Sample records for slip system interactions

  1. Weak hydrogen bonding interactions influence slip system activity and compaction behavior of pharmaceutical powders.

    PubMed

    Khomane, Kailas S; Bansal, Arvind K

    2013-12-01

    Markedly different mechanical behavior of powders of polymorphs, cocrystals, hydrate/anhydrate pairs, or structurally similar molecules has been attributed to the presence of active slip planes system in their crystal structures. Presence of slip planes in the crystal lattice allows easier slip under the applied compaction pressure. This allows greater plastic deformation of the powder and results into increased interparticulate bonding area and greater tensile strength of the compacts. Thus, based on this crystallographic feature, tableting performance of the active pharmaceutical ingredients can be predicted. Recently, we encountered a case where larger numbers of CH···O type interactions across the proposed slip planes hinder the slip and thus resist plastic deformation of the powder under the applied compaction pressure. Hence, attention must be given to these types of interactions while identifying slip planes by visualization method. Generally, slip planes are visualized as flat layers often strengthened by a two-dimensional hydrogen-bonding network within the layers or planes. No hydrogen bonding should exist between these layers to consider them as slip planes. Moreover, one should also check the presence of CH···O type interactions across these planes. Mercury software provides an option for visualization of these weak hydrogen bonding interactions. Hence, caution must be exercised while selecting appropriate solid form based on this crystallographic feature. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  2. Fault geometric complexity and how it may cause temporal slip-rate variation within an interacting fault system

    NASA Astrophysics Data System (ADS)

    Zielke, Olaf; Arrowsmith, Ramon

    2010-05-01

    Slip-rates along individual faults may differ as a function of measurement time scale. Short-term slip-rates may be higher than the long term rate and vice versa. For example, vertical slip-rates along the Wasatch Fault, Utah are 1.7+/-0.5 mm/yr since 6ka, <0.6 mm/yr since 130ka, and 0.5-0.7 mm/yr since 10Ma (Friedrich et al., 2003). Following conventional earthquake recurrence models like the characteristic earthquake model, this observation implies that the driving strain accumulation rates may have changed over the respective time scales as well. While potential explanations for such slip-rate variations may be found for example in the reorganization of plate tectonic motion or mantle flow dynamics, causing changes in the crustal velocity field over long spatial wavelengths, no single geophysical explanation exists. Temporal changes in earthquake rate (i.e., event clustering) due to elastic interactions within a complex fault system may present an alternative explanation that requires neither variations in strain accumulation rate or nor changes in fault constitutive behavior for frictional sliding. In the presented study, we explore this scenario and investigate how fault geometric complexity, fault segmentation and fault (segment) interaction affect the seismic behavior and slip-rate along individual faults while keeping tectonic stressing-rate and frictional behavior constant in time. For that, we used FIMozFric--a physics-based numerical earthquake simulator, based on Okada's (1992) formulations for internal displacements and strains due to shear and tensile faults in a half-space. Faults are divided into a large number of equal-sized fault patches which communicate via elastic interaction, allowing implementation of geometrically complex, non-planar faults. Each patch has assigned a static and dynamic friction coefficient. The difference between those values is a function of depth--corresponding to the temperature-dependence of velocity-weakening that is observed in laboratory friction experiments and expressed in an [a-b] term in Rate-State-Friction (RSF) theory. Patches in the seismic zone are incrementally loaded during the interseismic phase. An earthquake initiates if shear stress along at least one (seismic) patch exceeds its static frictional strength and may grow in size due to elastic interaction with other fault patches (static stress transfer). Aside from investigating slip-rate variations due to the elastic interactions within a fault system with this tool, we want to show how such modeling results can be very useful in exploring the physics underlying the patterns that the paleoseismology sees and that those methods (simulation and observations) can be merged, with both making important contributions. Using FIMozFric, we generated synthetic seismic records for a large number of fault geometries and structural scenarios to investigate along-fault slip accumulation patterns and the variability of slip at a point. Our simulations show that fault geometric complexity and the accompanied fault interactions and multi-fault ruptures may cause temporal deviations from the average fault slip-rate, in other words phases of earthquake clustering or relative quiescence. Slip-rates along faults within an interacting fault system may change even when the loading function (stressing rate) remains constant and the magnitude of slip rate change is suggested to be proportional to the magnitude of fault interaction. Thus, spatially isolated and structurally mature faults are expected to experience less slip-rate changes than strongly interacting and less mature faults. The magnitude of slip-rate change may serve as a proxy for the magnitude of fault interaction and vice versa.

  3. Coordinated Control of Slip Ratio for Wheeled Mobile Robots Climbing Loose Sloped Terrain

    PubMed Central

    Li, Zhengcai; Wang, Yang

    2014-01-01

    A challenging problem faced by wheeled mobile robots (WMRs) such as planetary rovers traversing loose sloped terrain is the inevitable longitudinal slip suffered by the wheels, which often leads to their deviation from the predetermined trajectory, reduced drive efficiency, and possible failures. This study investigates this problem using terramechanics analysis of the wheel-soil interaction. First, a slope-based wheel-soil interaction terramechanics model is built, and an online slip coordinated algorithm is designed based on the goal of optimal drive efficiency. An equation of state is established using the coordinated slip as the desired input and the actual slip as a state variable. To improve the robustness and adaptability of the control system, an adaptive neural network is designed. Analytical results and those of a simulation using Vortex demonstrate the significantly improved mobile performance of the WMR using the proposed control system. PMID:25276849

  4. Coordinated control of slip ratio for wheeled mobile robots climbing loose sloped terrain.

    PubMed

    Li, Zhengcai; Wang, Yang

    2014-01-01

    A challenging problem faced by wheeled mobile robots (WMRs) such as planetary rovers traversing loose sloped terrain is the inevitable longitudinal slip suffered by the wheels, which often leads to their deviation from the predetermined trajectory, reduced drive efficiency, and possible failures. This study investigates this problem using terramechanics analysis of the wheel-soil interaction. First, a slope-based wheel-soil interaction terramechanics model is built, and an online slip coordinated algorithm is designed based on the goal of optimal drive efficiency. An equation of state is established using the coordinated slip as the desired input and the actual slip as a state variable. To improve the robustness and adaptability of the control system, an adaptive neural network is designed. Analytical results and those of a simulation using Vortex demonstrate the significantly improved mobile performance of the WMR using the proposed control system.

  5. In-situ analysis of the slip activity during tensile deformation of cast and extruded Mg-10Gd-3Y-0.5Zr (wt.%) at 250 °C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, H.; The State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240; Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824

    The slip activity and slip interaction in tensile deformation of peak-aged cast and extruded Mg-10Gd-3Y-0.5Zr (wt.%) at 250 °C was investigated using in-situ scanning electron microscopy. Basal slip was the most likely system to be activated during the tensile deformation, while prismatic < a > and pyramidal < c + a > slip also contributed to the deformation. No twinning was observed. The number of non-basal slip systems accounted for ~ 36% of the total active slip systems for the cast alloy, while non-basal slip accounted for 12–17% of the total deformation observations in the extruded alloy. Multiple-slip was observedmore » within grains, and the basal/prismatic pairing type dominated the multiple-slip observations. Slip transfer occurred across grain boundaries and most of the slip transfer observations showed basal-basal type. The involved slip systems of slip transfer pairs were always associated with the same < a > direction. The slip transfer occurred more easily at low angle boundaries (LABs) and boundaries with misorientations greater than 75°. - Highlights: • Slip deformation of a Mg-RE alloy at 250 °C was investigated using in-situ SEM. • The extruded-T5 GW103 alloy did not exhibit a high anisotropic behavior. • Multiple-slip was observed within grains, and basal/prismatic type dominated. • Slip transfer occurred and most of the observations showed basal-basal type. • Slip transfer occurred more easily at LABs and boundaries with misorientations > 75°.« less

  6. A Novel Tactile Sensor with Electromagnetic Induction and Its Application on Stick-Slip Interaction Detection

    PubMed Central

    Liu, Yanjie; Han, Haijun; Liu, Tao; Yi, Jingang; Li, Qingguo; Inoue, Yoshio

    2016-01-01

    Real-time detection of contact states, such as stick-slip interaction between a robot and an object on its end effector, is crucial for the robot to grasp and manipulate the object steadily. This paper presents a novel tactile sensor based on electromagnetic induction and its application on stick-slip interaction. An equivalent cantilever-beam model of the tactile sensor was built and capable of constructing the relationship between the sensor output and the friction applied on the sensor. With the tactile sensor, a new method to detect stick-slip interaction on the contact surface between the object and the sensor is proposed based on the characteristics of friction change. Furthermore, a prototype was developed for a typical application, stable wafer transferring on a wafer transfer robot, by considering the spatial magnetic field distribution and the sensor size according to the requirements of wafer transfer. The experimental results validate the sensing mechanism of the tactile sensor and verify its feasibility of detecting stick-slip on the contact surface between the wafer and the sensor. The sensing mechanism also provides a new approach to detect the contact state on the soft-rigid surface in other robot-environment interaction systems. PMID:27023545

  7. Numerical simulations of stick-slip in fluid saturated granular fault gouge

    NASA Astrophysics Data System (ADS)

    Dorostkar, O.; Johnson, P. A.; Guyer, R. A.; Marone, C.; Carmeliet, J.

    2016-12-01

    Fluids play a key role in determining the frictional strength and stability of faults. For example, fluid flow and fluid-solid interaction in fault gouge can trigger seismicity, alter earthquake nucleation properties and cause fault zone weakening. We present results of 3D numerical simulations of stick-slip behavior in dry and saturated granular fault gouge. In the saturated case, the gouge is fully saturated and drainage is possible through the boundaries. We model the solid phase (particles) with the discrete element method (DEM) while the fluid is described by the Navier-Stokes equations and solved by computational fluid dynamics (CFD). In our model, granular gouge is sheared between two rough plates under boundary conditions of constant normal stress and constant shearing velocity at the layer boundaries. A phase-space study including shearing velocity and normal stress is taken to identify the conditions for stick-slip regime. We analyzed slip events for dry and saturated cases to determine shear stress drop, released kinetic energy and compaction. The presence of fluid tends to cause larger slip events. We observe a close correlation between the kinetic energy of the particles and of the fluid. In short, during slip, fluid flow induced by the failure and compaction of the granular system, mobilizes the particles, which increases their kinetic energy, leading to greater slip. We further observe that the solid-fluid interaction forces are equal or larger than the solid-solid interaction forces during the slip event, indicating the important influence of the fluid on the granular system. Our simulations can explain the behaviors observed in experimental studies and we are working to apply our results to tectonic faults.

  8. Delicate balance of magmatic-tectonic interaction at Kilauea Volcano, Hawai`i, revealed from slow slip events: Chapter 13

    USGS Publications Warehouse

    Montgomery-Brown, Emily; Poland, Michael; Miklius, Asta; Carey, Rebecca; Cayol, Valérie; Poland, Michael P.; Weis, Dominique

    2015-01-01

    Eleven slow slip events (SSEs) have occurred on the southern flank of Kilauea Volcano, Hawai’i, since 1997 through 2014. We analyze this series of SSEs in the context of Kilauea’s magma system to assess whether or not there are interactions between these tectonic events and eruptive/intrusive activity. Over time, SSEs have increased in magnitude and become more regular, with interevent times averaging 2.44 ± 0.15 years since 2003. Two notable SSEs that impacted both the flank and the magmatic system occurred in 2007, when an intrusion and small eruption on the East Rift Zone were part of a feedback with a SSE and 2012, when slow slip induced 2.5 cm of East Rift Zone opening (but without any change in eruptive activity). A summit inflation event and surge in East Rift Zone lava effusion was associated with a SSE in 2005, but the inferred triggering relation is not clear due to a poorly constrained slip onset time. Our results demonstrate that slow slip along Kilauea’s décollement has the potential to trigger and be triggered by activity within the volcano’s magma system. Since only three of the SSEs have been associated with changes in magmatic activity within the summit and rift zones, both the décollement and magma system must be close to failure for triggering to occur.

  9. Risk assessment of flange climb derailment of a rail vehicle

    NASA Astrophysics Data System (ADS)

    Vlakhova, A. V.

    2015-01-01

    We study the wheel flange climb onto the railhead, which is one of the most dangerous regimes of motion and can lead to derailment. The tangential components of the wheel-rail interaction forces are described by the creep model with small slips taken into account. We pass to the limit of infinite rigidity of the interacting bodies (zero slip velocities). It is shown that, in the actual service conditions of rail vehicle motion, neglecting the wheel-rail slip is not justified; namely, the limit model is determined by the primary Dirac constraints, i.e., finite relations between coordinates and momenta arising owing to the system Lagrangian degeneration. The obtained nonclassical model allows one to study the efficiency of some railway motion safety criteria and analytically estimate derailment conditions, which depend on the flange shape, the track curvature radius, the height of the vehicle center of mass, the wheel-rail interaction forces, the coefficients of friction of the interacting surfaces, and the external perturbation forces and moments.

  10. Stress concentrations at structural discontinuities in active fault zones in the western United States: Implications for permeability and fluid flow in geothermal fields

    USGS Publications Warehouse

    Siler, Drew; Hinz, Nicholas H.; Faulds, James E.

    2018-01-01

    Slip can induce concentration of stresses at discontinuities along fault systems. These structural discontinuities, i.e., fault terminations, fault step-overs, intersections, bends, and other fault interaction areas, are known to host fluid flow in ore deposition systems, oil and gas reservoirs, and geothermal systems. We modeled stress transfer associated with slip on faults with Holocene-to-historic slip histories at the Salt Wells and Bradys geothermal systems in western Nevada, United States. Results show discrete locations of stress perturbation within discontinuities along these fault systems. Well field data, surface geothermal manifestations, and subsurface temperature data, each a proxy for modern fluid circulation in the fields, indicate that geothermal fluid flow is focused in these same areas where stresses are most highly perturbed. These results suggest that submeter- to meter-scale slip on these fault systems generates stress perturbations that are sufficiently large to promote slip on an array of secondary structures spanning the footprint of the modern geothermal activity. Slip on these secondary faults and fractures generates permeability through kinematic deformation and allows for transmission of fluids. Still, mineralization is expected to seal permeability along faults and fractures over time scales that are generally shorter than either earthquake recurrence intervals or the estimated life span of geothermal fields. This suggests that though stress perturbations resulting from fault slip are broadly important for defining the location and spatial extent of enhanced permeability at structural discontinuities, continual generation and maintenance of flow conduits throughout these areas are probably dependent on the deformation mechanism(s) affecting individual structures.

  11. Slow slip events and the 2016 Te Araroa Mw 7.1 earthquake interaction: Northern Hikurangi subduction, New Zealand

    NASA Astrophysics Data System (ADS)

    Koulali, A.; McClusky, S.; Wallace, L.; Allgeyer, S.; Tregoning, P.; D'Anastasio, E.; Benavente, R.

    2017-08-01

    Following a sequence of three Slow Slip Events (SSEs) on the northern Hikurangi Margin, between June 2015 and August 2016, a Mw 7.1 earthquake struck 30 km offshore of the East Cape region in the North Island of New Zealand on the 2 September 2016 (NZ local time). The earthquake was also followed by a transient deformation event (SSE or afterslip) northeast of the North Island, closer to the earthquake source area. We use data from New Zealand's continuous Global Positioning System networks to invert for the SSE slip distribution and evolution on the Hikurangi subduction interface. Our slip inversion results show an increasing amplitude of the slow slip toward the Te Araroa earthquake foreshock and main shock area, suggesting a possible triggering of the Mw 7.1 earthquake by the later stage of the slow slip sequence. We also show that the transient deformation following the Te Araroa earthquake ruptured a portion of the Hikurangi Trench northeast of the North Island, farther north than any previously observed Hikurangi margin SSEs. Our slip inversion and the coulomb stress calculation suggest that this transient may have been induced as a response to the increase in the static coulomb stress change downdip of the rupture plane on the megathrust. These observations show the importance of considering the interaction between slow slip events, seismic, and aseismic events, not only on the same megathrust interface but also on faults within the surrounding crust.

  12. Strike-slip fault propagation and linkage via work optimization with application to the San Jacinto fault, California

    NASA Astrophysics Data System (ADS)

    Madden, E. H.; McBeck, J.; Cooke, M. L.

    2013-12-01

    Over multiple earthquake cycles, strike-slip faults link to form through-going structures, as demonstrated by the continuous nature of the mature San Andreas fault system in California relative to the younger and more segmented San Jacinto fault system nearby. Despite its immaturity, the San Jacinto system accommodates between one third and one half of the slip along the boundary between the North American and Pacific plates. It therefore poses a significant seismic threat to southern California. Better understanding of how the San Jacinto system has evolved over geologic time and of current interactions between faults within the system is critical to assessing this seismic hazard accurately. Numerical models are well suited to simulating kilometer-scale processes, but models of fault system development are challenged by the multiple physical mechanisms involved. For example, laboratory experiments on brittle materials show that faults propagate and eventually join (hard-linkage) by both opening-mode and shear failure. In addition, faults interact prior to linkage through stress transfer (soft-linkage). The new algorithm GROW (GRowth by Optimization of Work) accounts for this complex array of behaviors by taking a global approach to fault propagation while adhering to the principals of linear elastic fracture mechanics. This makes GROW a powerful tool for studying fault interactions and fault system development over geologic time. In GROW, faults evolve to minimize the work (or energy) expended during deformation, thereby maximizing the mechanical efficiency of the entire system. Furthermore, the incorporation of both static and dynamic friction allows GROW models to capture fault slip and fault propagation in single earthquakes as well as over consecutive earthquake cycles. GROW models with idealized faults reveal that the initial fault spacing and the applied stress orientation control fault linkage propensity and linkage patterns. These models allow the gains in efficiency provided by both hard-linkage and soft-linkage to be quantified and compared. Specialized models of interactions over the past 1 Ma between the Clark and Coyote Creek faults within the San Jacinto system reveal increasing mechanical efficiency as these fault structures change over time. Alongside this increasing efficiency is an increasing likelihood for single, larger earthquakes that rupture multiple fault segments. These models reinforce the sensitivity of mechanical efficiency to both fault structure and the regional tectonic stress orientation controlled by plate motions and provide insight into how slip may have been partitioned between the San Andreas and San Jacinto systems over the past 1 Ma.

  13. Relationship between the frequency magnitude distribution and the visibility graph in the synthetic seismicity generated by a simple stick-slip system with asperities.

    PubMed

    Telesca, Luciano; Lovallo, Michele; Ramirez-Rojas, Alejandro; Flores-Marquez, Leticia

    2014-01-01

    By using the method of the visibility graph (VG) the synthetic seismicity generated by a simple stick-slip system with asperities is analysed. The stick-slip system mimics the interaction between tectonic plates, whose asperities are given by sandpapers of different granularity degrees. The VG properties of the seismic sequences have been put in relationship with the typical seismological parameter, the b-value of the Gutenberg-Richter law. Between the b-value of the synthetic seismicity and the slope of the least square line fitting the k-M plot (relationship between the magnitude M of each synthetic event and its connectivity degree k) a close linear relationship is found, also verified by real seismicity.

  14. Pyramidal dislocation induced strain relaxation in hexagonal structured InGaN/AlGaN/GaN multilayer

    NASA Astrophysics Data System (ADS)

    Yan, P. F.; Du, K.; Sui, M. L.

    2012-10-01

    Due to the special dislocation slip systems in hexagonal lattice, dislocation dominated deformations in hexagonal structured multilayers are significantly different from that in cubic structured systems. In this work, we have studied the strain relaxation mechanism in hexagonal structured InGaN/AlGaN/GaN multilayers with transmission electron microscopy. Due to lattice mismatch, the strain relaxation was found initiated with the formation of pyramidal dislocations. Such dislocations locally lie at only one preferential slip direction in the hexagonal lattice. This preferential slip causes a shear stress along the basal planes and consequently leads to dissociation of pyramidal dislocations and operation of the basal plane slip system. The compressive InGaN layers and "weak" AlGaN/InGaN interfaces stimulate the dissociation of pyramidal dislocations at the interfaces. These results enhance the understanding of interactions between dislocations and layer interfaces and shed new lights on deformation mechanism in hexagonal-lattice multilayers.

  15. Twin nucleation and migration in FeCr single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patriarca, L.; Abuzaid, Wael; Sehitoglu, Huseyin, E-mail: huseyin@illinois.edu

    2013-01-15

    Tension and compression experiments were conducted on body-centered cubic Fe -47.8 at pct. Cr single crystals. The critical resolved shear stress (CRSS) magnitudes for slip nucleation, twin nucleation and twin migration were established. We show that the nucleation of slip occurs at a CRSS of about 88 MPa, while twinning nucleates at a CRSS of about 191 MPa with an associated load drop. Following twin nucleation, twin migration proceeds at a CRSS that is lower than the initiation stress ( Almost-Equal-To 114-153 MPa). The experimental results of the nucleation stresses indicate that the Schmid law holds to a first approximationmore » for the slip and twin nucleation cases, but to a lesser extent for twin migration particularly when considerable slip strains preceded twinning. The CRSSs were determined experimentally using digital image correlation (DIC) in conjunction with electron back scattering diffraction (EBSD). The DIC measurements enabled pinpointing the precise stress on the stress-strain curves where twins or slip were activated. The crystal orientations were obtained using EBSD and used to determine the activated twin and slip systems through trace analysis. - Highlights: Black-Right-Pointing-Pointer Digital image correlation allows to capture slip/twin initiation for bcc FeCr. Black-Right-Pointing-Pointer Crystal orientations from EBSD allow slip/twin system indexing. Black-Right-Pointing-Pointer Nucleation of slip always precedes twinning. Black-Right-Pointing-Pointer Twin growth is sustained with a lower stress than required for nucleation. Black-Right-Pointing-Pointer Twin-slip interactions provide high hardening at the onset of plasticity.« less

  16. 3D Constraints On Fault Architecture and Strain Distribution of the Newport-Inglewood Rose Canyon and San Onofre Trend Fault Systems

    NASA Astrophysics Data System (ADS)

    Holmes, J. J.; Driscoll, N. W.; Kent, G. M.

    2017-12-01

    The Inner California Borderlands (ICB) is situated off the coast of southern California and northern Baja. The structural and geomorphic characteristics of the area record a middle Oligocene transition from subduction to microplate capture along the California coast. Marine stratigraphic evidence shows large-scale extension and rotation overprinted by modern strike-slip deformation. Geodetic and geologic observations indicate that approximately 6-8 mm/yr of Pacific-North American relative plate motion is accommodated by offshore strike-slip faulting in the ICB. The farthest inshore fault system, the Newport-Inglewood Rose Canyon (NIRC) Fault is a dextral strike-slip system that is primarily offshore for approximately 120 km from San Diego to the San Joaquin Hills near Newport Beach, California. Based on trenching and well data, the NIRC Fault Holocene slip rate is 1.5-2.0 mm/yr to the south and 0.5-1.0 mm/yr along its northern extent. An earthquake rupturing the entire length of the system could produce an Mw 7.0 earthquake or larger. West of the main segments of the NIRC Fault is the San Onofre Trend (SOT) along the continental slope. Previous work concluded that this is part of a strike-slip system that eventually merges with the NIRC Fault. Others have interpreted this system as deformation associated with the Oceanside Blind Thrust Fault purported to underlie most of the region. In late 2013, we acquired the first high-resolution 3D Parallel Cable (P-Cable) seismic surveys of the NIRC and SOT faults as part of the Southern California Regional Fault Mapping project. Analysis of stratigraphy and 3D mapping of this new data has yielded a new kinematic fault model of the area that provides new insight on deformation caused by interactions in both compressional and extensional regimes. For the first time, we can reconstruct fault interaction and investigate how strain is distributed through time along a typical strike-slip margin using 3D constraints on fault architecture.

  17. Nearly frictionless faulting by unclamping in long-term interaction models

    USGS Publications Warehouse

    Parsons, T.

    2002-01-01

    In defiance of direct rock-friction observations, some transform faults appear to slide with little resistance. In this paper finite element models are used to show how strain energy is minimized by interacting faults that can cause long-term reduction in fault-normal stresses (unclamping). A model fault contained within a sheared elastic medium concentrates stress at its end points with increasing slip. If accommodating structures free up the ends, then the fault responds by rotating, lengthening, and unclamping. This concept is illustrated by a comparison between simple strike-slip faulting and a mid-ocean-ridge model with the same total transform length; calculations show that the more complex system unclapms the transforms and operates at lower energy. In another example, the overlapping San Andreas fault system in the San Francisco Bay region is modeled; this system is complicated by junctions and stepovers. A finite element model indicates that the normal stress along parts of the faults could be reduced to hydrostatic levels after ???60-100 k.y. of system-wide slip. If this process occurs in the earth, then parts of major transform fault zones could appear nearly frictionless.

  18. Spontaneous Aseismic and Seismic Slip Transients on Evolving Faults Simulated in a Continuum-Mechanics Framework

    NASA Astrophysics Data System (ADS)

    Herrendoerfer, R.; Gerya, T.; van Dinther, Y.

    2016-12-01

    The convergent plate motion in subduction zones is accommodated by different slip modes: potentially dangerous seismic slip and imperceptible, but instrumentally detectable slow slip transients or steady slip. Despite an increasing number of observations and insights from laboratory experiments, it remains enigmatic which local on- and off-fault conditions favour slip modes of different source characteristics (i.e., slip velocity, duration, seismic moment). Therefore, we are working towards a numerical model that is able to simulate different slip modes in a consistent way with the long-term evolution of the fault system. We extended our 2D, continuum mechanics-based, visco-elasto-plastic seismo-thermo-mechanical (STM) model, which simulated cycles of earthquake-like ruptures, albeit only at plate tectonic slip rates (van Dinther et al, JGR, 2013). To model a wider slip spectrum including seismic slip rates, we, besides improving the general numerical approach, implemented an invariant reformulation of the conventional rate-and state dependent friction (RSF) and an adaptive time-stepping scheme (Lapusta and Rice, JGR, 2001). In a simple setup with predominantly elastic plates that are juxtaposed along a predefined fault of certain width, we vary the characteristic slip distance, the mean normal stress and the size of the rate-weakening zone. We show that the resulting stability transitions from decaying oscillations, periodic slow slip, complex periodic to seismic slip agree with those of conventional RSF seismic cycle simulations (e.g. Liu and Rice, JGR, 2007). Additionally, we will present results of the investigation concerning the effect of the fault width and geometry on the generation of different slip modes. Ultimately, instead of predefining a fault, we simulate the spatio-temporal evolution of a complex fault system that is consistent with the plate motions and rheology. For simplicity, we parametrize the fault development through linear slip-weakening of cohesion and apply RSF friction only in cohesionless material. We report preliminary results of the interaction between slip modes and the fault growth during different fault evolution stages.

  19. New Integrated Testing System for the Validation of Vehicle-Snow Interaction Models

    DTIC Science & Technology

    2010-08-06

    are individual wheel speeds, accelerator pedal position, vehicle speed, yaw rate, lateral acceleration, steering wheel angle and brake ...forces and moments at each wheel center, vehicle body slip angle , speed, acceleration, yaw rate, roll, and pitch. The profilometer has a 3-D scanning...Stability Program. The test vehicle provides measurements that include three forces and moments at each wheel center, vehicle body slip angle , speed

  20. State of science: occupational slips, trips and falls on the same level.

    PubMed

    Chang, Wen-Ruey; Leclercq, Sylvie; Lockhart, Thurmon E; Haslam, Roger

    2016-07-01

    Occupational slips, trips and falls on the same level (STFL) result in substantial injuries worldwide. This paper summarises the state of science regarding STFL, outlining relevant aspects of epidemiology, biomechanics, psychophysics, tribology, organisational influences and injury prevention. This review reaffirms that STFL remain a major cause of workplace injury and STFL prevention is a complex problem, requiring multi-disciplinary, multi-faceted approaches. Despite progress in recent decades in understanding the mechanisms involved in STFL, especially slipping, research leading to evidence-based prevention practices remains insufficient, given the problem scale. It is concluded that there is a pressing need to develop better fall prevention strategies using systems approaches conceptualising and addressing the factors involved in STFL, with considerations of the full range of factors and their interactions. There is also an urgent need for field trials of various fall prevention strategies to assess the effectiveness of different intervention components and their interactions. Practitioner Summary: Work-related slipping, tripping and falls on the same level are a major source of occupational injury. The causes are broadly understood, although more attention is needed from a systems perspective. Research has shown preventative action to be effective, but further studies are required to understand which aspects are most beneficial.

  1. State of science: occupational slips, trips and falls on the same level *

    PubMed Central

    Chang, Wen-Ruey; Leclercq, Sylvie; Lockhart, Thurmon E.; Haslam, Roger

    2016-01-01

    Abstract Occupational slips, trips and falls on the same level (STFL) result in substantial injuries worldwide. This paper summarises the state of science regarding STFL, outlining relevant aspects of epidemiology, biomechanics, psychophysics, tribology, organisational influences and injury prevention. This review reaffirms that STFL remain a major cause of workplace injury and STFL prevention is a complex problem, requiring multi-disciplinary, multi-faceted approaches. Despite progress in recent decades in understanding the mechanisms involved in STFL, especially slipping, research leading to evidence-based prevention practices remains insufficient, given the problem scale. It is concluded that there is a pressing need to develop better fall prevention strategies using systems approaches conceptualising and addressing the factors involved in STFL, with considerations of the full range of factors and their interactions. There is also an urgent need for field trials of various fall prevention strategies to assess the effectiveness of different intervention components and their interactions. Practitioner Summary: Work-related slipping, tripping and falls on the same level are a major source of occupational injury. The causes are broadly understood, although more attention is needed from a systems perspective. Research has shown preventative action to be effective, but further studies are required to understand which aspects are most beneficial. PMID:26903401

  2. Late quaternary slip-rate variations along the Warm Springs Valley fault system, northern Walker Lane, California-Nevada border

    USGS Publications Warehouse

    Gold, Ryan; dePolo, Craig; Briggs, Richard W.; Crone, Anthony

    2013-01-01

    The extent to which faults exhibit temporally varying slip rates has important consequences for models of fault mechanics and probabilistic seismic hazard. Here, we explore the temporal behavior of the dextral‐slip Warm Springs Valley fault system, which is part of a network of closely spaced (10–20 km) faults in the northern Walker Lane (California–Nevada border). We develop a late Quaternary slip record for the fault using Quaternary mapping and high‐resolution topographic data from airborne Light Distance and Ranging (LiDAR). The faulted Fort Sage alluvial fan (40.06° N, 119.99° W) is dextrally displaced 98+42/-43 m, and we estimate the age of the alluvial fan to be 41.4+10.0/-4.8 to 55.7±9.2  ka, based on a terrestrial cosmogenic 10Be depth profile and 36Cl analyses on basalt boulders, respectively. The displacement and age constraints for the fan yield a slip rate of 1.8 +0.8/-0.8 mm/yr to 2.4 +1.2/-1.1 mm/yr (2σ) along the northern Warm Springs Valley fault system for the past 41.4–55.7 ka. In contrast to this longer‐term slip rate, shorelines associated with the Sehoo highstand of Lake Lahontan (~15.8  ka) adjacent to the Fort Sage fan are dextrally faulted at most 3 m, which limits a maximum post‐15.8 ka slip rate to 0.2  mm/yr. These relations indicate that the post‐Lahontan slip rate on the fault is only about one‐tenth the longer‐term (41–56 ka) average slip rate. This apparent slip‐rate variation may be related to co‐dependent interaction with the nearby Honey Lake fault system, which shows evidence of an accelerated period of mid‐Holocene earthquakes.

  3. The role of water in slip casting

    NASA Technical Reports Server (NTRS)

    Mccauley, R. A.; Phelps, G. W.

    1984-01-01

    Slips and casting are considered in terms of physical and colloidal chemistry. Casting slips are polydisperse suspensions of lyophobic particles in water, whose degree of coagulation is controlled by interaction of flocculating and deflocculating agents. Slip casting rate and viscosity are functions of temperature. Slip rheology and response to deflocculating agents varies significantly as the kinds and amounts of colloid modifiers change. Water is considered as a raw material. Various concepts of water/clay interactions and structures are discussed. Casting is a de-watering operation in which water moves from slip to cast to mold in response to a potential energy termed moisture stress. Drying is an evaporative process from a free water surface.

  4. Slip detection with accelerometer and tactile sensors in a robotic hand model

    NASA Astrophysics Data System (ADS)

    Al-Shanoon, Abdulrahman Abdulkareem S.; Anom Ahmad, Siti; Hassan, Mohd. Khair b.

    2015-11-01

    Grasp planning is an interesting issue in studies that dedicated efforts to investigate tactile sensors. This study investigated the physical force interaction between a tactile pressure sensor and a particular object. It also characterized object slipping during gripping operations and presented secure regripping of an object. Acceleration force was analyzed using an accelerometer sensor to establish a completely autonomous robotic hand model. An automatic feedback control system was applied to regrip the particular object when it commences to slip. Empirical findings were presented in consideration of the detection and subsequent control of the slippage situation. These findings revealed the correlation between the distance of the object slipping and the required force to regrip the object safely. This approach is similar to Hooke's law formula.

  5. Velocity-dependent quantum phase slips in 1D atomic superfluids.

    PubMed

    Tanzi, Luca; Scaffidi Abbate, Simona; Cataldini, Federica; Gori, Lorenzo; Lucioni, Eleonora; Inguscio, Massimo; Modugno, Giovanni; D'Errico, Chiara

    2016-05-18

    Quantum phase slips are the primary excitations in one-dimensional superfluids and superconductors at low temperatures but their existence in ultracold quantum gases has not been demonstrated yet. We now study experimentally the nucleation rate of phase slips in one-dimensional superfluids realized with ultracold quantum gases, flowing along a periodic potential. We observe a crossover between a regime of temperature-dependent dissipation at small velocity and interaction and a second regime of velocity-dependent dissipation at larger velocity and interaction. This behavior is consistent with the predicted crossover from thermally-assisted quantum phase slips to purely quantum phase slips.

  6. Visualization and quantification of deformation processes controlling the mechanical response of alloys in aggressive environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Ian M.

    The overall objective of this program was to develop the technique of electron tomography for studies of defects and to couple it with real time dynamic experiments such that four-dimensional (time and three spatial dimensions) characterization of dislocation interactions with defects is feasible and apply it to discovery of the fundamental unit processes of dislocation-defect interactions in metallic systems. Strategies to overcome the restrictions normally associated with electron tomography and to make it practical within the constraints of conducting a dynamic experiment in the transmission electron microscope were developed. These methods were used to determine the mechanism controlling the transfermore » of slip across grain boundaries in FCC and HCP metals, dislocation precipitate interactions in Al alloys, and dislocation-dislocation interactions in HCP Ti. In addition, preliminary investigations of slip transfer across cube-on-cube and incoherent twin interfaces in a multi-layered system, thermal stability of grains in nanongrained Ni and Fe, and on corrosion of Fe films were conducted.« less

  7. The mid-Miocene structural conversion within the NE Tibetan Plateau from new proof of the interaction between two conflicting fault systems in the western Qaidam Basin

    NASA Astrophysics Data System (ADS)

    Zhao, H.; Wu, L.; Xiao, A.

    2016-12-01

    We present a detailed structural analysis on the fault geometry and Cenozoic development in the Dongping area, northwestern Qaidam Basin, based on the precise 3-D seismic interpretation, remote sensing images and seismic attribute analysis. Two conflicting fault systems distributed in different orientations ( EW-striking and NNW-striking) with opposing senses of shear are recognized and discussed, and the interaction between them provides new insights to the intracontinental deformation of the Qaidam Basin within the NE Tibetan Plateau. The EW-striking fault system constitutes the south part of the Altyn left-slip positive flower structure. Faulting on the EW-striking faults dominated the northwestern Qaidam since 40 Ma in respond to the inception of the Altyn Tagh fault system as a ductile shear zone, tilting the south slope of the Altyn Tagh. Whereas the NNW-striking fault system became the dominant structures since the mid-Miocene ( 15 Ma), induced by the large scale strike-slip of the Altyn Tagh fault which leads to the NE-SW directed compression of the Qaidam Basin. Thus it evidently implies a structural conversion taking place within the NE Tibetan Plateau since the mid-Miocece ( 15 Ma). Interestingly, the preexisting faults possibly restrained the development of the later period faults, while the latter tended to track and link to the former fault traces. Taken the large scale sinistral striking-slip East Kunlun fault system into account, the late Cenozoic intracontinental deformation in the Qaidam Basin showing the dextral transpressional attribute is suggested to be the consequence of the combined effect of its two border sinistral strike-slip faults, which furthermore favors a continuous and lateral-extrusion mechanism of the growth of the NE Tibetan Plateau.

  8. Effects of Strike-Slip Fault Segmentation on Earthquake Energy and Seismic Hazard

    NASA Astrophysics Data System (ADS)

    Madden, E. H.; Cooke, M. L.; Savage, H. M.; McBeck, J.

    2014-12-01

    Many major strike-slip faults are segmented along strike, including those along plate boundaries in California and Turkey. Failure of distinct fault segments at depth may be the source of multiple pulses of seismic radiation observed for single earthquakes. However, how and when segmentation affects fault behavior and energy release is the basis of many outstanding questions related to the physics of faulting and seismic hazard. These include the probability for a single earthquake to rupture multiple fault segments and the effects of segmentation on earthquake magnitude, radiated seismic energy, and ground motions. Using numerical models, we quantify components of the earthquake energy budget, including the tectonic work acting externally on the system, the energy of internal rock strain, the energy required to overcome fault strength and initiate slip, the energy required to overcome frictional resistance during slip, and the radiated seismic energy. We compare the energy budgets of systems of two en echelon fault segments with various spacing that include both releasing and restraining steps. First, we allow the fault segments to fail simultaneously and capture the effects of segmentation geometry on the earthquake energy budget and on the efficiency with which applied displacement is accommodated. Assuming that higher efficiency correlates with higher probability for a single, larger earthquake, this approach has utility for assessing the seismic hazard of segmented faults. Second, we nucleate slip along a weak portion of one fault segment and let the quasi-static rupture propagate across the system. Allowing fractures to form near faults in these models shows that damage develops within releasing steps and promotes slip along the second fault, while damage develops outside of restraining steps and can prohibit slip along the second fault. Work is consumed in both the propagation of and frictional slip along these new fractures, impacting the energy available for further slip and for subsequent earthquakes. This suite of models reveals that efficiency may be a useful tool for determining the relative seismic hazard of different segmented fault systems, while accounting for coseismic damage zone production is critical in assessing fault interactions and the associated energy budgets of specific systems.

  9. Rheological structure of the lithosphere in plate boundary strike-slip fault zones

    NASA Astrophysics Data System (ADS)

    Chatzaras, Vasileios; Tikoff, Basil; Kruckenberg, Seth C.; Newman, Julie; Titus, Sarah J.; Withers, Anthony C.; Drury, Martyn R.

    2016-04-01

    How well constrained is the rheological structure of the lithosphere in plate boundary strike-slip fault systems? Further, how do lithospheric layers, with rheologically distinct behaviors, interact within the strike-slip fault zones? To address these questions, we present rheological observations from the mantle sections of two lithospheric-scale, strike-slip fault zones. Xenoliths from ˜40 km depth (970-1100 ° C) beneath the San Andreas fault system (SAF) provide critical constraints on the mechanical stratification of the lithosphere in this continental transform fault. Samples from the Bogota Peninsula shear zone (BPSZ, New Caledonia), which is an exhumed oceanic transform fault, provide insights on lateral variations in mantle strength and viscosity across the fault zone at a depth corresponding to deformation temperatures of ˜900 ° C. Olivine recrystallized grain size piezometry suggests that the shear stress in the SAF upper mantle is 5-9 MPa and in the BPSZ is 4-10 MPa. Thus, the mantle strength in both fault zones is comparable to the crustal strength (˜10 MPa) of seismogenic strike-slip faults in the SAF system. Across the BPSZ, shear stress increases from 4 MPa in the surrounding rocks to 10 MPa in the mylonites, which comprise the core of the shear zone. Further, the BPSZ is characterized by at least one order of magnitude difference in the viscosity between the mylonites (1018 Paṡs) and the surrounding rocks (1019 Paṡs). Mantle viscosity in both the BPSZ mylonites and the SAF (7.0ṡ1018-3.1ṡ1020 Paṡs) is relatively low. To explain our observations from these two strike-slip fault zones, we propose the "lithospheric feedback" model in which the upper crust and lithospheric mantle act together as an integrated system. Mantle flow controls displacement and the upper crust controls the stress magnitude in the system. Our stress data combined with data that are now available for the middle and lower crustal sections of other transcurrent fault systems support the prediction for constant shear strength (˜10 MPa) throughout the lithosphere; the stress magnitude is controlled by the shear strength of the upper crustal faults. Fault rupture in the upper crust induces displacement rate loading of the upper mantle, which in turn, causes strain localization in the mantle shear zone beneath the strike-slip fault. Such forced localization leads to higher stresses and strain rates in the shear zone compared to the surrounding rocks. Low mantle viscosity within the shear zone is critical for facilitating mantle flow, which induces widespread crustal deformation and displacement loading. The lithospheric feedback model suggests that strike-slip fault zones are not mechanically stratified in terms of shear stress, and that it is the time-dependent interaction of the different lithospheric layers - rather than their relative strengths - that governs the rheological behavior of the plate boundary, strike-slip fault zones.

  10. Slip, twinning, and fracture at a grain boundary in the L1/sub 2/ ordered structure: A. sigma. = 9 tilt boundary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, M.H.; King, A.H.

    The role of interaction between slip dislocations and a ..sigma.. = 9 tilt boundary in localized microplastic deformation, cleavage, or intergranular fracture in the L1/sub 2/ ordered structure has been analyzed by using the anisotropic elasticity theory of dislocations and fracture. Screw superpartials cross slip easily at the boundary onto the (11-bar1) and the (001) planes at low and high temperatures, respectively. Transmission of primary slip dislocations onto the conjugate slip system occurs with a certain degree of difficulty, which is eased by localized disordering. When the transmission is impeded, cleavage fracture on the (1-bar11) plane is predicted to occur,more » not intergranular fracture, unless a symmetric double pileup occurs simultaneously. Absorption (or emission) of superpartials occurs only when the boundary region is disordered. Slip initiation from pre-existing sources near the boundary can occur under the local stress concentration. Implications of the present result on the inherent brittleness of grain boundaries in Ni/sub 3/ Al and its improvement by boron segregation are discussed.« less

  11. Automated Interactive Storeroom Inventory System.

    ERIC Educational Resources Information Center

    Sapp, Albert L.; Hess, Larry G.

    1989-01-01

    The inventory system designed for six storerooms in three buildings at the University of Illinois at Urbana-Champaign's School of Chemical Sciences replaced an issue-slip and transactions record system with barcode technology. Data collection error reductions have been significant, making it easier to determine stock levels and plan purchases.…

  12. Modeling of Stick-Slip Behavior in Sheared Granular Fault Gouge Using the Combined Finite-Discrete Element Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Ke; Euser, Bryan J.; Rougier, Esteban

    Sheared granular layers undergoing stick-slip behavior are broadly employed to study the physics and dynamics of earthquakes. In this paper, a two-dimensional implementation of the combined finite-discrete element method (FDEM), which merges the finite element method (FEM) and the discrete element method (DEM), is used to explicitly simulate a sheared granular fault system including both gouge and plate, and to investigate the influence of different normal loads on seismic moment, macroscopic friction coefficient, kinetic energy, gouge layer thickness, and recurrence time between slips. In the FDEM model, the deformation of plates and particles is simulated using the FEM formulation whilemore » particle-particle and particle-plate interactions are modeled using DEM-derived techniques. The simulated seismic moment distributions are generally consistent with those obtained from the laboratory experiments. In addition, the simulation results demonstrate that with increasing normal load, (i) the kinetic energy of the granular fault system increases; (ii) the gouge layer thickness shows a decreasing trend; and (iii) the macroscopic friction coefficient does not experience much change. Analyses of the slip events reveal that, as the normal load increases, more slip events with large kinetic energy release and longer recurrence time occur, and the magnitude of gouge layer thickness decrease also tends to be larger; while the macroscopic friction coefficient drop decreases. Finally, the simulations not only reveal the influence of normal loads on the dynamics of sheared granular fault gouge, but also demonstrate the capabilities of FDEM for studying stick-slip dynamic behavior of granular fault systems.« less

  13. Modeling of Stick-Slip Behavior in Sheared Granular Fault Gouge Using the Combined Finite-Discrete Element Method

    DOE PAGES

    Gao, Ke; Euser, Bryan J.; Rougier, Esteban; ...

    2018-06-20

    Sheared granular layers undergoing stick-slip behavior are broadly employed to study the physics and dynamics of earthquakes. In this paper, a two-dimensional implementation of the combined finite-discrete element method (FDEM), which merges the finite element method (FEM) and the discrete element method (DEM), is used to explicitly simulate a sheared granular fault system including both gouge and plate, and to investigate the influence of different normal loads on seismic moment, macroscopic friction coefficient, kinetic energy, gouge layer thickness, and recurrence time between slips. In the FDEM model, the deformation of plates and particles is simulated using the FEM formulation whilemore » particle-particle and particle-plate interactions are modeled using DEM-derived techniques. The simulated seismic moment distributions are generally consistent with those obtained from the laboratory experiments. In addition, the simulation results demonstrate that with increasing normal load, (i) the kinetic energy of the granular fault system increases; (ii) the gouge layer thickness shows a decreasing trend; and (iii) the macroscopic friction coefficient does not experience much change. Analyses of the slip events reveal that, as the normal load increases, more slip events with large kinetic energy release and longer recurrence time occur, and the magnitude of gouge layer thickness decrease also tends to be larger; while the macroscopic friction coefficient drop decreases. Finally, the simulations not only reveal the influence of normal loads on the dynamics of sheared granular fault gouge, but also demonstrate the capabilities of FDEM for studying stick-slip dynamic behavior of granular fault systems.« less

  14. Kinematic assumptions and their consequences on the structure of field equations in continuum dislocation theory

    NASA Astrophysics Data System (ADS)

    Silbermann, C. B.; Ihlemann, J.

    2016-03-01

    Continuum Dislocation Theory (CDT) relates gradients of plastic deformation in crystals with the presence of geometrically necessary dislocations. Therefore, the dislocation tensor is introduced as an additional thermodynamic state variable which reflects tensorial properties of dislocation ensembles. Moreover, the CDT captures both the strain energy from the macroscopic deformation of the crystal and the elastic energy of the dislocation network, as well as the dissipation of energy due to dislocation motion. The present contribution deals with the geometrically linear CDT. More precise, the focus is on the role of dislocation kinematics for single and multi-slip and its consequences on the field equations. Thereby, the number of active slip systems plays a crucial role since it restricts the degrees of freedom of plastic deformation. Special attention is put on the definition of proper, well-defined invariants of the dislocation tensor in order to avoid any spurious dependence of the resulting field equations on the coordinate system. It is shown how a slip system based approach can be in accordance with the tensor nature of the involved quantities. At first, only dislocation glide in one active slip system of the crystal is allowed. Then, the special case of two orthogonal (interacting) slip systems is considered and the governing field equations are presented. In addition, the structure and symmetry of the backstress tensor is investigated from the viewpoint of thermodynamical consistency. The results will again be used in order to facilitate the set of field equations and to prepare for a robust numerical implementation.

  15. Hydrogen-induced strain localisation in oxygen-free copper in the initial stage of plastic deformation

    NASA Astrophysics Data System (ADS)

    Yagodzinskyy, Yuriy; Malitckii, Evgenii; Tuomisto, Filip; Hänninen, Hannu

    2018-03-01

    Single crystals of oxygen-free copper oriented to easy glide of dislocations were tensile tested in order to study the hydrogen effects on the strain localisation in the form of slip bands appearing on the polished specimen surface under tensile straining. It was found that hydrogen increases the plastic flow stress in Stage I of deformation. The dislocation slip localisation in the form of slip bands was observed and analysed using an online optical monitoring system and atomic force microscopy. The fine structure of the slip bands observed with AFM shows that they consist of a number of dislocation slip offsets which spacing in the presence of hydrogen is markedly reduced as compared to that in the hydrogen-free specimens. The tensile tests and AFM observations were accompanied with positron annihilation lifetime measurements showing that straining of pure copper in the presence of hydrogen results in free volume generation in the form of vacancy complexes. Hydrogen-enhanced free-volume generation is discussed in terms of hydrogen interactions with edge dislocation dipoles forming in double cross-slip of screw dislocations in the initial stage of plastic deformation of pure copper.

  16. Pilot interaction with automated airborne decision making systems

    NASA Technical Reports Server (NTRS)

    Hammer, John M.; Wan, C. Yoon; Vasandani, Vijay

    1987-01-01

    The current research is focused on detection of human error and protection from its consequences. A program for monitoring pilot error by comparing pilot actions to a script was described. It dealt primarily with routine errors (slips) that occurred during checklist activity. The model to which operator actions were compared was a script. Current research is an extension along these two dimensions. The ORS fault detection aid uses a sophisticated device model rather than a script. The newer initiative, the model-based and constraint-based warning system, uses an even more sophisticated device model and is to prevent all types of error, not just slips or bad decision.

  17. Particle-wall tribology of slippery hydrogel particle suspensions.

    PubMed

    Shewan, Heather M; Stokes, Jason R; Cloitre, Michel

    2017-03-08

    Slip is an important phenomenon that occurs during the flow of yield stress fluids like soft materials and pastes. Densely packed suspensions of hydrogel microparticles are used to show that slip is governed by the tribological interactions occurring between the samples and shearing surfaces. Both attractive/repulsive interactions between the dispersed particles and surface, as well as the viscoelasticity of the suspension, are found to play key roles in slip occurring within rheometric flows. We specifically discover that for two completely different sets of microgels, the sliding stress at which slip occurs scales with both the modulus of the particles and the bulk suspension modulus. This suggests that hysteresis losses within the viscoelastic particles contribute to friction forces and thus slip at the particle-surface tribo-contact. It is also found that slip during large amplitude oscillatory shear and steady shear flows share the same generic features.

  18. The stress shadow effect: a mechanical analysis of the evenly-spaced parallel strike-slip faults in the San Andreas fault system

    NASA Astrophysics Data System (ADS)

    Zuza, A. V.; Yin, A.; Lin, J. C.

    2015-12-01

    Parallel evenly-spaced strike-slip faults are prominent in the southern San Andreas fault system, as well as other settings along plate boundaries (e.g., the Alpine fault) and within continental interiors (e.g., the North Anatolian, central Asian, and northern Tibetan faults). In southern California, the parallel San Jacinto, Elsinore, Rose Canyon, and San Clemente faults to the west of the San Andreas are regularly spaced at ~40 km. In the Eastern California Shear Zone, east of the San Andreas, faults are spaced at ~15 km. These characteristic spacings provide unique mechanical constraints on how the faults interact. Despite the common occurrence of parallel strike-slip faults, the fundamental questions of how and why these fault systems form remain unanswered. We address this issue by using the stress shadow concept of Lachenbruch (1961)—developed to explain extensional joints by using the stress-free condition on the crack surface—to present a mechanical analysis of the formation of parallel strike-slip faults that relates fault spacing and brittle-crust thickness to fault strength, crustal strength, and the crustal stress state. We discuss three independent models: (1) a fracture mechanics model, (2) an empirical stress-rise function model embedded in a plastic medium, and (3) an elastic-plate model. The assumptions and predictions of these models are quantitatively tested using scaled analogue sandbox experiments that show that strike-slip fault spacing is linearly related to the brittle-crust thickness. We derive constraints on the mechanical properties of the southern San Andreas strike-slip faults and fault-bounded crust (e.g., local fault strength and crustal/regional stress) given the observed fault spacing and brittle-crust thickness, which is obtained by defining the base of the seismogenic zone with high-resolution earthquake data. Our models allow direct comparison of the parallel faults in the southern San Andreas system with other similar strike-slip fault systems, both on Earth and throughout the solar system (e.g., the Tiger Stripe Fractures on Enceladus).

  19. Continental deformation accommodated by non-rigid passive bookshelf faulting: An example from the Cenozoic tectonic development of northern Tibet

    NASA Astrophysics Data System (ADS)

    Zuza, Andrew V.; Yin, An

    2016-05-01

    Collision-induced continental deformation commonly involves complex interactions between strike-slip faulting and off-fault deformation, yet this relationship has rarely been quantified. In northern Tibet, Cenozoic deformation is expressed by the development of the > 1000-km-long east-striking left-slip Kunlun, Qinling, and Haiyuan faults. Each have a maximum slip in the central fault segment exceeding 10s to ~ 100 km but a much smaller slip magnitude (~< 10% of the maximum slip) at their terminations. The along-strike variation of fault offsets and pervasive off-fault deformation create a strain pattern that departs from the expectations of the classic plate-like rigid-body motion and flow-like distributed deformation end-member models for continental tectonics. Here we propose a non-rigid bookshelf-fault model for the Cenozoic tectonic development of northern Tibet. Our model, quantitatively relating discrete left-slip faulting to distributed off-fault deformation during regional clockwise rotation, explains several puzzling features, including the: (1) clockwise rotation of east-striking left-slip faults against the northeast-striking left-slip Altyn Tagh fault along the northwestern margin of the Tibetan Plateau, (2) alternating fault-parallel extension and shortening in the off-fault regions, and (3) eastward-tapering map-view geometries of the Qimen Tagh, Qaidam, and Qilian Shan thrust belts that link with the three major left-slip faults in northern Tibet. We refer to this specific non-rigid bookshelf-fault system as a passive bookshelf-fault system because the rotating bookshelf panels are detached from the rigid bounding domains. As a consequence, the wallrock of the strike-slip faults deforms to accommodate both the clockwise rotation of the left-slip faults and off-fault strain that arises at the fault ends. An important implication of our model is that the style and magnitude of Cenozoic deformation in northern Tibet vary considerably in the east-west direction. Thus, any single north-south cross section and its kinematic reconstruction through the region do not properly quantify the complex deformational processes of plateau formation.

  20. Atomistic simulations of dislocation pileup: Grain boundaries interaction

    DOE PAGES

    Wang, Jian

    2015-05-27

    Here, using molecular dynamics (MD) simulations, we studied the dislocation pileup–grain boundary (GB) interactions. Two Σ11 asymmetrical tilt grain boundaries in Al are studied to explore the influence of orientation relationship and interface structure on dislocation activities at grain boundaries. To mimic the reality of a dislocation pileup in a coarse-grained polycrystalline, we optimized the dislocation population in MD simulations and developed a predict-correct method to create a dislocation pileup in MD simulations. MD simulations explored several kinetic processes of dislocations–GB reactions: grain boundary sliding, grain boundary migration, slip transmission, dislocation reflection, reconstruction of grain boundary, and the correlation ofmore » these kinetic processes with the available slip systems across the GB and atomic structures of the GB.« less

  1. History of fault slip and interaction with deltaic depostion from the middle Miocene to the Present - Barataria Fault, coastal Louisiana

    NASA Astrophysics Data System (ADS)

    McLindon, C.

    2017-12-01

    The Barataria fault is a major component of the Terrebonne Trough, a structural system of faults and salt domes underlying coastal Louisiana. High-quality 3-D seismic reflection data, industry well logs, micro-paleontological data and published literature on regional depositional patterns are integrated to provide an evolutionary history of the Barataria fault. The fault is a segment within a series of south-dipping normal faults that define the northern boundary of the Terrebonne Trough. The fault segment tips at depth interact with the Lake Washington and Bay de Chene salt domes, which appear to have limited its along-strike length. This study shows that the Barataria fault has exhibited continuous but episodic slip since at least the middle Miocene and through the present. Periods of maximum rates of fault slip are related to periods of maximum rates of sediment accumulation associated with Miocene deltaic deposition. The expansion of interval thickness between biostratigraphic markers in the hanging wall section of the fault relative to the footwall section (expansion index) indicate that rates of subsidence on the footwall during active fault slip were substantially greater than on the footwall. Pliocene-Pleistocene stratigraphic intervals exhibiting lower expansion indexes indicate that the fault remained active, but with a pattern of slower slip rate in which stratigraphic thickening was more limited to the area immediately adjacent to the fault. The Barataria fault defines the modern-day width of Barataria Bay, and also has a surface expression in the coastal marsh indicating that recent episodic slip has been associated with patterns of Holocene deltaic deposition.

  2. Large-scale displacement following the 2016 Kaikōura earthquake

    NASA Astrophysics Data System (ADS)

    Wang, T.; Peng, D.; Barbot, S.; Wei, S.; Shi, X.

    2017-12-01

    The 2016 Mw 7.9 Kaikōura earthquake occurred near the southern termination of the Hikurangi subduction system, where a transition from subduction to strike-slip motion dominates the pre-seismic strain accumulation. Dense spatial coverage of the GPS measurements and large amount of Interferometric Synthetic Aperture Radar (InSAR) images provide valuable constraints, from the near field to the far field, to study how the slip is distributed among the subduction interface and the overlying fault system before, during and after the earthquake. We extract time-series deformation from the New Zealand continuous GPS network, and SAR images acquired from Japanese ALOS-2 and European Sentinel-1A/B satellites to image the surface deformation related to the 2016 Kaikōura earthquake. Both GPS and InSAR data, which cover the entire New Zealand region, show that the co-seismic and post-seismic deformations are distributed in an extraordinary large area, as far as to the north tip of the North Island. Based on a coseismic slip model derived from seismic and geodetic observations, we calculate the stress perturbation incurred by the earthquake. We explore a range of possibilities of friction laws and rheology via a linear combination of strain rate in finite volumes and slip velocity on ruptured faults. We obtain the slip distribution that can best explain our geodetic measurements using outlier-insensitive hierarchical Bayesian model, to better understand different mechanisms behind the localized shallow after slip and distributed deformation. Our results indicate that complex interactions between the subduction interface and the overlying fault system play an important role in causing such large-scale deformation during and after the earthquake event.

  3. The SCEC 3D Community Fault Model (CFM-v5): An updated and expanded fault set of oblique crustal deformation and complex fault interaction for southern California

    NASA Astrophysics Data System (ADS)

    Nicholson, C.; Plesch, A.; Sorlien, C. C.; Shaw, J. H.; Hauksson, E.

    2014-12-01

    Southern California represents an ideal natural laboratory to investigate oblique deformation in 3D owing to its comprehensive datasets, complex tectonic history, evolving components of oblique slip, and continued crustal rotations about horizontal and vertical axes. As the SCEC Community Fault Model (CFM) aims to accurately reflect this 3D deformation, we present the results of an extensive update to the model by using primarily detailed fault trace, seismic reflection, relocated hypocenter and focal mechanism nodal plane data to generate improved, more realistic digital 3D fault surfaces. The results document a wide variety of oblique strain accommodation, including various aspects of strain partitioning and fault-related folding, sets of both high-angle and low-angle faults that mutually interact, significant non-planar, multi-stranded faults with variable dip along strike and with depth, and active mid-crustal detachments. In places, closely-spaced fault strands or fault systems can remain surprisingly subparallel to seismogenic depths, while in other areas, major strike-slip to oblique-slip faults can merge, such as the S-dipping Arroyo Parida-Mission Ridge and Santa Ynez faults with the N-dipping North Channel-Pitas Point-Red Mountain fault system, or diverge with depth. Examples of the latter include the steep-to-west-dipping Laguna Salada-Indiviso faults with the steep-to-east-dipping Sierra Cucapah faults, and the steep southern San Andreas fault with the adjacent NE-dipping Mecca Hills-Hidden Springs fault system. In addition, overprinting by steep predominantly strike-slip faulting can segment which parts of intersecting inherited low-angle faults are reactivated, or result in mutual cross-cutting relationships. The updated CFM 3D fault surfaces thus help characterize a more complex pattern of fault interactions at depth between various fault sets and linked fault systems, and a more complex fault geometry than typically inferred or expected from projecting near-surface data down-dip, or modeled from surface strain and potential field data alone.

  4. Shoe-Floor Interactions in Human Walking With Slips: Modeling and Experiments.

    PubMed

    Trkov, Mitja; Yi, Jingang; Liu, Tao; Li, Kang

    2018-03-01

    Shoe-floor interactions play a crucial role in determining the possibility of potential slip and fall during human walking. Biomechanical and tribological parameters influence the friction characteristics between the shoe sole and the floor and the existing work mainly focus on experimental studies. In this paper, we present modeling, analysis, and experiments to understand slip and force distributions between the shoe sole and floor surface during human walking. We present results for both soft and hard sole material. The computational approaches for slip and friction force distributions are presented using a spring-beam networks model. The model predictions match the experimentally observed sole deformations with large soft sole deformation at the beginning and the end stages of the stance, which indicates the increased risk for slip. The experiments confirm that both the previously reported required coefficient of friction (RCOF) and the deformation measurements in this study can be used to predict slip occurrence. Moreover, the deformation and force distribution results reported in this study provide further understanding and knowledge of slip initiation and termination under various biomechanical conditions.

  5. Reproducing the scaling laws for Slow and Fast ruptures

    NASA Astrophysics Data System (ADS)

    Romanet, Pierre; Bhat, Harsha; Madariaga, Raúl

    2017-04-01

    Modelling long term behaviour of large, natural fault systems, that are geometrically complex, is a challenging problem. This is why most of the research so far has concentrated on modelling the long term response of single planar fault system. To overcome this limitation, we appeal to a novel algorithm called the Fast Multipole Method which was developed in the context of modelling gravitational N-body problems. This method allows us to decrease the computational complexity of the calculation from O(N2) to O(N log N), N being the number of discretised elements on the fault. We then adapted this method to model the long term quasi-dynamic response of two faults, with step-over like geometry, that are governed by rate and state friction laws. We assume the faults have spatially uniform rate weakening friction. The results show that when stress interaction between faults is accounted, a complex spectrum of slip (including slow-slip events, dynamic ruptures and partial ruptures) emerges naturally. The simulated slow-slip and dynamic events follow the scaling law inferred by Ide et al. 2007 i. e. M ∝ T for slow-slip events and M ∝ T2 (in 2D) for dynamic events.

  6. Effect of induced cohesion on stick-slip dynamics in weakly saturated, sheared granular fault gouge

    DOE PAGES

    Dorostkar, Omid; Guyer, Robert A.; Johnson, Paul Allan; ...

    2018-02-28

    We use three-dimensional discrete element calculations to study stick-slip dynamics in a weakly wet granular layer designed to simulate fault gouge. The granular gouge is constituted by 8000 spherical particles with a poly-disperse size distribution. At very low liquid content, liquids impose cohesive and viscous forces on particles. Our simulations show that by increasing the liquid content, friction increases and granular layer shows higher recurrence time between slip events. We also observe that slip events exhibit larger friction drop and layer compaction in wet system compared to dry. We demonstrate that a small volume of liquid induces cohesive forces betweenmore » wet particles that are responsible for an increase in coordination number leading to a more stable arrangement of particles. This stabilization is evidenced with two orders of magnitude lower particle kinetic energy in wet system during stick phase. Similar to previous experimental studies, we observe enhanced frictional strength for wet granular layers. In experiments, the physicochemical processes are believed to be the main reason for such behavior, we show however, that at low confining stresses the hydromechanical effects of induced cohesion are sufficient for observed behavior. Our simulations illuminate the role of particle interactions and demonstrate the conditions under which induced cohesion plays a significant role in fault zone processes, including slip initiation, weakening, and failure.« less

  7. Effect of induced cohesion on stick-slip dynamics in weakly saturated, sheared granular fault gouge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorostkar, Omid; Guyer, Robert A.; Johnson, Paul Allan

    We use three-dimensional discrete element calculations to study stick-slip dynamics in a weakly wet granular layer designed to simulate fault gouge. The granular gouge is constituted by 8000 spherical particles with a poly-disperse size distribution. At very low liquid content, liquids impose cohesive and viscous forces on particles. Our simulations show that by increasing the liquid content, friction increases and granular layer shows higher recurrence time between slip events. We also observe that slip events exhibit larger friction drop and layer compaction in wet system compared to dry. We demonstrate that a small volume of liquid induces cohesive forces betweenmore » wet particles that are responsible for an increase in coordination number leading to a more stable arrangement of particles. This stabilization is evidenced with two orders of magnitude lower particle kinetic energy in wet system during stick phase. Similar to previous experimental studies, we observe enhanced frictional strength for wet granular layers. In experiments, the physicochemical processes are believed to be the main reason for such behavior, we show however, that at low confining stresses the hydromechanical effects of induced cohesion are sufficient for observed behavior. Our simulations illuminate the role of particle interactions and demonstrate the conditions under which induced cohesion plays a significant role in fault zone processes, including slip initiation, weakening, and failure.« less

  8. Cohesion-Induced Stabilization in Stick-Slip Dynamics of Weakly Wet, Sheared Granular Fault Gouge

    NASA Astrophysics Data System (ADS)

    Dorostkar, Omid; Guyer, Robert A.; Johnson, Paul A.; Marone, Chris; Carmeliet, Jan

    2018-03-01

    We use three-dimensional discrete element calculations to study stick-slip dynamics in a weakly wet granular layer designed to simulate fault gouge. The granular gouge is constituted by 8,000 spherical particles with a polydisperse size distribution. At very low liquid content, liquids impose cohesive and viscous forces on particles. Our simulations show that by increasing the liquid content, friction increases and granular layer shows higher recurrence time between slip events. We also observe that slip events exhibit larger friction drop and layer compaction in wet system compared to dry. We demonstrate that a small volume of liquid induces cohesive forces between wet particles that are responsible for an increase in coordination number leading to a more stable arrangement of particles. This stabilization is evidenced with 2 orders of magnitude lower particle kinetic energy in wet system during stick phase. Similar to previous experimental studies, we observe enhanced frictional strength for wet granular layers. In experiments, the physicochemical processes are believed to be the main reason for such behavior; we show, however, that at low confining stresses, the hydromechanical effects of induced cohesion are sufficient for observed behavior. Our simulations illuminate the role of particle interactions and demonstrate the conditions under which induced cohesion plays a significant role in fault zone processes, including slip initiation, weakening, and failure.

  9. A crystal plasticity model for slip in hexagonal close packed metals based on discrete dislocation simulations

    NASA Astrophysics Data System (ADS)

    Messner, Mark C.; Rhee, Moono; Arsenlis, Athanasios; Barton, Nathan R.

    2017-06-01

    This work develops a method for calibrating a crystal plasticity model to the results of discrete dislocation (DD) simulations. The crystal model explicitly represents junction formation and annihilation mechanisms and applies these mechanisms to describe hardening in hexagonal close packed metals. The model treats these dislocation mechanisms separately from elastic interactions among populations of dislocations, which the model represents through a conventional strength-interaction matrix. This split between elastic interactions and junction formation mechanisms more accurately reproduces the DD data and results in a multi-scale model that better represents the lower scale physics. The fitting procedure employs concepts of machine learning—feature selection by regularized regression and cross-validation—to develop a robust, physically accurate crystal model. The work also presents a method for ensuring the final, calibrated crystal model respects the physical symmetries of the crystal system. Calibrating the crystal model requires fitting two linear operators: one describing elastic dislocation interactions and another describing junction formation and annihilation dislocation reactions. The structure of these operators in the final, calibrated model reflect the crystal symmetry and slip system geometry of the DD simulations.

  10. Numerical modeling of magma-tectonic interactions at Pacaya Volcano, Guatemala

    NASA Astrophysics Data System (ADS)

    Wauthier, C.

    2017-12-01

    Pacaya Volcano is composed of several volcanic cones located along the southern rim of the Amatitlan caldera, approximately 25 km south of Guatemala City. It is a basaltic volcano located in the Central American Volcanic Arc. The shallow magma plumbing system at Pacaya likely includes at least three magma reservoirs: a very shallow ( 0.2-0.4 km depth) reservoir located below and possibly within the MacKenney cone, a 4 km deep reservoir located northwest of the summit, and a shallow dike-like conduit below the summit which fed the recent flank eruptions. Pacaya's western flank is slipping in a stick-slip fashion, and the instability seems associated with larger volume eruptions. Flank instability phases indeed occurred in 2010 and 2014 in coincidence with major intrusive and eruptive phases, suggesting a positive feedback between the flank motion and major intrusions. Simple analytical models are insufficient to fit the geodetic observations and model the flank processes and their mechanical interactions with the magmatic system. Here, numerical modeling approaches are used to characterize the 2014 flank deformation episode and magma-tectonic interactions.

  11. Slip stream apparatus and method for treating water in a circulating water system

    DOEpatents

    Cleveland, J.R.

    1997-03-18

    An apparatus is described for treating water in a circulating water system that has a cooling water basin which includes a slip stream conduit in flow communication with the circulating water system, a source of acid solution in flow communication with the slip stream conduit, and a decarbonator in flow communication with the slip stream conduit and the cooling water basin. In use, a slip stream of circulating water is drawn from the circulating water system into the slip stream conduit of the apparatus. The slip stream pH is lowered by contact with an acid solution provided from the source thereof. The slip stream is then passed through a decarbonator to form a treated slip stream, and the treated slip stream is returned to the cooling water basin. 4 figs.

  12. Map and Database of Probable and Possible Quaternary Faults in Afghanistan

    USGS Publications Warehouse

    Ruleman, C.A.; Crone, A.J.; Machette, M.N.; Haller, K.M.; Rukstales, K.S.

    2007-01-01

    The U.S. Geological Survey (USGS) with support from the U.S. Agency for International Development (USAID) mission in Afghanistan, has prepared a digital map showing the distribution of probable and suspected Quaternary faults in Afghanistan. This map is a key component of a broader effort to assess and map the country's seismic hazards. Our analyses of remote-sensing imagery reveal a complex array of tectonic features that we interpret to be probable and possible active faults within the country and in the surrounding border region. In our compilation, we have mapped previously recognized active faults in greater detail, and have categorized individual features based on their geomorphic expression. We assigned mapped features to eight newly defined domains, each of which contains features that appear to have similar styles of deformation. The styles of deformation associated with each domain provide insight into the kinematics of the modern tectonism, and define a tectonic framework that helps constrain deformational models of the Alpine-Himalayan orogenic belt. The modern fault movements, deformation, and earthquakes in Afghanistan are driven by the collision between the northward-moving Indian subcontinent and Eurasia. The patterns of probable and possible Quaternary faults generally show that much of the modern tectonic activity is related to transfer of plate-boundary deformation across the country. The left-lateral, strike-slip Chaman fault in southeastern Afghanistan probably has the highest slip rate of any fault in the country; to the north, this slip is distributed onto several fault systems. At the southern margin of the Kabul block, the style of faulting changes from mainly strike-slip motion associated with the boundary between the Indian and Eurasian plates, to transpressional and transtensional faulting. North and northeast of the Kabul block, we recognized a complex pattern of potentially active strike-slip, thrust, and normal faults that form a conjugate shear system in a transpressional region of the Trans-Himalayan orogenic belt. The general patterns and orientations of faults and the styles of deformation that we interpret from the imagery are consistent with the styles of faulting determined from focal mechanisms of historical earthquakes. Northwest-trending strike-slip fault zones are cut and displaced by younger, southeast-verging thrust faults; these relations define the interaction between northwest-southeast-oriented contraction and northwest-directed extrusion in the western Himalaya, Pamir, and Hindu Kush regions. Transpression extends into north-central Afghanistan where north-verging contraction along the east-west-trending Alburz-Marmul fault system interacts with northwest-trending strike-slip faults. Pressure ridges related to thrust faulting and extensional basins bounded by normal faults are located at major stepovers in these northwest-trending strike-slip systems. In contrast, young faulting in central and western Afghanistan indicates that the deformation is dominated by extension where strike-slip fault zones transition into regions of normal faults. In addition to these initial observations, our digital map and database provide a foundation that can be expanded, complemented, and modified as future investigations provide more detailed information about the location, characteristics, and history of movement on Quaternary faults in Afghanistan.

  13. Constant Fault Slip-Rates Over Hundreds of Millenia Constrained By Deformed Quaternary Palaeoshorelines: the Vibo and Capo D'Orlando Faults, Southern Italy.

    NASA Astrophysics Data System (ADS)

    Meschis, M.; Roberts, G.; Robertson, J.; Houghton, S.; Briant, R. M.

    2017-12-01

    Whether slip-rates on active faults accumulated over multiple seismic events is constant or varying over tens to hundreds of millenia timescales is an open question that can be addressed through study of deformed Quaternary palaeoshorelines. It is important to know the answer so that one can judge whether shorter timescale measurements (e.g. Holocene palaeoseismology or decadal geodesy) are suitable for determining earthquake recurrence intervals for Probabilistic Seismic Hazard Assessment or more suitable for studying temporal earthquake clustering. We present results from the Vibo Fault and the Capo D'Orlando Fault, that lie within the deforming Calabrian Arc, which has experienced damaging seismic events such as the 1908 Messina Strait earthquake ( Mw 7) and the 1905 Capo Vaticano earthquake ( Mw 7). These normal faults deform uplifted Late Quaternary palaeoshorelines, which outcrop mainly within their hangingwalls, but also partially in their footwalls, showing that a regional subduction and mantle-related uplift outpaces local fault-related subsidence. Through (1) field and DEM-based mapping of palaeoshorelines, both up flights of successively higher, older inner edges, and along the strike of the faults, and (2) utilisation of synchronous correlation of non-uniformly-spaced inner edge elevations with non-uniformly spaced sea-level highstand ages, we show that slip-rates decrease towards fault tips and that slip-rates have remained constant since 340 ka (given the time resolution we obtain). The slip-rates for the Capo D'Orlando Fault and Vibo Fault are 0.61mm/yr and 1mm/yr respectively. We show that the along-strike gradients in slip-rate towards fault tips differ for the two faults hinting at fault interaction and also discuss this in terms of other regions of extension like the Gulf of Corinth, Greece, where slip-rate has been shown to change through time through the Quaternary. We make the point that slip-rates may change through time as fault systems grow and fault interaction changes due to geometrical effects.

  14. Plastic Properties of MgSiO3 Post-Perovskite in the Lower Mantle : Do We Care about Twinning ?

    NASA Astrophysics Data System (ADS)

    Carrez, P.; Goryaeva, A.; Cordier, P.

    2017-12-01

    Plastic properties of post-perovskite MgSiO3 are believed to be one of the key issues for the understanding of seismic anisotropy at the bottom of the D'' layer. Unfortunately, results from high pressure deformation experiments have led to several conflicting interpretations regarding slip systems and dislocation activities. Whereas, plastic slip has attracted much more attention, twinning mechanism has not been addressed despite some experimental evidence on low-pressure analogues. Based on a hierarchical mechanical model of the emission of 1/6<110> partial dislocations, we present a twin nucleation model in MgSiO3 and CaIrO3 post-perovskite. Relying on first-principles calculations, we show that {110} twin wall formation resulting from the interaction of multiple twin dislocations occurs for twinning stress comparable to the easiest slip system in post-perovskite. Dislocations activities and twinning being competitive strain producing mechanism, twinning has to be considered in future interpretation of crystallographic preferred orientations in post-perovskite.

  15. In Situ TEM Study of Interaction between Dislocations and a Single Nanotwin under Nanoindentation.

    PubMed

    Wang, Bo; Zhang, Zhenyu; Cui, Junfeng; Jiang, Nan; Lyu, Jilei; Chen, Guoxin; Wang, Jia; Liu, Zhiduo; Yu, Jinhong; Lin, Chengte; Ye, Fei; Guo, Dongming

    2017-09-06

    Nanotwinned (nt) materials exhibit excellent mechanical properties, and have been attracting much more attention of late. Nevertheless, the fundamental mechanism of interaction between dislocations and a single nanotwin is not understood. In this study, in situ transmission electron microscopy (TEM) nanoindentation is performed, on a specimen of a nickel (Ni) alloy containing a single nanotwin of 89 nm in thickness. The specimen is prepared using focused ion beam (FIB) technique from an nt surface, which is formed by a novel approach under indentation using a developed diamond panel with tips array. The stiffness of the specimen is ten times that of the pristine counterparts during loading. The ultrahigh stiffness is attributed to the generation of nanotwins and the impediment of the single twin to the dislocations. Two peak loads are induced by the activation of a new slip system and the penetration of dislocations over the single nanotwin, respectively. One slip band is parallel to the single nanotwin, indicating the slip of dislocations along the nanotwin. In situ TEM observation of nanoindentation reveals a new insight for the interaction between dislocations and a single nanotwin. This paves the way for design and preparation of high-performance nt surfaces of Ni alloys used for aircraft engines, gas turbines, turbocharger components, ducts, and absorbers.

  16. Slip stream apparatus and method for treating water in a circulating water system

    DOEpatents

    Cleveland, Joe R.

    1997-01-01

    An apparatus (10) for treating water in a circulating water system (12) t has a cooling water basin (14) includes a slip stream conduit (16) in flow communication with the circulating water system (12), a source (36) of acid solution in flow communication with the slip stream conduit (16), and a decarbonator (58) in flow communication with the slip stream conduit (16) and the cooling water basin (14). In use, a slip stream of circulating water is drawn from the circulating water system (12) into the slip stream conduit (16) of the apparatus (10). The slip stream pH is lowered by contact with an acid solution provided from the source (36) thereof. The slip stream is then passed through a decarbonator (58) to form a treated slip stream, and the treated slip stream is returned to the cooling water basin (14).

  17. Characteristics of aperiodic sequence of slip events caused by interaction between seismic patches and that caused be self-organized stress heterogeneity

    NASA Astrophysics Data System (ADS)

    Kato, N.

    2017-12-01

    Numerical simulations of earthquake cycles are conducted to investigate the origin of complexity of earthquake recurrence. There are two main causes of the complexity. One is self-organized stress heterogeneity due to dynamical effect. The other is the effect of interaction between some fault patches. In the model, friction on the fault is assumed to obey a rate- and state-dependent friction law. Circular patches of velocity-weakening frictional property are assumed on the fault. On the remaining areas of the fault, velocity-strengthening friction is assumed. We consider three models: Single patch model, two-patch model, and three-patch model. In the first model, the dynamical effect is mainly examined. The latter two models take into consideration the effect of interaction as well as the dynamical effect. Complex multiperiodic or aperiodic sequences of slip events occur when slip behavior changes from the seismic to aseismic, and when the degree of interaction between seismic patches is intermediate. The former is observed in all the models, and the latter is observed in the two-patch model and the three-patch model. Evolution of spatial distribution of shear stress on the fault suggests that aperiodicity at the transition from seismic to aseismic slip is caused by self-organized stress heterogeneity. The iteration maps of recurrence intervals of slip events in aperiodic sequences are examined, and they are approximately expressed by simple curves for aperiodicity at the transition from seismic to aseismic slip. In contrast, the iteration maps for aperiodic sequences caused by interaction between seismic patches are scattered and they are not expressed by simple curves. This result suggests that complex sequences caused by different mechanisms may be distinguished.

  18. On boundary-element models of elastic fault interaction

    NASA Astrophysics Data System (ADS)

    Becker, T. W.; Schott, B.

    2002-12-01

    We present the freely available, modular, and UNIX command-line based boundary-element program interact. It is yet another implementation of Crouch and Starfield's (1983) 2-D and Okada's (1992) half-space solutions for constant slip on planar fault segments in an elastic medium. Using unconstrained or non-negative, standard-package matrix routines, the code can solve for slip distributions on faults given stress boundary conditions, or vice versa, both in a local or global reference frame. Based on examples of complex fault geometries from structural geology, we discuss the effects of different stress boundary conditions on the predicted slip distributions of interacting fault systems. Such one-step calculations can be useful to estimate the moment-release efficiency of alternative fault geometries, and so to evaluate the likelihood which system may be realized in nature. A further application of the program is the simulation of cyclic fault rupture based on simple static-kinetic friction laws. We comment on two issues: First, that of the appropriate rupture algorithm. Cellular models of seismicity often employ an exhaustive rupture scheme: fault cells fail if some critical stress is reached, then cells slip once-only by a given amount, and subsequently the redistributed stress is used to check for triggered activations on other cells. We show that this procedure can lead to artificial complexity in seismicity if time-to-failure is not calculated carefully because of numerical noise. Second, we address the question if foreshocks can be viewed as direct expressions of a simple statistical distribution of frictional strength on individual faults. Repetitive failure models based on a random distribution of frictional coefficients initially show irregular seismicity. By repeatedly selecting weaker patches, the fault then evolves into a quasi-periodic cycle. Each time, the pre-mainshock events build up the cumulative moment release in a non-linear fashion. These temporal seismicity patterns roughly resemble the accelerated moment-release features which are sometimes observed in nature.

  19. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime: Application to plane boundaries

    NASA Astrophysics Data System (ADS)

    Silva, Goncalo; Semiao, Viriato

    2017-07-01

    The first nonequilibrium effect experienced by gaseous flows in contact with solid surfaces is the slip-flow regime. While the classical hydrodynamic description holds valid in bulk, at boundaries the fluid-wall interactions must consider slip. In comparison to the standard no-slip Dirichlet condition, the case of slip formulates as a Robin-type condition for the fluid tangential velocity. This makes its numerical modeling a challenging task, particularly in complex geometries. In this work, this issue is handled with the lattice Boltzmann method (LBM), motivated by the similarities between the closure relations of the reflection-type boundary schemes equipping the LBM equation and the slip velocity condition established by slip-flow theory. Based on this analogy, we derive, as central result, the structure of the LBM boundary closure relation that is consistent with the second-order slip velocity condition, applicable to planar walls. Subsequently, three tasks are performed. First, we clarify the limitations of existing slip velocity LBM schemes, based on discrete analogs of kinetic theory fluid-wall interaction models. Second, we present improved slip velocity LBM boundary schemes, constructed directly at discrete level, by extending the multireflection framework to the slip-flow regime. Here, two classes of slip velocity LBM boundary schemes are considered: (i) linear slip schemes, which are local but retain some calibration requirements and/or operation limitations, (ii) parabolic slip schemes, which use a two-point implementation but guarantee the consistent prescription of the intended slip velocity condition, at arbitrary plane wall discretizations, further dispensing any numerical calibration procedure. Third and final, we verify the improvements of our proposed slip velocity LBM boundary schemes against existing ones. The numerical tests evaluate the ability of the slip schemes to exactly accommodate the steady Poiseuille channel flow solution, over distinct wall slippage conditions, namely, no-slip, first-order slip, and second-order slip. The modeling of channel walls is discussed at both lattice-aligned and non-mesh-aligned configurations: the first case illustrates the numerical slip due to the incorrect modeling of slippage coefficients, whereas the second case adds the effect of spurious boundary layers created by the deficient accommodation of bulk solution. Finally, the slip-flow solutions predicted by LBM schemes are further evaluated for the Knudsen's paradox problem. As conclusion, this work establishes the parabolic accuracy of slip velocity schemes as the necessary condition for the consistent LBM modeling of the slip-flow regime.

  20. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime: Application to plane boundaries.

    PubMed

    Silva, Goncalo; Semiao, Viriato

    2017-07-01

    The first nonequilibrium effect experienced by gaseous flows in contact with solid surfaces is the slip-flow regime. While the classical hydrodynamic description holds valid in bulk, at boundaries the fluid-wall interactions must consider slip. In comparison to the standard no-slip Dirichlet condition, the case of slip formulates as a Robin-type condition for the fluid tangential velocity. This makes its numerical modeling a challenging task, particularly in complex geometries. In this work, this issue is handled with the lattice Boltzmann method (LBM), motivated by the similarities between the closure relations of the reflection-type boundary schemes equipping the LBM equation and the slip velocity condition established by slip-flow theory. Based on this analogy, we derive, as central result, the structure of the LBM boundary closure relation that is consistent with the second-order slip velocity condition, applicable to planar walls. Subsequently, three tasks are performed. First, we clarify the limitations of existing slip velocity LBM schemes, based on discrete analogs of kinetic theory fluid-wall interaction models. Second, we present improved slip velocity LBM boundary schemes, constructed directly at discrete level, by extending the multireflection framework to the slip-flow regime. Here, two classes of slip velocity LBM boundary schemes are considered: (i) linear slip schemes, which are local but retain some calibration requirements and/or operation limitations, (ii) parabolic slip schemes, which use a two-point implementation but guarantee the consistent prescription of the intended slip velocity condition, at arbitrary plane wall discretizations, further dispensing any numerical calibration procedure. Third and final, we verify the improvements of our proposed slip velocity LBM boundary schemes against existing ones. The numerical tests evaluate the ability of the slip schemes to exactly accommodate the steady Poiseuille channel flow solution, over distinct wall slippage conditions, namely, no-slip, first-order slip, and second-order slip. The modeling of channel walls is discussed at both lattice-aligned and non-mesh-aligned configurations: the first case illustrates the numerical slip due to the incorrect modeling of slippage coefficients, whereas the second case adds the effect of spurious boundary layers created by the deficient accommodation of bulk solution. Finally, the slip-flow solutions predicted by LBM schemes are further evaluated for the Knudsen's paradox problem. As conclusion, this work establishes the parabolic accuracy of slip velocity schemes as the necessary condition for the consistent LBM modeling of the slip-flow regime.

  1. Temporal slip-rate stability and variations on the Hope Fault, New Zealand, during the late Quaternary

    NASA Astrophysics Data System (ADS)

    Khajavi, Narges; Nicol, Andrew; Quigley, Mark C.; Langridge, Robert M.

    2018-07-01

    The Hope Fault transfers slip from Hikurangi subduction to the Alpine Fault in the northern South Island of New Zealand. It accommodates mainly dextral strike slip and currently carries the highest slip rate in the Marlborough Fault System. Displacements, displacement rates and earthquake recurrence intervals have been determined using a combination of high resolution LiDAR for 59 dextral displacements ( 2.5-200 m) together with calibrated radiocarbon ages ( 130 yr to 13,000 yr) for abandoned stream channels, terrace risers and alluvial fans. Mean single-event displacement (SED) of 3 ± 0.6 m (2.2 to 4.6 m for 21 measurements) and mean recurrence interval of 266 ± 100 yr (range 128 to 560 yr) have been determined for the five most recent surface-rupturing earthquakes. On time scales ≥2300 yr the dextral slip rate is uniform at 12.2 ± 2.4 mm/yr, however, when averaged over time intervals of 230 to 1700 yr slip rates range from 4 to 46.4 mm/yr. This order-of-magnitude variability in slip rate over shorter timescales cannot be fully attributed to errors in displacement and age data, and is at least partly due to variations in earthquake recurrence interval and inferred SED. Short-term non-characteristic earthquake behaviour may be due to changes in fault loading arising from stress interactions between different segments of the Hope Fault and nearby faults.

  2. Grain scale observations of stick-slip dynamics in fluid saturated granular fault gouge

    NASA Astrophysics Data System (ADS)

    Johnson, P. A.; Dorostkar, O.; Guyer, R. A.; Marone, C.; Carmeliet, J.

    2017-12-01

    We are studying granular mechanics during slip. In the present work, we conduct coupled computational fluid dynamics (CFD) and discrete element method (DEM) simulations to study grain scale characteristics of slip instabilities in fluid saturated granular fault gouge. The granular sample is confined with constant normal load (10 MPa), and sheared with constant velocity (0.6 mm/s). This loading configuration is chosen to promote stick-slip dynamics, based on a phase-space study. Fluid is introduced in the beginning of stick phase and characteristics of slip events i.e. macroscopic friction coefficient, kinetic energy and layer thickness are monitored. At the grain scale, we monitor particle coordination number, fluid-particle interaction forces as well as particle and fluid kinetic energy. Our observations show that presence of fluids in a drained granular fault gouge stabilizes the layer in the stick phase and increases the recurrence time. In saturated model, we observe that average particle coordination number reaches higher values compared to dry granular gouge. Upon slip, we observe that a larger portion of the granular sample is mobilized in saturated gouge compared to dry system. We also observe that regions with high particle kinetic energy are correlated with zones of high fluid motion. Our observations highlight that spatiotemporal profile of fluid dynamic pressure affects the characteristics of slip instabilities, increasing macroscopic friction coefficient drop, kinetic energy release and granular layer compaction. We show that numerical simulations help characterize the micromechanics of fault mechanics.

  3. Modeling slip system strength evolution in Ti-7Al informed by in-situ grain stress measurements

    DOE PAGES

    Pagan, Darren C.; Shade, Paul A; Barton, Nathan R.; ...

    2017-02-17

    Far-field high-energy X-ray diffraction microscopy is used to asses the evolution of slip system strengths in hexagonal close-packed (HCP) Ti-7A1 during tensile deformation in-situ. The following HCP slip system families are considered: basal < a >, prismatic < a >, pyramidal < a >, and first-order pyramidal < c + a >. A 1 mm length of the specimen's gauge section, marked with fiducials and comprised of an aggregate of over 500 grains, is tracked during continuous deformation. The response of each slip system family is quantified using 'slip system strength curves' that are calculated from the average stress tensorsmore » of each grain over the applied deformation history. These curves, which plot the average resolved shear stress for each slip system family versus macroscopic strain, represent a mesoscopic characterization of the aggregate response. A short time-scale transient softening is observed in the basal < a >, prismatic < a >, and pyramidal < a > slip systems, while a long time-scale transient hardening is observed in the pyramidal < c + a > slip systems. These results are used to develop a slip system strength model as part of an elasto-viscoplastic constitutive model for the single crystal behavior. A suite of finite element simulations is performed on a virtual polycrystal to demonstrate the relative effects of the different parameters in the slip system strength model. Finally, the model is shown to accurately capture the macroscopic stress-strain response using parameters that are chosen to capture the mesoscopic slip system responses.« less

  4. Teleseismic body waves from dynamically rupturing shallow thrust faults: Are they opaque for surface-reflected phases?

    USGS Publications Warehouse

    Smith, D.E.; Aagaard, Brad T.; Heaton, T.H.

    2005-01-01

    We investigate whether a shallow-dipping thrust fault is prone to waveslip interactions via surface-reflected waves affecting the dynamic slip. If so, can these interactions create faults that are opaque to radiated energy? Furthermore, in this case of a shallow-dipping thrust fault, can incorrectly assuming a transparent fault while using dislocation theory lead to underestimates of seismic moment? Slip time histories are generated in three-dimensional dynamic rupture simulations while allowing for varying degrees of wave-slip interaction controlled by fault-friction models. Based on the slip time histories, P and SH seismograms are calculated for stations at teleseismic distances. The overburdening pressure caused by gravity eliminates mode I opening except at the tip of the fault near the surface; hence, mode I opening has no effect on the teleseismic signal. Normalizing by a Haskell-like traditional kinematic rupture, we find teleseismic peak-to-peak displacement amplitudes are approximately 1.0 for both P and SH waves, except for the unrealistic case of zero sliding friction. Zero sliding friction has peak-to-peak amplitudes of 1.6 for P and 2.0 for SH waves; the fault slip oscillates about its equilibrium value, resulting in a large nonzero (0.08 Hz) spectral peak not seen in other ruptures. These results indicate wave-slip interactions associated with surface-reflected phases in real earthquakes should have little to no effect on teleseismic motions. Thus, Haskell-like kinematic dislocation theory (transparent fault conditions) can be safety used to simulate teleseismic waveforms in the Earth.

  5. First-principles calculations on slip system activation in the rock salt structure: electronic origin of ductility in silver chloride

    NASA Astrophysics Data System (ADS)

    Nakamura, Atsutomo; Ukita, Masaya; Shimoda, Naofumi; Furushima, Yuho; Toyoura, Kazuaki; Matsunaga, Katsuyuki

    2017-06-01

    First principles calculations were performed to understand an electronic origin of high ductility in silver chloride (AgCl) with the rock salt structure. From calculations of generalised stacking fault energies for different slip systems, it was found that only the {1 1 0}? slip system is favourably activated in sodium chloride (NaCl) with the same rock salt structure, whereas AgCl shows three kinds of possible slip systems along the ? direction on the {0 0 1}, {1 1 0}, and {1 1 1} planes, which is in excellent agreement with experiment. Detailed analyses of the electronic structures across slip planes showed that the more covalent character of bonding of Ag-Cl than Na-Cl tends to make the slip motion energetically favourable. It was also surprising to find out that strong Ag-Ag covalent bonds across the slip plane are formed in the {0 0 1}〈1 1 0〉 slip system in AgCl, which makes it possible to activate the multiple slip systems in AgCl.

  6. A detailed investigation of the strain hardening response of aluminum alloyed Hadfield steel

    NASA Astrophysics Data System (ADS)

    Canadinc, Demircan

    The unusual strain hardening response exhibited by Hadfield steel single and polycrystals under tensile loading was investigated. Hadfield steel, which deforms plastically through the competing mechanisms slip and twinning, was alloyed with aluminum in order to suppress twinning and study the role of slip only. To avoid complications due to a grained structure, only single crystals of the aluminum alloyed Hadfield steel were considered at the initial stage of the current study. As a result of alloying with aluminum, twinning was suppressed; however a significant increase in the strain hardening response was also present. A detailed microstructural analysis showed the presence of high-density dislocation walls that evolve in volume fraction due to plastic deformation and interaction with slip systems. The very high strain hardening rates exhibited by the aluminum alloyed Hadfield steel single crystals was attributed to the blockage of glide dislocations by the high-density dislocation walls. A crystal plasticity model was proposed, that accounts for the volume fraction evolution and rotation of the dense dislocation walls, as well as their interaction with the active slip systems. The novelty of the model lies in the simplicity of the constitutive equations that define the strain hardening, and the fact that it is based on experimental data regarding the microstructure. The success of the model was tested by its application to different crystallographic orientations, and finally the polycrystals of the aluminum alloyed Hadfield steel. Meanwhile, the capability of the model to predict texture was also observed through the rotation of the loading axis in single crystals. The ability of the model to capture the polycrystalline deformation response provides a venue for its utilization in other alloys that exhibit dislocation sheet structures.

  7. Strain localization in <111> single crystals of Hadfield steel under compressive load

    NASA Astrophysics Data System (ADS)

    Astafurova, E. G.; Zakharova, G. G.; Melnikov, E. V.

    2010-07-01

    A study of strain localization under compression of <111> Hadfield steel single crystals at room temperature was done by light and transmission electron microscopy. At epsilon<1%, macro shear bands (MSB) form that have non-crystallographic and complex non-linear habit planes and are the results of the interaction of dislocation slip on conjugate slip planes. Mechanical twinning was experimentally found inside the MSB. After the stage of MSBs formation, deformation develops with high strain hardening coefficient and corresponds to interaction of slip and twinning inside as well as outside the MSBs.

  8. States of stress and slip partitioning in a continental scale strike-slip duplex: Tectonic and magmatic implications by means of finite element modeling

    NASA Astrophysics Data System (ADS)

    Iturrieta, Pablo Cristián; Hurtado, Daniel E.; Cembrano, José; Stanton-Yonge, Ashley

    2017-09-01

    Orogenic belts at oblique convergent subduction margins accommodate deformation in several trench-parallel domains, one of which is the magmatic arc, commonly regarded as taking up the margin-parallel, strike-slip component. However, the stress state and kinematics of volcanic arcs is more complex than usually recognized, involving first- and second-order faults with distinctive slip senses and mutual interaction. These are usually organized into regional scale strike-slip duplexes, associated with both long-term and short-term heterogeneous deformation and magmatic activity. This is the case of the 1100 km-long Liquiñe-Ofqui Fault System in the Southern Andes, made up of two overlapping margin-parallel master faults joined by several NE-striking second-order faults. We present a finite element model addressing the nature and spatial distribution of stress across and along the volcanic arc in the Southern Andes to understand slip partitioning and the connection between tectonics and magmatism, particularly during the interseismic phase of the subduction earthquake cycle. We correlate the dynamics of the strike-slip duplex with geological, seismic and magma transport evidence documented by previous work, showing consistency between the model and the inferred fault system behavior. Our results show that maximum principal stress orientations are heterogeneously distributed within the continental margin, ranging from 15° to 25° counter-clockwise (with respect to the convergence vector) in the master faults and 10-19° clockwise in the forearc and backarc domains. We calculate the stress tensor ellipticity, indicating simple shearing in the eastern master fault and transpressional stress in the western master fault. Subsidiary faults undergo transtensional-to-extensional stress states. The eastern master fault displays slip rates of 5 to 10 mm/yr, whereas the western and subsidiary faults show slips rates of 1 to 5 mm/yr. Our results endorse that favorably oriented subsidiary faults serve as magma pathways, particularly where they are close to the intersection with a master fault. Also, the slip of a fault segment is enhanced when an adjacent fault kinematics is superimposed on the regional tectonic loading. Hence, finite element models help to understand coupled tectonics and volcanic processes, demonstrating that geological and geophysical observations can be accounted for by a small number of key first order boundary conditions.

  9. Neotectonics of interior Alaska and the late Quaternary slip rate along the Denali fault system

    USGS Publications Warehouse

    Haeussler, Peter J.; Matmon, Ari; Schwartz, David P.; Seitz, Gordon G.

    2017-01-01

    The neotectonics of southern Alaska (USA) are characterized by a several hundred kilometers–wide zone of dextral transpressional that spans the Alaska Range. The Denali fault system is the largest active strike-slip fault system in interior Alaska, and it produced a Mw 7.9 earthquake in 2002. To evaluate the late Quaternary slip rate on the Denali fault system, we collected samples for cosmogenic surface exposure dating from surfaces offset by the fault system. This study includes data from 107 samples at 19 sites, including 7 sites we previously reported, as well as an estimated slip rate at another site. We utilize the interpreted surface ages to provide estimated slip rates. These new slip rate data confirm that the highest late Quaternary slip rate is ∼13 mm/yr on the central Denali fault near its intersection with the eastern Denali and the Totschunda faults, with decreasing slip rate both to the east and west. The slip rate decreases westward along the central and western parts of the Denali fault system to 5 mm/yr over a length of ∼575 km. An additional site on the eastern Denali fault near Kluane Lake, Yukon, implies a slip rate of ∼2 mm/yr, based on geological considerations. The Totschunda fault has a maximum slip rate of ∼9 mm/yr. The Denali fault system is transpressional and there are active thrust faults on both the north and south sides of it. We explore four geometric models for southern Alaska tectonics to explain the slip rates along the Denali fault system and the active fault geometries: rotation, indentation, extrusion, and a combination of the three. We conclude that all three end-member models have strengths and shortcomings, and a combination of rotation, indentation, and extrusion best explains the slip rate observations.

  10. Critical experiments of the self-consistent model for polycrystalline Hastelloy-X

    NASA Technical Reports Server (NTRS)

    Shi, Shixiang; Walker, Kevin P.; Jordan, Eric H.

    1991-01-01

    A viscoplastic constitutive model is presented for the estimation of the overall mechanical response of Hastelloy-X polycrystalline metals from a knowledge of single crystal behavior. The behavior of polycrystal is derived from that of single crystals using a self-consistent formulation. The single crystal behavior which has been used was developed by summing postulated slip on crystallographic slip systems. The plasticity and creep are treated coupledly using unified viscoplastic model which includes the interaction effects between rapid and slow deformation at elevated temperature. The validity of the model is directly tested by experiments on Hastelloy-X in both single crystal and polycrystalline versions.

  11. Thermo-Hydro-Micro-Mechanical 3D Modeling of a Fault Gouge During Co-seismic Slip

    NASA Astrophysics Data System (ADS)

    Papachristos, E.; Stefanou, I.; Sulem, J.; Donze, F. V.

    2017-12-01

    A coupled Thermo-Hydro-Micro-Mechanical (THMM) model based on the Discrete Elements method (DEM) is presented for studying the evolving fault gouge properties during pre- and co-seismic slip. Modeling the behavior of the fault gouge at the microscale is expected to improve our understanding on the various mechanisms that lead to slip weakening and finally control the transition from aseismic to seismic slip.The gouge is considered as a granular material of spherical particles [1]. Upon loading, the interactions between particles follow a frictional behavior and explicit dynamics. Using regular triangulation, a pore network is defined by the physical pore space between the particles. The network is saturated by a compressible fluid, and flow takes place following Stoke's equations. Particles' movement leads to pore deformation and thus to local pore pressure increase. Forces exerted from the fluid onto the particles are calculated using mid-step velocities. The fluid forces are then added to the contact forces resulting from the mechanical interactions before the next step.The same semi-implicit, two way iterative coupling is used for the heat-exchange through conduction.Simple tests have been performed to verify the model against analytical solutions and experimental results. Furthermore, the model was used to study the effect of temperature on the evolution of effective stress in the system and to highlight the role of thermal pressurization during seismic slip [2, 3].The analyses are expected to give grounds for enhancing the current state-of-the-art constitutive models regarding fault friction and shed light on the evolution of fault zone propertiesduring seismic slip.[1] Omid Dorostkar, Robert A Guyer, Paul A Johnson, Chris Marone, and Jan Carmeliet. On the role of fluids in stick-slip dynamics of saturated granular fault gouge using a coupled computational fluid dynamics-discrete element approach. Journal of Geophysical Research: Solid Earth, 122(5):3689-3700, 2017.[2] James R Rice. Heating and weakening of faults during earthquake slip. Journal of Geophysical Research: Solid Earth, 111(B5), 2006.[3] Jean Sulem, Ioannis Stefanou, and Emmanuil Veveakis. Stability analysis of undrained adiabatic shearing of a rock layer with cosserat microstructure. Granular Matter, 13(3):261-268,2011.

  12. Long term fault system reorganization of convergent and strike-slip systems

    NASA Astrophysics Data System (ADS)

    Cooke, M. L.; McBeck, J.; Hatem, A. E.; Toeneboehn, K.; Beyer, J. L.

    2017-12-01

    Laboratory and numerical experiments representing deformation over many earthquake cycles demonstrate that fault evolution includes episodes of fault reorganization that optimize work on the fault system. Consequently, the mechanical and kinematic efficiencies of fault systems do not increase monotonically through their evolution. New fault configurations can optimize the external work required to accommodate deformation, suggesting that changes in system efficiency can drive fault reorganization. Laboratory evidence and numerical results show that fault reorganization within accretion, strike-slip and oblique convergent systems is associated with increasing efficiency due to increased fault slip (frictional work and seismic energy) and commensurate decreased off-fault deformation (internal work and work against gravity). Between episodes of fault reorganization, fault systems may become less efficient as they produce increasing off fault deformation. For example, laboratory and numerical experiments show that the interference and interaction between different fault segments may increase local internal work or that increasing convergence can increase work against gravity produced by a fault system. This accumulation of work triggers fault reorganization as stored work provides the energy required to grow new faults that reorganize the system to a more efficient configuration. The results of laboratory and numerical experiments reveal that we should expect crustal fault systems to reorganize following periods of increasing inefficiency, even in the absence of changes to the tectonic regime. In other words, fault reorganization doesn't require a change in tectonic loading. The time frame of fault reorganization depends on fault system configuration, strain rate and processes that relax stresses within the crust. For example, stress relaxation may keep pace with stress accumulation, which would limit the increase in the internal work and gravitational work so that irregularities can persist along active fault systems without reorganization of the fault system. Consequently, steady state behavior, for example with constant fault slip rates, may arise either in systems with high degree of stress-relaxation or occur only within the intervals between episodes of fault reorganization.

  13. Non-linear programming in shakedown analysis with plasticity and friction

    NASA Astrophysics Data System (ADS)

    Spagnoli, A.; Terzano, M.; Barber, J. R.; Klarbring, A.

    2017-07-01

    Complete frictional contacts, when subjected to cyclic loading, may sometimes develop a favourable situation where slip ceases after a few cycles, an occurrence commonly known as frictional shakedown. Its resemblance to shakedown in plasticity has prompted scholars to apply direct methods, derived from the classical theorems of limit analysis, in order to assess a safe limit to the external loads applied on the system. In circumstances where zones of plastic deformation develop in the material (e.g., because of the large stress concentrations near the sharp edges of a complete contact), it is reasonable to expect an effect of mutual interaction of frictional slip and plastic strains on the load limit below which the global behaviour is non dissipative, i.e., both slip and plastic strains go to zero after some dissipative load cycles. In this paper, shakedown of general two-dimensional discrete systems, involving both friction and plasticity, is discussed and the shakedown limit load is calculated using a non-linear programming algorithm based on the static theorem of limit analysis. An illustrative example related to an elastic-plastic solid containing a frictional crack is provided.

  14. Unified description of the slip phenomena in sheared polymer films: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Priezjev, Nikolai

    2010-03-01

    The dynamic behavior of the slip length in shear flow of polymer melts past atomically smooth surfaces is investigated using MD simulations. The polymer melt was modeled as a collection of FENE-LJ bead-spring chains. We consider shear flow conditions at low pressures and weak wall-fluid interaction energy so that fluid velocity profiles are linear throughout the channel at all shear rates examined. In agreement with earlier studies we confirm that for shear- thinning fluids the slip length passes through a local minimum at low shear rates and then increases rapidly at higher shear rates. We found that the rate dependence of the slip length depends on the lattice orientation at high shear rates. The MD results show that the ratio of slip length to viscosity follows a master curve when plotted as a function of a single variable that depends on the structure factor, contact density and temperature of the first fluid layer near the solid wall. The universal dependence of the slip length holds for a number of parameters of the interface: fluid density and structure (chain length), wall-fluid interaction energy, wall density, lattice orientation, thermal or solid walls.

  15. Stress interaction between subduction earthquakes and forearc strike-slip faults: Modeling and application to the northern Caribbean plate boundary

    USGS Publications Warehouse

    ten Brink, Uri S.; Lin, J.

    2004-01-01

    Strike-slip faults in the forearc region of a subduction zone often present significant seismic hazard because of their proximity to population centers. We explore the interaction between thrust events on the subduction interface and strike-slip faults within the forearc region using three-dimensional models of static Coulomb stress change. Model results reveal that subduction earthquakes with slip vectors subparallel to the trench axis enhance the Coulomb stress on strike-slip faults adjacent to the trench but reduce the stress on faults farther back in the forearc region. In contrast, subduction events with slip vectors perpendicular to the trench axis enhance the Coulomb stress on strike-slip faults farther back in the forearc, while reducing the stress adjacent to the trench. A significant contribution to Coulomb stress increase on strike-slip faults in the back region of the forearc comes from "unclamping" of the fault, i.e., reduction in normal stress due to thrust motion on the subduction interface. We argue that although Coulomb stress changes from individual subduction earthquakes are ephemeral, their cumulative effects on the pattern of lithosphere deformation in the forearc region are significant. We use the Coulomb stress models to explain the contrasting deformation pattern between two adjacent segments of the Caribbean subduction zone. Subduction earthquakes with slip vectors nearly perpendicular to the Caribbean trench axis is dominant in the Hispaniola segment, where the strike-slip faults are more than 60 km inland from the trench. In contrast, subduction slip motion is nearly parallel to the Caribbean trench axis along the Puerto Rico segment, where the strike-slip fault is less than 15 km from the trench. This observed jump from a strike-slip fault close to the trench axis in the Puerto Rico segment to the inland faults in Hispaniola is explained by different distributions of Coulomb stress in the forearc region of the two segments, as a result of the change from the nearly trench parallel slip on the Puerto Rico subduction interface to the more perpendicular subduction slip beneath Hispaniola. The observations and modeling suggest that subduction-induced strike-slip seismic hazard to Puerto Rico may be smaller than previously assumed but the hazard to Hispaniola remains high. Copyright 2004 by the American Geophysical Union.

  16. Using Remote Sensing Data to Constrain Models of Fault Interactions and Plate Boundary Deformation

    NASA Astrophysics Data System (ADS)

    Glasscoe, M. T.; Donnellan, A.; Lyzenga, G. A.; Parker, J. W.; Milliner, C. W. D.

    2016-12-01

    Determining the distribution of slip and behavior of fault interactions at plate boundaries is a complex problem. Field and remotely sensed data often lack the necessary coverage to fully resolve fault behavior. However, realistic physical models may be used to more accurately characterize the complex behavior of faults constrained with observed data, such as GPS, InSAR, and SfM. These results will improve the utility of using combined models and data to estimate earthquake potential and characterize plate boundary behavior. Plate boundary faults exhibit complex behavior, with partitioned slip and distributed deformation. To investigate what fraction of slip becomes distributed deformation off major faults, we examine a model fault embedded within a damage zone of reduced elastic rigidity that narrows with depth and forward model the slip and resulting surface deformation. The fault segments and slip distributions are modeled using the JPL GeoFEST software. GeoFEST (Geophysical Finite Element Simulation Tool) is a two- and three-dimensional finite element software package for modeling solid stress and strain in geophysical and other continuum domain applications [Lyzenga, et al., 2000; Glasscoe, et al., 2004; Parker, et al., 2008, 2010]. New methods to advance geohazards research using computer simulations and remotely sensed observations for model validation are required to understand fault slip, the complex nature of fault interaction and plate boundary deformation. These models help enhance our understanding of the underlying processes, such as transient deformation and fault creep, and can aid in developing observation strategies for sUAV, airborne, and upcoming satellite missions seeking to determine how faults behave and interact and assess their associated hazard. Models will also help to characterize this behavior, which will enable improvements in hazard estimation. Validating the model results against remotely sensed observations will allow us to better constrain fault zone rheology and physical properties, having implications for the overall understanding of earthquake physics, fault interactions, plate boundary deformation and earthquake hazard, preparedness and risk reduction.

  17. Connecting heterogeneous single slip to diffraction peak evolution in high-energy monochromatic X-ray experiments

    PubMed Central

    Pagan, Darren C.; Miller, Matthew P.

    2014-01-01

    A forward modeling diffraction framework is introduced and employed to identify slip system activity in high-energy diffraction microscopy (HEDM) experiments. In the framework, diffraction simulations are conducted on virtual mosaic crystals with orientation gradients consistent with Nye’s model of heterogeneous single slip. Simulated diffraction peaks are then compared against experimental measurements to identify slip system activity. Simulation results compared against diffraction data measured in situ from a silicon single-crystal specimen plastically deformed under single-slip conditions indicate that slip system activity can be identified during HEDM experiments. PMID:24904242

  18. The evolving interaction of low-frequency earthquakes during transient slip.

    PubMed

    Frank, William B; Shapiro, Nikolaï M; Husker, Allen L; Kostoglodov, Vladimir; Gusev, Alexander A; Campillo, Michel

    2016-04-01

    Observed along the roots of seismogenic faults where the locked interface transitions to a stably sliding one, low-frequency earthquakes (LFEs) primarily occur as event bursts during slow slip. Using an event catalog from Guerrero, Mexico, we employ a statistical analysis to consider the sequence of LFEs at a single asperity as a point process, and deduce the level of time clustering from the shape of its autocorrelation function. We show that while the plate interface remains locked, LFEs behave as a simple Poisson process, whereas they become strongly clustered in time during even the smallest slow slip, consistent with interaction between different LFE sources. Our results demonstrate that bursts of LFEs can result from the collective behavior of asperities whose interaction depends on the state of the fault interface.

  19. Moiré superlattice-level stick-slip instability originated from geometrically corrugated graphene on a strongly interacting substrate

    NASA Astrophysics Data System (ADS)

    Shi, Ruoyu; Gao, Lei; Lu, Hongliang; Li, Qunyang; Ma, Tian-Bao; Guo, Hui; Du, Shixuan; Feng, Xi-Qiao; Zhang, Shuai; Liu, Yanmin; Cheng, Peng; Hu, Yuan-Zhong; Gao, Hong-Jun; Luo, Jianbin

    2017-06-01

    Two dimensional (2D) materials often exhibit novel properties due to various coupling effects with their supporting substrates. Here, using friction force microscopy (FFM), we report an unusual moiré superlattice-level stick-slip instability on monolayer graphene epitaxially grown on Ru(0 0 0 1) substrate. Instead of smooth friction modulation, a significant long-range stick-slip sawtooth modulation emerges with a period coinciding with the moiré superlattice structure, which is robust against high external loads and leads to an additional channel of energy dissipation. In contrast, the long-range stick-slip instability reduces to smooth friction modulation on graphene/Ir(1 1 1) substrate. The moiré superlattice-level slip instability could be attributed to the large sliding energy barrier, which arises from the morphological corrugation of graphene on Ru(0 0 0 1) surface as indicated by density functional theory (DFT) calculations. The locally steep humps acting as obstacles opposing the tip sliding, originates from the strong interfacial electronic interaction between graphene and Ru(0 0 0 1). This study opens an avenue for modulating friction by tuning the interfacial atomic interaction between 2D materials and their substrates.

  20. Dependence of the friction strengthening of graphene on velocity.

    PubMed

    Zeng, Xingzhong; Peng, Yitian; Liu, Lei; Lang, Haojie; Cao, Xing'an

    2018-01-25

    Graphene shows great potential applications as a solid lubricant in micro- and nanoelectromechanical systems (MEMS/NEMS). An atomic-scale friction strengthening effect in a few initial atomic friction periods usually occurred on few-layer graphene. Here, velocity dependent friction strengthening was observed in atomic-scale frictional behavior of graphene by atomic force microscopy (AFM). The degree of the friction strengthening decreases with the increase of velocity first and then reaches a plateau. This could be attributed to the interaction potential between the tip and graphene at high velocity which is weaker than that at low velocity, because the strong tip-graphene contact interface needs a longer time to evolve. The subatomic-scale stick-slip behavior in the conventional stick-slip motion supports the weak interaction between the tip and graphene at high velocity. These findings can provide a deeper understanding of the atomic-scale friction mechanism of graphene and other two-dimensional materials.

  1. Deformation and stress change associated with plate interaction at subduction zones: a kinematic modelling

    NASA Astrophysics Data System (ADS)

    Zhao, Shaorong; Takemoto, Shuzo

    2000-08-01

    The interseismic deformation associated with plate coupling at a subduction zone is commonly simulated by the steady-slip model in which a reverse dip-slip is imposed on the down-dip extension of the locked plate interface, or by the backslip model in which a normal slip is imposed on the locked plate interface. It is found that these two models, although totally different in principle, produce similar patterns for the vertical deformation at a subduction zone. This suggests that it is almost impossible to distinguish between these two models by analysing only the interseismic vertical deformation observed at a subduction zone. The steady-slip model cannot correctly predict the horizontal deformation associated with plate coupling at a subduction zone, a fact that is proved by both the numerical modelling in this study and the GPS (Global Positioning System) observations near the Nankai trough, southwest Japan. It is therefore inadequate to simulate the effect of the plate coupling at a subduction zone by the steady-slip model. It is also revealed that the unphysical assumption inherent in the backslip model of imposing a normal slip on the locked plate interface makes it impossible to predict correctly the horizontal motion of the subducted plate and the stress change within the overthrust zone associated with the plate coupling during interseismic stages. If the analysis made in this work is proved to be correct, some of the previous studies on interpreting the interseismic deformation observed at several subduction zones based on these two models might need substantial revision. On the basis of the investigations on plate interaction at subduction zones made using the finite element method and the kinematic/mechanical conditions of the plate coupling implied by the present plate tectonics, a synthesized model is proposed to simulate the kinematic effect of the plate interaction during interseismic stages. A numerical analysis shows that the proposed model, designed to simulate the motion of a subducted slab, can correctly produce the deformation and the main pattern of stress concentration associated with plate coupling at a subduction zone. The validity of the synthesized model is examined and partially verified by analysing the horizontal deformation observed by GPS near the Nankai trough, southwest Japan.

  2. Vehicle systems: coupled and interactive dynamics analysis

    NASA Astrophysics Data System (ADS)

    Vantsevich, Vladimir V.

    2014-11-01

    This article formulates a new direction in vehicle dynamics, described as coupled and interactive vehicle system dynamics. Formalised procedures and analysis of case studies are presented. An analytical consideration, which explains the physics of coupled system dynamics and its consequences for dynamics of a vehicle, is given for several sets of systems including: (i) driveline and suspension of a 6×6 truck, (ii) a brake mechanism and a limited slip differential of a drive axle and (iii) a 4×4 vehicle steering system and driveline system. The article introduces a formal procedure to turn coupled system dynamics into interactive dynamics of systems. A new research direction in interactive dynamics of an active steering and a hybrid-electric power transmitting unit is presented and analysed to control power distribution between the drive axles of a 4×4 vehicle. A control strategy integrates energy efficiency and lateral dynamics by decoupling dynamics of the two systems thus forming their interactive dynamics.

  3. Steady, modest slip over multiple earthquake cycles on the Owens Valley and Little Lake fault zones

    NASA Astrophysics Data System (ADS)

    Amos, C. B.; Haddon, E. K.; Burgmann, R.; Zielke, O.; Jayko, A. S.

    2015-12-01

    A comprehensive picture of current plate-boundary deformation requires integration of short-term geodetic records with longer-term geologic strain. Comparing rates of deformation across these time intervals highlights potential time-dependencies in both geodetic and geologic records and yields critical insight into the earthquake deformation process. The southern Walker Lane Belt in eastern California represents one location where short-term strain recorded by geodesy apparently outpaces longer-term geologic fault slip measured from displaced rocks and landforms. This discrepancy persists both for individual structures and across the width of the deforming zone, where ~1 cm/yr of current dextral shear exceeds Quaternary slip rates summed across individual faults. The Owens Valley and Little Lake fault systems form the western boundary of the southern Walker Lane and host a range of published slip rate estimates from ~1 - 7 mm/yr over varying time intervals based on both geodetic and geologic measurements. New analysis of offset geomorphic piercing lines from airborne lidar and field measurements along the Owens Valley fault provides a snapshot of deformation during individual earthquakes and over many seismic cycles. Viewed in context of previously reported ages from pluvial and other landforms in Owens Valley, these offsets suggest slip rates of ~0.6 - 1.6 mm/yr over the past 103 - 105 years. Such rates agree with similar estimates immediately to the south on the Little Lake fault, where lidar measurements indicate dextral slip averaging ~0.6 - 1.3 mm/yr over comparable time intervals. Taken together, these results suggest steady, modest slip in the absence of significant variations over the Mid-to-Late Quaternary for a ~200 km span of the southwestern Walker Lane. Our findings argue against the presence of long-range fault interactions and slip-rate variations for this portion of the larger, regional fault network. This result also suggests that faster slip-rate estimates from geodetic measurements reflect transients over much shorter time scales. Additionally, the persistence of relatively faster geodetic shear in comparison with time-averaged fault slip leaves open the possibility of significant off-fault deformation or slip on subsidiary structures across the Owens Valley.

  4. Slip accumulation and lateral propagation of active normal faults in Afar

    NASA Astrophysics Data System (ADS)

    Manighetti, I.; King, G. C. P.; Gaudemer, Y.; Scholz, C. H.; Doubre, C.

    2001-01-01

    We investigate fault growth in Afar, where normal fault systems are known to be currently growing fast and most are propagating to the northwest. Using digital elevation models, we have examined the cumulative slip distribution along 255 faults with lengths ranging from 0.3 to 60 km. Faults exhibiting the elliptical or "bell-shaped" slip profiles predicted by simple linear elastic fracture mechanics or elastic-plastic theories are rare. Most slip profiles are roughly linear for more than half of their length, with overall slopes always <0.035. For the dominant population of NW striking faults and fault systems longer than 2 km, the slip profiles are asymmetric, with slip being maximum near the eastern ends of the profiles where it drops abruptly to zero, whereas slip decreases roughly linearly and tapers in the direction of overall Aden rift propagation. At a more detailed level, most faults appear to be composed of distinct, shorter subfaults or segments, whose slip profiles, while different from one to the next, combine to produce the roughly linear overall slip decrease along the entire fault. On a larger scale, faults cluster into kinematically coupled systems, along which the slip on any scale individual fault or fault system complements that of its neighbors, so that the total slip of the whole system is roughly linearly related to its length, with an average slope again <0.035. We discuss the origin of these quasilinear, asymmetric profiles in terms of "initiation points" where slip starts, and "barriers" where fault propagation is arrested. In the absence of a barrier, slip apparently extends with a roughly linear profile, tapered in the direction of fault propagation.

  5. Test benches for studying the properties of car tyres

    NASA Astrophysics Data System (ADS)

    Kuznetsov, N. Yu.; Fedotov, A. I.; Vlasov, V. G.

    2017-12-01

    The article describes the design of the measuring systems of test benches used to study the properties of elastic tyres. The bench has two autonomous systems - for testing the braking properties of elastic tyres rolling in a plane parallel way and for testing tyre slip properties. The system for testing braking properties determines experimental characteristics of elastic tyres as the following dependencies: longitudinal response vs time, braking torque vs slip, angular velocity vs slip, and longitudinal response vs slip. The system for studying tyre slip properties determines both steady (dependence of the lateral response in a contact area on the slipping angle) and non-steady characteristics (time variation of the slipping angle as a result of turning from -40 to +40 degrees) of tyre slip. The article presents the diagrams of bench tests of elastic tyres. The experimental results show metrological parameters and functional capabilities of the bench for studying tyre properties in driving and braking modes. The metrological indices of the recorded parameters of the measuring system for studying tyre properties are presented in the table.

  6. Unsteady Aerodynamic Interaction in a Closely Coupled Turbine Consistent with Contra-Rotation

    DTIC Science & Technology

    2014-08-01

    data on the blade required three instrumentation patches due to slip ring channel limitations. TRF blowdowns designated as experiments 280100...measurements from sensors on the rotating hardware due to slip ring limitations. The experimental data was compared to time-accurate simulations modeling...AFRL-RQ-WP-TR-2014-0195 UNSTEADY AERODYNAMIC INTERACTION IN A CLOSELY COUPLED TURBINE CONSISTENT WITH CONTRA-ROTATION Michael Kenneth

  7. A general law of fault wear and its implication to gouge zone evolution

    NASA Astrophysics Data System (ADS)

    Boneh, Yuval; Reches, Ze'ev

    2017-04-01

    Fault wear and gouge production are universal components of frictional sliding. Wear models commonly consider fault roughness, normal stress and rock strength, but ignore the effects of gouge presence and slip-velocity. In contrast, our experimental observations indicate that wear continues while gouge layer is fully developed, and that wear-rates vary by orders-of-magnitude during slip along experimental faults made of carbonites, sandstones and granites (Boneh et al., 2013, 2014). We derive here a new universal law for fault wear by incorporating the gouge layer and slip-velocity. Slip between two rock-blocks undergoes a transition from a 'two-body' mode, during which the blocks interact at surface roughness contacts, to 'three-body' mode, during which a gouge layer separates the two blocks. Our wear model considers 'effective roughness' as the mechanism for failure at resisting, interacting sites that control the global wear. The effective roughness is comprised of a time dependent, dynamic asperities which are different in population and scale from original surfaces asperities. The model assumes that the intensity of this failure is proportional to the mechanical impulse, which is the integrated force over loading time at the interacting sites. We use this concept to calculate the wear-rate as function of the impulse-density, which is the ratio [shear-stress/slip-velocity], during fault slip. The compilation of experimental wear-rates in a large range of slip-velocities (10 μm/s - 1 m/s) and normal stresses (0.2 - 200 MPa) reveal very good agreement with the model predictions. The model provides the first explanation why fault slip at seismic velocity, e.g., 1 m/s, generates significantly less wear and gouge than fault slip at creeping velocity. Thus, the model provides a tool to use the gouge thickness of fault-zones for estimation of paleo-velocity. Boneh, Y., Sagy, A., Reches, Z., 2013. Frictional strength and wear-rate of carbonate faults during high-velocity, steady-state sliding. Earth and Planetary Science Letters 381, 127-137. Boneh, Y., Chang, J.C., Lockner, D.A., Reches, Z., 2014. Evolution of Wear and Friction Along Experimental Faults. Pure and Applied Geophysics, 1-17.

  8. Along-strike variations of the partitioning of convergence across the Haiyuan fault system detected by InSAR

    NASA Astrophysics Data System (ADS)

    Daout, S.; Jolivet, R.; Lasserre, C.; Doin, M.-P.; Barbot, S.; Tapponnier, P.; Peltzer, G.; Socquet, A.; Sun, J.

    2016-04-01

    Oblique convergence across Tibet leads to slip partitioning with the coexistence of strike-slip, normal and thrust motion on major fault systems. A key point is to understand and model how faults interact and accumulate strain at depth. Here, we extract ground deformation across the Haiyuan Fault restraining bend, at the northeastern boundary of the Tibetan plateau, from Envisat radar data spanning the 2001-2011 period. We show that the complexity of the surface displacement field can be explained by the partitioning of a uniform deep-seated convergence. Mountains and sand dunes in the study area make the radar data processing challenging and require the latest developments in processing procedures for Synthetic Aperture Radar interferometry. The processing strategy is based on a small baseline approach. Before unwrapping, we correct for atmospheric phase delays from global atmospheric models and digital elevation model errors. A series of filtering steps is applied to improve the signal-to-noise ratio across high ranges of the Tibetan plateau and the phase unwrapping capability across the fault, required for reliable estimate of fault movement. We then jointly invert our InSAR time-series together with published GPS displacements to test a proposed long-term slip-partitioning model between the Haiyuan and Gulang left-lateral Faults and the Qilian Shan thrusts. We explore the geometry of the fault system at depth and associated slip rates using a Bayesian approach and test the consistency of present-day geodetic surface displacements with a long-term tectonic model. We determine a uniform convergence rate of 10 [8.6-11.5] mm yr-1 with an N89 [81-97]°E across the whole fault system, with a variable partitioning west and east of a major extensional fault-jog (the Tianzhu pull-apart basin). Our 2-D model of two profiles perpendicular to the fault system gives a quantitative understanding of how crustal deformation is accommodated by the various branches of this thrust/strike-slip fault system and demonstrates how the geometry of the Haiyuan fault system controls the partitioning of the deep secular motion.

  9. Sensitivity of polycrystal plasticity to slip system kinematic hardening laws for Al 7075-T6

    DOE PAGES

    Hennessey, Conor; Castelluccio, Gustavo M.; McDowell, David L.

    2017-02-01

    The prediction of formation and early growth of microstructurally small fatigue cracks requires use of constitutive models that accurately estimate local states of stress, strain, and cyclic plastic strain. However, few research efforts have attempted to systematically consider the sensitivity of overall cyclic stress-strain hysteresis and higher order mean stress relaxation and plastic strain ratcheting responses introduced by the slip system back-stress formulation in crystal plasticity, even for face centered cubic (FCC) crystal systems. This paper explores the performance of two slip system level kinematic hardening models using a finite element crystal plasticity implementation as a User Material Subroutine (UMAT)more » within ABAQUS, with fully implicit numerical integration. The two kinematic hardening formulations aim to reproduce the cyclic deformation of polycrystalline Al 7075-T6 in terms of both macroscopic cyclic stress-strain hysteresis loop shape, as well as ratcheting and mean stress relaxation under strain- or stress-controlled loading with mean strain or stress, respectively. The first formulation is an Armstrong-Frederick type hardening-dynamic recovery law for evolution of the back stress. This approach is capable of reproducing observed deformation under completely reversed uniaxial loading conditions, but overpredicts the rate of cyclic ratcheting and associated mean stress relaxation. The second formulation corresponds to a multiple back stress Ohno-Wang type hardening law with nonlinear dynamic recovery. The adoption of this back stress evolution law greatly improves the capability to model experimental results for polycrystalline specimens subjected to cycling with mean stress or strain. As a result, the relation of such nonlinear dynamic recovery effects are related to slip system interactions with dislocation substructures.« less

  10. Sensitivity of polycrystal plasticity to slip system kinematic hardening laws for Al 7075-T6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hennessey, Conor; Castelluccio, Gustavo M.; McDowell, David L.

    The prediction of formation and early growth of microstructurally small fatigue cracks requires use of constitutive models that accurately estimate local states of stress, strain, and cyclic plastic strain. However, few research efforts have attempted to systematically consider the sensitivity of overall cyclic stress-strain hysteresis and higher order mean stress relaxation and plastic strain ratcheting responses introduced by the slip system back-stress formulation in crystal plasticity, even for face centered cubic (FCC) crystal systems. This paper explores the performance of two slip system level kinematic hardening models using a finite element crystal plasticity implementation as a User Material Subroutine (UMAT)more » within ABAQUS, with fully implicit numerical integration. The two kinematic hardening formulations aim to reproduce the cyclic deformation of polycrystalline Al 7075-T6 in terms of both macroscopic cyclic stress-strain hysteresis loop shape, as well as ratcheting and mean stress relaxation under strain- or stress-controlled loading with mean strain or stress, respectively. The first formulation is an Armstrong-Frederick type hardening-dynamic recovery law for evolution of the back stress. This approach is capable of reproducing observed deformation under completely reversed uniaxial loading conditions, but overpredicts the rate of cyclic ratcheting and associated mean stress relaxation. The second formulation corresponds to a multiple back stress Ohno-Wang type hardening law with nonlinear dynamic recovery. The adoption of this back stress evolution law greatly improves the capability to model experimental results for polycrystalline specimens subjected to cycling with mean stress or strain. As a result, the relation of such nonlinear dynamic recovery effects are related to slip system interactions with dislocation substructures.« less

  11. Spatial and Temporal Variations in Slip Partitioning During Oblique Convergence Experiments

    NASA Astrophysics Data System (ADS)

    Beyer, J. L.; Cooke, M. L.; Toeneboehn, K.

    2017-12-01

    Physical experiments of oblique convergence in wet kaolin demonstrate the development of slip partitioning, where two faults accommodate strain via different slip vectors. In these experiments, the second fault forms after the development of the first fault. As one strain component is relieved by one fault, the local stress field then favors the development of a second fault with different slip sense. A suite of physical experiments reveals three styles of slip partitioning development controlled by the convergence angle and presence of a pre-existing fault. In experiments with low convergence angles, strike-slip faults grow prior to reverse faults (Type 1) regardless of whether the fault is precut or not. In experiments with moderate convergence angles, slip partitioning is dominantly controlled by the presence of a pre-existing fault. In all experiments, the primarily reverse fault forms first. Slip partitioning then develops with the initiation of strike-slip along the precut fault (Type 2) or growth of a secondary reverse fault where the first fault is steepest. Subsequently, the slip on the first fault transitions to primarily strike-slip (Type 3). Slip rates and rakes along the slip partitioned faults for both precut and uncut experiments vary temporally, suggesting that faults in these slip-partitioned systems are constantly adapting to the conditions produced by slip along nearby faults in the system. While physical experiments show the evolution of slip partitioning, numerical simulations of the experiments provide information about both the stress and strain fields, which can be used to compute the full work budget, providing insight into the mechanisms that drive slip partitioning. Preliminary simulations of precut experiments show that strain energy density (internal work) can be used to predict fault growth, highlighting where fault growth can reduce off-fault deformation in the physical experiments. In numerical simulations of uncut experiments with a first non-planar oblique slip fault, strain energy density is greatest where the first fault is steepest, as less convergence is accommodated along this portion of the fault. The addition of a second slip-partitioning fault to the system decreases external work indicating that these faults increase the mechanical efficiency of the system.

  12. Effect of solute atoms on dislocation motion in Mg: An electronic structure perspective

    PubMed Central

    Tsuru, T.; Chrzan, D. C.

    2015-01-01

    Solution strengthening is a well-known approach to tailoring the mechanical properties of structural alloys. Ultimately, the properties of the dislocation/solute interaction are rooted in the electronic structure of the alloy. Accordingly, we compute the electronic structure associated with, and the energy barriers to dislocation cross-slip. The energy barriers so obtained can be used in the development of multiscale models for dislocation mediated plasticity. The computed electronic structure can be used to identify substitutional solutes likely to interact strongly with the dislocation. Using the example of a-type screw dislocations in Mg, we compute accurately the Peierls barrier to prismatic plane slip and argue that Y, Ca, Ti, and Zr should interact strongly with the studied dislocation, and thereby decrease the dislocation slip anisotropy in the alloy. PMID:25740411

  13. Evidence for slip partitioning and bimodal slip behavior on a single fault: Surface slip characteristics of the 2013 Mw7.7 Balochistan, Pakistan earthquake

    USGS Publications Warehouse

    Barnhart, William; Briggs, Richard; Reitman, Nadine G.; Gold, Ryan D.; Hayes, Gavin

    2015-01-01

    Deformation is commonly accommodated by strain partitioning on multiple, independent strike-slip and dip-slip faults in continental settings of oblique plate convergence. As a corollary, individual faults tend to exhibit one sense of slip – normal, reverse, or strike-slip – until whole-scale changes in boundary conditions reactivate preexisting faults in a new deformation regime. In this study, we show that a single continental fault may instead partition oblique strain by alternatively slipping in a strike-slip or a dip-slip sense during independent fault slip events. We use 0.5 m resolution optical imagery and sub-pixel correlation analysis of the 200+ km 200+km"> 2013 Mw7.7 Balochistan, Pakistan earthquake to document co-seismic surface slip characteristics and Quaternary tectonic geomorphology along the causative Hoshab fault. We find that the 2013 earthquake, which involved a ∼6:1 strike-slip to dip-slip ratio, ruptured a structurally segmented fault. Quaternary geomorphic indicators of gross fault-zone morphology reveal both reverse-slip and strike-slip deformation in the rupture area of the 2013 earthquake that varies systematically along fault strike despite nearly pure strike-slip motion in 2013. Observations of along-strike variations in range front relief and geomorphic offsets suggest that the Hoshab fault accommodates a substantial reverse component of fault slip in the Quaternary, especially along the southern section of the 2013 rupture. We surmise that Quaternary bimodal slip along the Hoshab fault is promoted by a combination of the arcuate geometry of the Hoshab fault, the frictional weakness of the Makran accretionary prism, and time variable loading conditions from adjacent earthquakes and plate interactions.

  14. Evidence for slip partitioning and bimodal slip behavior on a single fault: Surface slip characteristics of the 2013 Mw7.7 Balochistan, Pakistan earthquake

    NASA Astrophysics Data System (ADS)

    Barnhart, W. D.; Briggs, R. W.; Reitman, N. G.; Gold, R. D.; Hayes, G. P.

    2015-06-01

    Deformation is commonly accommodated by strain partitioning on multiple, independent strike-slip and dip-slip faults in continental settings of oblique plate convergence. As a corollary, individual faults tend to exhibit one sense of slip - normal, reverse, or strike-slip - until whole-scale changes in boundary conditions reactivate preexisting faults in a new deformation regime. In this study, we show that a single continental fault may instead partition oblique strain by alternatively slipping in a strike-slip or a dip-slip sense during independent fault slip events. We use 0.5 m resolution optical imagery and sub-pixel correlation analysis of the 200 + km 2013 Mw7.7 Balochistan, Pakistan earthquake to document co-seismic surface slip characteristics and Quaternary tectonic geomorphology along the causative Hoshab fault. We find that the 2013 earthquake, which involved a ∼6:1 strike-slip to dip-slip ratio, ruptured a structurally segmented fault. Quaternary geomorphic indicators of gross fault-zone morphology reveal both reverse-slip and strike-slip deformation in the rupture area of the 2013 earthquake that varies systematically along fault strike despite nearly pure strike-slip motion in 2013. Observations of along-strike variations in range front relief and geomorphic offsets suggest that the Hoshab fault accommodates a substantial reverse component of fault slip in the Quaternary, especially along the southern section of the 2013 rupture. We surmise that Quaternary bimodal slip along the Hoshab fault is promoted by a combination of the arcuate geometry of the Hoshab fault, the frictional weakness of the Makran accretionary prism, and time variable loading conditions from adjacent earthquakes and plate interactions.

  15. Dynamical inference: where phase synchronization and generalized synchronization meet.

    PubMed

    Stankovski, Tomislav; McClintock, Peter V E; Stefanovska, Aneta

    2014-06-01

    Synchronization is a widespread phenomenon that occurs among interacting oscillatory systems. It facilitates their temporal coordination and can lead to the emergence of spontaneous order. The detection of synchronization from the time series of such systems is of great importance for the understanding and prediction of their dynamics, and several methods for doing so have been introduced. However, the common case where the interacting systems have time-variable characteristic frequencies and coupling parameters, and may also be subject to continuous external perturbation and noise, still presents a major challenge. Here we apply recent developments in dynamical Bayesian inference to tackle these problems. In particular, we discuss how to detect phase slips and the existence of deterministic coupling from measured data, and we unify the concepts of phase synchronization and general synchronization. Starting from phase or state observables, we present methods for the detection of both phase and generalized synchronization. The consistency and equivalence of phase and generalized synchronization are further demonstrated, by the analysis of time series from analog electronic simulations of coupled nonautonomous van der Pol oscillators. We demonstrate that the detection methods work equally well on numerically simulated chaotic systems. In all the cases considered, we show that dynamical Bayesian inference can clearly identify noise-induced phase slips and distinguish coherence from intrinsic coupling-induced synchronization.

  16. Slow slip generated by dehydration reaction coupled with slip-induced dilatancy and thermal pressurization

    NASA Astrophysics Data System (ADS)

    Yamashita, Teruo; Schubnel, Alexandre

    2016-10-01

    Sustained slow slip, which is a distinctive feature of slow slip events (SSEs), is investigated theoretically, assuming a fault embedded within a fluid-saturated 1D thermo-poro-elastic medium. The object of study is specifically SSEs occurring at the down-dip edge of seismogenic zone in hot subduction zones, where mineral dehydrations (antigorite, lawsonite, chlorite, and glaucophane) are expected to occur near locations where deep slow slip events are observed. In the modeling, we introduce dehydration reactions, coupled with slip-induced dilatancy and thermal pressurization, and slip evolution is assumed to interact with fluid pressure change through Coulomb's frictional stress. Our calculations show that sustained slow slip events occur when the dehydration reaction is coupled with slip-induced dilatancy. Specifically, slow slip is favored by a low initial stress drop, an initial temperature of the medium close to that of the dehydration reaction equilibrium temperature, a low permeability, and overall negative volume change associated with the reaction (i.e., void space created by the reaction larger than the space occupied by the fluid released). Importantly, if we do not assume slip-induced dilatancy, slip is accelerated with time soon after the slip onset even if the dehydration reaction is assumed. This suggests that slow slip is sustained for a long time at hot subduction zones because dehydration reaction is coupled with slip-induced dilatancy. Such slip-induced dilatancy may occur at the down-dip edge of seismogenic zone at hot subduction zones because of repetitive occurrence of dehydration reaction there.

  17. Slip-based terrain estimation with a skid-steer vehicle

    NASA Astrophysics Data System (ADS)

    Reina, Giulio; Galati, Rocco

    2016-10-01

    In this paper, a novel approach for online terrain characterisation is presented using a skid-steer vehicle. In the context of this research, terrain characterisation refers to the estimation of physical parameters that affects the terrain ability to support vehicular motion. These parameters are inferred from the modelling of the kinematic and dynamic behaviour of a skid-steer vehicle that reveals the underlying relationships governing the vehicle-terrain interaction. The concept of slip track is introduced as a measure of the slippage experienced by the vehicle during turning motion. The proposed terrain estimation system includes common onboard sensors, that is, wheel encoders, electrical current sensors and yaw rate gyroscope. Using these components, the system can characterise terrain online during normal vehicle operations. Experimental results obtained from different surfaces are presented to validate the system in the field showing its effectiveness and potential benefits to implement adaptive driving assistance systems or to automatically update the parameters of onboard control and planning algorithms.

  18. Resolved shear stress intensity coefficient and fatigue crack growth in large crystals

    NASA Technical Reports Server (NTRS)

    Chen, Q.; Liu, H. W.

    1988-01-01

    Fatigue crack growth tests were carried out on large-grain Al 7029 aluminum alloy and the finite element method was used to calculate the stress field near the tip of a zigzag crack. The resolved shear stresses on all 12 slip systems were computed, and the resolved shear stress intensity coefficient (RSSIC) was defined. The RSSIC was used to analyze the irregular crack path and was correlated with the rate of single-slip-plane shear crack growth. Fatigue crack growth was found to be caused primarily by shear decohesion at a crack tip. When the RSSIC on a single-slip system was much larger than all the others, the crack followed a single-slip plane. When the RSSICs on two conjugate slip systems were comparable, a crack grew in a zigzag manner on these planes and the macrocrack-plane bisected the two active slip planes. The maximum RSSIC on the most active slip system is proposed as a parameter to correlate with the shear fatigue crack growth rate in large crystals.

  19. Shear response of Fe-bearing MgSiO3 post-perovskite at lower mantle pressures

    PubMed Central

    METSUE, Arnaud; TSUCHIYA, Taku

    2013-01-01

    We investigate the shear response of possible slip systems activated in pure and Fe-bearing MgSiO3 post-perovskite (PPv) through ab initio generalized stacking fault (GSF) energy calculations. Here we show that the [100](001) slip system has the easiest response to plastic shear among ten possible slip systems investigated. Incorporation of Fe2+ decreases the strength of all slip systems but does not change the plastic anisotropy style. Therefore, pure and Fe-bearing MgSiO3 PPv should demonstrate similar LPO patterns with a strong signature of the [100](001) slip system. An aggregate with this deformation texture is expected to produce a VSH > VSV type polarization anisotropy, being consistent with seismological observations. PMID:23318681

  20. Premonitory acoustic emissions and stick-slip in natural and smooth-faulted Westerly granite

    USGS Publications Warehouse

    Thompson, B.D.; Young, R.P.; Lockner, David A.

    2009-01-01

    A stick-slip event was induced in a cylindrical sample of Westerly granite containing a preexisting natural fault by loading at constant confining pressure of 150 MPa. Continuously recorded acoustic emission (AE) data and computer tomography (CT)-generated images of the fault plane were combined to provide a detailed examination of microscale processes operating on the fault. The dynamic stick-slip event, considered to be a laboratory analog of an earthquake, generated an ultrasonic signal that was recorded as a large-amplitude AE event. First arrivals of this event were inverted to determine the nucleation site of slip, which is associated with a geometric asperity on the fault surface. CT images and AE locations suggest that a variety of asperities existed in the sample because of the intersection of branch or splay faults with the main fault. This experiment is compared with a stick-slip experiment on a sample prepared with a smooth, artificial saw-cut fault surface. Nearly a thousand times more AE were observed for the natural fault, which has a higher friction coefficient (0.78 compared to 0.53) and larger shear stress drop (140 compared to 68 MPa). However at the measured resolution, the ultrasonic signal emitted during slip initiation does not vary significantly between the two experiments, suggesting a similar dynamic rupture process. We propose that the natural faulted sample under triaxial compression provides a good laboratory analogue for a field-scale fault system in terms of the presence of asperities, fault surface heterogeneity, and interaction of branching faults. ?? 2009.

  1. Experiments on vibration-driven stick-slip locomotion: A sliding bifurcation perspective

    NASA Astrophysics Data System (ADS)

    Du, Zhouwei; Fang, Hongbin; Zhan, Xiong; Xu, Jian

    2018-05-01

    Dry friction appears at the contact interface between two surfaces and is the source of stick-slip vibrations. Instead of being a negative factor, dry friction is essential for vibration-driven locomotion system to take effect. However, the dry-friction-induced stick-slip locomotion has not been fully understood in previous research, especially in terms of experiments. In this paper, we experimentally study the stick-slip dynamics of a vibration-driven locomotion system from a sliding bifurcation perspective. To this end, we first design and build a vibration-driven locomotion prototype based on an internal piezoelectric cantilever. By utilizing the mechanical resonance, the small piezoelectric deformation is significantly amplified to drive the prototype to achieve effective locomotion. Through identifying the stick-slip characteristics in velocity histories, we could categorize the system's locomotion into four types and obtain a stick-slip categorization diagram. In each zone of the diagram the locomotion exhibits qualitatively different stick-slip dynamics. Such categorization diagram is actually a sliding bifurcation diagram; crossing from one stick-slip zone to another corresponds to the triggering of a sliding bifurcation. In addition, a simplified single degree-of-freedom model is established, with the rationality of simplification been explained theoretically and numerically. Based on the equivalent model, a numerical stick-slip categorization is also obtained, which shows good agreement with the experiments both qualitatively and quantitatively. To the best of our knowledge, this is the first work that experimentally generates a sliding bifurcation diagram. The obtained stick-slip categorizations deepen our understanding of stick-slip dynamics in vibration-driven systems and could serve as a base for system design and optimization.

  2. In situ measurements of a homogeneous to heterogeneous transition in the plastic response of ion-irradiated <111> Ni microspecimens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Xinyu; Strickland, Daniel J.; Derlet, Peter M.

    We report on the use of quantitative in situ microcompression experiments in a scanning electron microscope to systematically investigate the effect of self-ion irradiation damage on the full plastic response of <111> Ni. In addition to the well-known irradiationinduced increases in the yield and flow strengths with increasing dose, we measure substantial changes in plastic flow intermittency behavior, manifested as stress drops accompanying energy releases as the driven material transits critical states. At low irradiation doses, the magnitude of stress drops reduces relative to the unirradiated material and plastic slip proceeds on multiple slip systems, leading to quasi-homogeneous plastic flow.more » In contrast, highly irradiated specimens exhibit pronounced shear localization on parallel slip planes, which we ascribe to the onset of defect free channels normally seen in bulk irradiated materials. Our in situ testing system and approach allows for a quantitative study of the energy release and dynamics associated with defect free channel formation and subsequent localization. As a result, this study provides fundamental insight to the nature of interactions between mobile dislocations and irradiation-mediated and damage-dependent defect structures.« less

  3. In situ measurements of a homogeneous to heterogeneous transition in the plastic response of ion-irradiated <111> Ni microspecimens

    DOE PAGES

    Zhao, Xinyu; Strickland, Daniel J.; Derlet, Peter M.; ...

    2015-02-11

    We report on the use of quantitative in situ microcompression experiments in a scanning electron microscope to systematically investigate the effect of self-ion irradiation damage on the full plastic response of <111> Ni. In addition to the well-known irradiationinduced increases in the yield and flow strengths with increasing dose, we measure substantial changes in plastic flow intermittency behavior, manifested as stress drops accompanying energy releases as the driven material transits critical states. At low irradiation doses, the magnitude of stress drops reduces relative to the unirradiated material and plastic slip proceeds on multiple slip systems, leading to quasi-homogeneous plastic flow.more » In contrast, highly irradiated specimens exhibit pronounced shear localization on parallel slip planes, which we ascribe to the onset of defect free channels normally seen in bulk irradiated materials. Our in situ testing system and approach allows for a quantitative study of the energy release and dynamics associated with defect free channel formation and subsequent localization. As a result, this study provides fundamental insight to the nature of interactions between mobile dislocations and irradiation-mediated and damage-dependent defect structures.« less

  4. The balance of frictional heat production, thermal pressurization, and slip resistance on exhumed mid-crustal faults (Adamello batholith, Southern Italian Alps)

    NASA Astrophysics Data System (ADS)

    Griffith, W. A.; di Toro, G.; Pollard, D. D.

    2005-12-01

    Exhumed faults cutting the Adamello batholith (Italian Alps) were active ca. 30 Ma at seismogenic depths of 9-11 km. The faults "exploited preexisting joints and can be classified into three groups containing: (A) only cataclasite (a fault rock with no evidence of melting), (B) cataclasite and pseudotachylyte (solidified friction-induced melts produced during earthquakes), and (C) only pseudotachylyte. The majority of pseudotachylyte-bearing faults in this outcrop overprint pre-existing cataclasites (Type B), suggesting a transition between slip styles; however, some faults exhibiting pseudotachylyte and no cataclasite (Type C) display evidence of only one episode of slip. Faults of Type A never transitioned to frictional melting. We attempt to compare faults of type A, B, and C in terms of a simple one-dimensional thermo-mechanical model introduced by Lachenbruch (1980) describing the interaction between frictional heating, pore fluid pressure, and shear resistance during slip. The interaction of these three parameters influences how much elastic strain is relieved during an earthquake. For a conceptualized fault zone of finite thickness, the interplay between the shear resistance, heat production, and pore fluid pressure can be expressed as a non-linear partial differential equation relating these processes to the strain rate acting within a fault zone during a slip event. The behavior of fault zones in terms of these coupled processes during an earthquake depends on a number of parameters, such as thickness of the principal slipping zone, net coseismic slip, fault rock permeability and thermal diffusivity. Ideally, the governing equations should be testable on real fault zones if the requisite parameters can be measured or reasonably estimated. The model can be further simplified if the peak temperature reached during slip and the coseismic slip rate can be constrained. The contrasting nature of slip on the three Adamello fault types highlights (1) important differences between slip processes on cataclastic and melt-producing faults at depth and (2) some limitations of applicability of such models to real faults.

  5. Role of rough surface topography on gas slip flow in microchannels.

    PubMed

    Zhang, Chengbin; Chen, Yongping; Deng, Zilong; Shi, Mingheng

    2012-07-01

    We conduct a lattice Boltzmann simulation of gas slip flow in microchannels incorporating rough surface effects as characterized by fractal geometry with a focus on gas-solid interaction. The gas slip flow in rough microchannels, which is characterized by Poiseuille number and mass flow rate, is evaluated and compared with smooth microchannels. The effects of roughness height, surface fractal dimension, and Knudsen number on slip behavior of gas flow in microchannels are all investigated and discussed. The results indicate that the presence of surface roughness reduces boundary slip for gas flow in microchannels with respect to a smooth surface. The gas flows at the valleys of rough walls are no-slip while velocity slips are observed over the top of rough walls. We find that the gas flow behavior in rough microchannels is insensitive to the surface topography irregularity (unlike the liquid flow in rough microchannels) but is influenced by the statistical height of rough surface and rarefaction effects. In particular, decrease in roughness height or increase in Knudsen number can lead to large wall slip for gas flow in microchannels.

  6. Incorporation of Carrier Phase Global Positioning System Measurements into the Navigation Reference System for Improved Performance

    DTIC Science & Technology

    1993-12-01

    5-6 5.6.1 Large Cycle Slip Simulation ............................. 5-7 5.6.2 Small Cycle Slip Simulation ........................... 5-9...Appendix J. Small Cycle Slip Simulation Results ............................. J-1 Bibliography ........................................................ BIB-I...when subjected to large and small cycle slips. Results of the simulations indicate that the PNRS can provide an improved navigation solution over

  7. Slip parameters on major thrusts at a convergent plate boundary: regional heterogeneity of potential slip distance at the shallow portion of the subducting plate

    NASA Astrophysics Data System (ADS)

    Mukoyoshi, Hideki; Kaneki, Shunya; Hirono, Tetsuro

    2018-03-01

    Understanding variations of slip distance along major thrust systems at convergent margins is an important issue for evaluation of near-trench slip and the potential generation of large tsunamis. We derived quantitative estimates of slip along ancient subduction fault systems by using the maturity of carbonaceous material (CM) of discrete slip zones as a proxy for temperature. We first obtained the Raman spectra of CM in ultracataclasite and pseudotachylyte layers in discrete slip zones at depths below the seafloor of 1-4 km and 2.5-5.5 km, respectively. By comparing the area-under-the-peak ratios of graphitic and disordered bands in those Raman spectra with spectra of experimentally heated CM from surrounding rocks, we determined that the ultracataclasite and pseudotachylyte layers had been heated to temperatures of up to 700 and 1300 °C, respectively. Numerical simulation of the thermal history of CM extracted from rocks near the two slip zones, taking into consideration these temperature constraints, indicated that slip distances in the ultracataclasite and pseudotachylyte layers were more than 3 and 7 m, respectively. Thus, potential distance of coseismic slip along the subduction-zone fault system could have regional variations even at shallow depth (≤ 5.5 km). The slip distances we determined probably represent minimum slips for subduction-zone thrusts and thus provide an important contribution to earthquake preparedness plans in coastal areas facing the Nankai and Sagami Troughs.

  8. A new model for fluid velocity slip on a solid surface.

    PubMed

    Shu, Jian-Jun; Teo, Ji Bin Melvin; Chan, Weng Kong

    2016-10-12

    A general adsorption model is developed to describe the interactions between near-wall fluid molecules and solid surfaces. This model serves as a framework for the theoretical modelling of boundary slip phenomena. Based on this adsorption model, a new general model for the slip velocity of fluids on solid surfaces is introduced. The slip boundary condition at a fluid-solid interface has hitherto been considered separately for gases and liquids. In this paper, we show that the slip velocity in both gases and liquids may originate from dynamical adsorption processes at the interface. A unified analytical model that is valid for both gas-solid and liquid-solid slip boundary conditions is proposed based on surface science theory. The corroboration with the experimental data extracted from the literature shows that the proposed model provides an improved prediction compared to existing analytical models for gases at higher shear rates and close agreement for liquid-solid interfaces in general.

  9. On the mechanisms governing dike arrest: Insight from the 2000 Miyakejima dike injection

    NASA Astrophysics Data System (ADS)

    Maccaferri, F.; Rivalta, E.; Passarelli, L.; Aoki, Y.

    2016-01-01

    Magma stored beneath volcanoes is sometimes transported out of the magma chambers by means of laterally propagating dikes, which can lead to fissure eruptions if they intersect the Earth's surface. The driving force for lateral dike propagation can be a lateral tectonic stress gradient, the stress gradient due to the topographic loads, the overpressure of the magma chamber, or a combination of those forces. The 2000 dike intrusion at Miyakejima volcano, Izu arc, Japan, propagated laterally for about 30 km and stopped in correspondence of a strike-slip system, sub-perpendicular to the dike plane. Then the dike continued to inflate, without further propagation. Abundant seismicity was produced, including five M > 6 earthquakes, one of which occurred on the pre-existing fault system close to the tip of the dike, at approximately the time of arrest. It has been proposed that the main cause for the dike arrest was the fault-induced stress. Here we use a boundary element numerical approach to study the interplay between a propagating dike and a pre-stressed strike-slip fault and check the relative role played by dike-fault interaction and topographic loading in arresting the Miyakejima dike. We calibrate the model parameters according to previous estimates of dike opening and fault displacement based on crustal deformation observations. By computing the energy released during the propagation, our model indicates whether the dike will stop at a given location. We find that the stress gradient induced by the topography is needed for an opening distribution along the dike consistent with the observed seismicity, but it cannot explain its arrest at the prescribed location. On the other hand, the interaction of dike with the fault explains the arrest but not the opening distribution. The joint effect of the topographic load and the stress interaction with strike-slip fault is consistent with the observations, provided the pre-existing fault system is pre-loaded with a significant stress, released gradually during the dike-fault interplay. Our results reveal how the mechanical interaction between dikes and faults may affect the propagation of magmatic intrusions in general. This has implications for our understanding of the geometrical arrangement of rift segments and transform faults in Mid Ocean Ridges, and for the interplay between dikes and dike-induced graben systems.

  10. Size-Tuned Plastic Flow Localization in Irradiated Materials at the Submicron Scale

    NASA Astrophysics Data System (ADS)

    Cui, Yinan; Po, Giacomo; Ghoniem, Nasr

    2018-05-01

    Three-dimensional discrete dislocation dynamics (3D-DDD) simulations reveal that, with reduction of sample size in the submicron regime, the mechanism of plastic flow localization in irradiated materials transitions from irradiation-controlled to an intrinsic dislocation source controlled. Furthermore, the spatial correlation of plastic deformation decreases due to weaker dislocation interactions and less frequent cross slip as the system size decreases, thus manifesting itself in thinner dislocation channels. A simple model of discrete dislocation source activation coupled with cross slip channel widening is developed to reproduce and physically explain this transition. In order to quantify the phenomenon of plastic flow localization, we introduce a "deformation localization index," with implications to the design of radiation-resistant materials.

  11. Magma storage in a strike-slip caldera

    PubMed Central

    Saxby, J.; Gottsmann, J.; Cashman, K.; Gutiérrez, E.

    2016-01-01

    Silicic calderas form during explosive volcanic eruptions when magma withdrawal triggers collapse along bounding faults. The nature of specific interactions between magmatism and tectonism in caldera-forming systems is, however, unclear. Regional stress patterns may control the location and geometry of magma reservoirs, which in turn may control the spatial and temporal development of faults. Here we provide new insight into strike-slip volcano-tectonic relations by analysing Bouguer gravity data from Ilopango caldera, El Salvador, which has a long history of catastrophic explosive eruptions. The observed low gravity beneath the caldera is aligned along the principal horizontal stress orientations of the El Salvador Fault Zone. Data inversion shows that the causative low-density structure extends to ca. 6 km depth, which we interpret as a shallow plumbing system comprising a fractured hydrothermal reservoir overlying a magmatic reservoir with vol% exsolved vapour. Fault-controlled localization of magma constrains potential vent locations for future eruptions. PMID:27447932

  12. Magma storage in a strike-slip caldera.

    PubMed

    Saxby, J; Gottsmann, J; Cashman, K; Gutiérrez, E

    2016-07-22

    Silicic calderas form during explosive volcanic eruptions when magma withdrawal triggers collapse along bounding faults. The nature of specific interactions between magmatism and tectonism in caldera-forming systems is, however, unclear. Regional stress patterns may control the location and geometry of magma reservoirs, which in turn may control the spatial and temporal development of faults. Here we provide new insight into strike-slip volcano-tectonic relations by analysing Bouguer gravity data from Ilopango caldera, El Salvador, which has a long history of catastrophic explosive eruptions. The observed low gravity beneath the caldera is aligned along the principal horizontal stress orientations of the El Salvador Fault Zone. Data inversion shows that the causative low-density structure extends to ca. 6 km depth, which we interpret as a shallow plumbing system comprising a fractured hydrothermal reservoir overlying a magmatic reservoir with vol% exsolved vapour. Fault-controlled localization of magma constrains potential vent locations for future eruptions.

  13. Anisotropic frictional heat dissipation in cyclotrimethylene trinitramine

    NASA Astrophysics Data System (ADS)

    Rajak, Pankaj; Kalia, Rajiv; Nakano, Aiichiro; Vashishta, Priya

    Anisotropic frictional response and corresponding heat dissipation from different crystallographic planes of RDX crystal is studied using molecular dynamics simulations. The effect of frictional force on the nature of damage and system temperature is monitored along different directions on primary slip plane, (010), of RDX and on non-slip planes, (100) and (001). The correlation between the friction coefficient, deformation and the frictional heating in these system is determined. It is observed that friction coefficients on slip planes are smaller than those of non-slip planes. In response to friction on slip plane, RDX crystal deforms via dislocation formation and shows less heating. On non-slip planes due to the inability of the system to deform by dislocation formation, large temperature rise is observed in the system just below the contact area of two surfaces. Frictional sliding on non-slip planes also lead to the formation of damage zone just below the contact area of two surfaces due to the change in RDX ring conformation from chair to boat/half-boat. This research is supported by the AFOSR Grant: FA9550-16- 1-0042.

  14. Consideration of the oxide particle-dislocation interaction in 9Cr-ODS steel

    NASA Astrophysics Data System (ADS)

    Ijiri, Yuta; Oono, N.; Ukai, S.; Yu, Hao; Ohtsuka, S.; Abe, Y.; Matsukawa, Y.

    2017-05-01

    The interaction between oxide particles and dislocations in a 9Cr-ODS ferritic steel is investigated by both static and in situ TEM observation under dynamic straining conditions and room temperature. The measured obstacle strength (?) of the oxide particles was no greater than 0.80 and the average was 0.63. The dislocation loops around some coarsened particles were also observed. The calculated obstacle strength by a stress formula of the Orowan interaction is nearly equaled to the average experimental value. Not only cross-slip system but also the Orowan interaction should be considered as the main interaction mechanism between oxide particles and dislocation in 9CrODS ferritic steel.

  15. Modeling of rock friction 2. Simulation of preseismic slip

    USGS Publications Warehouse

    Dieterich, J.H.

    1979-01-01

    The constitutive relations developed in the companion paper are used to model detailed observations of preseismic slip and the onset of unstable slip in biaxial laboratory experiments. The simulations employ a deterministic plane strain finite element model to represent the interactions both within the sliding blocks and between the blocks and the loading apparatus. Both experiments and simulations show that preseismic slip is controlled by initial inhomogeneity of shear stress along the sliding surface relative to the frictional strength. As a consequence of the inhomogeneity, stable slip begins at a point on the surface and the area of slip slowly expands as the external loading increases. A previously proposed correlation between accelerating rates of stable slip and growth of the area of slip is supported by the simulations. In the simulations and in the experiments, unstable slip occurs shortly after a propagating slip event traverses the sliding surface and breaks out at the ends of the sample. In the model the breakout of stable slip causes a sudden acceleration of slip rates. Because of velocity dependency of the constitutive relationship for friction, the rapid acceleration of slip causes a decrease in frictional strength. Instability occurs when the frictional strength decreases with displacement at a rate that exceeds the intrinsic unloading characteristics of the sample and test machine. A simple slider-spring model that does not consider preseismic slip appears to approximate the transition adequately from stable sliding to unstable slip as a function of normal stress, machine stiffness, and surface roughness for small samples. However, for large samples and for natural faults the simulations suggest that the simple model may be inaccurate because it does not take into account potentially large preseismic displacements that will alter the friction parameters prior to instability. Copyright ?? 1979 by the American Geophysical Union.

  16. Determining heterogeneous slip activity on multiple slip systems from single crystal orientation pole figures

    DOE PAGES

    Pagan, Darren C.; Miller, Matthew P.

    2016-09-01

    A new experimental method to determine heterogeneity of shear strains associated with crystallographic slip in the bulk of ductile, crystalline materials is outlined. The method quantifies the time resolved evolution of misorientation within plastically deforming crystals using single crystal orientation pole figures (SCPFs) measured in-situ with X-ray diffraction. A multiplicative decomposition of the crystal kinematics is used to interpret the distributions of lattice plane orientation observed on the SCPFs in terms of heterogeneous slip activity (shear strains) on multiple slip systems. Here, to show the method’s utility, the evolution of heterogeneous slip is quantified in a silicon single crystal plasticallymore » deformed at high temperature at multiple load steps, with slip activity in sub-volumes of the crystal analyzed simultaneously.« less

  17. Laws of evolution of slip trace pattern and its parameters with deformation in [1.8.12] – single crystals of Ni{sub 3}Fe alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teplyakova, Ludmila, E-mail: lat168@mail.ru; Koneva, Nina, E-mail: koneva@mail.ru; Kunitsyna, Tatyana, E-mail: kma11061990@mail.ru

    2016-01-15

    The slip trace pattern of Ni{sub 3}Fe alloy single crystals with the short range order oriented for a single slip were investigated on replica at different stages of deformation using the transmission diffraction electron microscopy method. The connection of staging with the formation of slip trace pattern and the change of its parameters were established. The number of local areas where two or more slip systems work is increased with the change of stages. In these conditions the character of slip localization in the primary slip system is changed from the packets to the homogeneous distribution. The distributions of themore » distances between slip traces and the shear power in slip traces were plotted. The correlation between the average value of the shear power in the primary slip traces and the average distance between them was revealed in this work. It was established that the rates of the average value growth of the relative local shear and the shear power in the slip traces reach the largest values at the transition stage.« less

  18. Analyzing shear band formation with high resolution X-ray diffraction

    DOE PAGES

    Pagan, Darren C.; Obstalecki, Mark; Park, Jun-Sang; ...

    2018-01-10

    Localization of crystallographic slip into shear bands during uniaxial compression of a copper single crystal is studied using very far-field high-energy diffraction microscopy (vff-HEDM). Diffracted intensity was collected in-situ as the crystal deformed using a unique mobile detector stage that provided access to multiple diffraction peaks with high-angular resolution. From the diffraction data, single crystal orientation pole figures (SCPFs) were generated and are used to track the evolution of the distribution of lattice orientation that develops as slip localizes. To aid the identification of ‘signatures’ of shear band formation and analyze the SCPF data, a model of slip-driven lattice reorientationmore » within shear bands is introduced. Confidence is built in conclusions drawn from the SCPF data about the character of internal slip localization through comparisons with strain fields on the sample surface measured simultaneously using digital image correlation. From the diffraction data, we find that the active slip direction and slip plane are not directly aligned with the orientation of the shear bands that formed. In fact, by extracting the underlying slip system activity from the SCPF data, we show that intersecting shear bands measured on the surface of the sample arise from slip primarily on the same underlying single slip system. These new vff-HEDM results raise significant questions on the use of surface measurements for slip system activity estimation.« less

  19. Effect of skin hydration on the dynamics of fingertip gripping contact.

    PubMed

    André, T; Lévesque, V; Hayward, V; Lefèvre, P; Thonnard, J-L

    2011-11-07

    The dynamics of fingertip contact manifest themselves in the complex skin movements observed during the transition from a stuck state to a fully developed slip. While investigating this transition, we found that it depended on skin hydration. To quantify this dependency, we asked subjects to slide their index fingertip on a glass surface while keeping the normal component of the interaction force constant with the help of visual feedback. Skin deformation inside the contact region was imaged with an optical apparatus that allowed us to quantify the relative sizes of the slipping and sticking regions. The ratio of the stuck skin area to the total contact area decreased linearly from 1 to 0 when the tangential force component increased from 0 to a maximum. The slope of this relationship was inversely correlated to the normal force component. The skin hydration level dramatically affected the dynamics of the contact encapsulated in the course of evolution from sticking to slipping. The specific effect was to reduce the tendency of a contact to slip, regardless of the variations of the coefficient of friction. Since grips were more unstable under dry skin conditions, our results suggest that the nervous system responds to dry skin by exaggerated grip forces that cannot be simply explained by a change in the coefficient of friction.

  20. Effect of skin hydration on the dynamics of fingertip gripping contact

    PubMed Central

    André, T.; Lévesque, V.; Hayward, V.; Lefèvre, P.; Thonnard, J.-L.

    2011-01-01

    The dynamics of fingertip contact manifest themselves in the complex skin movements observed during the transition from a stuck state to a fully developed slip. While investigating this transition, we found that it depended on skin hydration. To quantify this dependency, we asked subjects to slide their index fingertip on a glass surface while keeping the normal component of the interaction force constant with the help of visual feedback. Skin deformation inside the contact region was imaged with an optical apparatus that allowed us to quantify the relative sizes of the slipping and sticking regions. The ratio of the stuck skin area to the total contact area decreased linearly from 1 to 0 when the tangential force component increased from 0 to a maximum. The slope of this relationship was inversely correlated to the normal force component. The skin hydration level dramatically affected the dynamics of the contact encapsulated in the course of evolution from sticking to slipping. The specific effect was to reduce the tendency of a contact to slip, regardless of the variations of the coefficient of friction. Since grips were more unstable under dry skin conditions, our results suggest that the nervous system responds to dry skin by exaggerated grip forces that cannot be simply explained by a change in the coefficient of friction. PMID:21490002

  1. Investigation of intraplate seismicity near the sites of the 2012 major strike-slip earthquakes in the eastern Indian Ocean through a passive-source OBS experiment

    NASA Astrophysics Data System (ADS)

    Guo, L.; Lin, J.; Yang, H.

    2017-12-01

    The 11 April 2012 Mw8.6 earthquake off the coast of Sumatra in the eastern Indian Ocean was the largest strike-slip earthquake ever recorded. The 2012 mainshock and its aftershock sequences were associated with complex slip partitioning and earthquake interactions of an oblique convergent system, in a new plate boundary zone between the Indian and Australian plates. The detail processes of the earthquake interactions and correlation with seafloor geological structure, however, are still poorly known. During March-April 2017, an array of broadband OBS (ocean bottom seismometer) were deployed, for the first time, near the epicenter region of the 2012 earthquake sequence. During post-expedition data processing, we identified 70 global earthquakes from the National Earthquake Information Center (NEIC) catalog that occurred during our OBS deployment period. We then picked P and S waves in the seismic records and analyzed their arrival times. We further identified and analyzed multiple local earthquakes and examined their relationship to the observed seafloor structure (fracture zones, seafloor faults, etc.) and the state of stresses in this region of the eastern Indian Ocean. The ongoing analyses of the data obtained from this unique seismic experiment are expected to provide important constraints on the large-scale intraplate deformation in this part of the eastern Indian Ocean.

  2. Geochemistry, mineralization, structure, and permeability of a normal-fault zone, Casino mine, Alligator Ridge district, north central Nevada

    NASA Astrophysics Data System (ADS)

    Hammond, K. Jill; Evans, James P.

    2003-05-01

    We examine the geochemical signature and structure of the Keno fault zone to test its impact on the flow of ore-mineralizing fluids, and use the mined exposures to evaluate structures and processes associated with normal fault development. The fault is a moderately dipping normal-fault zone in siltstone and silty limestone with 55-100 m of dip-slip displacement in north-central Nevada. Across-strike exposures up to 180 m long, 65 m of down-dip exposure and 350 m of along-strike exposure allow us to determine how faults, fractures, and fluids interact within mixed-lithology carbonate-dominated sedimentary rocks. The fault changes character along strike from a single clay-rich slip plane 10-20 mm thick at the northern exposure to numerous hydrocarbon-bearing, calcite-filled, nearly vertical slip planes in a zone 15 m wide at the southern exposure. The hanging wall and footwall are intensely fractured but fracture densities do not vary markedly with distance from the fault. Fault slip varies from pure dip-slip to nearly pure strike-slip, which suggests that either slip orientations may vary on faults in single slip events, or stress variations over the history of the fault caused slip vector variations. Whole-rock major, minor, and trace element analyses indicate that Au, Sb, and As are in general associated with the fault zone, suggesting that Au- and silica-bearing fluids migrated along the fault to replace carbonate in the footwall and adjacent hanging wall rocks. Subsequent fault slip was associated with barite and calcite and hydrocarbon-bearing fluids deposited at the southern end of the fault. No correlation exists at the meter or tens of meter scale between mineralization patterns and fracture density. We suggest that the fault was a combined conduit-barrier system in which the fault provides a critical connection between the fluid sources and fractures that formed before and during faulting. During the waning stages of deposit formation, the fault behaved as a localized conduit to hydrocarbon-bearing calcite veins. The results of this study show that fault-zone character may change dramatically over short, deposit- or reservoir-scale distances. The presence of damage zones may not be well correlated at the fine scale with geochemically defined regions of the fault, even though a gross spatial correlation may exist.

  3. The Importance of Accurate Secondary Electron Yields in Modeling Spacecraft Charging

    DTIC Science & Technology

    1986-05-01

    Release; Distribution Unlimited AIR FORCE GEOPHYSICS LABORATORY AIR FORCE SYSTEMS COMMAND •IDTIC UNITED STATES AIR FORCE FLECTE HANSCOM AIR FORCE BASE...properties are taken to be those of solor cell rover slip model developed for NASCAP (MandeU et at, (1984)) since most of the exterior surface of the...Research 85, 1155, 1980. Garrett, H. B., "Spacecraft Charging: A Review", in Space Systems and Their Interactions with the Earth’. Space Environment, H

  4. Mechanics Model for Simulating RC Hinges under Reversed Cyclic Loading

    PubMed Central

    Shukri, Ahmad Azim; Visintin, Phillip; Oehlers, Deric J.; Jumaat, Mohd Zamin

    2016-01-01

    Describing the moment rotation (M/θ) behavior of reinforced concrete (RC) hinges is essential in predicting the behavior of RC structures under severe loadings, such as under cyclic earthquake motions and blast loading. The behavior of RC hinges is defined by localized slip or partial interaction (PI) behaviors in both the tension and compression region. In the tension region, slip between the reinforcement and the concrete defines crack spacing, crack opening and closing, and tension stiffening. While in the compression region, slip along concrete to concrete interfaces defines the formation and failure of concrete softening wedges. Being strain-based, commonly-applied analysis techniques, such as the moment curvature approach, cannot directly simulate these PI behaviors because they are localized and displacement based. Therefore, strain-based approaches must resort to empirical factors to define behaviors, such as tension stiffening and concrete softening hinge lengths. In this paper, a displacement-based segmental moment rotation approach, which directly simulates the partial interaction behaviors in both compression and tension, is developed for predicting the M/θ response of an RC beam hinge under cyclic loading. Significantly, in order to develop the segmental approach, a partial interaction model to predict the tension stiffening load slip relationship between the reinforcement and the concrete is developed. PMID:28773430

  5. Mechanics Model for Simulating RC Hinges under Reversed Cyclic Loading.

    PubMed

    Shukri, Ahmad Azim; Visintin, Phillip; Oehlers, Deric J; Jumaat, Mohd Zamin

    2016-04-22

    Describing the moment rotation (M/θ) behavior of reinforced concrete (RC) hinges is essential in predicting the behavior of RC structures under severe loadings, such as under cyclic earthquake motions and blast loading. The behavior of RC hinges is defined by localized slip or partial interaction (PI) behaviors in both the tension and compression region. In the tension region, slip between the reinforcement and the concrete defines crack spacing, crack opening and closing, and tension stiffening. While in the compression region, slip along concrete to concrete interfaces defines the formation and failure of concrete softening wedges. Being strain-based, commonly-applied analysis techniques, such as the moment curvature approach, cannot directly simulate these PI behaviors because they are localized and displacement based. Therefore, strain-based approaches must resort to empirical factors to define behaviors, such as tension stiffening and concrete softening hinge lengths. In this paper, a displacement-based segmental moment rotation approach, which directly simulates the partial interaction behaviors in both compression and tension, is developed for predicting the M/θ response of an RC beam hinge under cyclic loading. Significantly, in order to develop the segmental approach, a partial interaction model to predict the tension stiffening load slip relationship between the reinforcement and the concrete is developed.

  6. Large-scale fault interactions at the termination of a subduction margin

    NASA Astrophysics Data System (ADS)

    Mouslopoulou, V.; Nicol, A., , Prof; Moreno, M.; Oncken, O.; Begg, J.; Kufner, S. K.

    2017-12-01

    Active subduction margins terminate against, and transfer their slip onto, plate-boundary transform faults. The manner in which plate motion is accommodated and partitioned across such kinematic transitions from thrust to strike-slip faulting over earthquake timescales, is poorly documented. The 2016 November 14th, Mw 7.8 Kaikoura Earthquake provides a rare snapshot of how seismic-slip may be accommodated at the tip of an active subduction margin. Analysis of uplift data collected using a range of techniques (field measurements, GPS, LiDAR) and published mapping coupled with 3D dislocation modelling indicates that earthquake-slip ruptured multiple faults with various orientations and slip mechanisms. Modelled and measured uplift patterns indicate that slip on the plate-interface was minor. Instead, a large offshore thrust fault, modelled to splay-off the plate-interface and to extend to the seafloor up to 15 km east of the South Island, appears to have released subduction-related strain and to have facilitated slip on numerous, strike-slip and oblique-slip faults on its hanging-wall. The Kaikoura earthquake suggests that these large splay-thrust faults provide a key mechanism in the transfer of plate motion at the termination of a subduction margin and represent an important seismic hazard.

  7. Coseismic slip of two large Mexican earthquakes from teleseismic body waveforms - Implications for asperity interaction in the Michoacan plate boundary segment

    NASA Astrophysics Data System (ADS)

    Mendoza, Carlos

    1993-05-01

    The distributions and depths of coseismic slip are derived for the October 25, 1981 Playa Azul and September 21, 1985 Zihuatanejo earthquakes in western Mexico by inverting the recorded teleseismic body waves. Rupture during the Playa Azul earthquake appears to have occurred in two separate zones both updip and downdip of the point of initial nucleation, with most of the slip concentrated in a circular region of 15-km radius downdip from the hypocenter. Coseismic slip occurred entirely within the area of reduced slip between the two primary shallow sources of the Michoacan earthquake that occurred on September 19, 1985, almost 4 years later. The slip of the Zihuatanejo earthquake was concentrated in an area adjacent to one of the main sources of the Michoacan earthquake and appears to be the southeastern continuation of rupture along the Cocos-North America plate boundary. The zones of maximum slip for the Playa Azul, Zihuatanejo, and Michoacan earthquakes may be considered asperity regions that control the occurrence of large earthquakes along the Michoacan segment of the plate boundary.

  8. Interacting effects of strengthening and twin boundary migration in nanotwinned materials

    NASA Astrophysics Data System (ADS)

    Joshi, Kartikey; Joshi, Shailendra P.

    Twin boundaries play a governing role in the mechanical characteristics of nanotwinned materials. They act as yield strengthening agents by offering resistance to non-coplanar dislocation slip. Twin boundary migration may cause yield softening while also enhancing the strain hardening response. In this work, we investigate the interaction between strengthening and twin boundary migration mechanisms by developing a length-scale dependent crystal plasticity framework for face-centered-cubic nanotwinned materials. The crystal plasticity model incorporates strengthening mechanisms due to dislocation pile-up via slip and slip-rate gradients and twin boundary migration via source-based twin partial nucleation and lattice dislocation-twin boundary interaction. The coupled effect of the load orientation and initial twin size on the speed of twin boundary is discussed and an expression for the same is proposed in terms of relevant material parameters. The efficacy of finite element simulations and the analytical expression in predicting evolution of nanotwinned microstructures comprising size and spatial distributions of twins is demonstrated.

  9. Incipient Evolution of the Eastern California Shear Zone through a Transpressional Zone along the San Andreas Fault in the San Bernardino Mountains, California

    NASA Astrophysics Data System (ADS)

    Cochran, W. J.; Spotila, J. A.

    2017-12-01

    Measuring long-term accumulation of strike-slip displacements and transpressional uplift is difficult where strain is accommodated across wide shear zones, as opposed to a single major fault. The Eastern California Shear Zone (ECSZ) in southern California accommodates dextral shear across several strike-slip faults, and is potentially migrating and cutting through a formerly convergent zone of the San Bernardino Mountains (SBM). The advection of crust along the San Andreas fault to the SE has forced these two tectonic regimes into creating a nexus of interacting strike-slip faults north of San Gorgonio Pass. These elements make this region ideal for studying complex fault interactions, evolving fault geometries, and deformational overprinting within a wide shear zone. Using high-resolution topography and field mapping, this study aims to test whether diffuse, poorly formed strike-slip faults within the uplifted SBM block are nascent elements of the ECSZ. Topographic resolution of ≤ 1m was achieved using both lidar and UAV surveys along two Quaternary strike-slip faults, namely the Lake Peak fault and Lone Valley faults. Although the Lone Valley fault cuts across Quaternary alluvium, the geomorphic expression is obscured, and may be the result of slow slip rates. In contrast, the Lake Peak fault is located high elevations north of San Gorgonio Peak in the SBM, and displaces Quaternary glacial deposits. The deposition of large boulders along the escarpment also obscures the apparent magnitude of slip along the fault. Although determining fault offset is difficult, the Lake Peak fault does display evidence for minor right-lateral displacement, where the magnitude of slip would be consistent with individual faults within the ECSZ (i.e. ≤ 1 mm/yr). Compared to the preservation of displacement along strike-slip faults located within the Mojave Desert, the upland region of the SBM adds complexity for measuring fault offset. The distribution of strain across the entire SBM block, the slow rates of slip, and the geomorphic expression of these faults add difficulty for assessing fault-slip evolution. Although evidence for diffuse dextral faulting exists within the formerly uplifted SBM block, future work is needed along these faults to determine if the ECSZ is migrating west.

  10. Surface fault slip associated with the 2004 Parkfield, California, earthquake

    USGS Publications Warehouse

    Rymer, M.J.; Tinsley, J. C.; Treiman, J.A.; Arrowsmith, J.R.; Ciahan, K.B.; Rosinski, A.M.; Bryant, W.A.; Snyder, H.A.; Fuis, G.S.; Toke, N.A.; Bawden, G.W.

    2006-01-01

    Surface fracturing occurred along the San Andreas fault, the subparallel Southwest Fracture Zone, and six secondary faults in association with the 28 September 2004 (M 6.0) Parkfield earthquake. Fractures formed discontinuous breaks along a 32-km-long stretch of the San Andreas fault. Sense of slip was right lateral; only locally was there a minor (1-11 mm) vertical component of slip. Right-lateral slip in the first few weeks after the event, early in its afterslip period, ranged from 1 to 44 mm. Our observations in the weeks following the earthquake indicated that the highest slip values are in the Middle Mountain area, northwest of the mainshock epicenter (creepmeter measurements indicate a similar distribution of slip). Surface slip along the San Andreas fault developed soon after the mainshock; field checks in the area near Parkfield and about 5 km to the southeast indicated that surface slip developed more than 1 hr but generally less than 1 day after the event. Slip along the Southwest Fracture Zone developed coseismically and extended about 8 km. Sense of slip was right lateral; locally there was a minor to moderate (1-29 mm) vertical component of slip. Right-lateral slip ranged from 1 to 41 mm. Surface slip along secondary faults was right lateral; the right-lateral component of slip ranged from 3 to 5 mm. Surface slip in the 1966 and 2004 events occurred along both the San Andreas fault and the Southwest Fracture Zone. In 1966 the length of ground breakage along the San Andreas fault extended 5 km longer than that mapped in 2004. In contrast, the length of ground breakage along the Southwest Fracture Zone was the same in both events, yet the surface fractures were more continuous in 2004. Surface slip on secondary faults in 2004 indicated previously unmapped structural connections between the San Andreas fault and the Southwest Fracture Zone, further revealing aspects of the structural setting and fault interactions in the Parkfield area.

  11. Inference of Time-Evolving Coupled Dynamical Systems in the Presence of Noise

    NASA Astrophysics Data System (ADS)

    Stankovski, Tomislav; Duggento, Andrea; McClintock, Peter V. E.; Stefanovska, Aneta

    2012-07-01

    A new method is introduced for analysis of interactions between time-dependent coupled oscillators, based on the signals they generate. It distinguishes unsynchronized dynamics from noise-induced phase slips and enables the evolution of the coupling functions and other parameters to be followed. It is based on phase dynamics, with Bayesian inference of the time-evolving parameters achieved by shaping the prior densities to incorporate knowledge of previous samples. The method is tested numerically and applied to reveal and quantify the time-varying nature of cardiorespiratory interactions.

  12. Inflation Leading to a Slow Slip Event and Volcanic Unrest at Mount Etna in 2016: Insights From CGPS Data

    NASA Astrophysics Data System (ADS)

    Bruno, V.; Mattia, M.; Montgomery-Brown, E.; Rossi, M.; Scandura, D.

    2017-12-01

    Global Positioning System (CGPS) data from Mount Etna between May 2015 and September 2016 show intense inflation and a concurrent Slow Slip Event (SSE) from 11 December 2015 to 17 May 2016. In May 2016, an eruptive phase started from the summit craters, temporarily stopping the ongoing inflation. The CGPS data presented here give us the opportunity to determine (1) the source of the inflating body, (2) the strain rate parameters highlighting shear strain rate accumulating along NE Rift and S Rift, (3) the magnitude of the SSE, and (4) possible interaction between modeled sources and other flank structures through stress calculations. By analytical inversion, we find an inflating source 5.5 km under the summit (4.4 km below sea level) and flank slip in a fragmented shallow structure accommodating displacements equivalent to a magnitude Mw6.1 earthquake. These large displacements reflect a complex mechanism of rotations indicated by the inversion of CGPS data for strain rate parameters. At the scale of the volcano, these processes can be considered precursors of seismic activity in the eastern flank of the volcano but concentrated mainly on the northern boundary of the mobile eastern flank along the Pernicana Fault and in the area of the Timpe Fault System.

  13. Analyzing shear band formation with high resolution X-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pagan, Darren C.; Obstalecki, Mark; Park, Jun-Sang

    Localization of crystallographic slip into shear bands during uniaxial compression of a copper single crystal is studied using very far-field high-energy diffraction microscopy (vff-HEDM). Diffracted intensity was collected in-situ as the crystal deformed using a unique mobile detector stage that provided access to multiple diffraction peaks with high-angular resolution. From the diffraction data, single crystal orientation pole figures (SCPFs) were generated and are used to track the evolution of the distribution of lattice orientation that develops as slip localizes. To aid the identification of 'signatures' of shear band formation and analyze the SCPF data, a model of slip-driven lattice reorientationmore » within shear bands is introduced. Confidence is built in conclusions drawn from the SCPF data about the character of internal slip localization through comparisons with strain fields on the sample surface measured simultaneously using digital image correlation. From the diffraction data, we find that the active slip direction and slip plane are not directly aligned with the orientation of the shear bands that formed. In fact, by extracting the underlying slip system activity from the SCPF data, we show that intersecting shear bands measured on the surface of the sample arise from slip primarily on the same underlying single slip system. These new vff-HEDM results raise significant questions on the use of surface measurements for slip system activity estimation. (C) 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.« less

  14. Experimental Modeling of Dynamic Shallow Dip-Slip Faulting

    NASA Astrophysics Data System (ADS)

    Uenishi, K.

    2010-12-01

    In our earlier study (AGU 2005, SSJ 2005, JPGU 2006), using a finite difference technique, we have conducted some numerical simulations related to the source dynamics of shallow dip-slip earthquakes, and suggested the possibility of the existence of corner waves, i.e., shear waves that carry concentrated kinematic energy and generate extremely strong particle motions on the hanging wall of a nonvertical fault. In the numerical models, a dip-slip fault is located in a two-dimensional, monolithic linear elastic half space, and the fault plane dips either vertically or 45 degrees. We have investigated the seismic wave field radiated by crack-like rupture of this straight fault. If the fault rupture, initiated at depth, arrests just below or reaches the free surface, four Rayleigh-type pulses are generated: two propagating along the free surface into the opposite directions to the far field, the other two moving back along the ruptured fault surface (interface) downwards into depth. These downward interface pulses may largely control the stopping phase of the dynamic rupture, and in the case the fault plane is inclined, on the hanging wall the interface pulse and the outward-moving Rayleigh surface pulse interact with each other and the corner wave is induced. On the footwall, the ground motion is dominated simply by the weaker Rayleigh pulse propagating along the free surface because of much smaller interaction between this Rayleigh and the interface pulse. The generation of the downward interface pulses and corner wave may play a crucial role in understanding the effects of the geometrical asymmetry on the strong motion induced by shallow dip-slip faulting, but it has not been well recognized so far, partly because those waves are not expected for a fault that is located and ruptures only at depth. However, the seismological recordings of the 1999 Chi-Chi, Taiwan, the 2004 Niigata-ken Chuetsu, Japan, earthquakes as well as a more recent one in Iwate-Miyagi Inland, Japan in 2008, for example, seem to support the need for careful mechanical consideration. In this contribution, utilizing two-dimensional dynamic photoelasticity in conjunction with high speed digital cinematography, we try to perform "fully controlled" laboratory experiments of dip-slip faulting and observe the propagation of interface pulses and corner waves mentioned above. A birefringent material containing a (model) dip-slip fault plane is prepared, and rupture is initiated in that material using an Nd:YAG laser system, and the evolution of time-dependent isochromatic fringe patterns (contours of maximum in-plane shear stress) associated with the dynamic process of shallow dip-slip faulting is recorded. Use of Nd:YAG laser pulses, instead of ignition of explosives, for rupture initiation may enhance the safety of laboratory fracture experiments and enable us to evaluate the energy entering the material (and hence the energy balance in the system) more precisely, possibly in a more controlled way.

  15. Stress triggering in thrust and subduction earthquakes and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults

    USGS Publications Warehouse

    Lin, J.; Stein, R.S.

    2004-01-01

    We argue that key features of thrust earthquake triggering, inhibition, and clustering can be explained by Coulomb stress changes, which we illustrate by a suite of representative models and by detailed examples. Whereas slip on surface-cutting thrust faults drops the stress in most of the adjacent crust, slip on blind thrust faults increases the stress on some nearby zones, particularly above the source fault. Blind thrusts can thus trigger slip on secondary faults at shallow depth and typically produce broadly distributed aftershocks. Short thrust ruptures are particularly efficient at triggering earthquakes of similar size on adjacent thrust faults. We calculate that during a progressive thrust sequence in central California the 1983 Mw = 6.7 Coalinga earthquake brought the subsequent 1983 Mw = 6.0 Nunez and 1985 Mw = 6.0 Kettleman Hills ruptures 10 bars and 1 bar closer to Coulomb failure. The idealized stress change calculations also reconcile the distribution of seismicity accompanying large subduction events, in agreement with findings of prior investigations. Subduction zone ruptures are calculated to promote normal faulting events in the outer rise and to promote thrust-faulting events on the periphery of the seismic rupture and its downdip extension. These features are evident in aftershocks of the 1957 Mw = 9.1 Aleutian and other large subduction earthquakes. We further examine stress changes on the rupture surface imparted by the 1960 Mw = 9.5 and 1995 Mw = 8.1 Chile earthquakes, for which detailed slip models are available. Calculated Coulomb stress increases of 2-20 bars correspond closely to sites of aftershocks and postseismic slip, whereas aftershocks are absent where the stress drops by more than 10 bars. We also argue that slip on major strike-slip systems modulates the stress acting on nearby thrust and strike-slip faults. We calculate that the 1857 Mw = 7.9 Fort Tejon earthquake on the San Andreas fault and subsequent interseismic slip brought the Coalinga fault ???1 bar closer to failure but inhibited failure elsewhere on the Coast Ranges thrust faults. The 1857 earthquake also promoted failure on the White Wolf reverse fault by 8 bars, which ruptured in the 1952 Mw = 7.3 Kern County shock but inhibited slip on the left-lateral Garlock fault, which has not ruptured since 1857. We thus contend that stress transfer exerts a control on the seismicity of thrust faults across a broad spectrum of spatial and temporal scales. Copyright 2004 by the American Geophysical Union.

  16. Numerical analysis of MHD Casson Navier's slip nanofluid flow yield by rigid rotating disk

    NASA Astrophysics Data System (ADS)

    Rehman, Khalil Ur; Malik, M. Y.; Zahri, Mostafa; Tahir, M.

    2018-03-01

    An exertion is perform to report analysis on Casson liquid equipped above the rigid disk for z bar > 0 as a semi-infinite region. The flow of Casson liquid is achieve through rotation of rigid disk with constant angular frequency Ω bar . Magnetic interaction is consider by applying uniform magnetic field normal to the axial direction. The nanosized particles are suspended in the Casson liquid and rotation of disk is manifested with Navier's slip condition, heat generation/absorption and chemical reaction effects. The obtain flow narrating differential equations subject to MHD Casson nanofluid are transformed into ordinary differential system. For this purpose the Von Karman way of scheme is executed. To achieve accurate trends a computational algorithm is develop rather than to go on with usual build-in scheme. The effects logs of involved parameters, namely magnetic field parameter, Casson fluid parameter, slip parameter, thermophoresis and Brownian motion parameters on radial, tangential velocities, temperature, nanoparticles concentration, Nusselt and Sherwood numbers are provided by means of graphical and tabular structures. It is observed that both tangential and radial velocities are decreasing function of Casson fluid parameter.

  17. Internet and telephonic IVR mixed-mode survey for longitudinal studies: choice, retention, and data equivalency.

    PubMed

    Verma, Santosh K; Courtney, Theodore K; Lombardi, David A; Chang, Wen-Ruey; Huang, Yueng-Hsiang; Brennan, Melanye J; Perry, Melissa J

    2014-01-01

    This study examined data equivalency and loss to follow-up rates from Internet and interactive voice response (IVR) system surveys in a prospective-cohort study. 475 limited-service restaurant workers participating in the 12-week study were given a choice to report their weekly slipping experience by either IVR or Internet. Demographic differences, loss to follow-up, self-reported rates of slipping, and selection of first and last choices were compared. Loss to follow-up rates were slightly higher for those choosing the IVR mode. Rates of slipping and selection of first and last choices were not significantly different between survey modes. Propensity to choose an Internet survey decreased with increasing age, and was the lowest among Spanish speakers (5%) and those with less than a high school education (14%). Studies relying solely on Internet-based data collection may lead to selective exclusion of certain populations. Findings suggest that Internet and IVR may be combined as survey modalities within longitudinal studies. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Work-hardening behaviour of Mg single crystals oriented for basal slip

    NASA Astrophysics Data System (ADS)

    Bhattacharya, B.; Niewczas, M.

    2011-06-01

    Work-hardening behaviour of Mg single crystals oriented for basal slip was studied by means of tensile tests carried out at 4, 78 and 295 K. The crystals show critical resolved shear stress values (CRSS) for a {0001} ? basal slip system in the range 1-1.5 MPa. The samples exhibit two-stage work hardening characteristics consisting of a long easy glide stage and a stage of rapid hardening terminated by failure. The onset of the plastic flow up to the point of fracture is accompanied by a low work-hardening rate in the range 5 × 10-5-5 × 10-4 µ, corresponding to the hardening rate in Stage I of copper single crystals. The analysis of thermally activated glide parameters suggests that forest interactions are rate-controlling processes. The very low value of the activation distance found at 4 K, ∼0.047 b, is attributed to zero-point energy effects. The failure of crystals occurs well before their hardening capacity is exhausted by mechanisms which are characteristic of deformation temperature.

  19. Modeling of deformation behavior and texture evolution in magnesium alloy using the intermediate $$\\phi$$-model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Dongsheng; Ahzi, Said; M'Guil, S. M.

    2014-01-06

    The viscoplastic intermediate phi-model was applied in this work to predict the deformation behavior and texture evolution in a magnesium alloy, an HCP material. We simulated the deformation behavior with different intergranular interaction strengths and compared the predicted results with available experimental results. In this approach, elasticity is neglected and the plastic deformation mechanisms are assumed as a combination of crystallographic slip and twinning systems. Tests are performed for rolling (plane strain compression) of random textured Mg polycrystal as well as for tensile and compressive tests on rolled Mg sheets. Simulated texture evolutions agree well with experimental data. Activities of twinning and slip, predicted by the intermediatemore » $$\\phi$$-model, reveal the strong anisotropic behavior during tension and compression of rolled sheets.« less

  20. Slip complexity and frictional heterogeneities in dynamic fault models

    NASA Astrophysics Data System (ADS)

    Bizzarri, A.

    2005-12-01

    The numerical modeling of earthquake rupture requires the specification of the fault system geometry, the mechanical properties of the media surrounding the fault, the initial conditions and the constitutive law for fault friction. The latter accounts for the fault zone properties and allows for the description of processes of nucleation, propagation, healing and arrest of a spontaneous rupture. In this work I solve the fundamental elasto-dynamic equation for a planar fault, adopting different constitutive equations (slip-dependent and rate- and state-dependent friction laws). We show that the slip patterns may be complicated by different causes. The spatial heterogeneities of constitutive parameters are able to cause the healing of slip, like barrier-healing or slip pulses. Our numerical experiments show that the heterogeneities of the parameter L affect the dynamic rupture propagation and weakly modify the dynamic stress drop and the rupture velocity. The heterogeneity of a and b parameters affects the dynamic rupture propagation in a more complex way: a velocity strengthening area (a > b) can arrest a dynamic rupture, but can be driven to an instability if suddenly loaded by the dynamic rupture front. Our simulations provide a picture of the complex interactions between fault patches having different frictional properties. Moreover, the slip distribution on the fault plane is complicated considering the effects of the rake rotation during the propagation: depending on the position on the fault plane, the orientation of instantaneous total dynamic traction can change with time with respect to the imposed initial stress direction. These temporal rake rotations depend on the amplitude of the initial stress and on its distribution. They also depend on the curvature and direction of the rupture front with respect to the imposed initial stress direction: this explains why rake rotations are mostly located near the rupture front and within the cohesive zone, where the breakdown processes take places. Finally, the rupture behavior, the fault slip distribution and the traction evolution may be changed and complicated including additional physical phenomena, like thermal pressurization of pore fluid (due to frictional heating). Our results involve interesting implications for slip duration and fracture energy.

  1. Quaternary Slip History for the Agua Blanca Fault, northern Baja California, Mexico

    NASA Astrophysics Data System (ADS)

    Gold, P. O.; Behr, W. M.; Rockwell, T. K.; Fletcher, J. M.

    2017-12-01

    The Agua Blanca Fault (ABF) is the primary structure accommodating San Andreas-related right-lateral slip across the Peninsular Ranges of northern Baja California. Activity on this fault influences offshore faults that parallel the Pacific coast from Ensenada to Los Angeles and is a potential threat to communities in northern Mexico and southern California. We present a detailed Quaternary slip history for the ABF, including new quantitative constraints on geologic slip rates, slip-per-event, the timing of most recent earthquake, and the earthquake recurrence interval. Cosmogenic 10Be exposure dating of clasts from offset fluvial geomorphic surfaces at 2 sites located along the western, and most active, section of the ABF yield preliminary slip rate estimates of 2-4 mm/yr and 3 mm/yr since 20 ka and 2 ka, respectively. Fault zone geomorphology preserved at the younger site provides evidence for right-lateral surface displacements measuring 2.5 m in the past two ruptures. Luminescence dating of an offset alluvial fan at a third site is in progress, but is expected to yield a slip rate relevant to the past 10 kyr. Adjacent to this third site, we excavated 2 paleoseismic trenches across a sag pond formed by a right step in the fault. Preliminary radiocarbon dates indicate that the 4 surface ruptures identified in the trenches occurred in the past 6 kyr, although additional dating should clarify earthquake timing and the mid-Holocene to present earthquake recurrence interval, as well as the likely date of the most recent earthquake. Our new slip rate estimates are somewhat lower than, but comparable within error to, previous geologic estimates based on soil morphology and geodetic estimates from GPS, but the new record of surface ruptures exposed in the trenches is the most complete and comprehensively dated earthquake history yet determined for this fault. Together with new and existing mapping of tectonically generated geomorphology along the ABF, our constraints show that contrary to some theories of fault interaction and activity for this section of the San Andreas system, the Agua Blanca Fault has been active over the late Holocene, and should be considered as a potential source of seismic hazard.

  2. Interaction between blood and solid particles propagating through a capillary with slip effects.

    PubMed

    Zeeshan, A; Fatima, A; Khalid, F; Bhatti, M M

    2018-04-18

    This article describes the interaction between solid particles and blood propagating through a capillary. A slip condition is considered on the walls of the capillary. The rheological features of the blood are discussed by considering as a two-phase Newtonian fluid model, i.e., the suspension of cells in plasma. A perturbation method is successfully applied to obtain the series solution of the governing coupled differential equations. The series solution for both fluid and particle phase are presented up to second order approximation. The expressions for the velocity and pressure distributions under slip effects are determined within a tube. Furthermore, the current results are beneficial to understand the rheological features of blood which will be helpful to interpret and analyze more complex blood flow models. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Grain size effects on dislocation and twinning mediated plasticity in magnesium

    DOE PAGES

    Fan, Haidong; Aubry, Sylvie; Arsenlis, Athanasios; ...

    2015-09-20

    Grain size effects on the competition between dislocation slip and {101¯2} -twinning in magnesium are investigated using discrete dislocation dynamics simulations. These simulations account for dislocation–twin boundary interactions and twin boundary migration through the glide of twinning dislocations. It is shown that twinning deformation exhibits a strong grain size effect; while dislocation mediated slip in untwinned polycrystals displays a weak one. In conclusion, this leads to a critical grain size at 2.7 μm, above which twinning dominates, and below which dislocation slip dominates.

  4. Analysis of Slip Activity and Deformation Modes in Tension and Tension-Creep Tests of Cast Mg-10Gd-3Y-0.5Zr (Wt Pct) at Elevated Temperatures Using In Situ SEM Experiments

    NASA Astrophysics Data System (ADS)

    Wang, Huan; Boehlert, Carl J.; Wang, Qudong; Yin, Dongdi; Ding, Wenjiang

    2016-05-01

    The tension and tension-creep deformation behavior at elevated temperatures of a cast Mg-10Gd-3Y-0.5Zr (wt pct, GW103) alloy was investigated using in situ scanning electron microscopy. The tests were performed at temperatures ranging from 473 K to 598 K (200 °C to 325 °C). The active slip systems were identified using an EBSD-based slip trace analysis methodology. The results showed that for all of the tests, basal slip was the most likely system to be activated, and non-basal slip was activated to some extent depending on the temperature. No twinning was observed. For the tension tests, non-basal slip consisted of ~35 pct of the deformation modes at low temperatures (473 K and 523 K (200 °C and 250 °C)), while non-basal slip accounted for 12 and 7 pct of the deformation modes at high temperatures (573 K and 598 K (300 °C and 325 °C)), respectively. For the tension-creep tests, non-basal slip accounted for 31 pct of the total slip systems at low temperatures, while this value decreased to 10 to 16 pct at high temperatures. For a given temperature, the relative activity for prismatic slip in the tension-creep tests was slightly greater than that for the tension tests, while the activity for pyramidal slip was lower. Slip-transfer in neighboring grains was observed for the low-temperature tests. Intergranular cracking was the main cracking mode, while some intragranular cracks were observed for the tension-creep tests at high temperature and low stress. Grain boundary ledges were prevalently observed for both the tension and tension-creep tests at high temperatures, which suggests that besides dislocation slip, grain boundary sliding also contributed to the deformation.

  5. Post-1906 stress recovery of the San Andreas fault system calculated from three-dimensional finite element analysis

    USGS Publications Warehouse

    Parsons, T.

    2002-01-01

    The M = 7.8 1906 San Francisco earthquake cast a stress shadow across the San Andreas fault system, inhibiting other large earthquakes for at least 75 years. The duration of the stress shadow is a key question in San Francisco Bay area seismic hazard assessment. This study presents a three-dimensional (3-D) finite element simulation of post-1906 stress recovery. The model reproduces observed geologic slip rates on major strike-slip faults and produces surface velocity vectors comparable to geodetic measurements. Fault stressing rates calculated with the finite element model are evaluated against numbers calculated using deep dislocation slip. In the finite element model, tectonic stressing is distributed throughout the crust and upper mantle, whereas tectonic stressing calculated with dislocations is focused mostly on faults. In addition, the finite element model incorporates postseismic effects such as deep afterslip and viscoelastic relaxation in the upper mantle. More distributed stressing and postseismic effects in the finite element model lead to lower calculated tectonic stressing rates and longer stress shadow durations (17-74 years compared with 7-54 years). All models considered indicate that the 1906 stress shadow was completely erased by tectonic loading no later than 1980. However, the stress shadow still affects present-day earthquake probability. Use of stressing rate parameters calculated with the finite element model yields a 7-12% reduction in 30-year probability caused by the 1906 stress shadow as compared with calculations not incorporating interactions. The aggregate interaction-based probability on selected segments (not including the ruptured San Andreas fault) is 53-70% versus the noninteraction range of 65-77%.

  6. Electro-optical hybrid slip ring

    NASA Astrophysics Data System (ADS)

    Hong, En

    2005-11-01

    The slip ring is a rotary electrical interface, collector, swivel or rotary joint. It is a physical system that can perform continuous data transfer and data exchange between a stationary and a rotating structure. A slip ring is generally used to transfer data or power from an unrestrained, continuously rotating electro-mechanical system in real-time, thereby simplifying operations and eliminating damage-prone wires dangling from moving joints. Slip rings are widely used for testing, evaluating, developing and improving various technical equipment and facilities with rotating parts. They are widely used in industry, especially in manufacturing industries employing turbo machinery, as in aviation, shipbuilding, aerospace, defense, and in precise facilities having rotating parts such as medical Computerized Tomography (CT) and MRI scanners and so forth. Therefore, any improvement in slip ring technology can impact large markets. Research and development in this field will have broad prospects long into the future. The goal in developing the current slip ring technology is to improve and increase the reliability, stability, anti-interference, and high data fidelity between rotating and stationary structures. Up to now, there have been numerous approaches used for signal and data transfer utilizing a slip ring such as metal contacts, wires, radio transmission, and even liquid media. However, all suffer from drawbacks such as data transfer speed limitations, reliability, stability, electro-magnetic interference and durability. The purpose of the current research is to break through these basic limitations using an optical solution, thereby improving performance in current slip ring applications. This dissertation introduces a novel Electro-Optical Hybrid Slip Ring technology, which makes "through the air" digital-optical communication between stationary and rotating systems a reality with high data transfer speed, better reliability and low interference susceptibility. A laboratory scale non-contact Electro-Optical Hybrid Slip Ring system was successfully constructed, and its performance was determined. Experimental results affirmed the advantages of this new technology over current slip ring design.

  7. Cross-slip in face-centered cubic metals: a general Escaig stress-dependent activation energy line tension model

    NASA Astrophysics Data System (ADS)

    Malka-Markovitz, Alon; Mordehai, Dan

    2018-02-01

    Cross-slip is a dislocation mechanism by which screw dislocations can change their glide plane. This thermally activated mechanism is an important mechanism in plasticity and understanding the energy barrier for cross-slip is essential to construct reliable cross-slip rules in dislocation models. In this work, we employ a line tension model for cross-slip of screw dislocations in face-centred cubic (FCC) metals in order to calculate the energy barrier under Escaig stresses. The analysis shows that the activation energy is proportional to the stacking fault energy, the unstressed dissociation width and a typical length for cross-slip along the dislocation line. Linearisation of the interaction forces between the partial dislocations yields that this typical length is related to the dislocation length that bows towards constriction during cross-slip. We show that the application of Escaig stresses on both the primary and the cross-slip planes varies the typical length for cross-slip and we propose a stress-dependent closed form expression for the activation energy for cross-slip in a large range of stresses. This analysis results in a stress-dependent activation volume, corresponding to the typical volume surrounding the stressed dislocation at constriction. The expression proposed here is shown to be in agreement with previous models, and to capture qualitatively the essentials found in atomistic simulations. The activation energy function can be easily implemented in dislocation dynamics simulations, owing to its simplicity and universality.

  8. Variability of Slip Behavior in Simulations of Dynamic Rupture Interaction With Stronger Fault Patches Over Long-Term Deformation Histories

    NASA Astrophysics Data System (ADS)

    Lapusta, N.; Liu, Y.

    2007-12-01

    Heterogeneity in fault properties can have significant effect on dynamic rupture propagation and aseismic slip. It is often assumed that a fixed heterogeneity would have similar effect on fault slip throughout the slip history. We investigate dynamic rupture interaction with a fault patch of higher normal stress over several earthquake cycles in a three-dimensional model. We find that the influence of the heterogeneity on dynamic events has significant variation and depends on prior slip history. We consider a planar strike-slip fault governed by rate and state friction and driven by slow tectonic loading on deeper extension of the fault. The 30 km by 12 km velocity-weakening region, which is potentially seismogenic, is surrounded by steady-state velocity-strengthening region. The normal stress is constant over the fault, except in a circular patch of 2 km in diameter located in the seismogenic region, where normal stress is higher than on the rest of the fault. Our simulations employ the methodology developed by Lapusta and Liu (AGU, 2006), which is able to resolve both dynamic and quasi-static stages of spontaneous slip accumulation in a single computational procedure. The initial shear stress is constant on the fault, except in a small area where it is higher and where the first large dynamic event initiates. For patches with 20%, 40%, 60% higher normal stress, the first event has significant dynamic interaction with the patch, creating a rupture speed decrease followed by a supershear burst and larger slip around the patch. Hence, in the first event, the patch acts as a seismic asperity. For the case of 100% higher stress, the rupture is not able to break the patch in the first event. In subsequent dynamic events, the behavior depends on the strength of heterogeneity. For the patch with 20% higher normal stress, dynamic rupture in subsequent events propagates through the patch without any noticeable perturbation in rupture speed or slip. In particular, supershear propagation and additional slip accumulation around the patch are never repeated in the simulated history of the fault, and the patch stops manifesting itself as a seismic asperity. This is due to higher shear stress that is established at the patch after the first earthquake cycle. For patches with higher normal stress, shear stress redistribution also occurs, but it is less effective. The patches with 40% and 60% higher normal stress continue to affect rupture speed and fault slip in some of subsequent events, although the effect is much diminished with respect to the first event. For example, there are no supershear bursts. The patch with 100% higher normal stress is first broken in the second large event, and it retains significant influence on rupture speed and slip throughout the fault history, occasionally resulting in supershear bursts. Additional slip complexity emerges for patches with 40% and higher normal stress contrast. Since higher normal stress corresponds to a smaller nucleation size, nucleation of some events moves from the rheological transitions (where nucleation occurs in the cases with no stronger patch and with the patch of 20% higher normal stress) to the patches of higher normal stress. The patches nucleate both large, model-spanning, events, and small events that arrest soon after exiting the patch. Hence not every event that originates at the location of a potential seismic asperity is destined to be large, as its subsequent propagation is significantly influenced by the state of stress outside the patch.

  9. Peierls–Nabarro stresses of dislocations in monoclinic cyclotetramethylene tetranitramine (β-HMX)

    NASA Astrophysics Data System (ADS)

    Pal, Anirban; Picu, Catalin R.

    2018-06-01

    HMX (cyclotetramethylene tetranitramine) is an energetic material which releases substantial amounts of energy upon decomposition. The role of defects and deformation in causing reaction initiation was discussed in the literature but remains insufficiently understood. In this work, we identify, using computational methods, the slip systems which are potentially active in β-HMX and rank them in terms of their propensity for slip. To this end, we develop first a tentative ranking based on the degree of steric hindrance associated with slip. This is quantified using a geometric analog of the γ-surface. Further, we use atomistic models to compute the Peierls–Nabarro (PN) stress for the motion of dislocations in the slip systems with smallest degree of steric hindrance. A complex mechanical behavior is observed, including strong slip asymmetry, twinning and cleavage. The five systems with the lowest PN stress are (011)[01\\bar{1}], (011)[100], (101)[010], (101)[10\\bar{1}] and (021)[100]. We conclude that the material has enough slip systems available for supporting a generalized state of plastic strain provided the twinning system (101)[10\\bar{1}] is taken into consideration and that the resolved shear stress is at least 260 MPa.

  10. Rupture Dynamics along Thrust Dipping Fault: Inertia Effects due to Free Surface Wave Interactions

    NASA Astrophysics Data System (ADS)

    Vilotte, J. P.; Scala, A.; Festa, G.

    2017-12-01

    We numerically investigate the dynamic interaction between free surface and up-dip, in-plane rupture propagation along thrust faults, under linear slip-weakening friction. With reference to shallow along-dip rupture propagation during large subduction earthquakes, we consider here low dip-angle fault configurations with fixed strength excess and depth-increasing initial stress. In this configuration, the rupture undergoes a break of symmetry with slip-induced normal stress perturbations triggered by the interaction with reflected waves from the free surface. We found that both body-waves - behind the crack front - and surface waves - at the crack front - can trigger inertial effects. When waves interact with the rupture before this latter reaches its asymptotic speed, the rupture can accelerate toward the asymptotic speed faster than in the unbounded symmetric case, as a result of these inertial effects. Moreover, wave interaction at the crack front also affects the slip rate generating large ground motion on the hanging wall. Imposing the same initial normal stress, frictional strength and stress drop while varying the static friction coefficient we found that the break of symmetry makes the rupture dynamics dependent on the absolute value of friction. The higher the friction the stronger the inertial effect both in terms of rupture acceleration and slip amount. When the contact condition allows the fault interface to open close to the free surface, the length of the opening zone is shown to depend on the propagation length, the initial normal stress and the static friction coefficient. These new results are shown to agree with analytical results of rupture propagation in bounded media, and open new perspectives for understanding the shallow rupture of large subduction earthquakes and tsunami sources.

  11. Slip resistance of casual footwear: implications for falls in older adults.

    PubMed

    Menz, H B; Lord, S T; McIntosh, A S

    2001-01-01

    A large proportion of falls in older people are caused by slipping. Previous occupational safety research suggests that inadequate footwear may contribute to slipping accidents; however, no studies have assessed the slip resistance of casual footwear. To evaluate the slip resistance of different types of casual footwear over a range of common household surfaces. The slip resistance of men's Oxford shoes and women's fashion shoes with different heel configurations was determined by measuring the dynamic coefficient of friction (DCoF) at heel contact (in both dry and wet conditions) on a bathroom tile, concrete, vinyl flooring and a terra cotta tile using a specially-designed piezoelectric force plate apparatus. Analysis of variance revealed significant shoe, surface, and shoe-surface interaction effects. Men's Oxford shoes exhibited higher average DCoF values than the women's fashion shoes, however, none of the shoes could be considered safe on wet surfaces. Application of a textured sole material did not improve slip resistance of any of the shoes on wet surfaces. Heel geometry influences the slip resistance of casual footwear on common household surfaces. The suboptimal performance of all of the test shoes on wet surfaces suggests that a safety standard for casual footwear is required to assist in the development of safe footwear for older people. Copyright 2001 S. Karger AG, Basel

  12. Modeling stick-slip-separation dynamics in a bimodal standing wave ultrasonic motor

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Yao, Zhiyuan; Lv, Qibao; Liu, Zhen

    2016-11-01

    Ultrasonic motor (USM) is an electromechanical coupling system with ultrasonic vibration, which is driven by the frictional contact force between the stator (vibrating body) and the rotor/slider (driven body). Stick-slip motion can occur at the contact interface when USM is operating, which may affect the performance of the motor. This paper develops a physically-based model to investigate the complex stick-slip-separation dynamics in a bimodal standing wave ultrasonic motor. The model includes both friction nonlinearity and intermittent separation nonlinearity of the system. Utilizing Hamilton's principle and assumed mode method, the dynamic equations of the stator are deduced. Based on the dynamics of the stator and the slider, sticking force during the stick phase is derived, which is used to examine the stick-to-slip transition. Furthermore, the stick-slip-separation kinematics is analyzed by establishing analytical criteria that predict the transition between stick, slip and separation of the interface. Stick-slip-separation motion is observed in the resulting model, and numerical simulations are performed to study the influence of parameters on the range of possible motions. Results show that stick-slip motion can occur with greater preload and smaller voltage amplitude. Furthermore, a dimensionless parameter is proposed to predict the occurrence of stick-slip versus slip-separation motions, and its role in designing ultrasonic motors is discussed. It is shown that slip-separation motion is favorable for the slider velocity.

  13. Anomalous Drag Reduction and Hydrodynamic Interactions of Nanoparticles in Polymer Nanocomposite Thin Films

    NASA Astrophysics Data System (ADS)

    Basu, Jaydeep; Begam, Nafisa; Chandran, Sivasurender; Sprung, Michael

    2015-03-01

    One of the central dogma of fluid physics is the no-slip boundary condition whose validity has come under intense scrutiny, especially in the fields of micro and nanofluidics. Although various studies show the violation of the no-slip condition its effect on flow of colloidal particles in viscous media has been rarely explored. Here we report unusually large reduction of effective drag experienced by polymer grafted nanoparticles moving through a highly viscous film of polymer, well above its glass transition temperature. The extent of drag reduction increases with decreasing temperature and polymer film thickness. We also observe apparent divergence of the wave vector dependent hydrodynamic interaction function of these nanoparticles with an anomalous power law exponent of ~ 2 at the lowest temperatures and film thickness. Such strong hydrodynamic interactions are not expected in polymer melts where these interactions are known to be screened to molecular dimensions. We provide evidence for the presence of large hydrodynamic slip at the nanoparticle-polymer interface and demonstrate its tunability with temperature and confinement. Our study suggests novel physics emerging in dynamics nanoparticles due to confinement and interface wettability in thin films of polymer nanocomposites.

  14. ON the interaction of the north andes plate with the caribbean and south american plates in northwestern south america from gps geodesy and seismic data

    NASA Astrophysics Data System (ADS)

    Pérez, Omar J.; Wesnousky, Steven G.; De La Rosa, Roberto; Márquez, Julio; Uzcátegui, Redescal; Quintero, Christian; Liberal, Luis; Mora-Páez, Héctor; Szeliga, Walter

    2018-06-01

    We examine the hypocentral distribution of seismicity and a series of geodetic velocity vectors obtained from Global Positioning System (GPS) observations between 1994 and 2015 both off-shore and mainland northwestern South America [66° W - 77° W; 8° N - 14° N]. Our analysis, that includes a kinematic block modeling, shows that east of the Caribbean-South American-North Andes plates triple junction at ˜68° W; 10.7° N, right-lateral easterly oriented shear motion (˜19.6 ± 2.0 mm/yr) between the Caribbean and South-America plates is split along two easterly striking, right-lateral strike slip subparallel fault zones: the San Sebastián fault that runs offshore the Venezuelan coast and slips about 17.0 ± 0.5 mm/yr, and the La Victoria fault, located onshore to the south, which is accumulating strain equivalent to 2.6 ± 0.4 mm/yr. West of the triple junction, relative right-lateral motion between the Caribbean and South American plates is mostly divided between the Morrocoy and Boconó fault systems which strike northwest and southwest from the triple junction, respectively, and bound the intervening North Andes plate that shows an easterly oriented geodetic slip of 15.0 ± 1.0 mm/yr relative to the South American plate. Slip on the Morrocoy fault is right-lateral and transtensional. Motion across the Boconó fault is also right-lateral but instead transpressional, divided between ˜9 to 11 mm/yr of right-slip on the Boconó fault and 2 to 5 mm/yr of convergence across adjacent and subparallel thrust faults. Farther west of the triple junction, ˜800 km away in northern Colombia, the Caribbean plate subducts to the southeast beneath the North Andes plate at a geodetically estimated rate of ˜5-7 mm/yr.

  15. Effect of water on olivine single crystal plasticity, deformed under upper mantle condition

    NASA Astrophysics Data System (ADS)

    Girard, J.; Chen, J.; Raterron, P. C.; Holyoke, C. W.

    2011-12-01

    The earth upper mantle, mainly composed of olivine, is seismically anisotropic. Seismic anisotropy attenuation has been observed at 200km depth. Karato et al. (1992) attributed this attenuation to a transition between two deformation mechanisms, from dislocation creep above 200km to diffusion creep bellow 200km. This transition occurs because of hydroxyl concentration. Mainprice et al.(2005) predicted a change in LPO induced by a change of slip system, from [100] slip to [001] slip, though theoritical modeling. According to his study, pressure is the parameter inducing the slip system transition, which is responsible for the seismic anisotropy attenuation. Raterron et al. (2007) performed single crystal deformation experiment under anhydrous conditions and observe that slip system transition occurring around 8 GPa. However this pressure would correspond to 300km depth which doesn't match the seismic anisotropy attenuation depth, observed by seismologist. In this study, experiments have been performed to quantify the effects of water on olivine single crystals deformed using Deformation DIA press and synchrotron beam. Deformation was carried out in uniaxial compression along the so-called [110]c and [011]c crystallographic direction in order to activate [100](010) and [001](010) dislocation slip system respectively, at P ranging from 4 to 8GPa and T=1200°C. Both single crystals were loaded in the cell to directly compare their deformation in same condition of stress temperature and pressure. We used a sleeve (talc = enstatite + coesite + H2O) about the annulus of the single crystals as source of water in the assembly. Stress and specimen strain rates were calculated by in-situ X-ray diffraction and time resolved imaging, respectively. By direct comparison of single crystals strain rates, we observed that [110]c deform faster than [011]c bellow 5GPa. However above 6GPa [011]c deform faster. This revealed that [100](010) is the dominant slip system bellow 5GPa, and [001](010) becomes dominant above 6GPa. Thus, we observe a slip system switch over at about 5-6GPa in wet condition. This slip system switch over will result in change of lattice preferred orientation in olivine, from [100] slip to [001] slip, and therefore reduce seismic anisotropy attenuation down to 1.9% (Mainprice et al.,2005). According to our results, the slip system transition is induced by pressure, and water influences the pressure where the switch over occurs. These results not only can explain the depth where the seismic anisotropy attenuation (i.e. 200 km, corresponding to 6GPa) but also can help to understand the regional variation of the depth, as local hydroxyl contents in the mantle may varies significantly. TEM investigation and water content measurement of recovered specimens from the deformation experiments will also be discussed.

  16. Cenozoic Shift From Compression to Strike-Slip Stress Regime in the High Andes at 30°S, During the Shallowing of the Slab: Implications for the El Indio/Tambo Mineral District

    NASA Astrophysics Data System (ADS)

    Giambiagi, Laura; Álvarez, Patricia Pamela; Creixell, Christian; Mardonez, Diego; Murillo, Ismael; Velásquez, Ricardo; Lossada, Ana; Suriano, Julieta; Mescua, José; Barrionuevo, Matías

    2017-11-01

    In the High Andes of central Chile, above the flat-slab segment, analysis of more than 1,000 fault slip data from Miocene outcrops provides evidence for a change of the regional tectonic regime from compressional to strike slip. This shift in tectonic regime occurred during the waning stages of arc volcanism between 14 and 11 Ma, as a result of the shallowing of the Nazca plate, in conjunction with the migration of deformation to the Precordillera. During the early to middle Miocene, a compressive regime with horizontal σ1 axis (N86°E) was responsible for reverse slip along NNE to N-striking faults. During the late Miocene, a shift to strike-slip tectonics took place due to an increase in the absolute magnitude of the vertical stress component as the crust thickened and the gravitational potential energy increase. We argue that instead of the previously accepted highly compressional setting in the arc region during the slab flattening, the change to a strike-slip regime was the main control on mineralization. Mineralization was controlled by the promotion of fluid expulsion from the magma chambers along active, subvertical strike-slip fault systems with a high slip tendency, and focusing of fluids in localized areas undergoing extension. Under this strike-slip regime, the El Indio, Tambo, and La Despensa fault systems formed as dextral strike-slip systems. The tips and jogsites along these faults experienced local extensional stress fields, forming the El Indio and Tambo mineral districts.

  17. First-principles study of the α-ω phase transformation in Ti and Zr coupled to slip modes

    NASA Astrophysics Data System (ADS)

    Kumar, Anil; Bronkhorst, Curt A.; Lookman, Turab

    2018-01-01

    We present first-principles density functional theory calculations to study the α-ω phase transformation in Ti and Zr and its coupling to slip modes of the two phases. We first investigate the relative energetics of all possible slip systems in the α and ω phases to predict the dominant slip system that is activated during a plastic deformation under an arbitrary load. Using this and the crystallographic orientation relationships between α and ω phases, we construct low energy α/ω interfaces and study the energetics of the slip system at the interface between α and ω to compare to the slip systems in the bulk phases. We find that for a particular crystallographic orientation relationship, where (basal) α∥(prismatic-II)ω , and [a] α∥[c] ω , the slip at the interface is preferred compared to its bulk counterparts. This implies that the plastically deformed α/ω phase with this orientation relationship prefers to retain the interface (or coexisting phases) than transforming back to the pure phase after unloading. This is consistent with the observation that the ω-phase is retained in samples loaded in flyer plate experiments or under high-pressure torsion. Furthermore, calculation of the energy barrier for α to ω phase transformation as a function of glide at the α/ω interface shows significant coupling between the α-ω phase transformation and slip modes in Ti and Zr.

  18. New insights into fault activation and stress transfer between en echelon thrusts: The 2012 Emilia, Northern Italy, earthquake sequence

    NASA Astrophysics Data System (ADS)

    Cheloni, D.; Giuliani, R.; D'Agostino, N.; Mattone, M.; Bonano, M.; Fornaro, G.; Lanari, R.; Reale, D.; Atzori, S.

    2016-06-01

    Here we present the results of the inversion of a new geodetic data set covering the 2012 Emilia seismic sequence and the following 1 year of postseismic deformation. Modeling of the geodetic data together with the use of a catalog of 3-D relocated aftershocks allows us to constrain the rupture geometries and the coseismic and postseismic slip distributions for the two main events (Mw 6.1 and 6.0) of the sequence and to explore how these thrust events have interacted with each other. Dislocation modeling reveals that the first event ruptured a slip patch located in the center of the Middle Ferrara thrust with up to 1 m of reverse slip. The modeling of the second event, located about 15 km to the southwest, indicates a main patch with up to 60 cm of slip initiated in the deeper and flatter portion of the Mirandola thrust and progressively propagated postseismically toward the top section of the rupture plane, where most of the aftershocks and afterslip occurred. Our results also indicate that between the two main events, a third thrust segment was activated releasing a pulse of aseismic slip equivalent to a Mw 5.8 event. Coulomb stress changes suggest that the aseismic event was likely triggered by the preceding main shock and that the aseismic slip event probably brought the second fault closer to failure. Our findings show significant correlations between static stress changes and seismicity and suggest that stress interaction between earthquakes plays a significant role among continental en echelon thrusts.

  19. Numerical Modeling Describing the Effects of Heterogeneous Distributions of Asperities on the Quasi-static Evolution of Frictional Slip

    NASA Astrophysics Data System (ADS)

    Selvadurai, P. A.; Parker, J. M.; Glaser, S. D.

    2017-12-01

    A better understanding of how slip accumulates along faults and its relation to the breakdown of shear stress is beneficial to many engineering disciplines, such as, hydraulic fracture and understanding induced seismicity (among others). Asperities forming along a preexisting fault resist the relative motion of the two sides of the interface and occur due to the interaction of the surface topographies. Here, we employ a finite element model to simulate circular partial slip asperities along a nominally flat frictional interface. Shear behavior of our partial slip asperity model closely matched the theory described by Cattaneo. The asperity model was employed to simulate a small section of an experimental fault formed between two bodies of polymethyl methacrylate, which consisted of multiple asperities whose location and sizes were directly measured using a pressure sensitive film. The quasi-static shear behavior of the interface was modeled for cyclical loading conditions, and the frictional dissipation (hysteresis) was normal stress dependent. We further our understanding by synthetically modeling lognormal size distributions of asperities that were randomly distributed in space. Synthetic distributions conserved the real contact area and aspects of the size distributions from the experimental case, allowing us to compare the constitutive behaviors based solely on spacing effects. Traction-slip behavior of the experimental interface appears to be considerably affected by spatial clustering of asperities that was not present in the randomly spaced, synthetic asperity distributions. Estimates of bulk interfacial shear stiffness were determined from the constitutive traction-slip behavior and were comparable to the theoretical estimates of multi-contact interfaces with non-interacting asperities.

  20. The influence of footwear sole hardness on slip characteristics and slip-induced falls in young adults.

    PubMed

    Tsai, Yi-Ju; Powers, Christopher M

    2013-01-01

    Theoretically, a shoe that provides less friction could result in a greater slip distance and foot slipping velocity, thereby increasing the likelihood of falling. The purpose of this study was to investigate the effects of sole hardness on the probability of slip-induced falls. Forty young adults were randomized into a hard or a soft sole shoe group, and tested under both nonslippery and slippery floor conditions using a motion analysis system. The proportions of fall events in the hard- and soft-soled shoe groups were not statistically different. No differences were observed between shoe groups for average slip distance, peak and average heel velocity, and center of mass slipping velocity. A strong association was found between slip distance and the fall probability. Our results demonstrate that the probability of a slip-induced fall was not influenced by shoe hardness. Once a slip is induced, slip distance was the primary predictor of a slip-induced fall. © 2012 American Academy of Forensic Sciences.

  1. Interaction between regional and magma-induced stresses and their impact on volcano-tectonic seismicity

    NASA Astrophysics Data System (ADS)

    Vargas-Bracamontes, D. M.; Neuberg, J. W.

    2012-10-01

    Recent seismological observations have reported volcano-tectonic (VT) earthquakes with fault-plane solutions exhibiting a change of ~ 90° in their pressure axes relative to the regional stress field. Interestingly, they are recorded mainly during periods preceding eruptive activity and coexisting with those VTs showing a regional trend. This study explains the occurrence of such trends in VT seismicity and discusses the possible patterns of earthquake locations related to the interaction of regional and magma-induced stresses caused by pressurization or depressurization of magmatic sources. Our analysis shows that in the presence of a dominant regional stress field, faulting will occur on faults whose associated slip direction is close to or in agreement with the background regional stress. Failure on faults with an opposite slip direction is unlikely to occur. As magma pressure starts counter-acting the regional stresses, the likelihood of faults to slip in either a regional or opposite sense of slip relative to regional maximum compression increases, allowing the co-existence of possible failure with both slip tendencies, however the spatial distribution of possible faulting differs. As the pressure is progressively increased, the stress patterns gradually approach those corresponding to the absence of a regional stress field. The presented modeling results have implications for volcanic monitoring routines aiming to detect changes in stress patterns. They will ultimately help to improve the correct interpretation of volcano-tectonic seismicity.

  2. The cyclic stress-strain behavior of a nickel-base superalloy at 650 C

    NASA Technical Reports Server (NTRS)

    Gabb, T. P.; Welsch, G. E.

    1986-01-01

    It is pointed out that examinations of the monotonic tensile and fatigue behaviors of single crystal nickel-base superalloys have disclosed orientation-dependent tension-compression anisotropies and significant differences in the mechanical response of octahedral and cube slip at intermediate temperatures. An examination is conducted of the cyclic hardening response of the single crystal superalloy PWA 1480 at 650 C. In the considered case, tension-compression anisotropy is present, taking into account primarily conditions under which a single slip system is operative. Aspects of a deformation by single slip are considered along with cyclic hardening anisotropy in tension and compression. It is found that specimens deforming by octahedral slip on a single slip system have similar hardening responses in tensile and low cycle fatigue loading. Cyclic strain hardening is very low for specimens displaying single slip.

  3. A 667 year record of coseismic and interseismic Coulomb stress changes in central Italy reveals the role of fault interaction in controlling irregular earthquake recurrence intervals

    NASA Astrophysics Data System (ADS)

    Wedmore, L. N. J.; Faure Walker, J. P.; Roberts, G. P.; Sammonds, P. R.; McCaffrey, K. J. W.; Cowie, P. A.

    2017-07-01

    Current studies of fault interaction lack sufficiently long earthquake records and measurements of fault slip rates over multiple seismic cycles to fully investigate the effects of interseismic loading and coseismic stress changes on the surrounding fault network. We model elastic interactions between 97 faults from 30 earthquakes since 1349 A.D. in central Italy to investigate the relative importance of co-seismic stress changes versus interseismic stress accumulation for earthquake occurrence and fault interaction. This region has an exceptionally long, 667 year record of historical earthquakes and detailed constraints on the locations and slip rates of its active normal faults. Of 21 earthquakes since 1654, 20 events occurred on faults where combined coseismic and interseismic loading stresses were positive even though 20% of all faults are in "stress shadows" at any one time. Furthermore, the Coulomb stress on the faults that experience earthquakes is statistically different from a random sequence of earthquakes in the region. We show how coseismic Coulomb stress changes can alter earthquake interevent times by 103 years, and fault length controls the intensity of this effect. Static Coulomb stress changes cause greater interevent perturbations on shorter faults in areas characterized by lower strain (or slip) rates. The exceptional duration and number of earthquakes we model enable us to demonstrate the importance of combining long earthquake records with detailed knowledge of fault geometries, slip rates, and kinematics to understand the impact of stress changes in complex networks of active faults.

  4. Resolved shear stress intensity coefficient and fatigue crack growth in large crystals

    NASA Technical Reports Server (NTRS)

    Chen, QI; Liu, Hao-Wen

    1988-01-01

    Fatigue crack growth in large grain Al alloy was studied. Fatigue crack growth is caused primarily by shear decohesion due to dislocation motion in the crack tip region. The crack paths in the large crystals are very irregular and zigzag. The crack planes are often inclined to the loading axis both in the inplane direction and the thickness direction. The stress intensity factors of such inclined cracks are approximated from the two dimensional finite element calculations. The plastic deformation in a large crystal is highly anisotropic, and dislocation motion in such crystals are driven by the resolved shear stress. The resolved shear stress intensity coefficient in a crack solid, RSSIC, is defined, and the coefficients for the slip systems at a crack tip are evaluated from the calculated stress intensity factors. The orientations of the crack planes are closely related to the slip planes with the high RSSIC values. If a single slip system has a much higher RSSIC than all the others, the crack will follow the slip plane, and the slip plane becomes the crack plane. If two or more slip systems have a high RSSIC, the crack plane is the result of the decohesion processes on these active slip planes.

  5. Recent Progress on Modeling Slip Deformation in Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Sehitoglu, H.; Alkan, S.

    2018-03-01

    This paper presents an overview of slip deformation in shape memory alloys. The performance of shape memory alloys depends on their slip resistance often quantified through the Critical Resolved Shear Stress (CRSS) or the flow stress. We highlight previous studies that identify the active slip systems and then proceed to show how non- Schmid effects can be dominant in shape memory slip behavior. The work is mostly derived from our recent studies while we highlight key earlier works on slip deformation. We finally discuss the implications of understanding the role of slip on curtailing the transformation strains and also the temperature range over which superelasticity prevails.

  6. Biluminescence via Fluorescence and Persistent Phosphorescence in Amorphous Organic Donor(D4)-Acceptor(A) Conjugates, and Application in Data Security Protection.

    PubMed

    Bhatia, Harsh; Bhattacharjee, Indranil; Ray, Debdas

    2018-06-25

    Purely organic biluminescent materials are of great interest due to the involvement of both singlet and long-lived triplet emissions, which have been used in bio-imaging and organic light-emitting diodes. We show two molecules 3,4,5,6-tetraphenyloxy-phthlonitrile (POP) and 3,4,5,6-tetrakis-p-tolyloxy-phthalonitrile (TOP), in which POP was found to exhibit fluorescence and persistent room-temperature green phosphorescence (pRTGP) in the amorphous and crystal states. Both POP and TOP show aggregation induced emission in tetrahydrofuran-water mixture. We found in single crystal X-ray analysis that intra-and inter molecular lp(O)•••π interactions along with (π(C=C)•••π(C≡N), hydrogen bond (H-B), and C-H•••π interactions induce head-to-tail slipped-stacked arrangement in POP. In addition, X-ray structure of TOP with slipped-stack arrangement induced by only (π(C=C)•••π(C≡N) and H-B interactions, shows dim afterglow only in crystals. These indicate that more number of non-covalent interactions may reinforce relatively efficient inter system crossing that leads to pRTGP even in the amorphous state of POP. Given the unique green afterglow feature in amorphous state of POP, document security protection application is achievable.

  7. Recent state of stress change in the Walker Lane zone, western Basin and Range province, United States

    NASA Astrophysics Data System (ADS)

    Bellier, Olivier; Zoback, Mary Lou

    1995-06-01

    The NW to north-trending Walker Lane zone (WLZ) is located along the western boundary of the northern Basin and Range province with the Sierra Nevada. This zone is distinguished from the surrounding Basin and Range province on the basis of irregular topography and evidence for both normal and strike-slip Holocene faulting. Inversion of slip vectors from active faults, historic fault offsets, and earthquake focal mechanisms indicate two distinct Quaternary stress regimes within the WLZ, both of which are characterized by a consistent WNW σ3 axis; these are a normal faulting regime with a mean σ3 axis of N85°±9°W and a mean stress ratio (R value) (R=(σ2-σ1)/(σ3-σ1)) of 0.63-0.74 and a younger strike-slip faulting regime with a similar mean σ3 axis (N65° - 70°W) and R values ranging between ˜ 0.1 and 0.2. This younger regime is compatible with historic fault offsets and earthquake focal mechanisms. Both the extensional and strike-slip stress regimes reactivated inherited Mesozoic and Cenozoic structures and also produced new faults. The present-day strike-slip stress regime has produced strike-slip, normal oblique-slip, and normal dip-slip historic faulting. Previous workers have explained the complex interaction of active strike-slip, oblique, and normal faulting in the WLZ as a simple consequence of a single stress state with a consistent WNW σ3 axis and transitional between strike-slip and normal faulting (maximum horizontal stress approximately equal to vertical stress, or R ≈ 0 in both regimes) with minor local fluctuations. The slip data reported here support previous results from Owens Valley that suggest deformation within temporally distinct normal and strike-slip faulting stress regimes with a roughly constant WNW trending σ3 axis (Zoback, 1989). A recent change from a normal faulting to a strike-slip faulting stress regime is indicated by the crosscutting striae on faults in basalts <300,000 years old and is consistent with the dominantly strike-slip earthquake focal mechanisms and the youngest striae observed on faults in Plio-Quaternary deposits. Geologic control on the timing of the change is poor; it is impossible to determine if there has been a single recent absolute change or if there is, rather, an alternating or cyclical variation in stress magnitudes. Our slip data, in particular, the cross-cutting normal and strike-slip striae on the same fault plane, are inconsistent with postulated simple strain partitioning of deformation within a single regional stress field suggested for the WLZ by Wesnousky and Jones [1994]. The location of the WLZ between the deep-seated regional extension of the Basin and Range and the right-lateral strike-slip regional tectonics of the San Andreas fault zone is probably responsible for the complex interaction of tectonic regimes in this transition zone. In early to mid-Tertiary time the WLZ appears to have had a similarly complex deformational history, in this case as a back arc or intra-arc region, accommodating at least part of the right-lateral component of oblique convergence as well as a component of extension.

  8. On the development of a model predicting the recrystallization texture of aluminum using the Taylor model for rolling textures and the coincidence lattice site theory

    NASA Astrophysics Data System (ADS)

    T, Morimoto; F, Yoshida; A, Yanagida; J, Yanagimoto

    2015-04-01

    First, hardening model in f.c.c. metals was formulated with collinear interactions slips, Hirth slips and Lomer-Cottrell slips. Using the Taylor and the Sachs rolling texture prediction model, the residual dislocation densities of cold-rolled commercial pure aluminum were estimated. Then, coincidence site lattice grains were investigated from observed cold rolling texture. Finally, on the basis of oriented nucleation theory and coincidence site lattice theory, the recrystallization texture of commercial pure aluminum after low-temperature annealing was predicted.

  9. Maxwell boundary condition and velocity dependent accommodation coefficient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Struchtrup, Henning, E-mail: struchtr@uvic.ca

    2013-11-15

    A modification of Maxwell's boundary condition for the Boltzmann equation is developed that allows to incorporate velocity dependent accommodation coefficients into the microscopic description. As a first example, it is suggested to consider the wall-particle interaction as a thermally activated process with three parameters. A simplified averaging procedure leads to jump and slip boundary conditions for hydrodynamics. Coefficients for velocity slip, temperature jump, and thermal transpiration flow are identified and compared with those resulting from the original Maxwell model and the Cercignani-Lampis model. An extension of the model leads to temperature dependent slip and jump coefficients.

  10. Unravelling the Mysteries of Slip Histories, Validating Cosmogenic 36Cl Derived Slip Rates on Normal Faults

    NASA Astrophysics Data System (ADS)

    Goodall, H.; Gregory, L. C.; Wedmore, L.; Roberts, G.; Shanks, R. P.; McCaffrey, K. J. W.; Amey, R.; Hooper, A. J.

    2017-12-01

    The cosmogenic isotope chlorine-36 (36Cl) is increasingly used as a tool to investigate normal fault slip rates over the last 10-20 thousand years. These slip histories are being used to address complex questions, including investigating slip clustering and understanding local and large scale fault interaction. Measurements are time consuming and expensive, and as a result there has been little work done validating these 36Cl derived slip histories. This study aims to investigate if the results are repeatable and therefore reliable estimates of how normal faults have been moving in the past. Our approach is to test if slip histories derived from 36Cl are the same when measured at different points along the same fault. As normal fault planes are progressively exhumed from the surface they accumulate 36Cl. Modelling these 36Cl concentrations allows estimation of a slip history. In a previous study, samples were collected from four sites on the Magnola fault in the Italian Apennines. Remodelling of the 36Cl data using a Bayesian approach shows that the sites produced disparate slip histories, which we interpret as being due to variable site geomorphology. In this study, multiple sites have been sampled along the Campo Felice fault in the central Italian Apennines. Initial results show strong agreement between the sites we have processed so far and a previous study. This indicates that if sample sites are selected taking the geomorphology into account, then 36Cl derived slip histories will be highly similar when sampled at any point along the fault. Therefore our study suggests that 36Cl derived slip histories are a consistent record of fault activity in the past.

  11. Interplate coupling and seismic-aseismic slip patterns

    NASA Astrophysics Data System (ADS)

    Senatorski, Piotr

    2017-04-01

    Numerical simulations were carried out to explain the seismic and aseismic slip paradox. Recent observations of megathrust faults show that stable and unstable slip movements can occur at the same locations. This contradicts the previous view based on frictional sliding theories. In the present work, an asperity fault model with the slip-dependent friction and stress dependent healing is used to show that the character of slip can change, even if friction parameters, such as strength and slip-weakening distance, are fixed. The reason is that the slow versus fast slip interplay is more than just about the friction law problem. The character of slip depends both on the local friction and on the system stiffness. The stiffness is related to the slipping area size and distribution of slips, so it changes from one event to another. It is also shown that the high strength interplate patches, such as subducted seamounts, can both promote and restrain large earthquakes, depending on the slip-weakening distance lengths.

  12. Velocity statistics for interacting edge dislocations in one dimension from Dyson's Coulomb gas model.

    PubMed

    Jafarpour, Farshid; Angheluta, Luiza; Goldenfeld, Nigel

    2013-10-01

    The dynamics of edge dislocations with parallel Burgers vectors, moving in the same slip plane, is mapped onto Dyson's model of a two-dimensional Coulomb gas confined in one dimension. We show that the tail distribution of the velocity of dislocations is power law in form, as a consequence of the pair interaction of nearest neighbors in one dimension. In two dimensions, we show the presence of a pairing phase transition in a system of interacting dislocations with parallel Burgers vectors. The scaling exponent of the velocity distribution at effective temperatures well below this pairing transition temperature can be derived from the nearest-neighbor interaction, while near the transition temperature, the distribution deviates from the form predicted by the nearest-neighbor interaction, suggesting the presence of collective effects.

  13. Mechanics of slip and fracture along small faults and simple strike-slip fault zones in granitic rock

    NASA Astrophysics Data System (ADS)

    Martel, Stephen J.; Pollard, David D.

    1989-07-01

    We exploit quasi-static fracture mechanics models for slip along pre-existing faults to account for the fracture structure observed along small exhumed faults and small segmented fault zones in the Mount Abbot quadrangle of California and to estimate stress drop and shear fracture energy from geological field measurements. Along small strike-slip faults, cracks that splay from the faults are common only near fault ends. In contrast, many cracks splay from the boundary faults at the edges of a simple fault zone. Except near segment ends, the cracks preferentially splay into a zone. We infer that shear displacement discontinuities (slip patches) along a small fault propagated to near the fault ends and caused fracturing there. Based on elastic stress analyses, we suggest that slip on one boundary fault triggered slip on the adjacent boundary fault, and that the subsequent interaction of the slip patches preferentially led to the generation of fractures that splayed into the zones away from segment ends and out of the zones near segment ends. We estimate the average stress drops for slip events along the fault zones as ˜1 MPa and the shear fracture energy release rate during slip as 5 × 102 - 2 × 104 J/m2. This estimate is similar to those obtained from shear fracture of laboratory samples, but orders of magnitude less than those for large fault zones. These results suggest that the shear fracture energy release rate increases as the structural complexity of fault zones increases.

  14. On the role of fluids in stick-slip dynamics of saturated granular fault gouge using a coupled computational fluid dynamics-discrete element approach: STICK-SLIP IN SATURATED FAULT GOUGE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorostkar, Omid; Guyer, Robert A.; Johnson, Paul A.

    The presence of fault gouge has considerable influence on slip properties of tectonic faults and the physics of earthquake rupture. The presence of fluids within faults also plays a significant role in faulting and earthquake processes. In this study, we present 3-D discrete element simulations of dry and fluid-saturated granular fault gouge and analyze the effect of fluids on stick-slip behavior. Fluid flow is modeled using computational fluid dynamics based on the Navier-Stokes equations for an incompressible fluid and modified to take into account the presence of particles. Analysis of a long time train of slip events shows that themore » (1) drop in shear stress, (2) compaction of granular layer, and (3) the kinetic energy release during slip all increase in magnitude in the presence of an incompressible fluid, compared to dry conditions. We also observe that on average, the recurrence interval between slip events is longer for fluid-saturated granular fault gouge compared to the dry case. This observation is consistent with the occurrence of larger events in the presence of fluid. It is found that the increase in kinetic energy during slip events for saturated conditions can be attributed to the increased fluid flow during slip. Finally, our observations emphasize the important role that fluid flow and fluid-particle interactions play in tectonic fault zones and show in particular how discrete element method (DEM) models can help understand the hydromechanical processes that dictate fault slip.« less

  15. On the role of fluids in stick-slip dynamics of saturated granular fault gouge using a coupled computational fluid dynamics-discrete element approach: STICK-SLIP IN SATURATED FAULT GOUGE

    DOE PAGES

    Dorostkar, Omid; Guyer, Robert A.; Johnson, Paul A.; ...

    2017-05-01

    The presence of fault gouge has considerable influence on slip properties of tectonic faults and the physics of earthquake rupture. The presence of fluids within faults also plays a significant role in faulting and earthquake processes. In this study, we present 3-D discrete element simulations of dry and fluid-saturated granular fault gouge and analyze the effect of fluids on stick-slip behavior. Fluid flow is modeled using computational fluid dynamics based on the Navier-Stokes equations for an incompressible fluid and modified to take into account the presence of particles. Analysis of a long time train of slip events shows that themore » (1) drop in shear stress, (2) compaction of granular layer, and (3) the kinetic energy release during slip all increase in magnitude in the presence of an incompressible fluid, compared to dry conditions. We also observe that on average, the recurrence interval between slip events is longer for fluid-saturated granular fault gouge compared to the dry case. This observation is consistent with the occurrence of larger events in the presence of fluid. It is found that the increase in kinetic energy during slip events for saturated conditions can be attributed to the increased fluid flow during slip. Finally, our observations emphasize the important role that fluid flow and fluid-particle interactions play in tectonic fault zones and show in particular how discrete element method (DEM) models can help understand the hydromechanical processes that dictate fault slip.« less

  16. Various Slip Behaviors in the Frictionally Heterogeneous Fault Model

    NASA Astrophysics Data System (ADS)

    Yabe, S.; Ide, S.

    2017-12-01

    Diverse slip behaviors have been observed on the fault, including regular earthquakes followed by afterslip, and slow earthquakes. In Southwest Japan and Cascadia, hypocenters of slow earthquakes seem to be separated from the locked region of megathrust earthquakes (e.g., Liu et al., 2010). In contrary, M7 earthquakes and their afterslips and repeating occurrences of slow slip events were reported in the coseismic slip area of 2011 M9 earthquake in Tohoku region (Ohta et al., 2012; Ito et al., 2013). Understanding the physical mechanism of diverse slip behavior is important to understand the strain accumulation and release cycle in a whole subduction zone. Among various candidates to explain the slip diversity, including dynamic weakening (e.g., Noda and Lapusta, 2013), fluid-slip interactions (e.g., Segall, 2010), and along-dip variation of frictional property (e.g., Tse and Rice, 1986), we consider in this study frictional heterogeneity on the fault (e.g., Ando et al., 2010, 2012; Nakata et al., 2011; Skarbek et al., 2012; Dublanchet et al., 2013; Yabe and Ide, 2017). We have considered the finite linear fault governed by rate and state friction law on which velocity-weakening zone and velocity-strengthening zone are alternately distributed. The fault outside the model space slips stably, which loads stress to the model space. Such frictionally heterogeneous fault shows diverse slip behavior which cannot be observed in the frictionally homogeneous fault. In some parameter space, the entire faults including velocity-strengthening zones slips seismically (Skarbek et al., 2012; Dublanchet et al., 2013; Yabe and Ide, 2017). We have sometimes observed foreshocks and aftershocks within the mainshock slip area. We have also sometimes observed repeating slow slip events during the inter-seismic period around the rupture initiation point of the mainshock. We will report parameter studies to clarify the relation between diverse slip behavior and frictional heterogeneity.

  17. On the role of fluids in stick-slip dynamics of saturated granular fault gouge using a coupled computational fluid dynamics-discrete element approach

    NASA Astrophysics Data System (ADS)

    Dorostkar, Omid; Guyer, Robert A.; Johnson, Paul A.; Marone, Chris; Carmeliet, Jan

    2017-05-01

    The presence of fault gouge has considerable influence on slip properties of tectonic faults and the physics of earthquake rupture. The presence of fluids within faults also plays a significant role in faulting and earthquake processes. In this paper, we present 3-D discrete element simulations of dry and fluid-saturated granular fault gouge and analyze the effect of fluids on stick-slip behavior. Fluid flow is modeled using computational fluid dynamics based on the Navier-Stokes equations for an incompressible fluid and modified to take into account the presence of particles. Analysis of a long time train of slip events shows that the (1) drop in shear stress, (2) compaction of granular layer, and (3) the kinetic energy release during slip all increase in magnitude in the presence of an incompressible fluid, compared to dry conditions. We also observe that on average, the recurrence interval between slip events is longer for fluid-saturated granular fault gouge compared to the dry case. This observation is consistent with the occurrence of larger events in the presence of fluid. It is found that the increase in kinetic energy during slip events for saturated conditions can be attributed to the increased fluid flow during slip. Our observations emphasize the important role that fluid flow and fluid-particle interactions play in tectonic fault zones and show in particular how discrete element method (DEM) models can help understand the hydromechanical processes that dictate fault slip.

  18. Taming axial dispersion in hydrodynamic chromatography columns through wall patterning

    NASA Astrophysics Data System (ADS)

    Adrover, Alessandra; Cerbelli, Stefano; Giona, Massimiliano

    2018-04-01

    A well-known limitation of hydrodynamic chromatography arises from the synergistic interaction between transverse diffusion and streamwise convection, which enhances axial dispersion through the Taylor-Aris mechanism. We show that a periodic sequence of slip/no-slip conditions at the channel walls (e.g., representing wall indentations hosting stable air pockets) can significantly reduce axial dispersion, thus enhancing separation performance. The theoretical/numerical analysis is based on a generalization of Brenner's macrotransport approach to solute transport, here modified to account for the finite-size of the suspended particles. The most effective dispersion-taming outcome is observed when the alternating sequence of slip/no-slip conditions yields non-vanishing cross-sectional flow components. The combination of these components with the hindering interaction between the channel boundaries and the finite-sized particles gives rise to a non-trivial solution of Brenner's problem on the unit periodic cell, where the cross-sectional particle number density departs from the spatially homogeneous condition. In turn, this effect impacts upon the solution of the so-called b-field defining the large-scale dispersion tensor, with an overall decremental effect on the axial dispersion coefficient and on the Height Equivalent of a Theoretical Plate.

  19. Inertial aided cycle slip detection and identification for integrated PPP GPS and INS.

    PubMed

    Du, Shuang; Gao, Yang

    2012-10-25

    The recently developed integrated Precise Point Positioning (PPP) GPS/INS system can be useful to many applications, such as UAV navigation systems, land vehicle/machine automation and mobile mapping systems. Since carrier phase measurements are the primary observables in PPP GPS, cycle slips, which often occur due to high dynamics, signal obstructions and low satellite elevation, must be detected and repaired in order to ensure the navigation performance. In this research, a new algorithm of cycle slip detection and identification has been developed. With the aiding from INS, the proposed method jointly uses WL and EWL phase combinations to uniquely determine cycle slips in the L1 and L2 frequencies. To verify the efficiency of the algorithm, both tactical-grade and consumer-grade IMUs are tested by using a real dataset collected from two field tests. The results indicate that the proposed algorithm can efficiently detect and identify the cycle slips and subsequently improve the navigation performance of the integrated system.

  20. Is the co-seismic slip distribution fractal?

    NASA Astrophysics Data System (ADS)

    Milliner, Christopher; Sammis, Charles; Allam, Amir; Dolan, James

    2015-04-01

    Co-seismic along-strike slip heterogeneity is widely observed for many surface-rupturing earthquakes as revealed by field and high-resolution geodetic methods. However, this co-seismic slip variability is currently a poorly understood phenomenon. Key unanswered questions include: What are the characteristics and underlying causes of along-strike slip variability? Do the properties of slip variability change from fault-to-fault, along-strike or at different scales? We cross-correlate optical, pre- and post-event air photos using the program COSI-Corr to measure the near-field, surface deformation pattern of the 1992 Mw 7.3 Landers and 1999 Mw 7.1 Hector Mine earthquakes in high-resolution. We produce the co-seismic slip profiles of both events from over 1,000 displacement measurements and observe consistent along-strike slip variability. Although the observed slip heterogeneity seems apparently complex and disordered, a spectral analysis reveals that the slip distributions are indeed self-affine fractal i.e., slip exhibits a consistent degree of irregularity at all observable length scales, with a 'short-memory' and is not random. We find a fractal dimension of 1.58 and 1.75 for the Landers and Hector Mine earthquakes, respectively, indicating that slip is more heterogeneous for the Hector Mine event. Fractal slip is consistent with both dynamic and quasi-static numerical simulations that use non-planar faults, which in turn causes heterogeneous along-strike stress, and we attribute the observed fractal slip to fault surfaces of fractal roughness. As fault surfaces are known to smooth over geologic time due to abrasional wear and fracturing, we also test whether the fractal properties of slip distributions alters between earthquakes from immature to mature fault systems. We will present results that test this hypothesis by using the optical image correlation technique to measure historic, co-seismic slip distributions of earthquakes from structurally mature, large cumulative displacement faults and compare these slip distributions to those from immature fault systems. Our results have fundamental implications for an understanding of slip heterogeneity and the behavior of the rupture process.

  1. Tire-road friction estimation and traction control strategy for motorized electric vehicle.

    PubMed

    Jin, Li-Qiang; Ling, Mingze; Yue, Weiqiang

    2017-01-01

    In this paper, an optimal longitudinal slip ratio system for real-time identification of electric vehicle (EV) with motored wheels is proposed based on the adhesion between tire and road surface. First and foremost, the optimal longitudinal slip rate torque control can be identified in real time by calculating the derivative and slip rate of the adhesion coefficient. Secondly, the vehicle speed estimation method is also brought. Thirdly, an ideal vehicle simulation model is proposed to verify the algorithm with simulation, and we find that the slip ratio corresponds to the detection of the adhesion limit in real time. Finally, the proposed strategy is applied to traction control system (TCS). The results showed that the method can effectively identify the state of wheel and calculate the optimal slip ratio without wheel speed sensor; in the meantime, it can improve the accelerated stability of electric vehicle with traction control system (TCS).

  2. Tire-road friction estimation and traction control strategy for motorized electric vehicle

    PubMed Central

    Jin, Li-Qiang; Yue, Weiqiang

    2017-01-01

    In this paper, an optimal longitudinal slip ratio system for real-time identification of electric vehicle (EV) with motored wheels is proposed based on the adhesion between tire and road surface. First and foremost, the optimal longitudinal slip rate torque control can be identified in real time by calculating the derivative and slip rate of the adhesion coefficient. Secondly, the vehicle speed estimation method is also brought. Thirdly, an ideal vehicle simulation model is proposed to verify the algorithm with simulation, and we find that the slip ratio corresponds to the detection of the adhesion limit in real time. Finally, the proposed strategy is applied to traction control system (TCS). The results showed that the method can effectively identify the state of wheel and calculate the optimal slip ratio without wheel speed sensor; in the meantime, it can improve the accelerated stability of electric vehicle with traction control system (TCS). PMID:28662053

  3. Nonequilibrium transport in superconducting filaments

    NASA Technical Reports Server (NTRS)

    Arutyunov, K. YU.; Danilova, N. P.; Nikolaeva, A. A.

    1995-01-01

    The step-like current-voltage characteristics of highly homogeneous single-crystalline tin and indium thin filaments has been measured. The length of the samples L approximately 1 cm was much greater than the nonequilibrium quasiparticle relaxation length Lambda. It was found that the activation of a successive i-th voltage step occurs at current significantly greater than the one derived with the assumption that the phase slip centers are weakly interacting on a scale L much greater than Lambda. The observation of 'subharmonic' fine structure on the voltage-current characteristics of tin filaments confirms the hypothesis of the long-range phase slip centers interaction.

  4. A New Real-Time Cycle Slip Detection and Repair Method under High Ionospheric Activity for a Triple-Frequency GPS/BDS Receiver.

    PubMed

    Liu, Wanke; Jin, Xueyuan; Wu, Mingkui; Hu, Jie; Wu, Yun

    2018-02-01

    Cycle slip detection and repair is a prerequisite for high-precision global navigation satellite system (GNSS)-based positioning. With the modernization and development of GNSS systems, more satellites are available to transmit triple-frequency signals, which allows the introduction of additional linear combinations and provides new opportunities for cycle slip detection and repair. In this paper, we present a new real-time cycle slip detection and repair method under high ionospheric activity for undifferenced Global Positioning System (GPS)/BeiDou Navigation Satellite System (BDS) triple-frequency observations collected with a single receiver. First, three optimal linearly independent geometry-free pseudorange minus phase combinations are selected to correctly and uniquely determine the cycle slips on the original triple-frequency carrier phase observations. Then, a second-order time-difference algorithm is employed for the pseudorange minus phase combinations to mitigate the impact of between-epoch ionospheric residuals on cycle slip detection, which is especially beneficial under high ionospheric activity. The performance of the approach is verified with static GPS/BDS triple-frequency observations that are collected with a 30 s sampling interval under active ionospheric conditions, and observations are manually inserted with simulated cycle slips. The results show that the method can correctly detect and repair cycle slips at a resolution as small as 1 cycle. Moreover, kinematic data collected from car-driven and airborne experiments are also processed to verify the performance of the method. The experimental results also demonstrate that the method is effective in processing kinematic data.

  5. A New Real-Time Cycle Slip Detection and Repair Method under High Ionospheric Activity for a Triple-Frequency GPS/BDS Receiver

    PubMed Central

    Liu, Wanke; Wu, Mingkui; Hu, Jie; Wu, Yun

    2018-01-01

    Cycle slip detection and repair is a prerequisite for high-precision global navigation satellite system (GNSS)-based positioning. With the modernization and development of GNSS systems, more satellites are available to transmit triple-frequency signals, which allows the introduction of additional linear combinations and provides new opportunities for cycle slip detection and repair. In this paper, we present a new real-time cycle slip detection and repair method under high ionospheric activity for undifferenced Global Positioning System (GPS)/BeiDou Navigation Satellite System (BDS) triple-frequency observations collected with a single receiver. First, three optimal linearly independent geometry-free pseudorange minus phase combinations are selected to correctly and uniquely determine the cycle slips on the original triple-frequency carrier phase observations. Then, a second-order time-difference algorithm is employed for the pseudorange minus phase combinations to mitigate the impact of between-epoch ionospheric residuals on cycle slip detection, which is especially beneficial under high ionospheric activity. The performance of the approach is verified with static GPS/BDS triple-frequency observations that are collected with a 30 s sampling interval under active ionospheric conditions, and observations are manually inserted with simulated cycle slips. The results show that the method can correctly detect and repair cycle slips at a resolution as small as 1 cycle. Moreover, kinematic data collected from car-driven and airborne experiments are also processed to verify the performance of the method. The experimental results also demonstrate that the method is effective in processing kinematic data. PMID:29389879

  6. Structural record of Lower Miocene westward motion of the Alboran Domain in the Western Betics, Spain

    NASA Astrophysics Data System (ADS)

    Frasca, Gianluca; Gueydan, Frédéric; Brun, Jean-Pierre

    2015-08-01

    In the framework of the Africa-Europe convergence, the Mediterranean system presents a complex interaction between subduction rollback and upper-plate deformation during the Tertiary. The western end of the system shows a narrow arcuate geometry across the Gibraltar arc, the Betic-Rif belt, in which the relationship between slab dynamics and surface tectonics is not well understood. The present study focuses on the Western Betics, which is characterized by two major thrusts: 1) the Internal/External Zone Boundary limits the metamorphic domain (Alboran Domain) from the fold-and-thrust belts in the External Zone; 2) the Ronda Peridotites Thrust allows the juxtaposition of a strongly attenuated lithosphere section with large bodies of sub-continental mantle rocks on top of upper crustal rocks. New structural data show that two major E-W strike-slip corridors played a major role in the deformation pattern of the Alboran Domain, in which E-W dextral strike-slip faults, N60° thrusts and N140° normal faults developed simultaneously during dextral strike-slip simple shear. Olistostromic sediments of Lower Miocene age were deposited and deformed in this tectonic context and hence provide an age estimate for the inferred continuous westward translation of the Alboran Domain that is accommodated by an E-W lateral (strike-slip) ramp and a N60° frontal thrust. The crustal emplacement of large bodies of sub-continental mantle may occur at the onset of this westward thrusting in the Western Alboran domain. At lithosphere-scale, we interpret the observed deformation pattern as the subduction upper-plate expression of a lateral slab tear and its westward propagation since the Lower Miocene.

  7. Boundary slip and wetting properties of interfaces: correlation of the contact angle with the slip length.

    PubMed

    Voronov, Roman S; Papavassiliou, Dimitrios V; Lee, Lloyd L

    2006-05-28

    Correlations between contact angle, a measure of the wetting of surfaces, and slip length are developed using nonequilibrium molecular dynamics for a Lennard-Jones fluid in Couette flow between graphitelike hexagonal-lattice walls. The fluid-wall interaction is varied by modulating the interfacial energy parameter epsilonr=epsilonsfepsilonff and the size parameter sigmar=sigmasfsigmaff, (s=solid, f=fluid) to achieve hydrophobicity (solvophobicity) or hydrophilicity (solvophilicity). The effects of surface chemistry, as well as the effects of temperature and shear rate on the slip length are determined. The contact angle increases from 25 degrees to 147 degrees on highly hydrophobic surfaces (as epsilonr decreases from 0.5 to 0.1), as expected. The slip length is functionally dependent on the affinity strength parameters epsilonr and sigmar: increasing logarithmically with decreasing surface energy epsilonr (i.e., more hydrophobic), while decreasing with power law with decreasing size sigmar. The mechanism for the latter is different from the energetic case. While weak wall forces (small epsilonr) produce hydrophobicity, larger sigmar smoothes out the surface roughness. Both tend to increase the slip. The slip length grows rapidly with a high shear rate, as wall velocity increases three decades from 100 to 10(5) ms. We demonstrate that fluid-solid interfaces with low epsilonr and high sigmar should be chosen to increase slip and are prime candidates for drag reduction.

  8. Self-assemblies, helical ribbons and gelation tuned by solvent-gelator interaction in a bi-1,3,4-oxadiazole gelator

    NASA Astrophysics Data System (ADS)

    Zhao, Chengxiao; Bai, Binglian; Wang, Haitao; Qu, Songnan; Xiao, Guanjun; Tian, Taiji; Li, Min

    2013-04-01

    A bi-1,3,4-oxadiazole derivative (BOXDH-T12) showed intramolecular charge transition at concentrations lower than 1 × 10-5 mol/L. The self-assembling behaviors of BOXDH-T12 depended on solvents that it self-assembled into H-aggregates in alcohols and slipped packing aggregates in DMSO. FTIR, 1H NMR and TGA results revealed that strong gelator-gelator hydrogen bonding interaction induced H-aggregation of BOXDH-T12 in alcohols and the interactions between DMSO and BOXDH-T12 molecules caused a slipped stacking. BOXDH-T12 can gel the mixtures of DMSO and ethanol through a cooperative effect of the hydrogen bonding, van der Waals interaction and π-π stacking forces, furthermore, helical ribbons could be observed in DMSO/ethanol due to DMSO molecule interacting. In alcohols, solvophobic/solvophilic effect plays a critical role in gelation behaviors.

  9. Predictions of the shear response of (Mg,Fe)SiO3 post-perovskite

    NASA Astrophysics Data System (ADS)

    Metsue, A.; Tsuchiya, T.

    2011-12-01

    Observation of seismic data put in forth evidence of a spatial anisotropy in the seismic wave velocities in the D'' layer, the lowermost part of the mantle. (Mg,Fe)SiO3 post-perovskite (PPv) is thought to be the most abundant phase in this part of the mantle, and this mineral exhibits a strong elastic anisotropy and may contribute significantly to the seismic anisotropy in the D'' layer. However, the seismic anisotropy cannot be expressed at the rock scale if the orientations of the grains are distributed randomly. Consequently, the formation of lattice preferred orientations with an anisotropic mechanism of plasticity, such as dislocation creep, can cause the seismic anisotropy in the D'' layer. Some experiments have been done on the plasticity of pure and Fe-bearing MgSiO3 post-perovskite and lead to textures of deformation dominated by the (100) and (110) slip planes (Merkel et al., 2007) and by the (001) slip plane (Miyagi et al., 2010). On the other hand, theoretical calculations on the dislocations mobility on pure MgSiO3 (Carrez et al., 2007; Metsue et al., 2009) suggested a texture dominated by the (010) slip plane. A first step to understanding the mechanisms of plasticity and, therefore, the shear wave splitting occurring in the deep Earth is to test the response of the PPv phase to a plastic shear in a geophysical relevant composition. In this study, we present new results from first-principles calculations on the shear response of pure and ferrous iron-bearing MgSiO3 PPv. The originality of this work is the use of internally consistent LSDA+U formalism to accurately describe the local interactions between the d-states of iron. About 8% of iron is incorporated in the high spin state as a Mg substitution defect, since several studies suggest that iron is in the high spin in the D'' layer pressure range (Stackhouse et al., 2006; Metsue and Tsuchiya, 2011). We also performed the calculations for incorporated iron in the low spin state if an eventual spin transition of Fe occurs. The response of the PPv to a plastic shear is investigated at 120 GPa through the calculations of the Generalized Stacking Faults (GSF) energy in pure and iron-bearing systems for ten potential {hkl} slip systems, since these latter are not well constrained for the PPv phase. The GSF energies are obtained by shearing homogeneously half of an infinite crystal over the other half for every slip plane and give the value of the ideal shear stress (ISS), which can be defined as the theoretical elastic limit of the crystal. The [100](001) slip system in pure and iron-bearing phases exhibits the lowest ISS and may play an important role in the plastic deformation of the PPv phase. The activation of this slip system is compatible with the observed shear wave splitting VSH>VSV. We show that incorporation of iron decreases the GSF energy and the ISS of all slip systems. We discuss the plastic anisotropy of pure and iron-bearing phases from the values of the ISS and the orientation of applied tensile stress. Our results suggest that the incorporation of ferrous iron in the PPv phase has a limited effect on its plastic anisotropy.

  10. Variable-Speed Simulation of a Dual-Clutch Gearbox Tiltrotor Driveline

    NASA Technical Reports Server (NTRS)

    DeSmidt, Hans; Wang, Kon-Well; Smith, Edward C.; Lewicki, David G.

    2012-01-01

    This investigation explores the variable-speed operation and shift response of a prototypical two-speed dual-clutch transmission tiltrotor driveline in forward flight. Here, a Comprehensive Variable-Speed Rotorcraft Propulsion System Modeling (CVSRPM) tool developed under a NASA funded NRA program is utilized to simulate the drive system dynamics. In this study, a sequential shifting control strategy is analyzed under a steady forward cruise condition. This investigation attempts to build upon previous variable-speed rotorcraft propulsion studies by 1) including a fully nonlinear transient gas-turbine engine model, 2) including clutch stick-slip friction effects, 3) including shaft flexibility, 4) incorporating a basic flight dynamics model to account for interactions with the flight control system. Through exploring the interactions between the various subsystems, this analysis provides important insights into the continuing development of variable-speed rotorcraft propulsion systems.

  11. Incorporation of experimentally derived friction laws in numerical simulations of earthquake generated tsunamis

    NASA Astrophysics Data System (ADS)

    Murphy, Shane; Spagnuolo, Elena; Lorito, Stefano; Di Toro, Giulio; Scala, Antonio; Festa, Gaetano; Nielsen, Stefan; Piatanesi, Alessio; Romano, Fabrizio; Aretusini, Stefano

    2016-04-01

    Seismological, tsunami and geodetic observations have shown that subduction zones are complex systems where the properties of earthquake rupture vary with depth. For example nucleation and high frequency radiation generally occur at depth but low frequency radiation and large tsunami-genic slip appear to occur in the shallow crustal depth. Numerical simulations used to describe these features predominantly use standardised theoretical equations or experimental observations often assuming that their validity extends to all slip-rates, lithologies and tectonic environments. However recent rotary-shear experiments performed on a range of diverse materials and experimental conditions highlighted the large variability of the evolution of friction during slipping pointing to a more complex relationship between material type, slip rate and normal stress. Simulating dynamic rupture using a 2D spectral element methodology on a Tohoku like fault, we apply experimentally derived friction laws (i.e. thermal slip distance friction law, Di Toro et al. 2011) Choice of parameters for the friction law are based on expected material type (e.g. cohesive and non-cohesive clay rich material representative of an accretionary wedge), the normal stress which is controlled by the interaction between the regional stress field and the fault geometry. The shear stress distribution on the fault plane is fractal with the yield stress dependent on the static coefficient of friction and the normal stress, parameters that are dependent on the material type and geometry. We use metrics such as the slip distribution, ground motion and fracture energy to explore the effect of frictional behaviour, fault geometry and stress perturbations and its potential role in tsunami generation. Preliminary results will be presented. This research is funded by the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 603839 (Project ASTARTE - Assessment, Strategy and Risk Reduction for Tsunamis in Europe) and by the ERC CoG NOFEAR project 614705

  12. SLIP: A Symmetric List Processing Language in PL-I.

    ERIC Educational Resources Information Center

    Leaf, William A.

    SLIP (Symmetric List Processing) is a list processing system designed to be added to a higher order language (PL-1 in this version) so that the user has available to him list processing powers. The primary value of such a system is its data handling power. Through SLIP, one can set up lists of data, scan those lists, alter them, and read or write…

  13. Sequential slip transfer of mixed-character dislocations across Σ3 coherent twin boundary in FCC metals: a concurrent atomistic-continuum study

    DOE PAGES

    Xu, Shuozhi; Xiong, Liming; Chen, Youping; ...

    2016-01-29

    Sequential slip transfer across grain boundaries (GB) has an important role in size-dependent propagation of plastic deformation in polycrystalline metals. For example, the Hall–Petch effect, which states that a smaller average grain size results in a higher yield stress, can be rationalised in terms of dislocation pile-ups against GBs. In spite of extensive studies in modelling individual phases and grains using atomistic simulations, well-accepted criteria of slip transfer across GBs are still lacking, as well as models of predicting irreversible GB structure evolution. Slip transfer is inherently multiscale since both the atomic structure of the boundary and the long-range fieldsmore » of the dislocation pile-up come into play. In this work, concurrent atomistic-continuum simulations are performed to study sequential slip transfer of a series of curved dislocations from a given pile-up on Σ3 coherent twin boundary (CTB) in Cu and Al, with dominant leading screw character at the site of interaction. A Frank-Read source is employed to nucleate dislocations continuously. It is found that subject to a shear stress of 1.2 GPa, screw dislocations transfer into the twinned grain in Cu, but glide on the twin boundary plane in Al. Moreover, four dislocation/CTB interaction modes are identified in Al, which are affected by (1) applied shear stress, (2) dislocation line length, and (3) dislocation line curvature. Our results elucidate the discrepancies between atomistic simulations and experimental observations of dislocation-GB reactions and highlight the importance of directly modeling sequential dislocation slip transfer reactions using fully 3D models.« less

  14. Sequential slip transfer of mixed-character dislocations across Σ3 coherent twin boundary in FCC metals: a concurrent atomistic-continuum study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Shuozhi; Xiong, Liming; Chen, Youping

    Sequential slip transfer across grain boundaries (GB) has an important role in size-dependent propagation of plastic deformation in polycrystalline metals. For example, the Hall–Petch effect, which states that a smaller average grain size results in a higher yield stress, can be rationalised in terms of dislocation pile-ups against GBs. In spite of extensive studies in modelling individual phases and grains using atomistic simulations, well-accepted criteria of slip transfer across GBs are still lacking, as well as models of predicting irreversible GB structure evolution. Slip transfer is inherently multiscale since both the atomic structure of the boundary and the long-range fieldsmore » of the dislocation pile-up come into play. In this work, concurrent atomistic-continuum simulations are performed to study sequential slip transfer of a series of curved dislocations from a given pile-up on Σ3 coherent twin boundary (CTB) in Cu and Al, with dominant leading screw character at the site of interaction. A Frank-Read source is employed to nucleate dislocations continuously. It is found that subject to a shear stress of 1.2 GPa, screw dislocations transfer into the twinned grain in Cu, but glide on the twin boundary plane in Al. Moreover, four dislocation/CTB interaction modes are identified in Al, which are affected by (1) applied shear stress, (2) dislocation line length, and (3) dislocation line curvature. Our results elucidate the discrepancies between atomistic simulations and experimental observations of dislocation-GB reactions and highlight the importance of directly modeling sequential dislocation slip transfer reactions using fully 3D models.« less

  15. Miocene tectonics of the Western Alboran domain: from mantle extensional exhumation to westward thrusting

    NASA Astrophysics Data System (ADS)

    Gueydan, F.; Frasca, G.; Brun, J. P.

    2015-12-01

    In the frame of the Africa-Europe convergence, the Mediterranean tectonic system presents a complex interaction between subduction rollback and upper-plate deformation during the Tertiary. The western Mediterranean is characterized by the exhumation of the largest subcontinental mantle massif worldwide (the Ronda Peridotite) and a narrow arcuate geometryacross the Gibraltar arc within the Betic-Rif belt (the internal part being called the Alboran domain), where the relationship between slab dynamics and surface tectonics is not well understood. New structural and geochronological data are used to argue for 1/ hyperstrechting of the continental lithosphere allowing extensional mantle exhumation to shallow depths, followed by 2/ lower miocene thrusting. Two Lower Miocene E-W-trending strike-slip corridors played a major role in the deformation pattern of the Alboran Domain, in which E-W dextral strike-slip faults, N60°-trending thrusts and N140°-trending normal faults developed simultaneously during dextral strike-slip simple shear. The inferred continuous westward translation of the Alboran Domain is accommodated by a major E-W-trending lateral ramp (strike-slip) and a N60°-trending frontal thrust. At lithosphere-scale, we interpret the observed deformation pattern as the upper-plate expression of a lateral slab tear and of its westward propagation since Lower Miocene. The crustal emplacement of the Ronda Peridotites occurred at the onset of this westward motion.The Miocene tectonics of the western Alboran is therefore marked by the inversion of a continental rift, triggered by shortening of the upper continental plate and accommodated by E-W dextral strike-slip corridors. During thrusting and westward displacement of the Alboran domain with respect to Iberia, the hot upper plate, which involved the previously exhumed sub-continental mantle, underwent fast cooling.

  16. A molecular model for cohesive slip at polymer melt/solid interfaces.

    PubMed

    Tchesnokov, M A; Molenaar, J; Slot, J J M; Stepanyan, R

    2005-06-01

    A molecular model is proposed which predicts wall slip by disentanglement of polymer chains adsorbed on a wall from those in the polymer bulk. The dynamics of the near-wall boundary layer is found to be governed by a nonlinear equation of motion, which accounts for such mechanisms on surface chains as convection, retraction, constraint release, and thermal fluctuations. This equation is valid over a wide range of grafting regimes, including those in which interactions between neighboring adsorbed molecules become essential. It is not closed since the dynamics of adsorbed chains is shown to be coupled to that of polymer chains in the bulk via constraint release. The constitutive equations for the layer and bulk, together with continuity of stress and velocity, are found to form a closed system of equations which governs the dynamics of the whole "bulk+boundary layer" ensemble. Its solution provides a stick-slip law in terms of the molecular parameters and extruder geometry. The model is quantitative and contains only those parameters that can be measured directly, or extracted from independent rheological measurements. The model predictions show a good agreement with available experimental data.

  17. Structural setting and kinematics of Nubian fault system, SE Western Desert, Egypt: An example of multi-reactivated intraplate strike-slip faults

    NASA Astrophysics Data System (ADS)

    Sakran, Shawky; Said, Said Mohamed

    2018-02-01

    Detailed surface geological mapping and subsurface seismic interpretation have been integrated to unravel the structural style and kinematic history of the Nubian Fault System (NFS). The NFS consists of several E-W Principal Deformation Zones (PDZs) (e.g. Kalabsha fault). Each PDZ is defined by spectacular E-W, WNW and ENE dextral strike-slip faults, NNE sinistral strike-slip faults, NE to ENE folds, and NNW normal faults. Each fault zone has typical self-similar strike-slip architecture comprising multi-scale fault segments. Several multi-scale uplifts and basins were developed at the step-over zones between parallel strike-slip fault segments as a result of local extension or contraction. The NNE faults consist of right-stepping sinistral strike-slip fault segments (e.g. Sin El Kiddab fault). The NNE sinistral faults extend for long distances ranging from 30 to 100 kms and cut one or two E-W PDZs. Two nearly perpendicular strike-slip tectonic regimes are recognized in the NFS; an inactive E-W Late Cretaceous - Early Cenozoic dextral transpression and an active NNE sinistral shear.

  18. Resonant slow fault slip in subduction zones forced by climatic load stress.

    PubMed

    Lowry, Anthony R

    2006-08-17

    Global Positioning System (GPS) measurements at subduction plate boundaries often record fault movements similar to earthquakes but much slower, occurring over timescales of approximately 1 week to approximately 1 year. These 'slow slip events' have been observed in Japan, Cascadia, Mexico, Alaska and New Zealand. The phenomenon is poorly understood, but several observations hint at the processes underlying slow slip. Although slip itself is silent, seismic instruments often record coincident low-amplitude tremor in a narrow (1-5 cycles per second) frequency range. Also, modelling of GPS data and estimates of tremor location indicate that slip focuses near the transition from unstable ('stick-slip') to stable friction at the deep limit of the earthquake-producing seismogenic zone. Perhaps most intriguingly, slow slip is periodic at several locations, with recurrence varying from 6 to 18 months depending on which subduction zone (or even segment) is examined. Here I show that such periodic slow fault slip may be a resonant response to climate-driven stress perturbations. Fault slip resonance helps to explain why slip events are periodic, why periods differ from place to place, and why slip focuses near the base of the seismogenic zone. Resonant slip should initiate within the rupture zone of future great earthquakes, suggesting that slow slip may illuminate fault properties that control earthquake slip.

  19. Crystal plasticity finite element analysis of deformation behaviour in SAC305 solder joint

    NASA Astrophysics Data System (ADS)

    Darbandi, Payam

    Due to the awareness of the potential health hazards associated with the toxicity of lead (Pb), actions have been taken to eliminate or reduce the use of Pb in consumer products. Among those, tin (Sn) solders have been used for the assembly of electronic systems. Anisotropy is of significant importance in all structural metals, but this characteristic is unusually strong in Sn, making Sn based solder joints one of the best examples of the influence of anisotropy. The effect of anisotropy arising from the crystal structure of tin and large grain microstructure on the microstructure and the evolution of constitutive responses of microscale SAC305 solder joints is investigated. Insights into the effects of key microstructural features and dominant plastic deformation mechanisms influencing the measured relative activity of slip systems in SAC305 are obtained from a combination of optical microscopy, orientation imaging microscopy (OIM), slip plane trace analysis and crystal plasticity finite element (CPFE) modeling. Package level SAC305 specimens were subjected to shear deformation in sequential steps and characterized using optical microscopy and OIM to identify the activity of slip systems. X-ray micro Laue diffraction and high energy monochromatic X-ray beam were employed to characterize the joint scale tensile samples to provide necessary information to be able to compare and validate the CPFE model. A CPFE model was developed that can account for relative ease of activating slip systems in SAC305 solder based upon the statistical estimation based on correlation between the critical resolved shear stress and the probability of activating various slip systems. The results from simulations show that the CPFE model developed using the statistical analysis of activity of slip system not only can satisfy the requirements associated with kinematic of plastic deformation in crystal coordinate systems (activity of slip systems) and global coordinate system (shape changes) but also this model is able to predict the evolution of stress in joint level SAC305 sample.

  20. Low-cycle fatigue behavior of NIMONIC PE16 at room temperature

    NASA Astrophysics Data System (ADS)

    Singh, V.; Sundararaman, M.; Chen, W.; Wahi, R. P.

    1991-02-01

    The fatigue behavior of NIMONIC PE16 has been investigated at room temperature as a function of γ' particle size (from 10 to 30 nm) and total strain amplitude (0.44 to 2.60 pct). All specimens initially harden and then soften on further deformation. The degrees of hardening and softening show a marked variation with γ' particle size and strain amplitude. Cyclic stress-strain and Coffin-Manson plots show a bilinear behavior with a change of slope at Δɛp/2, the plastic strain amplitude, of about 0.3 pct. These results are interpreted in terms of microstructural observations, namely, the number of slip systems activated and mutual interaction of dislocations on these systems, as well as their interaction with γ' particles.

  1. Role of strike-slip faulting in the evolution of allochthonous terranes in the Philippines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karig, D.E.; Sarewitz, D.R.; Haeck, G.D.

    1986-10-01

    Concepts of allochthonous terrane transport and emplacement are dominated by the assumption that most terranes originate on the subducting plate, collide with the upper plate, and are emplaced there. Movement of terranes along the convergent margin is recognized but is generally attributed to postcollision slip. In the northern Philippines, allochthonous terranes originate primarily within the arc system, have been translated along it by strike-slip faults, and were emplaced by cessation of that slip. The authors suggest that in the Philippines some originally vertical strike-slip boundaries may have evolved into shallow-dipping sutures marked by fold and thrust systems. This mode ofmore » terrane evolution may be more common than generally appreciated, particularly in orogenic belts developed in response to oblique convergence.« less

  2. Multi-asperity models of slow slip and tremor

    NASA Astrophysics Data System (ADS)

    Ampuero, Jean Paul; Luo, Yingdi; Lengline, Olivier; Inbal, Asaf

    2016-04-01

    Field observations of exhumed faults indicate that fault zones can comprise mixtures of materials with different dominant deformation mechanisms, including contrasts in strength, frictional stability and hydrothermal transport properties. Computational modeling helps quantify the potential effects of fault zone heterogeneity on fault slip styles from seismic to aseismic slip, including slow slip and tremor phenomena, foreshocks sequences and swarms, high- and low-frequency radiation during large earthquakes. We will summarize results of ongoing modeling studies of slow slip and tremor in which fault zone structure comprises a collection of frictionally unstable patches capable of seismic slip (tremorgenic asperities) embedded in a frictionally stable matrix hosting aseismic transient slips. Such models are consistent with the current view that tremors result from repeated shear failure of multiple asperities as Low Frequency Earthquakes (LFEs). The collective behavior of asperities embedded in creeping faults generate a rich spectrum of tremor migration patterns, as observed in natural faults, whose seismicity rate, recurrence time and migration speed can be mechanically related to the underlying transient slow slip rate. Tremor activity and slow slip also responds to periodic loadings induced by tides or surface waves, and models relate tremor tidal sensitivity to frictional properties, fluid pressure and creep rate. The overall behavior of a heterogeneous fault is affected by structural parameters, such as the ratio of stable to unstable materials, but also by time-dependent variables, such as pore pressure and loading rate. Some behaviors are well predicted by homogenization theory based on spatially-averaged frictional properties, but others are somewhat unexpected, such as seismic slip behavior found in asperities that are much smaller than their nucleation size. Two end-member regimes are obtained in rate-and-state models with velocity-weakening asperities embedded in a matrix with either (A) velocity-strengthening friction or (B) a transition from velocity-weakening to velocity-strengthening at increasing slip velocity. The most conventional regime is tremor driven by slow slip. However, if the interaction between asperities mediated by intervening transient creep is strong enough, a regime of slow slip driven by tremors emerges. These two regimes lead to different statistics of inter-event times of LFE sequences, which we confront to observations from LFE catalogs in Mexico, Cascadia and Parkfield. These models also suggest that the depth dependence of tremor and slow slip behavior, for instance their shorter recurrence time and weaker amplitude with increasing depth, are not necessarily related to depth dependent size distribution of asperities, but could be due to depth-dependence of the properties of the intervening creep materials. Simplified fracture mechanics models illustrate how the resistance of the fault zone matrix can control the effective distance of interaction between asperities, and lead to transitions between Gutenberg-Richter to size-bounded (exponential) frequency-magnitude distributions. Structural fault zone properties such as the thickness of the damage zone can also introduce characteristic length scales that may affect the size distribution of tremors. Earthquake cycle simulations on heterogeneous faults also provide insight into the conditions that allow asperities to generate foreshock activity and high-frequency radiation during large earthquakes.

  3. An example of slip instability resulting from displacement-varying strength

    USGS Publications Warehouse

    Lockner, D.; Byerlee, J.

    1990-01-01

    A rock cylinder, containing a clay-filled sawcut making an angle of 30?? to the sample axis, was deformed at constant confining and pore pressures and constant remote shortening rate. The sawcut surfaces contained a series of regularly spaced ridges and grooves oriented perpendicular to the direction of shear. The interaction of these grooved surfaces resulted in a sliding strength which varied periodically with displacement. By varying the effective machine stiffness through the use of an electronic feedback circuit, a range of stable and unstable slip behavior was achieved. In this way, we examined fault slip behavior which was dominated by displacement-dependent strength. ?? 1990 Birkha??user Verlag.

  4. Role Of Impurities On Deformation Of HCP Crystal: A Multi-Scale Approach

    NASA Astrophysics Data System (ADS)

    Bhatia, Mehul Anoopkumar

    Commercially pure (CP) and extra low interstitial (ELI) grade Ti-alloys present excellent corrosion resistance, lightweight, and formability making them attractive materials for expanded use in transportation and medical applications. However, the strength and toughness of CP titanium are affected by relatively small variations in their impurity/solute content (IC), e.g., O, Al, and V. This increase in strength is due to the fact that the solute either increases the critical stress required for the prismatic slip systems ({10- 10}) or activates another slip system ((0001), {10-11}). In particular, solute additions such as O can effectively strengthen the alloy but with an attendant loss in ductility by changing the behavior from wavy (cross slip) to planar nature. In order to understand the underlying behavior of strengthening by solutes, it is important to understand the atomic scale mechanism. This dissertation aims to address this knowledge gap through a synergistic combination of density functional theory (DFT) and molecular dynamics. Further, due to the long-range strain fields of the dislocations and the periodicity of the DFT simulation cells, it is difficult to apply ab initio simulations to study the dislocation core structure. To alleviate this issue we developed a multiscale quantum mechanics/molecular mechanics approach (QM/MM) to study the dislocation core. We use the developed QM/MM method to study the pipe diffusion along a prismatic edge dislocation core. Complementary to the atomistic simulations, the Semi-discrete Variational Peierls-Nabarro model (SVPN) was also used to analyze the dislocation core structure and mobility. The chemical interaction between the solute/impurity and the dislocation core is captured by the so-called generalized stacking fault energy (GSFE) surface which was determined from DFT-VASP calculations. By taking the chemical interaction into consideration the SVPN model can predict the dislocation core structure and mobility in the presence and absence of the solute/impurity and thus reveal the effect of impurity/solute on the softening/hardening behavior in alpha-Ti. Finally, to study the interaction of the dislocation core with other planar defects such as grain boundaries (GB), we develop an automated method to theoretically generate GBs in HCP type materials.

  5. Slip behaviour of carbonate-bearing faults subjected to fluid pressure stimulations

    NASA Astrophysics Data System (ADS)

    Collettini, Cristiano; Scuderi, Marco; Marone, Chris

    2017-04-01

    Earthquakes caused by fluid injection within reservoir have become an important topic of political and social discussion as new drilling and improved technologies enable the extraction of oil and gas from previously unproductive formations. During reservoir stimulation, the coupled interactions of frictional and fluid flow properties together with the stress state control both the onset of fault slip and fault slip behaviour. However, currently, there are no studies under controlled, laboratory conditions for which the effect of fluid pressure on fault slip behaviour can be deduced. To cover this gap, we have developed laboratory experiments where we monitor fault slip evolution at constant shear stress but with increasing fluid pressure, i.e. reducing the effective normal stress. Experiments have been conducted in the double direct shear configuration within a pressure vessel on carbonate fault gouge, characterized by a slightly velocity strengthening friction that is indicative of stable aseismic creep. In our experiments fault slip history can be divided in three main stages: 1) for high effective normal stress the fault is locked and undergoes compaction; 2) when the shear and effective normal stress reach the failure condition, accelerated creep is associated to fault dilation; 3) further pressurization leads to an exponential acceleration during fault compaction and slip localization. Our results indicate that fault weakening induced by fluid pressurization overcomes the velocity strengthening behaviour of calcite gouge, resulting in fast acceleration and earthquake slip. As applied to tectonic faults our results suggest that a larger number of crustal faults, including those slightly velocity strengthening, can experience earthquake slip due to fluid pressurization.

  6. Foreshocks during the nucleation of stick-slip instability

    USGS Publications Warehouse

    McLaskey, Gregory C.; Kilgore, Brian D.

    2013-01-01

    We report on laboratory experiments which investigate interactions between aseismic slip, stress changes, and seismicity on a critically stressed fault during the nucleation of stick-slip instability. We monitor quasi-static and dynamic changes in local shear stress and fault slip with arrays of gages deployed along a simulated strike-slip fault (2 m long and 0.4 m deep) in a saw cut sample of Sierra White granite. With 14 piezoelectric sensors, we simultaneously monitor seismic signals produced during the nucleation phase and subsequent dynamic rupture. We observe localized aseismic fault slip in an approximately meter-sized zone in the center of the fault, while the ends of the fault remain locked. Clusters of high-frequency foreshocks (Mw ~ −6.5 to −5.0) can occur in this slowly slipping zone 5–50 ms prior to the initiation of dynamic rupture; their occurrence appears to be dependent on the rate at which local shear stress is applied to the fault. The meter-sized nucleation zone is generally consistent with theoretical estimates, but source radii of the foreshocks (2 to 70 mm) are 1 to 2 orders of magnitude smaller than the theoretical minimum length scale over which earthquake nucleation can occur. We propose that frictional stability and the transition between seismic and aseismic slip are modulated by local stressing rate and that fault sections, which would typically slip aseismically, may radiate seismic waves if they are rapidly stressed. Fault behavior of this type may provide physical insight into the mechanics of foreshocks, tremor, repeating earthquake sequences, and a minimum earthquake source dimension.

  7. Accelerometer-controlled automatic braking system

    NASA Technical Reports Server (NTRS)

    Dreher, R. C.; Sleeper, R. K.; Nayadley, J. R., Sr.

    1973-01-01

    Braking system, which employs angular accelerometer to control wheel braking and results in low level of tire slip, has been developed and tested. Tests indicate that system is feasible for operations on surfaces of different slipperinesses. System restricts tire slip and is capable of adapting to rapidly-changing surface conditions.

  8. Stability of viscosity stratified flows down an incline: Role of miscibility and wall slip

    NASA Astrophysics Data System (ADS)

    Ghosh, Sukhendu; Usha, R.

    2016-10-01

    The effects of wall velocity slip on the linear stability of a gravity-driven miscible two-fluid flow down an incline are examined. The fluids have the matched density but different viscosity. A smooth viscosity stratification is achieved due to the presence of a thin mixed layer between the fluids. The results show that the presence of slip exhibits a promise for stabilizing the miscible flow system by raising the critical Reynolds number at the onset and decreasing the bandwidth of unstable wave numbers beyond the threshold of the dominant instability. This is different from its role in the case of a single fluid down a slippery substrate where slip destabilizes the flow system at the onset. Though the stability properties are analogous to the same flow system down a rigid substrate, slip is shown to delay the surface mode instability for any viscosity contrast. It has a damping/promoting effect on the overlap modes (which exist due to the overlap of critical layer of dominant disturbance with the mixed layer) when the mixed layer is away/close from/to the slippery inclined wall. The trend of slip effect is influenced by the location of the mixed layer, the location of more viscous fluid, and the mass diffusivity of the two fluids. The stabilizing characteristics of slip can be favourably used to suppress the non-linear breakdown which may happen due to the coexistence of the unstable modes in a flow over a substrate with no slip. The results of the present study suggest that it is desirable to design a slippery surface with appropriate slip sensitivity in order to meet a particular need for a specific application.

  9. ­Tectonic and geomorphic setting of the Pamir Plateau: Insights from InSAR and teleseismic analysis of the 2015 Lake Saurez and 2016 Muji fault earthquake sequence

    NASA Astrophysics Data System (ADS)

    Nanjundiah, P.; Barbot, S.; Wei, S.; Tapponnier, P.; Feng, W.; Wang, T.

    2017-12-01

    The Pamir Plateau lies on the western edge of the India- Eurasia collision zone and has been the sight of complex subduction regime in the past 50 Ma. In our study, we focus on two earthquakes and their aftershocks that occurred between December 2015 and December 2016. The first earthquake (Mw7.2), on 7 December 2015 between the Karakoram and Darwas fault systems, was sinstral strike slip in nature. The earthquake on 25 November (Mw6.6) occurred on the western end of Muji Fault, a dextral strike slip fault with an avg slip rate of 4mm/yr. We aim to better understand the structure, stress and deformation patterns in the northern and central Pamir plateau by analyzing InSAR, teleseismic, and optical data for these events and their aftershocks. We aim to better understand the structure, stress and deformation patterns in the northern and central Pamir plateau by analysing InSAR, teleseismic, and optical data for these events and their aftershocks. We constrain the fault geometry by precisely relocating aftershocks using the double difference technique implemented in HypoDD (Waldhauser & Ellsworth 2000). We used the Green's functions of Okada (1992) to invert for slip on the fault with rectangular dislocation and edgreen to numerically invert for the slip in a layered medium (Wang et al. 2003). The surface rupture of the December 2015 Lake Saurez earthquake shows evidence of multiple segments and step-overs. The combination of data sets used in this study highlights the existence of a seismic gap south of Lake Karakul as well as coupling between the Muji and Darwas-Karakoram fault systems. Mapping of past ruptures shows that the Sarez fault continues along the eastern coast of Lake Karakul almost until the Muji fault. With near field geodetic data in the form of InSAR, we can get a better insight into complex fault structures as well as post seismic slip and strain along the faults and its surroundings. We emphasize the role of smaller faults and their interactions in accommodating the overall strain in the Pamir region and their effect on estimating local seismic hazard.

  10. Integrating Safety with Science,Technology and Innovation at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rich, Bethany M

    2012-04-02

    The mission of Los Alamos National Laboratory (LANL) is to develop and apply science, technology and engineering solutions to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve emerging national security challenges. The most important responsibility is to direct and conduct efforts to meet the mission with an emphasis on safety, security, and quality. In this article, LANL Environmental, Safety, and Health (ESH) trainers discuss how their application and use of a kinetic learning module (learn by doing) with a unique fall arrest system is helping to address one the most common industrialmore » safety challenges: slips and falls. A unique integration of Human Performance Improvement (HPI), Behavior Based Safety (BBS) and elements of the Voluntary Protection Program (VPP) combined with an interactive simulator experience is being used to address slip and fall events at Los Alamos.« less

  11. Wheel slip dump valve for railway braking system

    NASA Astrophysics Data System (ADS)

    Zhang, Xuan; Zhang, LiHao; Li, QingXuan; Shi, YanTao

    2017-09-01

    As we all know, pneumatic braking system plays an important role in the safety of the whole vehicle. In the anti slip braking system, the pressure of braking cylinder can be adjusted by the quick power response of wheel slip dump valve, so that the lock situation won’t occur during vehicle service. During the braking of railway vehicles, the braking force provided by braking disc reduces vehicle’s speed. But the locking slip will happen due to the oversize of braking force or the reduction of sticking coefficient between wheel and rail. It will cause not only the decline of braking performance but also the increase of braking distance. In the meanwhile, it will scratch the wheel and influence the stable running of vehicles. Now, the speed of passenger vehicle has been increased. In order to shorten the braking distance as far as possible, sticking stickiness must be fully applied. So the occurrence probability of wheel slip is increased.

  12. Measurement and characterization of slippage and slip-law using a rigorous analysis in dynamics of oscillating rheometer: Newtonian fluid

    NASA Astrophysics Data System (ADS)

    Azese, Martin Ndi

    2018-02-01

    This article presents a rigorous calculation involving velocity slip of Newtonian fluid where we analyze and solve the unsteady Navier-Stokes equation with emphasis on its rheological implication. The goal of which is to model a simple yet effective non-invasive way of quantifying and characterizing slippage. Indeed this contrasts with previous techniques that exhibit inherent limitations whereby injecting foreign objects usually alter the flow. This problem is built on the Couette rheological flow system such that μ-Newton force and μ-stress are captured and processed to obtain wall slip. Our model leads to a linear partial differential equation and upon enforcing linear-Navier slip boundary conditions (BC) yields inhomogeneous and unsteady "Robin-type" BC. A dimensional analysis reveals salient dimensionless parameters: Roshko, Strouhal, and Reynolds while highlighting slip-numbers from BC. We also solve the slip-free case to corroborate and validate our results. Several graphs are generated showing slip effects, particularly, studying how slip-numbers, a key input, differentiate themselves to the outputs. We also confirm this in a graphical fashion by presenting the flow profile across channel width, velocity, and stress at both walls. A perturbation scheme is introduced to calculate long-time behavior when the system seats for long. More importantly, in the end, we justify the existence of a reverse mechanism, where an inverse transformation like Fourier transform uses the output data to retrieve slip-numbers and slip law, thus quantifying and characterizing slip. Therefore, we not only substantiate our analysis, but we also justify our claim, measurement and characterization, and theorize realizability of our proposition.

  13. The nucleation of "fast" and "slow" stick slip instabilities in sheared granular aggregates

    NASA Astrophysics Data System (ADS)

    Korkolis, Evangelos; Ampuero, Jean-Paul; Niemeijer, André

    2017-04-01

    Seismological observations in the past few decades have revealed a diversity of slip behaviors of faults, involving interactions and transition between slow to fast slip phenomena. Field studies show that exhumed fault zones comprise mixtures of materials with variable frictional strength and stability. Emergent models of slip diversity emphasize the role of heterogeneities of fault zone properties and the potential interactions between seismic and aseismic deformation. Here, we develop analog laboratory experiments to study the mechanics of heterogeneous faults with the goal to identify factors controlling their slip stability and rupture style. We report on results from room temperature sliding experiments using a rotary shear apparatus. We simulated gouge heterogeneity by using materials with different frictional strength and stability. At room temperature conditions, dry glass beads typically stick slip, whereas dry granular calcite exhibits stable sliding. The peak strength of glass beads aggregates is typically lower than that of granular calcite aggregates. Our samples consisted of a layer of glass beads sandwiched between two layers of granular calcite. The initial particle size was between 100 and 200 μm for both materials and the initial thickness of each layer was about 1.5 mm. We tested our layered aggregates under 1 to 7 MPa normal stress and at sliding velocities between 1 and 100 μm/s. Within that range of conditions, high normal stress and slow sliding velocities promoted fast, regular stick slip. For normal stress values of less than about 4 MPa, the recurrence time and stress drop of stick slips became irregular, particularly at sliding rates above 20 μm/s. As the accumulated shear displacement increased, slip events became slower and the magnitudes of their stress drop, compaction and slip distance decreased. We recorded acoustic emissions (AEs) associated with each slip event (fast and slow) and estimated their source azimuth. AE activity was distributed in several clusters, some of which remained stationary, whereas others appeared to migrate with increasing shear displacement. We performed post-mortem microstructural analysis (tabletop SEM) of select AE nucleation sites and found significant mixing of glass beads with the calcite layer abutting the rotating piston ring. No mixing was observed between the glass beads and the calcite layer on the opposite side, nor any features that would indicate strain localization along the interface of the calcite and the adjacent stationary piston. These results show that the frictional behavior of our aggregates changed from fast to slow slip as the amount of glass beads mixed with granular calcite increased. Migrating AE clusters imply that nucleation occurred within the mixed calcite-glass beads layer, where most of the shear strain appears to have been accommodated, whereas stationary clusters probably originated within the adjacent, more slowly deforming layer of glass beads. This suggests that AEs belonging to migrating clusters were perhaps triggered by stress changes due to the gradual mixing of the two sample constituents. This process may explain migrating seismicity in natural fault zones.

  14. Kinematics of shallow backthrusts in the Seattle fault zone, Washington State

    USGS Publications Warehouse

    Pratt, Thomas L.; Troost, K.G.; Odum, Jackson K.; Stephenson, William J.

    2015-01-01

    Near-surface thrust fault splays and antithetic backthrusts at the tips of major thrust fault systems can distribute slip across multiple shallow fault strands, complicating earthquake hazard analyses based on studies of surface faulting. The shallow expression of the fault strands forming the Seattle fault zone of Washington State shows the structural relationships and interactions between such fault strands. Paleoseismic studies document an ∼7000 yr history of earthquakes on multiple faults within the Seattle fault zone, with some backthrusts inferred to rupture in small (M ∼5.5–6.0) earthquakes at times other than during earthquakes on the main thrust faults. We interpret seismic-reflection profiles to show three main thrust faults, one of which is a blind thrust fault directly beneath downtown Seattle, and four small backthrusts within the Seattle fault zone. We then model fault slip, constrained by shallow deformation, to show that the Seattle fault forms a fault propagation fold rather than the alternatively proposed roof thrust system. Fault slip modeling shows that back-thrust ruptures driven by moderate (M ∼6.5–6.7) earthquakes on the main thrust faults are consistent with the paleoseismic data. The results indicate that paleoseismic data from the back-thrust ruptures reveal the times of moderate earthquakes on the main fault system, rather than indicating smaller (M ∼5.5–6.0) earthquakes involving only the backthrusts. Estimates of cumulative shortening during known Seattle fault zone earthquakes support the inference that the Seattle fault has been the major seismic hazard in the northern Cascadia forearc in the late Holocene.

  15. Project PROBE Leg I - Report and archive of multibeam bathymetry and acoustic backscatter , CTD/XBT and GPS navigation data collected during USGS Cruise 02051 (NOAA Cruise RB0208) Puerto Rico Trench September 24, 2002 to September 30, 2002

    USGS Publications Warehouse

    ten Brink, Uri S.; Worley, Charles R.; Smith, Shep; Stepka, Thomas; Williams, Glynn F.

    2006-01-01

    On September 24-30, 2002, six days of scientific surveying to map a section of the Puerto Rico Trench (PRT) took place aboard the National Oceanic and Atmospheric Administration (NOAA) ship Ron Brown. The cruise was funded by NOAA's Office of Ocean Exploration. Multibeam bathymetry and acoustic-backscatter data were collected over an area of about 25,000 sq. km of the Puerto Rico trench and its vicinity at water depths of 4000-8400 m. Weather conditions during the entire survey were good; there were light to moderate winds and 1-2 foot swells experiencing minor chop. The roll and pitch of the ship's interaction with the ocean were not conspicuous. Cruise participants included personnel from USGS, NOAA, and University of New Hampshire Center for Coastal and Ocean Mapping/Joint Hydrographic Center. The cruise resulted in the discovery of a major active strike-slip fault system close to the trench, submarine slides on the descending North American tectonic plate, and an extinct mud volcano, which was cut by the strike-slip fault system. Another strike-slip fault system closer to Puerto Rico that was previously considered to accommodate much of the relative plate motion appears to be inactive. The seaward continuation of the Mona Rift, a zone of extension between Puerto Rico and the Dominican Republic that generated a devastating tsunami in 1918, was mapped for the first time.

  16. Slow slip and self-similar asymptotics of rate-strengthening faults

    NASA Astrophysics Data System (ADS)

    Viesca, R. C.; Dublanchet, P.

    2016-12-01

    We examine how slow slip progresses on rate-strengthening faults. We consider that the source of rate-strengthening may be a linear or non-linear (power-law) viscous fault rheology, a logarithmic rate-dependence, or a Dieterich-Ruina dependence on slip rate and its history. We show the existence of self-similar asymptotic solutions for slip rate of the form V = t^alpha f(x/t^beta). The exponent beta is determined by the nature of the elastic interaction (for slip between elastic half-spaces in contact, beta = 1; and for layer sliding above a substrate, beta = 1/2). The similarity exponent alpha is determined by the type of initial or boundary conditions. Such conditions may be, for example, an imposed (i) boundary slip rate or (ii) a sudden change in stress on the fault. We consider in-plane or anti-plane slip for examples (i) and (ii) and present the asymptotic solutions thereof, which may be found numerically or in closed form. The self-similar behavior of scenario (i) is, for a step increase in stress, that of an initially elevated slip rate decaying in time while spreading in space; and of scenario (ii) is that an elevated slip rate propagating along the fault. Under scenario (i) we show that the disparate fault rheologies share a common closed-form similarity solution for the decay of slip rate following the initial stress change. For comparison, we compute numerical solutions to the evolution equation for slip rate (and state, when applicable) and find precise agreement with the above analysis. We illustrate how the above solutions provide robust, low-parameter models to test whether there is a frictional basis for spatio-temporal observations indicating the accumulation of post-seismic slip or the occurrence of slow slip event. Such observations include those derived from (a) geodetic observations [e.g., Hsu et al., Science 2006], or migration of (b) low-frequency earthquakes and tremor [e.g., Obara and Hirose, Tectonophys. 2006], and of (c) micro-seismicity [e.g., Bourouis and Bernard, Geophys. J. Int., 2007].

  17. Wrinkle-like slip pulse on a fault between different materials

    USGS Publications Warehouse

    Andrews, D.J.; Ben-Zion, Y.

    1997-01-01

    Pulses of slip velocity can propagate on a planar interface governed by a constant coefficient of friction, where the interface separates different elastic materials. Such pulses have been found in two-dimensional plane strain finite difference calculations of slip on a fault between elastic media with wave speeds differing by 20%. The self-sustaining propagation of the slip pulse arises from interaction between normal and tangential deformation that exists only with a material contrast. These calculations confirm the prediction of Weertman [1980] that a dislocation propagating steadily along a material interface has a tensile change of normal traction with the same pulse shape as slip velocity. The self-sustaining pulse is associated with a rapid transition from a head wave traveling along the interface with the S wave speed of the faster material, to an opposite polarity body wave traveling with the slower S speed. Slip occurs during the reversal of normal particle velocity. The pulse can propagate in a region with constant coefficient of friction and an initial stress state below the frictional criterion. Propagation occurs in only one direction, the direction of slip in the more compliant medium, with rupture velocity near the slower S wave speed. Displacement is larger in the softer medium, which is displaced away from the fault during the passage of the slip pulse. Motion is analogous to a propagating wrinkle in a carpet. The amplitude of slip remains approximately constant during propagation, but the pulse width decreases and the amplitudes of slip velocity and stress change increase. The tensile change of normal traction increases until absolute normal traction reaches zero. The pulse can be generated as a secondary effect of a drop of shear stress in an asperity. The pulse shape is unstable, and the initial slip pulse can change during propagation into a collection of sharper pulses. Such a pulse enables slip to occur with little loss of energy to friction, while at the same time increasing irregularity of stress and slip at the source. Copyright 1997 by the American Geophysical Union.

  18. Interaction between fault systems in a complex tectonic setting: Insights from InSAR and Teleseismic analysis of the 2015 Lake Saurez and 2016 Muji fault earthquake sequence

    NASA Astrophysics Data System (ADS)

    Nanjundiah, P.; Barbot, S.; Wei, S.; Tapponnier, P.; Feng, W.; Wang, T.

    2017-12-01

    The Pamir Plateau is a complex and important component of the India-Eurasia Collision zone. Despite being similar to the Tibetan plateau in elevation and collision processes, quite a bit is still unknown about the structure and the tectonic processes occurring in this region. We aim to better understand the structure, stress and deformation patterns in the northern and central Pamir plateau by analysing InSAR, teleseismic, and optical data for two large earthquakes that occurred in this region between December 2015 (Mw 7.2, Lake Saurez) and November 2016 (Mw 6.6 Muji Fault). We constrain the fault geometry by precisely relocating aftershocks using the double difference technique implemented in HypoDD (Waldhauser & Ellsworth 2000). We used Okada's (1992) Green Functions to invert for slip on the fault with a rectangular dislocation and edgreen to numerically invert for the slip in a layered medium (Wang et al. 2005). The combined datasets highlight the existence of an oblique fault between two major thrust fault systems i.e. the Darwas & the Karakoram faults. The December 2015 event highlights complexity in this fault system. The combination of data sets used in this study highlights the existence of a seismic gap south of Lake Karakul as well as coupling between the Muji and Darwas-Karakoram fault systems. We emphasise the role of smaller faults and their interactions in accommodating the overall strain and tectonics in the Pamir region and their effect on estimating local seismic hazard.

  19. Active faulting, earthquakes, and restraining bend development near Kerman city in southeastern Iran

    NASA Astrophysics Data System (ADS)

    Walker, Richard Thomas; Talebian, Morteza; Saiffori, Sohei; Sloan, Robert Alastair; Rasheedi, Ali; MacBean, Natasha; Ghassemi, Abbas

    2010-08-01

    We provide descriptions of strike-slip and reverse faulting, active within the late Quaternary, in the vicinity of Kerman city in southeastern Iran. The faults accommodate north-south, right-lateral, shear between central Iran and the Dasht-e-Lut depression. The regions that we describe have been subject to numerous earthquakes in the historical and instrumental periods, and many of the faults that are documented in this paper constitute hazards for local populations, including the city of Kerman itself (population ˜200,000). Faults to the north and east of Kerman are associated with the transfer of slip from the Gowk to the Kuh Banan right-lateral faults across a 40 km-wide restraining bend. Faults south and west of the city are associated with oblique slip on the Mahan and Jorjafk systems. The patterns of faulting observed along the Mahan-Jorjafk system, the Gowk-Kuh Banan system, and also the Rafsanjan-Rayen system further to the south, appear to preserve different stages in the development of these oblique-slip fault systems. We suggest that the faulting evolves through time. Topography is initially generated on oblique slip faults (as is seen on the Jorjafk fault). The shortening component then migrates to reverse faults situated away from the high topography whereas strike-slip continues to be accommodated in the high, mountainous, regions (as is seen, for example, on the Rafsanjan fault). The reverse faults may then link together and eventually evolve into new, through-going, strike-slip faults in a process that appears to be occurring, at present, in the bend between the Gowk and Kuh Banan faults.

  20. Stick-slip friction and ageing in Velcro®

    NASA Astrophysics Data System (ADS)

    Mariani, Lisa; Angiolillo, Paul

    2014-03-01

    The mesoscopic hook and loop system of Velcro® provides a model of stick-slip friction that exhibits behavior reminiscent of results seen in nanoscale model systems. The friction is linearly dependent on contact area and independent of driving velocity. Morever, there is a power law dependence of the friction on loading, with exponent between 1/4 and 1/3. Furthermore, the evolution of stick-slip to more smooth sliding, as controlled by contact area, is also noted. These transition predictions follow power law profiles, as well, with respect to increasing contact area. Thus, the hook-and-loop system shows to be a good mesoscale model system of stick-slip friction and provides a link between nanoscale and macroscale friction. Through an investigation into the ageing of the hooks in the system, the data suggests that the hooks age during the shearing regime and take a characteristic time to return to initial attachment strength. Additionally, there does not appear to be a significant affect of ageing on the kinetic friction experienced by the system.

  1. Friction behavior of a multi-interface system and improved performance by AlMgB 14–TiB 2–C and diamond-like-carbon coatings

    DOE PAGES

    Qu, Jun; Blau, Peter J.; Higdon, Clifton; ...

    2016-03-29

    We investigated friction behavior of a bearing system with two interfaces involved: a roller component experiencing rolling–sliding interaction against twin cylinders under point contacts while simultaneously undergoing pure sliding interaction against a socket under a conformal contact. Lubrication modeling predicted a strong correlation between the roller's rolling condition and the system's friction behavior. Experimental observations first validated the analytical predictions using steel and iron components. Diamond-like-carbon (DLC) coating and AlMgB 14–TiB 2 coating with a carbon topcoat (BAMC) were then applied to the roller and twin cylinders, respectively. In conclusion, testing and analysis results suggest that the coatings effectively decreasedmore » the slip ratio for the roller–cylinder contact and the sliding friction at both bearing interfaces and, as a result, significantly reduced the system frictional torque.« less

  2. Re-Evaluation of Event Correlations in Virtual California Using Statistical Analysis

    NASA Astrophysics Data System (ADS)

    Glasscoe, M. T.; Heflin, M. B.; Granat, R. A.; Yikilmaz, M. B.; Heien, E.; Rundle, J.; Donnellan, A.

    2010-12-01

    Fusing the results of simulation tools with statistical analysis methods has contributed to our better understanding of the earthquake process. In a previous study, we used a statistical method to investigate emergent phenomena in data produced by the Virtual California earthquake simulator. The analysis indicated that there were some interesting fault interactions and possible triggering and quiescence relationships between events. We have converted the original code from Matlab to python/C++ and are now evaluating data from the most recent version of Virtual California in order to analyze and compare any new behavior exhibited by the model. The Virtual California earthquake simulator can be used to study fault and stress interaction scenarios for realistic California earthquakes. The simulation generates a synthetic earthquake catalog of events with a minimum size of ~M 5.8 that can be evaluated using statistical analysis methods. Virtual California utilizes realistic fault geometries and a simple Amontons - Coulomb stick and slip friction law in order to drive the earthquake process by means of a back-slip model where loading of each segment occurs due to the accumulation of a slip deficit at the prescribed slip rate of the segment. Like any complex system, Virtual California may generate emergent phenomena unexpected even by its designers. In order to investigate this, we have developed a statistical method that analyzes the interaction between Virtual California fault elements and thereby determine whether events on any given fault elements show correlated behavior. Our method examines events on one fault element and then determines whether there is an associated event within a specified time window on a second fault element. Note that an event in our analysis is defined as any time an element slips, rather than any particular “earthquake” along the entire fault length. Results are then tabulated and then differenced with an expected correlation, calculated by assuming a uniform distribution of events in time. We generate a correlation score matrix, which indicates how weakly or strongly correlated each fault element is to every other in the course of the VC simulation. We calculate correlation scores by summing the difference between the actual and expected correlations over all time window lengths and normalizing by the time window size. The correlation score matrix can focus attention on the most interesting areas for more in-depth analysis of event correlation vs. time. The previous study included 59 faults (639 elements) in the model, which included all the faults save the creeping section of the San Andreas. The analysis spanned 40,000 yrs of Virtual California-generated earthquake data. The newly revised VC model includes 70 faults, 8720 fault elements, and spans 110,000 years. Due to computational considerations, we will evaluate the elements comprising the southern California region, which our previous study indicated showed interesting fault interaction and event triggering/quiescence relationships.

  3. Slip-additive migration, surface morphology, and performance on injection moulded high-density polyethylene closures.

    PubMed

    Dulal, Nabeen; Shanks, Robert; Gengenbach, Thomas; Gill, Harsharn; Chalmers, David; Adhikari, Benu; Pardo Martinez, Isaac

    2017-11-01

    The amount and distribution of slip agents, erucamide, and behenamide, on the surface of high-density polyethene, is determined by integral characteristics of slip agent structure and polymer morphology. A suite of surface analysis techniques was applied to correlate physicochemical properties with slip-additive migration behaviour and their surface morphology. The migration, surface morphology and physicochemical properties of the slip additives, crystallinity and orientation of polyethene spherulites and interaction between slip additives and high-density polyethene influence the surface characteristics. The high-density polyethene closures were produced with erucamide and behenamide separately and stored until they produced required torque. Surface composition was determined employing spectroscopy and gas chromatography. The distribution of additives was observed under optical, scanning electron and atomic force microscopes. The surface energy, crystallinity and application torque were measured using contact angle, differential scanning calorimeter and a torque force tester respectively. Each slip additive produced a characteristic amide peak at 1645cm -1 in infrared spectroscopy and peaks of oxygen and nitrogen in X-ray photoelectron spectroscopy, suggesting their presence on the surface. The erucamide produced placoid scale-like structures and behenamide formed denticulate structures. The surface erucamide and behenamide responsible for reducing the torque was found to be 15.7µg/cm 2 and 1.7µg/cm 2 . Copyright © 2017 Elsevier Inc. All rights reserved.

  4. What are the control mechanisms of evenly-spaced parallel strike-slip faults? Insights from DEM modeling

    NASA Astrophysics Data System (ADS)

    Bonilla Sierra, V.; Donze, F. V.; Duriez, J.; Klinger, Y.; Scholtes, L.

    2016-12-01

    At the very early stages of a pure strike-slip fault zone formation, shear displacement along a deep buried parent fault produces a characteristic set of "evenly-spaced" strike-slip faults at the surface, e.g. Southern San Andreas, North Anatolian, Central Asian, and Northern Tibetan fault systems. This mode III fracture propagation is initiated by the rotation of the local principal stress at the tip of the parent discontinuity, generating twisted fractures with a helicoidal shape. In sandbox or clay-cake experiments used to reproduce these structures, it has been observed that the spacing and possibly the characteristic length of the fractures appearing at the surface are proportional to the overburden thickness of the deformed layer. Based on a Discrete Element Method (YADE DEM-Open Source), we have investigated the conditions controlling the linear relationships between the spacing of the surface "evenly-spaced" strike-slip discontinuities and the thickness of the deformed layer. Increasing the basement displacement of the model, a diffused shear zone appears first at the tip of the basal parent discontinuity. From this mist zone, localized and strongly interacting shear fractures start to propagate. This interaction process can generate complex internal structures: some fractures will propagate faster than their neighbors, modifying their close surrounding stress environment. Some propagating fractures can stop growing and asymmetrical fracture sets can be observed. This resulting hierarchical bifurcation process leads to a set of "en echelon" discontinuities appearing at the surface (Figure 1). In a pure strike-slip mode, fracture spacing is proportional to the thickness, with a ratio and a bifurcation mode controlled by the cohesion value at the first order. Depending on the Poisson's ratio value, which mainly controls the orientation of the discontinuities, this ratio can be affected at a lower degree. In presence of mixed-mode (transpression or transtension), these linear relationships disappear. Figure 1: Effects of the cohesion C and the thickness T of the deformed layer on the surface discontinuity pattern (a) T = Tref and C = Cref (b) T = Tref and C= 10×Cref (c) T = 2×Tref and C = Cref (d) T = 2×Tref and 10×Cref. The color code corresponds to the instantaneous velocity in the Y direction.

  5. Retention of the "first-trial effect" in gait-slip among community-living older adults.

    PubMed

    Liu, Xuan; Bhatt, Tanvi; Wang, Shuaijie; Yang, Feng; Pai, Yi-Chung Clive

    2017-02-01

    "First-trial effect" characterizes the rapid adaptive behavior that changes the performance outcome (from fall to non-fall) after merely a single exposure to postural disturbance. The purpose of this study was to investigate how long the first-trial effect could last. Seventy-five (≥ 65 years) community-dwelling older adults, who were protected by an overhead full body harness system, were retested for a single slip 6-12 months after their initial exposure to a single gait-slip. Subjects' body kinematics that was used to compute their proactive (feedforward) and reactive (feedback) control of stability was recorded by an eight-camera motion analysis system. We found the laboratory falls of subjects on their retest slip were significantly lower than that on the novel initial slip, and the reactive stability of these subjects was also significantly improved. However, the proactive stability of subjects remains unchanged between their initial slip and retest slip. The fall rates and stability control had no difference among the 6-, 9-, and 12-month retest groups, which indicated a maximum retention on 12 months after a single slip in the laboratory. These results highlighted the importance of the "first-trial effect" and suggested that perturbation training is effective for fall prevention, with lower trial doses for a long period (up to 1 year). Therefore, single slip training might benefit those older adults who could not tolerate larger doses in reality.

  6. Vitesses de glissement à long terme et dislocations cosismiques caractéristiques : clés du fonctionnement des failles actives et de l'aléa sismique

    NASA Astrophysics Data System (ADS)

    Tapponnier, Paul; Ryerson, Frederick James; Van der Woerd, Jerome; Mériaux, Anne-Sophie; Lasserre, Cécile

    2001-11-01

    Over periods of thousands of years, active faults tend to slip at constant rates. Pioneer studies of large Asian faults show that cosmogenic radionuclides ( 10Be, 26Al) provide an unparalleled tool to date surface features, whose offsets yield the longest records of recent cumulative movement. The technique is thus uniquely suited to determine long-term (10-100 ka) slip rates. Such rates, combined with coseismic slip-amounts, can give access to recurrence times of earthquakes of similar sizes. Landform dating - morphochronology - is therefore essential to understand fault-behaviour, evaluate seismic hazard, and build physical earthquake models. It is irreplaceable because long-term slip-rates on interacting faults need not coincide with GPS-derived, interseismic rates, and can be difficult to obtain from paleo-seismological trenching.

  7. Slip-stick excitation and travelling waves excite silo honking

    NASA Astrophysics Data System (ADS)

    Warburton, Katarzyna; Porte, Elze; Vriend, Nathalie

    2017-06-01

    Silo honking is the harmonic sound generated by the discharge of a silo filled with a granular material. In industrial storage silos, the acoustic emission during discharge of PET-particles forms a nuisance for the environment and may ultimately result in structural failure. This work investigates the phenomenon experimentally using a laboratory-scale silo, and successfully correlates the frequency of the emitted sound with the periodicity of the mechanical motion of the grains. The key driver is the slip-stick interaction between the wall and the particles, characterized as a wave moving upwards through the silo. A quantitative correlation is established for the first time between the frequency of the sound, measured with an electret microphone, and the slip-frequency, measured with a high-speed camera. In the lower regions of the tube, both the slip-stick motion and the honking sound disappear.

  8. Prototyping of an Open-Architecture CMG System

    DTIC Science & Technology

    2012-12-01

    Digital Absolute Optical Encoder .....................................................63  5.  Slip Ring ...After [71]) ................64  Figure 43.  Dynapar absolute encoder (replacement for the original encoder) ..................65  Figure 44.  Slip ring ...location on gimbal assembly .............................................................65  Figure 45.  MOOG SRA-73683–18 slip ring (From [74

  9. Electro-osmosis over inhomogeneously charged surfaces in presence of non-electrostatic ion-ion interactions

    NASA Astrophysics Data System (ADS)

    Ghosh, Uddipta; Chakraborty, Suman

    2016-06-01

    In this study, we attempt to bring out a generalized formulation for electro-osmotic flows over inhomogeneously charged surfaces in presence of non-electrostatic ion-ion interactions. To this end, we start with modified electro-chemical potential of the individual species and subsequently use it to derive modified Nernst-Planck equation accounting for the ionic fluxes generated because of the presence of non-electrostatic potential. We establish what we refer to as the Poisson-Helmholtz-Nernst-Planck equations, coupled with the Navier-Stokes equations, to describe the complete transport process. Our analysis shows that the presence of non-electrostatic interactions between the ions results in an excess body force on the fluid, and modifies the osmotic pressure as well, which has hitherto remained unexplored. We further apply our analysis to a simple geometry, in an effort to work out the Smoluchowski slip velocity for thin electrical double layer limits. To this end, we employ singular perturbation and develop a general framework for the asymptotic analysis. Our calculations reveal that the final expression for slip velocity remains the same as that without accounting for non-electrostatic interactions. However, the presence of non-electrostatic interactions along with ion specificity can significantly change the quantitative behavior of Smoluchowski slip velocity. We subsequently demonstrate that the presence of non-electrostatic interactions may significantly alter the effective interfacial potential, also termed as the "Zeta potential." Our analysis can potentially act as a guide towards the prediction and possibly quantitative determination of the implications associated with the existence of non-electrostatic potential, in an electrokinetic transport process.

  10. Designing neuro-fuzzy controller for electromagnetic anti-lock braking system (ABS) on electric vehicle

    NASA Astrophysics Data System (ADS)

    Pramudijanto, Josaphat; Ashfahani, Andri; Lukito, Rian

    2018-03-01

    Anti-lock braking system (ABS) is used on vehicles to keep the wheels unlocked in sudden break (inside braking) and minimalize the stop distance of the vehicle. The problem of it when sudden break is the wheels locked so the vehicle steering couldn’t be controlled. The designed ABS system will be applied on ABS simulator using the electromagnetic braking. In normal condition or in condition without braking, longitudinal velocity of the vehicle will be equal with the velocity of wheel rotation, so the slip ratio will be 0 (0%) and if the velocity of wheel rotation is 0 (in locked condition) then the wheels will be slip 1 (100%). ABS system will keep the value of slip ratio so it will be 0.2 (20%). In this final assignment, the method that is used is Neuro-Fuzzy method to control the slip value on the wheels. The input is the expectable slip and the output is slip from plant. The learning algorithm which is used is Backpropagation that will work by feedforward to get actual output and work by feedback to get error value with target output. The network that was made based on fuzzy mechanism which are fuzzification, inference and defuzzification, Neuro-fuzzy controller can reduce overshoot plant respond to 43.2% compared to plant respond without controller by open loop.

  11. Slip Ratio Estimation and Regenerative Brake Control for Decelerating Electric Vehicles without Detection of Vehicle Velocity and Acceleration

    NASA Astrophysics Data System (ADS)

    Suzuki, Toru; Fujimoto, Hiroshi

    In slip ratio control systems, it is necessary to detect the vehicle velocity in order to obtain the slip ratio. However, it is very difficult to measure this velocity directly. We have proposed slip ratio estimation and control methods that do not require the vehicle velocity with acceleration. In this paper, the slip ratio estimation and control methods are proposed without detecting the vehicle velocity and acceleration when it is decelerating. We carried out simulations and experiments by using an electric vehicle to verify the effectiveness of the proposed method.

  12. Late Quaternary slip rate determination by CRN dating on the Haiyuan fault, China, and implication for complex geometry fault systems

    NASA Astrophysics Data System (ADS)

    Matrau, Rémi; Klinger, Yann; Van der Woerd, Jérôme; Liu-Zeng, Jing; Li, Zhanfei; Xu, Xiwei

    2017-04-01

    Late Quaternary slip rate determination by CRN dating on the Haiyuan fault, China, and implication for complex geometry fault systems Matrau Rémi, Klinger Yann, Van der Woerd Jérôme, Liu-Zeng Jing, Li Zhanfei, Xu Xiwei The Haiyuan fault in Gansu Province, China, is a major left-lateral strike-slip fault forming the northeastern boundary of the Tibetan plateau and accommodating part of the deformation from the India-Asia collision. Geomorphic and geodetic studies of the Haiyuan fault show slip rates ranging from 4 mm/yr to 19 mm/yr from east to west along 500 km of the fault. Such discrepancy could be explained by the complex geometry of the fault system, leading to slip distribution on multiple branches. Combining displacement measurements of alluvial terraces from high-resolution Pléiades images and 10Be - 26Al cosmogenic radionuclides (CRN) dating, we bracket the late Quaternary slip rate along the Hasi Shan fault segment (37°00' N, 104°25' E). At our calibration site, terrace riser offsets for 5 terraces ranging from 6 m to 227 m and CRN ages ranging from 6.5±0.6 kyr to 41±4 kyr - yield geological left-lateral slip rates from 2.0 mm/yr to 4.4 mm/yr. We measured consistent terrace riser offset values along the entire 25 km-long segment, which suggests that some external forcing controls the regional river-terrace emplacement, regardless of each specific catchment. Hence, we extend our slip rate determination to the entire Hasi Shan fault segment to be 4.0±1.0 mm/yr since the last 40 kyr. This rate is consistent with other long-term rates of 4 mm/yr to 5 mm/yr east and west of Hasi Shan - as well as geodetic rates of 4 mm/yr to 6 mm/yr west of Hasi Shan. However, Holocene terraces and moraines offsets have suggested higher rates of 15 to 20 mm/yr further west. Such disparate rates may be explained by slip distribution on multiple branches. In particular, the Zhongwei fault splay in the central part of the Haiyuan fault, with a slip rate of 4-5 mm/yr could partly explain the faster rates on the western single stranded Haiyuan fault. In addition we constrained 0.55±0.1 mm/yr of uplift rate along the Hasi Shan, where the fault strike veers southward, indicating slip partitioning. Our slip rate along the Hasi Shan segment is consistent with most of the long-term and short-term slip rates ( 5 mm/yr) measured along the central and eastern parts of the Haiyuan fault. However the discrepancy with other studies to the west highlights the major implication of complex geometries on the slip distribution over large fault systems.

  13. INTENSITY AND GENERALIZATION OF TREADMILL-SLIP TRAINING: HIGH OR LOW; PROGRESSIVELY-INCREASE OR -DECREASE?

    PubMed Central

    Liu, Xuan; Bhatt, Tanvi; Pai, Yi-Chung (Clive)

    2015-01-01

    Very little is known how training intensity interacts with the generalization from treadmill-slip to overground slip. The purposes of this study were to determine whether treadmill-slip training improved center-of-mass stability, more so in the reactive than in the proactive control of stability, with high intensity (HI with a trial-to-trial-consistent acceleration of 12 m/s2) better than low intensity training (LO with a consistent acceleration of 6 m/s2), and progressively-increasing intensity (INCR with a block-to-block acceleration varied from 6 to 12 m/s2) better than progressively-decreasing intensity training (DECR with an acceleration varied from 12 to 6 m/s2) in such generalization. Thirty-six young subjects evenly assigned to one of four (HI, LO, INCR, DECR) groups underwent 24 treadmill-slips before their generalization test trial with a novel slip during overground walking. The controls (CTRL, n=9) from existing data only experienced the same novel overground slip without treadmill training but under otherwise identical condition. The results showed that treadmill-slip training did improved balance control on overground slip with a greater impact on subjects’ reactive (44.3%) than proactive control of stability (27.1%) in comparison to the CTRL. HI yielded stronger generalization than LO, while INCR was only marginally better than DECR. Finally, the group means of these four displayed a clear ascending order from CTRL, LO, DECR, INCR, to HI. The results suggested that higher training intensity on treadmill led to a better generalization, while a progressively-increase in intensity had advantage over the progressively-decrease or the low training strategy. (243 words) PMID:26159058

  14. a Self-Excited System for Percussive-Rotary Drilling

    NASA Astrophysics Data System (ADS)

    Batako, A. D.; Babitsky, V. I.; Halliwell, N. A.

    2003-01-01

    A dynamic model for a new principle of percussive-rotary drilling is presented. This is a non-linear mechanical system with two degrees of freedom, in which friction-induced vibration is used for excitation of impacts, which influence the parameters of stick-slip motion. The model incorporates the friction force as a function of sliding velocity, which allows for the self-excitation of the coupled vibration of the rotating bit and striker, which tends to a steady state periodic cycle. The dynamic coupling of vibro-impact action with the stick-slip process provides an entirely new adaptive feature in the drilling process. The dynamic behaviour of the system with and without impact is studied numerically. Special attention is given to analysis of the relationship between the sticking and impacting phase of the process in order to achieve an optimal drilling performance. This paper provides an understanding of the mechanics of percussive -rotary drilling and design of new drilling tools with advanced characteristics. Conventional percussive-rotary drilling requires two independent actuators and special control for the synchronization of impact and rotation. In the approach presented, a combined complex interaction of drill bit and striker is synchronized by a single rotating drive.

  15. Speed of fast and slow rupture fronts along frictional interfaces

    NASA Astrophysics Data System (ADS)

    Trømborg, Jørgen Kjoshagen; Sveinsson, Henrik Andersen; Thøgersen, Kjetil; Scheibert, Julien; Malthe-Sørenssen, Anders

    2015-07-01

    The transition from stick to slip at a dry frictional interface occurs through the breaking of microjunctions between the two contacting surfaces. Typically, interactions between junctions through the bulk lead to rupture fronts propagating from weak and/or highly stressed regions, whose junctions break first. Experiments find rupture fronts ranging from quasistatic fronts, via fronts much slower than elastic wave speeds, to fronts faster than the shear wave speed. The mechanisms behind and selection between these fronts are still imperfectly understood. Here we perform simulations in an elastic two-dimensional spring-block model where the frictional interaction between each interfacial block and the substrate arises from a set of junctions modeled explicitly. We find that material slip speed and rupture front speed are proportional across the full range of front speeds we observe. We revisit a mechanism for slow slip in the model and demonstrate that fast slip and fast fronts have a different, inertial origin. We highlight the long transients in front speed even along homogeneous interfaces, and we study how both the local shear to normal stress ratio and the local strength are involved in the selection of front type and front speed. Last, we introduce an experimentally accessible integrated measure of block slip history, the Gini coefficient, and demonstrate that in the model it is a good predictor of the history-dependent local static friction coefficient of the interface. These results will contribute both to building a physically based classification of the various types of fronts and to identifying the important mechanisms involved in the selection of their propagation speed.

  16. A numerical model of a red blood cell infected by Plasmodium falciparum malaria: coupling cell mechanics with ligand-receptor interactions

    NASA Astrophysics Data System (ADS)

    Ishida, Shunichi; Imai, Yohsuke; Ichikawa, Yuki; Nix, Stephanie; Matsunaga, Daiki; Omori, Toshihiro; Ishikawa, Takuji

    2016-01-01

    We developed a numerical model of the behavior of a red blood cell infected by Plasmodium falciparum malaria on a wall in shear flow. The fluid and solid mechanics of an infected red blood cell (Pf-IRBC) were coupled with the biochemical interaction of ligand-receptor bindings. We used the boundary element method for fluid mechanics, the finite element method for membrane mechanics, and the Monte Carlo method for ligand-receptor interactions. We simulated the behavior of a Pf-IRBC in shear flow, focusing on the effects of bond type. For slip bonds, the Pf-IRBC exhibited firm adhesion, tumbling motion, and tank-treading motion, depending on the applied shear rate. The behavior of catch bonds resembled that of slip bonds, except for a 'catch' state at high shear stress. When the reactive compliance decreased to a value in the order of ? nm, both the slip and catch bonds behaved like an ideal bond. Such bonds do not respond to the force applied to the bond, and the velocity is stabilized at a high shear rate. Finally, we compared the numerical results with previous experiments for A4- and ItG-infected cells. We found that the interaction between PfEMP1 and ICAM-1 could be a nearly ideal bond, with a dissociation rate ranging from ? to ?.

  17. A multiple fault rupture model of the November 13 2016, M 7.8 Kaikoura earthquake, New Zealand

    NASA Astrophysics Data System (ADS)

    Benites, R. A.; Francois-Holden, C.; Langridge, R. M.; Kaneko, Y.; Fry, B.; Kaiser, A. E.; Caldwell, T. G.

    2017-12-01

    The rupture-history of the November 13 2016 MW7.8 Kaikoura earthquake recorded by near- and intermediate-field strong-motion seismometers and 2 high-rate GPS stations reveals a complex cascade of multiple crustal fault rupture. In spite of such complexity, we show that the rupture history of each fault is well approximated by simple kinematic model with uniform slip and rupture velocity. Using 9 faults embedded in a crustal layer 19 km thick, each with a prescribed slip vector and rupture velocity, this model accurately reproduces the displacement waveforms recorded at the near-field strong-motion and GPS stations. This model includes the `Papatea Fault' with a mixed thrust and strike-slip mechanism based on in-situ geological observations with up to 8 m of uplift observed. Although the kinematic model fits the ground-motion at the nearest strong station, it doesn not reproduce the one sided nature of the static deformation field observed geodetically. This suggests a dislocation based approach does not completely capture the mechanical response of the Papatea Fault. The fault system as a whole extends for approximately 150 km along the eastern side of the Marlborough fault system in the South Island of New Zealand. The total duration of the rupture was 74 seconds. The timing and location of each fault's rupture suggests fault interaction and triggering resulting in a northward cascade crustal ruptures. Our model does not require rupture of the underlying subduction interface to explain the data.

  18. A complex systems analysis of stick-slip dynamics of a laboratory fault

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, David M.; Tordesillas, Antoinette, E-mail: atordesi@unimelb.edu.au; Small, Michael

    2014-03-15

    We study the stick-slip behavior of a granular bed of photoelastic disks sheared by a rough slider pulled along the surface. Time series of a proxy for granular friction are examined using complex systems methods to characterize the observed stick-slip dynamics of this laboratory fault. Nonlinear surrogate time series methods show that the stick-slip behavior appears more complex than a periodic dynamics description. Phase space embedding methods show that the dynamics can be locally captured within a four to six dimensional subspace. These slider time series also provide an experimental test for recent complex network methods. Phase space networks, constructedmore » by connecting nearby phase space points, proved useful in capturing the key features of the dynamics. In particular, network communities could be associated to slip events and the ranking of small network subgraphs exhibited a heretofore unreported ordering.« less

  19. Crustal Deformation across the Jericho Valley Section of the Dead Sea Fault as Resolved by Detailed Field and Geodetic Observations

    NASA Astrophysics Data System (ADS)

    Hamiel, Yariv; Piatibratova, Oksana; Mizrahi, Yaakov; Nahmias, Yoav; Sagy, Amir

    2018-04-01

    Detailed field and geodetic observations of crustal deformation across the Jericho Fault section of the Dead Sea Fault are presented. New field observations reveal several slip episodes that rupture the surface, consist with strike slip and extensional deformation along a fault zone width of about 200 m. Using dense Global Positioning System measurements, we obtain the velocities of new stations across the fault. We find that this section is locked for strike-slip motion with a locking depth of 16.6 ± 7.8 km and a slip rate of 4.8 ± 0.7 mm/year. The Global Positioning System measurements also indicate asymmetrical extension at shallow depths of the Jericho Fault section, between 0.3 and 3 km. Finally, our results suggest the vast majority of the sinistral slip along the Dead Sea Fault in southern Jorden Valley is accommodated by the Jericho Fault section.

  20. Steric stabilization of nonaqueous silicon slips. I - Control of particle agglomeration and packing. II - Pressure casting of powder compacts

    NASA Technical Reports Server (NTRS)

    Kerkar, Awdhoot V.; Henderson, Robert J. M.; Feke, Donald L.

    1990-01-01

    The application of steric stabilization to control particle agglomeration and packing of silicon powder in benzene and trichloroethylene is reported. The results provide useful guidelines for controlling unfavorable particle-particle interactions during nonaqueous processing of silicon-based ceramic materials. The application of steric stabilization to the control and improvement of green processing of nonaqueous silicon slips in pressure consolidation is also demonstrated.

  1. Surface slip associated with the 2004 Parkfield, California, earthquake measured on alinement arrays

    USGS Publications Warehouse

    Lienkaemper, J.J.; Baker, B.; McFarland, F.S.

    2006-01-01

    Although still continuing, surface slip from the 2004 Parkfield earth-quake as measured on alinement arrays appears to be approaching about 30-35 cm between Parkfield and Gold Hill. This includes slip along the main trace and the Southwest Fracture Zone (SWFZ). Slip here was higher in 1966 at about 40 cm. The distribution of 2004 slip appears to have a shape similar to that of the 1966 event, but final slip is expected to be lower in 2004 by about 3-15 cm, even when continuing slip is accounted for. Proportionately, this difference is most notable at the south end at Highway 46, where the 1966 event slip was 13 cm compared to the 2004 slip of 4 cm. Continuous Global Positioning System and creepmeters suggest that significant surface coseismic slip apparently occurred mainly on the SWFZ and perhaps on Middle Mountain (the latter possibly caused by shaking) (Langbein et al., 2005). Creepmeters indicate only minor (<0.2 cm) surface coseismic slip occurred on the main trace between Parkfield and Gold Hill. We infer that 3-6 cm slip accumulated across our arrays in the first 24 hr. At Highway 46, slip appears complete, whereas the remaining sites are expected to take 2-6 years to reach their background creep rates. Following the 1966 event, afterslip at one site persisted as much as 5-10 years. The much longer recurrence intervals between the past two Parkfield earthquakes and the decreasing slip per event may suggest that larger slip deficits are now growing along the Parkfield segment.

  2. Effect of water on olivine single crystals plasticity, deformed under high pressure and high temperature

    NASA Astrophysics Data System (ADS)

    Girard, Jennifer

    The Earth's upper mantle, mainly composed of olivine, is seismically anisotropic. Seismic anisotropy attenuation has been observed at 220km depth. Karato et al. (1992) attributed this attenuation to a transition between two deformation mechanisms, from dislocation creep above 220km to diffusion creep below 220km, induced by a change in water content. Couvy (2005) and Mainprice et al. (2005) predicted a change in Lattice Preferred Orientation induced by pressure, which comes from a change of slip system, from [100] slip to [001] slip, and is responsible for the seismic anisotropy attenuation. Raterron et al. (2007) ran single crystal deformation experiments under anhydrous conditions and observed that the slip system transition occurs around 8GPa, which corresponds to a depth of 260Km. Experiments were done to quantify the effects of water on olivine single crystals deformed using D-DIA press and synchrotron beam. Deformations were carried out in uniaxial compression along [110]c, [011]c, and [101]c, crystallographic directions, at pressure ranging from 4 to 8GPa and temperature between 1373 and 1473K. Talc sleeves about the annulus of the single crystals were used as source of water in the assembly. Stress and specimen strain rates were calculated by in-situ X-ray diffraction and time resolved imaging, respectively. By direct comparison of single crystals strain rates, we observed that [110]c deforms faster than [011]c below 5GPa. However above 6GPa [011]c deforms faster than [110]c. This revealed that [100](010) is the dominant slip system below 5GPa, and above 6GPa [001](010) becomes dominant. According to our results, the slip system transition, which is induced by pressure, occurs at 6GPa. Water influences the pressure where the switch over occurs, by lowering the transition pressure. The pressure effect on the slip systems activity has been quantified and the hydrolytic weakening has also been estimated for both orientations. Data also shows that temperature affects the slip system activity. The regional variation of the depth for the seismic anisotropy attenuation, which would depend on local hydroxyl content and temperature variations and explains the seismic anisotropy attenuation occurring at about 220Km depth in the mantle, where the pressure is about 6GPa. Deformation of MgO single crystal oriented [100], [110] and [111] were also performed. The results predict a change in the slip system activity at 23GPa, again induced by pressure. This explains the seismic anisotropy observed in the lower mantle.

  3. Is Slow Slip a Cause or a Result of Tremor?

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Ampuero, J. P.

    2017-12-01

    While various modeling efforts have been conducted to reproduce subsets of observations of tremor and slow-slip events (SSE), a fundamental but yet unanswered question is whether slow slip is a cause or a result of tremor. Tremor is commonly regarded as driven by SSE. This view is mainly based on observations of SSE without detected tremors and on (frequency-limited) estimates of total tremor seismic moment being lower than 1% of their concomitant SSE moment. In previous studies we showed that models of heterogeneous faults, composed of seismic asperities embedded in an aseismic fault zone matrix, reproduce quantitatively the hierarchical patterns of tremor migration observed in Cascadia and Shikoku. To address the title question, we design two end-member models of a heterogeneous fault. In the SSE-driven-tremor model, slow slip events are spontaneously generated by the matrix (even in the absence of seismic asperities) and drive tremor. In the Tremor-driven-SSE model the matrix is stable (it slips steadily in the absence of asperities) and slow slip events result from the collective behavior of tremor asperities interacting via transient creep (local afterslip fronts). We study these two end-member models through 2D quasi-dynamic multi-cycle simulations of faults governed by rate-and-state friction with heterogeneous frictional properties and effective normal stress, using the earthquake simulation software QDYN (https://zenodo.org/record/322459). We find that both models reproduce first-order observations of SSE and tremor and have very low seismic to aseismic moment ratio. However, the Tremor-driven-SSE model assumes a simpler rheology than the SSE-driven-tremor model and matches key observations better and without fine tuning, including the ratio of propagation speeds of forward SSE and rapid tremor reversals and the decay of inter-event times of Low Frequency Earthquakes. These modeling results indicate that, in contrast to a common view, SSE could be a result of tremor activity. We also find that, despite important interactions between asperities, tremor activity rates are proportional to the underlying aseismic slip rate, supporting an approach to estimate SSE properties with high spatial-temporal resolutions via tremor activity.

  4. Denali fault slip rates and Holocene-late Pleistocene kinematics of central Alaska

    USGS Publications Warehouse

    Matmon, A.; Schwartz, D.P.; Haeussler, Peter J.; Finkel, R.; Lienkaemper, J.J.; Stenner, Heidi D.; Dawson, T.E.

    2006-01-01

    The Denali fault is the principal intracontinental strike-slip fault accommodating deformation of interior Alaska associated with the Yakutat plate convergence. We obtained the first quantitative late Pleistocene-Holocene slip rates on the Denali fault system from dating offset geomorphic features. Analysis of cosmogenic 10Be concentrations in boulders (n = 27) and sediment (n = 13) collected at seven sites, offset 25-170 m by the Denali and Totschunda faults, gives average ages that range from 2.4 ± 0.3 ka to 17.0 ± 1.8 ka. These offsets and ages yield late Pleistocene-Holocene average slip rates of 9.4 ± 1.6, 12.1 ± 1.7, and 8.4 ± 2.2 mm/yr-1 along the western, central, and eastern Denali fault, respectively, and 6.0 ± 1.2 mm/yr-1 along the Totschunda fault. Our results suggest a westward decrease in the mean Pleistocene-Holocene slip rate. This westward decrease likely results from partitioning of slip from the Denali fault system to thrust faults to the north and west. 2006 Geological Society of America.

  5. Acoustically induced slip in sheared granular layers: Application to dynamic earthquake triggering: TRIGGERED SLIP IN SHEARED GRANULAR GOUGE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferdowsi, Behrooz; Griffa, Michele; Guyer, Robert A.

    A fundamental mystery in earthquake physics is “how can an earthquake be triggered by distant seismic sources?” We use discrete element method simulations of a granular layer, during stick slip, that is subject to transient vibrational excitation to gain further insight into the physics of dynamic earthquake triggering. We also observe delayed triggering of slip in the granular gouge, using Coulomb friction law for grains interaction. We find that at a critical vibrational amplitude (strain) there is an abrupt transition from negligible time-advanced slip (clock advance) to full clock advance; i.e., transient vibration and triggered slip are simultaneous. Moreover, themore » critical strain is of order 10 -6, similar to observations in the laboratory and in Earth. The transition is related to frictional weakening of the granular layer due to a dramatic decrease in coordination number and the weakening of the contact force network. Associated with this frictional weakening is a pronounced decrease in the elastic modulus of the layer. The study has important implications for mechanisms of triggered earthquakes and induced seismic events and points out the underlying processes in response of the fault gouge to dynamic transient stresses.« less

  6. Acoustically induced slip in sheared granular layers: Application to dynamic earthquake triggering: TRIGGERED SLIP IN SHEARED GRANULAR GOUGE

    DOE PAGES

    Ferdowsi, Behrooz; Griffa, Michele; Guyer, Robert A.; ...

    2015-11-19

    A fundamental mystery in earthquake physics is “how can an earthquake be triggered by distant seismic sources?” We use discrete element method simulations of a granular layer, during stick slip, that is subject to transient vibrational excitation to gain further insight into the physics of dynamic earthquake triggering. We also observe delayed triggering of slip in the granular gouge, using Coulomb friction law for grains interaction. We find that at a critical vibrational amplitude (strain) there is an abrupt transition from negligible time-advanced slip (clock advance) to full clock advance; i.e., transient vibration and triggered slip are simultaneous. Moreover, themore » critical strain is of order 10 -6, similar to observations in the laboratory and in Earth. The transition is related to frictional weakening of the granular layer due to a dramatic decrease in coordination number and the weakening of the contact force network. Associated with this frictional weakening is a pronounced decrease in the elastic modulus of the layer. The study has important implications for mechanisms of triggered earthquakes and induced seismic events and points out the underlying processes in response of the fault gouge to dynamic transient stresses.« less

  7. Surface Creep along the Chaman Fault on the Pakistan-Afghanistan Border imaged by SAR interferometry

    NASA Astrophysics Data System (ADS)

    Szeliga, W. M.; Furuya, M.; Satyabala, S.; Bilham, R.

    2006-12-01

    The Chaman fault system is an on-land transform separating the Indian and Asian plates. From the Arabia/Asia/India triple junction on the Makran coast it passes north through Baluchistan, trending NNE into Afghanistan before merging with the Himalayan arc in the North West Frontier province of Pakistan. Geological and plate closure estimates of slip on the system suggest sinistral slip of between 1.9 and 3.5 cm/yr over the last 25 Ma. Oblique convergence occurs near and north of Quetta, Pakistan where it is accommodated by thrust faulting in ranges to the east of the apparently pure strike-slip Chaman fault. We present InSAR analyses that suggest that a 110 km segment of the Chaman fault system north of Quetta may be experiencing shallow aseismic slip (creep). ERS-1/-2 data indicate a change in range along a 110 km segment of the Chaman fault by as much as 7.8 mm/yr. The absence of ascending pass scenes means that we cannot exclude the possibility that some or all of this sinistral slip occurs as vertical displacement, although we suspect that slip partitioning may rule out a substantial vertical component to the observed slip. The trend of the Chaman fault lies nearly perpendicular to the satellite range direction reducing the signal to noise ratio and rendering the data too noisy to assess the locking depth of creep on the fault, although it would appear to be locked at least 5 km beneath the surface. We note the length and rate of slip of the creeping segment of the Chaman fault is similar to that of the Hayward fault in California.

  8. The Hills are Alive: Dynamic Ridges and Valleys in a Strike-Slip Environment

    NASA Astrophysics Data System (ADS)

    Duvall, A. R.; Tucker, G. E.

    2014-12-01

    Strike-slip fault zones have long been known for characteristic landforms such as offset and deflected rivers, linear strike-parallel valleys, and shutter ridges. Despite their common presence, questions remain about the mechanics of how these landforms arise or how their form varies as a function of slip rate, geomorphic process, or material properties. We know even less about what happens far from the fault, in drainage basin headwaters, as a result of strike-slip motion. Here we explore the effects of horizontal fault slip rate, bedrock erodibility, and hillslope diffusivity on river catchments that drain across an active strike-slip fault using the CHILD landscape evolution model. Model calculations demonstrate that lateral fault motion induces a permanent state of landscape disequilibrium brought about by fault offset-generated river lengthening alternating with abrupt shortening due to stream capture. This cycle of shifting drainage patterns and base level change continues until fault motion ceases thus creating a perpetual state of transience unique to strike-slip systems. Our models also make the surprising prediction that, in some cases, hillslope ridges oriented perpendicular to the fault migrate laterally in conjunction with fault motion. Ridge migration happens when slip rate is slow enough and/or diffusion and river incision are fast enough that the hillslopes can respond to the disequilibrium brought about by strike-slip motion. In models with faster slip rates, stronger rocks or less-diffusive hillslopes, ridge mobility is limited or arrested despite the fact that the process of river lengthening and capture continues. Fast-slip cases also develop prominent steep fault-facing hillslope facets proximal to the fault valley and along-strike topographic profiles with reduced local relief between ridges and valleys. Our results demonstrate the dynamic nature of strike-slip landscapes that vary systematically with a ratio of bedrock erodibility (K) and hillslope diffusivity (D) to the rate of horizontal advection of topography (v). These results also reveal a potential set of recognizable geomorphic signatures within strike-slip systems that should be looked to as indicators of fault activity and/or material properties.

  9. Coseismic slip distributions of the 26 December 2004 Sumatra-Andaman and 28 March 2005 Nias earthquakes from GPS static offsets

    USGS Publications Warehouse

    Banerjee, P.; Pollitz, F.; Nagarajan, B.; Burgmann, R.

    2007-01-01

    Static offsets produced by the 26 December 2004 M ???9 Sumatra-Andaman earthquake as measured by Global Positioning System (GPS) reveal a large amount of slip along the entire ???1300 km-long rupture. Most seismic slip inversions place little slip on the Andaman segment. whereas both near-field and far-field GPS offsets demand large slip on the Andaman segment. We compile available datasets of the static offset to render a more detailed picture of the static-slip distribution. We construct geodetic offsets such that postearthquake positions of continuous GPS sites are reckoned to a time 1 day after the earthquake and campaign GPS sites are similarly corrected for postseismic motions. The newly revised slip distribution (Mw 9.22) reveals substantial segmentation of slip along the Andaman Islands, with the southern quarter slipping ???15 m in unison with the adjacent Nicobar and northern Sumatran segments of length ???700 km. We infer a small excess of geodetic moment relative to the seismic moment. A similar compilation of GPS offsets from the 28 March 2005 Nias earthquake is well explained with dip slip averaging several meters (Mw = 8.66) distributed primarily at depths greater than 20 km.

  10. New geologic slip rates for the Agua Blanca Fault, northern Baja California, Mexico

    NASA Astrophysics Data System (ADS)

    Gold, P. O.; Behr, W. M.; Fletcher, J. M.; Hinojosa-Corona, A.; Rockwell, T. K.

    2015-12-01

    Within the southern San Andreas transform plate boundary system, relatively little is known regarding active faulting in northern Baja California, Mexico, or offshore along the Inner Continental Borderland. The inner offshore system appears to be fed from the south by the Agua Blanca Fault (ABF), which strikes northwest across the Peninsular Ranges of northern Baja California. Therefore, the geologic slip rate for the ABF also provides a minimum slip rate estimate for the offshore system, which is connected to the north to faults in the Los Angeles region. Previous studies along the ABF determined slip rates of ~4-6 mm/yr (~10% of relative plate motion). However, these rates relied on imprecise age estimates and offset geomorphic features of a type that require these rates to be interpreted as minima, allowing for the possibility that the slip rate for the ABF may be greater. Although seismically quiescent, the surface trace of the ABF clearly reflects Holocene activity, and given its connectivity with the offshore fault system, more quantitative slip rates for the ABF are needed to better understand earthquake hazard for both US and Mexican coastal populations. Using newly acquired airborne LiDAR, we have mapped primary and secondary fault strands along the segmented western 70 km of the ABF. Minimal development has left the geomorphic record of surface slip remarkably well preserved, and we have identified abundant evidence meter to km scale right-lateral displacement, including new Late Quaternary slip rate sites. We verified potential reconstructions at each site during summer 2015 fieldwork, and selected an initial group of three high potential slip rate sites for detailed mapping and geochronologic analyses. Offset landforms, including fluvial terrace risers, alluvial fans, and incised channel fill deposits, record displacements of ~5-80 m, and based on minimal soil development, none appear older than early Holocene. To quantitatively constrain landform ages, we collected surface and depth profile samples for 10Be cosmogenic exposure dating. We also identified sites for new paleoseismic excavations, and documented evidence of the last two earthquakes, each of which produced ~2.5 m of surface displacement. We expect new Holocene slip rates for the Agua Blanca Fault to be forthcoming in fall of 2015.

  11. Deformation response of cube-on-cube and non-coherent twin interfaces in AgCu eutectic after dynamic plastic compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eftink, Benjamin P.; Mara, Nathan Allan; Kingstedt, Owen T.

    For this research, Split-Hopkinson pressure bar dynamic compression experiments were conducted to determine the defect/interface interaction dependence on interface type, bilayer thickness and interface orientation with respect to the loading direction in the Ag-Cu eutectic system. Specifically, the deformation microstructure in alloys with either a cube-on-cube orientation relationship with {111} Ag||{111} Cu interface habit planes or a twin orientation relationship with {more » $$\\overline{3}13$$} Ag||{$$\\overline{1}12$$} Cu interface habit planes and with bilayer thicknesses of 500 nm, 1.1 µm and 2.2 µm were probed using TEM. The deformation was carried by dislocation slip and in certain conditions, deformation twinning. The twinning response was dependent on loading orientation with respect to the interface plane, bilayer thickness, and interface type. Twinning was only observed when loading at orientations away from the growth direction and decreased in prevalence with decreasing bilayer thickness. Twinning in Cu was dependent on twinning partial dislocations being transmitted from Ag, which only occurred for cube-on-cube interfaces. Lastly, dislocation slip and deformation twin transfer across the interfaces is discussed in terms of the slip transfer conditions developed for grain boundaries in FCC alloys.« less

  12. Deformation response of cube-on-cube and non-coherent twin interfaces in AgCu eutectic after dynamic plastic compression

    DOE PAGES

    Eftink, Benjamin P.; Mara, Nathan Allan; Kingstedt, Owen T.; ...

    2017-12-02

    For this research, Split-Hopkinson pressure bar dynamic compression experiments were conducted to determine the defect/interface interaction dependence on interface type, bilayer thickness and interface orientation with respect to the loading direction in the Ag-Cu eutectic system. Specifically, the deformation microstructure in alloys with either a cube-on-cube orientation relationship with {111} Ag||{111} Cu interface habit planes or a twin orientation relationship with {more » $$\\overline{3}13$$} Ag||{$$\\overline{1}12$$} Cu interface habit planes and with bilayer thicknesses of 500 nm, 1.1 µm and 2.2 µm were probed using TEM. The deformation was carried by dislocation slip and in certain conditions, deformation twinning. The twinning response was dependent on loading orientation with respect to the interface plane, bilayer thickness, and interface type. Twinning was only observed when loading at orientations away from the growth direction and decreased in prevalence with decreasing bilayer thickness. Twinning in Cu was dependent on twinning partial dislocations being transmitted from Ag, which only occurred for cube-on-cube interfaces. Lastly, dislocation slip and deformation twin transfer across the interfaces is discussed in terms of the slip transfer conditions developed for grain boundaries in FCC alloys.« less

  13. A multichain polymer slip-spring model with fluctuating number of entanglements for linear and nonlinear rheology

    DOE PAGES

    Ramírez-Hernández, Abelardo; Peters, Brandon L.; Andreev, Marat; ...

    2015-12-15

    A theoretically informed entangled polymer simulation approach is presented for description of the linear and non-linear rheology of entangled polymer melts. The approach relies on a many-chain representation and introduces the topological effects that arise from the non-crossability of molecules through effective fluctuating interactions, mediated by slip-springs, between neighboring pairs of macromolecules. The total number of slip-springs is not preserved but, instead, it is controlled through a chemical potential that determines the average molecular weight between entanglements. The behavior of the model is discussed in the context of a recent theory for description of homogeneous materials, and its relevance ismore » established by comparing its predictions to experimental linear and non-linear rheology data for a series of well-characterized linear polyisoprene melts. Furthermore, the results are shown to be in quantitative agreement with experiment and suggest that the proposed formalism may also be used to describe the dynamics of inhomogeneous systems, such as composites and copolymers. Importantly, the fundamental connection made here between our many-chain model and the well-established, thermodynamically consistent single-chain mean-field models provides a path to systematic coarse-graining for prediction of polymer rheology in structurally homogeneous and heterogeneous materials.« less

  14. Evolution of Pull-Apart Basins and Their Scale Independence

    NASA Astrophysics Data System (ADS)

    Aydin, Atilla; Nur, Amos

    1982-02-01

    Pull-apart basins or rhomb grabens and horsts along major strike-slip fault systems in the world are generally associated with horizontal slip along faults. A simple model suggests that the width of the rhombs is controlled by the initial fault geometry, whereas the length increases with increasing fault displacement. We have tested this model by analyzing the shapes of 70 well-defined rhomb-like pull-apart basins and pressure ridges, ranging from tens of meters to tens of kilometers in length, associated with several major strike-slip faults in the western United States, Israel, Turkey, Iran, Guatemala, Venezuela, and New Zealand. In conflict with the model, we find that the length to width ratio of these basins is a constant value of approximately 3; these basins become wider as they grow longer with increasing fault offset. Two possible mechanisms responsible for the increase in width are suggested: (1) coalescence of neighboring rhomb grabens as each graben increases its length and (2) formation of fault strands parallel to the existing ones when large displacements need to be accommodated. The processes of formation and growth of new fault strands promote interaction among the new faults and between the new and preexisting faults on a larger scale. Increased displacement causes the width of the fault zone to increase resulting in wider pull-apart basins.

  15. A dislocation density-based continuum model of the anisotropic shock response of single crystal α-cyclotrimethylene trinitramine

    NASA Astrophysics Data System (ADS)

    Luscher, D. J.; Addessio, F. L.; Cawkwell, M. J.; Ramos, K. J.

    2017-01-01

    We have developed a model for the finite deformation thermomechanical response of α-cyclotrimethylene trinitramine (RDX). Our model accounts for nonlinear thermoelastic lattice deformation through a free energy-based equation of state developed by Cawkwell et al. (2016) in combination with temperature and pressure dependent elastic constants, as well as dislocation-mediated plastic slip on a set of slip systems motivated by experimental observation. The kinetics of crystal plasticity are modeled using the Orowan equation relating slip rate to dislocation density and the dislocation velocity developed by Austin and McDowell (2011), which naturally accounts for transition from thermally activated to dislocation drag limited regimes. Evolution of dislocation density is specified in terms of local ordinary differential equations reflecting dislocation-dislocation interactions. This paper presents details of the theory and parameterization of the model, followed by discussion of simulations of flyer plate impact experiments. Impact conditions explored within this combined simulation and experimental effort span shock pressures ranging from 1 to 3 GPa for four crystallographic orientations and multiple specimen thicknesses. Simulation results generated using this model are shown to be in strong agreement with velocimetry measurements from the corresponding plate impact experiments. Finally, simulation results are used to motivate conclusions about the nature of dislocation-mediated plasticity in RDX.

  16. Phase slips in superconducting weak links

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimmel, Gregory; Glatz, Andreas; Aranson, Igor S.

    2017-01-01

    Superconducting vortices and phase slips are primary mechanisms of dissipation in superconducting, superfluid, and cold-atom systems. While the dynamics of vortices is fairly well described, phase slips occurring in quasi-one- dimensional superconducting wires still elude understanding. The main reason is that phase slips are strongly nonlinear time-dependent phenomena that cannot be cast in terms of small perturbations of the superconducting state. Here we study phase slips occurring in superconducting weak links. Thanks to partial suppression of superconductivity in weak links, we employ a weakly nonlinear approximation for dynamic phase slips. This approximation is not valid for homogeneous superconducting wires andmore » slabs. Using the numerical solution of the time-dependent Ginzburg-Landau equation and bifurcation analysis of stationary solutions, we show that the onset of phase slips occurs via an infinite period bifurcation, which is manifested in a specific voltage-current dependence. Our analytical results are in good agreement with simulations.« less

  17. Combined emergency braking and turning of articulated heavy vehicles

    NASA Astrophysics Data System (ADS)

    Morrison, Graeme; Cebon, David

    2017-05-01

    'Slip control' braking has been shown to reduce the emergency stopping distance of an experimental heavy goods vehicle by up to 19%, compared to conventional electronic/anti-lock braking systems (EBS). However, little regard has been given to the impact of slip control braking on the vehicle's directional dynamics. This paper uses validated computer models to show that slip control could severely degrade directional performance during emergency braking. A modified slip control strategy, 'attenuated slip demand' (ASD) control, is proposed in order to rectify this. Results from simulations of vehicle performance are presented for combined braking and cornering manoeuvres with EBS and slip control braking with and without ASD control. The ASD controller enables slip control braking to provide directional performance comparable with conventional EBS while maintaining a substantial stopping distance advantage. The controller is easily tuned to work across a wide range of different operating conditions.

  18. Slow Slip and Earthquake Nucleation in Meter-Scale Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Mclaskey, G.

    2017-12-01

    The initiation of dynamic rupture is thought to be preceded by a quasistatic nucleation phase. Observations of recent earthquakes sometimes support this by illuminating slow slip and foreshocks in the vicinity of the eventual hypocenter. I describe laboratory earthquake experiments conducted on two large-scale loading machines at Cornell University that provide insight into the way earthquake nucleation varies with normal stress, healing time, and loading rate. The larger of the two machines accommodates a 3 m long granite sample, and when loaded to 7 MPa stress levels, we observe dynamic rupture events that are preceded by a measureable nucleation zone with dimensions on the order of 1 m. The smaller machine accommodates a 0.76 m sample that is roughly the same size as the nucleation zone. On this machine, small variations in nucleation properties result in measurable differences in slip events, and we generate both dynamic rupture events (> 0.1 m/s slip rates) and slow slip events ( 0.001 to 30 mm/s slip rates). Slow events occur when instability cannot fully nucleate before reaching the sample ends. Dynamic events occur after long healing times or abrupt increases in loading rate which suggests that these factors shrink the spatial and temporal extents of the nucleation zone. Arrays of slip, strain, and ground motion sensors installed on the sample allow us to quantify seismic coupling and study details of premonitory slip and afterslip. The slow slip events we observe are primarily aseismic (less than 1% of the seismic coupling of faster events) and produce swarms of very small M -6 to M -8 events. These mechanical and seismic interactions suggest that faults with transitional behavior—where creep, small earthquakes, and tremor are often observed—could become seismically coupled if loaded rapidly, either by a slow slip front or dynamic rupture of an earthquake that nucleated elsewhere.

  19. Dynamical stability of slip-stacking particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eldred, Jeffrey; Zwaska, Robert

    2014-09-01

    We study the stability of particles in slip-stacking configuration, used to nearly double proton beam intensity at Fermilab. We introduce universal area factors to calculate the available phase space area for any set of beam parameters without individual simulation. We find perturbative solutions for stable particle trajectories. We establish Booster beam quality requirements to achieve 97% slip-stacking efficiency. We show that slip-stacking dynamics directly correspond to the driven pendulum and to the system of two standing-wave traps moving with respect to each other.

  20. Computer simulation of surface and film processes

    NASA Technical Reports Server (NTRS)

    Tiller, W. A.; Halicioglu, M. T.

    1984-01-01

    All the investigations which were performed employed in one way or another a computer simulation technique based on atomistic level considerations. In general, three types of simulation methods were used for modeling systems with discrete particles that interact via well defined potential functions: molecular dynamics (a general method for solving the classical equations of motion of a model system); Monte Carlo (the use of Markov chain ensemble averaging technique to model equilibrium properties of a system); and molecular statics (provides properties of a system at T = 0 K). The effects of three-body forces on the vibrational frequencies of triatomic cluster were investigated. The multilayer relaxation phenomena for low index planes of an fcc crystal was analyzed also as a function of the three-body interactions. Various surface properties for Si and SiC system were calculated. Results obtained from static simulation calculations for slip formation were presented. The more elaborate molecular dynamics calculations on the propagation of cracks in two-dimensional systems were outlined.

  1. Investigation of PDC bit failure base on stick-slip vibration analysis of drilling string system plus drill bit

    NASA Astrophysics Data System (ADS)

    Huang, Zhiqiang; Xie, Dou; Xie, Bing; Zhang, Wenlin; Zhang, Fuxiao; He, Lei

    2018-03-01

    The undesired stick-slip vibration is the main source of PDC bit failure, such as tooth fracture and tooth loss. So, the study of PDC bit failure base on stick-slip vibration analysis is crucial to prolonging the service life of PDC bit and improving ROP (rate of penetration). For this purpose, a piecewise-smooth torsional model with 4-DOF (degree of freedom) of drilling string system plus PDC bit is proposed to simulate non-impact drilling. In this model, both the friction and cutting behaviors of PDC bit are innovatively introduced. The results reveal that PDC bit is easier to fail than other drilling tools due to the severer stick-slip vibration. Moreover, reducing WOB (weight on bit) and improving driving torque can effectively mitigate the stick-slip vibration of PDC bit. Therefore, PDC bit failure can be alleviated by optimizing drilling parameters. In addition, a new 4-DOF torsional model is established to simulate torsional impact drilling and the effect of torsional impact on PDC bit's stick-slip vibration is analyzed by use of an engineering example. It can be concluded that torsional impact can mitigate stick-slip vibration, prolonging the service life of PDC bit and improving drilling efficiency, which is consistent with the field experiment results.

  2. Evaluation of Alternative Seismic Source Characterization Models for the Inner Borderlands of Southern California

    NASA Astrophysics Data System (ADS)

    Hanson, K. L.; Angell, M.; Foxall, W.; Rietman, J.

    2002-12-01

    Alternative source characterizations for seismic hazard analysis are developed to capture the range of plausible fault geometries and interactions between postulated thrusts (i.e., the Oceanside blind thrust (OBT) and San Joaquin Hills blind fault (SJBF)) and strike-slip faults (Rose Canyon (RC)-Newport Inglewood (NI) faults) along the Southern California inner borderlands. Evaluation of 2D and high-resolution shallow seismic data show evidence for a relatively continuous zone of deformation (OZD) linking the RC and NI, both of which are active strike-slip faults, based on seismicity and paleoseismic data. Geodetic data are consistent with NNW-shear and show little or no convergence across the inner borderland, or evidence of a regional "driving" force that would reactivate a large seismogenic thrust (see Moriwaki and others, this volume). Fault and fold deformation observed along the OZD between the RC and NI is consistent with transpressional right lateral slip along a N20W-trending fault zone. Evidence to support reactivation of the entire OBT in the current tectonic environment is not demonstrated. Seismicity and possible late Pleistocene/Holocene reverse faults and associated folding can be explained by localized contraction in left steps or bends in a transpressional right-slip tectonic environment. Clockwise rotation of crustal blocks in the inner borderland (which is not inconsistent with geodetic data suggesting a component of extension across the southern inner borderland) could account for the greater intensity of contractional structures in the hanging wall of the northern OBT west of the OZD. This might explain the local reactivation of portions of the OBT, but would not require reactivation of the entire detachment. Much of the contractional deformation observed in the inner borderland (e.g., the San Mateo thrust belt) could have occurred during the Pliocene. Regional coastal uplift, which has been cited as evidence that the Oceanside and Thirtymile Bank thrusts are active on a regional basis, may be attributed to other processes, such as rift shoulder thermal isostasy (e.g., Kier et.al, Tectonics 2002). We present relative weights for three alternative source models that consider a throughgoing strike-slip fault system (inactive OBT), a regional blind thrust (OBT), or an oblique fault in which strain is partitioned updip onto a strike-slip (offshore strike-slip fault) and reactivated thrust (OBT).

  3. The influence of chromium on structure and mechanical properties of B2 nickel aluminide alloys. Ph.D. Thesis - Florida Univ., 1991 Final Report

    NASA Technical Reports Server (NTRS)

    Cotton, James Dean

    1992-01-01

    Major obstacles to the use of NiAl-based alloys and composites are low ductility and toughness. These shortcomings result in part from a lack of sufficient slip systems to accommodate plastic deformation of polycrystalline material (von Mises Criterion). It has been reported that minor additions of chromium to polycrystalline NiAl cause the predominant slip system to shift from the usual. If true, then a major step toward increasing ductility in this compound may be realized. The purpose of the present study was to verify this phenomenon, characterize it with respect to chromium level and Ni to Al ratio, and correlate any change in slip system with microstructure and mechanical properties. Compression and tensile specimens were prepared from alloys containing 0 to 5 percent chromium and 45 to 55 percent aluminum. Following about one percent strain, transmission electron microscopy foils were produced and the slip systems determined using the g x b = 0 invisibility criterion. Contrary to previous results, chromium was found to have no effect on the preferred slip system of any of the alloys studied. Possible reasons for the inconsistency of the current results with previous work are considered. Composition-structure-property relationships are discerned for the alloys, and good correlation are demonstrated in terms of conventional strengthening models for metallic systems.

  4. Paleoearthquakes on the Denali-Totschunda Fault system: Preliminary Observations of Slip and Timing

    NASA Astrophysics Data System (ADS)

    Schwartz, D. P.; Denali Fault Earthquake Geology Wp, .

    2003-12-01

    Understanding the behavior of large strike-slip fault systems requires information about the amount of slip and timing of past earthquakes at different locations along a fault. A historical surface rupture adds a critically important baseline for calibration. During July 2003 we performed additional mapping of the 2002 Denali-Totschunda surface rupture with the goal of also measuring and dating slip during previous earthquakes. We were able to obtain slip values for prior events at a dozen locations along Denali-Totschunda strike-slip rupture. We focused on the penultimate event, which is easiest to distinguish (slip from individual older events can eventually be measured). On the Denali fault just west of the intersection with the Susitna Glacier thrust 2002 slip was low, 1.0 m to 1.5 m; cumulative slip from two events was 2.5-3.0, which is essentially double. On the 100-km-long section between Black Rapids Glacier and Gillett Pass, where 2002 slip averaged 5 m, three measurements indicate penultimate-event slip was about the same as 2002. The 7-8 m offset section east of Gillett Pass has the clearest paleoevent slip history. We measured three locations where 2002 slip was 7-8m and cumulative offset on channels was 14.5-16 m. Along this section previous workers noted gullies with 15 m offsets before the 2002 earthquake, suggesting the past three events here had similar slip. On the Totschunda fault paleo offsets appear to be similar in amount to 2002. At one locality we measured 2.8 m in 2002 and 5.4 m for two events. A second site had 1.0-1.4 m of offset in 2002 and 3.1 m for two events. A third location yielded 3.3 m in 2002 and 10.8 m on a paleochannel, which could represent three events with similar slip. A location in the Denali-Totschunda transition zone had a 5-6 m-high scarp and a well-developed sag pond, indicating that this complex part of the fault system has been active in previous events. The major observation is that the paleo offset measurements, though presently limited in number, indicate that penultimate event slip was very similar to the 2002 offset along the length of the ruptured Denali and Totschundafaults, and may have been similar for at least a third event back. For most of the it's length the 2002 rupture is expressed as a narrow mole track (typically 1m to 3m wide) but locally it has produced pull aparts and large fissures. These features contain a variety of organic deposits associated with the ground surface at the time of the penultimate earthquake(s) on the Denali and Totschunda faults. We sampled five of these, and recovered peat, pine needles, and trees that were toppled during the penultimate event(s). Including a test pit west of the Delta River, we have six sample sites that span the 5m and 7-8m rupture segments of the Denali, the Denali-Totschunda transition zone, and the Totschunda fault. Preliminary radiocarbon dates indicate that the timing of the penultimate event on the Denali fault is younger than 1400 to 1289 yr BP and may have occurred as recently as 520 to 310 yr BP. The penultimate event on the Totschunda fault occurred after 1340 to 1130 yr BP and most likely occurred shortly after 660 to 530 years BP. The Denali-Totschunda fault system is a remarkable laboratory, particularly in terms of preservation of fault geomorphology and organic material, for studying large strike-slip faults. These initial observations of paleoslip and event dates are the first steps in unraveling the behavior of this major strike-slip zone. Denali Fault Earthquake Geology Working Group: T. Dawson, P. Haeussler, J. Lienkaemper, A. Matmon, D. Schwartz, H.Stenner, B. Sherrod (USGS), F. Cinti, P. Montone (INGV, Rome), G. Carver. G.Plafker (Alyeska)

  5. Fault geometry and cumulative offsets in the central Coast Ranges, California: Evidence for northward increasing slip along the San Gregorio-San Simeon-Hosgri fault

    USGS Publications Warehouse

    Langenheim, V.E.; Jachens, R.C.; Graymer, R.W.; Colgan, J.P.; Wentworth, C.M.; Stanley, R.G.

    2012-01-01

    Estimates of the dip, depth extent, and amount of cumulative displacement along the major faults in the central California Coast Ranges are controversial. We use detailed aeromagnetic data to estimate these parameters for the San Gregorio–San Simeon–Hosgri and other faults. The recently acquired aeromagnetic data provide an areally consistent data set that crosses the onshore-offshore transition without disruption, which is particularly important for the mostly offshore San Gregorio–San Simeon–Hosgri fault. Our modeling, constrained by exposed geology and in some cases, drill-hole and seismic-reflection data, indicates that the San Gregorio–San Simeon–Hosgri and Reliz-Rinconada faults dip steeply throughout the seismogenic crust. Deviations from steep dips may result from local fault interactions, transfer of slip between faults, or overprinting by transpression since the late Miocene. Given that such faults are consistent with predominantly strike-slip displacement, we correlate geophysical anomalies offset by these faults to estimate cumulative displacements. We find a northward increase in right-lateral displacement along the San Gregorio–San Simeon–Hosgri fault that is mimicked by Quaternary slip rates. Although overall slip rates have decreased over the lifetime of the fault, the pattern of slip has not changed. Northward increase in right-lateral displacement is balanced in part by slip added by faults, such as the Reliz-Rinconada, Oceanic–West Huasna, and (speculatively) Santa Ynez River faults to the east.

  6. Fluvial-Deltaic Strata as a High-Resolution Recorder of Fold Growth and Fault Slip

    NASA Astrophysics Data System (ADS)

    Anastasio, D. J.; Kodama, K. P.; Pazzaglia, F. P.

    2008-12-01

    Fluvial-deltaic systems characterize the depositional record of most wedge-top and foreland basins, where the synorogenic stratigraphy responds to interactions between sediment supply driven by tectonic uplift, climate modulated sea level change and erosion rate variability, and fold growth patterns driven by unsteady fault slip. We integrate kinematic models of fault-related folds with growth strata and fluvial terrace records to determine incremental rates of shortening, rock uplift, limb tilting, and fault slip with 104-105 year temporal resolution in the Pyrenees and Apennines. At Pico del Aguila anticline, a transverse dècollement fold along the south Pyrenean mountain front, formation-scale synorogenic deposition and clastic facies patterns in prodeltaic and slope facies reflect tectonic forcing of sediment supply, sea level variability controlling delta front position, and climate modulated changes in terrestrial runoff. Growth geometries record a pinned anticline and migrating syncline hinges during folding above the emerging Guarga thrust sheet. Lithologic and anhysteretic remanent magnetization (ARM) data series from the Eocene Arguis Fm. show cyclicity at Milankovitch frequencies allowing detailed reconstruction of unsteady fold growth. Multiple variations in limb tilting rates from <8° to 28°/my over 7my are attributed to unsteady fault slip along the roof ramp and basal dècollement. Along the northern Apennine mountain front, the age and geometry of strath terraces preserved across the Salsomaggiore anticline records the Pleistocene-Recent kinematics of the underlying fault-propagation fold as occurring with a fixed anticline hinge, a rolling syncline hinge, and along-strike variations in uplift and forelimb tilting. The uplifted intersection of terrace deposits documents syncline axial surface migration and underlying fault-tip propagation at a rate of ~1.4 cm/yr since the Middle Pleistocene. Because this record of fault slip coincides with the well-known large amplitude oscillations in global climate that contribute to the filling and deformation of the Po foreland, we hypothesize that climatically-modulated surface processes are reflected in the observed rates of fault slip and fold growth.

  7. Areas prone to slow slip events impede earthquake rupture propagation and promote afterslip.

    PubMed

    Rolandone, Frederique; Nocquet, Jean-Mathieu; Mothes, Patricia A; Jarrin, Paul; Vallée, Martin; Cubas, Nadaya; Hernandez, Stephen; Plain, Morgan; Vaca, Sandro; Font, Yvonne

    2018-01-01

    At subduction zones, transient aseismic slip occurs either as afterslip following a large earthquake or as episodic slow slip events during the interseismic period. Afterslip and slow slip events are usually considered as distinct processes occurring on separate fault areas governed by different frictional properties. Continuous GPS (Global Positioning System) measurements following the 2016 M w (moment magnitude) 7.8 Ecuador earthquake reveal that large and rapid afterslip developed at discrete areas of the megathrust that had previously hosted slow slip events. Regardless of whether they were locked or not before the earthquake, these areas appear to persistently release stress by aseismic slip throughout the earthquake cycle and outline the seismic rupture, an observation potentially leading to a better anticipation of future large earthquakes.

  8. Areas prone to slow slip events impede earthquake rupture propagation and promote afterslip

    PubMed Central

    Rolandone, Frederique; Nocquet, Jean-Mathieu; Mothes, Patricia A.; Jarrin, Paul; Vallée, Martin; Cubas, Nadaya; Hernandez, Stephen; Plain, Morgan; Vaca, Sandro; Font, Yvonne

    2018-01-01

    At subduction zones, transient aseismic slip occurs either as afterslip following a large earthquake or as episodic slow slip events during the interseismic period. Afterslip and slow slip events are usually considered as distinct processes occurring on separate fault areas governed by different frictional properties. Continuous GPS (Global Positioning System) measurements following the 2016 Mw (moment magnitude) 7.8 Ecuador earthquake reveal that large and rapid afterslip developed at discrete areas of the megathrust that had previously hosted slow slip events. Regardless of whether they were locked or not before the earthquake, these areas appear to persistently release stress by aseismic slip throughout the earthquake cycle and outline the seismic rupture, an observation potentially leading to a better anticipation of future large earthquakes. PMID:29404404

  9. 75 FR 28861 - Walking-Working Surfaces and Personal Protective Equipment (Fall Protection Systems)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-24

    ... workplaces walk or work on level surfaces, such as floors, where slips, trips, and falls are common..., and similar surfaces where slips, trips, or falls are likely to result in serious injury or death. The... receive a level of protection that is effective and necessary. OSHA believes many of these slips, trips...

  10. Dynamically triggered slip leading to sustained fault gouge weakening under laboratory shear conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Paul Allan

    We investigate dynamic wave-triggered slip under laboratory shear conditions. The experiment is composed of a three-block system containing two gouge layers composed of glass beads and held in place by a fixed load in a biaxial configuration. When the system is sheared under steady state conditions at a normal load of 4 MPa, we find that shear failure may be instantaneously triggered by a dynamic wave, corresponding to material weakening and softening if the system is in a critical shear stress state (near failure). Following triggering, the gouge material remains in a perturbed state over multiple slip cycles as evidencedmore » by the recovery of the material strength, shear modulus, and slip recurrence time. This work suggests that faults must be critically stressed to trigger under dynamic conditions and that the recovery process following a dynamically triggered event differs from the recovery following a spontaneous event.« less

  11. Dynamically triggered slip leading to sustained fault gouge weakening under laboratory shear conditions

    DOE PAGES

    Johnson, Paul Allan

    2016-02-28

    We investigate dynamic wave-triggered slip under laboratory shear conditions. The experiment is composed of a three-block system containing two gouge layers composed of glass beads and held in place by a fixed load in a biaxial configuration. When the system is sheared under steady state conditions at a normal load of 4 MPa, we find that shear failure may be instantaneously triggered by a dynamic wave, corresponding to material weakening and softening if the system is in a critical shear stress state (near failure). Following triggering, the gouge material remains in a perturbed state over multiple slip cycles as evidencedmore » by the recovery of the material strength, shear modulus, and slip recurrence time. This work suggests that faults must be critically stressed to trigger under dynamic conditions and that the recovery process following a dynamically triggered event differs from the recovery following a spontaneous event.« less

  12. The Role of Near-Fault Relief in Creating and Maintaining Strike-Slip Landscape Features

    NASA Astrophysics Data System (ADS)

    Harbert, S.; Duvall, A. R.; Tucker, G. E.

    2016-12-01

    Geomorphic landforms, such as shutter ridges, offset river terraces, and deflected stream channels, are often used to assess the activity and slip rates of strike-slip faults. However, in some systems, such as parts of the Marlborough Fault System (South Island, NZ), an active strike-slip fault does not leave a strong landscape signature. Here we explore the factors that dampen or enhance the landscape signature of strike-slip faulting using the Channel-Hillslope Integrated Landscape Development model (CHILD). We focus on variables affecting the length of channel offsets, which enhance the signature of strike-slip motion, and the frequency of stream captures, which eliminate offsets and reduce this signature. We model a strike-slip fault that passes through a mountain ridge, offsetting streams that drain across this fault. We use this setup to test the response of channel offset length and capture frequency to fault characteristics, such as slip rate and ratio of lateral to vertical motion, and to landscape characteristics, such as relief contrasts controlled by erodibility. Our experiments show that relief downhill of the fault, whether generated by differential uplift across the fault or by an erodibility contrast, has the strongest effect on offset length and capture frequency. This relief creates shutter ridges, which block and divert streams while being advected along a fault. Shutter ridges and the streams they divert have long been recognized as markers of strike-slip motion. Our results show specifically that the height of shutter ridges is most responsible for the degree to which they create long channel offsets by preventing stream captures. We compare these results to landscape metrics in the Marlborough Fault System, where shutter ridges are common and often lithologically controlled. We compare shutter ridge length and height to channel offset length in order to assess the influence of relief on offset channel features in a real landscape. Based on our model and field results, we conclude that vertical relief is important for generating and preserving offset features that are viewed as characteristic of a strike-slip fault. Therefore, the geomorphic expression of a fault may be dependent on characteristics of the surrounding landscape rather than primarily a function of the nature of slip on the fault.

  13. Publications - PIR 2015-5-2 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    faults in the Bruin Bay fault system, Ursus Head, lower Cook Inlet Authors: Betka, P.M., and Gillis, R.J strike-slip and reverse-slip faults in the Bruin Bay fault system, Ursus Head, lower Cook Inlet, in

  14. Long-range interactions, wobbles, and phase defects in chains of model cilia

    NASA Astrophysics Data System (ADS)

    Brumley, Douglas R.; Bruot, Nicolas; Kotar, Jurij; Goldstein, Raymond E.; Cicuta, Pietro; Polin, Marco

    2016-12-01

    Eukaryotic cilia and flagella are chemo-mechanical oscillators capable of generating long-range coordinated motions known as metachronal waves. Pair synchronization is a fundamental requirement for these collective dynamics, but it is generally not sufficient for collective phase-locking, chiefly due to the effect of long-range interactions. Here we explore experimentally and numerically a minimal model for a ciliated surface: hydrodynamically coupled oscillators rotating above a no-slip plane. Increasing their distance from the wall profoundly affects the global dynamics, due to variations in hydrodynamic interaction range. The array undergoes a transition from a traveling wave to either a steady chevron pattern or one punctuated by periodic phase defects. Within the transition between these regimes the system displays behavior reminiscent of chimera states.

  15. Refining the shallow slip deficit

    NASA Astrophysics Data System (ADS)

    Xu, Xiaohua; Tong, Xiaopeng; Sandwell, David T.; Milliner, Christopher W. D.; Dolan, James F.; Hollingsworth, James; Leprince, Sebastien; Ayoub, Francois

    2016-03-01

    Geodetic slip inversions for three major (Mw > 7) strike-slip earthquakes (1992 Landers, 1999 Hector Mine and 2010 El Mayor-Cucapah) show a 15-60 per cent reduction in slip near the surface (depth < 2 km) relative to the slip at deeper depths (4-6 km). This significant difference between surface coseismic slip and slip at depth has been termed the shallow slip deficit (SSD). The large magnitude of this deficit has been an enigma since it cannot be explained by shallow creep during the interseismic period or by triggered slip from nearby earthquakes. One potential explanation for the SSD is that the previous geodetic inversions lack data coverage close to surface rupture such that the shallow portions of the slip models are poorly resolved and generally underestimated. In this study, we improve the static coseismic slip inversion for these three earthquakes, especially at shallow depths, by: (1) including data capturing the near-fault deformation from optical imagery and SAR azimuth offsets; (2) refining the interferometric synthetic aperture radar processing with non-boxcar phase filtering, model-dependent range corrections, more complete phase unwrapping by SNAPHU (Statistical Non-linear Approach for Phase Unwrapping) assuming a maximum discontinuity and an on-fault correlation mask; (3) using more detailed, geologically constrained fault geometries and (4) incorporating additional campaign global positioning system (GPS) data. The refined slip models result in much smaller SSDs of 3-19 per cent. We suspect that the remaining minor SSD for these earthquakes likely reflects a combination of our elastic model's inability to fully account for near-surface deformation, which will render our estimates of shallow slip minima, and potentially small amounts of interseismic fault creep or triggered slip, which could `make up' a small percentages of the coseismic SSD during the interseismic period. Our results indicate that it is imperative that slip inversions include accurate measurements of near-fault surface deformation to reliably constrain spatial patterns of slip during major strike-slip earthquakes.

  16. Plasticity performance of Al 0.5 CoCrCuFeNi high-entropy alloys under nanoindentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Li-ping; Chen, Shu-ying; Ren, Jing-li

    2017-04-01

    The statistical and dynamic behaviors of the displacement-load curves of a high-entropy alloy, Al0.5 CoCrCuFeNi, were analyzed for the nanoindentation performed at two temperatures. Critical behavior of serrations at room temperature and chaotic flows at 200 °C were detected. These results are attributed to the interaction among a large number of slip bands. For the nanoindentation at room temperature, recurrent partial events between slip bands introduce a hierarchy of length scales, leading to a critical state. For the nanoindentation at 200 °C, there is no spatial interference between two slip bands, which is corresponding to the evolution of separated trajectorymore » of chaotic behavior« less

  17. The Effect of Earthquakes on Episodic Tremor and Slip Events on the Southern Cascadia Subduction Zone

    NASA Astrophysics Data System (ADS)

    Sainvil, A. K.; Schmidt, D. A.; Nuyen, C.

    2017-12-01

    The goal of this study is to explore how slow slip events on the southern Cascadia Subduction Zone respond to nearby, offshore earthquakes by examining GPS and tremor data. At intermediate depths on the plate interface ( 40 km), transient fault slip is observed in the form of Episodic Tremor and Slip (ETS) events. These ETS events occur regularly (every 10 months), and have a longer duration than normal earthquakes. Researchers have been documenting slow slip events through data obtained by continuously running GPS stations in the Pacific Northwest. Some studies have proposed that pore fluid may play a role in these ETS events by lowering the effective stress on the fault. The interaction of earthquakes and ETS can provide constraints on the strength of the fault and the level of stress needed to alter ETS behavior. Earthquakes can trigger ETS events, but the connection between these events and earthquake activity is less understood. We originally hypothesized that ETS events would be affected by earthquakes in southern Cascadia, and could result in a shift in the recurrence interval of ETS events. ETS events were cataloged using GPS time series provided by PANGA, in conjunction with tremor positions, in Southern Cascadia for stations YBHB and DDSN from 1997 to 2017. We looked for evidence of change from three offshore earthquakes that occurred near the Mendocino Triple Junction with moment magnitudes of 7.2 in 2005, 6.5 in 2010, and 6.8 in 2014. Our results showed that the recurrence interval of ETS for stations YBHB and DDSN was not altered by the three earthquake events. Future is needed to explore whether this lack of interaction is explained by the non-optimal orientation of the receiver fault for the earthquake focal mechanisms.

  18. Temporal Variation of Tectonic Tremor Activity Associated with Nearby Earthquakes

    NASA Astrophysics Data System (ADS)

    Chao, K.; Van der Lee, S.; Hsu, Y. J.; Pu, H. C.

    2017-12-01

    Tectonic tremor and slow slip events, located downdip from the seismogenic zone, hold the key to recurring patterns of typical earthquakes. Several findings of slow aseismic slip during the prenucletion processes of nearby earthquakes have provided new insight into the study of stress transform of slow earthquakes in fault zones prior to megathrust earthquakes. However, how tectonic tremor is associated with the occurrence of nearby earthquakes remains unclear. To enhance our understanding of the stress interaction between tremor and earthquakes, we developed an algorithm for the automatic detection and location of tectonic tremor in the collisional tectonic environment in Taiwan. Our analysis of a three-year data set indicates a short-term increase in the tremor rate starting at 19 days before the 2010 ML6.4 Jiashian main shock (Chao et al., JGR, 2017). Around the time when the tremor rate began to rise, one GPS station recorded a flip in its direction of motion. We hypothesize that tremor is driven by a slow-slip event that preceded the occurrence of the shallower nearby main shock, even though the inferred slip is too small to be observed by all GPS stations. To better quantify what the necessary condition for tremor to response to nearby earthquakes is, we obtained a 13-year ambient tremor catalog from 2004 to 2016 in the same region. We examine the spatiotemporal relationship between tremor and 37 ML>=5.0 (seven events with ML>=6.0) nearby earthquakes located within 0.5 degrees to the active tremor sources. The findings from this study can enhance our understanding of the interaction among tremor, slow slip, and nearby earthquakes in the high seismic hazard regions.

  19. Experimental investigation of flow and slip transition in nanochannels

    NASA Astrophysics Data System (ADS)

    Li, Zhigang; Li, Long; Mo, Jingwen

    2014-11-01

    Flow slip in nanochannels is sought in many applications, such as sea water desalination and molecular separation, because it can enhance fluid transport, which is essential in nanofluidic systems. Previous findings about the slip length for simple fluids at the nanoscale appear to be controversial. Some experiments and simulations showed that the slip length is independent of shear rate, which agrees with the prediction of classic slip theories. However, there is increasing work showing that slip length is shear rate dependent. In this work, we experimentally investigate the Poiseuille flows in nanochannels. It is found that the flow rate undergoes a transition between two linear regimes as the shear rate is varied. The transition indicates that the non-slip boundary condition is valid at low shear rate. When the shear rate is larger than a critical value, slip takes place and the slip length increases linearly with increasing shear rate before approaching a constant value. The results reported in this work can help advance the understanding of flow slip in nanochannels. This work was supported by the Research Grants Council of the Hong Kong Special Administrative Region under Grant Nos. 615710 and 615312. J. Mo was partially supported by the Postgraduate Scholarship through the Energy Program at HKUST.

  20. Airborne Antenna System for Minimum-Cycle-Slip GPS Reception

    NASA Technical Reports Server (NTRS)

    Wright, C. Wayne

    2009-01-01

    A system that includes a Global Positioning System (GPS) antenna and associated apparatus for keeping the antenna aimed upward has been developed for use aboard a remote-sensing-survey airplane. The purpose served by the system is to enable minimum- cycle-slip reception of GPS signals used in precise computation of the trajectory of the airplane, without having to restrict the airplane to maneuvers that increase the flight time needed to perform a survey. Cycle slip signifies loss of continuous track of the phase of a signal. Minimum-cycle-slip reception is desirable because maintaining constant track of the phase of the carrier signal from each available GPS satellite is necessary for surveying to centimeter or subcentimeter precision. Even a loss of signal for as short a time as a nanosecond can cause cycle slip. Cycle slips degrade the quality and precision of survey data acquired during a flight. The two principal causes of cycle slip are weakness of signals and multipath propagation. Heretofore, it has been standard practice to mount a GPS antenna rigidly on top of an airplane, and the radiation pattern of the antenna is typically hemispherical, so that all GPS satellites above the horizon are viewed by the antenna during level flight. When the airplane must be banked for a turn or other maneuver, the reception hemisphere becomes correspondingly tilted; hence, the antenna no longer views satellites that may still be above the Earth horizon but are now below the equatorial plane of the tilted reception hemisphere. Moreover, part of the reception hemisphere (typically, on the inside of a turn) becomes pointed toward ground, with a consequent increase in received noise and, therefore, degradation of GPS measurements. To minimize the likelihood of loss of signal and cycle slip, bank angles of remote-sensing survey airplanes have generally been limited to 10 or less, resulting in skidding or slipping uncoordinated turns. An airplane must be banked in order to make a coordinated turn. For small-radius, short-time coordinated turns, it is necessary to employ banks as steep as 45 , and turns involving such banks are times and for confining airplanes as closely as possible to areas to be surveyed. The idea underlying the design is that if the antenna can be kept properly aimed, then the incidence of cycle slips caused by loss or weakness of signals can be minimized. The system includes an articulating GPS antenna and associated electronic circuitry mounted under a radome atop an airplane. The electronic circuitry includes a microprocessor-based interface-circuit-and-data-translation module. The system receives data on the current attitude of the airplane from the inertial navigation system of the airplane. The microprocessor decodes the attitude data and uses them to compute commands for the GPS-antenna-articulating mechanism to tilt the antenna, relative to the airplane, in opposition to the roll or bank of the airplane to keep the antenna pointed toward the zenith. The system was tested aboard the hurricane- hunting airplane of the National Oceanic and Atmospheric Administration (NOAA) [see figure] during an 11-hour flight to observe the landfall of Hurricane Bret in late summer of 1999. No bank-angle restrictions were imposed during the flight. Post-flight analysis of the GPS trajectory data revealed that no cycle slip had occurred.considered normal maneuvers. These steep banks are highly desirable for minimizing flight

  1. Factors Influencing Occupant-To-Seat Belt Interaction in Far-Side Crashes

    PubMed Central

    Douglas, C.A.; Fildes, B.N.; Gibson, T.J.; Boström, O.; Pintar, F.A.

    2007-01-01

    Seat belt interaction with a far-side occupant’s shoulder and thorax is critical to governing excursion towards the struck-side of the vehicle in side impact. In this study, occupant-to-belt interaction was simulated using a modified MADYMO human model and finite element belts. Quasi-static tests with volunteers and dynamic sled tests with PMHS and WorldSID were used for model validation and comparison. Parameter studies were then undertaken to quantify the effect of impact direction, seat belt geometry and pretension on occupant-to-seat belt interaction. Results suggest that lowering the D-ring and increasing pretension reduces the likelihood of the belt slipping off the shoulder. Anthropometry was also shown to influence restraint provided by the shoulder belt. Furthermore, the belt may slip off the occupant’s shoulder at impact angles greater than 40 degrees from frontal when no pretension is used. However, the addition of pretension allowed the shoulder to engage the belt in all impacts from 30 to 90 degrees. PMID:18184500

  2. Diffusion-controlled reactions: hydrodynamic interaction between charged, uniformly reactive spherical reactants.

    PubMed

    Allison, Stuart

    2006-12-28

    In this work, different models of hydrodynamic interaction (HI) are examined in the diffusion-controlled reaction between uniformly reactive charged spherical particles. In addition to Oseen "stick" and "slip" models of HI, one is considered that accounts for the disturbance of fluid flow by the ions around one reactive partner as they interact with a neighboring reactive species. This interaction is closely related to the "electrophoretic effect" in electrokinetics and can be described by a fairly simple electrophoretic, or E-tensor. These models are applied to the electron-transfer quenching reaction of Ru(bpy)3(2+) and methyl viologen (MV2+) over a wide range of NaCl concentrations (Chiorboli, C. et al., J. Phys. Chem. 1988, 92, 156). The back reaction is also considered. From a comparison of the salt dependence of the model and experimental rates, it is concluded that the "E-tensor" model works best and ignoring HI altogether works worst. The Oseen "stick" and "slip" models fall between these.

  3. Plasticity mechanisms in HfN at elevated and room temperature.

    PubMed

    Vinson, Katherine; Yu, Xiao-Xiang; De Leon, Nicholas; Weinberger, Christopher R; Thompson, Gregory B

    2016-10-06

    HfN specimens deformed via four-point bend tests at room temperature and at 2300 °C (~0.7 T m ) showed increased plasticity response with temperature. Dynamic diffraction via transmission electron microscopy (TEM) revealed ⟨110⟩{111} as the primary slip system in both temperature regimes and ⟨110⟩{110} to be a secondary slip system activated at elevated temperature. Dislocation line lengths changed from a primarily linear to a curved morphology with increasing temperature suggestive of increased dislocation mobility being responsible for the brittle to ductile temperature transition. First principle generalized stacking fault energy calculations revealed an intrinsic stacking fault (ISF) along ⟨112⟩{111}, which is the partial dislocation direction for slip on these close packed planes. Though B1 structures, such as NaCl and HfC predominately slip on ⟨110⟩{110}, the ISF here is believed to facilitate slip on the {111} planes for this B1 HfN phase.

  4. Plastic deformation of B2-NiTi - is it slip or twinning?

    NASA Astrophysics Data System (ADS)

    Sehitoglu, H.; Wu, Y.; Alkan, S.; Ertekin, E.

    2017-06-01

    The work addresses two main questions that have baffled the shape memory research community. Firstly, the superb ductility of B2-NiTi cannot be solely attributed to slip on {0 1 1} planes, because there are not a sufficient number of independent slip systems under arbitrary deformations. We show unequivocally, upon diffraction measurements and local strain field traces, that deformation twinning on {1 1 4} planes that can provide additional systems to accommodate plastic flow is activated. Secondly, the slip direction on the {0 1 1} planes has not been established in NiTi with certainty. It is proved precisely to be in ?0 0 1? direction based on crystallographic shear analysis producing the specific strain tensor components (measured at mesoscale with digital image correlation, DIC). Based on the single-crystal experiments, the CRSSs (critical resolved shear stress) are established as 250 and 330 MPa for slip and twinning, respectively. The results have implications in devising correct crystal plasticity formulations for shape memory alloys.

  5. Numerical study of slip system activity and crystal lattice rotation under wedge nanoindents in tungsten single crystals

    NASA Astrophysics Data System (ADS)

    Volz, T.; Schwaiger, R.; Wang, J.; Weygand, S. M.

    2018-05-01

    Tungsten is a promising material for plasma facing components in future nuclear fusion reactors. In the present work, we numerically investigate the deformation behavior of unirradiated tungsten (a body-centered cubic (bcc) single crystal) underneath nanoindents. A finite element (FE) model is presented to simulate wedge indentation. Crystal plasticity finite element (CPFE) simulations were performed for face-centered and body-centered single crystals accounting for the slip system family {110} <111> in the bcc crystal system and the {111} <110> slip family in the fcc system. The 90° wedge indenter was aligned parallel to the [1 ¯01 ]-direction and indented the crystal in the [0 1 ¯0 ]-direction up to a maximum indentation depth of 2 µm. In both, the fcc and bcc single crystals, the activity of slip systems was investigated and compared. Good agreement with the results from former investigations on fcc single crystals was observed. Furthermore, the in-plane lattice rotation in the material underneath an indent was determined and compared for the fcc and bcc single crystals.

  6. A new slip stacking RF system for a twofold power upgrade of Fermilab's Accelerator Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madrak, Robyn

    2014-05-15

    Fermilab's Accelerator Complex has been recently upgraded, in order to increase the 120 GeV proton beam power on target from about 400 kW to over 700 kW for NOvA and other future intensity frontier experiments. One of the key ingredients of the upgrade is the offloading of some Main Injector synchrotron operations - beam injection and RF manipulation called ''slip stacking'' - to the 8GeV Recycler Ring, which had until recently been used only for low-intensity antiproton storage and cooling. This required construction of two new 53 MHz RF systems for the slip-stacking manipulations. The cavities operate simultaneously at Vmore » peak ≲150 kV, but at slightly different frequencies (Δf=1260 Hz). Their installation was completed in September 2013. This article describes the novel solutions used in the design of the new cavities, their tuning system, and the associated high power RF system. First results showing effective operation of the RF system, beam capture and successful slip-stacking in the Recycler Ring are presented.« less

  7. The 2013, Mw 7.7 Balochistan earthquake, energetic strike-slip reactivation of a thrust fault

    NASA Astrophysics Data System (ADS)

    Avouac, Jean-Philippe; Ayoub, Francois; Wei, Shengji; Ampuero, Jean-Paul; Meng, Lingsen; Leprince, Sebastien; Jolivet, Romain; Duputel, Zacharie; Helmberger, Don

    2014-04-01

    We analyse the Mw 7.7 Balochistan earthquake of 09/24/2013 based on ground surface deformation measured from sub-pixel correlation of Landsat-8 images, combined with back-projection and finite source modeling of teleseismic waveforms. The earthquake nucleated south of the Chaman strike-slip fault and propagated southwestward along the Hoshab fault at the front of the Kech Band. The rupture was mostly unilateral, propagated at 3 km/s on average and produced a 200 km surface fault trace with purely strike-slip displacement peaking to 10 m and averaging around 6 m. The finite source model shows that slip was maximum near the surface. Although the Hoshab fault is dipping by 45° to the North, in accordance with its origin as a thrust fault within the Makran accretionary prism, slip was nearly purely strike-slip during that earthquake. Large seismic slip on such a non-optimally oriented fault was enhanced possibly due to the influence of the free surface on dynamic stresses or to particular properties of the fault zone allowing for strong dynamic weakening. Strike-slip faulting on thrust fault within the eastern Makran is interpreted as due to eastward extrusion of the accretionary prism as it bulges out over the Indian plate. Portions of the Makran megathrust, some thrust faults in the Kirthar range and strike-slip faults within the Chaman fault system have been brought closer to failure by this earthquake. Aftershocks cluster within the Chaman fault system north of the epicenter, opposite to the direction of rupture propagation. By contrast, few aftershocks were detected in the area of maximum moment release. In this example, aftershocks cannot be used to infer earthquake characteristics.

  8. Slip rates and spatially variable creep on faults of the northern San Andreas system inferred through Bayesian inversion of Global Positioning System data

    USGS Publications Warehouse

    Murray, Jessica R.; Minson, Sarah E.; Svarc, Jerry L.

    2014-01-01

    Fault creep, depending on its rate and spatial extent, is thought to reduce earthquake hazard by releasing tectonic strain aseismically. We use Bayesian inversion and a newly expanded GPS data set to infer the deep slip rates below assigned locking depths on the San Andreas, Maacama, and Bartlett Springs Faults of Northern California and, for the latter two, the spatially variable interseismic creep rate above the locking depth. We estimate deep slip rates of 21.5 ± 0.5, 13.1 ± 0.8, and 7.5 ± 0.7 mm/yr below 16 km, 9 km, and 13 km on the San Andreas, Maacama, and Bartlett Springs Faults, respectively. We infer that on average the Bartlett Springs fault creeps from the Earth's surface to 13 km depth, and below 5 km the creep rate approaches the deep slip rate. This implies that microseismicity may extend below the locking depth; however, we cannot rule out the presence of locked patches in the seismogenic zone that could generate moderate earthquakes. Our estimated Maacama creep rate, while comparable to the inferred deep slip rate at the Earth's surface, decreases with depth, implying a slip deficit exists. The Maacama deep slip rate estimate, 13.1 mm/yr, exceeds long-term geologic slip rate estimates, perhaps due to distributed off-fault strain or the presence of multiple active fault strands. While our creep rate estimates are relatively insensitive to choice of model locking depth, insufficient independent information regarding locking depths is a source of epistemic uncertainty that impacts deep slip rate estimates.

  9. 2.1 meter (82 inch) Slip Ring By-Pass Project

    NASA Astrophysics Data System (ADS)

    Bryan, Corby B.

    2006-12-01

    2.1 meter (82 inch) Slip Ring By-Pass Project I will describe a project to bypass the old method of getting control communications above the rotation point of the McDonald Observatory 2.1 meter dome. The old method used slip rings that were implemented in the late 1930s. The new system uses wireless serial commands which allow the control lines to be taken off the slip rings, leaving only power and ground. I will describe how the concept was devised so the slip rings could be by-passed, what micro-controller system that was decided on and used, how the wireless units were set up and finally how the system was tested and put in place with only limited tasks to control. (I.E. the opening and closing of the shutters) We describe the advantages to making this upgrade and how it could benefit any telescope interested in upgrading its communication systems. This project was designed and tested in ten weeks during the McDonald Observatory REU and was supported under NSF AST-0243745. The system was designed so that it could be installed while running side by side with the current method of getting control to the above rotation point. The method is still in place being tested on the 2.1 meter telescope and will soon be fully implemented by the University of Texas McDonald Observatory OS staff.

  10. Discrete Boltzmann Method with Maxwell-Type Boundary Condition for Slip Flow

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Dong; Xu, Ai-Guo; Zhang, Guang-Cai; Chen, Zhi-Hua

    2018-01-01

    The rarefied effect of gas flow in microchannel is significant and cannot be well described by traditional hydrodynamic models. It has been known that discrete Boltzmann model (DBM) has the potential to investigate flows in a relatively wider range of Knudsen number because of its intrinsic kinetic nature inherited from Boltzmann equation. It is crucial to have a proper kinetic boundary condition for DBM to capture the velocity slip and the flow characteristics in the Knudsen layer. In this paper, we present a DBM combined with Maxwell-type boundary condition model for slip flow. The tangential momentum accommodation coefficient is introduced to implement a gas-surface interaction model. Both the velocity slip and the Knudsen layer under various Knudsen numbers and accommodation coefficients can be well described. Two kinds of slip flows, including Couette flow and Poiseuille flow, are simulated to verify the model. To dynamically compare results from different models, the relation between the definition of Knudsen number in hard sphere model and that in BGK model is clarified. Support of National Natural Science Foundation of China under Grant Nos. 11475028, 11772064, and 11502117 Science Challenge Project under Grant Nos. JCKY2016212A501 and TZ2016002

  11. Fabric transition with dislocation creep of a carbonate fault zone in the brittle regime

    NASA Astrophysics Data System (ADS)

    Kim, Sungshil; Ree, Jin-Han; Han, Raehee; Kim, Nahyeon; Jung, Haemyeong

    2018-01-01

    Fabric transition by a switch in the dominant slip system of minerals in the plastic regime can be induced by changes in temperature, strain rate, or water content. We propose here this fabric transition by frictional heating in seismogenic fault zones in the brittle regime. The Garam Thrust in the Taebaeksan Basin of South Korea has a hanging wall of Cambrian dolostone juxtaposed against a footwall of Ordovician limestone and records a minimum displacement of 120 m. In a 10 cm thick plastically deformed layer adjacent to the principal slip layer of the fault zone, the lattice preferred orientation of calcite grains suggests that the dominant slip system changes, approaching the principal slip layer, from r 〈02-21〉 and e-twinning, through r 〈02-21〉 and basal 〈a〉, to basal 〈a〉. This fabric transition requires a high temperature-gradient of 40 °C/cm, which we infer to result from frictional heating of the seismic fault zone. We suggest that fabric transition within a thin plastically deformed layer adjacent to the principal slip layer of a fault zone indicates an unusually steep temperature gradient and provides strong evidence of seismic slip.

  12. First Results from a Forward, 3-Dimensional Regional Model of a Transpressional San Andreas Fault System

    NASA Astrophysics Data System (ADS)

    Fitzenz, D. D.; Miller, S. A.

    2001-12-01

    We present preliminary results from a 3-dimensional fault interaction model, with the fault system specified by the geometry and tectonics of the San Andreas Fault (SAF) system. We use the forward model for earthquake generation on interacting faults of Fitzenz and Miller [2001] that incorporates the analytical solutions of Okada [85,92], GPS-constrained tectonic loading, creep compaction and frictional dilatancy [Sleep and Blanpied, 1994, Sleep, 1995], and undrained poro-elasticity. The model fault system is centered at the Big Bend, and includes three large strike-slip faults (each discretized into multiple subfaults); 1) a 300km, right-lateral segment of the SAF to the North, 2) a 200km-long left-lateral segment of the Garlock fault to the East, and 3) a 100km-long right-lateral segment of the SAF to the South. In the initial configuration, three shallow-dipping faults are also included that correspond to the thrust belt sub-parallel to the SAF. Tectonic loading is decomposed into basal shear drag parallel to the plate boundary with a 35mm yr-1 plate velocity, and East-West compression approximated by a vertical dislocation surface applied at the far-field boundary resulting in fault-normal compression rates in the model space about 4mm yr-1. Our aim is to study the long-term seismicity characteristics, tectonic evolution, and fault interaction of this system. We find that overpressured faults through creep compaction are a necessary consequence of the tectonic loading, specifically where high normal stress acts on long straight fault segments. The optimal orientation of thrust faults is a function of the strike-slip behavior, and therefore results in a complex stress state in the elastic body. This stress state is then used to generate new fault surfaces, and preliminary results of dynamically generated faults will also be presented. Our long-term aim is to target measurable properties in or around fault zones, (e.g. pore pressures, hydrofractures, seismicity catalogs, stress orientation, surface strain, triggering, etc.), which may allow inferences on the stress state of fault systems.

  13. Triggering of destructive earthquakes in El Salvador

    NASA Astrophysics Data System (ADS)

    Martínez-Díaz, José J.; Álvarez-Gómez, José A.; Benito, Belén; Hernández, Douglas

    2004-01-01

    We investigate the existence of a mechanism of static stress triggering driven by the interaction of normal faults in the Middle American subduction zone and strike-slip faults in the El Salvador volcanic arc. The local geology points to a large strike-slip fault zone, the El Salvador fault zone, as the source of several destructive earthquakes in El Salvador along the volcanic arc. We modeled the Coulomb failure stress (CFS) change produced by the June 1982 and January 2001 subduction events on planes parallel to the El Salvador fault zone. The results have broad implications for future risk management in the region, as they suggest a causative relationship between the position of the normal-slip events in the subduction zone and the strike-slip events in the volcanic arc. After the February 2001 event, an important area of the El Salvador fault zone was loaded with a positive change in Coulomb failure stress (>0.15 MPa). This scenario must be considered in the seismic hazard assessment studies that will be carried out in this area.

  14. Element free Galerkin formulation of composite beam with longitudinal slip

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Dzulkarnain; Mokhtaram, Mokhtazul Haizad; Badli, Mohd Iqbal

    2015-05-15

    Behaviour between two materials in composite beam is assumed partially interact when longitudinal slip at its interfacial surfaces is considered. Commonly analysed by the mesh-based formulation, this study used meshless formulation known as Element Free Galerkin (EFG) method in the beam partial interaction analysis, numerically. As meshless formulation implies that the problem domain is discretised only by nodes, the EFG method is based on Moving Least Square (MLS) approach for shape functions formulation with its weak form is developed using variational method. The essential boundary conditions are enforced by Langrange multipliers. The proposed EFG formulation gives comparable results, after beenmore » verified by analytical solution, thus signify its application in partial interaction problems. Based on numerical test results, the Cubic Spline and Quartic Spline weight functions yield better accuracy for the EFG formulation, compares to other proposed weight functions.« less

  15. An application of computer image-processing and filmy replica technique to the copper electroplating method of stress analysis

    NASA Astrophysics Data System (ADS)

    Sugiura, M.; Seika, M.

    1994-02-01

    In this study, a new technique to measure the density of slip-bands automatically is developed, namely, a TV image of the slip-bands observed through a microscope is directly processed by an image-processing system using a personal computer and an accurate value of the density of slip-bands is measured quickly. In the case of measuring the local stresses in machine parts of large size with the copper plating foil, the direct observation of slip-bands through an optical microscope is difficult. In this study, to facilitate a technique close to the direct microscopic observation of slip-bands in the foil attached to a large-sized specimen, the replica method using a platic film of acetyl cellulose is applied to replicate the slip-bands in the attached foil.

  16. Mechanics of distributed fault and block rotation

    NASA Technical Reports Server (NTRS)

    Nur, A.; Scotti, O.; Ron, H.

    1989-01-01

    Paleomagnetic data, structural geology, and rock mechanics are used to explore the validity and significance of the block rotation concept. The analysis is based on data from Northern Israel, where fault slip and spacing are used to predict block rotation; the Mojave Desert, with well documented strike-slip sets; the Lake Mead, Nevada fault system with well-defined sets of strike-slip faults; and the San Gabriel Mountains domain with a multiple set of strike-slip faults. The results of the analysis indicate that block rotations can have a profound influence on the interpretation of geodetic measurments and the inversion of geodetic data. Furthermore, the block rotations and domain boundaries may be involved in creating the heterogeneities along active fault systems which may be responsible for the initiation and termination of earthquake rupture.

  17. Fault and anthropogenic processes in central California constrained by satellite and airborne InSAR and in-situ observations

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Lundgren, Paul

    2016-07-01

    The San Andreas Fault (SAF) system is the primary plate boundary in California, with the central SAF (CSAF) lying adjacent to the San Joaquin Valley (SJV), a vast structural trough that accounts for about one-sixth of the United Sates' irrigated land and one-fifth of its extracted groundwater. The CSAF displays a range of fault slip behavior with creeping in its central segment that decreases towards its northwest and southeast ends, where the fault transitions to being fully locked. At least six Mw ~6.0 events since 1857 have occurred near the Parkfield transition, most recently in 2004. Large earthquakes also occurred on secondary faults parallel to the SAF, the result of distributed deformation across the plate boundary zone. Recent studies have revealed the complex interaction between anthropogenic related groundwater depletion and the seismic activity on adjacent faults through stress interaction. Despite recent progress, many questions regarding fault and anthropogenic processes in the region still remain. For example, how is the relative plate motion accommodated between the CSAF and off-fault deformation? What is the distribution of fault creep and slip deficit at shallow depths? What are the spatiotemporal variations of fault slip? What are the spatiotemporal characteristics of anthropogenic and lithospheric processes and how do they interact with each other? To address these, we combine satellite InSAR and NASA airborne UAVSAR data to image on and off-fault deformation. The UAVSAR data cover fault perpendicular swaths imaged from opposing look directions and fault parallel swaths since 2009. The much finer spatial resolution and optimized viewing geometry provide important constraints on near fault deformation and fault slip at very shallow depth. We performed a synoptic InSAR time series analysis using ERS-1/2, Envisat, ALOS and UAVSAR interferograms. The combined C-band ERS-1/2 and Envisat data provide a long time interval of SAR data over the region, but are subject to severe decorrelation. The L-band ALOS and UAVSAR SAR sensors provide improved coherence compared to the shorter wavelength radar data. Joint analysis of UAVSAR and ALOS interferometry measurements show clear variability in deformation along the fault strike, suggesting variable fault creep and locking at depth and along strike. Modeling selected fault transects reveals a distinct change in surface creep and shallow slip deficit from the central creeping section towards the Parkfield transition. In addition to fault creep, the L-band ALOS, and especially ALOS-2 ScanSAR interferometry, show large-scale ground subsidence in the SJV due to over-exploitation of groundwater. Groundwater related deformation is spatially and temporally variable and is composed of both recoverable elastic and non-recoverable inelastic components. InSAR time series are compared to GPS and well-water hydraulic head in-situ time series to understand water storage processes and mass loading changes. We are currently developing poroelastic finite element method models to assess the influence of anthropogenic processes on surface deformation and fault mechanics. Ongoing work is to better constrain both tectonic and non-tectonic processes and understand their interaction and implication for regional earthquake hazard.

  18. On abrupt transpression to transtension transition in the South Baikal rift system (Tunka - South Baikal segment)

    NASA Astrophysics Data System (ADS)

    Sankov, Vladimir; Parfeevets, Anna; Lukhnev, Andrey; Miroshnitchenko, Andrey; Ashurkov, Sergey; Sankov, Alexey; Usynin, Leonid; Eskin, Alexander; Bryzhak, Evgeny

    2013-04-01

    This work addresses to relation of transpression and extension stress-strain conditions in intracontinental rift system. In our investigation we use a new structural, shallow geophysics, GPS geodetic data and paleostress reconstructions. The surroundings of southern tip of Siberian platform is the region of three Late Cenozoic structures conjugation: sublatitudinal Obruchev fault (OF) controlling the northern boundary of the South Baikal basin, NW trending Main Sayan fault (MSF) as the strike-slip boundary between Siberian platform and East Sayan block and WNW trending eastern segment of Tunka fault (TF) as part of the Tunka basins system northern boundary. A new evidences of superposition of compression and extension fault structures were revealed near the southern extremity of Baikal lake. We've find a very close vicinity of Late Pleistocene - Holocene strike-slip, thrust and normal faulting in the MSF and OF junction zone. The on-land Holocene normal faulting can be considered as secondary fault paragenesis within the main strike-slip zone (Sankov et al., 2009). Active strike-slip, thrust and reverse faulting characterize the MSF and TF junction zone. The transpression conditions are replaced very sharply by transtension and extension ones in eastern direction from zone of structures conjugation - the active normal faulting is dominated within the South Baikal basin. The Bystraya rift basin located in the west shows the tectonic inversion since Middle Pleistocene as a result of the strike-slip movements partitioning between TF and MSF and inset of edition compression stress. The active strike-slip and intrabasin extension conditions are dominated father to the west in Tunka basin. The results of our GPS measurements show the present day convergence and east movements of Khamar-Daban block and eastern Tunka basins relative to Siberian platform along MSF and TF with NE-SW shortening domination. The clear NW-SE divergence across Baikal basin is documented. Holocene and present-day left lateral relative motions of about 3 mm/yr (Sankov et al., 2004) between of Siberian platform and its mounting frame are accommodated along south-eastern segment of MSF. We consider two main factors of sharp transition between transpression and transtension to extension conditions in Tunka-South Baikal segment of Baikal rift system. The first one is the influence of geometry of southern tip of Siberian platform as a first order ancient lithosphere heterogeneity in agreement with (Petit et al., 1996). The second factor is the interaction in this region of two tectonic forces driving the Cenozoic geodynamics. The initial opening of the Tunka and South Baikal basins since Oligocene time as well as father Baikal rift system development caused by long lived asthenosphere flow along NW-SE direction (Sankov et al., 2011). The addition NE-SW compression started during Pliocene (Parfeevets, Sankov, 2006) as the result of the Hindustan and Eurasia convergence. The former caused transpression deformations and clockwise horizontal block rotations along south-western boundary of the platform with their SE movements to the "free space" opened by the divergence of Siberian platform and Transbaikal block (Sankov et al., 2002, 2005).

  19. Southeastward increase of the late Quaternary slip-rate of the Xianshuihe fault, eastern Tibet. Geodynamic and seismic hazard implications

    NASA Astrophysics Data System (ADS)

    Bai, Mingkun; Chevalier, Marie-Luce; Pan, Jiawei; Replumaz, Anne; Leloup, Philippe Hervé; Métois, Marianne; Li, Haibing

    2018-03-01

    The left-lateral strike-slip Xianshuihe fault system located in the eastern Tibetan Plateau is considered as one of the most tectonically active intra-continental fault system in China, along which more than 20 M > 6.5 and more than 10 M > 7 earthquakes occurred since 1700. Therefore, studying its activity, especially its slip rate at different time scales, is essential to evaluate the regional earthquake hazard. Here, we focus on the central segment of the Xianshuihe fault system, where the Xianshuihe fault near Kangding city splays into three branches: the Selaha, Yalahe and Zheduotang faults. In this paper we use precise dating together with precise field measurements of offsets to re-estimate the slip rate of the fault that was suggested without precise age constraints. We studied three sites where the active Selaha fault cuts and left-laterally offsets moraine crests and levees. We measured horizontal offsets of 96 ± 20 m at Tagong levees (TG), 240 ± 15 m at Selaha moraine (SLH) and 80 ± 5 m at Yangjiagou moraine (YJG). Using 10Be cosmogenic dating, we determined abandonment ages at Tagong, Selaha and Yangjiagou of 12.5 (+ 2.5 / - 2.2) ka, 22 ± 2 ka, and 18 ± 2 ka, respectively. By matching the emplacement age of the moraines or levees with their offsets, we obtain late Quaternary horizontal average slip-rates of 7.6 (+ 2.3 / - 1.9) mm/yr at TG and 10.7 (+ 1.3 / - 1.1) mm/yr at SLH, i.e., 5.7-12 mm/yr or between 9.6 and 9.9 mm/yr assuming that the slip rate should be constant between the nearby TG and SLH sites. At YJG, we obtain a lower slip rate of 4.4 ± 0.5 mm/yr, most likely because the parallel Zheduotang fault shares the slip rate at this longitude, therefore suggesting a ∼5 mm/yr slip rate along the Zheduotang fault. The ∼10 mm/yr late Quaternary rate along the Xianshuihe fault is higher than that along the Ganzi fault to the NW (6-8 mm/yr). This appears to be linked to the existence of the Longriba fault system that separates the Longmenshan and Bayan Har blocks north of the Xianshuihe fault system. A higher slip rate along the short (∼60 km) and discontinuous Selaha fault compared to that along the long (∼300 km) and linear Ganzi fault suggests a high hazard for a M > 6 earthquake in the Kangding area in the near future, which could devastate that densely populated city.

  20. Computational modelling of mesoscale dislocation patterning and plastic deformation of single crystals

    NASA Astrophysics Data System (ADS)

    Xia, Shengxu; El-Azab, Anter

    2015-07-01

    We present a continuum dislocation dynamics model that predicts the formation of dislocation cell structure in single crystals at low strains. The model features a set of kinetic equations of the curl type that govern the space and time evolution of the dislocation density in the crystal. These kinetic equations are coupled to stress equilibrium and deformation kinematics using the eigenstrain approach. A custom finite element method has been developed to solve the coupled system of equations of dislocation kinetics and crystal mechanics. The results show that, in general, dislocations self-organize in patterns under their mutual interactions. However, the famous dislocation cell structure has been found to form only when cross slip is implemented in the model. Cross slip is also found to lower the yield point, increase the hardening rate, and sustain an increase in the dislocation density over the hardening regime. Analysis of the cell structure evolution reveals that the average cell size decreases with the applied stress, which is consistent with the similitude principle.

  1. Triggered Slow Slip and Afterslip on the Southern Hikurangi Subduction Zone Following the Kaikōura Earthquake

    NASA Astrophysics Data System (ADS)

    Wallace, Laura M.; Hreinsdóttir, Sigrún; Ellis, Susan; Hamling, Ian; D'Anastasio, Elisabetta; Denys, Paul

    2018-05-01

    The 2016 MW7.8 Kaikōura earthquake ruptured a complex sequence of strike-slip and reverse faults in New Zealand's northeastern South Island. In the months following the earthquake, time-dependent inversions of Global Positioning System and interferometric synthetic aperture radar data reveal up to 0.5 m of afterslip on the subduction interface beneath the northern South Island underlying the crustal faults that ruptured in the earthquake. This is clear evidence that the far southern end of the Hikurangi subduction zone accommodates plate motion. The MW7.8 earthquake also triggered widespread slow slip over much of the subduction zone beneath the North Island. The triggered slow slip included immediate triggering of shallow (<15 km), short (2-3 weeks) slow slip events along much of the east coast, and deep (>30 km), long-term (>1 year) slow slip beneath the southern North Island. The southern Hikurangi slow slip was likely triggered by large (0.5-1.0 MPa) static Coulomb stress increases.

  2. Fault connectivity, distributed shortening, and impacts on geologic- geodetic slip rate discrepancies in the central Mojave Desert, California

    NASA Astrophysics Data System (ADS)

    Selander, J.; Oskin, M. E.; Cooke, M. L.; Grette, K.

    2015-12-01

    Understanding off-fault deformation and distribution of displacement rates associated with disconnected strike-slip faults requires a three-dimensional view of fault geometries. We address problems associated with distributed faulting by studying the Mojave segment of the East California Shear Zone (ECSZ), a region dominated by northwest-directed dextral shear along disconnected northwest- southeast striking faults. We use a combination of cross-sectional interpretations, 3D Boundary Element Method (BEM) models, and slip-rate measurements to test new hypothesized fault connections. We find that reverse faulting acts as an important means of slip transfer between strike-slip faults, and show that the impacts of these structural connections on shortening, uplift, strike-slip rates, and off-fault deformation, help to reconcile the overall strain budget across this portion of the ECSZ. In detail, we focus on the Calico and Blackwater faults, which are hypothesized to together represent the longest linked fault system in the Mojave ECSZ, connected by a restraining step at 35°N. Across this restraining step the system displays a pronounced displacement gradient, where dextral offset decreases from ~11.5 to <2 km from south to north. Cross-section interpretations show that ~40% of this displacement is transferred from the Calico fault to the Harper Lake and Blackwater faults via a set of north-dipping thrust ramps. Late Quaternary dextral slip rates follow a similar pattern, where 1.4 +0.8/-0.4 mm/yr of slip along the Calico fault south of 35°N is distributed to the Harper Lake, Blackwater, and Tin Can Alley faults. BEM model results using revised fault geometries for the Mojave ECSZ show areas of uplift consistent with contractional structures, and fault slip-rates that more closely match geologic data. Overall, revised fault connections and addition of off-fault deformation greatly reduces the discrepancy between geodetic and geologic slip rates.

  3. Effect of inherited structures on strike-slip plate boundaries: insight from analogue modelling of the central Levant Fracture System, Lebanon

    NASA Astrophysics Data System (ADS)

    Ghalayini, Ramadan; Daniel, Jean-Marc; Homberg, Catherine; Nader, Fadi

    2015-04-01

    Analogue sandbox modeling is a tool to simulate deformation style and structural evolution of sedimentary basins. The initial goal is to test what is the effect of inherited and crustal structures on the propagation, evolution, and final geometry of major strike-slip faults at the boundary between two tectonic plates. For this purpose, we have undertaken a series of analogue models to validate and reproduce the structures of the Levant Fracture System, a major NNE-SSW sinistral strike-slip fault forming the boundary between the Arabian and African plates. Onshore observations and recent high quality 3D seismic data in the Levant Basin offshore Lebanon demonstrated that Mesozoic ENE striking normal faults were reactivated into dextral strike-slip faults during the Late Miocene till present day activity of the plate boundary which shows a major restraining bend in Lebanon with a ~ 30°clockwise rotation in its trend. Experimental parameters consisted of a silicone layer at the base simulating the ductile crust, overlain by intercalated quartz sand and glass sand layers. Pre-existing structures were simulated by creating a graben in the silicone below the sand at an oblique (>60°) angle to the main throughgoing strike-slip fault. The latter contains a small stepover at depth to create transpression during sinistral strike-slip movement and consequently result in mountain building similarly to modern day Lebanon. Strike-slip movement and compression were regulated by steady-speed computer-controlled engines and the model was scanned using a CT-scanner continuously while deforming to have a final 4D model of the system. Results showed that existing normal faults were reactivated into dextral strike-slip faults as the sinistral movement between the two plates accumulated. Notably, the resulting restraining bend is asymmetric and segmented into two different compartments with differing geometries. One compartment shows a box fold anticline, while the second shows an asymmetric anticline. Thus, analogue modeling has validated observation in seismic data and onshore geology whereby Mount Lebanon and adjacent folds exhibit similar compartmentalization and geometric dissimilarities along the Levant Fracture System. We suggest that the presence of inherited structures will affect to a certain extent the geometry of restraining bends and control the evolution of large strike-slip faults passing through.

  4. Slip Zone versus Damage Zone Micromechanics, Arima-Takasuki Tectonic Line, Japan

    NASA Astrophysics Data System (ADS)

    White, J. C.; Lin, A.

    2017-12-01

    The Arima-Takasuki Tectonic Line (ATTL) of southern Honshu, Japan is defined by historically active faults and multiple splays producing M7 earthquakes. The damage zone of the ATTL comprises a broad zone of crushed, comminuted and pulverized granite/rhyolite1,2containing cm-scale slip zones and highly comminuted injection veins. In this presentation, prior work on the ATTL fault rocks is extending to include microstructural characterization by transmission electron microscopy (TEM) from recent trenching of the primary slip zone, as well as secondary slip zones. This is necessary to adequately characterize the extremely fine-grained material (typically less than 1mm) in both damage and core zones. Damage zone material exhibits generally random textures3 whereas slip zones are macroscopically foliated, and compositionally layered, notwithstanding a fairly homogeneous protolith. The latter reflects fluid-rock interaction during both coseismic and interseismic periods. The slip zones are microstructurally heterogeneous at all scales, comprising not only cataclasites and phyllosilicate (clay)-rich gouge zones, but Fe/Mn pellets or clasts that are contained within gouge. These structures appear to have rolled and would suggest rapid recrystallization and/or growth. A central question related to earthquake recurrence along existing faults is the nature of the gouge. In both near-surface exposures and ongoing drilling at depth, "plastic" or "viscous" gouge zones comprise ultra-fine-grained clay-siliciclastic particles that would not necessarily respond in a simple frictional manner. Depending on whether the plastic nature of these slip zones develops during or after slip, subsequent focusing of slip within them could be complicated. 1 Mitchell, T.A., Ben-Zion, Y., Shimamoto, T., 2011. Ear. Planet. Sci. Lett. 308, 284-297. 2 Lin, A., Yamashita, K, Tanaka, M. J., 2013. Struc. Geol. 48, 3-13. 3 White, J.C., Lin, A. 2016. Proc. AGU Fall Mtg., T42-02 San Francisco.

  5. Effect of texture randomization on the slip and interfacial robustness in turbulent flows over superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Seo, Jongmin; Mani, Ali

    2018-04-01

    Superhydrophobic surfaces demonstrate promising potential for skin friction reduction in naval and hydrodynamic applications. Recent developments of superhydrophobic surfaces aiming for scalable applications use random distribution of roughness, such as spray coating and etched process. However, most previous analyses of the interaction between flows and superhydrophobic surfaces studied periodic geometries that are economically feasible only in laboratory-scale experiments. In order to assess the drag reduction effectiveness as well as interfacial robustness of superhydrophobic surfaces with randomly distributed textures, we conduct direct numerical simulations of turbulent flows over randomly patterned interfaces considering a range of texture widths w+≈4 -26 , and solid fractions ϕs=11 %-25 % . Slip and no-slip boundary conditions are implemented in a pattern, modeling the presence of gas-liquid interfaces and solid elements. Our results indicate that slip of randomly distributed textures under turbulent flows is about 30 % less than those of surfaces with aligned features of the same size. In the small texture size limit w+≈4 , the slip length of the randomly distributed textures in turbulent flows is well described by a previously introduced Stokes flow solution of randomly distributed shear-free holes. By comparing DNS results for patterned slip and no-slip boundary against the corresponding homogenized slip length boundary conditions, we show that turbulent flows over randomly distributed posts can be represented by an isotropic slip length in streamwise and spanwise direction. The average pressure fluctuation on a gas pocket is similar to that of the aligned features with the same texture size and gas fraction, but the maximum interface deformation at the leading edge of the roughness element is about twice as large when the textures are randomly distributed. The presented analyses provide insights on implications of texture randomness on drag reduction performance and robustness of superhydrophobic surfaces.

  6. Character and Significance of Surface Rupture Near the Intersection of the Denali and Totschunda Faults, M7.9 Denali Fault Earthquake, Alaska, November 3, 2002

    NASA Astrophysics Data System (ADS)

    Wallace, W. K.; Sherrod, B. L.; Dawson, T. E.

    2002-12-01

    Preliminary observations suggest that right-lateral strike-slip on the Denali fault is transferred to the Totschunda fault via an extensional bend in the Little Tok River valley. Most of the surface rupture during the Denali fault earthquake was along an east- to east-southeast striking, gently curved segment of the Denali fault. However, in the Little Tok River valley, rupture transferred to the southeast-striking Totschunda fault and continued to the southeast for another 75 km. West of the Little Tok River valley, 5-7 m of right-lateral slip and up to 2 m of vertical offset occurred on the main strand of the Denali fault, but no apparent displacement occurred on the Denali fault east of the valley. Rupture west of the intersection also occurred on multiple discontinuous strands parallel to and south of the main strand of the Denali fault. In the Little Tok River valley, the northern part of the Totschunda fault system consists of multiple discontinuous southeast-striking strands that are connected locally by south-striking stepover faults. Faults of the northern Totschunda system display 0-2.5 m of right-lateral slip and 0-2.75 m of vertical offset, with the largest vertical offset on a dominantly extensional stepover fault. The strands of the Totschunda system converge southeastward to a single strand that had up to 2 m of slip. Complex and discontinuous faulting may reflect in part the immaturity of the northern Totschunda system, which is known to be younger and have much less total slip than the Denali. The Totschunda fault forms an extensional bend relative to the dominantly right-lateral Denali fault to the west. The fault geometry and displacements at the intersection suggest that slip on the Denali fault during the earthquake was accommodated largely by extension in the northern Totschunda fault system, allowing a significant decrease in strike-slip relative to the Denali fault. Strands to the southwest in the area of the bend may represent shortcut faults that have reduced the curvature at the intersection of the two fault systems.

  7. Geomorphology, kinematic history, and earthquake behavior of the active Kuwana wedge thrust anticline, central Japan

    NASA Astrophysics Data System (ADS)

    Ishiyama, Tatsuya; Mueller, Karl; Togo, Masami; Okada, Atsumasa; Takemura, Keiji

    2004-12-01

    We combine surface mapping of fault and fold scarps that deform late Quaternary alluvial strata with interpretation of a high-resolution seismic reflection profile to develop a kinematic model and determine fault slip rates for an active blind wedge thrust system that underlies Kuwana anticline in central Japan. Surface fold scarps on Kuwana anticline are closely correlated with narrow fold limbs and angular hinges on the seismic profile that suggest at least ˜1.3 km of fault slip completely consumed by folding in the upper 4 km of the crust. The close coincidence and kinematic link between folded terraces and the underlying thrust geometry indicate that Kuwana anticline has accommodated slip at an average rate of 2.2 ± 0.5 mm/yr on a 27°, west dipping thrust fault since early-middle Pleistocene time. In contrast to classical fault bend folds the fault slip budget in the stacked wedge thrusts also indicates that (1) the fault tip propagated upward at a low rate relative to the accrual of fault slip and (2) fault slip is partly absorbed by numerous bedding plane flexural-slip faults above the tips of wedge thrusts. An historic earthquake that occurred on the Kuwana blind thrust system possibly in A.D. 1586 is shown to have produced coseismic surface deformation above the doubly vergent wedge tip. Structural analyses of Kuwana anticline coupled with tectonic geomorphology at 103-105 years timescales illustrate the significance of active folds as indicators of slip on underlying blind thrust faults and thus their otherwise inaccessible seismic hazards.

  8. Absence of MutSbeta leads to the formation of slipped-DNA for CTG/CAG contractions at primate replication forks

    PubMed Central

    Slean, Meghan M.; Panigrahi, Gagan B.; Castel, Arturo López; Pearson, August B.; Tomkinson, Alan E.; Pearson, Christopher E.

    2016-01-01

    Typically disease-causing CAG/CTG repeats expand, but rare affected families can display high levels of contraction of the expanded repeat amongst offspring. Understanding instability is important since arresting expansions or enhancing contractions could be clinically beneficial. The MutSβ mismatch repair complex is required for CAG/CTG expansions in mice and patients. Oddly, by unknown mechanisms MutSβ-deficient mice incur contractions instead of expansions. Replication using CTG or CAG as the lagging strand template is known to cause contractions or expansions respectively; however, the interplay between replication and repair leading to this instability remains unclear. Towards understanding how repeat contractions may arise, we performed in vitro SV40-mediated replication of repeat-containing plasmids in the presence or absence of mismatch repair. Specifically, we separated repair from replication: Replication mediated by MutSβ- and MutSα-deficient human cells or cell extracts produced slipped-DNA heteroduplexes in the contraction- but not expansion-biased replication direction. Replication in the presence of MutSβ disfavoured the retention of replication products harbouring slipped-DNA heteroduplexes. Post-replication repair of slipped-DNAs by MutSβ-proficient extracts eliminated slipped-DNAs. Thus, a MutSβ-deficiency likely enhances repeat contractions because MutSβ protects against contractions by repairing template strand slip-outs. Replication deficient in LigaseI or PCNA-interaction mutant LigaseI revealed slipped-DNA formation at lagging strands. Our results reveal that distinct mechanisms lead to expansions or contractions and support inhibition of MutSβ as a therapeutic strategy to enhance the contraction of expanded repeats. PMID:27155933

  9. Investigation of Three-Dimensional Stress Fields and Slip Systems for FCC Single Crystal Superalloy Notched Specimens

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.; Magnan, Shannon; Ebrahimi, Fereshteh; Ferroro, Luis

    2004-01-01

    Metals and their alloys, except for a few intermetallics, are inherently ductile, i.e. plastic deformation precedes fracture in these materials. Therefore, resistance to fracture is directly related to the development of the plastic zone at the crack tip. Recent studies indicate that the fracture toughness of single crystals depends on the crystallographic orientation of the notch as well as the loading direction. In general, the dependence of crack propagation resistance on crystallographic orientation arises from the anisotropy of (i) elastic constants, (ii) plastic deformation (or slip), and (iii) the weakest fracture planes (e.g. cleavage planes). Because of the triaxial stress state at the notch tips, many slip systems that otherwise would not be activated during uniaxial testing, become operational. The plastic zone formation in single crystals has been tackled theoretically by Rice and his co-workers and only limited experimental work has been conducted in this area. The study of the stresses and strains in the vicinity of a FCC single crystal notch tip is of relatively recent origin. We present experimental and numerical investigation of 3D stress fields and evolution of slip sector boundaries near notches in FCC single crystal tension test specimens, and demonstrate that a 3D linear elastic finite element model that includes the effect of material anisotropy is shown to predict active slip planes and sectors accurately. The slip sector boundaries are shown to have complex curved shapes with several slip systems active simultaneously near the notch. Results are presented for surface and mid-plane of the specimens. The results demonstrate that accounting for 3D elastic anisotropy is very important for accurate prediction of slip activation near FCC single crystal notches loaded in tension. Results from the study will help establish guidelines for fatigue damage near single crystal notches.

  10. Slow Earthquake Hunters: A New Citizen Science Project to Identify and Catalog Slow Slip Events in Geodetic Data

    NASA Astrophysics Data System (ADS)

    Bartlow, N. M.

    2017-12-01

    Slow Earthquake Hunters is a new citizen science project to detect, catalog, and monitor slow slip events. Slow slip events, also called "slow earthquakes", occur when faults slip too slowly to generate significant seismic radiation. They typically take between a few days and over a year to occur, and are most often found on subduction zone plate interfaces. While not dangerous in and of themselves, recent evidence suggests that monitoring slow slip events is important for earthquake hazards, as slow slip events have been known to trigger damaging "regular" earthquakes. Slow slip events, because they do not radiate seismically, are detected with a variety of methods, most commonly continuous geodetic Global Positioning System (GPS) stations. There is now a wealth of GPS data in some regions that experience slow slip events, but a reliable automated method to detect them in GPS data remains elusive. This project aims to recruit human users to view GPS time series data, with some post-processing to highlight slow slip signals, and flag slow slip events for further analysis by the scientific team. Slow Earthquake Hunters will begin with data from the Cascadia subduction zone, where geodetically detectable slow slip events with a duration of at least a few days recur at regular intervals. The project will then expand to other areas with slow slip events or other transient geodetic signals, including other subduction zones, and areas with strike-slip faults. This project has not yet rolled out to the public, and is in a beta testing phase. This presentation will show results from an initial pilot group of student participants at the University of Missouri, and solicit feedback for the future of Slow Earthquake Hunters.

  11. Direct measurement of wall slip and slip layer thickness of non-Brownian hard-sphere suspensions in rectangular channel flows

    NASA Astrophysics Data System (ADS)

    Jesinghausen, Steffen; Weiffen, Rene; Schmid, Hans-Joachim

    2016-09-01

    Wall slip is a long-known phenomenon in the field of rheology. Nevertheless, the origin and the evolution are not completely clear yet. Regarding suspensions, the effect becomes even more complicated, because different mechanisms like pure slip or slip due to particle migration have to be taken into account. Furthermore, suspensions themselves show many flow anomalies and the isolation of slip is complicated. In order to develop working physical models, further insight is necessary. In this work, we measured experimentally the wall slip velocities of different highly filled suspensions in a rectangular slit die directly with respect to the particle concentration and the particle size. The slip velocities were obtained using a particle image velocimetry (PIV) system. The suspensions consisting of a castor oil-cinnamon oil blend and PMMA particles were matched in terms of refractive indexes to appear transparent. Hereby, possible optical path lengths larger than 15 mm were achieved. The slip velocities were found to be in a quadratic relation to the wall shear stress. Furthermore, the overall flow rate as well as the particle concentration has a direct influence on the slip. Concerning the shear stress, there seem to be two regions of slip with different physical characteristics. Furthermore, we estimated the slip layer thickness directly from the velocity profiles and propose a new interpretation. The PIV technique is used to investigate the viscosity and implicit the concentration profile in the slit die. It is shown that the particle migration process is quite fast.

  12. Influence of tire dynamics on slip ratio estimation of independent driving wheel system

    NASA Astrophysics Data System (ADS)

    Li, Jianqiu; Song, Ziyou; Wei, Yintao; Ouyang, Minggao

    2014-11-01

    The independent driving wheel system, which is composed of in-wheel permanent magnet synchronous motor(I-PMSM) and tire, is more convenient to estimate the slip ratio because the rotary speed of the rotor can be accurately measured. However, the ring speed of the tire ring doesn't equal to the rotor speed considering the tire deformation. For this reason, a deformable tire and a detailed I-PMSM are modeled by using Matlab/Simulink. Moreover, the tire/road contact interface(a slippery road) is accurately described by the non-linear relaxation length-based model and the Magic Formula pragmatic model. Based on the relatively accurate model, the error of slip ratio estimated by the rotor rotary speed is analyzed in both time and frequency domains when a quarter car is started by the I-PMSM with a definite target torque input curve. In addition, the natural frequencies(NFs) of the driving wheel system with variable parameters are illustrated to present the relationship between the slip ratio estimation error and the NF. According to this relationship, a low-pass filter, whose cut-off frequency corresponds to the NF, is proposed to eliminate the error in the estimated slip ratio. The analysis, concerning the effect of the driving wheel parameters and road conditions on slip ratio estimation, shows that the peak estimation error can be reduced up to 75% when the LPF is adopted. The robustness and effectiveness of the LPF are therefore validated. This paper builds up the deformable tire model and the detailed I-PMSM models, and analyzes the effect of the driving wheel parameters and road conditions on slip ratio estimation.

  13. Double and multiple contacts of similar elastic materials

    NASA Astrophysics Data System (ADS)

    Sundaram, Narayan K.

    Ongoing fretting fatigue research has focussed on developing robust contact mechanics solutions for complicated load histories involving normal, shear, moment and bulk loads. For certain indenter profiles and applied loads, the contact patch separates into two disconnected regions. Existing Singular Integral Equation (SIE) techniques do not address these situations. A fast numerical tool is developed to solve such problems for similar elastic materials for a wide range of profiles and load paths including applied moments and remote bulk-stress effects. This tool is then used to investigate two problems in double contacts. The first, to determine the shear configuration space for a biquadratic punch for the generalized Cattaneo-Mindlin problem. The second, to obtain quantitative estimates of the interaction between neighboring cylindrical contacts for both the applied normal load and partial slip problems up to the limits of validity of the halfspace assumption. In double contact problems without symmetry, obtaining a unique solution requires the satisfaction of a condition relating the contact ends, rigid-body rotation and profile function. This condition has the interpretation that a rigid-rod connecting the inner contact ends of an equivalent frictionless double contact of a rigid indenter and halfspace may only undergo rigid body motions. It is also found that the ends of stick-zones, local slips and remote-applied strains in double contact problems are related by an equation expressing tangential surface-displacement continuity. This equation is essential to solve partial-slip problems without contact equivalents. Even when neighboring cylindrical contacts may be treated as non-interacting for the purpose of determining the pressure tractions, this is not generally true if a shear load is applied. The mutual influence of neighboring contacts in partial slip problems is largest at small shear load fractions. For both the pressure and partial slip problems, the interactions are stronger with increasing strength of loading and contact proximity. A new contact algorithm is developed and the SIE method extended to tackle contact problems with an arbitrary number of contact patches with no approximations made about contact interactions. In the case of multiple contact problems determining the correct contact configuration is significantly more complicated than in double contacts, necessitating a new approach. Both the normal contact and partial slip problems are solved. The tool is then used to study contacts of regular rough cylinders, a flat with rounded punch with superimposed sinusoidal roughness and is also applied to analyze the contact of an experimental rough surface with a halfspace. The partial slip results for multiple-contacts are generally consistent with Cattaneo-Mindlin continuum scale results, in that the outermost contacts tend to be in full sliding. Lastly, the influence of plasticity on frictionless multiple contact problems is studied using FEM for two common steel and aluminum alloys. The key findings are that the plasticity decreases the peak pressure and increases both real and apparent contact areas, thus 'blunting' the sharp pressures caused by the contact asperities in pure elasticity. Further, it is found that contact plasticity effects and load for onset of first yield are strongly dependent on roughness amplitude, with higher plasticity effects and lower yield-onset load at higher roughness amplitudes.

  14. Fault-slip directions in central and southern Greece measured from striated and corrugated fault planes: Comparison with focal mechanism and geodetic data

    NASA Astrophysics Data System (ADS)

    Roberts, Gerald P.; Ganas, Athanassios

    2000-10-01

    Fault-slip directions recorded by outcropping striated and corrugated fault planes in central and southern Greece have been measured for comparison with extension directions derived from focal mechanism and Global Positioning System (GPS) data for the last ˜100 years to test how far back in time velocity fields and deformation dynamics derived from the latter data sets can be extrapolated. The fault-slip data have been collected from the basin-bounding faults to Plio-Pleistocene to recent extensional basins and include data from arrays of footwall faults formed during the early stages of fault growth. We show that the orientation of the inferred stress field varies along faults and earthquake ruptures, so we use only slip-directions from the centers of faults, where dip-slip motion occurs, to constrain regionally significant extension directions. The fault-slip directions for the Peloponnese and Gulfs of Evia and Corinth are statistically different at the 99% confidence level but statistically the same as those implied by earthquake focal mechanisms for each region at the 99% confidence level; they are also qualitatively similar to the principal strain axes derived from GPS studies. Extension directions derived from fault-slip data are 043-047° for the southern Peloponnese, 353° for the Gulf of Corinth, and 015-014° for the Gulf of Evia. Extension on active normal faults in the two latter areas appears to grade into strike-slip along the North Anatolian Fault through a gradual change in fault-slip directions and fault strikes. To reconcile the above with 5° Myr-1 clockwise rotations suggested for the area, we suggest that the faults considered formed during a single phase of extension. The deformation and formation of the normal fault systems examined must have been sufficiently rapid and recent for rotations about vertical axes to have been unable to disperse the fault-slip directions from the extension directions implied by focal mechanisms and GPS data. Thus, in central and southern Greece the velocity fields derived from focal mechanism and GPS data may help explain the dynamics of the deformation over longer time periods than the ˜100 years over which they were measured; this may include the entire deformation history of the fault systems considered, a time period that may exceed 1-2 Myr.

  15. Learning and Prediction of Slip from Visual Information

    NASA Technical Reports Server (NTRS)

    Angelova, Anelia; Matthies, Larry; Helmick, Daniel; Perona, Pietro

    2007-01-01

    This paper presents an approach for slip prediction from a distance for wheeled ground robots using visual information as input. Large amounts of slippage which can occur on certain surfaces, such as sandy slopes, will negatively affect rover mobility. Therefore, obtaining information about slip before entering such terrain can be very useful for better planning and avoiding these areas. To address this problem, terrain appearance and geometry information about map cells are correlated to the slip measured by the rover while traversing each cell. This relationship is learned from previous experience, so slip can be predicted remotely from visual information only. The proposed method consists of terrain type recognition and nonlinear regression modeling. The method has been implemented and tested offline on several off-road terrains including: soil, sand, gravel, and woodchips. The final slip prediction error is about 20%. The system is intended for improved navigation on steep slopes and rough terrain for Mars rovers.

  16. Slip-stick excitation and travelling waves excite silo honking

    NASA Astrophysics Data System (ADS)

    Vriend, Nathalie; Warburton, Kasia; Porte, Elze

    2016-11-01

    Industrial storage silos filled with PET-particles can create a sound upon discharge. The sound forms a nuisance for the environment when the structure starts to act as a loudspeaker and may ultimately result in structural failure. This work investigates the phenomenon experimentally-the deployment of a microphone, an accelerometer and high-speed imaging on a laboratory set-up reveal the driving mechanism for the structural resonance: stick-slip at the wall. Particle image velocimetry shows an asymmetric, upwards travelling wave (at 50 m/s) which contains the dynamic "slip"-region. The frequency of the mechanical motion of the grains is successfully correlated to the frequency of the emitted sound. Friction models are explored to describe and quantify the frictional interaction between the grains and the wall.

  17. A Viscoelastic earthquake simulator with application to the San Francisco Bay region

    USGS Publications Warehouse

    Pollitz, Fred F.

    2009-01-01

    Earthquake simulation on synthetic fault networks carries great potential for characterizing the statistical patterns of earthquake occurrence. I present an earthquake simulator based on elastic dislocation theory. It accounts for the effects of interseismic tectonic loading, static stress steps at the time of earthquakes, and postearthquake stress readjustment through viscoelastic relaxation of the lower crust and mantle. Earthquake rupture initiation and termination are determined with a Coulomb failure stress criterion and the static cascade model. The simulator is applied to interacting multifault systems: one, a synthetic two-fault network, and the other, a fault network representative of the San Francisco Bay region. The faults are discretized both along strike and along dip and can accommodate both strike slip and dip slip. Stress and seismicity functions are evaluated over 30,000 yr trial time periods, resulting in a detailed statistical characterization of the fault systems. Seismicity functions such as the coefficient of variation and a- and b-values exhibit systematic patterns with respect to simple model parameters. This suggests that reliable estimation of the controlling parameters of an earthquake simulator is a prerequisite to the interpretation of its output in terms of seismic hazard.

  18. Surface and Subsurface Fault Displacements from the September 2010 Darfield (Canterbury) Earthquake

    NASA Astrophysics Data System (ADS)

    Meyers, B.; Furlong, K. P.; Hayes, G. P.; Herman, M. W.; Quigley, M.

    2012-12-01

    On September 3, 2010 a Magnitude 7.1 earthquake struck near Darfield, New Zealand. This was to be the first earthquake in an ongoing, damaging sequence near the city of Christchurch. The earthquake produced a surface rupture with measurable offsets of up to 5.3m along a 30km surface fault system. The spatial pattern of slip during this rupture has been determined by various groups using a range of approaches and several independent data sets. Surface fault rupture was measured in the field and fault slip at depth has been inferred from a seismologic finite fault model (FFM) and various geodetic observations including GPS and InSAR. Here we compare the observed segmented surface displacements with fault slip inferred from the other data. Measurements of the surface rupture show segmented faulting consistent with subsurface slip in the FFM. In the FFM, the main slip patch near the hypocenter can be directly correlated to the region of maximum surface displacement. The FFM and some evidence in the InSAR data also indicate that the Greendale fault system, the structure responsible for the bulk of the rupture, continues at depth closer towards Christchurch than is seen in surface rupture patterns. There is an additional 20km long patch with up to 3m of modeled slip seen in the eastern end of the inverted fault, offset to the south from the Greendale fault trace. This additional fault segment is consistent with a zone of aftershock activity of the main Darfield event, and with local patterns of strong motion. It thus appears that slip recorded at the surface does not describe the entire fault system. This eastward extension of the September rupture means that there is only a short segment of unruptured crust remaining along the entire fault system involved in the Canterbury earthquake sequence.

  19. Earthquake cycle deformation in Mexico and Central America constrained by GPS: Implications for coseismic, postseismic, and slow slip

    NASA Astrophysics Data System (ADS)

    Graham, Shannon E.

    Using surface deformation measured by GPS stations within Mexico and Central America, I model coseismic slip, Coulomb stress changes, postseismic afterslip, and slow slip events in order to increase our knowledge of the earthquake deformation cycle in seismically hazardous regions. In Chapter 1, I use GPS data to estimate coseismic slip due to the May 28, 2009 Swan Islands fault earthquake off the coast of Honduras and then use the slip distribution to calculate Coulomb stress changes for the earthquake. Coulomb stress change calculations resolve stress transfer to the seismically hazardous Motagua fault and further show an unclamping of normal faults in northern Honduras. In Chapter 2, the focus shifts to southern Mexico, where continuous GPS measurements since the mid-1990s are revolutionizing our understanding of the flatly subducting Cocos plate. I perform a time-dependent inversion of continuous GPS observations of the 2011-2012 slow slip event (SSE) to estimate the location and magnitude of slow slip preceding the March 20, 2012 Ometepec earthquake. Coulomb stress changes as a result of slip during the SSE are consistent with the hypothesis that the SSE triggered the Ometepec earthquake. Chapter 3 describes inversions for slip both during and after the Ometepec earthquake. Time-dependent modeling of the first six months of postseismic deformation reveals that fault afterslip extended ˜250 km inland to depths of ˜50 km along the Cocos plate subduction. The postseismic afterslip and previous SSEs in southern Mexico occur at similar depths down-dip from the seismogenic zone, indicating that transitional areas of the subduction interface underlie much of southern Mexico. Finally, I perform the first time-dependent modeling of SSEs below Mexico and the first to exploit all available continuous GPS stations in southern and central Mexico. The results provide a more complete and consistent catalog of modeled SSE for the Mexico subduction zone (MSZ) than is currently available and add to our understanding of how SSEs on the subduction interface evolve in time, migrate in space, and possibly interact. I find that slow slip along the MSZ migrates across the gap between the Guerrero and Oaxaca regions, contrary to previous results.

  20. In-situ investigation of relations between slow slip events, repeaters and earthquake nucleation

    NASA Astrophysics Data System (ADS)

    Marty, S. B.; Schubnel, A.; Gardonio, B.; Bhat, H. S.; Fukuyama, E.

    2017-12-01

    Recent observations have shown that, in subduction zones, imperceptible slip, known as "slow slip events", could trigger powerful earthquakes and could be link to the onset of swarms of repeaters. In the aim of investigating the relation between repeaters, slow slip events and earthquake nucleation, we have conducted stick-slip experiments on saw-cut Indian Gabbro under upper crustal stress conditions (up to 180 MPa confining pressure). During the past decades, the reproduction of micro-earthquakes in the laboratory enabled a better understanding and to better constrain physical parameters that are the origin of the seismic source. Using a new set of calibrated piezoelectric acoustic emission sensors and high frequency dynamic strain gages, we are now able to measure a large number of physical parameters during stick-slip motion, such as the rupture velocity, the slip velocity, the dynamic stress drop and the absolute magnitudes and sizes of foreshock acoustic emissions. Preliminary observations systemically show quasi-static slip accelerations, onset of repeaters as well as an increase in the acoustic emission rate before failure. In the next future, we will further investigate the links between slow slip events, repeaters, stress build-up and earthquakes, using our high-frequency acoustic and strain recordings and applying template matching analysis.

  1. Strike-slip faults in the Moroccan Rif: Their geophysical signatures and hydrocarbon potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jobidon, G.P.; Dakki, M.

    1994-12-31

    The Rif Domain in Northern Morocco includes major movements along left-lateral strike-slips faults that created various structures and influenced depositional systems. The major ones are the Jebha fault in the Rif`s northwest area, and the Nekkor fault that extends southwesterly from the Mediterranean sea toward the Meseta. Although identified by surface geology in the east, the western extent of the faults is ambiguous. Detail interpretation of gravity and magnetic maps provide a better definition of their locations and related structures. The Rif`s geology is a mirror image of the right-lateral strike-slip fault system of Venezuela and Trinidad. Most features associatedmore » with the Rif`s strike-slip faults have not been explored to data and hydrocarbon potential remains a good possibility.« less

  2. Combined effects of magnetic field and partial slip on obliquely striking rheological fluid over a stretching surface

    NASA Astrophysics Data System (ADS)

    Nadeem, S.; Mehmood, Rashid; Akbar, Noreen Sher

    2015-03-01

    This study explores the collective effects of partial slip and transverse magnetic field on an oblique stagnation point flow of a rheological fluid. The prevailing momentum equations are designed by manipulating Casson fluid model. By applying the suitable similarity transformations, the governing system of equations is being transformed into coupled nonlinear ordinary differential equations. The resulting system is handled numerically through midpoint integration scheme together with Richardson's extrapolation. It is found that both normal and tangential velocity profiles decreases with an increase in magnetic field as well as slip parameter. Streamlines pattern are presented to study the actual impact of slip mechanism and magnetic field on the oblique flow. A suitable comparison with the previous literature is also provided to confirm the accuracy of present results for the limiting case.

  3. Effects of layered crust on the coseismic slip inversion and related CFF variations: Hints from the 2012 Emilia Romagna earthquake

    NASA Astrophysics Data System (ADS)

    Nespoli, Massimo; Belardinelli, Maria E.; Anderlini, Letizia; Bonafede, Maurizio; Pezzo, Giuseppe; Todesco, Micol; Rinaldi, Antonio P.

    2017-12-01

    The 2012 Emilia Romagna (Italy) seismic sequence has been extensively studied given the occurrence of two mainshocks, both temporally and spatially close to each other. The recent literature accounts for several fault models, obtained with different inversion methods and different datasets. Several authors investigated the possibility that the second event was triggered by the first mainshock with elusive results. In this work, we consider all the available InSAR and GPS datasets and two planar fault geometries, which are based on both seismological and geological constraints. We account for a layered, elastic half-space hosting the dislocation and compare the slip distribution resulting from the inversion and the related changes in Coulomb Failure Function (CFF) obtained with both a homogeneous and layered half-space. Finally, we focus on the interaction between the two main events, discriminating the contributions of coseismic and early postseismic slip of the mainshock on the generation of the second event and discuss the spatio-temporal distribution of the seismic sequence. When accounting for both InSAR and GPS geodetic data we are able to reproduce a detailed coseismic slip distribution for the two mainshocks that is in accordance with the overall aftershock seismicity distribution. Furthermore, we see that an elastic medium with depth dependent rigidity better accounts for the lack of the shallow seismicity, amplifying, with respect to the homogeneous case, the mechanical interaction of the two mainshocks.

  4. A geophone wireless sensor network for investigating glacier stick-slip motion

    NASA Astrophysics Data System (ADS)

    Martinez, Kirk; Hart, Jane K.; Basford, Philip J.; Bragg, Graeme M.; Ward, Tyler; Young, David S.

    2017-08-01

    We have developed an innovative passive borehole geophone system, as part of a wireless environmental sensor network to investigate glacier stick-slip motion. The new geophone nodes use an ARM Cortex-M3 processor with a low power design capable of running on battery power while embedded in the ice. Only data from seismic events was stored, held temporarily on a micro-SD card until they were retrieved by systems on the glacier surface which are connected to the internet. The sampling rates, detection and filtering levels were determined from a field trial using a standard commercial passive seismic system. The new system was installed on the Skalafellsjökull glacier in Iceland and provided encouraging results. The results showed that there was a relationship between surface melt water production and seismic event (ice quakes), and these occurred on a pattern related to the glacier surface melt-water controlled velocity changes (stick-slip motion). Three types of seismic events were identified, which were interpreted to reflect a pattern of till deformation (Type A), basal sliding (Type B) and hydraulic transience (Type C) associated with stick-slip motion.

  5. Theory of coherent quantum phase slips in Josephson junction chains with periodic spatial modulations

    NASA Astrophysics Data System (ADS)

    Svetogorov, Aleksandr E.; Taguchi, Masahiko; Tokura, Yasuhiro; Basko, Denis M.; Hekking, Frank W. J.

    2018-03-01

    We study coherent quantum phase slips which lift the ground state degeneracy in a Josephson junction ring, pierced by a magnetic flux of the magnitude equal to half of a flux quantum. The quantum phase-slip amplitude is sensitive to the normal mode structure of superconducting phase oscillations in the ring (Mooij-Schön modes). These, in turn, are affected by spatial inhomogeneities in the ring. We analyze the case of weak periodic modulations of the system parameters and calculate the corresponding modification of the quantum phase-slip amplitude.

  6. Electrostatic precursors to granular slip events

    PubMed Central

    Shinbrot, Troy; Kim, Nam H.; Thyagu, N. Nirmal

    2012-01-01

    It has been known for over a century that electrical signals are produced by material failure, for example during crack formation of crystals and glasses, or stick-slip motion of liquid mercury on glass. We describe here new experiments revealing that slip events in cohesive powders also produce electrical signals, and remarkably these signals can appear significantly in advance of slip events. We have confirmed this effect in two different experimental systems and using two common powdered materials, and in a third experiment we have demonstrated that similar voltage signals are produced by crack-like defects in several powdered materials. PMID:22689956

  7. Orientation and temperature dependence of some mechanical properties of the single-crystal nickel-base superalloy Rene N4. I - Tensile behavior

    NASA Technical Reports Server (NTRS)

    Miner, R. V.; Gayda, J.; Gabb, T. P.; Voigt, R. C.

    1986-01-01

    Single crystal specimens of a nickel-base superalloy with axes near 001, 011, and -112 were tested in tension at room temperature, 760, and 980 C. The alloy Rene N-4, was developed for gas turbine engine blades and has the nominal composition 3.7 Al, 4.2 Ti, 4 Ta, 0.5 Nb, 6 W, 1.5 Mo, 9 Cr, 7.5 Co, balance Ni, (all in weight percent). Analysis of slip band traces, specimen axis rotation, and dislocation Burgers vectors showed that at 760 and 980 C primary cube slip supplanted normal octahedral slip for the -112 line-oriented specimens. The other two orientations, which have lower resolved shear stresses on the cube system, exhibited octahedral slip at all three temperatures. The critical resolved shear stress is considerably greater on the cube system than on the octahedral system at room temperature. However, at 760 and 980 C the critical resolved shear stresses on the two systems are about the same. While the room temperature and 980 C yield strengths for the two orientations exhibiting octahedral slip could be rationalized on the basis of resolved shear stress, those at 760 C could not. Such violations of Schmid's law have previously been observed in other superalloys and single phase gamma-prime.

  8. Dynamical Bayesian inference of time-evolving interactions: from a pair of coupled oscillators to networks of oscillators.

    PubMed

    Duggento, Andrea; Stankovski, Tomislav; McClintock, Peter V E; Stefanovska, Aneta

    2012-12-01

    Living systems have time-evolving interactions that, until recently, could not be identified accurately from recorded time series in the presence of noise. Stankovski et al. [Phys. Rev. Lett. 109, 024101 (2012)] introduced a method based on dynamical Bayesian inference that facilitates the simultaneous detection of time-varying synchronization, directionality of influence, and coupling functions. It can distinguish unsynchronized dynamics from noise-induced phase slips. The method is based on phase dynamics, with Bayesian inference of the time-evolving parameters being achieved by shaping the prior densities to incorporate knowledge of previous samples. We now present the method in detail using numerically generated data, data from an analog electronic circuit, and cardiorespiratory data. We also generalize the method to encompass networks of interacting oscillators and thus demonstrate its applicability to small-scale networks.

  9. Spatiotemporal stick-slip phenomena in a coupled continuum-granular system

    NASA Astrophysics Data System (ADS)

    Ecke, Robert

    In sheared granular media, stick-slip behavior is ubiquitous, especially at very small shear rates and weak drive coupling. The resulting slips are characteristic of natural phenomena such as earthquakes and well as being a delicate probe of the collective dynamics of the granular system. In that spirit, we developed a laboratory experiment consisting of sheared elastic plates separated by a narrow gap filled with quasi-two-dimensional granular material (bi-dispersed nylon rods) . We directly determine the spatial and temporal distributions of strain displacements of the elastic continuum over 200 spatial points located adjacent to the gap. Slip events can be divided into large system-spanning events and spatially distributed smaller events. The small events have a probability distribution of event moment consistent with an M - 3 / 2 power law scaling and a Poisson distributed recurrence time distribution. Large events have a broad, log-normal moment distribution and a mean repetition time. As the applied normal force increases, there are fractionally more (less) large (small) events, and the large-event moment distribution broadens. The magnitude of the slip motion of the plates is well correlated with the root-mean-square displacements of the granular matter. Our results are consistent with mean field descriptions of statistical models of earthquakes and avalanches. We further explore the high-speed dynamics of system events and also discuss the effective granular friction of the sheared layer. We find that large events result from stored elastic energy in the plates in this coupled granular-continuum system.

  10. Fracture Mechanics Analyses of the Slip-Side Joggle Regions of Wing-Leading Edge Panels

    NASA Technical Reports Server (NTRS)

    Raju, Ivatury S.; Knight, Norman F., Jr.; Song, Kyongchan; Phillips, Dawn R.

    2010-01-01

    The Space Shuttle Orbiter wing comprises of 22 leading edge panels on each side of the wing. These panels are part of the thermal protection system that protects the Orbiter wings from extreme heating that take place on the reentry in to the earth atmosphere. On some panels that experience extreme heating, liberation of silicon carbon (SiC) coating was observed on the slip side regions of the panels. Global structural and local fracture mechanics analyses were performed on these panels as a part of the root cause investigation of this coating liberation anomaly. The wing-leading-edge reinforced carbon-carbon (RCC) panels, Panel 9, T-seal 10, and Panel 10, are shown in Figure 1 and the progression of the stress analysis models is presented in Figure 2. The global structural analyses showed minimal interaction between adjacent panels and the T-seal that bridges the gap between the panels. A bounding uniform temperature is applied to a representative panel and the resulting stress distribution is examined. For this loading condition, the interlaminar normal stresses showed negligible variation in the chord direction and increased values in the vicinity of the slip-side joggle shoulder. As such, a representative span wise slice on the panel can be taken and the cross section can be analyzed using plane strain analysis.

  11. A dislocation density-based continuum model of the anisotropic shock response of single crystal α-cyclotrimethylene trinitramine

    DOE PAGES

    Luscher, Darby Jon; Addessio, Francis L.; Cawkwell, Marc Jon; ...

    2017-01-01

    Here, we have developed a model for the finite deformation thermomechanical response of α-cyclotrimethylene trinitramine (RDX). Our model accounts for nonlinear thermoelastic lattice deformation through a free energy-based equation of state developed by Cawkwell et al. (2016) in combination with temperature and pressure dependent elastic constants, as well as dislocation-mediated plastic slip on a set of slip systems motivated by experimental observation. The kinetics of crystal plasticity are modeled using the Orowan equation relating slip rate to dislocation density and the dislocation velocity developed by Austin and McDowell (2011), which naturally accounts for transition from thermally activated to dislocation dragmore » limited regimes. Evolution of dislocation density is specified in terms of local ordinary differential equations reflecting dislocation–dislocation interactions. This paper presents details of the theory and parameterization of the model, followed by discussion of simulations of flyer plate impact experiments. Impact conditions explored within this combined simulation and experimental effort span shock pressures ranging from 1 to 3 GPa for four crystallographic orientations and multiple specimen thicknesses. Simulation results generated using this model are shown to be in strong agreement with velocimetry measurements from the corresponding plate impact experiments. Finally, simulation results are used to motivate conclusions about the nature of dislocation-mediated plasticity in RDX.« less

  12. Flower-strucutre deformation pattern of theTian Shan mountains as revealed by Late Quaternary geological and modern Geodesy slip rates

    NASA Astrophysics Data System (ADS)

    Wu, C.; Zhang, P.; Zheng, W.; Wang, H.; Zhang, Z.; Ren, Z.; Zheng, D.; Yu, J.; Wu, G.

    2017-12-01

    The deformation pattern and strain distribution of the Tian Shan is a hot issue.Previous studies mainly focus on the thrust-fold systems on both sides of Tian Shan, the strike-slip faults within the mountains are rarely reported. The understanding about the deformation characteristics of Tian Shan is not complete for lacking information of these strike-slip faults.Our studies show the NEE trending structures of Maidan fault and Nalati fault in the southwestern Tian Shan are all active during the Holence. These faults are characterized by sinistral strike-slip and thrust movement. The minimum average sinistral strike-slip rate of the Maidan fault is 1.07 ± 0.13 mm/yr. During the late Quaternary, the average shortening rate and sinistral strike-slip rate of the Nalati fault are 2.1 ±0.4 mm/yr and 2.56 ±0.25 mm/yr, respectively . In the interior of the Tian Shan area, two groups of strike-slip faults were developed. The NEE trending faults with sinistral strike-slipmovement, and the NWW trending faults with dextral strike-slip movement show the shape of "X"in geometrical structure. The piedmont thrust faults and the thrust strike-slip faults in the interior mountain constitute the tectonic framework of Tian Shan. Threegroups of active fault systems are the main seismogenic and geological structures, which control the current tectonic deformation pattern of Tian Shan (Figure 1). GPS observation data also showthe similar deformation characteristics with the geological results (Figures 2, 3). In addition to the crustal shortening, there is a certain strike-slip shear movement in the interior of the Tian Shan.The strike-slip rate defined by the geological and GPS data is approximately consistent with each other near the same longitude. We suggest the two groups of strike-slip faults in the interior of mountains is a set of conjugate structures. The whole Tian Shan forms a large flower-structure in a profile view. The complete tectonic deformation of the Tian Shan mountains consists ofthe shortening deformationof the N-S direction and the lateral extrusion of the E-W direction (Figure 2). The late Cenozoic deformation of the Tian Shan mountains is due to the northward subduction of Tarim Block. Although the activedeformation of the Tian Shan decrease eastward, the geological sturcutrein eastern Tian Shan is similar.

  13. High resolution shallow co-seismic and post-seismic slip from the 2016 central Italy earthquake sequence captured using terrestrial laser scanning, structure from motion and low-cost near-field GNSS

    NASA Astrophysics Data System (ADS)

    Wedmore, L. N. J.; Gregory, L. C.; McCaffrey, K. J. W.; Wilkinson, M.; Walters, R. J.

    2017-12-01

    Coseismic fault slip in the shallow crust is poorly constrained by many of the conventional tools used to record deformation during earthquakes. GNSS stations are often distributed too far from faults and radar images tend to decorrelate across earthquake surface ruptures. As a result, our understanding of near-field fault slip, shallow slip deficits, and off-fault deformation is limited. We present evidence from the 2016 central Italy earthquake sequence, during which we captured shallow coseismic and post-seismic slip using a combination of terrestrial laser scanning (TLS), structure-from-motion (SfM), and near-field low-cost GNSS recording at 1Hz. Three Mw>6 earthquakes on the 24th August, 26th and 30th October all involved slip on the Mt Vettore-Mt Bove fault system. We collected TLS and SfM point clouds across three separate segments of this system. Each segment experienced a different record of slip during the earthquake sequence; all three ruptured in the largest event (Mw 6.6. on October 30th) but two segments also ruptured during either the 24th August or the 26th October earthquakes. Following the Mw 6.6 earthquake, the faults were repeatedly surveyed using TLS, with the first scan collected c. 5 hours following the earthquake. This represents the first known instance where shallow co-seismic slip has been recorded by pre- and post-event terrestrial laser scanning. Displacement continuously measured across GNSS pairs at 1 Hz demonstrates that permanent near field displacement developed across the fault in the immediate seconds following the initiation of the rupture. However, a discrepancy between on-fault field measurements of surface displacement and the GNSS recorded displacement over 1km long baselines hints at a more complex rupture processes and the possibility of high slip gradients in the shallow subsurface. Displacement measured by differential TLS confirms the presence of these shallow slip deficits but suggests that shallow slip gradient may be controlled by the pattern and timing of slip in the preceding earthquakes. Postseismic afterslip captured by repeated TLS surveys hints at more complicated temporal evolution of nearfield afterslip than is currently predicted by logarithmic models for this process.

  14. Slip and Dilation Tendency Anlysis of McGinness Hills Geothermal Area

    DOE Data Explorer

    Faulds, James E.

    2013-12-31

    Slip and Dilation Tendency in focus areas Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = τ / σn (Morris et al., 1996). Dilation tendency is defined by the stress acting normal to a given surface: Td = (σ1-σn) / (σ1-σ3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the McGinness Hills geothermal field was calculated based on the faults mapped McGinness Hills area (Siler 2012, unpublished). The McGinness Hills area lies in the Basin and Range Province, as such we applied a normal faulting stress regime to the McGinness area faults, with a minimum horizontal stress direction oriented 115, based on inspection of local and regional stress determinations, as explained above. Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60° dipping fault segments have the highest tendency to slip. The McGinness Hills geothermal system is characterized by a left-step in a north-northeast striking west-dipping fault system wit...

  15. Adaptive Kalman filter based on variance component estimation for the prediction of ionospheric delay in aiding the cycle slip repair of GNSS triple-frequency signals

    NASA Astrophysics Data System (ADS)

    Chang, Guobin; Xu, Tianhe; Yao, Yifei; Wang, Qianxin

    2018-01-01

    In order to incorporate the time smoothness of ionospheric delay to aid the cycle slip detection, an adaptive Kalman filter is developed based on variance component estimation. The correlations between measurements at neighboring epochs are fully considered in developing a filtering algorithm for colored measurement noise. Within this filtering framework, epoch-differenced ionospheric delays are predicted. Using this prediction, the potential cycle slips are repaired for triple-frequency signals of global navigation satellite systems. Cycle slips are repaired in a stepwise manner; i.e., for two extra wide lane combinations firstly and then for the third frequency. In the estimation for the third frequency, a stochastic model is followed in which the correlations between the ionospheric delay prediction errors and the errors in the epoch-differenced phase measurements are considered. The implementing details of the proposed method are tabulated. A real BeiDou Navigation Satellite System data set is used to check the performance of the proposed method. Most cycle slips, no matter trivial or nontrivial, can be estimated in float values with satisfactorily high accuracy and their integer values can hence be correctly obtained by simple rounding. To be more specific, all manually introduced nontrivial cycle slips are correctly repaired.

  16. Novel Cross-Slip Mechanism of Pyramidal Screw Dislocations in Magnesium.

    PubMed

    Itakura, Mitsuhiro; Kaburaki, Hideo; Yamaguchi, Masatake; Tsuru, Tomohito

    2016-06-03

    Compared to cubic metals, whose primary slip mode includes twelve equivalent systems, the lower crystalline symmetry of hexagonal close-packed metals results in a reduced number of equivalent primary slips and anisotropy in plasticity, leading to brittleness at the ambient temperature. At higher temperatures, the ductility of hexagonal close-packed metals improves owing to the activation of secondary ⟨c+a⟩ pyramidal slip systems. Thus, understanding the fundamental properties of corresponding dislocations is essential for the improvement of ductility at the ambient temperature. Here, we present the results of large-scale ab initio calculations for ⟨c+a⟩ pyramidal screw dislocations in magnesium and show that their slip behavior is a stark counterexample to the conventional wisdom that a slip plane is determined by the stacking fault plane of dislocations. A stacking fault between dissociated partial dislocations can assume a nonplanar shape with a negligible energy cost and can migrate normal to its plane by a local shuffling of atoms. Partial dislocations dissociated on a {21[over ¯]1[over ¯]2} plane "slither" in the {011[over ¯]1} plane, dragging the stacking fault with them in response to an applied shear stress. This finding resolves the apparent discrepancy that both {21[over ¯]1[over ¯]2} and {011[over ¯]1} slip traces are observed in experiments while ab initio calculations indicate that dislocations preferably dissociate in the {21[over ¯]1[over ¯]2} planes.

  17. Deformation of olivine under mantle conditions: An in situ high-pressure, high-temperature study using monochromatic synchrotron radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hilairet, Nadège; Wang, Yanbin; Sanehira, Takeshi

    2012-03-15

    Polycrystalline samples of San Carlos olivine were deformed at high-pressure (2.8-7.8 GPa), high-temperature (1153 to 1670 K), and strain rates between 7.10{sup -6} and 3.10{sup -5} s{sup -1}, using the D-DIA apparatus. Stress and strain were measured in situ using monochromatic X-rays diffraction and imaging, respectively. Based on the evolution of lattice strains with total bulk strain and texture development, we identified three deformation regimes, one at confining pressures below 3-4 GPa, one above 4 GPa, both below 1600 K, and one involving growth of diffracting domains associated with mechanical softening above {approx}1600 K. The softening is interpreted as enhancedmore » grain boundary migration and recovery. Below 1600 K, elasto-plastic self-consistent analysis suggests that below 3-4 GPa, deformation in olivine occurs with large contribution from the so-called 'a-slip' system [100](010). Above {approx}4 GPa, the contribution of the a-slip decreases relative to that of the 'c-slip' [001](010). This conclusion is further supported by texture refinements. Thus for polycrystalline olivine, the evolution in slip systems found by previous studies may be progressive, starting from as low as 3-4 GPa and up to 8 GPa. During such a gradual change, activation volumes measured on polycrystalline olivine cannot be linked to a particular slip system straightforwardly. The quest for 'the' activation volume of olivine at high pressure should cease at the expense of detailed work on the flow mechanisms implied. Such evolution in slip systems should also affect the interpretation of seismic anisotropy data in terms of upper mantle flow between 120 and 300 km depth.« less

  18. Modelling the role of basement block rotation and strike-slip faulting on structural pattern in the cover units of fold-and-thrust belts

    NASA Astrophysics Data System (ADS)

    Koyi, Hemin; Nilfouroushan, Faramarz; Hessami, Khaled

    2015-04-01

    A series of scaled analogue models are run to study the degree of coupling between basement block kinematics and cover deformation. In these models, rigid basal blocks were rotated about vertical axis in a "bookshelf" fashion, which caused strike-slip faulting along the blocks and, to some degrees, in the overlying cover units of loose sand. Three different combinations of cover basement deformations are modeled; cover shortening prior to basement fault movement; basement fault movement prior to shortening of cover units; and simultaneous cover shortening with basement fault movement. Model results show that the effect of basement strike-slip faults depends on the timing of their reactivation during the orogenic process. Pre- and syn-orogen basement strike-slip faults have a significant impact on the structural pattern of the cover units, whereas post-orogenic basement strike-slip faults have less influence on the thickened hinterland of the overlying fold-and-thrust belt. The interaction of basement faulting and cover shortening results in formation of rhomb features. In models with pre- and syn-orogen basement strike-slip faults, rhomb-shaped cover blocks develop as a result of shortening of the overlying cover during basement strike-slip faulting. These rhombic blocks, which have resemblance to flower structures, differ in kinematics, genesis and structural extent. They are bounded by strike-slip faults on two opposite sides and thrusts on the other two sides. In the models, rhomb-shaped cover blocks develop as a result of shortening of the overlying cover during basement strke-slip faulting. Such rhomb features are recognized in the Alborz and Zagros fold-and-thrust belts where cover units are shortened simultaneously with strike-slip faulting in the basement. Model results are also compared with geodetic results obtained from combination of all available GPS velocities in the Zagros and Alborz FTBs. Geodetic results indicate domains of clockwise and anticlockwise rotation in these two FTBs. The typical pattern of structures and their spatial distributions are used to suggest clockwise block rotation of basement blocks about vertical axes and their associated strike-slip faulting in both west-central Alborz and the southeastern part of the Zagros fold-and-thrust belt.

  19. REDUCED INTENSITY IN GAIT-SLIP TRAINING CAN STILL IMPROVE STABILITY

    PubMed Central

    Yang, Feng; Wang, Ting-Yun; Pai, Yi-Chung

    2014-01-01

    Perturbation training with “free” slips (i.e., with long slip distance) has been able to successfully improve stability and to reduce the incidence of falls among older adults. Yet, it is unclear whether a highly constrained training with reduced slip distance (and hence training intensity) can achieve similar effects. The purpose of this study was to investigate whether short-distance slips could also improve the control of stability, and whether such improvements could be generalized to a novel, “free” slip. Thirty-six young subjects were randomly assigned to either one of the two training groups, which underwent seven training trials with constrained slips of either 12-cm or 18-cm in distance before encountering a novel, “free” slip (up to 150cm) in the test trial; or the control group, which only experienced the same test trial of a novel, “free” slip. The results showed that while both training groups were able to significantly improve their control of stability in training; the 18-cm group had significantly better reactive control of stability than the 12-cm group. During the “free” slip, such advantage enabled the 18-cm group to exhibit significantly less balance loss incidence than 12-cm group (58.3 vs. 83.3%) and the controls (100%). These differences could be fully accounted for when we assume that the central nervous system directly controls slip velocity or slip distance during adaptation, whereby the level of similarity between training trials and the test trial governs the degree of generalization. The findings that low intensity training may still improve stability warrant further investigations among older adults. PMID:24835473

  20. Breakdown of Amontons' Law of Friction in Sheared-Elastomer with Local Amontons' Friction

    NASA Astrophysics Data System (ADS)

    Matsukawa, Hiroshi; Otsuki, Michio

    2012-02-01

    It is well known that Amontons' law of friction i.e. the frictional force against the sliding motion of solid object is proportional to the loading force and not dependent on the contact area, holds well for various systems. Here we show, however, the breakdown of the Amontons' law for the elastic object which have local friction obeying Amontons' law and is under uniform pressure by FEM calculation The external shearing force applied to the trailing edge of the sample induces local slip. The range of the slip increases with the increasing external force adiabatically at first. When the range reaches the critical magnitude, the slips moves rapidly and reaches the leading edge of the sample then the whole system slides. These behaviors are consistent with the experiment by Rubinstein et.al. (Phys. Rev. Lett. 98, 226103). The static frictional coefficient, the ratio between the static frictional force for the whole system and the loading force, decreases with the increasing pressure. This means the breakdown of Amontons' law. The pressure dependence of the frictional coefficient is caused by the change of the critical length of the local slip. The behaviors of the local slip and the frictional coefficient are well explained by the 1 dimensional model analytically.

  1. Mechanics of Multifault Earthquake Ruptures

    NASA Astrophysics Data System (ADS)

    Fletcher, J. M.; Oskin, M. E.; Teran, O.

    2015-12-01

    The 2010 El Mayor-Cucapah earthquake of magnitude Mw 7.2 produced the most complex rupture ever documented on the Pacific-North American plate margin, and the network of high- and low-angle faults activated in the event record systematic changes in kinematics with fault orientation. Individual faults have a broad and continuous spectrum of slip sense ranging from endmember dextral strike slip to normal slip, and even faults with thrust sense of dip slip were commonly observed in the aftershock sequence. Patterns of coseismic slip are consistent with three-dimensional constrictional strain and show that integrated transtensional shearing can be accommodated in a single earthquake. Stress inversions of coseismic surface rupture and aftershock focal mechanisms define two coaxial, but permuted stress states. The maximum (σ1) and intermediate (σ2) principal stresses are close in magnitude, but flip orientations due to topography- and density-controlled gradients in lithostatic load along the length of the rupture. Although most large earthquakes throughout the world activate slip on multiple faults, the mechanical conditions of their genesis remain poorly understood. Our work attempts to answer several key questions. 1) Why do complex fault systems exist? They must do something that simple, optimally-oriented fault systems cannot because the two types of faults are commonly located in close proximity. 2) How are faults with diverse orientations and slip senses prepared throughout the interseismic period to fail spontaneously together in a single earthquake? 3) Can a single stress state produce multi-fault failure? 4) Are variations in pore pressure, friction and cohesion required to produce simultaneous rupture? 5) How is the fabric of surface rupture affected by variations in orientation, kinematics, total geologic slip and fault zone architecture?

  2. Preslip and cascade processes initiating laboratory stick slip

    USGS Publications Warehouse

    McLaskey, Gregory C.; Lockner, David A.

    2014-01-01

    Recent modeling studies have explored whether earthquakes begin with a large aseismic nucleation process or initiate dynamically from the rapid growth of a smaller instability in a “cascade-up” process. To explore such a case in the laboratory, we study the initiation of dynamic rupture (stick slip) of a smooth saw-cut fault in a 76mm diameter cylindrical granite laboratory sample at 40–120MPa confining pressure. We use a high dynamic range recording system to directly compare the seismic waves radiated during the stick-slip event to those radiated from tiny (M _6) discrete seismic events, commonly known as acoustic emissions (AEs), that occur in the seconds prior to each large stick slip. The seismic moments, focal mechanisms, locations, and timing of the AEs all contribute to our understanding of their mechanics and provide us with information about the stick-slip nucleation process. In a sequence of 10 stick slips, the first few microseconds of the signals recorded from stick-slip instabilities are nearly indistinguishable from those of premonitory AEs. In this sense, it appears that each stick slip begins as an AE event that rapidly (~20 μs) grows about 2 orders of magnitude in linear dimension and ruptures the entire 150mm length of the simulated fault. We also measure accelerating fault slip in the final seconds before stick slip. We estimate that this slip is at least 98% aseismic and that it both weakens the fault and produces AEs that will eventually cascade-up to initiate the larger dynamic rupture.

  3. Diffusiophoretic self-propulsion for partially catalytic spherical colloids.

    PubMed

    de Graaf, Joost; Rempfer, Georg; Holm, Christian

    2015-04-01

    Colloidal spheres with a partial platinum surface coating perform autophoretic motion when suspended in hydrogen peroxide solution. We present a theoretical analysis of the self-propulsion velocity of these particles using a continuum multi-component, self-diffusiophoretic model. With this model as a basis, we show how the slip-layer approximation can be derived and in which limits it holds. First, we consider the differences between the full multi-component model and the slip-layer approximation. Then the slip model is used to demonstrate and explore the sensitive nature of the particle's velocity on the details of the molecule-surface interaction. We find a strong asymmetry in the dependence of the colloid's velocity as a function of the level of catalytic coating, when there is a different interaction between the solute and solvent molecules and the inert and catalytic part of the colloid, respectively. The direction of motion can even be reversed by varying the level of the catalytic coating. Finally, we investigate the robustness of these results with respect to variations in the reaction rate near the edge between the catalytic and inert parts of the particle. Our results are of significant interest to the interpretation of experimental results on the motion of self-propelled particles.

  4. Strike-slip Fault Structure in the Salton Trough and Deformation During and After the 2010 M7.2 El Mayor-Cucapah Earthquake from Geodetic and Seismic Data

    NASA Astrophysics Data System (ADS)

    Fielding, E. J.; Sun, J.; Gonzalez-Ortega, A.; González-Escobar, M.; Freed, A. M.; Burgmann, R.; Samsonov, S. V.; Gonzalez-Garcia, J.; Fletcher, J. M.; Hinojosa, A.

    2013-12-01

    The Pacific-North America plate boundary character changes southward from the strike-slip and transpressional configuration along most of California to oblique rifting in the Gulf of California, with a transitional zone of transtension beneath the Salton Trough in southernmost California and northern Mexico. The Salton Trough is characterized by extremely high heat flow and thin lithosphere with a thick fill of sedimentary material delivered by the Colorado River during the past 5-6 million years. Because of the rapid sedimentation, most of the faults in Salton Trough are buried and reveal themselves when they slip either seismically or aseismically. They can also be located by refraction and reflection of seismic waves. The 4 April 2010 El Mayor-Cucapah earthquake (Mw 7.2) in Baja California and Sonora, Mexico is probably the largest earthquake in the Salton Trough for at least 120 years, and had primarily right-lateral strike-slip motion. The earthquake ruptured a complex set of faults that lie to the west of the main plate boundary fault, the Cerro Prieto Fault, and shows that the strike-slip fault system in the southern Salton Trough has multiple sub-parallel active faults, similar to southern California. The Cerro Prieto Fault is still likely absorbing the majority of strain in the plate boundary. We study the coseismic and postseismic deformation of the 2010 earthquake with interferometric analysis of synthetic aperture radar (SAR) images (InSAR) and pixel tracking by subpixel correlation of SAR and optical images. We combine sampled InSAR and subpixel correlation results with GPS (Global Positioning System) offsets at PBO (Plate Boundary Observatory) stations to estimate the likely subsurface geometry of the major faults that slipped during the earthquake and to derive a static coseismic slip model. We constrained the surface locations of the fault segments to mapped locations in the Sierra Cucapah to the northwest of the epicenter. SAR along-track offsets, especially on ALOS images, show that there is a large amount of right-lateral slip (1-3 m) on a previously unmapped system of faults extending about 60 km to the southeast of the epicenter beneath the Colorado River Delta named the Indiviso Fault system. The finite fault slip modeling shows a bilateral rupture with coseismic fault slip shallower than 10 km on the faults to the NW (dipping NE) and SE (dipping SW) of the epicenter. The southeastern end of the coseismic ruptures has complex fault geometry, including both east- and west-dipping faults revealed by recently reprocessed seismic reflection profiles. This new coseismic fault geometry will be the basis for a new finite element model of the crust and mantle for modeling of the coseismic slip with realistic 3D elastic structure and the viscoelastic postseismic relaxation. Postseismic InSAR, including new Uninhabited Aerial Vehicle SAR (UAVSAR) data, and GPS show rapid shallow afterslip on faults at the north and south ends of the main coseismic rupture and down-dip from the area of largest coseismic slip. Longer wavelength postseismic relaxation will be best measured by GPS.

  5. Suppression of slip and rupture velocity increased by thermal pressurization: Effect of dilatancy

    NASA Astrophysics Data System (ADS)

    Urata, Yumi; Kuge, Keiko; Kase, Yuko

    2013-11-01

    investigated the effect of dilatancy on dynamic rupture propagation on a fault where thermal pressurization (TP) is in effect, taking into account permeability varying with porosity; the study is based on three-dimensional (3-D) numerical simulations of spontaneous ruptures obeying a slip-weakening friction law and Coulomb failure criterion. The effects of dilatancy on dynamic ruptures interacting with TP have been often investigated in one- or two-dimensional numerical simulations. The sole 3-D numerical simulation gave attention only to the behavior at a single point on a fault. Moreover, with the sole exception based on a single-degree-freedom spring-slider model, the previous simulations including dilatancy and TP have not considered changes in hydraulic diffusivity. However, the hydraulic diffusivity, which strongly affects TP, can vary as a power of porosity. In this study, we apply a power law relationship between permeability and porosity. We consider both reversible and irreversible changes in porosity, assuming that the irreversible change is proportional to the slip rate and dilatancy coefficient ɛ. Our numerical simulations suggest that the effects of dilatancy can suppress slip and rupture velocity increased by TP. The results reveal that the amount of slip on the fault decreases with increasing ɛ or exponent of the power law, and the rupture velocity is predominantly suppressed by ɛ. This was observed regardless of whether the applied stresses were high or low. The deficit of the final slip in relation to ɛ can be smaller as the fault size is larger.

  6. Slip and Dilation Tendency Analysis of the Tuscarora Geothermal Area

    DOE Data Explorer

    Faulds, James E.

    2013-12-31

    Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = τ / σn (Morris et al., 1996). Dilation tendency is defined by the stress acting normal to a given surface: Td = (σ1-σn) / (σ1-σ3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the Tuscarora geothermal field was calculated based on the faults mapped Tuscarora area (Dering, 2013). The Tuscarora area lies in the Basin and Range Province, as such we applied a normal faulting stress regime to the Tuscarora area faults, with a minimum horizontal stress direction oriented 115, based on inspection of local and regional stress determinations, as explained above. Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60° dipping fault segments have the highest tendency to slip. Tuscarora is defined by a left-step in a major north- to-north northeast striking, west-dipping range-bounding normal fault system. Faults within the broad step define an anticlinal accommodation zone...

  7. Géométrie et cinématique post-oligocène des failles d'Aix et de la moyenne Durance (Provence, France)

    NASA Astrophysics Data System (ADS)

    Guignard, Pierre; Bellier, Olivier; Chardon, Dominique

    2005-02-01

    The southern termination of the left-lateral 'Moyenne Durance' Fault (FMD) consists in several segments, some being connected to WSW-trending south-verging reverse faults. To the south, the Aix fault is reactivated in a post-Oligocene strike-slip movement showing that these two faults might belong to the same system. This system seems to transfer, in turn, slip to the east-trending, south-verging Trévaresse reverse fault, allowing southward propagation of the Alpine deformation front in western Provence. Fault kinematics analysis shows lateral stress field change between the two faults. Strike-slip stress state is characterized by an average N150°E trending σ1 near the FMD termination, whilst strike-slip and reverse faulting stress states show north-trending σ to the south. To cite this article: P. Guignard et al., C. R. Geoscience 337 (2005).

  8. Estimation of slip distribution using an inverse method based on spectral decomposition of Green's function utilizing Global Positioning System (GPS) data

    NASA Astrophysics Data System (ADS)

    Jin, Honglin; Kato, Teruyuki; Hori, Muneo

    2007-07-01

    An inverse method based on the spectral decomposition of the Green's function was employed for estimating a slip distribution. We conducted numerical simulations along the Philippine Sea plate (PH) boundary in southwest Japan using this method to examine how to determine the essential parameters which are the number of deformation function modes and their coefficients. Japanese GPS Earth Observation Network (GEONET) Global Positioning System (GPS) data were used for three years covering 1997-1999 to estimate interseismic back slip distribution in this region. The estimated maximum back slip rate is about 7 cm/yr, which is consistent with the Philippine Sea plate convergence rate. Areas of strong coupling are confined between depths of 10 and 30 km and three areas of strong coupling were delineated. These results are consistent with other studies that have estimated locations of coupling distribution.

  9. Slow slip event at Kilauea Volcano

    USGS Publications Warehouse

    Poland, Michael P.; Miklius, Asta; Wilson, J. David; Okubo, Paul G.; Montgomery-Brown, Emily; Segall, Paul; Brooks, Benjamin; Foster, James; Wolfe, Cecily; Syracuse, Ellen; Thurbe, Clifford

    2010-01-01

    Early in the morning of 1 February 2010 (UTC; early afternoon 31 January 2010 local time), continuous Global Positioning System (GPS) and tilt instruments detected a slow slip event (SSE) on the south flank of Kilauea volcano, Hawaii. The SSE lasted at least 36 hours and resulted in a maximum of about 3 centimeters of seaward displacement. About 10 hours after the start of the slip, a flurry of small earthquakes began (Figure 1) in an area of the south flank recognized as having been seismically active during past SSEs [Wolfe et al., 2007], suggesting that the February earthquakes were triggered by stress associated with slip [Segall et al., 2006].

  10. Temporal slip rate variability in the Lower Rhine Embayment, Northwest Europe

    NASA Astrophysics Data System (ADS)

    Gold, Ryan; Kuebler, Simon; Friedrich, Anke

    2016-04-01

    Low strain regions may be characterized by long periods of seismic quiescence, punctuated by periods of clustered earthquake activity. This type of non-periodic recurrence behavior challenges accurate seismic hazard analysis. The Lower Rhine Embayment in the German-Belgium-Netherland border region presents a unique opportunity to characterize the long-term record of faulting to evaluate the periodicity of earthquake occurrence in a low strain region. The Lower Rhine Embayment is covered by a high-resolution record of Quaternary terraces associated with the Rhine and Maas (Meuse) Rivers and their tributaries. These terraces are cut by numerous NW-trending faults and record cumulative displacements that exceed 100 m in numerous locations. In this study, we exploit this rich record of faulted fluvial terraces and find convincing evidence for temporally varying rates of Quaternary fault movement across the Lower Rhine Embayment. First, we document a significant increase in vertical fault slip rates since 700 ka, compared to the average slip rate since the start of the Quaternary using the top and base of the Main Terrace, respectively. Increases in slip rate exceed 500% along many of the faults, including the Swist/Erft, Stockheim, Viersen, Sandgewand, and Kirspenich fault systems. This increase in fault slip rate corresponds to a regional period of increased tectonic uplift of the Rhenish Massif, increased volcanism in Eifel, and incision of the Rhine River. In a second and related analysis, we synthesize terrace offset and age information from the Feldbiss fault system along the western boundary of the Lower Rhine Embayment, which transects a flight of Quaternary terraces associated with the Mass river. This analysis reveals evidence for secular variation in slip rate. In particular, we identify two periods of higher slip rate (800-400 ka and 130-100 ka), where fault slip rate exceeds the longer-term average slip rate of 0.04-0.05 mm/yr by as much as a factor of two. These results show that in the Lower Rhine Embayment low-strain region, the tempo of strain release (and therefore earthquakes) is non-steady. This variable slip behavior should be incorporated into future efforts to characterize seismic hazard across the region.

  11. Anode protection system for shutdown of solid oxide fuel cell system

    DOEpatents

    Li, Bob X; Grieves, Malcolm J; Kelly, Sean M

    2014-12-30

    An Anode Protection Systems for a SOFC system, having a Reductant Supply and safety subsystem, a SOFC anode protection subsystem, and a Post Combustion and slip stream control subsystem. The Reductant Supply and safety subsystem includes means for generating a reducing gas or vapor to prevent re-oxidation of the Ni in the anode layer during the course of shut down of the SOFC stack. The underlying ammonia or hydrogen based material used to generate a reducing gas or vapor to prevent the re-oxidation of the Ni can be in either a solid or liquid stored inside a portable container. The SOFC anode protection subsystem provides an internal pressure of 0.2 to 10 kPa to prevent air from entering into the SOFC system. The Post Combustion and slip stream control subsystem provides a catalyst converter configured to treat any residual reducing gas in the slip stream gas exiting from SOFC stack.

  12. Alaska Crustal Deformation: Finite Element Modeling Constrained by Geologic and Very Long Baseline Interferometry Data

    NASA Technical Reports Server (NTRS)

    Lundgren, Paul; Saucier, Fraancois; Palmer, Randy; Langon, Marc

    1995-01-01

    We compute crustal motions in Alaska by calculating the finite element solution for an elastic spherical shell problem. The method we use allows the finite element mesh to include faults and very long baseline interferometry (VLBI) baseline rates of change. Boundary conditions include Pacific-North American (PA-NA) plate motions. The solution is constrained by the oblique orientation of the Fairweather-Queen Charlotte strike-slip faults relative to the PA-NA relative motion direction and the oblique orientation from normal convergence of the eastern Aleutian trench fault systems, as well as strike-shp motion along the Denali and Totschunda fault systems. We explore the effects that a range of fault slip constraints and weighting of VLBI rates of change has on the solution. This allows us to test the motion on faults, such as the Denali fault, where there are conflicting reports on its present-day slip rate. We find a pattern of displacements which produce fault motions generally consistent with geologic observations. The motion of the continuum has the general pattern of radial movement of crust to the NE away from the Fairweather-Queen Charlotte fault systems in SE Alaska and Canada. This pattern of crustal motion is absorbed across the Mackenzie Mountains in NW Canada, with strike-slip motion constrained along the Denali and Tintina fault systems. In south central Alaska and the Alaska forearc oblique convergence at the eastern Aleutian trench and the strike-shp motion of the Denali fault system produce a counterclockwise pattern of motion which is partially absorbed along the Contact and related fault systems in southern Alaska and is partially extruded into the Bering Sea and into the forearc parallel the Aleutian trench from the Alaska Peninsula westward. Rates of motion and fault slip are small in western and northern Alaska, but the motions we compute are consistent with the senses of strike-slip motion inferred geologically along the Kaltag, Kobuk Trench, and Thompson Creek faults and with the normal faulting observed in NW Alaska near Nome. The nonrigid behavior of our finite element solution produces patterns of motion that would not have been expected from rigid block models: strike-slip faults can exist in a continuum that has motion mostly perpendicular to their strikes, and faults can exhibit along-strike differences in magnitudes and directions.

  13. Slip along the Sultanhanı Fault in Central Anatolia from deformed Pleistocene shorelines of palaeo-lake Konya and implications for seismic hazards in low-strain regions

    NASA Astrophysics Data System (ADS)

    Melnick, Daniel; Yıldırım, Cengiz; Hillemann, Christian; Garcin, Yannick; Çiner, Attila; Pérez-Gussinyé, Marta; Strecker, Manfred R.

    2017-06-01

    Central Anatolia is a low-relief, high-elevation region where decadal-scale deformation rates estimated from space geodesy suggest low strain rates within a stiff microplate. However, numerous Quaternary faults have been mapped within this low-strain region and estimating their slip rate and seismic potential is important for hazard assessments in an area of increasing infrastructural development. Here we focus on the Sultanhanı Fault (SF), which constitutes an integral part of the Eskişehir-Cihanbeyli Fault System, and use deformed maximum highstand shorelines of palaeo-lake Konya to estimate tectonic slip rates at millennial scale. Some of these shorelines were previously interpreted as fault scarps, but we provide conclusive evidence for their erosional origin. We found that shoreline-angle elevations estimated from differential GPS profiles record vertical displacements of 10.2 m across the SF. New radiocarbon ages of lacustrine molluscs suggest 22.4 m of relative lake-level fall between 22.1 ± 0.3 and 21.7 ± 0.4 cal. ka BP, constraining the timing of abrupt abandonment of the highstand shoreline. Models of lithospheric rebound associated with regressions of the Tuz Gölü and Konya palaeo-lakes predict only ∼1 m of regional-scale uplift across the Konya Basin. Dislocation models of displaced shorelines suggest fault-slip rates of 1.5 and 1.8 mm yr-1 for planar and listric fault geometries, respectively, providing reasonable results for the latter. We found fault scarps in the Nasuhpınar mudflat that likely represent the most recent ground-breaking rupture of the SF, with an average vertical displacement of 1.2 ± 0.5 m estimated from 54 topographic profiles, equivalent to a M ∼ 6.5-6.9 earthquake based on empirical scaling laws. If such events were characteristic during the ultimate 21 ka, a relatively short recurrence time of ∼800-900 yr would be needed to account for the millennial slip rate. Alternatively, the fault scarp at Nasuhpınar might represent a larger earthquake requiring more frequent smaller events to account for the millennial rate. The relatively fast slip rate of the SF over the past 21 ka is unlikely to have persisted over longer timescales and might reflect spatiotemporal variations in deformation rates within kinematically-linked fault systems within Central Anatolia, or a transient perturbation to the local stress field or fault strength. Such perturbation might have been related to climatically controlled changes in surface and near-surface loads and by interactions among the different tectonic processes that have been proposed to drive the overall slow uplift and associated extension in the Central Anatolian Plateau.

  14. STEREOSCOPIC OBSERVATION OF SLIPPING RECONNECTION IN A DOUBLE CANDLE-FLAME-SHAPED SOLAR FLARE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gou, Tingyu; Liu, Rui; Wang, Yuming

    2016-04-20

    The 2011 January 28 M1.4 flare exhibits two side-by-side candle-flame-shaped flare loop systems underneath a larger cusp-shaped structure during the decay phase, as observed at the northwestern solar limb by the Solar Dynamics Observatory . The northern loop system brightens following the initiation of the flare within the southern loop system, but all three cusp-shaped structures are characterized by ∼10 MK temperatures, hotter than the arch-shaped loops underneath. The “Ahead” satellite of the Solar Terrestrial Relations Observatory provides a top view, in which the post-flare loops brighten sequentially, with one end fixed while the other apparently slipping eastward. By performingmore » stereoscopic reconstruction of the post-flare loops in EUV and mapping out magnetic connectivities, we found that the footpoints of the post-flare loops are slipping along the footprint of a hyperbolic flux tube (HFT) separating the two loop systems and that the reconstructed loops share similarity with the magnetic field lines that are traced starting from the same HFT footprint, where the field lines are relatively flexible. These results argue strongly in favor of slipping magnetic reconnection at the HFT. The slipping reconnection was likely triggered by the flare and manifested as propagative dimmings before the loop slippage is observed. It may contribute to the late-phase peak in Fe xvi 33.5 nm, which is even higher than its main-phase counterpart, and may also play a role in the density and temperature asymmetry observed in the northern loop system through heat conduction.« less

  15. Real-time on-line ultrasonic monitoring for bubbles in ceramic 'slip' in pottery pipelines.

    PubMed

    Yim, Geun Tae; Leighton, Timothy G

    2010-01-01

    When casting ceramic items in potteries, liquid 'slip' is passed from a settling tank, through overhead pipelines, before being pumped manually into the moulds. It is not uncommon for bubbles to be introduced into the slip as it passes through the complex piping network, and indeed the presence of bubbles is a major source of financial loss to the ceramics industry worldwide. This is because the bubbles almost always remain undetected until after the ceramic items have been fired in a kiln, during which process bubbles expand and create unwanted holes in the pottery. Since there it is usually an interval of several hours between the injection of the slip into the moulds, and the inspection of the items after firing, such bubble generation goes undetected on the production line during the manufacture of hundreds or even thousands of ceramic units. Not only does this mean hours of wasted staff time, power consumption and production line time: the raw material which makes up these faulty items cannot even be recycled, as fired ceramic cannot be converted back into slip. Currently, the state-of-the-art method for detecting bubbles in the opaque ceramic slip is slow and invasive, can only be used off-line, and requires expertise which is rarely available. This paper describes the invention, engineering and in-factory testing across Europe of an ultrasonic system for real-time monitoring for the presence of bubbles in casting slip. It interprets changes in the scattering statistics accompanying the presence of the bubbles, the latter being detected through perturbations in the received signal when a narrow-band ultrasonic probing wave is transmitted through the slip. The device can be bolted onto the outside of the pipeline, or used in-line. It is automated, and requires no special expertise. The acoustic problems which had to be solved were severe, and included making the system capable of monitoring the slip regardless of the material of pipe (plastic, steel, etc.) and nature of the slip (which can be very variable). It must also be capable of detecting bubbles amongst the myriad solid particles and other species present in the flowing slip. The completed prototype was tested around several factories in Europe, and proved not only to be more versatile, but also more sensitive, than the state-of-the-art method.

  16. How fault evolution changes strain partitioning and fault slip rates in Southern California: Results from geodynamic modeling

    NASA Astrophysics Data System (ADS)

    Ye, Jiyang; Liu, Mian

    2017-08-01

    In Southern California, the Pacific-North America relative plate motion is accommodated by the complex southern San Andreas Fault system that includes many young faults (<2 Ma). The initiation of these young faults and their impact on strain partitioning and fault slip rates are important for understanding the evolution of this plate boundary zone and assessing earthquake hazard in Southern California. Using a three-dimensional viscoelastoplastic finite element model, we have investigated how this plate boundary fault system has evolved to accommodate the relative plate motion in Southern California. Our results show that when the plate boundary faults are not optimally configured to accommodate the relative plate motion, strain is localized in places where new faults would initiate to improve the mechanical efficiency of the fault system. In particular, the Eastern California Shear Zone, the San Jacinto Fault, the Elsinore Fault, and the offshore dextral faults all developed in places of highly localized strain. These younger faults compensate for the reduced fault slip on the San Andreas Fault proper because of the Big Bend, a major restraining bend. The evolution of the fault system changes the apportionment of fault slip rates over time, which may explain some of the slip rate discrepancy between geological and geodetic measurements in Southern California. For the present fault configuration, our model predicts localized strain in western Transverse Ranges and along the dextral faults across the Mojave Desert, where numerous damaging earthquakes occurred in recent years.

  17. Joint Space Operations Center (JSpOC) Mission System Increment 2 (JMS Inc 2)

    DTIC Science & Technology

    2016-03-01

    Defense Acquisition Executive DoD - Department of Defense DoDAF - DoD Architecture Framework FD - Full Deployment FDD - Full Deployment Decision FY...date has slipped from September 2016 to December 2016 and FDD has slipped from October 2016 to March 2017 since the last MAIS Annual Report...testing. This added test time, in combination with funding reductions and the US Government furlough and shutdown in FY13, caused a total FDD slip

  18. Strike-slip linked core complexes: A new kinematic model of basement rock exhumation in a crustal-scale fault system

    NASA Astrophysics Data System (ADS)

    Meyer, Sven Erik; Passchier, Cees; Abu-Alam, Tamer; Stüwe, Kurt

    2014-05-01

    Metamorphic core complexes usually develop as extensional features during continental crustal thinning, such as the Basin and Range and the Aegean Terrane. The Najd fault system in Saudi Arabia is a 2000 km-long and 400 km-wide complex network of crustal-scale strike-slip shear zones in a Neoproterozoic collision zone. Locally, the anastomosing shear zones lead to exhumation of lower crustal segments and represent a new kinematic model for the development of core complexes. We report on two such structures: the Qazaz complex in Saudi Arabia and the Hafafit complex in Egypt. The 15 km-wide Qazaz complex is a triangular dome of gently dipping mylonitic foliations within the 140 km-long sinistral strike-slip Qazaz mylonite zone. The gneissic dome consists of high-grade rocks, surrounded by low-grade metasediments and metavolcanics. The main SE-trending strike-slip Qazaz shear zone splits southwards into two branches around the gneiss dome: the western branch is continuous with the shallow dipping mylonites of the dome core, without overprinting, and changes by more than 90 degrees from a NS-trending strike-slip zone to an EW-trending 40 degree south-dipping detachment that bounds the gneiss dome to the south. The eastern SE-trending sinistral strike-slip shear zone branch is slightly younger and transects the central dome fabrics. The gneiss dome appears to have formed along a jog in the strike-slip shear zone during 40 km of horizontal strike-slip motion, which caused local exhumation of lower crustal rocks by 25 km along the detachment. The eastern shear zone branch formed later during exhumation, transacted the gneiss dome and offset the two parts by another 70 km. The Hafafit core complex in Egypt is of similar shape and size to the Qazaz structure, but forms the northern termination of a sinistral strike-slip zone that is at least 100 km in length. This zone may continue into Saudi Arabia as the Ajjaj shear zone for another 100 km. The NW trending strike slip mylonite zone grades into a gently N-dipping detachment to the west which accommodated strike slip by exhumation of high-grade lower crustal rocks. The Qazaz and the Hafafit Domes are similar, mirror-image structures with small differences in the accommodating shear zones. It is likely that these types of strike-slip related oblique core complexes are common in the Arabian Nubian shield, and possibly elsewhere.

  19. EBSD analysis of subgrain boundaries and dislocation slip systems in Antarctic and Greenland ice

    NASA Astrophysics Data System (ADS)

    Weikusat, Ilka; Kuiper, Ernst-Jan N.; Pennock, Gill M.; Kipfstuhl, Sepp; Drury, Martyn R.

    2017-09-01

    Ice has a very high plastic anisotropy with easy dislocation glide on basal planes, while glide on non-basal planes is much harder. Basal glide involves dislocations with the Burgers vector b = 〈a〉, while glide on non-basal planes can involve dislocations with b = 〈a〉, b = [c], and b = 〈c + a〉. During the natural ductile flow of polar ice sheets, most of the deformation is expected to occur by basal slip accommodated by other processes, including non-basal slip and grain boundary processes. However, the importance of different accommodating processes is controversial. The recent application of micro-diffraction analysis methods to ice, such as X-ray Laue diffraction and electron backscattered diffraction (EBSD), has demonstrated that subgrain boundaries indicative of non-basal slip are present in naturally deformed ice, although so far the available data sets are limited. In this study we present an analysis of a large number of subgrain boundaries in ice core samples from one depth level from two deep ice cores from Antarctica (EPICA-DML deep ice core at 656 m of depth) and Greenland (NEEM deep ice core at 719 m of depth). EBSD provides information for the characterization of subgrain boundary types and on the dislocations that are likely to be present along the boundary. EBSD analyses, in combination with light microscopy measurements, are presented and interpreted in terms of the dislocation slip systems. The most common subgrain boundaries are indicative of basal 〈a〉 slip with an almost equal occurrence of subgrain boundaries indicative of prism [c] or 〈c + a〉 slip on prism and/or pyramidal planes. A few subgrain boundaries are indicative of prism 〈a〉 slip or slip of 〈a〉 screw dislocations on the basal plane. In addition to these classical polygonization processes that involve the recovery of dislocations into boundaries, alternative mechanisms are discussed for the formation of subgrain boundaries that are not related to the crystallography of the host grain.The finding that subgrain boundaries indicative of non-basal slip are as frequent as those indicating basal slip is surprising. Our evidence of frequent non-basal slip in naturally deformed polar ice core samples has important implications for discussions on ice about plasticity descriptions, rate-controlling processes which accommodate basal glide, and anisotropic ice flow descriptions of large ice masses with the wider perspective of sea level evolution.

  20. The Impact of Frictional Healing on Stick-Slip Recurrence Interval and Stress Drop: Implications for Earthquake Scaling

    NASA Astrophysics Data System (ADS)

    Im, Kyungjae; Elsworth, Derek; Marone, Chris; Leeman, John

    2017-12-01

    Interseismic frictional healing is an essential process in the seismic cycle. Observations of both natural and laboratory earthquakes demonstrate that the magnitude of stress drop scales with the logarithm of recurrence time, which is a cornerstone of the rate and state friction (RSF) laws. However, the origin of this log linear behavior and short time "cutoff" for small recurrence intervals remains poorly understood. Here we use RSF laws to demonstrate that the back-projected time of null-healing intrinsically scales with the initial frictional state θi. We explore this behavior and its implications for (1) the short-term cutoff time of frictional healing and (2) the connection between healing rates derived from stick-slip sliding versus slide-hold-slide tests. We use a novel, continuous solution of RSF for a one-dimensional spring-slider system with inertia. The numerical solution continuously traces frictional state evolution (and healing) and shows that stick-slip cutoff time also scales with frictional state at the conclusion of the dynamic slip process θi (=Dc/Vpeak). This numerical investigation on the origins of stick-slip response is verified by comparing laboratory data for a range of peak slip velocities. Slower slip motions yield lesser magnitude of friction drop at a given time due to higher frictional state at the end of each slip event. Our results provide insight on the origin of log linear stick-slip evolution and suggest an approach to estimating the critical slip distance on faults that exhibit gradual accelerations, such as for slow earthquakes.

  1. Colloidal characterization of silicon nitride and silicon carbide

    NASA Technical Reports Server (NTRS)

    Feke, Donald L.

    1986-01-01

    The colloidal behavior of aqueous ceramic slips strongly affects the forming and sintering behavior and the ultimate mechanical strength of the final ceramic product. The colloidal behavior of these materials, which is dominated by electrical interactions between the particles, is complex due to the strong interaction of the solids with the processing fluids. A surface titration methodology, modified to account for this interaction, was developed and used to provide fundamental insights into the interfacial chemistry of these systems. Various powder pretreatment strategies were explored to differentiate between true surface chemistry and artifacts due to exposure history. The colloidal behavior of both silicon nitride and carbide is dominated by silanol groups on the powder surfaces. However, the colloid chemistry of silicon nitride is apparently influenced by an additional amine group. With the proper powder treatments, silicon nitride and carbide powder can be made to appear colloidally equivalent. The impact of these results on processing control will be discussed.

  2. Dynamical Bayesian inference of time-evolving interactions: From a pair of coupled oscillators to networks of oscillators

    NASA Astrophysics Data System (ADS)

    Duggento, Andrea; Stankovski, Tomislav; McClintock, Peter V. E.; Stefanovska, Aneta

    2012-12-01

    Living systems have time-evolving interactions that, until recently, could not be identified accurately from recorded time series in the presence of noise. Stankovski [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.109.024101 109, 024101 (2012)] introduced a method based on dynamical Bayesian inference that facilitates the simultaneous detection of time-varying synchronization, directionality of influence, and coupling functions. It can distinguish unsynchronized dynamics from noise-induced phase slips. The method is based on phase dynamics, with Bayesian inference of the time-evolving parameters being achieved by shaping the prior densities to incorporate knowledge of previous samples. We now present the method in detail using numerically generated data, data from an analog electronic circuit, and cardiorespiratory data. We also generalize the method to encompass networks of interacting oscillators and thus demonstrate its applicability to small-scale networks.

  3. Significance of grain bondary sliding for localization of ductile deformation in rocks

    NASA Astrophysics Data System (ADS)

    Dimanov, A.; Bourcier, M.; Gaye, A.; Héripré, E.; Bornert, M.; Raphanel, J. L.; Gharbi, H.; Ludwig, W.

    2016-12-01

    Ductile strain localizes in mylonites, with microstructural signatures of several concomitant deformation mechanisms. Crystal plasticity dominates in volume, but grain boundary sliding and diffusive/solution mass transport act along interfaces. Because the chronology and the interactions between these mechanisms are unclear, inference of the overall rheology seems illusory. In order to clarify these aspects we underwent a multi-scale investigation of the ductile deformation of synthetic rock salt. The mechanical tests were combined with in-situ optical microscopy, scanning electron microscopy and X ray tomography (MCT). Digital image correlation (DIC) techniques allowed for measurements and characterization of the multiscale organization of 2D and 3D full strain fields. Macroscopic and mesoscopic shear bands appear at the sample and microstructure scales, respectively. Discrete slip bands within individual grains allowed for identification of dominant crystal plasticity and of the activated slip systems. Conversely, we clearly evidenced grain boundary sliding (GBS). DIC allowed the precise quantification of the relative contribution of each mechanism. GBS is continuously operational along with crystal slip plasticity, which indicates that in spite of being a secondary mechanism (< 5% contribution) it is a necessary one. Both the localized activity of secondary slip systems in the vicinity of interfaces and GBS are inferred to be necessary in order to accommodate for plastic strain incompatibilities between neighboring grains. More specifically, GBS accommodation mechanisms allow for relaxation of local stress enhancement and reduction of strain hardening. GBS appears to be directly involved in the formation of localized shear bands at the microstructural scale, but also to allow for the transmission of ductile strain throughout the whole specimen. Finite element (FE) modeling of the viscoplastic behavior of rock salt based on crystal plasticity alone is inadequate. If GBS is not considered the computed strain fields do not sufficiently match the experimentally measured ones. Our major conclusion about ductile deformation of rocks is that crystal plasticity and GBS are not really dissociable. They appear as co-operative mechanisms due to the pronounced plastic anisotropy of minerals.

  4. Mechanical deformation model of the western United States instantaneous strain-rate field

    USGS Publications Warehouse

    Pollitz, F.F.; Vergnolle, M.

    2006-01-01

    We present a relationship between the long-term fault slip rates and instantaneous velocities as measured by Global Positioning System (GPS) or other geodetic measurements over a short time span. The main elements are the secularly increasing forces imposed by the bounding Pacific and Juan de Fuca (JdF) plates on the North American plate, viscoelastic relaxation following selected large earthquakes occurring on faults that are locked during their respective interseismic periods, and steady slip along creeping portions of faults in the context of a thin-plate system. In detail, the physical model allows separate treatments of faults with known geometry and slip history, faults with incomplete characterization (i.e. fault geometry but not necessarily slip history is available), creeping faults, and dislocation sources distributed between the faults. We model the western United States strain-rate field, derived from 746 GPS velocity vectors, in order to test the importance of the relaxation from historic events and characterize the tectonic forces imposed by the bounding Pacific and JdF plates. Relaxation following major earthquakes (M ??? 8.0) strongly shapes the present strain-rate field over most of the plate boundary zone. Equally important are lateral shear transmitted across the Pacific-North America plate boundary along ???1000 km of the continental shelf, downdip forces distributed along the Cascadia subduction interface, and distributed slip in the lower lithosphere. Post-earthquake relaxation and tectonic forcing, combined with distributed deep slip, constructively interfere near the western margin of the plate boundary zone, producing locally large strain accumulation along the San Andreas fault (SAF) system. However, they destructively interfere further into the plate interior, resulting in smaller and more variable strain accumulation patterns in the eastern part of the plate boundary zone. Much of the right-lateral strain accumulation along the SAF system is systematically underpredicted by models which account only for relaxation from known large earthquakes. This strongly suggests that in addition to viscoelastic-cycle effects, steady deep slip in the lower lithosphere is needed to explain the observed strain-rate field. ?? 2006 The Authors Journal compilation ?? 2006 RAS.

  5. Initiation, evolution and extinction of pull-apart basins: Implications for opening of the Gulf of California

    NASA Astrophysics Data System (ADS)

    van Wijk, J.; Axen, G.; Abera, R.

    2017-11-01

    We present a model for the origin, crustal architecture, and evolution of pull-apart basins. The model is based on results of three-dimensional upper crustal elastic models of deformation, field observations, and fault theory, and is generally applicable to basin-scale features, but predicts some intra-basin structural features. Geometric differences between pull-apart basins are inherited from the initial geometry of the strike-slip fault step-over, which results from the forming phase of the strike-slip fault system. As strike-slip motion accumulates, pull-apart basins are stationary with respect to underlying basement, and the fault tips propagate beyond the rift basin, increasing the distance between the fault tips and pull-apart basin center. Because uplift is concentrated near the fault tips, the sediment source areas may rejuvenate and migrate over time. Rift flank uplift results from compression along the flank of the basin. With increasing strike-slip movement the basins deepen and lengthen. Field studies predict that pull-apart basins become extinct when an active basin-crossing fault forms; this is the most likely fate of pull-apart basins, because basin-bounding strike-slip systems tend to straighten and connect as they evolve. The models show that larger length-to-width ratios with overlapping faults are least likely to form basin-crossing faults, and pull-apart basins with this geometry are thus most likely to progress to continental rupture. In the Gulf of California, larger length-to-width ratios are found in the southern Gulf, which is the region where continental breakup occurred rapidly. The initial geometry in the northern Gulf of California and Salton Trough at 6 Ma may have been one of widely-spaced master strike-slip faults (lower length-to-width ratios), which our models suggest inhibits continental breakup and favors straightening of the strike-slip system by formation of basin-crossing faults within the step-over, as began 1.2 Ma when the San Jacinto and Elsinore - Cerro Prieto fault systems formed.

  6. The influence of slip velocity and temperature on permeability during and after high-velocity fault slip

    NASA Astrophysics Data System (ADS)

    Tanikawa, W.; Mukoyoshi, H.; Tadai, O.; Hirose, T.; Lin, W.

    2011-12-01

    Fluid transport properties in fault zones play an important role in dynamic processes during large earthquakes. If the permeability in a fault zone is low, high pore-fluid pressures caused by thermal pressurization (Sibson, 1973) or shear-induced compaction (Blanpied et al., 1992) can lead to an apparent reduction of fault strength. Changes in porosity and permeability of fault rocks within a fault zone during earthquakes and the subsequent progressive recovery of these properties may have a large influence on earthquake recurrence (Sleep and Blanpied, 1992). A rotary shear apparatus was used to investigate changes of fluid transport properties in a fault zone by real-time measurement of gas flow rates during and after shearing of hollow sandstone and granite cylinders at various slip rates. Our apparatus measures permeability parallel to the slip plane in both the slip zone and wall rocks. In all cases, permeability decreased rapidly with an increase of friction, but recovered soon after slip, reaching a steady state within several tens of minutes. The rate of reduction of permeability increased with increasing slip velocity. Permeability did not recover to pre-slip levels after low-velocity tests but recovered to exceed them after high-velocity tests. Frictional heating of gases at the slip surface increased gas viscosity, which increased gas flow rate to produce an apparent permeability increase. The irreversible permeability changes of the low-velocity tests were caused by gouge formation due to wearing and smoothing of the slip surface. The increase of permeability after high-velocity tests was caused by mesoscale fracturing in response to rapid temperature rise. Changes of pore fluid viscosity contributed more to changes of flow rate than did permeability changes caused by shear deformation, although test results from different rocks and pore fluids might be different. References Blanpied, M.L., Lockner, D.A., Byerlee, J.D., 1992. An earthquake mechanism based on rapid sealing of faults. Nature 358, 574-576 Sibson, R.H., 1973. Interactions between temperature and pore fluid pressure during earthquake faulting: A mechanism for partial or total stress relief. Nature 243, 66-68. Sleep, N.H., Blanpied, M.L., 1992. Creep, compaction and the weak rheology of major faults. Nature 359, 687-692.

  7. Slip and Dilation Tendency Analysis of the Patua Geothermal Area

    DOE Data Explorer

    Faulds, James E.

    2013-12-31

    Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = τ / σn (Morris et al., 1996). Dilation tendency is defined by the stress acting normal to a given surface: Td = (σ1-σn) / (σ1-σ3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency analysis for the Patua geothermal system was calculated based on faults mapped in the Hazen Quadrangle (Faulds et al., 2011). Patua lies near the margin between the Basin and Range province, which is characterized by west-northwest directed extension and the Walker Lane province, characterized by west-northwest directed dextral shear. As such, the Patua area likely has been affected by tectonic stress associated with either or both of stress regimes over geologic time. In order to characterize this stress variation we calculated slip tendency at Patua for both normal faulting and strike slip faulting stress regimes. Based on examination of regional and local stress data (as explained above) we applied at shmin direction of 105 to Patua. Whether the vertical stress (sv) magnitude is larger than ...

  8. Active Deformation in the Overriding Plate Associated with Temporal Changes of the Philippine Sea Plate Motion

    NASA Astrophysics Data System (ADS)

    Ishiyama, T.; Sato, H.; Van Horne, A.

    2015-12-01

    We present detailed geologic evidence linking changes over time in Philippine Sea plate (PHS) motion and intracontinental deformation in central and southwest (SW) Japan during the Pliocene and after. In the early Pliocene, subduction of the PHS plate under SW Japan restarted in a northerly direction after period of deceleration or cessation. Later, motion changed to a more westerly direction. Corresponding geological changes found in the overriding plate include unconformities in the forearc basins, changes in slip sense on faults, depocenter migration, re-organization of drainage systems and volcanism. Quaternary intraplate deformation is prominent north of the Median Tectonic Line (MTL) inactive segment, above a shallow flat slab. In contrast, less Quaternary tectonic activity is found north of the MTL active segment which lies over a steadily-slipping portion of the subducting slab that behaves as a less-deformed rigid block. Depocenters and active thrusting have migrated north/northwestward over the past 5 My above the shallow flat slab segment of the PHS. We reconstructed the Plio-Pleistocene migration history using Neogene stratigraphy and shallow seismic reflection profiles. We see shallow PHS slab contact with the lower continental crust in our deep seismic reflection profiles, which may explain its enhanced downward drag of the overriding plate and synchronous strong compression in the crust. We find evidence of more westerly PHS plate subduction since the middle Pleistocene in (1) unconformities in the Kumano forearc basin deposits in SW Japan, (2) drastic stream captures in Shikoku, and (3) concordant changes in fault slip sense from thrust to dextral slip along the MTL. Oblique subduction could have induced stronger horizontal stress in the overriding plate above the shallow flat slab which could account for the increasing geologic slip rate observed on active structures. During four repetitions of megathrust earthquake sequences since the 17th century, ca. 65 % of all intraplate M>6.5 earthquakes have been concentrated in the area above the PHS flat slab. This also suggests that mechanical interaction between the slab and the overriding plate plays an important role in intraplate seismicity over shorter timescales as well.

  9. Geodetic slip model of the 3 September 2016 Mw 5.8 Pawnee, Oklahoma, earthquake: Evidence for fault‐zone collapse

    USGS Publications Warehouse

    Pollitz, Fred; Wicks, Charles W.; Schoenball, Martin; Ellsworth, William L.; Murray, Mark

    2017-01-01

    The 3 September 2016 Mw 5.8 Pawnee earthquake in northern Oklahoma is the largest earthquake ever recorded in Oklahoma. The coseismic deformation was measured with both Interferometric Synthetic Aperture Radar and Global Positioning System (GPS), with measureable signals of order 1 cm and 1 mm, respectively. We derive a coseismic slip model from Sentinel‐1A and Radarsat 2 interferograms and GPS static offsets, dominated by distributed left‐lateral strike slip on a primary west‐northwest–east‐southeast‐trending subvertical plane, whereas strike slip is concentrated near the hypocenter (5.6 km depth), with maximum slip of ∼1  m located slightly east and down‐dip of the hypocenter. Based on systematic misfits of observed interferogram line‐of‐sight (LoS) displacements, with LoS based on shear‐dislocation models, a few decimeters of fault‐zone collapse are inferred in the hypocentral region where coseismic slip was the largest. This may represent the postseismic migration of large volumes of fluid away from the high‐slip areas, made possible by the creation of a temporary high‐permeability damage zone around the fault.

  10. Listening in on Friction: Stick-Slip Acoustical Signatures in Velcro

    NASA Astrophysics Data System (ADS)

    Hurtado Parra, Sebastian; Morrow, Leslie; Radziwanowski, Miles; Angiolillo, Paul

    2013-03-01

    The onset of kinetic friction and the possible resulting stick-slip motion remain mysterious phenomena. Moreover, stick-slip dynamics are typically accompanied by acoustic bursts that occur temporally with the slip event. The dry sliding dynamics of the hook-and-loop system, as exemplified by Velcro, manifest stick-slip behavior along with audible bursts that are easily micrphonically collected. Synchronized measurements of the friction force and acoustic emissions were collected as hooked Velcro was driven at constant velocity over a bed of looped Velcro in an anechoic chamber. Not surprising, the envelope of the acoustic bursts maps well onto the slip events of the friction force time series and the intensity of the bursts trends with the magnitude of the difference of the friction force during a stick-slip event. However, the analysis of the acoustic emission can serve as a sensitive tool for revealing some of the hidden details of the evolution of the transition from static to kinetic friction. For instance, small acoustic bursts are seen prior to the Amontons-Coulomb threshold, signaling precursor events prior to the onset of macroscopically observed motion. Preliminary spectral analysis of the acoustic emissions including intensity-frequency data will be presented.

  11. Origins of oblique-slip faulting during caldera subsidence

    NASA Astrophysics Data System (ADS)

    Holohan, Eoghan P.; Walter, Thomas R.; Schöpfer, Martin P. J.; Walsh, John J.; van Wyk de Vries, Benjamin; Troll, Valentin R.

    2013-04-01

    Although conventionally described as purely dip-slip, faults at caldera volcanoes may have a strike-slip displacement component. Examples occur in the calderas of Olympus Mons (Mars), Miyakejima (Japan), and Dolomieu (La Reunion). To investigate this phenomenon, we use numerical and analog simulations of caldera subsidence caused by magma reservoir deflation. The numerical models constrain mechanical causes of oblique-slip faulting from the three-dimensional stress field in the initial elastic phase of subsidence. The analog experiments directly characterize the development of oblique-slip faulting, especially in the later, non-elastic phases of subsidence. The combined results of both approaches can account for the orientation, mode, and location of oblique-slip faulting at natural calderas. Kinematically, oblique-slip faulting originates to resolve the following: (1) horizontal components of displacement that are directed radially toward the caldera center and (2) horizontal translation arising from off-centered or "asymmetric" subsidence. We informally call these two origins the "camera iris" and "sliding trapdoor" effects, respectively. Our findings emphasize the fundamentally three-dimensional nature of deformation during caldera subsidence. They hence provide an improved basis for analyzing structural, geodetic, and geophysical data from calderas, as well as analogous systems, such as mines and producing hydrocarbon reservoirs.

  12. Using gravity as a proxy for stress accumulation in complex fault systems

    NASA Astrophysics Data System (ADS)

    Hayes, Tyler Joseph

    The gravity signal contains information regarding changes in density at all depths and can be used as a proxy for the strain accumulation in fault networks. A general method for calculating the total, dilatational, and free-air gravity for fault systems with arbitrary geometry, slip motion, and number of fault segments is presented. The technique uses a Green's function approach for a fault buried within an elastic half-space with an underlying driver plate forcing the system. A stress-evolution time-dependent earthquake fault model was used to create simulated slip histories over the San Andreas Fault network in California. Using a sum of the gravity signals from each fault segment in the model, via coseismic gravity Green's functions, a time-dependent gravity model was created. The steady-state gravity from the long term plate motion generates a signal over five years with magnitudes of +/- ˜2 muGal; the current limit of portable instrument observations. Moderate to large events generate signal magnitudes in the range of ˜10 muGal to ˜80 muGal, well within the range of ground based observations. The complex fault network geometry of California significantly affects the spatial extent of the gravity signal from the three events studied. Statistical analysis of 55 000 years of simulated slip histories were used to investigate the use of the dilatational gravity signal as a proxy for precursory stress and strain changes. Results indicate that the precursory dilatational gravity signal is dependent upon the fault orientation with respect the tectonic loading plate velocity. This effect is interpreted as a consequence of preferential amplification of the shear stress or reduction of the normal stress, depending on the steady-state regime investigated. Finally, solutions for the corresponding gravity gradients of the coseismic dilatational gravity signals are developed for a vertical strike-slip fault. Gravity gradient solutions exhibit similar spatial distributions as those calculated for Coulomb stress changes, reflecting their physical relationship to the stress changes. The magnitude of the signals, on the order of 1 x 10-4 E, are beyond the resolution of typical exploration instruments at the present time. Keywords. numerical solutions; seismic cycle; gravity; gravity gradients; time variable gravity; earthquake interaction; forecasting; and prediction

  13. Quantitative understanding of the role of grain boundaries in polycrystalline deformation via multiscale digital image correlation

    NASA Astrophysics Data System (ADS)

    Abuzaid, Wael Z. M.

    In this study, high resolution ex situ digital image correlation (DIC) was used to measure plastic strain accumulation in polycrystalline Hastelloy X, a nickel-based superalloy, subjected to monotonic and cyclic loading conditions. In addition, the underlying microstructure was characterized with similar spatial resolution using electron backscatter diffraction (EBSD). The experimental results were utilized to investigate the localization of plastic strains in the vicinity of grain boundaries (GBs). Particularly we address the interaction of slip with GBs which can result in slip blockage or slip transmission and investigate how these two possible outcomes of slip-GB interaction influence the plastic strain magnitudes and fatigue crack formation in GB regions. In the first part of this work, we focus on slip transmission across GBs. Strain measurements with sub-grain level spatial resolution were acquired for Hastelloy X deformed plastically in uniaxial tension. The full field DIC measurements show a high level of heterogeneity in the plastic response with large variations in strain magnitudes within grains and across GBs. We used the experimental results to study these variations in strains, focusing specifically on the role of slip transmission across GBs in the development of strain heterogeneities. For every GB in the polycrystalline aggregate, we have established the most likely dislocation reaction and used that information to calculate the residual Burgers vector and plastic strain magnitudes due to slip transmission across each interface. From our analysis, we show an inverse relation between the magnitudes of the residual Burgers vector and the plastic strains across GBs. We therefore emphasize the importance of considering the magnitude of the residual Burgers vector to obtain a better description of the GB resistance to slip transmission, which in turn influences the local plastic strains in the vicinity of grain boundaries. In the second part of this work, we consider fatigue micro-crack formation. It is widely accepted that the localization in plastic strains is a necessary condition and a precursor for the nucleation of fatigue cracks. However a clear and quantitative assessment of the correlation between strain localization and fatigue micro-crack lengths requires further investigation. To address this point, high resolution deformation measurements using DIC were conducted on polycrystalline Hastelloy X subjected to fatigue loading. The sub-grain level strain measurements were made prior to the formation of micro-cracks. The correlation between the localization of plastic strains, very early on during the loading (e.g., less than 1,000 cycles), and the micro-cracks which were detected later in the life of the sample ( e.g., around 10,000 cycles) is discussed in this thesis. Particular focus is given to the difference in grain boundary response, either blocking or transmitting slip, and the associated fatigue micro-crack lengths generated in the vicinity of these boundaries. The results show a clear correlation between both the locations and lengths of fatigue micro-cracks and the localization of plastic strains very early in the loading process. In addition, we observed that for the same number of cycles, the transmission of slip across grain boundaries resulted in longer transgranular cracks compared to cracks near grains surrounded by blocking grain boundaries which were shorter cracks and confined within single grains. In the last part of this study, experiments were conducted on Hastelloy X subjected to fatigue loading. The purpose of the experiments was to investigate the scatter in fatigue lives under similar loading conditions. We also used a recent novel fatigue model based on persistent slip band (PSB) -- GB interaction to investigate the scatter in fatigue lives and shed light into the critical types of GBs which nucleate cracks. The implementation of this model provides simulation results of the scatter in fatigue life, which are consistent with the scatter observed from experiments. Finally, with the use of high resolution strain measurements, we provide a critical evaluation of some aspects of the modeling approach, for example the formation of grain clusters and their influence on fatigue life. Also the role of special GBs, mainly annealing twin boundaries (Sigma3 GBs), was evaluated.

  14. Role of Slip Mode on Stress Corrosion Cracking Behavior

    NASA Astrophysics Data System (ADS)

    Vasudevan, A. K.; Sadananda, K.

    2011-02-01

    In this article, we examine the effect of aging treatment and the role of planarity of slip on stress corrosion cracking (SCC) behavior in precipitation-hardened alloys. With aging, the slip mode can change from a planar slip in the underage (UA) to a wavy slip in the overage (OA) region. This, in turn, results in sharpening the crack tip in the UA compared to blunting in the OA condition. We propose that the planar slip enhances the stress concentration effects by making the alloys more susceptible to SCC. In addition, the planarity of slip enhances plateau velocities, reduces thresholds for SCC, and reduces component life. We show that the effect of slip planarity is somewhat similar to the effects of mechanically induced stress concentrations such as due to the presence of sharp notches. Aging treatment also causes variations in the matrix and grain boundary (GB) microstructures, along with typical mechanical and SCC properties. These properties include yield stress, work hardening rate, fracture toughness K IC , thresholds K Iscc, and steady-state plateau velocity ( da/ dt). The SCC data for a wide range of ductile alloys including 7050, 7075, 5083, 5456 Al, MAR M steels, and solid solution copper-base alloys are collected from the literature. Our assertion is that slip mode and the resulting stress concentration are important factors in SCC behavior. This is further supported by similar observations in many other systems including some steels, Al alloys, and Cu alloys.

  15. Hydro-Mechanical Modelling of Slow Slip Phenomena at the Subduction Interface.

    NASA Astrophysics Data System (ADS)

    Petrini, C.; Gerya, T.; Madonna, C.; van Dinther, Y.

    2016-12-01

    Subduction zones experience a spectrum of slip phenomena, ranging from large devastating megathrust earthquakes to aseismic slow slip events. Slow slip events, lasting hours to years and being perceptible only by instruments, are believed to have the capability to induce large earthquakes. It is also repeatedly proposed that such slow events are controlled by fluid-rock interactions along the subduction interface, thus calling for development of fully coupled seismo-hydro-mechanical modeling approaches to identify their physics and controlling parameters. We present a newly developed finite difference visco-elasto-plastic numerical code with marker-in-cell technique, which fully couples mechanical deformation and fluid flow. We use this to investigate how the presence of fluids in the pore space of a (de)compacting rock matrix affects elastic stress accumulation and release along a fluid-bearing subduction interface. The model simulates the spontaneous occurrence of quasi-periodic slow slip phenomena along self-consistently forming highly localized shearbands, which accommodate shear displacement between two plates. The produced elastic rebound events show a slip velocity on the order of cm/yr, which is in good agreement with measured data. The governing gradual strength decrease along the slowly propagating shear bands is related to a drop in total pressure caused by shear localization at nearly constant (slightly decreasing) fluid pressure. Gradual reduction of the difference between the total and fluid pressure decreases brittle/plastic strength of fluid-bearing rocks along the shear bands, thus providing a dynamic feedback mechanism for the accumulated elastic stress release at the subduction interface.

  16. Quantum phase slips: from condensed matter to ultracold quantum gases.

    PubMed

    D'Errico, C; Abbate, S Scaffidi; Modugno, G

    2017-12-13

    Quantum phase slips (QPS) are the primary excitations in one-dimensional superfluids and superconductors at low temperatures. They have been well characterized in most condensed-matter systems, and signatures of their existence have been recently observed in superfluids based on quantum gases too. In this review, we briefly summarize the main results obtained on the investigation of phase slips from superconductors to quantum gases. In particular, we focus our attention on recent experimental results of the dissipation in one-dimensional Bose superfluids flowing along a shallow periodic potential, which show signatures of QPS.This article is part of the themed issue 'Breakdown of ergodicity in quantum systems: from solids to synthetic matter'. © 2017 The Author(s).

  17. Simulation of uniaxial deformation of hexagonal crystals (Mg, Be)

    NASA Astrophysics Data System (ADS)

    Vlasova, A. M.; Kesarev, A. G.

    2017-12-01

    Molecular dynamics (MD) simulations were performed for the nanocompression loading of nanocrystalline magnesium and beryllium modeled by an interatomic potential of the embedded atom method (EAM). It is shown that the main deformation modes are prismatic slip and twinning for magnesium, and only prismatic slip for beryllium. The formation of stable configurations of dislocation grids in magnesium and beryllium was observed. Dislocation networks are formed in the habit plane of the twin in a magnesium nanocrystall. Some dislocation reactions are suggested to explain the appearance of such networks. Shockley partial dislocations in a beryllium nanocrystall form grids in the slip plane. A strong anisotropy between slip systems was observed, which is in agreement with experimental data.

  18. Mechanical Evolution and Dynamics of Decollement Slip in Contractional Systems: Correlating Macro- and Micro-Scale Processes in Particle Dynamics Simulation

    NASA Astrophysics Data System (ADS)

    Morgan, J. K.

    2014-12-01

    Particle-based numerical simulations allow detailed investigations of small-scale processes and mechanisms associated with fault initiation and slip, which emerge naturally in such models. This study investigates the evolving mechanical conditions and associated micro-mechanisms during transient slip on a weak decollement propagating beneath a growing contractional wedge (e.g., accretionary prism, fold and thrust belt). The models serve as analogs of the seismic cycle, although lacking full earthquake dynamics. Nonetheless, the mechanical evolution of both decollement and upper plate can be monitored, and correlated with the particle-scale physical and contact properties, providing insights into changes that accompany such stick-slip behavior. In this study, particle assemblages consolidated under gravity and bonded to impart cohesion, are pushed at a constant velocity above a weak, unbonded decollement surface. Forward propagation of decollement slip occurs in discrete pulses, modulated by heterogeneous stress conditions (e.g., roughness, contact bridging) along the fault. Passage of decollement slip resets the stress along this horizon, producing distinct patterns: shear stress is enhanced in front of the slipped decollement due to local contact bridging and fault locking; shear stress minima occur immediately above the tip, denoting local stress release and contact reorganization following slip; more mature portions of the fault exhibit intermediate shear stress, reflecting more stable contact force distributions and magnitudes. This pattern of shear stress pre-conditions the decollement for future slip events, which must overcome the high stresses at the fault tip. Long-term slip along the basal decollement induces upper plate contraction. When upper plate stresses reach critical strength conditions, new thrust faults break through the upper plate, relieving stresses and accommodating horizontal shortening. Decollement activity retreats back to the newly formed thrust fault. The cessation of upper plate fault slip causes gradual increases in upper plate stresses, rebuilding shear stresses along the decollement and enabling renewed pulses of decollement slip. Thus, upper plate deformation occurs out of phase with decollement propagation.

  19. Fluid-rock interaction during a large earthquake recorded in fault gouge: A case study of the Nojima fault, Japan

    NASA Astrophysics Data System (ADS)

    Bian, D.; Lin, A.

    2016-12-01

    Distinguishing the seismic ruptures during the earthquake from a lot of fractures in borehole core is very important to understand rupture processes and seismic efficiency. In particular, a great earthquake like the 1995 Mw 7.2 Kobe earthquake, but again, evidence has been limited to the grain size analysis and the color of fault gouge. In the past two decades, increasing geological evidence has emerged that seismic faults and shear zones within the middle to upper crust play a crucial role in controlling the architectures of crustal fluid migration. Rock-fluid interactions along seismogenic faults give us a chance to find the seismic ruptures from the same event. Recently, a new project of "Drilling into Fault Damage Zone" has being conducted by Kyoto University on the Nojima Fault again after 20 years of the 1995 Kobe earthquake for an integrated multidisciplinary study on the assessment of activity of active faults involving active tectonics, geochemistry and geochronology of active fault zones. In this work, we report on the signature of slip plane inside the Nojima Fault associated with individual earthquakes on the basis of trace element and isotope analyses. Trace element concentrations and 87Sr/86Sr ratios of fault gouge and host rocks were determined by an inductively coupled plasma mass spectrometer (ICP-MS) and thermal ionization mass spectrometry (TIMS). Samples were collected from two trenches and an outcrop of Nojima Fault which. Based on the geochemical result, we interpret these geochemical results in terms of fluid-rock interactions recorded in fault friction during earthquake. The trace-element enrichment pattern of the slip plane can be explained by fluid-rock interactions at high temperature. It also can help us find the main coseismic fault slipping plane inside the thick fault gouge zone.

  20. Space Shuttle Orbiter Wing-Leading-Edge Panel Thermo-Mechanical Analysis for Entry Conditions

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Song, Kyongchan; Raju, Ivatury S.

    2010-01-01

    Linear elastic, thermo-mechanical stress analyses of the Space Shuttle Orbiter wing-leading-edge panels is presented for entry heating conditions. The wing-leading-edge panels are made from reinforced carbon-carbon and serve as a part of the overall thermal protection system. Three-dimensional finite element models are described for three configurations: integrated configuration, an independent single-panel configuration, and a local lower-apex joggle segment. Entry temperature conditions are imposed and the through-the-thickness response is examined. From the integrated model, it was concluded that individual panels can be analyzed independently since minimal interaction between adjacent components occurred. From the independent single-panel model, it was concluded that increased through-the-thickness stress levels developed all along the chord of a panel s slip-side joggle region, and hence isolated local joggle sections will exhibit the same trend. From the local joggle models, it was concluded that two-dimensional plane-strain models can be used to study the influence of subsurface defects along the slip-side joggle region of these panels.

  1. Superconductor-insulator transition in quasi-one-dimensional single-crystal Nb₂PdS₅ nanowires.

    PubMed

    Ning, Wei; Yu, Hongyan; Liu, Yequn; Han, Yuyan; Wang, Ning; Yang, Jiyong; Du, Haifeng; Zhang, Changjin; Mao, Zhiqiang; Liu, Ying; Tian, Mingliang; Zhang, Yuheng

    2015-02-11

    Superconductor-insulator transition (SIT) in one-dimensional (1D) nanowires attracts great attention in the past decade and remains an open question since contrasting results were reported in nanowires with different morphologies (i.e., granular, polycrystalline, or amorphous) or environments. Nb2PdS5 is a recently discovered low-dimensional superconductor with typical quasi-1D chain structure. By decreasing the wire diameter in the range of 100-300 nm, we observed a clear SIT with a 1D transport character driven by both the cross-sectional area and external magnetic field. We also found that the upper critical magnetic field (Hc2) decreases with the reduction of nanowire cross-sectional area. The temperature dependence of the resistance below Tc can be described by the thermally activated phase slip (TAPS) theory without any signature of quantum phase slips (QPS). These findings demonstrated that the enhanced Coulomb interactions with the shrinkage of the wire diameter competes with the interchain Josephson-like coupling may play a crucial role on the SIT in quasi-1D system.

  2. Advanced Mobility Testbed for Dynamic Semi-Autonomous Unmanned Ground Vehicles

    DTIC Science & Technology

    2015-04-24

    constraint, effectively hiding them from the dynamics solver. Thus the resulting system topology is once again a tree with only inter-body hinges and...the geometry of wheel sinkage (left) and stress distribution under the wheel (right) from reference [24]. With τmax(θ) = c+σ(θ) tan (φ). the shear...sliding). The transversal deflection α or lateral slip angle and the lateral slip coefficient Sα are Sα = tan (α) = −vy vx (12) The comprehensive slip ratio

  3. Volume 2: Compendium of Abstracts

    DTIC Science & Technology

    2017-06-01

    simulation work using a standard running model for legged systems, the Spring Loaded Inverted Pendulum (SLIP) Model. In this model, the dynamics of a single...bar SLIP model is analyzed using a basin of attraction analyses to determine the optimal configuration for running at different velocities and...acquisition, and the automatic target acquisition were then compared to each other. After running trials with the current system, it will be

  4. Slip Morphology of Elastic Strips on Frictional Rigid Substrates.

    PubMed

    Sano, Tomohiko G; Yamaguchi, Tetsuo; Wada, Hirofumi

    2017-04-28

    The morphology of an elastic strip subject to vertical compressive stress on a frictional rigid substrate is investigated by a combination of theory and experiment. We find a rich variety of morphologies, which-when the bending elasticity dominates over the effect of gravity-are classified into three distinct types of states: pinned, partially slipped, and completely slipped, depending on the magnitude of the vertical strain and the coefficient of static friction. We develop a theory of elastica under mixed clamped-hinged boundary conditions combined with the Coulomb-Amontons friction law and find excellent quantitative agreement with simulations and controlled physical experiments. We also discuss the effect of gravity in order to bridge the difference in the qualitative behaviors of stiff strips and flexible strings or ropes. Our study thus complements recent work on elastic rope coiling and takes a significant step towards establishing a unified understanding of how a thin elastic object interacts vertically with a solid surface.

  5. Tapered whiskers are required for active tactile sensation.

    PubMed

    Hires, Samuel Andrew; Pammer, Lorenz; Svoboda, Karel; Golomb, David

    2013-11-19

    Many mammals forage and burrow in dark constrained spaces. Touch through facial whiskers is important during these activities, but the close quarters makes whisker deployment challenging. The diverse shapes of facial whiskers reflect distinct ecological niches. Rodent whiskers are conical, often with a remarkably linear taper. Here we use theoretical and experimental methods to analyze interactions of mouse whiskers with objects. When pushed into objects, conical whiskers suddenly slip at a critical angle. In contrast, cylindrical whiskers do not slip for biologically plausible movements. Conical whiskers sweep across objects and textures in characteristic sequences of brief sticks and slips, which provide information about the tactile world. In contrast, cylindrical whiskers stick and remain stuck, even when sweeping across fine textures. Thus the conical whisker structure is adaptive for sensor mobility in constrained environments and in feature extraction during active haptic exploration of objects and surfaces. DOI: http://dx.doi.org/10.7554/eLife.01350.001.

  6. Kinematics of wrench and divergent-wrench deformation along a central part of the Border Ranges Fault System, Northern Chugach Mountains, Alaska

    NASA Astrophysics Data System (ADS)

    Little, Timothy A.

    1990-08-01

    The Border Ranges fault system (BRFS) bounds the inboard edge of the subduction-accretion complex of southern Alaska. In Eocene time a central segment of this fault system was reactivated as a zone of dextral wrench- and oblique-slip faulting having a cumulative strike-slip offset of at least several tens of kilometers, but probably less than 100 km. Early wrench folds are upright, trend at less than 45° to the strike of adjacent faults and developed with fold axes oriented subparallel to the axis of maximum incremental stretch λ1. These en echelon folds rotated and tightened with progressive deformation and then were overprinted by younger wrench folds that trend at about 60° to adjacent throughgoing faults. The latter folds are interpreted as forming during a late increment of distributed wrench deformation within the BRFS that included a component of extension (divergence) orthogonal to the mean strike of the fault system. A sharp releasing bend in exposures of a strike-slip fault originally at >4 km depth today coincides with a narrow pull-apart graben bounded by oblique-normal faults that dip toward the basin. Widening of this pull-apart graben by brittle faulting and dike intrusion accommodated less than 2 km of strike-slip and was a late-stage phenomenon, possibly occurring at supracrustal levels. Prior to formation of this graben during a period of predominantly ductile deformation at deeper structural levels, wrench-folded rocks on one side of the nonplanar fault were translated around the releasing bend without significant faulting or loss of coherence. Kinematically, the earlier deformation was accomplished by fault-bend folding and rotation of a relatively deformable block as it passed through a system of upright megakinks. Such a ductile mechanism of fault block translation around a strike-slip bend may be typical of intermediate levels of the crust beneath pull-apart grabens and may be transitional downward into heterogeneous laminar flow occuring along curved segments of ductile shear zones. Some degree of fault-bend folding of strike-slip fault blocks around releasing bends may be one reason why the amount of extension measured across natural pull-apart basins is commonly observed to be less than the amount of strike-slip along their master faults.

  7. A new model for the initiation, crustal architecture, and extinction of pull-apart basins

    NASA Astrophysics Data System (ADS)

    van Wijk, J.; Axen, G. J.; Abera, R.

    2015-12-01

    We present a new model for the origin, crustal architecture, and evolution of pull-apart basins. The model is based on results of three-dimensional upper crustal numerical models of deformation, field observations, and fault theory, and answers many of the outstanding questions related to these rifts. In our model, geometric differences between pull-apart basins are inherited from the initial geometry of the strike-slip fault step which results from early geometry of the strike-slip fault system. As strike-slip motion accumulates, pull-apart basins are stationary with respect to underlying basement and the fault tips may propagate beyond the rift basin. Our model predicts that the sediment source areas may thus migrate over time. This implies that, although pull-apart basins lengthen over time, lengthening is accommodated by extension within the pull-apart basin, rather than formation of new faults outside of the rift zone. In this aspect pull-apart basins behave as narrow rifts: with increasing strike-slip the basins deepen but there is no significant younging outward. We explain why pull-apart basins do not go through previously proposed geometric evolutionary stages, which has not been documented in nature. Field studies predict that pull-apart basins become extinct when an active basin-crossing fault forms; this is the most likely fate of pull-apart basins, because strike-slip systems tend to straighten. The model predicts what the favorable step-dimensions are for the formation of such a fault system, and those for which a pull-apart basin may further develop into a short seafloor-spreading ridge. The model also shows that rift shoulder uplift is enhanced if the strike-slip rate is larger than the fault-propagation rate. Crustal compression then contributes to uplift of the rift flanks.

  8. Fault Slip and GPS Velocities Across the Shan Plateau Define a Curved Southwestward Crustal Motion Around the Eastern Himalayan Syntaxis

    NASA Astrophysics Data System (ADS)

    Shi, Xuhua; Wang, Yu; Sieh, Kerry; Weldon, Ray; Feng, Lujia; Chan, Chung-Han; Liu-Zeng, Jing

    2018-03-01

    Characterizing the 700 km wide system of active faults on the Shan Plateau, southeast of the eastern Himalayan syntaxis, is critical to understanding the geodynamics and seismic hazard of the large region that straddles neighboring China, Myanmar, Thailand, Laos, and Vietnam. Here we evaluate the fault styles and slip rates over multi-timescales, reanalyze previously published short-term Global Positioning System (GPS) velocities, and evaluate slip-rate gradients to interpret the regional kinematics and geodynamics that drive the crustal motion. Relative to the Sunda plate, GPS velocities across the Shan Plateau define a broad arcuate tongue-like crustal motion with a progressively northwestward increase in sinistral shear over a distance of 700 km followed by a decrease over the final 100 km to the syntaxis. The cumulative GPS slip rate across the entire sinistral-slip fault system on the Shan Plateau is 12 mm/year. Our observations of the fault geometry, slip rates, and arcuate southwesterly directed tongue-like patterns of GPS velocities across the region suggest that the fault kinematics is characterized by a regional southwestward distributed shear across the Shan Plateau, compared to more block-like rotation and indentation north of the Red River fault. The fault geometry, kinematics, and regional GPS velocities are difficult to reconcile with regional bookshelf faulting between the Red River and Sagaing faults or localized lower crustal channel flows beneath this region. The crustal motion and fault kinematics can be driven by a combination of basal traction of a clockwise, southwestward asthenospheric flow around the eastern Himalayan syntaxis and gravitation or shear-driven indentation from north of the Shan Plateau.

  9. Deterministic phase slips in mesoscopic superconducting rings

    PubMed Central

    Petković, I.; Lollo, A.; Glazman, L. I.; Harris, J. G. E.

    2016-01-01

    The properties of one-dimensional superconductors are strongly influenced by topological fluctuations of the order parameter, known as phase slips, which cause the decay of persistent current in superconducting rings and the appearance of resistance in superconducting wires. Despite extensive work, quantitative studies of phase slips have been limited by uncertainty regarding the order parameter's free-energy landscape. Here we show detailed agreement between measurements of the persistent current in isolated flux-biased rings and Ginzburg–Landau theory over a wide range of temperature, magnetic field and ring size; this agreement provides a quantitative picture of the free-energy landscape. We also demonstrate that phase slips occur deterministically as the barrier separating two competing order parameter configurations vanishes. These results will enable studies of quantum and thermal phase slips in a well-characterized system and will provide access to outstanding questions regarding the nature of one-dimensional superconductivity. PMID:27882924

  10. Deterministic phase slips in mesoscopic superconducting rings.

    PubMed

    Petković, I; Lollo, A; Glazman, L I; Harris, J G E

    2016-11-24

    The properties of one-dimensional superconductors are strongly influenced by topological fluctuations of the order parameter, known as phase slips, which cause the decay of persistent current in superconducting rings and the appearance of resistance in superconducting wires. Despite extensive work, quantitative studies of phase slips have been limited by uncertainty regarding the order parameter's free-energy landscape. Here we show detailed agreement between measurements of the persistent current in isolated flux-biased rings and Ginzburg-Landau theory over a wide range of temperature, magnetic field and ring size; this agreement provides a quantitative picture of the free-energy landscape. We also demonstrate that phase slips occur deterministically as the barrier separating two competing order parameter configurations vanishes. These results will enable studies of quantum and thermal phase slips in a well-characterized system and will provide access to outstanding questions regarding the nature of one-dimensional superconductivity.

  11. Hydrodynamic and Thermal Slip Effect on Double-Diffusive Free Convective Boundary Layer Flow of a Nanofluid Past a Flat Vertical Plate in the Moving Free Stream

    PubMed Central

    Khan, Waqar A.; Uddin, Md Jashim; Ismail, A. I. Md.

    2013-01-01

    The effects of hydrodynamic and thermal slip boundary conditions on the double-diffusive free convective flow of a nanofluid along a semi-infinite flat solid vertical plate are investigated numerically. It is assumed that free stream is moving. The governing boundary layer equations are non-dimensionalized and transformed into a system of nonlinear, coupled similarity equations. The effects of the controlling parameters on the dimensionless velocity, temperature, solute and nanofluid concentration as well as on the reduced Nusselt number, reduced Sherwood number and the reduced nanoparticle Sherwood number are investigated and presented graphically. To the best of our knowledge, the effects of hydrodynamic and thermal slip boundary conditions have not been investigated yet. It is found that the reduced local Nusselt, local solute and the local nanofluid Sherwood numbers increase with hydrodynamic slip and decrease with thermal slip parameters. PMID:23533566

  12. Multifarious slips perception on unsteady Casson nanofluid flow impinging on a stretching cylinder in the presence of solar radiation

    NASA Astrophysics Data System (ADS)

    Kundu, Prabir Kumar; Sarkar, Amit

    2017-03-01

    In the present work, a study is prepared for unsteady axisymmetric Casson-type nanofluid flow as a result of a contracting impermeable cylinder under the influence of solar radiation. The model of multifarious slip is included. The governing system of equations takes the form of non-linear ODEs by employing appropriate transformation and then resolve it numerically by RK-Fehlberg scheme in Maple 18 symbolic software. The effects of leading parameters on the flow characteristics are presented through tables and graphs coupled with necessary discussion and physical insinuation. Strong effects of various slip parameters on the physical quantities of interest are found here. The upsurge of surface slip is spotted to boost up temperature profile whereas it slows the flow down. However, thermal slip conducts to drop the temperature but enhancing the heat transfer rate.

  13. Deterministic phase slips in mesoscopic superconducting rings

    DOE PAGES

    Petković, Ivana; Lollo, A.; Glazman, L. I.; ...

    2016-11-24

    The properties of one-dimensional superconductors are strongly influenced by topological fluctuations of the order parameter, known as phase slips, which cause the decay of persistent current in superconducting rings and the appearance of resistance in superconducting wires. Despite extensive work, quantitative studies of phase slips have been limited by uncertainty regarding the order parameter’s free-energy landscape. Here we show detailed agreement between measurements of the persistent current in isolated flux-biased rings and Ginzburg–Landau theory over a wide range of temperature, magnetic field and ring size; this agreement provides a quantitative picture of the free-energy landscape. Furthermore, we also demonstrate thatmore » phase slips occur deterministically as the barrier separating two competing order parameter configurations vanishes. These results will enable studies of quantum and thermal phase slips in a well-characterized system and will provide access to outstanding questions regarding the nature of one-dimensional superconductivity.« less

  14. Simulation Based Earthquake Forecasting with RSQSim

    NASA Astrophysics Data System (ADS)

    Gilchrist, J. J.; Jordan, T. H.; Dieterich, J. H.; Richards-Dinger, K. B.

    2016-12-01

    We are developing a physics-based forecasting model for earthquake ruptures in California. We employ the 3D boundary element code RSQSim to generate synthetic catalogs with millions of events that span up to a million years. The simulations incorporate rate-state fault constitutive properties in complex, fully interacting fault systems. The Unified California Earthquake Rupture Forecast Version 3 (UCERF3) model and data sets are used for calibration of the catalogs and specification of fault geometry. Fault slip rates match the UCERF3 geologic slip rates and catalogs are tuned such that earthquake recurrence matches the UCERF3 model. Utilizing the Blue Waters Supercomputer, we produce a suite of million-year catalogs to investigate the epistemic uncertainty in the physical parameters used in the simulations. In particular, values of the rate- and state-friction parameters a and b, the initial shear and normal stress, as well as the earthquake slip speed, are varied over several simulations. In addition to testing multiple models with homogeneous values of the physical parameters, the parameters a, b, and the normal stress are varied with depth as well as in heterogeneous patterns across the faults. Cross validation of UCERF3 and RSQSim is performed within the SCEC Collaboratory for Interseismic Simulation and Modeling (CISM) to determine the affect of the uncertainties in physical parameters observed in the field and measured in the lab, on the uncertainties in probabilistic forecasting. We are particularly interested in the short-term hazards of multi-event sequences due to complex faulting and multi-fault ruptures.

  15. Absence of molecular slip on ultraclean and SAM-coated surfaces

    NASA Astrophysics Data System (ADS)

    Pye, Justin; Wood, Clay; Burton, Justin

    2016-11-01

    The liquid/solid boundary condition is a complex problem that is becoming increasingly important for the development of nanoscale fluidic devices. Many groups have now measured slip near an interface at nanoscale dimensions using a variety of experimental techniques. In simple systems, large slip lengths are generally measured for non-wetting liquid/solid combinations, but many conflicting measurements and interpretations remain. We have developed a novel pseudo-differential technique using a quartz crystal microbalance (QCM) to measure slip lengths on various surfaces. A drop of one liquid is grown on the QCM in the presence of a second, ambient liquid. We have isolated any anomalous boundary effects such as interfacial slip by choosing two liquids which have identical bulk effects on the QCM frequency and dissipation in the presence of no-slip. Slip lengths are -less than 2 nm- for water (relative to undecane) on all surfaces measured, including plasma cleaned gold, SiO2, and two different self assembled monolayers (SAMs), regardless of contact angle. We also find that surface cleanliness is crucial to accurately measure slip lengths. Additionally, clean glass substrates appear to have a significant adsorbed water layer and SAM surfaces show excess dissipation, possibly associated with contact line motion. In addition to investigating other liquid pairs, future work will include extending this technique to surfaces with independently controllable chemistry and roughness, both of which are known to strongly affect interfacial hydrodynamics.

  16. Quantification of surface charge density and its effect on boundary slip.

    PubMed

    Jing, Dalei; Bhushan, Bharat

    2013-06-11

    Reduction of fluid drag is important in the micro-/nanofluidic systems. Surface charge and boundary slip can affect the fluid drag, and surface charge is also believed to affect boundary slip. The quantification of surface charge and boundary slip at a solid-liquid interface has been widely studied, but there is a lack of understanding of the effect of surface charge on boundary slip. In this paper, the surface charge density of borosilicate glass and octadecyltrichlorosilane (OTS) surfaces immersed in saline solutions with two ionic concentrations and deionized (DI) water with different pH values and electric field values is quantified by fitting experimental atomic force microscopy (AFM) electrostatic force data using a theoretical model relating the surface charge density and electrostatic force. Results show that pH and electric field can affect the surface charge density of glass and OTS surfaces immersed in saline solutions and DI water. The mechanisms of the effect of pH and electric field on the surface charge density are discussed. The slip length of the OTS surface immersed in saline solutions with two ionic concentrations and DI water with different pH values and electric field values is measured, and their effects on the slip length are analyzed from the point of surface charge. Results show that a larger absolute value of surface charge density leads to a smaller slip length for the OTS surface.

  17. Constraining the slip distribution and fault geometry of the Mw 7.9, 3 November 2002, Denali fault earthquake with Interferometric Synthetic Aperture Radar and Global Positioning System data

    USGS Publications Warehouse

    Wright, Tim J.; Lu, Z.; Wicks, Charles

    2004-01-01

    The Mw 7.9, Denali fault earthquake (DFE) is the largest continental strike-slip earthquake to occur since the development of Interferometric Synthetic Aperture Radar (InSAR). We use five interferograms, constructed using radar images from the Canadian Radarsat-1 satellite, to map the surface deformation at the western end of the fault rupture. Additional geodetic data are provided by displacements observed at 40 campaign and continuous Global Positioning System (GPS) sites. We use the data to determine the geometry of the Susitna Glacier fault, thrusting on which initiated the DFE, and to determine a slip model for the entire event that is consistent with both the InSAR and GPS data. We find there was an average of 7.3 ± 0.4 m slip on the Susitna Glacier fault, between 1 and 9.5 km depth on a 29 km long fault that dips north at 41 ± 0.7° and has a surface projection close to the mapped rupture. On the Denali fault, a simple model with large slip patches finds a maximum of 8.7 ± 0.7 m of slip between the surface and 14.3 ± 0.2 km depth. A more complex distributed slip model finds a peak of 12.5 ± 0.8 m in the upper 4 km, significantly higher than the observed surface slip. We estimate a geodetic moment of 670 ± 10 × 1018 N m (Mw 7.9), consistent with seismic estimates. Lack of preseismic data resulted in an absence of InSAR coverage for the eastern half of the DFE rupture. A dedicated geodetic InSAR mission could obviate coverage problems in the future.

  18. Quantitative Assessment of Fatigue Damage Accumulation in Wavy Slip Metals from Acoustic Harmonic Generation

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.

    2006-01-01

    A comprehensive, analytical treatment is presented of the microelastic-plastic nonlinearities resulting from the interaction of a stress perturbation with dislocation substructures (veins and persistent slip bands) and cracks that evolve during high-cycle fatigue of wavy slip metals. The nonlinear interaction is quantified by a material (acoustic) nonlinearity parameter beta extracted from acoustic harmonic generation measurements. The contribution to beta from the substructures is obtained from the analysis of Cantrell [Cantrell, J. H., 2004, Proc. R. Soc. London A, 460, 757]. The contribution to beta from cracks is obtained by applying the Paris law for crack propagation to the Nazarov-Sutin crack nonlinearity equation [Nazarov, V. E., and Sutin, A. M., 1997, J. Acoust. Soc. Am. 102, 3349]. The nonlinearity parameter resulting from the two contributions is predicted to increase monotonically by hundreds of percent during fatigue from the virgin state to fracture. The increase in beta during the first 80-90 percent of fatigue life is dominated by the evolution of dislocation substructures, while the last 10-20 percent is dominated by crack growth. The model is applied to the fatigue of aluminium alloy 2024-T4 in stress-controlled loading at 276MPa for which experimental data are reported. The agreement between theory and experiment is excellent.

  19. Numerical investigation of velocity slip and temperature jump effects on unsteady flow over a stretching permeable surface

    NASA Astrophysics Data System (ADS)

    Hosseini, E.; Loghmani, G. B.; Heydari, M.; Rashidi, M. M.

    2017-02-01

    In this paper, the boundary layer flow and heat transfer of unsteady flow over a porous accelerating stretching surface in the presence of the velocity slip and temperature jump effects are investigated numerically. A new effective collocation method based on rational Bernstein functions is applied to solve the governing system of nonlinear ordinary differential equations. This method solves the problem on the semi-infinite domain without truncating or transforming it to a finite domain. In addition, the presented method reduces the solution of the problem to the solution of a system of algebraic equations. Graphical and tabular results are presented to investigate the influence of the unsteadiness parameter A , Prandtl number Pr, suction parameter fw, velocity slip parameter γ and thermal slip parameter φ on the velocity and temperature profiles of the fluid. The numerical experiments are reported to show the accuracy and efficiency of the novel proposed computational procedure. Comparisons of present results are made with those obtained by previous works and show excellent agreement.

  20. Accelerating slip rates on the puente hills blind thrust fault system beneath metropolitan Los Angeles, California, USA

    USGS Publications Warehouse

    Bergen, Kristian J.; Shaw, John H.; Leon, Lorraine A.; Dolan, James F.; Pratt, Thomas L.; Ponti, Daniel J.; Morrow, Eric; Barrera, Wendy; Rhodes, Edward J.; Murari, Madhav K.; Owen, Lewis A.

    2017-01-01

    Slip rates represent the average displacement across a fault over time and are essential to estimating earthquake recurrence for proba-bilistic seismic hazard assessments. We demonstrate that the slip rate on the western segment of the Puente Hills blind thrust fault system, which is beneath downtown Los Angeles, California (USA), has accel-erated from ~0.22 mm/yr in the late Pleistocene to ~1.33 mm/yr in the Holocene. Our analysis is based on syntectonic strata derived from the Los Angeles River, which has continuously buried a fold scarp above the blind thrust. Slip on the fault beneath our field site began during the late-middle Pleistocene and progressively increased into the Holocene. This increase in rate implies that the magnitudes and/or the frequency of earthquakes on this fault segment have increased over time. This challenges the characteristic earthquake model and presents an evolving and potentially increasing seismic hazard to metropolitan Los Angeles.

  1. Kinematics and mechanics of tectonic block rotations

    NASA Technical Reports Server (NTRS)

    Nur, Amos; Scotti, Oona; Ron, Hagai

    1989-01-01

    Paleomagnetic, structural geology, and rock mechanics data are combined to explore the validity of the block rotation concept and its significance. The analysis is based on data from (1) Northern Israel, where fault slip and spacing are used to predict block rotation; (2) the Mojave Desert, with well-documented strike-slip fault sets, organized in at least three major domains; (3) the Lake Mead, Nevada, fault system with well-defined sets of strike-slip faults, which, in contrast to the Mojave region, are surrounded with domains of normal faults; and (4) the San Gabriel Mountains domain with a multiple set of strike-slip faults. It is found that block rotations can have a profound influence on the interpretation of geodetic measurements and the inversion of geodetic data, especially the type collected in GPS surveys. Furthermore, block rotations and domain boundaries may be involved in creating the heterogeneities along active fault systems which are responsible for the initiation and termination of earthquake rupture.

  2. Experimental Investigation of Orthoenstatite Single Crystal Rheology

    NASA Astrophysics Data System (ADS)

    fraysse, G.; Girard, J.; Holyoke, C. W.; Raterron, P.

    2013-12-01

    The plasticity of enstatite, upper mantle second most abundant mineral, is still poorly constrained, mostly because of its high-temperature (T) transformation into proto- and clino-enstatite at low pressure (P). Mackwell (1991, GRL, 18, 2027) reports a pioneer study of protoenstatite (Pbcn) single-crystal rheology, but the results do not directly apply to the orthorhombic (Pbca) mantle phase. Ohuchi et al. (2011, Contri. Mineral. Petrol , 161, 961) carried out deformation experiments at P=1.3 GPa on oriented orthoenstatite crystals, investigating the activity of [001](100) and [001](010) dislocation slip systems; they report the first rheological laws for orthoenstatite crystals. However, strain and stress were indirectly constrained in their experiments, which questioned whether steady state conditions of deformation were achieved. Also, data reported for [001](100) slip system were obtained after specimens had transformed by twinning into clinoenstatite. We report here new data from deformation experiments carried out at high T and P ranging from 3.5 to 6.2 GPa on natural Fe-bearing enstatite single crystals, using the Deformation-DIA apparatus (D-DIA) that equipped the X17B2 beamline of the NSLS (NY, USA). The applied stress and specimen strain rates were measured in situ by X-ray diffraction and imaging techniques (e.g., Raterron & Merkel, 2009, J. Sync. Rad., 16, 748; Raterron et al., 2013, Rev. Sci. Instr., 84, 043906). Three specimen orientations were tested: i) with the compression direction along [101]c crystallographic direction, which forms a 45° angle with both [100] and [001] axes, to investigate [001](100) slip-system activity; ii) along [011]c direction to investigate [001](010) system activity; iii) and along enstatite [125] axis, to activate both slip systems together. Crystals were deformed two by two, to compare slip system activities, or against enstatite aggregates or orientated olivine crystals of known rheology for comparison. Run products microstructures were investigated by transmission electron microscopy. Despite a significant hardening with P, enstatite [001](100) slip system is found to be the easiest system at mantle P and T. Furthermore, orthoenstatite crystals exhibit a higher sensitivity to stress than olivine crystals, i.e. a higher n exponent in classical power laws. At the low stress level prevailing in the Earth mantle, enstatite crystals are thus harder than olivine crystals.

  3. Different slip systems controlling crystallographic preferred orientation and intracrystalline deformation of amphibole in mylonites from the Neyriz mantle diapir, Iran

    NASA Astrophysics Data System (ADS)

    Elyaszadeh, Ramin; Prior, David J.; Sarkarinejad, Khalil; Mansouri, Hadiseh

    2018-02-01

    A deformed layered gabbro and a mylonitic gabbro sample from the marginal shear zone of the Neyriz mantle diapir in Iran were analyzed using electron backscatter diffraction (EBSD). Both samples have the common amphibole crystallographic preferred orientation (CPO) in which (100) lies perpendicular to foliation and <001> parallel to lineation. Amphibole grains in the layered gabbro sample have little internal deformation, whereas in the mylonitic gabbro sample the amphibole grains are strongly distorted and contain low angle grain boundaries. There is a subtle change in CPO as a function of grain size in the mylonitic gabbro. Coarse grains (porphyroclasts) have a (100) <001> CPO oriented with the main foliation reference frame whilst fine grains have a (100) <001> CPO oriented with the C‧ shear bands. Detailed analysis of porphyroclast distortions and subgrain boundary trace analysis suggests that hard slip systems, most particularly (110) <1-10> control intracrystalline deformation. Schmid factor analysis suggest that these slip systems are not involved in foliation formation but are linked kinematically to C‧ shear bands. It is unlikely that the slip systems that control intracrystalline deformation are important in CPO formation. We interpret that subgrain rotation recrystallization lead to grain size reduction and the elongate recrystallized grains were rotated towards the C‧ shear bands by grain boundary sliding. This rigid body rotation, possibly in combination with easy slip on (100) <001> are considered the main cause of CPO formation. Amphibole zonation patterns in the layered gabbro sample suggest that oriented growth of amphibole may have contributed to CPO.

  4. Shear-induced mechanical failure of β -G a2O3 from quantum mechanics simulations

    NASA Astrophysics Data System (ADS)

    An, Qi; Li, Guodong

    2017-10-01

    Monoclinic gallium oxide (β -G a2O3 ) has important applications in power devices and deep UV optoelectronic devices because of such novel properties as a wide band gap, high breakdown electric field, and a wide range of n -type doping conductivity. However, the intrinsic failure mechanisms of β -G a2O3 remain unknown, which limits the fabrication and packaging of β -G a2O3 -based electronic devices. Here we used density-functional theory at the Perdew-Burke-Ernzerhof level to examine the shear-induced failure mechanisms of β -G a2O3 along various plausible slip systems. We found that the (001 )/〈010 〉 slip system has the lowest ideal shear strength of 3.8 GPa among five plausible slip systems, suggesting that (001 )/〈010 〉 is the most plausible activated slip system. This slip leads to an intrinsic failure mechanism arising from breaking the longest Ga-O bond between octahedral Ga and fourfold-coordinated O. Then we identified the same failure mechanism of β -G a2O3 under biaxial shear deformation that mimics indentation stress conditions. Finally, the general stacking fault energy (SFE) surface is calculated for the (001) surface from which we concluded that there is no intrinsic stacking fault structure for β -G a2O3 . The deformation modes and SFE calculations are essential to understand the intrinsic mechanical processes of this semiconductor material, which provides insightful guidance for designing high-performance semiconductor devices.

  5. Sentinel-1 observation of the 2017 Sangsefid earthquake, northeastern Iran: Rupture of a blind reserve-slip fault near the Eastern Kopeh Dagh

    NASA Astrophysics Data System (ADS)

    Xu, Guangyu; Xu, Caijun; Wen, Yangmao

    2018-04-01

    New satellites are now revealing InSAR-based surface deformation within a week after natural hazard events. Quick hazard responses will be more publically accessible and provide information to responding agencies. Here we used Sentinel-1 interferometric synthetic aperture radar (InSAR) data to investigate coseismic deformation associated with the 2017 Sangsefid earthquake, which occurred in the southeast margin of the Kopeh Dagh fault system. The ascending and descending interferograms indicate thrust-dominated slip, with the maximum line-of-sight displacement of 10.5 and 13.7 cm, respectively. The detailed slip-distribution of the 2017 Sangsefid Mw6.1 earthquake inferred from geodetic data is presented here for the first time. Although the InSAR interferograms themselves do not uniquely constrain what the primary slip surface is, we infer that the source fault dips to southwest by analyzing the 2.5 D displacement field decomposed from the InSAR observations. The determined uniform slip fault model shows that the dip angle of the seimogenic fault is approximately 40°, with a strike of 120° except for a narrower fault width than that predicted by the empirical scaling law. We suggest that geometric complexities near the Kopeh Dagh fault system obstruct the rupture propagation, resulting in high slip occurred within a small area and much higher stress drop than global estimates. The InSAR-determined moment is 1.71 × 1018 Nm with a shear modulus of 3.32 × 1010 N/m2, equivalent to Mw 6.12, which is consistent with seismological results. The finite fault model (the west-dipping fault plane) reveals that the peak slip of 0.90 m occurred at a depth of 6.3 km, with substantial slip at a depth of 4-10 km and a near-uniform slip of 0.1 m at a depth of 0-2.5 km. We suggest that the Sangsefid earthquake occurred on an unknown blind reverse fault dipping southwest, which can also be recognised through observing the long-term surface effects due to the existence of the blind fault.

  6. Holocene slip rate along the northern Kongur Shan extensional system: insights on the large pull-apart structure in the NE Pamir

    NASA Astrophysics Data System (ADS)

    Pan, J.; Li, H.; Chevalier, M.; Liu, D.; Sun, Z.; Pei, J.; Wu, F.; Xu, W.

    2013-12-01

    Located at the northwestern end of the Himalayan-Tibetan orogenic belt, the Kongur Shan extensional system (KES) is a significant tectonic unit in the Chinese Pamir. E-W extension of the KES accommodates deformation due to the India/Asia collision in this area. Cenozoic evolution of the KES has been extensively studied, whereas Late Quaternary deformation along the KES is still poorly constrained. Besides, whether the KES is the northern extension of the Karakorum fault is still debated. Well-preserved normal fault scarps are present all along the KES. Interpretation of satellite images as well as field investigation allowed us to map active normal faults and associated vertically offset geomorphological features along the KES. At one site along the northern Kongur Shan detachment fault, in the eastern Muji basin, a Holocene alluvial fan is vertically offset by the active fault. We measured the vertical displacement of the fan with total station, and collected quartz cobbles for cosmogenic nuclide 10Be dating. Combining the 5-7 m offset and the preliminary surface-exposure ages of ~2.7 ka, we obtain a Holocene vertical slip-rate of 1.8-2.6 mm/yr along the fault. This vertical slip-rate is comparable to the right-lateral horizontal-slip rate along the Muji fault (~4.5 mm/yr, which is the northern end of the KES. Our result is also similar to the Late Quaternary slip-rate derived along the KES around the Muztagh Ata as well as the Tashkurgan normal fault (1-3 mm/yr). Geometry, kinematics, and geomorphology of the KES combined with the compatible slip-rate between the right-lateral strike-slip Muji fault and the Kongur Shan normal fault indicate that the KES may be an elongated pull-apart basin formed between the EW-striking right-lateral strike-slip Muji fault and the NW-SE-striking Karakorum fault. This unique elongated pull-apart structure with long normal fault in the NS direction and relatively short strike-slip fault in the ~EW direction seems to still be in formation, with the Karakorum fault still propagating to the north.

  7. Elastic stress interaction between faulting and volcanism in the Olacapato-San Antonio de Los Cobres area (Puna plateau, Argentina)

    NASA Astrophysics Data System (ADS)

    Bonali, F. L.; Corazzato, C.; Tibaldi, A.

    2012-06-01

    We describe the relationships between Plio-Quaternary tectonics, palaeoseismicity and volcanism along the NW-trending Calama-Olacapato-El Toro (COT) lineament that crosses the Andean chain and the Puna Plateau and continues within the eastern Cordillera at about 24° S. We studied in detail the area from the Chile-Argentina border to a few km east of the San Antonio del Los Cobres village. Satellite and field data revealed the presence of seven Quaternary NW-striking normal left-lateral fault segments in the southeastern part of the studied area and of a Plio-Quaternary N-S-striking graben structure in the northwestern part. The NW-striking Chorrillos fault (CF) segment shows the youngest motions, of late Pleistocene age, being marked by several fault scarps, sag ponds and offset Quaternary deposits and landforms. Offset lavas of 0.78 ± 0.1 Ma to 0.2 ± 0.08 Ma indicate fault kinematics characterised by a pitch angle of 20° to 27° SE, a total net displacement of 31 to 63.8 m, and a slip-rate of 0.16 to 0.08 mm/yr. This fault segment is 32 km long and terminates to the northwest near a set of ESE-dipping thrust faults affecting Tertiary strata, while to the southeast it terminates 10 km further from San Antonio. In the westernmost part of the examined area, in Chile at altitudes > 4000 m, recent N-S-striking normal fault scarps depict the 5-km-wide and 10-km-long graben structure. Locally, fault pitches indicate left-lateral normal kinematics. These faults affect deposits up to ignimbrites of Plio-Quaternary age. Scarp heights are from a few metres to 24 m. Despite that this area is located along the trace of the COT strike-slip fault system, which is reported as a continuous structure from Chile to Argentina in the literature, no evidence of NW-striking Plio-Quaternary strike-slip structures is present here. A series of numerical models were also developed in an elastic half-space with uniform isotropic elastic properties using the Coulomb 3.1 code. We studied the stress changes caused by slip along the various Quaternary COT fault segments, showing that the last motions occurred along the CF might promote in the future further displacement along nearby fault segments located to the northwest. Furthermore, slip along the NW-striking fault segments imparts normal stress changes on the nearby Tuzgle volcano feeding system.

  8. Dynamics of seismogenic volcanic extrusion resisted by a solid surface plug, Mount St. Helens, 2004-2005: Chapter 21 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Iverson, Richard M.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    The 2004-5 eruption of Mount St. Helens exhibited sustained, near-equilibrium behavior characterized by nearly steady extrusion of a solid dacite plug and nearly periodic occurrence of shallow earthquakes. Diverse data support the hypothesis that these earthquakes resulted from stick-slip motion along the margins of the plug as it was forced incrementally upward by ascending, solidifying, gas-poor magma. I formalize this hypothesis with a mathematical model derived by assuming that magma enters the base of the eruption conduit at a steady rate, invoking conservation of mass and momentum of the magma and plug, and postulating simple constitutive equations that describe magma and conduit compressibilities and friction along the plug margins. Reduction of the model equations reveals a strong mathematical analogy between the dynamics of the magma-plug system and those of a variably damped oscillator. Oscillations in extrusion velocity result from the interaction of plug inertia, a variable upward force due to magma pressure, and a downward force due to the plug weight. Damping of oscillations depends mostly on plug-boundary friction, and oscillations grow unstably if friction exhibits rate weakening similar to that observed in experiments. When growth of oscillations causes the extrusion rate to reach zero, however, gravity causes friction to reverse direction, and this reversal instigates a transition from unstable oscillations to self-regulating stick-slip cycles. The transition occurs irrespective of the details of rate-weakening behavior, and repetitive stick-slip cycles are, therefore, robust features of the system’s dynamics. The presence of a highly compressible elastic driving element (that is, magma containing bubbles) appears crucial for enabling seismogenic slip events to occur repeatedly at the shallow earthquake focal depths (8 N. These results imply that the system’s self-regulating behavior is not susceptible to dramatic change--provided that the rate of magma ascent remains similar to the rate of magma accretion at the base of the plug, that plug surface erosion more or less compensates for mass gain due to basal accretion, and that magma and rock properties do not change significantly. Even if disequilibrium initial conditions are imposed, the dynamics of the magma-plug system are strongly attracted to self-regulating stick-slip cycles, although this self-regulating behavior can be bypassed on the way to runaway behavior if the initial state is too far from equilibrium.

  9. Ductile deformation mechanisms of synthetic halite: a full field measurement approach

    NASA Astrophysics Data System (ADS)

    Dimanov, Alexandre; Bourcier, Mathieu; Héripré, Eva; Bornert, Michel; Raphanel, Jean

    2013-04-01

    Halite is a commonly used analog polycristalline material. Compared to most rock forming minerals, halite exhibits extensively ductile behavior at even low temperatures and fast deformation rates. Therefore, it allows an easier study of the fundamental mechanisms of crystal plasticity, recrystallization, grain growth and texture development than any other mineral. Its high solubility also makes it an ideal candidate for investigating pressure solution creep. Most importantly, halite is very convenient to study the interactions of simultaneously occurring deformation mechanisms. We investigated uniaxial deformation of pure synthetic NaCl polycrystals with controlled grain sizes and grain size distributions at room and moderate temperatures (400°C). The mechanical tests were combined with "in-situ" optical and scanning electron microscopy, in order to perform 2D digital image correlation (2D-DIC) and to obtain the full surface strain fields at the sample scale and at the scales of the microstructure. We observed dominantly intracrystalline plasticity, as revealed by the occurrence of physical slip lines on the surface of individual grains and of deformation bands at the microstructure (aggregate) scale, as revealed by DIC. Crystal orientation mapping (performed by EBSD) allowed relating the latter to the traces of crystallographic slip planes and inferring the active slip systems considering the macroscopic stress state and computing Schmid factors. The strain heterogeneities are more pronounced at low temperature, at both the aggregate scale and within individual grains. The local activity of slip systems strongly depends on the relative crystallographic and interfacial orientations of the adjacent grains with respect to the loading direction. The easy glide {110} <110> systems are not the only active ones. We could identify the activity of all slip systems, especially near grain boundaries, which indicates local variations of the stress state. But, we also clearly evidenced grain boundary sliding (GBS), which occurred as a secondary but necessary mechanism for accommodation of local strain incompatibilities between neighboring grains, related to the anisotropy of crystal plasticity. The DIC technique allowed the precise quantification of the relative contribution of each mechanism. The latter clearly depends on the microstructure (i.e. grain size and its distribution): the smaller is the grain size and the stronger is the GBS contribution. Finite element modeling of the viscoplastic polycrystalline behavior was started on the basis of our experimental microstructures with large grains (where GBS activity is limited to < 10 %), considering an extruded columnar structure in depth and single crystal flow laws from literature. The results show that the computed strain fields do not sufficiently match the experimentally measured ones. The reasons for the discrepancies are likely related to the activity of GBS, which was not accounted for, and to the influence of the real microstructure at depth (underlying grains and orientations of interfaces), which strongly condition the surface response.

  10. Slow slip events in Guerrero, Mexico, and consequences on strain accumulation over the past 15 years.

    NASA Astrophysics Data System (ADS)

    Radiguet, M.; Cotton, F.; Cavalié, O.; Pathier, E.; Kostoglodov, V.; Vergnolle, M.; Campillo, M.; Walpersdorf, A.; Cotte, N.; Santiago, J.; Franco, S.

    2012-12-01

    Continuous Global Positioning System (cGPS) time series in Guerrero, Mexico, reveal the widespread existence of large Slow Slip Events (SSEs) at the boundary between the Cocos and North American plates. The existence of these SSEs asks the question of how seismic and aseismic slips complement each other in subduction zones. We examined the last three SSEs that occurred in 2001/2002, 2006 and 2009/2010, and their impact on the strain accumulation along the Guerrero subduction margin. We use continuous cGPS time series and InSAR images to evaluate the surface displacement during SSEs and inter-SSE periods. The slip distributions on the plate interface associated with each SSE, as well as the inter-SSE (short-term) coupling rates are evaluated by inverting these surface displacements. Our results reveal that the three analyzed SSEs have equivalent moment magnitudes of around 7.5 and their lateral extension is variable.The slip distributions for the three SSEs show that in the Guerrero gap area, the slow slip occurs at shallower depth (updip limit around 15-20 km) than in surrounding regions. The InSAR data provide additional information for the 2006 SSE. The joint inversion of InSAR and cGPS data confirms the lateral variation of the slip distribution along the trench, with shallower slip in the Guerrero seismic gap, west of Acapulco, and deeper slip further east. Inversion of inter-SSE displacement rates reveal that during the inter-SSE time intervals, the interplate coupling is high in the area where the slow slip subsequently occurs. Over a 12 year period, corresponding to three cycles of SSEs, our results reveal that the accumulated slip deficit in the Guerrero gap area is only ¼ of the slip deficit accumulated on both sides of the gap. Moreover, the regions of large slip deficit coincide with the rupture areas of recent large earthquakes. We conclude that the SSEs account for a major portion of the overall moment release budget in the Guerrero gap. If large subduction thrust earthquakes occur in the Guerrero gap, their recurrence time is probably increased compared to adjacent regions.

  11. Heat Transfer Analysis for Stationary Boundary Layer Slip Flow of a Power-Law Fluid in a Darcy Porous Medium with Plate Suction/Injection

    PubMed Central

    Aziz, Asim; Ali, Yasir; Aziz, Taha; Siddique, J. I.

    2015-01-01

    In this paper, we investigate the slip effects on the boundary layer flow and heat transfer characteristics of a power-law fluid past a porous flat plate embedded in the Darcy type porous medium. The nonlinear coupled system of partial differential equations governing the flow and heat transfer of a power-law fluid is transformed into a system of nonlinear coupled ordinary differential equations by applying a suitable similarity transformation. The resulting system of ordinary differential equations is solved numerically using Matlab bvp4c solver. Numerical results are presented in the form of graphs and the effects of the power-law index, velocity and thermal slip parameters, permeability parameter, suction/injection parameter on the velocity and temperature profiles are examined. PMID:26407162

  12. Slippery liquid-infused porous surface bio-inspired by pitcher plant for marine anti-biofouling application.

    PubMed

    Wang, Peng; Zhang, Dun; Lu, Zhou

    2015-12-01

    Marine biofouling, caused by the adhesion of microorganism, is a worldwide problem in marine systems. In this research work, slippery liquid-infused porous surface (SLIPS), inspired by Nepenthes pitcher plant, was constructed over aluminum for marine anti-biofouling application. The as-fabricated SLIPS was characterized with SEM, AFM, and contact angle meter. Its anti-biofouling performance was evaluated with settlement experiment of a typical marine biofouling organism Chlorella vulgaris in both static and dynamic conditions. The effect of solid substrate micro-structure on anti-biofouling property of SLIPS was studied. It was suggested that the micro-structure with low length scale and high degree of regularity should be considered for designing stable SLIPS with exceptional anti-biofouling property. The liquid-like property is proven to be the main contributor for the exceptional anti-biofouling performance of SLIPS in both static and dynamic conditions. The low roughness, which facilitates removing the settled C. vulgaris under shear force, is also a main contributor for the anti-biofouling performance of SLIPS in dynamic condition. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Net dextral slip, Neogene San Gregorio–Hosgri fault zone, coastal California: Geologic evidence and tectonic implications

    USGS Publications Warehouse

    Dickinson, William R.; Ducea, M.; Rosenberg, Lewis I.; Greene, H. Gary; Graham, Stephan A.; Clark, Joseph C.; Weber, Gerald E.; Kidder, Steven; Ernst, W. Gary; Brabb, Earl E.

    2005-01-01

    Reinterpretation of onshore and offshore geologic mapping, examination of a key offshore well core, and revision of cross-fault ties indicate Neogene dextral strike slip of 156 ± 4 km along the San Gregorio–Hosgri fault zone, a major strand of the San Andreas transform system in coastal California. Delineating the full course of the fault, defining net slip across it, and showing its relationship to other major tectonic features of central California helps clarify the evolution of the San Andreas system.San Gregorio–Hosgri slip rates over time are not well constrained, but were greater than at present during early phases of strike slip following fault initiation in late Miocene time. Strike slip took place southward along the California coast from the western fl ank of the San Francisco Peninsula to the Hosgri fault in the offshore Santa Maria basin without significant reduction by transfer of strike slip into the central California Coast Ranges. Onshore coastal segments of the San Gregorio–Hosgri fault include the Seal Cove and San Gregorio faults on the San Francisco Peninsula, and the Sur and San Simeon fault zones along the flank of the Santa Lucia Range.Key cross-fault ties include porphyritic granodiorite and overlying Eocene strata exposed at Point Reyes and at Point Lobos, the Nacimiento fault contact between Salinian basement rocks and the Franciscan Complex offshore within the outer Santa Cruz basin and near Esalen on the flank of the Santa Lucia Range, Upper Cretaceous (Campanian) turbidites of the Pigeon Point Formation on the San Francisco Peninsula and the Atascadero Formation in the southern Santa Lucia Range, assemblages of Franciscan rocks exposed at Point Sur and at Point San Luis, and a lithic assemblage of Mesozoic rocks and their Tertiary cover exposed near Point San Simeon and at Point Sal, as restored for intrabasinal deformation within the onshore Santa Maria basin.Slivering of the Salinian block by San Gregorio–Hosgri displacements elongated its northern end and offset its western margin delineated by the older Nacimiento fault, a sinistral strike-slip fault of latest Cretaceous to Paleocene age. North of its juncture with the San Andreas fault, dextral slip along the San Gregorio–Hosgri fault augments net San Andreas displacement. Alternate restorations of the Gualala block imply that nearly half the net San Gregorio–Hosgri slip was accommodated along the offshore Gualala fault strand lying west of the Gualala block, which is bounded on the east by the current master trace of the San Andreas fault. With San Andreas and San Gregorio–Hosgri slip restored, there remains an unresolved proto–San Andreas mismatch of ∼100 km between the offset northern end of the Salinian block and the southern end of the Sierran-Tehachapi block.On the south, San Gregorio–Hosgri strike slip is transposed into crustal shortening associated with vertical-axis tectonic rotation of fault-bounded crustal panels that form the western Transverse Ranges, and with kinematically linked deformation within the adjacent Santa Maria basin. The San Gregorio–Hosgri fault serves as the principal link between transrotation in the western Transverse Ranges and strike slip within the San Andreas transform system of central California.

  14. Steady boundary layer slip flow along with heat and mass transfer over a flat porous plate embedded in a porous medium.

    PubMed

    Aziz, Asim; Siddique, J I; Aziz, Taha

    2014-01-01

    In this paper, a simplified model of an incompressible fluid flow along with heat and mass transfer past a porous flat plate embedded in a Darcy type porous medium is investigated. The velocity, thermal and mass slip conditions are utilized that has not been discussed in the literature before. The similarity transformations are used to transform the governing partial differential equations (PDEs) into a nonlinear ordinary differential equations (ODEs). The resulting system of ODEs is then reduced to a system of first order differential equations which was solved numerically by using Matlab bvp4c code. The effects of permeability, suction/injection parameter, velocity parameter and slip parameter on the structure of velocity, temperature and mass transfer rates are examined with the aid of several graphs. Moreover, observations based on Schmidt number and Soret number are also presented. The result shows, the increase in permeability of the porous medium increase the velocity and decrease the temperature profile. This happens due to a decrease in drag of the fluid flow. In the case of heat transfer, the increase in permeability and slip parameter causes an increase in heat transfer. However for the case of increase in thermal slip parameter there is a decrease in heat transfer. An increase in the mass slip parameter causes a decrease in the concentration field. The suction and injection parameter has similar effect on concentration profile as for the case of velocity profile.

  15. Steady Boundary Layer Slip Flow along with Heat and Mass Transfer over a Flat Porous Plate Embedded in a Porous Medium

    PubMed Central

    Aziz, Asim; Siddique, J. I.; Aziz, Taha

    2014-01-01

    In this paper, a simplified model of an incompressible fluid flow along with heat and mass transfer past a porous flat plate embedded in a Darcy type porous medium is investigated. The velocity, thermal and mass slip conditions are utilized that has not been discussed in the literature before. The similarity transformations are used to transform the governing partial differential equations (PDEs) into a nonlinear ordinary differential equations (ODEs). The resulting system of ODEs is then reduced to a system of first order differential equations which was solved numerically by using Matlab bvp4c code. The effects of permeability, suction/injection parameter, velocity parameter and slip parameter on the structure of velocity, temperature and mass transfer rates are examined with the aid of several graphs. Moreover, observations based on Schmidt number and Soret number are also presented. The result shows, the increase in permeability of the porous medium increase the velocity and decrease the temperature profile. This happens due to a decrease in drag of the fluid flow. In the case of heat transfer, the increase in permeability and slip parameter causes an increase in heat transfer. However for the case of increase in thermal slip parameter there is a decrease in heat transfer. An increase in the mass slip parameter causes a decrease in the concentration field. The suction and injection parameter has similar effect on concentration profile as for the case of velocity profile. PMID:25531301

  16. Incremental slip rate and paleoseismic data from the eastern Hope fault, New Zealand: the Hossack and Green Burn sites

    NASA Astrophysics Data System (ADS)

    Hatem, A. E.; Dolan, J. F.; Langridge, R.; Zinke, R. W.; McGuire, C. P.; Rhodes, E.; Van Dissen, R. J.

    2016-12-01

    We present incremental slip rate and paleo-earthquake data from the Conway segment of the eastern Hope fault, within the Marlborough Fault System (MFS) in the northern South Island of New Zealand. Our incremental slip rate site at Hossack Station is located near the western boundary of the Conway segment (near the Hanmer pull-apart basin), and preserves four offsets of the Hossack Stream channel that range in size from c. 11 to 190 m. Channel cut and fill deposits were exposed in several fault-parallel (channel perpendicular) trenches, and the initiation and abandonment of these offset channels are constrained by >60 radiocarbon ages, yielding four incremental slip rates spanning the Holocene. Our paleoseismologic trench at Green Burn, at the eastern end of the Conway segment near Kaikoura, was excavated across the 5-m-high fault scarp into the adjacent bog deposits. This fault-perpendicular trench revealed evidence for at least four paleo-earthquakes with age constraints provided by >40 radiocarbon dates. These results add to a growing body of slip rate and paleo-earthquake age and displacement data from all four main strike-slip faults that comprise the MFS. Collectively, these observations from the Hope fault are beginning to reveal the detailed system-level behavior of the four main faults in the MFS, with fundamental implications for, among other things, earthquake occurrence and behavior, as well as seismic hazard assessment.

  17. Rupture dynamics along dipping thrust faults: free surface interaction and the case of Tohoku earthquake

    NASA Astrophysics Data System (ADS)

    Festa, Gaetano; Scala, Antonio; Vilotte, Jean-Pierre

    2017-04-01

    To address the influence of the free surface interaction on rupture propagating along subduction zones, we numerically investigate dynamic interactions, involving coupling between normal and shear tractions, between in-plane rupture propagating along dipping thrust faults and a free surface for different structural and geometrical conditions. When the rupture occurs along reverse fault with a dip angle different from 90° the symmetry is broken as an effect of slip-induced normal stress perturbations and a larger ground motion is evidenced on the hanging wall. The ground motion is amplified by multiple reflections of waves trapped between the fault and the free surface. This effect is shown to occur when the rupture tip lies on the vertical below the intersection between the S-wave front and the surface that is when waves along the surface start to interact with the rupture front. This interaction is associated with a finite region where the rupture advances in a massive regime preventing the shrinking of the process zone and the emission of high-frequency radiation. The smaller the dip angle the larger co-seismic slip in the shallow part as an effect of the significant break of symmetry. Radiation from shallow part is still depleted in high frequencies due to the massive propagating regime and the interaction length dominating the rupture dynamics. Instantaneous shear response to normal traction perturbations may lead to unstable solutions as in the case of bimaterial rupture. A parametric study has been performed to analyse the effects of a regularised shear traction response to normal traction variations. Finally the case of Tohoku earthquake is considered and we present 2D along-dip numerical results. At first order the larger slip close to the trench can be ascribed to the break of symmetry and the interaction with free surface. When shear/normal coupling is properly regularised the signal from the trench is depleted in high frequencies whereas during deep propagation high-frequency radiations emerge associated to geometrical and structural complexities or to frictional strength asperities.

  18. Slip and Dilation Tendency Anlysis of Neal Hot Springs Geothermal Area

    DOE Data Explorer

    Faulds, James E.

    2013-12-31

    Slip and Dilation Tendency in focus areas Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = τ / σn (Morris et al., 1996). Dilation tendency is defined by the stress acting normal to a given surface: Td = (σ1-σn) / (σ1-σ3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Based on inversion of fault kinematic data, Edwards (2013) interpreted that two discrete stress orientations are preserved at Neal Hot Springs. An older episode of east-west directed extension and a younger episode of southwest-northeast directed sinistral, oblique -normal extension. This interpretation is consistent with the evolution of Cenozoic tectonics in the region (Edwards, 2013). As such we applied a southwest-northeast (060) directed normal faulting stress regime, consistent with the younger extensional episode, to the Neal Hot Springs faults. Under these stress conditions northeast striking steeply dipping fault segments have the highest tendency to dilate and northeast striking 60° dipping fault segments have the highest tendency to slip. Under these stress condition...

  19. Spatiotemporal Patterns of Fault Slip Rates Across the Central Sierra Nevada Frontal Fault Zone

    NASA Astrophysics Data System (ADS)

    Rood, D. H.; Burbank, D.; Finkel, R. C.

    2010-12-01

    We examine patterns in fault slip rates through time and space across the transition from the Sierra Nevada to the Eastern California Shear Zone-Walker Lane belt. At each of four sites along the eastern Sierra Nevada frontal fault zone between 38-39° N latitude, geomorphic markers, such as glacial moraines and outwash terraces, are displaced by a suite of range-front normal faults. Using geomorphic mapping, surveying, and Be-10 surface exposure dating, we define mean fault slip rates, and by utilizing markers of different ages (generally, ~20 ka and ~150 ka), we examine rates through time and interactions among multiple faults over 10-100 ky timescales. At each site for which data are available for the last ~150 ky, mean slip rates across the Sierra Nevada frontal fault zone have probably not varied by more than a factor of two over time spans equal to half of the total time interval (~20 ky and ~150 ky timescales): 0.3 ± 0.1 mm/yr (mode and 95% CI) at both Buckeye Creek in the Bridgeport basin and Sonora Junction; and 0.4 +0.3/-0.1 mm/yr along the West Fork of the Carson River at Woodfords. Our data permit that rates are relatively constant over the time scales examined. In contrast, slip rates are highly variable in space over the last ~20 ky. Slip rates decrease by a factor of 3-5 northward over a distance of ~20 km between the northern Mono Basin (1.3 +0.6/-0.3 mm/yr at Lundy Canyon site) and the Bridgeport Basin (0.3 ± 0.1 mm/yr). The 3-fold decrease in the slip rate on the Sierra Nevada frontal fault zone northward from Mono Basin reflects a change in the character of faulting north of the Mina Deflection as extension is transferred eastward onto normal faults between the Sierra Nevada and Walker Lane belt. A compilation of regional deformation rates reveal that the spatial pattern of extension rates changes along strike of the Eastern California Shear Zone-Walker Lane belt. South of the Mina Deflection, extension is accommodated within a diffuse zone of normal and oblique faults, with extension rates increasing northward on the Fish Lake Valley fault. Where faults of the Eastern California Shear Zone terminate northward into the Mina Deflection, extension rates increase northward along the Sierra Nevada frontal fault zone to ~0.7 mm/yr in northern Mono Basin. This spatial pattern suggests that extension is transferred from faults systems to the east (e.g. Fish Lake Valley fault) and localized on the Sierra Nevada frontal fault zone as Eastern California Shear Zone-Walker Lane belt faulting is transferred through the Mina Deflection.

  20. Bond-slip detection of concrete-encased composite structure using electro-mechanical impedance technique

    NASA Astrophysics Data System (ADS)

    Liang, Yabin; Li, Dongsheng; Parvasi, Seyed Mohammad; Kong, Qingzhao; Lim, Ing; Song, Gangbing

    2016-09-01

    Concrete-encased composite structure is a type of structure that takes the advantages of both steel and concrete materials, showing improved strength, ductility, and fire resistance compared to traditional reinforced concrete structures. The interface between concrete and steel profiles governs the interaction between these two materials under loading, however, debonding damage between these two materials may lead to severe degradation of the load transferring capacity which will affect the structural performance significantly. In this paper, the electro-mechanical impedance (EMI) technique using piezoceramic transducers was experimentally investigated to detect the bond-slip occurrence of the concrete-encased composite structure. The root-mean-square deviation is used to quantify the variations of the impedance signatures due to the presence of the bond-slip damage. In order to verify the validity of the proposed method, finite element model analysis was performed to simulate the behavior of concrete-steel debonding based on a 3D finite element concrete-steel bond model. The computed impedance signatures from the numerical results are compared with the results obtained from the experimental study, and both the numerical and experimental studies verify the proposed EMI method to detect bond slip of a concrete-encased composite structure.

  1. Experimental Deformation of Olivine Crystals at Mantle P and T: Evidences for a Pressure-Induced Slip Transition and Implications for Upper-Mantle Seismic Anisotropy and Low Viscosity Zone

    NASA Astrophysics Data System (ADS)

    Raterron, P.; Chen, J.; Geenen, T.; Girard, J.

    2009-04-01

    Recent developments in high-pressure deformation devices coupled with synchrotron radiation allow investigating the rheology of mantle minerals and aggregates at the extreme pressure (P) and temperature (T) of their natural occurrence in the Earth. This is particularly true in the case of olivine, which rheology has been recently investigated in the Deformation-DIA apparatus (D-DIA, see Wang et al., 2003, Rev. Scientific Instr., 74, 3002) at upper-mantle P and T conditions. Olivine deforms by dislocation creep in the shallow upper-mantle, as revealed by the seismic velocity anisotropy observed in this region. The attenuation of seismic anisotropy at depth greater than 200 km is interpreted as a pressure-induced change in olivine main deformation mechanism. It was first attributed to a transition from dislocation creep to diffusion creep (Karato and Wu, 1993, Science, 260, 771). This interpretation has been challenged by deformation data obtained at high pressure (P > 3 GPa) in the dislocation creep regime (Couvy et al., 2004, EJM, 16, 877; Raterron et al., 2007, Am. Miner., 92, 1436; Raterron et al., 2009, PEPI, 72, 74), which support a second interpretation: a transition in olivine dominant dislocation slip, from [100] slip at low P to [001] slip at high P (e.g., Mainprice et al., 2005, Nature, 433, 731). Such a P -induced [100]/[001] slip transition is also supported by recent theoretical studies based on first-principle calculations of olivine dislocation slips (Durinck et al., 2005, PCM, 32, 646; Durinck et al., 2007, Eur. J. Mineral., 19, 631). In order to further constrain the effect of pressure on olivine slip system activities, deformation experiments were carried out in poor water condition at P > 5 GPa and T =1400˚ C, on pure forsterite (Fo100) and San Carlos olivine crystals, using the D-DIA at the X17B2 beamline of the NSLS (Upton, NY, USA). Crystals were oriented in order to active either [100] slip alone or [001] slip alone in (010) plane, or both [100](001) and [001](100) systems together. Constant applied stress < 300 MPa and specimen strain rates were monitored in situ using time-resolved X-ray diffraction and radiography, respectively. Run products were investigated by transmission electron microscopy (TEM) in order to verify the actual activation of the tested dislocation slip systems. The obtained data were compared with rheological data previously obtained at comparable T and conditions, but at room P (Darot and Gueguen, 1981, JGR, 86, 6219; Bai et al., 1991, JGR, 96, 2441), resulting in creep power laws which quantify the effect of P on olivine rheology. The new data confirm the occurrence of a P -induced [100]/[001] slip transition, and suggest that [001](010) system dominates olivine deformation in the deep upper mantle. Extrapolation of the obtained rheological laws to natural condition along upper-mantle geotherms, shows that the [100] / [001] slip transition should occur in the Earth at ~ 200 km depth, thus can explain the attenuation of seismic anisotropy in the deep upper mantle. The obtained rheological laws were also integrated into a straightforward olivine aggregate model, then extrapolated to mantle condition using a 2-D geodynamic modeling application (Van den Berg et al., 1993, Geophys. J. International, 115, 62), which is the simplest approach to investigate upper-mantle steady-state deformation. In the application, the velocity of the lower boundary (the transition-zone boundary at 410-km depth) was set to 0, while that at the Earth's surface was set to 2 cm/year. Results from this modeling suggest that the combine activity of [100] and [001] slips in olivine aggregates may significantly decrease mantle viscosity below the oceanic lithosphere, thus, may contribute to the low viscosity zone (LVZ) required in plate tectonics to decouple rigid plates from the more ductile asthenophere underneath.

  2. Late Quaternary Slip Rate Along the Selaha Fault, Central Segment of the Xianshuihe Fault System, Eastern Tibet, and Regional Paleoclimate Reconstruction

    NASA Astrophysics Data System (ADS)

    Chevalier, M. L.; Bai, M.; Pan, J.; Replumaz, A.; Leloup, P. H.; Li, H.

    2017-12-01

    The left-slip Xianshuihe fault system in E Tibet is considered as one of the most tectonically active fault system in China. Studying its activity, especially its slip rate at different time scales, is essential to evaluate regional earthquake hazards. Here, we focus on the central segment, where the Xianshuihe fault splays into three branches: the Selaha, Yalahe and Zheduotang faults. We use 10Be cosmogenic dating at 3 sites where the active Selaha fault cuts and left-laterally offsets moraine crests and levees. By matching their emplacement ages with their offsets, we obtain a conservative late Quaternary horizontal slip-rate of 5.7-12 mm/yr at TG levees and SLH moraine, or 9.6-9.9 mm/yr assuming that the slip rate should be constant between the two nearby sites. At YJG moraine, we obtain a lower slip rate of 4.4±0.5 mm/yr, most likely because the parallel Zheduotang fault shares the slip rate at this longitude, therefore suggesting a 5 mm/yr slip rate along the Zheduotang fault. A higher slip rate along the short ( 60 km) and discontinuous Selaha fault compared to that along the long ( 300 km) and linear Ganzi fault (7 mm/yr) suggests a high earthquake hazard in the densely populated city of Kangding. Using the moraine ages that we determined here in addition to our previous studies in the same region allows us to study the timing and extent of past glaciations in the Himalayan-Tibetan orogen. This is essential to reconstruct regional paleoclimate and to understand variations in the atmospheric circulation due to the high-altitude low latitude Tibetan Plateau, in order to possibly predict future climate changes. We dated 6 glacial deposits from SE Tibet using 10Be cosmogenic dating on 68 boulders and only found advances during the Last Glacial Maximum (limited) and Marine Isotope Stage-6 (extensive), with no signal in between. That the two coldest periods are LGM and MIS-6 is in agreement with the Northern hemisphere cooling cycles, suggesting that in SE Tibet, glaciers are more sensitive to a decrease of temperature rather than an increase of precipitation and that they respond to the Northern hemisphere cooling cycles rather than to the South Asian summer monsoon. This explains the absence of MIS-3 advances, in contradiction with what is observed in W Tibet where they are the most extensive.

  3. From Extension to Transcurrence: Regime Transition as a new key to Interpret Seismogenesis in the Southern Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Fracassi, U.; Vannoli, P.; Burrato, P.; Basili, R.; Tiberti, M. M.; di Bucci, D.; Valensise, G.

    2006-12-01

    The backbone of the Southern Apennines is perhaps the largest seismic moment release area in Italy. The region is dominated by an extensional regime dating back to the Middle Pleistocene, with maximum extension striking SW-NE (i.e. orthogonal to the mountain belt). The full length (~ 200 km) of the mountain range has been the locus of several destructive earthquakes occurring in the uppermost 10-12 km of the crust. This seismicity is due to a well documented normal faulting mechanism. Instrumental earthquakes (e.g. 5 May 1990, 31 Oct 2002, 1 Nov 2002; all M 5.8) that have occurred in the foreland, east of the Southern Apennines, have posed new questions concerning seismogenic processes in southern Italy. Although of moderate magnitude, these events unveiled the presence of E-W striking, deeper (13-25 km) strike-slip faults. Recent studies suggest that these less known faults belong to inherited shear zones with a multi-phase tectonic history, the most recent phase being a right-lateral reactivation. The direction of the maximum horizontal extension of these faults (in a transcurrent regime) coincides with the maximum horizontal extension in the core of the Southern Apennines (in an extensional regime) and both are compatible with the general framework provided by the Africa-Europe convergence. However, the regional extent along strike of the E-W shear zones poses the issue of their continuity from the foreland towards the thrust-belt. The 1456 (M 6.9) and 1930 (M 6.7) earthquakes, that occurred just east of the main extensional axis, were caused by faults having a strike intermediate between the E-W, deeper strike-slip faults in the foreland and the NW-SE-trending, shallower normal faults in the extensional belt. Hence, the location and geometry of these seismogenic sources suggests that there could be a transition zone between the crustal volumes affected by the extensional and transcurrent regimes. To image such transition, we built a 3D model that incorporates data available from surface and subsurface geology (published and unpublished), seismogenic faults, seismicity, focal mechanisms, and gravity anomalies. We explored the mechanisms of fault interaction in the Southern Apennines between the extensional upper portion and the transcurrent deeper portion of the seismogenic layer. In particular, we studied (a) how the reactivation of regional shear zones interacts with an adjacent, although structurally independent, extensional belt; (b) at what depth range the interaction occurs; and (c1) whether oblique slip in earthquakes like the 1930 event is merely due to the geometry of the causative fault, or (c2) such geometry and kinematics are the result of oblique slip due to fault interaction. We propose that (a) the 1456 and 1930 earthquakes are the expression of the transition between the two tectonic regimes, and that (b) these events can be seen as templates of the seismogenic oblique-slip faulting that occurs at intermediate depths between the shallower extensional faults and the deeper strike-slip faults. These findings suggest that a transtensional faulting mechanism governs the release of major earthquakes in the transition zone between extensional and transcurrent domains.

  4. Seismicity rate increases associated with slow slip episodes prior to the 2012 Mw 7.4 Ometepec earthquake

    NASA Astrophysics Data System (ADS)

    Colella, Harmony V.; Sit, Stefany M.; Brudzinski, Michael R.; Graham, Shannon E.; DeMets, Charles; Holtkamp, Stephen G.; Skoumal, Robert J.; Ghouse, Noorulann; Cabral-Cano, Enrique; Kostoglodov, Vladimir; Arciniega-Ceballos, Alejandra

    2017-04-01

    The March 20, 2012 Mw 7.4 Ometepec earthquake in the Oaxaca region of Southern Mexico provides a unique opportunity to examine whether subtle changes in seismicity, tectonic tremor, or slow slip can be observed prior to a large earthquake that may illuminate changes in stress or background slip rate. Continuous Global Positioning System (cGPS) data reveal a 5-month-long slow slip event (SSE) between ∼20 and 35 km depth that migrated toward and reached the vicinity of the mainshock a few weeks prior to the earthquake. Seismicity in Oaxaca is examined using single station tectonic tremor detection and multi-station waveform template matching of earthquake families. An increase in seismic activity, detected with template matching using aftershock waveforms, is only observed in the weeks prior to the mainshock in the region between the SSE and mainshock. In contrast, a SSE ∼15 months earlier occurred at ∼25-40 km depth and was primarily associated with an increase in tectonic tremor. Together, these observations indicate that in the Oaxaca region of Mexico shallower slow slip promotes elevated seismicity rates, and deeper slow slip promotes tectonic tremor. Results from this study add to a growing number of published accounts that indicate slow slip may be a common pre-earthquake signature.

  5. Can Recovery Foot Placement Affect Older Adults' Slip-Fall Severity?

    PubMed

    Wang, Shuaijie; Liu, Xuan; Lee, Anna; Pai, Yi-Chung

    2017-08-01

    Following a slip occurred in the overground walking, a fall can be classified into two exclusive categories: feet-forward fall or split fall. The purposes of this study were to investigate whether the placement of the recovery foot would determine the slip types, the likelihood of fall, and the severity associated with each fall. The fall severity was estimated based on the impact velocity of body segments or trunk orientation upon fall arrest. One hundred ninety-five participants experienced a novel, unannounced slip while walking on a 7-m walkway. Kinematics of a full-body marker set was collected by a motion capture system which was synchronized with the force plates and loadcell. The results showed that the recovery foot landing position relative to the projected center of mass position at the recovery foot touchdown determined the slip type by 90.8%. Feet-forward slips led to significantly lower rate of falls than did split slips (47.6 vs. 67.8%, p < 0.01). Yet, feet-forward falls were much more dangerous because they were associated with significantly greater estimated maximum hip impact velocity (p < 0.001) and trunk backward leaning angle (p < 0.001) in comparison to split falls.

  6. SLIPPING MAGNETIC RECONNECTION TRIGGERING A SOLAR ERUPTION OF A TRIANGLE-SHAPED FLAG FLUX ROPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ting; Zhang, Jun, E-mail: liting@nao.cas.cn, E-mail: zjun@nao.cas.cn

    2014-08-10

    We report the first simultaneous activities of the slipping motion of flare loops and a slipping eruption of a flux rope in 131 Å and 94 Å channels on 2014 February 2. The east hook-like flare ribbon propagated with a slipping motion at a speed of about 50 km s{sup –1}, which lasted about 40 minutes and extended by more than 100 Mm, but the west flare ribbon moved in the opposite direction with a speed of 30 km s{sup –1}. At the later phase of flare activity, there was a well developed ''bi-fan'' system of flare loops. The east footpoints ofmore » the flux rope showed an apparent slipping motion along the hook of the ribbon. Simultaneously, the fine structures of the flux rope rose up rapidly at a speed of 130 km s{sup –1}, much faster than that of the whole flux rope. We infer that the east footpoints of the flux rope are successively heated by a slipping magnetic reconnection during the flare, which results in the apparent slippage of the flux rope. The slipping motion delineates a ''triangle-shaped flag surface'' of the flux rope, implying that the topology of a flux rope is more complex than anticipated.« less

  7. Elevated Temperature Effects on the Plastic Anisotropy of an Extruded Mg-4 Wt Pct Li Alloy: Experiments and Polycrystal Modeling

    NASA Astrophysics Data System (ADS)

    Risse, Marcel; Lentz, Martin; Fahrenson, Christoph; Reimers, Walter; Knezevic, Marko; Beyerlein, Irene J.

    2017-01-01

    In this work, we study the deformation behavior of Mg-4 wt pct Li in uniaxial tension as a function of temperature and loading direction. Standard tensile tests were performed at temperatures in the range of 293 K (20 °C) ≤ T ≤ 473 K (200 °C) and in two in-plane directions: the extrusion and the transverse. We find that while the in-plane plastic anisotropy (PA) decreases with temperature, the anisotropy in failure strain and texture development increases. To uncover the temperature dependence in the critical stresses for slip and in the amounts of slip and twinning systems mediating deformation, we employ the elastic-plastic self-consistent polycrystal plasticity model with a thermally activated dislocation density based hardening law for activating slip with individual crystals. We demonstrate that the model, with a single set of intrinsic material parameters, achieves good agreement with the stress-strain curves, deformation textures, and intragranular misorientation axis analysis for all test directions and temperatures. With the model, we show that at all temperatures the in-plane tensile behavior is driven primarily by < a rangle slip and both < {c + a} rangle slip and twinning play a minor role. The analysis explains that the in-plane PA decreases and failure strains increase with temperature as a result of a significant reduction in the activation stress for pyramidal < {c + a} rangle slip, which effectively promotes strain accommodation from multiple types of < a rangle and < {c + a} rangle slip. The results also show that because of the strong initial texture, in-plane texture development is anisotropic since prismatic slip dominates the deformation in one test, although it is not the easiest slip mode, and basal slip in the other. These findings reveal the relationship between the temperature-sensitive thresholds needed to activate crystallographic slip and the development of texture and macroscopic PA.

  8. Tsunami Scenarios Based on Interseismic Models Along the Nankai Trough, Japan, From Seafloor and Onshore Geodesy

    NASA Astrophysics Data System (ADS)

    Watanabe, Shun-ichi; Bock, Yehuda; Melgar, Diego; Tadokoro, Keiichi

    2018-03-01

    The recent availability of Global Positioning System-Acoustic seafloor geodetic observations enables us to resolve the spatial distribution of the slip deficit rate near the Nankai trough, southwestern Japan. Considering a tectonic block model and the transient deformation due to the major earthquakes in this area, the slip deficit rate between the two relevant blocks can be estimated. In this study, we remove the time-dependent postseismic deformation of the 2004 southeastern off the Kii Peninsula earthquakes (MJMA 7.1, 7.4), which had led to the underestimation of the slip deficit rate in earlier studies. We model the postearthquake viscoelastic relaxation using the 3D finite element model with bi-viscous Burgers rheology, as well as the afterslip on the finite faults. The corrected Global Positioning System-Acoustic and land-based Global Navigation Satellite Systems data are aligned to the existing tectonic model and used to estimate the slip deficit rate on the plate boundary. We then calculate the coseismic displacements and tsunami wave propagation with the simple assumption that a hundred years of constant slip deficit accumulation was released instantaneously. To evaluate the influence of uncertainties in the plate interface geometry on a tsunami model for the Nankai trough, we investigated two different geometries and performed checkerboard inversion simulations. Although the two models indicate roughly similar results, the peak height of the tsunami wave and its arrival time at several points are significantly different in terms of the expected hazard.

  9. Fault Deformation and Segmentation of the Newport-Inglewood Rose Canyon, and San Onofre Trend Fault Systems from New High-Resolution 3D Seismic Imagery

    NASA Astrophysics Data System (ADS)

    Holmes, J. J.; Driscoll, N. W.; Kent, G. M.

    2016-12-01

    The Inner California Borderlands (ICB) is situated off the coast of southern California and northern Baja. The structural and geomorphic characteristics of the area record a middle Oligocene transition from subduction to microplate capture along the California coast. Marine stratigraphic evidence shows large-scale extension and rotation overprinted by modern strike-slip deformation. Geodetic and geologic observations indicate that approximately 6-8 mm/yr of Pacific-North American relative plate motion is accommodated by offshore strike-slip faulting in the ICB. The farthest inshore fault system, the Newport-Inglewood Rose Canyon (NIRC) Fault is a dextral strike-slip system that is primarily offshore for approximately 120 km from San Diego to the San Joaquin Hills near Newport Beach, California. Based on trenching and well data, the NIRC Fault Holocene slip rate is 1.5-2.0 mm/yr to the south and 0.5-1.0 mm/yr along its northern extent. An earthquake rupturing the entire length of the system could produce an Mw 7.0 earthquake or larger. West of the main segments of the NIRC Fault is the San Onofre Trend (SOT) along the continental slope. Previous work concluded that this is part of a strike-slip system that eventually merges with the NIRC Fault. Others have interpreted this system as deformation associated with the Oceanside Blind Thrust fault purported to underlie most of the region. In late 2013, we acquired the first high-resolution 3D Parallel Cable (P-Cable) seismic surveys of the NIRC and SOT faults as part of the Southern California Regional Fault Mapping project aboard the R/V New Horizon. Analysis of these data volumes provides important new insights and constraints on the fault segmentation and transfer of deformation. Based on this new data, we've mapped several small fault strands associated with the SOT that appear to link up with a westward jog in right-lateral fault splays of the NIRC Fault on the shelf and then narrowly radiate southwards. Our observations are that these strands are strike-slip features associated with a dying splay of the NIRC system rather than compressional features associated with a regional thrust.

  10. Determining on-fault earthquake magnitude distributions from integer programming

    NASA Astrophysics Data System (ADS)

    Geist, Eric L.; Parsons, Tom

    2018-02-01

    Earthquake magnitude distributions among faults within a fault system are determined from regional seismicity and fault slip rates using binary integer programming. A synthetic earthquake catalog (i.e., list of randomly sampled magnitudes) that spans millennia is first formed, assuming that regional seismicity follows a Gutenberg-Richter relation. Each earthquake in the synthetic catalog can occur on any fault and at any location. The objective is to minimize misfits in the target slip rate for each fault, where slip for each earthquake is scaled from its magnitude. The decision vector consists of binary variables indicating which locations are optimal among all possibilities. Uncertainty estimates in fault slip rates provide explicit upper and lower bounding constraints to the problem. An implicit constraint is that an earthquake can only be located on a fault if it is long enough to contain that earthquake. A general mixed-integer programming solver, consisting of a number of different algorithms, is used to determine the optimal decision vector. A case study is presented for the State of California, where a 4 kyr synthetic earthquake catalog is created and faults with slip ≥3 mm/yr are considered, resulting in >106 variables. The optimal magnitude distributions for each of the faults in the system span a rich diversity of shapes, ranging from characteristic to power-law distributions.

  11. The 3D fault and vein architecture of strike-slip releasing- and restraining bends: Evidence from volcanic-centre-relatedmineral deposits

    USGS Publications Warehouse

    Berger, B.R.; ,

    2007-01-01

    High-temperature, volcanic-centre-related hydrothermal systems involve large fluid-flow volumes and are observed to have high discharge rates in the order of 100-400 kg/s. The flows and discharge occur predominantly on networks of critically stressed fractures. The coupling of hydrothermal fluid flow with deformation produces the volumes of veins found in epithermal mineral deposits. Owing to this coupling, veins provide information on the fault-fracture architecture in existence at the time of mineralization. They therefore provide information on the nature of deformation within fault zones, and the relations between different fault sets. The Virginia City and Goldfield mining districts, Nevada, were localized in zones of strike-slip transtension in an Early to Mid-Miocene volcanic belt along the western margin of North America. The Camp Douglas mining area occurs within the same belt, but is localized in a zone of strike-slip transpression. The vein systems in these districts record the spatial evolution of strike-slip extensional and contractional stepovers, as well as geometry of faulting in and adjacent to points along strike-slip faults where displacement has been interrupted and transferred into releasing and restraining stepovers. ?? The Geological Society of London 2007.

  12. Dual Megathrust Slip Behaviors of the 2014 Iquique Earthquake Sequence

    NASA Astrophysics Data System (ADS)

    Meng, L.; Huang, H.; Burgmann, R.; Ampuero, J. P.; Strader, A. E.

    2014-12-01

    The transition between seismic rupture and aseismic creep is of central interest to better understand the mechanics of subduction processes. A M 8.2 earthquake occurred on April 1st, 2014 in the Iquique seismic gap of Northern Chile. This event was preceded by a 2-week-long foreshock sequence including a M 6.7 earthquake. Repeating earthquakes are found among the foreshock sequence that migrated towards the mainshock area, suggesting a large scale slow-slip event on the megathrust preceding the mainshock. The variations of the recurrence time of repeating earthquakes highlights the diverse seismic and aseismic slip behaviors on different megathrust segments. The repeaters that were active only before the mainshock recurred more often and were distributed in areas of substantial coseismic slip, while other repeaters occurred both before and after the mainshock in the area complementary to the mainshock rupture. The spatial and temporal distribution of the repeating earthquakes illustrate the essential role of propagating aseismic slip in leading up to the mainshock and aftershock activities. Various finite fault models indicate that the coseismic slip generally occurred down-dip from the foreshock activity and the mainshock hypocenter. Source imaging by teleseismic back-projection indicates an initial down-dip propagation stage followed by a rupture-expansion stage. In the first stage, the finite fault models show slow initiation with low amplitude moment rate at low frequency (< 0.1 Hz), while back-projection shows a steady initiation at high frequency (> 0.5 Hz). This indicates frequency-dependent manifestations of seismic radiation in the low-stress foreshock region. In the second stage, the high-frequency rupture remains within an area of low gravity anomaly, suggesting possible upper-crustal structures that promote high-frequency generation. Back-projection also shows an episode of reverse rupture propagation which suggests a delayed failure of asperities in the foreshock area. Our results highlight the complexity of the interactions between large-scale aseismic slow-slip and dynamic ruptures of megathrust earthquakes.

  13. Three-dimensional models of deformation near strike-slip faults

    USGS Publications Warehouse

    ten Brink, Uri S.; Katzman, Rafael; Lin, J.

    1996-01-01

    We use three-dimensional elastic models to help guide the kinematic interpretation of crustal deformation associated with strike-slip faults. Deformation of the brittle upper crust in the vicinity of strike-slip fault systems is modeled with the assumption that upper crustal deformation is driven by the relative plate motion in the upper mantle. The driving motion is represented by displacement that is specified on the bottom of a 15-km-thick elastic upper crust everywhere except in a zone of finite width in the vicinity of the faults, which we term the "shear zone." Stress-free basal boundary conditions are specified within the shear zone. The basal driving displacement is either pure strike slip or strike slip with a small oblique component, and the geometry of the fault system includes a single fault, several parallel faults, and overlapping en echelon faults. We examine the variations in deformation due to changes in the width of the shear zone and due to changes in the shear strength of the faults. In models with weak faults the width of the shear zone has a considerable effect on the surficial extent and amplitude of the vertical and horizontal deformation and on the amount of rotation around horizontal and vertical axes. Strong fault models have more localized deformation at the tip of the faults, and the deformation is partly distributed outside the fault zone. The dimensions of large basins along strike-slip faults, such as the Rukwa and Dead Sea basins, and the absence of uplift around pull-apart basins fit models with weak faults better than models with strong faults. Our models also suggest that the length-to-width ratio of pull-apart basins depends on the width of the shear zone and the shear strength of the faults and is not constant as previously suggested. We show that pure strike-slip motion can produce tectonic features, such as elongate half grabens along a single fault, rotated blocks at the ends of parallel faults, or extension perpendicular to overlapping en echelon faults, which can be misinterpreted to indicate a regional component of extension. Zones of subsidence or uplift can become wider than expected for transform plate boundaries when a minor component of oblique motion is added to a system of parallel strike-slip faults.

  14. Three-dimensional models of deformation near strike-slip faults

    USGS Publications Warehouse

    ten Brink, Uri S.; Katzman, Rafael; Lin, Jian

    1996-01-01

    We use three-dimensional elastic models to help guide the kinematic interpretation of crustal deformation associated with strike-slip faults. Deformation of the brittle upper crust in the vicinity of strike-slip fault systems is modeled with the assumption that upper crustal deformation is driven by the relative plate motion in the upper mantle. The driving motion is represented by displacement that is specified on the bottom of a 15-km-thick elastic upper crust everywhere except in a zone of finite width in the vicinity of the faults, which we term the “shear zone.” Stress-free basal boundary conditions are specified within the shear zone. The basal driving displacement is either pure strike slip or strike slip with a small oblique component, and the geometry of the fault system includes a single fault, several parallel faults, and overlapping en echelon faults. We examine the variations in deformation due to changes in the width of the shear zone and due to changes in the shear strength of the faults. In models with weak faults the width of the shear zone has a considerable effect on the surficial extent and amplitude of the vertical and horizontal deformation and on the amount of rotation around horizontal and vertical axes. Strong fault models have more localized deformation at the tip of the faults, and the deformation is partly distributed outside the fault zone. The dimensions of large basins along strike-slip faults, such as the Rukwa and Dead Sea basins, and the absence of uplift around pull-apart basins fit models with weak faults better than models with strong faults. Our models also suggest that the length-to-width ratio of pull-apart basins depends on the width of the shear zone and the shear strength of the faults and is not constant as previously suggested. We show that pure strike-slip motion can produce tectonic features, such as elongate half grabens along a single fault, rotated blocks at the ends of parallel faults, or extension perpendicular to overlapping en echelon faults, which can be misinterpreted to indicate a regional component of extension. Zones of subsidence or uplift can become wider than expected for transform plate boundaries when a minor component of oblique motion is added to a system of parallel strike-slip faults.

  15. Electrohydrodynamic interactions in Quincke rotation: from pair dynamics to collective motion

    NASA Astrophysics Data System (ADS)

    Das, Debasish; Saintillan, David

    2013-11-01

    Weakly conducting dielectric particles suspended in a dielectric liquid can undergo spontaneous sustained rotation when placed in a sufficiently strong dc electric field. This phenomenon of Quincke rotation has interesting implications for the rheology of these suspensions whose effective viscosity can be reduced by application of an external field. While previous models based on the rotation of isolated particles have provided accurate estimates for this viscosity reduction in dilute suspensions discrepancies have been reported in more concentrated systems where particle-particle interactions are likely significant. Motivated by this observation we extend the classic description of Quincke rotation based on the Taylor-Melcher leaky dielectric model to account for pair electrohydrodynamic interactions between identical spheres using method of reflections. We also consider the case of spherical particles undergoing Quincke rotation next to a planar electrode, where hydrodynamic interactions with the no-slip boundary lead to a self-propelled velocity. The interactions between such Quincke rollers are analyzed, and a transition to collective motion is predicted in sufficiently dense collections of many rollers, in agreement with recent experiments.

  16. Optimal design for slip deceleration control in anti-lock braking system

    NASA Astrophysics Data System (ADS)

    Mishra, Sheelam; Kumar, Pankaj; Rahman, Mohd. Saifur

    2018-05-01

    ABS (Anti-lock Braking System) is the most advanced braking system implemented in modern cars to avoid the slipping or skidding of the vehicle on the road. Moreover, it reduces the stopping distance of the vehicle because it avoids the locking of the wheel during braking. It enables the driver to steer the vehicle during braking. But every system has its downsides and likewise ABS too, it is not efficient during normal braking or snowy conditions. Our aim is to overcome these downsides and optimize Anti-lock Braking System to make it even better.

  17. Design and Testing of an Erosion Resistant Ultrasonic De-Icing System for Rotorcraft Blades

    DTIC Science & Technology

    2013-08-01

    need for pneumatic slip rings , and the potential of holes located on the blade to clog. The 11-gallon tank adds significant weight and only protects...icing were the need of heavy pneumatic slip rings , and the need for a coating able to protect against both rain and sand erosion. 14 1.1.4.6...feet in diameter at an RPM of 1000 (see Figure 49). Four slip rings carry 48 signal channels and 24 power channels from the rotating frame of the

  18. Quasi-dynamic versus fully dynamic simulations of earthquakes and aseismic slip with and without enhanced coseismic weakening

    NASA Astrophysics Data System (ADS)

    Thomas, Marion Y.; Lapusta, Nadia; Noda, Hiroyuki; Avouac, Jean-Philippe

    2014-03-01

    Physics-based numerical simulations of earthquakes and slow slip, coupled with field observations and laboratory experiments, can, in principle, be used to determine fault properties and potential fault behaviors. Because of the computational cost of simulating inertial wave-mediated effects, their representation is often simplified. The quasi-dynamic (QD) approach approximately accounts for inertial effects through a radiation damping term. We compare QD and fully dynamic (FD) simulations by exploring the long-term behavior of rate-and-state fault models with and without additional weakening during seismic slip. The models incorporate a velocity-strengthening (VS) patch in a velocity-weakening (VW) zone, to consider rupture interaction with a slip-inhibiting heterogeneity. Without additional weakening, the QD and FD approaches generate qualitatively similar slip patterns with quantitative differences, such as slower slip velocities and rupture speeds during earthquakes and more propensity for rupture arrest at the VS patch in the QD cases. Simulations with additional coseismic weakening produce qualitatively different patterns of earthquakes, with near-periodic pulse-like events in the FD simulations and much larger crack-like events accompanied by smaller events in the QD simulations. This is because the FD simulations with additional weakening allow earthquake rupture to propagate at a much lower level of prestress than the QD simulations. The resulting much larger ruptures in the QD simulations are more likely to propagate through the VS patch, unlike for the cases with no additional weakening. Overall, the QD approach should be used with caution, as the QD simulation results could drastically differ from the true response of the physical model considered.

  19. A terrestrial lidar-based workflow for determining three-dimensional slip vectors and associated uncertainties

    USGS Publications Warehouse

    Gold, Peter O.; Cowgill, Eric; Kreylos, Oliver; Gold, Ryan D.

    2012-01-01

    Three-dimensional (3D) slip vectors recorded by displaced landforms are difficult to constrain across complex fault zones, and the uncertainties associated with such measurements become increasingly challenging to assess as landforms degrade over time. We approach this problem from a remote sensing perspective by using terrestrial laser scanning (TLS) and 3D structural analysis. We have developed an integrated TLS data collection and point-based analysis workflow that incorporates accurate assessments of aleatoric and epistemic uncertainties using experimental surveys, Monte Carlo simulations, and iterative site reconstructions. Our scanning workflow and equipment requirements are optimized for single-operator surveying, and our data analysis process is largely completed using new point-based computing tools in an immersive 3D virtual reality environment. In a case study, we measured slip vector orientations at two sites along the rupture trace of the 1954 Dixie Valley earthquake (central Nevada, United States), yielding measurements that are the first direct constraints on the 3D slip vector for this event. These observations are consistent with a previous approximation of net extension direction for this event. We find that errors introduced by variables in our survey method result in <2.5 cm of variability in components of displacement, and are eclipsed by the 10–60 cm epistemic errors introduced by reconstructing the field sites to their pre-erosion geometries. Although the higher resolution TLS data sets enabled visualization and data interactivity critical for reconstructing the 3D slip vector and for assessing uncertainties, dense topographic constraints alone were not sufficient to significantly narrow the wide (<26°) range of allowable slip vector orientations that resulted from accounting for epistemic uncertainties.

  20. Mesoscopic Simulations of Crosslinked Polymer Networks

    NASA Astrophysics Data System (ADS)

    Megariotis, Grigorios; Vogiatzis, Georgios G.; Schneider, Ludwig; Müller, Marcus; Theodorou, Doros N.

    2016-08-01

    A new methodology and the corresponding C++ code for mesoscopic simulations of elastomers are presented. The test system, crosslinked ds-1’4-polyisoprene’ is simulated with a Brownian Dynamics/kinetic Monte Carlo algorithm as a dense liquid of soft, coarse-grained beads, each representing 5-10 Kuhn segments. From the thermodynamic point of view, the system is described by a Helmholtz free-energy containing contributions from entropic springs between successive beads along a chain, slip-springs representing entanglements between beads on different chains, and non-bonded interactions. The methodology is employed for the calculation of the stress relaxation function from simulations of several microseconds at equilibrium, as well as for the prediction of stress-strain curves of crosslinked polymer networks under deformation.

  1. GUIs in the MIDAS environment

    NASA Technical Reports Server (NTRS)

    Ballester, P.

    1992-01-01

    MIDAS (Munich Image Data Analysis System) is the image processing system developed at ESO for astronomical data reduction. MIDAS is used for off-line data reduction at ESO and many astronomical institutes all over Europe. In addition to a set of general commands, enabling to process and analyze images, catalogs, graphics and tables, MIDAS includes specialized packages dedicated to astronomical applications or to specific ESO instruments. Several graphical interfaces are available in the MIDAS environment: XHelp provides an interactive help facility, and XLong and XEchelle enable data reduction of long-slip and echelle spectra. GUI builders facilitate the development of interfaces. All ESO interfaces comply to the ESO User Interfaces Common Conventions which secures an identical look and feel for telescope operations, data analysis, and archives.

  2. Atomistically determined phase-field modeling of dislocation dissociation, stacking fault formation, dislocation slip, and reactions in fcc systems

    NASA Astrophysics Data System (ADS)

    Rezaei Mianroodi, Jaber; Svendsen, Bob

    2015-04-01

    The purpose of the current work is the development of a phase field model for dislocation dissociation, slip and stacking fault formation in single crystals amenable to determination via atomistic or ab initio methods in the spirit of computational material design. The current approach is based in particular on periodic microelasticity (Wang and Jin, 2001; Bulatov and Cai, 2006; Wang and Li, 2010) to model the strongly non-local elastic interaction of dislocation lines via their (residual) strain fields. These strain fields depend in turn on phase fields which are used to parameterize the energy stored in dislocation lines and stacking faults. This energy storage is modeled here with the help of the "interface" energy concept and model of Cahn and Hilliard (1958) (see also Allen and Cahn, 1979; Wang and Li, 2010). In particular, the "homogeneous" part of this energy is related to the "rigid" (i.e., purely translational) part of the displacement of atoms across the slip plane, while the "gradient" part accounts for energy storage in those regions near the slip plane where atomic displacements deviate from being rigid, e.g., in the dislocation core. Via the attendant global energy scaling, the interface energy model facilitates an atomistic determination of the entire phase field energy as an optimal approximation of the (exact) atomistic energy; no adjustable parameters remain. For simplicity, an interatomic potential and molecular statics are employed for this purpose here; alternatively, ab initio (i.e., DFT-based) methods can be used. To illustrate the current approach, it is applied to determine the phase field free energy for fcc aluminum and copper. The identified models are then applied to modeling of dislocation dissociation, stacking fault formation, glide and dislocation reactions in these materials. As well, the tensile loading of a dislocation loop is considered. In the process, the current thermodynamic picture is compared with the classical mechanical one as based on the Peach-Köhler force.

  3. Direct measurement of critical resolved shear stress of prismatic and basal slip in polycrystalline Ti using high energy X-ray diffraction microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, L.; Zheng, Z.; Phukan, H.

    Knowledge of the critical resolved shear stress (CRSS) values of different slip modes is important for accurately modeling plastic deformation of hexagonal materials. Here, we demonstrate that CRSS can be directly measured with an in-situ high energy X-ray diffraction microscopy (HEDM) experiment. A commercially pure Ti tensile specimen was deformed up to 2.6% strain. In-situ far-field HEDM experiments were carried out to track the evolution of crystallographic orientations, centers of masses, and stress states of 1153 grains in a material volume of 1.1mm×1mm×1mm. Predominant prismatic slip was identified in 18 grains, where the orientation change occurred primarily by rotation aroundmore » the c-axis during specimen deformation. By analyzing the resolved shear stress on individual slip systems, the estimated CRSS for prismatic slip is 96±18 MPa. Predominant basal slip was identified in 22 other grains, where the 2 orientation change occurred primarily by tilting the c-axis about an axis in the basal plane. The estimated CRSS for basal slip is 127±33 MPa. The ratio of CRSS basal/CRSS prismatic is in the range of 1.7-2.1. From indirect assessment, the CRSS for pyramidal < c+a > slip is likely greater than 240MPa. Lastly, grain size and free surface effects on the CRSS value in different grains are also examined.« less

  4. The co-seismic slip distribution of the Landers earthquake

    USGS Publications Warehouse

    Freymueller, J.; King, N.E.; Segall, P.

    1994-01-01

    We derived a model for the co-seismic slip distribution on the faults which ruptured during the Landers earthquake sequence of 28 June 1992. The model is based on the inversion of surface geodetic measurements, primarily vector displacements measured using the Global Positioning System (GPS). The inversion procedure assumes that the slip distribution is to some extent smooth and purely right-lateral strike slip. For a given fault geometry, a family of solutions of varying smoothness can be generated.We choose the optimal model from this family based on cross-validation, which measures the predictive power of the data, and the trade-off of misfit and roughness. Solutions which give roughly equal weight to misfit and smoothness are preferred and have certain features in common: (1) there are two main patches of slip, on the Johnson Valley fault, and on the Homestead Valley, Emerson, and Camp Rock faults; (2) virtually all slip is in the upper 10 to 12 km; and (3) the model reproduces the general features of the geologically measured surface displacements, without prior constraints on the surface slip. In all models, regardless of smoothing, very little slip is required on the fault that represents the Big Bear event, and the total moment of the Landers event is 9 · 1019 N-m. The nearly simultaneous rupture of multiple distinct faults suggests that much of the crust in this region must have been close to failure prior to the earthquake.

  5. Rupture Characteristics of the 25 November 2016 Aketao Earthquake ( M w 6.6) in Eastern Pamir Revealed by GPS and Teleseismic Data

    NASA Astrophysics Data System (ADS)

    Li, Jie; Liu, Gang; Qiao, Xuejun; Xiong, Wei; Wang, Xiaoqiang; Liu, Daiqin; Sun, Jianing; Yushan, Ailixiati; Yusan, Sulitan; Fang, Wei; Wang, Qi

    2018-02-01

    The 25 November 2016 Aketao, Xinjiang earthquake occurred on the northeastern margin of the Pamir plateau, rupturing the Muji fault on the northern segment of the Kongur Extensional System. We collected coseismic offsets at 7 GPS sites, which show that the fault experienced significate dextral slip with a near-field geodetic displacement of up to 12 cm along the strike. The joint inversion of GPS data and teleseismic P waveforms suggests a complex rupture pattern characterized by the unilateral propagation slip from the epicenter to the southeast for 60 km with a total seismic moment of 1.3 × 1019 Nm, corresponding to a magnitude of M w 6.7 earthquake. Our model of slip distribution shows two major slip patches with a slip amplitude up to 0.6 m, one located at shallow depths of 0-8 km close to the hypocenter with apparent surface breaks and the other, 40 km to the southeast, buried at a greater depth of 12 km. The rupture is dominated by a right-lateral strike slip with significant normal-slip components. The near-field GPS data enhances the spatial resolution of source model. Based on the preferred slip model, the static Coulomb Failure Stress change caused by 2016 Aketao earthquake suggests that the unzipped western and eastern ends of Muji fault and the northern segment of Kungai Fault are significantly promoted.

  6. Direct measurement of critical resolved shear stress of prismatic and basal slip in polycrystalline Ti using high energy X-ray diffraction microscopy

    DOE PAGES

    Wang, L.; Zheng, Z.; Phukan, H.; ...

    2017-05-07

    Knowledge of the critical resolved shear stress (CRSS) values of different slip modes is important for accurately modeling plastic deformation of hexagonal materials. Here, we demonstrate that CRSS can be directly measured with an in-situ high energy X-ray diffraction microscopy (HEDM) experiment. A commercially pure Ti tensile specimen was deformed up to 2.6% strain. In-situ far-field HEDM experiments were carried out to track the evolution of crystallographic orientations, centers of masses, and stress states of 1153 grains in a material volume of 1.1mm×1mm×1mm. Predominant prismatic slip was identified in 18 grains, where the orientation change occurred primarily by rotation aroundmore » the c-axis during specimen deformation. By analyzing the resolved shear stress on individual slip systems, the estimated CRSS for prismatic slip is 96±18 MPa. Predominant basal slip was identified in 22 other grains, where the 2 orientation change occurred primarily by tilting the c-axis about an axis in the basal plane. The estimated CRSS for basal slip is 127±33 MPa. The ratio of CRSS basal/CRSS prismatic is in the range of 1.7-2.1. From indirect assessment, the CRSS for pyramidal < c+a > slip is likely greater than 240MPa. Lastly, grain size and free surface effects on the CRSS value in different grains are also examined.« less

  7. Hunting for shallow slow-slip events at Cascadia

    NASA Astrophysics Data System (ADS)

    Tan, Y. J.; Bletery, Q.; Fan, W.; Janiszewski, H. A.; Lynch, E.; McCormack, K. A.; Phillips, N. J.; Rousset, B.; Seyler, C.; French, M. E.; Gaherty, J. B.; Regalla, C.

    2017-12-01

    The discovery of slow earthquakes at subduction zones is one of the major breakthroughs of Earth science in the last two decades. Slow earthquakes involve a wide spectrum of fault slip behaviors and seismic radiation patterns, such as tremor, low-frequency earthquakes, and slow-slip events. The last of these are particularly interesting due to their large moment releases accompanied by minimal ground shaking. Slow-slip events have been reported at various subduction zones ; most of these slow-slip events are located down-dip of the megathrust seismogenic zone, while a few up-dip cases have recently been observed at Nankai and New Zealand. Up-dip slow-slip events illuminate the structure of faulting environments and rupture mechanisms of tsunami earthquakes. Their possible presence and location at a particular subduction zone can help assess earthquake and tsunami hazard for that region. However, their typical location distant from the coast requires the development of techniques using offshore instrumentation. Here, we investigate the absolute pressure gauges (APG) of the Cascadia Initiative, a four year amphibious seismic experiment, to search for possible shallow up-dip slow-slip events in the Cascadia subduction zone. These instruments are collocated with ocean bottom seismometers (OBS) and located close to buoys and onshore GPS stations, offering the opportunity to investigate the utility of multiple datasets. Ultimately, we aim to develop a protocol to analyze APG data for offshore shallow slow-slip event detections and quantify uncertainties, with direct applications to understanding the up-dip subduction interface system in Cascadia.

  8. Simulation and modelling of slip flow over surfaces grafted with polymer brushes and glycocalyx fibres

    PubMed Central

    Deng, Mingge; Li, Xuejin; Liang, Haojun; Caswell, Bruce; Karniadakis, George Em

    2013-01-01

    Fabrication of functionalized surfaces using polymer brushes is a relatively simple process and parallels the presence of glycocalyx filaments coating the luminal surface of our vasculature. In this paper, we perform atomistic-like simulations based on dissipative particle dynamics (DPD) to study both polymer brushes and glycocalyx filaments subject to shear flow, and we apply mean-field theory to extract useful scaling arguments on their response. For polymer brushes, a weak shear flow has no effect on the brush density profile or its height, while the slip length is independent of the shear rate and is of the order of the brush mesh size as a result of screening by hydrodynamic interactions. However, for strong shear flow, the polymer brush is penetrated deeper and is deformed, with a corresponding decrease of the brush height and an increase of the slip length. The transition from the weak to the strong shear regime can be described by a simple ‘blob’ argument, leading to the scaling γ̇0 ∝ σ3/2, where γ̇0 is the critical transition shear rate and σ is the grafting density. Furthermore, in the strong shear regime, we observe a cyclic dynamic motion of individual polymers, causing a reversal in the direction of surface flow. To study the glycocalyx layer, we first assume a homogeneous flow that ignores the discrete effects of blood cells, and we simulate microchannel flows at different flow rates. Surprisingly, we find that, at low Reynolds number, the slip length decreases with the mean flow velocity, unlike the behaviour of polymer brushes, for which the slip length remains constant under similar conditions. (The slip length and brush height are measured with respect to polymer mesh size and polymer contour length, respectively.) We also performed additional DPD simulations of blood flow in a tube with walls having a glycocalyx layer and with the deformable red blood cells modelled accurately at the spectrin level. In this case, a plasma cell-free layer is formed, with thickness more than three times the glycocalyx layer. We then find our scaling arguments based on the homogeneous flow assumption to be valid for this physiologically correct case as well. Taken together, our findings point to the opposing roles of conformational entropy and bending rigidity – dominant effects for the brush and glycocalyx, respectively – which, in turn, lead to different flow characteristics, despite the apparent similarity of the two systems. PMID:24353347

  9. Ship Design Manager (SDM) and Systems Integration Manager (SIM) Manual

    DTIC Science & Technology

    2012-02-13

    RR-3 Figure UU-1. Causes of Schedule Slips Reported by Shipbuilders (percentage) (Arena et.al. 2005) ......... UU-8...tracking system will be of great benefit to an SDM by not letting things “ slip between the cracks.” Even simple methods like Excel spreadsheets or MS...many reasons, including the selection of a specific diesel engine or gas turbine . Propulsor Tests  Evaluating wake characteristics of the hull to

  10. Interactive multimedia demonstrations for teaching fluid dynamics

    NASA Astrophysics Data System (ADS)

    Rowley, Clarence

    2008-11-01

    We present a number of multimedia tools, developed by undergraduates, for teaching concepts from introductory fluid mechanics. Short movies are presented, illustrating concepts such as hydrostatic pressure, the no-slip condition, boundary layers, and surface tension. In addition, we present a number of interactive demonstrations, which allow the user to interact with a simple model of a given concept via a web browser, and compare with experimental data. In collaboration with Mack Pasqual and Lindsey Brown, Princeton University.

  11. Study on the Evaluation Method for Fault Displacement: Probabilistic Approach Based on Japanese Earthquake Rupture Data - Principal fault displacements -

    NASA Astrophysics Data System (ADS)

    Kitada, N.; Inoue, N.; Tonagi, M.

    2016-12-01

    The purpose of Probabilistic Fault Displacement Hazard Analysis (PFDHA) is estimate fault displacement values and its extent of the impact. There are two types of fault displacement related to the earthquake fault: principal fault displacement and distributed fault displacement. Distributed fault displacement should be evaluated in important facilities, such as Nuclear Installations. PFDHA estimates principal fault and distributed fault displacement. For estimation, PFDHA uses distance-displacement functions, which are constructed from field measurement data. We constructed slip distance relation of principal fault displacement based on Japanese strike and reverse slip earthquakes in order to apply to Japan area that of subduction field. However, observed displacement data are sparse, especially reverse faults. Takao et al. (2013) tried to estimate the relation using all type fault systems (reverse fault and strike slip fault). After Takao et al. (2013), several inland earthquakes were occurred in Japan, so in this time, we try to estimate distance-displacement functions each strike slip fault type and reverse fault type especially add new fault displacement data set. To normalized slip function data, several criteria were provided by several researchers. We normalized principal fault displacement data based on several methods and compared slip-distance functions. The normalized by total length of Japanese reverse fault data did not show particular trend slip distance relation. In the case of segmented data, the slip-distance relationship indicated similar trend as strike slip faults. We will also discuss the relation between principal fault displacement distributions with source fault character. According to slip distribution function (Petersen et al., 2011), strike slip fault type shows the ratio of normalized displacement are decreased toward to the edge of fault. However, the data set of Japanese strike slip fault data not so decrease in the end of the fault. This result indicates that the fault displacement is difficult to appear at the edge of the fault displacement in Japan. This research was part of the 2014-2015 research project `Development of evaluating method for fault displacement` by the Secretariat of Nuclear Regulation Authority (NRA), Japan.

  12. Major strike-slip faulting along the tectonic boundary between East and West Antarctica: implications for early Gondwana break-up and Jurassic granitic magma emplacement

    NASA Astrophysics Data System (ADS)

    Jordan, T. A.; Ferraccioli, F.; Anderson, L.; Ross, N.; Corr, H.; Leat, P. T.; Bingham, R.; Rippin, D. M.; Le Brocq, A. M.; Siegert, M. J.

    2013-12-01

    The fragmentation of the Gondwana supercontinent began with continental rifting between the Weddell Sea region of Antarctica and South Africa during the Jurassic. This initial Jurassic phase of continental rifting is critical for understanding the process that initiated supercontinent breakup and dispersal, including the role of mantle plumes and major intracrustal tectonic structures. However, due to the remote location and blanketing ice sheets, the tectonic and magmatic evolution of the Weddell Sea Sector of Antarctica has remained relatively poorly understood. Our recent aeromagnetic and airborne gravity investigations have revealed the inland extent of the Weddell Sea Rift system beneath the West Antarctic Ice Sheet, and indicate the presence of a major left-lateral strike slip fault system separating the Ellsworth Whitmore block (a possible exotic microcontinent derived from the Natal Embayment, or the Shackleton Range region of East Antarctica) from East Antarctica (Jordan et al., 2013 Tectonophysics). In this study we use GPlates plate-tectonic reconstruction software to start evaluating the influence of strike-slip faulting between East and West Antarctica on Gondwana breakup models. Specifically, we investigate the possibility of poly-phase motion along the fault system and explore scenarios involving more diffuse strike slip faulting extending into the interior of East Antarctica in the hinterland of the Transantarctic Mountains. Our preliminary models suggest that there may be a link between the prominent step in the flank of the later Cretaceous-Cenozoic West Antarctic Rift System (at the southern end of Ellsworth-Whitmore Block) and the earlier Jurassic Weddell Sea rift system. Additionally, we present preliminary joint 3D magnetic and gravity models to investigate the crustal architecture of the proposed strike-slip fault system and assess its influence on the emplacement of voluminous Jurassic granitic magmatism along the boundary of the Ellsworth-Whitmore block.

  13. Geodetic Imaging of the Earthquake Cycle

    NASA Astrophysics Data System (ADS)

    Tong, Xiaopeng

    In this dissertation I used Interferometric Synthetic Aperture Radar (InSAR) and Global Positioning System (GPS) to recover crustal deformation caused by earthquake cycle processes. The studied areas span three different types of tectonic boundaries: a continental thrust earthquake (M7.9 Wenchuan, China) at the eastern margin of the Tibet plateau, a mega-thrust earthquake (M8.8 Maule, Chile) at the Chile subduction zone, and the interseismic deformation of the San Andreas Fault System (SAFS). A new L-band radar onboard a Japanese satellite ALOS allows us to image high-resolution surface deformation in vegetated areas, which is not possible with older C-band radar systems. In particular, both the Wenchuan and Maule InSAR analyses involved L-band ScanSAR interferometry which had not been attempted before. I integrated a large InSAR dataset with dense GPS networks over the entire SAFS. The integration approach features combining the long-wavelength deformation from GPS with the short-wavelength deformation from InSAR through a physical model. The recovered fine-scale surface deformation leads us to better understand the underlying earthquake cycle processes. The geodetic slip inversion reveals that the fault slip of the Wenchuan earthquake is maximum near the surface and decreases with depth. The coseismic slip model of the Maule earthquake constrains the down-dip extent of the fault slip to be at 45 km depth, similar to the Moho depth. I inverted for the slip rate on 51 major faults of the SAFS using Green's functions for a 3-dimensional earthquake cycle model that includes kinematically prescribed slip events for the past earthquakes since the year 1000. A 60 km thick plate model with effective viscosity of 10 19 Pa · s is preferred based on the geodetic and geological observations. The slip rates recovered from the plate models are compared to the half-space model. The InSAR observation reveals that the creeping section of the SAFS is partially locked. This high-resolution deformation model will refine the moment accumulation rates and shear strain rates, which are not well resolved by previous models.

  14. Experimental deformation of (Mg,Fe)O ferropericlase in a resistive-heated DAC at conditions of the Earth's lower mantle

    NASA Astrophysics Data System (ADS)

    Immoor, J.; Marquardt, H.; Miyagi, L. M.; Lin, F.; Speziale, S.; Merkel, S.; Liermann, H. P.

    2017-12-01

    Seismic anisotropy in Earth's lowermost mantle, resulting from crystallographic preferred orientation (CPO) of elastically anisotropic minerals, is the most promising observable to map mantle flow patterns. The shear wave anisotropy observed in the lowermost mantle might be caused by CPO of (Mg,Fe)O ferropericlase that is characterized by large elastic anisotropy in the deep lower mantle. However, our understanding of the slip system activities of ferropericlase at conditions of the lowermost mantle is still incomplete. Here, we present results of an experimental study designed to determine slip system activities in (Mg,Fe)O at P-T conditions of the lower mantle. In-situ deformation experiments on powders of (Mg0.8Fe0.2)O were conducted in a graphite heated diamond anvil cell (DAC) up to a temperature of 1400K. Synchrotron x-ray diffraction data were fit with the program MAUD (Materials Analysing Using Diffraction) to extract textures and lattice strains. The experimental results were modelled using the Elasto-Viscoplastic Self Consistent (EVPSC) code. Our data indicate a change in slip system activities from dominant {110} to increasing {100} slip at temperatures above 1150 K and pressures corresponding to the mid-lower mantle. Our findings indicate an effect of both pressure and temperature on the plasticity of (Mg,Fe)O and, hence, pave the way to a better understanding of with a potential change of dominant slip system between 40-60 GPa in MgO predicted from numerical models (Amodeo et al., 2012). We use the results to model the possible contribution of ferropericlase CPO to observed seismic anisotropy in the D'' layer in the lowermost mantle. Amodeo et al. (2012) Phil Mag, 92, 1523-1541

  15. Triggered tremor sweet spots in Alaska

    NASA Astrophysics Data System (ADS)

    Gomberg, Joan; Prejean, Stephanie

    2013-12-01

    To better understand what controls fault slip along plate boundaries, we have exploited the abundance of seismic and geodetic data available from the richly varied tectonic environments composing Alaska. A search for tremor triggered by 11 large earthquakes throughout all of seismically monitored Alaska reveals two tremor "sweet spots"—regions where large-amplitude seismic waves repeatedly triggered tremor between 2006 and 2012. The two sweet spots locate in very different tectonic environments—one just trenchward and between the Aleutian islands of Unalaska and Akutan and the other in central mainland Alaska. The Unalaska/Akutan spot corroborates previous evidence that the region is ripe for tremor, perhaps because it is located where plate-interface frictional properties transition between stick-slip and stably sliding in both the dip direction and laterally. The mainland sweet spot coincides with a region of complex and uncertain plate interactions, and where no slow slip events or major crustal faults have been noted previously. Analyses showed that larger triggering wave amplitudes, and perhaps lower frequencies (< 0.03 Hz), may enhance the probability of triggering tremor. However, neither the maximum amplitude in the time domain or in a particular frequency band, nor the geometric relationship of the wavefield to the tremor source faults alone ensures a high probability of triggering. Triggered tremor at the two sweet spots also does not occur during slow slip events visually detectable in GPS data, although slow slip below the detection threshold may have facilitated tremor triggering.

  16. Triggered tremor sweet spots in Alaska

    USGS Publications Warehouse

    Gomberg, Joan; Prejean, Stephanie

    2013-01-01

    To better understand what controls fault slip along plate boundaries, we have exploited the abundance of seismic and geodetic data available from the richly varied tectonic environments composing Alaska. A search for tremor triggered by 11 large earthquakes throughout all of seismically monitored Alaska reveals two tremor “sweet spots”—regions where large-amplitude seismic waves repeatedly triggered tremor between 2006 and 2012. The two sweet spots locate in very different tectonic environments—one just trenchward and between the Aleutian islands of Unalaska and Akutan and the other in central mainland Alaska. The Unalaska/Akutan spot corroborates previous evidence that the region is ripe for tremor, perhaps because it is located where plate-interface frictional properties transition between stick-slip and stably sliding in both the dip direction and laterally. The mainland sweet spot coincides with a region of complex and uncertain plate interactions, and where no slow slip events or major crustal faults have been noted previously. Analyses showed that larger triggering wave amplitudes, and perhaps lower frequencies (<~0.03 Hz), may enhance the probability of triggering tremor. However, neither the maximum amplitude in the time domain or in a particular frequency band, nor the geometric relationship of the wavefield to the tremor source faults alone ensures a high probability of triggering. Triggered tremor at the two sweet spots also does not occur during slow slip events visually detectable in GPS data, although slow slip below the detection threshold may have facilitated tremor triggering.

  17. Revealing the cluster of slow transients behind a large slow slip event.

    PubMed

    Frank, William B; Rousset, Baptiste; Lasserre, Cécile; Campillo, Michel

    2018-05-01

    Capable of reaching similar magnitudes to large megathrust earthquakes [ M w (moment magnitude) > 7], slow slip events play a major role in accommodating tectonic motion on plate boundaries through predominantly aseismic rupture. We demonstrate here that large slow slip events are a cluster of short-duration slow transients. Using a dense catalog of low-frequency earthquakes as a guide, we investigate the M w 7.5 slow slip event that occurred in 2006 along the subduction interface 40 km beneath Guerrero, Mexico. We show that while the long-period surface displacement, as recorded by Global Positioning System, suggests a 6-month duration, the motion in the direction of tectonic release only sporadically occurs over 55 days, and its surface signature is attenuated by rapid relocking of the plate interface. Our proposed description of slow slip as a cluster of slow transients forces us to re-evaluate our understanding of the physics and scaling of slow earthquakes.

  18. Human mismatch repair protein hMutLα is required to repair short slipped-DNAs of trinucleotide repeats.

    PubMed

    Panigrahi, Gagan B; Slean, Meghan M; Simard, Jodie P; Pearson, Christopher E

    2012-12-07

    Mismatch repair (MMR) is required for proper maintenance of the genome by protecting against mutations. The mismatch repair system has also been implicated as a driver of certain mutations, including disease-associated trinucleotide repeat instability. We recently revealed a requirement of hMutSβ in the repair of short slip-outs containing a single CTG repeat unit (1). The involvement of other MMR proteins in short trinucleotide repeat slip-out repair is unknown. Here we show that hMutLα is required for the highly efficient in vitro repair of single CTG repeat slip-outs, to the same degree as hMutSβ. HEK293T cell extracts, deficient in hMLH1, are unable to process single-repeat slip-outs, but are functional when complemented with hMutLα. The MMR-deficient hMLH1 mutant, T117M, which has a point mutation proximal to the ATP-binding domain, is defective in slip-out repair, further supporting a requirement for hMLH1 in the processing of short slip-outs and possibly the involvement of hMHL1 ATPase activity. Extracts of hPMS2-deficient HEC-1-A cells, which express hMLH1, hMLH3, and hPMS1, are only functional when complemented with hMutLα, indicating that neither hMutLβ nor hMutLγ is sufficient to repair short slip-outs. The resolution of clustered short slip-outs, which are poorly repaired, was partially dependent upon a functional hMutLα. The joint involvement of hMutSβ and hMutLα suggests that repeat instability may be the result of aberrant outcomes of repair attempts.

  19. Fold and thrust partitioning in a contracting fold belt: Insights from the 1931 Mach earthquake in Baluchistan

    NASA Astrophysics Data System (ADS)

    Szeliga, Walter; Bilham, Roger; Schelling, Daniel; Kakar, Din Mohamed; Lodi, Sarosh

    2009-10-01

    Surface deformation associated with the 27 August 1931 earthquake near Mach in Baluchistan is quantified from spirit-leveling data and from detailed structural sections of the region interpreted from seismic reflection data constrained by numerous well logs. Mean slip on the west dipping Dezghat/Bannh fault system amounted to 1.2 m on a 42 km × 72 km thrust plane with slip locally attaining 3.2 m up dip of an inferred locking line at ˜9 km depth. Slip also occurred at depths below the interseismic locking line. In contrast, negligible slip occurred in the 4 km near the interseismic locking line. The absence of slip here in the 4 years following the earthquake suggests that elastic energy there must either dissipate slowly in the interseismic cycle, or that a slip deficit remains, pending its release in a large future earthquake. Elastic models of the earthquake cycle in this fold and thrust belt suggest that slip on the frontal thrust fault is reduced by a factor of 2 to 8 compared to that anticipated from convergence of the hinterland, a partitioning process that is presumably responsible for thickening of the fold and thrust belt at the expense of slip on the frontal thrust. Near the latitude of Quetta, GPS measurements indicate that convergence is ˜5 mm/yr. Hence the minimum renewal time between earthquakes with 1.2-m mean displacement should be as little as 240 years. However, when the partitioning of fold belt convergence to frontal thrust slip is taken into account the minimum renewal time may exceed 2000 years.

  20. A viscoplastic shear-zone model for deep (15-50 km) slow-slip events at plate convergent margins

    NASA Astrophysics Data System (ADS)

    Yin, An; Xie, Zhoumin; Meng, Lingsen

    2018-06-01

    A key issue in understanding the physics of deep (15-50 km) slow-slip events (D-SSE) at plate convergent margins is how their initially unstable motion becomes stabilized. Here we address this issue by quantifying a rate-strengthening mechanism using a viscoplastic shear-zone model inspired by recent advances in field observations and laboratory experiments. The well-established segmentation of slip modes in the downdip direction of a subduction shear zone allows discretization of an interseismic forearc system into the (1) frontal segment bounded by an interseismically locked megathrust, (2) middle segment bounded by episodically locked and unlocked viscoplastic shear zone, and (3) interior segment that slips freely. The three segments are assumed to be linked laterally by two springs that tighten with time, and the increasing elastic stress due to spring tightening eventually leads to plastic failure and initial viscous shear. This simplification leads to seven key model parameters that dictate a wide range of mechanical behaviors of an idealized convergent margin. Specifically, the viscoplastic rheology requires the initially unstable sliding to be terminated nearly instantaneously at a characteristic velocity, which is followed by stable sliding (i.e., slow-slip). The characteristic velocity, which is on the order of <10-7 m/s for the convergent margins examined in this study, depends on the (1) effective coefficient of friction, (2) thickness, (3) depth, and (4) viscosity of the viscoplastic shear zone. As viscosity decreases exponentially with temperature, our model predicts faster slow-slip rates, shorter slow-slip durations, more frequent slow-slip occurrences, and larger slow-slip magnitudes at warmer convergent margins.

  1. On the use of imaginary faults in palaeostress analysis

    NASA Astrophysics Data System (ADS)

    Shan, Yehua; Liang, Xinquan

    2017-11-01

    The imaginary fault refers to the counterpart of a certain given fault that has a similar expression about the Wallace-Bott hypothesis. It is included to further reduce the feasible fields for the principal stress directions using the right dihedra method. The given fault and its imaginary fault have a similar dip-slip sense under the extensional or compressional regime but, as proved in this paper, a different dip-slip sense under the strike-slip regime. Their relation in dip-slip sense does no change with the rotation of the coordinate system, thus making possible the general use in the reduction of the imaginary faults under any tectonic regime. A procedure for this use is proposed and applied to a real example to demonstrate the feasibility of this method.

  2. Seismotectonics and fault structure of the California Central Coast

    USGS Publications Warehouse

    Hardebeck, Jeanne L.

    2010-01-01

    I present and interpret new earthquake relocations and focal mechanisms for the California Central Coast. The relocations improve upon catalog locations by using 3D seismic velocity models to account for lateral variations in structure and by using relative arrival times from waveform cross-correlation and double-difference methods to image seismicity features more sharply. Focal mechanisms are computed using ray tracing in the 3D velocity models. Seismicity alignments on the Hosgri fault confirm that it is vertical down to at least 12 km depth, and the focal mechanisms are consistent with right-lateral strike-slip motion on a vertical fault. A prominent, newly observed feature is an ~25 km long linear trend of seismicity running just offshore and parallel to the coastline in the region of Point Buchon, informally named the Shoreline fault. This seismicity trend is accompanied by a linear magnetic anomaly, and both the seismicity and the magnetic anomaly end where they obliquely meet the Hosgri fault. Focal mechanisms indicate that the Shoreline fault is a vertical strike-slip fault. Several seismicity lineations with vertical strike-slip mechanisms are observed in Estero Bay. Events greater than about 10 km depth in Estero Bay, however, exhibit reverse-faulting mechanisms, perhaps reflecting slip at the top of the remnant subducted slab. Strike-slip mechanisms are observed offshore along the Hosgri–San Simeon fault system and onshore along the West Huasna and Rinconada faults, while reverse mechanisms are generally confined to the region between these two systems. This suggests a model in which the reverse faulting is primarily due to restraining left-transfer of right-lateral slip.

  3. Finite element modeling of a shaking table test to evaluate the dynamic behaviour of a soil-foundation system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abate, G.; Massimino, M. R.; Maugeri, M.

    The deep investigation of soil-foundation interaction behaviour during earthquakes represent one of the key-point for a right seismic design of structures, which can really behave well during earthquake, avoiding dangerous boundary conditions, such as weak foundations supporting the superstructures. The paper presents the results of the FEM modeling of a shaking table test involving a concrete shallow foundation resting on a Leighton Buzzard sand deposit. The numerical simulation is performed using a cap-hardening elasto-plastic constitutive model for the soil and specific soil-foundation contacts to allow slipping and up-lifting phenomena. Thanks to the comparison between experimental and numerical results, the powermore » and the limits of the proposed numerical model are focused. Some aspects of the dynamic soil-foundation interaction are also pointed out.« less

  4. Stochastic dynamic modeling of regular and slow earthquakes

    NASA Astrophysics Data System (ADS)

    Aso, N.; Ando, R.; Ide, S.

    2017-12-01

    Both regular and slow earthquakes are slip phenomena on plate boundaries and are simulated by a (quasi-)dynamic modeling [Liu and Rice, 2005]. In these numerical simulations, spatial heterogeneity is usually considered not only for explaining real physical properties but also for evaluating the stability of the calculations or the sensitivity of the results on the condition. However, even though we discretize the model space with small grids, heterogeneity at smaller scales than the grid size is not considered in the models with deterministic governing equations. To evaluate the effect of heterogeneity at the smaller scales we need to consider stochastic interactions between slip and stress in a dynamic modeling. Tidal stress is known to trigger or affect both regular and slow earthquakes [Yabe et al., 2015; Ide et al., 2016], and such an external force with fluctuation can also be considered as a stochastic external force. A healing process of faults may also be stochastic, so we introduce stochastic friction law. In the present study, we propose a stochastic dynamic model to explain both regular and slow earthquakes. We solve mode III problem, which corresponds to the rupture propagation along the strike direction. We use BIEM (boundary integral equation method) scheme to simulate slip evolution, but we add stochastic perturbations in the governing equations, which is usually written in a deterministic manner. As the simplest type of perturbations, we adopt Gaussian deviations in the formulation of the slip-stress kernel, external force, and friction. By increasing the amplitude of perturbations of the slip-stress kernel, we reproduce complicated rupture process of regular earthquakes including unilateral and bilateral ruptures. By perturbing external force, we reproduce slow rupture propagation at a scale of km/day. The slow propagation generated by a combination of fast interaction at S-wave velocity is analogous to the kinetic theory of gasses: thermal diffusion appears much slower than the particle velocity of each molecule. The concept of stochastic triggering originates in the Brownian walk model [Ide, 2008], and the present study introduces the stochastic dynamics into dynamic simulations. The stochastic dynamic model has the potential to explain both regular and slow earthquakes more realistically.

  5. Strain rate dependent activation of slip systems in calcite marbles from Syros (Cyclades, Greece)

    NASA Astrophysics Data System (ADS)

    Rogowitz, Anna; Grasemann, Bernhard; Morales, Luiz F. G.; Huet, Benjamin; White, Joseph C.

    2017-04-01

    The activation of certain slip systems in calcite has been experimentally proven to be highly temperature dependent, but also the strain rate plays an important role on the activation of the dominant slip system. In this study, observations from a flanking structure (i.e. shear zone) that developed under lower greenschist-facies conditions, in an almost pure calcite marble (Syros Island, Greece) are presented. The shear zone is characterized by a strain gradient from the slightly deformed tips (γ ˜ 50) to the highly strained centre (γ up to 1000) while the host rock is moderately deformed (γ ˜ 3). During the shear zone development, the strain gradient coincided with a strain rate gradient with strain rate varying from 10-13 to 10-9 s-1. The studied outcrop thus represents the final state of a natural experiment and gives us a great opportunity to get natural constraints on strain rate dependent mechanical behaviour in a calcite marble. Detailed microstructural analyses have been performed via optical microscopy, electron microscopy, electron backscatter diffraction mapping and transmission electron microscopy, on samples from the highly strained shear zone and the host rock. The analyses show that the calcite microfabric varies depending on position within the shear zone, indicating activation of different deformation, recrystallization mechanisms and slip systems at different strain rates. Up to strain rates of ˜10-10 s-1 the marble deformed exclusively within the dislocation creep field, showing a change in recrystallization mechanism and dominant active slip system. While the marble preferentially recrystallized by grain boundary migration at relatively low strain rates (˜10-13 s-1), subgrain rotation recrystallization seems to be the dominant mechanism at higher strain rates (˜10-12 to 10-10 s-1). At higher strain rates (˜10-9 s-1), the recrystallization mechanism is bulging, resulting in the development of an extremely fine grained ultramylonite (average grain size ˜3 μm) accompanied by a switch in deformation mechanism from dislocation creep to a combined deformation by grain boundary sliding and dislocation activity. Constraints on dominant active slip system depending on deformation strain rate have been made by a combination of misorientation analyses and viscoplastic self-consistent modelling.

  6. Direct-path acoustic ranging across the Japan Trench axis, Adjacent to the Large Shallow Thrusting in the 2011 Tohoku-Oki earthquake

    NASA Astrophysics Data System (ADS)

    Osada, Y.; Kido, M.; Ito, Y.; Iinuma, T.; Fujimoto, H.; Hino, R.

    2014-12-01

    Seafloor geodetic data, i.e. GPS/acoustic measurement and continuous seafloor pressure monitoring, brought important evidences showing that the 2011 Tohoku-oki earthquake (Mw 9.0) caused huge (> 50 m) coseismic slip near the Japan Trench. The postseismic behavior of the large slipped area is required to clarify to understand why large amount seismic slip could occur there. We started making direct-path acoustic ranging across the trench axis to reveal the convergence rate between the subducting Pacific and overriding continental plates. We expect the change of the baseline length across the trench axis, the plate boundary, reflects the slip rate at the shallow megathrust, which is difficult to estimate only from other geodetic observations largely affected by intraplate deformation caused by the postseismic viscoelastic relaxation process.  To this end, we developed an ultra-deep seafloor acoustic ranging system. Our previous ranging systems have been designed to measure baseline length ~ 1 km and to be deployed up to 7,000 m water-depth (Osada et al., 2008, 2012). In order to realize the measurement across the Japan Trench, we improved this system to enhance range of acoustic ranging as well as operational depth of instruments. The improved system was designed to allow acoustic ranging up to 3 km and to be durable under the high-pressure equivalent to water depth of 9,000 m. In May 2013, we carried out a test deployment of the new ranging system. The system is composed of three seafloor instruments equipped with precision transponder (PXPs). Two of the PXPs were set on the landward slope of the Japan Trench, where large coseismic slip happened in 2011. Another PXP was deployed on the seaward side of the trench so that the baseline change associated with the slip on the plate boundary fault, if any, can be detected. Continuous records of baseline lengths were successfully obtained for four months. The repeatability of the distance measurements was about 20 mm for each of the two baselines. Although the duration of the observation was not long enough to estimate precise rate of baseline length changes, it is unlikely that the shortening rates of the baseline lengths exceed the rate of plate convergence (~ 8 cm/a). The results do not support occurrence of evident afterslip along the shallow plate boundary fault in 2013.

  7. Constitutive modeling of superalloy single crystals with verification testing

    NASA Technical Reports Server (NTRS)

    Jordan, Eric; Walker, Kevin P.

    1985-01-01

    The goal is the development of constitutive equations to describe the elevated temperature stress-strain behavior of single crystal turbine blade alloys. The program includes both the development of a suitable model and verification of the model through elevated temperature-torsion testing. A constitutive model is derived from postulated constitutive behavior on individual crystallographic slip systems. The behavior of the entire single crystal is then arrived at by summing up the slip on all the operative crystallographic slip systems. This type of formulation has a number of important advantages, including the prediction orientation dependence and the ability to directly represent the constitutive behavior in terms which metallurgists use in describing the micromechanisms. Here, the model is briefly described, followed by the experimental set-up and some experimental findings to date.

  8. Role of the Kazerun fault system in active deformation of the Zagros fold-and-thrust belt (Iran)

    NASA Astrophysics Data System (ADS)

    Authemayou, Christine; Bellier, Olivier; Chardon, Dominique; Malekzade, Zaman; Abassi, Mohammad

    2005-04-01

    Field structural and SPOT image analyses document the kinematic framework enhancing transfer of strike-slip partitioned motion from along the backstop to the interior of the Zagros fold-and-thrust belt in a context of plate convergence slight obliquity. Transfer occurs by slip on the north-trending right-lateral Kazerun Fault System (KFS) that connects to the Main Recent Fault, a major northwest-trending dextral fault partitioning oblique convergence at the rear of the belt. The KFS formed by three fault zones ended by bent orogen-parallel thrusts allows slip from along the Main Recent Fault to become distributed by transfer to longitudinal thrusts and folds. To cite this article: C. Authemayou et al., C. R. Geoscience 337 (2005).

  9. Puente Hills blind-thrust system, Los Angeles, California

    USGS Publications Warehouse

    Shaw, J.H.; Plesch, A.; Dolan, J.F.; Pratt, T.L.; Fiore, P.

    2002-01-01

    We describe the three-dimensional geometry and Quaternary slip history of the Puente Hills blind-thrust system (PHT) using seismic reflection profiles, petroleum well data, and precisely located seismicity. The PHT generated the 1987 Whittier Narrows (moment magnitude [Mw] 6.0) earthquake and extends for more than 40 km along strike beneath the northern Los Angeles basin. The PHT comprises three, north-dipping ramp segments that are overlain by contractional fault-related folds. Based on an analysis of these folds, we produce Quaternary slip profiles along each ramp segment. The fault geometry and slip patterns indicate that segments of the PHT are related by soft-linkage boundaries, where the fault ramps are en echelon and displacements are gradually transferred from one segment to the next. Average Quaternary slip rates on the ramp segments range from 0.44 to 1.7 mm/yr, with preferred rates between 0.62 and 1.28 mm/yr. Using empirical relations among rupture area, magnitude, and coseismic displacement, we estimate the magnitude and frequency of single (Mw 6.5-6.6) and multisegment (Mw 7.1) rupture scenarios for the PHT.

  10. Ratcheting Strain and Microstructure Evolution of AZ31B Magnesium Alloy under a Tensile-Tensile Cyclic Loading

    PubMed Central

    Wang, Denghui; Wang, Wenxian; Zhou, Jun; He, Xiuli; Dong, Peng; Zhang, Hongxia; Sun, Liyong

    2018-01-01

    In this paper, studies were conducted to investigate the deformation behavior and microstructure change in a hot-rolled AZ31B magnesium alloy during a tensile-tensile cyclic loading. The relationship between ratcheting effect and microstructure change was discussed. The ratcheting effect in the material during current tensile-tensile fatigue loading exceeds the material’s fatigue limit and the development of ratcheting strain in the material experienced three stages: initial sharp increase stage (Stage I); steady stage (Stage II); and final abrupt increase stage (Stage III). Microstructure changes in Stage I and Stage II are mainly caused by activation of basal slip system. The Extra Geometrically Necessary Dislocations (GNDs) were also calculated to discuss the relationship between the dislocation caused by the basal slip system and the ratcheting strain during the cyclic loading. In Stage III, both the basal slip and the {11−20} twins are found active during the crack propagation. The fatigue crack initiation in the AZ31B magnesium alloy is found due to the basal slip and the {11−20} tensile twins. PMID:29597278

  11. Control of FES thumb force using slip information obtained from the cutaneous electroneurogram in quadriplegic man.

    PubMed

    Haugland, M; Lickel, A; Haase, J; Sinkjaer, T

    1999-06-01

    A tetraplegic volunteer was implanted with percutaneous intramuscular electrodes in hand and forearm muscles. Furthermore, a sensory nerve cuff electrode was implanted on the volar digital nerve to the radial side of the index finger branching off the median nerve. In laboratory experiments a stimulation system was used to produce a lateral grasp (key grip) while the neural activity was recorded with the cuff electrode. The nerve signal contained information that could be used to detect the occurrence of slips and further to increase stimulation intensity to the thumb flexor/adductor muscles to stop the slip. Thereby the system provided a grasp that could catch an object if it started to slip due to, e.g., decreasing muscle force or changes in load forces tangential to the surface of the object. This method enabled an automatic adjustment of the stimulation intensity to the lowest possible level without loosing the grip and without any prior knowledge about the strength of the muscles and the weight and surface texture of the object.

  12. Ratcheting Strain and Microstructure Evolution of AZ31B Magnesium Alloy under a Tensile-Tensile Cyclic Loading.

    PubMed

    Yan, Zhifeng; Wang, Denghui; Wang, Wenxian; Zhou, Jun; He, Xiuli; Dong, Peng; Zhang, Hongxia; Sun, Liyong

    2018-03-28

    In this paper, studies were conducted to investigate the deformation behavior and microstructure change in a hot-rolled AZ31B magnesium alloy during a tensile-tensile cyclic loading. The relationship between ratcheting effect and microstructure change was discussed. The ratcheting effect in the material during current tensile-tensile fatigue loading exceeds the material's fatigue limit and the development of ratcheting strain in the material experienced three stages: initial sharp increase stage (Stage I); steady stage (Stage II); and final abrupt increase stage (Stage III). Microstructure changes in Stage I and Stage II are mainly caused by activation of basal slip system. The Extra Geometrically Necessary Dislocations (GNDs) were also calculated to discuss the relationship between the dislocation caused by the basal slip system and the ratcheting strain during the cyclic loading. In Stage III, both the basal slip and the {11-20} twins are found active during the crack propagation. The fatigue crack initiation in the AZ31B magnesium alloy is found due to the basal slip and the {11-20} tensile twins.

  13. Rock friction under variable normal stress

    USGS Publications Warehouse

    Kilgore, Brian D.; Beeler, Nicholas M.; Lozos, Julian C.; Oglesby, David

    2017-01-01

    This study is to determine the detailed response of shear strength and other fault properties to changes in normal stress at room temperature using dry initially bare rock surfaces of granite at normal stresses between 5 and 7 MPa. Rapid normal stress changes result in gradual, approximately exponential changes in shear resistance with fault slip. The characteristic length of the exponential change is similar for both increases and decreases in normal stress. In contrast, changes in fault normal displacement and the amplitude of small high-frequency elastic waves transmitted across the surface follow a two stage response consisting of a large immediate and a smaller gradual response with slip. The characteristic slip distance of the small gradual response is significantly smaller than that of shear resistance. The stability of sliding in response to large step decreases in normal stress is well predicted using the shear resistance slip length observed in step increases. Analysis of the shear resistance and slip-time histories suggest nearly immediate changes in strength occur in response to rapid changes in normal stress; these are manifested as an immediate change in slip speed. These changes in slip speed can be qualitatively accounted for using a rate-independent strength model. Collectively, the observations and model show that acceleration or deceleration in response to normal stress change depends on the size of the change, the frictional characteristics of the fault surface, and the elastic properties of the loading system.

  14. Slip Correction Measurements of Certified PSL Nanoparticles Using a Nanometer Differential Mobility Analyzer (Nano-DMA) for Knudsen Number From 0.5 to 83

    PubMed Central

    Kim, Jung Hyeun; Mulholland, George W.; Kukuck, Scott R.; Pui, David Y. H.

    2005-01-01

    The slip correction factor has been investigated at reduced pressures and high Knudsen number using polystyrene latex (PSL) particles. Nano-differential mobility analyzers (NDMA) were used in determining the slip correction factor by measuring the electrical mobility of 100.7 nm, 269 nm, and 19.90 nm particles as a function of pressure. The aerosol was generated via electrospray to avoid multiplets for the 19.90 nm particles and to reduce the contaminant residue on the particle surface. System pressure was varied down to 8.27 kPa, enabling slip correction measurements for Knudsen numbers as large as 83. A condensation particle counter was modified for low pressure application. The slip correction factor obtained for the three particle sizes is fitted well by the equation: C = 1 + Kn (α + β exp(−γ/Kn)), with α = 1.165, β = 0.483, and γ = 0.997. The first quantitative uncertainty analysis for slip correction measurements was carried out. The expanded relative uncertainty (95 % confidence interval) in measuring slip correction factor was about 2 % for the 100.7 nm SRM particles, about 3 % for the 19.90 nm PSL particles, and about 2.5 % for the 269 nm SRM particles. The major sources of uncertainty are the diameter of particles, the geometric constant associated with NDMA, and the voltage. PMID:27308102

  15. Two long-term slow slip events around Tokyo Bay found by GNSS observation during 1996-2011

    NASA Astrophysics Data System (ADS)

    Tanaka, Yoshiyuki; Yabe, Suguru

    2017-03-01

    Slow slip events (SSEs) with durations ranging from days to more than a decade have been observed in plate subduction zones around the world. In the Kanto district in Japan, several SSEs have been identified based on geodetic observations. However, none of these events have had durations largely exceeding a year. In this study, we show that long-term SSEs with durations longer than 3 years occurred before the year 2000 and after 2007 on the upper interface of the Philippine Sea Plate at depths of 30-40 km. The fault model determined by inversion of global navigation satellite system data is located northeast of Tokyo Bay, where a seismic gap and low seismic wave velocities were detected by seismological observations. Moreover, the acceleration periods of the fault slip corresponded well with increases in the background seismicity for shallower earthquakes. The slip history was also temporally correlated with the long-term shear stress changes governed mainly by non-tidal variations in the ocean bottom pressure. However, the predicted slip from the long-term stress change was too small to reproduce the observed slow slips. To prove the causal relationship between the SSEs and the external stress change, more advanced modeling is necessary to confirm whether such a small slip can trigger an SSE.[Figure not available: see fulltext.

  16. Hydrodynamic Forces on Composite Structures

    DTIC Science & Technology

    2014-06-01

    and placed under a vacuum of 10 mmHg overnight. The vacuum set up over the composite sample is shown in Figure 13, the hose in upper left leads to...pulley system, one of which drives the carriage via a braided steel cable. Although the pulley connection between the motor and the drive axle may...slip this system contains a tensioner device. More likely, the braided steel cable is slipping against the drive pulley which has a quarter-inch

  17. Rapid acceleration leads to rapid weakening in earthquake-like laboratory experiments

    NASA Astrophysics Data System (ADS)

    Chang, J. C.; Lockner, D. A.; Reches, Z.

    2012-12-01

    We simulated the slip of a fault-patch during a large earthquake by rapidly loading an experimental, ring-shaped fault with energy stored in a spinning flywheel. The flywheel abruptly delivers a finite amount of energy by spinning the fault-patch that spontaneously dissipates the energy without operator intervention. We conducted 42 experiments on Sierra White granite (SWG) samples, and 24 experiments on Kasota dolomite (KD) samples. Each experiment starts by spinning a 225 kg disk-shaped flywheel to a prescribed angular velocity. We refer to this experiment as an "earthquake-like slip-event" (ELSE). The strength-evolution in ELSE experiments is similar to the strength-evolution proposed for earthquake models and observed in stick-slip experiments. Further, we found that ELSE experiments are similar to earthquakes in at least three ways: (1) slip driven by the release of a finite amount of stored energy; (2) pattern of fault strength evolution; and (3) seismically observed values, such as average slip, peak-velocity and rise-time. By assuming that the measured slip, D, in ELSE experiments is equivalent to the average slip during an earthquake, we found that ELSE experiments (D = 0.003-4.6 m) correspond to earthquakes in moment-magnitude range of Mw = 4-8. In ELSE experiments, the critical-slip-distance, dc, has mean values of 2.7 cm and 1.2 cm for SWG and KD, that are much shorter than the 1-10 m in steady-state classical experiments in rotary shear systems. We attribute these dc values, to ELSE loading in which the fault-patch is abruptly loaded by impact with a spinning flywheel. Under this loading, the friction-velocity relations are strikingly different from those under steady-state loading on the same rock samples with the same shear system (Reches and Lockner, Nature, 2010). We further note that the slip acceleration in ELSE evolves systematically with fault strength and wear-rate, and that the dynamic weakening is restricted to the period of intense acceleration (up to 25 m/s2 during ~0.1 s). Thus, the weakening distance, dc, is reached within the initial acceleration spike. These observations are not unique, and similar weakening-acceleration associations were reported in stick-slip, rotary shear, and impact shear experiments. These studies greatly differ from each other in slip distance, normal stress, acceleration, and slip-velocities with the outstanding commonality of abrupt loading and intense acceleration. We propose that impact loading induces extremely high strain-rates that significantly increase rock brittleness, fracture tendency, and fragmentation. We envision that these processes intensify fault wear as manifested in ELSE experiments by extremely high initial wear-rates. This intense, early wear generates a layer of fine-grain gouge that reduces the fault strength by powder-lubrication. Our analysis indicates that rapid acceleration associated with earthquake rupture accelerates fault weakening and shortens the weakening-distance.

  18. [The disease and treatment of the frontline soldiers in Han dynasty].

    PubMed

    Min, Hookie

    2015-04-01

    This paper purports to identify and analyze the medical information of the frontline soldiers in the Northwest borderland provinces of Han Dynasty, especially Juyan and Dunhuang region, through an heuristic reading of the Juyan Bamboo Slips and the Dunhuang Bamboo Slips of the Han Dynasty. My findings are as follows. The most frequent disease found in the bamboo slips was the external injury. The injury of the frontline soldiers mainly occurred from the quarrels among armed soldiers using weapons. The bamboo slips also demonstrate that the quarrels usually arose due to the fierce tension caused by the frontier line service such as heavy guard activity and labour duty. Undernourishment and chronic stress the soldiers suffered might be another reasons. The second most common disease harassing the soldiers was exogenous febrile disease. In most cases reviewed in this paper, the exogenous febrile disease was usually concurrent with complex symptoms such as chills, fever, headache, etc. The bamboo slips show that the exogenous febrile disease was related to the harsh climate of the Northwest provinces, featuring extremely dry weather and the large magnitude of diurnal temperature fluctuations. In addition, the annual temperature range in the Northwest province was huge, fluctuating between very cold and dry winter and very hot and dry summer. The third most common disease this study identified was the disorder of the digestive system and respiratory system. However, these two types of disease were virtually indistinguishable in the bamboo slips, because the ancient Chinese chroniclers did not distinguish them, usually dubbing both diseases simply 'abdominal pain.' It should be mentioned that a few slips mention contagious disease such as dysentery and dermatolosis, and sudden death, as well. Overall, the bamboo slips demonstrate extremely poor status of the soldiers' heath condition and poor medical environment surrounding the soldiers stationing in the Northwest borderland military camps. The records also show that acupuncture, applying a plaster, drugs were the most common medical treatment. Drugs among them was the most frequently used. Whereas Acupuncture, applying a plaster were very rarely used. Medication has been used in three ways: powdered medicine, medicinal decoction and pill. Medicinal decoction was the most commonly used way.

  19. Optimization research on the concentration field of NO in selective catalytic reduction flue gas denitration system

    NASA Astrophysics Data System (ADS)

    Zheng, Qingyu; Zhang, Guoqiang; Che, Kai; Shao, Shikuan; Li, Yanfei

    2017-08-01

    Taking 660 MW generator unit denitration system as a study object, an optimization and adjustment method shall be designed to control ammonia slip, i.e. adjust ammonia injection system based on NO concentration distribution at inlet/outlet of the denitration system to make the injected ammonia distribute evenly. The results shows that, this method can effectively improve NO concentration distribution at outlet of the denitration system and decrease ammonia injection amount and ammonia slip concentration. Reduce adverse impact of SCR denitration process on the air preheater to realize safe production by guaranteeing that NO discharge shall reach the standard.

  20. Accelerated nucleation of the 2014 Iquique, Chile Mw 8.2 Earthquake.

    PubMed

    Kato, Aitaro; Fukuda, Jun'ichi; Kumazawa, Takao; Nakagawa, Shigeki

    2016-04-25

    The earthquake nucleation process has been vigorously investigated based on geophysical observations, laboratory experiments, and theoretical studies; however, a general consensus has yet to be achieved. Here, we studied nucleation process for the 2014 Iquique, Chile Mw 8.2 megathrust earthquake located within the current North Chile seismic gap, by analyzing a long-term earthquake catalog constructed from a cross-correlation detector using continuous seismic data. Accelerations in seismicity, the amount of aseismic slip inferred from repeating earthquakes, and the background seismicity, accompanied by an increasing frequency of earthquake migrations, started around 270 days before the mainshock at locations up-dip of the largest coseismic slip patch. These signals indicate that repetitive sequences of fast and slow slip took place on the plate interface at a transition zone between fully locked and creeping portions. We interpret that these different sliding modes interacted with each other and promoted accelerated unlocking of the plate interface during the nucleation phase.

  1. Accelerated nucleation of the 2014 Iquique, Chile Mw 8.2 Earthquake

    NASA Astrophysics Data System (ADS)

    Kato, Aitaro; Fukuda, Jun'Ichi; Kumazawa, Takao; Nakagawa, Shigeki

    2016-04-01

    The earthquake nucleation process has been vigorously investigated based on geophysical observations, laboratory experiments, and theoretical studies; however, a general consensus has yet to be achieved. Here, we studied nucleation process for the 2014 Iquique, Chile Mw 8.2 megathrust earthquake located within the current North Chile seismic gap, by analyzing a long-term earthquake catalog constructed from a cross-correlation detector using continuous seismic data. Accelerations in seismicity, the amount of aseismic slip inferred from repeating earthquakes, and the background seismicity, accompanied by an increasing frequency of earthquake migrations, started around 270 days before the mainshock at locations up-dip of the largest coseismic slip patch. These signals indicate that repetitive sequences of fast and slow slip took place on the plate interface at a transition zone between fully locked and creeping portions. We interpret that these different sliding modes interacted with each other and promoted accelerated unlocking of the plate interface during the nucleation phase.

  2. Accelerated nucleation of the 2014 Iquique, Chile Mw 8.2 Earthquake

    PubMed Central

    Kato, Aitaro; Fukuda, Jun’ichi; Kumazawa, Takao; Nakagawa, Shigeki

    2016-01-01

    The earthquake nucleation process has been vigorously investigated based on geophysical observations, laboratory experiments, and theoretical studies; however, a general consensus has yet to be achieved. Here, we studied nucleation process for the 2014 Iquique, Chile Mw 8.2 megathrust earthquake located within the current North Chile seismic gap, by analyzing a long-term earthquake catalog constructed from a cross-correlation detector using continuous seismic data. Accelerations in seismicity, the amount of aseismic slip inferred from repeating earthquakes, and the background seismicity, accompanied by an increasing frequency of earthquake migrations, started around 270 days before the mainshock at locations up-dip of the largest coseismic slip patch. These signals indicate that repetitive sequences of fast and slow slip took place on the plate interface at a transition zone between fully locked and creeping portions. We interpret that these different sliding modes interacted with each other and promoted accelerated unlocking of the plate interface during the nucleation phase. PMID:27109362

  3. Kinematics of rotating panels of E-W faults in the San Andreas system: what can we tell from geodesy?

    NASA Astrophysics Data System (ADS)

    Platt, J. P.; Becker, T. W.

    2013-09-01

    Sets of E- to NE-trending sinistral and/or reverse faults occur within the San Andreas system, and are associated with palaeomagnetic evidence for clockwise vertical-axis rotations. These structures cut across the trend of active dextral faults, posing questions as to how displacement is transferred across them. Geodetic data show that they lie within an overall dextral shear field, but the data are commonly interpreted to indicate little or no slip, nor any significant rate of rotation. We model these structures as rotating by bookshelf slip in a dextral shear field, and show that a combination of sinistral slip and rotation can produce the observed velocity field. This allows prediction of rates of slip, rotation, fault-parallel extension and fault-normal shortening within the panel. We use this method to calculate the kinematics of the central segment of the Garlock Fault, which cuts across the eastern California shear zone at a high angle. We obtain a sinistral slip rate of 6.1 ± 1.1 mm yr-1, comparable to geological evidence, but higher than most previous geodetic estimates, and a rotation rate of 4.0 ± 0.7° Myr-1 clockwise. The western Transverse Ranges transect a similar shear zone in coastal and offshore California, but at an angle of only 40°. As a result, the faults, which were sinistral when they were at a higher angle to the shear zone, have been reactivated in a dextral sense at a low rate, and the rate of rotation of the panel has decreased from its long-term rate of ˜5° to 1.6° ± 0.2° Myr-1 clockwise. These results help to resolve some of the apparent discrepancies between geological and geodetic slip-rate estimates, and provide an enhanced understanding of the mechanics of intracontinental transform systems.

  4. Modelling induced seismicity due to fluid injection

    NASA Astrophysics Data System (ADS)

    Murphy, S.; O'Brien, G. S.; Bean, C. J.; McCloskey, J.; Nalbant, S. S.

    2011-12-01

    Injection of fluid into the subsurface alters the stress in the crust and can induce earthquakes. The science of assessing the risk of induced seismicity from such ventures is still in its infancy despite public concern. We plan to use a fault network model in which stress perturbations due to fluid injection induce earthquakes. We will use this model to investigate the role different operational and geological factors play in increasing seismicity in a fault system due to fluid injection. The model is based on a quasi-dynamic relationship between stress and slip coupled with a rate and state fiction law. This allows us to model slip on fault interfaces over long periods of time (i.e. years to 100's years). With the use of the rate and state friction law the nature of stress release during slipping can be altered through variation of the frictional parameters. Both seismic and aseismic slip can therefore be simulated. In order to add heterogeneity along the fault plane a fractal variation in the frictional parameters is used. Fluid injection is simulated using the lattice Boltzmann method whereby pore pressure diffuses throughout a permeable layer from the point of injection. The stress perturbation this causes on the surrounding fault system is calculated using a quasi-static solution for slip dislocation in an elastic half space. From this model we can generate slip histories and seismicity catalogues covering 100's of years for predefined fault networks near fluid injection sites. Given that rupture is a highly non-linear process, comparison between models with different input parameters (e.g. fault network statistics and injection rates) will be based on system wide features (such as the Gutenberg-Richter b-values), rather than specific seismic events. Our ultimate aim is that our model produces seismic catalogues similar to those observed over real injection sites. Such validation would pave the way to probabilistic estimation of reactivation risk for injection sites using such models. Preliminary results from this model will be presented.

  5. A footwall system of faults associated with a foreland thrust in Montana

    NASA Astrophysics Data System (ADS)

    Watkinson, A. J.

    1993-05-01

    Some recent structural geology models of faulting have promoted the idea of a rigid footwall behaviour or response under the main thrust fault, especially for fault ramps or fault-bend folds. However, a very well-exposed thrust fault in the Montana fold and thrust belt shows an intricate but well-ordered system of subsidiary minor faults in the footwall position with respect to the main thrust fault plane. Considerable shortening has occurred off the main fault in this footwall collapse zone and the distribution and style of the minor faults accord well with published patterns of aftershock foci associated with thrust faults. In detail, there appear to be geometrically self-similar fault systems from metre length down to a few centimetres. The smallest sets show both slip and dilation. The slickensides show essentially two-dimensional displacements, and three slip systems were operative—one parallel to the bedding, and two conjugate and symmetric about the bedding (acute angle of 45-50°). A reconstruction using physical analogue models suggests one possible model for the evolution and sequencing of slip of the thrust fault system.

  6. Nonaqueous slip casting of YBa2Cu3O(7-x) superconductive ceramics. Ph.D. Thesis - 1993

    NASA Technical Reports Server (NTRS)

    Hooker, Matthew W.; Taylor, Theodore D.

    1994-01-01

    This study investigates the slip casting of YBa2Cu3O(7-x) powders using nonaqueous carrier liquids and fired ceramic molds. The parameters of the process examined here include the rheological properties of YBa2Cu3O(7-x) powder dispersed in various solvent/dispersant systems, the combination of nonaqueous slips with fired ceramic molds to form the superconductive ceramics, the process-property relationships using a four-factor factorial experiment, and the applicability of magnetic fields to align the YBa2Cu3O(7-x) grains during the casting process.

  7. Lattice-Boltzmann simulations of microswimmer-tracer interactions

    NASA Astrophysics Data System (ADS)

    de Graaf, Joost; Stenhammar, Joakim

    2017-02-01

    Hydrodynamic interactions in systems composed of self-propelled particles, such as swimming microorganisms and passive tracers, have a significant impact on the tracer dynamics compared to the equivalent "dry" sample. However, such interactions are often difficult to take into account in simulations due to their computational cost. Here, we perform a systematic investigation of swimmer-tracer interaction using an efficient force-counterforce-based lattice-Boltzmann (LB) algorithm [De Graaf et al., J. Chem. Phys. 144, 134106 (2016), 10.1063/1.4944962] in order to validate its ability to capture the relevant low-Reynolds-number physics. We show that the LB algorithm reproduces far-field theoretical results well, both in a system with periodic boundary conditions and in a spherical cavity with no-slip walls, for which we derive expressions here. The force-lattice coupling of the LB algorithm leads to a "smearing out" of the flow field, which strongly perturbs the tracer trajectories at close swimmer-tracer separations, and we analyze how this effect can be accurately captured using a simple renormalized hydrodynamic theory. Finally, we show that care must be taken when using LB algorithms to simulate systems of self-propelled particles, since its finite momentum transport time can lead to significant deviations from theoretical predictions based on Stokes flow. These insights should prove relevant to the future study of large-scale microswimmer suspensions using these methods.

  8. Progressive deformation of the Chugach accretionary complex, Alaska, during a paleogene ridge-trench encounter

    USGS Publications Warehouse

    Kusky, Timothy M.

    1997-01-01

    The Mesozoic accretionary wedge of south-central Alaska is cut by an array of faults including dextral and sinistral strike-slip faults, synthetic and antithetic thrust faults, and synthetic and antithetic normal faults. The three fault sets are characterized by quartz ± calcite ± chlorite ± prehnite slickensides, and are all relatively late, i.e. all truncate ductile fabrics of the host rocks. Cross-cutting relationships suggest that the thrust fault sets predate the late normal and strike-slip fault sets. Together, the normal and strike-slip fault system exhibits orthorhombic symmetry. Thrust faulting shortened the wedge subhorizontally perpendicular to strike, and then normal and strike-slip faulting extended the wedge oblique to orogenic strike. Strongly curved slickenlines on some faults of each set reveal that displacement directions changed over time. On dip-slip faults (thrust and normal), slickenlines tend to become steeper with younger increments of slip, whereas on strike-slip faults, slickenlines become shallower with younger strain increments. These patterns may result from progressive exhumation of the accretionary wedge while the faults were active, with the curvature of the slickenlines tracking the change from a non-Andersonian stress field at depth to a more Andersonian system (σ1 or σ2 nearly vertical) at shallower crustal levels.We interpret this complex fault array as a progressive deformation that is one response to Paleocene-Eocene subduction of the Kula-Farallon spreading center beneath the accretionary complex because: (1) on the Kenai Peninsula, ENE-striking dextral faults of this array exhibit mutually cross-cutting relationships with Paleocene-Eocene dikes related to ridge subduction; and (2) mineralized strike-slip and normal faults of the orthorhombic system have yielded 40Ar/39Ar ages identical to near-trench intrusives related to ridge subduction. Both features are diachronous along-strike, having formed at circa 65 Ma in the west and 50 Ma in the east. Exhumation of deeper levels of the southern Alaska accretionary wedge and formation of this late fault array is interpreted as a critical taper adjustment to subduction of progressively younger oceanic lithosphere yielding a shallower basal de´collement dip as the Kula-Farallon ridge approached the accretionary prism. The late structures also record different kinematic regimes associated with subduction of different oceanic plates, before and after ridge subduction. Prior to triple junction passage, subduction of the Farallon plate occurred at nearly right angles to the trench axis, whereas after triple junction migration, subduction of the Kula plate involved a significant component of dextral transpression and northward translation of the Chugach terrane. The changes in kinematics are apparent in the sequence of late structures from: (1) thrusting; (2) near-trench plutonism associated with normal + strike-slip faulting; (3) very late gouge-filled dextral faults.

  9. Geologic Inheritance and Earthquake Rupture Processes: The 1905 M ≥ 8 Tsetserleg-Bulnay Strike-Slip Earthquake Sequence, Mongolia

    NASA Astrophysics Data System (ADS)

    Choi, Jin-Hyuck; Klinger, Yann; Ferry, Matthieu; Ritz, Jean-François; Kurtz, Robin; Rizza, Magali; Bollinger, Laurent; Davaasambuu, Battogtokh; Tsend-Ayush, Nyambayar; Demberel, Sodnomsambuu

    2018-02-01

    In 1905, 14 days apart, two M 8 continental strike-slip earthquakes, the Tsetserleg and Bulnay earthquakes, occurred on the Bulnay fault system, in Mongolia. Together, they ruptured four individual faults, with a total length of 676 km. Using submetric optical satellite images "Pleiades" with ground resolution of 0.5 m, complemented by field observation, we mapped in detail the entire surface rupture associated with this earthquake sequence. Surface rupture along the main Bulnay fault is 388 km in length, striking nearly E-W. The rupture is formed by a series of fault segments that are 29 km long on average, separated by geometric discontinuities. Although there is a difference of about 2 m in the average slip between the western and eastern parts of the Bulnay rupture, along-fault slip variations are overall limited, resulting in a smooth slip distribution, except for local slip deficit at segment boundaries. We show that damage, including short branches and secondary faulting, associated with the rupture propagation, occurred significantly more often along the western part of the Bulnay rupture, while the eastern part of the rupture appears more localized and thus possibly structurally simpler. Eventually, the difference of slip between the western and eastern parts of the rupture is attributed to this difference of rupture localization, associated at first order with a lateral change in the local geology. Damage associated to rupture branching appears to be located asymmetrically along the extensional side of the strike-slip rupture and shows a strong dependence on structural geologic inheritance.

  10. Geotribology - Friction, wear, and lubrication of faults

    NASA Astrophysics Data System (ADS)

    Boneh, Yuval; Reches, Ze'ev

    2018-05-01

    We introduce here the concept of Geotribology as an approach to study friction, wear, and lubrication of geological systems. Methods of geotribology are applied here to characterize the friction and wear associated with slip along experimental faults composed of brittle rocks. The wear in these faults is dominated by brittle fracturing, plucking, scratching and fragmentation at asperities of all scales, including 'effective asperities' that develop and evolve during the slip. We derived a theoretical model for the rate of wear based on the observation that the dynamic strength of brittle materials is proportional to the product of load stress and loading period. In a slipping fault, the loading period of an asperity is inversely proportional to the slip velocity, and our derivations indicate that the wear-rate is proportional to the ratio of [shear-stress/slip-velocity]. By incorporating the rock hardness data into the model, we demonstrate that a single, universal function fits wear data of hundreds of experiments with granitic, carbonate and sandstone faults. In the next step, we demonstrate that the dynamic frictional strength of experimental faults is well explained in terms of the tribological parameter PV factor (= normal-stress · slip-velocity). This factor successfully delineates weakening and strengthening regimes of carbonate and granitic faults. Finally, our analysis revealed a puzzling observation that wear-rate and frictional strength have strikingly different dependencies on the loading conditions of normal-stress and slip-velocity; we discuss sources for this difference. We found that utilization of tribological tools in fault slip analyses leads to effective and insightful results.

  11. Viscoelastic-cycle model of interseismic deformation in the northwestern United States

    USGS Publications Warehouse

    Pollitz, F.F.; McCrory, Patricia; Wilson, Doug; Svarc, Jerry; Puskas, Christine; Smith, Robert B.

    2010-01-01

    We apply a viscoelastic cycle model to a compilation of GPS velocity fields in order to address the kinematics of deformation in the northwestern United States. A viscoelastic cycle model accounts for time-dependent deformation following large crustal earthquakes and is an alternative to block models for explaining the interseismic crustal velocity field. Building on the approach taken in Pollitz et al., we construct a deformation model for the entire western United States-based on combined fault slip and distributed deformation-and focus on the implications for the Mendocino triple junction (MTJ), Cascadia megathrust, and western Washington. We find significant partitioning between strike-slip and dip-slip motion near the MTJ as the tectonic environment shifts from northwest-directed shear along the San Andreas fault system to east-west convergence along the Juan de Fuca Plate. By better accounting for the budget of aseismic and seismic slip along the Cascadia subduction interface in conjunction with an assumed rheology, we revise a previous model of slip for the M~ 9 1700 Cascadia earthquake. In western Washington, we infer slip rates on a number of strike-slip and dip-slip faults that accommodate northward convergence of the Oregon Coast block and northwestward convergence of the Juan de Fuca Plate. Lateral variations in first order mechanical properties (e.g. mantle viscosity, vertically averaged rigidity) explain, to a large extent, crustal strain that cannot be rationalized with cyclic deformation on a laterally homogeneous viscoelastic structure. Our analysis also shows that present crustal deformation measurements, particularly with the addition of the Plate Boundary Observatory, can constrain such lateral variations.

  12. Slip on the San Andreas fault at Parkfield, California, over two earthquake cycles, and the implications for seismic hazard

    USGS Publications Warehouse

    Murray, J.; Langbein, J.

    2006-01-01

    Parkfield, California, which experienced M 6.0 earthquakes in 1934, 1966, and 2004, is one of the few locales for which geodetic observations span multiple earthquake cycles. We undertake a comprehensive study of deformation over the most recent earthquake cycle and explore the results in the context of geodetic data collected prior to the 1966 event. Through joint inversion of the variety of Parkfield geodetic measurements (trilateration, two-color laser, and Global Positioning System), including previously unpublished two-color data, we estimate the spatial distribution of slip and slip rate along the San Andreas using a fault geometry based on precisely relocated seismicity. Although the three most recent Parkfield earthquakes appear complementary in their along-strike distributions of slip, they do not produce uniform strain release along strike over multiple seismic cycles. Since the 1934 earthquake, more than 1 m of slip deficit has accumulated on portions of the fault that slipped in the 1966 and 2004 earthquakes, and an average of 2 m of slip deficit exists on the 33 km of the fault southeast of Gold Hill to be released in a future, perhaps larger, earthquake. It appears that the fault is capable of partially releasing stored strain in moderate earthquakes, maintaining a disequilibrium through multiple earthquake cycles. This complicates the application of simple earthquake recurrence models that assume only the strain accumulated since the most recent event is relevant to the size or timing of an upcoming earthquake. Our findings further emphasize that accumulated slip deficit is not sufficient for earthquake nucleation.

  13. Determining on-fault earthquake magnitude distributions from integer programming

    USGS Publications Warehouse

    Geist, Eric L.; Parsons, Thomas E.

    2018-01-01

    Earthquake magnitude distributions among faults within a fault system are determined from regional seismicity and fault slip rates using binary integer programming. A synthetic earthquake catalog (i.e., list of randomly sampled magnitudes) that spans millennia is first formed, assuming that regional seismicity follows a Gutenberg-Richter relation. Each earthquake in the synthetic catalog can occur on any fault and at any location. The objective is to minimize misfits in the target slip rate for each fault, where slip for each earthquake is scaled from its magnitude. The decision vector consists of binary variables indicating which locations are optimal among all possibilities. Uncertainty estimates in fault slip rates provide explicit upper and lower bounding constraints to the problem. An implicit constraint is that an earthquake can only be located on a fault if it is long enough to contain that earthquake. A general mixed-integer programming solver, consisting of a number of different algorithms, is used to determine the optimal decision vector. A case study is presented for the State of California, where a 4 kyr synthetic earthquake catalog is created and faults with slip ≥3 mm/yr are considered, resulting in >106  variables. The optimal magnitude distributions for each of the faults in the system span a rich diversity of shapes, ranging from characteristic to power-law distributions. 

  14. Earthquake geology and paleoseismology of major strands of the San Andreas fault system: Chapter 38

    USGS Publications Warehouse

    Rockwell, Thomas; Scharer, Katherine M.; Dawson, Timothy E.

    2016-01-01

    The San Andreas fault system in California is one of the best-studied faults in the world, both in terms of the long-term geologic history and paleoseismic study of past surface ruptures. In this paper, we focus on the Quaternary to historic data that have been collected from the major strands of the San Andreas fault system, both on the San Andreas Fault itself, and the major subparallel strands that comprise the plate boundary, including the Calaveras-Hayward- Rogers Creek-Maacama fault zone and the Concord-Green Valley-Bartlett Springs fault zone in northern California, and the San Jacinto and Elsinore faults in southern California. The majority of the relative motion between the Pacific and North American lithospheric plates is accommodated by these faults, with the San Andreas slipping at about 34 mm/yr in central California, decreasing to about 20 mm/yr in northern California north of its juncture with the Calaveras and Concord faults. The Calaveras-Hayward-Rogers Creek-Maacama fault zone exhibits a slip rate of 10-15 mm/yr, whereas the rate along the Concord-Green Valley-Bartlett Springs fault zone is lower at about 5 mm/yr. In southern California, the San Andreas exhibits a slip rate of about 35 mm/yr along the Mojave section, decreasing to as low as 10-15 mm/yr along its juncture with the San Jacinto fault, and about 20 mm/yr in the Coachella Valley. The San Jacinto and Elsinore fault zones exhibit rates of about 15 and 5 mm/yr, respectively. The average recurrence interval for surface-rupturing earthquakes along individual elements of the San Andreas fault system range from 100-500 years and is consistent with slip rate at those sites: higher slip rates produce more frequent or larger earthquakes. There is also evidence of short-term variations in strain release (slip rate) along various fault sections, as expressed as “flurries” or clusters of earthquakes as well as periods of relatively fewer surface ruptures in these relatively short records. This is reflected by non-periodic coefficients of variation in earthquake recurrence of 0.4 to 0.7 for the various paleoseismic sites.

  15. Comparative swimming and station-holding ability of the threatened Rocky Mountain Sculpin (Cottus sp.) from four hydrologically distinct rivers.

    PubMed

    Veillard, Marie F; Ruppert, Jonathan L W; Tierney, Keith; Watkinson, Douglas A; Poesch, Mark

    2017-01-01

    Hydrologic alterations, such as dams, culverts or diversions, can introduce new selection pressures on freshwater fishes, where they are required to adapt to novel environmental conditions. Our study investigated how species adapt to natural and altered stream flow, where we use the threatened Rocky Mountain Sculpin ( Cottus sp.) as a model organism. We compared the swimming and station-holding performance of Rocky Mountain Sculpin from four different hydrologic regimes in Alberta and British Columbia, including the North Milk River, a system that experiences increased flows from a large-scale diversion. We measured the slip ( U slip ) and failure ( U burst ) velocities over three constant acceleration test trials. U slip was defined as the point at which individuals required the addition of bursting or swimming to maintain position. U burst was defined as the point at which individuals were unable to hold position in the swimming chamber through swimming, bursting or holding techniques without fully or partially resting on the electrified back plate. We found individuals from the Flathead River in British Columbia (with the highest natural flow) failed at significantly higher U burst velocities than fish from the southern Albertan populations. However, there was no relationship between peak hydrologic flow from the natal river and U burst or U slip . Further, U burst velocities decreased from 51.8 cm s -1 (7.2 BL s -1 ) to 45.6 cm s -1 (6.3 BL s -1 ) by the third consecutive test suggesting the use of anaerobic metabolism. U slip was not different between trials suggesting the use of aerobic metabolism in station-holding behaviours ( U slip ). Moreover, we found no significant differences in individuals from the altered North Milk River system. Finally, individual caudal morphological characteristics were related to both slip and failure velocities. Our study contributes to the conservation of Rocky Mountain Sculpin by providing the first documentation of swimming and station-holding abilities of this benthic fish.

  16. New constraints on slip rates and locking depths of the San Andreas Fault System from Sentinel-1A InSAR and GAGE GPS observations

    NASA Astrophysics Data System (ADS)

    Ward, L. A.; Smith-Konter, B. R.; Higa, J. T.; Xu, X.; Tong, X.; Sandwell, D. T.

    2017-12-01

    After over a decade of operation, the EarthScope (GAGE) Facility has now accumulated a wealth of GPS and InSAR data, that when successfully integrated, make it possible to image the entire San Andreas Fault System (SAFS) with unprecedented spatial coverage and resolution. Resulting surface velocity and deformation time series products provide critical boundary conditions needed for improving our understanding of how faults are loaded across a broad range of temporal and spatial scales. Moreover, our understanding of how earthquake cycle deformation is influenced by fault zone strength and crust/mantle rheology is still developing. To further study these processes, we construct a new 4D earthquake cycle model of the SAFS representing the time-dependent 3D velocity field associated with interseismic strain accumulation, co-seismic slip, and postseismic viscoelastic relaxation. This high-resolution California statewide model, spanning the Cerro Prieto fault to the south to the Maacama fault to the north, is constructed on a 500 m spaced grid and comprises variable slip and locking depths along 42 major fault segments. Secular deep slip is prescribed from the base of the locked zone to the base of the elastic plate while episodic shallow slip is prescribed from the historical earthquake record and geologic recurrence intervals. Locking depths and slip rates for all 42 fault segments are constrained by the newest GAGE Facility geodetic observations; 3169 horizontal GPS velocity measurements, combined with over 53,000 line-of-sight (LOS) InSAR velocity observations from Sentinel-1A, are used in a weighted least-squares inversion. To assess slip rate and locking depth sensitivity of a heterogeneous rheology model, we also implement variations in crustal rigidity throughout the plate boundary, assuming a coarse representation of shear modulus variability ranging from 20-40 GPa throughout the (low rigidity) Salton Trough and Basin and Range and the (high rigidity) Central Valley and ocean lithosphere.

  17. Use of fault striations and dislocation models to infer tectonic shear stress during the 1995 Hyogo-Ken Nanbu (Kobe) earthquake

    USGS Publications Warehouse

    Spudich, P.; Guatteri, Mariagiovanna; Otsuki, K.; Minagawa, J.

    1998-01-01

    Dislocation models of the 1995 Hyogo-ken Nanbu (Kobe) earthquake derived by Yoshida et al. (1996) show substantial changes in direction of slip with time at specific points on the Nojima and Rokko fault systems, as do striations we observed on exposures of the Nojima fault surface on Awaji Island. Spudich (1992) showed that the initial stress, that is, the shear traction on the fault before the earthquake origin time, can be derived at points on the fault where the slip rake rotates with time if slip velocity and stress change are known at these points. From Yoshida's slip model, we calculated dynamic stress changes on the ruptured fault surfaces. To estimate errors, we compared the slip velocities and dynamic stress changes of several published models of the earthquake. The differences between these models had an exponential distribution, not gaussian. We developed a Bayesian method to estimate the probability density function (PDF) of initial stress from the striations and from Yoshida's slip model. Striations near Toshima and Hirabayashi give initial stresses of about 13 and 7 MPa, respectively. We obtained initial stresses of about 7 to 17 MPa at depths of 2 to 10 km on a subset of points on the Nojima and Rokko fault systems. Our initial stresses and coseismic stress changes agree well with postearthquake stresses measured by hydrofracturing in deep boreholes near Hirabayashi and Ogura on Awaji Island. Our results indicate that the Nojima fault slipped at very low shear stress, and fractional stress drop was complete near the surface and about 32% below depths of 2 km. Our results at depth depend on the accuracy of the rake rotations in Yoshida's model, which are probably correct on the Nojima fault but debatable on the Rokko fault. Our results imply that curved or cross-cutting fault striations can be formed in a single earthquake, contradicting a common assumption of structural geology.

  18. Dual-Task Does Not Increase Slip and Fall Risk in Healthy Young and Older Adults during Walking

    PubMed Central

    Soangra, Rahul

    2017-01-01

    Dual-task tests can identify gait characteristics peculiar to fallers and nonfallers. Understanding the relationship between gait performance and dual-task related cognitive-motor interference is important for fall prevention. Dual-task adapted changes in gait instability/variability can adversely affect fall risks. Although implicated, it is unclear if healthy participants' fall risks are modified by dual-task walking conditions. Seven healthy young and seven healthy older adults were randomly assigned to normal walking and dual-task walking sessions with a slip perturbation. In the dual-task session, the participants walked and simultaneously counted backwards from a randomly provided number. The results indicate that the gait changes in dual-task walking have no destabilizing effect on gait and slip responses in healthy individuals. We also found that, during dual-tasking, healthy individuals adopted cautious gait mode (CGM) strategy that is characterized by reduced walking speed, shorter step length, increased step width, and reduced heel contact velocity and is likely to be an adaptation to minimize attentional demand and decrease slip and fall risk during limited available attentional resources. Exploring interactions between gait variability and cognitive functions while walking may lead to designing appropriate fall interventions among healthy and patient population with fall risk. PMID:28255224

  19. Viscoelastic shear zone model of a strike-slip earthquake cycle

    USGS Publications Warehouse

    Pollitz, F.F.

    2001-01-01

    I examine the behavior of a two-dimensional (2-D) strike-slip fault system embedded in a 1-D elastic layer (schizosphere) overlying a uniform viscoelastic half-space (plastosphere) and within the boundaries of a finite width shear zone. The viscoelastic coupling model of Savage and Prescott [1978] considers the viscoelastic response of this system, in the absence of the shear zone boundaries, to an earthquake occurring within the upper elastic layer, steady slip beneath a prescribed depth, and the superposition of the responses of multiple earthquakes with characteristic slip occurring at regular intervals. So formulated, the viscoelastic coupling model predicts that sufficiently long after initiation of the system, (1) average fault-parallel velocity at any point is the average slip rate of that side of the fault and (2) far-field velocities equal the same constant rate. Because of the sensitivity to the mechanical properties of the schizosphere-plastosphere system (i.e., elastic layer thickness, plastosphere viscosity), this model has been used to infer such properties from measurements of interseismic velocity. Such inferences exploit the predicted behavior at a known time within the earthquake cycle. By modifying the viscoelastic coupling model to satisfy the additional constraint that the absolute velocity at prescribed shear zone boundaries is constant, I find that even though the time-averaged behavior remains the same, the spatiotemporal pattern of surface deformation (particularly its temporal variation within an earthquake cycle) is markedly different from that predicted by the conventional viscoelastic coupling model. These differences are magnified as plastosphere viscosity is reduced or as the recurrence interval of periodic earthquakes is lengthened. Application to the interseismic velocity field along the Mojave section of the San Andreas fault suggests that the region behaves mechanically like a ???600-km-wide shear zone accommodating 50 mm/yr fault-parallel motion distributed between the San Andreas fault system and Eastern California Shear Zone. Copyright 2001 by the American Geophysical Union.

  20. Fault Interaction and Stress Accumulation in Chaman Fault System, Balouchistan, Pakistan, Since 1892

    NASA Astrophysics Data System (ADS)

    Riaz, M. S.; Shan, B.; Xiong, X.; Xie, Z.

    2017-12-01

    The curved-shaped left-lateral Chaman fault is the Western boundary of the Indian plate, which is approximately 1000 km long. The Chaman fault is an active fault and also locus of many catastrophic earthquakes. Since the inception of strike-slip movement at 20-25Ma along the western collision boundary between Indian and Eurasian plates, the average geologically constrained slip rate of 24 to 35 mm/yr accounts for a total displacement of 460±10 km along the Chaman fault system (Beun et al., 1979; Lawrence et al., 1992). Based on earthquake triggering theory, the change in Coulomb Failure Stress (DCFS) either halted (shadow stress) or advances (positive stress) the occurrence of subsequent earthquakes. Several major earthquakes occurred in Chaman fault system, and this region is poorly studied to understand the earthquake/fault interaction and hazard assessment. In order to do so, we have analyzed the earthquakes catalog and collected significant earthquakes with M ≥6.2 since 1892. We then investigate the evolution of DCFS in the Chaman fault system is computed by integration of coseismic static and postseismic viscoelastic relaxation stress transfer since the 1892, using the codePSGRN/PSCMP (Wang et al., 2006). Moreover, for postseismic stress transfer simulation, we adopted linear Maxwell rheology to calculate the viscoelastic effects in this study. Our results elucidate that three out of four earthquakes are triggered by the preceding earthquakes. The 1892-earthquake with magnitude Mw6.8, which occurred on the North segment of Chaman fault has not influence the 1935-earthquake which occurred on Ghazaband fault, a parallel fault 20km east to Chaman fault. The 1935-earthquake with magnitude Mw7.7 significantly loaded the both ends of rupture with positive stress (CFS ≥0.01 Mpa), which later on triggered the 1975-earthquake with 23% of its rupture length where CFS ≥0.01 Mpa, on Chaman fault, and 1990-earthquke with 58% of its rupture length where CFS ≥0.01 Mpa, on Ghazaband fault. Since the 1935-earthquke significantly increased the stress on both ends of its rupture, the 2013-earthquake with magnitude Mw7.7 occurred on Hoshab fault in the positive stress zone with 26% of its rupture length where CFS ≥0.01 Mpa, Fig 1. Our results revealed the interaction among the earthquakes as well as faults in the study region.

Top