than annual mean minimum temperature, has been observed. In addition, mean maximum temperature in plain regions has shown higher rate of increase when compared with mountainous areas. In case of mean minimum temperature, mountainous regions have shown higher rate of increase. Analysis of precipitation data for the same period shows a decreasing trend with mountainous regions having the highest rate of decrease which can be quite hazardous for the fragile mountain environment of the Kashmir valley housing a large number of glaciers.
NASA Astrophysics Data System (ADS)
Yang, Wei; Zhang, Guoqiang
2008-05-01
A thermal comfort field study has been carried out in five cities in the humid subtropical climate zone in China. The survey was performed in naturally ventilated and air-conditioned buildings during the summer season in 2006. There were 229 occupants from 111 buildings who participated in this study and 229 questionnaire responses were collected. Thermal acceptability assessment reveals that the indoor environment in naturally ventilated buildings could not meet the 80% acceptability criteria prescribed by ASHRAE Standard 55, and people tended to feel more comfortable in air-conditioned buildings with the air-conditioned occupants voting with higher acceptability (89%) than the naturally ventilated occupants (58%). The neutral temperatures in naturally ventilated and air-conditioned buildings were 28.3°C and 27.7°C, respectively. The range of accepted temperature in naturally ventilated buildings (25.0˜31.6°C) was wider than that in air-conditioned buildings (25.1˜30.3°C), which suggests that occupants in naturally ventilated buildings seemed to be more tolerant of higher temperatures. Preferred temperatures were 27.9°C and 27.3°C in naturally ventilated and air-conditioned buildings, respectively, both of which were 0.4°C cooler than neutral temperatures. This result suggests that people of hot climates may use words like “slightly cool” to describe their preferred thermal state. The relationship between draught sensation and indoor air velocity at different temperature ranges indicates that indoor air velocity had a significant influence over the occupants’ comfort sensation, and air velocities required by occupants increased with the increasing of operative temperatures. Thus, an effective way of natural ventilation which can create the preferred higher air movement is called for. Finally, the indoor set-point temperature of 26°C or even higher in air-conditioned buildings was confirmed as making people comfortable, which supports the regulation in China that in public and office buildings the set-point temperature of air-conditioning system should not be lower than 26°C.
NASA Astrophysics Data System (ADS)
Yadav, Ashwini Kumar; kumar, Ravi; Gupta, Akhilesh; Chatterjee, Barun; Mukhopadhyay, Deb; Lele, H. G.
2014-06-01
In a nuclear reactor temperature rises drastically in fuel channels under loss of coolant accident due to failure of primary heat transportation system. Present investigation has been carried out to capture circumferential and axial temperature gradients during fully and partially voiding conditions in a fuel channel using 19 pin fuel element simulator. A series of experiments were carried out by supplying power to outer, middle and center rods of 19 pin fuel simulator in ratio of 1.4:1.1:1. The temperature at upper periphery of pressure tube (PT) was slightly higher than at bottom due to increase in local equivalent thermal conductivity from top to bottom of PT. To simulate fully voided conditions PT was pressurized at 2.0 MPa pressure with 17.5 kW power injection. Ballooning initiated from center and then propagates towards the ends and hence axial temperature difference has been observed along the length of PT. For asymmetric heating, upper eight rods of fuel simulator were activated and temperature difference up-to 250 °C has been observed from top to bottom periphery of PT. Such situation creates steep circumferential temperature gradient over PT and could lead to breaching of PT under high pressure.
NASA Astrophysics Data System (ADS)
Li, Yi; Zhu, Youhua; Huang, Jing; Deng, Honghai; Wang, Meiyu; Yin, HaiHong
2017-02-01
The effects of temperature on the optical properties of InGaN/GaN quantum well (QW) light-emitting diodes have been investigated by using the six-by-six K-P method taking into account the temperature dependence of band gaps, lattice constants, and elastic constants. The numerical results indicate that the increase of temperature leads to the decrease of the spontaneous emission rate at the same injection current density due to the redistribution of carrier density and the increase of the non-radiative recombination rate. The product of Fermi-Dirac distribution functions of electron fc n and hole ( 1 - fv U m ) for the transitions between the three lowest conduction subbands (c1-c3) and the top six valence subbands (v1-v6) is larger at the lower temperature, which indicates that there are more electron-hole pairs distributed on the energy levels. It should be noted that the optical matrix elements of the inter-band transitions slightly increase at the higher temperature. In addition, the internal quantum efficiency of the InGaN/GaN QW structure is evidently decreased with increasing temperature.
Methods of increasing thermal efficiency of steam and gas turbine plants
NASA Astrophysics Data System (ADS)
Vasserman, A. A.; Shutenko, M. A.
2017-11-01
Three new methods of increasing efficiency of turbine power plants are described. Increasing average temperature of heat supply in steam turbine plant by mixing steam after overheaters with products of combustion of natural gas in the oxygen. Development of this idea consists in maintaining steam temperature on the major part of expansion in the turbine at level, close to initial temperature. Increasing efficiency of gas turbine plant by way of regenerative heating of the air by gas after its expansion in high pressure turbine and before expansion in the low pressure turbine. Due to this temperature of air, entering combustion chamber, is increased and average temperature of heat supply is consequently increased. At the same time average temperature of heat removal is decreased. Increasing efficiency of combined cycle power plant by avoiding of heat transfer from gas to wet steam and transferring heat from gas to water and superheated steam only. Steam will be generated by multi stage throttling of the water from supercritical pressure and temperature close to critical, to the pressure slightly higher than condensation pressure. Throttling of the water and separation of the wet steam on saturated water and steam does not require complicated technical devices.
High frequency electromagnetism, heat transfer and fluid flow coupling in ANSYS multiphysics.
Sabliov, Cristina M; Salvi, Deepti A; Boldor, Dorin
2007-01-01
The goal of this study was to numerically predict the temperature of a liquid product heated in a continuous-flow focused microwave system by coupling high frequency electromagnetism, heat transfer, and fluid flow in ANSYS Multiphysics. The developed model was used to determine the temperature change in water processed in a 915 MHz microwave unit, under steady-state conditions. The influence of the flow rates on the temperature distribution in the liquid was assessed. Results showed that the average temperature of water increased from 25 degrees C to 34 degrees C at 2 l/min, and to 42 degrees C at 1 l/min. The highest temperature regions were found in the liquid near the center of the tube, followed by progressively lower temperature regions as the radial distance from the center increased, and finally followed by a slightly higher temperature region near the tube's wall corresponding to the energy distribution given by the Mathieu function. The energy distribution resulted in a similar temperature pattern, with the highest temperatures close to the center of the tube and lower at the walls. The presented ANSYS Multiphysics model can be easily improved to account for complex boundary conditions, phase change, temperature dependent properties, and non-Newtonian flows, which makes for an objective of future studies.
Gorjanc, Jurij; Morrison, Shawnda A; McDonnell, Adam C; Mekjavic, Igor B
2018-05-24
Cold-induced vasodilatation (CIVD) is a peripheral blood flow response, observed in both the hands and feet. Exercise has been shown to enhance the response, specifically by increasing mean skin temperatures (T sk ), in part due to the increased number of CIVD waves. In contrast, hypobaric hypoxia has been suggested to impair digit skin temperature responses, particularly during subsequent hand rewarming following the cold stimulus. This study examined the combined effect of exercise and hypobaric hypoxia on the CIVD response. We compared the CIVD responses in the digits of both the hands and feet of a team of alpinists (N = 5) before and after a 35-day Himalayan expedition to Broadpeak, Pakistan (8051 m). Five elite alpinists participated in hand and foot cold water immersion tests 20 days before and immediately upon return from their expedition. The alpinists summited successfully without supplemental oxygen. Post-expedition, all alpinists demonstrated higher minimum T sk in their hands (pre: 9.9 ± 1.1, post: 10.1 ± 0.7 °C, p = 0.031). Four alpinists had either greater CIVD waves, and, consequently, higher mean T sk in their hands, or higher recovery temperatures (pre: 26.0 ± 5.5 °C post: 31.0 ± 4.1 °C, p = 0.052), or faster rewarming rate (pre: 2.6 ± 0.5 °C min -1 post: 3.1 ± 0.4 °C min -1, p = 0.052). In the feet, the responses varied: 1/5 had higher wave amplitudes and 1/5 had higher passive recovery temperatures, whereas 3/5 had lower mean toe temperatures during cold exposure. The results of the cold stress test suggest after a 35-day Himalayan expedition, alpinists experienced a slight cold adaptation of the hands, but not the feet.
NASA Astrophysics Data System (ADS)
Bee, Soo-Tueen; Sin, Lee Tin; Ratnam, C. T.; Haraveen, K. J. S.; Tee, Tiam-Ting; Rahmat, A. R.
2015-10-01
In this study, the effects of electron beam irradiation on the properties of copper(II) oxide when added to low-density polyethylene (LDPE) blends were investigated. It was found that the addition of low loading level of copper(II) oxide (⩽2 phr) to LDPE results in significantly poorer gel content and hot set results. However, the incorporation of higher loading level of copper(II) oxide (⩾3 phr) could slightly increase the degree of crosslinking in all irradiated LDPE composites. This is due to the fact that higher amounts of copper(II) oxide could slightly induce the formation of free radicals in LDPE matrix. Besides, increasing irradiation doses was also found to gradually increase the gel content of LDPE composites by generating higher amounts of free radicals. As a consequence, these higher amounts of free radicals released in the LDPE matrix could significantly increase the degree of crosslinking. The addition of copper(II) oxide could reduce the tensile strength and fracture strain (elongation at break) of LDPE composites because of poorer interfacial adhesion effect between copper(II) oxide particles and LDPE matrix. Meanwhile, increasing irradiation doses on all copper(II) oxide added LDPE composites could marginally increase the tensile strength. In addition, increasing irradiation dose could enhance the thermal stability of LDPE composites by increasing the decomposition temperature. The oxidation induction time (OIT) analysis showed that, because of the crosslinking network in the copper(II) oxide added LDPE composites, oxidation reaction is much delayed.
NASA Technical Reports Server (NTRS)
Ko, William L.
1995-01-01
Thermal buckling characteristics of hypersonic aircraft sandwich panels of various aspect ratios were investigated. The panel is fastened at its four edges to the substructures under four different edge conditions and is subjected to uniform temperature loading. Minimum potential energy theory and finite element methods were used to calculate the panel buckling temperatures. The two methods gave fairly close buckling temperatures. However, the finite element method gave slightly lower buckling temperatures than those given by the minimum potential energy theory. The reasons for this slight discrepancy in eigensolutions are discussed in detail. In addition, the effect of eigenshifting on the eigenvalue convergence rate is discussed.
NASA Astrophysics Data System (ADS)
Busuioc, Aristita; Baciu, Madalina; Breza, Traian; Dumitrescu, Alexandru; Stoica, Cerasela; Baghina, Nina
2016-04-01
Many observational, theoretical and based on climate model simulation studies suggested that warmer climates lead to more intense precipitation events, even when the total annual precipitation is slightly reduced. In this way, it was suggested that extreme precipitation events may increase at Clausius-Clapeyron (CC) rate under global warming and constraint of constant relative humidity. However, recent studies show that the relationship between extreme rainfall intensity and atmospheric temperature is much more complex than would be suggested by the CC relationship and is mainly dependent on precipitation temporal resolution, region, storm type and whether the analysis is conducted on storm events rather than fixed data. The present study presents the dependence between the very hight temporal scale extreme rainfall intensity and daily temperatures, with respect to the verification of the CC relation. To solve this objective, the analysis is conducted on rainfall event rather than fixed interval using the rainfall data based on graphic records including intensities (mm/min.) calculated over each interval with permanent intensity per minute. The annual interval with available a such data (April to October) is considered at 5 stations over the interval 1950-2007. For Bucuresti-Filaret station the analysis is extended over the longer interval (1898-2007). For each rainfall event, the maximum intensity (mm/min.) is retained and these time series are considered for the further analysis (abbreviated in the following as IMAX). The IMAX data were divided based on the daily mean temperature into bins 2oC - wide. The bins with less than 100 values were excluded. The 90th, 99th and 99.9th percentiles were computed from the binned data using the empirical distribution and their variability has been compared to the CC scaling (e.g. exponential relation given by a 7% increase per temperature degree rise). The results show a dependence close to double the CC relation for temperatures less than ~ 220C and negative scaling rates for higher temperatures. This behaviour is similar for all the 5 analysed stations over the common interval 1950-2007. This scaling is more exactly for the 90th percentile, while for the higher percentiles the rainfall intensity in response to warming exceeds sometimes the CC rate. For Bucuresti-Filaret station, the results are similar over a longer interval (1898-2007) showing that these findings are robust. Similar techniques has been previously applied to the hourly rainfall intensities recorded at 9 stations (including the 5 ones) and the results are slightly different: the 90th percentile shows dependence close to the CC relation for all temperatures; the 99th and 99.9th percentiles exhibit rates close to double the CC rate for temperatures between ~ 100C and ~ 220C and negative scaling rates for higher temperatures. In conclusion, these results show that the dependence between the extreme precipitation intensity and atmospheric temperature in Romania is mainly dependent on the temporal precipitation resolution and the degree of the extreme precipitation event (moderate or stronger); these findings are mainly in agreenment with the conclusions presented by previous international studies (mentioned above), with some regional specific features, showing the importance of the regional studies. The results presented is this study were funded by the Executive Agency for Higher Education, Research, Development and Innovation Funding (UEFISCDI) through the research project CLIMHYDEX, "Changes in climate extremes and associated impact in hydrological events in Romania", code PNII-ID-2011-2-0073 (http://climhydex.meteoromania.ro).
Brügemann, K; Gernand, E; von Borstel, U U; König, S
2011-08-01
Data used in the present study included 1,095,980 first-lactation test-day records for protein yield of 154,880 Holstein cows housed on 196 large-scale dairy farms in Germany. Data were recorded between 2002 and 2009 and merged with meteorological data from public weather stations. The maximum distance between each farm and its corresponding weather station was 50 km. Hourly temperature-humidity indexes (THI) were calculated using the mean of hourly measurements of dry bulb temperature and relative humidity. On the phenotypic scale, an increase in THI was generally associated with a decrease in daily protein yield. For genetic analyses, a random regression model was applied using time-dependent (d in milk, DIM) and THI-dependent covariates. Additive genetic and permanent environmental effects were fitted with this random regression model and Legendre polynomials of order 3 for DIM and THI. In addition, the fixed curve was modeled with Legendre polynomials of order 3. Heterogeneous residuals were fitted by dividing DIM into 5 classes, and by dividing THI into 4 classes, resulting in 20 different classes. Additive genetic variances for daily protein yield decreased with increasing degrees of heat stress and were lowest at the beginning of lactation and at extreme THI. Due to higher additive genetic variances, slightly higher permanent environment variances, and similar residual variances, heritabilities were highest for low THI in combination with DIM at the end of lactation. Genetic correlations among individual values for THI were generally >0.90. These trends from the complex random regression model were verified by applying relatively simple bivariate animal models for protein yield measured in 2 THI environments; that is, defining a THI value of 60 as a threshold. These high correlations indicate the absence of any substantial genotype × environment interaction for protein yield. However, heritabilities and additive genetic variances from the random regression model tended to be slightly higher in the THI range corresponding to cows' comfort zone. Selecting such superior environments for progeny testing can contribute to an accurate genetic differentiation among selection candidates. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yrjas, P.; Hupa, M.
1997-12-31
In the literature it has been reported that sulfur capture with limestone (CaCO{sub 3}) under atmospheric fluidized bed combustion conditions reaches a maximum at about 850 C. Previously, the maximum has been attributed to the sintering of the sorbent particles which decreases the reactive surface area. Lately, also another explanation has been reported. In this case the sulfur capture decrease at higher temperatures was concluded to be due to fluctuating oxidizing/reducing conditions in the atmospheric combustor. In this paper the influence of alternating oxidizing/reducing conditions on SO{sub 2} capture at atmospheric and elevated pressure (15 bar) is reported. In themore » pressurized case, the CO{sub 2} partial pressure was kept high enough to prevent CaCO{sub 3} from calcining and therefore the CaSO{sub 4} would not form CaO but CaCO{sub 3} from calcining and therefore the CaSO{sub 4} would not form CaO but CaCO{sub 3} under reducing conditions. The experiments were done with a pressurized TGA by periodically changing the gas environment between oxidizing (O{sub 2}, SO{sub 2}, CO{sub 2} and N{sub 2}) and slightly reducing (CO, SO{sub 2}, CO{sub 2} and N{sub 2}) gas mixtures at different temperatures. The results showed that under normal pressure and slightly reducing conditions CaO formation from CaSO{sub 4} increased with temperature as expected. However, no significant amounts of CaCO{sub 3} were formed from CaSO{sub 4} at elevated pressure. It was also concluded that since the formation of CaO from CaSO{sub 4} was relatively slow it could not explain the sharp sulfur capture maximum at about 850 C. Therefore, it was assumed that the strongly reducing zones, where CaS thermodynamically is the stable compound, may play a more important role than the slightly reducing zones, concerning the sulfur capture in fluidized bed combustors.« less
Temporal trends in United States dew point temperatures
NASA Astrophysics Data System (ADS)
Robinson, Peter J.
2000-07-01
In this study, hourly data for the 1951-1990 period for 178 stations in the coterminous United States were used to establish temporal trends in dew point temperature. Although the data had been quality controlled previously (Robinson, 1998. Monthly variations of dew point temperatures in the coterminous United States. International Journal of Climatology 18: 1539-1556), comparisons of values between nearby stations suggested that instrumental changes, combined with locational changes, may have modified the results by as much as 1°C during the 40-year period. Nevertheless, seasonally averaged results indicated an increase over much of the area, of slightly over 1°C/100 years in spring and autumn, slightly less than this in summer. Winter displayed a drying of over 1°C/100 years. When only the 1961-1990 period was considered, the patterns were similar and trends increased by approximately 1-2°C/100 years, except in autumn, which displayed a slight drying. Analyses for specific stations indicated periods of both increasing and decreasing Td, the change between them varying with observation hour. No single change point was common over a wide area, although January commonly indicated maximum values early in the period in the east and west, and much later in the north-central portion. Rates of increase were generally higher in daytime than at night, especially in summer. Investigation of the inter-decadal differences in dew point, as a function of wind conditions, indicated that changes during calm conditions were commonly similar in magnitude to that of the overall average changes, suggesting an important role for the local hydrologic cycle in driving changes. Other inter-decadal changes could be attributed to the changes in the frequency and moisture content of invading air-streams. This was particularly clear for the changes in north-south flow in the interior.
Climate change impacts on Swiss groundwater: insights from historical records
NASA Astrophysics Data System (ADS)
Figura, S.; Livingstone, D. M.; Kipfer, R.
2012-04-01
Knowledge of the impact of climate change on groundwater is limited mainly by a lack of relevant long-term data that would allow the effects of climatic forcing to be assessed empirically. With the aim of assessing the consequences of climate change on groundwater, we collected and statistically analysed historical groundwater data from Switzerland. While most existing studies have focused on the impact of climate change on groundwater quantity, we focus on groundwater quality. As measures of groundwater quality we chose groundwater temperature and oxygen concentration because of their importance for biogeochemical processes and for reasons of data availability. Our analyses show that in aquifers that are recharged by riverbank infiltration, groundwater temperature has increased by 1°C - 1.5°C over the last 30 years. By contrast, in aquifers that are recharged only by the percolation of precipitation, increases in groundwater temperature are slight or non-existent. A detailed analysis of groundwater temperatures measured in the pumping wells of five aquifers that are recharged by riverbank infiltration revealed that an abrupt temperature increase in the late 1980s, which was also detected in Swiss air temperature and river water temperatures and which is traceable ultimately to a change in the behaviour of the Arctic Oscillation, accounted for a large proportion of the total groundwater warming [1]. Oxygen concentrations were available for four of the five aquifers we investigated. In two of these aquifers the oxygen concentration underwent a strong decrease, in the third a slight decrease, and in the fourth a slight increase. Neither long-term trends in river water oxygen concentration nor altered hydraulic conditions seem to be responsible for the long-term trends in groundwater oxygen concentrations. However, the decreasing oxygen concentrations were accompanied by decreasing DOC concentrations in the groundwater, while DOC concentrations in the river water increased over the same period. We therefore suggest that higher temperatures are resulting in enhanced microbiological activity in the hyporheic zone, resulting in increased oxygen consumption and decreasing groundwater oxygen concentrations. Based on our analyses of the available long-term Swiss data, we postulate that in aquifers that are recharged by riverbank infiltration, the frequency of occurrence of anoxic conditions will increase in future if temperatures continue to increase, assuming the nutrient load in river water remains constant. Groundwater anoxia may pose a challenge to the water supply infrastructure because of the dissolution of iron and manganese oxides, which, after re-oxidation, precipitate and cause clogging of the pumping wells. [1] Figura, S. et al. (2011), Geophys. Res. Lett., 38(23), L23401, DOI: 10.1029/2011GL049749.
Ground-based thermal imaging of stream surface temperatures: Technique and evaluation
Bonar, Scott A.; Petre, Sally J.
2015-01-01
We evaluated a ground-based handheld thermal imaging system for measuring water temperatures using data from eight southwestern USA streams and rivers. We found handheld thermal imagers could provide considerably more spatial information on water temperature (for our unit one image = 19,600 individual temperature measurements) than traditional methods could supply without a prohibitive amount of effort. Furthermore, they could provide measurements of stream surface temperature almost instantaneously compared with most traditional handheld thermometers (e.g., >20 s/reading). Spatial temperature analysis is important for measurement of subtle temperature differences across waterways, and identification of warm and cold groundwater inputs. Handheld thermal imaging is less expensive and equipment intensive than airborne thermal imaging methods and is useful under riparian canopies. Disadvantages of handheld thermal imagers include their current higher expense than thermometers, their susceptibility to interference when used incorrectly, and their slightly lower accuracy than traditional temperature measurement methods. Thermal imagers can only measure surface temperature, but this usually corresponds to subsurface temperatures in well-mixed streams and rivers. Using thermal imaging in select applications, such as where spatial investigations of water temperature are needed, or in conjunction with stationary temperature data loggers or handheld electronic or liquid-in-glass thermometers to characterize stream temperatures by both time and space, could provide valuable information on stream temperature dynamics. These tools will become increasingly important to fisheries biologists as costs continue to decline.
Neutronic analysis of candidate accident-tolerant cladding concepts in pressurized water reactors
George, Nathan Michael; Terrani, Kurt A.; Powers, Jeffrey J.; ...
2014-09-29
A study analyzed the neutronics of alternate cladding materials in a pressurized water reactor (PWR) environment. Austenitic type 310 (310SS) and 304 stainless steels, ferritic Fe-20Cr-5Al (FeCrAl) and APMT™ alloys, and silicon carbide (SiC)-based materials were considered and compared with Zircaloy-4. SCALE 6.1 was used to analyze the associated neutronics penalty/advantage, changes in reactivity coefficients, and spectral variations once a transition in the cladding was made. In the cases examined, materials containing higher absorbing isotopes invoked a reduction in reactivity due to an increase in neutron absorption in the cladding. Higher absorbing materials produced a harder neutron spectrum in themore » fuel pellet, leading to a slight increase in plutonium production. A parametric study determined the geometric conditions required to match cycle length requirements for each alternate cladding material in a PWR. A method for estimating the end of cycle reactivity was implemented to compare each model to that of standard Zircaloy-4 cladding. By using a thinner cladding of 350 μm and keeping a constant outer diameter, austenitic stainless steels require an increase of no more than 0.5 wt% enriched 235U to match fuel cycle requirements, while the required increase for FeCrAl was about 0.1%. When modeling SiC (with slightly lower thermal absorption properties than that of Zircaloy), a standard cladding thickness could be implemented with marginally less enriched uranium (~0.1%). Moderator temperature and void coefficients were calculated throughout the depletion cycle. Nearly identical reactivity responses were found when coolant temperature and void properties were perturbed for each cladding material. By splitting the pellet into 10 equal areal sections, relative fission power as a function of radius was found to be similar for each cladding material. FeCrAl and 310SS cladding have a slightly higher fission power near the pellet’s periphery due to the harder neutron spectrum in the system, causing more 239Pu breeding. An economic assessment calculated the change in fuel pellet production costs for use of each cladding. Furthermore, implementing FeCrAl alloys would increase fuel pellet production costs about 15% because of increased 235U enrichment and the additional UO 2 pellet volume enabled by using thinner cladding.« less
Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs
Edmondson, J. L.; Stott, I.; Davies, Z. G.; Gaston, K. J.; Leake, J. R.
2016-01-01
Urban areas are major contributors to air pollution and climate change, causing impacts on human health that are amplified by the microclimatological effects of buildings and grey infrastructure through the urban heat island (UHI) effect. Urban greenspaces may be important in reducing surface temperature extremes, but their effects have not been investigated at a city-wide scale. Across a mid-sized UK city we buried temperature loggers at the surface of greenspace soils at 100 sites, stratified by proximity to city centre, vegetation cover and land-use. Mean daily soil surface temperature over 11 months increased by 0.6 °C over the 5 km from the city outskirts to the centre. Trees and shrubs in non-domestic greenspace reduced mean maximum daily soil surface temperatures in the summer by 5.7 °C compared to herbaceous vegetation, but tended to maintain slightly higher temperatures in winter. Trees in domestic gardens, which tend to be smaller, were less effective at reducing summer soil surface temperatures. Our findings reveal that the UHI effects soil temperatures at a city-wide scale, and that in their moderating urban soil surface temperature extremes, trees and shrubs may help to reduce the adverse impacts of urbanization on microclimate, soil processes and human health. PMID:27641002
Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs.
Edmondson, J L; Stott, I; Davies, Z G; Gaston, K J; Leake, J R
2016-09-19
Urban areas are major contributors to air pollution and climate change, causing impacts on human health that are amplified by the microclimatological effects of buildings and grey infrastructure through the urban heat island (UHI) effect. Urban greenspaces may be important in reducing surface temperature extremes, but their effects have not been investigated at a city-wide scale. Across a mid-sized UK city we buried temperature loggers at the surface of greenspace soils at 100 sites, stratified by proximity to city centre, vegetation cover and land-use. Mean daily soil surface temperature over 11 months increased by 0.6 °C over the 5 km from the city outskirts to the centre. Trees and shrubs in non-domestic greenspace reduced mean maximum daily soil surface temperatures in the summer by 5.7 °C compared to herbaceous vegetation, but tended to maintain slightly higher temperatures in winter. Trees in domestic gardens, which tend to be smaller, were less effective at reducing summer soil surface temperatures. Our findings reveal that the UHI effects soil temperatures at a city-wide scale, and that in their moderating urban soil surface temperature extremes, trees and shrubs may help to reduce the adverse impacts of urbanization on microclimate, soil processes and human health.
Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs
NASA Astrophysics Data System (ADS)
Edmondson, J. L.; Stott, I.; Davies, Z. G.; Gaston, K. J.; Leake, J. R.
2016-09-01
Urban areas are major contributors to air pollution and climate change, causing impacts on human health that are amplified by the microclimatological effects of buildings and grey infrastructure through the urban heat island (UHI) effect. Urban greenspaces may be important in reducing surface temperature extremes, but their effects have not been investigated at a city-wide scale. Across a mid-sized UK city we buried temperature loggers at the surface of greenspace soils at 100 sites, stratified by proximity to city centre, vegetation cover and land-use. Mean daily soil surface temperature over 11 months increased by 0.6 °C over the 5 km from the city outskirts to the centre. Trees and shrubs in non-domestic greenspace reduced mean maximum daily soil surface temperatures in the summer by 5.7 °C compared to herbaceous vegetation, but tended to maintain slightly higher temperatures in winter. Trees in domestic gardens, which tend to be smaller, were less effective at reducing summer soil surface temperatures. Our findings reveal that the UHI effects soil temperatures at a city-wide scale, and that in their moderating urban soil surface temperature extremes, trees and shrubs may help to reduce the adverse impacts of urbanization on microclimate, soil processes and human health.
Temperature rise in ion-leachable cements during setting reaction.
Kanchanavasita, W; Pearson, G J; Anstice, H M
1995-11-01
Resin-modified ion-leachable cements have been developed for use as aesthetic restorative materials. Their apparent improved physical and handling properties can make them more attractive for use than conventional glass-ionomers. However, they contain monomers which are known to contract on polymerization and produce a polymerization exotherm. This study evaluated the temperature rise during setting and the rate of dimensional change of several ion-leachable materials. The resin-modified ion-leachable cements demonstrated greater temperature rises and higher rates of contraction than conventional materials. Generally, the behaviour of these resin-modified materials was similar to that of composite resins. However, some resin-modified cements produced a temperature rise of up to 20 degrees C during polymerization which was greater than that of the composite resin. This temperature rise must be taken into account when using the materials in direct contact with dentine in deep cavities without pulp protection. Longer irradiation time than the recommended 20 s did not significantly increase the maximum temperature rise but slightly extended the time before the temperature started to decline. The temperature of the environment had a significant effect on the rate of dimensional change in some materials. The rate of polymerization contraction of light-activated cements was directly related to the observed temperature rise.
Nakamura, Tatsuya; Matsumoto, Masakazu; Yagasaki, Takuma; Tanaka, Hideki
2016-03-03
We investigate why no hydrogen-disordered form of ice II has been found in nature despite the fact that most of hydrogen-ordered ices have hydrogen-disordered counterparts. The thermodynamic stability of a set of hydrogen-ordered ice II variants relative to ice II is evaluated theoretically. It is found that ice II is more stable than the disordered variants so generated as to satisfy the simple ice rule due to the lower zero-point energy as well as the pair interaction energy. The residual entropy of the disordered ice II phase gradually compensates the unfavorable free energy with increasing temperature. The crossover, however, occurs at a high temperature well above the melting point of ice III. Consequently, the hydrogen-disordered phase does not exist in nature. The thermodynamic stability of partially hydrogen-disordered ices is also scrutinized by examining the free-energy components of several variants obtained by systematic inversion of OH directions in ice II. The potential energy of one variant is lower than that of the ice II structure, but its Gibbs free energy is slightly higher than that of ice II due to the zero-point energy. The slight difference in the thermodynamic stability leaves the possibility of the partial hydrogen-disorder in real ice II.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jianping Jing; Zhengqi Li; Guangkui Liu
Measurements were performed on a 200 MWe, wall-fired, lignite utility boiler. For different overfire air (OFA) damper openings, the gas temperature, gas species concentration, coal burnout, release rates of components (C, H, and N), furnace temperature, and heat flux and boiler efficiency were measured. Cold air experiments for a single burner were conducted in the laboratory. The double-swirl flow pulverized-coal burner has two ring recirculation zones starting in the secondary air region in the burner. As the secondary air flow increases, the axial velocity of air flow increases, the maxima of radial velocity, tangential velocity and turbulence intensity all increase,more » and the swirl intensity of air flow and the size of recirculation zones increase slightly. In the central region of the burner, as the OFA damper opening widens, the gas temperature and CO concentration increase, while the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and coal particles ignite earlier. In the secondary air region of the burner, the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and the gas temperature and CO concentration vary slightly. In the sidewall region, the gas temperature, O{sub 2} concentration, and NOx concentration decrease, while the CO concentration increases and the gas temperature varies slightly. The furnace temperature and heat flux in the main burning region decrease appreciably, but increase slightly in the burnout region. The NOx emission decreases from 1203.6 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 0% to 511.7 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 80% and the boiler efficiency decreases from 92.59 to 91.9%. 15 refs., 17 figs., 3 tabs.« less
Tasei, Yugo; Yamakami, Takuya; Kawamura, Izuru; Fujito, Teruaki; Ushida, Kiminori; Sato, Motoyasu; Naito, Akira
2015-05-01
Microwave heating is widely used to accelerate organic reactions and enhance the activity of enzymes. However, the detailed molecular mechanism for the effect of microwave on chemical reactions is not yet fully understood. To investigate the effects of microwave heating on organic compounds, we have developed an in situ microwave irradiation NMR spectroscopy. (1)H NMR spectra of 1-(4'-cyanophenyl)-4-propylcyclohexane (PCH3) in the liquid crystalline and isotropic phases were observed under microwave irradiation. When the temperature was regulated at slightly higher than the phase transition temperature (Tc=45 °C) under a gas flow temperature control system, liquid crystalline phase mostly changed to the isotropic phase. Under microwave irradiation and with the gas flow temperature maintained at 20 °C, which is 25 °C below the Tc, the isotropic phase appeared stationary as an approximately 2% fraction in the liquid crystalline phase. The temperature of the liquid crystalline state was estimated to be 38 °C according to the line width, which is at least 7 °C lower than the Tc. The temperature of this isotropic phase should be higher than 45 °C, which is considered to be a non-equilibrium local heating state induced by microwave irradiation. Microwaves at a power of 195 W were irradiated to the isotropic phase of PCH3 at 50 °C and after 2 min, the temperature reached 220 °C. The temperature of PCH3 under microwave irradiation was estimated by measurement of the chemical shift changes of individual protons in the molecule. These results demonstrate that microwave heating generates very high temperature within a short time using an in situ microwave irradiation NMR spectrometer. Copyright © 2015 Elsevier Inc. All rights reserved.
Pagter, Majken; Andersen, Uffe Brandt; Andersen, Lillie
2015-03-23
Global climate models predict an increase in the mean surface air temperature, with a disproportionate increase during winter. Since temperature is a major driver of phenological events in temperate woody perennials, warming is likely to induce changes in a range of these events. We investigated the impact of slightly elevated temperatures (+0.76 °C in the air, +1.35 °C in the soil) during the non-growing season (October-April) on freezing tolerance, carbohydrate metabolism, dormancy release, spring phenology and reproductive output in two blackcurrant (Ribes nigrum) cultivars to understand how winter warming modifies phenological traits in a woody perennial known to have a large chilling requirement and to be sensitive to spring frost. Warming delayed dormancy release more in the cultivar 'Narve Viking' than in the cultivar 'Titania', but advanced budburst and flowering predominantly in 'Titania'. Since 'Narve Viking' has a higher chilling requirement than 'Titania', this indicates that, in high-chilling-requiring genotypes, dormancy responses may temper the effect of warming on spring phenology. Winter warming significantly reduced fruit yield the following summer in both cultivars, corroborating the hypothesis that a decline in winter chill may decrease reproductive effort in blackcurrant. Elevated winter temperatures tended to decrease stem freezing tolerance during cold acclimation and deacclimation, but it did not increase the risk of freeze-induced damage mid-winter. Plants at elevated temperature showed decreased levels of sucrose in stems of both cultivars and flower buds of 'Narve Viking', which, in buds, was associated with increased concentrations of glucose and fructose. Hence, winter warming influences carbohydrate metabolism, but it remains to be elucidated whether decreased sucrose levels account for any changes in freezing tolerance. Our results demonstrate that even a slight increase in winter temperature may alter phenological traits in blackcurrant, but to various extents depending on genotype-specific differences in chilling requirement. Published by Oxford University Press on behalf of the Annals of Botany Company.
Pagter, Majken; Andersen, Uffe Brandt; Andersen, Lillie
2015-01-01
Global climate models predict an increase in the mean surface air temperature, with a disproportionate increase during winter. Since temperature is a major driver of phenological events in temperate woody perennials, warming is likely to induce changes in a range of these events. We investigated the impact of slightly elevated temperatures (+0.76 °C in the air, +1.35 °C in the soil) during the non-growing season (October–April) on freezing tolerance, carbohydrate metabolism, dormancy release, spring phenology and reproductive output in two blackcurrant (Ribes nigrum) cultivars to understand how winter warming modifies phenological traits in a woody perennial known to have a large chilling requirement and to be sensitive to spring frost. Warming delayed dormancy release more in the cultivar ‘Narve Viking’ than in the cultivar ‘Titania’, but advanced budburst and flowering predominantly in ‘Titania’. Since ‘Narve Viking’ has a higher chilling requirement than ‘Titania’, this indicates that, in high-chilling-requiring genotypes, dormancy responses may temper the effect of warming on spring phenology. Winter warming significantly reduced fruit yield the following summer in both cultivars, corroborating the hypothesis that a decline in winter chill may decrease reproductive effort in blackcurrant. Elevated winter temperatures tended to decrease stem freezing tolerance during cold acclimation and deacclimation, but it did not increase the risk of freeze-induced damage mid-winter. Plants at elevated temperature showed decreased levels of sucrose in stems of both cultivars and flower buds of ‘Narve Viking’, which, in buds, was associated with increased concentrations of glucose and fructose. Hence, winter warming influences carbohydrate metabolism, but it remains to be elucidated whether decreased sucrose levels account for any changes in freezing tolerance. Our results demonstrate that even a slight increase in winter temperature may alter phenological traits in blackcurrant, but to various extents depending on genotype-specific differences in chilling requirement. PMID:25802249
40 CFR 60.386 - Test methods and procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... The sample volume for each run shall be at least 1.70 dscm (60 dscf). The sampling probe and filter... probe and filter temperature slightly above the effluent temperature (up to a maximum filter temperature...
40 CFR 60.386 - Test methods and procedures.
Code of Federal Regulations, 2014 CFR
2014-07-01
.... The sample volume for each run shall be at least 1.70 dscm (60 dscf). The sampling probe and filter... probe and filter temperature slightly above the effluent temperature (up to a maximum filter temperature...
40 CFR 60.386 - Test methods and procedures.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... The sample volume for each run shall be at least 1.70 dscm (60 dscf). The sampling probe and filter... probe and filter temperature slightly above the effluent temperature (up to a maximum filter temperature...
40 CFR 60.386 - Test methods and procedures.
Code of Federal Regulations, 2011 CFR
2011-07-01
.... The sample volume for each run shall be at least 1.70 dscm (60 dscf). The sampling probe and filter... probe and filter temperature slightly above the effluent temperature (up to a maximum filter temperature...
Zhang, Qing; Wu, Baiyila; Nishino, Naoki; Wang, Xianguo; Yu, Zhu
2016-03-01
To study the microbial population and fermentation dynamics of large needlegrass (LN) and Chinese leymus (CL) during ensiling and subsequent exposure to air, silages were sampled and analyzed using culture-based techniques and denaturing gradient gel electrophoresis (DGGE). A total of 112 lactic acid bacteria (LAB) strains were isolated and identified using the 16S rRNA sequencing method. Lactic acid was not detected in the first 20 days in LN silage and the pH decreased to 6.13 after 45 days of ensiling. The temperature of the LN silage increased after approximately 30 h of air exposure and the CL silage showed a slight temperature variation. Enterococcus spp. were mainly present in LN silage. The proportion of Lactobacillus brevis in CL silage increased after exposure to air. LN silage with a higher proportion of Enterococcus spp. and propionic acid concentration did not show higher fermentation quality or aerobic stability than CL silage, which had a higher concentration of acetic acid, butyric acid and increased proportion of L. brevis after exposure to air. © 2015 Japanese Society of Animal Science.
Development of a Thin Film Primary Surface Heat Exchanger for Advanced Power Cycles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allison, Tim; Beck, Griffin; Bennett, Jeffrey
This project objective is to develop a high-temperature design upgrade for an existing primary surface heat exchanger so that the redesigned hardware is capable of operation in CO 2 at temperatures up to 1,510°F (821°C) and pressure differentials up to 130 psi (9 bar). The heat exchanger is proposed for use as a recuperator in an advanced low-pressure oxy-fuel Brayton cycle that is predicted to achieve over 50% thermodynamic efficiency, although the heat exchanger could also be used in other high-temperature, low-differential pressure cycles. This report describes the progress to date, which includes continuing work performed to select and testmore » new candidate materials for the recuperator redesign, final mechanical and thermal performance analysis results of various redesign concepts, and the preliminary design of a test loop for the redesigned recuperator including a budgetary estimate for detailed test loop design, procurement, and test operation. A materials search was performed in order to investigate high-temperature properties of many candidate materials, including high-temperature strength and nickel content. These properties were used to rank the candidate materials, resulting in a reduced list of nine materials for corrosion testing. Multiple test rigs were considered and analyzed for short-term corrosion testing and Thermal Gravimetric Analysis (TGA) was selected as the most cost-effective option for evaluating corrosion resistance of the candidate materials. In addition, tantalum, niobium, and chromium coatings were identified as potential options for increased corrosion resistance. The test results show that many materials exhibit relatively low weight gain rates, and that niobium and tantalum coatings may improve corrosion resistance for many materials, while chromium coatings appear to oxidize and debond quickly. Metallurgical analysis of alloys was also performed, showing evidence of intergranular attack in 282 that may cause long-term reliability problems in CO 2 service at these temperatures. However, long-term testing in a flowing environment is recommended in order to understand accurately the severity of the attack. Detailed economic modeling of the existing air cycle recuperator and CO 2 cycle recuperator options was also completed, including costs for material, fabrication, fuel, maintenance, and operation. The analysis results show that the increased capital cost for high-temperature materials may be offset by higher cycle efficiencies, decreasing the overall lifetime cost of the system. The economic analysis also examines costs associated with increased pressure drop and material changes for two redesign options. These results show that, even with slightly reduced performance and/or higher material costs, the lifetime cost per energy production may still be reduced by over 12%. The existing recuperator design information was provided by Solar Turbines, Inc. via several models, drawings, and design handoff meetings. Multiple fluid/thermal and structural models were created in order to analyze critical recuperator performance and mechanical strength in critical areas throughout the redesign process. These models were analyzed for a baseline condition (consistent with current Mercury 50 operation) for validation purposes. Results are presented for heat transfer coefficients and pressure drops, matching well with the existing operational data. Simulation of higher-temperature CO 2 conditions was also performed, showing a slight expected increase in both heat transfer and pressure drop. Mechanical analysis results for critical areas on the cross-flow and counter-flow sheets have also been obtained for air and CO 2 cases. These results show similar stresses in both cases but significantly reduced safety factors for the CO 2 case due to reduced yield and creep rupture strengths of alloy 625 at the higher temperatures. A concept brainstorm session and initial down-selection were completed in order to identify promising redesign options for further analysis. Detailed analysis of all promising redesign options was performed via finite element and computational fluid dynamic simulations in order to characterize mechanical and thermal-fluid performance of each option. These options included material change, various sheet thickness configurations, pitch and phasing of cross-flow and counter-flow sheets, and separator sheets. The analysis results have identified two viable redesign options that maintain existing safety margins optimally through a material change to Haynes 282 and (A) sheet thickness increases of 40% on the counter-flow sheet and 75% on the hot side cross-flow corrugation sheet or (B) addition of a separator sheet in the counter-flow section while maintaining the original counter-flow sheet thickness and increasing the cross-flow corrugation sheet thickness by 90% to account for the increase in cell height. While both options satisfy mechanical stress constraints, the separator sheet design has a higher part count, slightly reduced heat transfer, and slightly higher pressure drop than the first option and is not preferred. Finally, several test loop concepts have been developed for different full-scale and reduced-scale recuperator testing options. For each option, various loop components, such as heat exchangers, valves, heaters, and compressors, were evaluated in an effort to maximize utilization of existing resources. All concepts utilize an existing 3-MW CO 2 compressor, heater, and loop coolers, but the concepts vary by incorporating different amounts of new equipment for achieving various flow rates (all concepts operate at design pressure and temperature). The third concept achieves a 1 kg/s test without purchasing any costly equipment (coolers, heaters, blowers, etc.). Since the stacked cell design of the recuperator results in the same flow conditions at each core cell (even for a reduced-scale test). Thus, test loop Concept #3 was selected for the preliminary design. This loop design is detailed within the report, culminating in a budgetary estimate of $1,013,000.00 for the detailed design, construction, commissioning, and operation of a high-temperature recuperator test loop.« less
NASA Technical Reports Server (NTRS)
Perovich, D.; Gerland, S.; Hendricks, S.; Meier, Walter N.; Nicolaus, M.; Richter-Menge, J.; Tschudi, M.
2013-01-01
During 2013, Arctic sea ice extent remained well below normal, but the September 2013 minimum extent was substantially higher than the record-breaking minimum in 2012. Nonetheless, the minimum was still much lower than normal and the long-term trend Arctic September extent is -13.7 per decade relative to the 1981-2010 average. The less extreme conditions this year compared to 2012 were due to cooler temperatures and wind patterns that favored retention of ice through the summer. Sea ice thickness and volume remained near record-low levels, though indications are of slightly thicker ice compared to the record low of 2012.
Pb solubility of the high-temperature superconducting phase Bi2Sr2Ca2Cu3O(10+d)
NASA Technical Reports Server (NTRS)
Kaesche, Stefanie; Majewski, Peter; Aldinger, Fritz
1995-01-01
For the nominal composition of Bi(2.27-x)Pb(x)Sr2 Ca2 Cu3 O(10+d) lead content was varied from x = 0.05 to 0.45. The compositions were examined between 830 and 890 C which is supposed to be the temperature range over which the so-called 2223 phase (Bi2Sr2Ca2Cu3O(10+d)) is stable. Only compositions between x = 0.18 to 0.36 could be synthesized in a single phase state. For x is greater than 0.36 a lead containing phase with a stoichiometry of Pb4(Sr,Ca)5CuO(d) is formed, for x is less than 0.18 mainly Bi2Sr2CaCu2O(10+d) and cuprates are the equilibrium phases. The temperature range for the 2223 phase was found to be 830 to 890 C but the 2223 phase has extremely varying cation ratios over this temperature range. Former single phase 2223 samples turn to multi phase samples when annealed at slightly higher or lower temperatures. A decrease in the Pb solubility with increasing temperature was found for the 2223 phase.
Arzbacher, Stefan; Petrasch, Jörg; Ostermann, Alexander; Loerting, Thomas
2016-01-01
Clathrate hydrates are inclusion compounds in which guest molecules are trapped in a host lattice formed by water molecules. They are considered an interesting option for future energy supply and storage technologies. In the current paper, time lapse 3D micro computed tomographic (µCT) imaging with ice and tetrahydrofuran (THF) clathrate hydrate particles is carried out in conjunction with an accurate temperature control and pressure monitoring. µCT imaging reveals similar behavior of the ice and the THF clathrate hydrate at low temperatures while at higher temperatures (3 K below the melting point), significant differences can be observed. Strong indications for micropores are found in the ice as well as the THF clathrate hydrate. They are stable in the ice while unstable in the clathrate hydrate at temperatures slightly below the melting point. Significant transformations in surface and bulk structure can be observed within the full temperature range investigated in both the ice and the THF clathrate hydrate. Additionally, our results point towards an uptake of molecular nitrogen in the THF clathrate hydrate at ambient pressures and temperatures from 230 K to 271 K. PMID:28773789
VAB Temperature and Humidity Study
NASA Technical Reports Server (NTRS)
Lane, John E.; Youngquist, Robert C.; Muktarian, Edward; Nurge, Mark A.
2014-01-01
In 2012, 17 data loggers were placed in the VAB to measure temperature and humidity at 10-minute intervals over a one-year period. In 2013, the data loggers were replaced with an upgraded model and slight adjustments to their locations were made to reduce direct solar heating effects. The data acquired by the data loggers was compared to temperature data provided by three wind towers located around the building. It was found that the VAB acts as a large thermal filter, delaying and reducing the thermal oscillations occurring outside of the building. This filtering is typically more pronounced at higher locations in the building, probably because these locations have less thermal connection with the outside. We surmise that the lower elevations respond more to outside temperature variations because of air flow through the doors. Temperatures inside the VAB rarely exceed outdoor temperatures, only doing so when measurements are made directly on a surface with connection to the outside (such as a door or wall) or when solar radiation falls directly on the sensor. A thermal model is presented to yield approximate filter response times for various locations in the building. Appendix A contains historical thermal and humidity data from 1994 to 2009.
Temperature in lowland Danish streams: contemporary patterns, empirical models and future scenarios
NASA Astrophysics Data System (ADS)
Lagergaard Pedersen, Niels; Sand-Jensen, Kaj
2007-01-01
Continuous temperature measurements at 11 stream sites in small lowland streams of North Zealand, Denmark over a year showed much higher summer temperatures and lower winter temperatures along the course of the stream with artificial lakes than in the stream without lakes. The influence of lakes was even more prominent in the comparisons of colder lake inlets and warmer outlets and led to the decline of cold-water and oxygen-demanding brown trout. Seasonal and daily temperature variations were, as anticipated, dampened by forest cover, groundwater input, input from sewage plants and high downstream discharges. Seasonal variations in daily water temperature could be predicted with high accuracy at all sites by a linear air-water regression model (r2: 0.903-0.947). The predictions improved in all instances (r2: 0.927-0.964) by a non-linear logistic regression according to which water temperatures do not fall below freezing and they increase less steeply than air temperatures at high temperatures because of enhanced heat loss from the stream by evaporation and back radiation. The predictions improved slightly (r2: 0.933-0.969) by a multiple regression model which, in addition to air temperature as the main predictor, included solar radiation at un-shaded sites, relative humidity, precipitation and discharge. Application of the non-linear logistic model for a warming scenario of 4-5 °C higher air temperatures in Denmark in 2070-2100 yielded predictions of temperatures rising 1.6-3.0 °C during winter and summer and 4.4-6.0 °C during spring in un-shaded streams with low groundwater input. Groundwater-fed springs are expected to follow the increase of mean air temperatures for the region. Great caution should be exercised in these temperature projections because global and regional climate scenarios remain open to discussion. Copyright
NASA Astrophysics Data System (ADS)
Kushi, Takuto; Sato, Kazuhisa; Unemoto, Atsushi; Hashimoto, Shinichi; Amezawa, Koji; Kawada, Tatsuya
2011-10-01
Mechanical properties such as Young's modulus, shear modulus, Poisson's ratio and internal friction of conventional electrolyte materials for solid oxide fuel cells, Zr0.85Y0.15 O1.93 (YSZ), Zr0.82Sc0.18O1.91 (ScSZ), Zr0.81Sc0.18Ce0.01O2-δ (ScCeSZ), Ce0.9Gd0.1O2-δ (GDC), La0.8Sr0.2Ga0.8Mg0.15Co0.05O3-δ (LSGMC), La0.8Sr0.2Ga0.8Mg0.2O3-δ (LSGM), were evaluated by a resonance method at temperatures from room temperature to 1273 K in various oxygen partial pressures. The Young's modulus of GDC gradually decreased with increasing temperature in oxidizing conditions. The Young's moduli of the series of zirconia and lanthanum gallate based materials drastically decreased in an intermediate temperature range and increased slightly with increasing temperature at higher temperatures. The Young's modulus of GDC considerably decreased above 823 K in reducing atmospheres in response to the change of oxygen nonstoichiometry. However, temperature dependences of the Young's moduli of ScCeSZ and LSGMC in reducing atmospheres did not show any significant differences with those in oxidizing atmospheres.
NASA Astrophysics Data System (ADS)
Zhang, Shujun; Lebrun, Laurent; Randall, Clive A.; Shrout, Thomas R.
2004-06-01
The growth and characterization of (Mn,F) doped Pb(Zn 1/3Nb 2/3)O 3-PbTiO 3 (PZNT) single crystals are reported in this paper. The typical single crystal obtained is up to 30 mm size with dark brown color. The crystal lattice parameters of doped PZNT crystal are slightly decreased compared to the pure one. The room temperature dielectric permittivity along <0 0 1> direction is about 6000, which is lower than that of the pure PZNT8 because of the dopants. The Curie temperature of the doped crystal is about 180°C while the ferroelectric phase transition temperature is around 100°C, which are higher than those of the pure PZNT8 single crystal. The remnant polarization and coercive field of <0 0 1> oriented doped crystal measured at 1 Hz and 10 kV/cm field are about 27 μC/cm 2 and 4.2 kV/cm, respectively. The room temperature mechanical quality factor is ˜300. Piezoelectric coefficient of <0 0 1> oriented doped crystal is higher than 3500 pC/N and the longitudinal electromechanical coupling factor is larger than 93%. The piezoelectric properties of doped PZNT single crystal with temperature and orientations are also reported in this paper. The valence state of the manganese dopant was determined by electron spin resonance, indicating no Mn 4+ in the crystals, suggesting the valence of manganese ions in PZNT crystals may be 2+, which acts as a hardener, stabilizes the domain wall and pins the domain wall motion, on the other hand, the dopant will enter Ti 4+ position, shifting the crystal composition to higher PT content.
NASA Astrophysics Data System (ADS)
Zhang, Jie; Sun, Fubao; Xu, Jijun; Chen, Yaning; Sang, Yan-Fang; Liu, Changming
2016-01-01
The Palmer Drought Severity Index (PDSI) can lead to controversial results in assessing droughts responding to global warming. Here we assess recent changes in the droughts over China (1961-2013) using the PDSI with two different estimates, i.e., the Thornthwaite (PDSI_th) and Penman-Monteith (PDSI_pm) approaches. We found that droughts have become more severe in the PDSI_th but slightly lessened in the PDSI_pm estimate. To quantify and interpret the different responses in the PDSI_th and PDSI_pm, we designed numerical experiments and found that drying trend of the PDSI_th responding to the warming alone is 3.4 times higher than that of the PDSI_pm, and the latter was further compensated by decreases in wind speed and solar radiation causing the slightly wetting in the PDSI_pm. Interestingly, we found that interbasin difference in the PDSI_th and PDSI_pm responses to the warming alone tends to be larger in warmer basins, exponentially depending on mean temperature.
NASA Astrophysics Data System (ADS)
Ozaltin, K.; Panigrahi, A.; Chrominski, W.; Bulutsuz, A. G.; Kulczyk, M.; Zehetbauer, M. J.; Lewandowska, M.
2017-11-01
A biomedical β-type Ti-13Nb-13Zr (TNZ) (wt pct) ternary alloy was subjected to severe plastic deformation by means of hydrostatic extrusion (HE) at room temperature without intermediate annealing. Its effect on microstructure, mechanical properties, phase transformations, and texture was investigated by light and electron microscopy, mechanical tests (Vickers microhardness and tensile tests), and XRD analysis. Microstructural investigations by light microscope and transmission electron microscope showed that, after HE, significant grain refinement took place, also reaching high dislocation densities. Increases in strength up to 50 pct occurred, although the elongation to fracture left after HE was almost 9 pct. Furthermore, Young's modulus of HE-processed samples showed slightly lower values than the initial state due to texture. Such mechanical properties combined with lower Young's modulus are favorable for medical applications. Phase transformation analyses demonstrated that both initial and extruded samples consist of α' and β phases but that the phase fraction of α' was slightly higher after two stages of HE.
Schröder, M J; Cousins, C M; McKinnon, C H
1982-11-01
The keeping quality of commercial HTST-pasteurized milk and laboratory pasteurized milk from a common bulk raw supply has been investigated for 5 dairies. Spoilage occurred at levels of total bacterial counts around 10(7) colony forming units/ml, but with a slightly higher off-flavour threshold for the commercial milks than the laboratory pasteurized milks. The predominant microflora at spoilage and the type of off-flavour produced differed between the 2 types of milk. Raising the storage temperature from 5 to 11 degrees C caused a slight shift in the spoilage microflora and led to an average reduction in the shelf life of the laboratory pasteurized milk from 28 to 6 d and of the commercial pasteurized milk from 13 to 5 d. Changes in the level of post-pasteurization contamination (PPC) were reflected in changes in keeping quality, particularly at 5 degrees C. However, the greatest improvements were found in the absence of PPC.
Circadian rhythms in human performance and mood under constant conditions
NASA Technical Reports Server (NTRS)
Monk, T. H.; Buysse, D. J.; Reynolds, C. F. 3rd; Berga, S. L.; Jarrett, D. B.; Begley, A. E.; Kupfer, D. J.
1997-01-01
This study explored the relationship between circadian performance rhythms and rhythms in rectal temperature, plasma cortisol, plasma melatonin, subjective alertness and well-being. Seventeen healthy young adults were studied under 36 h of 'unmasking' conditions (constant wakeful bedrest, temporal isolation, homogenized 'meals') during which rectal temperatures were measured every minute, and plasma cortisol and plasma melatonin measured every 20 min. Hourly subjective ratings of global vigour (alertness) and affect (well-being) were obtained followed by one of two performance batteries. On odd-numbered hours performance (speed and accuracy) of serial search, verbal reasoning and manual dexterity tasks was assessed. On even-numbered hours, performance (% hits, response speed) was measured at a 25-30 min visual vigilance task. Performance of all tasks (except search accuracy) showed a significant time of day variation usually with a nocturnal trough close to the trough in rectal temperature. Performance rhythms appeared not to reliably differ with working memory load. Within subjects, predominantly positive correlations emerged between good performance and higher temperatures and better subjective alertness; predominantly negative correlations between good performance and higher plasma levels of cortisol and melatonin. Temperature and cortisol rhythms correlated with slightly more performance measures (5/7) than did melatonin rhythms (4/7). Global vigour correlated about as well with performance (5/7) as did temperature, and considerably better than global affect (1/7). In conclusion: (1) between-task heterogeneity in circadian performance rhythms appeared to be absent when the sleep/wake cycle was suspended; (2) temperature (positively), cortisol and melatonin (negatively) appeared equally good as circadian correlates of performance, and (3) subjective alertness correlated with performance rhythms as well as (but not better than) body temperature, suggesting that performance rhythms were not directly mediated by rhythms in subjective alertness.
Low temperature measurement of the vapor pressures of planetary molecules
NASA Technical Reports Server (NTRS)
Kraus, George F.
1989-01-01
Interpretation of planetary observations and proper modeling of planetary atmospheres are critically upon accurate laboratory data for the chemical and physical properties of the constitutes of the atmospheres. It is important that these data are taken over the appropriate range of parameters such as temperature, pressure, and composition. Availability of accurate, laboratory data for vapor pressures and equilibrium constants of condensed species at low temperatures is essential for photochemical and cloud models of the atmospheres of the outer planets. In the absence of such data, modelers have no choice but to assume values based on an educated guess. In those cases where higher temperature data are available, a standard procedure is to extrapolate these points to the lower temperatures using the Clausius-Clapeyron equation. Last summer the vapor pressures of acetylene (C2H2) hydrogen cyanide (HCN), and cyanoacetylene (HC3N) was measured using two different methods. At the higher temperatures 1 torr and 10 torr capacitance manometers were used. To measure very low pressures, a technique was used which is based on the infrared absorption of thin film (TFIR). This summer the vapor pressure of acetylene was measured the TFIR method. The vapor pressure of hydrogen sulfide (H2S) was measured using capacitance manometers. Results for H2O agree with literature data over the common range of temperature. At the lower temperatures the data lie slightly below the values predicted by extrapolation of the Clausius-Clapeyron equation. Thin film infrared (TFIR) data for acetylene lie significantly below the values predicted by extrapolation. It is hoped to bridge the gap between the low end of the CM data and the upper end of the TFIR data in the future using a new spinning rotor gauge.
NASA Astrophysics Data System (ADS)
Kang, Yang; Wu, Qiang; Jin, Rui; Yu, Pengfei; Cheng, Jixiang
2016-01-01
This paper reports the facile preparation, mechanical performance and linear viscoelasticity of polyetheramine-cured rubber-like epoxy asphalt composites (EACs) with different asphalt contents. Compared with previous EACs prepared via complex chemical reactions and time-consuming high-temperature curing, the EACs reported here were obtained by using a compatible, bi-functional polyetheramine and a simple physical co-blend process, which make the EACs feasibly scalable for production at a lower cost. The EACs were cured for 1 h at 160 °C and 3 d at 60 °C therefore, these composites can be opened to traffic immediately. The EACs have a much greater temperature stability than common thermoplastic polymer-modified asphalt composites from -30 °C to 120 °C, but their complex shear moduli at higher temperatures slightly decrease instead of remaining constant when temperatures are greater than 80 °C, especially for the higher asphalt content composites; that is, these composites are quasi-thermosetting. Wicket plots illustrate that the EACs reported here are thermorheological simple materials, and the master curves are constructed and well-fitted by generalized logistic sigmoidal model functions. This research provides a facile, low-cost method for the preparation of polyetheramine-cured EACs that can be opened to traffic immediately, and the concept of quasi-thermosetting may facilitate the development of cheaper EACs for advanced applications.
Kang, Yang; Wu, Qiang; Jin, Rui; Yu, Pengfei; Cheng, Jixiang
2016-01-06
This paper reports the facile preparation, mechanical performance and linear viscoelasticity of polyetheramine-cured rubber-like epoxy asphalt composites (EACs) with different asphalt contents. Compared with previous EACs prepared via complex chemical reactions and time-consuming high-temperature curing, the EACs reported here were obtained by using a compatible, bi-functional polyetheramine and a simple physical co-blend process, which make the EACs feasibly scalable for production at a lower cost. The EACs were cured for 1 h at 160 °C and 3 d at 60 °C; therefore, these composites can be opened to traffic immediately. The EACs have a much greater temperature stability than common thermoplastic polymer-modified asphalt composites from -30 °C to 120 °C, but their complex shear moduli at higher temperatures slightly decrease instead of remaining constant when temperatures are greater than 80 °C, especially for the higher asphalt content composites; that is, these composites are quasi-thermosetting. Wicket plots illustrate that the EACs reported here are thermorheological simple materials, and the master curves are constructed and well-fitted by generalized logistic sigmoidal model functions. This research provides a facile, low-cost method for the preparation of polyetheramine-cured EACs that can be opened to traffic immediately, and the concept of quasi-thermosetting may facilitate the development of cheaper EACs for advanced applications.
Kang, Yang; Wu, Qiang; Jin, Rui; Yu, Pengfei; Cheng, Jixiang
2016-01-01
This paper reports the facile preparation, mechanical performance and linear viscoelasticity of polyetheramine-cured rubber-like epoxy asphalt composites (EACs) with different asphalt contents. Compared with previous EACs prepared via complex chemical reactions and time-consuming high-temperature curing, the EACs reported here were obtained by using a compatible, bi-functional polyetheramine and a simple physical co-blend process, which make the EACs feasibly scalable for production at a lower cost. The EACs were cured for 1 h at 160 °C and 3 d at 60 °C; therefore, these composites can be opened to traffic immediately. The EACs have a much greater temperature stability than common thermoplastic polymer-modified asphalt composites from −30 °C to 120 °C, but their complex shear moduli at higher temperatures slightly decrease instead of remaining constant when temperatures are greater than 80 °C, especially for the higher asphalt content composites; that is, these composites are quasi-thermosetting. Wicket plots illustrate that the EACs reported here are thermorheological simple materials, and the master curves are constructed and well-fitted by generalized logistic sigmoidal model functions. This research provides a facile, low-cost method for the preparation of polyetheramine-cured EACs that can be opened to traffic immediately, and the concept of quasi-thermosetting may facilitate the development of cheaper EACs for advanced applications. PMID:26733315
Lourenço, Felipe Rebello; Botelho, Túlia De Souza; Pinto, Terezinha De Jesus Andreoli
2012-01-01
The limulus amebocyte lysate (LAL) test is the simplest and most widely used procedure for detection of endotoxin in parenteral drugs. The LAL test demands optimal pH, ionic strength, temperature, and time of incubation. Slight changes in these parameters may increase the frequency of false-positive responses and the estimated uncertainty of the LAL test. The aim of this paper is to evaluate how changes in the pH, temperature, and time of incubation affect the occurrence of false-positive responses in the LAL test. LAL tests were performed in nominal conditions (37 °C, 60 min, and pH 7) and in different conditions of temperature (36 °C and 38 °C), time of incubation (58 and 62 min), and pH (6 and 8). Slight differences in pH increase the frequency of false-positive responses 5-fold (relative risk 5.0), resulting in an estimated of uncertainty 7.6%. Temperature and time of incubation affect the LAL test less, showing relative risks of 1.5 and 1.0, respectively. Estimated uncertainties in 36 °C or 38 °C temperatures and 58 or 62 min of incubation were found to be 2.0% and 1.0%, respectively. Simultaneous differences in these parameters significantly increase the frequency of false-positive responses. The limulus amebocyte lysate (LAL) gel-clot test is a simple test for detection of endotoxin from Gram-negative bacteria. The test is based on a gel formation when a certain amount of endotoxin is present; it is a pass/fail test. The LAL test requires optimal pH, ionic strength, temperature, and time of incubation. Slight difference in these parameters may increase the frequency of false-positive responses. The aim of this paper is to evaluate how changes in the pH, temperature, and time of incubation affect the occurrence of false-positive responses in the LAL test. We find that slight differences in pH increase the frequency of false-positive responses 5-fold. Temperature and time of incubation affect the LAL test less. Simultaneous differences in these parameters significantly increase the frequency of false-positive responses.
Li, Ling; Shi, Nan; du Puits, Ronald; Resagk, Christian; Schumacher, Jörg; Thess, André
2012-08-01
We report measurements and numerical simulations of the three-dimensional velocity and temperature fields in turbulent Rayleigh-Bénard convection in air. Highly resolved velocity and temperature measurements inside and outside the boundary layers have been directly compared with equivalent data obtained in direct numerical simulations (DNSs). This comparison comprises a set of two Rayleigh numbers at Ra=3×10(9) and 3×10(10) and a fixed aspect ratio; this is the ratio between the diameter and the height of the Rayleigh-Bénard cell of Γ=1. We find that the measured velocity data are in excellent agreement with the DNS results while the temperature data slightly differ. In particular, the measured mean temperature profile does not show the linear trend as seen in the DNS data, and the measured gradients at the wall are significantly higher than those obtained from the DNS. Both viscous and thermal boundary layer thickness scale with respect to the Rayleigh number as δ(v)~Ra(-0.24) and δ(θ)~Ra(-0.24), respectively.
Spin-lattice relaxation and the calculation of gain, pump power, and noise temperature in ruby
NASA Technical Reports Server (NTRS)
Lyons, J. R.
1989-01-01
The use of a quantitative analysis of the dominant source of relaxation in ruby spin systems to make predictions of key maser amplifier parameters is described. The spin-lattice Hamiltonian which describes the interaction of the electron spins with the thermal vibrations of the surrounding lattice is obtained from the literature. Taking into account the vibrational anisotropy of ruby, Fermi's rule is used to calculate the spin transition rates between the maser energy levels. The spin population rate equations are solved for the spin transition relaxation times, and a comparison with previous calculations is made. Predictions of ruby gain, inversion ratio, and noise temperature as a function of physical temperature are made for 8.4-GHz and 32-GHz maser pumping schemes. The theory predicts that ruby oriented at 90 deg will have approximately 50 percent higher gain in dB and slightly lower noise temperature than a 54.7-deg ruby at 32 GHz (assuming pump saturation). A specific calculation relating pump power to inversion ratio is given for a single channel of the 32-GHz reflected wave maser.
Measurement and simulation of evapotranspiration at a wetland site in the New Jersey Pinelands
Sumner, David M.; Nicholson, Robert S.; Clark, Kenneth L.
2012-01-01
Evapotranspiration (ET) was monitored above a wetland forest canopy dominated by pitch-pine in the New Jersey Pinelands during November 10, 2004-February 20, 2007, using an eddy-covariance method. Twelve-month ET totals ranged from 786 to 821 millimeters (mm). Minimum and maximum ET rates occurred during December-February and in July, respectively. Relations between ET and several environmental variables (incoming solar radiation, air temperature, relative humidity, soil moisture, and net radiation) were explored. Net radiation (r = 0.72) and air temperature (r = 0.73) were the dominant explanatory variables for daily ET. Air temperature was the dominant control on evaporative fraction with relatively more radiant energy used for ET at higher temperatures. Soil moisture was shown to limit ET during extended dry periods. With volumetric soil moisture below a threshold of about 0.15, the evaporative fraction decreased until rain ended the dry period, and the evaporative fraction sharply recovered. A modified Hargreaves ET model, requiring only easily obtainable daily temperature data, was shown to be effective at simulating measured ET values and has the potential for estimating historical or real-time ET at the wetland site. The average annual ET measured at the wetland site during 2005-06 (801 mm/yr) is about 32 percent higher than previously reported ET for three nearby upland sites during 2005-09. Periodic disturbance by fire and insect defoliation at the upland sites reduced ET. When only undisturbed periods were considered, the wetland ET was 17 percent higher than the undisturbed upland ET. Interannual variability in wetlands ET may be lower than that of uplands ET because the upland stands are more susceptible to periodic drought conditions, disturbance by fire, and insect defoliation. Precipitation during the study period at the nearby Indian Mills weather station was slightly higher than the long-term (1902-2011) annual mean of 1,173 millimeters (mm), with 1,325 and 1,396 mm of precipitation in 2005 and 2006, respectively.
Sarina, Sarina; Jaatinen, Esa; Xiao, Qi; Huang, Yi Ming; Christopher, Philip; Zhao, Jin Cai; Zhu, Huai Yong
2017-06-01
By investigating the action spectra (the relationship between the irradiation wavelength and apparent quantum efficiency of reactions under constant irradiance) of a number of reactions catalyzed by nanoparticles including plasmonic metals, nonplasmonic metals, and their alloys at near-ambient temperatures, we found that a photon energy threshold exists in each photocatalytic reaction; only photons with sufficient energy (e.g., higher than the energy level of the lowest unoccupied molecular orbitals) can initiate the reactions. This energy alignment (and the photon energy threshold) is determined by various factors, including the wavelength and intensity of irradiation, molecule structure, reaction temperature, and so forth. Hence, distinct action spectra were observed in the same type of reaction catalyzed by the same catalyst due to a different substituent group, a slightly changed reaction temperature. These results indicate that photon-electron excitations, instead of the photothermal effect, play a dominant role in direct photocatalysis of metal nanoparticles for many reactions.
ε- and β-LiVOPO4: Phase Transformation and Electrochemistry.
Zhou, Hui; Shi, Yong; Xin, Fengxia; Omenya, Fredrick; Whittingham, M Stanley
2017-08-30
ε- and β-LiVOPO 4 were synthesized from the same precursor at different temperatures in an air atmosphere. ε-LiVOPO 4 is obtained at 400 and 700 °C. The 700 °C sample has better purity and crystallinity, but the 400 °C sample has a little better electrochemical performance due to its smaller particle size and the conducting carbon residue in the sample. β-LiVOPO 4 is formed between the above two temperatures, which gives slightly lower capacity than that of the ε-LiVOPO 4 sample, indicating higher kinetics of the lithium reaction for the ε phase than those of the β one. The phase transformation from ε to β then back reversibly to ε was also observed by ex situ X-ray diffraction. This thermal study verifies that ε-LiVOPO 4 is the more stable phase for LiVOPO 4 ; however, reaction kinetics control the phases formed at lower temperatures.
High Temperature Electronic and Thermal Transport Properties of EuGa2- x In x Sb2
NASA Astrophysics Data System (ADS)
Chanakian, Sevan; Weber, Rochelle; Aydemir, Umut; Ormeci, Alim; Fleurial, Jean-Pierre; Bux, Sabah; Snyder, G. Jeffrey
2017-08-01
The Zintl phase EuGa2Sb2 was synthesized via ball milling followed by hot pressing. The crystal structure of EuGa2Sb2 is comprised of a 3-D network of polyanionic [Ga2Sb2]2- tunnels filled with Eu cations that provide charge balance (Eu2+[Ga2Sb2]2-). Here we report the temperature-dependent resistivity, Hall Effect, Seebeck coefficient and thermal conductivity for EuGa2- x In x Sb2 ( x = 0, 0.05, 0.1) from 300 K to 775 K. Experimental results demonstrate that the material is a p-type semiconductor. However, a small band gap (˜0.1 eV) prevents EuGa2Sb2 from having high zT at higher temperatures. Isoelectronic substitution of In on the Ga site leads to point defect scattering of holes and phonons, thus reducing thermal conductivity and resulting in a slight improvement in zT.
Recyclable Thermoresponsive Polymer-β-Glucosidase Conjugate with Intact Hydrolysis Activity.
Mukherjee, Ishita; Sinha, Sushant K; Datta, Supratim; De, Priyadarsi
2018-06-11
β-Glucosidase (BG) catalyzes the hydrolysis of cellobiose to glucose and is a rate-limiting enzyme in the conversion of lignocellulosic biomass to sugars toward biofuels. Since the cost of enzyme is a major contributor to biofuel economics, we report the bioconjugation of a temperature-responsive polymer with the highly active thermophilic β-glucosidase (B8CYA8) from Halothermothrix orenii toward improving enzyme recyclability. The bioconjugate, with a lower critical solution temperature (LCST) of 33 °C withstands high temperatures up to 70 °C. Though the secondary structure of the enzyme in the conjugate is slightly distorted with a higher percentage of β-sheet like structure, the stability and specific activity of B8CYA8 in the conjugate remains unaltered up to 30 °C and retains more than 70% specific activity of the unmodified enzyme at 70 °C. The conjugate can be reused for β-glucosidic bond cleavage of cellobiose for at least four cycles without any significant loss in specific activity.
Local climate on and around a glacier - a case study of Storglaciären
NASA Astrophysics Data System (ADS)
Konya, K.; Hock, R.
2004-12-01
It is sometimes necessary to transform the climate data from a station to another station on a glacier. However, it is generally not so easy to do so since a glacier has its own specific microclimate. At Storglaciären in the summer 2003, air temperature and wind speed were measured at two weather stations set up near the center of the glacier and at the ridge of the bordering valley wall 300 m above the glacier surface. Additional continuous measurements are made at a weather station at Tarfala Research Station, which is located 1 km down glacier (1135 m a.s.l.). The result show a slight temperature difference between ridge and glacier stations because of the cooling effect by the glacier. Thus, temperature lapse rate is different. Wind speed on the ridge was higher than the other two in most cases, and the difference was largest during periods of high wind speed. The correlation between wind speed at the ridge and the other sites is weak.
Precipitation phase separation schemes in the Naqu River basin, eastern Tibetan plateau
NASA Astrophysics Data System (ADS)
Liu, Shaohua; Yan, Denghua; Qin, Tianling; Weng, Baisha; Lu, Yajing; Dong, Guoqiang; Gong, Boya
2018-01-01
Precipitation phase has a profound influence on the hydrological processes in the Naqu River basin, eastern Tibetan plateau. However, there are only six meteorological stations with precipitation phase (rainfall/snowfall/sleet) before 1979 within and around the basin. In order to separate snowfall from precipitation, a new separation scheme with S-shaped curve of snowfall proportion as an exponential function of daily mean temperature was developed. The determinations of critical temperatures in the single/two temperature threshold (STT/TTT2) methods were explored accordingly, and the temperature corresponding to the 50 % snowfall proportion (SP50 temperature) is an efficiently critical temperature for the STT, and two critical temperatures in TTT2 can be determined based on the exponential function and SP50 temperature. Then, different separation schemes were evaluated in separating snowfall from precipitation in the Naqu River basin. The results show that the S-shaped curve methods outperform other separation schemes. Although the STT and TTT2 slightly underestimate and overestimate the snowfall when the temperature is higher and colder than SP50 temperature respectively, the monthly and annual separation snowfalls are generally consistent with the observed snowfalls. On the whole, S-shaped curve methods, STT, and TTT2 perform well in separating snowfall from precipitation with the Pearson correlation coefficient of annual separation snowfall above 0.8 and provide possible approaches to separate the snowfall from precipitation for hydrological modelling.
He, Jianfeng; Fan, Jun; Yan, Yilun; Chen, Xiaodong; Wang, Tai; Zhang, Yaomou; Zhang, Weiguang
2016-11-01
Enantiomeric pairs of triticonazole have been successfully separated by supercritical fluid chromatography coupled with a tris(3,5-dimethylphenylcarbamoyl) cellulose-coated chiral stationary phase in this work. The effects of co-solvent, dissolution solvent, flow rate, backpressure, and column temperature have been studied in detail with respect to retention, selectivity, and resolution of triticonazole. As indicated, the co-solvents mostly affected the retention factors and resolution, due to the different molecular structure and polarity. In addition, the dissolution solvents, namely, chloromethanes and alcohols, have been also important for enantioseparation because of the different interaction with stationary phase. Higher flow rate and backpressure led to faster elution of the triticonazole molecules, and the change of column temperature showed slight effect on the resolution of triticonazole racemate. Moreover, a comparative separation experiment between supercritical fluid chromatography and high performance liquid chromatography revealed that chiral supercritical fluid chromatography gave the 3.5 times value of R s /t R2 than high performance liquid chromatography, which demonstrated that supercritical fluid chromatography had much higher separation efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Albin, David S.; Carapella, Jeffrey J.; Tuttle, John R.; Contreras, Miguel A.; Gabor, Andrew M.; Noufi, Rommel; Tennant, Andrew L.
1995-07-25
A process for fabricating slightly Cu-poor thin-films of Cu(In,Ga)Se.sub.2 on a substrate for semiconductor device applications includes the steps of forming initially a slightly Cu-rich, phase separated, mixture of Cu(In,Ga)Se.sub.2 :Cu.sub.x Se on the substrate in solid form followed by exposure of the Cu(In,Ga)Se.sub.2 :Cu.sub.x Se solid mixture to an overpressure of Se vapor and (In,Ga) vapor for deposition on the Cu(In,Ga)Se.sub.2 :Cu.sub.x Se solid mixture while simultaneously increasing the temperature of the solid mixture toward a recrystallization temperature (about 550.degree. C.) at which Cu(In,Ga)Se.sub.2 is solid and Cu.sub.x Se is liquid. The (In,Ga) flux is terminated while the Se overpressure flux and the recrystallization temperature are maintained to recrystallize the Cu.sub.x Se with the (In, Ga) that was deposited during the temperature transition and with the Se vapor to form the thin-film of slightly Cu-poor Cu.sub.x (In,Ga).sub.y Se.sub.z. The initial Cu-rich, phase separated large grain mixture of Cu(In,Ga)Se.sub.2 :Cu.sub.x Se can be made by sequentially depositing or co-depositing the metal precursors, Cu and (In, Ga), on the substrate at room temperature, ramping up the thin-film temperature in the presence of Se overpressure to a moderate anneal temperature (about 450.degree. C.) and holding that temperature and the Se overpressure for an annealing period. A nonselenizing, low temperature anneal at about 100.degree. C. can also be used to homogenize the precursors on the substrates before the selenizing, moderate temperature anneal.
Energy budget above a high-elevation subalpine forest in complex topography
Turnipseed, A.A.; Blanken, P.D.; Anderson, D.E.; Monson, Russell K.
2002-01-01
Components of the energy budget were measured above a subalpine coniferous forest over two complete annual cycles. Sensible and latent heat fluxes were measured by eddy covariance. Bowen ratios ranged from 0.7 to 2.5 in the summer (June-September) depending upon the availability of soil water, but were considerably higher (???3-6) during winter (December-March). Energy budget closure averaged better than 84% on a half-hourly basis in both seasons with slightly greater closure during the winter months. The energy budget showed a dependence on friction velocity (u*), approaching complete closure at u* values greater than 1 m s-1. The dependence of budget closure on u* explained why energy balance was slightly better in the winter as opposed to summer, since numerous periods of high turbulence occur in winter. It also explained the lower degree of energy closure (???10% less) during easterly upslope flow since these periods were characterized by low wind speeds (U < 4 m s-1) and friction velocities (u* < 0.5 m s-1). Co-spectral analysis suggests a shift of flux density towards higher frequencies under conditions where closure was obtained. It is suggested that low frequency contributions to the flux and advection were responsible for the lack of day-time energy budget closure. These effects were reduced at high friction velocities observed at our site. Our ability to close the energy budget at night was also highly dependent on friction velocity, approaching near closure (???90%) at u* values between 0.7 and 1.1 m s-1. Below this range, the airflow within the canopy becomes decoupled with the flow above. Above this range, insufficient temperature resolution of the sonic anemometer obscured the small temperature fluctuations, rendering measurements intractable. ?? 2002 Elsevier Science B.V. All rights reserved.
Liu, Boning; Reckhow, David A
2013-10-15
This paper demonstrates that disinfection byproducts (DBP) concentration profiles in heated water were quite different from the DBP concentrations in the cold tap water. Chloroform concentrations in the heated water remained constant or even decreased slightly with increasing distribution system water age. The amount of dichloroacetic acid (DCAA) was much higher in the heated water than in the cold water; however, the maximum levels in heated water with different distribution system water ages did not differ substantially. The levels of trichloroacetic acid (TCAA) in the heated water were similar to the TCAA levels in the tap water, and a slight reduction was observed after the tap water was heated for 24 h. Regardless of water age, significant reductions of nonregulated DBPs were observed after the tap water was heated for 24 h. For tap water with lower water ages, there were significant increases in dichloroacetonitrile (DCAN), chloropicrin (CP), and 1,1-dichloropropane (1,1-DCP) after a short period of heating. Heating of the tap water with low pH led to a more significant increase of chloroform and a more significant short-term increase of DCAN. High pH accelerated the loss of the nonregulated DBPs in the heated water. The results indicated that as the chlorine doses increased, levels of chloroform and DCAA in the heated water increased significantly. However, for TCAA, the thermally induced increase in concentration was only notable for the chlorinated water with very high chlorine dose. Finally, heating may lead to higher DBP concentrations in chlorinated water with lower distribution system temperatures.
Zhang, F; de Dear, R
2017-01-01
As one of the most common strategies for managing peak electricity demand, direct load control (DLC) of air-conditioners involves cycling the compressors on and off at predetermined intervals. In university lecture theaters, the implementation of DLC induces temperature cycles which might compromise university students' learning performance. In these experiments, university students' learning performance, represented by four cognitive skills of memory, concentration, reasoning, and planning, was closely monitored under DLC-induced temperature cycles and control conditions simulated in a climate chamber. In Experiment 1 with a cooling set point temperature of 22°C, subjects' cognitive performance was relatively stable or even slightly promoted by the mild heat intensity and short heat exposure resulting from temperature cycles; in Experiment 2 with a cooling set point of 24°C, subjects' reasoning and planning performance observed a trend of decline at the higher heat intensity and longer heat exposure. Results confirm that simpler cognitive tasks are less susceptible to temperature effects than more complex tasks; the effect of thermal variations on cognitive performance follows an extended-U relationship with performance being relatively stable across a range of temperatures. DLC appears to be feasible in university lecture theaters if DLC algorithms are implemented judiciously. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
External tank chill effect on the space transportation system launch pad environment
NASA Technical Reports Server (NTRS)
Ahmad, R. A.; Boraas, S.
1991-01-01
The external tank (ET) of the STS contains liquid oxygen and liquid hydrogen as oxidizer and fuel for the SSMEs. Once the cryogen have been loaded into the ET, the temperature of the air surrounding the STS is chilled by the cold outer surface of the ET. This paper describes a two-dimensional flow and thermal analysis to determine this chill effect on the STS launch pad environment subsequent to the ET loading operation. The analysis was done assuming winter conditions and a northwest wind direction. An existing CFD code, PHOENICS '81, was used in the study. The results are presented as local and average values of the heat transfer coefficient, the Nusselt number, and the surface temperature around the redesigned solid rocket motors (RSRMs) and the ET. The temperature depression caused by the ET chilling of the air in the vicinity of the RSRMs was calculated to be 3 F below the ambient. This compares with the observed 1-2 F RSRM surface temperature depression based upon measurements made prior to the winter flight of STS-29. Since the surface temperature would be expected to be slightly higher than the local air temperature, the predicted temperature depression of the air appears to be substantiated.
An internal thermal sensor controlling temperature preference in Drosophila.
Hamada, Fumika N; Rosenzweig, Mark; Kang, Kyeongjin; Pulver, Stefan R; Ghezzi, Alfredo; Jegla, Timothy J; Garrity, Paul A
2008-07-10
Animals from flies to humans are able to distinguish subtle gradations in temperature and show strong temperature preferences. Animals move to environments of optimal temperature and some manipulate the temperature of their surroundings, as humans do using clothing and shelter. Despite the ubiquitous influence of environmental temperature on animal behaviour, the neural circuits and strategies through which animals select a preferred temperature remain largely unknown. Here we identify a small set of warmth-activated anterior cell (AC) neurons located in the Drosophila brain, the function of which is critical for preferred temperature selection. AC neuron activation occurs just above the fly's preferred temperature and depends on dTrpA1, an ion channel that functions as a molecular sensor of warmth. Flies that selectively express dTrpA1 in the AC neurons select normal temperatures, whereas flies in which dTrpA1 function is reduced or eliminated choose warmer temperatures. This internal warmth-sensing pathway promotes avoidance of slightly elevated temperatures and acts together with a distinct pathway for cold avoidance to set the fly's preferred temperature. Thus, flies select a preferred temperature by using a thermal sensing pathway tuned to trigger avoidance of temperatures that deviate even slightly from the preferred temperature. This provides a potentially general strategy for robustly selecting a narrow temperature range optimal for survival.
NASA Astrophysics Data System (ADS)
Nagaraju, G.; Ravindranatha Reddy, K.; Rajagopal Reddy, V.
2017-11-01
The electrical and current transport properties of rapidly annealed Dy/p-GaN SBD are probed by I-V and C-V techniques. The estimated barrier heights (BH) of as-deposited and 200 °C annealed SBDs are 0.80 eV ( I-V)/0.93 eV (C-V) and 0.87 eV (I-V)/1.03 eV (C-V). However, the BH rises to 0.99 eV (I-V)/ 1.18 eV(C-V) and then slightly deceases to 0.92 eV (I-V)/1.03 eV (C-V) after annealing at 300 °C and 400 °C. The utmost BH is attained after annealing at 300 °C and thus the optimum annealing for SBD is 300 °C. By applying Cheung’s functions, the series resistance of the SBD is estimated. The BHs estimated by I-V, Cheung’s and Ψ S-V plot are closely matched; hence the techniques used here are consistency and validity. The interface state density of the as-deposited and annealed contacts are calculated and we found that the N SS decreases up to 300 °C annealing and then slightly increases after annealing at 400 °C. Analysis indicates that ohmic and space charge limited conduction mechanisms are found at low and higher voltages in forward-bias irrespective of annealing temperatures. Our experimental results demonstrate that the Poole-Frenkel emission is leading under the reverse bias of Dy/p-GaN SBD at all annealing temperatures.
Cool-Flame Burning and Oscillations of Envelope Diffusion Flames in Microgravity
NASA Astrophysics Data System (ADS)
Takahashi, Fumiaki; Katta, Viswanath R.; Hicks, Michael C.
2018-05-01
The two-stage combustion, local extinction, and flame-edge oscillations have been observed in single-droplet combustion tests conducted on the International Space Station. To understand such dynamic behavior of initially enveloped diffusion flames in microgravity, two-dimensional (axisymmetric) computation is performed for a gaseous n-heptane flame using a time-dependent code with a detailed reaction mechanism (127 species and 1130 reactions), diffusive transport, and a simple radiation model (for CO2, H2O, CO, CH4, and soot). The calculated combustion characteristics vary profoundly with a slight movement of air surrounding a fuel source. In a near-quiescent environment (≤ 2 mm/s), with a sufficiently large fuel injection velocity (1 cm/s), extinction of a growing spherical diffusion flame due to radiative heat losses is predicted at the flame temperature at ≈ 1200 K. The radiative extinction is typically followed by a transition to the "cool flame" burning regime (due to the negative temperature coefficient in the low-temperature chemistry) with a reaction zone (at ≈ 700 K) in close proximity to the fuel source. By contrast, if there is a slight relative velocity (≈ 3 mm/s) between the fuel source and the air, a local extinction of the envelope diffusion flame is predicted downstream at ≈ 1200 K, followed by periodic flame-edge oscillations. At higher relative velocities (4 to 10 mm/s), the locally extinguished flame becomes steady state. The present 2D computational approach can help in understanding further the non-premixed "cool flame" structure and flame-flow interactions in microgravity environments.
Yoo, R H; Kim, J H; McCarty, P L; Bae, J H
2014-01-01
A laboratory staged anaerobic fluidized membrane bioreactor (SAF-MBR) system was applied to the treatment of primary clarifier effluent from a domestic wastewater treatment plant with temperature decreasing from 25 to 10 °C. At all temperatures and with a total hydraulic retention time of 2.3 h, overall chemical oxygen demand (COD) and biochemical oxygen demand (BOD5) removals were 89% and 94% or higher, with permeate COD and BOD5 of 30 and 7 mg/L or lower, respectively. No noticeable negative effects of low temperature on organic removal were found, although a slight increase to 3 mg/L in volatile fatty acids concentrations in the effluent was observed. Biosolids production was 0.01-0.03 kg volatile suspended solids/kg COD, which is far less than that with aerobic processes. Although the rate of trans-membrane pressure at the membrane flux of 9 L/m(2)/h increased as temperature decreased, the SAF-MBR was operated for longer than 200 d before chemical cleaning was needed. Electrical energy potential from combustion of the total methane production (gaseous and dissolved) was more than that required for system operation.
Baig, M N; Tranquillini, W
1980-01-01
The importance of high winter winds and plant temperatures as causes of winter desiccation damage at the alpine treeline were studied in the Austrian Alps. Samples of 1- and 2-year twigs of Picea abies and Pinus cembra were collected from the valley bottom (1,000 m a.s.l.), forestline (1,940 m a.s.l.), kampfzone (2.090 m a.s.l.), wind-protected treeline (2,140 m a.s.l.), and wind-exposed treeline (2,140 m a.s.l.). Cuticular transpiration was measured at three different levels of wind speed (4, 10, and 15 ms -1 ) and temperature (15°, 20°, and 25° C). At elevated wind speeds slight increases in water loss were observed, whereas at higher temperatures much greater increases occurred. Studies on winter water relations show a significant decline in the actual moisture content and osmotic potentials of twigs, especially in the kampfzone and at treeline. The roles of high winds and temperatures in depleting the winter water economy and causing desiccation damage in the alpine treeline environment are discussed.
Blinkowa, A
1976-01-01
The possible role of DNA polimerase III in conjugation was studied in a series of mutants temperature-sensitive for DNA polymerase III synthesis. The temperature-sensitive DNA mutation called dnaE 486 (ts) prohibits vegetative DNA replication at 41-45 degrees. Transfer of episome and chromosome from temperature-sensitive donor, carrying dnaE mutation to wild-type recipient strains, revertants and dnaE recipients was investigated. In the first two cases the number of Lac+ sexductants being even slightly higher at 43 degrees. Conjugational synthesis accompanying transfer involving the combination of dnaE (ts) thymine dependent and thymine independent donor and recipient strains measured by incorporation of 14C thymine was observed at the restrictive temperature. In the case of conjugation with temperaturesensitive recipient strains a drop of Lac+ sexductants and Pro+ recombinants may be as a result of disturbances in the synthesis of complementary strand in recipient, known to be dependent on pol III. However, the episome investigated by centrifugation in neutral CsC1 gradient after its transfer to the recipient with faulty polymerase III was double stranded (replicated) at the restrictive temperature.
NASA Astrophysics Data System (ADS)
Upadhyay, A. N.; Tiwari, R. S.; Singh, Kedar
2018-02-01
This study deals with the effect of thermal annealing on structural/microstructural, thermal and mechanical behavior of pristine Se80Te16Cu4 and carbon nanotubes (CNTs) containing Se80Te16Cu4 glassy composites. Pristine Se80Te16Cu4, 3 and 5 wt%CNTs-Se80Te16Cu4 glassy composites are annealed in the vicinity of glass transition temperature to onset crystallization temperature (340-380 K). X-ray diffraction (XRD) pattern revealed formation of polycrystalline phases of hexagonal CuSe and trigonal selenium. The indexed d-values in XRD patterns are in well conformity with the d-values obtained after the indexing of the ring pattern of selected area electron diffraction pattern of TEM images. The SEM investigation exhibited that the grain size of the CNTs containing Se80Te16Cu4 glassy composites increased with increasing annealing temperature and decreased at further higher annealing temperature. Thermal conductivity, microhardness exhibited a substantial increase with increasing annealing temperature of 340-360 K and slightly decreases for 380 K. The variation of thermal conductivity and microhardness can be explained by cross-linking formation and voids reduction.
NASA Astrophysics Data System (ADS)
Moriyoshi, Yasuo; Kobayashi, Shigemi; Enomoto, Yoshiteru
Knock phenomenon in SI engines is regarded as an auto-ignition of unburned end-gas, and it has been widely examined by using rapid compression machines (RCM), shock-tubes or test engines. Recent researches point out the importance of the low temperature chemical reaction and the negative temperature coefficient (NTC). To investigate the effects, analyses of instantaneous local gas temperature, flow visualization and gaseous pressure were conducted in this study. As measurements using real engines are too difficult to analyze, the authors aimed to make measurements using a constant volume vessel under knock conditions where propagating flame exists during the induction time of auto-ignition. Adopting the two-wire thermocouple method enabled us to measure the instantaneous local gas temperature until the moment when the flame front passes by. High-speed images inside the unburned region were also recorded simultaneously using an endoscope. As a result, it was found that when knock occurs, the auto-ignition initiation time seems slightly early compared to the results without knock. This causes a higher volume ratio of unburned mixture and existence of many hot spots and stochastically leads to an initiation of knock.
WE-DE-201-12: Thermal and Dosimetric Properties of a Ferrite-Based Thermo-Brachytherapy Seed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warrell, G; Shvydka, D; Parsai, E I
Purpose: The novel thermo-brachytherapy (TB) seed provides a simple means of adding hyperthermia to LDR prostate permanent implant brachytherapy. The high blood perfusion rate (BPR) within the prostate motivates the use of the ferrite and conductive outer layer design for the seed cores. We describe the results of computational analyses of the thermal properties of this ferrite-based TB seed in modelled patient-specific anatomy, as well as studies of the interseed and scatter (ISA) effect. Methods: The anatomies (including the thermophysical properties of the main tissue types) and seed distributions of 6 prostate patients who had been treated with LDR brachytherapymore » seeds were modelled in the finite element analysis software COMSOL, using ferrite-based TB and additional hyperthermia-only (HT-only) seeds. The resulting temperature distributions were compared to those computed for patient-specific seed distributions, but in uniform anatomy with a constant blood perfusion rate. The ISA effect was quantified in the Monte Carlo software package MCNP5. Results: Compared with temperature distributions calculated in modelled uniform tissue, temperature distributions in the patient-specific anatomy were higher and more heterogeneous. Moreover, the maximum temperature to the rectal wall was typically ∼1 °C greater for patient-specific anatomy than for uniform anatomy. The ISA effect of the TB and HT-only seeds caused a reduction in D90 similar to that found for previously-investigated NiCu-based seeds, but of a slightly smaller magnitude. Conclusion: The differences between temperature distributions computed for uniform and patient-specific anatomy for ferrite-based seeds are significant enough that heterogeneous anatomy should be considered. Both types of modelling indicate that ferrite-based seeds provide sufficiently high and uniform hyperthermia to the prostate, without excessively heating surrounding tissues. The ISA effect of these seeds is slightly less than that for the previously-presented NiCu-based seeds.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varley, J. B.; Lordi, V.; He, X.
2016-01-14
We investigate point defects in CdS buffer layers that may arise from intermixing with Cu(In,Ga)Se{sub 2} (CIGSe) or Cu{sub 2}ZnSn(S,Se){sub 4} (CZTSSe) absorber layers in thin-film photovoltaics (PV). Using hybrid functional calculations, we characterize the migration barriers of Cu, In, Ga, Se, Sn, Zn, Na, and K impurities and assess the activation energies necessary for their diffusion into the bulk of the buffer. We find that Cu, In, and Ga are the most mobile defects in CIGS-derived impurities, with diffusion expected to proceed into the buffer via interstitial-hopping and cadmium vacancy-assisted mechanisms at temperatures ∼400 °C. Cu is predicted to stronglymore » favor migration paths within the basal plane of the wurtzite CdS lattice, which may facilitate defect clustering and ultimately the formation of Cu-rich interfacial phases as observed by energy dispersive x-ray spectroscopic elemental maps in real PV devices. Se, Zn, and Sn defects are found to exhibit much larger activation energies and are not expected to diffuse within the CdS bulk at temperatures compatible with typical PV processing temperatures. Lastly, we find that Na interstitials are expected to exhibit slightly lower activation energies than K interstitials despite having a larger migration barrier. Still, we find both alkali species are expected to diffuse via an interstitially mediated mechanism at slightly higher temperatures than enable In, Ga, and Cu diffusion in the bulk. Our results indicate that processing temperatures in excess of ∼400 °C will lead to more interfacial intermixing with CdS buffer layers in CIGSe devices, and less so for CZTSSe absorbers where only Cu is expected to significantly diffuse into the buffer.« less
WRF model forecasts and their use for hydroclimate monitoring over southern South America
NASA Astrophysics Data System (ADS)
Muller, Omar; Lovino, Miguel; Berbery, E. Hugo
2017-04-01
Weather forecasting and monitoring systems based on regional models are becoming increasingly relevant for decision support in agriculture and water management. This work evaluates the predictive and monitoring capabilities of a system based on WRF model simulations at 15 km grid spacing over a domain that encompasses La Plata Basin (LPB) in southern South America, where agriculture and water resources are essential. The model's skill up to a lead-time of 7 days is evaluated with daily precipitation and 2m temperature in-situ observations. Results show high prediction performance with 7 days lead-time throughout the domain and particularly over LPB, where about 70% of rain and no-rain days are correctly predicted. The scores tend to be better over humid climates than over arid-to-semiarid climates. Compared to the arid-semiarid climate, the humid climate has a higher probability of detection and less false alarms. The ranges of the skill scores are similar to those found over the United States, suggesting that proper choice of parameterizations lead to no loss of performance of the model. Daily mean, minimum and maximum forecast temperatures are highly correlated with observations up to 7 day lead time. The best performance is for daily mean temperature, followed by minimum temperature and a slightly weaker performance for maximum temperature over arid regions. The usefulness of WRF products for hydroclimate monitoring was tested for an unprecedented drought in southern Brazil and for a slightly above normal precipitation season in northeastern Argentina. In both cases the model products reproduce the observed precipitation conditions with consistent impacts on soil moisture, evapotranspiration and runoff. This evaluation validates the model's usefulness to fore-cast weather up to one week and to monitor climate conditions in real time. The scores suggest that the forecast lead-time can be extended into week two, while bias correction methods can reduce part of the systematic errors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jinlong, Lv, E-mail: ljlbuaa@126.com; State Key Lab of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084; Tongxiang, Liang, E-mail: ljltsinghua@126.com
The nanocrystalline pure nickels with different grain orientations were fabricated by direct current electrodeposition process. The grain size slightly decreased with the increasing of electrodeposition solution temperature. However, grain orientation was affected significantly. Comparing with samples obtained at 50 °C and 80 °C, sample obtained at 20 °C had the strongest (111) orientation plane which increased electrochemical corrosion resistance of this sample. At the same time, the lowest (111) orientation plane deteriorated electrochemical corrosion resistance of sample obtained at 50 °C. - Graphical abstract: The increased electrodeposition temperature promoted slightly grain refinement. The grain orientation was affected significantly by electrodepositionmore » solution temperature. The (111) orientation plane of sample increased significantly corrosion resistance. Display Omitted.« less
D'auria, S; Barone, R; Rossi, M; Nucci, R; Barone, G; Fessas, D; Bertoli, E; Tanfani, F
1997-01-01
The effects of temperature and SDS on the three-dimensional organization and secondary structure of beta-glycosidase from the thermophilic archaeon Sulfolobus solfataricus were investigated by CD, IR spectroscopy and differential scanning calorimetry. CD spectra in the near UV region showed that the detergent caused a remarkable change in the protein tertiary structure, and far-UV CD analysis revealed only a slight effect on secondary structure. Infrared spectroscopy showed that low concentrations of the detergent (up to 0.02%) induced slight changes in the enzyme secondary structure, whereas high concentrations caused the alpha-helix content to increase at high temperatures and prevented protein aggregation. PMID:9169619
Influence of Temperature on Free Radical Generation in Propolis-Containing Ointments
Ramos, Pawel; Pilawa, Barbara
2016-01-01
Free radicals thermally generated in the ointments containing propolis were studied by electron paramagnetic resonance (EPR) spectroscopy. The influence of temperature on the free radical concentration in the propolis ointments was examined. Two ointment samples with different contents of propolis (5 and 7%, resp.) heated at temperatures of 30°C, 40°C, 50°C, and 60°C, for 30 min., were tested. Homogeneously broadened EPR lines and fast spin-lattice interactions characterized all the tested samples. Free radicals concentrations in the propolis samples ranged from 1018 to 1020 spin/g and were found to grow in both propolis-containing ointments along with the increasing heating temperature. Free radical concentrations in the ointments containing 5% and 7% of propolis, respectively, heated at temperatures of 30°C, 40°C, and 50°C were only slightly different. Thermal treatment at the temperature of 60°C resulted in a considerably higher free radical formation in the sample containing 7% of propolis when related to the sample with 5% of that compound. The EPR examination indicated that the propolis ointments should not be stored at temperatures of 40°C, 50°C, and 60°C. Low free radical formation at the lowest tested temperatures pointed out that both examined propolis ointments may be safely stored up to the temperature of 30°C. PMID:27563336
NASA Astrophysics Data System (ADS)
A, Duo; Zhao, Wenji; Qu, Xinyuan; Jing, Ran; Xiong, Kai
2016-12-01
Global climate change has led to significant vegetation changes in the past half century. North China Plain, the most important grain production base of china, is undergoing a process of prominent warming and drying. The vegetation coverage, which is used to monitor vegetation change, can respond to climate change (temperature and precipitation). In this study, GIMMS (Global Inventory Modelling and Mapping Studies)-NDVI (Normalized Difference Vegetation Index) data, MODIS (Moderate-resolution Imaging Spectroradiometer) - NDVI data and climate data, during 1981-2013, were used to investigate the spatial distribution and changes of vegetation. The relationship between climate and vegetation on different spatial (agriculture, forest and grassland) and temporal (yearly, decadal and monthly) scales were also analyzed in North China Plain. (1) It was found that temperature exhibiting a slight increase trend (0.20 °C/10a, P < 0.01). This may be due to the disappearance of 0 °C isotherm, the rise of spring temperature. At the same time, precipitation showed a significant reduction trend (-1.75 mm/10a, P > 0.05). The climate mutation period was during 1991-1994. (2) Vegetation coverage slight increase was observed in the 55% of total study area, with a change rate of 0.00039/10a. Human activities may not only accelerate the changes of the vegetation coverage, but also c effect to the rate of these changes. (3) Overall, the correlation between the vegetation coverage and climatic factor is higher in monthly scale than yearly scale. The correlation analysis between vegetation coverage and climate changes showed that annual vegetation coverage was better correlatend with precipitation in grassland biome; but it showed a better correlated with temperature i the agriculture biome and forest biome. In addition, the vegetation coverage had sensitive time-effect respond to precipitation. (4) The vegetation coverage showed the same increasing trend before and after the climatic variations, but the rate of increase slowed down. From the vegetation coverage point of view, the grassland ecological zone had an obvious response to the climatic variations, but the agricultural ecological zones showed a significant response from the vegetation coverage change rate point of view. The effect of human activity in degradation region was higher than that in improvement area. But after the climate abruptly changing, the effect of human activity in improvement area was higher than that in degradation region, and the influence of human activity will continue in the future.
Tocopherol-deficient rice plants display increased sensitivity to photooxidative stress.
Chen, Defu; Chen, Haiwei; Zhang, Luhua; Shi, Xiaoli; Chen, Xiwen
2014-06-01
Tocopherols are lipophilic antioxidants that are synthesized exclusively in photosynthetic organisms. Despite extensive in vivo characterization of tocopherol functions in plants, their functions in the monocot model plant, rice, remain to be determined. In this study, transgenic rice plants constitutively silenced for homogentisate phytyltransferase (HPT) and tocopherol cyclase (TC) activity were generated. Silencing of HPT and TC resulted in up to a 98 % reduction in foliar tocopherol content relative to the control plants, which was also confirmed by transcript level analysis. When grown under normal conditions, HPT and TC transgenics showed no distinctive phenotype relative to the control plants, except a slight reduction in plant height and a slight decrease in the first leaf length. However, when exposed to high light at low temperatures, HPT and TC transgenics had a significantly higher leaf yellowing index than the control plants. The tocopherol-deficient plants decreased their total individual chlorophyll levels, their chlorophyll a/b ratio, and the maximum photochemical efficiency of photosystem II, whereas increased lipid peroxidation levels relative to the control plants. Tocopherol deficiency had no effect on ascorbate biosynthesis, but induced glutathione, antheraxanthin, and particularly zeaxanthin biosynthesis for compensation under stressful conditions. However, despite these compensation mechanisms, HPT and TC transgenics still exhibited altered phenotypes under high light at low temperatures. Therefore, it is suggested that tocopherols cannot be replaced and play an indispensable role in photoprotection in rice.
Nan, Songjian; Yongyu, L I; Baoming, L I; Wang, Chaoyuan; Cui, Xiaodong; Cao, Wei
2010-12-01
The use of different available chlorine concentrations (ACCs) of slightly acidic electrolyzed water (SAEW; 0.5 to 30 mg/liter), different treatment times, and different temperatures for inactivating Escherichia coli O157:H7 and Staphylococcus aureus was evaluated. The morphology of both pathogens also was analyzed with transmission electron microscopy. A 3-min treatment with SAEW (pH 6.0 to 6.5) at ACCs of 2 mg/liter for E. coli O157:H7 and 8 mg/liter for S. aureus resulted in 100% inactivation of two cultures (7.92- to 8.75-log reduction) at 25°C. The bactericidal activity of SAEW was independent of the treatment time and temperature at a higher ACC (P > 0.05). E. coli O157:H7 was much more sensitive than S. aureus to SAEW. The morphological damage to E. coli O157:H7 cells by SAEW was significantly greater than that to S. aureus cells. At an ACC as high as 30 mg/liter, E. coli O157:H7 cells were damaged, but S. aureus cells retained their structure and no cell wall damage or shrinkage was observed. SAEW with a near neutral pH may be a promising disinfectant for inactivation of foodborne pathogens.
High Strain Rate Testing of Welded DOP-26 Iridium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneibel, J. H.; Miller, R. G.; Carmichael, C. A.
The iridium alloy DOP-26 is used to produce Clad Vent Set cups that protect the radioactive fuel in radioisotope thermoelectric generators (RTGs) which provide electric power for spacecraft and rovers. In a previous study, the tensile properties of DOP-26 were measured over a wide range of strain rates and temperatures and reported in ORNL/TM-2007/81. While that study established the properties of the base material, the fabrication of the heat sources requires welding, and the mechanical properties of welded DOP-26 have not been extensively characterized in the past. Therefore, this study was undertaken to determine the mechanical properties of DOP-26 specimensmore » containing a transverse weld in the center of their gage sections. Tensile tests were performed at room temperature, 750, 900, and 1090°C and engineering strain rates of 1×10 -3 and 10 s -1. Room temperature testing was performed in air, while testing at elevated temperatures was performed in a vacuum better than 1×10 -4 Torr. The welded specimens had a significantly higher yield stress, by up to a factor of ~2, than the non-welded base material. The yield stress did not depend on the strain rate except at 1090°C, where it was slightly higher for the faster strain rate. The ultimate tensile stress, on the other hand, was significantly higher for the faster strain rate at temperatures of 750°C and above. At 750°C and above, the specimens deformed at 1×10 -3 s -1 showed pronounced necking resulting sometimes in perfect chisel-edge fracture. The specimens deformed at 10 s -1 exhibited this fracture behavior only at the highest test temperature, 1090°C. Fracture occurred usually in the fusion zone of the weld and was, in most cases, primarily intergranular.« less
NASA Astrophysics Data System (ADS)
Iadicicco, Agostino; Cutolo, A.; Campopiano, Stefania
2014-05-01
This paper reports on the fabrication of Long Period Gratings (LPGs) in hollow-core air-silica photonic bandgap fibers (HC-PCFs) by using pressure assisted Electrode Arc Discharge (EAD) technique. In particular, the fabrication procedure relies on the combined use of EAD step, to locally heat the HC fiber, and of a static pressure (slightly higher than the external one) inside the fiber holes, to modify the holes. Here, the experimental fabrication of LPG prototypes with different periods and lengths are discussed. And, the sensitivity of LPGs in HC-PCF to environmental parameters such as strain, temperature and static pressure are presented and discussed.
Cao, Vinh Duy; Salas-Bringas, Carlos; Schüller, Reidar Barfod; Szczotok, Anna M; Hiorth, Marianne; Carmona, Manuel; Rodriguez, Juan F; Kjøniksen, Anna-Lena
2018-01-01
The thermal and rheological properties of suspensions of microencapsulated phase change materials (MPCM) in glycerol were investigated. When the microcapsule concentration is raised, the heat storage capacity of the suspensions becomes higher and a slight decline in the thermal conductivity of the suspensions is observed. The temperature-dependent shear-thinning behaviour of the suspensions was found to be strongly affected by non-encapsulated phase change materials (PCM). Accordingly, the rheological properties of the MPCM suspensions could be described by the Cross model below the PCM melting point while a power law model best described the data above the PCM melting point. The MPCM suspensions are interesting for energy storage and heat transfer applications. However, the non-encapsulated PCM contributes to the agglomeration of the microcapsules, which can lead to higher pumping consumption and clogging of piping systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferris, F. Grant
2003-06-01
A suite of experiments were performed to investigate the partitioning of Sr2+ (to mimic the radionuclide 90Sr) between calcite and artificial groundwater in response to the hydrolysis of urea by Bacillus pasteurii under conditions that simulate in-situ aquifer conditions. Experiments were performed at 10, 15 and 20 C over 7 days in microcosms inoculated with B. pasteurii ATCC 11859 and containing an artificial groundwater and urea (AGW), and an AGW including a Sr contaminant treatment. During the experiments ammonium concentration from bacterial urea hydrolysis increased asymptotically, and derived rate constants (kurea) that were between 13 and 10 times greater atmore » 20 C, than at 15 and 10 C. Calcite precipitation was initiated after similar amounts of urea had been hydrolysed ({approx} 4.0 mmoles L-1) and a similar critical saturation state (mean Scritical = 53, variation = 20%) had been reached, independent of temperature and Sr treatment. Because of the positive relationship between urea hydrolysis rate and temperature, precipitation began by the end of day 1 at 20 C, and between days 1 and 2 at 15 and 10 C. The rate of calcite precipitation increased with, and was fundamentally controlled by S, irrespective of temperature, which connects the dissimilar patterns of urea hydrolysis and dissolved concentrations which are exhibited at the different experiments. The presence of Sr slightly slowed calcite precipitation rates at equivalent values of S, which may reflect the screening of active nucleation and crystal growth sites by Sr. Instantaneous heterogeneous partitioning coefficients (DSr) exhibited a positive association with calcite precipitation rates, but were greater at higher experimental temperatures at equivalent precipitation rates (20 C mean = 0.46; 15 C mean = 0.24; 10 C mean = 0.29). This is likely to reflect the large ionic radius of the Sr ion, which cannot fully co-ordinate relative to ions smaller than Ca at equilibrium conditions, but i s increasingly co-precipitated as all ions are indiscriminately incorporated at higher precipitation rates. The temperature dependence is likely to reflect the higher miscibility of ions in minerals, commonly observed in geochemical systems at higher temperatures.« less
NASA Astrophysics Data System (ADS)
Fat'yanov, O. V.; Asimow, P. D.
2014-05-01
Continuing our effort to obtain experimental constraints on the melting curve of MgO at 100-200 GPa, we extended our target preheating capability to 2300 K. Our new Mo capsule design holds a long MgO crystal in a controlled thermal gradient until impact by a Ta flyer launched at up to 7.5 km/s on the Caltech two-stage light-gas gun. Radiative shock temperatures and rarefaction overtake times were measured simultaneously by a 6-channel VIS/NIR pyrometer with 3 ns time resolution. The majority of our experiments showed smooth monotonic increases in MgO sound speed and shock temperature with pressure from 197 to 243 GPa. The measured temperatures as well as the slopes of the pressure dependences for both temperature and sound speed were in good agreement with those calculated numerically for the solid phase at our peak shock compression conditions. Most observed sound speeds, however, were ~800 m/s higher than those predicted by the model. A single unconfirmed data point at 239 GPa showed anomalously low temperature and sound speed, which could both be explained by partial melting in this experiment and could suggest that the Hugoniot of MgO preheated to 2300 K crosses its melting line just slightly above 240 GPa.
Montalvão, Diogo; Alçada, Francisca Sena; Braz Fernandes, Francisco Manuel; de Vilaverde-Correia, Sancho
2014-01-01
The purpose of this study is to understand how the M-Wire alloy conditions the mechanical flexibility of endodontic rotary files at body temperature.Two different rotary instruments, a Profile GT 20/.06 and a Profile GT Series X 20/.06, were selected due to their geometrical similarity and their different constituent alloy. GT series X files are made from M-Wire, a Ni-Ti alloy allegedly having higher flexibility at body temperature. Both files were analysed by X-Ray Diffraction and Differential Scanning Calorimetry to investigate phase transformations and the effects of working temperature on these different alloys. Mechanical behaviour was assessed by means of static bending and torsional Finite Element simulations, taking into account the nonlinear superelastic behaviour of Ni-Ti materials. It was found that GT files present austenitic phase at body temperature, whereas GT series X present R-phase at temperatures under 40°C with a potential for larger flexibility. For the same load conditions, simulations showed that the slight geometrical differences between the two files do not introduce great disagreement in the instruments' mechanical response. It was confirmed that M-Wire increases the instrument's flexibility, mainly due to the presence of R-phase at body temperature. PMID:24574937
Montalvão, Diogo; Alçada, Francisca Sena; Braz Fernandes, Francisco Manuel; de Vilaverde-Correia, Sancho
2014-01-01
The purpose of this study is to understand how the M-Wire alloy conditions the mechanical flexibility of endodontic rotary files at body temperature.Two different rotary instruments, a Profile GT 20/.06 and a Profile GT Series X 20/.06, were selected due to their geometrical similarity and their different constituent alloy. GT series X files are made from M-Wire, a Ni-Ti alloy allegedly having higher flexibility at body temperature. Both files were analysed by X-Ray Diffraction and Differential Scanning Calorimetry to investigate phase transformations and the effects of working temperature on these different alloys. Mechanical behaviour was assessed by means of static bending and torsional Finite Element simulations, taking into account the nonlinear superelastic behaviour of Ni-Ti materials. It was found that GT files present austenitic phase at body temperature, whereas GT series X present R-phase at temperatures under 40 °C with a potential for larger flexibility. For the same load conditions, simulations showed that the slight geometrical differences between the two files do not introduce great disagreement in the instruments' mechanical response. It was confirmed that M-Wire increases the instrument's flexibility, mainly due to the presence of R-phase at body temperature.
Mahdi, Rahman Ismael; Gan, W C; Abd Majid, W H
2014-10-14
Ferroelectric poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) copolymer 70/30 thin films are prepared by spin coating. The crystalline structure of these films is investigated by varying the annealing temperature from the ferroelectric phase to the paraelectric phase. A hot plate was used to produce a direct and an efficient annealing effect on the thin film. The dielectric, ferroelectric and pyroelectric properties of the P(VDF-TrFE) thin films are measured as a function of different annealing temperatures (80 to 140 °C). It was found that an annealing temperature of 100 °C (slightly above the Curie temperature, Tc) has induced a highly crystalline β phase with a rod-like crystal structure, as examined by X-ray. Such a crystal structure yields a high remanent polarization, Pr = 94 mC/m2, and pyroelectric constant, p = 24 μC/m2K. A higher annealing temperature exhibits an elongated needle-like crystal domain, resulting in a decrease in the crystalline structure and the functional electrical properties. This study revealed that highly crystalline P(VDF-TrFE) thin films could be induced at 100 °C by annealing the thin film with a simple and cheap method.
Abrin Toxicity and Bioavailability after Temperature and pH Treatment.
Tam, Christina C; Henderson, Thomas D; Stanker, Larry H; He, Xiaohua; Cheng, Luisa W
2017-10-13
Abrin, one of most potent toxins known to man, is derived from the rosary pea (jequirity pea), Abrus precatorius and is a potential bioterror weapon. The temperature and pH stability of abrin was evaluated with an in vitro cell free translation (CFT) assay, a Vero cell culture cytotoxicity assay, and an in vivo mouse bioassay. pH treatment of abrin had no detrimental effect on its stability and toxicity as seen either in vitro or in vivo. Abrin exposure to increasing temperatures did not completely abrogate protein translation. In both the cell culture cytotoxicity model and the mouse bioassay, abrin's toxic effects were completely abrogated if the toxin was exposed to temperatures of 74 °C or higher. In the cell culture model, 63 °C-treated abrin had a 30% reduction in cytotoxicity which was validated in the in vivo mouse bioassay with all mice dying but with a slight time-to-death delay as compared to the non-treated abrin control. Since temperature inactivation did not affect abrin's ability to inhibit protein synthesis (A-chain), we hypothesize that high temperature treatment affected abrin's ability to bind to cellular receptors (affecting B-chain). Our results confirm the absolute need to validate in vitro cytotoxicity assays with in vivo mouse bioassays.
Abrin Toxicity and Bioavailability after Temperature and pH Treatment
Tam, Christina C.; Henderson, Thomas D.; Stanker, Larry H.; He, Xiaohua; Cheng, Luisa W.
2017-01-01
Abrin, one of most potent toxins known to man, is derived from the rosary pea (jequirity pea), Abrus precatorius and is a potential bioterror weapon. The temperature and pH stability of abrin was evaluated with an in vitro cell free translation (CFT) assay, a Vero cell culture cytotoxicity assay, and an in vivo mouse bioassay. pH treatment of abrin had no detrimental effect on its stability and toxicity as seen either in vitro or in vivo. Abrin exposure to increasing temperatures did not completely abrogate protein translation. In both the cell culture cytotoxicity model and the mouse bioassay, abrin’s toxic effects were completely abrogated if the toxin was exposed to temperatures of 74 °C or higher. In the cell culture model, 63 °C-treated abrin had a 30% reduction in cytotoxicity which was validated in the in vivo mouse bioassay with all mice dying but with a slight time-to-death delay as compared to the non-treated abrin control. Since temperature inactivation did not affect abrin’s ability to inhibit protein synthesis (A-chain), we hypothesize that high temperature treatment affected abrin’s ability to bind to cellular receptors (affecting B-chain). Our results confirm the absolute need to validate in vitro cytotoxicity assays with in vivo mouse bioassays. PMID:29027937
[Heated humidification during CPAP with and without tube insulation].
Rühle, K-H; Domanski, U; Schröder, M; Franke, K J; Nilius, G
2010-05-01
Patients with obstructive sleep apnoea syndrome (OSAS) under continuous positive pressure (CPAP) often complain about drying-up of the throat and nasal mucosa. In many cases the problem can be eliminated with a heated humidifier (WLB). Especially in a cold environment condensation forming on cooling of the air in the tube and the mask can be observed. To avoid this, some patients use an insulating tube covering. We investigated the effect of temperature (T) and relative humidity (rH) of the environment, the ventilation pressure, mask leaks, insulation of tubing on the T and rH% of the delivered air at the end of the tube or in the mask in OSAS patients. All measurements were performed with a conventional WLB (S8, Resmed Fa) and a temperature and humidity sensor (Fa Testo, Lenzkirch). 8 patients with OSAS were examined during the day at a room temperature of 16.4 degrees C. The temperature at the outlet of the WLB increased with a higher ambient temperature. Through isolation with a hose cover the temperature drop in the tube was reduced by 2.3 degrees C. By tube insulation a mean increase in temperature between 1.6 and 1.0 C during normal breathing in dependence on the leakage flow in the mask was found. Due to additional insulation with a tube cover the mask temperature can be increased, albeit slightly, and the formation of condensation is reduced.
Khelil-Arfa, H; Faverdin, P; Boudon, A
2014-01-01
The aim of this study was to quantify the effect of the interaction between 2 constant ambient temperatures [thermoneutrality (TN; 15°C) and high temperature (HT; 28°C)] and 2 levels of Na bicarbonate supplementation [calculated to provide diet Na contents of 0.20%DM (Na-) and 0.50%DM (Na+)] on water partitioning in dairy cows. Treatments were compared on 4 dry and 4mid-lactation Holstein cows according to 2 Latin squares (1 for each physiological stage) over the course of 4 periods of 15d. Diets consisted of a total mixed ration based on maize silage. Dry cows were restricted to their protein and energy requirements, whereas lactating cows were fed ad libitum. The daily average temperature-humidity index was 59.4 for TN and 73.2 for HT. Lactating and dry cows had higher vaginal temperatures at HT than at TN, but the increase was more pronounced in lactating cows (+1.05 vs. +0.12°C for vaginal temperature, respectively). Dry matter intake (DMI) of lactating cows decreased by 2.3kg/d at HT. Free water intake (FWI) and estimated volume of water lost to evaporation increased at HT in both lactating and dry cows; no interactions were observed between temperature and physiological stage. When expressed as a proportion of DMI, the increase in evaporation that occurred with increasing temperature was completely compensated for by an increase in FWI for both physiological stages. The urinary water excretion increased slightly at HT in lactating cows but not in dry cows, which may be related to the low chloride content of the offered diet. High Na supplementation increased DMI slightly in lactating cows, but milk yield was not affected. Sodium supplementation did not limit the decrease in DMI observed in lactating cows at HT; this observation is likely due to the high diet electrolyte balance of the offered diets. Sodium supplementation increased FWI in lactating cows and urinary flow in both physiological states. The interaction between ambient temperature and Na supplementation did not affect either water intake or water evaporation. This study demonstrates that the development of predictive models for water intake that include environmental variables could be based on mechanistic models of evaporation. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, Chaoliang; Cao, Sheng; Yan, Shiguang
Pyroelectric response mechanism of Ba{sub 0.70}Sr{sub 0.30}TiO{sub 3} ceramics under dielectric bolometer (DB) mode was investigated by dielectric and pyroelectric properties measurement. The variations of total, intrinsic, and induced pyroelectric coefficients (p{sub tot}, p{sub int}, p{sub ind}) with temperatures and bias fields were analyzed. p{sub int} plays the dominant role to p{sub tot} through most of the temperature range and p{sub ind} will be slightly higher than p{sub int} above T{sub 0}. The essence of the enhancing effect of DC bias field on pyroelectric coefficient can be attributed to the high value of p{sub int}. This mechanism is useful formore » the pyroelectric materials (DB mode) applications.« less
Microgravity Smoldering Combustion on the USML-1 Space Shuttle Mission
NASA Technical Reports Server (NTRS)
Stocker, Dennis P.; Olson, Sandra L.; Torero, Jose L.; Fernandez-Pello, A Carlos
1994-01-01
Preliminary results from an experimental study of the smolder characteristics of a porous combustible material (flexible polyurethane foam) in normal and microgravity are presented. The experiments, limited in fuel sample size and power available for ignition, show that the smolder process was primarily controlled by heat losses from the reaction to the surrounding environment. In microgravity, the reduced heat losses due to the absence of natural convection result in only slightly higher temperatures in the quiescent microgravity test than in normal gravity but a dramatically larger production of combustion products in all microgravity tests. Particularly significant is the proportionately larger amount of carbon monoxide and light organic compounds produced in microgravity, despite comparable temperatures and similar char patterns. This excessive production of fuel-rich combustion products may be a generic characteristic of smoldering polyurethane in microgravity, with an associated increase in the toxic hazard of smolder in spacecraft.
Microgravity smoldering combustion on the USML-1 Space Shuttle mission
NASA Technical Reports Server (NTRS)
Stocker, Dennis P.; Olson, Sandra L.; Torero, Jose L.; Fernandez-Pello, A. Carlos
1995-01-01
Preliminary results from an experimental study of the smolder characteristics of a porous combustible material (flexible polyurethane foam) in normal and microgravity are presented. The experiments, limited in fuel sample size and power available for ignition, show that the smolder process was primarily controlled by heat losses from the reaction to the surrounding environment In microgravity, the reduced heat losses due to the absence of natural convection result in only slightly higher temperatures in the quiescent microgravity test than in normal gravity, but a dramatically larger production of combustion products in all microgravity tests. Particularly significant is the proportionately larger amount of carbon monoxide and light organic compounds produced in microgravity, despite comparable temperatures and similar char patterns. This excessive production of fuel-rich combustion products may be a generic characteristic of smoldering polyurethane in microgravity, with an associated increase in the toxic hazard of smolder in spacecraft.
Raman study of the thermal stability of HgBa 2CaCu 2O 6+δ and HgBa 2Ca 2Cu 3O 8+δ
NASA Astrophysics Data System (ADS)
Chang, H.; He, Z. H.; Meng, R. L.; Xue, Y. Y.; Chu, C. W.
1995-02-01
We studied the thermal stability of HgBa 2CaCu 2O 6+δ and HgBa 2Ca 2Cu 3O 8+δ at varying laser irradiation power. Each compound has two Raman bands around 570 and 590 cm -1 which are assigned to the vibrations of the interstitial oxygen in HgO δ layers and the apical oxygen in BaO layers, respectively. The 590 cm -1 band shifts position slightly with irradiation, and both the intensity and position of the 570 cm -1 band vary significantly with the laser power. The occupation factor of the interstitial oxygen is sensitive to the annealing temperature. At higher temperatures (550-600°C), both compounds decompose into various (Ba,Cu)-oxides such as Ba 1- xCa xCuO 2.
Temperature and strain characterization of long period gratings in air guiding fiber
NASA Astrophysics Data System (ADS)
Iadicicco, Agostino; Cutolo, Antonello; Cusano, Andrea; Campopiano, Stefania
2013-05-01
This paper reports on the fabrication of Long Period Gratings (LPGs) in hollow-core air-silica photonic bandgap fibers by using pressure assisted Electrode Arc Discharge (EAD) technique. In particular, the fabrication procedure relies on the combined use of EAD step, to locally heat the HC fiber, and of a static pressure (slightly higher than the external one) inside the fiber holes, to modify the holes. This procedure permits to preserve the holey structure of the host fiber avoiding any hole collapsing and it enables a local effective refractive index change due to the size and shape modifications of core and cladding holes. Periodically repeated EAD treatments permit the fabrication of LPGs based devices in hollow core optical fibers enabling new functionalities hitherto not possible. Here, the experimental fabrication of LPG prototypes with different periods and lengths are discussed. And, the HC-LPGs sensitivity to environmental parameters such as strain and temperature are investigated.
First-order reversal curve of the magnetostructural phase transition in FeTe
Frampton, M. K.; Crocker, J.; Gilbert, D. A.; ...
2017-06-05
We apply the first-order reversal curve (FORC) method, adapted from studies of ferromagnetic materials, to the magnetostructural phase transition of Fe 1+yTe. FORC measurements reveal two features in the hysteretic phase transition, even in samples where traditional temperature measurements display only a single transition. For Fe 1.13Te, the influence of magnetic field suggests that the main feature is primarily structural while a smaller, slightly higher-temperature transition is magnetic in origin. By contrast, Fe 1.03Te has a single transition which shows a uniform response to magnetic field, indicating a stronger coupling of the magnetic and structural phase transitions. We also introducemore » uniaxial stress, which spreads the distribution width without changing the underlying energy barrier of the transformation. Finally, the work shows how FORC can help disentangle the roles of the magnetic and structural phase transitions in FeTe.« less
Further studies on gold alloys used in fabrication of porcelain-fused-to-metal restorations.
Civjan, S; Huget, E F; Dvivedi, N; Cosner, H J
1975-03-01
Composition, microstructure, castability, mechanical properties, and heat treatment characteristics of two gold-palladium-silver-based alloys were studied. The materials exhibited compositional as well as microstructural differences. Clinically acceptable castings could not be obtained when manufacturers' recommended casting temperatures were used. Ultimate tensile strength, yield strength, modulus of elasticity, and Brinell hardness values for the alloys were comparable. The elastic limit of Cameo, however, was significantly higher than that of vivo-star. Maximum rehardening of annealed castings occurred on reheat treatment at temperatures between 1,200 and 1,300 F. As-cast specimens, however, were not heat hardenable. The sequence of heat treatments used in the application of porcelain reduced slightly the hardness of both alloys. Hardness of the metal substructures was not increased by return of porcelain-coated specimens to a 1,250 F oven for final heat treatment.
NASA Astrophysics Data System (ADS)
Morizet, Y.; Blundy, J.; McDade, P.
2003-04-01
During subduction, the slab undergoes several processes such as dehydration and partial melting at pressures of 2-3 GPa and temperatures of 600-900^oC. Under these conditions, there is little or no distinction between melt and fluid phases (Bureau &Keppler, 1999, EPSL 165, 187-196). To investigate the behaviour of trace elements under these conditions we have carried out partitioning experiments in the system CMASH at 2.2 GPa, 700-920^oC. CMAS starting compositions were doped with trace elements, and loaded together with quartz and water into a Pt capsule, which was in turn contained within a Ni-lined Ti capsule. Run durations were 3-7 days. A run at 810^oC produced euhedral calcic garnet, zoisite, quartz, hydrous melt and tiny clinopyroxene interpreted as quench crystals. LA-ICPMS and SIMS were used to quantify trace element concentrations of the phases. Garnet-melt D's for the HREE decrease from ˜300 for Lu to less than 0.2 for La. DSc and D_V are less than 5, consistent with the large X-site dimension in the garnet. DLi DSr and DBa are considerably less than the adjacent REE. There is a very slight negative partitioning anomaly for Zr and Hf relative to Nd and Sm; DHf is slightly greater than DZr. D_U < DTh, due largely to the oxidizing conditions of the experiment (NNO). The most striking result is very high D's for Nb and Ta: 18±10 and 5.4±1.9 (LA-ICPMS), 25.8±11.9 and 6.6±1.3 (SIMS) for Nb and Ta respectively. These are considerably larger than any previously measured (at much higher temperatures). The observed partitioning behaviour is consistent with the large temperature dependence for DREE proposed by Van Westrenen et al. (2001, Contrib Min Pet, 142, 219-234), and an even larger temperature dependence for DNb and DTa. These preliminary results suggest that garnet (rather than rutile) may play the key role in controlling the Nb and Ta budget of arc magmas and the Nb/Ta ratio of residual eclogites. For example, modelling of eclogite melting, using a N-MORB source and the new D's, shows that a residue with Nb > 2 ppm, 19 < Nb/Ta < 37 (as proposed by Rudnick et al., 2000, Science 287, 278-281), can be produced by ˜30% partial melting. Slightly lower melt fractions (˜15%) reproduce their proposed Nb/La (>1.2).
Immersion freezing of ambient dust using WISDOM setup
NASA Astrophysics Data System (ADS)
Rudich, Y.; Reicher, N.
2017-12-01
A small subset of the atmospheric particles has the ability to induce ice formation. Among them are mineral dust particles that originate from arid regions. Mineral dust particles are internally mixed with various types of minerals such as kaolinite and illite from the clay minerals, quartz and feldspar. The mineral composition of the dust particles determine their freezing efficiency. Much attention was given to the clay group, as they are the most common minerals transported in the atmosphere. Recently, much focus has been directed to the feldspars, since its ice efficiency is higher at warmer temperatures, and as such is may dominate freezing in mixed phase clouds. Moreover, it was found that samples that contained higher content of feldspar had higher nucleation activity. In this study, we examine the immersion freezing of ambient dust particles that were collected in Rehovot, Israel (31.9N, 34.8E about 80m AMSL), during dust storms from the Sahara and the Syrian deserts. The size-segregated dust particles were collected on cyclopore polycarbonate filters using a Micro-orifice Uniform deposit Impactor (MOUDI). Freezing experiments were done using the WeIzmann Supercooled Droplets Observation on Microarray set (WISDOM). The particles were extracted from the filters by sonication and subsequently immersed in 100μm droplets that were cooled in a rate of 1°CPM to -37°C (homogenous freezing threshold). Investigation of the particles mineralogy was also performed. We observed freezing onset at 253K for particles of different diameters (0.3, 1.0, 1.8 and 3.2 μm). Most of the droplets were completely frozen by 243K. The number of active sites ranged from 108 to 1012 per m-2. Droplets that contained larger particles (higher surface area) froze at slightly warmer temperatures and contained slightly higher number of active sites. The freezing behavior fits well with measurements of K-feldspar particles and this may suggest that the feldspar dominated the dust freezing. In addition, our results agree with the scaled freezing of K-feldspar obtained by Atkinson et al. (2013). The results provide further evidence that feldspar mineral dominates glaciation in mixed phase clouds. In the talk, we will describe the experiments, new results and their atmospheric significance
Modelling daily water temperature from air temperature for the Missouri River.
Zhu, Senlin; Nyarko, Emmanuel Karlo; Hadzima-Nyarko, Marijana
2018-01-01
The bio-chemical and physical characteristics of a river are directly affected by water temperature, which thereby affects the overall health of aquatic ecosystems. It is a complex problem to accurately estimate water temperature. Modelling of river water temperature is usually based on a suitable mathematical model and field measurements of various atmospheric factors. In this article, the air-water temperature relationship of the Missouri River is investigated by developing three different machine learning models (Artificial Neural Network (ANN), Gaussian Process Regression (GPR), and Bootstrap Aggregated Decision Trees (BA-DT)). Standard models (linear regression, non-linear regression, and stochastic models) are also developed and compared to machine learning models. Analyzing the three standard models, the stochastic model clearly outperforms the standard linear model and nonlinear model. All the three machine learning models have comparable results and outperform the stochastic model, with GPR having slightly better results for stations No. 2 and 3, while BA-DT has slightly better results for station No. 1. The machine learning models are very effective tools which can be used for the prediction of daily river temperature.
Mu, Chang-cheng; Zhang, Bo-wen; Han, Li-dong; Yu, Li-li; Gu, Han
2011-04-01
By the methods of static chamber and gas chromatography, this paper studied the effects of fire disturbance on the seasonal dynamics and source/sink functions of CH4, CO2 and N2O emissions from Betula platyphylla-forested wetland as well as their relations with environmental factors in Xiaoxing' an Mountains of China. In growth season, slight fire disturbance on the wetland induced an increase of air temperature and ground surface temperature by 1.8-3.9 degrees C and a decrease of water table by 6.3 cm; while heavy fire disturbance led to an increase of air temperature and 0-40 cm soil temperature by 1.4-3.8 degrees C and a decrease of water table by 33.9 cm. Under slight or no fire disturbance, the CH4 was absorbed by the wetland soil in spring but emitted in summer and autumn; under heavy fire disturbance, the CH4 was absorbed in spring and summer but emitted in autumn. The CO2 flux had a seasonal variation of summer > spring = autumn under no fire disturbance, but of summer > autumn > spring under fire disturbance; and the N2O flux varied in the order of spring > summer > autumn under no fire disturbance, but of autumn > spring > summer under slight fire disturbance, and of summer > spring = autumn under heavy fire disturbance. At unburned site, the CO2 flux was significantly positively correlated with air temperature and ground surface temperature; at slightly burned site, the CO2 flux had significant positive correlations with air temperature, 5-10 cm soil temperature, and water table; at heavily burned sites, there was a significant positive correlation between CO2 flux and 5-40 cm soil temperature. Fire disturbance made the CH4 emission increased by 169.5% at lightly burned site or turned into weak CH4 sink at heavily burned site, and made the CO2 and N2O emissions and the global warming potential (GWP) at burned sites decreased by 21.2% -34.7%, 65.6% -95.8%, and 22.9% -36.6% respectively, compared with those at unburned site. Therefore, fire disturbance could decrease the greenhouse gases emission from Betula platyphylla-forested wetland, and planned firing could be properly implemented in wetland management.
Chen, Lizhi; Wang, Lei; Wang, Herong; Sun, Ruhao; You, Lili; Zheng, Yusheng; Yuan, Yijun
2018-01-01
In higher plants, ω-3 fatty acid desaturases are the key enzymes in the biosynthesis of alpha-linolenic acid (18:3), which plays key roles in plant metabolism as a structural component of both storage and membrane lipids. Here, the first ω-3 fatty acid desaturase gene was identified and characterized from oil palm. The bioinformatic analysis indicated it encodes a temperature-sensitive chloroplast ω-3 fatty acid desaturase, designated as EgFAD8. The expression analysis revealed that EgFAD8 is highly expressed in the oil palm leaves, when compared with the expression in the mesocarp. The heterologous expression of EgFAD8 in yeast resulted in the production of a novel fatty acid 18:3 (about 0.27%), when fed with 18:2 in the induction culture. Furthermore, to detect whether EgFAD8 could be induced by the environment stress, we detected the expression efficiency of the EgFAD8 promoter in transgenic Arabidopsis treated with low temperature and darkness, respectively. The results indicated that the promoter of EgFAD8 gene could be significantly induced by low temperature and slightly induced by darkness. These results reveal the function of EgFAD8 and the feature of its promoter from oil palm fruits, which will be useful for understanding the fuction and regulation of plastidial ω-3 fatty acid desaturases in higher plants. PMID:29698515
Recovery of SO2 and MgO from By-Products of MgO Wet Flue Gas Desulfurization.
Yan, Liyun; Lu, Xiaofeng; Wang, Quanhai; Guo, Qiang
2014-11-01
An industrial demonstration unit using natural gas as a heat source was built to calcine the by-products of MgO wet flue gas desulfurization from power plants; influencing factors on the SO 2 content in calciner gas were comprehensively analyzed; and an advantageous recycling condition of MgO and SO 2 from by-products was summarized. Results showed that the SO 2 content in the calciner gas was increased by more than 10 times under a lower excess air coefficient, a higher feed rate, a lower crystal water in by-products, and a higher feed port position. For the tests conducted under the excess air coefficient above and below one, the effect of the furnace temperature on the SO 2 content in the calciner gas was reversed. Results of activity analysis indicate that particles of MgO generated under the calcination temperature of 900-1,000°C had a high activity. In contrast, due to the slight sintering, MgO generated under the calcination temperature of 1,100°C had a low activity. To recycle SO 2 as well as MgO, a temperature range of 900-927°C for TE103 is proposed. These studies will prompt the desulfurization market diversification, reduce the sulfur's dependence on imports for making sulfuric acid, be meaningful to balance the usage of the natural resource in China, and be regarded as a reference for the development of this technology for other similar developing countries.
Charoenrat, Theppanya; Antimanon, Sompot; Kocharin, Kanokarn; Tanapongpipat, Sutipa; Roongsawang, Niran
2016-12-01
The yeast Ogataea thermomethanolica has recently emerged as a potential host for heterologous protein expression at elevated temperature. To evaluate the feasibility of O. thermomethanolica as heterologous host in large-scale fermentation, constitutive production of fungal phytase was investigated in fed-batch fermentation. The effect of different temperatures, substrate feeding strategies, and carbon sources on phytase production was investigated. It was found that O. thermomethanolica can grow in the temperature up to 40 °C and optimal at 34 °C. However, the maximum phytase production was observed at 30 °C and slightly decreased at 34 °C. The DOT stat control was the most efficient feeding strategy to obtain high cell density and avoid by-product formation. The table sugar can be used as an alternative substrate for phytase production in O. thermomethanolica. The highest phytase activity (134 U/mL) was obtained from table sugar at 34 °C which was 20-fold higher than batch culture (5.7 U/mL). At a higher cultivation temperature of 38 °C, table sugar can be used as a low-cost substrate for the production of phytase which was expressed with an acceptable yield (85 U/mL). Lastly, the results from this study reveal the industrial favorable benefits of employing O. thermomethanolica as a host for heterologous protein production.
Human thermal physiological and psychological responses under different heating environments.
Wang, Zhaojun; Ning, Haoran; Ji, Yuchen; Hou, Juan; He, Yanan
2015-08-01
Anecdotal evidence suggests that many residents of severely cold areas of China who use floor heating (FH) systems feel warmer but drier compared to those using radiant heating (RH) systems. However, this phenomenon has not been verified experimentally. In order to validate the empirical hypothesis, and research the differences of human physiological and psychological responses in these two asymmetrical heating environments, an experiment was designed to mimic FH and RH systems. The subjects participating in the experiment were volunteer college-students. During the experiment, the indoor air temperature, air speed, relative humidity, globe temperature, and inner surface temperatures were measured, and subjects' heart rate, blood pressure and skin temperatures were recorded. The subjects were required to fill in questionnaires about their thermal responses during testing. The results showed that the subjects' skin temperatures, heart rate and blood pressure were significantly affected by the type of heating environment. Ankle temperature had greatest impact on overall thermal comfort relative to other body parts, and a slightly cool FH condition was the most pleasurable environment for sedentary subjects. The overall thermal sensation, comfort and acceptability of FH were higher than that of RH. However, the subjects of FH felt drier than that of RH, although the relative humidity in FH environments was higher than that of the RH environment. In future environmental design, the thermal comfort of the ankles should be scrutinized, and a FH cool condition is recommended as the most comfortable thermal environment for office workers. Consequently, large amounts of heating energy could be saved in this area in the winter. The results of this study may lead to more efficient energy use for office or home heating systems. Copyright © 2015 Elsevier Ltd. All rights reserved.
Method of solution preparation of polyolefin class polymers for electrospinning processing included
NASA Technical Reports Server (NTRS)
Rabolt, John F. (Inventor); Givens, Steven R. (Inventor); Lee, Keun-Hyung (Inventor)
2011-01-01
A process to make a polyolefin fiber which has the following steps: mixing at least one polyolefin into a solution at room temperature or a slightly elevated temperature to form a polymer solution and electrospinning at room temperature said polymer solution to form a fiber.
The local impact of climate change on the alpine mountains Zugspitze and Sonnblick
NASA Astrophysics Data System (ADS)
Kaspar, Severin; Philipp, Andreas; Jacobeit, Jucundus
2017-04-01
In the past decades, the alpine region indicates a high sensitivity to the impact of climate change, as one can see in a higher increase in surface air temperature in the alps compared to the surrounding area. Beside the effect on temperature, a change on the components of the hydrological cycle may be expected, which can be critical for mankind in many areas, where the alpine region provides water security or ensures economical income due to, for example, winter tourism. Changes in certain meteorological variables will also have effects on the alpine ecosystem itself. In this study, some of these quantities and their development under changing climate boundary conditions are examined for the meteorological stations Zugspitze and Sonnblick. Temperature, precipitation, wind and humidity were evaluated at the Zugspitze station, which is located in the northern part of the alps, temperature and precipitation at the Sonnblick Observatory, which is located in the center of the Alps. For the impact analysis, a statistical downscaling (SD) approach was developed to find a link between the large scale atmosphere and the respective local effect. The SD framework is based on the artificial neural network (ANN) method. Models are calibrated for each season on a daily time scale using the 20th century reanalysis dataset as a substitute for atmospheric observational data. The developed ANN setups and configurations show promising results, e.g. up to 90% of explained variance (R2) for temperature and up to 60 % R2 for precipitation and relative humidity, while wind strength reaches with about 30% the lowest performance values. The identified ANN setups are afterwards driven with scenario data from five general circulation models (GCMs) from CMIP5 and additionally with two further realizations of one of the GCMs. As representative concentration pathways, two radiative forcings, 4.5 and 8.5 Watts, are selected. All future projections show a continuing increase in temperature throughout the 21st century for both stations and all seasons. The impact on precipitation is more differentiated: While for all seasons of the Zugspitze station, increased precipitation is simulated (highest in winter), the Sonnblick station shows a decrease in summer. Relative humidity at the Zugspitze is expected to decrease slightly throughout the year and wind strength at the Zugspitze station is projected with a slight increase in winter and spring and a slight decrease in summer and autumn. Further analyses will consider the synoptic interpretation of the interdependency between large scale circulation and the respective local impact, to figure out the cause of the local climatic behavior in the 21st century. Therefore, classification algorithms will be applied as reference class forecast models for a quantitative evaluation.
Temperature-activity relationships in Meligethes aeneus: implications for pest management
Ferguson, Andrew W; Nevard, Lucy M; Clark, Suzanne J; Cook, Samantha M
2015-01-01
BACKGROUND Pollen beetle (Meligethes aeneus F.) management in oilseed rape (Brassica napus L.) has become an urgent issue in the light of insecticide resistance. Risk prediction advice has relied upon flight temperature thresholds, while risk assessment uses simple economic thresholds. However, there is variation in the reported temperature of migration, and economic thresholds vary widely across Europe, probably owing to climatic factors interacting with beetle activity and plant compensation for damage. The effect of temperature on flight, feeding and oviposition activity of M. aeneus was examined in controlled conditions. RESULTS Escape from a release vial was taken as evidence of flight and was supported by video observations. The propensity to fly followed a sigmoid temperature–response curve between 6 and 23 °C; the 10, 25 and 50% flight temperature thresholds were 12.0–12.5 °C, 13.6–14.2 °C and 15.5–16.2 °C, respectively. Thresholds were slightly higher in the second of two flight bioassays, suggesting an effect of beetle age. Strong positive relationships were found between temperature (6–20 °C) and the rates of feeding and oviposition on flower buds of oilseed rape. CONCLUSION These temperature relationships could be used to improve M. aeneus migration risk assessment, refine weather-based decision support systems and modulate damage thresholds according to rates of bud damage. © 2014 Society of Chemical Industry PMID:25052810
Basu, Sohini; Sen, Srikanta
2013-02-25
Structure and dynamics both are known to be important for the activity of a protein. A fundamental question is whether a thermophilic protein and its mesophilic homologue exhibit similar dynamics at their respective optimal growth temperatures. We have addressed this question by performing molecular dynamics (MD) simulations of a natural mesophilic-thermophilic homologue pair at their respective optimal growth temperatures to compare their structural, dynamical, and solvent properties. The MD simulations were done in explicit aqueous solvent under periodic boundary and constant pressure and temperature (CPT) conditions and continued for 10.0 ns using the same protocol for the two proteins, excepting the temperatures. The trajectories were analyzed to compare the properties of the two proteins. Results indicated that the dynamical behaviors of the two proteins at the respective optimal growth temperatures were remarkably similar. For the common residues in the thermophilic protein, the rms fluctuations have a general trend to be slightly higher compared to that in the mesophilic counterpart. Lindemann parameter values indicated that only a few residues exhibited solid-like dynamics while the protein as a whole appeared as a molten globule in each case. Interestingly, the water-water interaction was found to be strikingly similar in spite of the difference in temperatures while, the protein-water interaction was significantly different in the two simulations.
Reply to Rhines and Huybers: Changes in the Frequency of Extreme Summer Heat
NASA Technical Reports Server (NTRS)
Hansen, James; Sato, Makiko; Ruedy, Reto
2013-01-01
Rhines and Huybers are correct that the decreasing number of measurement stations in recent years contributed slightly to our calculated increase of extreme summer mean temperature anomalies. However, the increased frequency of extreme heat anomalies is accounted for mainly by (i) higher mean temperature of recent decades relative to the base period 1951-1980, and (ii) the continuing upward temperature trend during recent decades. The effect of decreasing stations is shown by comparing our prior analysis with results using only stations with data records in both the base period and recent years (Fig. 1). The distribution is noisier, and the area with temperature anomaly exceeding three SDs during 2001-2011 decreases from 9.6 to 9.3% for the reduced number of stations (1,886 rather than 6,147), but our conclusions are not changed qualitatively. The temperature anomaly distribution shifts to the right and broadens because it is defined relative to a fixed (1951-1980) base period, during which global temperatures were within the Holocene range. We argue on the basis of accelerating ice loss from Greenland and Antarctica and rapidly rising sea level (now exceeding 3 mm/y or 3 m per millennium) that temperatures in the early 21st century are already above the Holocene range, and thus use of a base period preceding the rapid warming of the past three decades has merit.
Chodchoey, Kanokwan; Verduyn, Cornelis
2012-01-01
Aurantiochytrium mangrovei Sk-02 was grown in a medium containing glucose (40 g/l), yeast extract (10 g/L) and sea salts (15 g/L) at temperatures ranging from 12 to 35°C. The fastest growth (µmax= 0.15 h(-1)) and highest fatty acid content of 415 mg/g-dry cell weight were found in the cells grown at 30°C. However, the cells grown at 12°C showed the highest percentage of polyunsaturated fatty acid (PUFA) (48.6% of total fatty acid). The percentage of docosahexaenoic acid (DHA) and pentadecanoic acid (C15:0) decreased with an increase in the growth temperature, whereas, palmitic acid (C16:0), stearic acid (C18:0) and DPA (C22:5n6) increased with an increase in the growth temperature. The composition of the major lipid class (%w/w) was slightly affected by the growth temperature. The fluidity of the organelle membrane or intracellular lipid (by DPH measurement) decreased with an increase in the growth temperatures, while the plasma membrane fluidity (by TMA-DPH measurement) could still maintain its fluidity in a wide range of temperatures (15 - 37°C). Furthermore, the distribution of DHA was found to be higher (36 - 54%) in phospholipid (PL) as compared to neutral lipid (NL) (20 - 41%).
Pollutant emissions from flat-flame burners at high pressures
NASA Technical Reports Server (NTRS)
Maahs, H. G.; Miller, I. M.
1980-01-01
Maximum flame temperatures and pollutant emission measurements for NOx, CO, and UHC (unburned hydrocarbons) are reported for premixed methane air flat flames at constant total mass flow rate over the pressure range from 1.9 to 30 atm and for equivalence ratios from 0.84 to 1.12. For any given pressure, maxima typically occur in both the temperature and NOx emissions curves slightly to the lean side of stoichiometric conditions. The UHC emissions show minima at roughly the same equivalence ratios. The CO emissions, however, increase continually with increasing equivalence ratio. Flame temperature and NOx emissions decrease with increasing pressure, while the opposite is true for the CO and UHC emissions. The NOx data correlate reasonably well as a function of flame temperature only. Four flameholders, differing only slightly, were used. In general, the temperature and emissions data from these four flameholders are similar, but some differences also exist. These differences appear to be related to minor variations in the condition of the flameholder surfaces.
Exact quantum scattering calculation of transport properties for free radicals: OH(X2Π)-helium.
Dagdigian, Paul J; Alexander, Millard H
2012-09-07
Transport properties for OH-He are computed through quantum scattering calculations using the ab initio potential energy surfaces determined by Lee et al. [J. Chem. Phys. 113, 5736 (2000)]. To gauge the importance of the open-shell character of OH and the anisotropy of the potential on the transport properties, including the collision integrals Ω((1,1)) and Ω((2,2)), as well as the diffusion coefficient, calculations were performed with the full potential, with the difference potential V(dif) set to zero, and with only the spherical average of the potential. Slight differences (3%-5%) in the computed diffusion coefficient were found between the values obtained using the full potential and the truncated potentials. The computed diffusion coefficients were compared to recent experimental measurements and those computed with a Lennard-Jones (LJ) 12-6 potential. The values obtained with the full potential were slightly higher than the experimental values. The LJ 12-6 potential was found to underestimate the variation in temperature as compared to that obtained using the full OH-He ab initio potential.
De Visscher, A; Piepers, S; Haesebrouck, F; De Vliegher, S
2016-02-01
Coagulase-negative staphylococci (CNS) are the main cause of bovine intramammary infections and are also abundantly present in extramammary habitats such as teat apices. Teat apex colonization (TAC) with CNS has already been explored in lactating dairy cows at the species level, whereas this is not true for dry cows and end-term heifers. Therefore, the aim of this observational study was to describe CNS TAC in nonlactating dairy cows and end-term heifers in Flemish dairy herds and to identify associated risk factors at the herd, cow, and quarter level. All CNS were molecularly identified to the species level using transfer RNA intergenic spacer PCR (tDNA-PCR) and sequencing of the 16S rRNA gene, allowing for species-specific statistical analyses using multivariable, multilevel logistic regression. Staphylococcus devriesei, Staphylococcus chromogenes, Staphylococcus haemolyticus, and Staphylococcus equorum were the most frequently isolated species. Staphylococcus chromogenes was the sole species colonizing teat apices of cows and heifers in all herds, whereas large between-herd differences were observed for the other species. Teat apices of red and white Holstein Friesians, of quarters dried off without an internal teat sealer, and swabbed in months with lower precipitation and higher ambient temperature were significantly more likely to be colonized by S. devriesei. Slightly dirty teat apices and teat apices swabbed in months with lower precipitation had higher odds of being colonized by S. chromogenes, whereas teat apices sampled in months with lower precipitation and higher ambient temperature were more likely to be colonized by S. haemolyticus. Dirty teat apices and teat apices swabbed in months with lower ambient temperature in combination with low precipitation had higher odds of being colonized by S. equorum. Diverse factors explaining CNS TAC, yet mostly related to humidity, ambient temperature, and hygiene, substantiate differences in epidemiological behavior and ecology between species. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Thermal convection of liquid metal in a long inclined cylinder
NASA Astrophysics Data System (ADS)
Teimurazov, Andrei; Frick, Peter
2017-11-01
The turbulent convection of low-Prandtl-number fluids (Pr=0.0083 ) in a long cylindrical cell, heated at one end face and cooled at the other, inclined to the vertical at angle β , 0 ≤β ≤π /2 with step π /20 , is studied numerically by solving the Oberbeck-Boussinesq equations with the large-eddy-simulation approach for small-scale turbulence. The cylinder length is L =5 D , where D is the diameter. The Rayleigh number, determined by the cylinder diameter, is of the order of 5 ×106 . We show that the structure of the flow strongly depends on the inclination angle. A stable large-scale circulation (LSC) slightly disturbed by small-scale turbulence exists in the horizontal cylinder. The deviation from a horizontal position provides strong amplification of both LSC and small-scale turbulence. The energy of turbulent pulsations increases monotonically with decreasing inclination angle β , matching the energy of the LSC at β ≈π /5 . The intensity of the LSC has a wide, almost flat, maximum for an inclined cylinder and slumps approaching the vertical position, in which the LSC vanishes. The dependence of the Nusselt number on the inclination angle has a maximum at β ≈7 π /20 and generally follows the dependence of the intensity of LSC on the inclination. This indicates that the total heat transport is highly determined by LSC. We examine the applicability of idealized thermal boundary conditions (BCs) for modeling a real experiment with liquid sodium flows. Therefore, the simulations are done with two types of temperature BCs: fixed face temperature and fixed heat flux. The intensity of the LSC is slightly higher in the latter case and leads to a corresponding increase of the Nusselt number and enhancement of temperature pulsations.
Calcination Conditions on the Properties of Porous TiO2 Film
NASA Astrophysics Data System (ADS)
Zhang, Wenjie; Pei, Xiaobei; Bai, Jiawei; He, Hongbo
2014-03-01
Porous TiO2 films were deposited on SiO2 precoated glass-slides by sol-gel method using PEG1000 as template. The strongest XRD diffraction peak at 2θ = 25.3° is attributed to [101] plane of anatase TiO2 in the film. The increases of calcination temperature and time lead to stronger diffraction peak intensity. High transmittance and blue shift of light absorption edge are the properties of the film prepared at high calcination temperature. The average pore size of the films increases with the increasing calcination temperature as the result of TiO2 crystalline particles growing up and aggregation, accompanied with higher specific surface area. Photocatalytic activity of porous TiO2 films increases with the increasing calcination temperature. The light absorption edge of the films slightly moves to longer wavelength region along with the increasing calcination time. The mesoporous film calcinated at 500 °C for 2 h has the highest transmittance, the maximum surface area, and the maximum total pore volume. Consequently, the optimum degradation activity is achieved on the porous TiO2 film calcinated at 500 °C for 2 h.
Enhanced 99Tc retention in glass waste form using Tc(IV)-incorporated Fe minerals
Um, Wooyong; Luksic, Steven A.; Wang, Guohui; ...
2017-09-07
We present that technetium ( 99Tc) immobilization by doping into iron oxide mineral phases may alleviate the problems with Tc volatility during vitrification of nuclear waste. Because reduced Tc, Tc(IV), substitutes for Fe(III) in the crystal structure by a process of Tc reduction from Tc(VII) to Tc(IV) followed by co-precipitation of Fe oxide minerals, two Tc-incorporated Fe minerals (Tc-goethite and Tc-magnetite/maghemite) were prepared and tested for Tc retention in glass melt samples at temperatures between 600 and 1000 °C. After being cooled, the solid glass specimens prepared at different temperatures at 600, 800, and 1000 °C were analyzed for Tcmore » oxidation state using Tc K-edge XANES. In most samples, Tc was partially (<60%) oxidized from Tc(IV) to Tc(VII) as the melt temperature increased up to 600 °C. However, most of Tc(IV) was completely (>95%) oxidized to Tc(VII) at temperature above 800 °C. Tc retention in glass melt samples prepared using Tc-incorporated Fe minerals were slightly higher (~10%) than in glass prepared using KTcO4 because of limited and delayed Tc volatilization.« less
NASA Technical Reports Server (NTRS)
Messenger, S. R.; Walters, R. J.; Summers, G. P.
1993-01-01
Deep level transient spectroscopy was used to monitor thermal annealing of trapping centers in electron irradiated n(+)p InP junctions grown by metalorganic chemical vapor deposition, at temperatures ranging from 500 up to 650K. Special emphasis is given to the behavior of the minority carrier (electron) traps EA (0.24 eV), EC (0.12 eV), and ED (0.31 eV) which have received considerably less attention than the majority carrier (hole) traps H3, H4, and H5, although this work does extend the annealing behavior of the hole traps to higher temperatures than previously reported. It is found that H5 begins to anneal above 500K and is completely removed by 630K. The electron traps begin to anneal above 540K and are reduced to about half intensity by 630K. Although they each have slightly different annealing temperatures, EA, EC, and ED are all removed by 650K. A new hole trap called H3'(0.33 eV) grows as the other traps anneal and is the only trap remaining at 650K. This annealing behavior is much different than that reported for diffused junctions.
Enhanced 99Tc retention in glass waste form using Tc(IV)-incorporated Fe minerals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Um, Wooyong; Luksic, Steven A.; Wang, Guohui
We present that technetium ( 99Tc) immobilization by doping into iron oxide mineral phases may alleviate the problems with Tc volatility during vitrification of nuclear waste. Because reduced Tc, Tc(IV), substitutes for Fe(III) in the crystal structure by a process of Tc reduction from Tc(VII) to Tc(IV) followed by co-precipitation of Fe oxide minerals, two Tc-incorporated Fe minerals (Tc-goethite and Tc-magnetite/maghemite) were prepared and tested for Tc retention in glass melt samples at temperatures between 600 and 1000 °C. After being cooled, the solid glass specimens prepared at different temperatures at 600, 800, and 1000 °C were analyzed for Tcmore » oxidation state using Tc K-edge XANES. In most samples, Tc was partially (<60%) oxidized from Tc(IV) to Tc(VII) as the melt temperature increased up to 600 °C. However, most of Tc(IV) was completely (>95%) oxidized to Tc(VII) at temperature above 800 °C. Tc retention in glass melt samples prepared using Tc-incorporated Fe minerals were slightly higher (~10%) than in glass prepared using KTcO4 because of limited and delayed Tc volatilization.« less
NASA Astrophysics Data System (ADS)
Dérerová, Jana; Kohút, Igor; Radwan, Anwar H.; Bielik, Miroslav
2017-12-01
The temperature model of the lithosphere along profile passing through the Red Sea region has been derived using 2D integrated geophysical modelling method. Using the extrapolation of failure criteria, lithology and calculated temperature distribution, we have constructed the rheological model of the lithosphere in the area. We have calculated the strength distribution in the lithosphere and constructed the strength envelopes for both compressional and extensional regimes. The obtained results indicate that the strength steadily decreases from the Western desert through the Eastern desert towards the Red Sea where it reaches its minimum for both compressional and extensional regime. Maximum strength can be observed in the Western desert where the largest strength reaches values of about 250-300 MPa within the upper crust on the boundary between upper and lower crust. In the Eastern desert we observe slightly decreased strength with max values about 200-250 MPa within upper crust within 15 km with compression being dominant. These results suggest mostly rigid deformation in the region or Western and Eastern desert. In the Red Sea, the strength rapidly decreases to its minimum suggesting ductile processes as a result of higher temperatures.
Andrew, Nigel R; Hart, Robert A; Jung, Myung-Pyo; Hemmings, Zac; Terblanche, John S
2013-09-01
Insects in temperate regions are predicted to be at low risk of climate change relative to tropical species. However, these assumptions have generally been poorly examined in all regions, and such forecasting fails to account for microclimatic variation and behavioural optimisation. Here, we test how a population of the dominant ant species, Iridomyrmex purpureus, from temperate Australia responds to thermal stress. We show that ants regularly forage for short periods (minutes) at soil temperatures well above their upper thermal limits (upper lethal temperature = 45.8 ± 1.3°C; CT(max) = 46.1°C) determined over slightly longer periods (hours) and do not show any signs of a classic thermal performance curve in voluntary locomotion across soil surface temperatures of 18.6-57°C (equating to a body temperature of 24.5-43.1°C). Although ants were present all year round, and dynamically altered several aspects of their thermal biology to cope with low temperatures and seasonal variation, temperature-dependence of running speed remained invariant and ants were unable to elevate high temperature tolerance using plastic responses. Measurements of microclimate temperature were higher than ant body temperatures during the hottest part of the day, but exhibited a stronger relationship with each other than air temperatures from the closest weather station. Generally close associations of ant activity and performance with microclimatic conditions, possibly to maximise foraging times, suggest I. purpureus displays highly opportunistic thermal responses and readily adjusts behaviour to cope with high trail temperatures. Increasing frequency or duration of high temperatures is therefore likely to result in an immediate reduction in foraging efficiency. In summary, these results suggest that (1) soil-dwelling temperate insect populations may be at higher risks of thermal stress with increased frequency or duration of high temperatures resulting from climate change than previously thought, however, behavioural cues may be able to compensate to some extent; and (2) indices of climate change-related thermal stress, warming tolerance and thermal safety margin, are strongly influenced by the scale of climate metrics employed. Copyright © 2013 Elsevier Ltd. All rights reserved.
Thermostability of bovine submaxillary mucin (BSM) in bulk solution and at a sliding interface.
Madsen, Jan Busk; Pakkanen, Kirsi I; Lee, Seunghwan
2014-06-15
Thermostability of bovine submaxillary mucin (BSM) was studied in terms of its structure, hydrodynamic size, surface adsorption, and lubricating properties in the temperature range of 5-85°C. The overall random coil structure of BSM showed a gradual loosening with increasing temperature as characterized by circular dichroism (CD) spectroscopy, but this change was fully reversible upon lowering temperature. Extended heating up to 120 min at 80°C did not make any appreciable changes in the structure of BSM when it was cooled to room temperature. The hydrodynamic size of BSM, as studied by dynamic light scattering (DLS), showed a slight increase after heating at high temperature (80°C). Optical waveguide lightmode spectroscopy (OWLS) studies showed facile adsorption of BSM onto poly(dimethylsiloxane) (PDMS) surface (>180 ng/cm(2)) at room temperature due to its amphiphilic characteristics. Adsorbed mass of BSM was noticeably reduced after heating at 80°C, possibly resulting from its aggregation. BSM showed excellent lubricity at self-mated sliding contacts between PDMS at room temperature or lower (friction coefficient≈0.02), even when BSM solution was pre-heated up to 120 min at 80°C. Gradual degradation of lubricity of BSM was observed with increasing temperature, but it was also reversibly recovered with decreasing temperature. Structural and functional stability of BSM against heating is proposed to originate from heavy glycosylation and lack of higher degree of protein structure in BSM. Copyright © 2014 Elsevier Inc. All rights reserved.
Morphology, surface temperatures, and northern limits of columnar cacti in the Sonoran Desert
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nobel, P.S.
1980-02-01
Interspecific morphological differences and intraspecific morphological changes with latitude were evaluated to help examine the distributional ranges of Carnegiea gigantea, Lemaireocereus thurberi, Lophocereus schottii, Pachycereus pecten-aboriginum, and P. pringlei in the Sonoran Desert (US and Mexico). A computer model, which predicted the average surface temperature of the stem within 1/sup 0/C of that measured hourly throughout a 24-h period, was particularly useful in studying the thermal relations of the stem apex, where the lowest surface temperature occurred. Simulated increases in stem diameter raised the minimum apical temperature for C. gigantea and may help account for the extension of its rangemore » to higher latitudes than the other species studied. However, diameter increases led to a slight decrease in minimum apical temperatures for Lophocereus schottii. The immature stems of L. schottii are morphologically distinct from the mature stems, which caused minimum apical temperatures to be 1.6/sup 0/C lower for the immature stems under given environmental conditions; thus, freezing damage to the immature stems could limit the northward extension of the range of this species. As the apical pubescence in the simulations was increased up to the normal amount (10 mm), the minimum apical temperature for the stem of C. gigantea increased 2.4/sup 0/C. Simulated increases in spine shading of the apexalso raised the minimum apical temperatures, again indicating the influence of morphological features on the temperature of the meristematic region.« less
Is propensity to obesity associated with the diurnal pattern of core body temperature?
Hynd, P I; Czerwinski, V H; McWhorter, T J
2014-02-01
Obesity affects more than half a billion people worldwide, but the underlying causes remain unresolved. It has been proposed that propensity to obesity may be associated with differences between individuals in metabolic efficiency and in the energy used for homeothermy. It has also been suggested that obese-prone individuals differ in their responsiveness to circadian rhythms. We investigated both these hypotheses by measuring the core body temperature at regular and frequent intervals over a diurnal cycle, using indigestible temperature loggers in two breeds of canines known to differ in propensity to obesity, but prior to divergence in fatness. Greyhounds (obesity-resistant) and Labradors (obesity-prone) were fed indigestible temperature loggers. Gastrointestinal temperature was recorded at 10-min intervals for the period of transit of the logger. Diet, body condition score, activity level and environment were similar for both groups. Energy digestibility was also measured. The mean core body temperature in obesity-resistant dogs (38.27 °C) was slightly higher (P<0.001) than in obesity-prone dogs (38.18 °C) and the former had a greater variation (P<0.001) in 24h circadian core temperature. There were no differences in diet digestibility. Canines differing in propensity to obesity, but prior to its onset, differed little in mean core temperature, supporting similar findings in already-obese and lean humans. Obese-prone dogs were less variable in daily core temperature fluctuations, suggestive of a degree of circadian decoupling.
Combined Non-Target Effects of Insecticide and High Temperature on the Parasitoid Bracon nigricans
Abbes, Khaled; Biondi, Antonio; Kurtulus, Alican; Ricupero, Michele; Russo, Agatino; Siscaro, Gaetano; Chermiti, Brahim; Zappalà, Lucia
2015-01-01
We studied the acute toxicity and the sublethal effects, on reproduction and host-killing activity, of four widely used insecticides on the generalist parasitoid Bracon nigricans (Hymenoptera: Braconidae), a natural enemy of the invasive tomato pest, Tuta absoluta (Lepidoptera: Gelechiidae). Laboratory bioassays were conducted applying maximum insecticide label rates at three constant temperatures, 25, 35 and 40°C, considered as regular, high and very high, respectively. Data on female survival and offspring production were used to calculate population growth indexes as a measure of population recovery after pesticide exposure. Spinetoram caused 80% mortality at 25°C and 100% at higher temperatures, while spinosad caused 100% mortality under all temperature regimes. Cyantraniliprole was slightly toxic to B. nigricans adults in terms of acute toxicity at the three temperatures, while it did not cause any sublethal effects in egg-laying and host-killing activities. The interaction between the two tested factors (insecticide and temperature) significantly influenced the number of eggs laid by the parasitoid, which was the lowest in the case of females exposed to chlorantraniliprole at 35°C. Furthermore, significantly lower B. nigricans demographic growth indexes were estimated for all the insecticides under all temperature conditions, with the exception of chlorantraniliprole at 25°C. Our findings highlight an interaction between high temperatures and insecticide exposure, which suggests a need for including natural stressors, such as temperature, in pesticide risk assessments procedures. PMID:26382245
Chemistry and temperature-assisted dehydrogenation of C60H30 molecules on TiO2(110) surfaces
NASA Astrophysics Data System (ADS)
Sánchez-Sánchez, Carlos; Martínez, José Ignacio; Lanzilotto, Valeria; Biddau, Giulio; Gómez-Lor, Berta; Pérez, Rubén; Floreano, Luca; López, María Francisca; Martín-Gago, José Ángel
2013-10-01
The thermal induced on-surface chemistry of large polycyclic aromatic hydrocarbons (PAHs) deposited on dielectric substrates is very rich and complex. We evidence temperature-assisted (cyclo)dehydrogenation reactions for C60H30 molecules and the subsequent bottom-up formation of assembled nanostructures, such as nanodomes, on the TiO2(110) surface. To this aim we have deposited, under ultra-high vacuum, a submonolayer coverage of C60H30 and studied, by a combination of experimental techniques (STM, XPS and NEXAFS) and theoretical methods, the different chemical on-surface interaction stages induced by the increasing temperature. We show that room temperature adsorbed molecules exhibit a weak interaction and freely diffuse on the surface, as previously reported for other aromatics. Nevertheless, a slight annealing induces a transition from this (meta)stable configuration into chemisorbed molecules. This adsorbate-surface interaction deforms the C60H30 molecular structure and quenches surface diffusion. Higher annealing temperatures lead to partial dehydrogenation, in which the molecule loses some of the hydrogen atoms and LUMO levels spread in the gap inducing a net total energy gain. Further annealing, up to around 750 K, leads to complete dehydrogenation. At these temperatures the fully dehydrogenated molecules link between them in a bottom-up coupling, forming nanodomes or fullerene-like monodisperse species readily on the dielectric surface. This work opens the door to the use of on-surface chemistry to generate new bottom-up tailored structures directly on high-K dielectric surfaces.The thermal induced on-surface chemistry of large polycyclic aromatic hydrocarbons (PAHs) deposited on dielectric substrates is very rich and complex. We evidence temperature-assisted (cyclo)dehydrogenation reactions for C60H30 molecules and the subsequent bottom-up formation of assembled nanostructures, such as nanodomes, on the TiO2(110) surface. To this aim we have deposited, under ultra-high vacuum, a submonolayer coverage of C60H30 and studied, by a combination of experimental techniques (STM, XPS and NEXAFS) and theoretical methods, the different chemical on-surface interaction stages induced by the increasing temperature. We show that room temperature adsorbed molecules exhibit a weak interaction and freely diffuse on the surface, as previously reported for other aromatics. Nevertheless, a slight annealing induces a transition from this (meta)stable configuration into chemisorbed molecules. This adsorbate-surface interaction deforms the C60H30 molecular structure and quenches surface diffusion. Higher annealing temperatures lead to partial dehydrogenation, in which the molecule loses some of the hydrogen atoms and LUMO levels spread in the gap inducing a net total energy gain. Further annealing, up to around 750 K, leads to complete dehydrogenation. At these temperatures the fully dehydrogenated molecules link between them in a bottom-up coupling, forming nanodomes or fullerene-like monodisperse species readily on the dielectric surface. This work opens the door to the use of on-surface chemistry to generate new bottom-up tailored structures directly on high-K dielectric surfaces. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr03706a
Temperature-Dependent Electrical Conductivity of GeTe-Based RF Switches
2015-03-31
Short, high temperature pulses result in a melt -quench cycle, amorphizing the GeTe and leaving the switch in the electrically insulating OFF state...Longer, lower temperature pulses result in the recrystallization of the GeTe, leaving the switch in the electrically conductive ON state. The...shown to vary only weakly with temperature. OFF-state S-parameters also exhibit slight temperature variation, with an inflection point of ~175
Magnetic Properties of Fe-49Co-2V Alloy and Pure Fe at Room and Elevated Temperatures
NASA Technical Reports Server (NTRS)
De Groh, Henry C., III; Geng, Steven M.; Niedra, Janis M.; Hofer, Richard R.
2018-01-01
The National Aeronautics and Space Administration (NASA) has a need for soft magnetic materials for fission power and ion propulsion systems. In this work the magnetic properties of the soft magnetic materials Hiperco 50 (Fe-49wt%Cr-2V) and CMI-C (commercially pure magnetic iron) were examined at various temperatures up to 600 C. Toroidal Hiperco 50 samples were made from stacks of 0.35 mm thick sheet, toroidal CMI-C specimens were machined out of solid bar stock, and both were heat treated prior to testing. The magnetic properties of a Hiperco 50 sample were measured at various temperatures up to 600 C and then again after returning to room temperature; the magnetic properties of CMI-C were tested at temperatures up to 400 C. For Hiperco 50 coercivity decreased as temperature increased, and remained low upon returning to room temperature; maximum permeability improved (increased) with increasing temperature and was dramatically improved upon returning to room temperature; remanence was not significantly affected by temperature; flux density at H = 0.1 kA/m increased slightly with increasing temperature, and was about 20% higher upon returning to room temperature; flux density at H = 0.5 kA/m was insensitive to temperature. It appears that the properties of Hiperco 50 improved with increasing temperature due to grain growth. There was no significant magnetic property difference between annealed and aged CMI-C iron material; permeability tended to decrease with increasing temperature; the approximate decline in the permeability at 400 C compared to room temperature was 30%; saturation flux density, B(sub S), was approximately equal for all temperatures below 400 C; B(sub S) was lower at 400 C.
Role of curcumin in the conversion of asparagine into acrylamide during heating.
Hamzalıoğlu, Aytül; Mogol, Burçe A; Lumaga, Roberta Barone; Fogliano, Vincenzo; Gökmen, Vural
2013-06-01
This study aimed to investigate the ability of curcumin to convert asparagine into acrylamide during heating at different temperatures. Binary and ternary model systems of asparagine-curcumin and asparagine-curcumin-fructose were used to determine the role of curcumin on acrylamide formation in competitive and uncompetitive reaction conditions. The results indicated that curcumin could potentially contribute to acrylamide formation under long-term heating conditions as long as asparagine was present in the medium. The amount of acrylamide formed in the ternary system was slightly higher than in the binary system during heating (p < 0.05), because of the higher concentrations of carbonyl compounds initially available. The kinetic trends were similar in both model systems evidencing that fructose reacted with asparagine more rapidly than curcumin. The data reveal that acrylamide formation in the temperature range of 150-200°C obeys Arrhenius law with activation energy of 79.1 kJ/mole. Data of this work showed the possibility that antioxidants having a carbonyl compound can react directly with ASN leading to acrylamide. The addition of antioxidants to foods may increase the formation of acrylamide upon long-term heating if free sugar concentration is low and ASN concentration is relatively high.
Formation of (HCOO – )(H 2 SO 4 ) Anion Clusters: Violation of Gas-Phase Acidity Predictions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Gao-Lei; Wang, Xue-Bin; Valiev, Marat
2017-08-10
Sulfuric acid is commonly known to be a strong acid and, by all counts, should readily donate its proton to formate, which has much higher proton affinity. This conventional wisdom is challenged in this work, where temperature-dependent negative ion photoelectron spectroscopy (NIPES) and theoretical studies demonstrate the existence of (HCOO?)(H2SO4) pair at the energy slightly below the conventional (HCOOH)(HSO4?) structure. Analysis of quantum-mechanical calculations indicates that large proton affinity barrier (~36 kcal/mol), favoring proton transfer to formate, is offset by the gain in inter-molecular interaction energy between HCOO? and H2SO4 through the formation of two strong hydrogen bonds. However, thismore » stabilization comes with severe entropic penalty, requiring the two species in the precise align-ment. As a result, the population of (HCOO?)(H2SO4) drops significantly at higher temperatures, rendering (HCOOH)(HSO4?) to be the dominant species. This phe-nomenon is consistent with the NIPES data, which shows depletion in the spectra assigned to (HCOO?)(H2SO4), and has also been verified by ab initio molecular dynamics simulations.« less
Characterization of pectic polysaccharides extracted from apple pomace by hot-compressed water.
Wang, Xin; Lü, Xin
2014-02-15
Response surface methodology (RSM) was used to optimize the extraction of pectic polysaccharides from apple pomace by hot-compressed water, by which the optimum levels of the parameters were obtained as follows: extraction temperature 140 °C, extraction time 5 min, S:W ratio 1:14. Compared with commercial pectin, the Mw, galacturonic acid content, DM and protein of the extracted pectic polysaccharides were lower while ash content and neutral sugars were higher. The endothermic transition temperature and fusion heat of the extracted pectic polysaccharides was lower than commercial one according to DSC analysis. For its rheological properties, it was found that the viscosity of the extracted pectic polysaccharides solution was slightly lower than commercial pectin at lower shear rate region while it decreased sharply when the shear rate increased. Besides, both G' and G" moduli of the extracted pectic polysaccharides were lower than the commercial pectin's possibly because of weaker polymer chain interaction, which was also reflected in gel textural properties. However, the extracted pectic polysaccharides showed higher in vitro antioxidant capability and inhibitory effect on HT-29 colon adenocarcinoma cells than commercial pectin. Copyright © 2013 Elsevier Ltd. All rights reserved.
Spectroscopic studies of triethoxysilane sol-gel and coating process.
Li, Ying-Sing; Ba, Abdul
2008-10-01
Silica sol-gels have been prepared under different conditions using triethoxysilane (TES) as precursor. The prepared sol-gels have been used to coat aluminum for corrosion protection. Vibrational assignments have been made for most vibration bands of TES, TES sol-gel, TES sol-gel-coated aluminum and xerogel. It has been noticed that air moisture may have helped the hydrolysis of the thin coating films. Xerogels have been obtained from the sol-gel under different temperature conditions and the resulting samples have been characterized by using infrared and Raman spectroscopic methods. IR data indicate that the sol-gel process is incomplete under the ambient conditions although an aqueous condition can have slightly improved the process. Two nonequivalent silicon atoms have been identified from the collected 29Si NMR spectra for the sol-gel, supporting the result derived from the IR data. The frequency of Si-H bending vibration has been found to be more sensitive to the skeletal structure than that of the Si-H stretching vibration. A higher temperature condition could favor the progression of hydrolysis and condensation. A temperature higher than 300 degrees C would cause sample decomposition without seriously damaging the silica network. From infrared intensity measurements and thermo-gravimetric analyses, the fractions of incomplete hydrolysis and condensation species have been estimated to be 4% and 3%, respectively. Electrochemical data have shown that the sol-gel coating significantly improves the corrosion protection properties of aluminum.
High Pressure/Temperature Metal Silicate Partitioning of Tungsten
NASA Technical Reports Server (NTRS)
Shofner, G. A.; Danielson, L.; Righter, K.; Campbell, A. J.
2010-01-01
The behavior of chemical elements during metal/silicate segregation and their resulting distribution in Earth's mantle and core provide insight into core formation processes. Experimental determination of partition coefficients allows calculations of element distributions that can be compared to accepted values of element abundances in the silicate (mantle) and metallic (core) portions of the Earth. Tungsten (W) is a moderately siderophile element and thus preferentially partitions into metal versus silicate under many planetary conditions. The partitioning behavior has been shown to vary with temperature, silicate composition, oxygen fugacity, and pressure. Most of the previous work on W partitioning has been conducted at 1-bar conditions or at relatively low pressures, i.e. <10 GPa, and in two cases at or near 20 GPa. According to those data, the stronger influences on the distribution coefficient of W are temperature, composition, and oxygen fugacity with a relatively slight influence in pressure. Predictions based on extrapolation of existing data and parameterizations suggest an increased pressured dependence on metal/ silicate partitioning of W at higher pressures 5. However, the dependence on pressure is not as well constrained as T, fO2, and silicate composition. This poses a problem because proposed equilibration pressures for core formation range from 27 to 50 GPa, falling well outside the experimental range, therefore requiring exptrapolation of a parametereized model. Higher pressure data are needed to improve our understanding of W partitioning at these more extreme conditions.
Na/Ca Ratio in Large Benthic Foraminifera as a Novel Proxy for Past Ocean Calcium
NASA Astrophysics Data System (ADS)
Rosenthal, Y.; Hauzer, H.; Evans, D.; Erez, J.
2017-12-01
Culture experiments with Operculina ammonoides (a large symbiont bearing benthic foraminifer and an extant relative of the Eocene Nummulites) were carried out varying seawater [Ca], temperature and salinity. The main results of these experiments are: 1. Na/Ca in these foraminifera shells varies with the Na/Ca ratio in the seawater 2. Na/Ca shows small, non-systematic variations with temperature (22-28 ºC) that are within our analytical precision. 3. Na/Ca in the shells show very low changes, increasing linearly with salinity. The sensitivity to salinity is very low compared to that caused by changes of Na/Ca in seawater. Over the seawater experimental range of Na/Ca (10-18 mM), a change of 5 ppt salinity induced a slight Na/Ca increase comparable to the analytical error for Na, or that caused by temperature. Initial reconstructions of seawater [Ca], based on these calibrations, generally agree well with previous models and reconstructions confirming that seawater [Ca] concentrations were substantially higher during the early-mid Cenozoic than today.
NASA Technical Reports Server (NTRS)
Stecura, S.
1976-01-01
Oxygen was added to T-111 (Ta-8W-2Hf, wt. %) at 820 and 990 C at an oxygen pressure of about 0.0003 torr. The technique employed permitted predetermined and reproducible doping of T-111 up to 3.0 at. % oxygen. Based on the temperature dependence of the doping reaction, it is concluded that the initial rates of oxygen pickup are probably controlled by solution of oxygen into the T-111 lattice. Although hafnium oxides are more stable than those of tantalum or tungsten, analyses of extracted residues indicate that the latter oxides predominate in the as-doped specimens, presumably because of the higher concentrations of tantalum and tungsten in the alloy. However, high-temperature annealing promotes gettering of dissolved oxygen and of other oxides to form hafnium oxides. Small amounts of tantalum and tungsten oxides were still present after high-temperature annealing. Tungsten oxide (WO3) volatilizes slightly from the surface of T-111 at 990 C. The vaporization of WO3 has no apparent affect on the doping reaction.
Hydrazine-Assisted Formation of Indium Phosphide (InP)-Based Nanowires and Core-Shell Composites
Patzke, Greta R.; Kontic, Roman; Shiolashvili, Zeinab; Makhatadze, Nino; Jishiashvili, David
2012-01-01
Indium phosphide nanowires (InP NWs) are accessible at 440 °C from a novel vapor phase deposition approach from crystalline InP sources in hydrazine atmospheres containing 3 mol % H2O. Uniform zinc blende (ZB) InP NWs with diameters around 20 nm and lengths up to several tens of micrometers are preferably deposited on Si substrates. InP particle sizes further increase with the deposition temperature. The straightforward protocol was extended on the one-step formation of new core-shell InP–Ga NWs from mixed InP/Ga source materials. Composite nanocables with diameters below 20 nm and shells of amorphous gallium oxide are obtained at low deposition temperatures around 350 °C. Furthermore, InP/Zn sources afford InP NWs with amorphous Zn/P/O-coatings at slightly higher temperatures (400 °C) from analogous setups. At 450 °C, the smooth outer layer of InP-Zn NWs is transformed into bead-shaped coatings. The novel combinations of the key semiconductor InP with isotropic insulator shell materials open up interesting application perspectives in nanoelectronics. PMID:28809296
Factors that impact the stability of vitamin C at intermediate temperatures in a food matrix.
Herbig, Anna-Lena; Renard, Catherine M G C
2017-04-01
The study comprises a systematic and quantitative evaluation of potential intrinsic and extrinsic factors that impact vitamin C degradation in a real food matrix. The supernatant of centrifuged apple purée was fortified in vitamin C, and degradation was followed without stirring. Model discrimination indicated better fit for the zero order model than the first order model which was hence chosen for determination of rate constants. pH influenced strongly vitamin C degradation in citrate-phosphate buffer but not in the apple purée serum. To get an idea of the impact of the food matrix, stability in apple purée serum was compared with that in carrot purée. In the latter, stability was slightly higher. Vitamin C degradation rates were not influenced by its initial concentration. The temperature effect was only marked in the temperature range 40-60°C. In the range 60-80°C, filling height of tubes had the greatest impact. Copyright © 2016 Elsevier Ltd. All rights reserved.
Electric modulation of conduction in multiferroic Ni-doped GaFeO3 ceramics
NASA Astrophysics Data System (ADS)
Ghani, Awais; Yang, Sen; Rajput, S. S.; Ahmed, S.; Murtaza, Adil; Zhou, Chao; Yu, Zhonghai; Zhang, Yin; Song, Xiaoping; Ren, Xiaobing
2018-06-01
In this work, the effects of Ni substitution on the electrical leakage and multiferroic properties of GaFeO3 were examined. Structural analysis of grown ceramics using x-ray diffraction and Raman shows that all ceramics have pure phases with an orthorhombic structure and space group. Ni substitutions slightly modify lattice parameters and induce lattice distortion within the same crystalline structure. It is observed that with increasing Ni-content up to 0.10, the magnetic transition temperature () increases from 196 K to 407 K. Ni-doped samples showed better ferroelectric properties and a drastic reduction in leakage current (~three orders of magnitude) at room temperature. Enhanced characteristics behavior is observed for 10% Ni substitution (GaFe0.9Ni0.1O3) and higher substitution leads to deterioration of properties with a larger leakage current. It is proposed that the role of Ni substitution can reduce hopping between Fe+3 and Fe+2 as well as suppressing the oxygen vacancies. This work would open new possibilities for integrating polycrystalline GaFeO3 at room temperature for magnetoelectric applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vos, Martijn F. J.; Macco, Bart; Thissen, Nick F. W.
2016-01-15
Molybdenum oxide (MoO{sub x}) films have been deposited by atomic layer deposition using bis(tert-butylimido)-bis(dimethylamido)molybdenum and oxygen plasma, within a temperature range of 50–350 °C. Amorphous film growth was observed between 50 and 200 °C at a growth per cycle (GPC) around 0.80 Å. For deposition temperatures of 250 °C and higher, a transition to polycrystalline growth was observed, accompanied by an increase in GPC up to 1.88 Å. For all deposition temperatures the O/Mo ratio was found to be just below three, indicating the films were slightly substoichiometric with respect to MoO{sub 3} and contained oxygen vacancies. The high purity of the films was demonstratedmore » in the absence of detectable C and N contamination in Rutherford backscattering measurements, and a H content varying between 3 and 11 at. % measured with elastic recoil detection. In addition to the chemical composition, the optical properties are reported as well.« less
NASA Technical Reports Server (NTRS)
Kaciuba-Uscilko, Hanna; Brzezinska, Zofia; Greenleaf, John E.
1976-01-01
Effects of thyroxine on temperature and metabolism during exercise were studied in dogs after beta-adrenergic blockade. Dogs performed 60 min treadmill exercise of moderate intensity 5 and 72 h following thyroxine injected s. c. in a single dose of 0.1 mg/kg b.w. Thyroxine increased significantly the lipolytic response to exercise as well as blood lactate (LA) concentrations and rectal temperature (T(sub re)) during exercise as early as 5 h following the hormone administration. The changes became more pronounced 72 h after the injection. At rest T(sub re), blood FFA (free fatty acid) and LA levels in the thyroxine-treated dogs did not differ from the control values, and blood glucose was slightly, but significantly higher. Propranolol given intravenously in a dose of 0.25 mg/kg at 30 min of the exercise performed 72 h following thyroxine injection abolished the plasma FFA rise, and inhibited to a certain extent increases in T(sub re) and blood LA concentrations during the next 30 min of exercise.
Addition of oxygen to and distribution of oxides in tantalum alloy T-111 at low concentrations
NASA Technical Reports Server (NTRS)
Stecura, S.
1975-01-01
Oxygen was added at 820 and 990 C at an oxygen pressure of about .0003 torr. The technique permitted predetermined and reproducible oxygen doping of the tantalum alloy (T-111). Based on the temperature dependency of the doping reaction, it was concluded that the initial rates of oxygen pickup are probably controlled by solution of oxygen into the T-111 lattice. Although hafnium oxides are more stable than those of tantalum or tungsten, analyses of extracted residues indicate that the tantalum and tungsten oxides predominate in the as-doped specimens, presumably because of the higher concentrations of tantalum and tungsten in the alloy. However, high-temperature annealing promotes gettering of dissolved oxygen and oxygen from other oxides to form hafnium oxides. Small amounts of tantalum and tungsten oxides were still present after high temperature annealing. Tungsten oxide (WO3) volatilizes slightly from the surface of T-111 at 990 C but not at 820 C. The vaporization of WO3 has no apparent effect on the doping reaction.
Hydrazine-Assisted Formation of Indium Phosphide (InP)-Based Nanowires and Core-Shell Composites.
Patzke, Greta R; Kontic, Roman; Shiolashvili, Zeinab; Makhatadze, Nino; Jishiashvili, David
2012-12-27
Indium phosphide nanowires (InP NWs) are accessible at 440 °C from a novel vapor phase deposition approach from crystalline InP sources in hydrazine atmospheres containing 3 mol % H₂O. Uniform zinc blende (ZB) InP NWs with diameters around 20 nm and lengths up to several tens of micrometers are preferably deposited on Si substrates. InP particle sizes further increase with the deposition temperature. The straightforward protocol was extended on the one-step formation of new core-shell InP-Ga NWs from mixed InP/Ga source materials. Composite nanocables with diameters below 20 nm and shells of amorphous gallium oxide are obtained at low deposition temperatures around 350 °C. Furthermore, InP/Zn sources afford InP NWs with amorphous Zn/P/O-coatings at slightly higher temperatures (400 °C) from analogous setups. At 450 °C, the smooth outer layer of InP-Zn NWs is transformed into bead-shaped coatings. The novel combinations of the key semiconductor InP with isotropic insulator shell materials open up interesting application perspectives in nanoelectronics.
Io plasma torus ion composition: Voyager, Galileo, and Cassini
NASA Astrophysics Data System (ADS)
Nerney, Edward G.; Bagenal, Fran; Steffl, Andrew J.
2017-01-01
The Io torus produces ultraviolet emissions diagnostic of plasma conditions. We revisit data sets obtained by the Voyager 1, Galileo, and Cassini missions at Jupiter. With the latest version (8.0) of the CHIANTI atomic database we analyze UV spectra to determine ion composition. We compare ion composition obtained from observations from these three missions with a theoretical model of the physical chemistry of the torus by Delamere et al. (2005). We find ion abundances from the Voyager data similar to the Cassini epoch, consistent with the dissociation and ionization of SO2, but with a slightly higher average ionization state for sulfur, consistent with the higher electron temperature measured by Voyager. This reanalysis of the Voyager data produces a much lower oxygen:sulfur ratio than earlier analysis by Shemansky (1988), which was also reported by Bagenal (1994). We derive fractional ion compositions in the center of the torus to be S+/Ne 5%, S++/Ne 20%, S+++/Ne 5%, O+/Ne 20%, O++/Ne 3%, and Σ(On+)/Σ(Sn+) 0.8, leaving about 10-15% of the charge as protons. The radial profile of ion composition indicates a slightly higher average ionization state, a modest loss of sulfur relative to oxygen, and Σ(On+)/Σ(Sn+) 1.2 at about 8 RJ, beyond which the composition is basically frozen in. The Galileo observations of UV emissions from the torus suggest that the composition in June 1996 may have comprised a lower abundance of oxygen than usual, consistent with observations made at the same time by the EUVE satellite.
Mechanical Properties of Stable Glasses Using Nanoindentation
NASA Astrophysics Data System (ADS)
Wolf, Sarah; Liu, Tianyi; Jiang, Yijie; Ablajan, Keyume; Zhang, Yue; Walsh, Patrick; Turner, Kevin; Fakhraai, Zahra
Glasses with enhanced stability over ordinary, liquid quenched glasses have been formed via the process of Physical Vapor Deposition (PVD) by using a sufficiently slow deposition rate and a substrate temperature slightly below the glass transition temperature. These stable glasses have been shown to exhibit higher density, lower enthalpy, and better kinetic stability over ordinary glass, and are typically optically birefringent, due to packing and orientational anisotropy. Given these exceptional properties, it is of interest to further investigate how the properties of stable glasses compare to those of ordinary glass. In particular, the mechanical properties of stable glasses remain relatively under-investigated. While the speed of sound and elastic moduli have been shown to increase with increased stability, little is known about their hardness and fracture toughness compared to ordinary glasses. In this study, glasses of 9-(3,5-di(naphthalen-1-yl)phenyl)anthracene were deposited at varying temperatures relative to their glass transition temperature, and their mechanical properties measured by nanoindentation. Hardness and elastic modulus of the glasses were compared across substrate temperatures. After indentation, the topography of these films were studied using Atomic Force Microscopy (AFM) in order to further compare the relationship between thermodynamic and kinetic stability and mechanical failure. Z.F. and P.W. acknowledge funding from NSF(DMREF-1628407).
NASA Astrophysics Data System (ADS)
Tan, Zijing; Dong, Jingliang; Xiao, Yimin; Tu, Jiyuan
2015-10-01
The impact of haze-fog on surface temperature, flow pattern, pollutant dispersion and pedestrian thermal comfort are investigated using computational fluid dynamics (CFD) approach based on a three-dimensional street canyon model under different haze-fog conditions. In this study, light extinction coefficient (Kex) is adopted to represent haze-fog pollution level. Numerical simulations are performed for different Kex values at four representative time events (1000 LST, 1300 LST, 1600 LST and 2000 LST). The numerical results suggest that the surface temperature is strongly affected by the haze-fog condition. Surface heating induced by the solar radiation is enhanced by haze-fog, as higher surface temperature is observed under thicker haze-fog condition. Moreover, the temperature difference between sunlit and shadow surfaces is reduced, while that for the two shadow surfaces is slightly increased. Therefore, the surface temperature among street canyon facets becomes more evenly distributed under heavy haze-fog conditions. In addition, flow patterns are considerably altered by different haze-fog conditions, especially for the afternoon (1600 LST) case, in which thermal-driven flow has opposite direction as that of the wind-driven flow direction. Consequently, pollutants such as vehicular emissions will accumulate at pedestrian level, and pedestrian thermal comfort may lower under thicker haze-fog condition.
Hemodynamic changes during whole body surface cooling and lower body negative pressure
NASA Technical Reports Server (NTRS)
Raven, P. B.; Pape, G.; Taylor, W. F.; Gaffney, F. A.; Blomqvist, C. G.
1981-01-01
Six young healthy male subjects were studied to evaluate the use of whole body surface cooling (WBSC) as an antiorthostatic intervention. Previous studies have demonstrated that perfusion of an Apollo cooling garment with 16 C water produced a significant increase in stroke volume and decrease in heart rate at rest and during lower body negative pressure (LBNP). However, optimal perfusion temperatures have not been determined. The present study examined the effects of WBSC using perfusion of water at a temperature of 10 C. This perfusion temperature produced a greater decrease in mean skin temperature than water at 16 C (4 C drop compared to 2 C). The hemodynamic effects were also more prominent with 10 C water as shown by the increase in stroke volume of 11% at rest and of 35% during LBNP at -50 torr compared to control measurements at ambient temperature. Heart rates were lowered significantly (8 beats/min) and systolic arterial blood pressure was higher (8 torr). Cooling with 10 C water produced a slight increase in muscle tone, reflected by a small but significant increase (+84 ml/min) in oxygen uptake. These data suggest that WBSC is an effective nonpharmacologic means of controlling preload and deserves further investigation as an antiorthostatic intervention.
NASA Astrophysics Data System (ADS)
Zheng, R. K.; Zhu, C. F.; Xie, J. Q.; Li, X. G.
2001-01-01
Ultrasonic sound velocity and attenuation have been measured in polycrystalline manganese oxide La1-xCaxMnO3 (x=0.5,0.83,1.0) at a frequency of 10 MHz. For x=0.5, on cooling down from high temperature, a slight softening of the sound velocity above the charge ordering transition temperature TCO and dramatic stiffening below TCO coincided with big attenuation peaks for both longitudinal and transverse waves were observed. It was found that these ultrasonic anomalies near TCO are correlated with the fine structure (i.e., the lattice parameters) change caused by the Jahn-Teller effect. For x=0.83, the sound velocity starts to soften dramatically with decreasing temperature from higher temperature to TS (180 K), and stiffens dramatically below TS. The large softening and stiffening of the sound velocity accompanied by a big attenuation peak are strongly correlated with a cubic-to-tetragonal structural phase transition at TS, which is confirmed by the low-temperature powder x-ray diffraction measurements. It is suggested that this structural phase transition be due to the Jahn-Teller distortion of the Mn3+O6 octahedra and related to the charge ordering transition. For CaMnO3, the anomaly in sound velocity is small.
The range of thermal insulation in the tissues of the new-born baby
Hey, E. N.; Katz, G.
1970-01-01
1. Rectal temperature and skin temperatures were measured in twenty-eight naked babies weighing 1·1-4·5 kg, lying supine in environments of 25-31 °C when air speed was 4-7 cm/sec. The ratio of external insulation to internal or tissue insulation for the whole body averaged 2·7 but varied inversely with body weight; the ratio was higher than this on the trunk, and five times lower than this on the hand and foot. The mean ratio rose threefold when environmental temperature was increased to 34-35° C. 2. Direct measurements of heat flow from the back of a hand placed in a water jacket maintained at 32° C were made in thirty-three babies. Heat loss averaged 3 kcal/m2.hr.° C at low environmental temperature, but the loss was often rather less than this in the first 24 hr of life. Heat loss from the hand increased three- to fourfold, during exposure to an environment of 35° C. 3. When babies more than 48 hr old were exposed to an environment of 34-35° C, heat loss from the hand only increased when rectal temperature reached between 36·6 and 37·3° C; a slightly higher rectal temperature was usually reached before heat loss rose in babies less than 24 hr old. 4. Similar methods were used to study specific tissue insulation in three babies with congenital defects of the brain who lacked evidence of temperature control. No changes in insulation were detected in these three babies following changes in environmental temperature. 5. It is concluded that the range and pattern of control that can be exerted over the specific thermal insulation of the tissues is essentially the same in babies 2-20 days old as it is in adult life. PMID:5499741
Influence of temperature, oxygen and salinity on the metabolism of the European sea bass
NASA Astrophysics Data System (ADS)
Claireaux, G.; Lagardère, J.-P.
1999-09-01
Standard (SMR) and routine (RMR) metabolic rates of groups (4 to 5 individuals) of European sea bass ( Dicentrarchus labrax) were measured at combinations of the following factors: temperature (10, 15, 20 and 25°C), oxygenation level (air saturation to 1.5 mg dm -3) and salinity (30, 20, 10 and 5‰). The influence of these environmental conditions on fish metabolic demand was then analysed through ANOVA. At 10, 15, 20 and 25°C, standard metabolic rates were 36, 65, 89, and 91 mg O 2 kg -1 h -1, respectively, while routine oxygen consumptions covered most of the metabolic range accessible. Osmoregulatory costs are linked to metabolic activity through ventilation. This relationship was highlighted by the observed interaction between environmental salinity and temperature. We were, however, unable to detect interactions between salinity and routine metabolic rate, or between salinity and oxygenation level. In order to delineate more precisely the restrictions imposed by water oxygenation on fish metabolic performance we determined the limiting oxygen concentration curves at each experimental temperature. We followed up by modelling the bass active metabolic rate (AMR) and metabolic scope (MS) as functions of both ambient temperature and oxygenation. These mathematical models allowed the characterisation of the controlling and limiting effects of water temperature and oxygen content on the metabolic capacity of the species. Thus, AMR at 10, 15 and 20°C were estimated at 65, 160 and 360 mg O 2 kg -1 h -1, respectively. However, at higher temperature (25°C) AMR dropped slightly (to 340 mg O 2 kg -1 h -1). Bass MS increased by a factor of 9 between 10 and 20°C, but diminished at higher temperatures. The present study contributes to our current understanding of the influences of environmental factors on the metabolism of sea bass and provides a bioenergetic basis for a study of how environmental constraints govern the spatial and temporal distribution pattern of this species.
Paraspinal skin temperature patterns: an interexaminer and intraexaminer reliability study.
Owens, Edward F; Hart, John F; Donofrio, Joseph J; Haralambous, Jason; Mierzejewski, Eric
2004-01-01
Paraspinal thermography is used by chiropractors as an aid in assessing the presence of vertebral subluxation. Few reliability studies have been carried out, with mixed results. Digital infrared scanning equipment is now available with location tracking that may enhance reproducibility. Digitized scans enable a computer-aided interpretation of thermographic patterns. To assess the ability of examiners to reproduce thermal patterns. Repeated measures with 2 examiners assessing the same patient on 2 occasions. Thirty asymptomatic students served as subjects. A TyTron C-3000 handheld thermographic scanner interfaced to a Microsoft Windows compatible personal computer was used for all recordings. Each examiner recorded 2 scans on each patient. It took an average of 3 minutes to complete all 4 scans. Data were exported to a spreadsheet for initial analysis, then SPSS was used for calculation of intraclass correlation coefficients (ICC). Since the starting and stopping points of scans were not always the same, care was taken to align scans visually, using well-distinguished peaks on the charts as guides. Scans were cropped to remove artifacts that might have occurred at the beginning and end of the scans. Intraexaminer and interexaminer ICCs were calculated. Skin temperatures ranged from 35.4 degrees C to 30.0 degrees C over all scans. The average temperatures changed little from the first to the last scans, indicating that subjects' overall skin temperatures were stable during the scanning procedure. Intraexaminer ICCs ranged from 0.953 to 0.984. The left and right channel data show slightly higher congruence than the Delta channel. The interexaminer reliability coefficients ranged from 0.918 to 0.975. Again, the Delta channel shows slightly less reliability, although the ICCs were quite high for all channels. Intraexaminer and interexaminer reliability of paraspinal thermal scans using the TyTron C-3000 were found to be very high, with ICC values between 0.91 and 0.98. Changes seen in thermal scans when properly done are most likely due to actual physiological changes rather than equipment error.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Bingbing; O'Brien, Rachel E.; Univ. of the Pacific, Stockton, CA
2015-05-14
Constituents of secondary organic carbon (SOC) in atmospheric aerosols are often mixed with inorganic components and compose a significant mass fraction of fine particulate matter in the atmosphere. Interactions between SOC and other condensed-phase species are not well understood. Here, we investigate the reactions of liquid-like and semi-solid SOC from ozonolysis of limonene (LSOC) and α-pinene (PSOC) with NaCl using a set of complementary micro-spectroscopic analyses. These reactions result in chloride depletion in the condensed phase, release of gaseous HCl, and formation of organic salts. The reactions attributed to acid displacement by SOC acidic components are driven by the highmore » volatility of HCl. Similar reactions can take place in SOC/NaNO₃ particles. The results show that an increase in SOC mass fraction in the internally mixed SOC/NaCl particles leads to higher chloride depletion. Glass transition temperatures and viscosity of PSOC were estimated for atmospherically relevant conditions. Data show that the reaction extent depends on SOC composition, particle phase state and viscosity, mixing state, temperature, relative humidity (RH), and reaction time. LSOC shows slightly higher potential to deplete chloride than PSOC. Higher particle viscosity at low temperatures and RH can hinder these acid displacement reactions. Formation of organic salts from these overlooked reactions can alter particle physiochemical properties and may affect their reactivity and ability to act as cloud condensation and ice nuclei. The release and potential recycling of HCl and HNO₃ from reacted aerosol particles may have important implications for atmospheric chemistry.« less
Wang, Bingbing; O'Brien, Rachel E; Kelly, Stephen T; Shilling, John E; Moffet, Ryan C; Gilles, Mary K; Laskin, Alexander
2015-05-14
Constituents of secondary organic carbon (SOC) in atmospheric aerosols are often mixed with inorganic components and compose a significant mass fraction of fine particulate matter in the atmosphere. Interactions between SOC and other condensed-phase species are not well understood. Here, we investigate the reactions of liquid-like and semisolid SOC from ozonolysis of limonene (LSOC) and α-pinene (PSOC) with NaCl using a set of complementary microspectroscopic analyses. These reactions result in chloride depletion in the condensed phase, release of gaseous HCl, and formation of organic salts. The reactions attributed to acid displacement by SOC acidic components are driven by the high volatility of HCl. Similar reactions can take place in SOC/NaNO3 particles. The results show that an increase in SOC mass fraction in the internally mixed SOC/NaCl particles leads to higher chloride depletion. Glass transition temperatures and viscosity of PSOC were estimated for atmospherically relevant conditions. Data show that the reaction extent depends on SOC composition, particle phase state and viscosity, mixing state, temperature, relative humidity (RH), and reaction time. LSOC shows slightly higher potential to deplete chloride than PSOC. Higher particle viscosity at low temperatures and RH can hinder these acid displacement reactions. Formation of organic salts from these overlooked reactions can alter particle physiochemical properties and may affect their reactivity and ability to act as cloud condensation and ice nuclei. The release and potential recycling of HCl and HNO3 from reacted aerosol particles may have important implications for atmospheric chemistry.
Gómez-Picos, Patsy; Sifuentes-Romero, Itzel; Merchant-Larios, Horacio; Hernández-Cornejo, Rubí; Díaz-Hernández, Verónica; García-Gasca, Alejandra
2014-01-01
Brain aromatase participates in several biological processes, such as regulation of the reproductive-endocrine axis, memory, stress, sexual differentiation of the nervous system, male sexual behavior, and brain repair. Here we report the isolation and expression of brain aromatase in olive ridley sea turtle (Lepidochelys olivacea) embryos incubated at male- and female-promoting temperatures (MPT and FPT, respectively), at the thermosensitive period (TSP) and the sex-differentiated period. Also, aromatase expression was assessed in differentiated embryos exposed to bisphenol-A (BPA) during the TSP. BPA is a monomer of polycarbonate plastics and is considered an endocrine-disrupting compound. Normal aromatase expression was measured in both forebrain and hindbrain, showing higher expression levels in the forebrain of differentiated embryos at both incubation temperatures. Although no significant differences were detected in the hindbrain, expression was slightly higher at MPT. BPA did not affect aromatase expression neither in forebrains or hindbrains from embryos incubated at MPT, whereas at FPT an inverted U-shape curve was observed in forebrains with significant differences at lower concentrations, whereas in hindbrains a non-significant increment was observed at higher concentrations. Our data indicate that both incubation temperature and developmental stage are critical factors affecting aromatase expression in the forebrain. Because of the timing and location of aromatase expression in the brain, we suggest that brain aromatase may participate in the imprinting of sexual trends related to reproduction and sexual behavior at the onset of sex differentiation, and BPA exposure may impair aromatase function in the female forebrain.
Ferromagnetism and Ru-Ru distance in SrRuO3 thin film grown on SrTiO3 (111) substrate
2014-01-01
Epitaxial SrRuO3 thin films were grown on both (100) and (111) SrTiO3 substrates with atomically flat surfaces that are required to grow high-quality films of materials under debate. The following notable differences were observed in the (111)-oriented SrRuO3 films: (1) slightly different growth mode, (2) approximately 10 K higher ferromagnetic transition temperature, and (3) better conducting behavior with higher relative resistivity ratio, than (100)c-oriented SrRuO3 films. Together with the reported results on SrRuO3 thin films grown on (110) SrTiO3 substrate, the different physical properties were discussed newly in terms of the Ru-Ru nearest neighbor distance instead of the famous tolerance factor. PACS 75.70.Ak; 75.60.Ej; 81.15.Fg PMID:24393495
de Cassia Pereira, Josiani; Travaini, Rodolfo; Paganini Marques, Natalia; Bolado-Rodríguez, Silvia; Bocchini Martins, Daniela Alonso
2016-03-01
The saccharification of ozonated sugarcane bagasse (SCB) by enzymes from Myceliophthora thermophila JCP 1-4 was studied. Fungal enzymes provided slightly higher sugar release than commercial enzymes, working at 50°C. Sugar release increased with temperature increase. Kinetic studies showed remarkable glucose release (4.99 g/L, 3%w/w dry matter) at 60°C, 8 h of hydrolysis, using an enzyme load of 10 FPU (filter paper unit). FPase and β-glucosidase activities increased during saccharification (284% and 270%, respectively). No further significant improvement on glucose release was observed increasing the enzyme load above 7.5 FPU per g of cellulose. Higher dry matter contents increased sugars release, but not yields. The fermentation of hydrolysates by Saccharomyces cerevisiae provided glucose-to-ethanol conversions around to 63%. Copyright © 2015 Elsevier Ltd. All rights reserved.
Craciun, D.; Socol, G.; Lambers, E.; ...
2015-01-17
Thin ZrC films (<500 nm) were grown on (100) Si substrates at a substrate temperature of 500 °C by the pulsed laser deposition (PLD) technique using a KrF excimer laser under different CH 4 pressures. Glancing incidence X-ray diffraction showed that films were nanocrystalline, while X-ray reflectivity studies found out films were very dense and exhibited a smooth surface morphology. Optical spectroscopy data shows that the films have high reflectivity (>90%) in the infrared region, characteristic of metallic behavior. Nanoindentation results indicated that films deposited under lower CH 4 pressures exhibited slightly higher nanohardness and Young modulus values than filmsmore » deposited under higher pressures. As a result, tribological characterization revealed that these films exhibited relatively high wear resistance and steady-state friction coefficients on the order of μ = 0.4.« less
Fulford, J.M.; Davies, W.J.
2005-01-01
The U.S. Geological Survey is investigating the performance of radars used for stage (or water-level) measurement. This paper presents a comparison of estimated uncertainties and data for radar water-level measurements with float, bubbler, and wire weight water-level measurements. The radar sensor was also temperature-tested in a laboratory. The uncertainty estimates indicate that radar measurements are more accurate than uncorrected pressure sensors at higher water stages, but are less accurate than pressure sensors at low stages. Field data at two sites indicate that radar sensors may have a small negative bias. Comparison of field radar measurements with wire weight measurements found that the radar tends to measure slightly lower values as stage increases. Copyright ASCE 2005.
Buckling characteristics of hypersonic aircraft wing tubular panels
NASA Technical Reports Server (NTRS)
Ko, William L.; Shideler, John L.; Fields, Roger A.
1986-01-01
The buckling characteristics of Rene 41 tubular panels installed as wing panels on a hypersonic wing test structure (HWTS) were determined nondestructively through use of a force/stiffness technique. The nondestructive buckling tests were carried out under different combined load conditions and different temperature environments. Two panels were subsequently tested to buckling failure in a universal tension compression testing machine. In spite of some data scattering because of large extrapolations of data points resulting from termination of the test at a somewhat low applied load, the overall test data correlated fairly well with theoretically predicted buckling interaction curves. The structural efficiency of the tubular panels was slightly higher than that of the beaded panels which they replaced.
Thermal Imaging of Aerospace Battery Cells
NASA Technical Reports Server (NTRS)
Shue, Jack; Ramirez, Julian B.; Sullivan, David; Lee, Leonine; Rao, Gopalakrishna
2006-01-01
Surface Thermal Profiles of Eagle Picher rabbit-ear 50Ah NiH2 and of Saft 40 Ah Li-ion cylindrical cells have been studied using ThermCAM S60 FLIR Systems. Popping Phenomenon in NiH2 cell is demonstrated Temperature gradient in NiH2 is slightly higher than normally considered, for example. Middle of stack to top or bottom is about 12.9 C compared to <7 C (may be due to passive cooling). Less than 1 C thermal gradient on the Li-Ion cell vessel surface. Significantly lower heat generation in Li-Ion cell compared to NiH2 cell. -May be due to a favorable charge method used for Li-Ion cell.
The liquid wood heat flow and material properties as a function of temperature
NASA Astrophysics Data System (ADS)
Mazurchevici, Simona; Quadrini, Fabrizio; Nedelcu, Dumitru
2018-03-01
There are three types of ‘liquid wood’, Arbofill, Arboblend and Arboform and will replace plastics materials in the near future taking into account the biodegradability and higher properties versus common used plastics materials. In order to get more information about the materials properties of ‘liquid wood’ the granules and samples obtained by injection molding were studied using Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA) for Arboform L,V3 Nature-‘liquid wood’ (A-LW) and Arboform L, V3 Nature reinforced with Aramid Fibers (A-LWAF).In case of A-LW granule studied, the DSC analysis presents that at 97 °C appears an endoderm peak which represents the crystallization of the material, at 175 °C the exoderm peak which means the melting point of the material. After the tested granule cooling period of time this one was tested again and the endoderm peak disappears, which means that crystallization of material disappeared. The melting point of the second test decreases slightly at 174.6 °C. Also, the new test shows that at 61.7 °C the glass transition temperature appears and the melting point slightly decreases. In case of A-LW samples the DSC analyses shows that the melting point increased by 2.77 °C compared to the melting point of Arboform granule. The material behavior is more or less the same without the crystallization area.
Development of SPR temperature sensor using Au/TiO2 on hetero-core optical fiber
NASA Astrophysics Data System (ADS)
Kitagawa, Sho; Yamazaki, Hiroshi; Hosoki, Ai; Nishiyama, Michiko; Watanabe, Kazuhiro
2016-03-01
This paper describes a novel temperature sensor based on a hetero-core structured fiber optic surface plasmon resonance (SPR) sensor with multi-layer thin film of gold (Au) and titanium dioxide (TiO2). Temperature condition is an essential parameter in chemical plants for avoiding fire accident and controlling qualities of chemical substances. Several fiber optic temperature sensors have been developed for some advantages such as immunity to electromagnetic interference, corrosion resistance and no electrical leakage. The proposed hetero-core fiber optic SPR sensor detects temperature condition by measuring slight refractive index changes of TiO2 which has a large thermo-optic coefficient. We experimentally confirmed that the SPR resonant wavelength in the hetero-core SPR sensor with coating an Au film which slightly depended on temperature changes in the range from 20 °C to 80 °C. In addition, it was experimentally shown that the proposed SPR temperature sensor with multi-layer film of Au and TiO2 had the SPR resonant wavelength shift of 1.6 nm due to temperature change from -10 °C to 50 °C. As a result, a series of experiments successfully demonstrated that the proposed sensor was able to detect temperature directly depending on the thermo-optic effect of TiO2.
NASA Astrophysics Data System (ADS)
Parkinson, Christopher D.; Gao, Peter; Schulte, Rick; Bougher, Stephen W.; Yung, Yuk L.; Bardeen, Charles G.; Wilquet, Valérie; Vandaele, Ann Carine; Mahieux, Arnaud; Tellmann, Silvia; Pätzold, Martin
2015-08-01
Observations from Pioneer Venus and from SPICAV/SOIR aboard Venus Express (VEx) have shown the upper haze (UH) of Venus to be highly spatially and temporally variable, and populated by multiple particle size modes. Previous models of this system (e.g., Gao et al., 2014. Icarus 231, 83-98), using a typical temperature profile representative of the atmosphere (viz., equatorial VIRA profile), did not investigate the effect of temperature on the UH particle distributions. We show that the inclusion of latitude-dependent temperature profiles for both the morning and evening terminators of Venus helps to explain how the atmospheric aerosol distributions vary spatially. In this work we use temperature profiles obtained by two instruments onboard VEx, VeRa and SPICAV/SOIR, to represent the latitudinal temperature dependence. We find that there are no significant differences between results for the morning and evening terminators at any latitude and that the cloud base moves downwards as the latitude increases due to decreasing temperatures. The UH is not affected much by varying the temperature profiles; however, the haze does show some periodic differences, and is slightly thicker at the poles than at the equator. We also find that the sulphuric acid "rain" seen in previous models may be restricted to the equatorial regions of Venus, such that the particle size distribution is relatively stable at higher latitudes and at the poles.
Temperature-activity relationships in Meligethes aeneus: implications for pest management.
Ferguson, Andrew W; Nevard, Lucy M; Clark, Suzanne J; Cook, Samantha M
2015-03-01
Pollen beetle (Meligethes aeneus F.) management in oilseed rape (Brassica napus L.) has become an urgent issue in the light of insecticide resistance. Risk prediction advice has relied upon flight temperature thresholds, while risk assessment uses simple economic thresholds. However, there is variation in the reported temperature of migration, and economic thresholds vary widely across Europe, probably owing to climatic factors interacting with beetle activity and plant compensation for damage. The effect of temperature on flight, feeding and oviposition activity of M. aeneus was examined in controlled conditions. Escape from a release vial was taken as evidence of flight and was supported by video observations. The propensity to fly followed a sigmoid temperature-response curve between 6 and 23 °C; the 10, 25 and 50% flight temperature thresholds were 12.0-12.5 °C, 13.6-14.2 °C and 15.5-16.2 °C, respectively. Thresholds were slightly higher in the second of two flight bioassays, suggesting an effect of beetle age. Strong positive relationships were found between temperature (6-20 °C) and the rates of feeding and oviposition on flower buds of oilseed rape. These temperature relationships could be used to improve M. aeneus migration risk assessment, refine weather-based decision support systems and modulate damage thresholds according to rates of bud damage. © 2014 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Lewis, R N; McElhaney, R N
2000-01-01
The thermotropic phase behavior of lipid bilayer model membranes composed of the even-numbered, N-saturated 1,2-diacyl phosphatidylserines was studied by differential scanning calorimetry and by Fourier-transform infrared and (31)P-nuclear magnetic resonance spectroscopy. At pH 7.0, 0.1 M NaCl and in the absence of divalent cations, aqueous dispersions of these lipids, which have not been incubated at low temperature, exhibit a single calorimetrically detectable phase transition that is fully reversible, highly cooperative, and relatively energetic, and the transition temperatures and enthalpies increase progressively with increases in hydrocarbon chain length. Our spectroscopic observations confirm that this thermal event is a lamellar gel (L(beta))-to-lamellar liquid crystalline (L(alpha)) phase transition. However, after low temperature incubation, the L(beta)/L(alpha) phase transition of dilauroyl phosphatidylserine is replaced by a higher temperature, more enthalpic, and less cooperative phase transition, and an additional lower temperature, less enthalpic, and less cooperative phase transition appears in the longer chain phosphatidylserines. Our spectroscopic results indicate that this change in thermotropic phase behavior when incubated at low temperatures results from the conversion of the L(beta) phase to a highly ordered lamellar crystalline (L(c)) phase. Upon heating, the L(c) phase of dilauroyl phosphatidylserine converts directly to the L(alpha) phase at a temperature slightly higher than that of its original L(beta)/L(alpha) phase transition. Calorimetrically, this process is manifested by a less cooperative but considerably more energetic, higher-temperature phase transition, which replaces the weaker L(beta)/L(alpha) phase transition alluded to above. However, with the longer chain compounds, the L(c) phase first converts to the L(beta) phase at temperatures some 10-25 degrees C below that at which the L(beta) phase converts to the L(alpha) phase. Our results also suggest that shorter chain homologues form L(c) phases that are structurally related to, but more ordered than, those formed by the longer chain homologues, but that these L(c) phases are less ordered than those formed by other phospholipids. These studies also suggest that polar/apolar interfaces of the phosphatidylserine bilayers are more hydrated than those of other glycerolipid bilayers, possibly because of interactions between the polar headgroup and carbonyl groups of the fatty acyl chains. PMID:11023908
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaesche, S.; Majewski, P.; Aldinger, F.
1994-12-31
For the nominal composition of Bi{sub 2.27x}Pb{sub x}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10+d} the lead content was varied from x=0.05 to 0.45. The compositions were examined between 830{degrees}C and 890{degrees}C which is supposed to be the temperature range over which the so-called 2223 phase (Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10+d}) is stable. Only compositions between x=0.18 to 0.36 could be synthesized in a single phase state. For x>0.36 a lead containing phase with a stoichiometry of Pb{sub 4}(Sr,Ca){sub 5}CuO{sub d} is formed, for x<0.18 mainly Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+d} and cuprates are the equilibrium phases. The temperature range for themore » 2223 phase was found to be 830{degrees}C to 890{degrees}C but the 2223 phase has extremely varying cation ratios over this temperature range. Former single phase 2223 samples turn to multi phase samples when annealed at slightly higher or lower temperatures. A decrease in the Pb solubility with increasing temperature was found for the 2223 phase.« less
Geometry effects on cooling in a standing wave cylindrical thermoacousic resonator
NASA Astrophysics Data System (ADS)
Mohd-Ghazali, Normah; Ghazali, Ahmad Dairobi; Ali, Irwan Shah; Rahman, Muhammad Aminullah A.
2012-06-01
Numerous reports have established the refrigeration applications of thermoacoustic cooling without compressors and refrigerants. Significant cooling effects can be obtained in a thermoacoustic resonator fitted with a heat exchanging stack and operated at resonance frequency. Past studies, however, have hardly referred to the fundamental relationship between resonant frequency and the resonator geometry. This paper reports the thermoacoustic cooling effects at resonance obtained by changing the diameter of the resonator while holding the length constant and vice versa. Experiments were completed at atmospheric pressure with air as the working fluid using a number of pvc tubes having parallel plate stack from Mylar. The temperature difference measured across the stack showed that a volume increase in the working fluid in general increases the temperature gradient for the quarter-and half-wavelength resonators. Doubling the diameter from 30 mm to 60 mm produced the highest temperature difference due to the greater number of stack plates resulting in a higher overall thermoacaoustic cooling. Increasing the resonator length only produced a small increase in temperature gradient since the resonant frequency at operation is only slightly changed. Investigation on the aspect ratio exhibits no influence on the temperature difference across the stack. This study have shown that the resonator length and diameter do affect the temperature difference across the thermoacoustic stack, and further research should be done to consider the contribution of the stack mass on the overall desired thermoacoustic cooling.
Jin, Jiao; Lin, Feipeng; Liu, Ruohua; Xiao, Ting; Zheng, Jianlong; Qian, Guoping; Liu, Hongfu; Wen, Pihua
2017-12-05
Three kinds of mineral-supported polyethylene glycol (PEG) as form-stable composite phase change materials (CPCMs) were prepared to choose the most suitable CPCMs in asphalt pavements for the problems of asphalt pavements rutting diseases and urban heat islands. The microstructure and chemical structure of CPCMs were characterized by SEM, FT-IR and XRD. Thermal properties of the CPCMs were determined by TG and DSC. The maximum PEG absorption of diatomite (DI), expanded perlite (EP) and expanded vermiculite (EVM) could reach 72%, 67% and 73.6%, respectively. The melting temperatures and latent heat of CPCMs are in the range of 52-55 °C and 100-115 J/g, respectively. The results show that PEG/EP has the best thermal and chemical stability after 100 times of heating-cooling process. Moreover, crystallization fraction results show that PEG/EP has slightly higher latent heats than that of PEG/DI and PEG/EVM. Temperature-adjusting asphalt mixture was prepared by substituting the fine aggregates with PEG/EP CPCMs. The upper surface maximum temperature difference of temperature-adjusting asphalt mixture reaches about 7.0 °C in laboratory, and the surface peak temperature reduces up to 4.3 °C in the field experiment during a typical summer day, indicating a great potential application for regulating pavement temperature field and alleviating the urban heat islands.
Levesque, Danielle L; Lobban, Kerileigh D; Lovegrove, Barry G
2014-12-01
Tenrecs (Order Afrosoricida) exhibit some of the lowest body temperatures (T b) of any eutherian mammal. They also have a high level of variability in both active and resting T bs and, at least in cool temperatures in captivity, frequently employ both short- and long-term torpor. The use of heterothermy by captive animals is, however, generally reduced during gestation and lactation. We present data long-term T b recordings collected from free-ranging S. setosus over the course of two reproductive seasons. In general, reproductive females had slightly higher (~32 °C) and less variable T b, whereas non-reproductive females and males showed both a higher propensity for torpor as well as lower (~30.5 °C) and more variable rest-phase T bs. Torpor expression defined using traditional means (using a threshold or cut-off T b) was much lower than predicted based on the high degree of heterothermy in captive tenrecs. However, torpor defined in this manner is likely to be underestimated in habitats where ambient temperature is close to T b. Our results caution against inferring metabolic states from T b alone and lend support to the recent call to define torpor in free-ranging animals based on mechanistic and not descriptive variables. In addition, lower variability in T b observed during gestation and lactation confirms that homeothermy is essential for reproduction in this species and probably for basoendothermic mammals in general. The relatively low costs of maintaining homeothermy in a sub-tropical environment might help shed light on how homeothermy could have evolved incrementally from an ancestral heterothermic condition.
A comparison of cooling techniques in firefighters after a live burn evolution
Colburn, Deanna; Suyama, Joe; Reis, Steven E; Morley, Julia L; Goss, Fredric L; Chen, Yi-Fan; Moore, Charity G; Hostler, David
2010-01-01
Objective We compared two active cooling devices to passive cooling in a moderate (≈22°C) temperature environment on heart rate (HR) and core temperature (Tc) recovery when applied to firefighters following 20 min. of fire suppression. Methods Firefighters (23 male, 2 female) performed 20 minutes of fire suppression at a live fire evolution. Immediately following the evolution, the subjects removed their thermal protective clothing and were randomized to receive forearm immersion (FI), ice water perfused cooling vest (CV) or passive (P) cooling in an air-conditioned medical trailer for 30 minutes. Heart rate and deep gastric temperature were monitored every five minutes during recovery. Results A single 20-minute bout of fire suppression resulted in near maximal HR (175±13 - P, 172±20 - FI, 177±12 beats•min−1 - CV) when compared to baseline (p < 0.001), a rapid and substantial rise in Tc (38.2±0.7 - P, 38.3±0.4 - FI, 38.3±0.3° - CV) compared to baseline (p < 0.001), and mass lost from sweating of nearly one kilogram. Cooling rates (°C/min) differed (p = 0.036) by device with FI (0.05±0.04) providing higher rates than P (0.03±0.02) or CV (0.03±0.04) although differences over 30 minutes were small and recovery of body temperature was incomplete in all groups. Conclusions During 30 min. of recovery following a 20-minute bout of fire suppression in a training academy setting, there is a slightly higher cooling rate for FI and no apparent benefit to CV when compared to P cooling in a moderate temperature environment. PMID:21294631
Kelly, Nicholas I.; Burness, Gary; McDermid, Jenni L.; Wilson, Chris C.
2014-01-01
In the face of climate change, the persistence of cold-adapted species will depend on their adaptive capacity for physiological traits within and among populations. The lake trout (Salvelinus namaycush) is a cold-adapted salmonid and a relict from the last ice age that is well suited as a model species for studying the predicted effects of climate change on coldwater fishes. We investigated the thermal acclimation capacity of upper temperature resistance and metabolism of lake trout from four populations across four acclimation temperatures. Individuals were reared from egg fertilization onward in a common environment and, at 2 years of age, were acclimated to 8, 11, 15 or 19°C. Although one population had a slightly higher maximal metabolic rate (MMR), higher metabolic scope for activity and faster metabolic recovery across all temperatures, there was no interpopulation variation for critical thermal maximum (CTM) or routine metabolic rate (RMR) or for the thermal acclimation capacity of CTM, RMR, MMR or metabolic scope. Across the four acclimation temperatures, there was a 3°C maximal increase in CTM and 3-fold increase in RMR for all populations. Above 15°C, a decline in MMR and increase in RMR resulted in sharply reduced metabolic scope for all populations acclimated at 19°C. Together, these data suggest there is limited variation among lake trout populations in thermal physiology or capacity for thermal acclimatization, and that climate change may impact lake trout populations in a similar manner across a wide geographical range. Understanding the effect of elevated temperatures on the thermal physiology of this economically and ecologically important cold-adapted species will help inform management and conservation strategies for the long-term sustainability of lake trout populations. PMID:27293646
Jonsson, J.E.; Afton, A.D.
2009-01-01
Body size affects foraging and forage intake rates directly via energetic processes and indirectly through interactions with social status and social behaviour. Ambient temperature has a relatively greater effect on the energetics of smaller species, which also generally are more vulnerable to predator attacks than are larger species. We examined variability in an index of intake rates and an index of alertness in Lesser Snow Geese Chen caerulescens caerulescens and Ross's Geese Chen rossii wintering in southwest Louisiana. Specifically we examined variation in these response variables that could be attributed to species, age, family size and ambient temperature. We hypothesized that the smaller Ross's Geese would spend relatively more time feeding, exhibit relatively higher peck rates, spend more time alert or raise their heads up from feeding more frequently, and would respond to declining temperatures by increasing their proportion of time spent feeding. As predicted, we found that Ross's Geese spent more time feeding than did Snow Geese and had slightly higher peck rates than Snow Geese in one of two winters. Ross's Geese spent more time alert than did Snow Geese in one winter, but alert rates differed by family size, independent of species, in contrast to our prediction. In one winter, time spent foraging and walking was inversely related to average daily temperature, but both varied independently of species. Effects of age and family size on time budgets were generally independent of species and in accordance with previous studies. We conclude that body size is a key variable influencing time spent feeding in Ross's Geese, which may require a high time spent feeding at the expense of other activities. ?? 2008 The Authors.
On-chip very low junction temperature GaN-based light emitting diodes by selective ion implantation
NASA Astrophysics Data System (ADS)
Cheng, Yun-Wei; Chen, Hung-Hsien; Ke, Min-Yung; Chen, Cheng-Pin; Huang, JianJang
2008-08-01
We propose an on-wafer heat relaxation technology by selectively ion-implanted in part of the p-type GaN to decrease the junction temperature in the LED structure. The Si dopant implantation energy and concentration are characterized to exhibit peak carrier density 1×1018 cm-3 at the depth of 137.6 nm after activation in nitrogen ambient at 750 °C for 30 minutes. The implantation schedule is designed to neutralize the selected region or to create a reverse p-n diode in the p-GaN layer, which acts as the cold zone for heat dissipation. The cold zone with lower effective carrier concentration and thus higher resistance is able to divert the current path. Therefore, the electrical power consumption through the cold zone was reduced, resulting in less optical power emission from the quantum well under the cold zone. Using the diode forward voltage method to extract junction temperature, when the injection current increases from 10 to 60 mA, the junction temperature of the ion-implanted LED increases from 34.3 °C to 42.3 °C, while that of the conventional one rises from 30.3 °C to 63.6 °C. At 100 mA, the output power of the ion-implanted device is 6.09 % higher than that of the conventional device. The slight increase of optical power is due to the increase of current density outside the cold zone region of the implanted device and reduced junction temperature. The result indicates that our approach improves thermal dissipation and meanwhile maintains the linearity of L-I curves.
40 CFR 60.386 - Test methods and procedures.
Code of Federal Regulations, 2013 CFR
2013-07-01
.... The sample volume for each run shall be at least 1.70 dscm (60 dscf). The sampling probe and filter... probe and filter temperature slightly above the effluent temperature (up to a maximum filter temperature of 121 °C (250 °F)) in order to prevent water condensation on the filter. (2) Method 9 and the...
NASA Astrophysics Data System (ADS)
Dynes, E.; Welker, J. M.; Moore, D. J.; Sullivan, P.; Ebbs, L.; Pattison, R.
2009-12-01
Temperature is predicted to rise significantly in northern latitudes over the next century. The Arctic tundra is a fragile ecosystem with low rates of photosynthesis and low nutrient mineralisation. Rising temperatures may increase photosynthetic capacity in the short term through direct stimulation of photosynthetic rates and also in the longer term due to enhanced nutrient availability. Different species and plant functional types may have different responses to warming which may have an impact on plant community structure. As part of the International Tundra Experiment (ITEX) to investigate the effects of warming on arctic vegetation, a series of open top chambers (OTCs) have been established at the Toolik Field Station (68°38’N, 149°36’W, elevation 720 m). This study employs 12 plots; 6 control plots and 6 warming plots covered with OTCs which maintain a temperature on average +1.54 °C degrees higher than ambient temperatures. The response of photosynthesis to temperature was measured using an infra-red gas analyzer (IRGA) with a cooling adaptor to manipulate leaf temperature and determine AMAX in two contrasting species, Eriophorum vaginatum (sedge) and Betula nana (shrub). Temperature within the chamber head of the IRGA was manipulated from 10 through 25 °C. We also measured the leaf area index of plots using a Decagon Accupar Ceptometer to provide insights into potential differences in canopy cover. In both OTC and control plots the photosynthetic rate of B. nana was greater than that of E. vaginatum, with the AMAX of B. nana peaking at 20.08°C and E. vaginatum peaking slightly lower at 19.7°C in the control plots. There was no apparent difference in the temperature optimum of photosynthesis of either species when exposed to the warming treatment. Although there was no difference in temperature optimum there were differences in the peak values of AMAX between treatment and control plots. In the case of B. nana, AMAX was higher in the OTCs than in the control plots with the highest rate being 17.2 μmol/m2/s in OTCs and 16.8 μmol/m2/s in control. Similarly, AMAX of E. vaginatum was also higher in OTCs with the highest rate being 10.4 μmol/m2/s in the control and 11 μmol/m2/s in the OTCs. Leaf area (LAI) was higher in the warming plots (mean = .39(0.095)) than LAI in the control plots (mean =.3 (.067)) in the control plots. This difference was significant as p<0.05. The higher photosynthetic rate and temperature optimum of photosynthesis in B. nana may indicate shrubs ability to cope with rising temperatures more efficiently than E. vagination which may lead to shifts in total leaf area and species composition.
Urban climate effects on extreme temperatures in Madison, Wisconsin, USA
NASA Astrophysics Data System (ADS)
Schatz, Jason; Kucharik, Christopher J.
2015-09-01
As climate change increases the frequency and intensity of extreme heat, cities and their urban heat island (UHI) effects are growing, as are the urban populations encountering them. These mutually reinforcing trends present a growing risk for urban populations. However, we have limited understanding of urban climates during extreme temperature episodes, when additional heat from the UHI may be most consequential. We observed a historically hot summer and historically cold winter using an array of up to 150 temperature and relative humidity sensors in and around Madison, Wisconsin, an urban area of population 402 000 surrounded by lakes and a rural landscape of agriculture, forests, wetlands, and grasslands. In the summer of 2012 (third hottest since 1869), Madison’s urban areas experienced up to twice as many hours ⩾32.2 °C (90 °F), mean July TMAX up to 1.8 °C higher, and mean July TMIN up to 5.3 °C higher than rural areas. During a record setting heat wave, dense urban areas spent over four consecutive nights above the National Weather Service nighttime heat stress threshold of 26.7 °C (80 °F), while rural areas fell below 26.7 °C nearly every night. In the winter of 2013-14 (coldest in 35 years), Madison’s most densely built urban areas experienced up to 40% fewer hours ⩽-17.8 °C (0 °F), mean January TMAX up to 1 °C higher, and mean January TMIN up to 3 °C higher than rural areas. Spatially, the UHI tended to be most intense in areas with higher population densities. Temporally, both daytime and nighttime UHIs tended to be slightly more intense during more-extreme heat days compared to average summer days. These results help us understand the climates for which cities must prepare in a warming, urbanizing world.
Recovery of SO2 and MgO from By-Products of MgO Wet Flue Gas Desulfurization
Yan, Liyun; Lu, Xiaofeng; Wang, Quanhai; Guo, Qiang
2014-01-01
Abstract An industrial demonstration unit using natural gas as a heat source was built to calcine the by-products of MgO wet flue gas desulfurization from power plants; influencing factors on the SO2 content in calciner gas were comprehensively analyzed; and an advantageous recycling condition of MgO and SO2 from by-products was summarized. Results showed that the SO2 content in the calciner gas was increased by more than 10 times under a lower excess air coefficient, a higher feed rate, a lower crystal water in by-products, and a higher feed port position. For the tests conducted under the excess air coefficient above and below one, the effect of the furnace temperature on the SO2 content in the calciner gas was reversed. Results of activity analysis indicate that particles of MgO generated under the calcination temperature of 900–1,000°C had a high activity. In contrast, due to the slight sintering, MgO generated under the calcination temperature of 1,100°C had a low activity. To recycle SO2 as well as MgO, a temperature range of 900–927°C for TE103 is proposed. These studies will prompt the desulfurization market diversification, reduce the sulfur's dependence on imports for making sulfuric acid, be meaningful to balance the usage of the natural resource in China, and be regarded as a reference for the development of this technology for other similar developing countries. PMID:25371652
Impacts of climate change on rice production in Africa and causes of simulated yield changes.
van Oort, Pepijn A J; Zwart, Sander J
2018-03-01
This study is the first of its kind to quantify possible effects of climate change on rice production in Africa. We simulated impacts on rice in irrigated systems (dry season and wet season) and rainfed systems (upland and lowland). We simulated the use of rice varieties with a higher temperature sum as adaptation option. We simulated rice yields for 4 RCP climate change scenarios and identified causes of yield declines. Without adaptation, shortening of the growing period due to higher temperatures had a negative impact on yields (-24% in RCP 8.5 in 2070 compared with the baseline year 2000). With varieties that have a high temperature sum, the length of the growing period would remain the same as under the baseline conditions. With this adaptation option rainfed rice yields would increase slightly (+8%) but they remain subject to water availability constraints. Irrigated rice yields in East Africa would increase (+25%) due to more favourable temperatures and due to CO2 fertilization. Wet season irrigated rice yields in West Africa were projected to change by -21% or +7% (without/with adaptation). Without adaptation irrigated rice yields in West Africa in the dry season would decrease by -45% with adaptation they would decrease significantly less (-15%). The main cause of this decline was reduced photosynthesis at extremely high temperatures. Simulated heat sterility hardly increased and was not found a major cause for yield decline. The implications for these findings are as follows. For East Africa to benefit from climate change, improved water and nutrient management will be needed to benefit fully from the more favourable temperatures and increased CO2 concentrations. For West Africa, more research is needed on photosynthesis processes at extreme temperatures and on adaptation options such as shifting sowing dates. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Lellouche, François; Qader, Siham; Taillé, Solenne; Lyazidi, Aissam; Brochard, Laurent
2014-05-01
During invasive mechanical ventilation, inspired gases must be humidified. We previously showed that high ambient temperature greatly impaired the hygrometric performance of heated wire-heated humidifiers. The aim of this bench and clinical study was to assess the humidification performance of passive and active heat and moisture exchangers (HMEs) and the impact of ambient temperature and ventilator settings. We first tested on the bench a device with passive and active humidification properties (Humid-Heat, Teleflex), and 2 passive hydrophobic/hygroscopic HMEs (Hygrobac and Hygrobac S, Tyco Healthcare). The devices were tested at 3 different ambient temperatures (from 22 to 30 °C), and at 2 minute ventilation settings (10 and 20 L/min). Inspired gas hygrometry was measured at the Y-piece with the psychrometric method. In addition to the bench study, we measured the hygrometry of inspired gases in 2 different clinical studies. In 15 mechanically ventilated patients, we evaluated Humid-Heat at different settings. Additionally, we evaluated Humid-Heat and compared it with Hygrobac in a crossover study in 10 patients. On the bench, with the Hygrobac and Hygrobac S the inspired absolute humidity was ∼ 30 mg H2O/L, and with the Humid-Heat, slightly < 35 mg H2O/L. Ambient temperature and minute ventilation did not have a clinically important difference on the performance of the tested devices. During the clinical evaluation, Humid-Heat provided inspired humidity in a range from 28.5 to 42.0 mg H2O/L, depending on settings, and was only weakly influenced by the patient's body temperature. In this study both passive and active HMEs had stable humidification performance with negligible influence of ambient temperature and minute ventilation. This contrasts with previous findings with heated wire-heated humidifiers. Although there are no clear data demonstrating that higher humidification impacts outcomes, it is worth noting that humidity was significantly higher with the active HME.
Jia, Xia; Zhao, YongHua; Wang, WenKe; He, Yunhua
2015-09-23
The objective of this study was to investigate the effects of slightly elevated atmospheric temperature in the spring on photosynthetic products in wheat seedlings and on organic compounds and biological activity in rhizosphere soil under cadmium (Cd) stress. Elevated temperature was associated with increased soluble sugars, reducing sugars, starch, and total sugars, and with decreased amino acids in wheat seedlings under Cd stress. Elevated temperature improved total soluble sugars, free amino acids, soluble phenolic acids, and organic acids in rhizosphere soil under Cd stress. The activity of amylase, phenol oxidase, invertase, β-glucosidase, and l-asparaginase in rhizosphere soil was significantly improved by elevated temperature under Cd stress; while cellulase, neutral phosphatase, and urease activity significantly decreased. Elevated temperature significantly improved bacteria, fungi, actinomycetes, and total microorganisms abundance and fluorescein diacetate activity under Cd stress. In conclusion, slightly elevated atmospheric temperature in the spring improved the carbohydrate levels in wheat seedlings and organic compounds and biological activity in rhizosphere soil under Cd stress in the short term. In addition, elevated atmospheric temperature in the spring stimulated available Cd by affecting pH, DOC, phenolic acids, and organic acids in rhizosphere soil, which resulted in the improvement of the Cd uptake by wheat seedlings.
Jia, Xia; Zhao, YongHua; Wang, WenKe; He, Yunhua
2015-01-01
The objective of this study was to investigate the effects of slightly elevated atmospheric temperature in the spring on photosynthetic products in wheat seedlings and on organic compounds and biological activity in rhizosphere soil under cadmium (Cd) stress. Elevated temperature was associated with increased soluble sugars, reducing sugars, starch, and total sugars, and with decreased amino acids in wheat seedlings under Cd stress. Elevated temperature improved total soluble sugars, free amino acids, soluble phenolic acids, and organic acids in rhizosphere soil under Cd stress. The activity of amylase, phenol oxidase, invertase, β-glucosidase, and l-asparaginase in rhizosphere soil was significantly improved by elevated temperature under Cd stress; while cellulase, neutral phosphatase, and urease activity significantly decreased. Elevated temperature significantly improved bacteria, fungi, actinomycetes, and total microorganisms abundance and fluorescein diacetate activity under Cd stress. In conclusion, slightly elevated atmospheric temperature in the spring improved the carbohydrate levels in wheat seedlings and organic compounds and biological activity in rhizosphere soil under Cd stress in the short term. In addition, elevated atmospheric temperature in the spring stimulated available Cd by affecting pH, DOC, phenolic acids, and organic acids in rhizosphere soil, which resulted in the improvement of the Cd uptake by wheat seedlings. PMID:26395070
NASA Astrophysics Data System (ADS)
Jia, Xia; Zhao, Yonghua; Wang, Wenke; He, Yunhua
2015-09-01
The objective of this study was to investigate the effects of slightly elevated atmospheric temperature in the spring on photosynthetic products in wheat seedlings and on organic compounds and biological activity in rhizosphere soil under cadmium (Cd) stress. Elevated temperature was associated with increased soluble sugars, reducing sugars, starch, and total sugars, and with decreased amino acids in wheat seedlings under Cd stress. Elevated temperature improved total soluble sugars, free amino acids, soluble phenolic acids, and organic acids in rhizosphere soil under Cd stress. The activity of amylase, phenol oxidase, invertase, β-glucosidase, and L-asparaginase in rhizosphere soil was significantly improved by elevated temperature under Cd stress; while cellulase, neutral phosphatase, and urease activity significantly decreased. Elevated temperature significantly improved bacteria, fungi, actinomycetes, and total microorganisms abundance and fluorescein diacetate activity under Cd stress. In conclusion, slightly elevated atmospheric temperature in the spring improved the carbohydrate levels in wheat seedlings and organic compounds and biological activity in rhizosphere soil under Cd stress in the short term. In addition, elevated atmospheric temperature in the spring stimulated available Cd by affecting pH, DOC, phenolic acids, and organic acids in rhizosphere soil, which resulted in the improvement of the Cd uptake by wheat seedlings.
NASA Astrophysics Data System (ADS)
van Pinxteren, M.; Herrmann, H.
2013-06-01
An analytical method for the determination of the alpha dicarbonyls glyoxal (GLY) and methylglyoxal (MGLY) from seawater and marine aerosol samples is presented. The method is based on derivatisation with o-(2,3,4,5,6-Pentafluorobenzyl)-hydroxylamine (PFBHA) reagent, solvent extraction and GC-MS (SIM) analysis. The method showed good precision (RSD <10%), sensitivity (detection limits in the low ng L-1 range), and accuracy (good agreement between external calibration and standard addition). The method was applied to determine GLY and MGLY in oceanic water sampled during the POLARSTERN cruise ANT XXVII/4 from Capetown to Bremerhaven in spring 2011. GLY and MGLY were determined in the sea surface microlayer (SML) of the ocean and corresponding bulkwater (BW) with average concentrations of 228 ng L-1 (GLY) and 196 ng L-1 (MGLY). The results show a significant enrichment (factor of 4) of GLY and MGLY in the SML. Furthermore, marine aerosol particles (PM1) were sampled during the cruise and analyzed for GLY (average concentration 0.19 ng m-3) and MGLY (average concentration 0.15 ng m-3). On aerosol particles, both carbonyls show a very good correlation with oxalate, supporting the idea of a secondary formation of oxalic acid via GLY and MGLY. Concentrations of GLY and MGLY in seawater and on aerosol particles were correlated to environmental parameters such as global radiation, temperature, distance to the coastline and biological activity. There are slight hints for a photochemical production of GLY and MGLY in the SML (significant enrichment in the SML, higher enrichment at higher temperature). However, a clear connection of GLY and MGLY to global radiation as well as to biological activity cannot be concluded from the data. A slight correlation between GLY and MGLY in the SML and in aerosols could be a hint for interactions of especially GLY between seawater and the atmosphere.
NASA Astrophysics Data System (ADS)
van Pinxteren, M.; Herrmann, H.
2013-12-01
An analytical method for the determination of the alpha dicarbonyls glyoxal (GLY) and methylglyoxal (MGLY) from seawater and marine aerosol particles is presented. The method is based on derivatization with o-(2,3,4,5,6-Pentafluorobenzyl)-hydroxylamine (PFBHA) reagent, solvent extraction and GC-MS (SIM) analysis. The method showed good precision (RSD < 10%), sensitivity (detection limits in the low ng L-1 range), and accuracy (good agreement between external calibration and standard addition). The method was applied to determine GLY and MGLY in oceanic water sampled during the Polarstern cruise ANT XXVII/4 from Capetown to Bremerhaven in spring 2011. GLY and MGLY were determined in the sea surface microlayer (SML) of the ocean and corresponding bulk water (BW) with average concentrations of 228 ng L-1 (GLY) and 196 ng L-1 (MGLY). The results show a significant enrichment (factor of 4) of GLY and MGLY in the SML. Furthermore, marine aerosol particles (PM1) were sampled during the cruise and analyzed for GLY (average concentration 0.19 ng m-3) and MGLY (average concentration 0.15 ng m-3). On aerosol particles, both carbonyls show a very good correlation with oxalate, supporting the idea of a secondary formation of oxalic acid via GLY and MGLY. Concentrations of GLY and MGLY in seawater and on aerosol particles were correlated to environmental parameters such as global radiation, temperature, distance to the coastline and biological activity. There are slight hints for a photochemical production of GLY and MGLY in the SML (significant enrichment in the SML, higher enrichment at higher temperature). However, a clear connection of GLY and MGLY to global radiation as well as to biological activity cannot be concluded from the data. A slight correlation between GLY and MGLY in the SML and in aerosol particles could be a hint for interactions, in particular of GLY, between seawater and the atmosphere.
Development of Laser Fabricated Ti-6Al-4V
NASA Technical Reports Server (NTRS)
deGroh, Henry C., III
2006-01-01
Laser Engineered Net Shaping (LENS) depositions with Ti-6Al-4V gas-atomized powder were accomplished at five different temperatures, ranging from 30 to 400 C, imposed on the base plate. These base plate temperatures were employed in an effort to relieve stresses which develop during the deposition. Warpage of the base plate was monitored. Only a slight decline in warpage was observed as the base plate temperature was increased. Results indicate that substrate temperatures closer to the stress relief minimum of 480 C would relieve deposition stresses, though process parameters would likely need to be modified to compensate for the higher base plate temperature. The compositions of the as-received powder and the LENS deposited material were chemically analyzed. The oxygen content of the LENS material was 0.154 wt.% which is less than the maximum impurity limit of 0.2 percent for commercial Ti-6Al-4V alloys, but is over the limit allowed in ELI grade (0.13 percent). The level of oxygen in the commercial base plate used was only 0.0635 percent. Tensile specimens were machined from the LENS deposited material and tested in tension at room temperature. The ultimate and yield tensile stresses of the LENS material were about 1200 and 1150 MPa respectively, which is about 20 percent higher than the strengths of wrought Ti-6Al-4V. The higher strength of the LENS material was due to its fine structure and high oxygen content. The LENS deposits were not fully dense; voids were frequent at the interfaces between deposited layers. These dispersed sheets of voids were parallel to the longitudinal axis of the resulting tensile specimens. Apparently there was sufficient continuous, fully dense material longitudinally to enable the high strengths. Ductility was low in the LENS material. Percent elongation at failure in the LENS material was near 4 percent, which is less than half of what is usually expected from Ti-6Al-4V. The low ductility was caused by high oxygen levels, and the presence of voids. It is likely that the relatively high scan speeds used in our depositions contributed to the lack of full density in our LENS material.
[Impact of introduction of O2 on the welding arc of gas pool coupled activating TIG].
Huang, Yong; Wang, Yan-Lei; Zhang, Zhi-Guo
2014-05-01
In the present paper, Boltzmann plot method was applied to analyze the temperature distributions of the are plasma when the gas pool coupled activating TIG welding was at different coupling degrees with the outer gas being O2. Based on this study of temperature distributions, the changing regularities of are voltage and are appearance were studied. The result shows that compared with traditional TIG welding, the introduction of O2 makes the welding arc constricted slightly, the temperature of the are center build up, and the are voltage increase. When argon being the inner gas, oxygen serving as the outer gas instead of argon makes the are constricted more obviously. When the coupling degree increases from 0 to 2, the temperature of the are center and the are voltage both increase slightly. In the gas pool coupled activating TIG welding the are is constricted not obviously, and the reason why the weld penetration is improved dramatically in the welding of stainless steel is not are constriction.
Carter, Amanda W; Bowden, Rachel M; Paitz, Ryan T
2017-04-01
Sex-specific maternal effects can be adaptive sources of phenotypic plasticity. Reptiles with temperature-dependent sex determination (TSD) are a powerful system to investigate such maternal effects because offspring phenotype, including sex, can be sensitive to maternal influences such as oestrogens and incubation temperatures.In red-eared slider turtles ( Trachemys scripta ), concentrations of maternally derived oestrogens and incubation temperatures increase across the nesting season; we wanted to determine if sex ratios shift in a seasonally concordant manner, creating the potential for sex-specific maternal effects, and to define the sex ratio reaction norms under fluctuating temperatures across the nesting season.Eggs from early and late season clutches were incubated under a range of thermally fluctuating temperatures, maternally derived oestradiol concentrations were quantified via radioimmunoassay, and hatchling sex was identified. We found that late season eggs had higher maternal oestrogen concentrations and were more likely to produce female hatchlings. The sex ratio reaction norm curves systematically varied with season, such that with even a slight increase in temperature (0.5°C), late season eggs produced up to 49% more females than early season eggs.We found a seasonal shift in sex ratios which creates the potential for sex-specific phenotypic matches across the nesting season driven by maternal effects. We also describe, for the first time, systematic variation in the sex ratio reaction norm curve within a single population in a species with TSD.
Miniature High-Force, Long-Stroke SMA Linear Actuators
NASA Technical Reports Server (NTRS)
Cummin, Mark A.; Donakowski, William; Cohen, Howard
2008-01-01
Improved long-stroke shape-memory-alloy (SMA) linear actuators are being developed to exert significantly higher forces and operate at higher activation temperatures than do prior SMA actuators. In these actuators, long linear strokes are achieved through the principle of displacement multiplication, according to which there are multiple stages, each intermediate stage being connected by straight SMA wire segments to the next stage so that relative motions of stages are additive toward the final stage, which is the output stage. Prior SMA actuators typically include polymer housings or shells, steel or aluminum stages, and polymer pads between successive stages of displacement-multiplication assemblies. Typical output forces of prior SMA actuators range from 10 to 20 N, and typical strokes range from 0.5 to 1.5 cm. An important disadvantage of prior SMA wire actuators is relatively low cycle speed, which is related to actuation temperature as follows: The SMA wires in prior SMA actuators are typically made of a durable nickel/titanium alloy that has a shape-memory activation temperature of 80 C. An SMA wire can be heated quickly from below to above its activation temperature to obtain a stroke in one direction, but must then be allowed to cool to somewhat below its activation temperature (typically, less than or equal to 60 C in the case of an activation temperature of 80 C) to obtain a stroke in the opposite direction (return stroke). At typical ambient temperatures, cooling times are of the order of several seconds. Cooling times thus limit cycle speeds. Wires made of SMA alloys having significantly higher activation temperatures [denoted ultra-high-temperature (UHT) SMA alloys] cool to the required lower return-stroke temperatures more rapidly, making it possible to increase cycle speeds. The present development is motivated by a need, in some applications (especially aeronautical and space-flight applications) for SMA actuators that exert higher forces, operate at greater cycle speeds, and have stronger housings that can withstand greater externally applied forces and impacts. The main novel features of the improved SMA actuators are the following: 1) The ends of the wires are anchored in compact crimps made from short steel tubes. Each wire end is inserted in a tube, the tube is flattened between planar jaws to make the tube grip the wire, the tube is compressed to a slight U-cross-section deformation to strengthen the grip, then the crimp is welded onto one of the actuator stages. The pull strength of a typical crimp is about 125 N -- comparable to the strength of the SMA wire and greater than the typical pull strengths of wire-end anchors in prior SMA actuators. Greater pull strength is one of the keys to achievement of higher actuation force; 2) For greater strength and resistance to impacts, housings are milled from aluminum instead of being made from polymers. Each housing is made from two pieces in a clamshell configuration. The pieces are anodized to reduce sliding friction; 3) Stages are made stronger (to bear greater compression loads without excessive flexing) by making them from steel sheets thicker than those used in prior SMA actuators. The stages contain recessed pockets to accommodate the crimps. Recessing the pockets helps to keep overall dimensions as small as possible; and, 4) UHT SMA wires are used to satisfy the higher-speed/higher-temperature requirement.
Changes in cutaneous and body temperature during and after conditioned fear to context in the rat.
Vianna, Daniel M L; Carrive, Pascal
2005-05-01
Infrared thermography was used to image changes in cutaneous temperature during a conditioned fear response to context. Changes in heart rate, arterial pressure, activity and body (i.p.) temperature were recorded at the same time by radio-telemetry, in addition to freezing immobility. A marked drop in tail and paws temperature (-5.3 and -7.5 degrees C, respectively, down to room temperature), which lasted for the entire duration of the response (30 min), was observed in fear-conditioned rats. In sham-conditioned rats, the drop was on average half the magnitude and duration. In contrast, temperature of the eye, head and back increased (between + 0.8 and + 1.5 degrees C), with no difference between the two groups of rats. There was a similar increase in body temperature although it was slightly higher and delayed in the fear-conditioned animals. Finally, ending of the fear response was associated with a gradual decrease in body temperature and a rebound increase in the temperature of the tail (+ 3.3 degrees C above baseline). This study shows that fear, and to some extent arousal, evokes a strong cutaneous vasoconstriction that is restricted to the tail and paws. This regionally specific reduction in blood flow may be part of a preparatory response to a possible fight and flight to reduce blood loss in the most exposed parts of the rat's body in case of injury. The data also show that the tail is the main part of the body used for dissipating internal heat accumulated during fear once the animal has returned to a safe environment.
ERIC Educational Resources Information Center
Katsioloudis, Petros J.
2017-01-01
Temperature can influence thermal comfort, working performance, and social behavior. In a classroom that is slightly cool, an assumption can be made that learning could be affected in a negative way. Considering this, a quasi-experimental study was done to determine if a significant difference of effective temperature have an effect on students':…
Investigations on Heat Treatment of a High-Speed Steel Roll
NASA Astrophysics Data System (ADS)
Fu, Hanguang; Qu, Yinhu; Xing, Jiandong; Zhi, Xiaohui; Jiang, Zhiqiang; Li, Mingwei; Zhang, Yi
2008-08-01
High-carbon high-speed steels (HSS) are very abrasion-resistant materials primarily due to their high hardness MC-type carbide and high hardness martensitic matrix. The effects of quenching and tempering treatment on the microstructure, mechanical properties, and abrasion resistance of centrifugal casting high-carbon HSS roll were studied. Different microstructures and mechanical properties were obtained after the quenching and tempering temperatures of HSS roll were changed. With air-cooling and sodium silicate solution cooling, when the austenitizing temperature reaches 1273 K, the metallic matrix all transforms into the martensite. Afterwards, the eutectic carbides dissolve into the metallic matrix and their continuous network distribution changes into the broken network. The second hardening temperature of high-carbon HSS roll is around 793 K. No significant changes in tensile strength and elongation percentage are observed unless the tempering temperature is beyond 753 K. The tensile strength increases obviously and the elongation percentage decreases slightly beyond 753 K. However, the tensile strength decreases and the elongation percentage increases when the tempering temperature exceeds 813 K. When the tempering temperature excels 773 K, the impact toughness has a slight decrease. Tempering at 793-813 K, high-carbon HSS roll presents excellent abrasion resistance.
Enhanced Ozone Production at Low Temperatures due to Ethanol (E85)
NASA Astrophysics Data System (ADS)
Ginnebaugh, D. L.; Livingstone, P. L.; Jacobson, M. Z.
2009-12-01
The increased use of ethanol in transportation fuels warrants an investigation of its consequences. An important component of such an investigation is the temperature-dependence of ethanol and gasoline exhaust chemistry. We use the near-explicit Master Chemical Mechanism (MCM, version 3.1, LEEDS University) with the SMVGEAR II chemical ordinary differential solver to provide the speed necessary to simulate explicit chemistry to examine such effects. The MCM has over 13,500 organic reactions and 4,600 species. SMVGEAR II is a sparse-matrix Gear solver that reduces the computation time significantly while maintaining any specified accuracy. Although for this study we use a box model, we determined that the speed of the MCM with the SMVGEAR solver will allow the MCM to be modeled in 3-dimensions. We also verified the accuracy of the model with comparisons to smog chamber data. We use species-resolved tailpipe emissions data for E85 (15% gasoline, 85% ethanol fuel blend) and gasoline vehicles to compare the impact of each on ozone and carcinogenic organic gases as a function of ambient temperature and background concentrations, using Los Angeles in 2020 as a base case. We use two different emissions sets - one is a compilation of data taken at near 24 C and the other from data taken at -7 C - to determine how atmospheric chemistry and emissions are affected by temperature. We include diurnal effects by examining 2 day and 5 day scenarios. We find that for both emission data sets, the average ozone concentrations through the range of temperatures tested are higher with E85 than with gasoline by 8 parts per billion volume (ppbv) at higher temperatures to 55 ppbv at low temperatures and low sunlight (winter conditions) for an area with a high nitrogen oxides (NOx) to non-methane organic gases (NMOG) ratio. The results suggest that E85's effect on health through ozone formation becomes increasingly more significant relative to gasoline as temperatures decreased due to the change in emission composition at lower temperature. This could have implications for the wintertime use of E85. Some carcinogenic species increase while others decrease when using E85 instead of gasoline, implying that the cancer risk is approximately the same for warmer temperatures but may be slightly higher for E85 for cold temperatures. Peroxy acetyl nitrate (PAN), another air pollutant of concern, increases with E85 by 0.4 to 20 ppbv. The sensitivity of the results to background emissions, NOx emissions, and water vapor was also examined.
Designing heterostructures with higher-temperature superconductivity
NASA Astrophysics Data System (ADS)
Le Hur, Karyn; Chung, Chung-Hou; Paul, I.
2011-07-01
We propose to increase the superconducting transition temperature Tc of strongly correlated materials by designing heterostructures which exhibit a high pairing energy as a result of magnetic fluctuations. More precisely, applying an effective theory of the doped Mott insulator, we envisage a bilayer Hubbard system where both layers exhibit intrinsic intralayer (intraband) d-wave superconducting correlations. Introducing a finite asymmetry between the hole densities of the two layers such that one layer becomes slightly more underdoped and the other more overdoped, we show a visible enhancement of Tc compared to the optimally doped isolated layer. Using the bonding and antibonding band basis, we show that the mechanism behind this enhancement of Tc is the interband pairing correlation mediated by the hole asymmetry which strives to decrease the paramagnetic nodal contribution to the superfluid stiffness. For two identical layers, Tc remains comparable to that of the isolated layer until moderate values of the interlayer single-particle tunneling term. These heterostructures shed new light on fundamental questions related to superconductivity.
Unusual hafnium-pyridylamido/ER(n) heterobimetallic adducts (ER(n) = ZnR2 or AlR3).
Rocchigiani, Luca; Busico, Vincenzo; Pastore, Antonello; Talarico, Giovanni; Macchioni, Alceo
2014-02-17
NMR spectroscopy and DFT studies indicate that the Symyx/Dow Hf(IV)-pyridylamido catalytic system for olefin polymerization, [{N(-),N,CNph(-)}HfMe][B(C6F5)4] (1, Nph = naphthyl), interacts with ER(n) (E = Al or Zn, R = alkyl group) to afford unusual heterobimetallic adducts [{N(-),N}HfMe(μ-CNph)(μ-R)ER(n-1)][B(C6F5)4 in which the cyclometalated Nph acts as a bridge between Hf and E. (1)H VT (variable-temperature) EXSY NMR spectroscopy provides direct evidence of reversible alkyl exchanges in heterobimetallic adducts, with ZnR2 showing a higher tendency to participate in this exchange than AlR3. 1-Hexene/ERn competitive reactions with 1 at 240 K reveal that the formation of adducts is strongly favored over 1-hexene polymerization. Nevertheless, a slight increase in the temperature (to >265 K) initiates 1-hexene polymerization. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nano-graphene induced positive effects on methanogenesis in anaerobic digestion.
Tian, Tian; Qiao, Sen; Li, Xue; Zhang, Meijiao; Zhou, Jiti
2017-01-01
The effects of nano-graphene on methanogenesis in anaerobic digestion was investigated. Short-term results showed that graphene (30 and 120mg/L) had significantly positive effects on methane production rate, which increased by 17.0% and 51.4%. Further investigation indicated that acetate-consuming methanogenesis was enhanced. The failure of quinones to replicate graphene stimulation effects on methanogenesis suggested that graphene did not function as electron shuttles. After 55 day's operation at room temperature (from 20 to 10°C, the methane production rate with 30mg/L graphene was 14.3% higher than that of the control, while 120mg/L graphene showed a slight inhibition on methane yield. Illumina sequencing data showed that the archaeal community structure remained fairly constant as the incubated sludge with graphene at low temperature, in which Methanoregula, Methanosaeta and Methanospirillum were the dominant species. Besides, Geobacter enrichment was observed with graphene, suggesting that the direct interspecies electron transfer might be promoted. Copyright © 2016 Elsevier Ltd. All rights reserved.
High Electron Mobility SiGe/Si Transistor Structures on Sapphire Substrates
NASA Technical Reports Server (NTRS)
Alterovitz, Samuel A.; Mueller, Carl H.; Croke, Edward T.; Ponchak, George E.
2004-01-01
SiGe/Si n-type modulation doped field effect structures and transistors (n-MODFETs) have been fabricated on r-plane sapphire substrates. The structures were deposited using molecular beam epitaxy, and antimony dopants were incorporated via a delta doping process. Secondary ion mass spectroscopy (SIMS) indicates that the peak antimony concentration was approximately 4 x 10(exp 19) per cubic centimeter. At these two temperatures, the electron carrier densities were 1.6 and 1.33 x 10(exp 12) per square centimeter, thus demonstrating that carrier confinement was excellent. Shubnikov-de Haas oscillations were observed at 0.25 K, thus confirming the two-dimensional nature of the carriers. Transistors, with gate lengths varying from 1 micron to 5 microns, were fabricated using these structures and dc characterization was performed at room temperature. The saturated drain current region extended over a wide source-to-drain voltage (V (sub DS)) range, with V (sub DS) knee voltages of approximately 0.5 V and increased leakage starting at voltages slightly higher than 4 V.
Effect of interface deformability on thermocapillary motion of a drop in a tube
NASA Astrophysics Data System (ADS)
Mahesri, S.; Haj-Hariri, H.; Borhan, A.
2014-03-01
The effect of an externally imposed axial temperature gradient on the mobility and deformation of a drop in an otherwise stagnant liquid within an insulated cylindrical tube is investigated. In the absence of bulk transport of momentum and energy, the boundary integral technique is used to obtain the flow and temperature fields inside and outside the deformable drop. The steady drop shapes and the corresponding migration velocities are examined over a wide range of the dimensionless parameters. The steady drop shape is nearly spherical for dimensionless drop sizes <0.5, but becomes slightly elongated in the axial direction for drop sizes comparable to tube diameter. The adverse effect of drop deformation on the effective temperature gradient driving the motion is slightly more pronounced than its favorable effect of reducing drag, thereby leading to a slight reduction in drop mobility with increasing drop deformation. Increasing the viscosity ratio reduces drop deformation and leads to a slight enhancement in the relative mobility (with respect to free thermocapillary motion) of confined drops. When the drop fluid has a lower thermal conductivity than the exterior phase, the presence of the thermally-insulating wall increases the thermal driving force for drop motion (compared to that for the same drop in unbounded domain) by causing more pronounced bending of the isotherms toward the drop. However, the favorable thermal effect of the confining wall is overwhelmed by its retarding hydrodynamic effect, causing the confined drop to always move slower than its unbounded counterpart regardless of the value of the thermal conductivity ratio.
Resistance of a northwestern crayfish, Pacifastacus leniusculus (Dana), to elevated temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becker, C.D.; Genoway, R.G.; Merrill, J.A.
1975-04-01
Pacifastacus leniusculus from two populations in Washington State, the central Columbia River and a small tributary, were acclimated at 5/sup 0/C intervals and exposed to elevated temperatures in 48 hour thermal bioassays. The upper lethal temperature for both crayfish populations increased relatively slightly, from about 28.5 to 31.5/sup 0/C, over the entire acclimation range. A rise of 1/sup 0/C in test temperature often represented the difference between zero and total mortality when lethal limits were approached. The ultimate upper lethal temperature was near 32 to 33/sup 0/C. Statistically significant differences in thermal resistance patterns (slope and spacing of regression lines)more » occurred between the two crayfish populations at all acclimation levels, but resistance in terms of eventual mortality was similar for practical purposes. Moulting individuals were particularly susceptible to high temperature stress. Mature, pre-breeding female crayfish from the Columbia River during fall appeared less resistant, and egg-bearing females during winter more resistant, than other individuals. Larger crayfish from the Columbia River were slightly less resistant to elevated temperatures than smaller ones, and females were more resistant than males. The upper temperature triangle for P. leniusculus encompasses an area of 424/sup 0/C/sup 2/. This freshwater decapod is more tolerant of elevated temperatures than native salmonids, but less tolerant than some introduced ''warmwater'' fish.« less
NASA Technical Reports Server (NTRS)
Blackman, Calvin C.; White, H. Jack
1945-01-01
A comparison has been made in flight of the antiknock characteristics of 33-R fuel with that of 28-R and a triptane blent. The knock-limited performance of the three fuels - 33-R, a blend of 80 percent 28-R plus 20 percent triptane (leaded to 4.5 ml TEL/gal), and 28-R - was investigated in two modified 14-cylinder double-row radial air-cooled engines. Tests were conducted on the engines as installed in the left inboard nacelle of an airplane. A carburetor-air temperature of approximately 85 deg F was maintained. The conditions covered at an engine speed of 2250 rpm were high and low blower ratios and spark advances of 25 deg and 32 deg B.T.C. For an engine speed of 1800 rpm only the high-blower condition was investigated for both 25 deg and 32 deg spark advances. For the conditions investigated the difference between 33-R and the triptane blend was found to be slight; the performance of 33-R fuel, however, was slightly higher than that of the triptane blend in the lean region. The knock-limited power obtained with the 33-R fuel was from 14 to 28 percent higher than that of the 28-R fuel for the entire range of test conditions; the greatest improvement was shown in the lean region.
Object Kinetic Monte Carlo Simulations of Radiation Damage In Bulk Tungsten
NASA Astrophysics Data System (ADS)
Nandipati, Giridhar; Setyawan, Wahyu; Heinisch, Howard; Roche, Kenneth; Kurtz, Richard; Wirth, Brian
2015-11-01
Results are presented for the evolution of radiation damage in bulk tungsten investigated using the object KMC simulation tool, KSOME, as a function of dose, dose rate and primary knock-on atom (PKA) energies in the range of 10 to 100 keV, at temperatures of 300, 1025 and 2050 K. At 300 K, the number density of vacancies changes minimally with dose rate while the number density of vacancy clusters slightly decreases with dose rate indicating that larger clusters are formed at higher dose rates. Although the average vacancy cluster size increases slightly, the vast majority exists as mono-vacancies. At 1025 K void lattice formation was observed at all dose rates for cascades below 60 keV and at lower dose rates for higher PKA energies. After the appearance of initial features of the void lattice, vacancy cluster density increased minimally while the average vacancy cluster size increases rapidly with dose. At 2050 K, no accumulation of defects was observed over a broad range of dose rates for all PKA energies studied in this work. Further comparisons of results of irradiation simulations at various dose rates and PKA spectra, representative of the High Flux Isotope Reactor and future fusion relevant irradiation facilities will be discussed. The U.S. Department of Energy, Office of Fusion Energy Sciences (FES) and Office of Advanced Scientific Computing Research (ASCR) has supported this study through the SciDAC-3 program.
NASA Astrophysics Data System (ADS)
Bhandari, Churna; Lambrecht, Walter R. L.
2018-06-01
While the tetragonal antiferro-electrically distorted (AFD) phase with space group I 4 / mcm is well known for SrTiO3 to occur below 105 K, there are also some hints in the literature of an orthorhombic phase, either at the lower temperature or at high pressure. A previously proposed orthorhombic layered structure of SrTiO3, known as the post-perovskite or CaIrO3 structure with space group Cmcm is shown to have significantly higher energy than the cubic or tetragonal phase and to have its minimum volume at larger volume than cubic perovskite. The Cmcm structure is thus ruled out. We also study an alternative Pnma phase obtained by two octahedral rotations about different axes. This phase is found to have slightly lower energy than the I 4 / mcm phase in spite of the fact that its parent, in-phase tilted P 4 / mbm phase is not found to occur. Our calculated enthalpies of formation show that the I 4 / mcm phase occurs at slightly higher volume than the cubic phase and has a negative transition pressure relative to the cubic phase, which suggests that it does not correspond to the high-pressure tetragonal phase. The enthalpy of the Pnma phase is almost indistinguishable from the I 4 / mcm phase. Alternative ferro-electric tetragonal and orthorhombic structures previously suggested in literature are discussed.
NASA Astrophysics Data System (ADS)
Abdelaziz, Ayman A.; Ishijima, Tatsuo; Seto, Takafumi; Osawa, Naoki; Wedaa, Hassan; Otani, Yoshio
2016-06-01
The aim of this study is to investigate the effect of the intermediate frequency (1-10 kHz) of the sinusoidal driving voltage on the characteristics of a developed surface dielectric barrier discharge (SDBD)-based reactor having spikes on its discharge electrode. Moreover, its influence on the production of ozone and nitrogen oxide byproducts is evaluated. The results show that SDBD is operated in the filamentary mode at all the frequencies. Nevertheless, the pulses of the discharge current at high frequencies are much denser and have higher amplitudes than those at low frequencies. The analysis of the power consumed in the reactor shows that a small portion of the input power is dissipated in the dielectric material of SDBD source, whereas the major part of the power is consumed in the plasma discharge. The results of the ozone production show that higher frequencies have a slightly adverse effect on the ozone production at relatively high energy density values, where the ozone concentration is slightly decreased when the frequency is increased at the same energy density. The temperature of the discharge channels and gas is not a crucial factor for the decomposition of ozone in this reactor, while the results of the measurements of nitrogen oxides characteristics indicate that the formation of NO and NO2 has a significant adverse effect on the production efficiency of ozone due to their oxidation to another nitrogen oxides and their catalytic effect.
Generalized model screening potentials for Fermi-Dirac plasmas
NASA Astrophysics Data System (ADS)
Akbari-Moghanjoughi, M.
2016-04-01
In this paper, some properties of relativistically degenerate quantum plasmas, such as static ion screening, structure factor, and Thomson scattering cross-section, are studied in the framework of linearized quantum hydrodynamic theory with the newly proposed kinetic γ-correction to Bohm term in low frequency limit. It is found that the correction has a significant effect on the properties of quantum plasmas in all density regimes, ranging from solid-density up to that of white dwarf stars. It is also found that Shukla-Eliasson attractive force exists up to a few times the density of metals, and the ionic correlations are seemingly apparent in the radial distribution function signature. Simplified statically screened attractive and repulsive potentials are presented for zero-temperature Fermi-Dirac plasmas, valid for a wide range of quantum plasma number-density and atomic number values. Moreover, it is observed that crystallization of white dwarfs beyond a critical core number-density persists with this new kinetic correction, but it is shifted to a much higher number-density value of n0 ≃ 1.94 × 1037 cm-3 (1.77 × 1010 gr cm-3), which is nearly four orders of magnitude less than the nuclear density. It is found that the maximal Thomson scattering with the γ-corrected structure factor is a remarkable property of white dwarf stars. However, with the new γ-correction, the maximal scattering shifts to the spectrum region between hard X-ray and low-energy gamma-rays. White dwarfs composed of higher atomic-number ions are observed to maximally Thomson-scatter at slightly higher wavelengths, i.e., they maximally scatter slightly low-energy photons in the presence of correction.
High Resolution Monthly Oceanic Rainfall Based on Microwave Brightness Temperature Histograms
NASA Astrophysics Data System (ADS)
Shin, D.; Chiu, L. S.
2005-12-01
A statistical emission-based passive microwave retrieval algorithm has been developed by Wilheit, Chang and Chiu (1991) to estimate space/time oceanic rainfall. The algorithm has been applied to Special Sensor Microwave Imager (SSM/I) data taken on board the Defense Meteorological Satellite Program (DMSP) satellites to provide monthly oceanic rainfall over 2.5ox2.5o and 5ox5o latitude-longitude boxes by the Global Precipitation Climatology Project-Polar Satellite Precipitation Data Center (GPCP-PSPDC, URL: http://gpcp-pspdc.gmu.edu/) as part of NASA's contribution to the GPCP. The algorithm has been modified and applied to the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) data to produce a TRMM Level 3 standard product (3A11) over 5ox5o latitude/longitude boxes. In this study, the algorithm code is modified to retrieve rain rates at 2.5ox2.5o and 1ox1o resolutions for TMI. Two months of TMI data have been tested and the results compared with the monthly mean rain rates derived from TRMM Level 2 TMI rain profile algorithm (2A12) and the original 5ox5o data from 3A11. The rainfall pattern is very similar to the monthly average of 2A12, although the intensity is slightly higher. Details in the rain pattern, such as rain shadow due to island blocking, which were not discernible from the low resolution products, are now easily discernible. The spatial average of the higher resolution rain rates are in general slightly higher than lower resolution rain rates, although a Student-t test shows no significant difference. This high resolution product will be useful for the calibration of IR rain estimates for the production of the GPCP merge rain product.
Deformation behaviour of Cu-Al clad composites produced by rotary swaging
NASA Astrophysics Data System (ADS)
Kunčická, L.; Kocich, R.
2018-05-01
Al/Cu composites are an advantageous perspective material applicable in various industrial branches, from electrotechnics to transportation industry. This study focused on the investigation of Al/Cu clad composites produced by rotary swaging at two different temperatures, 20°C and 250°C. The composites were swaged from the original 30 mm down to 5 mm with the total swaging degree of 3.58, however, samples were acquired after multiple steps. The influences of the processing conditions on the structure were studied via scanning electron microscopy; the analyses mainly focused on the deformation behaviour of the component metals and the possible development of intermetallic phases on their interfaces, as well as on the grains orientation. During processing, the radial swaging forces were recorded with our own developed KOMAFU S600 system for dynamic detection of swaging forces. According to the results of the analyses, the swaging temperature influenced significantly the behaviour of the composites, as did also the total imposed strain. The composite swaged at 250°C was affected more notably, the cross-sections of the Al wires in the composite were deformed due to the influence of the radial swaging dies movement more significantly than in the composite swaged at 20°C. This effect was evident for all the investigated swaging steps and increased with increasing total imposed strain. The higher swaging temperature also decreased the plastic flow of the material; the deformation work was 730.3 kJ for 250°C composite and 650.7 kJ for the 20°C one. Tensile testing revealed similar effect; while the UTS for both the composites was slightly higher than 280 MPa, the plasticity of 250°C composite was evidently higher.
Springs, streams, and gas vent on and near Mount Adams volcano, Washington
Nathenson, Manuel; Mariner, Robert H.
2013-01-01
Springs and some streams on Mount Adams volcano have been sampled for chemistry and light stable isotopes of water. Spring temperatures are generally cooler than air temperatures from weather stations at the same elevation. Spring chemistry generally reflects weathering of volcanic rock from dissolved carbon dioxide. Water in some springs and streams has either dissolved hydrothermal minerals or has reacted with them to add sulfate to the water. Some samples appear to have obtained their sulfate from dissolution of gypsum while some probably involve reaction with sulfide minerals such as pyrite. Light stable isotope data for water from springs follow a local meteoric water line, and the variation of isotopes with elevation indicate that some springs have very local recharge and others have water from elevations a few hundred meters higher. No evidence was found for thermal or slightly thermal springs on Mount Adams. A sample from a seeping gas vent on Mount Adams was at ambient temperature, but the gas is similar to that found on other Cascade volcanoes. Helium isotopes are 4.4 times the value in air, indicating that there is a significant component of mantle helium. The lack of fumaroles on Mount Adams and the ambient temperature of the gas indicates that the gas is from a hydrothermal system that is no longer active.
The influence of thermal discomfort on the attention index of teenagers: an experimental evaluation
NASA Astrophysics Data System (ADS)
Mazon, Jordi
2014-07-01
In order to measure the effect on the attention of teenagers of thermal discomfort due to high temperature and humidity, two experiments were conducted in two different indoor conditions of temperature and humidity in non-air-conditioned classrooms. The participants were a heterogeneous group of 117 teenagers, aged 12 to 18 years, and the experiments reproduced the actual conditions of teaching in a classroom in the Mediterranean climate. In order to measure the attention index, a standard Toulouse-Pieron psychological test was performed on the 117 teenagers in these two conditions, and the Predicted Mean Vote (PMV), the physiologically Equivalent Temperature (PET), the Standard effective Temperature (SET*) and the Universal Thermal Climate Index (UTCI) indices were calculated to estimate the grade of discomfort using the RayMan Pro model. Conditions of greater discomfort decreased the attention index in the whole group, especially in those aged 12-14, among whom the attention index dropped by around 45 % when compared to comfortable conditions. However, teenage attention at ages 17 and 18 shows little variation in discomfort in respect to thermally comfortable conditions. In addition, the attention index for boys and girls shows the same variation in discomfort conditions. However, girls have a slightly higher attention index than boys in discomfort and thermal comfort experiments.
Aging of the Johari-Goldstein relaxation in the glass-forming liquids sorbitol and xylitol
NASA Astrophysics Data System (ADS)
Yardimci, Hasan; Leheny, Robert L.
2006-06-01
Employing frequency-dependent dielectric susceptibility we characterize the aging in two supercooled liquids, sorbitol and xylitol, below their calorimetric glass transition temperatures. In addition to the alpha relaxation that tracks the structural dynamics, the susceptibility of both liquids possesses a secondary Johari-Goldstein relaxation at higher frequencies. Following a quench through the glass transition, the susceptibility slowly approaches the equilibrium behavior. For both liquids, the magnitude of the Johari-Goldstein relaxation displays a dependence on the time since the quench, or aging time, that is quantitatively very similar to the age dependence of the alpha peak frequency. The Johari-Goldstein relaxation time remains constant during aging for sorbitol while it decreases slightly with age for xylitol. Hence, one cannot sensibly assign a fictive temperature to the Johari-Goldstein relaxation. This behavior contrasts with that of liquids lacking distinct Johari-Goldstein peaks for which the excess wing of the alpha peak tracks the main part of the peak during aging, enabling the assignment of a single fictive temperature to the entire spectrum. The aging behavior of the Johari-Goldstein relaxation time further calls into question the possibility that the relaxation time possesses stronger temperature dependence in equilibrium than is observed in the out-of-equilibrium state below the glass transition.
Refractive-index measurements in freezing sea-ice and sodium chloride brines.
Maykut, G A; Light, B
1995-02-20
Sea ice contains numerous pockets of brine and precipitated salts whose size and number distributions change dramatically with temperature. Theoretical treatment of scattering produced by these inclusions requires information on refractive-index differences among the brine, salts, and surrounding ice. Lacking specific data on refractive-index variations in the brine, we carried out laboratory measurements in freezing-equilibrium solutions between -2 and -32 °C. Index values at 589 nm increased from 1.341 to 1.397 over this temperature range, corresponding to salinities of 35 and 240 parts per thousand (ppt). Spectral data were also taken at 50-nm intervals between 400 and 700 nm in nonequilibrium solutions with salinities ranging up to 300 ppt. Spectral gradients increased slightly with salinity but showed no measurable dependence on temperature between +12 and -16 °C. The Lorentz-Lorenz equation, combined with data on density, molar refractivities, and brine composition, yielded temperature-dependent index predictions in excellent agreement with the experimental data. Similar index and density measurements in freezing sodium chloride brines yielded values nearly identical to those in the sea-ice brines. The absence of mirabilite crystals in sodium chloride ice, however, will cause it to have higher transmissivity and lower reflectivity than sea ice above -22 °C.
Freshly characterization and storability of mini head lettuces at optimal and abusive temperatures.
Viacava, Gabriela E; Ponce, Alejandra G; Goyeneche, Rosario; Carrozzi, Liliana; Yommi, Alejandra; Roura, Sara I
2016-01-01
Selection of lettuce varieties less sensitive to quality deterioration and more tolerant to abusive temperatures during handling, transportation, and storage is essential to minimize economical and quality losses that affect both producers and consumers. This work was focused on the quality changes of four baby head lettuces (Lactuca sativa L.), two butter (red and green) and two oak-leaf (red and green) types, during storage at 0 ℃ and 10 ℃ for 10 days. Lettuce quality was determined by measuring bioactive content (ascorbic acid, total phenolics), physicochemical (total chlorophyll, browning potential), and microbiological indices. At harvest, red varieties presented lower browning potential and higher bioactive compounds but no differences were observed in microbial populations. During storage, ascorbic acid underwent first order degradation for all varieties, with a degradation rate at 10 ℃ twice faster than at 0 ℃. At 0 ℃, only the red oak-leaf lettuce exhibited chlorophyll degradation, while at 10 ℃ all varieties presented degradation. No changes were observed in total phenolics and browning potential of butter lettuces during storage at both temperatures. Microbial population counts were significant affected by the storage temperature. Red butter baby lettuce presented slightly better bioactive content and microbiological characteristics and then better storability. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Shanthi Latha, K.; Rajagopal Reddy, V.
2017-07-01
The electrical and transport properties of a fabricated bilayer Ru/Cr/ n-InP Schottky diode (SD) have been investigated at different annealing temperatures. Atomic force microscopy results have showed that the overall surface morphology of the Ru/Cr/ n-InP SD is fairly smooth at elevated temperatures. High barrier height is achieved for the diode annealed at 300 °C compared to the as-deposited, annealed at 200 and 400 °C diodes. The series resistance and shunt resistance of the Ru/Cr/ n-InP SD are estimated by current-voltage method at different annealing temperatures. The barrier heights and series resistance are also determined by Cheung's and modified Norde functions. The interface state density of the Ru/Cr/ n-InP SD is found to be decreased after annealing at 300 °C and then slightly increased upon annealing at 400 °C. The difference between barrier heights obtained from current-voltage and capacitance-voltage is also discussed. Experimental results have showed that the Poole-Frenkel emission is found to be dominant in the lower bias region whereas Schottky emission is dominant in the higher bias region for the Ru/Cr/ n-InP SDs irrespective of annealing temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shintani, Seine A.; Oyama, Kotaro; Fukuda, Norio, E-mail: noriof@jikei.ac.jp
2015-02-06
Highlights: • We tested the effects of infra-red laser irradiation on cardiac sarcomere dynamics. • A rise in temperature (>∼38 °C) induced high-frequency sarcomeric auto-oscillations. • These oscillations occurred with and without blockade of intracellular Ca{sup 2+} stores. • Cardiac sarcomeres can play a role as a temperature-dependent rhythm generator. - Abstract: In the present study, we investigated the effects of infra-red laser irradiation on sarcomere dynamics in living neonatal cardiomyocytes of the rat. A rapid increase in temperature to >∼38 °C induced [Ca{sup 2+}]{sub i}-independent high-frequency (∼5–10 Hz) sarcomeric auto-oscillations (Hyperthermal Sarcomeric Oscillations; HSOs). In myocytes with the intactmore » sarcoplasmic reticular functions, HSOs coexisted with [Ca{sup 2+}]{sub i}-dependent spontaneous beating in the same sarcomeres, with markedly varying frequencies (∼10 and ∼1 Hz for the former and latter, respectively). HSOs likewise occurred following blockade of the sarcoplasmic reticular functions, with the amplitude becoming larger and the frequency lower in a time-dependent manner. The present findings suggest that in the mammalian heart, sarcomeres spontaneously oscillate at higher frequencies than the sinus rhythm at temperatures slightly above the physiologically relevant levels.« less
NASA Astrophysics Data System (ADS)
Garces, G.; Perez, P.; Cabeza, S.; Kabra, S.; Gan, W.; Adeva, P.
2017-11-01
The evolution of the internal strains during in situ tension and compression tests has been measured in an MgY2Zn1 alloy containing long-period stacking ordered (LPSO) phase using neutron diffraction. The alloy was extruded at two different temperatures to study the influence of the microstructure and texture of the magnesium and the LPSO phases on the deformation mechanisms. The alloy extruded at 623 K (350 °C) exhibits a strong fiber texture with the basal plane parallel to the extrusion direction due to the presence of areas of coarse non-recrystallised grains. However, at 723 K (450 °C), the magnesium phase is fully recrystallised with grains randomly oriented. On the other hand, at the two extrusion temperatures, the LPSO phase orients their basal plane parallel to the extrusion direction. Yield stress is always slightly higher in compression than in tension. Independently on the stress sign and the extrusion temperature, the beginning of plasticity is controlled by the activation of the basal slip system in the dynamic recrystallized grains. Therefore, the elongated fiber-shaped LPSO phase which behaves as the reinforcement in a metal matrix composite is responsible for this tension-compression asymmetry.
Freezing of Water Droplet due to Evaporation
NASA Astrophysics Data System (ADS)
Satoh, Isao; Fushinobu, Kazuyoshi; Hashimoto, Yu
In this study, the feasibility of cooling/freezing of phase change.. materials(PCMs) due to evaporation for cold storage systems was experimentally examined. A pure water was used as the test PCM, since the latent heat due to evaporation of water is about 7 times larger than that due to freezing. A water droplet, the diameter of which was 1-4 mm, was suspended in a test cell by a fine metal wire (O. D.= 100μm),and the cell was suddenly evacuated up to the pressure lower than the triple-point pressure of water, so as to enhance the evaporation from the water surface. Temperature of the droplet was measured by a thermocouple, and the cooling/freezing behavior and the temperature profile of the droplet surface were captured by using a video camera and an IR thermo-camera, respectively. The obtained results showed that the water droplet in the evacuated cell is effectively cooled by the evaporation of water itself, and is frozen within a few seconds through remarkable supercooling state. When the initial temperature of the droplet is slightly higher than the room temperature, boiling phenomena occur in the droplet simultaneously with the freezing due to evaporation. Under such conditions, it was shown that the degree of supercooling of the droplet is reduced by the bubbles generated in the droplet.
Homogeneous SPC/E water nucleation in large molecular dynamics simulations.
Angélil, Raymond; Diemand, Jürg; Tanaka, Kyoko K; Tanaka, Hidekazu
2015-08-14
We perform direct large molecular dynamics simulations of homogeneous SPC/E water nucleation, using up to ∼ 4 ⋅ 10(6) molecules. Our large system sizes allow us to measure extremely low and accurate nucleation rates, down to ∼ 10(19) cm(-3) s(-1), helping close the gap between experimentally measured rates ∼ 10(17) cm(-3) s(-1). We are also able to precisely measure size distributions, sticking efficiencies, cluster temperatures, and cluster internal densities. We introduce a new functional form to implement the Yasuoka-Matsumoto nucleation rate measurement technique (threshold method). Comparison to nucleation models shows that classical nucleation theory over-estimates nucleation rates by a few orders of magnitude. The semi-phenomenological nucleation model does better, under-predicting rates by at worst a factor of 24. Unlike what has been observed in Lennard-Jones simulations, post-critical clusters have temperatures consistent with the run average temperature. Also, we observe that post-critical clusters have densities very slightly higher, ∼ 5%, than bulk liquid. We re-calibrate a Hale-type J vs. S scaling relation using both experimental and simulation data, finding remarkable consistency in over 30 orders of magnitude in the nucleation rate range and 180 K in the temperature range.
Keen, Justin M; Martin, Charlie; Machado, Augie; Sandhu, Harpreet; McGinity, James W; DiNunzio, James C
2014-02-01
The use of corotating twin screw hot-melt extruders to prepare amorphous drug/polymer systems has become commonplace. As small molecule drug candidates exiting discovery pipelines trend towards higher MW and become more structurally complicated, the acceptable operating space shifts below the drug melting point. The objective of this research is to investigate the extrusion process space, which should be selected to ensure that the drug is solubilized in the polymer with minimal thermal exposure, is critical in ensuring the performance, stability and purity of the solid dispersion. The properties of a model solid dispersion were investigated using both corotating and counter-rotating hot-melt twin-screw extruders operated at various temperatures and screw speeds. The solid state and dissolution performance of the resulting solid dispersions was investigated and evaluated in context of thermodynamic predictions from Flory-Huggins Theory. In addition, the residence time distributions were measured using a tracer, modelled and characterized. The amorphous content in the resulting solid dispersions was dependent on the combination of screw speed, temperature and operating mode. The counter-rotating extruder was observed to form amorphous solid dispersions at a slightly lower temperature and with a narrower residence time distribution, which also exhibited a more desirable shape. © 2013 Royal Pharmaceutical Society.
Recrystallization and Water Absorption Properties of Vitrified Trehalose Near Room Temperature.
Shirakashi, Ryo; Takano, Kiyoshi
2018-05-10
To provide the physicochemical properties of vitrified trehalose for predicting its recrystallization. Thin films of vitrified trehalose solutions were prepared at room temperature and exposed to various humid and temperature atmospheres. The in-situ amount of retained water in the vacuum-dried trehalose thin film during exposure was determined using its FTIR spectrum by quantifying the extremely infinitesimal amount of retained water in the trehalose solution. Recrystallization of the sample was also assessed by the FTIR spectrum of trehalose dihydrate. The effective water absorption coefficient, h meff , exponentially increased to the water activity of the trehalose sample, A w , at 25°C and 40°C at which the increasing rates are comparable. The surface energy of trehalose dihydrate, γ, was found to be lower than the value calculated from the reported equation, neglecting the effects of the activity of the solute and solvent water. The retained water in trehalose considerably increases its affinity for water vapor, and the change in this affinity with regard to the water activity is nearly independent of temperature. The dihydrate nucleation rate of trehalose-water system is maximal when trehalose weight ratio is ~0.8 at 25°C and is slightly higher (~0.85) at 40°C.
Graphene-graphite oxide field-effect transistors.
Standley, Brian; Mendez, Anthony; Schmidgall, Emma; Bockrath, Marc
2012-03-14
Graphene's high mobility and two-dimensional nature make it an attractive material for field-effect transistors. Previous efforts in this area have used bulk gate dielectric materials such as SiO(2) or HfO(2). In contrast, we have studied the use of an ultrathin layered material, graphene's insulating analogue, graphite oxide. We have fabricated transistors comprising single or bilayer graphene channels, graphite oxide gate insulators, and metal top-gates. The graphite oxide layers show relatively minimal leakage at room temperature. The breakdown electric field of graphite oxide was found to be comparable to SiO(2), typically ~1-3 × 10(8) V/m, while its dielectric constant is slightly higher, κ ≈ 4.3. © 2012 American Chemical Society
An ab initio study of the structure and dynamics of bulk liquid Ag and its liquid-vapor interface
NASA Astrophysics Data System (ADS)
Gonzalez Del Rio, Beatriz; Gonzalez Tesedo, Luis Enrique; Gonzalez Fernandez, David Jose
Several static and dynamic properties of bulk liquid Ag at a thermodynamic state near its triple point have been calculated by means of ab initio molecular dynamics simulations. The calculated static structure shows a very good agreement with the available experimental data. The dynamical structure reveals collective density excitations with an associated dispersion relation which points to a small positive dispersion. Results are also reported at a slightly higher temperature in order to study the structure of the free liquid surface. The ionic density profile shows an oscillatory behaviour with two different wavelenghts, as the spacing between the outer and first inner layer is different from that between the other inner layers.
NASA Astrophysics Data System (ADS)
Vo, Thanh Tu; Chen, Xiaopeng; Shen, Weixiang; Kapoor, Ajay
2015-01-01
In this paper, a new charging strategy of lithium-polymer batteries (LiPBs) has been proposed based on the integration of Taguchi method (TM) and state of charge estimation. The TM is applied to search an optimal charging current pattern. An adaptive switching gain sliding mode observer (ASGSMO) is adopted to estimate the SOC which controls and terminates the charging process. The experimental results demonstrate that the proposed charging strategy can successfully charge the same types of LiPBs with different capacities and cycle life. The proposed charging strategy also provides much shorter charging time, narrower temperature variation and slightly higher energy efficiency than the equivalent constant current constant voltage charging method.
Chromospheric Inversions of a Micro-flaring Region
NASA Astrophysics Data System (ADS)
Reid, A.; Henriques, V.; Mathioudakis, M.; Doyle, J. G.; Ray, T.
2017-08-01
We use spectropolarimetric observations of the Ca II 8542 Å line, taken from the Swedish 1 m Solar Telescope, in an attempt to recover dynamic activity in a micro-flaring region near a sunspot via inversions. These inversions show localized mean temperature enhancements of ˜1000 K in the chromosphere and upper photosphere, along with co-spatial bi-directional Doppler shifting of 5-10 km s-1. This heating also extends along a nearby chromospheric fibril, which is co-spatial to 10-15 km s-1 downflows. Strong magnetic flux cancellation is also apparent in one of the footpoints, and is concentrated in the chromosphere. This event more closely resembles that of an Ellerman Bomb, though placed slightly higher in the atmosphere than what is typically observed.
NASA Technical Reports Server (NTRS)
Lemkey, F. D.; Mccarthy, G. P.
1975-01-01
By means of a compositional and heat treatment optimization program based on the quaternary gamma/gamma prime-delta, a tantalum modified gamma/gamma prime-delta alloy with improved shear and creep strength combined with better cyclic oxidation resistance was identified. Quinary additions, quaternary adjustments, and heat treatment were investigated. The tantalum modified gamma/gamma prime-delta alloy possessed a slightly higher liquidus temperature and exhibited rupture strength exceeding NASA VIA by approximately three and one-half Larson-Miller parameters (C = 20) above 1000 C. Although improvements in longitudinal mechanical properties were achieved, the shear and transverse strength property goals of the program were not met and present a continuing challenge to the alloy metallurgist.
Torriss, B.; Margot, J.; Chaker, M.
2017-01-01
Samarium nickelate (SmNiO3) thin films were successfully synthesized on LaAlO3 and SrTiO3 substrates using pulsed-laser deposition. The Mott metal-insulator (MI) transition of the thin films is sensitive to epitaxial strain and strain relaxation. Once the strain changes from compressive to tensile, the transition temperature of the SmNiO3 samples shifts to slightly higher values. The optical conductivity reveals the strong dependence of the Drude spectral weight on the strain relaxation. Actually, compressive strain broadens the bandwidth. In contrast, tensile strain causes the effective number of free carriers to reduce which is consistent with the d-band narrowing. PMID:28098240
Tunnel magnetoresistance in ultrathin L10 MnGa/MgO perpendicular magnetic tunnel junctions
NASA Astrophysics Data System (ADS)
Suzuki, K. Z.; Miura, Y.; Ranjbar, R.; Sugihara, A.; Mizukami, S.
2018-06-01
L10 MnGa is one of the interesting magnetic alloys for spin-transfer-torque based applications because such alloys have high perpendicular magnetic anisotropy, small magnetization, and low Gilbert damping. Magnetic tunnel junctions (MTJs) with ultrathin MnGa electrodes have recently been demonstrated using the room temperature growth technique of MnGa on paramagnetic B2-ordered CoGa templates, which exhibited a small TMR ratio of ∼3%. To obtain a higher TMR ratio, we systematically investigated the annealing dependence of the TMR ratio with MTJs with 1–5 nm thick MnGa electrodes in this study. The TMR ratios were 2%–3% without annealing, which were the same as those reported previously, and the TMR ratios reached their maximum values of 6%–8% at an annealing temperature of approximately 250 °C for the MTJs with 2–5 nm MnGa electrodes. The TMR ratio increased to approximately 25% at 10 K for those MTJs. These TMR ratios were slightly higher than those reported in MTJs with 30 nm-thick MnGa electrodes. The annealing temperature at which TMR showed the maximum value tended to decrease with decreasing MnGa thickness, and this low annealing endurance may be attributed to the atomic mixing between MnGa and barrier/buffer layers. The TMR ratio was discussed in terms of both coherent tunneling based on first principles calculations with different element terminations at the interface and incoherent tunneling.
X-RAY EMISSION FROM MAGNETIC MASSIVE STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nazé, Yaël; Petit, Véronique; Rinbrand, Melanie
2014-11-01
Magnetically confined winds of early-type stars are expected to be sources of bright and hard X-rays. To clarify the systematics of the observed X-ray properties, we have analyzed a large series of Chandra and XMM-Newton observations, corresponding to all available exposures of known massive magnetic stars (over 100 exposures covering ∼60% of stars compiled in the catalog of Petit et al.). We show that the X-ray luminosity is strongly correlated with the stellar wind mass-loss rate, with a power-law form that is slightly steeper than linear for the majority of the less luminous, lower- M-dot B stars and flattens formore » the more luminous, higher- M-dot O stars. As the winds are radiatively driven, these scalings can be equivalently written as relations with the bolometric luminosity. The observed X-ray luminosities, and their trend with mass-loss rates, are well reproduced by new MHD models, although a few overluminous stars (mostly rapidly rotating objects) exist. No relation is found between other X-ray properties (plasma temperature, absorption) and stellar or magnetic parameters, contrary to expectations (e.g., higher temperature for stronger mass-loss rate). This suggests that the main driver for the plasma properties is different from the main determinant of the X-ray luminosity. Finally, variations of the X-ray hardnesses and luminosities, in phase with the stellar rotation period, are detected for some objects and they suggest that some temperature stratification exists in massive stars' magnetospheres.« less
Crystallization of a Li2O2SiO2 Glass under High Hydrostatic Pressures
NASA Technical Reports Server (NTRS)
Fuss, T.; Day, D. E.; Lesher, C. E.; Ray, C. S.
2004-01-01
The crystallization behavior of a Li2O.2SiO2 (LS2) glass subjected to a uniform hydrostatic pressure of 4.5 or 6 GPa was investigated between 550 and 800 C using XRD, IR, Raman, TEM, NMR, and DTA. The density of the glass subjected to 6 GPa was between 2.52 plus or minus 0.01 and 2.57 plus or minus 0.01 grams per cubic centimeters, depending upon the processing temperatures, and was higher than that of the stoichiometric LS2 crystals, 2.46 plus or minus 0.01 grams per cubic centimeter. Thus, crystallization in 6 GPa glass occurred in a condition of negative volume dilatation, deltaV = V(sub glass) - V(sub crystal), while that for the 4.5 GPa glass occurred in the condition deltaV greater than 0. For deltaV greater than 0, which also includes the control glass at ambient (one atmosphere) pressure, the glasses always crystallize Li2Si2O5 (orthorhombic, Ccc2) crystals, but for deltaV less than 0 (6 GPa), the glasses crystallize Li2SiO3 crystals with a slightly deformed structure. The crystal growth rate vs. temperature curve moved to higher temperature with increasing pressure, and was independent of the sign of deltaV. These results for the effect of hydrostatic pressure on the crystallization of LS2 glass were discussed from thermodynamic considerations.
NASA Astrophysics Data System (ADS)
Heras-Juaristi, Gemma; Pérez-Coll, Domingo; Mather, Glenn C.
2016-11-01
The effects of sintering temperature and addition of 4 mol.% ZnO as sintering additive on the crystal structure, microstructure and electrical properties of SrZr0.9Y0.1O3-δ are reported. The presence of ZnO as sintering aid brings about high densification at 1300 °C (relative density ∼97%); gas-tightness is not achieved for ZnO-free samples sintered below 1600 °C. Bulk conductivity (σB) is considerably higher in wet and dry O2 on doping with ZnO, but only slight variations of σB with sintering temperature are observed for the Zn-containing phases. Similarly, the apparent grain-boundary conductivities are much greater for the Zn-doped samples. The grain-boundary volume and accompanying resistances are much reduced on sintering at 1500 °C with ZnO addition in comparison to Zn-modified samples sintered below 1500 °C, with only minor changes in grain-boundary relaxation frequency observed. Conversely, in comparison to the undoped sample with sintering temperature of 1600 °C, there is an enormous improvement in the specific grain-boundary conductivity of two orders of magnitude for the ZnO-containing samples. Analysis on the basis of the core space-charge-layer model relates the enhancement of the grain-boundary transport to a higher concentration of charge carriers in the space-charge layer and associated lower potential barrier heights.
NASA Astrophysics Data System (ADS)
Maia da Costa, M. E. H.; Baumvol, I. J. R.; Radke, C.; Jacobsohn, L. G.; Zamora, R. R. M.; Freire, F. L.
2004-11-01
Hard amorphous fluorinated carbon films (a-C:F) deposited by plasma enhanced chemical vapor deposition were annealed in vacuum for 30 min in the temperature range of 200-600 °C. The structural and compositional modifications were followed by several analytical techniques: Rutherford backscattering spectrometry (RBS), elastic recoil detection analysis (ERDA), x-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Nanoidentation measurements and lateral force microscopy experiments were carried out in order to provide the film hardness and the friction coefficient, respectively. The internal stress and contact angle were also measured. RBS, ERDA, and XPS results indicate that both fluorine and hydrogen losses occur for annealing temperatures higher than 300 °C. Raman spectroscopy shows a progressive graphitization upon annealing, while the surface became slightly more hydrophobic as revealed by the increase of the contact angle. Following the surface wettability reduction, a decrease of the friction coefficient was observed. These results highlight the influence of the capillary condensation on the nanoscale friction. The film hardness and the internal stress are constant up to 300 °C and decrease for higher annealing temperatures, showing a direct correlation with the atomic density of the films. Since the thickness variation is negligible, the mass loss upon thermal treatment results in amorphous structures with a lower degree of cross-linking, explaining the deterioration of the mechanical properties of the a-C:F films.
Hüpeden, Jennifer; Wegen, Simone; Off, Sandra; Lücker, Sebastian; Bedarf, Yvonne; Daims, Holger; Kühn, Carsten
2016-01-01
The functioning of recirculation aquaculture systems (RAS) is essential to maintain water quality for fish health, and one crucial process here is nitrification. The investigated RAS was connected to a rainbow trout production system and operated at an average temperature of 13°C and pH 6.8. Community analyses of the nitrifying biofilm revealed a coexistence of Nitrospira and Nitrotoga, and it is hypothesized that a slightly acidic pH in combination with lower temperatures favors the growth of the latter. Modification of the standard cultivation approach toward lower pH values of 5.7 to 6.0 resulted in the successful enrichment (99% purity) of Nitrotoga sp. strain HW29, which had a 16S rRNA sequence similarity of 99.0% to Nitrotoga arctica. Reference cultures of Nitrospira defluvii and the novel Nitrotoga sp. HW29 were used to confirm differentiation of these nitrite oxidizers in distinct ecological niches. Nitrotoga sp. HW29 revealed pH and temperature optima of 6.8 and 22°C, respectively, whereas Nitrospira defluvii displayed the highest nitrite oxidation rate at pH 7.3 and 32°C. We report here the occurrence of Nitrotoga as one of the main nitrite-oxidizing bacteria in freshwater aquaculture systems and indicate that a slightly acidic pH, in addition to temperatures below 20°C, can be applied as a selective isolation criterion for this microorganism. PMID:26746710
Long-Term Ambient Temperature and Externalizing Behaviors in Adolescents.
Younan, Diana; Li, Lianfa; Tuvblad, Catherine; Wu, Jun; Lurmann, Fred; Franklin, Meredith; Berhane, Kiros; McConnell, Rob; Wu, Anna H; Baker, Laura A; Chen, Jiu-Chiuan
2018-05-21
The climate-violence relationship has been debated for decades, and yet most of the supportive evidence came from ecological or cross-sectional analyses with very limited long-term exposure data. We conducted an individual-level, longitudinal study to investigate the association between ambient temperature and externalizing behaviors of urban-dwelling adolescents. Participants (n = 1,287) of the Risk Factors for Antisocial Behavior Study were examined in 2000-2012 (aged 9-18 years) with repeated assessments of their externalizing behaviors (aggression; delinquency). Ambient temperature data were obtained from the local Meteorological Information System. In adjusted multi-level models, aggressive behaviors significantly increased with rising average temperatures (per 1°C-increment) in preceding 1-3 years (β = 0.23, 95% CI: 0.00, 0.46; β = 0.35, 95% CI: 0.06, 0.63; β = 0.41, 95% CI: 0.08, 0.74; respectively), equivalent to 1.5-3 years of delay in age-related behavioral maturation. These associations were slightly stronger among girls and families of lower socioeconomic status, but greatly diminished in neighborhoods with higher greenspace. No significant associations were found with delinquency. Our study provides the first individual-level epidemiologic evidence supporting the adverse association of long-term ambient temperature and aggression. Similar approaches to studying meteorology and violent crimes may further inform scientific debates on climate change and collective violence.
Simultaneous flow of water and solutes through geological membranes-I. Experimental investigation
Kharaka, Y.K.; Berry, F.A.P.
1973-01-01
The relative retardation by geological membranes of cations and anions generally present in subsurface waters was investigated using a high pressure and high temperature 'filtration cell'. The solutions were forced through different clays and a disaggregated shale subjected to compaction pressures up to 9500 psi and to temperatures from 20 to 70??C. The overall efficiences measured increased with increase of exchange capacity of the material used and with decrease in concentration of the input solution. The efficiency of a given membrane increased with increasing compaction pressure but decreased slightly at higher temperatures for solutions of the same ionic concentration. The results further show that geological membranes are specific for different dissolved species. The retardation sequences varied depending on the material used and on experimental conditions. The sequences for monovalent and divalent cations at laboratory temperatures were generally as follows: Li < Na < NH3 < K < Rb < Cs Mg < Ca < Sr < Ba. The sequences for anions at room temperature were variable, but at 70??C, the sequence was: HCO3 < I < B < SO4 < Cl < Br. Monovalent cations contrary to some field data were generally retarded with respect to divalent cations. The differences in the filtration ratios among the divalent cations were smaller than those between the monovalent cations. The passage rate of B, HCO3, I and NH3 was greatly increased at 70??C. ?? 1973.
NASA Astrophysics Data System (ADS)
Zhou, Wanhai; Zhu, Ding; Tang, Zhengyao; Wu, Chaoling; Huang, Liwu; Ma, Zhewen; Chen, Yungui
2017-03-01
A series of Al-free Mn-modified AB5-type hydrogen storage alloys have been designed and the effects of thermodynamic stability and electrochemical kinetics on electrochemical performance via Mn substituting have been investigated. Compared with high-Al alloys, the Al-free alloys in this study have better low-temperature performance and instantaneous high-rate output because of the higher surface catalytic ability. After partial substitution of Ni by Mn, both the hydrogen desorption capacity and plateau pressure decrease, and correspondingly results in an improved thermodynamic stability which is adverse to low-temperature delivery. Additionally, with the improvement of charge acceptance ability and anti-corrosion property via Mn substitution, the room-temperature discharge capacity and cycling stability increase slightly. However, Mn adversely affects the electrochemical kinetics and deteriorates both the surface catalytic ability and the bulk hydrogen diffusion ability, leading to the drop of low-temperature dischargeability, high-rate dischargeability and peak power (Ppeak). Based on the thermodynamic and kinetic regulation and overall electrochemical properties, the optimal composition is obtained when x = 0.2, the discharge capacity is 243.6 mAh g-1 at -40 °C with 60 mA g-1, and the Ppeak attains to 969.6 W kg-1 at -40 °C.
A fast referenceless PRFS-based MR thermometry by phase finite difference
NASA Astrophysics Data System (ADS)
Zou, Chao; Shen, Huan; He, Mengyue; Tie, Changjun; Chung, Yiu-Cho; Liu, Xin
2013-08-01
Proton resonance frequency shift-based MR thermometry is a promising temperature monitoring approach for thermotherapy but its accuracy is vulnerable to inter-scan motion. Model-based referenceless thermometry has been proposed to address this problem but phase unwrapping is usually needed before the model fitting process. In this paper, a referenceless MR thermometry method using phase finite difference that avoids the time consuming phase unwrapping procedure is proposed. Unlike the previously proposed phase gradient technique, the use of finite difference in the new method reduces the fitting error resulting from the ringing artifacts associated with phase discontinuity in the calculation of the phase gradient image. The new method takes into account the values at the perimeter of the region of interest because of their direct relevance to the extrapolated baseline phase of the region of interest (where temperature increase takes place). In simulation study, in vivo and ex vivo experiments, the new method has a root-mean-square temperature error of 0.35 °C, 1.02 °C and 1.73 °C compared to 0.83 °C, 2.81 °C, and 3.76 °C from the phase gradient method, respectively. The method also demonstrated a slightly higher, albeit small, temperature accuracy than the original referenceless MR thermometry method. The proposed method is computationally efficient (∼0.1 s per image), making it very suitable for the real time temperature monitoring.
Ndihokubwayo, Noel; Nguyen, Viet-Thang; Cheng, Dandan
2016-01-01
Invasive plants colonize new environments, become pests and cause biodiversity loss, economic loss and health damage. Senecio vulgaris L. (Common groundsel, Asteraceae), a widely distributing cosmopolitan weed in the temperate area, is reported with large populations in the north-eastern and south-western part, but not in southern, central, or north-western parts of China. We studied the germination behavior of S. vulgaris to explain the distribution and the biological invasion of this species in China. We used seeds originating from six native and six invasive populations to conduct germination experiments in a climate chamber and under outdoor condition. When incubated in a climate chamber (15 °C), seeds from the majority of the populations showed >90% germination percentage (GP) and the GP was equal for seeds with a native and invasive origin. The mean germination time (MGT) was significantly different among the populations. Under outdoor conditions, significant effects of origin, storage conditions (stored at 4 °C or ambient room temperature, ca. 27 °C) and seasons (in summer or autumn) were observed on the GP while the MGT was only affected by the season. In autumn, the GP (38.6%) was higher and the MGT was slightly longer than that in summer. In autumn, seeds stored at 4 °C showed higher GP than those stored at ambient room temperature (ca.27 °C), and seeds from invasive populations revealed higher GP than those from native populations. The results implied that the high temperature in summer has a negative impact on the germination and might cause viability loss or secondary dormancy to S. vulgaris seeds. Our study offers a clue to exploring what factor limits the distribution of S. vulgaris in China by explaining why, in the cities in South-East China and central China such as Wuhan, S. vulgaris cannot establish natural and viable populations.
High temperature gasification of high heating-rate chars using a flat-flame reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Tian; Niu, Yanqing; Wang, Liang
The increasing interest in gasification and oxy-fuel combustion of biomass has heightened the need for a detailed understanding of char gasification in industrially relevant environments (i.e., high temperature and high-heating rate). Despite innumerable studies previously conducted on gasification of biomass, very few have focused on such conditions. Consequently, in this study the high-temperature gasification behaviors of biomass-derived chars were investigated using non-intrusive techniques. Two biomass chars produced at a heating rate of approximately 10 4 K/s were subjected to two gasification environments and one oxidation environment in an entrained flow reactor equipped with an optical particle-sizing pyrometer. A coal charmore » produced from a common U.S. low sulfur subbituminous coal was also studied for comparison. Both char and surrounding gas temperatures were precisely measured along the centerline of the furnace. Despite differences in the physical and chemical properties of the biomass chars, they exhibited rather similar reaction temperatures under all investigated conditions. On the other hand, a slightly lower particle temperature was observed in the case of coal char gasification, suggesting a higher gasification reactivity for the coal char. A comprehensive numerical model was applied to aid the understanding of the conversion of the investigated chars under gasification atmospheres. In addition, a sensitivity analysis was performed on the influence of four parameters (gas temperature, char diameter, char density, and steam concentration) on the carbon conversion rate. Here, the results demonstrate that the gas temperature is the most important single variable influencing the gasification rate.« less
Impacts of seasonal air and soil temperatures on photosynthesis in Scots pine trees.
Strand, Martin; Lundmark, Tomas; Söderbergh, Ingrid; Mellander, Per-Erik
2002-08-01
Seasonal courses of light-saturated rate of net photosynthesis (A360) and stomatal conductance (gs) were examined in detached 1-year-old needles of Scots pine (Pinus sylvestris L.) from early April to mid-November. To evaluate the effects of soil frost and low soil temperatures on gas exchange, the extent and duration of soil frost, as well as the onset of soil warming, were manipulated in the field. During spring, early summer and autumn, the patterns of A360 and gs in needles from the control and warm-soil plots were generally strongly related to daily mean air temperatures and the frequency of severe frost. The warm-soil treatment had little effect on gas exchange, although mean soil temperature in the warm-soil plot was 3.8 degrees C higher than in the control plot during spring and summer, indicating that A360 and gs in needles from control trees were not limited by low soil temperature alone. In contrast, prolonged exposure to soil temperatures slightly above 0 degrees C severely restricted recovery of A360 and especially gs in needles from the cold-soil treatment during spring and early summer; however, full recovery of both A360 and gs occurred in late summer. We conclude that inhibition of A360 by low soil temperatures is related to both stomatal closure and effects on the biochemistry of photosynthesis, the relative importance of which appeared to vary during spring and early summer. During the autumn, soil temperatures as low as 8 degrees C did not affect either A360 or gs.
High temperature gasification of high heating-rate chars using a flat-flame reactor
Li, Tian; Niu, Yanqing; Wang, Liang; ...
2017-08-25
The increasing interest in gasification and oxy-fuel combustion of biomass has heightened the need for a detailed understanding of char gasification in industrially relevant environments (i.e., high temperature and high-heating rate). Despite innumerable studies previously conducted on gasification of biomass, very few have focused on such conditions. Consequently, in this study the high-temperature gasification behaviors of biomass-derived chars were investigated using non-intrusive techniques. Two biomass chars produced at a heating rate of approximately 10 4 K/s were subjected to two gasification environments and one oxidation environment in an entrained flow reactor equipped with an optical particle-sizing pyrometer. A coal charmore » produced from a common U.S. low sulfur subbituminous coal was also studied for comparison. Both char and surrounding gas temperatures were precisely measured along the centerline of the furnace. Despite differences in the physical and chemical properties of the biomass chars, they exhibited rather similar reaction temperatures under all investigated conditions. On the other hand, a slightly lower particle temperature was observed in the case of coal char gasification, suggesting a higher gasification reactivity for the coal char. A comprehensive numerical model was applied to aid the understanding of the conversion of the investigated chars under gasification atmospheres. In addition, a sensitivity analysis was performed on the influence of four parameters (gas temperature, char diameter, char density, and steam concentration) on the carbon conversion rate. Here, the results demonstrate that the gas temperature is the most important single variable influencing the gasification rate.« less
Slight temperature changes affect protein affinity and cellular uptake/toxicity of nanoparticles
NASA Astrophysics Data System (ADS)
Mahmoudi, Morteza; Shokrgozar, Mohammad A.; Behzadi, Shahed
2013-03-01
It is known that what the cell actually ``sees'' at the nanoscale is an outer shell formed of `protein corona' on the surface of nanoparticles (NPs). The amount and composition of various proteins on the corona are strongly dependent on the biophysicochemical properties of NPs, which have been extensively studied. However, the effect of a small variation in temperature, due to the human circadian rhythm, on the composition of the protein corona and the affinity of various proteins to the surface of NPs, was ignored. Here, the effect of temperature on the composition of protein corona and the affinity of various proteins to the surface of NPs and, subsequently, cell responses to the protein coated NPs are probed. The results confirmed that cellular entrance, dispersion, and toxicity of NPs are strongly diverse with slight body temperature changes. This new finding can help scientists to maximise NP entrance to specific cells/organs with lower toxicity by adjusting the cellular/organ temperature.It is known that what the cell actually ``sees'' at the nanoscale is an outer shell formed of `protein corona' on the surface of nanoparticles (NPs). The amount and composition of various proteins on the corona are strongly dependent on the biophysicochemical properties of NPs, which have been extensively studied. However, the effect of a small variation in temperature, due to the human circadian rhythm, on the composition of the protein corona and the affinity of various proteins to the surface of NPs, was ignored. Here, the effect of temperature on the composition of protein corona and the affinity of various proteins to the surface of NPs and, subsequently, cell responses to the protein coated NPs are probed. The results confirmed that cellular entrance, dispersion, and toxicity of NPs are strongly diverse with slight body temperature changes. This new finding can help scientists to maximise NP entrance to specific cells/organs with lower toxicity by adjusting the cellular/organ temperature. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr32551b
NASA Astrophysics Data System (ADS)
Tian, Pengyi; Tao, Dashuai; Yin, Wei; Zhang, Xiangjun; Meng, Yonggang; Tian, Yu
2016-09-01
Comprehension of stick-slip motion is very important for understanding tribological principles. The transition from creep-dominated to inertia-dominated stick-slip as the increase of sliding velocity has been described by researchers. However, the associated micro-contact behavior during this transition has not been fully disclosed yet. In this study, we investigated the stick-slip behaviors of two polymethyl methacrylate blocks actively modulated from the creep-dominated to inertia-dominated dynamics through a non-uniform loading along the interface by slightly tilting the angle of the two blocks. Increasing the tilt angle increases the critical transition velocity from creep-dominated to inertia-dominated stick-slip behaviors. Results from finite element simulation disclosed that a positive tilt angle led to a higher normal stress and a higher temperature on blocks at the opposite side of the crack initiating edge, which enhanced the creep of asperities during sliding friction. Acoustic emission (AE) during the stick-slip has also been measured, which is closely related to the different rupture modes regulated by the distribution of the ratio of shear to normal stress along the sliding interface. This study provided a more comprehensive understanding of the effect of tilted non-uniform loading on the local stress ratio, the local temperature, and the stick-slip behaviors.
Tian, Pengyi; Tao, Dashuai; Yin, Wei; Zhang, Xiangjun; Meng, Yonggang; Tian, Yu
2016-09-19
Comprehension of stick-slip motion is very important for understanding tribological principles. The transition from creep-dominated to inertia-dominated stick-slip as the increase of sliding velocity has been described by researchers. However, the associated micro-contact behavior during this transition has not been fully disclosed yet. In this study, we investigated the stick-slip behaviors of two polymethyl methacrylate blocks actively modulated from the creep-dominated to inertia-dominated dynamics through a non-uniform loading along the interface by slightly tilting the angle of the two blocks. Increasing the tilt angle increases the critical transition velocity from creep-dominated to inertia-dominated stick-slip behaviors. Results from finite element simulation disclosed that a positive tilt angle led to a higher normal stress and a higher temperature on blocks at the opposite side of the crack initiating edge, which enhanced the creep of asperities during sliding friction. Acoustic emission (AE) during the stick-slip has also been measured, which is closely related to the different rupture modes regulated by the distribution of the ratio of shear to normal stress along the sliding interface. This study provided a more comprehensive understanding of the effect of tilted non-uniform loading on the local stress ratio, the local temperature, and the stick-slip behaviors.
Tian, Pengyi; Tao, Dashuai; Yin, Wei; Zhang, Xiangjun; Meng, Yonggang; Tian, Yu
2016-01-01
Comprehension of stick-slip motion is very important for understanding tribological principles. The transition from creep-dominated to inertia-dominated stick-slip as the increase of sliding velocity has been described by researchers. However, the associated micro-contact behavior during this transition has not been fully disclosed yet. In this study, we investigated the stick-slip behaviors of two polymethyl methacrylate blocks actively modulated from the creep-dominated to inertia-dominated dynamics through a non-uniform loading along the interface by slightly tilting the angle of the two blocks. Increasing the tilt angle increases the critical transition velocity from creep-dominated to inertia-dominated stick-slip behaviors. Results from finite element simulation disclosed that a positive tilt angle led to a higher normal stress and a higher temperature on blocks at the opposite side of the crack initiating edge, which enhanced the creep of asperities during sliding friction. Acoustic emission (AE) during the stick-slip has also been measured, which is closely related to the different rupture modes regulated by the distribution of the ratio of shear to normal stress along the sliding interface. This study provided a more comprehensive understanding of the effect of tilted non-uniform loading on the local stress ratio, the local temperature, and the stick-slip behaviors. PMID:27641908
NASA Astrophysics Data System (ADS)
Suganya, Arjunan; Shanmugavelayutham, Gurusamy; Serra Rodríguez, Carmen
2016-09-01
The effect of air, argon, oxygen DC glow discharge plasma on the polyvinylchloride (PVC) film synthesized by solution casting technique, were evaluated via changes in physio-chemical properties such as structural, morphological, crystalline, thermal properties. The PVC film was plasma treated as a function of exposure time and different plasma forming gases, while other operating parameters such as power and pressure remained constant at 100 W and 2 Pa respectively. The plasma treated PVC were characterized by static contact angle, ATR-FTIR, XPS, AFM and T-peel analysis. It was found that various gaseous plasma treatments have improved the polar components, surface roughness on the surface of PVC which was confirmed by XPS, AFM, resulting in highly enhanced wettability and adhesion. X-ray diffraction study showed that plasma treatment does not persuade considerable change, even though it vaguely induces the crystallinity. The thermal properties of plasma treated PVC were evaluated by Differential Scanning Calorimetry and it was observed that O2 plasma treatment gives higher glass transition temperature of 87.21 °C compared with the untreated one. The glass transition temperature slightly increased for Oxygen plasma treated material due to the presence of higher concentration of the polar functional groups on the PVC surface due to strong intramolecular bonding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iisa, Kristiina; French, Richard J.; Orton, Kellene A.
Catalytic fast pyrolysis (CFP) bio-oils with different organic oxygen contents (4-18 wt%) were prepared in a bench-scale dual fluidized bed reactor system by ex situ CFP of southern pine over HZSM-5, and the oils were subsequently hydrotreated over a sulfided CoMo catalyst at 170 bar. The goal was to determine the impact of the CFP oil oxygen content on hydrotreating requirements. The CFP oils with higher oxygen contents included a variety of oxygenates (phenols, methoxyphenols, carbonyls, anhydrosugars) whereas oxygenates in the 4 wt% oxygen oil were almost exclusively phenols. Phenols were the most recalcitrant oxygenates during hydrotreating as well, andmore » the hydrotreated oils consisted mainly of aromatic and partially saturated ring hydrocarbons. The temperature required to produce oil with <1% oxygen was approximately 350 °C for the CFP oil with the lowest oxygen content whereas temperatures around 400 °C were required for the other CFP oils. The carbon efficiency during hydrotreating slightly decreased as the CFP oil oxygen content increased but remained above 90% in all cases, and the carbon efficiency for the integrated process was dominated by the efficiency of the CFP process. In conclusion, a preliminary technoeconomic evaluation suggested that with the current zeolite-based CFP catalysts, it is economically beneficial to preserve carbon during CFP, at the expense of higher oxygen contents in the CFP oil.« less
Comparison of ice particle size variations across Ganymede and Callisto
NASA Astrophysics Data System (ADS)
Stephan, Katrin; Hoffmann, Harald; Hibbitts, Karl; Wagner, Roland; Jaumann, Ralf
2016-04-01
Ratios of band depths of different H2O ice absorptions as measured by the Near Infrared Spectrometer NIMS onboard the Galileo spacecraft [1] have been found to be semi-quantitative indicator of changes in the particle size of ice across the surfaces of the Jovian satellite Ganymede [2]. This method is now applied to Ganymede's neighboring satellite Callisto. On Ganymede, sizes reach from 1 μm near the poles to 1 mm near the equator [2]. Smallest particles occur at latitudes higher than ±30° where the closed magnetic field lines of Ganymede's magnetic field change into open ones and Ganymede's polar caps become apparent. Thus, the formation of these polar caps has often been attributed to brightening effects due to plasma bombardment of the surface [3,4]. Callisto, which does not exhibit an intrinsic magnetic field, however, also shows the same trend as observed on Ganymede with slightly larger particle sizes on Callisto than on Ganymede at low and mid latitude but similar particle sizes in the polar regions. Similar trends in the particle size variations on Callisto and on Ganymede imply that these variations are caused by similar surface processes. Our measurements rather point to a continuous decreasing of ice particle sizes toward the poles on both satellites related to changes of the surface temperatures [5]. Maximum temperatures during the day reach 150 K and 165 K near the equator of Ganymede and Callisto [6, 7], respectively and sublimation of ice particles and crystal growth [8] is expected to be the dominant surface process in these regions. In contrast, polar temperatures do not exceed 80 ± 5 K [5]. Larger particles in the equatorial region of Callisto than on Ganymede could be explained due to the slight higher maximum temperature but also a longer Callistoan day (Callisto: ~ 17 Earth days; Ganymede: ~ 7 Earth days). References: [1] Carlson et al.. (1999) Science 274, 385-388, 1996; [2] Stephan et al., 2009, EPSC, Abstract #EPSC2009-633; [3] Johnson, R.E. (1997), Icarus 128, 469-471; [4] Khurana et al., (2007), Icarus 191, 193-202; [5] Spencer, J.R. (1987), Icarus 69, 297-313 ; [6] Pappalardo et al. (2004), in Jupiter: The Planet, Satellites and Magnetosphere, F. Bagenal, T. Dowling & W. McKinnon (eds), Cambridge University Press.; [7] Moore, J.M. et al. (2004), in Jupiter: The Planet, Satellites and Magnetosphere, F. Bagenal, T. Dowling & W. McKinnon (eds), Cambridge University Press; [8] Clark et al. (1983), Icarus, 56, 233-245.
Li, Yu Ran; Wang, Xing Chang; Wang, Chuan Kuan; Liu, Fan; Zhang, Quan Zhi
2017-10-01
Plant temperature is an important parameter for estimating energy balance and vegetation respiration of forest ecosystem. To examine spatial variation in diurnal courses of stem temperatures (T s ) and its influencing factors, we measured the T s with copper constantan thermocouples at different depths, heights and azimuths within the stems of two broadleaved tree species with contrasting bark and wood properties, Betula platyphylla and Fraxinus mandshurica. The results showed that the monthly mean diurnal courses of the T s largely followed that of air temperature with a 'sinusoi dal' pattern, but the T s lagged behind the air temperature by 0 h at the stem surface to 4 h at 6 cm depth. The daily maximal values and ranges of the diurnal course of T s decreased gradually with increasing measuring depth across the stem and decreasing measuring height along the stem. The circumferential variation in T s was marginal, with slightly higher daily maximal values in the south and west directions during the daytime of the dormant season. Differences in thermal properties (i.e. , specific heat capacity and thermal conductivity) of both bark and wood tissue between the two species contributed to the inter specific variations in the radial variation in T s through influencing the heat exchange between the stem surface and ambient air as well as heat diffusion within the stem. The higher reflectance of the bark of B. platyphylla decreased the influence of solar radiation on T s . The stepwise regression showed that the diurnal courses of T s could be well predicted by the environmental factors (R 2 > 0.85) with an order of influence ranking as air temperature > water vapor pressure > net radiation > wind speed. It is necessary to take the radial, vertical and inter specific varia-tions in T s into account when estimating biomass heat storage and stem CO2 efflux.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solomon, P.R.; Serio, M.A.; Hamblen, D.G.
1985-01-01
During the fifth quarter, the gas mixing station for the high pressure reactor (HPR) system was completed. This station allows us to make reproducible binary mixtures of any two gases. It will be used for pyrolysis experiments in helium/nitrogen or oxygen/nitrogen and gasification experiments in helium/nitrogen or oxygen/nitrogen and gasification experiments in carbon dioxide/nitrogen. In addition, work began on modifications of the HPR system for high pressure (600 psig) operation. A limited amount of data was taken with the HPR system due to the modifications for the mixing station. However, the test plan experiments for pyrolysis in mixtures of heliummore » and nitrogen were completed. In general, there is a slightly higher yield of volatiles and lower yield of char as the helium content (heating rate) increases. A new technique for measuring char reactivity resulted from an Army SBIR program and was further developed under our other METC Contract. It has also been used to characterize chars generated under the current program. It was evident that the severity of the thermal treatment had a direct effect on char reactivity. In this regard, rapid heating to a relatively low temperature was most favorable while slow heating to a high temperature was least favorable. With regard to pressure effects on reactivity, our preliminary data indicated that higher pressures produce chars lower initial reactivity. A total of four experiments were done in the heated tube reactor (HTR) at 60 psig, 800/sup 0/C maximum tube temperature. The trends are the same as observed in the atmospheric pressure experiments for the same tube temperature and cold gas velocity. During the past quarter, a particle temperature (PT) model was under development for the high pressure entrained flow reactor (HPR). 5 refs., 5 figs.« less
NASA Astrophysics Data System (ADS)
Wang, F.; Laws, K.; Martinez, D.; Trujillo, C. P.; Brown, A. D.; Cerreta, E. K.; Hazell, P. J.; Ferry, M.; Quadir, M. Z.; Jiang, J.; Escobedo, J. P.
2017-01-01
The effects of impact velocity and temperature on the dynamic mechanical behavior of two bulk metallic (BMG) alloys with slightly different elemental compositions (Zr55Cu30Ni5Al30 and Zr46Cu38Ag8Al38) have been investigated. Bullet-shaped samples were accelerated by a gas gun to speeds in the 400˜600m/s range and tested at both room temperature and 250°C. The samples impacted steel extrusion dies which subjected the bullets to high strains at relatively high strain-rates. The extruded fragments were subsequently soft recovered by using low density foams and examined by means of optical/scanning electron microscopy and differential scanning calorimetry. It was found that shear banding was the dictating mechanism responsible for the fracture of all BMGs. At room temperature, the Zr55Cu30Ni5Al30 alloy exhibited a higher resistance to fragmentation than the Zr46Cu38Ag8Al38 alloy. At 250°C, significant melting was observed in the recovered fragments of both alloys, which indicates that the BMG glassy structure undergoes a melting process and deformation likely occurs homogeneously.
Dielectric characteristics of Mn-doped LaTiO3+δ ceramics
NASA Astrophysics Data System (ADS)
Chen, Yan; Cui, Yimin
A series of ceramic composites of Mn-doped La1- x MnxTiO3+ δ and LaMnxTi1- x O3+ δ (x = 0.1, 0.2) were synthesized by conventional solid-state reaction method. The low-frequency complex dielectric properties of the composites were investigated as functions of temperature (77 K <= T <= 360 K) and frequency (100 Hz <= f <= 1 MHz), respectively. The dielectric constant of A-site doped samples is higher than that of B-site doped samples. The loss tangent of low doped samples is much less than that of high doped samples. The A-site doped composites exhibit intrinsic dielectric response with a dielectric constant of 40 in the temperature below 250 K. Interestingly, the dielectric constants of B-site doped ceramics increase slightly in the temperature range from 77 to 360 K. And it is clearly observed that extraordinarily high dielectric loss tangent ( 6) appear at low frequency (100 Hz) in LaMn0.2Ti0.8O3+ δ , which is 8 times larger than that of LaMn0.1Ti0.9O3+ δ , which indicates that the doped content can affect the intrinsic dielectric characteristics significantly.
Joshi, C; Dwivedi, A; Rai, S B
2014-08-14
Infrared-to-visible upconverting rare earths Er(3+)/Yb(3+) co-doped Y2O3 nano-crystalline phosphor samples have been prepared by solution combustion method followed by post-heat treatment at higher temperatures. A slight increase in average crystallite size has been found on calcinations verified by X-ray analysis. Transmission electron microscopy (TEM) confirms the nano-crystalline nature of the as-prepared and calcinated samples. Fourier transform infrared (FTIR) analysis shows the structural changes in as-prepared and calcinated samples. Upconversion and downconversion emission recorded using 976 and 532 nm laser sources clearly demonstrates a better luminescence properties in the calcinated samples as compared to as-prepared sample. Upconversion emission has been quantified in terms of standard chromaticity diagram (CIE) showing a shift in overall upconversion emission of as-prepared and calcinated samples. Temperature sensing behaviour of this material has also been investigated by measurement of fluorescence intensity ratio (FIR) of various signals in green emission in the temperature range of 315 to 555 K under 976 nm laser excitation. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cheng, Kuok Kong; Park, Chanwoo
2017-07-01
Surface tension of pure fluids, inherently decreasing with regard to temperature, creates a thermo-capillary-driven (Marangoni) flow moving away from a hot surface. It has been known that few high-carbon alcohol-aqueous solutions exhibit an opposite behavior of the surface tension increasing with regard to temperature, such that the Marangoni flow moves towards the hot surface (self-rewetting effect). We report the surface tensions of three dilute aqueous solutions of n-Butanol, n-Pentanol and n-Hexanol as self-rewetting fluids measured for ranges of alcohol concentration (within solubility limits) and fluid temperatures (25-85 °C). A maximum bubble pressure method using a leak-tight setup was used to measure the surface tension without evaporation losses of volatile components. It was found from this study that the aqueous solutions with higher-carbon alcohols exhibit a weak self-rewetting behavior, such that the surface tensions remain constant or slightly increases above about 60 °C. These results greatly differ from the previously reported results showing a strong self-rewetting behavior, which is attributed to the measurement errors associated with the evaporation losses of test fluids during open-system experiments.
NASA Astrophysics Data System (ADS)
Nopwinyuwong, Atchareeya; Kitaoka, Takuya; Boonsupthip, Waraporn; Pechyen, Chiravoot; Suppakul, Panuwat
2014-09-01
Polydiacetylene (PDA)/silica nanocomposites were synthesized by self-assembly method using polymerizable amphiphilic diacetylene monomers, 10,12-pentacosadiynoic acid (PCDA). Addition of cationic surfactants (PDADMAC and CTAB) to PDA/SiO2 nanocomposites induced higher intermolecular force which affected their size, shape and color transition. Pure PDA, PDA/SiO2, PDA/SiO2/PDADMAC and PDA/SiO2/CTAB were investigated by particle size analysis, TEM, SEM, UV-vis spectroscopy and FT-IR. It was found that the PDA/SiO2 nanocomposites exhibited slightly larger particle sizes than those of other samples. The PDA/SiO2 nanocomposites with a core-shell structure were almost regarded as spherical-shaped particles. Cationic surfactants, especially CTAB, presumably affected the particle size and shape of PDA/SiO2 nanocomposites due to the disruption of hydrogen bonding between PDA head group and ammonium group. The colorimetric response of both PDA/SiO2/surfactant and surfactant-free PDA/SiO2 aqueous solutions directly changed in relation to time and temperature; thus they were expected to be applied as a new polymer-based time-temperature indicator (TTI).
Investigation of electronic and magnetic properties of Ni0.5Cu0.5Fe2O4: theoretical and experimental
NASA Astrophysics Data System (ADS)
Sharma, Uma Shankar; Shah, Rashmi
2018-05-01
In present study, Ni0.5Cu0.5Fe2O4 been was synthesized with Co-precipitation method and prepared samples were annealed at 300°C and 500°C. The single phase formation of nickel ferrite was confirmed through powder X-ray diffraction (XRD). The presence of various functional groups was confirmed through FTIR analysis. The effects of the annealing temperature on the particle sizes and magnetic properties of the ferrite samples were investigated and interpret with valid reasons. The structural and magnetic properties of the ferrite samples were strongly affected by the annealing temperature. The annealing temperature increases coercivity and saturation magnetization values are continuously increased. Spin polarization calculations are performed on the Ni0.5Cu0.5Fe2O4, compounds within density functional theory (DFT) and find out equilibrium lattice constants 8.2 Å and DOS show there exists large spin splitting between the spin up and spin down channels near the Fermi level confirm p-d hybridization. The theoretical calculated magnetic are slightly higher than our experimental results. The other results have been discussed in detail.
High Electron Mobility SiGe/Si Transistor Structures on Sapphire Substrates
NASA Technical Reports Server (NTRS)
Alterovitz, Samuel A.; Mueller, Carl H.; Croke, Edward T.; Ponchak, George E.
2003-01-01
SiGe/Si n-type modulation doped field effect structures and transistors (n-MODFETs) have been fabricated on r-plane sapphire substrates. The structures were deposited using molecular beam epitaxy, and antimony dopants were incorporated via a delta doping process. Secondary ion mass spectroscopy (SIMS) indicates that the peak antimony, concentration was approximately 4 x 10(exp19) per cubic cm. The electron mobility was over 1,200 and 13,000 sq cm/V-sec at room temperature and 0.25 K, respectively. At these two temperatures, the electron carrier densities were 1.6 and 1.33 x 10(exp 12) per sq cm, thus demonstrating that carrier confinement was excellent. Shubnikov-de Haas oscillations were observed at 0.25 K, thus confirming the two-dimensional nature of the carriers. Transistors, with gate lengths varying from 1 micron to 5 microns, were fabricated using these structures and dc characterization was performed at room temperature. The saturated drain current region extended over a wide source-to-drain voltage (V(sub DS)) range, with (V(sub DS)) knee voltages of approximately 0.5 V and increased leakage starting at voltages slightly higher than 4 V.
The association between ambient temperature and children's lung function in Baotou, China
NASA Astrophysics Data System (ADS)
Li, Shanshan; Guo, Yuming; Williams, Gail; Baker, Peter; Ye, Xiaofang; Madaniyazi, Lina; Kim, Dae-Seon; Pan, Xiaochuan
2015-07-01
The objective of this study is to examine the association between ambient temperature and children's lung function in Baotou, China. We recruited 315 children (8-12 years) from Baotou, China in the spring of 2004, 2005, and 2006. They performed three successive forced expiratory measurements three times daily (morning, noon, and evening) for about 5 weeks. The highest peak expiratory flow (PEF) was recorded for each session. Daily data on ambient temperature, relative humidity, and air pollution were monitored during the same period. Mixed models with a distributed lag structure were used to examine the effects of temperature on lung function while adjusting for individual characteristics and environmental factors. Low temperatures were significantly associated with decreases in PEF. The effects lasted for lag 0-2 days. For all participants, the cumulative effect estimates (lag 0-2 days) were -1.44 (-1.93, -0.94) L/min, -1.39 (-1.92, -0.86) L/min, -1.40 (-1.97, -0.82) L/min, and -1.28 (-1.69, -0.88) L/min for morning, noon, evening, and daily mean PEF, respectively, associated with 1 °C decrease in daily mean temperature. Generally, the effects of temperature were slightly stronger in boys than in girls for noon, evening, and daily mean PEF, while the effects were stronger in girls for morning PEF. PM2.5 had joint effects with temperature on children's PEF. Higher PM2.5 increased the impacts of low temperature. Low ambient temperatures are associated with lower lung function in children in Baotou, China. Preventive health policies will be required for protecting children from the cold weather.
Thermal behaviour of an urban lake during summer
NASA Astrophysics Data System (ADS)
Solcerova, Anna; van de Ven, Frans
2015-04-01
One of the undesirable effects of urbanisation is higher summer air temperatures in cites compared to rural areas. One of the most important self-cooling mechanism of cities is presence of water. Comparative studies showed that from all urban land-use types open water is the most efficient in reducing the heat in its surrounding. Urban water bodies vary from small ponds to big lakes and rivers, but already the presence of a swimming pool in a garden resulted in lower temperatures in the area. Moving and still water both exhibit slightly different patterns with respect to the environment. While ponds tend to respond more to air temperature changes, faster flowing rivers are expected to have more stable temperature over time. There are two major components of cooling effect of a surface water:(1) through evaporation, and (2) by storing heat and increasing its own temperature. This study shows results from a detailed temperature measurements, using Distributed Temperature Sensing (DTS), in an urban lake in Delft (The Netherlands). A two meter tall construction measuring temperature with 2 mm vertical spatial resolution was placed partly in the water, reaching all the way to the muddy underlayer, and partly in the air. Data from continuous two month measurement campaign show the development of water temperature with respect to solar radiation, air temperature, rain and inflow of rainwater from surrounding streets, etc. Most interesting is the 1-2 cm thick layer of colder air right above the water surface. This layer reaches values lower than both the air and the water, which suggests that certain part of the potential cooling capacity of open water is restricted by a small layer of air just above its surface.
Temperature feedback of TRIGA MARK-II fuel
NASA Astrophysics Data System (ADS)
Usang, M. D.; Minhat, M. S.; Rabir, M. H.; M. Rawi M., Z.
2016-01-01
We study the amount of temperature feedback on reactivity for the three types of TRIGA fuel i.. ST8, ST12 and LEU fuel, are used in the TRIGA MARK II reactor in Malaysia Nuclear Agency. We employ WIMSD-5B for the calculation of kin f for a single TRIGA fuel surrounded by water. Typical calculations of TRIGA fuel reactivity are usually limited to ST8 fuel, but in this paper our investigation extends to ST12 and LEU fuel. We look at the kin f of our model at various fuel temperatures and calculate the amount reactivity removed. In one instance, the water temperature is kept at room temperature of 300K to simulate sudden reactivity increase from startup. In another instance, we simulate the sudden temperature increase during normal operation where the water temperature is approximately 320K while observing the kin f at various fuel temperatures. For accidents, two cases are simulated. The first case is for water temperature at 370K and the other is without any water. We observe that the higher Uranium content fuel such as the ST12 and LEU have much smaller contribution to the reactivity in comparison to the often studied ST8 fuel. In fact the negative reactivity coefficient for LEU fuel at high temperature in water is only slightly larger to the negative reactivity coefficient for ST8 fuel in void. The performance of ST8 fuel in terms of negative reactivity coefficient is cut almost by half when it is in void. These results are essential in the safety evaluation of the reactor and should be carefully considered when choices of fuel for core reconfiguration are made.
NASA Astrophysics Data System (ADS)
Copeman, L.; Laurel, B.; Spencer, M. L.; Iseri, P.; Sremba, A. L.
2016-02-01
Climate change impacts on Arctic ecosystems will largely be determined by temperature-dependent bioenergetics of resident and invading forage fish species. In this study, we experimentally measured total lipids and lipid class storage in the liver and muscle of juvenile Arctic gadids (Arctic cod, Boreogadus saida and saffron cod, Eleginus gracilis) and two North Pacific gadids (walleye pollock, Gadus chalcogrammus and Pacific cod, Gadus macrocephalus). Experiments were conducted over a 6-wk period across five temperatures (0, 5, 9, 16 and 20 °C) at the Hatfield Marine Science Center in Newport, OR, USA. Results indicated clear physiological differences among species in terms of temperature-dependent growth and lipid storage. Arctic cod exhibited highest growth and lipid storage (27 mg/g WW) at the coldest temperature (0 °C) compared to the other gadids, with near maximum growth at 5 °C and onset of mortality above 9 °C. In contrast, saffron cod growth rates steadily increased at temperatures beyond 16 °C, but lipid storage was low overall with only slightly higher lipid storage at warm temperatures (10 to 17 mg/g WW). Both walleye pollock and Pacific cod showed a domed response with increased lipid storage and growth at intermediate temperatures (9 - 12°C) and reduced growth and lipid storage at cold and warm maxima. We did not observe a trade-off between growth rate and lipid accumulation in any species. These results suggest that saffron cod can thrive in a warming Arctic but will be energetically inferior as a prey item to the more temperature-sensitive Arctic cod. Alternatively, North Pacific gadids can energetically resemble Arctic cod at warmer temperatures and could theoretically be an important prey item if their range extends northward with continued climate change.
The quality mammographic image. A review of its components.
Rickard, M T
1989-11-01
Seven major factors resulting in a quality or high contrast and high resolution mammographic image have been discussed. The following is a summary of their key features: 1) Dedicated mammographic equipment. --Molybdenum target material --Molybdenum filter, beryllium window --Low kVp usage, in range of 24 to 30 --Routine contact mammography performed at 25 kVp --Slightly lower kVp for coned compression --Slightly higher kVp for microfocus magnification 2) Film density --Phototimer with adjustable position --Calibration of phototimer to optimal optical density of approx. 1.4 over full kVp range 3) Breast Compression --General and focal (coned compression). --Essential to achieve proper contrast, resolution and breast immobility. --Foot controls preferable. 4) Focal Spot. --Size recommendation for contact work 0.3 mm. --Minimum power output of 100 mA at 25 kVp desirable to avoid movement blurring in contact grid work. --Size recommendation for magnification work 0.1 mm. 5) Grid. --Usage recommended as routine in all but magnification work. 6) Film-screen Combination. --High contrast--high speed film. --High resolution screen. --Specifically designed cassette for close film-screen contact and low radiation absorption. --Use of faster screens for magnification techniques. 7) Dedicated processing. --Increased developing time--40 to 45 seconds. --Increased developer temperature--35 to 38 degrees. --Adjusted replenishment rate and dryer temperature. All seven factors contributing to image contrast and resolution affect radiation dosage to the breast. The risk of increased dosage associated with the use of various techniques needs to be balanced against the risks of incorrect diagnosis associated with their non-use.(ABSTRACT TRUNCATED AT 250 WORDS)
Effect of VA and MWNT contents on the rheological and physical properties of EVA
NASA Astrophysics Data System (ADS)
Kim, Jong-Ho; Lee, Seungwon; Kim, Byoung Chul; Shin, Bong-Seob; Jeon, Jong-Young; Chae, Dong Wook
2016-02-01
Ethylene vinyl acetate (EVA) copolymers with two different VA contents (15 and 33 wt.%, denoted by EVA15 and EVA33, respectively) were melt compounded with multi-walled carbon nanotubes (MWNTs) and the effect of VA and nanotube contents on the rheological, thermal and morphological properties was investigated. The addition of nanotubes into both EVAs increased the onset temperature of crystallization and broadened the peak, but further addition from 3 wt.% slightly decreased the temperature with increasing nanotube contents. In the wide angle X-ray diffraction patterns the peak of EVA15 was little affected by the presence of nanotubes but that of EVA33 slightly shifted to higher degree and became sharper with increasing nanotube contents. Dynamic viscosity (η') increased with nanotube contents giving abrupt increase at 2 wt.% nanotubes. Loss tangent decreased with increasing nanotube contents exhibiting the plateau-like behavior over most of the frequency range from 2 wt.% nanotubes. In the Casson plot, yield stress increased with nanotube content and its increasing extent was more notable for more VA content. In the Cole-Cole plot, the presence of nanotubes from 2 wt.% gave rise to the deviation from the single master curve by decreasing the slope. The deviated extent of EVA33 became more remarkable with increasing nanotube contents than that of EVA15. The stress-strain curve showed that more improved tensile modulus and yield stress were achieved by the introduction of MWNTs for EVA 33 than for EVA15. Tensile strength of EVA33 increased with increasing nanotube contents, while that of EVA15 decreased.
Md Din, Mohd Fadhil; Lee, Yee Yong; Ponraj, Mohanadoss; Ossen, Dilshan Remaz; Iwao, Kenzo; Chelliapan, Shreeshivadasan
2014-04-01
Recent years have seen issues related to thermal comfort gaining more momentum in tropical countries. The thermal adaptation and thermal comfort index play a significant role in evaluating the outdoor thermal comfort. In this study, the aim is to capture the thermal sensation of respondents at outdoor environment through questionnaire survey and to determine the discomfort index (DI) to measure the thermal discomfort level. The results indicated that most respondents had thermally accepted the existing environment conditions although they felt slightly warm and hot. A strong correlation between thermal sensation and measured DI was also identified. As a result, a new discomfort index range had been proposed in association with local climate and thermal sensation of occupants to evaluate thermal comfort. The results had proved that the respondents can adapt to a wider range of thermal conditions.Validation of the questionnaire data at Putrajaya was done to prove that the thermal sensation in both Putrajaya and UTM was almost similar since they are located in the same tropical climate region. Hence, a quantitative field study on building layouts was done to facilitate the outdoor human discomfort level based on newly proposed discomfort index range. The results showed that slightly shaded building layouts of type- A and B exhibited higher temperature and discomfort index. The resultant adaptive thermal comfort theory was incorporated into the field studies as well. Finally, the study also showed that the DI values were highly dependent on ambient temperature and relative humidity but had fewer effects for solar radiation intensity. Copyright © 2014 Elsevier Ltd. All rights reserved.
The Chamber for Studying Rice Response to Elevated Nighttime Temperature in Field
Chen, Song; Zheng, Xi; Wang, Dangying; Xu, Chunmei; Laza, Ma. Rebecca C.; Zhang, Xiufu
2013-01-01
An in situ temperature-controlled field chamber was developed for studying a large population of rice plant under different nighttime temperature treatments while maintaining conditions similar to those in the field during daytime. The system consists of a pipe hoop shed-type chamber with manually removable covers manipulated to provide a natural environment at daytime and a relatively stable and accurate temperature at night. Average air temperatures of 22.4 ± 0.3°C at setting of 22°C, 27.6 ± 0.4°C at 27°C, and 23.8 ± 0.7°C ambient conditions were maintained with the system. No significant horizontal and vertical differences in temperature were found and only slight changes in water temperatures were observed between the chambers and ambient conditions at 36 days after transplanting. A slight variation in CO2 concentration was observed at the end of the treatment during the day, but the 10-μmol CO2 mol−1 difference was too small to alter plant response. The present utilitarian system, which only utilizes an air conditioner/heater, is suitable for studying the effect of nighttime temperature on plant physiological responses with minimal perturbation of other environmental factors. At the same time, it will enable in situ screening of many rice genotypes. PMID:24089603
Fracture toughness and the master curve for modified 9Cr-1Mo steel
NASA Astrophysics Data System (ADS)
Yoon, Ji-Hyun; Yoon, Eui-Pak
2006-12-01
Modified 9Cr-1Mo steel is a primary candidate material for the reactor pressure vessel of a Very High Temperature Gas-Cooled Reactor (VHTR) in the Korean Nuclear Hydrogen Development and Demonstration (NHDD) program. In this study, the T0 reference temperature, J-R fracture resistance and Charpy impact properties were evaluated for commercial Grade 91 steel as part of the preliminary testing for a selection of the RPV material for the VHTR. The fracture toughness of the modified 9Cr-1Mo steel was compared with that of SA508-Gr.3. The objective of this study was to obtain the pre-irradiation fracture toughness properties of the modified 9Cr-1Mo steel as reference data for an investigation of radiation effects. Charpy impact properties of the modified 9Cr-1Mo steel were similar to those of SA508-Gr.3. T0 reference temperatures were measured as -67.7 and -72.4°C from the tests with standard PCVN (pre-cracked Charpy V-notch) and half-sized PCVN specimens respectively, which were similar to the results for SA508-Gr.3. The KJc values of the modified 9Cr-1Mo steel with the test temperatures are successfully expressed by the Master Curve. The J-R fracture resistance of the modified 9Cr-1Mo steel at room temperature was nearly identical to that of SA508-Gr.3; in contrast, it was slightly higher at an elevated temperature.
Modeling the growth of Salmonella in raw poultry stored under aerobic conditions.
Dominguez, Silvia A; Schaffner, Donald W
2008-12-01
The presence of Salmonella in raw poultry is a well-recognized risk factor for foodborne illness. The objective of this study was to develop and validate a mathematical model that predicts the growth of Salmonella in raw poultry stored under aerobic conditions at a variety of temperatures. One hundred twelve Salmonella growth rates were extracted from 12 previously published studies. These growth rates were used to develop a square-root model relating the growth rate of Salmonella to storage temperature. Model predictions were compared to growth rate measurements collected in our laboratory for four poultry-specific Salmonella strains (two antibiotic-resistant and two nonresistant strains) inoculated onto raw chicken tenderloins. Chicken was inoculated at two levels (10(3) CFU/cm2 and < or = 10 CFU/cm2) and incubated at temperatures ranging from 10 to 37 degrees C. Visual inspection of the data, bias and accuracy factors, and comparison with two other published models were used to analyze the performance of the new model. Neither antibiotic resistance nor inoculum size affected Salmonella growth rates. The presence of spoilage microflora did not appear to slow the growth of Salmonella. Our model provided intermediate predicted growth rates when compared with the two other published models. Our model predicted slightly faster growth rates than those observed in inoculated chicken in the temperature range of 10 to 28 degrees C but slightly slower growth rates than those observed between 30 and 37 degrees C. Slightly negative bias factors were obtained in every case (-5 to -3%); however, application of the model may be considered fail-safe for storage temperatures below 28 degrees C.
The influence of surface roughness on volatile transport on the Moon
NASA Astrophysics Data System (ADS)
Prem, P.; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.
2018-01-01
The Moon and other virtually airless bodies provide distinctive environments for the transport and sequestration of water and other volatiles delivered to their surfaces by various sources. In this work, we conduct Monte Carlo simulations of water vapor transport on the Moon to investigate the role of small-scale roughness (unresolved by orbital measurements) in the migration and cold-trapping of volatiles. Observations indicate that surface roughness, combined with the insulating nature of lunar regolith and the absence of significant exospheric heat flow, can cause large variations in temperature over very small scales. Surface temperature has a strong influence on the residence time of migrating water molecules on the lunar surface, which in turn affects the rate and magnitude of volatile transport to permanently shadowed craters (cold traps) near the lunar poles, as well as exospheric structure and the susceptibility of migrating molecules to photodestruction. Here, we develop a stochastic rough surface temperature model suitable for simulations of volatile transport on a global scale, and compare the results of Monte Carlo simulations of volatile transport with and without the surface roughness model. We find that including small-scale temperature variations and shadowing leads to a slight increase in cold-trapping at the lunar poles, accompanied by a slight decrease in photodestruction. Exospheric structure is altered only slightly, primarily at the dawn terminator. We also examine the sensitivity of our results to the temperature of small-scale shadows, and the energetics of water molecule desorption from the lunar regolith - two factors that remain to be definitively constrained by other methods - and find that both these factors affect the rate at which cold trap capture and photodissociation occur, as well as exospheric density and longevity.
Mayenite Synthesized Using the Citrate Sol-Gel Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ude, Sabina N; Rawn, Claudia J; Meisner, Roberta A
2014-01-01
A citrate sol-gel method has been used to synthesize mayenite (Ca12Al14O33). X-ray powder diffraction data show that the samples synthesized using the citrate sol-gel method contained CaAl2O4 and CaCO3 along with mayenite when fired ex-situ in air at 800 C but were single phase when fired at 900 C and above. Using high temperature x-ray diffraction, data collected in-situ in air at temperatures of 600 C and below showed only amorphous content; however, data collected at higher temperatures indicated the first phase to crystallize is CaCO3. High temperature x-ray diffraction data collected in 4% H2/96% N2 does not show themore » presence of CaCO3, and Ca12Al14O33 starts to form around 850 C. In comparison, x-ray powder diffraction data collected ex-situ on samples synthesized using traditional solid-state synthesis shows that single phase was not reached until samples were fired at 1350 C. DTA/TGA data collected either in a nitrogen environment or air on samples synthesized using the citrate gel method suggest the complete decomposition of metastable phases and the formation of mayenite at 900 C, although the phase evolution is very different depending on the environment. Brunauer-Emmett-Teller (BET) measurements showed a slightly higher surface area of 7.4 0.1 m2/g in the citrate gel synthesized samples compared to solid-state synthesized sample with a surface area of 1.61 0.02 m2/g. SEM images show a larger particle size for samples synthesized using the solid-state method compared to those synthesized using the citrate gel method.« less
Mechanisms of spin-flipping and metal-insulator transition in nano-Fe3O4
NASA Astrophysics Data System (ADS)
Dito Fauzi, Angga; Aziz Majidi, Muhammad; Rusydi, Andrivo
2017-04-01
Fe3O4 is a half-metallic ferrimagnet with {{T}\\text{C}}˜ 860 K exhibiting metal-insulator transition (MIT) at ˜120 K. In bulk form, the saturation magnetization is 0.6 Tesla (˜471 emu cm-3). A recent experimental study has shown that the saturation magnetization of nano-Fe3O4 thin films can achieve up to ˜760 emu cm-3, attributed to spin-flipping of Fe ions at tetrahedral sites assisted by oxygen vacancies (V O). Such a system has shown to have higher MIT temperature (˜150 K). The spin-flipping is a new phenomenon in Fe3O4, while the MIT is a long-standing one. Here, we propose a model and calculations to investigate the mechanisms of both phenomena. Our results show that, for the system without V O, the ferrimagnetic configuration is energetically favorable. Remakably, upon inclusion of V O, the ground-state configuration switches into ferromagnetic. As for the MIT, by proposing temperature dependences of some hopping integrals in the model, we demonstrate that the system without and with V O undergo the MIT in slightly different ways, leading to higher MIT temperature for the system with V O, in agreement with the experimental data. Our results also show that the MIT in both systems occur concomitantly with the redistribution of electrons among the three Fe ions in each Fe3O4 formula unit. As such temperature dependences of hopping integrals may arise due to dynamic Jahn-Teller effects, our phenomenological theory may provide a way to reconcile existing theories relating the MIT to the structural transition and the charge ordering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singleton, M J; Moran, J E
2009-10-02
We use noble gas concentrations and multiple isotopic tracers in groundwater and stream water in a small high elevation catchment to provide a snapshot of temperature, altitude, and physical processes at the time of recharge; and to determine subsurface residence times of different groundwater components. They identify three sources that contribute to groundwater flow: (1) seasonal groundwater recharge with short travel times, (2) water from bedrock aquifers that have elevated radiogenic {sup 4}He, and (3) upwelling of deep fluids that have 'mantle' helium and hydrothermal carbon isotope signatures. Although a bimodal distribution in apparent groundwater age indicates that groundwater storagemore » times range from less than a year to several decades, water that recharges seasonally is the largest likely contributor to stream baseflow. Under climate change scnearios with earlier snowmelt, the groundwater that moves through the alluvial aquifer seasonally will be depleted earlier, providing less baseflow and possible extreme low flows in the creek during summer and fall. Dissolved noble gas measurements indciate recharge temperatures are 5 to 11 degrees higher than would be expected for direct influx of snowmelt, and that excess air concentrations are lower than would be expected for recharge through bedrock fractures. Instead, recharge likely occurs over diffuse vegetated areas, as indicated by {delta}{sup 13}C-DIC values that are consistent with incorporation of CO{sub 2} from soil respiration. Recharge temperatures are close to or slightly higher than mean annual air temperature, and are consistent with recharge during May and June, when snowpack melting occurs.« less
Greenslade, Jaimi H; Beamish, Daniel; Parsonage, William; Hawkins, Tracey; Schluter, Jessica; Dalton, Emily; Parker, Kate; Than, Martin; Hammett, Christopher; Lamanna, Arvin; Cullen, Louise
2016-01-01
The investigators of this study sought to examine whether abnormal physiological parameters are associated with increased risk for acute coronary syndrome (ACS) in patients presenting to the emergency department (ED) with chest pain. We used prospectively collected data on adult patients presenting with suspected ACS in 2 EDs in Australia and New Zealand. Trained research nurses collected physiological data including temperature, respiratory rate, heart rate, and systolic blood pressure (SBP) on presentation to the ED. The primary endpoint was ACS within 30 days of presentation, as adjudicated by cardiologists using standardized guidelines. The prognostic utility of physiological parameters for ACS was examined using risk ratios. Acute coronary syndrome was diagnosed in 384 of the 1951 patients (20%) recruited. Compared with patients whose SBP was between 100 and 140 mm Hg, patients with an SBP of lower than 100 mm Hg or higher than 140 mm Hg were 1.4 times (95% confidence interval, 1.2-1.7) more likely to have ACS. Similarly, compared with patients whose temperature was between 36.5°C and 37.5°C, patients with temperature of lower than 36.5°C or higher than 37.5°C were 1.4 times (95% confidence interval, 1.1-1.6) more likely to have ACS. Heart rate and respiratory rate were not predictors of ACS. Patients with abnormal temperature or SBP were slightly more likely to have ACS, but such risk was of too small a magnitude to be useful in clinical decision making. Other physiological parameters (heart rate and respiratory rate) had no prognostic value. The use of physiological parameters cannot reliably confirm or rule out ACS.
Design of high-strength refractory complex solid-solution alloys
Singh, Prashant; Sharma, Aayush; Smirnov, A. V.; ...
2018-03-28
Nickel-based superalloys and near-equiatomic high-entropy alloys containing molybdenum are known for higher temperature strength and corrosion resistance. Yet, complex solid-solution alloys offer a huge design space to tune for optimal properties at slightly reduced entropy. For refractory Mo-W-Ta-Ti-Zr, we showcase KKR electronic structure methods via the coherent-potential approximation to identify alloys over five-dimensional design space with improved mechanical properties and necessary global (formation enthalpy) and local (short-range order) stability. Deformation is modeled with classical molecular dynamic simulations, validated from our first-principle data. We predict complex solid-solution alloys of improved stability with greatly enhanced modulus of elasticity (3× at 300 K)more » over near-equiatomic cases, as validated experimentally, and with higher moduli above 500 K over commercial alloys (2.3× at 2000 K). We also show that optimal complex solid-solution alloys are not described well by classical potentials due to critical electronic effects.« less
Design of high-strength refractory complex solid-solution alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Prashant; Sharma, Aayush; Smirnov, A. V.
Nickel-based superalloys and near-equiatomic high-entropy alloys containing molybdenum are known for higher temperature strength and corrosion resistance. Yet, complex solid-solution alloys offer a huge design space to tune for optimal properties at slightly reduced entropy. For refractory Mo-W-Ta-Ti-Zr, we showcase KKR electronic structure methods via the coherent-potential approximation to identify alloys over five-dimensional design space with improved mechanical properties and necessary global (formation enthalpy) and local (short-range order) stability. Deformation is modeled with classical molecular dynamic simulations, validated from our first-principle data. We predict complex solid-solution alloys of improved stability with greatly enhanced modulus of elasticity (3× at 300 K)more » over near-equiatomic cases, as validated experimentally, and with higher moduli above 500 K over commercial alloys (2.3× at 2000 K). We also show that optimal complex solid-solution alloys are not described well by classical potentials due to critical electronic effects.« less
Wilkinson, B H P; Lee, E; Purchas, R W; Morel, P C H
2014-01-01
Samples of pork longissimus muscle (n=16) cooked to either 60°C or 75°C in a water bath for 90 min were assessed for amino acid composition. Recovery of protein in the cooked meat plus the cooking juice was >93% and was slightly higher at 60°C (P=0.031), but retention in the meat was only 89% and 82% for the lower and higher temperatures (P<0.0001). Individual amino acids varied in recovery and retention with retention being particularly low for taurine and histidine. The balance of indispensable amino acids was less than ideal, with leucine and valine being the limiting amino acids by about 30% for both raw and cooked pork. Cooking had no detrimental effect on amino acid balance. Some examples of small effects of genotype and sex on amino acid composition of pork were shown. © 2013.
Tural, Serpil; Turhan, Sadettin
2017-03-01
In this study, some properties and antioxidant capacity of anchovy ( Engraulis encrasicholus ) by-product protein films with added 0.5, 1.0 and 1.5% of thyme essential oil were investigated. The films with thyme essential oil had higher elongation at break, water vapour permeability and oxygen permeability, lower solubility and tensile strength than control film (p<0.05). The incorporation of thyme essential oil affected transparency values of the films, but only the addition of 1.5% of thyme essential oil significantly reduced the transparency (p<0.05). In the film matrix, molecular organisation and intermolecular interaction were changed by thyme essential oil addition. The films with thyme essential oil had a heterogeneous surface and a relatively smooth cross-section structure. Slightly higher phase transition and lower glass transition temperatures were observed in films with thyme essential oil. The antioxidant capacity of the films was improved by incorporating thyme essential oil depending on its volume fraction.
Tural, Serpil
2017-01-01
Summary In this study, some properties and antioxidant capacity of anchovy (Engraulis encrasicholus) by-product protein films with added 0.5, 1.0 and 1.5% of thyme essential oil were investigated. The films with thyme essential oil had higher elongation at break, water vapour permeability and oxygen permeability, lower solubility and tensile strength than control film (p<0.05). The incorporation of thyme essential oil affected transparency values of the films, but only the addition of 1.5% of thyme essential oil significantly reduced the transparency (p<0.05). In the film matrix, molecular organisation and intermolecular interaction were changed by thyme essential oil addition. The films with thyme essential oil had a heterogeneous surface and a relatively smooth cross-section structure. Slightly higher phase transition and lower glass transition temperatures were observed in films with thyme essential oil. The antioxidant capacity of the films was improved by incorporating thyme essential oil depending on its volume fraction. PMID:28559736
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Lizhen; Kim, B. K.; Yang, Ying
Ferritic-martensitic steels such as T91 and NF616 are candidate materials for several nuclear applications. Here, this study evaluates radiation resistance of T91 and NF616 by examining their microstructural evolutions and hardening after the samples were irradiated in the Advanced Test Reactor to ~4.3 displacements per atom (dpa) at an as-run temperature of 469 °C. In general, this irradiation did not result in significant difference in the radiation-induced microstructures between the two steels. Compared to NF616, T91 had a higher number density of dislocation loops and a lower level of radiation-induced segregation, together with a slightly higher radiation-hardening. Unlike dislocation loopsmore » developed in both steels, radiation-induced cavities were only observed in T91 but remained small with sub-10 nm sizes. Lastly, other than the relatively stable M 23C 6, a new phase (likely Sigma phase) was observed in T91 and radiation-enhanced MX → Z phase transformation was identified in NF616. Laves phase was not observed in the samples.« less
Goggin, Danica E.; Powles, Stephen B.; Steadman, Kathryn J.
2011-01-01
Seed dormancy in wild Lolium rigidum Gaud (annual ryegrass) populations is highly variable and not well characterized at the biochemical level. To identify some of the determinants of dormancy level in these seeds, the proteomes of subpopulations selected for low and high levels of primary dormancy were compared by two-dimensional polyacrylamide gel electrophoresis of extracts from mature, dry seeds. High-dormancy seeds showed higher expression of small heat shock proteins, enolase, and glyoxalase I than the low-dormancy seeds. The functional relevance of these differences in protein expression was confirmed by the fact that high-dormancy seeds were more tolerant to high temperatures imposed at imbibition and had consistently higher glyoxalase I activity over 0–42 d dark stratification. Higher expression of a putative glutathione peroxidase in low-dormancy seeds was not accompanied by higher activity, but these seeds had a slightly more oxidized glutathione pool and higher total peroxidase activity. Overall, these biochemical and physiological differences suggest that L. rigidum seeds selected for low dormancy are more prepared for rapid germination via peroxidase-mediated cell wall weakening, whilst seeds selected for high dormancy are constitutively prepared to survive environmental stresses, even in the absence of stress during seed development. PMID:20974739
Understanding the science of climate change: Talking Points - Impacts to arid lands
Rachel Loehman
2010-01-01
Arid ecosystems are particularly sensitive to climate change and climate variability because organisms in these regions live near their physiological limits for water and temperature stress. Slight changes in temperature or precipitation regimes, or in magnitude and frequency of extreme climatic events, can significantly alter the composition, abundance, and...
Environmental tests of metallization systems for terrestrial photovoltaic cells
NASA Technical Reports Server (NTRS)
Alexander, P., Jr.
1985-01-01
Seven different solar cell metallization systems were subjected to temperature cycling tests and humidity tests. Temperature cycling excursions were -50 deg C to 150 deg C per cycle. Humidity conditions were 70 deg C at 98% relative humidity. The seven metallization systems were: Ti/Ag, Ti/Pd/Ag, Ti/Pd/Cu, Ni/Cu, Pd/Ni/Solder, Cr/Pd/Ag, and thick film Ag. All metallization systems showed a slight to moderate decrease in cell efficiencies after subjection to 1000 temperature cycles. Six of the seven metallization systems also evidenced slight increases in cell efficiencies after moderate numbers of cycles, generally less than 100 cycles. The copper based systems showed the largest decrease in cell efficiencies after temperature cycling. All metallization systems showed moderate to large decreases in cell efficiencies after 123 days of humidity exposure. The copper based systems again showed the largest decrease in cell efficiencies after humidity exposure. Graphs of the environmental exposures versus cell efficiencies are presented for each metallization system, as well as environmental exposures versus fill factors or series resistance.
NASA Astrophysics Data System (ADS)
Domingo, L.; Barroso-Barcenilla, F.; Cambra-Moo, O.
2013-12-01
After the mid-Cretaceous thermal maximum, the latest Cretaceous witnessed a long-term cooling trend (Santonian-Maastrichtian). It has been proposed that seasonal equability (low mean annual range of temperatures) accompanied the mid-Cretaceous greenhouse period, but was it also a climatic feature of the colder latest Cretaceous? Terrestrial proxies have proven useful in understanding past seasonality and in this vein, we performed oxygen isotope analyses of the phosphate (δ18OPO4) on the rich and exceptionally well preserved late Campanian-early Maastrichtian vertebrate assemblage of 'Lo Hueco' fossil site (Cuenca, Spain). We analysed theropod and crocodilian tooth enamel, turtle shell, and gar ganoine with the aim of evaluating paleoclimatic conditions existing in the western area of the Tethys realm. The 'Lo Hueco' locality was situated at a paleo-latitude of 31°N and sedimentological and paleontological studies point to a coastal environment with distributary channels and sporadic sabkhas. Samples were collected from two different levels: G1 (proximal muddy floodplain) and G2 (distal muddy floodplain), with G1 being older. δ18OH2O values were calculated from theropod, crocodilian and turtle δ18OPO4 values using established equations and in all cases they are in good agreement with precipitation water from subtropical latest Cretaceous and modern settings. Theropods recorded consistently slightly lower δ18OH2O values (G1: -4.1×1.4‰, G2: -3.5×0.5‰) than crocodilians (G1: -3.6×0.6‰, G2: -2.7×0.6‰) and turtles (G1: -3.8×0.6‰, G2: -2.9×0.5‰). This may be due to terrestrial endothermic taxa, such as theropods, recording ingested water year round, meanwhile semiaquatic ectothermic taxa, such as crocodilians and turtles, would record δ18OH2O values representing local meteoric waters over the warm season, when conditions are favorable for apatite synthesis. With these δ18OH2O values, we used gar ganoine δ18OPO4 values as an independent proxy to calculate temperature values. As expected, temperature values estimated from theropods are lower (G1: 17.5×4.4°C, G2: 21.0×3.8°C), representing mean annual temperature (MAT), whereas temperature values yielded by crocodilians (G1: 19.6×4.4°C, G2: 24.4×3.8°C) and turtles (G1: 18.8×4.4°C, G2: 23.5×3.8°C) are slightly higher, reflecting the temperature of the warmest months (TWMs). Our record shows an increase in temperature values between G1 and G2, but they remain within expected temperature estimates based on other independent proxies (palynomorphs, vertebrates) and paleoclimatic models for the Late Cretaceous and the 'Lo Hueco' paleo-latitude. Maximum differences between TWMs and MAT are 2.1°C and 3.4°C for G1 and G2, respectively. These differences are in the low end-member of those observed in modern subtropical settings (~2.8-8.1°C) pointing to a slightly lower seasonal thermal varibility in central-eastern Iberia during the late Campanian-early Maastrichtian.
Low Temperature Reflectance Spectra of Titan Tholins
NASA Technical Reports Server (NTRS)
Roush, T. L.; Dalton, J. B.; Fonda, Mark (Technical Monitor)
2001-01-01
Compositional interpretation of remotely obtained reflectance spectra of outer solar system surfaces is achieved by a variety of methods. These include matching spectral curves, matching spectral features, quantitative spectral interpretation, and theoretical modeling of spectra. All of these approaches rely upon laboratory measurements of one kind or another. The bulk of these laboratory measurements are obtained with the sample of interest at ambient temperatures and pressures. However, surface temperatures of planets, satellites, and asteroids in the outer solar system are significantly cooler than ambient laboratory conditions on Earth. The infrared spectra of many materials change as a function of temperature. As has been recently demonstrated it is important to assess what effects colder temperatures have on spectral properties and hence, compositional interpretations. Titan tholin is a solid residue created by energetic processing of H-, C-, and N-bearing gases. Such residues can also be created by energetic processing if the gases are condensed into ices. Titan tholin has been suggested as a coloring agent for several surfaces in the outer solar system. Here we report laboratory measurements of Titan tholin at a temperature of 100 K and compare these to measurements of the same sample near room temperature. At low temperature the absorption features beyond 1 micrometer narrow slightly. At wavelengths greater than approx. 0.8 micrometer the overall reflectance of the sample decreases slightly making the sample less red at low temperatures. We will discuss the implications of the laboratory measurements for interpretation of cold outer solar system surfaces.
Temperature feedback of TRIGA MARK-II fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Usang, M. D., E-mail: mark-dennis@nuclearmalaysia.gov.my; Minhat, M. S.; Rabir, M. H.
2016-01-22
We study the amount of temperature feedback on reactivity for the three types of TRIGA fuel i.. ST8, ST12 and LEU fuel, are used in the TRIGA MARK II reactor in Malaysia Nuclear Agency. We employ WIMSD-5B for the calculation of kin f for a single TRIGA fuel surrounded by water. Typical calculations of TRIGA fuel reactivity are usually limited to ST8 fuel, but in this paper our investigation extends to ST12 and LEU fuel. We look at the kin f of our model at various fuel temperatures and calculate the amount reactivity removed. In one instance, the water temperaturemore » is kept at room temperature of 300K to simulate sudden reactivity increase from startup. In another instance, we simulate the sudden temperature increase during normal operation where the water temperature is approximately 320K while observing the kin f at various fuel temperatures. For accidents, two cases are simulated. The first case is for water temperature at 370K and the other is without any water. We observe that the higher Uranium content fuel such as the ST12 and LEU have much smaller contribution to the reactivity in comparison to the often studied ST8 fuel. In fact the negative reactivity coefficient for LEU fuel at high temperature in water is only slightly larger to the negative reactivity coefficient for ST8 fuel in void. The performance of ST8 fuel in terms of negative reactivity coefficient is cut almost by half when it is in void. These results are essential in the safety evaluation of the reactor and should be carefully considered when choices of fuel for core reconfiguration are made.« less
Bharmoria, Pankaj; Gehlot, Praveen Singh; Gupta, Hariom; Kumar, Arvind
2014-11-06
Dual, aqueous solubility behavior of Na2SO4 as a function of temperatures is still a natural enigma lying unresolved in the literature. The solubility of Na2SO4 increases up to 32.38 °C and decreases slightly thereafter at higher temperatures. We have thrown light on this phenomenon by analyzing the Na2SO4-water clusters (growth and stability) detected from temperature-dependent dynamic light scattering experiments, solution compressibility changes derived from the density and speed of sound measurements, and water structural changes/Na2SO4 (ion pair)-water interactions observed from the FT-IR and 2D DOSY (1)H NMR spectroscopic investigations. It has been observed that Na2SO4-water clusters grow with an increase in Na2SO4 concentration (until the solubility transition temperature) and then start decreasing afterward. An unusual decrease in cluster size and solution compressibility has been observed with the rise in temperature for the Na2SO4 saturated solutions below the solubility transition temperature, whereas an inverse pattern is followed thereafter. DOSY experiments have indicated different types of water cluster species in saturated solutions at different temperatures with varying self-diffusion coefficients. The effect of NaCl (5-15 wt %) on the solubility behavior of Na2SO4 at different temperatures has also been examined. The studies are important from both fundamental and industrial application points of view, for example, toward the clean separation of NaCl and Na2SO4 from the effluent streams of textile and tannery industries.
Caroselli, Erik; Falini, Giuseppe; Goffredo, Stefano; Dubinsky, Zvy; Levy, Oren
2015-01-01
Balanophyllia europaea is a shallow water solitary zooxanthellate coral, endemic to the Mediterranean Sea. Extensive field studies across a latitudinal temperature gradient highlight detrimental effects of rising temperatures on its growth, demography, and skeletal characteristics, suggesting that depression of photosynthesis at high temperatures might cause these negative effects. Here we test this hypothesis by analyzing, by means of pulse amplitude modulation fluorometry, the photosynthetic efficiency of B. europaea specimens exposed in aquaria to the annual range of temperatures experienced in the field (13, 18, and 28°C), and two extreme temperatures expected for 2100 as a consequence of global warming (29 and 32°C). The indicators of photosynthetic performance analyzed (maximum and effective quantum yield) showed that maximum efficiency was reached at 20.0-21.6°C, slightly higher than the annual mean temperature in the field (18°C). Photosynthetic efficiency decreased from 20.0 to 13°C and even more strongly from 21.6 to 32°C. An unusual form of bleaching was observed, with a maximum zooxanthellae density at 18°C that strongly decreased from 18 to 32°C. Chlorophyll a concentration per zooxanthellae cell showed an opposite trend as it was minimal at 18°C and increased from 18 to 32°C. Since the areal chlorophyll concentration is the product of the zooxanthellae density and its cellular content, these trends resulted in a homogeneous chlorophyll concentration per coral surface across temperature treatments. This confirms that B. europaea photosynthesis is progressively depressed at temperatures >21.6°C, supporting previous hypotheses raised by the studies on growth and demography of this species. This study also confirms the threats posed to this species by the ongoing seawater warming.
The effect of a 48 h fast on the thermoregulatory responses to graded cooling in man.
Macdonald, I A; Bennett, T; Sainsbury, R
1984-10-01
The thermoregulatory responses to graded cooling were measured in 11 healthy male subjects after a 12 h fast and after a 48 h fast. The cooling stimulus was produced by changing the temperature of the skin of the trunk and legs with a water-perfused suit. Five levels of skin temperature from 35.5 to 24 degrees C were applied on each occasion. After a 12 h fast, core temperature was maintained during cooling. This maintenance of core temperature was associated with an increase in metabolic rate and a reduction in blood flow to the hand and to the forearm. After 48 h of fasting, the subjects could not maintain core temperature during cooling, and a decrease of 0.36 +/- 0.05 degrees C occurred as the suit temperature was reduced from 35.9 to 24 degrees C. Metabolic rate was slightly higher after the 48 h fast than after the 12 h fast, but similar increases in metabolic rate were observed during cooling. Vasoconstriction in the hand was initially less after a 48 h fast than after a 12 h fast, but at the lowest suit temperature, hand blood flow was similar, and low, on both occasions. After 48 h of fasting, forearm blood flow was elevated at all suit temperatures, being approximately twice the level recorded after the 12 h fast. Venous plasma noradrenaline levels did not change during cooling after the 12 h fast, whilst after 48 h of fasting a significant increase in noradrenaline level was observed at the lowest suit temperature. The results of this study provide further evidence that fasting induces an impairment of autonomic reflex mechanisms, but it is not clear whether this is due to a suppression of sympathetic nervous activity.
Higher Flux from the Young Sun as an Explanation for Warm Temperatures for Early Earth and Mars
NASA Technical Reports Server (NTRS)
Sackmann, I.-Juliana
2001-01-01
Observations indicate that the Earth was at least warm enough for liquid water to exist as far back as 4 Gyr ago, namely, as early as half a billion years after the formation of the Earth; in fact, there is evidence suggesting that Earth may have been even warmer then than it is now. These relatively warm temperatures required on early Earth are in apparent contradiction to the dimness of the early Sun predicted by the standard solar models. This problem has generally been explained by assuming that Earth's early atmosphere contained huge amounts of carbon dioxide (CO2), resulting in a large enough greenhouse effect to counteract the effect of a dimmer Sun. However, recent work places an upper limit of 0.04 bar on the partial pressure of CO2 in the period from 2.75 to 2.2 Gyr ago, based on the absence of siderite in paleosols; this casts doubt on the viability of a strong CO2 greenhouse effect on early Earth. The existence of liquid water on early Mars has been even more of a puzzle; even the maximum possible CO2 greenhouse effect cannot yield warm enough Martian surface temperatures. These problems can be resolved simultaneously for both Earth and Mars, if the early Sun was brighter than predicted by the standard solar models. This could be accomplished if the early Sun was slightly more massive than it is now, i.e., if the solar wind was considerably stronger in the past than at present. A slightly more massive young Sun would have left fingerprints on the internal structure of the present Sun. Today, helioseismic observations exist that can measure the internal structure of the Sun with very high precision. The task undertaken here was to compute solar models with the highest precision possible at this time, starting with slightly greater initial masses. These were evolved to the present solar age, where comparisons with the helioseismic observations could be made. Our computations also yielded the time evolution of the solar flux at the planets - a key input to the climates of early Earth and Mars. Early solar mass loss is not the only influence that can alter the internal structure of the present Sun. There are minor uncertainties in the physics of the solar models and in the key observed solar parameters that also affect the present Sun's internal structure. It was therefore imperative to obtain an understanding of the effects of these other uncertainties, in order to disentangle them from the fingerprints that might be left by early solar mass loss. From these considerations, our work was divided into two parts: (1) We first computed the evolution of standard solar models with input parameters varied within their uncertainties, to determine their effect on the observable helioseismic quantities; (2) We then computed non-standard solar models with higher initial masses to test against the helioseismological observations.
NASA Astrophysics Data System (ADS)
Machain-Castillo, M. L.; Nava-Fernandez, X. A.; Thunell, R.; Tappa, E.
2013-05-01
The planktonic foraminiferal assemblages from two sediment traps deployed in the Gulf of Tehuantepec, Mexico (Eastern Tropical Pacific) during a five year period (2006 to 2010) were recorded. The species abundance data were subjected to a Q-mode factor analysis that depicts alternating associations of planktonic foraminifera, generally related to seasonally varying oceanographic conditions. During winter-spring season, the oceanography of the Gulf of Tehuantepec is driven by strong northern winds that cross the Isthmus of Tehuantepec and produce intense upwelling in the gulf. This upwelling of cold, nutrient-rich waters induces high biological productivity and the dominance of the planktonic foraminiferal species Globigerina bulloides. Summer-fall oceanographic conditions are dominated by the northward flow of the Costa Rica Coastal Current and a stratified water column. Chlorophyll-a concentrations are much lower than during the upwelling season and the Globorotalia menardii assemblage is characteristic. The above pattern was recorded for most of the study period, except during ENSO conditions in winter 2007 and summer-fall of 2009. From mid-January to early March 2007, the assemblage was dominated by G. menardii instead of the typical G. bulloides. This period had the highest sea surface temperatures and lowest surface chlorophyll-a values recorded for the entire five year study period. During the similar time period of ENSO 2010, the G. bulloides assemblage shows the highest scores in the factor analysis, although the G. menardii assemblage also has somewhat high scores. Temperature is slightly lower and chlorophyll-a values are slightly higher than during 2007, suggesting the conditions were not strong enough to induce a change in faunal dominance. During ENSO 2009 (July 8th to November 12th), the summer-fall dominant assemblage of Globorotalia menardii was replaced by the Globigerinoides ruber - Globigerinita glutinata assemblage, associated to the summer-fall highest average temperatures and lowest chlorophyll-a concentrations at the studied site.
NASA Astrophysics Data System (ADS)
Campos, Benedita Cleide Souza; Vilalva, Frederico Castro Jobim; Nascimento, Marcos Antônio Leite do; Galindo, Antônio Carlos
2016-10-01
An integrated textural and chemical study on amphibole, biotite, plagioclase, titanite, epidote, and magnetite was conducted in order to estimate crystallization conditions, along with possible geodynamic implications, for six Ediacaran porphyritic high-K calc-alkaline granite plutons (Monte das Gameleiras, Barcelona, Acari, Caraúbas, Tourão, and Catolé do Rocha) intrusive into Archean to Paleoproterozoic rocks of the São José do Campestre (SJCD) and Rio Piranhas-Seridó (RPSD) domains, northern Borborema Province. The studied rocks include mainly porphyritic leucocratic monzogranites, as well as quartz-monzonites and granodiorites. Textures are marked by K-feldspar megacrysts (5-15 cm long) in a fine-to medium-grained matrix composed of quartz, plagioclase, amphibole, biotite, as well as titanite, epidote, Fesbnd Ti oxides, allanite, apatite, and zircon as accessory minerals. Amphibole, biotite and titanite share similar compositional variations defined by increasing Al and Fe, and decreasing Mg contents from the plutons emplaced into the SJCP (Monte das Gameleiras and Barcelona) towards those in the RPSD (Acari, Caraúbas, Tourão, and Catolé do Rocha). Estimated intensive crystallization parameters reveal a weak westward range of increasing depth of emplacement, pressure and temperature in the study area. The SJCD plutons (to the east) crystallized at shallower crustal depths (14-21 km), under slightly lower pressure (3.8-5.5 kbar) and temperature (701-718 °C) intervals, and high to moderate oxygen fugacity conditions (+0.8 < ΔFQM < +2.0). On the other hand, the RPSD plutons (to the west) were emplaced at slightly deeper depths (18-23 km), under higher, yet variable pressures (4.8-6.2 kbar), temperatures (723-776 °C), and moderate to low oxygen fugacity conditions (-1.0 < ΔFQM < +1.8). These results reinforce the contrasts between the tectono-strutuctural domains of São José do Campestre and Rio Piranhas-Seridó in the northern Borborema Province.
Chemical characteristics of the major thermal springs of Montana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mariner, R.H.; Presser, T.S.; Evans, W.C.
1976-07-01
Twenty-one thermal springs in western Montana were sampled for chemical, isotope, and gas compositions. Most of the springs issue dilute to slightly saline sodium-bicarbonate waters of neutral to slightly alkaline pH. A few of the springs issue sodium-mixed anion waters of near neutral pH. Fluoride concentrations are high in most of the thermal waters, up to 18 miligrams per litre, while F/Cl ratios range from 3/1 in the dilute waters to 1/10 in the slightly saline waters. Most of the springs are theoretically in thermodynamic equilibrium with respect to calcite and fluorite. Nitrogen is the major gas escaping from mostmore » of the hot springs; however, Hunters Hot Springs issue principally methane. The deuterium content of the hot spring waters is typical of meteoric water in western Montana. Geothermal calculations based on silica concentrations and Na-K-Ca ratios indicate that most of the springs are associated with low temperature aquifers (less than 100/sup 0/C). Chalcedony may be controlling the silica concentrations in these low temperature aquifers even in ''granitic'' terranes.« less
Elastic and transport properties of topological semimetal ZrTe
NASA Astrophysics Data System (ADS)
Guo, San-Dong; Wang, Yue-Hua; Lu, Wan-Li
2017-11-01
Topological semimetals may have substantial applications in electronics, spintronics, and quantum computation. Recently, ZrTe was predicted as a new type of topological semimetal due to the coexistence of Weyl fermions and massless triply degenerate nodal points. In this work, the elastic and transport properties of ZrTe are investigated by combining the first-principles calculations and semiclassical Boltzmann transport theory. Calculated elastic constants prove the mechanical stability of ZrTe, and the bulk modulus, shear modulus, Young’s modulus, and Poisson’s ratio also are calculated. It is found that spin-orbit coupling (SOC) has slightly enhanced effects on the Seebeck coefficient, which along the a(b) and c directions for pristine ZrTe at 300 K is 46.26 μVK-1 and 80.20 μVK-1, respectively. By comparing the experimental electrical conductivity of ZrTe (300 K) with the calculated value, the scattering time is determined as 1.59 × 10-14 s. The predicted room-temperature electronic thermal conductivity along the a(b) and c directions is 2.37 {{Wm}}-1{{{K}}}-1 and 2.90 {{Wm}}-1{{{K}}}-1, respectively. The room-temperature lattice thermal conductivity is predicted as 17.56 {{Wm}}-1{{{K}}}-1 and 43.08 {{Wm}}-1{{{K}}}-1 along the a(b) and c directions, showing very strong anisotropy. Calculated results show that isotope scattering produces an observable effect on lattice thermal conductivity. To observably reduce lattice thermal conductivity by nanostructures, the characteristic length should be smaller than 70 nm, based on cumulative lattice thermal conductivity with respect to the phonon mean free path (MFP) at 300 K. It is noted that the average room-temperature lattice thermal conductivity of ZrTe is slightly higher than that of isostructural MoP, which is due to larger phonon lifetimes and smaller Grüneisen parameters. Finally, the total thermal conductivity as a function of temperature is predicted for pristine ZrTe. Our works provide valuable information for ZrTe-based nano-electronics devices, and motivate further experimental works to study elastic and transport properties of ZrTe.
The effect of high dose on residual radicals in open air irradiated α-T UHMWPE resin powder
NASA Astrophysics Data System (ADS)
Mehmood, Malik S.; Shah, Jahan M.; Mishra, Sanjay R.; Walters, Benjamin M.
2013-03-01
Powder samples of UHMWPE (GUR 1020) containing 0.1 wt%. vitamin E (α-tocopherol, α-T) were irradiated at room temperature in air for doses of 30-kGy, 65-kGy or 100-kGy (60Co). After irradiation, they were stored at -78.5 °C (dry ice temperature) for 1 year and then opened to air at room temperature. Following the decay of the primary alkyl and allyl radicals (at room temperature in air), growth of the carbon-centered polyenyl R1 (-˙CH-[-CHCH-]m-, m≥3), and the oxygen-centered di- or tri-enyl R2 (-˙OCH-[-CHCH-]m-, m≤3) residual radicals were measured for 8 weeks. An X-band electron spin resonance (ESR) spectrometer was used for radical measurements. The initial relative radical concentrations (R2/R1) were found to be 10.13, 4.6 and 3.7 for the 65-kGy, 30-kGy and 100-kGy samples, respectively. R1 and R2 were both found to grow significantly in the 65-kGy sample while they grew only slightly in the 30-kGy and 100-kGy samples. In 65-kGy sample, R1 grew faster than R2 and the relative concentration R2/R1 was reduced from 10.13 to 2.9 for the 65-kGy sample while those for the 30-kGy and 100-kGy samples reduced only slightly, from 4.6 to 3.5 and 3.7 to 3.2, respectively. The behavior of the residual radicals can be explained by Raman spectroscopic data which suggest that the 65-kGy samples had a higher percentage of amorphous regions when compared to the 30-kGy or 100-kGy ones (21.7 compared to 15.7 or 17.9) and also suggest a lower percentage of interfacial regions (16.4 compared to 25.6 or 17.5) and a lower level of structural disorder (0.26 compared to 0.44 or 0.27).
Effects of experimental warming on soil temperature, moisture and respiration in northern Mongolia
NASA Astrophysics Data System (ADS)
Sharkhuu, A.; Plante, A. F.; Casper, B. B.; Helliker, B. R.; Liancourt, P.; Boldgiv, B.; Petraitis, P.
2010-12-01
Mean annual air temperature in the Lake Hövsgöl region of northern Mongolia has increased by 1.8 °C over the last 40 years, greater than global average temperature increases. A decrease of soil moisture due to changes in precipitation regime is also predicted over the northern region of Mongolia. Warmer temperatures generally result in higher soil CO2 efflux, but responses of soil efflux to climate change may differ among ecosystems due to response variations in soil temperature and moisture regime. The objectives of our study were to examine the environmental responses (soil temperature and moisture) to experimental warming, and to test responses of soil CO2 efflux to experimental warming, in three different ecozones. The experimental site is located in Dalbay Valley, on the eastern shore of Lake Hövsgöl in northern Mongolia (51.0234° N 100.7600° E; 1670 m elevation). Replicate plots with ITEX-style open-top passive warming chambers (OTC) and non-warmed control areas were installed in three ecosystems: (1) semi-arid grassland on the south-facing slope not underlain by permafrost, (2) riparian zone, and (3) larch forest on the north-facing slope underlain by permafrost. Aboveground air temperature and belowground soil temperature and moisture (10 and 20 cm) were monitored using sensors and dataloggers. Soil CO2 efflux was measured periodically using a portable infra-red gas analyzer with an attached soil respiration chamber. The warming chambers were installed and data collected during the 2009 and 2010 growing seasons. Passive warming chambers increased nighttime air temperatures; more so in grassland compared to the forest. Increases in daytime air temperatures were observed in the grassland, but were not significant in the riparian and forest areas. Soil temperatures in warmed plots were consistently higher in all three ecozones at 10 cm depth but not at 20 cm depth. Warming chambers had a slight drying effect in the grassland, but no consistent effect in forest and riparian areas. Measured soil CO2 efflux rates were highest in riparian area, and lowest in the grassland. Initial results of soil efflux measurements suggest that the effect of warming treatment significantly depends on the ecosystem type: soil efflux rates differed between warming treatments in forest plots, but not in riparian and grassland plots.
NASA Astrophysics Data System (ADS)
Goto, S.; Hamamoto, H.; Yamano, M.; Kinoshita, M.; Ashi, J.
2008-12-01
Nankai subduction zone off Kii Peninsula is one of the most intensively surveyed areas for studies on the seismogenic zone. Multichannel seismic reflection surveys carried out in this area revealed the existence of splay faults that branched from the subduction zone plate boundary [Park et al., 2002]. Along the splay faults, reversal of reflection polarity was observed, indicating elevated pore fluid pressure along the faults. Cold seepages with biological communities were discovered along a seafloor outcrop of one of the splay faults through submersible observations. Long-term temperature monitoring at a biological community site along the outcrop revealed high heat flow carried by upward fluid flow (>180 mW/m2) [Goto et al., 2003]. Toki et al. [2004] estimated upward fluid flow rates of 40-200 cm/yr from chloride distribution of interstitial water extracted from sediments in and around biological community sites along the outcrop. These observation results suggest upward fluid flow along the splay fault. In order to investigate hydrological nature of the splay fault, we conducted long-term temperature monitoring again in the same cold seepage site where Goto et al. [2003] carried out long-term temperature monitoring. In this presentation, we present results of the temperature monitoring and estimate heat flow carried by upward fluid flow from the temperature records. In this long-term temperature monitoring, we used stand-alone heat flow meter (SAHF), a probe-type sediment temperature recorder. Two SAHFs (SAHF-3 and SAHF-4) were used in this study. SAHF-4 was inserted into a bacterial mat, within several meters of which the previous long-term temperature monitoring was conducted. SAHF-3 was penetrated into ordinary sediment near the bacterial mat. The sub-bottom temperature records were obtained for 8 months. The subsurface temperatures oscillated reflecting bottom- water temperature variation (BTV). For sub-bottom temperatures measured with SAHF-3 (outside of the bacterial mat), we found that the effects of the BTV propagated into sediment by conduction only. By correcting the effect of the BTV, conductive heat flow estimated is higher than 100 mW/m2. Sub-bottom temperatures measured within bacterial mat (SAHF-4) except for the topmost sensor could be explained by a conduction model. The heat flow estimated based on the conduction model is similar to that measured with SAHF-3. The temperature of the topmost sensor is slightly higher than that expected from the conduction model. To explain the high temperature, upward fluid flow at a rate of 10-7 m/s order is needed. Heat flow carried by the upward fluid flow is higher than that estimated by Goto et al. [2003]. Heat flow value expected from the distribution of heat flow around this area is 70-80 mW/m2. The high heat flow values inside and outside the bacterial mat estimated in the present and previous studies may reflect upward fluid flow along the splay fault.
Sidorchuk, N V; Rozhnov, V V
2008-01-01
Data on the microclimate (air temperature and humidity) within an unoccupied badger sett in the Darwin Reserve (the Vologda Region) between September 2005 and May 2006 have been analyzed in relation to changes in the temperature and humidity of the ground air layer and soil. A positive correlation has been revealed between the temperature regime of the soil and air temperature within the sett. After the establishment of snow cover, air and soil temperatures within the sett vary slightly and barely depend on ambient air temperature.
Mechor, G D; Gröhn, Y T; McDowell, L R; Van Saun, R J
1992-11-01
The effects of temperature and colostrum components on specific gravity in bovine colostrum were investigated. Thirty-nine first milking colostrum samples were collected from Holstein cows. The samples were assayed for alpha-tocopherol, fat, protein, total solids, and IgG. The concentrations of total solids, total protein, total IgG, and fat in colostrum were 26.6, 12.5, 3.7, and 9.4 g/100 g, respectively. A range of 1.8 to 24.7 micrograms/ml for alpha-tocopherol was measured in the colostrum samples. Specific gravity of the colostrum was measured using a hydrometer in increments of 5 degrees C from 0 to 40 degrees C. Specific gravity explained 76% of the variation in colostral total IgG at a colostrum temperature of 20 degrees C. The regression model was improved only slightly with the addition of protein, fat, and total solids. The model for samples at 20 degrees C was IgG (milligrams per milliliter) = 958 x (specific gravity) - 969. Measurement of specific gravity at variable temperatures necessitated inclusion of temperature in the model for estimation of IgG. Inclusion of the other components of colostrum into the model slightly improved the fit. The regression model for samples at variable temperatures was as follows: IgG (milligrams per milliliter) = 853 x (specific gravity) + .4 x temperature (Celsius degrees) - 866.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiwari, Ajay, E-mail: ajay1.tiwari@toshiba.co.jp; Inokuchi, Tomoaki; Ishikawa, Mizue
The post annealing temperature dependence of spin accumulation and transport signals in Co{sub 2}FeSi/MgO/n{sup +}-Si on insulator were investigated. The spin signals were detected using 3- and 4-terminal Hanle, 2-terminal local and 4-terminal nonlocal magnetoresistance measurements. The post annealing temperature (T{sub A}) dependence of the magnitude in 3-terminal narrow Hanle signals is nearly constant up to T{sub A} < 400°C, however a slight decrease above T{sub A} ≥ 400°C is observed. This behavior is consistent with the T{sub A} dependence of the magnitude of 4-terminal nonlocal magnetoresistance (MR) signals. The spin polarization estimated from the 3-terminal narrow Hanle signals andmore » the magnitude of 2-terminal local MR signals show a slight improvement with increasing post annealing temperature with a peak at around 325°C and then start reducing slowly. The slight increase in the spin signal would be due to high spin polarization of Co{sub 2}FeSi as a result of structural ordering. The 2-terminal local MR signals do not vary significantly by annealing between as-deposited and T{sub A} = 400°C, indicating the robustness of our device. This result would be useful for future Si spintronics devices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burnham, A K; Weese, R K; Andrzejewski, W J
Decomposition kinetics are determined for HMX (nitramine octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) and CP (2-(5-cyanotetrazalato) pentaammine cobalt (III) perchlorate) separately and together. For high levels of thermal stress, the two materials decompose faster as a mixture than individually. This effect is observed both in high-temperature thermal analysis experiments and in long-term thermal aging experiments. An Arrhenius plot of the 10% level of HMX decomposition by itself from a diverse set of experiments is linear from 120 to 260 C, with an apparent activation energy of 165 kJ/mol. Similar but less extensive thermal analysis data for the mixture suggests a slightly lower activation energy formore » the mixture, and an analogous extrapolation is consistent with the amount of gas observed in the long-term detonator aging experiments, which is about 30 times greater than expected from HMX by itself for 50 months at 100 C. Even with this acceleration, however, it would take {approx}10,000 years to achieve 10% decomposition at {approx}30 C. Correspondingly, negligible decomposition is predicted by this kinetic model for a few decades aging at temperatures slightly above ambient. This prediction is consistent with additional sealed-tube aging experiments at 100-120 C, which are estimated to have an effective thermal dose greater than that from decades of exposure to temperatures slightly above ambient.« less
1983-05-31
slower (100 hrs) than the ambient temperature chlorination of that compound (10 minutes). The reaction was followed by gas phase infrared spectroscopy...excess of bromine to chlorine and a slightly shorter (254 hrs) reaction time slightly increases the yield of bromo-F-neopentane. The 19F NMR data (Table... chlorination products, however, optimal bromina- tion (4.4:1) occurred for reaction 4 which produced predominately 1-bromo-3- hydryl-F-neopentane (48%). It
Optical spectroscopy and band gap analysis of hybrid improper ferroelectric Ca3Ti2O7
NASA Astrophysics Data System (ADS)
Musfeldt, Janice; Cherian, Judy; Birol, Turan; Harms, Nathan; Gao, Bin; Cheong, Sang; Vanderbilt, David
We bring together optical absorption spectroscopy, photoconductivity, and first principles calculations to reveal the electronic structure of the room temperature ferroelectric Ca3Ti2O7. The 3.94 eV direct gap in Ca3Ti2O7 is charge transfer in nature and noticeably higher than that in CaTiO3 (3.4 eV), a finding that we attribute to dimensional confinement in the n = 2 member of the Ruddlesden-Popper series. While Sr substitution introduces disorder and broadens the gap edge slightly, oxygen deficiency reduces the gap to 3.7 eV and gives rise to a broad tail that persists to much lower energies. MSD, BES, U. S. DoE and DMREF, NSF.
Translational and rotational dynamics of monosaccharide solutions.
Lelong, Gérald; Howells, W Spencer; Brady, John W; Talón, César; Price, David L; Saboungi, Marie-Louise
2009-10-01
Molecular dynamics computer simulations have been carried out on aqueous solutions of glucose at concentrations bracketing those previously measured with quasi-elastic neutron scattering (QENS), in order to investigate the motions and interactions of the sugar and water molecules. In addition, QENS measurements have been carried out on fructose solutions to determine whether the effects previously observed for glucose apply to monosaccharide solutions. The simulations indicate a dynamical analogy between higher solute concentration and lower temperature that could provide a key explanation of the bioprotective phenomena observed in many living organisms. The experimental results on fructose solutions show qualitatively similar behavior to the glucose solutions. The dynamics of the water molecules are essentially the same, while the translational diffusion of the sugar molecules is slightly faster in the fructose solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherian, Judy G.; Harms, Nathan C.; Birol, Turan
2016-06-27
We bring together optical absorption spectroscopy, photoconductivity, and first principles calculations to reveal the electronic structure of the room temperature ferroelectric Ca{sub 3}Ti{sub 2}O{sub 7}. The 3.94 eV direct gap in Ca{sub 3}Ti{sub 2}O{sub 7} is charge transfer in nature and noticeably higher than that in CaTiO{sub 3} (3.4 eV), a finding that we attribute to dimensional confinement in the n = 2 member of the Ruddlesden-Popper series. While Sr substitution introduces disorder and broadens the gap edge slightly, oxygen deficiency reduces the gap to 3.7 eV and gives rise to a broad tail that persists to much lower energies.
Effects of Meteorological Conditions on Reactions to Noise Exposure
NASA Technical Reports Server (NTRS)
Shepherd, Kevin P. (Technical Monitor); Fields, James M.
2004-01-01
More than 80,000 residents' responses to transportation noise at different times of year provide the best, but imprecise, statistical estimates of the effects of season and meteorological conditions on community response to noise. Annoyance with noise is found to be slightly statistically significantly higher in the summer than in the winter in a seven-year study in the Netherlands. Analyses of 41 other surveys drawn from diverse countries, climates, and times of year find noise annoyance is increased by temperature, and may be increased by more sunshine, less precipitation, and reduced wind speeds. Meteorological conditions on the day of the interview or the immediately preceding days do not appear to have any more effect on reactions than do the conditions over the immediately preceding weeks or months.
Buckling behavior of Rene 41 tubular panels for a hypersonic aircraft wing
NASA Technical Reports Server (NTRS)
Ko, W. L.; Fields, R. A.; Shideler, J. L.
1986-01-01
The buckling characteristics of Rene 41 tubular panels for a hypersonic aircraft wing were investigated. The panels were repeatedly tested for buckling characteristics using a hypersonic wing test structure and a universal tension/compression testing machine. The nondestructive buckling tests were carried out under different combined load conditions and in different temperature environments. The force/stiffness technique was used to determine the buckling loads of the panels. In spite of some data scattering resulting from large extrapolations of the data-fitting curve (because of the termination of applied loads at relatively low percentages of the buckling loads), the overall test data correlate fairly well with theoretically predicted buckling interaction curves. Also, the structural efficiency of the tubular panels was found to be slightly higher than that of beaded panels.
Buckling behavior of Rene 41 tubular panels for a hypersonic aircraft wing
NASA Technical Reports Server (NTRS)
Ko, W. L.; Shideler, J. L.; Fields, R. A.
1986-01-01
The buckling characteristics of Rene 41 tubular panels for a hypersonic aircraft wing were investigated. The panels were repeatedly tested for buckling characteristics using a hypersonic wing test structure and a universal tension/compression testing machine. The nondestructive buckling tests were carried out under different combined load conditions and in different temperature environments. The force/stiffness technique was used to determine the buckling loads of the panel. In spite of some data scattering, resulting from large extrapolations of the data fitting curve (because of the termination of applied loads at relatively low percentages of the buckling loads), the overall test data correlate fairly well with theoretically predicted buckling interaction curves. Also, the structural efficiency of the tubular panels was found to be slightly higher than that of beaded panels.
History of Chandra X-Ray Observatory
2003-01-22
This Chandra X-ray observatory image of M83 shows numerous point-like neutron stars and black hole x-ray sources scattered throughout the disk of this spiral galaxy. The bright nuclear region of the galaxy glows prominently due to a burst of star formation that is estimated to have begun about 20 million years ago in the galaxy's time frame. The nuclear region, enveloped by a 7 million degree Celsius gas cloud of carbon, neon, magnesium, silicon, and sulfur atoms, contains a much higher concentration of neutron stars and black holes than the rest of the galaxy. Hot gas with a slightly lower temperature of 4 million degrees observed along the spiral arms of the galaxy suggests that star formation in this region may be occurring at a more sedate rate.
Dynamic phase diagram of a nonionic surfactant lamellar phase.
Gentile, Luigi; Behrens, Manja A; Balog, Sandor; Mortensen, Kell; Ranieri, Giuseppe A; Olsson, Ulf
2014-04-03
The dynamic phase diagram of triethylene glycol dodecyl ether (C12E3) in D2O was determined for 40, 50, and 60 wt % of surfactant. The shear flow effect on the nonionic lamellar phase was investigated as a function of temperature and concentration. The transition from planar lamellae (Lα)-to-multilamellar vesicles (MLVs) was characterized by means of rheology, rheo-small-angle neutron and light scattering. New insight into the nature of the transition region between Lα and the MLVs state is provided. A disorder-order transition was also observed by SANS. This is attributed to a transition from disordered MLVs to a close-packed array of MLV's with slightly higher order than before. Moreover flow instability was observed in the shear-thickening regime at 40 °C.
NASA Astrophysics Data System (ADS)
Cerkez, Idris; Sezer, Ayse; Bhullar, Sukhwinder K.
2017-02-01
This research study is mainly targeted on fabrication and characterization of antibacterial poly(e-caprolactone) (PCL) based fibrous membrane containing silver chloride particles. Micro/nano fibres were produced by electrospinning and characterized with TGA, DSC, SEM and mechanical analysis. It was found that addition of silver particles slightly reduced onset of thermal degradation and increased crystallization temperature of neat PCL. Silver-loaded samples exhibited higher tensile stress and lower strain revealing that the particles behaved as reinforcing agent. Moreover, addition of silver chloride resulted in beaded surface texture and formation of finer fibres as opposed to the neat. Antibacterial properties were tested against Gram-negative and Gram-positive bacteria and remarkable biocidal functionalities were obtained with about six logs reduction of Staphylococcus aureus and Escherichia coli O157:H7.
Calculating the enthalpy of vaporization for ionic liquid clusters.
Kelkar, Manish S; Maginn, Edward J
2007-08-16
Classical atomistic simulations are used to compute the enthalpy of vaporization of a series of ionic liquids composed of 1-alkyl-3-methylimidazolium cations paired with the bis(trifluoromethylsulfonyl)imide anion. The calculations show that the enthalpy of vaporization is lowest for neutral ion pairs. The enthalpy of vaporization increases by about 40 kJ/mol with the addition of each ion pair to the vaporizing cluster. Non-neutral clusters have much higher vaporization enthalpies than their neutral counterparts and thus are not expected to make up a significant fraction of volatile species. The enthalpy of vaporization increases slightly as the cation alkyl chain length increases and as temperature decreases. The calculated vaporization enthalpies are consistent with two sets of recent experimental measurements as well as with previous atomistic simulations.
A New Wave of Permafrost Warming in the Alaskan Interior?
NASA Astrophysics Data System (ADS)
Romanovsky, V. E.; Nicolsky, D.; Cable, W.; Kholodov, A. L.; Panda, S. K.
2017-12-01
The impact of climate warming on permafrost and the potential of climate feedbacks resulting from permafrost thawing have recently received a great deal of attention. Ground temperatures are a primary indicator of permafrost stability. Many of the research sites in our permafrost network are located along the North American Arctic Permafrost-Ecological Transect that spans all permafrost zones in Alaska. Most of the sites in Alaska show substantial warming of permafrost since the 1980s. The magnitude of warming has varied with location, but was typically from 0.5 to 3°C. However, this warming was not linear in time and not spatially uniform. In some regions this warming even may be reversed and a slight recent cooling of permafrost has been observed recently at some locations. The Interior of Alaska is one of such regions where a slight permafrost cooling was observed starting in the late 1990s that has continued through the 2000s and in the beginning of the 2010s. The cooling has followed the substantial increase in permafrost temperatures documented for the Interior during the 1980s and 1990s. Permafrost temperatures at 15 m depth increased here by 0.3 to 0.6°C between 1983 and 1996. In most locations they reached their maximum in the second half of the 1990s. Since then, the permafrost temperatures started to decrease slowly and by 2013 this decrease at some locations was as much as 0.3°C at 15 m depth. There are some indications that the warming trend in the Alaskan Interior permafrost resumed during the last four years. By 2016, new record highs for the entire period of measurements of permafrost temperatures at 15 m depth were recorded at several locations. The latest observed permafrost warming in the Interior was combined with higher than normal summer precipitations. This combination has triggered near-surface permafrost degradation in many locations with adverse consequences for the ground surface stability affecting ecosystems and infrastructure. In this presentation the observational data and modeling results will be combined to explain these documented changes in permafrost in the Alaskan Interior during the last three decades. Some suggestions to improve the observational methods of permafrost monitoring will also be discussed.
On the Impact of Wind Farms on a Convective Atmospheric Boundary Layer
NASA Astrophysics Data System (ADS)
Lu, Hao; Porté-Agel, Fernando
2015-10-01
With the rapid growth in the number of wind turbines installed worldwide, a demand exists for a clear understanding of how wind farms modify land-atmosphere exchanges. Here, we conduct three-dimensional large-eddy simulations to investigate the impact of wind farms on a convective atmospheric boundary layer. Surface temperature and heat flux are determined using a surface thermal energy balance approach, coupled with the solution of a three-dimensional heat equation in the soil. We study several cases of aligned and staggered wind farms with different streamwise and spanwise spacings. The farms consist of Siemens SWT-2.3-93 wind turbines. Results reveal that, in the presence of wind turbines, the stability of the atmospheric boundary layer is modified, the boundary-layer height is increased, and the magnitude of the surface heat flux is slightly reduced. Results also show an increase in land-surface temperature, a slight reduction in the vertically-integrated temperature, and a heterogeneous spatial distribution of the surface heat flux.
Accounting For Nonlinearity In A Microwave Radiometer
NASA Technical Reports Server (NTRS)
Stelzried, Charles T.
1991-01-01
Simple mathematical technique found to account adequately for nonlinear component of response of microwave radiometer. Five prescribed temperatures measured to obtain quadratic calibration curve. Temperature assumed to vary quadratically with reading. Concept not limited to radiometric application; applicable to other measuring systems in which relationships between quantities to be determined and readings of instruments differ slightly from linearity.
Hwang, Cho Rong; Lee, Sang Hoon; Jang, Gwi Yeong; Hwang, In Guk; Kim, Hyun Young; Woo, Koan Sik; Lee, Junsoo; Jeong, Heon Sang
2014-01-01
Background This study evaluated changes in ginsenoside compositions and antioxidant activities in hydroponic-cultured ginseng roots (HGR) and leaves (HGL) with heating temperature. Methods Heat treatment was performed at temperatures of 90°C, 110°C, 130°C, and 150°C for 2 hours. Results The ginsenoside content varied significantly with heating temperature. The levels of ginsenosides Rg1 and Re in HGR decreased with increasing heating temperature. Ginsenosides F2, F4, Rk3, Rh4, Rg3 (S form), Rg3 (R form), Rk1, and Rg5, which were absent in the raw ginseng, were formed after heat treatment. The levels of ginsenosides Rg1, Re, Rf, and Rb1 in HGL decreased with increasing heating temperature. Conversely, ginsenosides Rk3, Rh4, Rg3 (R form), Rk1, and Rg5 increased with increasing heating temperature. In addition, ginsenoside contents of heated HGL were slightly higher than those of HGR. The highest extraction yield was 14.39% at 130°C, whereas the lowest value was 10.30% at 150°C. After heating, polyphenol contents of HGR and HGL increased from 0.43 mg gallic acid equivalent/g (mg GAE eq/g) and 0.74 mg GAE eq/g to 6.16 mg GAE eq/g and 2.86 mg GAE eq/g, respectively. Conclusion Antioxidant activities of HGR and HGL, measured by 1,1-diphenyl-2-picrylhydrazyl and 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid radical scavenging ability, increased with increasing heating temperature. These results may aid in improving the biological activity and quality of ginseng subjected to heat treatments. PMID:25378992
Alaeddini, Behzad; Koocheki, Arash; Mohammadzadeh Milani, Jafar; Razavi, Seyed Mohammad Ali; Ghanbarzadeh, Babak
2018-05-01
Alyssum homolocarpum seed gum (AHSG) solution exhibits high viscosity at low shear rates and has anionic features. However there is no information regarding the flow and dynamic properties of this gum in semi-dilute solutions. The present study aimed to investigate the dynamic and steady shear behavior of AHSG in the semi-dilute region. The viscosity profile demonestrated a shear thinning behavior at all temperatures and concentrations. An increase in the AHSG concentration was acompanied by an increase in the pseudoplasticity degree, whereas, by increasing the temperature, the pseudoplasticity of AHSG decreased. At low gum concentration, solutions had more viscosity dependence on temperature. The mechanical spectra obtained from the frequency sweep experiment demonstrated viscoelastic properties for gum solutions. AHSG solutions showed typical weak gel-like behavior, revealing G' greater than G' within the experimental range of frequency (Hz), with slight frequency dependency. The influence of temperature on viscoelastic properties of AHSG solutions was studied during both heating (5-85 °C) and cooling (85-5 °C) processes. The complex viscosity of AHSG was greater compared to the apparent viscosity, indicating the disruption of AHSG network structure under continuous shear rates and deviation from the Cox-Merz rule. During the initial heating, the storage modulus showed a decreasing trend and, with a further increase in temperature, the magnitude of storage modulus increased. The influence of temperature on the storage modulus was considerable when a higher heating rate was applied. AHSG can be applied as a thickening and stabilizing agents in food products that require good stability against temperature. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Temperature Dependence of the Upper Critical Field in Disordered Hubbard Model with Attraction
NASA Astrophysics Data System (ADS)
Kuchinskii, E. Z.; Kuleeva, N. A.; Sadovskii, M. V.
2017-12-01
We study disorder effects upon the temperature behavior of the upper critical magnetic field in an attractive Hubbard model within the generalized DMFT+Σ approach. We consider the wide range of attraction potentials U—from the weak coupling limit, where superconductivity is described by BCS model, up to the strong coupling limit, where superconducting transition is related to Bose-Einstein condensation (BEC) of compact Cooper pairs, formed at temperatures significantly higher than superconducting transition temperature, as well as the wide range of disorder—from weak to strong, when the system is in the vicinity of Anderson transition. The growth of coupling strength leads to the rapid growth of H c2( T), especially at low temperatures. In BEC limit and in the region of BCS-BEC crossover H c2( T), dependence becomes practically linear. Disordering also leads to the general growth of H c2( T). In BCS limit of weak coupling increasing disorder lead both to the growth of the slope of the upper critical field in the vicinity of the transition point and to the increase of H c2( T) in the low temperature region. In the limit of strong disorder in the vicinity of the Anderson transition localization corrections lead to the additional growth of H c2( T) at low temperatures, so that the H c2( T) dependence becomes concave. In BCS-BEC crossover region and in BEC limit disorder only slightly influences the slope of the upper critical field close to T c . However, in the low temperature region H c2 ( T may significantly grow with disorder in the vicinity of the Anderson transition, where localization corrections notably increase H c2 ( T = 0) also making H c2( T) dependence concave.
Large Decadal Decline of the Arctic Multiyear Ice Cover
NASA Technical Reports Server (NTRS)
Comiso, Josefino C.
2012-01-01
The perennial ice area was drastically reduced to 38% of its climatological average in 2007 but recovered slightly in 2008, 2009, and 2010 with the areas being 10%, 24%, and 11% higher than in 2007, respectively. However, trends in extent and area remained strongly negative at -12.2% and -13.5% decade (sup -1), respectively. The thick component of the perennial ice, called multiyear ice, as detected by satellite data during the winters of 1979-2011 was studied, and results reveal that the multiyear ice extent and area are declining at an even more rapid rate of -15.1% and -17.2% decade(sup -1), respectively, with a record low value in 2008 followed by higher values in 2009, 2010, and 2011. Such a high rate in the decline of the thick component of the Arctic ice cover means a reduction in the average ice thickness and an even more vulnerable perennial ice cover. The decline of the multiyear ice area from 2007 to 2008 was not as strong as that of the perennial ice area from 2006 to 2007, suggesting a strong role of second-year ice melt in the latter. The sea ice cover is shown to be strongly correlated with surface temperature, which is increasing at about 3 times the global average in the Arctic but appears weakly correlated with the Arctic Oscillation (AO), which controls the atmospheric circulation in the region. An 8-9-yr cycle is apparent in the multiyear ice record, which could explain, in part, the slight recovery in the last 3 yr.
Gurtler, Joshua B; Rivera, Rebecca B; Zhang, Howard Q; Geveke, David J
2010-04-30
Pulsed electric field (PEF) technology has been used for the inactivation of microorganisms and to prevent flavor loss in liquid foods and beverages in place of thermal pasteurization. When used to pasteurize orange juice, PEF may prevent loss of volatile sensory attributes. Enterohemorrhagic E. coli O157:H7 (EHEC), two strains of Salmonella Typhimurium, and twenty strains of non-pathogenic bacteria were screened for inactivation in orange juice by PEF at 22 and 20kV/cm at 45 and 55 degrees C, respectively. Higher populations of both salmonellae were inactivated (2.81 and 3.54 log CFU/ml) at 55 degrees C, in comparison with the reduction of EHEC (2.22 log). When tested under the same conditions, inactivation of EHEC was slightly greater than that of a non-pathogenic E. coli (NPEC) ATCC 35218 (2.02 log). NPEC was further tested as a surrogate for EHEC by comparing inactivation kinetics at 45, 50 and 55 degrees C at field strengths of between 7.86 and 32.55kV/cm. Statistical comparison of revealed that EHEC and NPEC inactivation curves were homogeneous at outlet temperatures of 45 and 50 degrees C; however, EHEC was slightly more sensitive to PEF than the surrogate NPEC at 55 degrees C. The higher PEF resistance of non-pathogenic E. coli 35218 at 55 degrees C may provide a desirable margin of safety when used in pilot plant challenge studies in place of E. coli O157:H7. Published by Elsevier B.V.
Temperature structure in the Perseus cluster core observed with Hitomi
NASA Astrophysics Data System (ADS)
Hitomi Collaboration; Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steven W.; Angelini, Lorella; Audard, Marc; Awaki, Hisamitsu; Axelsson, Magnus; Bamba, Aya; Bautz, Marshall W.; Blandford, Roger; Brenneman, Laura W.; Brown, Gregory V.; Bulbul, Esra; Cackett, Edward M.; Chernyakova, Maria; Chiao, Meng P.; Coppi, Paolo S.; Costantini, Elisa; de Plaa, Jelle; de Vries, Cor P.; den Herder, Jan-Willem; Done, Chris; Dotani, Tadayasu; Ebisawa, Ken; Eckart, Megan E.; Enoto, Teruaki; Ezoe, Yuichiro; Fabian, Andrew C.; Ferrigno, Carlo; Foster, Adam R.; Fujimoto, Ryuichi; Fukazawa, Yasushi; Furukawa, Maki; Furuzawa, Akihiro; Galeazzi, Massimiliano; Gallo, Luigi C.; Gandhi, Poshak; Giustini, Margherita; Goldwurm, Andrea; Gu, Liyi; Guainazzi, Matteo; Haba, Yoshito; Hagino, Kouichi; Hamaguchi, Kenji; Harrus, Ilana M.; Hatsukade, Isamu; Hayashi, Katsuhiro; Hayashi, Takayuki; Hayashida, Kiyoshi; Hiraga, Junko S.; Hornschemeier, Ann; Hoshino, Akio; Hughes, John P.; Ichinohe, Yuto; Iizuka, Ryo; Inoue, Hajime; Inoue, Yoshiyuki; Ishida, Manabu; Ishikawa, Kumi; Ishisaki, Yoshitaka; Iwai, Masachika; Kaastra, Jelle; Kallman, Tim; Kamae, Tsuneyoshi; Kataoka, Jun; Kato, Yuichi; Katsuda, Satoru; Kawai, Nobuyuki; Kelley, Richard L.; Kilbourne, Caroline A.; Kitaguchi, Takao; Kitamoto, Shunji; Kitayama, Tetsu; Kohmura, Takayoshi; Kokubun, Motohide; Koyama, Katsuji; Koyama, Shu; Kretschmar, Peter; Krimm, Hans A.; Kubota, Aya; Kunieda, Hideyo; Laurent, Philippe; Lee, Shiu-Hang; Leutenegger, Maurice A.; Limousin, Olivier; Loewenstein, Michael; Long, Knox S.; Lumb, David; Madejski, Greg; Maeda, Yoshitomo; Maier, Daniel; Makishima, Kazuo; Markevitch, Maxim; Matsumoto, Hironori; Matsushita, Kyoko; McCammon, Dan; McNamara, Brian R.; Mehdipour, Missagh; Miller, Eric D.; Miller, Jon M.; Mineshige, Shin; Mitsuda, Kazuhisa; Mitsuishi, Ikuyuki; Miyazawa, Takuya; Mizuno, Tsunefumi; Mori, Hideyuki; Mori, Koji; Mukai, Koji; Murakami, Hiroshi; Mushotzky, Richard F.; Nakagawa, Takao; Nakajima, Hiroshi; Nakamori, Takeshi; Nakashima, Shinya; Nakazawa, Kazuhiro; Nobukawa, Kumiko K.; Nobukawa, Masayoshi; Noda, Hirofumi; Odaka, Hirokazu; Ohashi, Takaya; Ohno, Masanori; Okajima, Takashi; Ota, Naomi; Ozaki, Masanobu; Paerels, Frits; Paltani, Stéphane; Petre, Robert; Pinto, Ciro; Porter, Frederick S.; Pottschmidt, Katja; Reynolds, Christopher S.; Safi-Harb, Samar; Saito, Shinya; Sakai, Kazuhiro; Sasaki, Toru; Sato, Goro; Sato, Kosuke; Sato, Rie; Sawada, Makoto; Schartel, Norbert; Serlemtsos, Peter J.; Seta, Hiromi; Shidatsu, Megumi; Simionescu, Aurora; Smith, Randall K.; Soong, Yang; Stawarz, Łukasz; Sugawara, Yasuharu; Sugita, Satoshi; Szymkowiak, Andrew; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shiníchiro; Takei, Yoh; Tamagawa, Toru; Tamura, Takayuki; Tanaka, Takaaki; Tanaka, Yasuo; Tanaka, Yasuyuki T.; Tashiro, Makoto S.; Tawara, Yuzuru; Terada, Yukikatsu; Terashima, Yuichi; Tombesi, Francesco; Tomida, Hiroshi; Tsuboi, Yohko; Tsujimoto, Masahiro; Tsunemi, Hiroshi; Tsuru, Takeshi Go; Uchida, Hiroyuki; Uchiyama, Hideki; Uchiyama, Yasunobu; Ueda, Shutaro; Ueda, Yoshihiro; Uno, Shiníchiro; Urry, C. Megan; Ursino, Eugenio; Watanabe, Shin; Werner, Norbert; Wilkins, Dan R.; Williams, Brian J.; Yamada, Shinya; Yamaguchi, Hiroya; Yamaoka, Kazutaka; Yamasaki, Noriko Y.; Yamauchi, Makoto; Yamauchi, Shigeo; Yaqoob, Tahir; Yatsu, Yoichi; Yonetoku, Daisuke; Zhuravleva, Irina; Zoghbi, Abderahmen
2018-03-01
The present paper explains the temperature structure of X-ray emitting plasma in the core of the Perseus cluster based on 1.8-20.0 keV data obtained with the Soft X-ray Spectrometer (SXS) on board the Hitomi Observatory. A series of four observations was carried out, with a total effective exposure time of 338 ks that covered a central region of ˜7΄ in diameter. SXS was operated with an energy resolution of ˜5 eV (full width at half maximum) at 5.9 keV. Not only fine structures of K-shell lines in He-like ions, but also transitions from higher principal quantum numbers were clearly resolved from Si through Fe. That enabled us to perform temperature diagnostics using the line ratios of Si, S, Ar, Ca, and Fe, and to provide the first direct measurement of the excitation temperature and ionization temperature in the Perseus cluster. The observed spectrum is roughly reproduced by a single-temperature thermal plasma model in collisional ionization equilibrium, but detailed line-ratio diagnostics reveal slight deviations from this approximation. In particular, the data exhibit an apparent trend of increasing ionization temperature with the atomic mass, as well as small differences between the ionization and excitation temperatures for Fe, the only element for which both temperatures could be measured. The best-fit two-temperature models suggest a combination of 3 and 5 keV gas, which is consistent with the idea that the observed small deviations from a single-temperature approximation are due to the effects of projecting the known radial temperature gradient in the cluster core along the line of sight. A comparison with the Chandra/ACIS and the XMM-Newton/RGS results, on the other hand, suggests that additional lower-temperature components are present in the intracluster medium (ICM), but not detectable with Hitomi/SXS giving its 1.8-20 keV energy band.
Tensile properties of V-Cr-Ti alloys after exposure in oxygen-containing environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Natesan, K.; Soppet, W.K.
A systematic study was conducted to evaluate the oxidation kinetics of V-4Cr-4Ti (44 alloy) and V-5Cr-5Ti alloys (55 alloy) and to establish the role of oxygen ingress on the tensile behavior of the alloys at room temperature and at 500 C. The oxidation rate of the 44 alloy is slightly higher than that of the 55 alloy. The oxidation process followed parabolic kinetics. Maximum engineering stress for 55 alloy increased with an increase in oxidation time at 500 C. The maximum stress values for 55 alloy were higher at room temperature than ta 500 C for the same oxidation treatment.more » Maximum engineering stresses for 44 alloy were substantially lower than those for 55 alloy in the same oxidation {approx}500 h exposure in air at 500 C; the same values were 4.8 and 6.1%, respectively, at 500 C after {approx}2060 h oxidation in air at 500 C. Maximum engineering stress for 44 alloy at room temperature was 421.6--440.6 MPa after {approx}250 h exposure at 500 C in environments with a pO{sub 2} range of 1 {times} 10{sup {minus}6} to 760 torr. The corresponding uniform and total elongation values were 11--14.4% and 14.5--21.7%, respectively. Measurements of crack depths in various specimens showed that depth is independent of pO{sub 2} in the preexposure environment and was of 70--95 {micro}m after 250--275 h exposure at 500 C.« less
SUMMARY OF PROGRESS ON THE STUDY OF BETA TREATMENT OF URANIUM, NOVEMBER 1, 1959-AUGUST 31, 1960
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, R.B.
Variables affecting the texture and grain size of uranium during beta treatment are summarized. The study of the effect of time and temperature in the beta phase on the growth index (G3) and grain size of the final alpha product is tentatively believed to show that higher beta temperatures for short times (up to about seven minutes) tend to promote slightly more negative growth indices and that higher beta temperatures give rise to somewhat finer grain sizes. Results of studies of both Jominy end-quenched bars and several full-sized rods and tubes quenched by total immersion showed that large thermal gradientsmore » promoted negative growth indices and produced grains somewhat elongated in the direction of the thermal gradient. The effects of endcooling in full-sized pieces quenched by total immersion in cold water showed that the axial growth index is negative up to distances from the end of about half the wall thickness of tubes and about half the radial dimension of rods. The grain refinement penetrates to a lesser distance from the ends. In the radial direction the growth index for these same pieces is largely negative to a distance below the outer diameter of about midwall in two tubes studied. In the case of one tube which was studied more completely, the growth index became negative again as the inner diameter was approached. A water-quenched rod was found to have a negative growth index down to a distance from the surface of about midradius. (auth)« less
Raines, Jenni; Snow, Rodney; Nichols, David; Aisbett, Brad
2015-06-01
(i) To evaluate firefighters' pre- and post-shift hydration status across two shifts of wildfire suppression work in hot weather conditions. (ii) To document firefighters' fluid intake during and between two shifts of wildfire suppression work. (iii) To compare firefighters' heart rate, activity, rating of perceived exertion (RPE), and core temperature across the two consecutive shifts of wildfire suppression work. Across two consecutive days, 12 salaried firefighters' hydration status was measured immediately pre- and post-shift. Hydration status was also measured 2h post-shift. RPE was also measured immediately post-shift on each day. Work activity, heart rate, and core temperature were logged continuously during each shift. Ten firefighters also manually recorded their food and fluid intake before, during, and after both fireground shifts. Firefighters were not euhydrated at all measurement points on Day one (292±1 mOsm l(-1)) and euhydrated across these same time points on Day two (289±0.5 mOsm l(-1)). Fluid consumption following firefighters' shift on Day one (1792±1134ml) trended (P = 0.08) higher than Day two (1108±1142ml). Daily total fluid intake was not different (P = 0.27), averaging 6443±1941ml across both days. Core temperature and the time spent ≥ 70%HRmax were both elevated on Day one (when firefighters were not euhydrated). Firefighters' work activity profile was not different between both days of work. There was no difference in firefighters' pre- to post-shift hydration within each shift, suggesting ad libitum drinking was at least sufficient to maintain pre-shift hydration status, even in hot conditions. Firefighters' relative hypohydration on Day one (despite a slightly lower ambient temperature) may have been associated with elevations in core temperature, more time in the higher heart rate zones, and 'post-shift' RPE. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Hubot, Nathan; Lucas, Cathy H.
2017-01-01
Polyps of two moon jellyfish species, Aurelia coerulea and A. relicta, from two Adriatic Sea coastal habitats were incubated under multiple combinations of temperature (14, 21°C), salinity (24, 37 ppt) and food regime (9.3, 18.6, 27.9 μg C ind−1 week−1) to comparatively assess how these factors may influence major asexual reproduction processes in the two species. Both species exhibited a shared pattern of budding mode (Directly Budded Polyps: DBP; Stolonal Budded Polyps: SBP), with DBP favoured under low food supply (9.3 μg C ind −1 week−1) and low temperature (14°C), and SBP dominant under high temperature (21°C). However, A. coerulea showed an overall higher productivity than A. relicta, in terms of budding and podocyst production rates. Further, A. coerulea exhibited a wide physiological plasticity across different temperatures and salinities as typical adaptation to ecological features of transitional coastal habitats. This may support the hypothesis that the invasion of A. coerulea across coastal habitats worldwide has been driven by shellfish aquaculture, with scyphistoma polyps and resting stages commonly found on bivalve shells. On the contrary, A. relicta appears to be strongly stenovalent, with cold, marine environmental optimal preferences (salinity 37 ppt, T ranging 14–19°C), corroborating the hypothesis of endemicity within the highly peculiar habitat of the Mljet lake. By exposing A. relicta polyps to slightly higher temperature (21°C), a previously unknown developmental mode was observed, by the sessile polyp regressing into a dispersive, temporarily unattached and tentacle-less, non-feeding stage. This may allow A. relicta polyps to escape climatic anomalies associated to warming of surface layers and deepening of isotherms, by moving into deeper, colder layers. Overall, investigations on species-specific eco-physiological and ontogenetic potentials of polyp stages may contribute to clarify the biogeographic distribution of jellyfish and the phylogenetic relationships among evolutionary related sister clades. PMID:28614409
Hubot, Nathan; Lucas, Cathy H; Piraino, Stefano
2017-01-01
Polyps of two moon jellyfish species, Aurelia coerulea and A. relicta, from two Adriatic Sea coastal habitats were incubated under multiple combinations of temperature (14, 21°C), salinity (24, 37 ppt) and food regime (9.3, 18.6, 27.9 μg C ind-1 week-1) to comparatively assess how these factors may influence major asexual reproduction processes in the two species. Both species exhibited a shared pattern of budding mode (Directly Budded Polyps: DBP; Stolonal Budded Polyps: SBP), with DBP favoured under low food supply (9.3 μg C ind -1 week-1) and low temperature (14°C), and SBP dominant under high temperature (21°C). However, A. coerulea showed an overall higher productivity than A. relicta, in terms of budding and podocyst production rates. Further, A. coerulea exhibited a wide physiological plasticity across different temperatures and salinities as typical adaptation to ecological features of transitional coastal habitats. This may support the hypothesis that the invasion of A. coerulea across coastal habitats worldwide has been driven by shellfish aquaculture, with scyphistoma polyps and resting stages commonly found on bivalve shells. On the contrary, A. relicta appears to be strongly stenovalent, with cold, marine environmental optimal preferences (salinity 37 ppt, T ranging 14-19°C), corroborating the hypothesis of endemicity within the highly peculiar habitat of the Mljet lake. By exposing A. relicta polyps to slightly higher temperature (21°C), a previously unknown developmental mode was observed, by the sessile polyp regressing into a dispersive, temporarily unattached and tentacle-less, non-feeding stage. This may allow A. relicta polyps to escape climatic anomalies associated to warming of surface layers and deepening of isotherms, by moving into deeper, colder layers. Overall, investigations on species-specific eco-physiological and ontogenetic potentials of polyp stages may contribute to clarify the biogeographic distribution of jellyfish and the phylogenetic relationships among evolutionary related sister clades.
Kinetic bottlenecks to chemical exchange rates for deep-sea animals - Part 1: Oxygen
NASA Astrophysics Data System (ADS)
Hofmann, A. F.; Peltzer, E. T.; Brewer, P. G.
2012-10-01
Ocean warming will reduce dissolved oxygen concentrations which can pose challenges to marine life. Oxygen limits are traditionally reported simply as a static concentration thresholds with no temperature, pressure or flow rate dependency. Here we treat the oceanic oxygen supply potential for heterotrophic consumption as a dynamic molecular exchange problem analogous to familiar gas exchange processes at the sea surface. A combination of the purely physico-chemical oceanic properties temperature, hydrostatic pressure, and oxygen concentration defines the ability of the ocean to supply oxygen to any given animal. This general oceanic oxygen supply potential is modulated by animal specific properties such as the diffusive boundary layer thickness to define and limit maximal oxygen supply rates. Here we combine all these properties into formal, mechanistic equations defining novel oceanic properties that subsume various relevant classical oceanographic parameters to better visualize, map, comprehend, and predict the impact of ocean deoxygenation on aerobic life. By explicitly including temperature and hydrostatic pressure into our quantities, various ocean regions ranging from the cold deep-sea to warm, coastal seas can be compared. We define purely physico-chemical quantities to describe the oceanic oxygen supply potential, but also quantities that contain organism-specific properties which in a most generalized way describe general concepts and dependencies. We apply these novel quantities to example oceanic profiles around the world and find that temperature and pressure dependencies of diffusion and partial pressure create zones of greatest physical constriction on oxygen supply typically at around 1000 m depth, which coincides with oxygen concentration minimum zones. In these zones, which comprise the bulk of the world ocean, ocean warming and deoxygenation have a clear negative effect for aerobic life. In some shallow and warm waters the enhanced diffusion and higher partial pressure due to higher temperatures might slightly overcompensate for oxygen concentration decreases due to decreases in solubility.
NASA Astrophysics Data System (ADS)
Saunders, R. W.; Möhler, O.; Schnaiter, M.; Benz, S.; Wagner, R.; Saathoff, H.; Connolly, P. J.; Burgess, R.; Gallagher, M.; Wills, R.; Murray, B. J.; Plane, J. M. C.
2009-11-01
Nanoparticles of iron oxide (crystalline and amorphous), silicon oxide and magnesium oxide were investigated for their propensity to nucleate ice over the temperature range 180-250 K, using the AIDA chamber in Karlsruhe, Germany. All samples were observed to initiate ice formation via the deposition mode at threshold ice super-saturations (RHi thresh) ranging from 105% to 140% for temperatures below 220 K. Approximately 10% of amorphous Fe2O3 particles (modal diameter = 30 nm) generated in situ from a photochemical aerosol reactor, led to ice nucleation at RHi thresh = 140% at an initial chamber temperature of 182 K. Quantitative analysis using a singular hypothesis treatment provided a fitted function [ns (190 K) = 10(3.33×sice)+8.16] for the variation in ice-active surface site density (ns: m-2) with ice saturation (sice) for Fe2O3 nanoparticles. This was implemented in an aerosol-cloud model to determine a predicted deposition (mass accommodation) coefficient for water vapour on ice of 0.1 at temperatures appropriate for the upper atmosphere. Classical nucleation theory was used to determine representative contact angles (θ) for the different particle compositions. For the in situ generated Fe2O3 particles, a slight inverse temperature dependence was observed with θ = 10.5° at 182 K, decreasing to 9.0° at 200 K (compared with 10.2° and 11.4°, respectively for the SiO2 and MgO particle samples at the higher temperature). These observations indicate that such refractory nanoparticles are relatively efficient materials for the nucleation of ice under the conditions studied in the chamber which correspond to cirrus cloud formation in the upper troposphere. The results also show that Fe2O3 particles do not act as ice nuclei under conditions pertinent for tropospheric mixed phase clouds, which necessarily form above ~233 K. At the lower temperatures (<150 K) where noctilucent clouds form during summer months in the high latitude mesosphere, higher contact angles would be expected, which may reduce the effectiveness of these particles as ice nuclei in this part of the atmosphere.
NASA Astrophysics Data System (ADS)
Saunders, R. W.; Möhler, O.; Schnaiter, M.; Benz, S.; Wagner, R.; Saathoff, H.; Connolly, P. J.; Burgess, R.; Murray, B. J.; Gallagher, M.; Wills, R.; Plane, J. M. C.
2010-02-01
Nanoparticles of iron oxide (crystalline and amorphous), silicon oxide and magnesium oxide were investigated for their propensity to nucleate ice over the temperature range 180-250 K, using the AIDA chamber in Karlsruhe, Germany. All samples were observed to initiate ice formation via the deposition mode at threshold ice super-saturations (RHithresh) ranging from 105% to 140% for temperatures below 220 K. Approximately 10% of amorphous Fe2O3 particles (modal diameter = 30 nm) generated in situ from a photochemical aerosol reactor, led to ice nucleation at RHithresh = 140% at an initial chamber temperature of 182 K. Quantitative analysis using a singular hypothesis treatment provided a fitted function [ns(190 K)=10(3.33×sice)+8.16] for the variation in ice-active surface site density (ns:m-2) with ice saturation (sice) for Fe2O3 nanoparticles. This was implemented in an aerosol-cloud model to determine a predicted deposition (mass accommodation) coefficient for water vapour on ice of 0.1 at temperatures appropriate for the upper atmosphere. Classical nucleation theory was used to determine representative contact angles (θ) for the different particle compositions. For the in situ generated Fe2O3 particles, a slight inverse temperature dependence was observed with θ = 10.5° at 182 K, decreasing to 9.0° at 200 K (compared with 10.2° and 11.4° respectively for the SiO2 and MgO particle samples at the higher temperature). These observations indicate that such refractory nanoparticles are relatively efficient materials for the nucleation of ice under the conditions studied in the chamber which correspond to cirrus cloud formation in the upper troposphere. The results also show that Fe2O3 particles do not act as ice nuclei under conditions pertinent for tropospheric mixed phase clouds, which necessarily form above ~233 K. At the lower temperatures (<150 K) where noctilucent clouds form during summer months in the high latitude mesosphere, higher contact angles would be expected, which may reduce the effectiveness of these particles as ice nuclei in this part of the atmosphere.
NASA Astrophysics Data System (ADS)
Parman, S. W.; Dann, J. C.; Grove, T. L.; de Wit, M. J.
1997-08-01
This paper provides new constraints on the crystallization conditions of the 3.49 Ga Barberton komatiites. The compositional evidence from igneous pyroxene in the olivine spinifex komatiite units indicates that the magma contained significant quantities of dissolved H2O. Estimates are made from comparisons of the compositions of pyroxene preserved in Barberton komatiites with pyroxene produced in laboratory experiments at 0.1 MPa (1 bar) under anhydrous conditions and at 100 and 200 MPa (1 and 2 kbar) under H2O-saturated conditions on an analog Barberton composition. Pyroxene thermobarometry on high-Ca clinopyroxene compositions from ten samples requires a range of minimum magmatic water contents of 6 wt.% or greater at the time of pyroxene crystallization and minimum emplacement pressures of 190 MPa (6 km depth). Since high-Ca pyroxene appears after 30% crystallization of olivine and spinel, the liquidus H2O contents could be 4 to 6 wt.% H2O. The liquidus temperature of the Barberton komatiite composition studied is between 1370 and 1400°C at 200 MPa under H2O-saturated conditions. When compared to the temperature-depth regime of modern melt generation environments, the komatiite mantle source temperatures are 200°C higher than the hydrous mantle melting temperatures inferred in modern subduction zone environments and 100°C higher than mean mantle melting temperatures estimated at mid-ocean ridges. When compared to previous estimates of komatiite liquidus temperatures, melting under hydrous conditions occurs at temperatures that are ˜ 250°C lower than previous estimates for anhydrous komatiite. Mantle melting by near-fractional, adiabatic decompression takes place in a melting column that spans ˜ 38 km depth range under hydrous conditions. This depth interval for melting is only slightly greater than that observed in modern mid-ocean ridge environments. In contrast, anhydrous fractional melting models of komatiite occur over a larger depth range (˜ 130 km) and place the base of the melting column into the transition zone.
Niu, Yan-Fang; Zhao, Wei-Lin; Gong, Yu-Ying
2015-04-01
The four miniature heat pipes filled with DI water and SiO2-water nanofluids containing different volume concentrations (0.2%, 0.6% and 1.0%) are experimentally measured on the condition of air and water cooling. The wall temperature and the thermal resistance are investigated for three inclination angles. At the same of inlet heat water temperature in the heat system, it is observed that the total wall temperatures on the evaporator section are almost retaining constant by air cooling and the wall temperatures at the front end of the evaporator section are slightly reduced by water cooling. However, the wall temperatures at the condenser section using SiO2-water nanofluids are all higher than that for DI water on the two cooling conditions. As compared with the heat pipe using DI water, the decreasing of the thermal resistance in heat pipe using nanofluids is about 43.10%-74.46% by air cooling and 51.43%-72.22% by water cooling. These indicate that the utilization of SiO2-water nanofluids as working fluids enhances the performance of the miniature heat pipe. When the four miniature heat pipes are cut to examine at the end of the experiment, a thin coating on the surface of the screen mesh of the heat pipe using SiO2-water nanofluids is found. This may be one reason for reinforcing the heat transfer performance of the miniature heat pipe.
Assessment of the effects of environmental radiation on wind chill equivalent temperatures.
Shitzer, Avraham
2008-09-01
Combinations of wind-driven convection and environmental radiation in cold weather, make the environment "feel" colder. The relative contributions of these mechanisms, which form the basis for estimating wind chill equivalent temperatures (WCETs), are studied over a wide range of environmental conditions. Distinction is made between direct solar radiation and environmental radiation. Solar radiation, which is not included in the analysis, has beneficial effects, as it counters and offsets some of the effects due to wind and low air temperatures. Environmental radiation effects, which are included, have detrimental effects in enhancing heat loss from the human body, thus affecting the overall thermal sensation due to the environment. The analysis is performed by a simple, steady-state analytical model of human-environment thermal interaction using upper and lower bounds of environmental radiation heat exchange. It is shown that, over a wide range of relevant air temperatures and reported wind speeds, convection heat losses dominate over environmental radiation. At low wind speeds radiation contributes up to about 23% of the overall heat loss from exposed skin areas. Its relative contributions reduce considerably as the time of the exposure prolongs and exposed skin temperatures drop. At still higher wind speeds, environmental radiation effects become much smaller contributing about 5% of the total heat loss. These values fall well within the uncertainties associated with the parameter values assumed in the computation of WCETs. It is also shown that environmental radiation effects may be accommodated by adjusting reported wind speeds slightly above their reported values.
Resistant Starch Contents of Native and Heat-Moisture Treated Jackfruit Seed Starch
Kittipongpatana, Ornanong S.
2015-01-01
Native jackfruit seed starch (JFS) contains 30% w/w type II resistant starch (RS2) and can potentially be developed as a new commercial source of RS for food and pharmaceutical application. Heat-moisture treatment (HMT) was explored as a mean to increase RS content of native JFS. The effect of the conditions was tested at varied moisture contents (MC), temperatures, and times. Moisture levels of 20–25%, together with temperatures 80–110°C, generally resulted in increases of RS amount. The highest amount of RS (52.2%) was achieved under treatment conditions of 25% MC and 80°C, for 16 h (JF-25-80-16). FT-IR peak ratio at 1047/1022 cm−1 suggested increases in ordered structure in several HMT-JFS samples with increased RS. SEM showed no significant change in the granule appearance, except at high moisture/temperature treatment. XRD revealed no significant change in peaks intensities, suggesting the crystallinity within the granule was mostly retained. DSC showed increases in T g and, in most cases, ΔT, as the MC was increased in the samples. Slight but significant decreases in ΔH were observed in samples with low RS, indicating that a combination of high moisture and temperature might cause partial gelatinization. HMT-JFS with higher RS exhibited less swelling, while the solubility remained mostly unchanged. PMID:25642454
Sjursen, Heidi; Holmstrup, Martin
2004-02-01
Adult survival of the springtail Protaphorura armata exposed to pyrene, a common soil pollutant, was investigated in combination with cold and drought stress, in three separate experiments. (1) A drought stress imposed subsequent to pyrene exposure in soil resulted in a significant decrease in springtail survival, when compared with controls exposed to pyrene and subsequently to 100% relative humidity. (2) A previous exposure to drought stress resulted in slightly improved survival of pyrene exposure at a concentration of 10mg/kg, but not at higher pyrene concentrations. When comparing tests 1 and 2, better survival was found in the latter test. When comparing the drought survival of springtails that had been previously exposed to pyrene with drought survival of springtails with no previous history of pyrene exposure, survival was significantly lower in the former. (3) Springtail survival of pyrene exposure was investigated at several temperatures. Springtails showed a significant improvement in survival at temperatures fluctuating between +1 degrees C and -1 degrees C in 12:12-h cycles, and at a constant -3 degrees C, at the highest pyrene concentration (300 mg/kg), while survival remained the same at all temperatures when springtails were exposed to lower pyrene concentrations. It is concluded that temperature and water availability are important factors when assessing the springtails' susceptibility to pyrene exposure.
Estimating Surface and Subsurface Ice Abundance on Mercury Using a Thermophysical Model
NASA Astrophysics Data System (ADS)
Rubanenko, L.; Mazarico, E.; Neumann, G. A.; Paige, D. A.
2016-12-01
The small obliquity of the Moon and Mercury causes some topographic features near their poles to cast permanent shadows for geologic time periods. In the past, these permanently shadowed regions (PSRs) were found to have low enough temperatures to trap surface and subsurface water ice. On Mercury, high normal albedo is correlated with maximum temperatures <100 m and high radar backscatter, possibly indicating the presence of surface ice. Areas with slightly higher maximum temperatures were measured to have a decreased albedo, postulated to contain of organic materials overlaying buried ice. We evaluate this theory by employing a thermophysical model that considers insolation, scattering, thermal emissions and subsurface conduction. We model the area fraction of surface and subsurface cold-traps on realistic topography at scales of ˜500 m , recorded by the Mercury Laster Altimeter (MLA) on board the MErcury Surface, Space ENviroment, GEochemistry and Ranging (MESSENGER) spacecraft. At smaller scales, below the instrument threshold, we consider a statistical description of the surface assuming a Gaussian slope distribution. Using the modeled cold-trap area fraction we calculate the expected surface albedo and compare it to MESSENGER's near-infrared surface reflectance data. Last, we apply our model to other airless small-obliquity planetary bodies such as the Moon and Ceres in order to explain other correlations between the maximum temperature and normal albedo.
Rodrussamee, Nadchanok; Lertwattanasakul, Noppon; Hirata, Katsushi; Suprayogi; Limtong, Savitree; Kosaka, Tomoyuki; Yamada, Mamoru
2011-05-01
Ethanol fermentation ability of the thermotolerant yeast Kluyveromyces marxianus, which is able to utilize various sugars including glucose, mannose, galactose, xylose, and arabinose, was examined under shaking and static conditions at high temperatures. The yeast was found to produce ethanol from all of these sugars except for arabinose under a shaking condition but only from hexose sugars under a static condition. Growth and sugar utilization rate under a static condition were slower than those under a shaking condition, but maximum ethanol yield was slightly higher. Even at 40°C, a level of ethanol production similar to that at 30°C was observed except for galactose under a static condition. Glucose repression on utilization of other sugars was observed, and it was more evident at elevated temperatures. Consistent results were obtained by the addition of 2-deoxyglucose. The glucose effect was further examined at a transcription level, and it was found that KmGAL1 for galactokinase and KmXYL1 for xylose reductase for galactose and xylose/arabinose utilization, respectively, were repressed by glucose at low and high temperatures, but KmHXK2 for hexokinase was not repressed. We discuss the possible mechanism of glucose repression and the potential for utilization of K. marxianus in high-temperature fermentation with mixed sugars containing glucose.