Sample records for slitless spectrograph niriss

  1. Near- infrared imager and slitless spectrograph (NIRISS): a new instrument on James Webb Space Telescope (JWST)

    NASA Astrophysics Data System (ADS)

    Maszkiewicz, Michael

    2017-11-01

    The James Webb Space Telescope (JWST) is a 6.5 m diameter deployable telescope that will orbit the L2 Earth-Sun point beginning in 2018. NASA is leading the development of the JWST mission with their partners, the European Space Agency and the Canadian Space Agency. The Canadian contribution to the mission is the Fine Guidance Sensor (FGS). Originally, the FGS incorporated a flexible narrow spectral band science imaging capability in the form of the Tunable Filter Imaging Module -TFI, based on a scanning Fabry-Perot etalon. In the course of building and testing of the TFI flight model, numerous technical issues arose with unforeseeable length of required mitigation effort. In addition to that, emerging new science priorities caused that in summer of 2011 a decision was taken to replace TFI with a new instrument called Near Infrared Imager and Slitless Spectrograph (NIRISS). NIRISS preserves most of the TFI opto-mechanical design: focusing mirror, collimator and camera TMA telescopes, dual filter and pupil wheel and detectors but, instead of a tunable etalon, uses set of filters and grisms for wavelength selection and dispersion. The FGS-Guider and NIRISS have completed their instrument-level cryogenic testing and were delivered to NASA Goddard in late July 2012 for incorporation into the Integrated Science Instrument Module (ISIM).

  2. Status of the JWST Science Instrument Payload

    NASA Technical Reports Server (NTRS)

    Greenhouse, Matt

    2016-01-01

    The James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) system consists of five sensors (4 science): Mid-Infrared Instrument (MIRI), Near Infrared Imager and Slitless Spectrograph (NIRISS), Fine Guidance Sensor (FGS), Near InfraRed Camera (NIRCam), Near InfraRed Spectrograph (NIRSpec); and nine instrument support systems: Optical metering structure system, Electrical Harness System; Harness Radiator System, ISIM Electronics Compartment, ISIM Remote Services Unit, Cryogenic Thermal Control System, Command and Data Handling System, Flight Software System, Operations Scripts System.

  3. The Observing Modes of JWST/NIRISS

    NASA Astrophysics Data System (ADS)

    Taylor, Joanna M.; NIRISS Team

    2018-06-01

    The Near Infrared Imager and Slitless Spectrograph (NIRISS) is a contribution of the Canadian Space Agency to the James Webb Space Telescope (JWST). NIRISS complements the other near-infrared science instruments onboard JWST by providing capabilities for (a) low resolution grism spectroscopy between 0.8 and 2.2 µm over the entire field of view, with the possibility of observing the same scene with orthogonal dispersion directions to disentangle blended objects; (b) medium-resolution grism spectroscopy between 0.6 and 2.8 µm that has been optimized to provide high spectrophotometric stability for time-series observations of transiting exoplanets; (c) aperture masking interferometry that provides high angular resolution of 70 - 400 mas at wavelengths between 2.8 and 4.8 µm and (d) parallel imaging through a set of filters that are closely matched to NIRCam's.In this poster, we discuss each of these modes and present simulations of how they might typically be used to address specific scientific questions.

  4. Studying the inner regions of young stars and their disks with aperture masking interferometry

    NASA Astrophysics Data System (ADS)

    Greenbaum, Alexandra; Sivaramakrishnan, Anand; GPI Instrument Team; NIRISS Instrument Team

    2017-01-01

    High resolution aperture masking interferometry complements coronagraphic imagers to provide a unique perspective on star and planet formation at more moderate contrast. By targeting young stars, especially those with disks, we aim to understand complex protoplanetary environments. Ground-based non-redundant masking (NRM) paired with spectrographs and polarimeters probes both thermally emitting young companions, possibly embedded in the disk or gap and scattered light in protoplanetary disks. And soon the community will have access to the most stable NRM conditions yet, with the Near Infrared Imager and Slitless Spectrograph (NIRISS) Aperture Masking Interferometry (AMI) mode on the James Webb Space Telescope. I will present my thesis work commissioning the Gemini Planet Imager’s NRM, highlighting results through both its spectroscopy and polarimetry modes, which set the stage for future space-based imaging. I will also give an overview of NIRISS-AMI capabilities and performance predictions for imaging young low-mass companions and disks, and how it will complement other instruments on JWST.

  5. Extra Solar Planet Science With a Non Redundant Mask

    NASA Astrophysics Data System (ADS)

    Minto, Stefenie Nicolet; Sivaramakrishnan, Anand; Greenbaum, Alexandra; St. Laurent, Kathryn; Thatte, Deeparshi

    2017-01-01

    To detect faint planetary companions near a much brighter star, at the Resolution Limit of the James Webb Space Telescope (JWST) the Near-Infrared Imager and Slitless Spectrograph (NIRISS) will use a non-redundant aperture mask (NRM) for high contrast imaging. I simulated NIRISS data of stars with and without planets, and run these through the code that measures interferometric image properties to determine how sensitive planetary detection is to our knowledge of instrumental parameters, starting with the pixel scale. I measured the position angle, distance, and contrast ratio of the planet (with respect to the star) to characterize the binary pair. To organize this data I am creating programs that will automatically and systematically explore multi-dimensional instrument parameter spaces and binary characteristics. In the future my code will also be applied to explore any other parameters we can simulate.

  6. The James Webb Space Telescope: Contamination Control and Materials

    NASA Technical Reports Server (NTRS)

    Stewart, Elaine M.; Wooldridge, Eve M.

    2017-01-01

    The James Webb Space Telescope (JWST), expected to launch in 2018 or early 2019, will be the premier observatory for astronomers worldwide. It is optimized for infrared wavelengths and observation from up to 1 million miles from Earth. JWST includes an Integrated Science Instrument Module (ISIM) containing the four main instruments used to observe deep space: Near-Infrared Camera (NIRCam), Near-Infrared Spectrograph (NIRSpec), Mid-Infrared Instrument (MIRI), and Fine Guidance Sensor/Near InfraRed Imager and Slitless Spectrograph (FGS/NIRISS). JWST is extremely sensitive to contamination directly resulting in degradation in performance of the telescope. Contamination control has been an essential focus of this mission since the beginning of this observatory. A particular challenge has been contamination challenges in vacuum chamber operations.

  7. Simulated JWST/NIRISS Spectroscopy of Anticipated TESS Planets and Selected Super-Earths Discovered from K2 and Ground-Based Surveys

    NASA Astrophysics Data System (ADS)

    Louie, Dana; Albert, Loic; Deming, Drake

    2017-01-01

    The 2018 launch of James Webb Space Telescope (JWST), coupled with the 2017 launch of the Transiting Exoplanet Survey Satellite (TESS), heralds a new era in Exoplanet Science, with TESS projected to detect over one thousand transiting sub-Neptune-sized planets (Ricker et al, 2014), and JWST offering unprecedented spectroscopic capabilities. Sullivan et al (2015) used Monte Carlo simulations to predict the properties of the planets that TESS is likely to detect, and published a catalog of 962 simulated TESS planets. Prior to TESS launch, the re-scoped Kepler K2 mission and ground-based surveys such as MEarth continue to seek nearby Earth-like exoplanets orbiting M-dwarf host stars. The exoplanet community will undoubtedly employ JWST for atmospheric characterization follow-up studies of promising exoplanets, but the targeted planets for these studies must be chosen wisely to maximize JWST science return. The goal of this project is to estimate the capabilities of JWST’s Near InfraRed Imager and Slitless Spectrograph (NIRISS)—operating with the GR700XD grism in Single Object Slitless Spectrography (SOSS) mode—during observations of exoplanets transiting their host stars. We compare results obtained for the simulated TESS planets, confirmed K2-discovered super-Earths, and exoplanets discovered using ground-based surveys. By determining the target planet characteristics that result in the most favorable JWST observing conditions, we can optimize the choice of target planets in future JWST follow-on atmospheric characterization studies.

  8. Active galactic nucleus and quasar science with aperture masking interferometry on the James Webb Space Telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ford, K. E. Saavik; McKernan, Barry; Sivaramakrishnan, Anand

    Due to feedback from accretion onto supermassive black holes (SMBHs), active galactic nuclei (AGNs) are believed to play a key role in ΛCDM cosmology and galaxy formation. However, AGNs extreme luminosities and the small angular size of their accretion flows create a challenging imaging problem. We show that the James Webb Space Telescope's Near Infrared Imager and Slitless Spectrograph (JWST-NIRISS) Aperture Masking Interferometry (AMI) mode will enable true imaging (i.e., without any requirement of prior assumptions on source geometry) at ∼65 mas angular resolution at the centers of AGNs. This is advantageous for studying complex extended accretion flows around SMBHsmore » and in other areas of angular-resolution-limited astrophysics. By simulating data sequences incorporating expected sources of noise, we demonstrate that JWST-NIRISS AMI mode can map extended structure at a pixel-to-pixel contrast of ∼10{sup –2} around an L = 7.5 point source, using short exposure times (minutes). Such images will test models of AGN feedback, fueling, and structure (complementary with ALMA observations), and are not currently supported by any ground-based IR interferometer or telescope. Binary point source contrast with NIRISS is ∼10{sup –4} (for observing binary nuclei in merging galaxies), significantly better than current ground-based optical or IR interferometry. JWST-NIRISS's seven-hole non-redundant mask has a throughput of 15%, and utilizes NIRISS's F277W (2.77 μm), F380M (3.8 μm), F430M (4.3 μm), and F480M (4.8 μm) filters. NIRISS's square pixels are 65 mas per side, with a field of view ∼2' × 2'. We also extrapolate our results to AGN science enabled by non-redundant masking on future 2.4 m and 16 m space telescopes working at long-UV to near-IR wavelengths.« less

  9. Stray light modeling of the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM)

    NASA Astrophysics Data System (ADS)

    Rohrbach, Scott O.; Irvin, Ryan G.; Seals, Lenward T.; Skelton, Dennis L.

    2016-09-01

    This paper describes an integrated stray light model of each Science Instrument (SI) in the Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope (JWST) and the Optical Telescope Element Simulator (OSIM), the light source used to characterize the performance of ISIM in cryogenic-vacuum tests at the Goddard Space Flight Center (GSFC). We present three cases where this stray light model was integral to solving questions that arose during the testing campaign - 1) ghosting and coherent diffraction from hardware surfaces in the Near Infrared Imager and Slitless Spectrograph (NIRISS) GR700XD grism mode, 2) ghost spots in the Near Infrared Camera (NIRCam) GRISM modes, and 3) scattering from knife edges of the NIRCam focal plane array masks.

  10. AN IMAGE-PLANE ALGORITHM FOR JWST'S NON-REDUNDANT APERTURE MASK DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenbaum, Alexandra Z.; Pueyo, Laurent; Sivaramakrishnan, Anand

    2015-01-10

    The high angular resolution technique of non-redundant masking (NRM) or aperture masking interferometry (AMI) has yielded images of faint protoplanetary companions of nearby stars from the ground. AMI on James Webb Space Telescope (JWST)'s Near Infrared Imager and Slitless Spectrograph (NIRISS) has a lower thermal background than ground-based facilities and does not suffer from atmospheric instability. NIRISS AMI images are likely to have 90%-95% Strehl ratio between 2.77 and 4.8 μm. In this paper we quantify factors that limit the raw point source contrast of JWST NRM. We develop an analytic model of the NRM point spread function which includesmore » different optical path delays (pistons) between mask holes and fit the model parameters with image plane data. It enables a straightforward way to exclude bad pixels, is suited to limited fields of view, and can incorporate effects such as intra-pixel sensitivity variations. We simulate various sources of noise to estimate their effect on the standard deviation of closure phase, σ{sub CP} (a proxy for binary point source contrast). If σ{sub CP} < 10{sup –4} radians—a contrast ratio of 10 mag—young accreting gas giant planets (e.g., in the nearby Taurus star-forming region) could be imaged with JWST NIRISS. We show the feasibility of using NIRISS' NRM with the sub-Nyquist sampled F277W, which would enable some exoplanet chemistry characterization. In the presence of small piston errors, the dominant sources of closure phase error (depending on pixel sampling, and filter bandwidth) are flat field errors and unmodeled variations in intra-pixel sensitivity. The in-flight stability of NIRISS will determine how well these errors can be calibrated by observing a point source. Our results help develop efficient observing strategies for space-based NRM.« less

  11. JWST DD ERS Team Update: Decoding Smoke Signals from WR140 using NIRISS+AMI and MIRI/MRS

    NASA Astrophysics Data System (ADS)

    Lau, Ryan M.; Hankins, Matt; WR DustERS Team

    2018-06-01

    Dust is a key component of the interstellar medium and plays and important role in the formation of stars and planets. However, the dominant channels of dust production throughout cosmic time are uncertain. With its unprecedented sensitivity and spatial resolution in the mid-IR, the James Webb Space Telescope (JWST) is the ideal platform to address this issue by investigating the dust abundance, composition, and production rates of various dusty sources. In particular, colliding-wind Wolf-Rayet (WR) binaries are known to be efficient dust producers in the local Universe and likely existed in the earliest galaxies. In our Early Release Science (ERS) program, we will use JWST to observe the archetypal colliding-wind binary, WR 140, to study its dust composition, abundance, and formation mechanisms. We will utilize two key JWST observing modes with the medium-resolution spectrometer (MRS) on the Mid-Infrared Instrument (MIRI) and the Aperture Masking Interferometry (AMI) mode with the Near Infrared Imager and Slitless Spectrograph (NIRISS).Our planned observations will establish a benchmark for key observing modes for imaging bright sources with faint extended emission at high spatial resolutions. This will be valuable in various astrophysical contexts including mass-loss from evolved stars, dusty tori around active galactic nuclei, and protoplanetary disks. We are committed to delivering science-enabling products for the JWST community that include high-level pipeline tools to mitigate bright source artifacts and image reconstruction tools compatible with NIRISS+AMI data.

  12. Through the Looking GLASS: A JWST Exploration of Galaxy Formation and Evolution from Cosmic Dawn to Present Day

    NASA Astrophysics Data System (ADS)

    Treu, Tommaso; Abramson, L.; Bradac, M.; Brammer, G.; Fontana, A.; Henry, A.; Hoag, A.; Huang, K.; Mason, C.; Morishita, T.; Pentericci, L.; Wang, X.

    2017-11-01

    We propose a carefully designed set of observations of the lensing cluster Abell 2744 to study intrinsically faint magnified galaxies from the epoch of reionization to redshift of 1, demonstrating and characterizing complementary spectroscopic modes with NIRSPEC and NIRISS. The observations are designed to address the questions: 1) when did reionization happen and what were the sources of reionizing photons? 2) How do baryons cycle in and out of galaxies? This dataset with deep spectroscopy on the cluster and deep multiband NIRCAM imaging in parallel will enable a wealth of investigations and will thus be of interest to a broad section of the astronomical community. The dataset will illustrate the power and challenges of: 1) combining rest frame UV and optical NIRSPEC spectroscopy for galaxies at the epoch of reionization, 2) obtaining spatially resolved emission line maps with NIRISS, 3) combining NIRISS and NIRSPEC spectroscopy. Building on our extensive experience with HST slitless spectroscopy and imaging in clusters of galaxies as part of the GLASS, WISP, SURFSUP, and ASTRODEEP projects, we will provide the following science-enabling products to the community: 1)quantitative comparison of spatially resolved (NIRISS) and spectrally resolved (NIRSPEC) spectroscopy, 2) Object based interactive exploration tools for multi-instrument datasets, 3) Interface for easy forced extractionof slitless spectra based on coordinates, 4) UV-optical spectroscopic templates of highredshift galaxies, 5) NIRCAM parallel catalogs and a list of 26 z>=9 dropouts for spectroscopic follow-up in Cycle-2.

  13. Simulated JWST/NIRISS Transit Spectroscopy of Anticipated TESS Planets Compared to Select Discoveries from Space-Based and Ground-Based Surveys

    NASA Astrophysics Data System (ADS)

    Louie, Dana; Deming, Drake; Albert, Loic; Bouma, Luke; Bean, Jacob; Lopez-Morales, Mercedes

    2018-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will embark in 2018 on a 2-year wide-field survey mission of most of the celestial sky, discovering over a thousand super-Earth and sub-Neptune-sized exoplanets potentially suitable for follow-up observations using the James Webb Space Telescope (JWST). Bouma et al. (2017) and Sullivan et al. (2015) used Monte Carlo simulations to predict the properties of the planetary systems that TESS is likely to detect, basing their simulations upon Kepler-derived planet occurrence rates and photometric performance models for the TESS cameras. We employed a JWST Near InfraRed Imager and Slitless Spectrograph (NIRISS) simulation tool to estimate the signal-to-noise (S/N) that JWST/NIRISS will attain in transmission spectroscopy of these anticipated TESS discoveries, and we then compared the S/N for anticipated TESS discoveries to our estimates of S/N for 18 known exoplanets. We analyzed the sensitivity of our results to planetary composition, cloud cover, and presence of an observational noise floor. We find that only a few anticipated TESS discoveries in the terrestrial planet regime will result in better JWST/NIRISS S/N than currently known exoplanets, such as the TRAPPIST-1 planets, GJ1132b, or LHS1140b. However, we emphasize that this outcome is based upon Kepler-derived occurrence rates, and that co-planar compact systems (e.g. TRAPPIST-1) were not included in predicting the anticipated TESS planet yield. Furthermore, our results show that several hundred anticipated TESS discoveries in the super-Earth and sub-Neptune regime will produce S/N higher than currently known exoplanets such as K2-3b or K2-3c. We apply our results to estimate the scope of a JWST follow-up observation program devoted to mapping the transition region between high molecular weight and primordial planetary atmospheres.

  14. Using NIRISS to study the formation and evolution of stars, disks, and planets

    NASA Astrophysics Data System (ADS)

    Johnstone, Doug I.; JWST NIRISS GTO Team

    2017-06-01

    NIRISS on JWST is a powerful instrument for the study of star, disk, and planet formation and evolution. In this talk I will highlight the Wide Field Slitless Spectroscopy (WFSS) and Aperture Masking Interferometry (AMI) modes of NIRISS, along with lessons learned determining optimal observing strategies and project implementation in APT. The NIRISS WFSS mode uses a grism to provide modest resolution (R ~ 150) spectra of all sources within the observed field of view. Cold low-mass objects are distinct at NIRISS wavelengths (1.5 and 2.0 microns, in this case), and can be characterized through their speactra by their temperature and surface gravity sensitive molecular absorption features. Thus, WFSS observations will be an efficient way to locate and enumerate the young brown dwarfs and rogue planets in nearby star-forming regions. Alternatively, the NIRISS AMI mode offers the highest spatial resolution available on JWST at wavelengths greater than 2.5 micron, 70 - 400 mas, and modest inner working angle contrast, dm ~ 10, for individual bright sources. A significant advantage of observing from space is that, along with the phase closure, the interferometric phase amplitudes can also be recovered allowing some reconstruction of extended emission. Observations with AMI will be made of candidate and postulated planets forming within transition disks around young stars and for somewhat older planets in known extra-solar planetary systems. The AMI mode will also be used to study the zodiacal light in a bright debris disk system and to search for binary companions of Y dwarfs.

  15. First Cryo-Vacuum Test of the JWST Integrated Science Instrument Module

    NASA Astrophysics Data System (ADS)

    Kimble, Randy A.; Antonille, S. R.; Balzano, V.; Comber, B. J.; Davila, P. S.; Drury, M. D.; Glasse, A.; Glazer, S. D.; Lundquist, R.; Mann, S. D.; McGuffey, D. B.; Novo-Gradac, K. J.; Penanen, K.; Ramey, D. D.; Sullivan, J.; Van Campen, J.; Vila, M. B.

    2014-01-01

    The integration and test program for the Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope (JWST) calls for three cryo-vacuum tests of the ISIM hardware. The first is a risk-reduction test aimed at checking out the test hardware and procedures; this will be followed by two formal verification tests that will bracket other key aspects of the environmental test program (e.g. vibration and acoustics, EMI/EMC). The first of these cryo-vacuum tests, the risk-reduction test, was executed at NASA’s Goddard Space Flight Center starting in late August, 2013. Flight hardware under test included two (of the eventual four) flight instruments, the Mid-Infrared Instrument (MIRI) and the Fine Guidance Sensor/Near-Infrared Imager and Slitless Spectrograph (FGS/NIRISS), mounted to the ISIM structure, as well as the ISIM Electronics Compartment (IEC). The instruments were cooled to their flight operating temperatures 40K for FGS/NIRISS, ~6K for MIRI) and optically tested against a cryo-certified telescope simulator. Key goals for the risk reduction test included: 1) demonstration of controlled cooldown and warmup, stable control at operating temperature, and measurement of heat loads, 2) operation of the science instruments with ISIM electronics systems at temperature, 3) health trending of the science instruments against instrument-level test results, 4) measurement of the pupil positions and six degree of freedom alignment of the science instruments against the simulated telescope focal surface, 5) detailed optical characterization of the NIRISS instrument, 6) verification of the signal-to-noise performance of the MIRI, and 7) exercise of the Onboard Script System that will be used to operate the instruments in flight. In addition, the execution of the test is expected to yield invaluable logistical experience - development and execution of procedures, communications, analysis of results - that will greatly benefit the subsequent verification tests. At the time of this submission, the hardware had reached operating temperature and was partway through the cryo test program. We report here on the test configuration, the overall process, and the results that were ultimately obtained.

  16. Total Solar Eclipse to Introduce Scientific Research

    NASA Astrophysics Data System (ADS)

    Choudhary, D. P.

    2015-12-01

    We are designing an experiment to record time lapse slit-less flash spectra of solar chromosphere and corona before, during and after the Total Solar Eclipse (TSE). As the moon gradually covers different heights of chromosphere and corona, the time lapse spectra would provide high hight-resolution information about the line formation starting at very close proximity to the solar limb. The flash spectrum will be recored with a slit-less spectrograph consisting of a transmission grating of 300 lines/mm, blazed at 5000 Å, and an 135 mm f/3.5 telephoto lens. Based on earlier such instruments, the system's efficiency is expected to be about 60% at 5303 Å (Fe XIV emission line) and 20% at 6374 Å (Fe X emission line) (Voulgaris, 2010). We shall place the grating before the telephoto lens on a wedge shaped. The full range of the visible spectrum, from 3900 Å to 6700 Å will be projected on the CCD sensor of the digital camera. The resolution of the spectrograph is expected to be 0.5 Å/pixel at 5215 Å. The diameter of the Sun would corresponded to 275 pixels or 6.87''/pixel. By turning the grating, the direction of the ruling shall be set parallel to the direction of the last visible elongated crescent of the Sun; which will play the role of the "slit" in the slitless spectrograph. The spectrograph will be mounted on a solar tracker to observe the sun during TSE.

  17. Simulated JWST/NIRISS Transit Spectroscopy of Anticipated Tess Planets Compared to Select Discoveries from Space-based and Ground-based Surveys

    NASA Astrophysics Data System (ADS)

    Louie, Dana R.; Deming, Drake; Albert, Loic; Bouma, L. G.; Bean, Jacob; Lopez-Morales, Mercedes

    2018-04-01

    The Transiting Exoplanet Survey Satellite (TESS) will embark in 2018 on a 2 year wide-field survey mission, discovering over a thousand terrestrial, super-Earth and sub-Neptune-sized exoplanets ({R}pl}≤slant 4 {R}\\oplus ) potentially suitable for follow-up observations using the James Webb Space Telescope (JWST). This work aims to understand the suitability of anticipated TESS planet discoveries for atmospheric characterization by JWST’s Near InfraRed Imager and Slitless Spectrograph (NIRISS) by employing a simulation tool to estimate the signal-to-noise (S/N) achievable in transmission spectroscopy. We applied this tool to Monte Carlo predictions of the TESS expected planet yield and then compared the S/N for anticipated TESS discoveries to our estimates of S/N for 18 known exoplanets. We analyzed the sensitivity of our results to planetary composition, cloud cover, and presence of an observational noise floor. We find that several hundred anticipated TESS discoveries with radii 1.5 {R}\\oplus < {R}pl}≤slant 2.5 {R}\\oplus will produce S/N higher than currently known exoplanets in this radius regime, such as K2-3b or K2-3c. In the terrestrial planet regime, we find that only a few anticipated TESS discoveries will result in higher S/N than currently known exoplanets, such as the TRAPPIST-1 planets, GJ1132b, and LHS1140b. However, we emphasize that this outcome is based upon Kepler-derived occurrence rates, and that co-planar compact multi-planet systems (e.g., TRAPPIST-1) may be under-represented in the predicted TESS planet yield. Finally, we apply our calculations to estimate the required magnitude of a JWST follow-up program devoted to mapping the transition region between hydrogen-dominated and high molecular weight atmospheres. We find that a modest observing program of between 60 and 100 hr of charged JWST time can define the nature of that transition (e.g., step function versus a power law).

  18. Narrow-band EUV Multilayer Coating for the MOSES Sounding Rocket

    NASA Technical Reports Server (NTRS)

    Owens, Scott M.; Gum, Jeffery S.; Tarrio, Charles; Dvorak, Joseph; Kjornrattanawanich, Benjawan; Keski-Kuha, Ritva; Thomas, Roger J.; Kankelborg, Charles C.

    2005-01-01

    The Multi-order Solar EUV Spectrograph (MOSES) is a slitless spectrograph designed to study solar He II emission at 303.8 Angstroms, to be launched on a sounding rocket payload. One difference between MOSES and other slitless spectrographs is that the images are recorded simultaneously at three spectral orders, m = -1,0, +l. Another is the addition of a narrow-band multilayer coating on both the grating and the fold flat, which will reject out-of-band lines that normally contaminate the image of a slitless instrument. The primary metrics f a the mating were high peak reflectivity and suppression of Fe XV and XVI emission lines at 284 Angstroms and 335 Angstroms, respectively. We chose B4C/Mg2Si for our material combination since it provides better values for all three metrics together than the other leading candidates Si/Ir, Si/B4C or Si/SiC. Measurements of witness flats at NIST indicate the peak reflectivity at 303.6 is 38.5% for a 15 bilayer stack, while the suppression at 284 Angstroms, is 4.5x and at 335 Angstroms is 18.3x for each of two reflections in the instrument. We present the results of coating the MOSES flight gratings and fold flat, including the spectral response of the fold flat and grating as measured at NIST's SURF III and Brookhaven's X24C beamline.

  19. Establishing Extreme Dynamic Range with JWST: Decoding Smoke Signals in the Glare of a Wolf-Rayet Binary

    NASA Astrophysics Data System (ADS)

    Lau, Ryan; Hankins, M.; Kasliwal, M.; Sivaramakrishnan, A.; Thatte, D.

    2017-11-01

    Dust is a key ingredient in the formation of stars and planets. However, the dominant channels of dust production throughout cosmic time are still unclear. With its unprecedented sensitivity and spatial resolution in the mid-IR, the James Webb Space Telescope (JWST) is the ideal platform to address this issue by investigating the dust abundance, composition, and production rates of various dusty sources. In particular, colliding-wind Wolf-Rayet (WR) binaries are efficient dust producers in the local Universe, and likely existed in the earliest galaxies. To study these interesting objects, we propose JWST observations of the archetypal colliding-wind binary WR 140 to study its dust composition, abundance, and formation mechanisms. We will utilize two key JWST observing modes with the medium resolution spectrometer (MRS) on the Mid-Infrared Instrument (MIRI) and the Aperture Masking Interferometry (AMI) mode with the Near Infrared Imager and Slitless Spectrograph (NIRISS). Our proposed observations will yield high impact scientific results on the dust forming properties WR binaries, and establish a benchmark for key observing modes for imaging bright sources with faint extended emission. This will be valuable in various astrophysical contexts including mass-loss from evolved stars, dusty tori around active galactic nuclei, and protoplanetary disks. We are committed to designing and delivering science-enabling products for the JWST community that address technical issues such as bright source artifacts that will limit the maximum achievable image contrast.

  20. The Number Density Evolution of Extreme Emission Line Galaxies in 3D-HST: Results from a Novel Automated Line Search Technique for Slitless Spectroscopy

    NASA Astrophysics Data System (ADS)

    Maseda, Michael V.; van der Wel, Arjen; Rix, Hans-Walter; Momcheva, Ivelina; Brammer, Gabriel B.; Franx, Marijn; Lundgren, Britt F.; Skelton, Rosalind E.; Whitaker, Katherine E.

    2018-02-01

    The multiplexing capability of slitless spectroscopy is a powerful asset in creating large spectroscopic data sets, but issues such as spectral confusion make the interpretation of the data challenging. Here we present a new method to search for emission lines in the slitless spectroscopic data from the 3D-HST survey utilizing the Wide-Field Camera 3 on board the Hubble Space Telescope. Using a novel statistical technique, we can detect compact (extended) emission lines at 90% completeness down to fluxes of 1.5(3.0)× {10}-17 {erg} {{{s}}}-1 {{cm}}-2, close to the noise level of the grism exposures, for objects detected in the deep ancillary photometric data. Unlike previous methods, the Bayesian nature allows for probabilistic line identifications, namely redshift estimates, based on secondary emission line detections and/or photometric redshift priors. As a first application, we measure the comoving number density of Extreme Emission Line Galaxies (restframe [O III] λ5007 equivalent widths in excess of 500 Å). We find that these galaxies are nearly 10× more common above z ∼ 1.5 than at z ≲ 0.5. With upcoming large grism surveys such as Euclid and WFIRST, as well as grisms featured prominently on the NIRISS and NIRCam instruments on the James Webb Space Telescope, methods like the one presented here will be crucial for constructing emission line redshift catalogs in an automated and well-understood manner. This work is based on observations taken by the 3D-HST Treasury Program and the CANDELS Multi-Cycle Treasury Program with the NASA/ESA HST, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  1. Second generation spectrograph for the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Woodgate, B. E.; Boggess, A.; Gull, T. R.; Heap, S. R.; Krueger, V. L.; Maran, S. P.; Melcher, R. W.; Rebar, F. J.; Vitagliano, H. D.; Green, R. F.; Wolff, S. C.; Hutchings, J. B.; Jenkins, E. B.; Linsky, J. L.; Moos, H. W.; Roesler, F.; Shine, R. A.; Timothy, J. G.; Weistrop, D. E.; Bottema, M.; Meyer, W.

    1986-01-01

    The preliminary design for the Space Telescope Imaging Spectrograph (STIS), which has been selected by NASA for definition study for future flight as a second-generation instrument on the Hubble Space Telescope (HST), is presented. STIS is a two-dimensional spectrograph that will operate from 1050 A to 11,000 A at the limiting HST resolution of 0.05 arcsec FWHM, with spectral resolutions of 100, 1200, 20,000, and 100,000 and a maximum field-of-view of 50 x 50 arcsec. Its basic operating modes include echelle model, long slit mode, slitless spectrograph mode, coronographic spectroscopy, photon time-tagging, and direct imaging. Research objectives are active galactic nuclei, the intergalactic medium, global properties of galaxies, the origin of stellar systems, stelalr spectral variability, and spectrographic mapping of solar system processes.

  2. Slitless Solar Spectroscopy

    NASA Technical Reports Server (NTRS)

    Davila, Joseph M.; Jones, Sahela

    2011-01-01

    Spectrographs have traditionally suffered from the inability to obtain line intensities, widths, and Doppler shifts over large spatial regions of the Sun quickly because of the narrow instantaneous field of view. This has limited the spectroscopic analysis of rapidly varying solar features like, flares, CME eruptions, coronal jets, and reconnection regions. Imagers have provided high time resolution images of the full Sun with limited spectral resolution. In this paper we present recent advances in deconvolving spectrally dispersed images obtained through broad slits. We use this new theoretical formulation to examine the effectiveness of various potential observing scenarios, spatial and spectral resolutions, signal to noise ratio, and other instrument characteristics. This information will lay the foundation for a new generation of spectral imagers optimized for slitless spectral operation, while retaining the ability to obtain spectral information in transient solar events.

  3. Spectrophotometry of stars 9 - 12m north polar spectrophotometric sequence (NPSS) program.

    NASA Astrophysics Data System (ADS)

    Sharipova, L. M.; Prokof'eva, V. V.

    Spectrophotometric observations of stars 9 - 12m of the NPSS program have been made with the use of hgh-sensitivity light-detecting apparatus of the digital television complex of the 0.5-m Maksutov telescope MTM-500 and original slitless spectrograph. Atmospheric extinction was controlled during the night by means of an energetically calibrated brightness standard. Absolute energy distributions of 12 stars, their synthetic magnitudes in the V band, and B-V color indices were obtained.

  4. The JWST North Ecliptic Pole Survey Field for Time-domain Studies

    NASA Astrophysics Data System (ADS)

    Jansen, Rolf A.; Alpaslan, Mehmet; Ashby, Matthew; Ashcraft, Teresa; Cohen, Seth H.; Condon, James J.; Conselice, Christopher; Ferrara, Andrea; Frye, Brenda L.; Grogin, Norman A.; Hammel, Heidi B.; Hathi, Nimish P.; Joshi, Bhavin; Kim, Duho; Koekemoer, Anton M.; Mechtley, Matt; Milam, Stefanie N.; Rodney, Steven A.; Rutkowski, Michael J.; Strolger, Louis-Gregory; Trujillo, Chadwick A.; Willmer, Christopher; Windhorst, Rogier A.; Yan, Haojing

    2017-01-01

    The JWST North Ecliptic Pole (NEP) Survey field is located within JWST's northern Continuous Viewing Zone, will span ˜14‧ in diameter (˜10‧ with NIRISS coverage) and will be roughly circular in shape (initially sampled during Cycle 1 at 4 distinct orientations with JWST/NIRCam's 4.4‧×2.2‧ FoV —the JWST “windmill”) and will have NIRISS slitless grism spectroscopy taken in parallel, overlapping an alternate NIRCam orientation. This is the only region in the sky where JWST can observe a clean extragalactic deep survey field (free of bright foreground stars and with low Galactic foreground extinction AV) at arbitrary cadence or at arbitrary orientation. This will crucially enable a wide range of new and exciting time-domain science, including high redshift transient searches and monitoring (e.g., SNe), variability studies from Active Galactic Nuclei to brown dwarf atmospheres, as well as proper motions of extreme scattered Kuiper Belt and Oort Cloud Objects, and of nearby Galactic brown dwarfs, low-mass stars, and ultracool white dwarfs. We therefore welcome and encourage follow-up through GO programs of the initial GTO observations to realize its potential as a JWST time-domain community field. The JWST NEP Survey field was selected from an analysis of WISE 3.4+4.6 micron, 2MASS JHKs, and SDSS ugriz source counts and of Galactic foreground extinction, and is one of very few such ˜10‧ fields that are devoid of sources brighter than mAB = 16 mag. We have secured deep (mAB ˜ 26 mag) wide-field (˜23‧×25‧) Ugrz images of this field and its surroundings with LBT/LBC. We also expect that deep MMT/MMIRS YJHK images, deep 8-12 GHz VLA radio observations (pending), and possibly HST ACS/WFC and WFC3/UVIS ultraviolet-visible images will be available before JWST launches in Oct 2018.

  5. The JWST North Ecliptic Pole Survey Field for Time-domain Studies

    NASA Astrophysics Data System (ADS)

    Jansen, Rolf A.; Webb Medium Deep Fields IDS GTO Team, the NEPTDS-VLA/VLBA Team, and the NEPTDS-Chandra Team

    2017-06-01

    The JWST North Ecliptic Pole (NEP) Survey field is located within JWST's northern Continuous Viewing Zone, will span ~14‧ in diameter (~10‧ with NIRISS coverage) and will be roughly circular in shape (initially sampled during Cycle 1 at 4 distinct orientations with JWST/NIRCam's 4.4‧×2.2‧ FoV —the JWST "windmill") and will have NIRISS slitless grism spectroscopy taken in parallel, overlapping an alternate NIRCam orientation. This is the only region in the sky where JWST can observe a clean extragalactic deep survey field (free of bright foreground stars and with low Galactic foreground extinction AV) at arbitrary cadence or at arbitrary orientation. This will crucially enable a wide range of new and exciting time-domain science, including high redshift transient searches and monitoring (e.g., SNe), variability studies from Active Galactic Nuclei to brown dwarf atmospheres, as well as proper motions of extreme scattered Kuiper Belt and Oort Cloud Objects, and of nearby Galactic brown dwarfs, low-mass stars, and ultracool white dwarfs. We therefore welcome and encourage follow-up through GO programs of the initial GTO observations to realize its potential as a JWST time-domain community field. The JWST NEP Survey field was selected from an analysis of WISE 3.4+4.6 μm, 2MASS JHKs, and SDSS ugriz source counts and of Galactic foreground extinction, and is one of very few such ~10‧ fields that are devoid of sources brighter than mAB = 16 mag. We have secured deep (mAB ~ 26 mag) wide-field (~23‧×25‧) Ugrz images of this field and its surroundings with LBT/LBC. We also expect that deep MMT/MMIRS YJHK images, deep 3-4.5 GHz VLA and VLBA radio observations, and possibly HST ACS/WFC and WFC3/UVIS ultraviolet-visible (pending) and Chandra/ACIS X-ray (pending) images will be available before JWST launches in Oct 2018.

  6. Identifying Planetary Biosignature Impostors: Spectral Features of CO and O4 Resulting from Abiotic O2/O3 Production

    NASA Technical Reports Server (NTRS)

    Schwieterman, Edward W.; Meadows, Victoria S.; Domagal-Goldman, Shawn D.; Deming, Drake; Arney, Giada N.; Luger, Rodrigo; Harman, Chester E.; Misra, Amit; Barnes, Rory

    2016-01-01

    O2 and O3 have been long considered the most robust individual biosignature gases in a planetary atmosphere, yet multiple mechanisms that may produce them in the absence of life have been described. However, these abiotic planetary mechanisms modify the environment in potentially identifiable ways. Here we briefly discuss two of the most detectable spectral discriminants for abiotic O2/O3: CO and O4. We produce the first explicit self-consistent simulations of these spectral discriminants as they may be seen by James Webb Space Telescope (JWST). If JWST-NIRISS (Near InfraRed Imager and Slitless Spectrograph) and/or NIRSpec (Near InfraRed Spectograph) observe CO (2.35, 4.6 micrometers) in conjunction with CO2 (1.6, 2.0, 4.3 micrometers) in the transmission spectrum of a terrestrial planet it could indicate robust CO2 photolysis and suggest that a future detection of O2 or O3 might not be biogenic. Strong O4 bands seen in transmission at 1.06 and 1.27 micrometers could be diagnostic of a post-runaway O2-dominated atmosphere from massive H-escape. We find that for these false positive scenarios, CO at 2.35 micrometers, CO2 at 2.0 and 4.3 micrometers, and O4 at 1.27 micrometers are all stronger features in transmission than O2/O3 and could be detected with sigal to noise ratios greater than or approximately 3 for an Earth-size planet orbiting a nearby M dwarf star with as few as 10 transits, assuming photon-limited noise. O4 bands could also be sought in UV/VIS/NIR reflected light (at 0.345, 0.36, 0.38, 0.445, 0.475, 0.53, 0.57, 0.63, 1.06, and 1.27 micrometers) by a next generation direct imaging telescope such as LUVOIR (Large Ultraviolet Visible Infrared)/HDST (High-Definition Space Telescope) or HabEx (Habitable-Exoplanet Imaging Mission) and would indicate an oxygen atmosphere too massive to be biologically produced.

  7. High-efficiency in situ resonant inelastic x-ray scattering (iRIXS) endstation at the Advanced Light Source

    NASA Astrophysics Data System (ADS)

    Qiao, Ruimin; Li, Qinghao; Zhuo, Zengqing; Sallis, Shawn; Fuchs, Oliver; Blum, Monika; Weinhardt, Lothar; Heske, Clemens; Pepper, John; Jones, Michael; Brown, Adam; Spucces, Adrian; Chow, Ken; Smith, Brian; Glans, Per-Anders; Chen, Yanxue; Yan, Shishen; Pan, Feng; Piper, Louis F. J.; Denlinger, Jonathan; Guo, Jinghua; Hussain, Zahid; Chuang, Yi-De; Yang, Wanli

    2017-03-01

    An endstation with two high-efficiency soft x-ray spectrographs was developed at Beamline 8.0.1 of the Advanced Light Source, Lawrence Berkeley National Laboratory. The endstation is capable of performing soft x-ray absorption spectroscopy, emission spectroscopy, and, in particular, resonant inelastic soft x-ray scattering (RIXS). Two slit-less variable line-spacing grating spectrographs are installed at different detection geometries. The endstation covers the photon energy range from 80 to 1500 eV. For studying transition-metal oxides, the large detection energy window allows a simultaneous collection of x-ray emission spectra with energies ranging from the O K-edge to the Ni L-edge without moving any mechanical components. The record-high efficiency enables the recording of comprehensive two-dimensional RIXS maps with good statistics within a short acquisition time. By virtue of the large energy window and high throughput of the spectrographs, partial fluorescence yield and inverse partial fluorescence yield signals could be obtained for all transition metal L-edges including Mn. Moreover, the different geometries of these two spectrographs (parallel and perpendicular to the horizontal polarization of the beamline) provide contrasts in RIXS features with two different momentum transfers.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, Ruimin; Li, Qinghao; Zhuo, Zengqing

    In this paper, an endstation with two high-efficiency soft x-ray spectrographs was developed at Beamline 8.0.1 of the Advanced Light Source, Lawrence Berkeley National Laboratory. The endstation is capable of performing soft x-ray absorption spectroscopy, emission spectroscopy, and, in particular, resonant inelastic soft x-ray scattering (RIXS). Two slit-less variable line-spacing grating spectrographs are installed at different detection geometries. The endstation covers the photon energy range from 80 to 1500 eV. For studying transition-metal oxides, the large detection energy window allows a simultaneous collection of x-ray emission spectra with energies ranging from the O K-edge to the Ni L-edge without movingmore » any mechanical components. The record-high efficiency enables the recording of comprehensive two-dimensional RIXS maps with good statistics within a short acquisition time. By virtue of the large energy window and high throughput of the spectrographs, partial fluorescence yield and inverse partial fluorescence yield signals could be obtained for all transition metal L-edges including Mn. Finally and moreover, the different geometries of these two spectrographs (parallel and perpendicular to the horizontal polarization of the beamline) provide contrasts in RIXS features with two different momentum transfers.« less

  9. Cosmic Origins Spectrograph: On-Orbit Performance of Target Acquisitions

    NASA Astrophysics Data System (ADS)

    Penton, Steven V.

    2010-07-01

    COS is a slit-less spectrograph with a very small aperture (R=1.2500). To achieve the desired wavelength accuracies, HST+COS must center the target to within 0.100 of the center of the aperture for the FUV channel, and 0.0400 for NUV. During SMOV and early Cycle 17 we fine-tuned the COS target acquisition (TA) procedures to exceed this accuracy for all three COS TA modes; NUV imaging, NUV spectroscopic, and FUV spectroscopic. In Cycle 17, we also adjusted the COSto- FGS offsets in the SIAF file. This allows us to recommend skipping the time consuming ACQ/SEARCH in cases where the target coordinates are well known. Here we will compare the on-orbit performance of all COS TA modes in terms of centering accuracy, efficiency, and required signal-to-noise (S/N).

  10. Through the Looking GLASS: A JWST exploration of galaxy formation and evolution from cosmic dawn to present day

    NASA Astrophysics Data System (ADS)

    Bradac, Marusa; JWST ERS Team

    2018-06-01

    In the recent years HST observations of blank fields enabled us to detect galaxies as far as z~11. However, very little is known about those galaxies, and they are mostly the most luminous representatives. Clusters of galaxies, when used as cosmic telescopes, can greatly simplify the task of studying and finding normal galaxies at high redshifts. Through the Looking GLASS JWST ERS program is designed to study intrinsically faint magnified galaxies from the epoch of reionization until redshift 1 using an extraordinary lensing cluster Abell 2744. By complimenting deep slitless spectroscopy from NIRISS and high-resolution spectra from the NIRSpec MOS the program will address the origin of the re-ionizing photons and the baryonic cycle of galaxies. NIRCAM imaging will be taken in parallel to the spectroscopy to further aid the exploration of the highest redshift galaxies. In addition, GLASS-ERS data will allow a wealth of other investigations and be of interest to a large section of the astronomical community. I will present the design of the survey as well as the products we plan to provide to the broader community to access this diverse set of JWST data before cycle 2.

  11. High-efficiency in situ resonant inelastic x-ray scattering (iRIXS) endstation at the Advanced Light Source

    DOE PAGES

    Qiao, Ruimin; Li, Qinghao; Zhuo, Zengqing; ...

    2017-03-17

    In this paper, an endstation with two high-efficiency soft x-ray spectrographs was developed at Beamline 8.0.1 of the Advanced Light Source, Lawrence Berkeley National Laboratory. The endstation is capable of performing soft x-ray absorption spectroscopy, emission spectroscopy, and, in particular, resonant inelastic soft x-ray scattering (RIXS). Two slit-less variable line-spacing grating spectrographs are installed at different detection geometries. The endstation covers the photon energy range from 80 to 1500 eV. For studying transition-metal oxides, the large detection energy window allows a simultaneous collection of x-ray emission spectra with energies ranging from the O K-edge to the Ni L-edge without movingmore » any mechanical components. The record-high efficiency enables the recording of comprehensive two-dimensional RIXS maps with good statistics within a short acquisition time. By virtue of the large energy window and high throughput of the spectrographs, partial fluorescence yield and inverse partial fluorescence yield signals could be obtained for all transition metal L-edges including Mn. Finally and moreover, the different geometries of these two spectrographs (parallel and perpendicular to the horizontal polarization of the beamline) provide contrasts in RIXS features with two different momentum transfers.« less

  12. The changes on physical characteristics of lightning discharge plasma during individual return stroke process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, He; Yuan, Ping; Cen, Jian-Yong

    2014-03-15

    A cloud-to-ground lightning with six return strokes has been recorded with a slit-less spectrograph in Qinghai province. According to the spectra of return strokes without continuous current, the electron density, the channel temperature, and the gas pressure have been calculated. Then, the correlativity of these parameters has been analyzed. The results indicate that the total intensity of spectra is positive correlated to the intensity of spectral line, they both decrease with time rapidly; furthermore, the channel temperature and the gas pressure decrease with time slowly in the similar trends.

  13. Cosmic Origins Spectrograph : Target Acquisition Performance and Updated Guidelines

    NASA Astrophysics Data System (ADS)

    Penton, Steven V.; Keyes, C.; Osterman, S.; Sahnow, D.; Soderblom, D.; COS IDT Team; STScI COS Team

    2010-01-01

    The Cosmic Origins Spectrograph (COS) is a slit-less spectrograph with a very small aperture (radius = 1.25"). To achieve the desired wavelength accuracy of <15 km/s, HST+COS must center the target to within 0.1” of the center of the aperture. This is the angle subtended by a typical AAS poster when viewed from over 1400 miles away. During SMOV we have fine-tuned the COS target acquisition (TA) procedures to exceed this accuracy for all three COS TA modes; NUV imaging, NUV spectroscopic, and FUV spectroscopic. We will compare all COS TA modes in terms of centering accuracy, efficiency (elapsed time), and required signal-to-noise for all targets suitable for use with COS. We will also provide updated recommendations for the options of all TA modes (e.g., SCAN-SIZE and NUM-POS of ACQ/PEAKD). We have observed in SMOV that HST is providing an excellent initial 1-σ blind pointing accuracy of ±0.4” in both the along-dispersion and cross-dispersion directions. We will discuss the implications of this, and other lessons learned in SMOV, on Cycle 17 and 18 HST+COS TAs.

  14. UV--Visible observations with HST in the JWST North Ecliptic Pole Time-Domain Field

    NASA Astrophysics Data System (ADS)

    Jansen, Rolf A.; Windhorst, Rogier; Grogin, Norman; Koekemoer, Anton; Royle, Patricia; Hathi, Nimish; Jones, Victoria; Cohen, Seth; Ashcraft, Teresa; Willmer, Christopher; Conselice, Christopher; White, Cameron; Frye, Brenda; HST-GO-15278 team; and the Webb Medium Deep Fields IDS GTO team.

    2018-01-01

    We report the first results from a UV–Visible HST imaging survey of the JWST North Ecliptic Pole (NEP) Time-Domain Field (TDF). Using CVZ and near-CVZ opportunities we observed the first two out of nine tiles with WFC3/UVIS in F275W and with ACS/WFC in F435W and F606W. Over the course of the next 13 months, this survey is designed to provide near-contiguous 3-filter coverage of the central r ≤ 5‧ of this new community field for time-domain science with JWST. The JWST NEP TDF is located within JWST's northern Continuous Viewing Zone, will span ~14‧ in diameter (~10‧ with NIRISS coverage), is devoid of sources bright enough to saturate the NIRCam detectors, has low Galactic foreground extinction, and will be roughly circular in shape (initially sampled during Cycle 1 at 4 distinct orientations with JWST/NIRCam — the JWST “windmill”). NIRISS slitless grism spectroscopy will be taken in parallel, overlapping an alternate NIRCam orientation. This is the only region in the sky where JWST can observe a clean extragalactic deep survey field of this size at arbitrary cadence or at arbitrary orientation. This will crucially enable a wide range of new and exciting time-domain science, including high redshift transient searches and monitoring (e.g., SNe), variability studies from Active Galactic Nuclei to brown dwarf atmospheres, as well as proper motions of extreme scattered Kuiper Belt and Oort Cloud Objects, and of nearby Galactic brown dwarfs, low-mass stars, and ultracool white dwarfs. Ancillary data across the electromagnetic spectrum will exist for this field when JWST science operations commence in the second half of 2019. This includes deep (mAB ~ 26 mag) wide-field (~23‧×25‧) Ugriz photometry of this field and its surroundings from LBT/LBC and Subaru/HSC, JHK from MMT/MMIRS, VLA 3 GHz and VLBA 4.5 GHz radio observations, and Chandra/ACIS X-ray images. Proposals for (sub)mm observations and spectroscopy to mAB ~ 24 mag are pending.

  15. Resistance and internal electric field in cloud-to-ground lightning channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cen, Jianyong; Yuan, Ping, E-mail: yuanp@nwnu.edu.cn; Xue, Simin

    2015-02-02

    Cloud-to-ground lightning with six return strokes has been recorded by slitless spectrograph and the system of fast antenna and slow antenna. The physical parameters of the discharge channel have been obtained based on the combination of spectra and synchronous radiated electric field. The resistance and internal electric field of the channel are studied as the focus in this paper. The results show that the resistances per unit length of the lightning channel are in the order of 10{sup −2}–10{sup −1 }Ω/m and the internal electric field strengths are in the order of 10{sup 3 }V/m.

  16. Detection et caracterisation de naines brunes et exoplanetes avec un filtre accordable pour applications dans l'espace

    NASA Astrophysics Data System (ADS)

    Ingraham, Patrick Jon

    This thesis determines the capability of detecting faint companions in the presence of speckle noise when performing space-based high-contrast imaging through spectral differential imagery (SDI) using a low-order Fabry-Perot etalon as a tunable filter. The performance of such a tunable filter is illustrated through the Tunable Filter Imager (TFI), an instrument designed for the James Webb Space Telescope (JWST). Using a TFI prototype etalon and a custom designed test bed, the etalon's ability to perform speckle-suppression through SDI is demonstrated experimentally. Improvements in contrast vary with separation, ranging from a factor of ˜10 at working angles greater than 11 lambda/D and increasing up to a factor of ˜60 at 5 lambda/D. These measurements are consistent with a Fresnel optical propagation model which shows the speckle suppression capability is limited by the test bed and not the etalon. This result demonstrates that a tunable filter is an attractive option to perform high-contrast imaging through SDI. To explore the capability of space-based SDI using an etalon, we perform an end-to-end Fresnel propagation of JWST and TFI. Using this simulation, a contrast improvement ranging from a factor of ˜7 to ˜100 is predicted, depending on the instrument's configuration. The performance of roll-subtraction is simulated and compared to that of SDI. The SDI capability of the Near-Infrared Imager and Slitless Spectrograph (NIRISS), the science instrument module to replace TFI in the JWST Fine Guidance Sensor is also determined. Using low resolution, multi-band (0.85-2.4 microm) multi-object spectroscopy, 104 objects towards the central region of the Orion Nebular Cluster have been assigned spectral types including 7 new brown dwarfs, and 4 new planetary mass candidates. These objects are useful for determining the substellar initial mass function and for testing evolutionary and atmospheric models of young stellar and substellar objects. Using the measured H band magnitudes, combined with our determined extinction values, the classified objects are used to create an Hertzsprung-Russell diagram for the cluster. Our results indicate a single epoch of star formation beginning ˜1 Myr ago. The initial mass function of the cluster is derived and found to be consistent with the values determined for other young clusters and the galactic disk.

  17. A TRANSITION REGION EXPLOSIVE EVENT OBSERVED IN He II WITH THE MOSES SOUNDING ROCKET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, J. Lewis; Kankelborg, Charles C.; Thomas, Roger J., E-mail: fox@physics.montana.ed, E-mail: kankel@solar.physics.montana.ed, E-mail: Roger.J.Thomas@nasa.go

    2010-08-20

    Transition region explosive events (EEs) have been observed with slit spectrographs since at least 1975, most commonly in lines of C IV (1548 A, 1550 A) and Si IV (1393 A, 1402 A). We report what we believe to be the first observation of a transition region EE in He II 304 A. With the Multi-Order Solar EUV Spectrograph (MOSES) sounding rocket, a novel slitless imaging spectrograph, we are able to see the spatial structure of the event. We observe a bright core expelling two jets that are distinctly non-collinear, in directions that are not anti-parallel. The jets have sky-planemore » velocities of order 75 km s{sup -1} and line-of-sight velocities of +75 km s{sup -1} (blue) and -30 km s{sup -1} (red). The core is a region of high non-thermal Doppler broadening, characteristic of EEs, with maximal broadening 380 km s{sup -1} FWHM. It is possible to resolve the core broadening into red and blue line-of-sight components of maximum Doppler velocities +160 km s{sup -1} and -220 km s{sup -1}. The event lasts more than 150 s. Its properties correspond to the larger, long-lived, and more energetic EEs observed in other wavelengths.« less

  18. Study of the transport parameters of cloud lightning plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Z. S.; Yuan, P.; Zhao, N.

    2010-11-15

    Three spectra of cloud lightning have been acquired in Tibet (China) using a slitless grating spectrograph. The electrical conductivity, the electron thermal conductivity, and the electron thermal diffusivity of the cloud lightning, for the first time, are calculated by applying the transport theory of air plasma. In addition, we investigate the change behaviors of parameters (the temperature, the electron density, the electrical conductivity, the electron thermal conductivity, and the electron thermal diffusivity) in one of the cloud lightning channels. The result shows that these parameters decrease slightly along developing direction of the cloud lightning channel. Moreover, they represent similar suddenmore » change behavior in tortuous positions and the branch of the cloud lightning channel.« less

  19. MIT modular x-ray source systems for the study of plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Coleman, J. W.; Wenzel, K. W.; Petrasso, R. D.; Lo, D. H.; Li, C. K.; Lierzer, J. R.; Wei, T.

    1992-10-01

    Two new x-ray source systems are now on line at our facility. Each provides an e-beam to 25 kV. Targets are interchangeable between machines, and four x-ray detectors may be used simultaneously with a target. The gridded e-gun of the RACEHORSE system gives a 0.5-1.0-cm pulsable spot on target. The nongridded e-gun of the SCORPION system provides a 0.3-mm or smaller dc microspot on target. RACEHORSE is being used to study and characterize type-II diamond photoconductors for use in diagnosing plasmas, while SCORPION is being used to develop a slitless spectrograph using photographic film. Source design details and some RACEHORSE results are presented.

  20. Synoptic maps of solar coronal hole boundaries derived from He 2 304 A spectroheliograms from the manned skylab missions

    NASA Technical Reports Server (NTRS)

    Bohlin, J. D.; Rubenstein, D. M.

    1975-01-01

    The disk boundaries of coronal holes have been determined from He II 304 A spectroheliograms which were taken with the Naval Research Laboratory slitless XUV spectrograph during the manned Skylab missions. These boundaries are plotted by Carrington rotation as synoptic charts in both the standard rectangular as well as polar-view projections. The periods of time for which boundaries were determined are 24 May through 28 June 1973 (first manned Skylab mission), 2 August through 24 September 1973 (second manned mission), and 21 November 1973 through 2 February 1974 (third manned mission); the Carrington rotations covered (in part or totally) are 1601 and 02; 160r, 1604, 05 and 06; and 1608, 09 and 10, respectively.

  1. Analysis on the spectra and synchronous radiated electric field observation of cloud-to-ground lightning discharge plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cen Jianyong; Yuan Ping; Qu Haiyan

    2011-11-15

    According to the spectra of cloud-to-ground (CG) lightning discharge plasma captured by a slit-less spectrograph and the information of synchronous radiated electric field, the temperatures, the total intensity of spectra, the peak value of current and its action integral of discharge plasma channel have been calculated. Furthermore, the correlativity of these parameters has been analyzed for the first time. The results indicate that the total intensity of spectra has a positive correlation to the discharge current in different strokes of one CG lightning, and the temperature of discharge plasma is direct proportion to the action integral in the first returnmore » strokes of different lightning.« less

  2. Study on the luminous characteristics of a natural ball lightning

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Yuan, Ping; Cen, Jianyong; Liu, Guorong

    2018-02-01

    According to the optical images of the whole process of a natural ball lightning recorded by two slit-less spectrographs in the Qinghai plateau of China, the simulated observation experiment on the luminous intensity of the spherical light source was carried out. The luminous intensity and the optical power of the natural ball lightning in the wavelength range of 400-690 nm were estimated based on the experimental data and the Lambert-Beer Law. The results show that the maximum luminous intensity was about 1.24 × 105 cd in the initial stage of the natural ball lightning, and the maximum luminous intensity and the maximum optical power in most time of its life were about 5.9 × 104 cd and 4.2 × 103 W, respectively.

  3. MIT modular x-ray source systems for the study of plasma diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, J.W.; Wenzel, K.W.; Petrasso, R.D.

    1992-10-01

    Two new x-ray source systems are now on line at our facility. Each provides an {ital e}-beam to 25 kV. Targets are interchangeable between machines, and four x-ray detectors may be used simultaneously with a target. The gridded {ital e}-gun of the RACEHORSE system gives a 0.5--1.0-cm pulsable spot on target. The nongridded {ital e}-gun of the SCORPION system provides a 0.3-mm or smaller dc microspot on target. RACEHORSE is being used to study and characterize type-II diamond photoconductors for use in diagnosing plasmas, while SCORPION is being used to develop a slitless spectrograph using photographic film. Source design detailsmore » and some RACEHORSE results are presented.« less

  4. Using local correlation tracking to recover solar spectral information from a slitless spectrograph

    NASA Astrophysics Data System (ADS)

    Courrier, Hans T.; Kankelborg, Charles C.

    2018-01-01

    The Multi-Order Solar EUV Spectrograph (MOSES) is a sounding rocket instrument that utilizes a concave spherical diffraction grating to form simultaneous images in the diffraction orders m=0, +1, and -1. MOSES is designed to capture high-resolution cotemporal spectral and spatial information of solar features over a large two-dimensional field of view. Our goal is to estimate the Doppler shift as a function of position for every MOSES exposure. Since the instrument is designed to operate without an entrance slit, this requires disentangling overlapping spectral and spatial information in the m=±1 images. Dispersion in these images leads to a field-dependent displacement that is proportional to Doppler shift. We identify these Doppler shift-induced displacements for the single bright emission line in the instrument passband by comparing images from each spectral order. We demonstrate the use of local correlation tracking as a means to quantify these differences between a pair of cotemporal image orders. The resulting vector displacement field is interpreted as a measurement of the Doppler shift. Since three image orders are available, we generate three Doppler maps from each exposure. These may be compared to produce an error estimate.

  5. The James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2012-01-01

    The James Webb Space Telescope is the scientific successor to the Hubble and Spitzer Space Telescopes. It will be a large (6.6m) cold (SDK) telescope launched into orbit around the second Earth-Sun Lagrange point. It is a partnership of NASA with the European and Canadian Space Agencies. The science goals for JWST include the formation of the first stars and galaxies in the early universe; the chemical, morphological and dynamical buildup of galaxies and the formation of stars and planetary systems. Recently, the goals have expanded to include studies of dark energy, dark matter, active galactic nuclei, exoplanets and Solar System objects. Webb will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Near-Infrared Imager and Slitless Spectrograph will cover the wavelength range 0.6 to S microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. The observatory is confirmed for launch in 2018; the design is complete and it is in its construction phase. Recent progress includes the completion of the mirrors, the delivery of the first flight instruments and the start of the integration and test phase.

  6. Batman flies: a compact spectro-imager for space observation

    NASA Astrophysics Data System (ADS)

    Zamkotsian, Frederic; Ilbert, Olivier; Zoubian, Julien; Delsanti, Audrey; Boissier, Samuel; Lancon, Ariane

    2017-11-01

    Multi-object spectroscopy (MOS) is a key technique for large field of view surveys. MOEMS programmable slit masks could be next-generation devices for selecting objects in future infrared astronomical instrumentation for space telescopes. MOS is used extensively to investigate astronomical objects by optimizing the Signal-to-Noise Ratio (SNR): high precision spectra are obtained and the problem of spectral confusion and background level occurring in slitless spectroscopy is cancelled. Fainter limiting fluxes are reached and the scientific return is maximized both in cosmology and in legacy science. Major telescopes around the world are equipped with MOS in order to simultaneously record several hundred spectra in a single observation run. Next generation MOS for space like the Near Infrared Multi-Object Spectrograph (NIRSpec) for the James Webb Space Telescope (JWST) require a programmable multi-slit mask. Conventional masks or complex fiber-optics-based mechanisms are not attractive for space. The programmable multi-slit mask requires remote control of the multislit configuration in real time. During the early-phase studies of the European Space Agency (ESA) EUCLID mission, a MOS instrument based on a MOEMS device has been assessed. Due to complexity and cost reasons, slitless spectroscopy was chosen for EUCLID, despite a much higher efficiency with slit spectroscopy. A promising possible solution is the use of MOEMS devices such as micromirror arrays (MMA) [1,2,3] or micro-shutter arrays (MSA) [4]. MMAs are designed for generating reflecting slits, while MSAs generate transmissive slits. In Europe an effort is currently under way to develop single-crystalline silicon micromirror arrays for future generation infrared multi-object spectroscopy (collaboration LAM / EPFL-CSEM) [5,6]. By placing the programmable slit mask in the focal plane of the telescope, the light from selected objects is directed toward the spectrograph, while the light from other objects and from the sky background is blocked. To get more than 2 millions independent micromirrors, the only available component is a Digital Micromirror Device (DMD) chip from Texas Instruments (TI) that features 2048 x 1080 mirrors and a 13.68μm pixel pitch. DMDs have been tested in space environment (-40°C, vacuum, radiations) by LAM and no showstopper has been revealed [7]. We are presenting in this paper a DMD-based spectrograph called BATMAN, including two arms, one spectroscopic channel and one imaging channel. This instrument is designed for getting breakthrough results in several science cases, from high-z galaxies to nearby galaxies and Trans-Neptunian Objects of Kuiper Belt.

  7. Explosive Events in the Quiet Sun: Extreme Ultraviolet Imaging Spectroscopy Instrumentation and Observations

    NASA Astrophysics Data System (ADS)

    Rust, Thomas Ludwell

    Explosive event is the name given to slit spectrograph observations of high spectroscopic velocities in solar transition region spectral lines. Explosive events show much variety that cannot yet be explained by a single theory. It is commonly believed that explosive events are powered by magnetic reconnection. The evolution of the line core appears to be an important indicator of which particular reconnection process is at work. The Multi-Order Solar Extreme Ultraviolet Spectrograph (MOSES) is a novel slitless spectrograph designed for imaging spectroscopy of solar extreme ultraviolet (EUV) spectral lines. The spectrograph design forgoes a slit and images instead at three spectral orders of a concave grating. The images are formed simultaneously so the resulting spatial and spectral information is co-temporal over the 20' x 10' instrument field of view. This is an advantage over slit spectrographs which build a field of view one narrow slit at a time. The cost of co-temporal imaging spectroscopy with the MOSES is increased data complexity relative to slit spectrograph data. The MOSES data must undergo tomographic inversion for recovery of line profiles. I use the unique data from the MOSES to study transition region explosive events in the He ii 304 A spectral line. I identify 41 examples of explosive events which include 5 blue shifted jets, 2 red shifted jets, and 10 bi-directional jets. Typical doppler speeds are approximately 100kms-1. I show the early development of one blue jet and one bi-directional jet and find no acceleration phase at the onset of the event. The bi-directional jets are interesting because they are predicted in models of Petschek reconnection in the transition region. I develop an inversion algorithm for the MOSES data and test it on synthetic observations of a bi-directional jet. The inversion is based on a multiplicative algebraic reconstruction technique (MART). The inversion successfully reproduces synthetic line profiles. I then use the inversion to study the time evolution of a bi-directional jet. The inverted line profiles show fast doppler shifted components and no measurable line core emission. The blue and red wings of the jet show increasing spatial separation with time.

  8. Search for Organic Matter in Leonid Meteoroids

    NASA Technical Reports Server (NTRS)

    Rairden, Richard L.; Jenniskens, Peter; Laux, Christophe O.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Near-ultraviolet 300-410 nm spectra of Leonid meteors were obtained in an effort to measure the strong B to X emission band of the radical CN in Leonid meteor spectra at 387 nm. CN is an expected product of ablation of nitrogen containing organic carbon in the meteoroids as well as a possible product of the aerothermochemistry induced by the kinetic energy of the meteor. A slitless spectrograph with objective grating was deployed on FISTA during the 1999 Leonid Multi-Instrument Aircraft Campaign. Fifteen first-order UV spectra were captured near the 02:00 UT meteor storm peak on November 18. It is found that neutral iron lines dominate the spectrum, with no clear sign of the CN band. The meteor plasma contains less than one CN molecule per three Fe atoms at the observed altitude of about 100 km.

  9. Thermal power and heat energy of cloud-to-ground lightning process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xuejuan; Yuan, Ping; Xue, Simin

    2016-07-15

    A cloud-to-ground lightning flash with nine return strokes has been recorded using a high speed slitless spectrograph and a system composed of a fast antenna and a slow antenna. Based on the spectral data and the synchronous electric field changes that were caused by the lightning, the electrical conductivity, the channel radii, the resistance per unit length, the peak current, the thermal power at the instant of peak current, and the heat energy per unit length during the first 5 μs in the discharge channel have all been calculated. The results indicate that the channel radii have linear relationships with themore » peak current. The thermal power at the peak current time increases with increasing resistance, but exponential decays with the square of the peak current.« less

  10. Building the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2012-01-01

    The James Webb Space Telescope is the scientific successor to the Hubble and Spitzer Space Telescopes. It will be a large (6.6m) cold (50K) telescope launched into orbit around the second Earth-Sun Lagrange point. It is a partnership of NASA with the European and Canadian Space Agencies. JWST will make progress In almost every area of astronomy, from the first galaxies to form in the early universe to exoplanets and Solar System objects. Webb will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Near-Infrared Imager and Slitless Spectrograph will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. The observatory Is confirmed for launch in 2018; the design is complete and it is in its construction phase. Innovations that make JWST possible include large-area low-noise infrared detectors, cryogenic ASICs, a MEMS micro-shutter array providing multi-object spectroscopy, a non-redundant mask for interferometric coronagraphy and diffraction-limited segmented beryllium mirrors with active wavefront sensing and control. Recent progress includes the completion of the mirrors, the delivery of the first flight instruments and the start of the integration and test phase.

  11. Slitless Spectroscopy

    NASA Astrophysics Data System (ADS)

    Davila, J. M.; O'Neill, J. F.

    2013-12-01

    Spectrographs provide a unique window into plasma parameters in the solar atmosphere. In fact spectrographs provide the most accurate measurements of plasma parameters such as density, temperature, and flow speed. However, traditionally spectrographic instruments have suffered from the inability to cover large spatial regions of the Sun quickly. To cover an active region sized spatial region, the slit must be rastered over the area of interest with an exposure taken at each pointing location. Because of this long cycle time, the spectra of dynamic events like flares, CME initiations, or transient brightening are obtained only rarely. And even if spectra are obtained they are either taken over an extremely small spatial region, or the spectra are not co-temporal across the raster. Either of these complicates the interpretation of the spectral raster results. Imagers are able to provide high time and spatial resolution images of the full Sun but with limited spectral resolution. The telescopes onboard the Solar Dynamics Observatory (SDO) normally take a full disk solar image every 10 seconds with roughly 1 arcsec spatial resolution. However the spectral resolution of the multilayer imagers on SDO is of order 100 times less than a typical spectrograph. Because of this it is difficult to interpret multilayer imaging data to accurately obtain plasma parameters like temperature and density from these data, and there is no direct measure of plasma flow velocity. SERTS and EIS partially addressed this problem by using a wide slit to produce monochromatic images with limited FOV to limit overlapping. However dispersion within the wide slit image remained a problem which prevented the determination of intensity, Doppler shift, and line width in the wide slit. Kankelborg and Thomas introduced the idea of using multiple images -1, 0, and +1 spectral orders of a single emission line. This scheme provided three independent images to measure the three spectral line parameters in each pixel with the Multi-Order Solar EUV Spectrograph (MOSES) instrument. We suggest a reconstruction approach based on tomographic methods with regularization. Preliminary results show that the typical Doppler shift and line width error introduced by the reconstruction method is of order a few km/s at 300 A. This is on the order of the error obtained in narrow slit spectrographs but with data obtained over a two-dimensional field of view.

  12. Analysis on the correlation between temperature and discharge characteristic of cloud-to-ground lightning discharge plasma with multiple return strokes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu Haiyan; Chang Zhengshi; Yuan Ping

    2011-01-15

    The spectra of cloud-to-ground lightning with multiple return strokes have been obtained by using a slitless spectrograph on the Chinese Tibet plateau. Combining the spectra with synchronous electrical information, the correlation among spectral properties, channel temperatures and discharge characteristics, and thermal effects of current is discussed for the first time. The results show that the channel plasma temperature varies significantly from stroke to stroke within a given flash, and the total intensity of spectra is directly proportional to the amplitude of electric field change. Moreover, the positive correlation has been confirmed between the channel plasma temperature and the thermal effectmore » which shows the effect of the electric current accumulation. It is inferred that the total intensity of the spectra should be directly proportional to the intensity of discharge current, and channel temperature is correlated positively with the energy transmission in one return stroke.« less

  13. Cryogenic Motor Enhancement for the NIRISS Instrument on the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Aldridge, David; Gentilhomme, Macso; Gibson, Andrew; Cameron, Peter; McColgan, Ashley; Dhanji, Zul; Lambros, Scott; Anderson, Mike

    2015-09-01

    Initial testing of the JWST NIRISS Dual Wheel Mechanism showed unsatisfactory life from the motors used to drive the individual wheel components. An investigation uncovered that theinternal friction had increased due to wear at the lubricated interface between the motor gearhead planetary gears and the planet gear retaining pins, reducing output torque. Work was undertaken to improve the life of this interface. Several design options were selected for development. A successful redesign was qualified with a larger gearhead, modified to use ball-bearings for planetary gear support. To further enhance life, all internal lubrication was changed to sputtered MoS2. PGM- HT cages were also employed for planetary and motor rotor bearings.

  14. On-board data processing for the near infrared spectrograph and photometer instrument (NISP) of the EUCLID mission

    NASA Astrophysics Data System (ADS)

    Bonoli, Carlotta; Balestra, Andrea; Bortoletto, Favio; D'Alessandro, Maurizio; Farinelli, Ruben; Medinaceli, Eduardo; Stephen, John; Borsato, Enrico; Dusini, Stefano; Laudisio, Fulvio; Sirignano, Chiara; Ventura, Sandro; Auricchio, Natalia; Corcione, Leonardo; Franceschi, Enrico; Ligori, Sebastiano; Morgante, Gianluca; Patrizii, Laura; Sirri, Gabriele; Trifoglio, Massimo; Valenziano, Luca

    2016-07-01

    The Near Infrared Spectrograph and Photometer (NISP) is one of the two instruments on board the EUCLID mission now under implementation phase; VIS, the Visible Imager is the second instrument working on the same shared optical beam. The NISP focal plane is based on a detector mosaic deploying 16x, 2048x2048 pixels^2 HAWAII-II HgCdTe detectors, now in advanced delivery phase from Teledyne Imaging Scientific (TIS), and will provide NIR imaging in three bands (Y, J, H) plus slit-less spectroscopy in the range 0.9÷2.0 micron. All the NISP observational modes will be supported by different parametrization of the classic multi-accumulation IR detector readout mode covering the specific needs for spectroscopic, photometric and calibration exposures. Due to the large number of deployed detectors and to the limited satellite telemetry available to ground, a consistent part of the data processing, conventionally performed off-line, will be accomplished on board, in parallel with the flow of data acquisitions. This has led to the development of a specific on-board, HW/SW, data processing pipeline, and to the design of computationally performing control electronics, suited to cope with the time constraints of the NISP acquisition sequences during the sky survey. In this paper we present the architecture of the NISP on-board processing system, directly interfaced to the SIDECAR ASICs system managing the detector focal plane, and the implementation of the on-board pipe-line allowing all the basic operations of input frame averaging, final frame interpolation and data-volume compression before ground down-link.

  15. Two NIRCam Channels are Better than One: How JWST Can Do More Science with NIRCam’s Short-wavelength Dispersed Hartmann Sensor

    NASA Astrophysics Data System (ADS)

    Schlawin, E.; Rieke, M.; Leisenring, J.; Walker, L. M.; Fraine, J.; Kelly, D.; Misselt, K.; Greene, T.; Line, M.; Lewis, N.; Stansberry, J.

    2017-01-01

    The James Webb Space Telescope (JWST) offers unprecedented sensitivity, stability, and wavelength coverage for transiting exoplanet studies, opening up new avenues for measuring atmospheric abundances, structure, and temperature profiles. Taking full advantage of JWST spectroscopy of planets from 0.6 to 28 μm, however, will require many observations with a combination of the NIRISS, NIRCam, NIRSpec, and MIRI instruments. In this white paper, we discuss a new NIRCam mode (not yet approved or implemented) that can reduce the number of necessary observations to cover the 1.0-5.0 μm wavelength range. Even though NIRCam was designed primarily as an imager, it also includes several grisms for phasing and aligning JWST’s 18 hexagonal mirror segments. NIRCam’s long-wavelength channel includes grisms that cover 2.4-5.0 μm with a resolving power of R = 1200-1550 using two separate configurations. The long-wavelength grisms have already been approved for science operations, including wide field and single object (time series) slitless spectroscopy. We propose a new mode that will simultaneously measure spectra for science targets in the 1.0-2.0 μm range using NIRCam’s short-wavelength channel. This mode, if approved, would take advantage of NIRCam’s Dispersed Hartmann Sensor (DHS), which produces 10 spatially separated spectra per source at R ˜ 300. We discuss the added benefit of the DHS in constraining abundances in exoplanet atmospheres as well as its ability to observe the brightest systems. The DHS essentially comes for free (at no time cost) with any NIRCam long-wavelength grism observation, but the detector integration parameters have to be selected to ensure that the long-wavelength grism observations do not saturate and that JWST data volume downlink constraints are not violated. Combining both of NIRCam’s channels will maximize the science potential of JWST, which is a limited life observatory.

  16. VizieR Online Data Catalog: Multiwavelenght photometry of Sh 2-138 YSOs (Baug+, 2015)

    NASA Astrophysics Data System (ADS)

    Baug, T.; Ojha, D. K.; Dewangan, L. K.; Ninan, J. P.; Bhatt, B. C.; Ghosh, S. K.; Mallick, K. K.

    2016-07-01

    Optical BVRI imaging observations of the Sh2-138 region were carried out on 2005 September 8 using the Himalaya Faint Object Spectrograph and Camera (HFOSC) mounted on the 2 m Himalayan Chandra Telescope (HCT). In order to identify strong Hα emission sources in the Sh2-138 region, slitless Hα spectra were obtained using the HFOSC on 2007 November 16. Optical spectroscopic observations of the central brightest source were performed using the HFOSC on 2014 November 18. The newly installed TIFR Near Infrared Spectrometer and Imager Camera (TIRSPEC) on the HCT was used for NIR observations on 2014 November 18 under photometric conditions with an average seeing of 1.4 arcsec. We obtained NIR spectra of the central brightest source on 2014 May 29, using the TIRSPEC, in NIR Y (1.02-1.20um), J (1.21-1.48um), H (1.49-1.78um), and K (2.04-2.35um) bands. We conducted optical narrow-band imaging observations of the region in Hα filter (λ~6563Å, Δλ~100Å) with exposure times of 600s, 250s, and 50s on 2005 September 8 using the HFOSC. (1 data file).

  17. The evolution of discharge current and channel radius in cloud-to-ground lightning return stroke process

    NASA Astrophysics Data System (ADS)

    Fan, Tingting; Yuan, Ping; Wang, Xuejuan; Cen, Jianyong; Chang, Xuan; Zhao, Yanyan

    2017-09-01

    The spectra of two negative cloud-to-ground lightning discharge processes with multi-return strokes are obtained by a slit-less high-speed spectrograph, which the temporal resolution is 110 μs. Combined with the synchronous electrical observation data and theoretical calculation, the physical characteristics during return strokes process are analysed. A positive correlation between discharge current and intensity of ionic lines in the spectra is verified, and based on this feature, the current evolution characteristics during four return strokes are investigated. The results show that the time from peak current to the half-peak value estimated by multi point-fitting is about 101 μs-139 μs. The Joule heat in per unit length of four return strokes channel is in the order of 105J/m-106 J/m. The radius of arc discharge channel is positively related to the discharge current, and the more intense the current is, the greater the radius of channel is. Furthermore, the evolution for radius of arc core channel in the process of return stroke is consistent with the change trend of discharge current after the peak value. Compared with the decay of the current, the temperature decreases more slowly.

  18. The CAnadian NIRISS Unbiased Cluster Survey (CANUCS)

    NASA Astrophysics Data System (ADS)

    Ravindranath, Swara; NIRISS GTO Team

    2017-06-01

    CANUCS GTO program is a JWST spectroscopy and imaging survey of five massive galaxy clusters and ten parallel fields using the NIRISS low-resolution grisms, NIRCam imaging and NIRSpec multi-object spectroscopy. The primary goal is to understand the evolution of low mass galaxies across cosmic time. The resolved emission line maps and line ratios for many galaxies, with some at resolution of 100pc via the magnification by gravitational lensing will enable determining the spatial distribution of star formation, dust and metals. Other science goals include the detection and characterization of galaxies within the reionization epoch, using multiply-imaged lensed galaxies to constrain cluster mass distributions and dark matter substructure, and understanding star-formation suppression in the most massive galaxy clusters. In this talk I will describe the science goals of the CANUCS program. The proposed prime and parallel observations will be presented with details of the implementation of the observation strategy using JWST proposal planning tools.

  19. Wide-Field InfraRed Survey Telescope (WFIRST) Slitless Spectrometer: Design, Prototype, and Results

    NASA Technical Reports Server (NTRS)

    Gong, Qian; Content, David; Dominguez, Margaret; Emmett, Thomas; Griesmann, Ulf; Hagopian, John; Kruk, Jeffrey; Marx, Catherine; Pasquale, Bert; Wallace, Thomas; hide

    2016-01-01

    The slitless spectrometer plays an important role in the Wide-Field InfraRed Survey Telescope (WFIRST) mission for the survey of emission-line galaxies. This will be an unprecedented very wide field, HST quality 3D survey of emission line galaxies. The concept of the compound grism as a slitless spectrometer has been presented previously. The presentation briefly discusses the challenges and solutions of the optical design, and recent specification updates, as well as a brief comparison between the prototype and the latest design. However, the emphasis of this paper is the progress of the grism prototype: the fabrication and test of the complicated diffractive optical elements and powered prism, as well as grism assembly alignment and testing. Especially how to use different tools and methods, such as IR phase shift and wavelength shift interferometry, to complete the element and assembly tests. The paper also presents very encouraging results from recent element tests to assembly tests. Finally we briefly touch the path forward plan to test the spectral characteristic, such as spectral resolution and response.

  20. Relative Throughput of the Near-IR Science Instruments for the James Webb Space Telescope as Measured During Ground Testing the Integrated Science Instrument Module

    NASA Technical Reports Server (NTRS)

    Malumuth, Eliot; Birkmann, Stephan; Kelly, Douglas M.; Kimble, Randy A.; Lindler, Don; Martel, Andre; Ohl, Raymond G.; Rieke, Marcia J.; Rowlands, Neil; Te Plate, Maurice

    2016-01-01

    Data were obtained for the purpose of measuring the relative throughput of the Near-IR Science Instruments (SIs) of the James Webb Space Telescope (JWST) as part of the second and third cryogenic-vacuum tests (CV2CV3) of the Integrated Science Instrument Module (ISIM) conducted at the Goddard Space Flight Center (GSFC) in 2014 and 20152016, at the beginning and end of the environmental test program, respectively. This Poster focuses on data obtained as part of the Initial Optical Baseline and as part of the Final Performance test -- two epochs that roughly bracket the CV3 test. The purpose of the test is to trend relative throughput to monitor for any potential changes from gross problems such as contamination or degradation of an optical element. Point source data were taken at a variety of wavelengths for NIRCam Module A and Module B, NIRSpec, NIRISS, Guider 1 and Guider 2 using the Laser Diode (LD) 1.06 micron, LD 1.55 micron, 2.1 micron LED and 3.5 micron LED, as well as for NIRCam Mod A and B and NIRISS using a tungsten source and the F277W, and F480M filters. Spectra were taken using the G140M, G235M, and G395M gratings for NIRSpec, the GRISMR grism for NIRCam Mod A and B and the GR150C grism for NIRISS. The results of these measurements are compared to what would be expected given the efficiency of each of the optical elements in each SI. Although these data were taken as a check against gross problems, they can also be used to provide the first relative throughput estimate for each SI through the various filters source wavelengths measured in their flight-like configurations.

  1. The EVE Doppler Sensitivity and Flare Observations

    NASA Technical Reports Server (NTRS)

    Hudson, H. S.; Woods, T. N.; Chamberlin, P. C.; Didkovsky, L.; Del Zanna, G.

    2011-01-01

    The Extreme-ultraviolet Variability Experiment (EVE) obtains continuous EUV spectra of the Sun viewed as a star. Its primary objective is the characterization of solar spectral irradiance, but its sensitivity and stability make it extremely interesting for observations of variability on time scales down to the limit imposed by its basic 10 s sample interval. In this paper we characterize the Doppler sensitivity of the EVE data. We find that the 30.4 nm line of He II has a random Doppler error below 0.001 nm (1 pm, better than 10 km/s as a redshift), with ample stability to detect the orbital motion of its satellite, the Solar Dynamics Observatory (SDO). Solar flares also displace the spectrum, both because of Doppler shifts and because of EVE's optical layout, which (as with a slitless spectrograph) confuses position and wavelength. As a flare develops, the centroid of the line displays variations that reflect Doppler shifts and therefore flare dynamics. For the impulsive phase of the flare SOL2010-06-12, we find the line centroid to have a redshift of 16.8 +/- 5.9 km/s relative to that of the flare gradual phase (statistical errors only). We find also that high-temperature lines, such as Fe XXIV 19.2 nm, have well-determined Doppler components for major flares, with decreasing apparent blueshifts as expected from chromospheric evaporation flows.

  2. VizieR Online Data Catalog: Hubble Legacy Archive ACS grism data (Kuemmel+, 2011)

    NASA Astrophysics Data System (ADS)

    Kuemmel, M.; Rosati, P.; Fosbury, R.; Haase, J.; Hook, R. N.; Kuntschner, H.; Lombardi, M.; Micol, A.; Nilsson, K. K.; Stoehr, F.; Walsh, J. R.

    2011-09-01

    A public release of slitless spectra, obtained with ACS/WFC and the G800L grism, is presented. Spectra were automatically extracted in a uniform way from 153 archival fields (or "associations") distributed across the two Galactic caps, covering all observations to 2008. The ACS G800L grism provides a wavelength range of 0.55-1.00um, with a dispersion of 40Å/pixel and a resolution of ~80Å for point-like sources. The ACS G800L images and matched direct images were reduced with an automatic pipeline that handles all steps from archive retrieval, alignment and astrometric calibration, direct image combination, catalogue generation, spectral extraction and collection of metadata. The large number of extracted spectra (73,581) demanded automatic methods for quality control and an automated classification algorithm was trained on the visual inspection of several thousand spectra. The final sample of quality controlled spectra includes 47919 datasets (65% of the total number of extracted spectra) for 32149 unique objects, with a median iAB-band magnitude of 23.7, reaching 26.5 AB for the faintest objects. Each released dataset contains science-ready 1D and 2D spectra, as well as multi-band image cutouts of corresponding sources and a useful preview page summarising the direct and slitless data, astrometric and photometric parameters. This release is part of the continuing effort to enhance the content of the Hubble Legacy Archive (HLA) with highly processed data products which significantly facilitate the scientific exploitation of the Hubble data. In order to characterize the slitless spectra, emission-line flux and equivalent width sensitivity of the ACS data were compared with public ground-based spectra in the GOODS-South field. An example list of emission line galaxies with two or more identified lines is also included, covering the redshift range 0.2-4.6. Almost all redshift determinations outside of the GOODS fields are new. The scope of science projects possible with the ACS slitless release data is large, from studies of Galactic stars to searches for high redshift galaxies. (3 data files).

  3. The Hubble Legacy Archive ACS grism data

    NASA Astrophysics Data System (ADS)

    Kümmel, M.; Rosati, P.; Fosbury, R.; Haase, J.; Hook, R. N.; Kuntschner, H.; Lombardi, M.; Micol, A.; Nilsson, K. K.; Stoehr, F.; Walsh, J. R.

    2011-06-01

    A public release of slitless spectra, obtained with ACS/WFC and the G800L grism, is presented. Spectra were automatically extracted in a uniform way from 153 archival fields (or "associations") distributed across the two Galactic caps, covering all observations to 2008. The ACS G800L grism provides a wavelength range of 0.55-1.00 μm, with a dispersion of 40 Å/pixel and a resolution of ~80 Å for point-like sources. The ACS G800L images and matched direct images were reduced with an automatic pipeline that handles all steps from archive retrieval, alignment and astrometric calibration, direct image combination, catalogue generation, spectral extraction and collection of metadata. The large number of extracted spectra (73,581) demanded automatic methods for quality control and an automated classification algorithm was trained on the visual inspection of several thousand spectra. The final sample of quality controlled spectra includes 47 919 datasets (65% of the total number of extracted spectra) for 32 149 unique objects, with a median iAB-band magnitude of 23.7, reaching 26.5 AB for the faintest objects. Each released dataset contains science-ready 1D and 2D spectra, as well as multi-band image cutouts of corresponding sources and a useful preview page summarising the direct and slitless data, astrometric and photometric parameters. This release is part of the continuing effort to enhance the content of the Hubble Legacy Archive (HLA) with highly processed data products which significantly facilitate the scientific exploitation of the Hubble data. In order to characterize the slitless spectra, emission-line flux and equivalent width sensitivity of the ACS data were compared with public ground-based spectra in the GOODS-South field. An example list of emission line galaxies with two or more identified lines is also included, covering the redshift range 0.2 - 4.6. Almost all redshift determinations outside of the GOODS fields are new. The scope of science projects possible with the ACS slitless release data is large, from studies of Galactic stars to searches for high redshift galaxies.

  4. Spectroscopic confirmation of an ultra-faint galaxy at the epoch of reionization

    NASA Astrophysics Data System (ADS)

    Hoag, Austin; Bradač, Maruša; Trenti, Michele; Treu, Tommaso; Schmidt, Kasper B.; Huang, Kuang-Han; Lemaux, Brian C.; He, Julie; Bernard, Stephanie R.; Abramson, Louis E.; Mason, Charlotte A.; Morishita, Takahiro; Pentericci, Laura; Schrabback, Tim

    2017-04-01

    Within one billion years of the Big Bang, intergalactic hydrogen was ionized by sources emitting ultraviolet and higher energy photons. This was the final phenomenon to globally affect all the baryons (visible matter) in the Universe. It is referred to as cosmic reionization and is an integral component of cosmology. It is broadly expected that intrinsically faint galaxies were the primary ionizing sources due to their abundance in this epoch1,2. However, at the highest redshifts (z > 7.5 lookback time 13.1 Gyr), all galaxies with spectroscopic confirmations to date are intrinsically bright and, therefore, not necessarily representative of the general population3. Here, we report the unequivocal spectroscopic detection of a low luminosity galaxy at z > 7.5. We detected the Lyman-α emission line at ˜10,504 Å in two separate observations with MOSFIRE4 on the Keck I Telescope and independently with the Hubble Space Telescope's slitless grism spectrograph, implying a source redshift of z = 7.640 ± 0.001. The galaxy is gravitationally magnified by the massive galaxy cluster MACS J1423.8+2404 (z = 0.545), with an estimated intrinsic luminosity of MAB = -19.6 ± 0.2 mag and a stellar mass of M⊙=3.0-0.8+1.5×108 solar masses. Both are an order of magnitude lower than the four other Lyman-α emitters currently known at z > 7.5, making it probably the most distant representative source of reionization found to date.

  5. A Lyman Break Galaxy in the Epoch of Reionization from Hubble Space Telescope (HST) Grism Spectroscopy

    NASA Technical Reports Server (NTRS)

    Rhoads, James E.; Malhotra, Sangeeta; Stern, Daniel K.; Gardner, Jonathan P.; Dickinson, Mark; Pirzkal, Norbert; Spinrad, Hyron; Reddy, Naveen; Dey, Arjun; Hathi, Nimish; hide

    2013-01-01

    Slitless grism spectroscopy from space offers dramatic advantages for studying high redshift galaxies: high spatial resolution to match the compact sizes of the targets, a dark and uniform sky background, and simultaneous observation over fields ranging from five square arcminutes (HST) to over 1000 square arcminutes (Euclid). Here we present observations of a galaxy at z = 6.57 the end of the reioinization epoch identified using slitless HST grism spectra from the PEARS survey (Probing Evolution And Reionization Spectroscopically) and reconfirmed with Keck + DEIMOS. This high redshift identification is enabled by the depth of the PEARS survey. Substantially higher redshifts are precluded for PEARS data by the declining sensitivity of the ACS grism at greater than lambda 0.95 micrometers. Spectra of Lyman breaks at yet higher redshifts will be possible using comparably deep observations with IR-sensitive grisms.

  6. GALEX UV grism for slitless spectroscopy survey

    NASA Astrophysics Data System (ADS)

    Grange, Robert; Milliard, Bruno; Flamand, Jean; Pauget, Alain; Waultier, Gabrielle; Moreaux, Gabriel; Rossin, Christelle; Viton, Maurice; Neviere, Michel

    2017-11-01

    The NASA Space Mission Galex is designed to map the history of star formation by performing imaging and spectroscopic surveys in vacuum ultraviolet. The dispersive component for the spectroscopic mode is a CaF2 Grism which can be inserted with loose tolerances in the convergent beam to produce slitless spectra. Grisms are widely used in ground based astronomy in the visible or near infrared bands but the UV cutoff of the resin involved in their manufacturing process prevents their use in the UV range. LAS and Jobin-Yvon developed a proprietary process to imprint the blazed profile into the CaF2 crystal. We will present the measured optical performance of prototypes and flight models delivered this summer to NASA/JPL. We will also present a three bipod flexures mount we designed to minimize the mechanical stress on the optical component. The flight Grism bonded to such a mount has successfully passed the Galex environmental qualification.

  7. GLASS: spatially resolved spectroscopy of lensed galaxies in the Frontier Fields

    NASA Astrophysics Data System (ADS)

    Jones, Tucker; Treu, Tommaso; Brammer, Gabriel; Borello Schmidt, Kasper; Malkan, Matthew A.

    2015-08-01

    The Grism Lens-Amplified Survey from Space (GLASS) has obtained slitless near-IR spectroscopy of 10 galaxy clusters selected for their strong lensing properties, including all six Hubble Frontier Fields. Slitless grism spectra are ideal for mapping emission lines such as [O II], [O III], and H alpha at z=1-3. The combination of strong gravitational lensing and HST's diffraction limit provides excellent sensitivity with spatial resolution as fine as 100 pc for highly magnified sources, and ~500 pc for less magnified sources near the edge of the field of view. The GLASS survey represents the largest spectroscopic sample with such high resolution at z>1. GLASS and Hubble Frontier Field data provide the distribution of stellar mass, star formation, gas-phase metallicity, and other aspects of the physical structure of high redshift galaxies, reaching unprecedented stellar masses as low as ~10^7 Msun at z=2. I will discuss precise measurements of these physical properties and implications for galaxy evolution.

  8. Spatially resolved spectroscopy of lensed galaxies in the Frontier Fields

    NASA Astrophysics Data System (ADS)

    Jones, Tucker; Aff004

    The Grism Lens-Amplified Survey from Space (GLASS) has obtained slitless near-infrared spectroscopy of 10 galaxy clusters selected for their strong lensing properties, including all six Hubble Frontier Fields. Slitless grism spectra are ideal for mapping emission lines such as [O ii], [O iii], and Hα at z=1-3. The combination of strong gravitational lensing and Hubble's diffraction limit provides excellent sensitivity with spatial resolution as fine as 100 pc for highly magnified sources, and ~500 pc for less magnified sources near the edge of the field of view. The GLASS survey represents the largest spectroscopic sample with such high resolution at z > 1. GLASS and Hubble Frontier Field data provide the distribution of stellar mass, star formation, gas-phase metallicity, and other aspects of the physical structure of high redshift galaxies, reaching stellar masses as low as ~107 M⊙ at z=2. I discuss precise measurements of these physical properties and implications for galaxy evolution.

  9. The Fornax Cluster VLT Spectroscopic Survey II - Planetary Nebulae kinematics within 200 kpc of the cluster core

    NASA Astrophysics Data System (ADS)

    Spiniello, C.; Napolitano, N. R.; Arnaboldi, M.; Tortora, C.; Coccato, L.; Capaccioli, M.; Gerhard, O.; Iodice, E.; Spavone, M.; Cantiello, M.; Peletier, R.; Paolillo, M.; Schipani, P.

    2018-06-01

    We present the largest and most spatially extended planetary nebulae (PNe) catalogue ever obtained for the Fornax cluster. We measured velocities of 1452 PNe out to 200 kpc in the cluster core using a counter-dispersed slitless spectroscopic technique with data from FORS2 on the Very Large Telescope (VLT). With such an extended spatial coverage, we can study separately the stellar haloes of some of the cluster main galaxies and the intracluster light. In this second paper of the Fornax Cluster VLT Spectroscopic Survey, we identify and classify the emission-line sources, describe the method to select PNe, and calculate their coordinates and velocities from the dispersed slitless images. From the PN 2D velocity map, we identify stellar streams that are possibly tracing the gravitational interaction of NGC 1399 with NGC 1404 and NGC 1387. We also present the velocity dispersion profile out to ˜200 kpc radii, which shows signatures of a superposition of the bright central galaxy and the cluster potential, with the latter clearly dominating the regions outside R ˜ 1000 arcsec (˜100 kpc).

  10. GLASS: detailed structure of high redshift galaxies from HST grism spectroscopy

    NASA Astrophysics Data System (ADS)

    Jones, Tucker; Treu, Tommaso; Schmidt, Kasper B.; Wang, Xin; Brammer, Gabriel; Glass

    2015-01-01

    The Grism Lens-Amplified Survey from Space (GLASS) is obtaining slitless near-IR spectroscopy of 10 galaxy clusters selected for their strong lensing properties, including all six Hubble Frontier Fields. The GLASS survey will have gathered more than ten thousand spectra upon completion in early 2015. Slitless grism spectra are ideal for mapping emission lines such as [O II], [O III], and Hα at z=1-3 as well as Lyα at z>6. The combination of strong gravitational lensing and HST's diffraction limit provides excellent sensitivity (~1e-18 erg/s/cm2 RMS) with spatial resolution as fine as 100 pc for highly magnified sources, and ~500 pc for less magnified sources near the edge of the field of view. This enables precise measurements of metallicity gradients, the distribution of star formation, and other details of the physical structure of high redshift galaxies with masses as low as ~107 M⊙ at z=2. I will discuss measurements of these physical properties and implications for galaxy evolution based on the largest sample available to date with such high resolution at z>1.

  11. WIRC-POL: A near-IR spectro-polarimetric imager at Palomar Observatory

    NASA Astrophysics Data System (ADS)

    Nilsson, Ricky; Tinyanont, Samaporn; Mawet, Dimitri; Knutson, Heather; WIRC-POL Team

    2017-01-01

    The 200-inch Hale Telescope at Palomar Observatory is the largest equatorial-mounted telescope in the world. Combining a large aperture, extremely stable tracking, and no differential motion of optics, it introduces low and stable instrument polarization, making it uniquely suited for time-resolved polarimetry. Its prime focus currently hosts the Wide-field InfraRed Camera (WIRC), which is being refurbished with a new H2 detector, 32 channel readout electronics, grism, focal-plane mask and polarization grating. This will transform it into WIRC-POL — a machine for high-precision photometry, and slitless low-resolution (R~150) spectroscopy and spectro-polarimetry. Two key science programs are starting in 2017: (1) a large spectro-polarimetric survey of approximately 1000 LTY field brown dwarfs, probing atmospheric composition, physical properties, and cloud dynamics at the L-T transition, and (2) a survey of transiting exoplanets, using the high photometric stability and slitless spectroscopy mode to characterize exoplanet atmospheres from spectra obtained in transit and secondary eclipse, and search for transit-timing variations in multiple planet systems. Here we present an overview of the instrument upgrades and the exciting scientific questions we aim to address.

  12. Information Content Analysis for Selection of Optimal JWST  Observing Modes for Transiting Exoplanet Atmospheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batalha, Natasha E.; Line, M. R., E-mail: neb149@psu.edu

    The James Webb Space Telescope ( JWST ) is nearing its launch date of 2018, and is expected to revolutionize our knowledge of exoplanet atmospheres. In order to specifically identify which observing modes will be most useful for characterizing a diverse range of exoplanetary atmospheres, we use an information content (IC) based approach commonly used in the studies of solar system atmospheres. We develop a system based upon these IC methods to trace the instrumental and atmospheric model phase space in order to identify which observing modes are best suited for particular classes of planets, focusing on transmission spectra. Specifically,more » the atmospheric parameter space we cover is T  = 600–1800 K, C/O = 0.55–1, [M/H] = 1–100 × Solar for an R  = 1.39 R{sub J}, M  = 0.59 M{sub J} planet orbiting a WASP-62-like star. We also explore the influence of a simplified opaque gray cloud on the IC. We find that obtaining broader wavelength coverage over multiple modes is preferred over higher precision in a single mode given the same amount of observing time. Regardless of the planet temperature and composition, the best modes for constraining terminator temperatures, C/O ratios, and metallicity are NIRISS SOSS+NIRSpec G395. If the target’s host star is dim enough such that the NIRSpec prism is applicable, then it can be used instead of NIRISS SOSS+NIRSpec G395. Lastly, observations that use more than two modes should be carefully analyzed because sometimes the addition of a third mode results in no gain of information. In these cases, higher precision in the original two modes is favorable.« less

  13. [The study on the characteristics and particle densities of lightning discharge plasma].

    PubMed

    Wang, Jie; Yuan, Ping; Zhang, Hua-ming; Shen, Xiao-zhi

    2008-09-01

    According to the wavelengths, relative intensities and transition parameters of lines in cloud-to-ground lightning spectra obtained by a slit-less spectrograph in Qinghai province and Xizang municipality, and by theoretical calculations of plasma, the average temperature and electron density for individual lightning discharge channel were calculated, and then, using Saha equations, electric charge conservation equations and particle conservation equations, the particle densities of every ionized-state, the mass density, pressure and the average ionization degree were obtained. Moreover, the average ionization degree and characteristics of particle distributions in each lightning discharge channel were analyzed. Local thermodynamic equilibrium and an optically thin emitting gas were assumed in the calculations. The result shows that the characteristics of lightning discharge plasma have strong relationships with lightning intensities. For a certain return stroke channel, both temperatures and electron densities of different positions show tiny trend of falling away with increasing height along the discharge channel. Lightning channels are almost completely ionized, and the first ionized particles occupy the main station while N II has the highest particle density. On the other hand, the relative concentrations of N II and O II are near a constant in lightning channels with different intensities. Generally speaking, the more intense the lightning discharge, the higher are the values of channel temperature, electron density and relative concentrations of highly ionized particles, but the lower the concentration of the neutral atoms. After considering the Coulomb interactions between positive and negative particles in the calculations, the results of ionization energies decrease, and the particle densities of atoms and first ionized ions become low while high-ionized ions become high. At a temperature of 28000 K, the pressure of the discharge channel due to electrons, atoms and ions is about 10 atmospheric pressure, and it changes for different lightning stroke with different intensity. The mass density of channel is lower and changes from 0.01 to 0.1 compared to the mass density of air at standard temperature and pressure (STP).

  14. Integration, commissioning, and performance of the UK FMOS spectrograph

    NASA Astrophysics Data System (ADS)

    Dalton, Gavin B.; Lewis, Ian J.; Tosh, Ian A. J.; Blackburn, Colin; Bonfield, David G.; Brooks, Charles B.; Holmes, Alan R.; Lee, Hanshin; Froud, Tim R.; Akiyama, Masayuki; Tamura, Naoyuki; Takato, Naruhisa

    2008-07-01

    The UK FMOS spectrograph forms part of Subaru's FMOS multi-object infrared spectroscopy facility. The spectrograph was shipped to Hilo in component form in August of 2007. We describe the integration sequence for the spectrograph, the results of cooldown tests using a new chiller unit fitted to the spectrograph at the telescope, and alignment tests of the spectrograph, gratings and OH-suppression masks. We present the first-light observations for the spectrograph from May 2008.

  15. Slitless spectroscopy with the James Webb Space Telescope Near-Infrared Camera (JWST NIRCam)

    NASA Astrophysics Data System (ADS)

    Greene, Thomas P.; Chu, Laurie; Egami, Eiichi; Hodapp, Klaus W.; Kelly, Douglas M.; Leisenring, Jarron; Rieke, Marcia; Robberto, Massimo; Schlawin, Everett; Stansberry, John

    2016-07-01

    The James Webb Space Telescope near-infrared camera (JWST NIRCam) has two 2.02 x 2.02 fields of view that are capable of either imaging or spectroscopic observations. Either of two R ~ 1500 grisms with orthogonal dispersion directions can be used for slitless spectroscopy over λ = 2.4 - 5.0 μm in each module, and shorter wavelength observations of the same fields can be obtained simultaneously. We present the latest predicted grism sensitivities, saturation limits, resolving power, and wavelength coverage values based on component measurements, instrument tests, and end-to-end modeling. Short wavelength (0.6 - 2.3 μm) imaging observations of the 2.4 - 5.0 μm spectroscopic field can be performed in one of several different filter bands, either in-focus or defocused via weak lenses internal to NIRCam. Alternatively, the possibility of 1.0 - 2.0 μm spectroscopy (simultaneously with 2.4 - 5.0 μm) using dispersed Hartmann sensors (DHSs) is being explored. The grisms, weak lenses, and DHS elements were included in NIRCam primarily for wavefront sensing purposes, but all have significant science applications. Operational considerations including subarray sizes, and data volume limits are also discussed. Finally, we describe spectral simulation tools and illustrate potential scientific uses of the grisms by presenting simulated observations of deep extragalactic fields, galactic dark clouds, and transiting exoplanets.

  16. Hubble Observations of the Exomoon Candidate Kepler-1625b I

    NASA Astrophysics Data System (ADS)

    Teachey, Alexander; Kipping, David; Torres, Guillermo; Bakos, Gaspar A.; Nesvorný, David; Buchhave, Lars; Huang, Chelsea Xu; Hartman, Joel D.

    2018-01-01

    The exomoon candidate Kepler-1625b I was identified by the Hunt for Exomoons with Kepler (HEK) collaboration in August 2016 following an extensive program to characterize the occurrence rate of exomoons. Follow-up observations of the candidate for the purpose of validating the existence of the moon and constraining its properties were carried out on the Hubble Space Telescope on October 28th-29th 2017, using slitless spectroscopy on Wide Field Camera 3. We report preliminary results of that observation.

  17. VizieR Online Data Catalog: Double-peaked narrow lines in AGN. II. z<0.1 (Nevin+, 2016)

    NASA Astrophysics Data System (ADS)

    Nevin, R.; Comerford, J.; Muller-Sanchez, F.; Barrows, R.; Cooper, M.

    2017-02-01

    To determine the nature of 71 Type 2 AGNs with double-peaked [OIII] emission lines in SDSS that are at z<0.1 and further characterize their properties, we observe them using two complementary follow-up methods: optical long-slit spectroscopy and Jansky Very Large Array (VLA) radio observations. We use various spectrographs with similar pixel scales (Lick Kast Spectrograph; Palomar Double Spectrograph; MMT Blue Channel Spectrograph; APO Dual Imaging Spectrograph and Keck DEep Imaging Multi-Object Spectrograph. We use a 1200 lines/mm grating for all spectrographs; see table 1. In future work, we will combine our long-slit observations with the VLA data for the full sample of 71 galaxies (O. Muller-Sanchez+ 2016, in preparation). (4 data files).

  18. Resolved Star Formation in Galaxies Using Slitless Spectroscopy

    NASA Astrophysics Data System (ADS)

    Pirzkal, Norbert; Finkelstein, Steven L.; Larson, Rebecca L.; Malhotra, Sangeeta; Rhoads, James E.; Ryan, Russell E.; Tilvi, Vithal; FIGS Team

    2018-06-01

    The ability to spatially resolve individual star-formation regions in distant galaxies and simultaneously extract their physical properties via emission lines is a critical step forward in studying the evolution of galaxies. While efficient, deep slitless spectroscopic observations offer a blurry view of the summed properties of galaxies. We present our studies of resolved star formation over a wide range of redshifts, including high redshift Ly-a sources. The unique capabilities of the WFC3 IR Grism and our two-dimensional emission line method (EM2D) allows us to accurately identify the specific spatial origin of emission lines in galaxies, thus creating a spatial map of star-formation sites in any given galaxy. This method requires the use of multiple position angles on the sky to accurately derive both the location and the observed wavelengths of these emission lines. This has the added benefit of producing better defined redshifts for these sources. Building on our success in applying the EM2D method towards galaxies with [OII]. [OIII], and Ha emission lines, we have also applied EM2D to high redshift (z>6) Ly-a emitting galaxies. We are also able to produce accurate 2D emission line maps (MAP2D) of the Ly-a emission in WFC3 IR grism observations, looking for evidence that a significant amount of resonant scattering is taking place in high redshift galaxies such as in a newly identified z=7.5 Faint Infrared Galaxy Survey (FIGS) Ly-a galaxy.

  19. The BigBOSS spectrograph

    NASA Astrophysics Data System (ADS)

    Jelinsky, Patrick; Bebek, Chris; Besuner, Robert; Carton, Pierre-Henri; Edelstein, Jerry; Lampton, Michael; Levi, Michael E.; Poppett, Claire; Prieto, Eric; Schlegel, David; Sholl, Michael

    2012-09-01

    BigBOSS is a proposed ground-based dark energy experiment to study baryon acoustic oscillations (BAO) and the growth of structure with a 14,000 square degree galaxy and quasi-stellar object redshift survey. It consists of a 5,000- fiber-positioner focal plane feeding the spectrographs. The optical fibers are separated into ten 500 fiber slit heads at the entrance of ten identical spectrographs in a thermally insulated room. Each of the ten spectrographs has a spectral resolution (λ/Δλ) between 1500 and 4000 over a wavelength range from 360 - 980 nm. Each spectrograph uses two dichroic beam splitters to separate the spectrograph into three arms. It uses volume phase holographic (VPH) gratings for high efficiency and compactness. Each arm uses a 4096x4096 15 μm pixel charge coupled device (CCD) for the detector. We describe the requirements and current design of the BigBOSS spectrograph. Design trades (e.g. refractive versus reflective) and manufacturability are also discussed.

  20. Detecting the highest redshift (z > 8) quasi-stellar objects in a wide, near-infrared slitless spectroscopic survey

    NASA Astrophysics Data System (ADS)

    Roche, Nathan; Franzetti, Paolo; Garilli, Bianca; Zamorani, Giovanni; Cimatti, Andrea; Rossetti, Emanuel

    2012-02-01

    We investigate the prospects of extending observations of high-redshift quasi-stellar objects (QSOs) from the current z˜ 7 to z > 8 by means of a very wide-area near-infrared slitless spectroscopic survey, considering as an example the planned survey with the European Space Agency's Euclid telescope (scheduled for a 2019 launch). For any QSOs at z > 8.06, the strong Lyman α line will enter the wavelength range of the Euclid Near-Infrared Spectometer and Imaging Photometer (NISP). We perform a detailed simulation of near infrared spectrometer and imaging photometer (Euclid) NISP slitless spectroscopy (with the parameters of the wide survey) in an artificial field containing QSO spectra at all redshifts up to z= 12 and to a faint limit H= 22.5. QSO spectra are represented with a template based on a Sloan Digital Sky Survey composite spectrum, with the added effects of absorption from neutral hydrogen in the intergalactic medium. The spectra extracted from the simulation are analysed with an automated redshift finder, and a detection rate estimated as a function of H magnitude and redshift (defined as the proportion of spectra with both correct redshift measurements and classifications). We show that, as expected, spectroscopic identification of QSOs would reach deeper limits for the redshift ranges where either ? (0.67 < z < 2.05) or Lyman α (z > 8.06) is visible. Furthermore, if photometrically selected z > 8 spectra can be re-examined and refitted to minimize the effects of spectral contamination, the QSO detection rate in the Lyman α window will be increased by an estimated ˜60 per cent and will then be better here than at any other redshift, with an effective limit H≃ 21.5. With an extrapolated rate of QSO evolution, we predict that the Euclid wide (15 000 ?) spectroscopic survey will identify and measure spectroscopic redshifts for a total of 20-35 QSOs at z > 8.06 (reduced slightly to 19-33 if we apply a small correction for missed weak-lined QSOs). However, for a model with a faster rate of evolution, this prediction goes down to four or five. In any event, the survey will give important constraints on the evolution of QSO at z > 8 and therefore the formation of the first supermassive black holes. The z > 8.06 detections would be very luminous objects (with MB=-26 to -28) and many would also be detectable by the proposed Wide Field X-ray Telescope.

  1. The deterministic optical alignment of the HERMES spectrograph

    NASA Astrophysics Data System (ADS)

    Gers, Luke; Staszak, Nicholas

    2014-07-01

    The High Efficiency and Resolution Multi Element Spectrograph (HERMES) is a four channel, VPH-grating spectrograph fed by two 400 fiber slit assemblies whose construction and commissioning has now been completed at the Anglo Australian Telescope (AAT). The size, weight, complexity, and scheduling constraints of the system necessitated that a fully integrated, deterministic, opto-mechanical alignment system be designed into the spectrograph before it was manufactured. This paper presents the principles about which the system was assembled and aligned, including the equipment and the metrology methods employed to complete the spectrograph integration.

  2. Slit Function Measurement of An Imaging Spectrograph Using Fourier Transform Techniques

    NASA Technical Reports Server (NTRS)

    Park, Hongwoo; Swimyard, Bruce; Jakobsen, Peter; Moseley, Harvey; Greenhouse, Matthew

    2004-01-01

    Knowledge of a spectrograph slit function is necessary to interpret the unresolved lines in an observed spectrum. A theoretical slit function can be calculated from the sizes of the entrance slit, the detector aperture when it functions as an exit slit, the dispersion characteristic of the disperser, and the point spread function of the spectrograph. A measured slit function is preferred to the theoretical one for the correct interpretation of the spectral data. In a scanning spectrometer with a single exit slit, the slit function is easily measured. In a fixed grating/or disperser spectrograph, illuminating the entrance slit with a near monochromatic light from a pre-monochrmator or a tunable laser and varying the wavelength of the incident light can measure the slit function. Even though the latter technique had been used successfully for the slit function measurements, it had been very laborious and it would be prohibitive to an imaging spectrograph or a multi-object spectrograph that has a large field of view. We explore an alternative technique that is manageable for the measurements. In the proposed technique, the imaging spectrograph is used as a detector of a Fourier transform spectrometer. This method can be applied not only to an IR spectrograph but also has a potential to a visible/UV spectrograph including a wedge filter spectrograph. This technique will require a blackbody source of known temperature and a bolometer to characterize the interferometer part of the Fourier Transform spectrometer. This pa?er will describe the alternative slit function measurement technique using a Fourier transform spectrometer.

  3. Mauna Kea Spectrographic Explorer (MSE): a conceptual design for multi-object high resolution spectrograph

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Zhu, Yongtian; Hu, Zhongwen

    2016-08-01

    The Maunakea Spectroscopic Explorer (MSE) project will transform the CFHT 3.6m optical telescope into a 10m class dedicated multi-object spectroscopic facility, with an ability to simultaneously measure thousands of objects with a spectral resolution range spanning 2,000 to 40,000. MSE will develop two spectrographic facilities to meet the science requirements. These are respectively, the Low/Medium Resolution spectrographs (LMRS) and High Resolution spectrographs (HRS). Multi-object high resolution spectrographs with total of 1,156 fibers is a big challenge, one that has never been attempted for a 10m class telescope. To date, most spectral survey facilities work in single order low/medium resolution mode, and only a few Wide Field Spectrographs (WFS) provide a cross-dispersion high resolution mode with a limited number of orders. Nanjing Institute of Astronomical Optics and Technology (NIAOT) propose a conceptual design with the use of novel image slicer arrays and single order immersed Volume Phase Holographic (VPH) grating for the MSE multi-object high resolution spectrographs. The conceptual scheme contains six identical fiber-link spectrographs, each of which simultaneously covers three restricted bands (λ/30, λ/30, λ/15) in the optical regime, with spectral resolution of 40,000 in Blue/Visible bands (400nm / 490nm) and 20,000 in Red band (650nm). The details of the design is presented in this paper.

  4. LRS2: A New Integral Field Spectrograph for the HET

    NASA Astrophysics Data System (ADS)

    Tuttle, Sarah E.; Hill, Gary J.; Chonis, Taylor S.; Tonnesen, Stephanie

    2016-01-01

    Here we present LRS2 (Low Resolution Spectrograph) and highlight early science opportunities with the newly upgraded Hobby Eberly telescope (HET). LRS2 is a four-channel optical wavelength (370nm - 1micron) spectrograph based on two VIRUS unit spectrographs. This fiber-fed integral field spectrograph covers a 12" x 6" field of view, switched between the two units (one blue, and one red) at R~2000. We highlight design elements, including the fundamental modification to grisms (from VPH gratings in VIRUS) to access the higher resolution. We discuss early science opportunities, including investigating nearby "blue-bulge" spiral galaxies and their anomalous star formation distribution.

  5. VizieR Online Data Catalog: FGK dwarfs atmospheric parameters (Ryabchikova+, 2016)

    NASA Astrophysics Data System (ADS)

    Ryabchikova, T.; Piskunov, N.; Pakhomov, Y.; Tsymbal, V.; Titarenko, A.; Sitnova, T.; Alexeeva, S.; Fossati, L.; Mashonkina, L.

    2016-08-01

    For the spectroscopic analysis, we choose the 13 MS stars including the Sun (Table 1) in the 4900-6600K temperature range and with metallicity between [Fe/H]=-1.5 and +0.3dex. All the stars, except HD 149026, have, at least, one interferometric determination of radius and effective temperature. Spectra of the programme stars were obtained with different spectrographs. Most data were extracted from the following archives: the UVES/VLT and HARPS/3.6m spectrographs at ESO,2 the ELODIE/1.93-m spectrograph3 at the Observatoire de Haute Provence, and the ESPaDONs spectrograph at the Canada-France-Hawaii Telescope (CFHT). Spectra of beta Vir and HD 103095 were obtained with the FOCES spectrograph at 2.2-m telescope of the Calar Alto Observatory. One of the spectra of 61 Vir was obtained with the Hamilton Echelle Spectrograph attached to the Shane 3-m telescope of the Lick Observatory. Spectra of few stars, including that of the Sun reflected from Ganymede, were obtained with the HiReS/Keck spectrograph. (3 data files).

  6. Optical Design And Performance Of A Dual-Grating, Direct-Reading Spectrograph For Spectrochemical Analyses

    NASA Astrophysics Data System (ADS)

    Steinhaus, David W.; Kline, John V.; Bieniewski, Thomas M.; Dow, Grove S.; Apel, Charles T.

    1980-11-01

    An all-mirror optical system is used to direct the light from a variety of spectroscopic sources to two 2-m spectrographs that are placed on either side of a sturdy vertical mounting plate. The gratings were chosen so that the first spectrograph covers the ultraviolet spectral region, and the second spectrograph covers the ultraviolet, visible, and near-infrared regions. With the over 2.5 m of focal curves, each ultraviolet line is available at more than one place. Thus, problems with close lines can be overcome. The signals from a possible maximum of 256 photoelectric detectors go to a small computer for reading and calculation of the element abundances. To our knowledge, no other direct-reading spectrograph has more than about 100 fixed detectors. With an inductively-coupled-plasma source, our calibration curves, and detection limits, are similar to those of other workers using a direct-reading spectrograph.

  7. The New Instrument Suite of the TSU/Fairborn 2m Automatic Spectroscopic Telescope

    NASA Astrophysics Data System (ADS)

    Muterspaugh, Matthew W.; Maxwell, T.; Williamson, M. W.; Fekel, F. C.; Ge, J.; Kelly, J.; Ghasempour, A.; Powell, S.; Zhao, B.; Varosi, F.; Schofield, S.; Liu, J.; Warner, C.; Jakeman, H.; Avner, L.; Swihart, S.; Harrison, C.; Fishler, D.

    2014-01-01

    Tied with the Liverpool Telescope as the world's largest fully robotic optical research telescope, Tennessee State University's (TSU) 2m Automatic Spectroscopic Telescope (AST) has recently been upgraded to improve performance and increase versatility by supporting multiple instruments. Its second-generation instrument head enables us to rapidly switch between any of up to twelve fibers optics, each of which can supply light to a different instrument. In 2013 construction was completed on a new temperature-controlled guest instrument building, and two new high resolution spectrographs were commissioned. The current set of instrumentation includes (1) the telescope's original R=30,000 echelle spectrograph (0.38--0.83 microns simultaneous), (2) a single order R=7,000 spectrograph centered at Ca H&K features, (3) a single-mode-fiber fed miniature echelle spectrograph (R=100,000; 0.48--0.62 microns simultaneous), (4) the University of Florida's EXPERT-3 spectrograph (R=100,000; 0.38--0.9 microns simultaneous; vacuum and temperature controlled) and (5) the University of Florida's FIRST spectrograph (R=70,000$; 0.8--1.35 or 1.4--1.8 microns simultaneous; vacuum and temperature controlled). Future instruments include the Externally Dispersed Interferometry (EDI) Testbed, a combination low resolution dispersed spectrograph and Fourier Transform Spectrograph. We welcome inquiries from the community in regards to observing access and/or proposals for future guest instruments.

  8. Design and realization of the real-time spectrograph controller for LAMOST based on FPGA

    NASA Astrophysics Data System (ADS)

    Wang, Jianing; Wu, Liyan; Zeng, Yizhong; Dai, Songxin; Hu, Zhongwen; Zhu, Yongtian; Wang, Lei; Wu, Zhen; Chen, Yi

    2008-08-01

    A large Schmitt reflector telescope, Large Sky Area Multi-Object Fiber Spectroscopic Telescope(LAMOST), is being built in China, which has effective aperture of 4 meters and can observe the spectra of as many as 4000 objects simultaneously. To fit such a large amount of observational objects, the dispersion part is composed of a set of 16 multipurpose fiber-fed double-beam Schmidt spectrographs, of which each has about ten of moveable components realtimely accommodated and manipulated by a controller. An industrial Ethernet network connects those 16 spectrograph controllers. The light from stars is fed to the entrance slits of the spectrographs with optical fibers. In this paper, we mainly introduce the design and realization of our real-time controller for the spectrograph, our design using the technique of System On Programmable Chip (SOPC) based on Field Programmable Gate Array (FPGA) and then realizing the control of the spectrographs through NIOSII Soft Core Embedded Processor. We seal the stepper motor controller as intellectual property (IP) cores and reuse it, greatly simplifying the design process and then shortening the development time. Under the embedded operating system μC/OS-II, a multi-tasks control program has been well written to realize the real-time control of the moveable parts of the spectrographs. At present, a number of such controllers have been applied in the spectrograph of LAMOST.

  9. New infrared spectrograph for the investigation of the mesopause region

    NASA Astrophysics Data System (ADS)

    Koltovskoi, I. I.; Ammosov, P. P.; Gavrilyeva, G. A.; Ammosova, A. M.; Sivseva, V. I.

    2017-11-01

    A new infrared spectrograph with high temporal resolution for observation of OH band (3-1) emission dynamics is described. For the automated work of the spectrograph, special software was created. Remote control over the device is also configured.

  10. Design and Construction of VUES: The Vilnius University Echelle Spectrograph

    NASA Astrophysics Data System (ADS)

    Jurgenson, Colby; Fischer, Debra; McCracken, Tyler; Sawyer, David; Giguere, Matt; Szymkowiak, Andrew; Santoro, Fernando; Muller, Gary

    2016-03-01

    In February 2014, the Yale Exoplanet Laboratory was commissioned to design, build, and deliver a high resolution (R=60,000) spectrograph for the 1.65m telescope at the Molėtai Astronomical Observatory. The observatory is operated by the Institute of Theoretical Physics and Astronomy at Vilnius University. The Vilnius University Echelle Spectrograph (VUES) is a white-pupil design that is fed via an octagonal fiber from the telescope and has an operational bandpass from 400nm to 880nm. VUES incorporates a novel modular optomechanical design that allows for quick assembly and alignment on commercial optical tables. This approach allowed the spectrograph to be assembled and commissioned at Yale using lab optical tables and then reassembled at the observatory on a different optical table with excellent repeatability. The assembly and alignment process for the spectrograph was reduced to a few days, allowing the spectrograph to be completely disassembled for shipment to Lithuania, and then installed at the observatory during a 10-day period in June of 2015.

  11. Goodman High Throughput Spectrograph | SOAR

    Science.gov Websites

    SPARTAN Near-IR Camera Ohio State Infrared Imager/Spectrograph (OSIRIS) - NO LONGER AVAILABLE SOAR 320-850 nm wavelength range. The paper describing the instrument is Clemens et al. (2004) Applying for IRAF. Publishing results based on Goodman data?: ADS link to 2004 SPIE Goodman Spectrograph paper

  12. The coude spectrograph and echelle scanner of the 2.7 m telescope at McDonald Observatory.

    NASA Technical Reports Server (NTRS)

    Tull, R. G.

    1972-01-01

    Discussion of certain design aspects of the coude spectrograph, and description of the coude scanner that uses some of the spectrograph optics. The configuration of the large echelle grating used is reviewed along with the systems of computer scanner control and data handling.

  13. The Coude spectrograph and echelle scanner of the 2.7 m telescope at McDonald observatory

    NASA Technical Reports Server (NTRS)

    Tull, R. G.

    1972-01-01

    The design of the Coude spectrograph of the 2.7 m McDonald telescope is discussed. A description is given of the Coude scanner which uses the spectrograph optics, the configuration of the large echelle and the computer scanner control and data systems.

  14. VizieR Online Data Catalog: CARMENES radial velocity curves of 7 M-dwarf (Trifonov+, 2018)

    NASA Astrophysics Data System (ADS)

    Trifonov, T.; Kuerster, M.; Zechmeister, M.; Tal-Or, L.; Caballero, J. A.; Quirrenbach, A.; Amado, P. J.; Ribas, I.; Reiners, A.; Reffert, S.; Dreizler, S.; Hatzes, A. P.; Kaminski, A.; Launhardt, R.; Henning, T.; Montes, D.; Bejar, V. J. S.; Mundt, R.; Pavlov, A.; Schmitt, J. H. M. M.; Seifert, W.; Morales, J. C.; Nowak, G.; Jeffers, S. V.; Rodriguez-Lopez, C.; Del Burgo, C.; Anglada-Escude, G.; Lopez-Santiago, J.; Mathar, R. J.; Ammler-von Eiff, M.; Guenther, E. W.; Barrado, D.; Gonzalez Hernandez, J. I.; Mancini, L.; Stuermer, J.; Abril, M.; Aceituno, J.; Alonso-Floriano, F. J.; Antona, R.; Anwand-Heerwart, H.; Arroyo-Torres, B.; Azzaro, M.; Baroch, D.; Bauer, F. F.; Becerril, S.; Benitez, D.; Berdinas, Z. M.; Bergond, G.; Bluemcke, M.; Brinkmoeller, M.; Cano, J.; Cardenas Vazquez, M. C.; Casal, E.; Cifuentes, C.; Claret, A.; Colome, J.; Cortes-Contreras, M.; Czesla, S.; Diez-Alonso, E.; Feiz, C.; Fernandez, M.; Ferro, I. M.; Fuhrmeister, B.; Galadi-Enriquez, D.; Garcia-Piquer, A.; Garcia Vargas, M. L.; Gesa, L.; Gomez Galera, V.; Gonzalez-Peinado, R.; Groezinger, U.; Grohnert, S.; Guardia, J.; Guijarro, A.; de Guindos, E.; Gutierrez-Soto, J.; Hagen, H.-J.; Hauschildt, P. H.; Hedrosa, R. P.; Helmling, J.; Hermelo, I.; Hernandez Arabi, R.; Hernandez Castano, L.; Hernandez Hernando, F.; Herrero, E.; Huber, A.; Huke, P.; Johnson, E.; de Juan, E.; Kim, M.; Klein, R.; Klueter, J.; Klutsch, A.; Lafarga, M.; Lampon, M.; Lara, L. M.; Laun, W.; Lemke, U.; Lenzen, R.; Lopez Del Fresno, M.; Lopez-Gonzalez, J.; Lopez-Puertas, M.; Lopez Salas, J. F.; Luque, R.; Magan Madinabeitia, H.; Mall, U.; Mandel, H.; Marfil, E.; Marin Molina, J. A.; Maroto Fernandez, D.; Martin, E. L.; Martin-Ruiz, S.; Marvin, C. J.; Mirabet, E.; Moya, A.; Moreno-Raya, M. E.; Nagel, E.; Naranjo, V.; Nortmann, L.; Ofir, A.; Oreiro, R.; Palle, E.; Panduro, J.; Pascual, J.; Passegger, V. M.; Pedraz, S.; Perez-Calpena, A.; Perez Medialdea, D.; Perger, M.; Perryman, M. A. C.; Pluto, M.; Rabaza, O.; Ramon, A.; Rebolo, R.; Redondo, P.; Reinhardt, S.; Rhode, P.; Rix, H.-W.; Rodler, F.; Rodriguez, E.; Rodriguez Trinidad, A.; Rohlo, R.-R.; Rosich, A.; Sadegi, S.; Sanchez-Blanco, E.; Sanchez Carrasco, M. A.; Sanchez-Lopez, A.; Sanz-Forcada, J.; Sarkis, P.; Sarmiento, L. F.; Schaefer, S.; Schiller, J.; Schoefer, P.; Schweitzer, A.; Solano, E.; Stahl, O.; Strachan, J. B. P.; Suarez, J. C.; Tabernero, H. M.; Tala, M.; Tulloch, S. M.; Veredas, G.; Vico Linares, J. I.; Vilardel, F.; Wagner, K.; Winkler, J.; Woltho, V.; Xu, W.; Yan, F.; Zapatero Osorio, M. R.

    2017-10-01

    The two CARMENES spectrographs are grism cross-dispersed, white pupil, echelle spectrograph working in quasi-Littrow mode using a two-beam, two-slice image slicer. The visible spectrograph covers the wavelength range from 0.52um to 1.05um with 61 orders, a resolving power of R=94600, and a mean sampling of 2.8 pixels per resolution element. The data presented in this paper were taken during the early phase of operation of the CARMENES visible-light spectrograph. (8 data files).

  15. Data reductions and data quality for the high resolution spectrograph on the Southern African Large Telescope

    NASA Astrophysics Data System (ADS)

    Crawford, S. M.; Crause, Lisa; Depagne, Éric; Ilkiewicz, Krystian; Schroeder, Anja; Kuhn, Rudolph; Hettlage, Christian; Romero Colmenaro, Encarni; Kniazev, Alexei; Väisänen, Petri

    2016-08-01

    The High Resolution Spectrograph (HRS) on the Southern African Large Telescope (SALT) is a dual beam, fiber-fed echelle spectrograph providing high resolution capabilities to the SALT observing community. We describe the available data reduction tools and the procedures put in place for regular monitoring of the data quality from the spectrograph. Data reductions are carried out through the pyhrs package. The data characteristics and instrument stability are reported as part of the SALT Dashboard to help monitor the performance of the instrument.

  16. Compact high-resolution spectrographs for large and extremely large telescopes: using the diffraction limit

    NASA Astrophysics Data System (ADS)

    Robertson, J. Gordon; Bland-Hawthorn, Joss

    2012-09-01

    As telescopes get larger, the size of a seeing-limited spectrograph for a given resolving power becomes larger also, and for ELTs the size will be so great that high resolution instruments of simple design will be infeasible. Solutions include adaptive optics (but not providing full correction for short wavelengths) or image slicers (which give feasible but still large instruments). Here we develop the solution proposed by Bland-Hawthorn and Horton: the use of diffraction-limited spectrographs which are compact even for high resolving power. Their use is made possible by the photonic lantern, which splits a multi-mode optical fiber into a number of single-mode fibers. We describe preliminary designs for such spectrographs, at a resolving power of R ~ 50,000. While they are small and use relatively simple optics, the challenges are to accommodate the longest possible fiber slit (hence maximum number of single-mode fibers in one spectrograph) and to accept the beam from each fiber at a focal ratio considerably faster than for most spectrograph collimators, while maintaining diffraction-limited imaging quality. It is possible to obtain excellent performance despite these challenges. We also briefly consider the number of such spectrographs required, which can be reduced by full or partial adaptive optics correction, and/or moving towards longer wavelengths.

  17. Linear: A Novel Algorithm for Reconstructing Slitless Spectroscopy from HST/WFC3

    NASA Astrophysics Data System (ADS)

    Ryan, R. E., Jr.; Casertano, S.; Pirzkal, N.

    2018-03-01

    We present a grism extraction package (LINEAR) designed to reconstruct 1D spectra from a collection of slitless spectroscopic images, ideally taken at a variety of orientations, dispersion directions, and/or dither positions. Our approach is to enumerate every transformation between all direct image positions (i.e., a potential source) and the collection of grism images at all relevant wavelengths. This leads to solving a large, sparse system of linear equations, which we invert using the standard LSQR algorithm. We implement a number of color and geometric corrections (such as flat field, pixel-area map, source morphology, and spectral bandwidth), but assume many effects have been calibrated out (such as basic reductions, background subtraction, and astrometric refinement). We demonstrate the power of our approach with several Monte Carlo simulations and the analysis of archival data. The simulations include astrometric and photometric uncertainties, sky-background estimation, and signal-to-noise calculations. The data are G141 observations obtained with the Wide-Field Camera 3 of the Hubble Ultra-Deep Field, and show the power of our formalism by improving the spectral resolution without sacrificing the signal-to-noise (a tradeoff that is often made by current approaches). Additionally, our approach naturally accounts for source contamination, which is only handled heuristically by present softwares. We conclude with a discussion of various observations where our approach will provide much improved spectral 1D spectra, such as crowded fields (star or galaxy clusters), spatially resolved spectroscopy, or surveys with strict completeness requirements. At present our software is heavily geared for Wide-Field Camera 3 IR, however we plan extend the codebase for additional instruments.

  18. PRAXIS: a low background NIR spectrograph for fibre Bragg grating OH suppression

    NASA Astrophysics Data System (ADS)

    Horton, Anthony; Ellis, Simon; Lawrence, Jon; Bland-Hawthorn, Joss

    2012-09-01

    Fibre Bragg grating (FBG) OH suppression is capable of greatly reducing the bright sky background seen by near infrared spectrographs. By filtering out the airglow emission lines at high resolution before the light enters the spectrograph this technique prevents scattering from the emission lines into interline regions, thereby reducing the background at all wavelengths. In order to take full advantage of this sky background reduction the spectrograph must have very low instrumental backgrounds so that it remains sky noise limited. Both simulations and real world experience with the prototype GNOSIS system show that existing spectrographs, designed for higher sky background levels, will be unable to fully exploit the sky background reduction. We therefore propose PRAXIS, a spectrograph optimised specifically for this purpose. The PRAXIS concept is a fibre fed, fully cryogenic, fixed format spectrograph for the J and H-bands. Dark current will be minimised by using the best of the latest generation of NIR detectors while thermal backgrounds will be reduced by the use of a cryogenic fibre slit. Optimised spectral formats and the use of high throughput volume phase holographic gratings will further enhance sensitivity. Our proposal is for a modular system, incorporating exchangeable fore-optics units, integral field units and OH suppression units, to allow PRAXIS to operate as a visitor instrument on any large telescope and enable new developments in FBG OH suppression to be incorporated as they become available. As a high performance fibre fed spectrograph PRAXIS could also serve as a testbed for other astrophotonic technologies.

  19. Optimal Strategies for Probing Terrestrial Exoplanet Atmospheres with JWST

    NASA Astrophysics Data System (ADS)

    Batalha, Natasha E.; Lewis, Nikole K.; Line, Michael

    2018-01-01

    It is imperative that the exoplanet community determines the feasibility and the resources needed to yield high fidelity atmospheric compositions from terrestrial exoplanets. In particular, LHS 1140b and the TRAPPIST-1 system, already slated for observations by JWST’s Guaranteed Time Observers, will be the first two terrestrial planets observed by JWST. I will discuss optimal observing strategies for observing these two systems, focusing on the NIRSpec Prism (1-5μm) and the combination of NIRISS SOSS (1-2.7μm) and NIRSpec G395H (3-5μm). I will also introduce currently unsupported JWST readmodes that have the potential to greatly increase the precision on our atmospheric spectra. Lastly, I will use information content theory to compute the expected confidence interval on the retrieved abundances of key molecular species and temperature profiles as a function of JWST observing cycles.

  20. The problem of scattering in fibre-fed VPH spectrographs and possible solutions

    NASA Astrophysics Data System (ADS)

    Ellis, S. C.; Saunders, Will; Betters, Chris; Croom, Scott

    2014-07-01

    All spectrographs unavoidably scatter light. Scattering in the spectral direction is problematic for sky subtraction, since atmospheric spectral lines are blurred. Scattering in the spatial direction is problematic for fibre fed spectrographs, since it limits how closely fibres can be packed together. We investigate the nature of this scattering and show that the scattering wings have both a Lorentzian component, and a shallower (1/r) component. We investigate the causes of this from a theoretical perspective, and argue that for the spectral PSF the Lorentzian wings are in part due to the profile of the illumination of the pupil of the spectrograph onto the diffraction grating, whereas the shallower component is from bulk scattering. We then investigate ways to mitigate the diffractive scattering by apodising the pupil. In the ideal case of a Gaussian apodised pupil, the scattering can be significantly improved. Finally we look at realistic models of the spectrograph pupils of fibre fed spectrographs with a centrally obstructed telescope, and show that it is possible to apodise the pupil through non-telecentric injection into the fibre.

  1. A spectrographic study of the aurora and the relation to solar wind pressure pulses.

    NASA Astrophysics Data System (ADS)

    Stockton-Chalk, A. B.; Lanchester, B. S.; Ivchenko, N.; Lummerzheim, D.; Throp, K.

    SIF (Spectrographic Imaging Facility) is a Southampton University / University College London collaboration. The platform consists of a High Throughput Imaging Echelle Spectrograph, HiTIES, two photometers and a narrow angle auroral imager. The spectrograph has a mosaic filter; each of the three spectral panels are centred over/near important spectral features: Hbeta (486.1nm), N2+(470.9nm), N2+(465.2nm), thus allowing studies of proton and electron aurorae. The platform has been successfully deployed in Svalbard since November 1999. The purpose of the experiment was to take spectrographic measurements to study the relationship between proton and electron precipitation and to understand the nature of the precipitating spectrum of protons, both in energy and angular distributions. We present a study of the aurora observed in relation to solar wind pressure pulses.

  2. High efficiency spectrographs for the EUV and soft X-rays

    NASA Technical Reports Server (NTRS)

    Cash, W.

    1983-01-01

    The use of grazing incidence optics and reflection grating designs is shown to be a method that improves the performance of spectrographs at wavelengths shorter than 1200 A. Emphasis is laid on spectroscopic designs for X ray and EUV astronomy, with sample designs for an objective reflection grating spectrograph (ORGS) and an echelle spectrograph for wavelengths longer than 100 A. Conical diffraction allows operations at grazing incidence in the echelle spectrograph. In ORGS, the extreme distance of X ray objects aids in collimating the source radiation, which encounters conical diffraction within the instrument, proceeds parallel to the optical axis, and arrives at the detector. A series of gratings is used to achieve the effect. A grazing echelle is employed for EUV observations, and offers a resolution of 20,000 over a 300 A bandpass.

  3. Visible camera cryostat design and performance for the SuMIRe Prime Focus Spectrograph (PFS)

    NASA Astrophysics Data System (ADS)

    Smee, Stephen A.; Gunn, James E.; Golebiowski, Mirek; Hope, Stephen C.; Madec, Fabrice; Gabriel, Jean-Francois; Loomis, Craig; Le fur, Arnaud; Dohlen, Kjetil; Le Mignant, David; Barkhouser, Robert; Carr, Michael; Hart, Murdock; Tamura, Naoyuki; Shimono, Atsushi; Takato, Naruhisa

    2016-08-01

    We describe the design and performance of the SuMIRe Prime Focus Spectrograph (PFS) visible camera cryostats. SuMIRe PFS is a massively multi-plexed ground-based spectrograph consisting of four identical spectrograph modules, each receiving roughly 600 fibers from a 2394 fiber robotic positioner at the prime focus. Each spectrograph module has three channels covering wavelength ranges 380 nm - 640 nm, 640 nm - 955 nm, and 955 nm - 1.26 um, with the dispersed light being imaged in each channel by a f/1.07 vacuum Schmidt camera. The cameras are very large, having a clear aperture of 300 mm at the entrance window, and a mass of 280 kg. In this paper we describe the design of the visible camera cryostats and discuss various aspects of cryostat performance.

  4. CARMENES in SPIE 2014. Building a fibre link for CARMENES

    NASA Astrophysics Data System (ADS)

    Stürmer, J.; Stahl, O.; Schwab, C.; Seifert, W.; Quirrenbach, A.; Amado, P. J.; Ribas, I.; Reiners, A.; Caballero, J. A.

    2014-07-01

    Optical fibres have successfully been used to couple high-resolution spectrographs to telescopes for many years. As they allow the instrument to be placed in a stable and isolated location, they decouple the spectrograph from environmental influences. Fibres also provide a substantial increase in stability of the input illumination of the spectrograph, which makes them a key optical element of the two high-resolution spectrographs of CARMENES. The optical properties of appropriate fibres are investigated, especially their scrambling and focal ratio degradation (FRD) behaviour. In the laboratory the output illumination of various fibres is characterized and different methods to increase the scrambling of the fibre link are tested and compared. In particular, a combination of fibres with different core shapes shows a very good scrambling performance. The near-field (NF) shows an extremely low sensitivity to the exact coupling conditions of the fibre. However, small changes in the far-field (FF) can still be seen. Related optical simulations of the stability performance of the two spectrographs are presented. The simulations focus on the influence of the non-perfect illumination stabilization in the far-field of the fibre on the radial velocity stability of the spectrographs. We use ZEMAX models of the spectrographs to simulate how the barycentres of the spots move depending on the FF illumination pattern and therefore how the radial velocity is affected by a variation of the spectrograph illumination. This method allows to establish a quantitative link between the results of the measurements of the optical properties of fibres on the one hand and the radial velocity precision on the other. The results provide a strong indication that 1ms?1 precision can be reached using a circular-octagonal fibre link even without the use of an optical double scrambler, which has successfully been used in other high-resolution spectrographs. Given the typical throughput of an optical double scrambler of about 75% to 85 %, our solution allows for a substantially higher throughput of the system.

  5. NRES: The Network of Robotic Echelle Spectrographs

    NASA Astrophysics Data System (ADS)

    Siverd, Robert; Brown, Tim; Henderson, Todd; Hygelund, John; Barnes, Stuart; de Vera, Jon; Eastman, Jason; Kirby, Annie; Smith, Cary; Taylor, Brook; Tufts, Joseph; van Eyken, Julian

    2018-01-01

    Las Cumbres Observatory (LCO) is building the Network of Robotic Echelle Spectrographs (NRES), which will consist of four (up to six in the future) identical, optical (390 - 860 nm) high-precision spectrographs, each fiber-fed simultaneously by up to two 1-meter telescopes and a Thorium-Argon calibration source. We plan to install one at up to 6 observatory sites in the Northern and Southern hemispheres, creating a single, globally-distributed, autonomous spectrograph facility using up to ten 1-m telescopes. Simulations suggest we will achieve long-term radial velocity precision of 3 m/s in less than an hour for stars brighter than V = 11 or 12 once the system reaches full capability. Acting in concert, these four spectrographs will provide a new, unique facility for stellar characterization and precise radial velocities.Following a few months of on-sky evaluation at our BPL test facility, the first spectrograph unit was shipped to CTIO in late 2016 and installed in March 2017. After several more months of additional testing and commissioning, regular science operations began with this node in September 2017. The second NRES spectrograph was installed at McDonald Observatory in September 2017 and released to the network after its own brief commissioning period, extending spectroscopic capability to the Northern hemisphere. The third NRES spectrograph was installed at SAAO in November 2017 and released to our science community just before year's end. The fourth NRES unit shipped in October and is currently en route to Wise Observatory in Israel with an expected release to the science community in early 2018.We will briefly overview the LCO telescope network, the NRES spectrograph design, the advantages it provides, and development challenges we encountered along the way. We will further discuss real-world performance from our first three units, initial science results, and the ongoing software development effort needed to automate such a facility for a wide array of science cases.

  6. VizieR Online Data Catalog: PS1 z>5.6 quasars follow-up (Banados+, 2016)

    NASA Astrophysics Data System (ADS)

    Banados, E.; Venemans, B. P.; Decarli, R.; Farina, E. P.; Mazzucchelli, C.; Walter, F.; Fan, X.; Stern, D.; Schlafly, E.; Chambers, K. C.; Rix, H.-W.; Jiang, L.; McGreer, I.; Simcoe, R.; Wang, F.; Yang, J.; Morganson, E.; De Rosa, G.; Greiner, J.; Balokovic, M.; Burgett, W. S.; Cooper, T.; Draper, P. W.; Flewelling, H.; Hodapp, K. W.; Jun, H. D.; Kaiser, N.; Kudritzki, R.-P.; Magnier, E. A.; Metcalfe, N.; Miller, D.; Schindler, J.-T.; Tonry, J. L.; Wainscoat, R. J.; Waters, C.; Yang, Q.

    2017-01-01

    The photometric follow-up observations were carried out over different observing runs and different instruments. We obtained optical and near-infrared images with the MPG 2.2m/GROND, New Technology Telescope (NTT)/EFOSC2, NTT/SofI, Calar Alto (CAHA) 3.5m/Omega2000, CAHA 2.2m/CAFOS21, MMT/SWIRC), and du Pont/Retrocam; see Table 1 for details of the observations and filters used. A spectroscopic campaign was carried out using several instruments at different telescopes: EFOSC2 at the NTT telescope in La Silla, the Focal Reducer / Low-Dispersion Spectrograph 2 (FORS2) at the Very Large Telescope (VLT), the Folded-Port Infrared Echellette (FIRE) spectrometer and the Low-Dispersion Survey Spectrograph (LDSS3) at the Baade and Clay Telescopes at Las Campanas Observatory, the Low-Resolution Imaging Spectrometer (LRIS) at the Keck I 10m Telescope on Mauna Kea, the Double Spectrograph (DBSP) on the 200 inch (5m) Hale Telescope at Palomar Observatory (P200), the Red-Channel Spectrograph on the 6.5m MMT Telescope, the Cassegrain TWIN Spectrograph at the 3.5m Calar Alto Telescope (CAHA 3.5m), and the Multi-object Double Spectrograph (MODS) and LUCI spectrograph at the Large Binocular Telescope (LBT). The details of the spectroscopic observations of the PS1-discovered quasars are shown in Table 5. (10 data files).

  7. NRES: The Network of Robotic Echelle Spectrographs

    NASA Astrophysics Data System (ADS)

    Siverd, Robert; Brown, Timothy M.; Henderson, Todd; Hygelund, John; Barnes, Stuart; Bowman, Mark; De Vera, Jon; Eastman, Jason D.; Kirby, Annie; Norbury, Martin; Smith, Cary; Taylor, Brook; Tufts, Joseph; Van Eyken, Julian C.

    2017-06-01

    Las Cumbres Observatory (LCO) is building the Network of Robotic Echelle Spectrographs (NRES), which will consist of four to six identical, optical (390 - 860 nm) high-precision spectrographs, each fiber-fed simultaneously by up to two 1-meter telescopes and a Thorium-Argon calibration source. We plan to install one at up to 6 observatory sites in the Northern and Southern hemispheres, creating a single, globally-distributed, autonomous spectrograph facility using up to ten 1-m telescopes. Simulations suggest we will achieve long-term radial velocity precision of 3 m/s in less than an hour for stars brighter than V = 11 or 12. Following a few months of on-sky evaluation at our BPL test facility, the first spectrograph unit was shipped to CTIO in late 2016 and installed in March 2017. Barring serious complications, we expect regular scheduled science observing to begin in mid-2017. Three additional units are in building or testing phases and slated for deployment in late 2017. Acting in concert, these four spectrographs will provide a new, unique facility for stellar characterization and precise radial velocities. We will briefly overview the LCO telescope network, the NRES spectrograph design, the advantages it provides, and development challenges we encountered along the way. We will further discuss real-world performance from our first unit, initial science results, and the ongoing software development effort needed to automate such a facility for a wide array of science cases.

  8. Effect of Acoustic Spectrographic Instruction on Production of English /i/ and /I/ by Spanish Pre-Service English Teachers

    ERIC Educational Resources Information Center

    Quintana-Lara, Marcela

    2014-01-01

    This study investigates the effects of Acoustic Spectrographic Instruction on the production of the English phonological contrast /i/ and / I /. Acoustic Spectrographic Instruction is based on the assumption that physical representations of speech sounds and spectrography allow learners to objectively see and modify those non-accurate features in…

  9. Sky Subtraction with Fiber-Fed Spectrograph

    NASA Astrophysics Data System (ADS)

    Rodrigues, Myriam

    2017-09-01

    "Historically, fiber-fed spectrographs had been deemed inadequate for the observation of faint targets, mainly because of the difficulty to achieve high accuracy on the sky subtraction. The impossibility to sample the sky in the immediate vicinity of the target in fiber instruments has led to a commonly held view that a multi-object fibre spectrograph cannot achieve an accurate sky subtraction under 1% contrary to their slit counterpart. The next generation of multi-objects spectrograph at the VLT (MOONS) and the planed MOS for the E-ELT (MOSAIC) are fiber-fed instruments, and are aimed to observed targets fainter than the sky continuum level. In this talk, I will present the state-of-art on sky subtraction strategies and data reduction algorithm specifically developed for fiber-fed spectrographs. I will also present the main results of an observational campaign to better characterise the sky spatial and temporal variations ( in particular the continuum and faint sky lines)."

  10. The FIREBall fiber-fed UV spectrograph

    NASA Astrophysics Data System (ADS)

    Tuttle, Sarah E.; Schiminovich, David; Milliard, Bruno; Grange, Robert; Martin, D. Christopher; Rahman, Shahinur; Deharveng, Jean-Michel; McLean, Ryan; Tajiri, Gordon; Matuszewski, M.

    2008-07-01

    FIREBall (Faint Intergalactic Redshifted Emission Balloon) had a successful first engineering flight in July of 2007 from Palestine, Texas. Here we detail the design and construction of the spectrograph. FIREBall consists of a 1m telescope coupled to a fiber-fed ultraviolet spectrograph flown on a short duration balloon. The spectrograph is designed to map hydrogen and metal line emission from the intergalactic medium at several redshifts below z=1, exploiting a small window in atmospheric oxygen absorption at balloon altitudes. The instrument is a wide-field IFU fed by almost 400 fibers. The Offner mount spectrograph is designed to be sensitive in the 195-215nm window accessible at our altitudes of 35-40km. We are able to observe Lyα, as well as OVI and CIV doublets, from 0.3 < z < 0.9. Observations of UV bright B stars and background measurements allow characterization of throughput for the entire system and will inform future flights.

  11. In-orbit Calibrations of the Ultraviolet Imaging Telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tandon, S. N.; Subramaniam, Annapurni; Sankarasubramanian, K.

    The Ultra-Violet Imaging Telescope (UVIT) is one of the payloads in ASTROSAT, the first Indian Space Observatory. The UVIT instrument has two 375 mm telescopes: one for the far-ultraviolet (FUV) channel (1300–1800 Å), and the other for the near-ultraviolet (NUV) channel (2000–3000 Å) and the visible (VIS) channel (3200–5500 Å). UVIT is primarily designed for simultaneous imaging in the two ultraviolet channels with spatial resolution better than 1.″8, along with provisions for slit-less spectroscopy in the NUV and FUV channels. The results of in-orbit calibrations of UVIT are presented in this paper.

  12. A Student Assembled Spectrograph with a CCD Detector to Assist with Students' Understanding of Spectrometry

    ERIC Educational Resources Information Center

    Grove, T. T.; Masters, M. F.

    2007-01-01

    To help students develop an understanding of the proper use and function of spectrographs and monochromators we describe a student-assembled spectrograph using a "webcam" detector. The apparatus also works well as a low-cost demonstration, helping students make connections between an atomic spectrum observed by eye and a plot of the relative…

  13. Effect of Training Japanese L1 Speakers in the Production of American English /r/ Using Spectrographic Visual Feedback

    ERIC Educational Resources Information Center

    Patten, Iomi; Edmonds, Lisa A.

    2015-01-01

    The present study examines the effects of training native Japanese speakers in the production of American /r/ using spectrographic visual feedback. Within a modified single-subject design, two native Japanese participants produced single words containing /r/ in a variety of positions while viewing live spectrographic feedback with the aim of…

  14. X-ray spectrographic determination of cesium and rubidium

    USGS Publications Warehouse

    Axelrod, J.M.; Adler, I.

    1957-01-01

    An x-ray spectrographic method for the determination of rubidium and cesium was developed, using the internal-standard method and a four-channel flat-crystal spectrograph. The sensitivity is within 0.1% for cesia and 0.02% for rubidia; the precision is within 10% of the amount present. Results agree well with those obtained by flame photometry and by radio-activation.

  15. Scientific Design of a High Contrast Integral Field Spectrograph for the Subaru Telescope

    NASA Technical Reports Server (NTRS)

    McElwain, Michael W.

    2012-01-01

    Ground based telescopes equipped with adaptive optics systems and specialized science cameras are now capable of directly detecting extrasolar planets. We present the scientific design for a high contrast integral field spectrograph for the Subaru Telescope. This lenslet based integral field spectrograph will be implemented into the new extreme adaptive optics system at Subaru, called SCExAO.

  16. Thirty-Meter Telescope: A Technical Study of the InfraRed Multiobject Spectrograph

    NASA Astrophysics Data System (ADS)

    U, Vivian; Dekany, R.; Mobasher, B.

    2013-01-01

    The InfraRed Multiobject Spectrograph (IRMS) is an adaptive optics (AO)-fed, reconfigurable near-infrared multi-object spectrograph and imager on the Thirty Meter Telescope (TMT). Its design is based on the MOSFIRE spectrograph currently operating on the Keck Observatory. As one of the first three first-light instruments on the TMT, IRMS is in a mini-conceptual design phase. Here we motivate the science goals of the instrument and present the anticipated sensitivity estimates based on the combination of MOSFIRE with the AO system NFIRAOS on TMT. An assessment of the IRMS on-instrument wavefront sensor performance and vignetting issue will also be discussed.

  17. VizieR Online Data Catalog: The ELM survey. VII. 15 new ELM white dwarf cand. (Brown+, 2016)

    NASA Astrophysics Data System (ADS)

    Brown, W. R.; Gianninas, A.; Kilic, M.; Kenyon, S. J.; Allende Prieto, C.

    2016-05-01

    We present observations of 15 new extremely low-mass white dwarf (ELM WD) candidates. Ten objects are selected by color for our targeted spectroscopic ELM Survey program as described in Brown et al. (2012ApJ...744..142B). Five objects come from follow-up spectroscopy of the completed Hypervelocity Star survey. We acquire spectra for the 15 ELM WD candidates using the Blue Channel spectrograph on the 6.5m MMT telescope. We configured the Blue Channel spectrograph to obtain 3650-4500Å spectral coverage with 1.0Å spectral resolution. We acquire additional spectra for 5 objects using the KOSMOS spectrograph on the Kitt Peak National Observatory 4m Mayall telescope on program numbers 2014B-0119 and 2015A-0082. We configured the KOSMOS spectrograph to obtain 3500-6200Å spectral coverage with 2.0Å spectral resolution. We also acquire spectra for objects with g<17mag using the FAST spectrograph on the Fred Lawrence Whipple Observatory 1.5m Tillinghast telescope. We configured the FAST spectrograph to obtain 3500-5500Å spectral coverage with 1.7Å spectral resolution. (3 data files).

  18. Single Mode, Extreme Precision Doppler Spectrographs

    NASA Astrophysics Data System (ADS)

    Schwab, Christian; Leon-Saval, Sergio G.; Betters, Christopher H.; Bland-Hawthorn, Joss; Mahadevan, Suvrath

    2014-04-01

    The `holy grail' of exoplanet research today is the detection of an earth-like planet: a rocky planet in the habitable zone around a main-sequence star. Extremely precise Doppler spectroscopy is an indispensable tool to find and characterize earth-like planets; however, to find these planets around solar-type stars, we need nearly one order of magnitude better radial velocity (RV) precision than the best current spectrographs provide. Recent developments in astrophotonics (Bland-Hawthorn & Horton 2006, Bland-Hawthorn et al. 2010) and adaptive optics (AO) enable single mode fiber (SMF) fed, high resolution spectrographs, which can realize the next step in precision. SMF feeds have intrinsic advantages over multimode fiber or slit coupled spectrographs: The intensity distribution at the fiber exit is extremely stable, and as a result the line spread function of a well-designed spectrograph is fully decoupled from input coupling conditions, like guiding or seeing variations (Ihle et al. 2010). Modal noise, a limiting factor in current multimode fiber fed instruments (Baudrand & Walker 2001), can be eliminated by proper design, and the diffraction limited input to the spectrograph allows for very compact instrument designs, which provide excellent optomechanical stability. A SMF is the ideal interface for new, very precise wavelength calibrators, like laser frequency combs (Steinmetz et al. 2008, Osterman et al. 2012), or SMF based Fabry-Perot Etalons (Halverson et al. 2013). At near infrared wavelengths, these technologies are ready to be implemented in on-sky instruments, or already in use. We discuss a novel concept for such a spectrograph.

  19. Spectra of Th/Ar and U/Ne hollow cathode lamps for spectrograph calibration

    NASA Astrophysics Data System (ADS)

    Nave, Gillian; Shlosberg, Ariel; Kerber, Florian; Den Hartog, Elizabeth; Neureiter, Bianca

    2018-01-01

    Low-current Th/Ar hollow cathode lamps have long been used for calibration of astronomical spectrographs on ground-based telescopes. Thorium is an attractive element for calibration as it has a single isotope, has narrow spectral lines, and has a dense spectrum covering the whole of the visible region. However, the high density of the spectrum that makes it attractive for calibrating high-resolution spectrographs is a detriment for lower resolution spectrographs and this is not obvious by examination of existing linelists. In addition, recent changes in regulations regarding the handling of thorium have led to a degradation in the quality of Th/Ar calibration lamps, with contamination by molecular ThO lines that are strong enough to obscure the calibration lines of interest.We are pursuing two approaches to these problems. First, we have expanded and improved the NIST Standard Reference Database 161, "Spectrum of Th-Ar Hollow Cathode Lamps" to cover the region 272 nm to 5500 nm. Spectra of hollow cathode lamps at up to 3 different currents can now be displayed simultaneously. Interactive zooming and the ability to convolve any of the spectra with a Gaussian or uploaded instrument profile enable the user to see immediately what the spectrum would look like at the particular resolution of their spectrograph. Second, we have measured the spectrum of a recent, contaminated Th/Ar hollow cathode lamp using a high-resolution Echelle spectrograph (Madison Wisconsin) at a resolving power (R~ 250,000). This significantly exceeds the resolving power of most astronomical spectrographs and resolves many of the molecular lines of ThO. With these spectra we are measuring and calibrating the positions of these molecular lines in order to make them suitable for spectrograph calibration.In the near infrared region, U/Ne hollow cathode lamps give a higher density of calibration lines than Th/Ar lamps and will be implemented on the upgraded CRIRES+ spectrograph on ESO’s Very Large Telescope in Chile. A new atlas of the U/Ne spectrum as measured by CRIRES will be presented.

  20. GRACES, the Gemini remote access CFHT ESPaDOnS spectrograph: initial design and testing

    NASA Astrophysics Data System (ADS)

    Tollestrup, Eric V.; Pazder, John; Barrick, Gregory; Martioli, Eder; Schiavon, Ricardo; Anthony, André; Halman, Mark; Veillet, Christian

    2012-09-01

    The Gemini Remote Access CFHT ESPaDOnS Spectrograph (GRACES) is an innovative instrumentation experiment that will demonstrate if ESPaDOnS, a bench-mounted high-resolution optical spectrograph at CFHT, can be fed by a 270-m long fiber from the Gemini-North telescope with low enough losses to remain competitive with conventional spectrographs on other 8 to 10-m telescopes. Detailed simulations have shown that GRACES should be more sensitive than the HIRES spectrograph at Keck Observatory at wavelengths longer than about 600-700 nm. This result is possible by using FPB-type of optical fibers made by Polymicro Technologies and by keeping the critical focal ratio degradation (FRD) losses to less than 10%. Laboratory tests on these FPB optical fibers are underway and show that for 36-m lengths that the FRD losses are as low as 0.8% with a repeatability of 1%. Tests are currently underway on 280-m lengths.

  1. HESP: Instrument control, calibration and pipeline development

    NASA Astrophysics Data System (ADS)

    Anantha, Ch.; Roy, Jayashree; Mahesh, P. K.; Parihar, P. S.; Sangal, A. K.; Sriram, S.; Anand, M. N.; Anupama, G. C.; Giridhar, S.; Prabhu, T. P.; Sivarani, T.; Sundararajan, M. S.

    Hanle Echelle SPectrograph (HESP) is a fibre-fed, high resolution (R = 30,000 and 60,000) spectrograph being developed for the 2m HCT telescope at IAO, Hanle. The major components of the instrument are a) Cassegrain unit b) Spectrometer instrument. An instrument control system interacting with a guiding unit at Cassegrain interface as well as handling spectrograph functions is being developed. An on-axis auto-guiding using the spill-over angular ring around the input pinhole is also being developed. The stellar light from the Cassegrain unit is taken to the spectrograph using an optical fiber which is being characterized for spectral transmission, focal ratio degradation and scrambling properties. The design of the thermal enclosure and thermal control for the spectrograph housing is presented. A data pipeline for the entire Echelle spectral reduction is being developed. We also plan to implement an instrument physical model based calibration into the main data pipeline and in the maintenance and quality control operations.

  2. Reconstructive correction of aberrations in nuclear particle spectrographs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berz, M.; Joh, K.; Nolen, J.A.

    A method is presented that allows the reconstruction of trajectories in particle spectrographs and the reconstructive correction of residual aberrations that otherwise limit the resolution. Using a computed or fitted high order transfer map that describes the uncorrected aberrations of the spectrograph, it is possible to calculate a map via an analytic recursion relation that allows the computation of the corrected data of interest such as reaction energy and scattering angle as well as the reconstructed trajectories in terms of position measurements in two planes near the focal plane. The technique is only limited by the accuracy of the positionmore » measurements, the incoherent spot sizes, and the accuracy of the transfer map. In practice the method can be expressed as an inversion of a nonlinear map and implemented in the differential algebraic framework. The method is applied to correct residual aberrations in the S800 spectrograph which is under construction at the National Superconducting Cyclotron Laboratory at Michigan State University and to two other high resolution spectrographs.« less

  3. Optical design of the SuMIRe/PFS spectrograph

    NASA Astrophysics Data System (ADS)

    Pascal, Sandrine; Vives, Sébastien; Barkhouser, Robert; Gunn, James E.

    2014-07-01

    The SuMIRe Prime Focus Spectrograph (PFS), developed for the 8-m class SUBARU telescope, will consist of four identical spectrographs, each receiving 600 fibers from a 2394 fiber robotic positioner at the telescope prime focus. Each spectrograph includes three spectral channels to cover the wavelength range [0.38-1.26] um with a resolving power ranging between 2000 and 4000. A medium resolution mode is also implemented to reach a resolving power of 5000 at 0.8 um. Each spectrograph is made of 4 optical units: the entrance unit which produces three corrected collimated beams and three camera units (one per spectral channel: "blue, "red", and "NIR"). The beam is split by using two large dichroics; and in each arm, the light is dispersed by large VPH gratings (about 280x280mm). The proposed optical design was optimized to achieve the requested image quality while simplifying the manufacturing of the whole optical system. The camera design consists in an innovative Schmidt camera observing a large field-of-view (10 degrees) with a very fast beam (F/1.09). To achieve such a performance, the classical spherical mirror is replaced by a catadioptric mirror (i.e meniscus lens with a reflective surface on the rear side of the glass, like a Mangin mirror). This article focuses on the optical architecture of the PFS spectrograph and the perfornance achieved. We will first described the global optical design of the spectrograph. Then, we will focus on the Mangin-Schmidt camera design. The analysis of the optical performance and the results obtained are presented in the last section.

  4. 4MOST fiber feed preliminary design: prototype testing and performance

    NASA Astrophysics Data System (ADS)

    Haynes, Dionne M.; Kelz, Andreas; Barden, Samuel C.; Bauer, Svend-Marian; Ehrlich, Katjana; Haynes, Roger; Jahn, Thomas; Saviauk, Allar; de Jong, Roelof S.

    2016-08-01

    The 4MOST instrument is a multi-object-spectrograph for the ESO-VISTA telescope. The 4MOST fiber feed subsystem is composed of a fiber positioner (AESOP) holding 2436 science fibers based on the Echidna tilting spine concept, and the fiber cable, which feeds two low-resolution spectrographs (1624 fibers) and one high-resolution spectrograph (812 fibers). In order to optimize the fiber feed subsystem design and provide essential information required for the spectrograph design, prototyping and testing has been undertaken. In this paper we give an overview of the current fiber feed subsystem design and present the preliminary FRD, scrambling, throughput and system performance impact results for: maximum and minimum spine tilt, fiber connectors, cable de-rotator simulator for fiber cable lifetime tests.

  5. VizieR Online Data Catalog: The ELM survey. VI. 11 new ELM WD binaries (Gianninas+, 2015)

    NASA Astrophysics Data System (ADS)

    Gianninas, A.; Kilic, M.; Brown, W. R.; Canton, P.; Kenyon, S. J.

    2016-02-01

    We used the 6.5m MMT telescope equipped with the Blue Channel spectrograph, the 200 inch Hale telescope equipped with the Double spectrograph, the Kitt Peak National Observatory 4m telescope equipped with the R-C spectrograph, and more recently with Kitt Peak Ohio State Multi-Object Spectrograph (KOSMOS), to obtain spectroscopy of our 11 targets in several observing runs. We have also been obtaining radial-velocity measurements for candidates from other sources including the Large Sky Area Multi-Object Spectroscopy Telescope (LAMOST). Those 11 new Extremely low-mass white dwarf (ELM WD) binaries bring the total of ELM WDs identified by the ELM Survey up to 73. (4 data files).

  6. THE MULTI-OBJECT, FIBER-FED SPECTROGRAPHS FOR THE SLOAN DIGITAL SKY SURVEY AND THE BARYON OSCILLATION SPECTROSCOPIC SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smee, Stephen A.; Gunn, James E.; Uomoto, Alan

    2013-07-12

    We present the design and performance of the multi-object fiber spectrographs for the Sloan Digital Sky Survey (SDSS) and their upgrade for the Baryon Oscillation Spectroscopic Survey (BOSS). Originally commissioned in Fall 1999 on the 2.5-m aperture Sloan Telescope at Apache Point Observatory, the spectrographs produced more than 1.5 million spectra for the SDSS and SDSS-II surveys, enabling a wide variety of Galactic and extra-galactic science including the first observation of baryon acoustic oscillations in 2005. The spectrographs were upgraded in 2009 and are currently in use for BOSS, the flagship survey of the third-generation SDSS-III project. BOSS will measuremore » redshifts of 1.35 million massive galaxies to redshift 0.7 and Lyman-alpha absorption of 160,000 high redshift quasars over 10,000 square degrees of sky, making percent level measurements of the absolute cosmic distance scale of the Universe and placing tight constraints on the equation of state of dark energy. The twin multi-object fiber spectrographs utilize a simple optical layout with reflective collimators, gratings, all-refractive cameras, and state-of-the-art CCD detectors to produce hundreds of spectra simultaneously in two channels over a bandpass covering the near ultraviolet to the near infrared, with a resolving power R = \\lambda/FWHM ~ 2000. Building on proven heritage, the spectrographs were upgraded for BOSS with volume-phase holographic gratings and modern CCD detectors, improving the peak throughput by nearly a factor of two, extending the bandpass to cover 360 < \\lambda < 1000 nm, and increasing the number of fibers from 640 to 1000 per exposure. In this paper we describe the original SDSS spectrograph design and the upgrades implemented for BOSS, and document the predicted and measured performances.« less

  7. Mini-Spec: A Compact, Fiber-Coupled, VPH Grating Spectrograph for Small Observatories

    NASA Astrophysics Data System (ADS)

    Nations, H. L.; Haynes, P.; Brewer, P.

    2003-05-01

    We report on the development and testing of what we believe to be the first VPH grating based spectrograph developed primarily for use at telescopes of modest aperture. To date, the most common instrument suite for such observatories is typically that of a CCD camera with attached filter wheel. While there is no doubt that a wide range of interesting and good science has been done with such instrumentation, the addition of a robust and easy to operate spectrograph would greatly increase the utility of such installations. While some commercial spectrographs exist for use on small telescopes, the authors have found them to be, with few exceptions, either inefficient, difficult for inexperienced students or amateurs to use, or not remotely operable. Correcting these deficiencies is thus the primary motivation for Mini-Spec. The design of Mini-Spec has been influenced by previous work the authors have done on a full-sized fiber-coupled spectrograph (Nations and Pierce, 2002). Mini-Spec uses some of those original design features, only reduced drastically in size. This size reduction (the spectrograph fits within a 7 inch cube), along with a much more careful choice of some critical components, has resulted in a dramatic reduction in cost. The spectrograph uses a highly efficient 1200 l/mm, 40 mm diameter vph grating on loan from Richard Rallison. Focus, central wavelength selection, and comparison lamps are all controlled via an RS-232 link and a custom Visual Basic GUI. Sample spectra of stellar and non-stellar targets will be presented along with a discussion of research projects admirably suited for this instrument. Funding for equipment has been provided by a NASA EPSCoR grant to PI Ron Canterna. HLN has been partially funded by a Wyoming Space Grant Faculty Fellowship.

  8. A Post-AGB Star in the Small Magellanic Cloud Observed with the Spitzer Infrared Spectrograph

    DTIC Science & Technology

    2006-10-23

    spectral features, MSX SMC 029, in the Small Magellanic Cloud (SMC) usimg the low-resolution modules of the Infrared Spectrograph on the Spitzer Space ...029, in the Small Magellanic Cloud (SMC) using the low-resolution modules of the Infrared Spectrograph on the Spitzer Space Telescope. A cool dust... outer atmosphere expands and pulsates, pushing gas away from the star where it can cool and condense into dust grains. The resulting circumstellar dust

  9. Experimental Study of an Advanced Concept of Moderate-resolution Holographic Spectrographs

    NASA Astrophysics Data System (ADS)

    Muslimov, Eduard; Valyavin, Gennady; Fabrika, Sergei; Musaev, Faig; Galazutdinov, Gazinur; Pavlycheva, Nadezhda; Emelianov, Eduard

    2018-07-01

    We present the results of an experimental study of an advanced moderate-resolution spectrograph based on a cascade of narrow-band holographic gratings. The main goal of the project is to achieve a moderately high spectral resolution with R up to 5000 simultaneously in the 4300–6800 Å visible spectral range on a single standard CCD, together with an increased throughput. The experimental study consisted of (1) resolution and image quality tests performed using the solar spectrum, and (2) a total throughput test performed for a number of wavelengths using a calibrated lab monochromator. The measured spectral resolving power reaches values over R > 4000 while the experimental throughput is as high as 55%, which agrees well with the modeling results. Comparing the obtained characteristics of the spectrograph under consideration with the best existing spectrographs, we conclude that the used concept can be considered as a very competitive and cheap alternative to the existing spectrographs of the given class. We propose several astrophysical applications for the instrument and discuss the prospect of creating its full-scale version.

  10. Conceptual design for an AIUC multi-purpose spectrograph camera using DMD technology

    NASA Astrophysics Data System (ADS)

    Rukdee, S.; Bauer, F.; Drass, H.; Vanzi, L.; Jordan, A.; Barrientos, F.

    2017-02-01

    Current and upcoming massive astronomical surveys are expected to discover a torrent of objects, which need groundbased follow-up observations to characterize their nature. For transient objects in particular, rapid early and efficient spectroscopic identification is needed. In particular, a small-field Integral Field Unit (IFU) would mitigate traditional slit losses and acquisition time. To this end, we present the design of a Digital Micromirror Device (DMD) multi-purpose spectrograph camera capable of running in several modes: traditional longslit, small-field patrol IFU, multi-object and full-field IFU mode via Hadamard spectra reconstruction. AIUC Optical multi-purpose CAMera (AIUCOCAM) is a low-resolution spectrograph camera of R 1,600 covering the spectral range of 0.45-0.85 μm. We employ a VPH grating as a disperser, which is removable to allow an imaging mode. This spectrograph is envisioned for use on a 1-2 m class telescope in Chile to take advantage of good site conditions. We present design decisions and challenges for a costeffective robotized spectrograph. The resulting instrument is remarkably versatile, capable of addressing a wide range of scientific topics.

  11. NOAO's next-generation optical spectrograph

    NASA Astrophysics Data System (ADS)

    Barden, Samuel C.; Harmer, Charles F.; Blakley, Rick D.; Parks, Rachel J.

    2000-08-01

    The National Optical Astronomy Observatory is developing a new, wide-field, imaging spectrograph for use on its existing 4-meter telescopes. This Next Generation Optical Spectrograph (NGOS) will utilize volume-phase holographic grating technology and will have a mosaiced detector array to image the spectra over a field of view that will be something like 10.5 by 42 arc-minutes on the sky. The overall efficiency of the spectrograph should be quite high allowing it to outperform the current RC spectrograph by factors of 10 to 20 and the Hydra multi-fiber instrument by a facto of fiber to ten per object. The operational range of the instrument will allow observations within the optical and near-IR regions. Spectral resolutions will go from R equals 1000 to at least R equals 5000 with 1.4 arc-second slits. The large size of this instrument, with a beam diameter of 200 mm and an overall length of nearly 3 meters, presents a significant challenge in mounting it at the Cassegrain location of the telescope. Design trades and options that allow it to fit are discussed.

  12. Curved VPH gratings for novel spectrographs

    NASA Astrophysics Data System (ADS)

    Clemens, J. Christopher; O'Donoghue, Darragh; Dunlap, Bart H.

    2014-07-01

    The introduction of volume phase holographic (VPH) gratings into astronomy over a decade ago opened new possibilities for instrument designers. In this paper we describe an extension of VPH grating technology that will have applications in astronomy and beyond: curved VPH gratings. These devices can disperse light while simultaneously correcting aberrations. We have designed and manufactured two different kinds of convex VPH grating prototypes for use in off-axis reflecting spectrographs. One type functions in transmission and the other in reflection, enabling Offnerstyle spectrographs with the high-efficiency and low-cost advantages of VPH gratings. We will discuss the design process and the tools required for modelling these gratings along with the recording layout and process steps required to fabricate them. We will present performance data for the first convex VPH grating produced for an astronomical spectrograph.

  13. Web-based multi-channel analyzer

    DOEpatents

    Gritzo, Russ E.

    2003-12-23

    The present invention provides an improved multi-channel analyzer designed to conveniently gather, process, and distribute spectrographic pulse data. The multi-channel analyzer may operate on a computer system having memory, a processor, and the capability to connect to a network and to receive digitized spectrographic pulses. The multi-channel analyzer may have a software module integrated with a general-purpose operating system that may receive digitized spectrographic pulses for at least 10,000 pulses per second. The multi-channel analyzer may further have a user-level software module that may receive user-specified controls dictating the operation of the multi-channel analyzer, making the multi-channel analyzer customizable by the end-user. The user-level software may further categorize and conveniently distribute spectrographic pulse data employing non-proprietary, standard communication protocols and formats.

  14. Development of the MAMA Detectors for the Hubble Space Telescope Imaging Spectrograph

    NASA Technical Reports Server (NTRS)

    Timothy, J. Gethyn

    1997-01-01

    The development of the Multi-Anode Microchannel Array (MAMA) detector systems started in the early 1970's in order to produce multi-element detector arrays for use in spectrographs for solar studies from the Skylab-B mission. Development of the MAMA detectors for spectrographs on the Hubble Space Telescope (HST) began in the late 1970's, and reached its culmination with the successful installation of the Space Telescope Imaging Spectrograph (STIS) on the second HST servicing mission (STS-82 launched 11 February 1997). Under NASA Contract NAS5-29389 from December 1986 through June 1994 we supported the development of the MAMA detectors for STIS, including complementary sounding rocket and ground-based research programs. This final report describes the results of the MAMA detector development program for STIS.

  15. The Transiting Exoplanet Community Early Release Science Program for JWST

    NASA Astrophysics Data System (ADS)

    Batalha, Natalie Marie; Bean, Jacob; Stevenson, Kevin; Sing, David; Crossfield, Ian; Knutson, Heather; Line, Michael; Kreidberg, Laura; Desert, Jean-Michel; Wakeford, Hannah R.; Crouzet, Nicolas; Moses, Julianne; Benneke, Björn; Kempton, Eliza; Berta-Thompson, Zach; Lopez-Morales, Mercedes; Parmentier, Vivien; Gibson, Neale; Schlawin, Everett; Fraine, Jonathan; Kendrew, Sarah; Transiting Exoplanet ERS Team

    2018-01-01

    A community working group was formed in October 2016 to consider early release science with the James Webb Space Telescope that broadly benefits the transiting exoplanet community. Over 100 exoplanet scientists worked collaboratively to identify targets that are observable at the initiation of science operations, yield high SNR with a single event, have substantial scientific merit, and have known spectroscopic features identified by prior observations. The working group developed a program that yields representative datasets for primary transit, secondary eclipse, and phase curve observations using the most promising instrument modes for high-precision spectroscopic timeseries (NIRISS-SOSS, NIRCam, NIRSPec, and MIRI-LRS). The centerpiece of the program is an open data challenge that promotes community engagement and leads to a deeper understanding of the JWST instruments as early as possible in the mission. The program is managed under the premise of open science in order to maximize the value of the early release science observations for the transiting exoplanet community.

  16. bHROS: A New High-Resolution Spectrograph Available on Gemini South

    NASA Astrophysics Data System (ADS)

    Margheim, S. J.; Gemini bHROS Team

    2005-12-01

    The Gemini bench-mounted High-Resolution Spectrograph (bHROS) is available for science programs beginning in 2006A. bHROS is the highest resolution (R=150,000) optical echelle spectrograph optimized for use on an 8-meter telescope. bHROS is fiber-fed via GMOS-S from the Gemini South focal plane and is available in both a dual-fiber Object/Sky mode and a single (larger) Object-only mode. Instrument characteristics and sample data taken during commissioning will be presented.

  17. Discovery of a z = 7.452 High Equivalent Width Lyα Emitter from the Hubble Space Telescope  Faint Infrared Grism Survey

    NASA Astrophysics Data System (ADS)

    Larson, Rebecca L.; Finkelstein, Steven L.; Pirzkal, Norbert; Ryan, Russell; Tilvi, Vithal; Malhotra, Sangeeta; Rhoads, James; Finkelstein, Keely; Jung, Intae; Christensen, Lise; Cimatti, Andrea; Ferreras, Ignacio; Grogin, Norman; Koekemoer, Anton M.; Hathi, Nimish; O’Connell, Robert; Östlin, Göran; Pasquali, Anna; Pharo, John; Rothberg, Barry; Windhorst, Rogier A.; The FIGS Team

    2018-05-01

    We present the results of an unbiased search for Lyα emission from continuum-selected 5.6 < z < 8.7 galaxies. Our data set consists of 160 orbits of G102 slitless grism spectroscopy obtained with the Hubble Space Telescope(HST)/WFC3 as part of the Faint Infrared Grism Survey (FIGS; PI: Malhotra), which obtains deep slitless spectra of all sources in four fields, and was designed to minimize contamination in observations of previously identified high-redshift galaxy candidates. The FIGS data can potentially spectroscopically confirm the redshifts of galaxies, and as Lyα emission is resonantly scattered by neutral gas, FIGS can also constrain the ionization state of the intergalactic medium during the epoch of reionization. These data have sufficient depth to detect Lyα emission in this epoch, as Tilvi et al. have published the FIGS detection of previously known Lyα emission at z = 7.51. The FIGS data use five separate roll angles of HST to mitigate the contamination by nearby galaxies. We created a method that accounts for and removes the contamination from surrounding galaxies and also removes any dispersed continuum light from each individual spectrum. We searched for significant (>4σ) emission lines using two different automated detection methods, free of any visual inspection biases. Applying these methods on photometrically selected high-redshift candidates between 5.6 < z < 8.7, we find two emission lines, one previously published by Tilvi et al., (2016) and a new line at 1.028 μm, which we identify as Lyα at z = 7.452 ± 0.003. This newly spectroscopically confirmed galaxy has the highest Lyα rest-frame equivalent width (EWLyα ) yet published at z > 7 (140.3 ± 19.0 Å).

  18. Predicting the Redshift 2 H-Alpha Luminosity Function Using [OIII] Emission Line Galaxies

    NASA Technical Reports Server (NTRS)

    Mehta, Vihang; Scarlata, Claudia; Colbert, James W.; Dai, Y. S.; Dressler, Alan; Henry, Alaina; Malkan, Matt; Rafelski, Marc; Siana, Brian; Teplitz, Harry I.; hide

    2015-01-01

    Upcoming space-based surveys such as Euclid and WFIRST-AFTA plan to measure Baryonic Acoustic Oscillations (BAOs) in order to study dark energy. These surveys will use IR slitless grism spectroscopy to measure redshifts of a large number of galaxies over a significant redshift range. In this paper, we use the WFC3 Infrared Spectroscopic Parallel Survey (WISP) to estimate the expected number of H-alpha emitters observable by these future surveys. WISP is an ongoing Hubble Space Telescope slitless spectroscopic survey, covering the 0.8 - 1.65 micrometers wavelength range and allowing the detection of H-alpha emitters up to z approximately equal to 1.5 and [OIII] emitters to z approximately equal to 2.3. We derive the H-alpha-[OIII] bivariate line luminosity function for WISP galaxies at z approximately equal to 1 using a maximum likelihood estimator that properly accounts for uncertainties in line luminosity measurement, and demonstrate how it can be used to derive the H-alpha luminosity function from exclusively fitting [OIII] data. Using the z approximately equal to 2 [OIII] line luminosity function, and assuming that the relation between H-alpha and [OIII] luminosity does not change significantly over the redshift range, we predict the H-alpha number counts at z approximately equal to 2 - the upper end of the redshift range of interest for the future surveys. For the redshift range 0.7 less than z less than 2, we expect approximately 3000 galaxies per sq deg for a flux limit of 3 x 10(exp -16) ergs per sec per sq cm (the proposed depth of Euclid galaxy redshift survey) and approximately 20,000 galaxies per sq deg for a flux limit of approximately 10(exp -16) ergs per sec per sq cm (the baseline depth of WFIRST galaxy redshift survey).

  19. An Ultraviolet Spectrograph Concept for Exploring Ocean Worlds

    NASA Astrophysics Data System (ADS)

    Schindhelm, E. R.; Hendrix, A. R.; Fleming, B. T.

    2018-05-01

    UV spectroscopy can probe dust/ice composition of the surface or plumes via uniquely identifying features. We present a technology concept for a future planetary science UV multi-object imaging spectrograph.

  20. Small Astronomy Payloads for Spacelab. [conferences

    NASA Technical Reports Server (NTRS)

    Bohlin, R. C. (Editor)

    1975-01-01

    The workshop to define feasible concepts in the UV-optical 1R area for Astronomy Spacelab Payloads is reported. Payloads proposed include: high resolution spectrograph, Schmidt camera spectrograph, UV telescope, and small infrared cryogenic telescope.

  1. The optical design of the G-CLEF Spectrograph: the first light instrument for the GMT

    NASA Astrophysics Data System (ADS)

    Ben-Ami, Sagi; Epps, Harland; Evans, Ian; Mueller, Mark; Podgorski, William; Szentgyorgyi, Andrew

    2016-08-01

    The GMT-Consortium Large Earth Finder (G-CLEF), the first major light instrument for the GMT, is a fiber-fed, high-resolution echelle spectrograph. In the following paper, we present the optical design of G-CLEF. We emphasize the unique solutions derived for the spectrograph fiber-feed: the Mangin mirror that corrects the cylindrical field curvature, the implementation of VPH grisms as cross dispersers, and our novel solution for a multi-colored exposure meter. We describe the spectrograph blue and red cameras comprised of 7 and 8 elements respectively, with one aspheric surface in each camera, and present the expected echellogram imaged on the instrument focal planes. Finally, we present ghost analysis and mitigation strategy that takes into account both single reflection and double reflection back scattering from various elements in the optical train.

  2. PRISM Spectrograph Optical Design

    NASA Technical Reports Server (NTRS)

    Chipman, Russell A.

    1995-01-01

    The objective of this contract is to explore optical design concepts for the PRISM spectrograph and produce a preliminary optical design. An exciting optical configuration has been developed which will allow both wavelength bands to be imaged onto the same detector array. At present the optical design is only partially complete because PRISM will require a fairly elaborate optical system to meet its specification for throughput (area*solid angle). The most complex part of the design, the spectrograph camera, is complete, providing proof of principle that a feasible design is attainable. This camera requires 3 aspheric mirrors to fit inside the 20x60 cm cross-section package. A complete design with reduced throughput (1/9th) has been prepared. The design documents the optical configuration concept. A suitable dispersing prism material, CdTe, has been identified for the prism spectrograph, after a comparison of many materials.

  3. Optical design of a versatile FIRST high-resolution near-IR spectrograph

    NASA Astrophysics Data System (ADS)

    Zhao, Bo; Ge, Jian

    2012-09-01

    We report the update optical design of a versatile FIRST high resolution near IR spectrograph, which is called Florida IR Silicon immersion grating spectromeTer (FIRST). This spectrograph uses cross-dispersed echelle design with white pupils and also takes advantage of the image slicing to increase the spectra resolution, while maintaining the instrument throughput. It is an extremely high dispersion R1.4 (blazed angle of 54.74°) silicon immersion grating with a 49 mm diameter pupil is used as the main disperser at 1.4μm -1.8μm to produce R=72,000 while an R4 echelle with the same pupil diameter produces R=60,000 at 0.8μm -1.35μm. Two cryogenic Volume Phase Holographic (VPH) gratings are used as cross-dispersers to allow simultaneous wavelength coverage of 0.8μm -1.8μm. The butterfly mirrors and dichroic beamsplitters make a compact folding system to record these two wavelength bands with a 2kx2k H2RG array in a single exposure. By inserting a mirror before the grating disperser (the SIG and the echelle), this spectrograph becomes a very efficient integral field 3-D imaging spectrograph with R=2,000-4,000 at 0.8μm-1.8μm by coupling a 10x10 telescope fiber bundle with the spectrograph. Details about the optical design and performance are reported.

  4. Time-of-flight mass spectrographs—From ions to neutral atoms

    NASA Astrophysics Data System (ADS)

    Möbius, E.; Galvin, A. B.; Kistler, L. M.; Kucharek, H.; Popecki, M. A.

    2016-12-01

    After their introduction to space physics in the mid 1980s time-of-flight (TOF) spectrographs have become a main staple in spaceborne mass spectrometry. They have largely replaced magnetic spectrometers, except when extremely high mass resolution is required to identify complex molecules, for example, in the vicinity of comets or in planetary atmospheres. In combination with electrostatic analyzers and often solid state detectors, TOF spectrographs have become key instruments to diagnose space plasma velocity distributions, mass, and ionic charge composition. With a variety of implementation schemes that also include isochronous electric field configurations, TOF spectrographs can respond to diverse science requirements. This includes a wide range in mass resolution to allow the separation of medium heavy isotopes or to simply provide distributions of the major species, such as H, He, and O, to obtain information on source tracers or mass fluxes. With a top-hat analyzer at the front end, or in combination with deflectors for three-axis stabilized spacecraft, the distribution function of ions can be obtained with good time resolution. Most recently, the reach of TOF ion mass spectrographs has been extended to include energetic neutral atoms. After selecting the arrival direction with mechanical collimation, followed by conversion to ions, adapted TOF sensors form a new branch of the spectrograph family tree. We review the requirements, challenges, and implementation schemes for ion and neutral atom spectrographs, including potential directions for the future, while largely avoiding overlap with complementary contributions in this special issue.

  5. A Cross-Dispersed Medium-Resolution Spectrograph for Appalachian State Univeristy's 32-inch Telescope

    NASA Astrophysics Data System (ADS)

    Kluttz, K. A.; Gray, R. O.

    2003-12-01

    We have designed and constructed an economical medium-resolution spectrograph to be used on the 32-inch telescope of Appalachian State University's Dark Sky Observatory (DSO). The primary function of this instrument will be to study shell and emission-line stars. However, we will also use this instrument for chemical abundance studies and radial velocities. The basic design is that of an Ebert spectrograph with a single 6-inch mirror acting as both the collimator and camera. The primary dispersion is accomplished by a reflection grating, and order separation is accomplished by a grism. The spectrograph has been designed so that three wavelength regions are simultaneously imaged on the CCD camera. When the Hα line is centered in the third order, Hβ and lines of Fe II multiplet 42 -- often enhanced in shell and emission-line stars -- appear in the fourth order and the fifth order contains both the Ca II K & H lines. To facilitate abundance measurements, a telluric-free region near 6400Å is available in the third order by tilting the main diffraction grating. Preliminary tests have shown that the resolution of the new spectrograph is 0.42Å in the third order (R ≈ 15,000). This relatively high resolution will allow studies to be conducted at DSO which have not previously been possible with the instrumentation currently in use. Several optical components for this spectrograph were purchased with grants from the Fund for Astrophysical Research and the University Research Council.

  6. Suppression of fiber modal noise induced radial velocity errors for bright emission-line calibration sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahadevan, Suvrath; Halverson, Samuel; Ramsey, Lawrence

    2014-05-01

    Modal noise in optical fibers imposes limits on the signal-to-noise ratio (S/N) and velocity precision achievable with the next generation of astronomical spectrographs. This is an increasingly pressing problem for precision radial velocity spectrographs in the near-infrared (NIR) and optical that require both high stability of the observed line profiles and high S/N. Many of these spectrographs plan to use highly coherent emission-line calibration sources like laser frequency combs and Fabry-Perot etalons to achieve precision sufficient to detect terrestrial-mass planets. These high-precision calibration sources often use single-mode fibers or highly coherent sources. Coupling light from single-mode fibers to multi-mode fibersmore » leads to only a very low number of modes being excited, thereby exacerbating the modal noise measured by the spectrograph. We present a commercial off-the-shelf solution that significantly mitigates modal noise at all optical and NIR wavelengths, and which can be applied to spectrograph calibration systems. Our solution uses an integrating sphere in conjunction with a diffuser that is moved rapidly using electrostrictive polymers, and is generally superior to most tested forms of mechanical fiber agitation. We demonstrate a high level of modal noise reduction with a narrow bandwidth 1550 nm laser. Our relatively inexpensive solution immediately enables spectrographs to take advantage of the innate precision of bright state-of-the art calibration sources by removing a major source of systematic noise.« less

  7. Enhanced Exoplanet Biosignature from an Interferometer Addition to Low Resolution Spectrographs

    NASA Astrophysics Data System (ADS)

    Erskine, D. J.; Muirhead, P. S.; Vanderburg, A. M.; Szentgyorgyi, A.

    2017-12-01

    The absorption spectral signature of many atmospheric molecules consists of a group of 40 or so lines that are approximately periodic due to the physics of molecular vibration. This is fortuitous for detecting atmospheric features in an exoEarth, since it has a similar periodic nature as an interferometer's transmission, which is sinusoidal. The period (in wavenumbers) of the interferometer is selectable, being inversely proportional to the delay (in cm). We show that the addition of a small interferometer of 0.6 cm delay to an existing dispersive spectrograph can greatly enhance the detection of molecular features, by several orders of magnitude for initially low resolution spectrographs. We simulate the Gemini Planet Imager measuring a telluric spectrum having native resolution of 40 and 70 in the 1.65 micron and 2 micron bands. These low resolutions are insufficient to resolve the fine features of the molecular feature group. However, the addition of a 0.6 cm delay outside the spectrograph and in series with it increases the local amplitude of the signal to a level similar to a R=4400 (at 1.65 micron) or R=3900 (at 2 micron) classical spectrograph. Prepared by LLNL under Contract DE-AC52-07NA27344.

  8. Hectospec, the MMT's 300 Optical Fiber-Fed Spectrograph

    NASA Astrophysics Data System (ADS)

    Fabricant, Daniel; Fata, Robert; Roll, John; Hertz, Edward; Caldwell, Nelson; Gauron, Thomas; Geary, John; McLeod, Brian; Szentgyorgyi, Andrew; Zajac, Joseph; Kurtz, Michael; Barberis, Jack; Bergner, Henry; Brown, Warren; Conroy, Maureen; Eng, Roger; Geller, Margaret; Goddard, Richard; Honsa, Michael; Mueller, Mark; Mink, Douglas; Ordway, Mark; Tokarz, Susan; Woods, Deborah; Wyatt, William; Epps, Harland; Dell'Antonio, Ian

    2005-12-01

    The Hectospec is a 300 optical fiber fed spectrograph commissioned at the MMT in the spring of 2004. In the configuration pioneered by the Autofib instrument at the Anglo-Australian Telescope, Hectospec's fiber probes are arranged in a radial ``fisherman on the pond'' geometry and held in position with small magnets. A pair of high-speed, six-axis robots move the 300 fiber buttons between observing configurations within ~300 s, and to an accuracy of ~25 μm. The optical fibers run for 26 m between the MMT's focal surface and the bench spectrograph, operating at R~1000-2000. Hectochelle, another high-dispersion bench spectrograph offering R~35,000, is also available. The system throughput, including all losses in the telescope optics, fibers, and spectrograph, peaks at ~10% at the grating blaze in 1" FWHM seeing. Correcting for aperture losses at the 1.5" diameter fiber entrance aperture, the system throughput peaks at ~17%, close to our prediction of 20%. Hectospec has proven to be a workhorse instrument at the MMT. Together, Hectospec and Hectochelle have been scheduled for 1/3 of the available nights since its commissioning. Hectospec has returned approximately 60,000 reduced spectra for 16 scientific programs during its first year of operation.

  9. Toroidal varied-line space (TVLS) gratings

    NASA Astrophysics Data System (ADS)

    Thomas, Roger J.

    2003-02-01

    It is a particular challenge to develop a stigmatic spectrograph for EUV wavelengths since the very low normal-incidence reflectance of standard materials most often requires that the design be restricted to a single optical element which must simultaneously provide both re-imaging and spectral dispersion. This problem has been solved in the past by the use of toroidal gratings with uniform line-space rulings (TULS). A number of solar EUV spectrographs have been based on such designs, including SOHO/CDS, Solar-B/EIS, and the sounding rockets SERTS and EUNIS. More recently, Kita, Harada, and collaborators have developed the theory of spherical gratings with varied line-space rulings (SVLS) operated at unity magnification, which have been flown on several astronomical satellite missions. These ideas are now combined into a spectrograph concept that considers varied-line space grooves ruled onto toroidal gratings. Such TVLS designs are found to provide excellent imaging even at very large spectrograph magnifications and beam-speeds, permitting extremely high-quality performance in remarkably compact instrument packages. Optical characteristics of two solar spectrographs based on this concept are described: SUMI, proposed as a sounding rocket experiment, and NEXUS, proposed for the Solar Dynamics Observatory mission.

  10. VizieR Online Data Catalog: weak G-band stars abundances (Palacios+, 2016)

    NASA Astrophysics Data System (ADS)

    Palacios, A.; Jasniewicz, G.; Masseron, T.; Thevenin, F.; Itam-Pasquet, J.; Parthasarathy, M.

    2016-05-01

    Seventeen southern wGb stars were observed at La Silla, ESO Chile, with the high-efficiency Fiber-fed Extended Range Optical Spectrograph FEROS spectrograph mounted on the 2.2m telescope. FEROS is a bench-mounted, thermally controlled, prism-cross-dispersed echelle spectrograph, providing, in a single spectrogram spread over 39 orders, almost complete spectral coverage from ~350 to ~920nm at a resolution of 48000. The FEROS observations were carried out during an observing run between May 10 and 13, 2012. All these spectra were flat-fielded and calibrated by means of ThArNe exposures using standard processing tools available at ESO. In addition, two northern wGb stars, HD 18474 and HD 166208, were observed in service mode at the Observatoire du Pic du Midi, France, with the NARVAL spectrograph mounted on the Bernard Lyot 2.0m telescope. The NARVAL instrument consists of a bench-mounted cross-dispersed echelle spectrograph, fibre-fed from a Cassegrain-mounted polarimeter unit. It was used in its non-polarimetric mode; it provided almost complete spectral coverage from ~375 to ~1050nm at a resolution of 75000 in a single spectrogram spread over 40 orders. (6 data files).

  11. System selects framing rate for spectrograph camera

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Circuit using zero-order light is reflected to a photomultiplier in the incoming radiation of a spectrograph monitor to provide an error signal which controls the advancing and driving rate of the film through the camera.

  12. MEGARA: the new multi-object and integral field spectrograph for GTC

    NASA Astrophysics Data System (ADS)

    Carrasco, E.; Páez, G.; Izazaga-Pére, R.; Gil de Paz, A.; Gallego, J.; Iglesias-Páramo, J.

    2017-07-01

    MEGARA is an optical integral-field unit and multi-object spectrograph for the 10.4m Gran Telescopio Canarias. Both observational modes will provide identical spectral resolutions Rfwhm ˜ 6,000, 12,000 and 18,700. The spectrograph is a collimator-camera system. The unique characteristics of MEGARA in terms of throughput and versatility make this instrument the most efficient tool to date to analyze astrophysical objects at intermediate spectral resolutions. The instrument is currently at the telescope for on-sky commissioning. Here we describe the as-built main characteristics the instrument.

  13. Using a new, free spectrograph program to critically investigate acoustics

    NASA Astrophysics Data System (ADS)

    Ball, Edward; Ruiz, Michael J.

    2016-11-01

    We have developed an online spectrograph program with a bank of over 30 audio clips to visualise a variety of sounds. Our audio library includes everyday sounds such as speech, singing, musical instruments, birds, a baby, cat, dog, sirens, a jet, thunder, and screaming. We provide a link to a video of the sound sources superimposed with their respective spectrograms in real time. Readers can use our spectrograph program to view our library, open their own desktop audio files, and use the program in real time with a computer microphone.

  14. Building the Pipeline for Hubble Legacy Archive Grism data

    NASA Astrophysics Data System (ADS)

    Kümmel, M.; Albrecht, R.; Fosbury, R.; Freudling, W.; Haase, J.; Hook, R. N.; Kuntschner, H.; Lombardi, M.; Micol, A.; Rosa, M.; Stoehr, F.; Walsh, J. R.

    2008-10-01

    The Pipeline for Hubble Legacy Archive Grism data (PHLAG) is currently being developed as an end-to-end pipeline for the Hubble Legacy Archive (HLA). The inputs to PHLAG are slitless spectroscopic HST data with only the basic calibrations from standard HST pipelines applied; the outputs are fully calibrated, Virtuall Observatory-compatible spectra, which will be made available through a static HLA-archive. We give an overview of the various aspects of PHLAG. The pipeline consists of several subcomponents -- data preparation, data retrieval, image combination, object detection, spectral extraction using the aXe software, quality control -- which is discussed in detail. As a pilot project, PHLAG is currently being applied to NICMOS G141 grism data. Examples of G141 spectra reduced with PHLAG are shown.

  15. Artist Concept of MAVEN Imaging Ultraviolet Spectrograph at Work

    NASA Image and Video Library

    2014-11-07

    This artist concept depicts the Imaging Ultraviolet Spectrograph IUVS on NASA MAVEN spacecraft scanning the upper atmosphere of Mars. IUVS uses limb scans to map the chemical makeup and vertical structure across Mars upper atmosphere.

  16. Vacuum Predisperser For A Large Plane-Grating Spectrograph

    NASA Astrophysics Data System (ADS)

    Engleman, R.; Palmer, B. A.; Steinhaus, D. W.

    1980-11-01

    A plane grating predisperser has been constructed which acts as an "order-sorter" for a large plane-grating spectrograph. This combination can photograph relatively wide regions of spectra in a single exposure with no loss of resolution.

  17. The micro-mirror technology applied to astronomy: ANIS adaptive-slit near Infrared spectrograph

    NASA Astrophysics Data System (ADS)

    Burgarella, Denis; Buat, Veronique; Bely, Pierre; Grange, Robert

    2018-04-01

    This paper, "The micro-mirror technology applied to astronomy: ANIS adaptive-slit near Infrared spectrograph," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.

  18. Design, development, and performance of the fibres of MOONS

    NASA Astrophysics Data System (ADS)

    Guinouard, Isabelle; Avila, Gerardo; Lee, David; Amans, Jean-Philippe; Rees, Phil; Taylor, William; Oliva, Ernesto

    2016-07-01

    The Multi-Object Optical and Near-infrared Spectrograph (MOONS) will exploit the full 500 square arcmin field of view offered by the Nasmyth focus of the Very Large Telescope and will be equipped with two identical triple arm cryogenic spectrographs covering the wavelength range 0.64μm-1.8μm, with a multiplex capability of over 1000 fibres. Each spectrograph will produce spectra for 500 targets simultaneously, each with its own dedicated sky fibre for optimal sky subtraction. The system will have both a medium resolution (R 4000-6000) mode and a high resolution (R 20000) mode. The fibres are used to pick off each sub field of 1" and are used to transport the light from the instrument focal plane to the two spectrographs. Each fibre has a microlens to focus the beam into the fibre at a relative fast focal ratio of F/3.65 to reduce the Focal Ratio Degradation (FRD).

  19. Progreso en la puesta en marcha del espectrógrafo BHROS

    NASA Astrophysics Data System (ADS)

    Díaz, R.; Levato, H.; Casagrande, A.; Piroddi, D.; Yornet, G.; Eikenberry, S.; Gonzalez, F.; Townsend, A.; Godoy, J.; Marun, A.; Gunella, F.; D'Ambra, A.; Warner, C.; Bosch, G.; Donoso, V.; Grosso, M.; Seifer, E.

    2017-10-01

    We report the advance on the re-assembly and commissioning of the BHROS spectrograph, its associated instrument laboratory and the planned system of telescopes. This is the largest astronomical spectrograph ever assembled in Argentina and the laboratory is also being used for other instrumentation needs of ICATE. We have installed a half meter telescope in order to test the spectrograph with on-sky sources, and we plan to install a network of telescopes feeding it via a multiple optical fiber system. In these first tests we have obtained spectra of the Sun (R100000) and Jupiter and Achernar (R40000). In 2017-2018 we plan to install and test a network of five small telescopes feeding the spectrograph with the collecting area equivalent to that of a one meter telescope, with a cost 10-25 times less in acquisition, transport, installation and operation respect to a conventional monolithic telescope.

  20. The Diffuse Interstellar Cloud Experiment: a high-resolution far-ultraviolet spectrograph.

    PubMed

    Schindhelm, Eric; Beasley, Matthew; Burgh, Eric B; Green, James C

    2012-03-01

    We have designed, assembled, and launched a sounding rocket payload to perform high-resolution far-ultraviolet spectroscopy. The instrument is functionally a Cassegrain telescope followed by a modified Rowland spectrograph. The spectrograph was designed to achieve a resolving power (R=λ/δλ) of 60,000 in a compact package by adding a magnifying secondary optic. This is enabled by using a holographically ruled grating to minimize aberrations induced by the second optic. We designed the instrument to observe two stars on opposing sides of a nearby hot/cold gas interface. Obtaining spectra of the O VI doublet in absorption toward these stars can provide new insight into the processes governing hot gas in the local interstellar medium. Here we present the optical design and alignment of the telescope and spectrograph, as well as flight results. © 2012 Optical Society of America

  1. Immersion echelle spectrograph

    DOEpatents

    Stevens, Charles G.; Thomas, Norman L.

    2000-01-01

    A small spectrograph containing no moving components and capable of providing high resolution spectra of the mid-infrared region from 2 microns to 4 microns in wavelength. The resolving power of the spectrograph exceeds 20,000 throughout this region and at an optical throughput of about 10.sup.-5 cm.sup.2 sr. The spectrograph incorporates a silicon immersion echelle grating operating in high spectral order combined with a first order transmission grating in a cross-dispersing configuration to provide a two-dimensional (2-D) spectral format that is focused onto a two-dimensional infrared detector array. The spectrometer incorporates a common collimating and condensing lens assembly in a near aberration-free axially symmetric design. The spectrometer has wide use potential in addition to general research, such as monitoring atmospheric constituents for air quality, climate change, global warming, as well as monitoring exhaust fumes for smog sources or exhaust plumes for evidence of illicit drug manufacture.

  2. Performance of a laser frequency comb calibration system with a high-resolution solar echelle spectrograph

    NASA Astrophysics Data System (ADS)

    Doerr, H.-P.; Kentischer, T. J.; Steinmetz, T.; Probst, R. A.; Franz, M.; Holzwarth, R.; Udem, Th.; Hänsch, T. W.; Schmidt, W.

    2012-09-01

    Laser frequency combs (LFC) provide a direct link between the radio frequency (RF) and the optical frequency regime. The comb-like spectrum of an LFC is formed by exact equidistant laser modes, whose absolute optical frequencies are controlled by RF-references such as atomic clocks or GPS receivers. While nowadays LFCs are routinely used in metrological and spectroscopic fields, their application in astronomy was delayed until recently when systems became available with a mode spacing and wavelength coverage suitable for calibration of astronomical spectrographs. We developed a LFC based calibration system for the high-resolution echelle spectrograph at the German Vacuum Tower Telescope (VTT), located at the Teide observatory, Tenerife, Canary Islands. To characterize the calibration performance of the instrument, we use an all-fiber setup where sunlight and calibration light are fed to the spectrograph by the same single-mode fiber, eliminating systematic effects related to variable grating illumination.

  3. Instruments at the Lowell Observatory Discovery Channel Telescope (DCT)

    NASA Astrophysics Data System (ADS)

    Jacoby, George H.; Bida, Thomas A.; Fischer, Debra; Horch, Elliott; Kutyrev, Alexander; Mace, Gregory N.; Massey, Philip; Roe, Henry G.; Prato, Lisa A.

    2017-01-01

    The Lowell Observatory Discovery Channel Telescope (DCT) has been in full science operation for 2 years (2015 and 2016). Five instruments have been commissioned during that period, and two additional instruments are planned for 2017. These include:+ Large Monolithic Imager (LMI) - a CCD imager (12.6 arcmin FoV)+ DeVeny - a general purpose optical spectrograph (2 arcmin slit length, 10 grating choices)+ NIHTS - a low resolution (R=160) YJHK spectrograph (1.3 arcmin slit)+ DSSI - a two-channel optical speckle imager (5 arcsec FoV)+ IGRINS - a high resolution (45,000) HK spectrograph, on loan from the University of Texas.In the upcoming year, instruments will be delivered from the University of Maryland (RIMAS - a YJHK imager/spectrograph) and from Yale University (EXPRES - a very high resolution stabilized optical echelle for PRV).Each of these instruments will be described, along with their primary science goals.

  4. Design and early performance of IGRINS (Immersion Grating Infrared Spectrometer)

    NASA Astrophysics Data System (ADS)

    Park, Chan; Jaffe, Daniel T.; Yuk, In-Soo; Chun, Moo-Young; Pak, Soojong; Kim, Kang-Min; Pavel, Michael; Lee, Hanshin; Oh, Heeyoung; Jeong, Ueejeong; Sim, Chae Kyung; Lee, Hye-In; Nguyen Le, Huynh Anh; Strubhar, Joseph; Gully-Santiago, Michael; Oh, Jae Sok; Cha, Sang-Mok; Moon, Bongkon; Park, Kwijong; Brooks, Cynthia; Ko, Kyeongyeon; Han, Jeong-Yeol; Nah, Jakyoung; Hill, Peter C.; Lee, Sungho; Barnes, Stuart; Yu, Young Sam; Kaplan, Kyle; Mace, Gregory; Kim, Hwihyun; Lee, Jae-Joon; Hwang, Narae; Park, Byeong-Gon

    2014-07-01

    The Immersion Grating Infrared Spectrometer (IGRINS) is a compact high-resolution near-infrared cross-dispersed spectrograph whose primary disperser is a silicon immersion grating. IGRINS covers the entire portion of the wavelength range between 1.45 and 2.45μm that is accessible from the ground and does so in a single exposure with a resolving power of 40,000. Individual volume phase holographic (VPH) gratings serve as cross-dispersing elements for separate spectrograph arms covering the H and K bands. On the 2.7m Harlan J. Smith telescope at the McDonald Observatory, the slit size is 1ʺ x 15ʺ and the plate scale is 0.27ʺ pixel. The spectrograph employs two 2048 x 2048 pixel Teledyne Scientific and Imaging HAWAII-2RG detectors with SIDECAR ASIC cryogenic controllers. The instrument includes four subsystems; a calibration unit, an input relay optics module, a slit-viewing camera, and nearly identical H and K spectrograph modules. The use of a silicon immersion grating and a compact white pupil design allows the spectrograph collimated beam size to be only 25mm, which permits a moderately sized (0.96m x 0.6m x 0.38m) rectangular cryostat to contain the entire spectrograph. The fabrication and assembly of the optical and mechanical components were completed in 2013. We describe the major design characteristics of the instrument including the system requirements and the technical strategy to meet them. We also present early performance test results obtained from the commissioning runs at the McDonald Observatory.

  5. MEGARA spectrograph optics

    NASA Astrophysics Data System (ADS)

    Carrasco, E.; Sánchez-Blanco, E.; García-Vargas, M. L.; Gil de Paz, A.; Páez, G.; Gallego, J.; Sánchez, F. M.; Vílchez, J. M.

    2012-09-01

    MEGARA is the next optical Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) for Gran Telescopio Canarias. The instrument offers two IFUs plus a Multi-Object Spectroscopy (MOS) mode: a large compact bundle covering 12.5 arcsec x 11.3 arcsec on sky with 100 μm fiber-core; a small compact bundle, of 8.5 arcsec x 6.7 arcsec with 70 μm fiber-core and a fiber MOS positioner that allows to place up to 100 mini-bundles, 7 fibers each, with 100 μm fiber-core, within a 3.5 arcmin x 3.5 arcmin field of view, around the two IFUs. The fibers, organized in bundles, end in the pseudo-slit plate, which will be placed at the entrance focal plane of the MEGARA spectrograph. The large IFU and MOS modes will provide intermediate to high spectral resolutions, R=6800-17000. The small IFU mode will provide R=8000-20000. All these resolutions are possible thanks to a spectrograph design based in the used of volume phase holographic gratings in combination with prisms to keep fixed the collimator and camera angle. The MEGARA optics is composed by a total of 53 large optical elements per spectrograph: the field lens, the collimator and the camera lenses plus the complete set of pupil elements including holograms, windows and prisms. INAOE, a partner of the GTC and a partner of MEGARA consortium, is responsible of the optics manufacturing and tests. INAOE will carry out this project working in an alliance with CIO. This paper summarizes the status of MEGARA spectrograph optics at the Preliminary Design Review, held on March 2012.

  6. Hubble Space Telescope, Faint Object Spectrograph

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This drawing illustrates the Hubble Space Telescope's (HST's), Faint Object Spectrograph (FOS). The HST's two spectrographs, the Goddard High-Resolution Spectrograph and the FOS, can detect a broader range of wavelengths than is possible from the Earth because there is no atmosphere to absorb certain wavelengths. Scientists can determine the chemical composition, temperature, pressure, and turbulence of the stellar atmosphere producing the light, all from spectral data. The FOC can detect detail in very faint objects, such as those at great distances, and light ranging from ultraviolet to red spectral bands. Both spectrographs operate in essentially the same way. The incoming light passes through a small entrance aperture, then passes through filters and diffraction gratings, that work like prisms. The filter or grating used determines what range of wavelength will be examined and in what detail. Then the spectrograph detectors record the strength of each wavelength band and sends it back to Earth. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  7. The Spartan-281 Far Ultraviolet Imaging Spectrograph

    NASA Technical Reports Server (NTRS)

    Carruthers, George R.; Heckathorn, Harry M.; Dufour, Reginald J.; Opal, Chet B.; Raymond, John C.

    1988-01-01

    The U.S. Naval Research Laboratory's Far Ultraviolet Imaging Spectrograph (FUVIS), currently under development for flight as a Spartan shuttle payload, is designed to perform spectroscopy of diffuse sources in the FUV with very high sensitivity and moderate spatial and spectral resolution. Diffuse nebulae, the general galactic background radiation, and artificially induced radiation associated with the Space Shuttle vehicle are sources of particular interest. The FUVIS instrument will cover the wavelength range of 970-2000 A with selectable resolutions of 5 and 30 A. It is a slit imaging spectrograph having 3 arcmin spatial resolution along its 2.7 deg long slit.

  8. A Search for Rarely Seen Ultraviolet Coma Emissions and New Species Upper Limits at Comet 67P/Churyumov-Gerasimenko Using the Rosetta-Alice Ultraviolet Spectrograph

    NASA Astrophysics Data System (ADS)

    Noonan, J.; Stern, S. A.; Parker, J. W.; Keeney, B. A.; Weaver, H. A., Jr.; Feldman, P.; Steffl, A.; Feaga, L. M.; Bertaux, J. L.

    2017-12-01

    The Alice far/extreme-UV spectrograph aboard Rosetta is one of three US instruments provided by NASA; it is the first UV spectrograph to reach any comet. Numerous scientific results have been obtained regarding 67P/Churyumov-Gerasimenko by this instrument. Here we summarize two new sets of results from a search for rarely appearing atomic and molecular spectral emission features and a grand sum spectrum allowing us to place new atomic and molecular neutral and ionized species upper limits in the comet's coma.

  9. Performance testing of an off-plane reflection grating and silicon pore optic spectrograph at PANTER

    NASA Astrophysics Data System (ADS)

    Marlowe, Hannah; McEntaffer, Randall L.; Allured, Ryan; DeRoo, Casey T.; Donovan, Benjamin D.; Miles, Drew M.; Tutt, James H.; Burwitz, Vadim; Menz, Benedikt; Hartner, Gisela D.; Smith, Randall K.; Cheimets, Peter; Hertz, Edward; Bookbinder, Jay A.; Günther, Ramses; Yanson, Alex; Vacanti, Giuseppe; Ackermann, Marcelo

    2015-10-01

    An x-ray spectrograph consisting of aligned, radially ruled off-plane reflection gratings and silicon pore optics (SPO) was tested at the Max Planck Institute for Extraterrestrial Physics PANTER x-ray test facility. SPO is a test module for the proposed Arcus mission, which will also feature aligned off-plane reflection gratings. This test is the first time two off-plane gratings were actively aligned to each other and with an SPO to produce an overlapped spectrum. We report the performance of the complete spectrograph utilizing the aligned gratings module and plans for future development.

  10. Lhires III High Resolution Spectrograph

    NASA Astrophysics Data System (ADS)

    Thizy, O.

    2007-05-01

    By spreading the light from celestial objects by wavelength, spectroscopists are like detectives looking for clues and identifying guilty phenomena that shape their spectra. We will review some basic principles in spectroscopy that will help, at our amateur level, to understand how spectra are shaped. We will review the Lhires III highresolution spectrograph Mark Three that was designed to reveal line profile details and subtle changes. Then, we will do an overview of educational and scientific projects that are conducted with the Lhires III and detail the COROT Be star program and the BeSS database for which the spectrograph is a key instrument.

  11. A soft x-ray octadecyl hydrogen maleate crystal spectrograph

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, P.Z.; Fill, E.E.; Tietang, G.

    1996-03-01

    A crystal spectrograph is described which can be used to investigate laser-produced plasmas in the region of soft x rays at wavelengths of up to 60 A. The spectrograph uses an octadecyl hydrogen maleate crystal with a 2{ital d} of 63.5 A, combined with a very thin carbon filter (3000 A thick). As examples of its application, soft x-ray spectra in the range of 43{endash}51 A from laser plasmas of Si and Cu are presented. A spectral resolution of {lambda}/{Delta}{lambda}=1100 is deduced from the spectra. {copyright} {ital 1996 American Institute of Physics.}

  12. Collimating slicer for optical integral field spectroscopy

    NASA Astrophysics Data System (ADS)

    Laurent, Florence; Hénault, François

    2016-07-01

    Integral Field Spectroscopy (IFS) is a technique that gives simultaneously the spectrum of each spatial sampling element of a given field. It is a powerful tool which rearranges the data cube represented by two spatial dimensions defining the field and the spectral decomposition (x, y, λ) in a detector plane. In IFS, the "spatial" unit reorganizes the field, the "spectral" unit is being composed of a classical spectrograph. For the spatial unit, three main techniques - microlens array, microlens array associated with fibres and image slicer - are used in astronomical instrumentations. The development of a Collimating Slicer is to propose a new type of optical integral field spectroscopy which should be more compact. The main idea is to combine the image slicer with the collimator of the spectrograph mixing the "spatial" and "spectral" units. The traditional combination of slicer, pupil and slit elements and spectrograph collimator is replaced by a new one composed of a slicer and spectrograph collimator only. After testing few configurations, this new system looks very promising for low resolution spectrographs. In this paper, the state of art of integral field spectroscopy using image slicers will be described. The new system based onto the development of a Collimating Slicer for optical integral field spectroscopy will be depicted. First system analysis results and future improvements will be discussed.

  13. Development of integrated photonic-dicers for reformatting the point-spread-function of a telescope

    NASA Astrophysics Data System (ADS)

    MacLachlan, David G.; Harris, Robert; Choudhury, Debaditya; Arriola, Alexander; Brown, Graeme; Allington-Smith, Jeremy; Thomson, Robert R.

    2014-07-01

    Spectroscopy is a technique of paramount importance to astronomy, as it enables the chemical composition, distances and velocities of celestial objects to be determined. As the diameter of a ground-based telescope increases, the pointspread- function (PSF) becomes increasingly degraded due to atmospheric seeing. A degraded PSF requires a larger spectrograph slit-width for efficient coupling and current spectrographs for large telescopes are already on the metre scale. This presents numerous issues in terms of manufacturability, cost and stability. As proposed in 2010 by Bland-Hawthorn et al, one approach which may help to improve spectrograph stability is a guided wave transition, known as a "photonic-lantern". These devices enable the low-loss reformatting of a multimode PSF into a diffraction-limited source (in one direction). This pseudo-slit can then be used as the input to a traditional spectrograph operating at the diffraction limit. In essence, this approach may enable the use of diffractionlimited spectrographs on large telescopes without an unacceptable reduction in throughput. We have recently demonstrated that ultrafast laser inscription can be used to realize "integrated" photoniclanterns, by directly writing three-dimensional optical waveguide structures inside a glass substrate. This paper presents our work on developing ultrafast laser inscribed devices capable of reformatting a multimode telescope PSF into a diffraction-limited slit.

  14. Chemical abundances of fast-rotating massive stars. I. Description of the methods and individual results

    NASA Astrophysics Data System (ADS)

    Cazorla, Constantin; Morel, Thierry; Nazé, Yaël; Rauw, Gregor; Semaan, Thierry; Daflon, Simone; Oey, M. S.

    2017-07-01

    Aims: Recent observations have challenged our understanding of rotational mixing in massive stars by revealing a population of fast-rotating objects with apparently normal surface nitrogen abundances. However, several questions have arisen because of a number of issues, which have rendered a reinvestigation necessary; these issues include the presence of numerous upper limits for the nitrogen abundance, unknown multiplicity status, and a mix of stars with different physical properties, such as their mass and evolutionary state, which are known to control the amount of rotational mixing. Methods: We have carefully selected a large sample of bright, fast-rotating early-type stars of our Galaxy (40 objects with spectral types between B0.5 and O4). Their high-quality, high-resolution optical spectra were then analysed with the stellar atmosphere modelling codes DETAIL/SURFACE or CMFGEN, depending on the temperature of the target. Several internal and external checks were performed to validate our methods; notably, we compared our results with literature data for some well-known objects, studied the effect of gravity darkening, or confronted the results provided by the two codes for stars amenable to both analyses. Furthermore, we studied the radial velocities of the stars to assess their binarity. Results: This first part of our study presents our methods and provides the derived stellar parameters, He, CNO abundances, and the multiplicity status of every star of the sample. It is the first time that He and CNO abundances of such a large number of Galactic massive fast rotators are determined in a homogeneous way. Based on observations obtained with the Heidelberg Extended Range Optical Spectrograph (HEROS) at the Telescopio Internacional de Guanajuato (TIGRE) with the SOPHIE échelle spectrograph at the Haute-Provence Observatory (OHP; Institut Pytheas; CNRS, France), and with the Magellan Inamori Kyocera Echelle (MIKE) spectrograph at the Magellan II Clay telescope. Based also on archival data from the Galactic O-Star Spectroscopic Survey (GOSSS), the Anglo-Australian Telescope (AAT) equipped with the University College London Echelle Spectrograph (UCLES), the ESO/La Silla Observatory with the Fiber-fed Extended Range Optical Spectrograph (FEROS; programmes 70.D-0110, 075.D-0061, 076.C-0431, 081.D-2008, 083.D-0589, 086.D-0997, 087.D-0946, 089.D-0189, 089.D-0975, 179.C-0197, and the High Accuracy Radial velocity Planet Searcher (HARPS; programme 60.A-9036), the Pic du Midi Observatory equipped with the NARVAL spectropolarimeter, the San Pedro Mártir (SPM) observatory with the Echelle SPectrograph for Rocky Exoplanet and Stable Spectroscopic Observations (ESPRESSO), the OHP with the AURELIE and ELODIE échelle spectrographs, the Nordic Optical Telescope (NOT) with the FIbre-fed Echelle Spectrograph (FIES), the Canada-France-Hawaii Telescope (CFHT), with the Echelle SpectroPolarimetric Device for the Observation of Stars (ESPaDOnS) spectrograph, the Leonhard Euler Telescope with the CORALIE spectrograph.Table F.2 is also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/603/A56

  15. Combining laser frequency combs and iodine cell calibration techniques for Doppler detection of exoplanets

    NASA Astrophysics Data System (ADS)

    Cahoy, Kerri; Fischer, Debra; Spronck, Julien; DeMille, David

    2010-07-01

    Exoplanets can be detected from a time series of stellar spectra by looking for small, periodic shifts in the absorption features that are consistent with Doppler shifts caused by the presence of an exoplanet, or multiple exoplanets, in the system. While hundreds of large exoplanets have already been discovered with the Doppler technique (also called radial velocity), our goal is to improve the measurement precision so that many Earth-like planets can be detected. The smaller mass and longer period of true Earth analogues require the ability to detect a reflex velocity of ~10 cm/s over long time periods. Currently, typical astronomical spectrographs calibrate using either Iodine absorptive cells or Thorium Argon lamps and achieve ~10 m/s precision, with the most stable spectrographs pushing down to ~2 m/s. High velocity precision is currently achieved at HARPS by controlling the thermal and pressure environment of the spectrograph. These environmental controls increase the cost of the spectrograph, and it is not feasible to simply retrofit existing spectrometers. We propose a fiber-fed high precision spectrograph design that combines the existing ~5000-6000 A Iodine calibration system with a high-precision Laser Frequency Comb (LFC) system from ~6000-7000 A that just meets the redward side of the Iodine lines. The scientific motivation for such a system includes: a 1000 A span in the red is currently achievable with LFC systems, combining the two calibration methods increases the wavelength range by a factor of two, and moving redward decreases the "noise" from starspots. The proposed LFC system design employs a fiber laser, tunable serial Fabry-Perot cavity filters to match the resolution of the LFC system to that of standard astronomical spectrographs, and terminal ultrasonic vibration of the multimode fiber for a stable point spread function.

  16. The optical design of solar spectrograph

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Pan, Wen-Qiang; Meng, Xiang-Yue; Lv, Xian-Kui; Feng, Jie; Zhu, Jia-Wei; Zhang, Xiao-Xiao; Li, Lei; Yang, Wei-Ping

    2017-08-01

    At the beginning of this paper, we simply describe the theories of spectrograph and the operating principle of grating. Based on the Spectrometer theory and optical theory we design a solar spectrograph by analyzing and calculating. And the working waveband of this solar spectrograph is between 510nm and 540nm. Besides, according to the design data, we ensure the blaze level of grating and the focal length of collimate. Due to the presence of the collimate in the optical structure, astigmatism exists in the system. For this reason, we add a cylindrical lens to the structure to correct. The optical system is characterized by using white-pupil design and folding light path to make the whole system simple. In the end, according to the calculated design parameters, we use the Zemax software for simulation, then the result is RMS only has 4μm at the 520nm. It's worth nothing that the resolution merely near the reference wavelength (520nm)meets the design requirements.

  17. The Ultraviolet Spectrograph on NASA's Juno Mission

    NASA Astrophysics Data System (ADS)

    Gladstone, G. Randall; Persyn, Steven C.; Eterno, John S.; Walther, Brandon C.; Slater, David C.; Davis, Michael W.; Versteeg, Maarten H.; Persson, Kristian B.; Young, Michael K.; Dirks, Gregory J.; Sawka, Anthony O.; Tumlinson, Jessica; Sykes, Henry; Beshears, John; Rhoad, Cherie L.; Cravens, James P.; Winters, Gregory S.; Klar, Robert A.; Lockhart, Walter; Piepgrass, Benjamin M.; Greathouse, Thomas K.; Trantham, Bradley J.; Wilcox, Philip M.; Jackson, Matthew W.; Siegmund, Oswald H. W.; Vallerga, John V.; Raffanti, Rick; Martin, Adrian; Gérard, J.-C.; Grodent, Denis C.; Bonfond, Bertrand; Marquet, Benoit; Denis, François

    2017-11-01

    The ultraviolet spectrograph instrument on the Juno mission (Juno-UVS) is a long-slit imaging spectrograph designed to observe and characterize Jupiter's far-ultraviolet (FUV) auroral emissions. These observations will be coordinated and correlated with those from Juno's other remote sensing instruments and used to place in situ measurements made by Juno's particles and fields instruments into a global context, relating the local data with events occurring in more distant regions of Jupiter's magnetosphere. Juno-UVS is based on a series of imaging FUV spectrographs currently in flight—the two Alice instruments on the Rosetta and New Horizons missions, and the Lyman Alpha Mapping Project on the Lunar Reconnaissance Orbiter mission. However, Juno-UVS has several important modifications, including (1) a scan mirror (for targeting specific auroral features), (2) extensive shielding (for mitigation of electronics and data quality degradation by energetic particles), and (3) a cross delay line microchannel plate detector (for both faster photon counting and improved spatial resolution). This paper describes the science objectives, design, and initial performance of the Juno-UVS.

  18. VizieR Online Data Catalog: Radial velocity follow-up of the HD 3167 system (Gandolfi+, 2017)

    NASA Astrophysics Data System (ADS)

    Gandolfi, D.; Barragan, O.; Hatzes, A. P.; Fridlund, M.; Fossati, L.; Donati, P.; Johnson, M. C.; Nowak, G.; Prieto-Arranz, J.; Albrecht, S.; Dai, F.; Deeg, H.; Endl, M.; Grziwa, S.; Hjorth, M.; Korth, J.; Nespral, D.; Saario, J.; Smith, A. M. S.; Antoniciello, G.; Alarcon, J.; Bedell, M.; Blay, P.; Brems, S. S.; Cabrera, J.; Csizmadia, S.; Cusano, F.; Cochran, W. D.; Eigmuller, P.; Erikson, A.; Gonzalez Hernandez, J. I.; Guenther, E. W.; Hirano, T.; Suarez Mascareno, A.; Narita, N.; Palle, E.; Parviainen, H.; Patzold, M.; Persson, C. M.; Rauer, H.; Saviane, I.; Schmidtobreick, L.; van Eylen, V.; Winn, J. N.; Zakhozhay, O. V.

    2018-06-01

    We used the FIbre-fed Echelle Spectrograph (FIES; Frandsen & Lindberg 1999anot.conf...71F; Telting et al. 2014AN....335...41T) mounted at the 2.56 m Nordic Optical Telescope (NOT) of Roque de los Muchachos Observatory (La Palma, Spain) to acquire 37 high-resolution spectra (R~67000) in 12 different nights between July and September 2016. We also acquired 50 spectra with the HARPS spectrograph (R~115000; Mayor et al. 2003Msngr.114...20M) and 32 spectra with the HARPS-N spectrograph (R~115000; Cosentino et al. 2012SPIE.8446E..1VC). HARPS and HARPS-N are fiber-fed cross-dispersed echelle spectrographs specifically designed to achieve very high-precision long-term RV stabilities (<1 m/s). They are mounted at the ESO-3.6 m telescope of La Silla observatory (Chile) and at the 3.58 m Telescopio Nazionale Galileo (TNG) of Roque de los Muchachos Observatory (La Palma, Spain). (1 data file).

  19. Integration and testing of the DESI spectrograph prototype

    NASA Astrophysics Data System (ADS)

    Perruchot, S.; Secroun, A.; Blanc, P.-E.; Ronayette, S.; Régal, X.; Castagnoli, G.; Le Van Suu, A.; Ealet, A.; Cuby, J.-G.; Elliot, A.; Honscheid, K.; Jelinsky, P.

    2016-08-01

    The Dark Energy Spectroscopic Instrument (DESI) is under construction to measure the expansion history of the Universe using the Baryon Acoustic Oscillation probe. The KPNO Mayall telescope will deliver light to 5000 fibers feeding ten broadband spectrographs. A consortium of Aix-Marseille University (AMU) and CNRS laboratories (LAM, OHP and CPPM) together with the WINLIGHT Systems company (Pertuis-France) has committed to integrate and validate the performance requirements of the full spectrographs, equipped with their cryostats, shutters and other mechanisms. An AIT plan has been defined and dedicated test equipment has been designed and implemented. This equipment simulates the fiber input illumination from the telescope, and offers a variety of continuum and line sources. Flux levels are adjustable and can illuminate one or several fibers along the test slit. It is fully remotely controlled and interfaced to the Instrument Control System. Specific analysis tools have also been developed to verify and monitor the performance and stability of the spectrographs. All these developments are described in details.

  20. VizieR Online Data Catalog: SPT-SZ survey galaxy clusters optical spectroscopy (Ruel+, 2014)

    NASA Astrophysics Data System (ADS)

    Ruel, J.; Bazin, G.; Bayliss, M.; Brodwin, M.; Foley, R. J.; Stalder, B.; Aird, K. A.; Armstrong, R.; Ashby, M. L. N.; Bautz, M.; Benson, B. A.; Bleem, L. E.; Bocquet, S.; Carlstrom, J. E.; Chang, C. L.; Chapman, S. C.; Cho, H. M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Desai, S.; Dobbs, M. A.; Dudley, J. P.; Forman, W. R.; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; Halverson, N. W.; Harrington, N. L.; High, F. W.; Holder, G. P.; Holzapfel, W. L.; Hrubes, J. D.; Jones, C.; Joy, M.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; Liu, J.; Lueker, M.; Luong-van, D.; Mantz, A.; Marrone, D. P.; McDonald, M.; McMahon, J. J.; Mehl, J.; Meyer, S. S.; Mocanu, L.; Mohr, J. J.; Montroy, T. E.; Murray, S. S.; Natoli, T.; Nurgaliev, D.; Padin, S.; Plagge, T.; Pryke, C.; Reichardt, C. L.; Rest, A.; Ruhl, J. E.; Saliwanchik, B. R.; Saro, A.; Sayre, J. T.; Schaffer, K. K.; Shaw, L.; Shirokoff, E.; Song, J.; Suhada, R.; Spieler, H. G.; Stanford, S. A.; Staniszewski, Z.; Starsk, A. A.; Story, K.; Stubbs, C. W.; van Engelen, A.; Vanderlinde, K.; Vieira, J. D.; Vikhlinin, A.; Williamson, R.; Zahn, O.; Zenteno, A.

    2017-04-01

    Most of the galaxy clusters for which we report spectroscopic observations were published as SPT cluster detections (and new discoveries) in Vanderlinde et al. (2010ApJ...722.1180V), Williamson et al. (2011ApJ...738..139W), and Reichardt et al. (2013, J/ApJ/763/127); we refer the reader to those publications for details of the SPT observations. The spectroscopic observations presented in this work are the first of our ongoing follow-up program. The data were taken from 2008 to 2012 using the Gemini Multi Object Spectrograph (GMOS; Hook et al. 2004PASP..116..425H) on Gemini South, the Focal Reducer and low dispersion Spectrograph (FORS2; Appenzeller et al. 1998Msngr..94....1A) on VLT Antu, the Inamori Magellan Areal Camera and Spectrograph (IMACS; Dressler et al. 2006SPIE.6269E..0FD) on Magellan Baade, and the Low Dispersion Survey Spectrograph (LDSS339; Allington-Smith et al. 1994PASP..106..983A) on Magellan Clay. (2 data files).

  1. VizieR Online Data Catalog: Very metal-poor stars in the Milky Way's halo (Carollo+, 2014)

    NASA Astrophysics Data System (ADS)

    Carollo, D.; Freeman, K.; Beers, T. C.; Placco, V. M.; Tumlinson, J.; Martell, S. L.

    2017-07-01

    The Aoki et al. (2013, J/AJ/145/13) sample comprises 137 stars observed at high spectral resolution (R~30000), in the course of four observing runs between 2008 March and October, using the High Dispersion Spectrograph (Noguchi et al. 2002PASJ...54..855N) at the Subaru Telescope. We also include 190 stars from the Yong et al. (2013, J/ApJ/762/26) sample - the 38 stars from their "program sample," and 152 stars in their literature compilation. High-resolution spectra (22000

  2. High resolution spectrograph. [for LST

    NASA Technical Reports Server (NTRS)

    Peacock, K.

    1975-01-01

    The high resolution spectrograph (HRS) is designed to be used with the Large Space Telescope (LST) for the study of spectra of point and extended targets in the spectral range 110 to 410 nm. It has spectral resolutions of 1,000; 30,000; and 100,000 and has a field of view as large as 10 arc sec. The spectral range and resolution are selectable using interchangeable optical components and an echelle spectrograph is used to display a cross dispersed spectrum on the photocathode of either of 2 SEC orthicon image tubes. Provisions are included for wavelength calibration, target identification and acquisition and thermal control. The system considerations of the instrument are described.

  3. The extreme ultraviolet spectrograph: A radial groove grating, sounding rocket-borne, astronomical instrument

    NASA Technical Reports Server (NTRS)

    Wilkinson, Erik; Green, James C.; Cash, Webster

    1993-01-01

    The design, calibration, and sounding rocket flight performance of a novel spectrograph suitable for moderate-resolution EUV spectroscopy are presented. The sounding rocket-borne instrument uses a radial groove grating to maintain a high system efficiency while controlling the aberrations induced when doing spectroscopy in a converging beam. The instrument has a resolution of approximately 2 A across the 200-330 A bandpass with an average effective area of 2 sq cm. The instrument, called the Extreme Ultraviolet Spectrograph, acquired the first EUV spectra in this wavelength region of the hot white dwarf G191-B2B and the late-type star Capella.

  4. FIEStool: Automated data reduction for FIber-fed Echelle Spectrograph (FIES)

    NASA Astrophysics Data System (ADS)

    Stempels, Eric; Telting, John

    2017-08-01

    FIEStool automatically reduces data obtained with the FIber-fed Echelle Spectrograph (FIES) at the Nordic Optical Telescope, a high-resolution spectrograph available on a stand-by basis, while also allowing the basic properties of the reduction to be controlled in real time by the user. It provides a Graphical User Interface and offers bias subtraction, flat-fielding, scattered-light subtraction, and specialized reduction tasks from the external packages IRAF (ascl:9911.002) and NumArray. The core of FIEStool is instrument-independent; the software, written in Python, could with minor modifications also be used for automatic reduction of data from other instruments.

  5. Performance testing of a novel off-plane reflection grating and silicon pore optic spectrograph at PANTER

    NASA Astrophysics Data System (ADS)

    Marlowe, Hannah; McEntaffer, Randall L.; Allured, Ryan; DeRoo, Casey; Miles, Drew M.; Donovan, Benjamin D.; Tutt, James H.; Burwitz, Vadim; Menz, Benedikt; Hartner, Gisela D.; Smith, Randall K.; Günther, Ramses; Yanson, Alex; Vacanti, Giuseppe; Ackermann, Marcelo

    2015-05-01

    An X-ray spectrograph consisting of aligned, radially ruled off-plane reflection gratings and silicon pore optics (SPO) was tested at the Max Planck Institute for extraterrestrial Physics PANTER X-ray test facility. The SPO is a test module for the proposed Arcus mission, which will also feature aligned off-plane reflection gratings. This test is the first time two off-plane gratings were actively aligned to each other and with a SPO to produce an overlapped spectrum. We report the performance of the complete spectrograph utilizing the aligned gratings module and plans for future development.

  6. PISCES: An Integral Field Spectrograph Technology Demonstration for the WFIRST Coronagraph

    NASA Technical Reports Server (NTRS)

    McElwain, Michael W.; Mandell, Avi M.; Gong, Qian; Llop-Sayson, Jorge; Brandt, Timothy; Chambers, Victor J.; Grammer, Bryan; Greeley, Bradford; Hilton, George; Perrin, Marshall D.; hide

    2016-01-01

    We present the design, integration, and test of the Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) integral field spectrograph (IFS). The PISCES design meets the science requirements for the Wide-Field Infra Red Survey Telescope (WFIRST) Coronagraph Instrument (CGI). PISCES was integrated and tested in the integral field spectroscopy laboratory at NASA Goddard. In June 2016, PISCES was delivered to the Jet Propulsion Laboratory (JPL) where it was integrated with the Shaped Pupil Coronagraph (SPC) High Contrast Imaging Testbed (HCIT). The SPC/PISCES configuration will demonstrate high contrast integral field spectroscopy as part of the WFIRST CGI technology development program.

  7. PISCES: an integral field spectrograph technology demonstration for the WFIRST coronagraph

    NASA Astrophysics Data System (ADS)

    McElwain, Michael W.; Mandell, Avi M.; Gong, Qian; Llop-Sayson, Jorge; Brandt, Timothy; Chambers, Victor J.; Grammer, Bryan; Greeley, Bradford; Hilton, George; Perrin, Marshall D.; Stapelfeldt, Karl R.; Demers, Richard; Tang, Hong; Cady, Eric

    2016-07-01

    We present the design, integration, and test of the Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) integral field spectrograph (IFS). The PISCES design meets the science requirements for the Wide-Field InfraRed Survey Telescope (WFIRST) Coronagraph Instrument (CGI). PISCES was integrated and tested in the integral field spectroscopy laboratory at NASA Goddard. In June 2016, PISCES was delivered to the Jet Propulsion Laboratory (JPL) where it was integrated with the Shaped Pupil Coronagraph (SPC) High Contrast Imaging Testbed (HCIT). The SPC/PISCES configuration will demonstrate high contrast integral field spectroscopy as part of the WFIRST CGI technology development program.

  8. TAIPAN fibre feed and spectrograph: engineering overview

    NASA Astrophysics Data System (ADS)

    Staszak, Nicholas F.; Lawrence, Jon; Zhelem, Ross; Content, Robert; Churilov, Vladimir; Case, Scott; Brown, Rebecca; Hopkins, Andrew M.; Kuehn, Kyler; Pai, Naveen; Klauser, Urs; Nichani, Vijay; Waller, Lew

    2016-07-01

    TAIPAN will conduct a stellar and galaxy survey of the Southern sky. The TAIPAN positioner is being developed as a prototype for the MANIFEST instrument on the GMT. The TAIPAN Spectrograph is an AAO designed all-refractive 2-arm design that delivers a spectral resolution of R>2000 over the wavelength range 370-870 nm. It is fed by a custom fibre cable from the TAIPAN Starbugs positioner. The design for TAIPAN incorporates 150 optical fibres (with an upgrade path to 300). Presented is an engineering overview of the UKST Fibre Cable design used to support Starbugs, the custom slit design, and the overall design and build plan for the TAIPAN Spectrograph.

  9. SAMI: Sydney-AAO Multi-object Integral field spectrograph pipeline

    NASA Astrophysics Data System (ADS)

    Allen, J. T.; Green, A. W.; Fogarty, L. M. R.; Sharp, R.; Nielsen, J.; Konstantopoulos, I.; Taylor, E. N.; Scott, N.; Cortese, L.; Richards, S. N.; Croom, S.; Owers, M. S.; Bauer, A. E.; Sweet, S. M.; Bryant, J. J.

    2014-07-01

    The SAMI (Sydney-AAO Multi-object Integral field spectrograph) pipeline reduces data from the Sydney-AAO Multi-object Integral field spectrograph (SAMI) for the SAMI Galaxy Survey. The python code organizes SAMI data and, along with the AAO 2dfdr package, carries out all steps in the data reduction, from raw data to fully calibrated datacubes. The principal steps are: data management, use of 2dfdr to produce row-stacked spectra, flux calibration, correction for telluric absorption, removal of atmospheric dispersion, alignment of dithered exposures, and drizzling onto a regular output grid. Variance and covariance information is tracked throughout the pipeline. Some quality control routines are also included.

  10. Achieving the resolution of the spectrograph of the 6m large Azimuthal telescope

    NASA Astrophysics Data System (ADS)

    Sazonenko, Dmitrii; Kukushkin, Dmitrii; Bakholdin, Alexey; Valyavin, Gennady

    2016-08-01

    Special Astrophysical Observatory of Russian Academy of Sciences (SAO RAS) creates a spectrograph with high spectral resolution for the 6-meter telescope. The spectrograph consists of a mobile unit located at the focus of the telescope's main mirror, a stationary part located under the telescope and optical fibers which transmit light from the mobile part to the stationary one. The spectral resolution of the stationary part should be R=100000. To achieve such a value, the scheme has two spectral elements, with cross-dispersion. The main spectral element is an echelle grating. The second spectral element is a prism with a diffraction grating on one facet.

  11. A Multi-object Exoplanet Detecting Technique

    NASA Astrophysics Data System (ADS)

    Zhang, K.

    2011-05-01

    Exoplanet exploration is not only a meaningful astronomical action, but also has a close relation with the extra-terrestrial life. High resolution echelle spectrograph is the key instrument for measuring stellar radial velocity (RV). But with higher precision, better environmental stability and higher cost are required. An improved technique of RV means invented by David J. Erskine in 1997, External Dispersed Interferometry (EDI), can increase the RV measuring precision by combining the moderate resolution spectrograph with a fixed-delay Michelson interferometer. LAMOST with large aperture and large field of view is equipped with 16 multi-object low resolution fiber spectrographs. And these spectrographs are capable to work in medium resolution mode (R=5{K}˜10{K}). LAMOST will be one of the most powerful exoplanet detecting systems over the world by introducing EDI technique. The EDI technique is a new technique for developing astronomical instrumentation in China. The operating theory of EDI was generally verified by a feasibility experiment done in 2009. And then a multi-object exoplanet survey system based on LAMOST spectrograph was proposed. According to this project, three important tasks have been done as follows: Firstly, a simulation of EDI operating theory contains the stellar spectrum model, interferometer transmission model, spectrograph mediation model and RV solution model. In order to meet the practical situation, two detecting modes, temporal and spatial phase-stepping methods, are separately simulated. The interference spectrum is analyzed with Fourier transform algorithm and a higher resolution conventional spectrum is resolved. Secondly, an EDI prototype is composed of a multi-object interferometer prototype and the LAMOST spectrograph. Some ideas are used in the design to reduce the effect of central obscuration, for example, modular structure and external/internal adjusting frames. Another feasibility experiment was done at Xinglong Station in 2010. A related spectrum reduction program and the instrumental stability were tested by obtaining some multi-object interference spectrum. Thirdly, studying the parameter optimization of fixed-delay Michelson interferometer is helpful to increase its inner thermal stability and reduce the external environmental requirement. Referring to Wide-angle Michelson Interferometer successfully used in Upper Atmospheric Wind field, a glass pair selecting scheme is given. By choosing a suitable glass pair of interference arms, the RV error can be stable as several hundred m\\cdots^{-1}\\cdot{dg}C^{-1}. Therefore, this work is helpful to deeply study EDI technique and speed up the development of multi-object exoplanet survey system. LAMOST will make a greater contribution to astronomy when the combination between its spectrographs and EDI technique comes true.

  12. Ultraviolet spectroscopy of meteoric debris of comets

    NASA Technical Reports Server (NTRS)

    Wdowiak, T. J.; Kubinec, W. R.; Nuth, J. A.

    1986-01-01

    It is proposed to carry out slitless spectroscopy at ultraviolet wavelengths from orbit of meteoric debris associated with comets. The Eta Aquarid and Orionid/Halley and the Perseid/1962 862 Swift-Tuttle showers would be principal targets. Low light level, ultraviolet video technique will be used during night side of the orbit in a wide field, earthward viewing mode. Data will be stored in compact video cassette recorders. The experiment may be configured as a GAS package or in the HITCHHIKER mode. The latter would allow flexible pointing capability beyond that offered by shuttle orientation of the GAS package, and doubling of the data record. The 1100 to 3200 A spectral region should show emissions of atomic, ionic, and molecular species of interest on cometary and solar system studies.

  13. Ultraviolet spectroscopy of meteoric debris: In situ calibration experiments from Earth orbit

    NASA Technical Reports Server (NTRS)

    Nuth, J. A., III; Wdowiak, T. J.; Kubinec, W. R.

    1986-01-01

    It is proposed to carry out slitless spectroscopy at ultraviolet wavelengths from orbit of meteoric debris associated with comets. The Eta Aquarid, Orionid/Halley, and the Persied/1962 862 Swift-Tuttle showers would be principal targets. Low light level, ultraviolet video technique will be used during night side of the orbit in a wide field, earthward viewing mode. Data will be stored in compact video cassette recorders. The experiment may be configured as a GAS package or in the HITCHHIKER mode. The latter would allow flexible pointing capability beyond that offered by shuttle orientation of the GAS package, and doubling of the data record. The 1100 to 3200 A spectral region should show emissions of atomic, ionic, and molecular species of interest on cometary and solar system studies.

  14. Ultraviolet spectroscopy of meteoric debris: In situ calibration experiments from earth orbit

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A.; Wdowiak, Thomas J.; Kubinec, William R.

    1987-01-01

    It is proposed to carry out slitless spectroscopy at ultraviolet wavelengths from orbit of meteoric debris associated with comets. The Eta Aquarid, Orionid/Halley, and the Persied/1962 862 Swift-Tuttle showers would be principal targets. Low light level, ultraviolet video technique will be used during the night side of the orbit in a wide field, earthward viewing mode. Data will be stored in compact video cassette recorders. The experiment may be configured as a GAS package or in the HITCHHIKER mode. The latter would allow flexible pointing capability beyond that offered by shuttle orientation of the GAS package, and doubling of the data record. The 1100 to 3200 A spectral region should show emissions of atomic, ionic, and molecular species of interest on cometary and solar system studies.

  15. VizieR Online Data Catalog: CONCH-SHELL catalog of nearby M dwarfs (Gaidos+, 2014)

    NASA Astrophysics Data System (ADS)

    Gaidos, E.; Mann, A. W.; Lepine, S.; Buccino, A.; James, D.; Ansdell, M.; Petrucci, R.; Mauas, P.; Hilton, E. J.

    2015-04-01

    Lepinet et al. 2011 (J/AJ/142/138) selected candidate M dwarfs as stars that were (i) bright (J<10), (ii) red (V-J>2.7), (iii) had absolute magnitudes or reduced proper motions, proxies for absolute magnitudes, consistent with the main sequence and (iv) infrared Two Micron All-Sky Survey (2MASS; Skrutskie et al. 2006, Cat. II/246) JHKS colours that are consistent with M dwarfs. In this work, we constructed a revised catalogue of J<9 M dwarfs using modified criteria and new photometry from APASS. Spectroscopic observations with a resolution if ~1000 were achieved at the SuperNova Integral Field Spectrograph (SNIFS) on the University of Hawaii 2.2m telescope on Maunakea, Hawaii, the Mark III spectrograph and Boller & Chivens CCDS spectrograph (CCDS) on the 1.3m McGraw-Hill telescope at the MDM Observatory on Kitt Peak, Arizona, the REOSC spectrograph on the 2.15m Jorge Sahade telescope at the Complejo Astronomico El Leoncito Observatory (CASLEO), Argentina, and the RC spectrograph on the 1.9m Radcliffe telescope at the South African Astronomical Observatory. We obtained a total of 3071 spectra of 2583 stars or 86% of the catalog over the span 2002-2014 of more than 11 years. 425 stars were observed twice, 14 stars were observed thrice, and 6 stars had more than four observations. (2 data files).

  16. First light results from the HERMES spectrograph at the AAT

    NASA Astrophysics Data System (ADS)

    Sheinis, Andrew I.

    2016-08-01

    The High Efficiency and Resolution Multi Element Spectrograph, HERMES is a facility-class optical spectrograph for the AAT. It is designed primarily for Galactic Archeology, the first major attempt to create a detailed understanding of galaxy formation and evolution by studying the history of our own galaxy, the Milky Way. The goal of the Galactic Archeology with Hermes (GALAH) survey is to reconstruct the mass assembly history of the Milky Way, through a detailed spatially tagged abundance study of one million stars. The spectrograph is based at the Anglo Australian Telescope (AAT) and is fed by the existing 2dF robotic fiber positioning system. The spectrograph uses VPH-gratings to achieve a spectral resolving power of 28,000 in standard mode and also provides a high-resolution mode ranging between 40,000 to 50,000 using a slit mask. The GALAH survey requires a SNR greater than 100 for a star brightness of V=14. The total spectral coverage of the four channels is about 100nm between 370 and 1000nm for up to 392 simultaneous targets within the 2- degree field of view. Hermes was commissioned in late 2013, with the GALAH Pilot starting in parallel with the commissioning. The GALAH survey started in early 2014 is currently about 33% complete. We present a description of the motivating science; an overview the instrument; and a status report on GALAH Survey.

  17. Technical aspects of the Space Telescope Imaging Spectrograph Repair (STIS-R)

    NASA Astrophysics Data System (ADS)

    Rinehart, S. A.; Domber, J.; Faulkner, T.; Gull, T.; Kimble, R.; Klappenberger, M.; Leckrone, D.; Niedner, M.; Proffitt, C.; Smith, H.; Woodgate, B.

    2008-07-01

    In August 2004, the Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS) ceased operation due to a failure of the 5V mechanism power converter in the Side 2 Low Voltage Power Supply (LVPS2). The failure precluded movement of any STIS mechanism and, because of the earlier (2001) loss of the Side 1 electronics chain, left the instrument shuttered and in safe mode after 7.5 years of science operations. A team was assembled to analyze the fault and to determine if STIS repair (STIS-R) was feasible. The team conclusively pinpointed the Side 2 failure to the 5V mechanism converter, and began studying EVA techniques for opening STIS during Servicing Mission 4 (SM4) to replace the failed LVPS2 board. The restoration of STIS functionality via surgical repair by astronauts has by now reached a mature and final design state, and will, along with a similar repair procedure for the Advanced Camera for Surveys (ACS), represent a first for Hubble servicing. STIS-R will restore full scientific functionality of the spectrograph on Side 2, while Side 1 will remain inoperative. Because of the high degree of complementarity between STIS and the new Cosmic Origins Spectrograph (COS, to be installed during SM4)), successful repair of the older spectrograph is an important scientific objective. In this presentation, we focus on the technical aspects associated with STIS-R.

  18. Small Business Innovations

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Under a Small Business Innovation Research (SBIR) contract to Kennedy Space Center, EIC Laboratories invented a Raman Spectrograph with fiber optic sampling for space applications such as sensing hazardous fuel vapors and making on-board rapid analyses of chemicals and minerals. Raman spectroscopy is a laser-based measurement technique that provides through a unique vibrational spectrum a molecular 'fingerprint,' and can function in aqueous environments. EIC combined optical fiber technology with Raman methods to develop sensors that can be operated at a distance from the spectrographic analysis instruments and the laser excitation source. EIC refined and commercialized the technology to create the Fiber Optic Raman Spectrograph and the RamanProbe. Commercial applications range from process control to monitoring hazardous materials.

  19. Spectrum of Th-Ar Hollow Cathode Lamps

    National Institute of Standards and Technology Data Gateway

    SRD 161 NIST Spectrum of Th-Ar Hollow Cathode Lamps (Web, free access)   This atlas presents observations of the infra-red (IR) spectrum of a low current Th-Ar hollow cathode lamp with the 2-m Fourier transform spectrometer (FTS) at NIST. These observations establish more than 2400 lines that are suitable for use as wavelength standards in the range 691 nm to 5804 nm. The observations were made in collaboration with the European Southern Observatory (ESO), in order to provide calibration reference data for new high-resolution Echelle spectrographs, such as the Cryogenic High-Resolution IR Echelle Spectrograph ([CRIRES]), ESO's new IR spectrograph at the Very Large Telescope in Chile.

  20. Through the Lens of History: The Unusual Circumstances Leading to the Acquisition of the Lowell Spectrograph

    NASA Astrophysics Data System (ADS)

    Schindler, K. S.

    2013-04-01

    In 1900 Lowell Observatory assistant Andrew Douglass advised his employer Percival Lowell to purchase a state-of-the-art spectrograph from instrument maker John Brashear of Pennsylvania. Lowell agreed with Douglass's suggestion, realizing that such an instrument was critical for the Observatory staff's research. However, the purchase also fulfilled a little-known obligation between Percival Lowell and Brashear that dated back to an accident occurring in 1895. If not for this unusual incident that led to the purchase of the spectrograph, the future of Lowell Observatory and, on a larger scale, unmasking of the nature of the expanding universe, would likely have played out much differently.

  1. Progress along the E-ELT instrumentation roadmap

    NASA Astrophysics Data System (ADS)

    Ramsay, Suzanne; Casali, Mark; Cirasuolo, Michele; Egner, Sebastian; Gray, Peter; Gonzáles Herrera, Juan Carlos; Hammersley, Peter; Haupt, Christoph; Ives, Derek; Jochum, Lieselotte; Kasper, Markus; Kerber, Florian; Lewis, Steffan; Mainieri, Vincenzo; Manescau, Antonio; Marchetti, Enrico; Oberti, Sylvain; Padovani, Paolo; Schmid, Christian; Schimpelsberger, Johannes; Siebenmorgen, Ralf; Szecsenyi, Orsolya; Tamai, Roberto; Vernet, Joël.

    2016-08-01

    A suite of seven instruments and associated AO systems have been planned as the "E-ELT Instrumentation Roadmap". Following the E-ELT project approval in December 2014, rapid progress has been made in organising and signing the agreements for construction with European universities and institutes. Three instruments (HARMONI, MICADO and METIS) and one MCAO module (MAORY) have now been approved for construction. In addition, Phase-A studies have begun for the next two instruments - a multi-object spectrograph and high-resolution spectrograph. Technology development is also ongoing in preparation for the final instrument in the roadmap, the planetary camera and spectrograph. We present a summary of the status and capabilities of this first set of instruments for the E-ELT.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suvorov, Alexey; Cai, Yong Q.

    A concept of an inelastic x-ray scattering (IXS) spectrograph with an imaging analyzer was proposed recently and discussed in a number of publications (see e.g. Ref.1). The imaging analyzer as proposed combines x-ray lenses with highly dispersive crystal optics. It allows conversion of the x-ray energy spectrum into a spatial image with very high energy resolution. However, the presented theoretical analysis of the spectrograph did not take into account details of the scattered radiation source, i.e. sample, and its impact on the spectrograph performance. Using numerical simulations we investigated the influence of the finite sample thickness, the scattering angle andmore » the incident energy detuning on the analyzer image and the ultimate resolution.« less

  3. Early-type objects in NGC 6611 and the Eagle Nebula

    NASA Astrophysics Data System (ADS)

    Martayan, C.; Floquet, M.; Hubert, A. M.; Neiner, C.; Frémat, Y.; Baade, D.; Fabregat, J.

    2008-10-01

    Aims: An important question about Be stars is whether they are born as such or whether they have become Be stars during their evolution. It is necessary to observe young clusters to answer this question. Methods: To this end, observations of stars in NGC 6611 and the star-formation region of Eagle Nebula were carried out with the ESO-WFI in slitless spectroscopic mode and at the VLT-GIRAFFE (R ≃ 6400-17 000). The targets for the GIRAFFE observations were pre-selected from the literature and our catalogue of emission-line stars based on the WFI study. GIRAFFE observations allowed us to study the population of the early-type stars accurately both with and without emission lines. For this study, we determined the fundamental parameters of OBA stars thanks to the GIRFIT code. We also studied the status of the objects (main sequence or pre-main sequence stars) by using IR data, membership probabilities, and location in HR diagrams. Results: The nature of the early-type stars with emission-line stars in NGC 6611 and its surrounding environment is derived. The slitless observations with the WFI clearly indicate a small number of emission-line stars in M16. We observed with GIRAFFE 101 OBA stars, among them 9 are emission-line stars with circumstellar emission in Hα. We found that W080 could be a new He-strong star, like W601. W301 is a possible classical Be star, W503 is a mass-transfer eclipsing binary with an accretion disk, and the other ones are possible Herbig Ae/Be stars. We also found that the rotational velocities of main sequence B stars are 18% lower than those of pre-main sequence B stars, in good agreement with theory about the evolution of rotational velocities. Combining adaptive optics, IR data, spectroscopy, and radial velocity indications, we found that 27% of the B-type stars are binaries. We also redetermined the age of NGC 6611 found equal to 1.2-1.8 Myears, in good agreement with the most recent determinations.

  4. Ultraviolet micro-Raman spectrograph for the detection of small numbers of bacterial cells

    NASA Astrophysics Data System (ADS)

    Chadha, S.; Nelson, W. H.; Sperry, J. F.

    1993-11-01

    The construction of a practical UV micro-Raman spectrograph capable of selective excitation of bacterial cells and other microscopic samples has been described. A reflective objective is used to focus cw laser light on a sample and at the same time collect the scattered light at 180°. With the aid of a quartz lens the image produced is focused on the slits of a spectrograph equipped with a single 2400 grooves/mm grating optimized for 250 nm. Spectra were detected by means of a blue-intensified diode array detector. Resonance Raman spectra of Bacillus subtilis and Flavobacterium capsulatum excited by the 257.2 nm output of a cw laser were recorded in the 900-1800 cm-1 region. Bacterial cells were immobilized on a quartz plate by means of polylysine and were counted visually. Cooling was required to retard sample degradation. Sample sizes ranged from 1 to 50 cells with excitation times varying from 15 to 180 s. Excellent spectra have been obtained from 20 cells in 15 s using a spectrograph having only 3% throughput.

  5. SPRAT: Spectrograph for the Rapid Acquisition of Transients

    NASA Astrophysics Data System (ADS)

    Piascik, A. S.; Steele, Iain A.; Bates, Stuart D.; Mottram, Christopher J.; Smith, R. J.; Barnsley, R. M.; Bolton, B.

    2014-07-01

    We describe the development of a low cost, low resolution (R ~ 350), high throughput, long slit spectrograph covering visible (4000-8000) wavelengths. The spectrograph has been developed for fully robotic operation with the Liverpool Telescope (La Palma). The primary aim is to provide rapid spectral classification of faint (V ˜ 20) transient objects detected by projects such as Gaia, iPTF (intermediate Palomar Transient Factory), LOFAR, and a variety of high energy satellites. The design employs a volume phase holographic (VPH) transmission grating as the dispersive element combined with a prism pair (grism) in a linear optical path. One of two peak spectral sensitivities are selectable by rotating the grism. The VPH and prism combination and entrance slit are deployable, and when removed from the beam allow the collimator/camera pair to re-image the target field onto the detector. This mode of operation provides automatic acquisition of the target onto the slit prior to spectrographic observation through World Coordinate System fitting. The selection and characterisation of optical components to maximise photon throughput is described together with performance predictions.

  6. Multi-object medium resolution optical spectroscopy at the E-ELT

    NASA Astrophysics Data System (ADS)

    Spanò, Paolo; Bonifacio, Piercarlo

    2008-07-01

    We present the design of a compact medium resolution spectrograph (R~15,000-20,000), intended to operate on a 42m telescope in seeing-limited mode. Our design takes full advantage of some new technology optical components, like volume phase holographic (VPH) gratings. At variance with the choice of complex large echelle spectrographs, which have been the standard on 8m class telescopes, we selected an efficient VPH spectrograph with a limited beam diameter, in order to keep overall dimensions and costs low, using proven available technologies. To obtain such a resolution, we need to moderately slice the telescope image plane onto the spectrograph entrance slit (5-6 slices). Then, standard telescope AO-mode (GLAO, Ground Layer Adaptive Optics) can be used over a large field of view (~10 arcmin), without loosing efficiency. Multiplex capabilities can greatly increase the observing efficiency. A robotic pick-up mirror system can be implemented, within conventional environmental conditions (temperature, pressure, gravity, size), demanding only standard mechanical and optical tolerances. A modular approach allows us scaling multiplex capabilities on overall costs and available space.

  7. Simulating the WFIRST coronagraph integral field spectrograph

    NASA Astrophysics Data System (ADS)

    Rizzo, Maxime J.; Groff, Tyler D.; Zimmermann, Neil T.; Gong, Qian; Mandell, Avi M.; Saxena, Prabal; McElwain, Michael W.; Roberge, Aki; Krist, John; Riggs, A. J. Eldorado; Cady, Eric J.; Mejia Prada, Camilo; Brandt, Timothy; Douglas, Ewan; Cahoy, Kerri

    2017-09-01

    A primary goal of direct imaging techniques is to spectrally characterize the atmospheres of planets around other stars at extremely high contrast levels. To achieve this goal, coronagraphic instruments have favored integral field spectrographs (IFS) as the science cameras to disperse the entire search area at once and obtain spectra at each location, since the planet position is not known a priori. These spectrographs are useful against confusion from speckles and background objects, and can also help in the speckle subtraction and wavefront control stages of the coronagraphic observation. We present a software package, the Coronagraph and Rapid Imaging Spectrograph in Python (crispy) to simulate the IFS of the WFIRST Coronagraph Instrument (CGI). The software propagates input science cubes using spatially and spectrally resolved coronagraphic focal plane cubes, transforms them into IFS detector maps and ultimately reconstructs the spatio-spectral input scene as a 3D datacube. Simulated IFS cubes can be used to test data extraction techniques, refine sensitivity analyses and carry out design trade studies of the flight CGI-IFS instrument. crispy is a publicly available Python package and can be adapted to other IFS designs.

  8. A new study of muons in air showers by NBU air shower array

    NASA Technical Reports Server (NTRS)

    Chaudhuri, N.; Mukherjee, N.; Sarkar, S.; Basak, D. K.; Ghosh, B.

    1985-01-01

    The North Bengal University (NBU) air shower array has been in operation in conjunction with two muon magnetic spectrographs. The array incorporates 21 particle density sampling detectors around the magnetic spectrographs covering an area of 900 sq m. The layout of the array is based on the arrangement of detectors in a square symmetry. The array set up on the ground level is around a 10 m high magnetic spectrograph housing. This magnetic spectrograph housing limits the zenith angular acceptance of the incident showers to a few degrees. Three hundred muons in the fitted showers of size range 10 to the 4th power to 10 to the 5th power particles have so far been scanned and the momenta determined in the momentum range 2 - 440 GeV/c. More than 1500 recorded showers are now in the process of scanning and fitting. A lateral distribution of muons of energy greater than 300 MeV in the shower size range 10 to the 5th power to 7 x 10 to the 5th power has been obtained.

  9. The 4MOST facility control software

    NASA Astrophysics Data System (ADS)

    Pramskiy, Alexander; Mandel, Holger; Rothmaier, Florian; Stilz, Ingo; Winkler, Roland; Hahn, Thomas

    2016-07-01

    The 4-m Multi-Object Spectrographic Telescope (4MOST) is one high-resolution (R 18000) and two lowresolution (R fi 5000) spectrographs covering the wavelength range between 390 and 950 nm. The spectrographs will be installed on ESO VISTA telescope and will be fed by approximately 2400 fibres. The instrument is capable to simultaneously obtain spectra of about 2400 objects distributed over an hexagonal field-of-view of four square degrees. This paper aims at giving an overview of the control software design, which is based on the standard ESO VLT software architecture and customised to fit the needs of the 4MOST instrument. In particular, the facility control software is intended to arrange the precise positioning of the fibres, to schedule and observe many surveys in parallel, and to combine the output from the three spectrographs. Moreover, 4MOST's software will include user-friendly graphical user interfaces that enable users to interact with the facility control system and to monitor all data-taking and calibration tasks of the instrument. A secondary guiding system will be implemented to correct for any fibre exure and thus to improve 4MOST's guiding performance. The large amount of fibres requires the custom design of data exchange to avoid performance issues. The observation sequences are designed to use spectrographs in parallel with synchronous points for data exchange between subsystems. In order to control hardware devices, Programmable Logic Controller (PLC) components will be used, the new standard for future instruments at ESO.

  10. The 1997 HST Calibration Workshop with a New Generation of Instruments

    NASA Technical Reports Server (NTRS)

    Casertano, S. (Editor); Jedrzejewski, R. (Editor); Keyes, T. (Editor); Stevens, M. (Editor)

    1997-01-01

    The Second Servicing mission in early 1997 has brought major changes to the Hubble Space Telescope (HST). Two of the original instruments, Faint Object Spectrograph (FOS) and Goddard High Resolution Spectrograph (GHRS), were taken out, and replaced by completely new instruments, the Space Telescope Imaging Spectrograph (STIS) and the Near Infrared Camera Multi-Object Spectrograph (NICMOS). Two new types of detectors were installed, and for the first time, HST gained infrared capabilities. A new Fine Guidance Sensor (FGS) was installed, with an alignment mechanism that could improve substantially both guiding and astrometric capabilities. With all these changes come new challenges. The characterization of the new instruments has required a major effort, both by their respective Investigation Definition Teams and at the Space Telescope Science Institute. All necessary final calibrations for the retired spectrographs needed to be carried out, and their properties definitively characterized. At the same time, work has continued to improve our understanding of the instruments that have remained on board. The results of these activities were discussed in the 1997 HST (Hubble Space Telescope) Calibration Workshop. The main focus of the Workshop was to provide users with the tools and the understanding they need to use HST's instruments and archival data to the best of their possibilities. This book contains the written record of the Workshop. As such, it should provide a valuable tool to all interested in using existing HST data or in proposing for new observations.

  11. OPTIMOS-EVE optical design of a very efficient, high-multiplex, large spectral coverage, fiber-fed spectrograph at EELT

    NASA Astrophysics Data System (ADS)

    Spanò, P.; Tosh, I.; Chemla, F.

    2010-07-01

    OPTIMOS-EVE is a fiber-fed, high-multiplex, high-efficiency, large spectral coverage spectrograph for EELT covering visible and near-infrared simultaneously. More than 200 seeing-limited objects will be observed at the same time over the full 7 arcmin field of view of the telescope, feeding the spectrograph, asking for very large multiplexing at the spectrograph side. The spectrograph consists of two identical units. Each unit will have two optimized channels to observe both visible and near-infrared wavelengths at the same time, covering from 0.37 to 1.7 micron. To maximize the scientific return, a large simultaneous spectral coverage per exposure was required, up to 1/3 of the central wavelength. Moreover, different spectral resolution modes, spanning from 5'000 to 30'000, were defined to match very different sky targets. Many different optical solutions were generated during the initial study phase in order to select that one that will maximize performances within given constraints (mass, space, cost). Here we present the results of this study, with special attention to the baseline design. Efforts were done to keep size of the optical components well within present state-of-the-art technologies. For example, large glass blank sizes were limited to ~35 cm maximum diameter. VPH gratings were selected as dispersers, to improve efficiency, following their superblaze curve. This led to scanning gratings and cameras. Optical design will be described, together with expected performances.

  12. The GMT-Consortium Large Earth Finder (G-CLEF): an optical Echelle spectrograph for the Giant Magellan Telescope (GMT)

    NASA Astrophysics Data System (ADS)

    Szentgyorgyi, Andrew; Baldwin, Daniel; Barnes, Stuart; Bean, Jacob; Ben-Ami, Sagi; Brennan, Patricia; Budynkiewicz, Jamie; Chun, Moo-Young; Conroy, Charlie; Crane, Jeffrey D.; Epps, Harland; Evans, Ian; Evans, Janet; Foster, Jeff; Frebel, Anna; Gauron, Thomas; Guzmán, Dani; Hare, Tyson; Jang, Bi-Ho; Jang, Jeong-Gyun; Jordan, Andres; Kim, Jihun; Kim, Kang-Miin; Mendes de Oliveira, Claudia Mendes; Lopez-Morales, Mercedes; McCracken, Kenneth; McMuldroch, Stuart; Miller, Joseph; Mueller, Mark; Oh, Jae Sok; Onyuksel, Cem; Ordway, Mark; Park, Byeong-Gon; Park, Chan; Park, Sung-Joon; Paxson, Charles; Phillips, David; Plummer, David; Podgorski, William; Seifahrt, Andreas; Stark, Daniel; Steiner, Joao; Uomoto, Alan; Walsworth, Ronald; Yu, Young-Sam

    2016-08-01

    The GMT-Consortium Large Earth Finder (G-CLEF) will be a cross-dispersed, optical band echelle spectrograph to be delivered as the first light scientific instrument for the Giant Magellan Telescope (GMT) in 2022. G-CLEF is vacuum enclosed and fiber-fed to enable precision radial velocity (PRV) measurements, especially for the detection and characterization of low-mass exoplanets orbiting solar-type stars. The passband of G-CLEF is broad, extending from 3500Å to 9500Å. This passband provides good sensitivity at blue wavelengths for stellar abundance studies and deep red response for observations of high-redshift phenomena. The design of G-CLEF incorporates several novel technical innovations. We give an overview of the innovative features of the current design. G-CLEF will be the first PRV spectrograph to have a composite optical bench so as to exploit that material's extremely low coefficient of thermal expansion, high in-plane thermal conductivity and high stiffness-to-mass ratio. The spectrograph camera subsystem is divided into a red and a blue channel, split by a dichroic, so there are two independent refractive spectrograph cameras. The control system software is being developed in model-driven software context that has been adopted globally by the GMT. G-CLEF has been conceived and designed within a strict systems engineering framework. As a part of this process, we have developed a analytical toolset to assess the predicted performance of G-CLEF as it has evolved through design phases.

  13. The LST scientific instruments

    NASA Technical Reports Server (NTRS)

    Levin, G. M.

    1975-01-01

    Seven scientific instruments are presently being studied for use with the Large Space Telescope (LST). These instruments are the F/24 Field Camera, the F/48-F/96 Planetary Camera, the High Resolution Spectrograph, the Faint Object Spectrograph, the Infrared Photometer, and the Astrometer. These instruments are being designed as facility instruments to be replaceable during the life of the Observatory.

  14. Optomechanical design concept for the Giant Magellan Telescope Multi-object Astronomical and Cosmological Spectrograph (GMACS)

    NASA Astrophysics Data System (ADS)

    Prochaska, Travis; Sauseda, Marcus; Beck, James; Schmidt, Luke; Cook, Erika; DePoy, Darren L.; Marshall, Jennifer L.; Ribeiro, Rafael; Taylor, Keith; Jones, Damien; Froning, Cynthia; Pak, Soojong; Mendes de Oliveira, Claudia; Papovich, Casey; Ji, Tae-Geun; Lee, Hye-In

    2016-08-01

    We describe a preliminary conceptual optomechanical design for GMACS, a wide-field, multi-object, moderate resolution optical spectrograph for the Giant Magellan Telescope (GMT). This paper describes the details of the GMACS optomechanical conceptual design, including the requirements and considerations leading to the design, mechanisms, optical mounts, and predicted flexure performance.

  15. An Integral-Field Spectrograph for a Terrestrial Planet Finding Mission

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.

    2011-01-01

    We describe a conceptual design for an integral field spectrograph for characterizing exoplanets that we developed for NASA's Terrestrial Planet Finder Coronagraph (TPF-C), although it is equally applicable to an external-occulter mission. The spectrograph fulfills all four scientific objectives of a terrestrial planet finding mission by: (1) Spectrally characterizing the atmospheres of detected planets in search of signatures of habitability or even biological activity; (2) Directly detecting terrestrial planets in the habitable zone around nearby stars; (3) Studying all constituents of a planetary system including terrestrial and giant planets, gas and dust around sun-like stars of different ages and metallicities; (4) Enabling simultaneous, high-spatial-resolution, spectroscopy of all astrophysical sources regardless of central source luminosity, such as AGN's, proplyds, etc.

  16. Astronomical near-infrared echelle gratings

    NASA Astrophysics Data System (ADS)

    Hinkle, Kenneth H.; Joyce, Richard R.; Liang, Ming

    2014-07-01

    High-resolution near-infrared echelle spectrographs require coarse rulings in order to match the free spectral range to the detector size. Standard near-IR detector arrays typically are 2 K x 2 K or 4 K x 4 K. Detectors of this size combined with resolutions in the range 30000 to 100000 require grating groove spacings in the range 5 to 20 lines/mm. Moderately high blaze angles are desirable to reduce instrument size. Echelle gratings with these characteristics have potential wide application in both ambient temperature and cryogenic astronomical echelle spectrographs. We discuss optical designs for spectrographs employing immersed and reflective echelle gratings. The optical designs set constraints on grating characteristics. We report on market choices for obtaining these gratings and review our experiments with custom diamond turned rulings.

  17. The infrared spectrograph during the SIRTF pre-definition phase

    NASA Technical Reports Server (NTRS)

    Houck, James R.

    1988-01-01

    A test facility was set up to evaluate back-illuminated impurity band detectors constructed for an infrared spectrograph to be used on the Space Infrared Telescope Facility (SIRTF). Equipment built to perform the tests on these arrays is described. Initial tests have been geared toward determining dark current and read noise for the array. Four prior progress reports are incorporated into this report. They describe the first efforts in the detector development and testing effort; testing details and a new spectrograph concept; a discussion of resolution issues raised by the new design; management activities; a review of computer software and testing facility hardware; and a review of the preamplifier constructed as well as a revised schematic of the detector evaluation facility.

  18. Don Hendrix, master Mount Wilson and Palomar Observatories optician

    NASA Astrophysics Data System (ADS)

    Osterbrock, Donald E.

    2003-06-01

    Don O. Hendrix, with at most a high-school education and no previous experience in optics, because an outstanding astronomical optician at Mount Wilson Observatory. He started making Schmidt-camera optics for spectrographs there in 1932, and ultimately made them for all the stellar and nebular spectrographs used at the prime, Newtonian, Cassegrain, and coudé foci of the 60-inch, 100-inch, and Palomar Hale 200-inch telescopes. He completed figuring and polishing the primary 200-inch mirror, and also the Lick Observatory 120-inch primary mirror. Mount Wilson and Palomar Observatory designers Theodore Dunham Jr., Rudolph Minkowski, and Ira S. Bowen led the way for many years in developing fast, effective astronomical spectrographs, based on Hendrix's skills.

  19. VizieR Online Data Catalog: VI photometry and spectroscopy in h+{chi} Per (Currie+, 2010)

    NASA Astrophysics Data System (ADS)

    Currie, T.; Hernandez, J.; Irwin, J.; Kenyon, S. J.; Tokarz, S.; Balog, Z.; Bragg, A.; Berlind, P.; Calkins, M.

    2010-04-01

    Optical VI photometry of h and {chi} Persei were taken with the Mosaic Imager at the 4m Mayall telescope at the Kitt Peak National Observatory on 2006 October 13-16 and 27-30. We acquired low-resolution optical spectroscopy of Two Micron All Sky Survey (2MASS)-detected stars within 1deg2 of the cluster centers. For faint stars, we used the multiobject, fiber-fed spectrograph Hectospec on the 6.5m MMT. Brighter stars were observed with the fiber-fed spectrograph Hydra on the 3.5m WIYN telescope at Kitt Peak National Observatory and single-slit FAST spectrograph on the 1.5m Tillinghast telescope at the Fred Lawrence Whipple Observatory. (4 data files).

  20. VizieR Online Data Catalog: MUSCLES Treasury Survey. IV. M dwarf UV fluxes (Youngblood+, 2017)

    NASA Astrophysics Data System (ADS)

    Youngblood, A.; France, K.; Loyd, R. O. P.; Brown, A.; Mason, J. P.; Schneider, P. C.; Tilley, M. A.; Berta-Thompson, Z. K.; Buccino, A.; Froning, C. S.; Hawley, S. L.; Linsky, J.; Mauas, P. J. D.; Redfield, S.; Kowalski, A.; Miguel, Y.; Newton, E. R.; Rugheimer, S.; Segura, A.; Roberge, A.; Vieytes, M.

    2018-02-01

    We selected stars with HST UV spectra and ground-based optical spectra either obtained directly by us or available in the VLT/XSHOOTER or Keck/HIRES public archives. Several targets have spectroscopic data obtained with the Dual Imaging Spectrograph (DIS) on the ARC 3.5m telescope at Apache Point Observatory (APO), R~2500, or the REOSC echelle spectrograph on the 2.15m telescope at Complejo Astronomico El Leoncito (CASLEO), R~12000, within a day or two of the HST observations. We also gathered spectra of GJ1132, GJ1214, and Proxima Cen on the nights of 2016 March 7-9 using the MIKE echelle spectrograph on the Magellan Clay telescope. (2 data files).

  1. Optical Design Trade Study for the Wide Field Infrared Survey Telescope [WFIRST

    NASA Technical Reports Server (NTRS)

    Content, David A.; Goullioud, R.; Lehan, John P.; Mentzell, John E.

    2011-01-01

    The Wide Field Infrared Survey Telescope (WFIRST) mission concept was ranked first in new space astrophysics mission by the Astro2010 Decadal Survey incorporating the Joint Dark Energy Mission (JDEM)-Omega payload concept and multiple science white papers. This mission is based on a space telescope at L2 studying exoplanets [via gravitational microlensing], probing dark energy, and surveying the near infrared sky. Since the release of NWNH, the WFIRST project has been working with the WFIRST science definition team (SDT) to refine mission and payload concepts. We present the driving requirements. The current interim reference mission point design, based on the use of a 1.3m unobscured aperture three mirror anastigmat form, with focal imaging and slitless spectroscopy science channels, is consistent with the requirements, requires no technology development, and out performs the JDEM-Omega design.

  2. First light results from the Hermes spectrograph at the AAT

    NASA Astrophysics Data System (ADS)

    Sheinis, Andrew; Barden, Sam; Birchall, Michael; Carollo, Daniela; Bland-Hawthorn, Joss; Brzeski, Jurek; Case, Scott; Cannon, Russell; Churilov, Vladimir; Couch, Warrick; Dean, Robert; De Silva, Gayandhi; D'Orazi, Valentina; Farrell, Tony; Fiegert, Kristin; Freeman, Kenneth; Frost, Gabriella; Gers, Luke; Goodwin, Michael; Gray, Doug; Heald, Ron; Heijmans, Jeroen; Jones, Damien; Keller, Stephan; Klauser, Urs; Kondrat, Yuriy; Lawrence, Jon; Lee, Steve; Mali, Slavko; Martell, Sarah; Mathews, Darren; Mayfield, Don; Miziarski, Stan; Muller, Rolf; Pai, Naveen; Patterson, Robert; Penny, Ed; Orr, David; Shortridge, Keith; Simpson, Jeffrey; Smedley, Scott; Smith, Greg; Stafford, Darren; Staszak, Nicholas; Vuong, Minh; Waller, Lewis; Wylie de Boer, Elizabeth; Xavier, Pascal; Zheng, Jessica; Zhelem, Ross; Zucker, Daniel

    2014-07-01

    The High Efficiency and Resolution Multi Element Spectrograph, HERMES is an facility-class optical spectrograph for the AAT. It is designed primarily for Galactic Archeology [21], the first major attempt to create a detailed understanding of galaxy formation and evolution by studying the history of our own galaxy, the Milky Way. The goal of the GALAH survey is to reconstruct the mass assembly history of the of the Milky Way, through a detailed spatially tagged abundance study of one million stars. The spectrograph is based at the Anglo Australian Telescope (AAT) and is fed by the existing 2dF robotic fiber positioning system. The spectrograph uses VPH-gratings to achieve a spectral resolving power of 28,000 in standard mode and also provides a high-resolution mode ranging between 40,000 to 50,000 using a slit mask. The GALAH survey requires a SNR greater than 100 for a star brightness of V=14. The total spectral coverage of the four channels is about 100nm between 370 and 1000nm for up to 392 simultaneous targets within the 2 degree field of view. Hermes has been commissioned over 3 runs, during bright time in October, November and December 2013, in parallel with the beginning of the GALAH Pilot survey starting in November 2013. In this paper we present the first-light results from the commissioning run and the beginning of the GALAH Survey, including performance results such as throughput and resolution, as well as instrument reliability. We compare the abundance calculations from the pilot survey to those in the literature.

  3. Efficient photonic reformatting of celestial light for diffraction-limited spectroscopy

    NASA Astrophysics Data System (ADS)

    MacLachlan, D. G.; Harris, R. J.; Gris-Sánchez, I.; Morris, T. J.; Choudhury, D.; Gendron, E.; Basden, A. G.; Spaleniak, I.; Arriola, A.; Birks, T. A.; Allington-Smith, J. R.; Thomson, R. R.

    2017-02-01

    The spectral resolution of a dispersive astronomical spectrograph is limited by the trade-off between throughput and the width of the entrance slit. Photonic guided wave transitions have been proposed as a route to bypass this trade-off, by enabling the efficient reformatting of incoherent seeing-limited light collected by the telescope into a linear array of single modes: a pseudo-slit which is highly multimode in one axis but diffraction-limited in the dispersion axis of the spectrograph. It is anticipated that the size of a single-object spectrograph fed with light in this manner would be essentially independent of the telescope aperture size. A further anticipated benefit is that such spectrographs would be free of `modal noise', a phenomenon that occurs in high-resolution multimode fibre-fed spectrographs due to the coherent nature of the telescope point spread function (PSF). We seek to address these aspects by integrating a multicore fibre photonic lantern with an ultrafast laser inscribed three-dimensional waveguide interconnect to spatially reformat the modes within the PSF into a diffraction-limited pseudo-slit. Using the CANARY adaptive optics (AO) demonstrator on the William Herschel Telescope, and 1530 ± 80 nm stellar light, the device exhibits a transmission of 47-53 per cent depending upon the mode of AO correction applied. We also show the advantage of using AO to couple light into such a device by sampling only the core of the CANARY PSF. This result underscores the possibility that a fully optimized guided-wave device can be used with AO to provide efficient spectroscopy at high spectral resolution.

  4. Optical design of MEMS-based infrared multi-object spectrograph concept for the Gemini South Telescope

    NASA Astrophysics Data System (ADS)

    Chen, Shaojie; Sivanandam, Suresh; Moon, Dae-Sik

    2016-08-01

    We discuss the optical design of an infrared multi-object spectrograph (MOS) concept that is designed to take advantage of the multi-conjugate adaptive optics (MCAO) corrected field at the Gemini South telescope. This design employs a unique, cryogenic MEMS-based focal plane mask to select target objects for spectroscopy by utilizing the Micro-Shutter Array (MSA) technology originally developed for the Near Infrared Spectrometer (NIRSpec) of the James Webb Space Telescope (JWST). The optical design is based on all spherical refractive optics, which serves both imaging and spectroscopic modes across the wavelength range of 0.9-2.5 μm. The optical system consists of a reimaging system, MSA, collimator, volume phase holographic (VPH) grisms, and spectrograph camera optics. The VPH grisms, which are VPH gratings sandwiched between two prisms, provide high dispersing efficiencies, and a set of several VPH grisms provide the broad spectral coverage at high throughputs. The imaging mode is implemented by removing the MSA and the dispersing unit out of the beam. We optimize both the imaging and spectrographic modes simultaneously, while paying special attention to the performance of the pupil imaging at the cold stop. Our current design provides a 1' ♢ 1' and a 0.5' ♢ 1' field of views for imaging and spectroscopic modes, respectively, on a 2048 × 2048 pixel HAWAII-2RG detector array. The spectrograph's slit width and spectral resolving power are 0.18'' and 3,000, respectively, and spectra of up to 100 objects can be obtained simultaneously. We present the overall results of simulated performance using optical model we designed.

  5. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1981-01-01

    This drawing illustrates the Hubble Space Telescope's (HST's), Goddard High-Resolution Spectrograph (GHRS). The HST's two spectrographs, the GHRS and the Faint Object Spectrograph (FOS), can detect a broader range of wavelengths than is possible from Earth because there is no atmosphere to absorb certain wavelengths. Scientists can determine the chemical composition, temperature, pressure, and turbulence of the stellar atmosphere producing the light, all from spectral data. The GHRS can detect fine details in the light from somewhat brighter objects but only ultraviolet light. Both spectrographs operate in essentially the same way. The incoming light passes through a small entrance aperture, then passes through filters and diffraction gratings, that work like prisms. The filter or grating used determines what range of wavelength will be examined and in what detail. Then the spectrograph detectors record the strength of each wavelength band and sends it back to Earth. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  6. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1981-01-01

    This drawing illustrates the Hubble Space Telescope's (HST's), Faint Object Spectrograph (FOS). The HST's two spectrographs, the Goddard High-Resolution Spectrograph and the FOS, can detect a broader range of wavelengths than is possible from the Earth because there is no atmosphere to absorb certain wavelengths. Scientists can determine the chemical composition, temperature, pressure, and turbulence of the stellar atmosphere producing the light, all from spectral data. The FOC can detect detail in very faint objects, such as those at great distances, and light ranging from ultraviolet to red spectral bands. Both spectrographs operate in essentially the same way. The incoming light passes through a small entrance aperture, then passes through filters and diffraction gratings, that work like prisms. The filter or grating used determines what range of wavelength will be examined and in what detail. Then the spectrograph detectors record the strength of each wavelength band and sends it back to Earth. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  7. PRAXIS: a near infrared spectrograph optimised for OH suppression

    NASA Astrophysics Data System (ADS)

    Ellis, S. C.; Bauer, S.; Bland-Hawthorn, J.; Case, S.; Content, R.; Fechner, T.; Giannone, D.; Haynes, R.; Hernandez, E.; Horton, A. J.; Klauser, U.; Lawrence, J. S.; Leon-Saval, S. G.; Lindley, E.; Löhmannsröben, H.-G.; Min, S.-S.; Pai, N.; Roth, M.; Shortridge, K.; Staszak, Nicholas F.; Tims, Julia; Xavier, Pascal; Zhelem, Ross

    2016-08-01

    Atmospheric emission from OH molecules is a long standing problem for near-infrared astronomy. PRAXIS is a unique spectrograph, currently in the build-phase, which is fed by a fibre array that removes the OH background. The OH suppression is achieved with fibre Bragg gratings, which were tested successfully on the GNOSIS instrument. PRAXIS will use the same fibre Bragg gratings as GNOSIS in the first implementation, and new, less expensive and more efficient, multicore fibre Bragg gratings in the second implementation. The OH lines are suppressed by a factor of 1000, and the expected increase in the signal-to-noise in the interline regions compared to GNOSIS is a factor of 9 with the GNOSIS gratings and a factor of 17 with the new gratings. PRAXIS will enable the full exploitation of OH suppression for the first time, which was not achieved by GNOSIS due to high thermal emission, low spectrograph transmission, and detector noise. PRAXIS will have extremely low thermal emission, through the cooling of all significantly emitting parts, including the fore-optics, the fibre Bragg gratings, a long length of fibre, and a fibre slit, and an optical design that minimises leaks of thermal emission from outside the spectrograph. PRAXIS will achieve low detector noise through the use of a Hawaii-2RG detector, and a high throughput through an efficient VPH based spectrograph. The scientific aims of the instrument are to determine the absolute level of the interline continuum and to enable observations of individual objects via an IFU. PRAXIS will first be installed on the AAT, then later on an 8m class telescope.

  8. Prime Focus Spectrograph for the Subaru telescope: massively multiplexed optical and near-infrared fiber spectrograph

    NASA Astrophysics Data System (ADS)

    Sugai, Hajime; Tamura, Naoyuki; Karoji, Hiroshi; Shimono, Atsushi; Takato, Naruhisa; Kimura, Masahiko; Ohyama, Youichi; Ueda, Akitoshi; Aghazarian, Hrand; de Arruda, Marcio Vital; Barkhouser, Robert H.; Bennett, Charles L.; Bickerton, Steve; Bozier, Alexandre; Braun, David F.; Bui, Khanh; Capocasale, Christopher M.; Carr, Michael A.; Castilho, Bruno; Chang, Yin-Chang; Chen, Hsin-Yo; Chou, Richard C. Y.; Dawson, Olivia R.; Dekany, Richard G.; Ek, Eric M.; Ellis, Richard S.; English, Robin J.; Ferrand, Didier; Ferreira, Décio; Fisher, Charles D.; Golebiowski, Mirek; Gunn, James E.; Hart, Murdock; Heckman, Timothy M.; Ho, Paul T. P.; Hope, Stephen; Hovland, Larry E.; Hsu, Shu-Fu; Hu, Yen-Shan; Huang, Pin Jie; Jaquet, Marc; Karr, Jennifer E.; Kempenaar, Jason G.; King, Matthew E.; le Fèvre, Olivier; Mignant, David Le; Ling, Hung-Hsu; Loomis, Craig; Lupton, Robert H.; Madec, Fabrice; Mao, Peter; Souza Marrara, Lucas; Ménard, Brice; Morantz, Chaz; Murayama, Hitoshi; Murray, Graham J.; Cesar de Oliveira, Antonio; Mendes de Oliveira, Claudia; Souza de Oliveira, Ligia; Orndorff, Joe D.; de Paiva Vilaça, Rodrigo; Partos, Eamon J.; Pascal, Sandrine; Pegot-Ogier, Thomas; Reiley, Daniel J.; Riddle, Reed; Santos, Leandro; dos Santos, Jesulino Bispo; Schwochert, Mark A.; Seiffert, Michael D.; Smee, Stephen A.; Smith, Roger M.; Steinkraus, Ronald E.; Sodré, Laerte; Spergel, David N.; Surace, Christian; Tresse, Laurence; Vidal, Clément; Vives, Sebastien; Wang, Shiang-Yu; Wen, Chih-Yi; Wu, Amy C.; Wyse, Rosie; Yan, Chi-Hung

    2015-07-01

    The Prime Focus Spectrograph (PFS) is an optical/near-infrared multifiber spectrograph with 2394 science fibers distributed across a 1.3-deg diameter field of view at the Subaru 8.2-m telescope. The wide wavelength coverage from 0.38 μm to 1.26 μm, with a resolving power of 3000, simultaneously strengthens its ability to target three main survey programs: cosmology, galactic archaeology and galaxy/AGN evolution. A medium resolution mode with a resolving power of 5000 for 0.71 μm to 0.89 μm will also be available by simply exchanging dispersers. We highlight some of the technological aspects of the design. To transform the telescope focal ratio, a broad-band coated microlens is glued to each fiber tip. A higher transmission fiber is selected for the longest part of the cable system, optimizing overall throughput; a fiber with low focal ratio degradation is selected for the fiber-positioner and fiber-slit components, minimizing the effects of fiber movements and fiber bending. Fiber positioning will be performed by a positioner consisting of two stages of piezo-electric rotary motors. The positions of these motors are measured by taking an image of artificially back-illuminated fibers with the metrology camera located in the Cassegrain container; the fibers are placed in the proper location by iteratively measuring and then adjusting the positions of the motors. Target light reaches one of the four identical fast-Schmidt spectrograph modules, each with three arms. The PFS project has passed several project-wide design reviews and is now in the construction phase.

  9. Exploring the Universe with the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A general overview is given of the operations, engineering challenges, and components of the Hubble Space Telescope. Deployment, checkout and servicing in space are discussed. The optical telescope assembly, focal plane scientific instruments, wide field/planetary camera, faint object spectrograph, faint object camera, Goddard high resolution spectrograph, high speed photometer, fine guidance sensors, second generation technology, and support systems and services are reviewed.

  10. High-resolution ground-based spectroscopy: where and how ?

    NASA Astrophysics Data System (ADS)

    Pallavicini, R.

    2002-07-01

    An overview is presented of high-resolution optical spectrographs in operation or under development at large telescopes, with emphasis on those facilities best suited for the study of late-type stars and stellar surface inhomogeneities. Plans for the development of new high-resolution spectroscopic instruments are discussed with emphasis on the ICE spectrograph for the PEPSI spectropolarimeter at the LBT.

  11. Conversational high resolution mass spectrographic data reduction

    NASA Technical Reports Server (NTRS)

    Romiez, M. P.

    1973-01-01

    A FORTRAN 4 program is described which reduces the data obtained from a high resolution mass spectrograph. The program (1) calculates an accurate mass for each line on the photoplate, and (2) assigns elemental compositions to each accurate mass. The program is intended for use in a time-shared computing environment and makes use of the conversational aspects of time-sharing operating systems.

  12. Development of micro-mirror slicer integral field unit for space-borne solar spectrographs

    NASA Astrophysics Data System (ADS)

    Suematsu, Yoshinori; Saito, Kosuke; Koyama, Masatsugu; Enokida, Yukiya; Okura, Yukinobu; Nakayasu, Tomoyasu; Sukegawa, Takashi

    2017-12-01

    We present an innovative optical design for image slicer integral field unit (IFU) and a manufacturing method that overcomes optical limitations of metallic mirrors. Our IFU consists of a micro-mirror slicer of 45 arrayed, highly narrow, flat metallic mirrors and a pseudo-pupil-mirror array of off-axis conic aspheres forming three pseudo slits of re-arranged slicer images. A prototype IFU demonstrates that the final optical quality is sufficiently high for a visible light spectrograph. Each slicer micro-mirror is 1.58 mm long and 30 μm wide with surface roughness ≤1 nm rms, and edge sharpness ≤ 0.1 μm, etc. This IFU is small size and can be implemented in a multi-slit spectrograph without any moving mechanism and fore optics, in which one slit is real and the others are pseudo slits from the IFU. The IFU mirrors were deposited by a space-qualified, protected silver coating for high reflectivity in visible and near IR wavelength regions. These properties are well suitable for space-borne spectrograph such as the future Japanese solar space mission SOLAR-C. We present the optical design, performance of prototype IFU, and space qualification tests of the silver coating.

  13. The end-to-end simulator for the E-ELT HIRES high resolution spectrograph

    NASA Astrophysics Data System (ADS)

    Genoni, M.; Landoni, M.; Riva, M.; Pariani, G.; Mason, E.; Di Marcantonio, P.; Disseau, K.; Di Varano, I.; Gonzalez, O.; Huke, P.; Korhonen, H.; Li Causi, Gianluca

    2017-06-01

    We present the design, architecture and results of the End-to-End simulator model of the high resolution spectrograph HIRES for the European Extremely Large Telescope (E-ELT). This system can be used as a tool to characterize the spectrograph both by engineers and scientists. The model allows to simulate the behavior of photons starting from the scientific object (modeled bearing in mind the main science drivers) to the detector, considering also calibration light sources, and allowing to perform evaluation of the different parameters of the spectrograph design. In this paper, we will detail the architecture of the simulator and the computational model which are strongly characterized by modularity and flexibility that will be crucial in the next generation astronomical observation projects like E-ELT due to of the high complexity and long-time design and development. Finally, we present synthetic images obtained with the current version of the End-to-End simulator based on the E-ELT HIRES requirements (especially high radial velocity accuracy). Once ingested in the Data reduction Software (DRS), they will allow to verify that the instrument design can achieve the radial velocity accuracy needed by the HIRES science cases.

  14. Fiber IFU unit for the second generation VLT spectrograph KMOS

    NASA Astrophysics Data System (ADS)

    Tomono, Daigo; Weisz, Harald; Hofmann, Reiner

    2003-03-01

    KMOS is a cryogenic multi-object near-infrared spectrograph for the VLT. It will be equipped with about 20 deployable integral field units (IFUs) which can be positioned anywhere in the 7.2 arcmin diameter field o the VLT Nasmyth focus by a cryogenic robot. We describe IFUs using micro lens arrays and optical fibers to arrange the two-dimensional fields from the IFUs on the spectrograph entrance slit. Each micro-lens array is mounted in a spider arm which also houses the pre-optics with a cold stop. The spider arms are positioned by a cryogenic robot which is built around the image plane. For the IFUs, two solutions are considered: monolithic mirco-lens arrays with fibers attached to the back where the entrance pupil is imaged, and tapered fibers with integrated lenses which are bundled together to form a lens array. The flexibility of optical fibers relaxes boundary conditions for integration of the instrument components. On the other hand, FRD and geometric characteristics of optical fibers leads to higher AΩ accepted by the spectrograph. Conceptual design of the instrument is presented as well as advantages and disadvantages of the fiber IFUs.

  15. Opto-mechanical design of an image slicer for the GRIS spectrograph at GREGOR

    NASA Astrophysics Data System (ADS)

    Vega Reyes, N.; Esteves, M. A.; Sánchez-Capuchino, J.; Salaun, Y.; López, R. L.; Gracia, F.; Estrada Herrera, P.; Grivel, C.; Vaz Cedillo, J. J.; Collados, M.

    2016-07-01

    An image slicer has been proposed for the Integral Field Spectrograph [1] of the 4-m European Solar Telescope (EST) [2] The image slicer for EST is called MuSICa (Multi-Slit Image slicer based on collimator-Camera) [3] and it is a telecentric system with diffraction limited optical quality offering the possibility to obtain high resolution Integral Field Solar Spectroscopy or Spectro-polarimetry by coupling a polarimeter after the generated slit (or slits). Considering the technical complexity of the proposed Integral Field Unit (IFU), a prototype has been designed for the GRIS spectrograph at GREGOR telescope at Teide Observatory (Tenerife), composed by the optical elements of the image slicer itself, a scanning system (to cover a larger field of view with sequential adjacent measurements) and an appropriate re-imaging system. All these subsystems are placed in a bench, specially designed to facilitate their alignment, integration and verification, and their easy installation in front of the spectrograph. This communication describes the opto-mechanical solution adopted to upgrade GRIS while ensuring repeatability between the observational modes, IFU and long-slit. Results from several tests which have been performed to validate the opto-mechanical prototypes are also presented.

  16. The SED Machine: A Robotic Spectrograph for Fast Transient Classification

    NASA Astrophysics Data System (ADS)

    Blagorodnova, Nadejda; Neill, James D.; Walters, Richard; Kulkarni, Shrinivas R.; Fremling, Christoffer; Ben-Ami, Sagi; Dekany, Richard G.; Fucik, Jason R.; Konidaris, Nick; Nash, Reston; Ngeow, Chow-Choong; Ofek, Eran O.; O’ Sullivan, Donal; Quimby, Robert; Ritter, Andreas; Vyhmeister, Karl E.

    2018-03-01

    Current time domain facilities are finding several hundreds of transient astronomical events a year. The discovery rate is expected to increase in the future as soon as new surveys such as the Zwicky Transient Facility (ZTF) and the Large Synoptic Sky Survey (LSST) come online. Presently, the rate at which transients are classified is approximately one order or magnitude lower than the discovery rate, leading to an increasing “follow-up drought”. Existing telescopes with moderate aperture can help address this deficit when equipped with spectrographs optimized for spectral classification. Here, we provide an overview of the design, operations and first results of the Spectral Energy Distribution Machine (SEDM), operating on the Palomar 60-inch telescope (P60). The instrument is optimized for classification and high observing efficiency. It combines a low-resolution (R ∼ 100) integral field unit (IFU) spectrograph with “Rainbow Camera” (RC), a multi-band field acquisition camera which also serves as multi-band (ugri) photometer. The SEDM was commissioned during the operation of the intermediate Palomar Transient Factory (iPTF) and has already lived up to its promise. The success of the SEDM demonstrates the value of spectrographs optimized for spectral classification.

  17. Can we use adaptive optics for UHR spectroscopy with PEPSI at the LBT?

    NASA Astrophysics Data System (ADS)

    Sacco, Germano G.; Pallavicini, Roberto; Spano, Paolo; Andersen, Michael; Woche, Manfred F.; Strassmeier, Klaus G.

    2004-10-01

    We investigate the potential of using adaptive optics (AO) in the V, R, and I bands to reach ultra-high resolution (UHR, R >= 200,000) in echelle spectrographs at 8-10m telescopes. In particular, we investigate the possibility of implementing an UHR mode for the fiber-fed spectrograph PEPSI (Potsdam Echelle Polarimetric and Spectrographic Instrument) being developed for the Large Binocular Telescope (LBT). By simulating the performances of the advanced AO system that will be available at first light at the LBT, and by using first-order estimates of the spectrograph performances, we calculate the total efficiency and signal to noise ratio (SNR) of PEPSI in the AO mode for stars of different magnitudes, different fiber core sizes, and different fractions of incident light diverted to the wavefront sensor. We conclude that AO can provide a significant advantage, of up to a factor ~2 in the V, R and I bands, for stars brighter than mR ~ 12 - 13. However, if these stars are observed at UHR in non-AO mode, slit losses caused by the need to use a very narrow slit can be compensated more effectively by the use of image slicers.

  18. Solar glint suppression in compact planetary ultraviolet spectrographs

    NASA Astrophysics Data System (ADS)

    Davis, Michael W.; Cook, Jason C.; Grava, Cesare; Greathouse, Thomas K.; Gladstone, G. Randall; Retherford, Kurt D.

    2015-08-01

    Solar glint suppression is an important consideration in the design of compact photon-counting ultraviolet spectrographs. Southwest Research Institute developed the Lyman Alpha Mapping Project for the Lunar Reconnaissance Orbiter (launch in 2009), and the Ultraviolet Spectrograph on Juno (Juno-UVS, launch in 2011). Both of these compact spectrographs revealed minor solar glints in flight that did not appear in pre-launch analyses. These glints only appeared when their respective spacecraft were operating outside primary science mission parameters. Post-facto scattered light analysis verifies the geometries at which these glints occurred and why they were not caught during ground testing or nominal mission operations. The limitations of standard baffle design at near-grazing angles are discussed, as well as the importance of including surface scatter properties in standard stray light analyses when determining solar keep-out efficiency. In particular, the scattered light analysis of these two instruments shows that standard "one bounce" assumptions in baffle design are not always enough to prevent scattered sunlight from reaching the instrument focal plane. Future builds, such as JUICE-UVS, will implement improved scattered and stray light modeling early in the design phase to enhance capabilities in extended mission science phases, as well as optimize solar keep out volume.

  19. Instrumentation progress at the Giant Magellan Telescope project

    NASA Astrophysics Data System (ADS)

    Jacoby, George H.; Bernstein, R.; Bouchez, A.; Colless, M.; Crane, Jeff; DePoy, D.; Espeland, B.; Hare, Tyson; Jaffe, D.; Lawrence, J.; Marshall, J.; McGregor, P.; Shectman, Stephen; Sharp, R.; Szentgyorgyi, A.; Uomoto, Alan; Walls, B.

    2016-08-01

    Instrument development for the 24m Giant Magellan Telescope (GMT) is described: current activities, progress, status, and schedule. One instrument team has completed its preliminary design and is currently beginning its final design (GCLEF, an optical 350-950 nm, high-resolution and precision radial velocity echelle spectrograph). A second instrument team is in its conceptual design phase (GMACS, an optical 350-950 nm, medium resolution, 6-10 arcmin field, multi-object spectrograph). A third instrument team is midway through its preliminary design phase (GMTIFS, a near-IR YJHK diffraction-limited imager/integral-field-spectrograph), focused on risk reduction prototyping and design optimization. A fourth instrument team is currently fabricating the 5 silicon immersion gratings needed to begin its preliminary design phase (GMTNIRS, a simultaneous JHKLM high-resolution, AO-fed, echelle spectrograph). And, another instrument team is focusing on technical development and prototyping (MANIFEST, a facility robotic, multifiber feed, with a 20 arcmin field of view). In addition, a medium-field (6 arcmin, 0.06 arcsec/pix) optical imager will support telescope and AO commissioning activities, and will excel at narrow-band imaging. In the spirit of advancing synergies with other groups, the challenges of running an ELT instrument program and opportunities for cross-ELT collaborations are discussed.

  20. Performance of the FOS and GHRS Pt/(Cr)-Ne Hollow-cathode Lamps after their Return from Space and Comparison with Archival Data

    NASA Technical Reports Server (NTRS)

    Kerber, Florian; Lindler, Don; Bristow, Paul; Lembke, Dominik; Nave, Gillian; Reader, Joseph; Sansonetti, Craig J.; Heap, Sara R.; Rosa, Michael R.; Wood, H. John

    2006-01-01

    The Space Telescope European Coordinating Facility (ST-ECF) and National Institute of Standards and Technology (NIST) are collaborating to study hollow cathode calibration lamps as used onboard the Hubble Space Telescope (HST). As part of the STIS Calibration Enhancement (STIS-CE) Project we are trying to improve our understanding of the performance of hollow cathode lamps and the physical processes involved in their long term operation. The original flight lamps from the Faint Object Spectrograph (FOS) and the Goddard High Resolution Spectrograph (GHRS) are the only lamps that have ever been returned to Earth after extended operation in space. We have taken spectra of all four lamps using NIST s 10.7-m normal-incidence spectrograph and Fourier transform spectrometer (FTS) optimized for use in the ultraviolet (UV). These spectra, together with spectra archived from six years of on-orbit operations and pre-launch spectra, provide a unique data set - covering a period of about 20 years - for studying aging effects in these lamps. Our findings represent important lessons for the choice and design of calibration sources and their operation in future UV and optical spectrographs in space.

  1. PISCES High Contrast Integral Field Spectrograph Simulations and Data Reduction Pipeline

    NASA Technical Reports Server (NTRS)

    Llop Sayson, Jorge Domingo; Memarsadeghi, Nargess; McElwain, Michael W.; Gong, Qian; Perrin, Marshall; Brandt, Timothy; Grammer, Bryan; Greeley, Bradford; Hilton, George; Marx, Catherine

    2015-01-01

    The PISCES (Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies) is a lenslet array based integral field spectrograph (IFS) designed to advance the technology readiness of the WFIRST (Wide Field Infrared Survey Telescope)-AFTA (Astrophysics Focused Telescope Assets) high contrast Coronagraph Instrument. We present the end to end optical simulator and plans for the data reduction pipeline (DRP). The optical simulator was created with a combination of the IDL (Interactive Data Language)-based PROPER (optical propagation) library and Zemax (a MatLab script), while the data reduction pipeline is a modified version of the Gemini Planet Imager's (GPI) IDL pipeline. The simulations of the propagation of light through the instrument are based on Fourier transform algorithms. The DRP enables transformation of the PISCES IFS data to calibrated spectral data cubes.

  2. The Hubble Spectroscopic Legacy Archive

    NASA Astrophysics Data System (ADS)

    Peeples, Molly S.; Tumlinson, Jason; Fox, Andrew; Aloisi, Alessandra; Ayres, Thomas R.; Danforth, Charles; Fleming, Scott W.; Jenkins, Edward B.; Jedrzejewski, Robert I.; Keeney, Brian A.; Oliveira, Cristina M.

    2016-01-01

    With no future space ultraviolet instruments currently planned, the data from the UV spectrographs aboard the Hubble Space Telescope have a legacy value beyond their initial science goals. The Hubble Spectroscopic Legacy Archive will provide to the community new science-grade combined spectra for all publicly available data obtained by the Cosmic Origins Spectrograph (COS) and the Space Telescope Imaging Spectrograph (STIS). These data will be packaged into "smart archives" according to target type and scientific themes to facilitate the construction of archival samples for common science uses. A new "quick look" capability will make the data easy for users to quickly access, assess the quality of, and download for archival science starting in Cycle 24, with the first generation of these products for the FUV modes of COS available online via MAST in early 2016.

  3. Sensitive far uv spectrograph with a multispectral element microchannel plate detector for rocket-borne astronomy.

    PubMed

    Weiser, H; Vitz, R C; Moos, H W; Weinstein, A

    1976-12-01

    An evacuated high transmission prism spectrograph using a microchannel plate detection system with resistive strip readout was flown behind a precision pointing telescope on a sounding rocket. The construction, preparation, flight performance, and calibration stability of the system are discussed. Despite the adverse environmental conditions associated with sounding rocket flights, the microchannel detector system performed well. Far uv spectra (1160-1750 A) of stellar and planetary objects were obtained; spectral features with fluxes as low as 0.06 photons cm(-2) sec(-1) were detectable. This was achieved by operating the plates at lower than normal gains, using sensitive pulse counting electronics with both upper and lower limit discriminators, and maintaining the spectrograph and detector at a pressure of ~10(-6) Torr until reaching altitude.

  4. The Extreme Ultraviolet Spectrograph Sounding Rocket Payload: Recent Modifications for Planetary Observations in the EUV/FUV

    NASA Technical Reports Server (NTRS)

    Slater, David C.; Stern, S. Alan; Scherrer, John; Cash, Webster; Green, James C.; Wilkinson, Erik

    1995-01-01

    We report on the status of modifications to an existing extreme ultraviolet (EUV) telescope/spectrograph sounding rocket payload for planetary observations in the 800 - 1200 A wavelength band. The instrument is composed of an existing Wolter Type 2 grazing incidence telescope, a newly built 0.4-m normal incidence Rowland Circle spectrograph, and an open-structure resistive-anode microchannel plate detector. The modified payload has successfully completed three NASA sounding rocket flights within 1994-1995. Future flights are anticipated for additional studies of planetary and cometary atmospheres and interstellar absorption. A detailed description of the payload, along with the performance characteristics of the integrated instrument are presented. In addition, some preliminary flight results from the above three missions are also presented.

  5. EXPRES: a next generation RV spectrograph in the search for earth-like worlds

    NASA Astrophysics Data System (ADS)

    Jurgenson, C.; Fischer, D.; McCracken, T.; Sawyer, D.; Szymkowiak, A.; Davis, A.; Muller, G.; Santoro, F.

    2016-08-01

    The EXtreme PREcision Spectrograph (EXPRES) is an optical fiber fed echelle instrument being designed and built at the Yale Exoplanet Laboratory to be installed on the 4.3-meter Discovery Channel Telescope operated by Lowell Observatory. The primary science driver for EXPRES is to detect Earth-like worlds around Sun-like stars. With this in mind, we are designing the spectrograph to have an instrumental precision of 15 cm/s so that the on-sky measurement precision (that includes modeling for RV noise from the star) can reach to better than 30 cm/s. This goal places challenging requirements on every aspect of the instrument development, including optomechanical design, environmental control, image stabilization, wavelength calibration, and data analysis. In this paper we describe our error budget, and instrument optomechanical design.

  6. Advances in instrumentation at the W. M. Keck Observatory

    NASA Astrophysics Data System (ADS)

    Adkins, Sean M.; Armandroff, Taft E.; Johnson, James; Lewis, Hilton A.; Martin, Christopher; McLean, Ian S.; Wizinowich, Peter

    2012-09-01

    In this paper we describe both recently completed instrumentation projects and our current development efforts in terms of their role in the strategic plan, the key science areas they address, and their performance as measured or predicted. Projects reaching completion in 2012 include MOSFIRE, a near IR multi-object spectrograph, a laser guide star adaptive optics facility on the Keck I telescope, and an upgrade to the guide camera for the HIRES instrument on Keck I. Projects in development include a new seeing limited integral field spectrograph for the visible wavelength range called the Keck Cosmic Web Imager (KCWI), an upgrade to the telescope control systems on both Keck telescopes, a near-IR tip/tilt sensor for the Keck I adaptive optics system, and a new grating for the OSIRIS integral field spectrograph.

  7. VizieR Online Data Catalog: Astrometry and photometry of nearby white dwarfs (Limoges+, 2013)

    NASA Astrophysics Data System (ADS)

    Limoges, M.-M.; Lepine, S.; Bergeron, P.

    2014-06-01

    Optical spectra have been obtained with the Steward Observatory 2.3m telescope and the B&C spectrograph on 2009 May, 2009 Nov, 2010 July, with the NOAO Mayall 4m telescope and the RC spectrograph on 2009 Aug, 2010 Mar, 2010 Oct, and with the NOAO 2.1m and the Goldcam spectrograph on 2009 Dec, 2010 May. The adopted configurations allow a spectral coverage of λλ3800-5600 and λλ3800-6700, at an intermediate resolution of ~6ÅFWHM. Spectra were first obtained at low signal-to-noise ratio (S/N ~25). As a result of our spectroscopic observations, 193 newly identified white dwarfs from the SUPERBLINK catalog have been spectroscopically confirmed (Tables 3 and 4). (3 data files).

  8. Space telescope scientific instruments

    NASA Technical Reports Server (NTRS)

    Leckrone, D. S.

    1979-01-01

    The paper describes the Space Telescope (ST) observatory, the design concepts of the five scientific instruments which will conduct the initial observatory observations, and summarizes their astronomical capabilities. The instruments are the wide-field and planetary camera (WFPC) which will receive the highest quality images, the faint-object camera (FOC) which will penetrate to the faintest limiting magnitudes and achieve the finest angular resolution possible, and the faint-object spectrograph (FOS), which will perform photon noise-limited spectroscopy and spectropolarimetry on objects substantially fainter than those accessible to ground-based spectrographs. In addition, the high resolution spectrograph (HRS) will provide higher spectral resolution with greater photometric accuracy than previously possible in ultraviolet astronomical spectroscopy, and the high-speed photometer will achieve precise time-resolved photometric observations of rapidly varying astronomical sources on short time scales.

  9. CARMENES instrument overview

    NASA Astrophysics Data System (ADS)

    Quirrenbach, A.; Amado, P. J.; Caballero, J. A.; Mundt, R.; Reiners, A.; Ribas, I.; Seifert, W.; Abril, M.; Aceituno, J.; Alonso-Floriano, F. J.; Ammler-von Eiff, M.; Antona Jiménez, R.; Anwand-Heerwart, H.; Azzaro, M.; Bauer, F.; Barrado, D.; Becerril, S.; Béjar, V. J. S.; Benítez, D.; Berdiñas, Z. M.; Cárdenas, M. C.; Casal, E.; Claret, A.; Colomé, J.; Cortés-Contreras, M.; Czesla, S.; Doellinger, M.; Dreizler, S.; Feiz, C.; Fernández, M.; Galadí, D.; Gálvez-Ortiz, M. C.; García-Piquer, A.; García-Vargas, M. L.; Garrido, R.; Gesa, L.; Gómez Galera, V.; González Álvarez, E.; González Hernández, J. I.; Grözinger, U.; Guàrdia, J.; Guenther, E. W.; de Guindos, E.; Gutiérrez-Soto, J.; Hagen, H.-J.; Hatzes, A. P.; Hauschildt, P. H.; Helmling, J.; Henning, T.; Hermann, D.; Hernández Castaño, L.; Herrero, E.; Hidalgo, D.; Holgado, G.; Huber, A.; Huber, K. F.; Jeffers, S.; Joergens, V.; de Juan, E.; Kehr, M.; Klein, R.; Kürster, M.; Lamert, A.; Lalitha, S.; Laun, W.; Lemke, U.; Lenzen, R.; López del Fresno, Mauro; López Martí, B.; López-Santiago, J.; Mall, U.; Mandel, H.; Martín, E. L.; Martín-Ruiz, S.; Martínez-Rodríguez, H.; Marvin, C. J.; Mathar, R. J.; Mirabet, E.; Montes, D.; Morales Muñoz, R.; Moya, A.; Naranjo, V.; Ofir, A.; Oreiro, R.; Pallé, E.; Panduro, J.; Passegger, V.-M.; Pérez-Calpena, A.; Pérez Medialdea, D.; Perger, M.; Pluto, M.; Ramón, A.; Rebolo, R.; Redondo, P.; Reffert, S.; Reinhardt, S.; Rhode, P.; Rix, H.-W.; Rodler, F.; Rodríguez, E.; Rodríguez-López, C.; Rodríguez-Pérez, E.; Rohloff, R.-R.; Rosich, A.; Sánchez-Blanco, E.; Sánchez Carrasco, M. A.; Sanz-Forcada, J.; Sarmiento, L. F.; Schäfer, S.; Schiller, J.; Schmidt, C.; Schmitt, J. H. M. M.; Solano, E.; Stahl, O.; Storz, C.; Stürmer, J.; Suárez, J. C.; Ulbrich, R. G.; Veredas, G.; Wagner, K.; Winkler, J.; Zapatero Osorio, M. R.; Zechmeister, M.; Abellán de Paco, F. J.; Anglada-Escudé, G.; del Burgo, C.; Klutsch, A.; Lizon, J. L.; López-Morales, M.; Morales, J. C.; Perryman, M. A. C.; Tulloch, S. M.; Xu, W.

    2014-07-01

    This paper gives an overview of the CARMENES instrument and of the survey that will be carried out with it during the first years of operation. CARMENES (Calar Alto high-Resolution search for M dwarfs with Exoearths with Near-infrared and optical Echelle Spectrographs) is a next-generation radial-velocity instrument under construction for the 3.5m telescope at the Calar Alto Observatory by a consortium of eleven Spanish and German institutions. The scientific goal of the project is conducting a 600-night exoplanet survey targeting ~ 300 M dwarfs with the completed instrument. The CARMENES instrument consists of two separate echelle spectrographs covering the wavelength range from 0.55 to 1.7 μm at a spectral resolution of R = 82,000, fed by fibers from the Cassegrain focus of the telescope. The spectrographs are housed in vacuum tanks providing the temperature-stabilized environments necessary to enable a 1 m/s radial velocity precision employing a simultaneous calibration with an emission-line lamp or with a Fabry-Perot etalon. For mid-M to late-M spectral types, the wavelength range around 1.0 μm (Y band) is the most important wavelength region for radial velocity work. Therefore, the efficiency of CARMENES has been optimized in this range. The CARMENES instrument consists of two spectrographs, one equipped with a 4k x 4k pixel CCD for the range 0.55 - 1.05 μm, and one with two 2k x 2k pixel HgCdTe detectors for the range from 0.95 - 1.7μm. Each spectrograph will be coupled to the 3.5m telescope with two optical fibers, one for the target, and one for calibration light. The front end contains a dichroic beam splitter and an atmospheric dispersion corrector, to feed the light into the fibers leading to the spectrographs. Guiding is performed with a separate camera; on-axis as well as off-axis guiding modes are implemented. Fibers with octagonal cross-section are employed to ensure good stability of the output in the presence of residual guiding errors. The fibers are continually actuated to reduce modal noise. The spectrographs are mounted on benches inside vacuum tanks located in the coudé laboratory of the 3.5m dome. Each vacuum tank is equipped with a temperature stabilization system capable of keeping the temperature constant to within +/-0.01°C over 24 hours. The visible-light spectrograph will be operated near room temperature, while the near-IR spectrograph will be cooled to ~ 140 K. The CARMENES instrument passed its final design review in February 2013. The MAIV phase is currently ongoing. First tests at the telescope are scheduled for early 2015. Completion of the full instrument is planned for the fall of 2015. At least 600 useable nights have been allocated at the Calar Alto 3.5m Telescope for the CARMENES survey in the time frame until 2018. A data base of M stars (dubbed CARMENCITA) has been compiled from which the CARMENES sample can be selected. CARMENCITA contains information on all relevant properties of the potential targets. Dedicated imaging, photometric, and spectroscopic observations are underway to provide crucial data on these stars that are not available in the literature.

  10. On-sky calibration performance of a monolithic Michelson interferometer filtered source

    NASA Astrophysics Data System (ADS)

    Ge, Jian; Ma, Bo; Powell, Scott; Varosi, Frank; Schofield, Sidney; Grieves, Nolan; Liu, Jian

    2014-07-01

    In the new era of searching for Earth-like planets, new generation radial velocity (RV) high resolution spectrographs requires ~0.1 m/s Doppler calibration accuracy in the visible band and a similar calibration precision in the near infrared. The patented stable monolithic Michelson interferometer filtered source called the Sine source emerges as a very promising calibration device. This Sine source has the potential of covering the practical working wavelengths (~0.38- 2.5 μm) for Doppler measurements with high resolution optical and near infrared high resolution spectrographs at the ground-based telescopes. The single frame calibration precision can reach < 0.1 m/s for the state of the art spectrographs, and it can be easily designed to match the intrinsic sensitivities of future Doppler instruments. The Sine source also has the great practical advantages in compact (portable) size and low cost. Here we report early results from on-sky calibration of a Sine source measured with two state-of-the-art TOU optical high resolution spectrograph (R=100,000, 0.38-0.9 microns) and FIRST near infrared spectrograph (R=50,000, 0.8-1.8 microns) at a 2 meter robotic telescope at Fairborn Observatory in Arizona. The results with the TOU spectrograph monitoring over seven days show that the Sine source has produced ~3 times better calibration precision than the ThAr calibration (RMS = 2.7m/s vs. 7.4m/s) at 0.49-0.62 microns where calibration data have been processed by our preliminary data pipeline and ~1.4 times better than the iodine absorption spectra (RMS=3.6 m/s) at the same wavelength region. As both ThAr and Iodine have reached sub m/s calibration accuracy with existing Doppler instruments (such as HARPS and HIRES), it is likely that the sine source would provide similar improvement once a better data pipeline and an upgraded version of a Sine source are developed. It is totally possible to reach ~0.1 m/s in the optical wavelength region. In addition, this Sine source offers potential very accurate calibration at 0.7-0.9 μm where ThAr lines are totally dominated by strong and saturated Argon lines and the ThAr calibration data are nearly useless. The early measurements with the FIRST near infrared spectrograph show that this Sine source produces very homogenous fringe modulations over 0.8-1.8 μm which can potentially provide better precision than the UrNe lamp for instrument drift measurements.

  11. Spectroscopic classification of Gaia17apq and Gaia17apv with Double Spectrograph on Palomar 200-inch telescope

    NASA Astrophysics Data System (ADS)

    Blagorodnova, N.; Adams, S.

    2017-03-01

    We report the classification of Gaia17apq and Gaia17apv (SN2017cao and SN2017cat), discovered by the Gaia ESA survey. The observations were performed on UT 2017-03-16 with the Double Spectrograph (DBSP; range 350-1000nm, spectral resolution R 4000) on Palomar 200-inch (P200) telescope.

  12. Evolution of Instrumentation for Detection of the Raman Effect as Driven by Available Technologies and by Developing Applications

    ERIC Educational Resources Information Center

    Adar, Fran; Delhaye, Michel; DaSilva, Edouard

    2007-01-01

    The evolution of Raman instrumentation from the time of the initial report of the phenomenon in 1928 to 2006 is discussed. The first instruments were prism-based spectrographs using lenses for collimation and focusing and the 21st century instruments are also spectrographs, but they use CCD cameras. The Lippmann filter technology that appears to…

  13. LUNAR SAMPLES - APOLLO XI - MSC

    NASA Image and Video Library

    1969-08-03

    S69-40740 (July 1969) --- Dr. Ross Taylor (seated), Australian National University, and John Allen, Brown and Root-Northrop technician, review preliminary data from the optical emission spectrograph in the Spectrographic Laboratory of the Physical-Chemical Test Laboratory. Tests were being conducted on lunar surface material collected by astronauts Neil A. Armstrong and Edwin E. Aldrin Jr. during their lunar surface extravehicular activity on July 20, 1969.

  14. NIRPS: an adaptive-optics assisted radial velocity spectrograph to chase exoplanets around M-stars

    NASA Astrophysics Data System (ADS)

    Wildi, F.; Blind, N.; Reshetov, V.; Hernandez, O.; Genolet, L.; Conod, U.; Sordet, M.; Segovilla, A.; Rasilla, J. L.; Brousseau, D.; Thibault, S.; Delabre, B.; Bandy, T.; Sarajlic, M.; Cabral, A.; Bovay, S.; Vallée, Ph.; Bouchy, F.; Doyon, R.; Artigau, E.; Pepe, F.; Hagelberg, J.; Melo, C.; Delfosse, X.; Figueira, P.; Santos, N. C.; González Hernández, J. I.; de Medeiros, J. R.; Rebolo, R.; Broeg, Ch.; Benz, W.; Boisse, I.; Malo, L.; Käufl, U.; Saddlemyer, L.

    2017-09-01

    Since 1st light in 2002, HARPS has been setting the standard in the exo-planet detection by radial velocity (RV) measurements[1]. Based on this experience, our consortium is developing a high accuracy near-infrared RV spectrograph covering YJH bands to detect and characterize low-mass planets in the habitable zone of M dwarfs. It will allow RV measurements at the 1-m/s level and will look for habitable planets around M- type stars by following up the candidates found by the upcoming space missions TESS, CHEOPS and later PLATO. NIRPS and HARPS, working simultaneously on the ESO 3.6m are bound to become a single powerful high-resolution, high-fidelity spectrograph covering from 0.4 to 1.8 micron. NIRPS will complement HARPS in validating earth-like planets found around G and K-type stars whose signal is at the same order of magnitude than the stellar noise. Because at equal resolving power the overall dimensions of a spectrograph vary linearly with the input beam étendue, spectrograph designed for seeing-limited observations are large and expensive. NIRPS will use a high order adaptive optics system to couple the starlight into a fiber corresponding to 0.4" on the sky as efficiently or better than HARPS or ESPRESSO couple the light 0.9" fiber. This allows the spectrograph to be very compact, more thermally stable and less costly. Using a custom tan(θ)=4 dispersion grating in combination with a start-of-the-art Hawaii4RG detector makes NIRPS very efficient with complete coverage of the YJH bands at 110'000 resolution. NIRPS works in a regime that is in-between the usual multi-mode (MM) where 1000's of modes propagates in the fiber and the single mode well suited for perfect optical systems. This regime called few-modes regime is prone to modal noise- Results from a significant R and D effort made to characterize and circumvent the modal noise show that this contribution to the performance budget shall not preclude the RV performance to be achieved.

  15. VizieR Online Data Catalog: The AllWISE motion survey (AllWISE2) (Kirkpatrick+, 2016)

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, J. D.; Kellogg, K.; Schneider, A. C.; Fajardo-Acosta, S.; Cushing, M. C.; Greco, J.; Mace, G. N.; Gelino, C. R.; Wright, E. L.; Eisenhardt, P. R. M.; Stern, D.; Faherty, J. K.; Sheppard, S. S.; Lansbury, G. B.; Logsdon, S. E.; Martin, E. C.; McLean, I. S.; Schurr, S. D.; Cutri, R. M.; Conrow, T.

    2016-07-01

    Observations for the spectroscopic follow-up of interesting AllWISE sources are listed in Table 4. Optical follow-up was conducted with the Palomar/Double Spectrograph on the Hale 5m telescope on Palomar Mountain, California, as our primary optical spectrograph in the northern hemisphere. It was used during the UT nights of 2014 January 26, February 23/24, April 22, June 25/26, July 21, September 27, October 24, and November 15 as well as 2015 June 08, September 07, and December 10. The Boller & Chivens Spectrograph (BCSpec) on the 2.5m Irenee duPont telescope at Las Campanas Observatory, Chile, served as our primary optical spectrograph in the southern hemisphere and was used on the UT nights of 2014 April 30, May 01-04, and November 16-20. Spectra of 10 objects were obtained on the UT nights of 2014 July 03-04 and 2015 December 07-10 at the European Southern Observatory (ESO) 3.58m New Technology Telescope (NTT) at La Silla, Chile. Spectra of seven objects were obtained on the UT nights of 2014 June 26, 2015 August 13, and 2015 December 05 with the Low Resolution Imaging Spectrometer (LRIS) at the 10m W. M. Keck Observatory on Mauna Kea, Hawaii. SpeX on the NASA 3m Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii, served as our primary near-infrared spectrograph in the northern hemisphere. The UT dates of observation were 2014 November 11 and 2015 January 27, May 08-09, June 27, July 03-05, and July 20. The Folded-port Infrared Echellette (FIRE) at the 6.5m Walter Baade Telescope at Las Campanas Observatory, Chile, served as our primary near-infrared spectrograph in the southern hemisphere. The UT dates of observation were 2014 August 07-09, 2015 February 08, and 2015 May 31. Several sources were also observed with the Near-Infrared Spectrometer (NIRSPEC) at the 10m W. M. Keck Observatory on Mauna Kea, Hawaii. The observation dates were UT 2014 April 12 and December 03, and 2015 July 03 and July 11. (9 data files).

  16. Immersion Gratings for Infrared High-resolution Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sarugaku, Yuki; Ikeda, Yuji; Kobayashi, Naoto; Kaji, Sayumi; Sukegawa, Takashi; Sugiyama, Shigeru; Nakagawa, Takao; Arasaki, Takayuki; Kondo, Sohei; Nakanishi, Kenshi; Yasui, Chikako; Kawakita, Hideyo

    2016-10-01

    High-resolution spectroscopy in the infrared wavelength range is essential for observations of minor isotopologues, such as HDO for water, and prebiotic organic molecules like hydrocarbons/P-bearing molecules because numerous vibrational molecular bands (including non-polar molecules) are located in this wavelength range. High spectral resolution enables us to detect weak lines without spectral line confusion. This technique has been widely used in planetary sciences, e.g., cometary coma (H2O, CO, and organic molecules), the martian atmosphere (CH4, CO2, H2O and HDO), and the upper atmosphere of gas giants (H3+ and organic molecules such as C2H6). Spectrographs with higher resolution (and higher sensitivity) still have a potential to provide a plenty of findings. However, because the size of spectrographs scales with the spectral resolution, it is difficult to realize it.Immersion grating (IG), which is a diffraction grating wherein the diffraction surface is immersed in a material with a high refractive index (n > 2), provides n times higher spectral resolution compared to a reflective grating of the same size. Because IG reduces the size of spectrograph to 1/n compared to the spectrograph with the same spectral resolution using a conventional reflective grating, it is widely acknowledged as a key optical device to realize compact spectrographs with high spectral resolution.Recently, we succeeded in fabricating a CdZnTe immersion grating with the theoretically predicted diffraction efficiency by machining process using an ultrahigh-precision five-axis processing machine developed by Canon Inc. Using the same technique, we completed a practical germanium (Ge) immersion grating with both a reflection coating on the grating surface and the an AR coating on the entrance surface. It is noteworthy that the wide wavelength range from 2 to 20 um can be covered by the two immersion gratings.In this paper, we present the performances and the applications of the immersion gratings, including the development of a long-NIR (2-5um) high-resolution (R=80,000) spectrograph with Ge-immersion grating, VINROUGE, which is a prototype for the TMT MIR instrument.

  17. Designing the optimal semi-warm NIR spectrograph for SALT via detailed thermal analysis

    NASA Astrophysics Data System (ADS)

    Wolf, Marsha J.; Sheinis, Andrew I.; Mulligan, Mark P.; Wong, Jeffrey P.; Rogers, Allen

    2008-07-01

    The near infrared (NIR) upgrade to the Robert Stobie Spectrograph (RSS) on the Southern African Large Telescope (SALT), RSS/NIR, extends the spectral coverage of all modes of the optical spectrograph. The RSS/NIR is a low to medium resolution spectrograph with broadband, spectropolarimetric, and Fabry-Perot imaging capabilities. The optical and NIR arms can be used simultaneously to extend spectral coverage from 3200 Å to approximately 1.6 μm. Both arms utilize high efficiency volume phase holographic gratings via articulating gratings and cameras. The NIR camera incorporates a HAWAII-2RG detector with an Epps optical design consisting of 6 spherical elements and providing subpixel rms image sizes of 7.5 +/- 1.0 μm over all wavelengths and field angles. The NIR spectrograph is semi-warm, sharing a common slit plane and partial collimator with the optical arm. A pre-dewar, cooled to below ambient temperature, houses the final NIR collimator optic, the grating/Fabry-Perot etalon, the polarizing beam splitter, and the first three camera optics. The last three camera elements, blocking filters, and detector are housed in a cryogenically cooled dewar. The semi-warm design concept has long been proposed as an economical way to extend optical instruments into the NIR, however, success has been very limited. A major portion of our design effort entails a detailed thermal analysis using non-sequential ray tracing to interactively guide the mechanical design and determine a truly realizable long wavelength cutoff over which astronomical observations will be sky-limited. In this paper we describe our thermal analysis, design concepts for the staged cooling scheme, and results to be incorporated into the overall mechanical design and baffling.

  18. Far-ultraviolet Spectroscopy of Recent Comets with the Cosmic Origins Spectrograph on the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Feldman, Paul D.; Weaver, Harold A.; A’Hearn, Michael F.; Combi, Michael R.; Dello Russo, Neil

    2018-05-01

    Since its launch in 1990, the Hubble Space Telescope (HST) has served as a platform with unique capabilities for remote observations of comets in the far-ultraviolet region of the spectrum. Successive generations of imagers and spectrographs have seen large advances in sensitivity and spectral resolution enabling observations of the diverse properties of a representative number of comets during the past 25 years. To date, four comets have been observed in the far-ultraviolet by the Cosmic Origins Spectrograph (COS), the last spectrograph to be installed in HST, in 2009: 103P/Hartley 2, C/2009 P1 (Garradd), C/2012 S1 (ISON), and C/2014 Q2 (Lovejoy). COS has unprecedented sensitivity, but limited spatial information in its 2.″5 diameter circular aperture, and our objective was to determine the CO production rates from measurements of the CO Fourth Positive system in the spectral range of 1400–1700 Å. In the two brightest comets, 19 bands of this system were clearly identified. The water production rates were derived from nearly concurrent observations of the OH (0,0) band at 3085 Å by the Space Telescope Imaging Spectrograph. The derived CO/{{{H}}}2{{O}} production rate ratio ranged from ∼0.3% for Hartley 2 to ∼22% for Garradd. In addition, strong partially resolved emission features due to multiplets of S I, centered at 1429 Å and 1479 Å, and of C I at 1561 Å and 1657 Å, were observed in all four comets. Weak emission from several lines of the {{{H}}}2 Lyman band system, excited by solar Lyα and Lyβ pumped fluorescence, were detected in comet Lovejoy.

  19. Detectors for the James Webb Space Telescope near-infrared spectrograph

    NASA Astrophysics Data System (ADS)

    Rauscher, Bernard J.; Figer, Donald F.; Regan, Michael W.; Boeker, Torsten; Garnett, James; Hill, Robert J.; Bagnasco, Giorgio; Balleza, Jesus; Barney, Richard; Bergeron, Louis E.; Brambora, Clifford; Connelly, Joe; Derro, Rebecca; DiPirro, Michael J.; Doria-Warner, Christina; Ericsson, Aprille; Glazer, Stuart D.; Greene, Charles; Hall, Donald N.; Jacobson, Shane; Jakobsen, Peter; Johnson, Eric; Johnson, Scott D.; Krebs, Carolyn; Krebs, Danny J.; Lambros, Scott D.; Likins, Blake; Manthripragada, Sridhar; Martineau, Robert J.; Morse, Ernie C.; Moseley, Samuel H.; Mott, D. Brent; Muench, Theo; Park, Hongwoo; Parker, Susan; Polidan, Elizabeth J.; Rashford, Robert; Shakoorzadeh, Kamdin; Sharma, Rajeev; Strada, Paolo; Waczynski, Augustyn; Wen, Yiting; Wong, Selmer; Yagelowich, John; Zuray, Monica

    2004-10-01

    The Near-Infrared Spectrograph (NIRSpec) is the James Webb Space Telescope"s primary near-infrared spectrograph. NASA is providing the NIRSpec detector subsystem, which consists of the focal plane array, focal plane electronics, cable harnesses, and software. The focal plane array comprises two closely-butted λco ~ 5 μm Rockwell HAWAII-2RG sensor chip assemblies. After briefly describing the NIRSpec instrument, we summarize some of the driving requirements for the detector subsystem, discuss the baseline architecture (and alternatives), and presents some recent detector test results including a description of a newly identified noise component that we have found in some archival JWST test data. We dub this new noise component, which appears to be similar to classical two-state popcorn noise in many aspects, "popcorn mesa noise." We close with the current status of the detector subsystem development effort.

  20. Detectors for the James Webb Space Telescope Near-Infrared Spectrograph

    NASA Technical Reports Server (NTRS)

    Rauscher, Bernard J.; Figer, Donald F.; Regan, Michael W.; Boeker, Torsten; Garnett, James; Hill, Robert J.; Bagnasco, Georgio; Balleza, Jesus; Barney, Richard; Bergeron, Louis E.

    2004-01-01

    The Near-Infrared Spectrograph (NIRSpec) is the James Webb Space Telescope's primary near-infrared spectrograph. NASA is providing the NIRSpec detector subsystem, which consists of the focal plane array, focal plane electronics, cable harnesses, and software. The focal plane array comprises two closely-butted lambda (sub co) approximately 5 micrometer Rockwell HAWAII- 2RG sensor chip assemblies. After briefly describing the NIRSpec instrument, we summarize some of the driving requirements for the detector subsystem, discuss the baseline architecture (and alternatives), and presents some recent detector test results including a description of a newly identified noise component that we have found in some archival JWST test data. We dub this new noise component, which appears to be similar to classical two-state popcorn noise in many aspects, "popcorn mesa noise." We close with the current status of the detector subsystem development effort.

  1. Using an integral-field unit spectrograph to study radical species in cometary coma

    NASA Astrophysics Data System (ADS)

    Lewis, Benjamin; Pierce, Donna M.; Vaughan, Charles M.; Cochran, Anita

    2015-01-01

    We have observed several comets using an integral-field unit spectrograph (the George and Cynthia Mitchell Spectrograph) on the 2.7m Harlan J. Smith telescope at McDonald Observatory. Full-coma spectroscopic images were obtained for various radical species (C2, C3, CN, NH2). Various coma enhancements were used to identify and characterize coma morphological features. The azimuthal average profiles and the Haser model were used to determine production rates and possible parent molecules. Here, we present the work completed to date, and we compare our results to other comet taxonomic surveys. This work was funded by the National Science Foundation Graduate K-12 (GK-12) STEM Fellows program (Award No. DGE-0947419), NASA's Planetary Atmospheres program (Award No. NNX14AH18G), and the Fund for Astrophysical Research, Inc.

  2. Using an integral-field unit spectrograph to study radical species in cometary coma

    NASA Astrophysics Data System (ADS)

    Lewis, Benjamin; Pierce, Donna; Cochran, Anita; Vaughan, Charles

    2014-11-01

    We have observed several comets using an integral-field unit spectrograph (the George and Cynthia Mitchell Spectrograph) on the 2.7m Harlan J. Smith telescope at McDonald Observatory. Full-coma spectroscopic images were obtained for various radical species (C2, C3, CN, NH2). Various coma enhancements were used to identify and characterize coma morphological features. The azimuthal average profiles and the Haser model were used to determine production rates and possible parent molecules. Here, we present the work completed to date, and we compare our results to other comet taxonomic surveys. This work was funded by the National Science Foundation Graduate K-12 (GK-12) STEM Fellows program (Award No. DGE-0947419), NASA’s Planetary Atmospheres program (Award No. NNX14AH18G), and the Fund for Astrophysical Research, Inc.

  3. CARMENES: an overview six months after first light

    NASA Astrophysics Data System (ADS)

    Quirrenbach, A.; Amado, P. J.; Caballero, J. A.; Mundt, R.; Reiners, A.; Ribas, I.; Seifert, W.; Abril, M.; Aceituno, J.; Alonso-Floriano, F. J.; Anwand-Heerwart, H.; Azzaro, M.; Bauer, F.; Barrado, D.; Becerril, S.; Bejar, V. J. S.; Benitez, D.; Berdinas, Z. M.; Brinkmöller, M.; Cardenas, M. C.; Casal, E.; Claret, A.; Colomé, J.; Cortes-Contreras, M.; Czesla, S.; Doellinger, M.; Dreizler, S.; Feiz, C.; Fernandez, M.; Ferro, I. M.; Fuhrmeister, B.; Galadi, D.; Gallardo, I.; Gálvez-Ortiz, M. C.; Garcia-Piquer, A.; Garrido, R.; Gesa, L.; Gómez Galera, V.; González Hernández, J. I.; Gonzalez Peinado, R.; Grözinger, U.; Guàrdia, J.; Guenther, E. W.; de Guindos, E.; Hagen, H.-J.; Hatzes, A. P.; Hauschildt, P. H.; Helmling, J.; Henning, T.; Hermann, D.; Hernández Arabi, R.; Hernández Castaño, L.; Hernández Hernando, F.; Herrero, E.; Huber, A.; Huber, K. F.; Huke, P.; Jeffers, S. V.; de Juan, E.; Kaminski, A.; Kehr, M.; Kim, M.; Klein, R.; Klüter, J.; Kürster, M.; Lafarga, M.; Lara, L. M.; Lamert, A.; Laun, W.; Launhardt, R.; Lemke, U.; Lenzen, R.; Llamas, M.; Lopez del Fresno, M.; López-Puertas, M.; López-Santiago, J.; Lopez Salas, J. F.; Magan Madinabeitia, H.; Mall, U.; Mandel, H.; Mancini, L.; Marin Molina, J. A.; Maroto Fernández, D.; Martín, E. L.; Martín-Ruiz, S.; Marvin, C.; Mathar, R. J.; Mirabet, E.; Montes, D.; Morales, J. C.; Morales Muñoz, R.; Nagel, E.; Naranjo, V.; Nowak, G.; Palle, E.; Panduro, J.; Passegger, V. M.; Pavlov, A.; Pedraz, S.; Perez, E.; Pérez-Medialdea, D.; Perger, M.; Pluto, M.; Ramón, A.; Rebolo, R.; Redondo, P.; Reffert, S.; Reinhart, S.; Rhode, P.; Rix, H.-W.; Rodler, F.; Rodríguez, E.; Rodríguez López, C.; Rohloff, R. R.; Rosich, A.; Sanchez Carrasco, M. A.; Sanz-Forcada, J.; Sarkis, P.; Sarmiento, L. F.; Schäfer, S.; Schiller, J.; Schmidt, C.; Schmitt, J. H. M. M.; Schöfer, P.; Schweitzer, A.; Shulyak, D.; Solano, E.; Stahl, O.; Storz, C.; Tabernero, H. M.; Tala, M.; Tal-Or, L.; Ulbrich, R.-G.; Veredas, G.; Vico Linares, J. I.; Vilardell, F.; Wagner, K.; Winkler, J.; Zapatero Osorio, M.-R.; Zechmeister, M.; Ammler-von Eiff, M.; Anglada-Escudé, G.; del Burgo, C.; Garcia-Vargas, M. L.; Klutsch, A.; Lizon, J.-L.; Lopez-Morales, M.; Ofir, A.; Pérez-Calpena, A.; Perryman, M. A. C.; Sánchez-Blanco, E.; Strachan, J. B. P.; Stürmer, J.; Suárez, J. C.; Trifonov, T.; Tulloch, S. M.; Xu, W.

    2016-08-01

    The CARMENES instrument is a pair of high-resolution (R> 80,000) spectrographs covering the wavelength range from 0.52 to 1.71 μm, optimized for precise radial velocity measurements. It was installed and commissioned at the 3.5m telescope of the Calar Alto observatory in Southern Spain in 2015. The first large science program of CARMENES is a survey of 300 M dwarfs, which started on Jan 1, 2016. We present an overview of all subsystems of CARMENES (front end, fiber system, visible-light spectrograph, near-infrared spectrograph, calibration units, etalons, facility control, interlock system, instrument control system, data reduction pipeline, data flow, and archive), and give an overview of the assembly, integration, verification, and commissioning phases of the project. We show initial results and discuss further plans for the scientific use of CARMENES.

  4. The Wide Integral Field Infrared Spectrograph (WIFIS): optomechanical design and development

    NASA Astrophysics Data System (ADS)

    Meyer, R. Elliot; Moon, Dae-Sik; Sivanandam, Suresh; Ma, Ke; Henderson, Chuck; Blank, Basil; Chou, Chueh-Yi; Jarvis, Miranda; Eikenberry, Stephen S.

    2016-08-01

    We present the optomechanical design and development of the Wide Integral Field Infrared Spectrograph (WIFIS). WIFIS will provide an unrivalled integral field size of 20"×50" for a near-infrared (0.9-1.7 μm) integral-field spectrograph at the 2.3-meter Steward Bok telescope. Its main optomechanical system consists of two assemblies: a room-temperature bench housing the majority of the optical components and a cryostat for a field-flattening lens, thermal blocking filter, and detector. Two additional optical subsystems will provide calibration functionality, telescope guiding, and off-axis optical imaging. WIFIS will be a highly competitive instrument for seeing-limited astronomical investigations of the dynamics and chemistry of extended objects in the near-infrared wavebands. WIFIS is expected to be commissioned during the end of 2016 with scientific operations beginning in 2017.

  5. An echelle spectrograph for middle ultraviolet solar spectroscopy from rockets.

    PubMed

    Tousey, R; Purcell, J D; Garrett, D L

    1967-03-01

    An echelle grating spectrograph is ideal for use in a rocket when high resolution is required becaus itoccupies a minimum of space. The instrument described covers the range 4000-2000 A with a resolution of 0.03 A. It was designed to fit into the solar biaxial pointing-control section of an Aerobee-150 rocket. The characteristics of the spectrograph are illustrated with laboratory spectra of iron and carbon are sources and with solar spectra obtained during rocket flights in 1961 and 1964. Problems encountered in analyzing the spectra are discussed. The most difficult design problem was the elimination of stray light when used with the sun. Of the several methods investigated, the most effective was a predispersing system in the form of a zero-dispersion double monochromator. This was made compact by folding the beam four times.

  6. GMTIFS: The Giant Magellan Telescope integral fields spectrograph and imager

    NASA Astrophysics Data System (ADS)

    Sharp, Rob; Bloxham, G.; Boz, R.; Bundy, D.; Davies, J.; Espeland, B.; Fordham, B.; Hart, J.; Herrald, N.; Nielsen, J.; Vaccarella, A.; Vest, C.; Young, P.; McGregor, P.

    2016-08-01

    GMTIFS is the first-generation adaptive optics integral-field spectrograph for the GMT, having been selected through a competitive review process in 2011. The GMTIFS concept is for a workhorse single-object integral-field spectrograph, operating at intermediate resolution (R 5,000 and 10,000) with a parallel imaging channel. The IFS offers variable spaxel scales to Nyquist sample the diffraction limited GMT PSF from λ 1-2.5 μm as well as a 50 mas scale to provide high sensitivity for low surface brightness objects. The GMTIFS will operate with all AO modes of the GMT (Natural guide star - NGSAO, Laser Tomography - LTAO, and, Ground Layer - GLAO) with an emphasis on achieving high sky coverage for LTAO observations. We summarize the principle science drivers for GMTIFS and the major design concepts that allow these goals to be achieved.

  7. The Resolved Stellar Populations Early Release Science Program

    NASA Astrophysics Data System (ADS)

    Gilbert, Karoline; Weisz, Daniel; Resolved Stellar Populations ERS Program Team

    2018-06-01

    The Resolved Stellar Populations Early Release Science Program (PI D. Weisz) will observe Local Group targets covering a range of stellar density and star formation histories, including a globular cluster, and ultra-faint dwarf galaxy, and a star-forming dwarf galaxy. Using observations of these diverse targets we will explore a broad science program: we will measure star formation histories, the sub-solar stellar initial mass function, and proper motions, perform studies of evolved stars, and map extinction in the target fields. Our observations will be of high archival value for other science such as calibrating stellar evolution models, studying variable stars, and searching for metal-poor stars. We will determine optimal observational setups and develop data reduction techniques that will be common to JWST studies of resolved stellar populations. We will also design, test, and release point spread function (PSF) fitting software specific to NIRCam and NIRISS, required for the crowded stellar regime. Prior to the Cycle 2 Call for Proposals, we will release PSF fitting software, matched HST and JWST catalogs, and clear documentation and step-by-step tutorials (such as Jupyter notebooks) for reducing crowded stellar field data and producing resolved stellar photometry catalogs, as well as for specific resolved stellar photometry science applications.

  8. AKARI/IRC NEAR-INFRARED SPECTRAL ATLAS OF GALACTIC PLANETARY NEBULAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohsawa, Ryou; Onaka, Takashi; Sakon, Itsuki

    2016-04-15

    Near-infrared (2.5–5.0 μm) low-resolution (λ/Δλ ∼ 100) spectra of 72 Galactic planetary nebulae (PNe) were obtained with the Infrared Camera (IRC) in the post-helium phase. The IRC, equipped with a 1′ × 1′ window for spectroscopy of a point source, was capable of obtaining near-infrared spectra in a slit-less mode without any flux loss due to a slit. The spectra show emission features including hydrogen recombination lines and the 3.3–3.5 μm hydrocarbon features. The intensity and equivalent width of the emission features were measured by spectral fitting. We made a catalog providing unique information on the investigation of the near-infrared emission ofmore » PNe. In this paper, details of the observations and characteristics of the catalog are described.« less

  9. PyEmir: Data Reduction Pipeline for EMIR, the GTC Near-IR Multi-Object Spectrograph

    NASA Astrophysics Data System (ADS)

    Pascual, S.; Gallego, J.; Cardiel, N.; Eliche-Moral, M. C.

    2010-12-01

    EMIR is the near-infrared wide-field camera and multi-slit spectrograph being built for Gran Telescopio Canarias. We present here the work being done on its data processing pipeline. PyEmir is based on Python and it will process automatically data taken in both imaging and spectroscopy mode. PyEmir is begin developed by the UCM Group of Extragalactic Astrophysics and Astronomical Instrumentation.

  10. High-Speed Laser Imaging, Emission and Temperature Measurements of Explosions

    DTIC Science & Technology

    2006-09-01

    of these optical fibers illuminated the entrance slit of a dedicated Ocean Optics model HR-2000 spectrograph. The seven spectrographs were modified...Hewlett-Packard). The spectral response of the system was calibrated using an ARC Model XS432 Xenon lamp. Time resolution is approximately 12...F FOROHAR 101 STRAUSS AVE INDIAN HEAD MD 20640-5035 1 NAVAL SURFACE WARFARE CTR CODE 920J R GUIRGUIS 101 STRAUSS AVE INDIAN

  11. Silicates in Alien Asteroids

    NASA Technical Reports Server (NTRS)

    2009-01-01

    This plot of data from NASA's Spitzer Space Telescopes shows that asteroid dust around a dead 'white dwarf' star contains silicates a common mineral on Earth. The data were taken primarily by Spitzer's infrared spectrograph, an instrument that breaks light apart into its basic constituents. The yellow dots show averaged data from the spectrograph, while the orange triangles show older data from Spitzer's infrared array camera. The white dwarf is called GD 40.

  12. Spectroscopic classification of PS17chm with Double Spectrograph on Palomar 200-inch telescope

    NASA Astrophysics Data System (ADS)

    Blagorodnova, N.; Kupfer, T.; Burdge, K.; Kasliwal, M.; Adams, S.

    2017-04-01

    We report the classification of PS17chm, discovered by the by the Pan-STARRS Survey for Transients (see Chambers et al. 2016, arXiv:1612.05560, and http://pswww.ifa.hawaii.edu ). The observations were performed on UT 2017-04-19 with the Double Spectrograph (DBSP; range 350-1000nm, spectral resolution R 4000) on Palomar 200-inch (P200) telescope.

  13. Semi-quantitative spectrographic analysis and rank correlation in geochemistry

    USGS Publications Warehouse

    Flanagan, F.J.

    1957-01-01

    The rank correlation coefficient, rs, which involves less computation than the product-moment correlation coefficient, r, can be used to indicate the degree of relationship between two elements. The method is applicable in situations where the assumptions underlying normal distribution correlation theory may not be satisfied. Semi-quantitative spectrographic analyses which are reported as grouped or partly ranked data can be used to calculate rank correlations between elements. ?? 1957.

  14. GIANO and HARPS-N together: towards an Earth-mass detection instrument

    NASA Astrophysics Data System (ADS)

    Tozzi, A.; Oliva, E.; Iuzzolino, M.; Fini, L.; Puglisi, A.; Sozzi, M.; Falcini, G.; Carbonaro, L.; Ghedina, A.; Mercatelli, L.; Seemann, U.; Claudi, R.

    2016-08-01

    This article describes the works we are doing for modifying the interface between the high resolution infrared spectrograph GIANO (0.97-2.4 micron) and the TNG telescope, passing from a fiber feed configuration to the original design of a direct light-feeding from the telescope to the spectrograph. So doing the IR spectrograph, GIANO, will work in parallel to HARPS-N spectrometer (0.38-0.70 micron), the visible high resolution spectrograph, thanks to a new telescope interface based on a dichroic window that simultaneously feeds the two instrumentes: this is GIARPS (GIAno and haRPS). The scientific aims of this project are to improve the radial velocity accuracy achievable with GIANO, down to a goal of 1 m/s, the value necessary to detect Earth-mass planets on habitable orbits around late-M stars, to implement simultaneous observations with Harps-N and GIANO optimizing the study of planets around cool stars. The very broad wavelengths range is particularly important to discriminate false radial velocity signals caused by stellar activity. We therefore include several absorption cells with different mixtures of gases and a stabilized Fabry Perot cavity, necessary to have absorption lines over the 0.97-2.4 microns range covered by GIANO. The commissioning of GIARPS is scheduled by the end of 2016.

  15. Multiplexing 32,000 spectra onto 8 detectors: the HARMONI field splitting, image slicing, and wavelength selecting optics

    NASA Astrophysics Data System (ADS)

    Tecza, Matthias; Thatte, Niranjan; Clarke, Fraser; Freeman, David; Kosmalski, Johan

    2012-09-01

    HARMONI, the High Angular Resolution Monolithic Optical & Near-infrared Integral field spectrograph is one of two first-light instruments for the European Extremely Large Telescope. Over a 256x128 pixel field-of-view HARMONI will simultaneously measure approximately 32,000 spectra. Each spectrum is about 4000 spectral pixels long, and covers a selectable part of the 0.47-2.45 μm wavelength range at resolving powers of either R≍4000, 10000, or 20000. All 32,000 spectra are imaged onto eight HAWAII4RG detectors using a multiplexing scheme that divides the input field into four sub-fields, each imaged onto one image slicer that in turn re-arranges a single sub-field into two long exit slits feeding one spectrograph each. In total we require eight spectrographs, each with one HAWAII4RG detector. A system of articulated and exchangeable fold-mirrors and VPH gratings allows one to select different spectral resolving powers and wavelength ranges of interest while keeping a fixed geometry between the spectrograph collimator and camera avoiding the need for an articulated grating and camera. In this paper we describe both the field splitting and image slicing optics as well as the optics that will be used to select both spectral resolving power and wavelength range.

  16. Mass production of volume phase holographic gratings for the VIRUS spectrograph array

    NASA Astrophysics Data System (ADS)

    Chonis, Taylor S.; Frantz, Amy; Hill, Gary J.; Clemens, J. Christopher; Lee, Hanshin; Tuttle, Sarah E.; Adams, Joshua J.; Marshall, J. L.; DePoy, D. L.; Prochaska, Travis

    2014-07-01

    The Visible Integral-field Replicable Unit Spectrograph (VIRUS) is a baseline array of 150 copies of a simple, fiber-fed integral field spectrograph that will be deployed on the Hobby-Eberly Telescope (HET). VIRUS is the first optical astronomical instrument to be replicated on an industrial scale, and represents a relatively inexpensive solution for carrying out large-area spectroscopic surveys, such as the HET Dark Energy Experiment (HETDEX). Each spectrograph contains a volume phase holographic (VPH) grating with a 138 mm diameter clear aperture as its dispersing element. The instrument utilizes the grating in first-order for 350 < λ (nm) < 550. Including witness samples, a suite of 170 VPH gratings has been mass produced for VIRUS. Here, we present the design of the VIRUS VPH gratings and a discussion of their mass production. We additionally present the design and functionality of a custom apparatus that has been used to rapidly test the first-order diffraction efficiency of the gratings for various discrete wavelengths within the VIRUS spectral range. This device has been used to perform both in-situ tests to monitor the effects of adjustments to the production prescription as well as to carry out the final acceptance tests of the gratings' diffraction efficiency. Finally, we present the as-built performance results for the entire suite of VPH gratings.

  17. The infrared imaging spectrograph (IRIS) for TMT: overview of innovative science programs

    NASA Astrophysics Data System (ADS)

    Wright, Shelley A.; Larkin, James E.; Moore, Anna M.; Do, Tuan; Simard, Luc; Adamkovics, Maté; Armus, Lee; Barth, Aaron J.; Barton, Elizabeth; Boyce, Hope; Cooke, Jeffrey; Cote, Patrick; Davidge, Timothy; Ellerbroek, Brent; Ghez, Andrea M.; Liu, Michael C.; Lu, Jessica R.; Macintosh, Bruce A.; Mao, Shude; Marois, Christian; Schoeck, Matthias; Suzuki, Ryuji; Tan, Jonathan C.; Treu, Tommaso; Wang, Lianqi; Weiss, Jason

    2014-07-01

    IRIS (InfraRed Imaging Spectrograph) is a first light near-infrared diffraction limited imager and integral field spectrograph being designed for the future Thirty Meter Telescope (TMT). IRIS is optimized to perform astronomical studies across a significant fraction of cosmic time, from our Solar System to distant newly formed galaxies (Barton et al. [1]). We present a selection of the innovative science cases that are unique to IRIS in the era of upcoming space and ground-based telescopes. We focus on integral field spectroscopy of directly imaged exoplanet atmospheres, probing fundamental physics in the Galactic Center, measuring 104 to 1010 M supermassive black hole masses, resolved spectroscopy of young star-forming galaxies (1 < z < 5) and first light galaxies (6 < z < 12), and resolved spectroscopy of strong gravitational lensed sources to measure dark matter substructure. For each of these science cases we use the IRIS simulator (Wright et al. [2], Do et al. [3]) to explore IRIS capabilities. To highlight the unique IRIS capabilities, we also update the point and resolved source sensitivities for the integral field spectrograph (IFS) in all five broadband filters (Z, Y, J, H, K) for the finest spatial scale of 0.004" per spaxel. We briefly discuss future development plans for the data reduction pipeline and quicklook software for the IRIS instrument suite.

  18. [Design and analysis of a novel light visible spectrum imaging spectrograph optical system].

    PubMed

    Shen, Man-de; Li, Fei; Zhou, Li-bing; Li, Cheng; Ren, Huan-huan; Jiang, Qing-xiu

    2015-02-01

    A novel visible spectrum imaging spectrograph optical system was proposed based on the negative dispersion, the arbitrary phase modulation characteristics of diffractive optical element and the aberration correction characteristics of freeform optical element. The double agglutination lens was substituted by a hybrid refractive/diffractive lens based on the negative dispersion of diffractive optical element. Two freeform optical elements were used in order to correct some aberration based on the aberration correction characteristics of freeform optical element. An example and frondose design process were presented. When the design parameters were uniform, compared with the traditional system, the novel visible spectrum imaging spectrograph optical system's weight was reduced by 22.9%, the total length was reduced by 26.6%, the maximal diameter was reduced by 30.6%, and the modulation transfer function (MTF) in 1.0 field-of-view was improved by 0.35 with field-of-view improved maximally. The maximal distortion was reduced by 1.6%, the maximal longitudinal aberration was reduced by 56.4%, and the lateral color aberration was reduced by 59. 3%. From these data, we know that the performance of the novel system was advanced quickly and it could be used to put forward a new idea for modern visible spectrum imaging spectrograph optical system design.

  19. Solar Imaging UV/EUV Spectrometers Using TVLS Gratings

    NASA Technical Reports Server (NTRS)

    Thomas, Roger J.

    2003-01-01

    It is a particular challenge to develop a stigmatic spectrograph for UV, EUV wavelengths since the very low normal-incidence reflectance of standard materials most often requires that the design be restricted to a single optical element which must simultaneously provide both reimaging and spectral dispersion. This problem has been solved in the past by the use of toroidal gratings with uniform line-spaced rulings (TULS). A number of solar extreme ultraviolet (EUV) spectrometers have been based on such designs, including SOHO/CDS, Solar-B/EIS, and the sounding rockets Solar Extreme ultraviolet Research Telescope and Spectrograph (SERTS) and Extreme Ultraviolet Normal Incidence Spectrograph (EUNIS). More recently, Kita, Harada, and collaborators have developed the theory of spherical gratings with varied line-space rulings (SVLS) operated at unity magnification, which have been flown on several astronomical satellite missions. We now combine these ideas into a spectrometer concept that puts varied-line space rulings onto toroidal gratings. Such TVLS designs are found to provide excellent imaging even at very large spectrograph magnifications and beam-speeds, permitting extremely high-quality performance in remarkably compact instrument packages. Optical characteristics of three new solar spectrometers based on this concept are described: SUMI and RAISE, two sounding rocket payloads, and NEXUS, currently being proposed as a Small-Explorer (SMEX) mission.

  20. First-generation instrumentation for the Discovery Channel Telescope

    NASA Astrophysics Data System (ADS)

    Bida, Thomas A.; Dunham, Edward W.; Massey, Philip; Roe, Henry G.

    2014-07-01

    The 4.3m Discovery Channel Telescope (DCT) has been conducting part-time science operations since January 2013. The f/6.1, 0.5° field-of-view at the RC focus is accessible through the Cassegrain instrument cube assembly, which can support 5 co-mounted instruments with rapid feed selection via deployable fold mirrors. Lowell Observatory has developed the Large Monolithic Imager (LMI), a 12.3' FOV 6K x 6K single CCD camera with a dual filter wheel, and installed at the straight-through, field-corrected RC focal station, which has served as the primary early science DCT instrument. Two low-resolution facility spectrographs are currently under development with first light for each anticipated by early 2015: the upgraded DeVeny Spectrograph, to be utilized for single object optical spectroscopy, and the unique Near-Infrared High-Throughput Spectrograph (NIHTS), optimized for single-shot JHK spectroscopy of faint solar system objects. These spectrographs will be mounted at folded RC ports, and the NIHTS installation will feature simultaneous optical imaging with LMI through use of a dichroic fold mirror. We report on the design, construction, commissioning, and progress of these 3 instruments in detail. We also discuss plans for installation of additional facility instrumentation on the DCT.

  1. Development of a sizes estimation method of spots on surfaces of atmosphereless Solar system bodies

    NASA Astrophysics Data System (ADS)

    Rublevskiy, Alexey; Prokofjeva, Valentina

    All small bodies allow to know the information about the primary substance protoplanet cloud structure. These bodies are in a condition of continuous dynamic evolution. The decision of fundamental problems of occurrence and formation of the Solar system demands comprehensive investigation of small bodies of our planetary system. There is a task of development of methods of remote sounding of surfaces of small bodies of the Solar system with the purpose of reception of all the possible information about their chemical compound and properties of surfaces. The works with an application of the new spectral-frequency method (SFM) to research the asteroid surfaces are begun in the Crimean Astrophysical Observatory (CrAO) in collaboration with the Moscow State University (2). The purpose of these researches is the acquisition the new information about of asteroids. In the CrAO for observation is used slitless spectrograph (3). The photometry accuracy of measurements is about 0.005 mag (1). Requirements to an observational material are presented. The accuracy of data should be very high to provide registration of periodicity with small amplitudes. Before the beginning of the search for periods, it is necessary to remove the period of rotation of an asteroid. The search for pe-riods is made by several methods of the frequency analysis. The period is considered to be found, if it is present in the frequency analysis made by different methods, and if an accuracy of definition of period amplitude is more than 3. The size of the spots which are being in the field of equator is es-timated from sizes of the periods found. It is supposed that the size of a spot corresponds to of the period. The size, accordingly, decreases at an estimation of the sizes of spots located at other lati-tudes. Application of the SFM to the surface of the asteroid 4 Vesta allowed to find the size which coincide with the sizes of the crater registered by the Hubble telescope. The conclusion is made about the perspectives of the SFM for the study of surfaces of solid bodies of the Solar system. The method can be applied to study the surfaces of the selected solid bodies observed by space vehicles. References 1) Abramenko A.N., Agapov E.S., Anisimov V. F. et. al., Television astronomy. 1984 / edit. Niko-nov V.B. 2-nd publ. Moscow. "Nauka". 272 p. 2) Busarev V.V., Prokofeva-Mihajlovskaja V.V., Bochkov V.V. // Uspekhi Fizicheskikh Nauk. 2007. . 177. 6, . 663-675. 3) Busarev V.V., Prokofeva-Mihajlovskaja V.V., Rublevsky A.N. // Izv. Cr. 2008. . 104. 6, p. 95-102. 4) Prokofjeva-Mikhailovskaja V.V., Rublevsky A.N. // Odessa Astron. Publ. 2007. V. 20. Part 2. p. 107-109.

  2. Laser synchronized high-speed shutter for spectroscopic application

    DOEpatents

    Miles, Paul C.; Porter, Eldon L.; Prast, Thomas L.; Sunnarborg, Duane A.

    2002-01-01

    A fast mechanical shutter, based on rotating chopper wheels, has been designed and implemented to shutter the entrance slit of a spectrograph. This device enables an exposure time of 9 .mu.s to be achieved for a 0.8 mm wide spectrograph entrance slit, achieves 100% transmission in the open state, and an essentially infinite extinction ratio. The device further incorporates chopper wheel position sensing electronics to permit the synchronous triggering of a laser source.

  3. VizieR Online Data Catalog: Texas-Oxford NVSS (TONS) radio galaxies (Brand+, 2005)

    NASA Astrophysics Data System (ADS)

    Brand, K.; Rawlings, S.; Hill, G. J.; Tufts, J. R.

    2005-10-01

    Optical spectra were obtained during the period 2000 October-2003 May on the 2.6-m Nordic Optical Telescope (NOT) using the Andalucia faint object spectrograph, the 4.2-m William Herschel telescope (WHT) using ISIS, the 2.7-m Smith reflector at McDonald with the Imaging Grism Instrument (IGI), and the Hobby-Eberly Telescope (HET) using the Marcario low-resolution spectrograph (LRS). (3 data files).

  4. Testing the Linearity of the Cosmic Origins Spectrograph FUV Channel Thermal Correction

    NASA Astrophysics Data System (ADS)

    Fix, Mees B.; De Rosa, Gisella; Sahnow, David

    2018-05-01

    The Far Ultraviolet Cross Delay Line (FUV XDL) detector on the Cosmic Origins Spectrograph (COS) is subject to temperature-dependent distortions. The correction performed by the COS calibration pipeline (CalCOS) assumes that these changes are linear across the detector. In this report we evaluate the accuracy of the linear approximations using data obtained on orbit. Our results show that the thermal distortions are consistent with our current linear model.

  5. Studying focal ratio degradation of optical fibers for Subaru's Prime Focus Spectrograph

    NASA Astrophysics Data System (ADS)

    dos Santos, Jesulino Bispo; de Oliveira, Antonio Cesar; Gunn, James; de Oliveira, Ligia Souza; Vital de Arruda, Marcio; Castilho, Bruno; Gneiding, Clemens Darvin; Ribeiro, Flavio Felipe; Murray, Graham; Reiley, Daniel J.; Sodré Junior, Laerte; de Oliveira, Claudia Mendes

    2014-07-01

    Focal Ration Degradation (FRD) is a change in light's angular distribution caused by fiber optics. FRD is important to fiber-fed, spectroscopic astronomical systems because it can cause loss of signal, degradation in spectral resolution, or increased complexity in spectrograph design. Laboratório Nacional de Astrofísica (LNA) has developed a system that can accurately and precisely measures FRD, using an absolute method that can also measure fiber throughput. This paper describes the metrology system and shows measurements of Polymicro's fiber FBP129168190, FBP127165190 and Fujikura fiber 128170190. Although the FRD of the two fibers are low and similar to one another, it is very important to know the exact characteristics of these fibers since both will be used in the construction of FOCCoS (Fiber Optical Cable and Connectors System) for PFS (Prime Focus Spectrograph) to be installed at the Subaru telescope.

  6. The Hubble Spectroscopic Legacy Archive

    NASA Astrophysics Data System (ADS)

    Peeples, M.; Tumlinson, J.; Fox, A.; Aloisi, A.; Fleming, S.; Jedrzejewski, R.; Oliveira, C.; Ayres, T.; Danforth, C.; Keeney, B.; Jenkins, E.

    2017-04-01

    With no future space ultraviolet instruments currently planned, the data from the UV spectrographs aboard the Hubble Space Telescope have a legacy value beyond their initial science goals. The goal of the Hubble Spectroscopic Legacy Archive(HSLA) is to provide to the community new science-grade combined spectra for all publicly available data obtained by the Cosmic Origins Spectrograph (COS)and the Space Telescope Imaging Spectrograph (STIS). These data are packaged into "smart archives" according to target type and scientific themes to facilitate the construction of archival samples for common science uses. A new "quick look" capability makes the data easy for users to quickly access, assess the quality of,and download for archival science. The first generation of these products for the far-ultraviolet (FUV) modes of COS was made available online via the Mikulski Archive for Space Telescopes (MAST) in early 2016 and updated in early 2017; future releases will include COS/NUV and STIS/UV data.

  7. Optimization and performance of the Robert Stobie Spectrograph Near-InfraRed detector system

    NASA Astrophysics Data System (ADS)

    Mosby, Gregory; Indahl, Briana; Eggen, Nathan; Wolf, Marsha; Hooper, Eric; Jaehnig, Kurt; Thielman, Don; Burse, Mahesh

    2018-01-01

    At the University of Wisconsin-Madison, we are building and testing the near-infrared (NIR) spectrograph for the Southern African Large Telescope-RSS-NIR. RSS-NIR will be an enclosed cooled integral field spectrograph. The RSS-NIR detector system uses a HAWAII-2RG (H2RG) HgCdTe detector from Teledyne controlled by the SIDECAR ASIC and an Inter-University Centre for Astronomy and Astrophysics (IUCCA) ISDEC card. We have successfully characterized and optimized the detector system and report on the optimization steps and performance of the system. We have reduced the CDS read noise to ˜20 e- for 200 kHz operation by optimizing ASIC settings. We show an additional factor of 3 reduction of read noise using Fowler sampling techniques and a factor of 2 reduction using up-the-ramp group sampling techniques. We also provide calculations to quantify the conditions for sky-limited observations using these sampling techniques.

  8. Characterization and optimization for detector systems of IGRINS

    NASA Astrophysics Data System (ADS)

    Jeong, Ueejeong; Chun, Moo-Young; Oh, Jae Sok; Park, Chan; Yuk, In-Soo; Oh, Heeyoung; Kim, Kang-Min; Ko, Kyeong Yeon; Pavel, Michael D.; Yu, Young Sam; Jaffe, Daniel T.

    2014-07-01

    IGRINS (Immersion GRating INfrared Spectrometer) is a high resolution wide-band infrared spectrograph developed by the Korea Astronomy and Space Science Institute (KASI) and the University of Texas at Austin (UT). This spectrograph has H-band and K-band science cameras and a slit viewing camera, all three of which use Teledyne's λc~2.5μm 2k×2k HgCdTe HAWAII-2RG CMOS detectors. The two spectrograph cameras employ science grade detectors, while the slit viewing camera includes an engineering grade detector. Teledyne's cryogenic SIDECAR ASIC boards and JADE2 USB interface cards were installed to control those detectors. We performed experiments to characterize and optimize the detector systems in the IGRINS cryostat. We present measurements and optimization of noise, dark current, and referencelevel stability obtained under dark conditions. We also discuss well depth, linearity and conversion gain measurements obtained using an external light source.

  9. Rocket studies of solar corona and transition region. [X-Ray spectrometer/spectrograph telescope

    NASA Technical Reports Server (NTRS)

    Acton, L. W.; Bruner, E. C., Jr.; Brown, W. A.; Nobles, R. A.

    1979-01-01

    The XSST (X-Ray Spectrometer/Spectrograph Telescope) rocket payload launched by a Nike Boosted Black Brant was designed to provide high spectral resolution coronal soft X-ray line information on a spectrographic plate, as well as time resolved photo-electric records of pre-selected lines and spectral regions. This spectral data is obtained from a 1 x 10 arc second solar region defined by the paraboloidal telescope of the XSST. The transition region camera provided full disc images in selected spectral intervals originating in lower temperature zones than the emitting regions accessible to the XSST. A H-alpha camera system allowed referencing the measurements to the chromospheric temperatures and altitudes. Payload flight and recovery information is provided along with X-ray photoelectric and UV flight data, transition camera results and a summary of the anomalies encountered. Instrument mechanical stability and spectrometer pointing direction are also examined.

  10. VizieR Online Data Catalog: Radial velocities of HD 96511, HR 7578, and KZ And (Fekel+, 2017)

    NASA Astrophysics Data System (ADS)

    Fekel, F. C.; Henry, G. W.; Tomkin, J.

    2018-06-01

    Our new spectroscopic observations of HD 96511, HR 7578, and KZ And were obtained at three observatories. The majority were acquired from 2003 through 2017 with the Tennessee State University 2 m automatic spectroscopic telescope (AST) and a fiber-fed echelle spectrograph. That telescope is part of Fairborn Observatory near Washington Camp in the Patagonia Mountains of southeastern Arizona (Eaton & Williamson 2004SPIE.5496..710E, 2007PASP..119..886E). From 2005 through 2011 we acquired additional spectrograms at the Kitt Peak National Observatory (KPNO) with the coude feed telescope and coude spectrograph. Most of the observations were obtained with a Texas Instruments (TI) CCD detector. Finally, at McDonald Observatory in 2005 and 2006 we collected four spectra with the 2.1 m telescope, the Sandiford Cassegrain echelle spectrograph (McCarthy et al. 1993PASP..105..881M), and a Reticon CCD. (5 data files).

  11. Electrostatic Spectrograph with a Wide Range of Simultaneously Recorded Energies Composed of Two Coaxial Electrodes with Closed End Faces and a Discrete Combined External Electrode

    NASA Astrophysics Data System (ADS)

    Fishkova, T. Ya.

    2018-01-01

    An optimal set of geometric and electrical parameters of a high-aperture electrostatic charged-particle spectrograph with a range of simultaneously recorded energies of E/ E min = 1-50 has been found by computer simulation, which is especially important for the energy analysis of charged particles during fast processes in various materials. The spectrograph consists of two coaxial electrodes with end faces closed by flat electrodes. The external electrode with a conical-cylindrical form is cut into parts with potentials that increase linearly, except for the last cylindrical part, which is electrically connected to the rear end electrode. The internal cylindrical electrode and the front end electrode are grounded. In the entire energy range, the system is sharply focused on the internal cylindrical electrode, which provides an energy resolution of no worse than 3 × 10-3.

  12. The Hubble Space Telescope: UV, Visible, and Near-Infrared Pursuits

    NASA Technical Reports Server (NTRS)

    Wiseman, Jennifer

    2010-01-01

    The Hubble Space Telescope continues to push the limits on world-class astrophysics. Cameras including the Advanced Camera for Surveys and the new panchromatic Wide Field Camera 3 which was installed nu last year's successful servicing mission S2N4,o{fer imaging from near-infrared through ultraviolet wavelengths. Spectroscopic studies of sources from black holes to exoplanet atmospheres are making great advances through the versatile use of STIS, the Space Telescope Imaging Spectrograph. The new Cosmic Origins Spectrograph, also installed last year, is the most sensitive UV spectrograph to fly io space and is uniquely suited to address particular scientific questions on galaxy halos, the intergalactic medium, and the cosmic web. With these outstanding capabilities on HST come complex needs for laboratory astrophysics support including atomic and line identification data. I will provide an overview of Hubble's current capabilities and the scientific programs and goals that particularly benefit from the studies of laboratory astrophysics.

  13. Thirty Years, One Million Spectra: Public Access to the SAO Spectral Archives

    NASA Astrophysics Data System (ADS)

    Mink, J.; Moran, S.

    2015-09-01

    Over the last 30 years, the SAO Telescope Data Center has reduced and archived over 1,000,000 spectra, consisting of 287,000 spectra from five high dispersion Echelle spectrographs and 717,000 spectra from four low dispersion spectrographs, across three telescopes. 151,000 spectra from six instruments are currently online and publicly available, covering many interesting objects in the northern sky, including most of the galaxies in the Updated Zwicky Catalog which are reachable through NED or Simbad. A majority of the high dispersion spectra will soon be made public, as will more data from the MMT multi-fiber spectrographs. Many objects in the archive have multiple spectra over time, which make them a valuable resource for archival time-domain studies. We are now developing a system to make all of the public spectra more easily searchable and viewable through the Virtual Observatory.

  14. Optical and near-infrared survey of the stellar contents associated with the star-forming complex Sh2-252

    NASA Astrophysics Data System (ADS)

    Jose, Jessy; Pandey, A. K.; Ogura, K.; Samal, M. R.; Ojha, D. K.; Bhatt, B. C.; Chauhan, N.; Eswaraiah, C.; Mito, H.; Kobayashi, N.; Yadav, R. K.

    2012-08-01

    We present the analyses of the stellar contents associated with the extended H II region Sh2-252 using deep optical UBVRI photometry, slit and slitless spectroscopy along with the near-infrared (NIR) data from Two-Micron All-Sky Survey (2MASS) for an area ˜ 1 × 1 deg2. We have studied the sub-regions of Sh2-252, which includes four compact-H II (CH II ) regions, namely A, B, C and E, and two clusters, NGC 2175s and Teutsch 136 (Teu 136). Of the 15 spectroscopically observed bright stars, eight have been identified as massive members of spectral class earlier than B3. From the spectrophotometric analyses, we derived the average distance of the region as 2.4 ± 0.2 kpc, and the reddening E(B - V) of the massive members is found to vary between 0.35 and 2.1 mag. We found that NGC 2175s and Teu 136, located towards the eastern edge of the complex, are the sub-clusters of Sh2-252. The stellar surface density distribution in K band shows clustering associated with the regions A, C, E, NGC 2175s and Teu 136. We have also identified the candidate ionizing sources of the CH II regions. 61 Hα emission sources are identified using slitless spectroscopy. The distribution of the Hα emission sources and candidate young stellar objects (YSOs) with IR excess on the V/(V - I) colour-magnitude diagram (CMD) shows that a majority of them have approximate ages between 0.1 and 5 Myr and masses in the range of 0.3-2.5 M⊙. The optical CMDs of the candidate pre-main-sequence (PMS) sources in the individual regions also show an age spread of 0.1-5 Myr for each of them. We calculated the K-band luminosity functions (KLFs) for the sub-regions A, C, E, NGC 2175s and Teu 136. Within errors, the KLFs for all the sub-regions are found to be similar and comparable to that of young clusters of age <5 Myr. We also estimated the mass function of the PMS sample of the individual regions in the mass range of 0.3-2.5 M⊙. In general, the slopes of the MFs of all the sub-regions are found comparable to the Salpeter value.

  15. Laboratory Testing and Performance Verification of the CHARIS Integral Field Spectrograph

    NASA Technical Reports Server (NTRS)

    Groff, Tyler D.; Chilcote, Jeffrey; Kasdin, N. Jeremy; Galvin, Michael; Loomis, Craig; Carr, Michael A.; Brandt, Timothy; Knapp, Gillian; Limbach, Mary Anne; Guyon, Olivier; hide

    2016-01-01

    The Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) is an integral field spectrograph (IFS) that has been built for the Subaru telescope. CHARIS has two imaging modes; the high-resolution mode is R82, R69, and R82 in J, H, and K bands respectively while the low-resolution discovery mode uses a second low-resolution prism with R19 spanning 1.15-2.37 microns (J+H+K bands). The discovery mode is meant to augment the low inner working angle of the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) adaptive optics system, which feeds CHARIS a coronagraphic image. The goal is to detect and characterize brown dwarfs and hot Jovian planets down to contrasts five orders of magnitude dimmer than their parent star at an inner working angle as low as 80 milliarcseconds. CHARIS constrains spectral crosstalk through several key aspects of the optical design. Additionally, the repeatability of alignment of certain optical components is critical to the calibrations required for the data pipeline. Specifically the relative alignment of the lens let array, prism, and detector must be highly stable and repeatable between imaging modes. We report on the measured repeatability and stability of these mechanisms, measurements of spectral crosstalk in the instrument, and the propagation of these errors through the data pipeline. Another key design feature of CHARIS is the prism, which pairs Barium Fluoride with Ohara L-BBH2 high index glass. The dispersion of the prism is significantly more uniform than other glass choices, and the CHARIS prisms represent the first NIR astronomical instrument that uses L-BBH2as the high index material. This material choice was key to the utility of the discovery mode, so significant efforts were put into cryogenic characterization of the material. The final performance of the prism assemblies in their operating environment is described in detail. The spectrograph is going through final alignment, cryogenic cycling, and is being delivered to the Subaru telescope in April 2016. This paper is a report on the laboratory performance of the spectrograph, and its current status in the commissioning process so that observers will better understand the instrument capabilities. We will also discuss the lessons learned during the testing process and their impact on future high-contrast imaging spectrographs for wavefront control.

  16. Li depletion in solar analogues with exoplanets. Extending the sample

    NASA Astrophysics Data System (ADS)

    Delgado Mena, E.; Israelian, G.; González Hernández, J. I.; Sousa, S. G.; Mortier, A.; Santos, N. C.; Adibekyan, V. Zh.; Fernandes, J.; Rebolo, R.; Udry, S.; Mayor, M.

    2014-02-01

    Aims: We want to study the effects of the formation of planets and planetary systems on the atmospheric Li abundance of planet host stars. Methods: In this work we present new determinations of lithium abundances for 326 main sequence stars with and without planets in the Teff range 5600-5900 K. The 277 stars come from the HARPS sample, the remaining targets were observed with a variety of high-resolution spectrographs. Results: We confirm significant differences in the Li distribution of solar twins (Teff = T⊙ ± 80 K, log g = log g⊙ ± 0.2 and [Fe/H] = [Fe/H]⊙ ± 0.2): the full sample of planet host stars (22) shows Li average values lower than "single" stars with no detected planets (60). If we focus on subsamples with narrower ranges in metallicity and age, we observe indications of a similar result though it is not so clear for some of the subsamples. Furthermore, we compare the observed spectra of several couples of stars with very similar parameters that show differences in Li abundances up to 1.6 dex. Therefore we show that neither age, mass, nor metallicity of a parent star is the only cause for enhanced Li depletion in solar analogues. Conclusions: We conclude that another variable must account for that difference and suggest that this could be the presence of planets that causes additional rotationally induced mixing in the external layers of planet host stars. Moreover, we find indications that the amount of depletion of Li in planet-host solar-type stars is higher when the planets are more massive than Jupiter. Based on observations collected at the La Silla Observatory, ESO (Chile), with the HARPS spectrograph at the 3.6 m ESO telescope, with CORALIE spectrograph at the 1.2 m Euler Swiss telescope and with the FEROS spectrograph at the 1.52 m ESO telescope; at the Paranal Observatory, ESO (Chile), using the UVES spectrograph at the VLT/UT2 Kueyen telescope, and with the FIES, SARG, and UES spectrographs at the 2.5 m NOT, the 3.6 m TNG and the 4.2 WHT, respectively, operated on the island of La Palma in the Spanish Observatorio del Roque de los Muchachos.Table 6 is available in electronic form at http://www.aanda.org

  17. The design and performance of high resolution échelle spectrographs in astronomy

    NASA Astrophysics Data System (ADS)

    Barnes, Stuart

    The design and performance of several high resolution spectrographs for use in astronomy will be described. After a basic outline of the required theory, the design and performance of HERCULES will be presented. HERCULES is an R2 spectrograph fibre-fed from the MJUO 1-m telescope. The échelle grating has 31.6 grooves/mm and it uses a BK7 prism with a 50° apex angle in double-pass for cross-dispersion. A folded Schmidt camera is used for imaging. With a detector having an area 50 x 50 mm, and pixels less than 25 µm, HERCULES is capable of resolving powers of 40,000 to 80,000 and wavelength coverage from 380 to 880 nm. The total throughput (from the fibre entrance to the CCD) is expected to be nearly 20% (in 1" seeing). Measured efficiencies are only slightly less than this. HERCULES is also shown to be capable of excellent radial velocity precision with no apparent difference between long-term and short-term stability. Several significant upgrade options are also described. As part of the evolution of the design of a high resolution spectrograph for SALT, several instruments were developed for 10-metre class telescopes. Early designs, based in part on the successful HERCULES design, did not meet the requirements of a number of potential users, due in particular to the limited ability to inter-leave object and sky orders. This resulted in the design of SALT HRS R2 which uses a mosaic of two 308 x 413 mm R2 échelle gratings with 87 grooves/mm. Cross-dispersion is achieved with a pair of large 40° apex angle BK7 prisms used in double-pass. The échelle grating accepts a 365-mm collimated beam. The camera is a catadioptric system having a 1.2-m primary mirror and three lenses made of BK7 each around 850 mm in diameter. Complete unvignetted (except by the CCD obstruction) wavelength coverage from 370nm to 890nm is possible on a mosaic of three 2k by 4k CCDS with 15 µm pixels. A maximum resolving power of R ≈ 80,000 is possible. For immunity to atmospheric pressure and temperature changes the entire spectrograph is designed to be housed inside either a helium atmosphere or a light vacuum. The spectrograph chamber is nearly seven metres long. An alternative to the R2 SALT HRS is also described. This instrument is an R4 dual beam spectrograph based on a white pupil layout. The design is based on suggestions by B. Delabre and follows closely this authors SOAR HRS instrument. SALT HRS R4 uses volume-phased holographic gratings for cross-dispersion and a 836 x 204 mm échelle grating with 41.6 grooves/mm. The grating will be replicated from two smaller gratings onto a single Zerodur blank. The spectrograph is split into blue and red arms by a dichroic located near the white pupil relay intermediate focus. Wavelengths from 370 nm to 890 nm are covered by two fixed format blue and red dedicated dioptric cameras. The detectors will be a single 2k by 4k CCD with 15 µm pixels for the blue camera and a 4k by 4k CCD with 15 µm pixels for the red. The size of the cameras is reduced significantly by white pupil demagnification from an initial 200-mm diameter collimated beam incident on the échelle grating to around 100 mm (in undispersed light) on the VPH gratings. The final SALT HRS R4 instrument is also designed to be immersed in a vacuum vessel which is considerably smaller than that proposed for the R2 spectrograph. SALT HRS R4 is currently being developed in detail and will be presented for a critical design review in 2005 April.

  18. The Development of Replicated Optical Integral Field Spectrographs and their Application to the Study of Lyman-alpha Emission at Moderate Redshifts

    NASA Astrophysics Data System (ADS)

    Chonis, Taylor Steven

    In the upcoming era of extremely large ground-based astronomical telescopes, the design of wide-field spectroscopic survey instrumentation has become increasingly complex due to the linear growth of instrument pupil size with telescope diameter for a constant spectral resolving power. The upcoming Visible Integral field Replicable Unit Spectrograph (VIRUS), a baseline array of 150 copies of a simple integral field spectrograph that will be fed by 3:36 x 104 optical fibers on the upgraded Hobby-Eberly Telescope (HET) at McDonald Observatory, represents one of the first uses of large-scale replication to break the relationship between instrument pupil size and telescope diameter. By dividing the telescope's field of view between a large number of smaller and more manageable instruments, the total information grasp of a traditional monolithic survey spectrograph can be achieved at a fraction of the cost and engineering complexity. To highlight the power of this method, VIRUS will execute the HET Dark Energy Experiment (HETDEX) and survey & 420 degrees2 of sky to an emission line flux limit of ˜ 10-17 erg s-1 cm -2 to detect ˜ 106 Lyman-alpha emitting galaxies (LAEs) as probes of large-scale structure at redshifts of 1:9 < z < 3:5. HETDEX will precisely measure the evolution of dark energy at that epoch, and will simultaneously amass an LAE sample that will be unprecedented for extragalactic astrophysics at the redshifts of interest. Large-scale replication has clear advantages to increasing the total information grasp of a spectrograph, but there are also challenges. In this dissertation, two of these challenges with respect to VIRUS are detailed. First, the VIRUS cryogenic system is discussed, specifically the design and tests of a novel thermal connector and internal camera croygenic components that link the 150 charge-coupled device detectors to the instrument's liquid nitrogen distribution system. Second, the design, testing, and mass production of the suite of volume phase holographic (VPH) diffraction gratings for VIRUS is presented, which highlights the challenge and success associated with producing of a very large number of highly customized optical elements whose performance is crucial to meeting the efficiency requirements of the spectrograph system. To accommodate VIRUS, the HET is undergoing a substantial wide-field upgrade to increase its field of view to 22' in diameter. The previous HET facility Low Resolution Spectrograph (LRS), which was directly fed by the telescope's previous spherical aberration corrector, must be removed from the prime focus instrument package as a result of the telescope upgrades and instead be fiber-coupled to the telescope focal plane. For a similar cost as modifying LRS to accommodate these changes, a new second generation instrument (LRS2) will be based on the VIRUS unit spectrograph. The design, operational concept, construction, and laboratory testing and characterization of LRS2 is the primary focus of this dissertation, which highlights the benefits of leveraging the large engineering investment, economies of scale, and laboratory and observatory infrastructure associated with the massively replicated VIRUS instrument. LRS2 will provide integral field spectroscopy for a seeing-limited field of 12" x 6". The multiplexed VIRUS framework facilitates broad wavelength coverage from 370 nm to 1.0 mum spread between two dual-channel spectrographs at a moderate spectral resolving power of R ≈ 2000. The design departures from VIRUS are presented, including the novel integral field unit, VPH grism dispersers, and various optical changes for accommodating the broadband wavelength coverage. Laboratory testing has verified that LRS2 largely meets its image quality specification and is nearly ready for delivery to the HET where its final verification and validation tasks will be executed. LRS2 will enable the continuation of most legacy LRS science programs and provide improved capability for future investigations. (Abstract shortened by ProQuest.).

  19. The Mars Microbeam Raman Spectrometer: An Improved Advanced Brassboard

    NASA Technical Reports Server (NTRS)

    Haskin, L. A.; Wang, Alian

    2003-01-01

    An advanced brassboard (ADBB) of the Mars Miscrobeam Raman Spectrometer is being developed. The probe and spectrograph have been redesigned with improved optics and the electronics have been miniaturized. The modified optical design in the probe and spectrograph provides better spectral resolution than the previous model and enables the probe design to be more compatible with robotic arm deployment. The CCD detector is now cooled thermoelectrically in anticipation of eventual terrestrial field testing of the instrument.

  20. Reduction of spectra exposed by the 700mm CCD camera of the Ondřejov telescope coudé spectrograph

    NASA Astrophysics Data System (ADS)

    Skoda, Petr; Slechta, Miroslav

    We present a brief cook-book for the reduction of spectra exposed by the Ondřejov 2-meter telescope coudé spectrograph. For the data reduction, we use standard IRAF packages running on Solaris and Linux. The sequence of commands is given for the typical reduction session together with short explanation and detailed list of parameter settings. The reduction progress is illustrated by example plots.

  1. Optical design concept for the Giant Magellan Telescope Multi-object Astronomical and Cosmological Spectrograph (GMACS)

    NASA Astrophysics Data System (ADS)

    Schmidt, Luke M.; Ribeiro, Rafael; Taylor, Keith; Jones, Damien; Prochaska, Travis; DePoy, Darren L.; Marshall, Jennifer L.; Cook, Erika; Froning, Cynthia; Ji, Tae-Geun; Lee, Hye-In; Mendes de Oliveira, Claudia; Pak, Soojong; Papovich, Casey

    2016-08-01

    We present a preliminary conceptual optical design for GMACS, a wide field, multi-object, optical spectrograph currently being developed for the Giant Magellan Telescope (GMT). We include details of the optical design requirements derived from the instrument scientific and technical objectives and demonstrate how these requirements are met by the current design. Detector specifications, field acquisition/alignment optics, and optical considerations for the active flexure control system are also discussed.

  2. A Grazing Incidence Spectrograph as Applied to Vacuum Ultraviolet, Soft X-Ray, Pulsed Plasma Sources.

    DTIC Science & Technology

    A 2.2-meter variable angle of incidence grazing incidence spectrograph is described for photographic recording of spectra down to 10A. Also a method for determining the absolute total fluence from a pulsed plasma source, knowing the absolute sensitivity of the instrument, is described. Spectra are presented from a low-inductance sliding spark gap and a 20-kj dense plasma focus . A program for spectram analysis is included. (Modified author abstract)

  3. Emission Spectroscopy of the Interior of Optically Dense Post-Detonation Fireballs

    DTIC Science & Technology

    2013-03-01

    sample. Light from the fiber optics was sent to spectrograph located in a shielded observation room several meters away from the explosive charge. The...spectrograph was constructed from a 1/8 m spectrometer (Oriel) interfaced to a 4096 pixel line-scan camera (Basler Sprint ) with a data collection rate... 400 ) 45 4000 (200) … FIG. 3. Time-resolved emission spectra obtained from detonation of 20 g charges of RDX containing 20 wt. % aluminum nanoparticles

  4. Integrating TV/digital data spectrograph system

    NASA Technical Reports Server (NTRS)

    Duncan, B. J.; Fay, T. D.; Miller, E. R.; Wamsteker, W.; Brown, R. M.; Neely, P. L.

    1975-01-01

    A 25-mm vidicon camera was previously modified to allow operation in an integration mode for low-light-level astronomical work. The camera was then mated to a low-dispersion spectrograph for obtaining spectral information in the 400 to 750 nm range. A high speed digital video image system was utilized to digitize the analog video signal, place the information directly into computer-type memory, and record data on digital magnetic tape for permanent storage and subsequent analysis.

  5. Cryostat and CCD for MEGARA at GTC

    NASA Astrophysics Data System (ADS)

    Castillo-Domínguez, E.; Ferrusca, D.; Tulloch, S.; Velázquez, M.; Carrasco, E.; Gallego, J.; Gil de Paz, A.; Sánchez, F. M.; Vílchez Medina, J. M.

    2012-09-01

    MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is the new integral field unit (IFU) and multi-object spectrograph (MOS) instrument for the GTC. The spectrograph subsystems include the pseudo-slit, the shutter, the collimator with a focusing mechanism, pupil elements on a volume phase holographic grating (VPH) wheel and the camera joined to the cryostat through the last lens, with a CCD detector inside. In this paper we describe the full preliminary design of the cryostat which will harbor the CCD detector for the spectrograph. The selected cryogenic device is an LN2 open-cycle cryostat which has been designed by the "Astronomical Instrumentation Lab for Millimeter Wavelengths" at INAOE. A complete description of the cryostat main body and CCD head is presented as well as all the vacuum and temperature sub-systems to operate it. The CCD is surrounded by a radiation shield to improve its performance and is placed in a custom made mechanical mounting which will allow physical adjustments for alignment with the spectrograph camera. The 4k x 4k pixel CCD231 is our selection for the cryogenically cooled detector of MEGARA. The characteristics of this CCD, the internal cryostat cabling and CCD controller hardware are discussed. Finally, static structural finite element modeling and thermal analysis results are shown to validate the cryostat model.

  6. Spectrographs for astrophotonics.

    PubMed

    Blind, N; Le Coarer, E; Kern, P; Gousset, S

    2017-10-30

    The next generation of extremely large telescopes (ELT), with diameters up to 39 meters, is planned to begin operation in the next decade and promises new challenges in the development of instruments since the instrument size increases in proportion to the telescope diameter D, and the cost as D 2 or faster. The growing field of astrophotonics (the use of photonic technologies in astronomy) could solve this problem by allowing mass production of fully integrated and robust instruments combining various optical functions, with the potential to reduce the size, complexity and cost of instruments. Astrophotonics allows for a broad range of new optical functions, with applications ranging from sky background filtering, high spatial and spectral resolution imaging and spectroscopy. In this paper, we want to provide astronomers with valuable keys to understand how photonics solutions can be implemented (or not) according to the foreseen applications. The paper introduces first key concepts linked to the characteristics of photonics technologies, placed in the framework of astronomy and spectroscopy. We then describe a series of merit criteria that help us determine the potential of a given micro-spectrograph technology for astronomy applications, and then take an inventory of the recent developments in integrated micro-spectrographs with potential for astronomy. We finally compare their performance, to finally draw a map of typical science requirements and pin the identified integrated technologies on it. We finally emphasize the necessary developments that must support micro-spectrograph in the coming years.

  7. EGRAM- ECHELLE SPECTROGRAPH DESIGN AID

    NASA Technical Reports Server (NTRS)

    Dantzler, A. A.

    1994-01-01

    EGRAM aids in the design of spectrographic systems that utilize an echelle-first order cross disperser combination. This optical combination causes a two dimensional echellogram to fall on a detector. EGRAM describes the echellogram with enough detail to allow the user to effectively judge the feasibility of the spectrograph's design. By iteratively altering system parameters, the desired echellogram can be achieved without making a physical model. EGRAM calculates system parameters which are accurate to the first order and compare favorably to results from ray tracing techniques. The spectrographic system modelled by EGRAM consists of an entrance aperture, collimator, echelle, cross dispersion grating, focusing options, and a detector. The system is assumed to be free of aberrations and the echelle, cross disperser, and detector should be planar. The EGRAM program is menu driven and has a HELP facility. The user is prompted for information such as minimum and maximum wavelengths, slit dimensions, ruling frequencies, detector geometry, and angle of incidence. EGRAM calculates the resolving power and range of order numbers covered by the echellogram. A numerical map is also produced. This tabulates the order number, slit bandpass, and high/middle/low wavelengths. EGRAM can also compute the centroid coordinates of a specific wavelength and order (or vice versa). EGRAM is written for interactive execution and is written in Microsoft BASIC A. It has been implemented on an IBM PC series computer operating under DOS. EGRAM was developed in 1985.

  8. Test of multi-object exoplanet search spectral interferometer

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Wang, Liang; Jiang, Haijiao; Zhu, Yongtian; Hou, Yonghui; Dai, Songxin; Tang, Jin; Tang, Zhen; Zeng, Yizhong; Chen, Yi; Wang, Lei; Hu, Zhongwen

    2014-07-01

    Exoplanet detection, a highlight in the current astronomy, will be part of puzzle in astronomical and astrophysical future, which contains dark energy, dark matter, early universe, black hole, galactic evolution and so on. At present, most of the detected Exoplanets are confirmed through methods of radial velocity and transit. Guo shoujing Telescope well known as LAMOST is an advanced multi-object spectral survey telescope equipped with 4000 fibers and 16 low resolution fiber spectrographs. To explore its potential in different astronomical activities, a new radial velocity method named Externally Dispersed Interferometry (EDI) is applied to serve Exoplanet detection through combining a fixed-delay interferometer with the existing spectrograph in medium spectral resolution mode (R=5,000-10,000). This new technology has an impressive feature to enhance radial velocity measuring accuracy of the existing spectrograph through installing a fixed-delay interferometer in front of spectrograph. This way produces an interference spectrum with higher sensitivity to Doppler Effect by interference phase and fixed delay. This relative system named Multi-object Exoplanet Search Spectral Interferometer (MESSI) is composed of a few parts, including a pair of multi-fiber coupling sockets, a remote control iodine subsystem, a multi-object fixed delay interferometer and the existing spectrograph. It covers from 500 to 550 nm and simultaneously observes up to 21 stars. Even if it's an experimental instrument at present, it's still well demonstrated in paper that how MESSI does explore an effective way to build its own system under the existing condition of LAMOST and get its expected performance for multi-object Exoplanet detection, especially instrument stability and its special data reduction. As a result of test at lab, inside temperature of its instrumental chamber is stable in a range of +/-0.5degree Celsius within 12 hours, and the direct instrumental stability without further observation correction is equivalent to be +/-50m/s every 20mins.

  9. Cracking the Code of Faraway Worlds

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This infrared data from NASA's Spitzer Space Telescope - called a spectrum - tells astronomers that a distant gas planet, a so-called 'hot Jupiter' called HD 209458b, might be smothered with high clouds. It is one of the first spectra of an alien world.

    A spectrum is created when an instrument called a spectrograph cracks light from an object open into a rainbow of different wavelengths. Patterns or ripples within the spectrum indicate the presence, or absence, of molecules making up the object.

    Astronomers using Spitzer's spectrograph were able to obtain infrared spectra for two so-called 'transiting' hot-Jupiter planets using the 'secondary eclipse' technique. In this method, the spectrograph first collects the combined infrared light from the planet plus its star, then, as the planet is eclipsed by the star, the infrared light of just the star. Subtracting the latter from the former reveals the planet's own rainbow of infrared colors.

    When astronomers first saw the infrared spectrum above, they were shocked. It doesn't look anything like what theorists had predicted. For example, theorists thought there'd be signatures of water in the wavelength ranges of 8 to 9 microns. The fact that water is not detected might indicate that it is hidden under a thick blanket of high, dry clouds.

    In addition, the spectrum shows signs of silicate dust -- tiny grains of sand -- in the wavelength range of 9 to 10 microns. This suggests that the planet's skies could be filled with high clouds of dust unlike anything seen in our own solar system.

    There is also an unidentified molecular signature at 7.78 microns. Future observations using Spitzer's spectrograph should be able to determine the nature of the mysterious feature.

    This spectrum was produced by Dr. Jeremy Richardson of NASA's Goddard Space Flight Center, Greenbelt, Md. and his colleagues. The data were taken by Spitzer's infrared spectrograph on July 6 and 13, 2005.

  10. Cracking the Code of Faraway Worlds

    NASA Image and Video Library

    2007-02-21

    This infrared data from NASA's Spitzer Space Telescope -- called a spectrum -- tells astronomers that a distant gas planet, a so-called "hot Jupiter" called HD 209458b, might be smothered with high clouds. It is one of the first spectra of an alien world. A spectrum is created when an instrument called a spectrograph cracks light from an object open into a rainbow of different wavelengths. Patterns or ripples within the spectrum indicate the presence, or absence, of molecules making up the object. Astronomers using Spitzer's spectrograph were able to obtain infrared spectra for two so-called "transiting" hot-Jupiter planets using the "secondary eclipse" technique. In this method, the spectrograph first collects the combined infrared light from the planet plus its star, then, as the planet is eclipsed by the star, the infrared light of just the star. Subtracting the latter from the former reveals the planet's own rainbow of infrared colors. When astronomers first saw the infrared spectrum above, they were shocked. It doesn't look anything like what theorists had predicted. For example, theorists thought there'd be signatures of water in the wavelength ranges of 8 to 9 microns. The fact that water is not detected might indicate that it is hidden under a thick blanket of high, dry clouds. In addition, the spectrum shows signs of silicate dust -- tiny grains of sand -- in the wavelength range of 9 to 10 microns. This suggests that the planet's skies could be filled with high clouds of dust unlike anything seen in our own solar system. There is also an unidentified molecular signature at 7.78 microns. Future observations using Spitzer's spectrograph should be able to determine the nature of the mysterious feature. This spectrum was produced by Dr. Jeremy Richardson of NASA's Goddard Space Flight Center, Greenbelt, Md. and his colleagues. The data were taken by Spitzer's infrared spectrograph on July 6 and 13, 2005. http://photojournal.jpl.nasa.gov/catalog/PIA09197

  11. Cracking the Code of Faraway Worlds

    NASA Image and Video Library

    2007-02-21

    This infrared data from NASA's Spitzer Space Telescope -- called a spectrum -- tells astronomers that a distant gas planet, a so-called "hot Jupiter" called HD 209458b, might be smothered with high clouds. It is one of the first spectra of an alien world. A spectrum is created when an instrument called a spectrograph cracks light from an object open into a rainbow of different wavelengths. Patterns or ripples within the spectrum indicate the presence, or absence, of molecules making up the object. Astronomers using Spitzer's spectrograph were able to obtain infrared spectra for two so-called "transiting" hot-Jupiter planets using the "secondary eclipse" technique. In this method, the spectrograph first collects the combined infrared light from the planet plus its star, then, as the planet is eclipsed by the star, the infrared light of just the star. Subtracting the latter from the former reveals the planet's own rainbow of infrared colors. When astronomers first saw the infrared spectrum above, they were shocked. It doesn't look anything like what theorists had predicted. For example, theorists thought there'd be signatures of water in the wavelength ranges of 8 to 9 microns. The fact that water is not detected might indicate that it is hidden under a thick blanket of high, dry clouds. In addition, the spectrum shows signs of silicate dust -- tiny grains of sand -- in the wavelength range of 9 to 10 microns. This suggests that the planet's skies could be filled with high clouds of dust unlike anything seen in our own solar system. There is also an unidentified molecular signature at 7.78 microns. Future observations using Spitzer's spectrograph should be able to determine the nature of the mysterious feature. This spectrum was produced by Dr. Jeremy Richardson of NASA's Goddard Space Flight Center, Greenbelt, Md. and his colleagues. The data were taken by Spitzer's infrared spectrograph on July 6 and 13, 2005. http://photojournal.jpl.nasa.gov/catalog/PIA09198

  12. LAMOST Spectrograph Response Curves: Stability and Application to Flux Calibration

    NASA Astrophysics Data System (ADS)

    Du, Bing; Luo, A.-Li; Kong, Xiao; Zhang, Jian-Nan; Guo, Yan-Xin; Cook, Neil James; Hou, Wen; Yang, Hai-Feng; Li, Yin-Bi; Song, Yi-Han; Chen, Jian-Jun; Zuo, Fang; Wu, Ke-Fei; Wang, Meng-Xin; Wu, Yue; Wang, You-Fen; Zhao, Yong-Heng

    2016-12-01

    The task of flux calibration for Large sky Area Multi-Object Spectroscopic Telescope (LAMOST) spectra is difficult due to many factors, such as the lack of standard stars, flat-fielding for large field of view, and variation of reddening between different stars, especially at low Galactic latitudes. Poor selection, bad spectral quality, or extinction uncertainty of standard stars not only might induce errors to the calculated spectral response curve (SRC) but also might lead to failures in producing final 1D spectra. In this paper, we inspected spectra with Galactic latitude | b| ≥slant 60^\\circ and reliable stellar parameters, determined through the LAMOST Stellar Parameter Pipeline (LASP), to study the stability of the spectrograph. To guarantee that the selected stars had been observed by each fiber, we selected 37,931 high-quality exposures of 29,000 stars from LAMOST DR2, and more than seven exposures for each fiber. We calculated the SRCs for each fiber for each exposure and calculated the statistics of SRCs for spectrographs with both the fiber variations and time variations. The result shows that the average response curve of each spectrograph (henceforth ASPSRC) is relatively stable, with statistical errors ≤10%. From the comparison between each ASPSRC and the SRCs for the same spectrograph obtained by the 2D pipeline, we find that the ASPSRCs are good enough to use for the calibration. The ASPSRCs have been applied to spectra that were abandoned by the LAMOST 2D pipeline due to the lack of standard stars, increasing the number of LAMOST spectra by 52,181 in DR2. Comparing those same targets with the Sloan Digital Sky Survey (SDSS), the relative flux differences between SDSS spectra and LAMOST spectra with the ASPSRC method are less than 10%, which underlines that the ASPSRC method is feasible for LAMOST flux calibration.

  13. Variability in the vacuum-ultraviolet transmittance of magnesium fluoride windows. [for Space Telescope Imaging Spectrograph

    NASA Technical Reports Server (NTRS)

    Herzig, Howard; Fleetwood, Charles M., Jr.; Toft, Albert R.

    1992-01-01

    Sample window materials tested during the development of a domed magnesium fluoride detector window for the Hubble Space Telescope's Imaging Spectrograph are noted to exhibit wide variability in VUV transmittance; a test program was accordingly instituted to maximize a prototype domed window's transmittance. It is found that VUV transmittance can be maximized if the boule from which the window is fashioned is sufficiently large to allow such a component to be cut from the purest available portion of the boule.

  14. Optical and Infrared Spectroscopy of Nova Ophiuchi 2018 No.2

    NASA Astrophysics Data System (ADS)

    Rudy, R. J.; Mauerhan, J. C.; Russell, R. W.; Subasavage, J. P.; Wiktorowicz, S. J.; Kim, D. L.; Sitko, M. L.

    2018-05-01

    Over a two week period coming approximately two months after outburst, Nova Ophiuchi 2018, No.2 (CBET 4492) was observed spectroscopically using instruments from three different facilities: 2018 May 6, using the Spex instrument at the Infrared Telescope Facility (0.7-2.5 microns); 2018 May 14, using the Broadband Array Spectrograph System on the 3.6 meter Advanced Electro-Optical Systems telescope (3-13 microns); 2018 May 19, with the VNIRIS spectrograph on the Aerospace Corporation's one meter telescope (0.47-2.5 microns).

  15. The X-ray spectrographic telescope. [for solar corona observation

    NASA Technical Reports Server (NTRS)

    Vaiana, G. S.; Krieger, A. S.; Petrasso, R.; Silk, J. K.; Timothy, A. F.

    1974-01-01

    The S-054 X-ray telescope, which operated successfully throughout the eight-month Skylab mission, is a grazing incidence instrument with a spatial resolution of the order of 2 arc sec on axis. The total wavelength range observed by the instrument is 2 to 60 A. Crude spectral resolution within this range is achieved by means of a series of six X-ray filter materials. A spectrographic mode of operation, employing an objective grating, is used to obtain spectra of flare events and selected coronal features.

  16. Current science requirements and planned implementation for the WFIRST-CGI Integral Field Spectrograph (IFS)

    NASA Astrophysics Data System (ADS)

    Mandell, Avi M.; Groff, Tyler D.; Gong, Qian; Rizzo, Maxime J.; Lupu, Roxana; Zimmerman, Neil T.; Saxena, Prabal; McElwain, Michael W.

    2017-09-01

    One of the key science goals of the Coronograph Instrument (CGI) on the WFIRST mission is to spectrally characterize the atmospheres of planets around other stars at extremely high contrast levels. To achieve this goal, the CGI instrument will include a integral field spectrograph (IFS) as one of the two science cameras. We present the current science requirements that pertain to the IFS design, describe how our design implementation flows from these requirements, and outline our current instrument design.

  17. Current Science Requirements and Planned Implementation for the WFIRST-CGI Integral Field Spectrograph (IFS)

    NASA Technical Reports Server (NTRS)

    Mandell, Avi M.; Groff, Tyler D.; Gong, Qian; Rizzo, Maxime J.; Lupu, Roxana; Zimmerman, Neil T.; Saxena, Prabal; McElwain, Michael W.

    2017-01-01

    One of the key science goals of the Coronograph Instrument (CGI) on the WFIRST mission is to spectrally characterize the atmospheres of planets around other stars at extremely high contrast levels. To achieve this goal, the CGI Instrument will include a integral field spectrograph (IFS) as one of the two science cameras. We present the current science requirements that pertain to the IFS design, describe how our design implementation flows from these requirements, and outline our current instrument design.

  18. The Ultraviolet Spectrograph (UVS) on Juno

    NASA Astrophysics Data System (ADS)

    Gladstone, G. R.; Persyn, S.; Eterno, J.; Slater, D. C.; Davis, M. W.; Versteeg, M. H.; Persson, K. B.; Siegmund, O. H.; Marquet, B.; Gerard, J.; Grodent, D. C.

    2008-12-01

    Juno, a NASA New Frontiers mission, plans for launch in August 2011, a 5-year cruise (including a flyby of Earth in October 2013 for a gravity boost), and 14 months around Jupiter after arriving in August 2016. The spinning (2 RPM), solar-powered Juno will study Jupiter from a highly elliptical orbit, in which the spacecraft (for about 6 hours once every 11 days) dives down over the north pole, skims the outermost atmosphere, and rises back up over the south pole. This orbit allows Juno avoid most of the intense particle radiation surrounding the planet and provides an excellent platform for investigating Jupiter's polar magnetosphere. Part of the exploration of Jupiter's polar magnetosphere will involve remote sensing of the far-ultraviolet H and H2 auroral emissions, plus gases such as methane and acetylene which add their absorption signature to the H2 emissions. This hydrocarbon absorption can be used to estimate the energy of the precipitating electrons; since more energetic electrons penetrate deeper into the atmosphere and the UV emissions they produce will show more absorption. Juno will carry an Ultraviolet Spectrograph (UVS) to make spectral images of Jupiter's aurora. UVS is a UV imaging spectrograph sensitive to both extreme and far ultraviolet emissions in the 70-205~nm range that will characterize the morphology and spectral nature of Jupiter's auroral emissions. Juno UVS consists of two separate sections: a dedicated telescope/spectrograph assembly and a vault electronics box. The telescope/spectrograph assembly contains a telescope which feeds a 0.15-m Rowland circle spectrograph. The telescope has an input aperture 40×40~mm2 and uses an off-axis parabolic primary mirror. A flat scan mirror situated at the front end of the telescope (used to target specific auroral features at up to ±30° perpendicular to the Juno spin plane) directs incoming light to the primary. The light is then focused onto the spectrograph entrance slit, which has a 'dog- bone' shape 6° long, in three 2° sections of 0.2°, 0.05°, and 0.2° width (projected onto the sky). Light entering the slit is dispersed by a toroidal grating which focuses the UV bandpass onto a curved microchannel plate (MCP) cross delay line (XDL) detector with a solar blind UV- sensitive CsI photocathode, which makes up the instrument's focal plane. Tantalum shielding surrounds the detector assembly to protect the detector and the adjacent detector electronics from high-energy electrons. The main electronics box is located in the Juno vault. Inside are two redundant high-voltage power supplies (HVPS), two redundant low-voltage power supplies, the command and data handling (C&DH) electronics, heater/actuator activation electronics, scan mirror electronics, and event processing electronics. An overview of the UVS design and scientific performance will be presented.

  19. Curved diamond-crystal spectrographs for x-ray free-electron laser noninvasive diagnostics.

    PubMed

    Terentyev, Sergey; Blank, Vladimir; Kolodziej, Tomasz; Shvyd'ko, Yuri

    2016-12-01

    We report on the manufacturing and X-ray tests of bent diamond-crystal X-ray spectrographs, designed for noninvasive diagnostics of the X-ray free-electron laser (XFEL) spectra in the spectral range from 5 to 15 keV. The key component is a curved, 20-μm thin, single crystalline diamond triangular plate in the (110) orientation. The radius of curvature can be varied between R = 0.6 m and R = 0.1 m in a controlled fashion, ensuring imaging in a spectral window of up to 60 eV for ≃8 keV X-rays. All of the components of the bending mechanism (about 10 parts) are manufactured from diamond, thus ensuring safe operations in intense XFEL beams. The spectrograph is transparent to 88% for 5-keV photons and to 98% for 15-keV photons. Therefore, it can be used for noninvasive diagnostics of the X-ray spectra during XFEL operations.

  20. The FRD and transmission of the 270-m GRACES optical fiber link and a high numerical aperture fiber for astronomy

    NASA Astrophysics Data System (ADS)

    Pazder, John; Fournier, Paul; Pawluczyk, Rafal; van Kooten, Maaike

    2014-07-01

    We report results of the extensive development work done on the 270-m optical fiber link for the GRACES project and a preliminary investigations into a high numerical aperture fiber for astronomy. The Gemini Remote Access CFHT ESPaDOnS Spectrograph (GRACES) is an instrumentation experiment to link ESPaDOnS, a bench-mounted highresolution optical spectrograph at CFHT, to the Gemini-North telescope with an optical fiber link. A 270-m fiber link with less than 14% Focal Ratio Degradation (FRD) has been developed jointly by HIA and FiberTech Optica for the experiment. A preliminary study has been conducted by HIA into a high numerical aperture fiber (0.26 numerical aperture) with the intended application of wide field optical spectrographs fiber fed from the telescope prime focus. The Laboratory test results of FRD, transmission, and stability for the GRACES fiber link and preliminary FRD measurements of the high numerical aperture fiber tests are reported.

  1. CUBES: cassegrain U-band Brazil-ESO spectrograph

    NASA Astrophysics Data System (ADS)

    Barbuy, B.; Bawden Macanhan, V.; Bristow, P.; Castilho, B.; Dekker, H.; Delabre, B.; Diaz, M.; Gneiding, C.; Kerber, F.; Kuntschner, H.; La Mura, G.; Maciel, W.; Meléndez, J.; Pasquini, L.; Pereira, C. B.; Petitjean, P.; Reiss, R.; Siqueira-Mello, C.; Smiljanic, R.; Vernet, J.

    2014-11-01

    CUBES is a high-efficiency, medium-resolution ( R˜20,000) ground based UV (300-400 nm) spectrograph, to be installed in the cassegrain focus of one of ESO's VLT unit telescopes in 2017/18. The CUBES project is a joint venture between ESO and IAG/USP, and LNA/MCTI. CUBES will provide access to a wealth of new and relevant information for stellar as well as extragalactic sources. Main science cases include the study of beryllium and heavy elements in metal-poor stars, the direct determination of carbon, nitrogen and oxygen abundances by study of molecular bands in the UV range, as well as the study of active galactic nuclei and the quasar absorption lines. With a streamlined modern instrument design, high efficiency dispersing elements and UV-sensitive detectors, it will give a significant gain in sensitivity over existing ground based medium-high resolution spectrographs, enabling vastly increased sample sizes accessible to the astronomical community. We present here a brief overview of the project including the status, science cases and a discussion of the design options.

  2. The opto-mechanical design of HARMONI: a first light integral field spectrograph for the E-ELT

    NASA Astrophysics Data System (ADS)

    Thatte, Niranjan A.; Tecza, Mathias; Freeman, David; Gallie, Angus M.; Montgomery, David; Clarke, Fraser; Fragoso-Lopez, Ana Belén.; Fuentes, Javier; Gago, Fernando; Garcia, Adolfo; Gracia, Felix; Kosmalski, Johan; Lynn, James; Sosa, Dario; Arribas, Santiago; Bacon, Roland; Davies, Roger L.; Fusco, Thierry; Lunney, David; Mediavilla, Evencio; Remillieux, Alban; Schnetler, Hermine

    2012-09-01

    HARMONI is a visible and near-IR integral field spectrograph, providing the E-ELT's spectroscopic capability at first light. It obtains simultaneous spectra of 32000 spaxels, at a range of resolving powers from R~4000 to R~20000, covering the wavelength range from 0.47 to 2.45 μm. The 256 × 128 spaxel field of view has four different plate scales, with the coarsest scale (40 mas) providing a 5″ × 10″ FoV, while the finest scale is a factor of 10 finer (4mas). We describe the opto-mechanical design of HARMONI, prior to the start of preliminary design, including the main subsystems - namely the image de-rotator, the scale-changing optics, the splitting and slicing optics, and the spectrographs. We also present the secondary guiding system, the pupil imaging optics, the field and pupil stops, the natural guide star wavefront sensor, and the calibration unit.

  3. MuSICa: the Multi-Slit Image Slicer for the est Spectrograph

    NASA Astrophysics Data System (ADS)

    Calcines, A.; López, R. L.; Collados, M.

    2013-09-01

    Integral field spectroscopy (IFS) is a technique that allows one to obtain the spectra of all the points of a bidimensional field of view simultaneously. It is being applied to the new generation of the largest night-time telescopes but it is also an innovative technique for solar physics. This paper presents the design of a new image slicer, MuSICa (Multi-Slit Image slicer based on collimator-Camera), for the integral field spectrograph of the 4-m aperture European Solar Telescope (EST). MuSICa is a multi-slit image slicer that decomposes an 80 arcsec2 field of view into slices of 50 μm and reorganizes it into eight slits of 0.05 arcsec width × 200 arcsec length. It is a telecentric system with an optical quality at diffraction limit compatible with the two modes of operation of the spectrograph: spectroscopic and spectro-polarimetric. This paper shows the requirements, technical characteristics and layout of MuSICa, as well as other studied design options.

  4. Method for determination of small amounts of rare earths and thorium in phosphate rocks

    USGS Publications Warehouse

    Waring, C.L.; Mela, H.

    1953-01-01

    In laboratory investigations, interest developed in the possible rare-earth content of phosphate samples from Florida and the northwestern United States. Because of the difficulty of making chemical determinations of traces of individual rare earths, a combined chemical-spectrographic method was investigated. After removal of iron by the extraction of the chloride with ether, the rare earths and thorium are concentrated by double oxalate precipitation, using calcium as a carrier. The rare earths are freed from calcium by an ammonium hydroxide precipitation with a fixed amount of aluminum as a carrier. The aluminum also serves as an internal standard in the final spectrographic analysis. The method will determine from 0.02 to 2 mg. of each rare earth with an error no greater than 10%. The investigation has resulted in a fairly rapid and precise procedure, involving no special spectrographic setup. The method could be applied to other types of geologic materials with the same expected accuracy.

  5. Curved diamond-crystal spectrographs for x-ray free-electron laser noninvasive diagnostics

    DOE PAGES

    Terentyev, Sergey; Blank, Vladimir; Kolodziej, Tomasz; ...

    2016-12-29

    Here, we report on the manufacturing and X-ray tests of bent diamond-crystal X-ray spectrographs, designed for noninvasive diagnostics of the X-ray free-electron laser (XFEL) spectra in the spectral range from 5 to 15 keV. The key component is a curved, 20-µm thin, single crystalline diamond triangular plate in the (110) orientation. The radius of curvature can be varied between R = 0.6 m and R = 0.1 m in a controlled fashion, ensuring imaging in a spectral window of up to 60 eV for ' 8 keV X-rays. All of the components of the bending mechanism (about 10 parts) aremore » manufactured from diamond, thus ensuring safe operations in intense XFEL beams. The spectrograph is transparent to 88% for 5-keV photons, and to 98% for 15-keV photons. Therefore, it can be used for noninvasive diagnostics of the X-ray spectra during XFEL operations.« less

  6. The infrared imaging spectrograph (IRIS) for TMT: latest science cases and simulations

    NASA Astrophysics Data System (ADS)

    Wright, Shelley A.; Walth, Gregory; Do, Tuan; Marshall, Daniel; Larkin, James E.; Moore, Anna M.; Adamkovics, Mate; Andersen, David; Armus, Lee; Barth, Aaron; Cote, Patrick; Cooke, Jeff; Chisholm, Eric M.; Davidge, Timothy; Dunn, Jennifer S.; Dumas, Christophe; Ellerbroek, Brent L.; Ghez, Andrea M.; Hao, Lei; Hayano, Yutaka; Liu, Michael; Lopez-Rodriguez, Enrique; Lu, Jessica R.; Mao, Shude; Marois, Christian; Pandey, Shashi B.; Phillips, Andrew C.; Schoeck, Matthias; Subramaniam, Annapurni; Subramanian, Smitha; Suzuki, Ryuji; Tan, Jonathan C.; Terai, Tsuyoshi; Treu, Tommaso; Simard, Luc; Weiss, Jason L.; Wincentsen, James; Wong, Michael; Zhang, Kai

    2016-07-01

    The Thirty Meter Telescope (TMT) first light instrument IRIS (Infrared Imaging Spectrograph) will complete its preliminary design phase in 2016. The IRIS instrument design includes a near-infrared (0.85 - 2.4 micron) integral field spectrograph (IFS) and imager that are able to conduct simultaneous diffraction-limited observations behind the advanced adaptive optics system NFIRAOS. The IRIS science cases have continued to be developed and new science studies have been investigated to aid in technical performance and design requirements. In this development phase, the IRIS science team has paid particular attention to the selection of filters, gratings, sensitivities of the entire system, and science cases that will benefit from the parallel mode of the IFS and imaging camera. We present new science cases for IRIS using the latest end-to-end data simulator on the following topics: Solar System bodies, the Galactic center, active galactic nuclei (AGN), and distant gravitationally-lensed galaxies. We then briefly discuss the necessity of an advanced data management system and data reduction pipeline.

  7. Design progress of the solar UV-Vis-IR telescope (SUVIT) aboard SOLAR-C

    NASA Astrophysics Data System (ADS)

    Katsukawa, Y.; Ichimoto, K.; Suematsu, Y.; Hara, H.; Kano, R.; Shimizu, T.; Matsuzaki, K.

    2013-09-01

    We present a design progress of the Solar UV-Vis-IR Telescope (SUVIT) aboard the next Japanese solar mission SOLAR-C. SUVIT has an aperture diameter of ~1.4 m for achieving spectro-polarimetric observations with spatial and temporal resolution exceeding the Hinode Solar Optical Telescope (SOT). We have studied structural and thermal designs of the optical telescope as well as the optical interface between the telescope and the focal plane instruments. The focal plane instruments are installed into two packages, filtergraph and spectrograph packages. The spectropolarimeter is the instrument dedicated to accurate polarimetry in the three spectrum windows at 525 nm, 854 nm, and 1083 nm for observing magnetic fields at both the photospheric and chromospheric layers. We made optical design of the spectrograph accommodating the conventional slit spectrograph and the integral field unit (IFU) for two-dimensional coverage. We are running feasibility study of the IFU using fiber arrays consisting of rectangular cores.

  8. VizieR Online Data Catalog: Radial velocities of δ Sagittae (Pugh+, 2015)

    NASA Astrophysics Data System (ADS)

    Pugh, T.; Gray, D. F.; Griffin, R. F.

    2018-01-01

    28 spectra were obtained by Gray and Pugh between 2008 July and 2010 October (MJD 2454674-2455479) with the high-resolution (R~100000) coude spectrograph of the Elginfield Observatory of Western University (Gray 2009ApJ...697.1032G). The signal-to-noise ratios in the continuum, estimated from the photon counts, ranged from 152 to 314 with a mean of 220. The spectrograph has a dispersion of ~0.013 Å/mm and can reach a radial-velocity precision of 25 m/s by reference to water vapour lines inside the spectrograph (Gray & Brown 2006PASP..118.1112G). In the current case our measurement errors (based on exposures taken within a few nights of one another) range from 27 to 160 m/s, with a mean value of 90 m/s. The radial velocities were determined by measuring the positions of the spectral lines at 85 per cent of the line depth for 15 neutral metal lines in the λ6250-Å region. (1 data file).

  9. DMDs for multi-object near-infrared spectrographs in astronomy

    NASA Astrophysics Data System (ADS)

    Smee, Stephen A.; Barkhouser, Robert; Hope, Stephen; Conley, Devin; Gray, Aidan; Hope, Gavin; Robberto, Massimo

    2018-02-01

    The Digital Micromirror Device (DMD), typically used in projection screen technology, has utility in instrumentation for astronomy as a digitally programmable slit in a spectrograph. When placed at an imaging focal plane the device can be used to selectively direct light from astronomical targets into the optical path of a spectrograph, while at the same time directing the remaining light into an imaging camera, which can be used for slit alignment, science imaging, or both. To date the use of DMDs in astronomy has been limited, especially for instruments that operate in the near infrared (1 - 2.5 μm). This limitation is due in part to a host of technical challenges with respect to DMDs that, to date, have not been thoroughly explored. Those challenges include operation at cryogenic temperature, control electronics that facilitate DMD use at these temperatures, window coatings properly coated for the near infrared bandpass, and scattered light. This paper discusses these technical challenges and presents progress towards understanding and mitigating them.

  10. Curved diamond-crystal spectrographs for x-ray free-electron laser noninvasive diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terentyev, Sergey; Blank, Vladimir; Kolodziej, Tomasz

    Here, we report on the manufacturing and X-ray tests of bent diamond-crystal X-ray spectrographs, designed for noninvasive diagnostics of the X-ray free-electron laser (XFEL) spectra in the spectral range from 5 to 15 keV. The key component is a curved, 20-µm thin, single crystalline diamond triangular plate in the (110) orientation. The radius of curvature can be varied between R = 0.6 m and R = 0.1 m in a controlled fashion, ensuring imaging in a spectral window of up to 60 eV for ' 8 keV X-rays. All of the components of the bending mechanism (about 10 parts) aremore » manufactured from diamond, thus ensuring safe operations in intense XFEL beams. The spectrograph is transparent to 88% for 5-keV photons, and to 98% for 15-keV photons. Therefore, it can be used for noninvasive diagnostics of the X-ray spectra during XFEL operations.« less

  11. The PALM-3000 high-order adaptive optics system for Palomar Observatory

    NASA Astrophysics Data System (ADS)

    Bouchez, Antonin H.; Dekany, Richard G.; Angione, John R.; Baranec, Christoph; Britton, Matthew C.; Bui, Khanh; Burruss, Rick S.; Cromer, John L.; Guiwits, Stephen R.; Henning, John R.; Hickey, Jeff; McKenna, Daniel L.; Moore, Anna M.; Roberts, Jennifer E.; Trinh, Thang Q.; Troy, Mitchell; Truong, Tuan N.; Velur, Viswa

    2008-07-01

    Deployed as a multi-user shared facility on the 5.1 meter Hale Telescope at Palomar Observatory, the PALM-3000 highorder upgrade to the successful Palomar Adaptive Optics System will deliver extreme AO correction in the near-infrared, and diffraction-limited images down to visible wavelengths, using both natural and sodium laser guide stars. Wavefront control will be provided by two deformable mirrors, a 3368 active actuator woofer and 349 active actuator tweeter, controlled at up to 3 kHz using an innovative wavefront processor based on a cluster of 17 graphics processing units. A Shack-Hartmann wavefront sensor with selectable pupil sampling will provide high-order wavefront sensing, while an infrared tip/tilt sensor and visible truth wavefront sensor will provide low-order LGS control. Four back-end instruments are planned at first light: the PHARO near-infrared camera/spectrograph, the SWIFT visible light integral field spectrograph, Project 1640, a near-infrared coronagraphic integral field spectrograph, and 888Cam, a high-resolution visible light imager.

  12. The Oxford SWIFT Spectrograph: first commissioning and on-sky results

    NASA Astrophysics Data System (ADS)

    Thatte, Niranjan; Tecza, Mathias; Clarke, Fraser; Goodsall, Timothy; Fogarty, Lisa; Houghton, Ryan; Salter, Graeme; Scott, Nicholas; Davies, Roger L.; Bouchez, Antonin; Dekany, Richard

    2010-07-01

    The Oxford SWIFT spectrograph, an I & z band (6500-10500 A) integral field spectrograph, is designed to operate as a facility instrument at the 200 inch Hale Telescope on Palomar Mountain, in conjunction with the Palomar laser guide star adaptive optics system PALAO (and its upgrade to PALM3000). SWIFT provides spectra at R(≡λ/▵λ)~4000 of a contiguous two-dimensional field, 44 x 89 spatial pixels (spaxels) in size, at spatial scales of 0.235", 0.16", and 0.08" per spaxel. It employs two 250μm thick, fully depleted, extremely red sensitive 4k X 2k CCD detector arrays (manufactured by LBNL) that provide excellent quantum efficiency out to 1000 nm. We describe the commissioning observations and present the measured values of a number of instrument parameters. We also present some first science results that give a taste of the range of science programs where SWIFT can have a substantial impact.

  13. MEGARA: large pupil element tests and performance

    NASA Astrophysics Data System (ADS)

    Martínez-Delgado, I.; Sánchez-Blanco, E.; Pérez-Calpena, A.; García-Vargas, M. L.; Maldonado, X. M.; Gil de Paz, A.; Carrasco, E.; Gallego, J.; Iglesias-Páramo, J.; Sánchez-Moreno, F. M.

    2016-07-01

    MEGARA is a third generation spectrograph for the Spanish 10.4m telescope (GTC) providing two observing modes: a large central Integral Field Unit (IFU), called the Large Compact Bundle (LCB), covering a FOV of 12.5 × 11.3 arcsec2, and a Multi-Object Spectrograph (MOS) with a FOV of 3.5 × 3.5 arcmin2. MEGARA will observe the whole visible range from 3650A to 10000A allowing different spectral resolutions (low, medium and high) with R = 6000, 11000 and 18000 respectively. The dispersive elements are placed at the spectrograph pupil position in the path of the collimated beam and they are composed of a set of volume phase hologram gratings (VPHs) sandwiched between two flat windows and coupled in addition to two prisms in the case of the medium- and high-resolution units. We will describe the tests and setups developed to check the requirements of all units, as well as the obtained performance at laboratory

  14. VizieR Online Data Catalog: Accurate astrometry & RVs of 4 multiple systems (Tokovinin+, 2017)

    NASA Astrophysics Data System (ADS)

    Tokovinin, A.; Latham, D. W.

    2017-10-01

    The outer subsystems are classical visual binaries. Historic micrometric measurements and modern speckle interferometric data have been obtained from the WDS database on our request. Additionally, we secured new speckle astrometry and relative photometry of two systems at the 4.1m SOAR telescope. Published radial velocities (RVs) are used here together with the new data. The RVs were measured with the CfA Digital Speedometers, initially using the 1.5m Wyeth Reflector at the Oak Ridge Observatory in the town of Harvard, Massachusetts, and subsequently with the 1.5m Tillinghast Reflector at the Whipple Observatory on Mount Hopkins, Arizona. Starting in 2009, the new fiber-fed Tillinghast Reflector Echelle Spectrograph (TRES) was used. The spectral resolution was 44000 for all three spectrographs. Two objects, HIP 101955 and 103987, were observed in 2015 with the CHIRON echelle spectrograph at the 1.5m telescope at CTIO with a spectral resolution of 80000. (4 data files).

  15. A 12.5 GHz-spaced optical frequency comb spanning >400 nm for near-infrared astronomical spectrograph calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinlan, F.; Diddams, S. A.; Ycas, G.

    2010-06-15

    A 12.5 GHz-spaced optical frequency comb locked to a global positioning system disciplined oscillator for near-infrared (IR) spectrograph calibration is presented. The comb is generated via filtering a 250 MHz-spaced comb. Subsequent nonlinear broadening of the 12.5 GHz comb extends the wavelength range to cover 1380-1820 nm, providing complete coverage over the H-band transmission window of earth's atmosphere. Finite suppression of spurious sidemodes, optical linewidth, and instability of the comb has been examined to estimate potential wavelength biases in spectrograph calibration. Sidemode suppression varies between 20 and 45 dB, and the optical linewidth is {approx}350 kHz at 1550 nm. Themore » comb frequency uncertainty is bounded by {+-}30 kHz (corresponding to a radial velocity of {+-}5 cm/s), limited by the global positioning system disciplined oscillator reference. These results indicate that this comb can readily support radial velocity measurements below 1 m/s in the near IR.« less

  16. VizieR Online Data Catalog: Palomar Transient Factory SNe IIn photometry (Ofek+, 2014)

    NASA Astrophysics Data System (ADS)

    Ofek, E. O.; Arcavi, I.; Tal, D.; Sullivan, M.; Gal-Yam, A.; Kulkarni, S. R.; Nugent, P. E.; Ben-Ami, S.; Bersier, D.; Cao, Y.; Cenko, S. B.; De Cia, A.; Filippenko, A. V.; Fransson, C.; Kasliwal, M. M.; Laher, R.; Surace, J.; Quimby, R.; Yaron, O.

    2017-07-01

    The Palomar Transient Factory (PTF; Law et al. 2009PASP..121.1395L; Rau et al. 2009PASP..121.1334R) and its extension the intermediate PTF (iPTF) found over 2200 spectroscopically confirmed SNe. We selected 19 SNe IIn for which PTF/iPTF has good coverage of the light-curve rise and peak; they are listed in Table 1. Optical spectra were obtained with a variety of telescopes and instruments, including the Double Spectrograph (Oke & Gunn 1982PASP...94..586O) at the Palomar 5 m Hale telescope, the Kast spectrograph (Miller & Stone 1993, Lick Observatory Technical Report 66 (Santa Cruz, CA: Lick Observatory)) at the Lick 3 m Shane telescope, the Low Resolution Imaging Spectrometer (Oke et al. 1995PASP..107..375O) on the Keck-1 10 m telescope, and the Deep Extragalactic Imaging Multi-Object Spectrograph (Faber et al. 2003SPIE.4841.1657F) on the Keck-2 10 m telescope. (2 data files).

  17. Calibration of EFOSC2 Broadband Linear Imaging Polarimetry

    NASA Astrophysics Data System (ADS)

    Wiersema, K.; Higgins, A. B.; Covino, S.; Starling, R. L. C.

    2018-03-01

    The European Southern Observatory Faint Object Spectrograph and Camera v2 is one of the workhorse instruments on ESO's New Technology Telescope, and is one of the most popular instruments at La Silla observatory. It is mounted at a Nasmyth focus, and therefore exhibits strong, wavelength and pointing-direction-dependent instrumental polarisation. In this document, we describe our efforts to calibrate the broadband imaging polarimetry mode, and provide a calibration for broadband B, V, and R filters to a level that satisfies most use cases (i.e. polarimetric calibration uncertainty 0.1%). We make our calibration codes public. This calibration effort can be used to enhance the yield of future polarimetric programmes with the European Southern Observatory Faint Object Spectrograph and Camera v2, by allowing good calibration with a greatly reduced number of standard star observations. Similarly, our calibration model can be combined with archival calibration observations to post-process data taken in past years, to form the European Southern Observatory Faint Object Spectrograph and Camera v2 legacy archive with substantial scientific potential.

  18. Gemini Near Infrared Field Spectrograph Observations of the Seyfert 2 Galaxy MRK 573: In Situ Acceleration of Ionized and Molecular Gas Off Fueling Flows

    NASA Technical Reports Server (NTRS)

    Fischer, Travis C.; Machuca, C.; Diniz, M. R.; Crenshaw, D. M.; Kraemer, S. B.; Riffel, R. A.; Schmitt, H. R.; Baron, F.; Storchi-Bergmann, T.; Straughn, A. N.; hide

    2016-01-01

    We present near-infrared and optical emission-line and stellar kinematics of the Seyfert 2 galaxy Mrk 573 using the Near-Infrared Field Spectrograph (NIFS) at Gemini North and Dual Imaging Spectrograph at Apache Point Observatory, respectively. By obtaining full kinematic maps of the infrared ionized and molecular gas and stellar kinematics in approximately 700 x 2100 pc(exp 2) circumnuclear region of Mrk 573, we find that kinematics within the Narrow-Line Region are largely due to a combination of both rotation and in situ acceleration of material originating in the host disk. Combining these observations with large-scale, optical long-slit spectroscopy that traces ionized gas emission out to several kpcs, we find that rotation kinematics dominate the majority of the gas. We find that outflowing gas extends to distances less than 1 kpc, suggesting that outflows in Seyfert galaxies may not be powerful enough to evacuate their entire bulges.

  19. Deployment of the Hobby-Eberly Telescope wide-field upgrade

    NASA Astrophysics Data System (ADS)

    Hill, Gary J.; Drory, Niv; Good, John M.; Lee, Hanshin; Vattiat, Brian L.; Kriel, Herman; Ramsey, Jason; Bryant, Randy; Elliot, Linda; Fowler, Jim; Häuser, Marco; Landiau, Martin; Leck, Ron; Odewahn, Stephen; Perry, Dave; Savage, Richard; Schroeder Mrozinski, Emily; Shetrone, Matthew; DePoy, D. L.; Prochaska, Travis; Marshall, J. L.; Damm, George; Gebhardt, Karl; MacQueen, Phillip J.; Martin, Jerry; Armandroff, Taft; Ramsey, Lawrence W.

    2016-07-01

    The Hobby-Eberly Telescope (HET) is an innovative large telescope, located in West Texas at the McDonald Observatory. The HET operates with a fixed segmented primary and has a tracker, which moves the four-mirror corrector and prime focus instrument package to track the sidereal and non-sidereal motions of objects. We have completed a major multi-year upgrade of the HET that has substantially increased the pupil size to 10 meters and the field of view to 22 arcminutes by replacing the corrector, tracker, and prime focus instrument package. The new wide field HET will feed the revolutionary integral field spectrograph called VIRUS, in support of the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX§), a new low resolution spectrograph (LRS2), an upgraded high resolution spectrograph (HRS2), and later the Habitable Zone Planet Finder (HPF). The upgrade is being commissioned and this paper discusses the completion of the installation, the commissioning process and the performance of the new HET.

  20. Adaptive optics at the Subaru telescope: current capabilities and development

    NASA Astrophysics Data System (ADS)

    Guyon, Olivier; Hayano, Yutaka; Tamura, Motohide; Kudo, Tomoyuki; Oya, Shin; Minowa, Yosuke; Lai, Olivier; Jovanovic, Nemanja; Takato, Naruhisa; Kasdin, Jeremy; Groff, Tyler; Hayashi, Masahiko; Arimoto, Nobuo; Takami, Hideki; Bradley, Colin; Sugai, Hajime; Perrin, Guy; Tuthill, Peter; Mazin, Ben

    2014-08-01

    Current AO observations rely heavily on the AO188 instrument, a 188-elements system that can operate in natural or laser guide star (LGS) mode, and delivers diffraction-limited images in near-IR. In its LGS mode, laser light is transported from the solid state laser to the launch telescope by a single mode fiber. AO188 can feed several instruments: the infrared camera and spectrograph (IRCS), a high contrast imaging instrument (HiCIAO) or an optical integral field spectrograph (Kyoto-3DII). Adaptive optics development in support of exoplanet observations has been and continues to be very active. The Subaru Coronagraphic Extreme-AO (SCExAO) system, which combines extreme-AO correction with advanced coronagraphy, is in the commissioning phase, and will greatly increase Subaru Telescope's ability to image and study exoplanets. SCExAO currently feeds light to HiCIAO, and will soon be combined with the CHARIS integral field spectrograph and the fast frame MKIDs exoplanet camera, which have both been specifically designed for high contrast imaging. SCExAO also feeds two visible-light single pupil interferometers: VAMPIRES and FIRST. In parallel to these direct imaging activities, a near-IR high precision spectrograph (IRD) is under development for observing exoplanets with the radial velocity technique. Wide-field adaptive optics techniques are also being pursued. The RAVEN multi-object adaptive optics instrument was installed on Subaru telescope in early 2014. Subaru Telescope is also planning wide field imaging with ground-layer AO with the ULTIMATE-Subaru project.

  1. High resolution broad-band spectroscopy in the NIR using the Triplespec externally dispersed interferometer at the Hale telescope

    NASA Astrophysics Data System (ADS)

    Erskine, David J.; Edelstein, J.; Sirk, M.; Wishnow, E.; Ishikawa, Y.; McDonald, E.; Shourt, W. V.

    2014-07-01

    High resolution broad-band spectroscopy at near-infrared wavelengths has been performed using externally dis- persed interferometry (EDI) at the Hale telescope at Mt. Palomar. The EDI technique uses a field-widened Michelson interferometer in series with a dispersive spectrograph, and is able to recover a spectrum with a resolution 4 to 10 times higher than the existing grating spectrograph. This method increases the resolution well beyond the classical limits enforced by the slit width and the detector pixel Nyquist limit and, in principle, decreases the effect of pupil variation on the instrument line-shape function. The EDI technique permits arbi- trarily higher resolution measurements using the higher throughput, lower weight, size, and expense of a lower resolution spectrograph. Observations of many stars were performed with the TEDI interferometer mounted within the central hole of the 200 inch primary mirror. Light from the interferometer was then dispersed by the TripleSpec near-infrared echelle spectrograph. Continuous spectra between 950 and 2450 nm with a resolution as high as ~27,000 were recovered from data taken with TripleSpec at a native resolution of ˜2,700. Aspects of data analysis for interferometric spectral reconstruction are described. This technique has applications in im- proving measurements of high-resolution stellar template spectra, critical for precision Doppler velocimetry using conventional spectroscopic methods. A new interferometer to be applied for this purpose at visible wavelengths is under construction.

  2. 4MOST optical system: presentation and design details

    NASA Astrophysics Data System (ADS)

    Azaïs, Nicolas; Frey, Steffen; Bellido, Olga; Winkler, Roland

    2017-09-01

    The 4-meter Multi-Object Spectroscopic Telescope (4MOST) is a wide-field, high-multiplex spectroscopic survey facility under development for the Visible and Infrared Survey Telescope for Astronomy (VISTA) 4 meter telescope of the European Southern Observatory (ESO) at Cerro Paranal. The objective of 4MOST is to enable the simultaneous spectroscopy of a significant number of targets within a 2.5° diameter field of view, to allow high-efficiency all-sky spectroscopic surveys. A wide field corrector (WFC) is needed to couple targets across the 2.5° field diameter with the exit pupil concentric with the spherical focal surface where 2400 fibres are configured by a fibre positioner (AESOP). For optimal fibre optic coupling and active optics wavefront sensing the WFC will correct optical aberrations of the primary (M1) and secondary (M2) VISTA optics across the full field of view and provide a well-defined and stable focal surface to which the acquisition/guiding sensors, wavefront sensors, and fibre positioner are interfaced. It will also compensate for the effects of atmospheric dispersion, allowing good chromatic coupling of stellar images with the fibre apertures over a wide range of telescope zenith angles (ZD). The fibres feed three spectrographs; two thirds of the fibres will feed two low resolution spectrographs and the remaining 812 fibres will feed a high-resolution spectrograph. The three spectrographs are fixed-configuration with three channels each. We present the 4MOST optical system together with optical simulation of subsystems.

  3. Early-life status epilepticus acutely impacts select quantitative and qualitative features of neonatal vocalization behavior: Spectrographic and temporal characterizations in C57BL/6 mice.

    PubMed

    Reynolds, Conner D; Nolan, Suzanne O; Huebschman, Jessica L; Hodges, Samantha L; Lugo, Joaquin N

    2017-07-01

    Early-life seizures are known to cause long-term deficits in social behavior, learning, and memory, however little is known regarding their acute impact. Ultrasonic vocalization (USV) recordings have been developed as a tool for investigating early communicative deficits in mice. Previous investigation from our lab found that postnatal day (PD) 10 seizures cause male-specific suppression of 50-kHz USVs on PD12 in 129 SvEvTac mouse pups. The present study extends these findings by spectrographic characterization of USVs following neonatal seizures. On PD10, male C57BL/6 pups were administered intraperitoneal injections of kainic acid or physiological saline. On PD12, isolation-induced recordings were captured using a broad-spectrum ultrasonic microphone. Status epilepticus significantly suppressed USV quantity (p=0.001) and total duration (p<0.05). Seizure pups also utilized fewer complex calls than controls (p<0.05). There were no changes in call latency or inter-call intervals. Spectrographic analysis revealed increased peak amplitude for complex, downward, short, two-syllable, and upward calls, as well as reduced mean duration for short and two-syllable calls in seizure mice. This investigation provides the first known spectrographic characterization of USVs following early-life seizures. These findings also enhance evidence for USVs as an indicator of select communicative impairment. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Using confidence intervals to evaluate the focus alignment of spectrograph detector arrays.

    PubMed

    Sawyer, Travis W; Hawkins, Kyle S; Damento, Michael

    2017-06-20

    High-resolution spectrographs extract detailed spectral information of a sample and are frequently used in astronomy, laser-induced breakdown spectroscopy, and Raman spectroscopy. These instruments employ dispersive elements such as prisms and diffraction gratings to spatially separate different wavelengths of light, which are then detected by a charge-coupled device (CCD) or complementary metal-oxide-semiconductor (CMOS) detector array. Precise alignment along the optical axis (focus position) of the detector array is critical to maximize the instrumental resolution; however, traditional approaches of scanning the detector through focus lack a quantitative measure of precision, limiting the repeatability and relying on one's experience. Here we propose a method to evaluate the focus alignment of spectrograph detector arrays by establishing confidence intervals to measure the alignment precision. We show that propagation of uncertainty can be used to estimate the variance in an alignment, thus providing a quantitative and repeatable means to evaluate the precision and confidence of an alignment. We test the approach by aligning the detector array of a prototype miniature echelle spectrograph. The results indicate that the procedure effectively quantifies alignment precision, enabling one to objectively determine when an alignment has reached an acceptable level. This quantitative approach also provides a foundation for further optimization, including automated alignment. Furthermore, the procedure introduced here can be extended to other alignment techniques that rely on numerically fitting data to a model, providing a general framework for evaluating the precision of alignment methods.

  5. The Magellan Telescopes

    NASA Astrophysics Data System (ADS)

    Shectman, Stephen A.; Johns, Matthew

    2003-02-01

    Commissioning of the two 6.5-meter Magellan telescopes is nearing completion at the Las Campanas Observatory in Chile. The Magellan 1 primary mirror was successfully aluminized at Las Campanas in August 2000. Science operations at Magellan 1 began in February 2001. The second Nasmyth focus on Magellan 1 went into operation in September 2001. Science operations on Magellan 2 are scheduled to begin shortly. The ability to deliver high-quality images is maintained at all times by the simultaneous operation of the primary mirror support system, the primary mirror thermal control system, and a real-time active optics system, based on a Shack-Hartmann image analyzer. Residual aberrations in the delivered image (including focus) are typically 0.10-0.15" fwhm, and real images as good as 0.25" fwhm have been obtained at optical wavelengths. The mount points reliably to 2" rms over the entire sky, using a pointing model which is stable from year to year. The tracking error under typical wind conditions is better than 0.03" rms, although some degradation is observed under high wind conditions when the dome is pointed in an unfavorable direction. Instruments used at Magellan 1 during the first year of operation include two spectrographs previously used at other telescopes (B&C, LDSS-2), a mid-infrared imager (MIRAC) and an optical imager (MAGIC, the first Magellan-specific facility instrument). Two facility spectrographs are scheduled to be installed shortly: IMACS, a wide-field spectrograph, and MIKE, a double echelle spectrograph.

  6. 16 years of airglow measurement with astronomical facilities

    NASA Astrophysics Data System (ADS)

    Kausch, Wolfgang; Noll, Stefan; Kimeswenger, Stefan; Unterguggenberger, Stefanie; Jones, Amy; Proxauf, Bastian

    2017-04-01

    Observations taken with ground-based astronomical telescopes are affected by various airglow emission processes in the Earth's upper atmosphere. This chemiluminescent emission can be used to investigate the physical state of the meso- and the thermosphere. By applying a modified approach of techniques originally developed to characterise and remove these features from the astronomical spectra, which are not primarily taken for airglow studies, these spectra are suitable for airglow research. For our studies, we currently use data from two observing sites on both hemispheres for our studies: The European Southern Observatory operates four 8m telescopes at the Very Large Telescope (VLT) in the Chilean Atacama desert (24.6°S, 70.4°W). The 2.5m Sloan Digital Sky Survey telescope (SDSS) located in New Mexico/USA (32.8°N, 105.8°W) provides observations from the northern hemisphere. Each of these telescopes is equipped with several astronomical instruments. Among them are several spectrographs operating in the optical and near-IR regime with medium to high spectral resolution. Currently, we work on data from the following three spectrographs (1) UVES@VLT (Ultraviolet and Visual Echelle Spectrograph): This instrument provides spectra in the wavelength regime from 0.3 to 1.1μm in small spectral ranges. Its high resolving power (up to R˜110 000) allows a detailed study of oxygen (OI@557nm, OI@630nm), sodium (NaD@589nm), nitrogen (NI@520nm), and many OH bands. UVES has been in operation since 1999 providing the longest time series. (2) X-Shooter@VLT: This spectrograph is unique as it provides the whole wavelength range from 0.3 to 2.5μm at once with medium resolving power (R˜3 300 to 18 000, depending on the setup). This enables us to study the dependency of optical and near-IR airglow processes simultaneously, e.g. the OH bands. In addition, weak airglow continuum emission, e.g. arising from FeO and NiO can be studied. In operation since 2009, the data cover half a solar cycle. (3) MaNGA spectrograph@SDSS: This instrument combines two spectrographs covering the wavelength range from 0.36 to 1.03μm with a resolving power of R˜2 000. It is equipped with a multi-fibre device and is used for this specific survey that started in 2014 (aimed to finish in 2020). In this poster we give an overview on the status of the project, some first results, and an outlook.

  7. James Webb Space Telescope segment phasing using differential optical transfer functions

    PubMed Central

    Codona, Johanan L.; Doble, Nathan

    2015-01-01

    Differential optical transfer function (dOTF) is an image-based, noniterative wavefront sensing method that uses two star images with a single small change in the pupil. We describe two possible methods for introducing the required pupil modification to the James Webb Space Telescope, one using a small (<λ/4) displacement of a single segment's actuator and another that uses small misalignments of the NIRCam's filter wheel. While both methods should work with NIRCam, the actuator method will allow both MIRI and NIRISS to be used for segment phasing, which is a new functionality. Since the actuator method requires only small displacements, it should provide a fast and safe phasing alternative that reduces the mission risk and can be performed frequently for alignment monitoring and maintenance. Since a single actuator modification can be seen by all three cameras, it should be possible to calibrate the non-common-path aberrations between them. Large segment discontinuities can be measured using dOTFs in two filter bands. Using two images of a star field, aberrations along multiple lines of sight through the telescope can be measured simultaneously. Also, since dOTF gives the pupil field amplitude as well as the phase, it could provide a first approximation or constraint to the planned iterative phase retrieval algorithms. PMID:27042684

  8. Skylab

    NASA Image and Video Library

    1970-01-01

    This 1970 photograph shows the Skylab's Ultraviolet (UV) Spectrograph, an Apollo Telescope Mount instrument. Its telescope, with camera and TV capability, photographed the Sun in selected ultraviolet wavelengths. The spectrograph was used to record the spectrum of UV emissions, such as flares or filaments, from a small individual feature on the solar disc. Real-time TV was used by the crew to monitor the performance of the telescope, transmit to the ground, and record. The exposed films were retrieved by astronaut extravehicular activities. The Marshall Space Flight Center had program management responsibility for the development of the Skylab hardware and experiments.

  9. Skylab

    NASA Image and Video Library

    1973-01-01

    This 1973 chart details Skylab's Ultraviolet (UV) Spectrograph, an Apollo Telescope Mount instrument. Its telescope, with camera and TV capability, photographed the Sun in selected ultraviolet wavelengths. The spectrograph was used to record the spectrum of UV emissions, such as flares or filaments, from a small individual feature on the solar disc. Real-time TV was used by the crew to monitor performance of the telescope, transmit to the ground and record. The exposed films were retrieved by astronaut extravehicular activities. The Marshall Space Flight Center had program management responsibility for the development of the Skylab hardware and experiments.

  10. Performance characteristics of a suite of volume phase holographic gratings produced for the Subaru prime focus spectrograph

    NASA Astrophysics Data System (ADS)

    Arns, James A.

    2016-08-01

    The Subaru Prime Focus Spectrograph[1] (PFS) requires a suite of volume phase holographic (VPH) gratings that parse the observational spectrum into three sub-spectral regions. In addition, the red region has a second, higher resolution arm that includes a VPH grating that will eventually be incorporated into a grism. This paper describes the specifications of the four grating types, gives the theoretical performances of diffraction efficiency for the production designs and presents the measured performances on the gratings produced to date.

  11. MOSAIC: A Multi-Object Spectrograph for the E-ELT

    NASA Astrophysics Data System (ADS)

    Kelz, A.; Hammer, F.; Jagourel, P.; MOSAIC Consortium

    2016-10-01

    The instrumentation plan for the European Extremely Large Telescope foresees a Multi-Object Spectrograph (E-ELT MOS). The MOSAIC project is proposed by a European-Brazilian consortium, to provide a unique MOS facility for astrophysics, studies of the inter-galactic medium and for cosmology. The science cases range from spectroscopy of the most distant galaxies, mass assembly and evolution of galaxies, via resolved stellar populations and galactic archaeology, to planet formation studies. A further strong driver is spectroscopic follow-up observations of targets that will be discovered with the James Webb Space Telescope.

  12. Spectroscopic observations of comets

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Development of a spectrograph using a microchannel plate intensifier for observing faint comets is described. The spectrograph is capable of obtaining useful spectra of objects as faint as M(2) = 18. The increased guiding efficiency achieved by the optical coupling of the ISIT vidicon of the 154 cm telescope has resulted in a better signal to noise ratio. The ability to take a direct image of the comet aids in the interpretation of the spatial profile of the emissions. Spectra of comets Schwassmann-Wachmann 1, Bradfield, Encke, Tuttle, and Stephen-Oterma are discussed.

  13. ZTF Bright Transient Survey classifications

    NASA Astrophysics Data System (ADS)

    Graham, M. L.; Bellm, E.; Bektesevic, D.; Eadie, G.; Huppenkothen, D.; Davenport, J. R. A.; Fremling, C.; Sharma, Y.; Kulkarni, S. R.; Walters, R.; Blagorodnova, N.; Neill, J.; Miller, A. A.; Taddia, F.; Lunnan, R.; Taggart, K.; Perley, D. A.; Goobar, A.

    2018-06-01

    The Zwicky Transient Facility (ZTF; ATel #11266) Bright Transient Survey (BTS; ATel #11688) reports classifications of the following targets. Spectra have been obtained with the Dual Imaging Spectrograph (range 340-1000nm, spectral resolution R 1000) mounted on the 3.5m telescope at Apache Point Observatory, the Spectral Energy Distribution Machine (SEDM) (range 350-950nm, spectral resolution R 100) mounted on the Palomar 60-inch (P60) telescope (Blagorodnova et. al. 2018, PASP, 130, 5003), or the Andalucia Faint Object Spectrograph and Camera (ALFOSC) on the 2.5m Nordic Optical Telescope (NOT).

  14. Baldes de fotones para espectrógrafos ópticos

    NASA Astrophysics Data System (ADS)

    Townsend, A.; Eikenberry, S.; Warner, C.; Donoso, V.; Díaz, R.; Levato, H.

    2017-10-01

    In order to implement low-cost large-aperture ground-based optical spectroscopy systems we are using inexpensive commercial-off-the-shelf telescopes and components to create semi-autonomous small telescope arrays and fiber-fed spectrographs. Small telescopes used conjointly (``photonic lightbuckets'') and connected by our new fiber-optic linkage have the effective light-gathering area of a larger telescope for about one-tenth of the cost. For the first prototype, we plan to feed the the LHIRES and BHROS spectrographs at ICATE with the equivalent collecting area of a one meter telescope.

  15. The mechanical design of CHARIS: an exoplanet IFS for the Subaru Telescope

    NASA Astrophysics Data System (ADS)

    Galvin, Michael B.; Carr, Michael A.; Groff, Tyler D.; Kasdin, N. Jeremy; Fagan, Radford; Hayashi, Masahiko; Takato, Naruhisa

    2014-07-01

    Princeton University is designing and building an integral field spectrograph (IFS), the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS), for integration with the Subaru Corona Extreme Adaptive Optics (SCExAO) system and the AO188 adaptive optics system on the Subaru Telescope. CHARIS and SCExAO will measure spectra of hot, young Jovian planets in a coronagraphic image across J, H, and K bands down to an 80 milliarcsecond inner working angle. Here we present the current status of the mechanical design of the CHARIS instrument.

  16. VizieR Online Data Catalog: SN2009ip UBVRI, UVOT and JHK light curves (Fraser+, 2013)

    NASA Astrophysics Data System (ADS)

    Fraser, M.; Inserra, C.; Jerkstrand, A.; Kotak, R.; Pignata, G.; Benetti, S.; Botticella, M.-T.; Bufano, F.; Childress, M.; Mattila, S.; Pastorello, A.; Smartt, S. J.; Turatto, M.; Yuan, F.; Anderson, J. P.; Bayliss, D. D. R.; Bauer, F. E.; Chen, T.-W.; Forster Buron, F.; Gal-Yam, A.; Haislip, J. B.; Knapic, C.; Le Guillou, L.; Marchi, S.; Mazzali, P.; Molinaro, M.; Moore, J. P.; Reichart, D.; Smareglia, R.; Smith, K. W.; Sternberg, A.; Sullivan, M.; Takats, K.; Tucker, B. E.; Valenti, S.; Yaron, O.; Young, D. R.; Zhou, G.

    2014-11-01

    Optical spectroscopic follow-up of SN 2009ip was chiefly obtained with the New Technology Telescope (NTT) + ESO Faint Object Spectrograph and Camera 2 (EFOSC2), as part of the Public European Southern Observatory (ESO) Spectroscopic Survey of Transient Objects (PESSTO). The PESSTO data were supplemented with data from the Telescopio Nazionale Galileo (TNG) + Device Optimized for the LOw RESolution (DOLORES), and the Australian National University (ANU) 2.3m telescope + Wide Field Spectrograph (WiFeS). (3 data files).

  17. Incorporation of a PbSe Array Based Spectrograph into EPICS using LabView at the JLab FEL Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. Hardy; S.V. Benson; Michelle D. Shinn

    2005-08-21

    A real-time spectrograph with a 1Hz update rate was designed and installed at the JLab FEL facility using a Cal Sensors PbSe array and a Roper Scientific SpectraPro 300 monochrometer. This paper describes the implementation of EPICS channel access on a remote PC running LabView with modification of vendor supplied LabView VI's to allow display of FEL light spectra in real-time on a remote workstation. This allows PC based diagnostics to be used in EPICS.

  18. VizieR Online Data Catalog: WIYN open cluster study. LIX. RVs of NGC 6791 (Tofflemire+, 2014)

    NASA Astrophysics Data System (ADS)

    Tofflemire, B. M.; Gosnell, N. M.; Mathieu, R. D.; Platais, I.

    2014-11-01

    Our observations utilize the Hydra Multi-Object Spectrograph (MOS) on the WIYN 3.5m telescope. We use 3.1'' diameter fibers along with the bench spectrograph echelle grating, resulting in a spectral resolution of ~20000 (15km/s). See Geller et al. 2008 (cat. J/AJ/135/2264; Paper XXXII) for full details about our observing and data reduction procedures. Variations in our methods from previous WIYN Open Cluster Study (WOCS) radial velocity papers are given in Section 3. (3 data files).

  19. Exact optics - III. Schwarzschild's spectrograph camera revised

    NASA Astrophysics Data System (ADS)

    Willstrop, R. V.

    2004-03-01

    Karl Schwarzschild identified a system of two mirrors, each defined by conic sections, free of third-order spherical aberration, coma and astigmatism, and with a flat focal surface. He considered it impractical, because the field was too restricted. This system was rediscovered as a quadratic approximation to one of Lynden-Bell's `exact optics' designs which have wider fields. Thus the `exact optics' version has a moderate but useful field, with excellent definition, suitable for a spectrograph camera. The mirrors are strongly aspheric in both the Schwarzschild design and the exact optics version.

  20. NASA-Texas Planetary Program

    NASA Technical Reports Server (NTRS)

    Smith, H. J.

    1984-01-01

    Astronomical observations performed at the McDonald Observatory were summarized. Various spectra obtained from Jupiter, Uranus, Saturn, Neptune, Pluto, Titan, Iapetus, and sundry asteroids were described briefly. Spectra taken of various comets using an IDS (Intensified Dissector Scanner) spectrograph on a 2.7 m telescope were reviewed. The Octicon, a linear array of eight 1872-element Reticon arrays that was installed in the 2.7 m coude spectrograph at the observatory, was described. The 2.7 m coude scanner, 2.7 m coude CCD (charge coupled device), and 2.7 m radial velocity spectrometer were mentioned.

  1. Anomalous Behavior of Electronic Heat Capacity of Strongly Correlated Iron Monosilicide

    NASA Astrophysics Data System (ADS)

    Povzner, A. A.; Volkov, A. G.; Nogovitsyna, T. A.

    2018-04-01

    The paper deals with the electronic heat capacity of iron monosilicide FeSi subjected to semiconductor-metal thermal transition during which the formation of its spintronic properties is observed. The proposed model which considers pd-hybridization of strongly correlated d-electrons with non-correlated p-electrons, demonstrates a connection of their contribution to heat capacity in the insulator phase with paramagnon effects and fluctuations of occupation numbers for p- and d-states. In a slitless state, the temperature curve of heat capacity is characterized by a maximum appeared due to normalization of the electron density of states using fluctuating exchange fields. At higher temperatures, a linear growth in heat capacity occurs due to paramagnon effects. The correlation between the model parameters and the first-principles calculation provides the electron contribution to heat capacity, which is obtained from the experimental results on phonon heat capacity. Anharmonicity of phonons is connected merely with the thermal expansion of the crystal lattice.

  2. Development of a new linearly variable edge filter (LVEF)-based compact slit-less mini-spectrometer

    NASA Astrophysics Data System (ADS)

    Mahmoud, Khaled; Park, Seongchong; Lee, Dong-Hoon

    2018-02-01

    This paper presents the development of a compact charge-coupled detector (CCD) spectrometer. We describe the design, concept and characterization of VNIR linear variable edge filter (LVEF)- based mini-spectrometer. The new instrument has been realized for operation in the 300 nm to 850 nm wavelength range. The instrument consists of a linear variable edge filter in front of CCD array. Low-size, light-weight and low-cost could be achieved using the linearly variable filters with no need to use any moving parts for wavelength selection as in the case of commercial spectrometers available in the market. This overview discusses the main components characteristics, the main concept with the main advantages and limitations reported. Experimental characteristics of the LVEFs are described. The mathematical approach to get the position-dependent slit function of the presented prototype spectrometer and its numerical de-convolution solution for a spectrum reconstruction is described. The performance of our prototype instrument is demonstrated by measuring the spectrum of a reference light source.

  3. Prime Focus Spectrograph: A very wide-field, massively multiplexed, optical & near-infrared spectrograph for Subaru Telescope

    NASA Astrophysics Data System (ADS)

    TAMURA, NAOYUKI

    2015-08-01

    PFS (Prime Focus Spectrograph), a next generation facility instrument on Subaru, is a very wide-field, massively-multiplexed, and optical & near-infrared spectrograph. Exploiting the Subaru prime focus, 2400 reconfigurable fibers will be distributed in the 1.3 degree field. The spectrograph will have 3 arms of blue, red, and near-infrared cameras to simultaneously observe spectra from 380nm to 1260nm at one exposure. The development of this instrument has been undertaken by the international collaboration at the initiative of Kavli IPMU. The project is now going into the construction phase aiming at system integration and on-sky commissioning in 2017-2018, and science operation in 2019. In parallel, the survey design has also been developed envisioning a Subaru Strategic Program (SSP) that spans roughly speaking 300 nights over 5 years. The major science areas are three-folds: Cosmology, galaxy/AGN evolution, and Galactic archaeology (GA). The cosmology program will be to constrain the nature of dark energy via a survey of emission line galaxies over a comoving volume of ~10 Gpc^3 in the redshift range of 0.8 < z < 2.4. In the GA program, radial velocities and chemical abundances of stars in the Milky Way, dwarf spheroidal galaxies, and M31 will be used to understand the past assembly histories of those galaxies and the structures of their dark matter halos. Spectra will be taken for ~1 million stars as faint as V = 22 therefore out to large distances from the Sun. For the extragalactic program, our simulations suggest the wide wavelength coverage of PFS will be particularly powerful in probing the galaxy populations and its clustering properties over a wide redshift range. We will conduct a survey of color-selected 1 < z < 2 galaxies and AGN over 20 square degrees down to J = 23.4, yielding a fair sample of galaxies with stellar masses above ˜10^10 solar masses. Further, PFS will also provide unique spectroscopic opportunities even in the era of Euclid, LSST, WFIRST and TMT. In this presentation, an overview of the instrument, current project status and path forward will be given.

  4. First Light from the 4.3-meter Discovery Channel Telescope At Lowell Observatory

    NASA Astrophysics Data System (ADS)

    Hall, Jeffrey C.; Levine, S.

    2013-01-01

    Seven years after groundbreaking on July 12, 2005, the 4.3-meter Discovery Channel Telescope (DCT) is now complete and into commissioning. We obtained first light images in mid 2012 with a 4K x 4K CCD and have recently obtained our first images with the DCT's main camera, the 6K x 6K Large Monolithic Imager (LMI, see adjacent poster by Massey). We held a celebratory gala on July 21, 2012, in Flagstaff. The DCT's delivered image quality is regularly subarcsecond with near-uniform image quality across the FOV from zenith to >2 airmasses, although we have not fully commissioned the active optics system. We attribute this to the outstanding quality of the mirror figures, performed by the University of Arizona's College of Optical Sciences (for M1) and L3 Brashear (for M2). The instrument cube at the RC focus can accommodate four instruments plus the LMI. Designed and built at Lowell Observatory, the cube also contains the DCT's autoguider and wavefront sensor. First light instruments include the 4000 DeVeny spectrograph (the former KPNO White Spectrograph), a low-resolution, high-throughput IR spectrograph, and a higher-resolution IR spectrograph/imager being built by Goddard Space Flight Center in collaboration with the University of Maryland. We are seeking funding for long-slit and fiber-fed echelle spectrographs for higher resolution optical spectroscopy. The DCT can also be configured to host Nasmyth and prime focus instruments. Discovery Communications and its founder John Hendricks contributed $16M to the $53M cost of the telescope, in return for naming rights and first rights to public, educational use of images in their programming. Analysis of data and publication by astronomers in professional journals follows the same procedure as for any other major telescope facility. Discovery's first DCT feature, "Scanning the Skies," aired on September 9, 2012. Future outreach plans include initiating webcasts to classrooms via the Discovery Education networks, reaching 30-40M schoolchildren across the USA. The DCT partner consortium includes Boston University (in perpetuity), the University of Maryland, and the University of Toledo, all of whom have ongoing, long term access to the facility.

  5. The Behavior of Warm Molecules in Planet-forming Disks and CHESS: a Pathfinder UV Spectrograph for the LUVOIR Surveyor

    NASA Astrophysics Data System (ADS)

    Hoadley, Keri; France, Kevin

    2017-01-01

    Understanding the evolution of gas over the lifetime of protoplanetary disks provides us with important clues about how planet formation mechanisms drive the diversity of exoplanetary systems observed to date. In the first part of my talk, I will discuss how we use emission line observations of molecular hydrogen (H2) in the far-ultraviolet (far-UV) with the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope to study the warm molecular regions (a < 10 AU) of planet-forming disks. We compare the observations with analytic disk models that produce synthetic H2 profiles, and we statistically determine the disk representations that best replicate the data. I will discuss the results of our comparisons and how the modeled radial distributions of H2 in the disk help provide important constraints on the effective density of gas left in the inner disk of protoplanetary disks at various disk evolutionary stages. Finally, I will talk about follow-up studies that look to connect the warm, UV-pumped molecular populations of the inner disk to thermally-excited molecules observed in similar regions of the disk in the near- to mid-IR.In the second part of my talk, I will discuss the observational requirements in the UV and IR band passes to gain further insights into the behavior of the warm, gaseous protoplanetary disk, focusing specifically on a spectrograph concept for the next-generation LUVOIR Surveyor. I will discuss a testbed instrument, the Colorado High-resolution Echelle Stellar Spectrograph (CHESS), built as a demonstration of one component of the LUVOIR spectrograph and new technological improvements to UV optical components for the next generation of near- to far-UV astrophysical observatories. CHESS is a far-UV sounding rocket experiment designed to probe the warm and cool atoms and molecules near sites of recent star formation in the local interstellar medium. I will talk about the science goals, design, research and development (R&D) components, and calibration of the CHESS instrument. I will end by presenting the initial data reduction and results of the flight observations taken during the second launch of CHESS.

  6. Juno Ultraviolet Spectrograph (Juno-UVS) Observations of Jupiter during Approach

    NASA Astrophysics Data System (ADS)

    Gladstone, Randy; Versteeg, Maarten; Greathouse, Thomas K.; Hue, Vincent; Davis, Michael; Gerard, Jean-Claude; Grodent, Denis; Bonfond, Bertrand

    2016-10-01

    We present the initial results from Juno Ultraviolet Spectrograph (Juno-UVS) observations of Jupiter obtained during approach in June 2016. Juno-UVS is an imaging spectrograph with a bandpass of 70<λ<205 nm. This wavelength range includes all important ultraviolet (UV) emissions from the H2 bands and the H Lyman series which are produced in Jupiter's auroras, and also the absorption signatures of aurorally-produced hydrocarbons. The Juno-UVS instrument telescope has a 4 x 4 cm2 input aperture and uses an off-axis parabolic primary mirror. A flat scan mirror situated near the entrance of the telescope is used to observe at up to ±30° perpendicular to the Juno spin plane. The light is focused onto the spectrograph entrance slit, which has a "dog-bone" shape 7.2° long, in three sections of 0.2°, 0.025°, and 0.2° width (as projected onto the sky). Light entering the slit is dispersed by a toroidal grating which focuses UV light onto a curved microchannel plate (MCP) cross delay line (XDL) detector with a solar blind UV-sensitive CsI photocathode. Tantalum surrounds the spectrograph assembly to shield the detector and its electronics from high-energy electrons. All other electronics are located in Juno's spacecraft vault, including redundant low-voltage and high-voltage power supplies, command and data handling electronics, heater/actuator electronics, scan mirror electronics, and event processing electronics. The purpose of Juno-UVS is to remotely sense Jupiter's auroral morphology and brightness to provide context for in situ measurements by Juno's particle instruments. Prior to Jupiter Orbit Insertion (JOI) on July 5, Juno approach observations provide a rare opportunity to correlate local solar wind conditions with Jovian auroral emissions. Some of Jupiter's auroral emissions (e.g., polar emissions) may be controlled or at least affected by the solar wind. Here we compare synoptic Juno-UVS observations of Jupiter's auroral emissions (~40 minutes per hour, acquired during 2016 June 3-30) with in situ solar wind observations, as well as related Jupiter observations obtained from Earth.

  7. The opto-mechanical design of the GMT-Consortium Large Earth Finder (G-CLEF)

    NASA Astrophysics Data System (ADS)

    Mueller, Mark; Szentgyorgyi, Andrew; Baldwin, Daniel; Bean, Jacob; Ben-Ami, Sagi; Brennan, Patricia; Budynkiewicz, J.; Chun, Moo-Yung; Crane, Jeffrey D.; Epps, Harland; Evans, Ian; Evans, Janet; Foster, Jeff; Frebel, Anna; Gauron, Thomas; Glenday, Alex; Hare, Tyson; Jang, Bi-Ho; Jang, Jeong-Gyun; Jordan, Andreas; Kim, Jihun; Kim, Kang-Min; Mendes de Oliveira, Claudia; Lopez-Morales, Mercedes; McCracken, Kenneth; McMuldroch, Stuart; Miller, Joseph; Oh, Jae Sok; Onyuksel, Cem; Ordway, Mark; Park, Chan; Park, Sung-Joon; Paxson, Charles; Phillips, David; Plummer, David; Podgorski, William; Seifahrt, Andreas; Steiner, Joao; Uomoto, Alan; Walsworth, Ronald; Yu, Young-Sam

    2016-08-01

    The GMT-Consortium Large Earth Finder (G-CLEF) is a fiber-fed, optical echelle spectrograph selected as the first light instrument for the Giant Magellan Telescope (GMT) now under construction at the Las Campanas Observatory in Chile. G-CLEF has been designed to be a general-purpose echelle spectrograph with precision radial velocity (PRV) capability for exoplanet detection. The radial velocity (RV) precision goal of G-CLEF is 10 cm/sec, necessary for detection of Earth-sized exoplanets. This goal imposes challenging stability requirements on the optical mounts and the overall spectrograph support structures especially when considering the instrument's operational environment. The accuracy of G-CLEF's PRV measurements will be influenced by minute changes in temperature and ambient air pressure as well as vibrations and micro gravity-vector variations caused by normal telescope slewing. For these reasons we have chosen to enclose G-CLEF's spectrograph in a well-insulated, vibration isolated vacuum chamber in a gravity invariant location on GMT's azimuth platform. Additional design constraints posed by the GMT telescope include: a limited space envelope, a thermal emission ceiling, and a maximum weight allowance. Other factors, such as manufacturability, serviceability, available technology and budget are also significant design drivers. All of the above considerations must be managed while ensuring performance requirements are achieved. In this paper, we discuss the design of G-CLEF's optical mounts and support structures including the choice of a low coefficient of thermal expansion (CTE) carbon-fiber optical bench to minimize the system's sensitivity to thermal soaks and gradients. We discuss design choices made to the vacuum chamber geared towards minimize the influence of daily ambient pressure variations on image motion during observation. We discuss the design of G-CLEF's insulated enclosure and thermal control systems which will maintain the spectrograph at milli-Kelvin level stability while simultaneously limiting thermal emissions into the telescope dome. Also discussed are micro gravity-vector variations caused by normal telescope slewing, their uncorrected influence on image motion, and how they are dealt with in the design. Finally, we discuss G-CLEF's front-end assembly and fiber-feed system as well as other interface challenges presented by the telescope, enclosure and neighboring instrumentation.

  8. Slit device for FOCCoS-PFS-Subaru

    NASA Astrophysics Data System (ADS)

    de Oliveira, Antonio Cesar; Gunn, James E.; de Oliveira, Ligia Souza; Vital de Arruda, Marcio; Souza Marrara, Lucas; dos Santos, Leandro Henrique; Ferreira, Décio; dos Santos, Jesulino Bispo; Rosa, Josimar Aparecido; Ribeiro, Flavio Felipe; Vilaça, Rodrigo de Paiva; Verducci, Orlando; Sodré, Laerte; Oliveira, Claudia Mendes

    2014-07-01

    The Fiber Optical Cable and Connector System, "FOCCoS", subsystem of the Prime Focus Spectrograph, "PFS", for Subaru telescope, is responsible to feed four spectrographs with a set of optical fibers cables. The light injection for each spectrograph is assured by a convex curved slit with a linear array of 616 optical fibers. In this paper we present a design of a slit that ensures the right direction of the fibers by using masks of micro holes. This kind of mask is made by a technique called electroforming, which is able to produce a nickel plate with holes in a linear sequence. The precision error is around 1-μm in the diameter and 1-μm in the positions of the holes. This nickel plate may be produced with a thickness between 50 and 200 microns, so it may be very flexible. This flexibility allows the mask to be bent into the shape necessary for a curved slit. The concept requires two masks, which we call Front Mask, and Rear Mask, separated by a gap that defines the thickness of the slit. The pitch and the diameter of the holes define the linear geometry of the slit; the curvature of each mask defines the angular geometry of the slit. Obviously, this assembly must be mounted inside a structure rigid and strong enough to be supported inside the spectrograph. This structure must have a CTE optimized to avoid displacement of the fibers or increased FRD of the fibers when the device is submitted to temperatures around 3 degrees Celsius, the temperature of operation of the spectrograph. We have produced two models. Both are mounted inside a very compact Invar case, and both have their front surfaces covered by a dark composite, to reduce stray light. Furthermore, we have conducted experiments with two different internal structures to minimize effects caused by temperature gradients. This concept has several advantages relative to a design based on Vgrooves, which is the classical option. It is much easier and quicker to assemble, much cheaper, more accurate, easier to adjust; and it also offers the possibility of making a device much more strong, robust and completely miniaturized.

  9. The opto-mechanical design of the GMT-consortium large earth finder (G-CLEF)

    NASA Astrophysics Data System (ADS)

    Mueller, Mark; Baldwin, Daniel; Bean, Jacob; Bergner, Henry; Bigelow, Bruce; Chun, Moo-Young; Crane, Jeffrey; Foster, Jeff; Fżrész, Gabor; Gauron, Thomas; Guzman, Dani; Hertz, Edward; Jordán, Andrés.; Kim, Kang-Min; McCracken, Kenneth; Norton, Timothy; Ordway, Mark; Park, Chan; Park, Sang; Podgorski, William A.; Szentgyorgyi, Andrew; Uomoto, Alan; Yuk, In-Soo

    2014-08-01

    The GMT-Consortium Large Earth Finder (G-CLEF) is a fiber fed, optical echelle spectrograph that has been selected as a first light instrument for the Giant Magellan Telescope (GMT) currently under construction at the Las Campanas Observatory in Chile's Atacama desert region. We designed G-CLEF as a general-purpose echelle spectrograph with precision radial velocity (PRV) capability used for exoplanet detection. The radial velocity (RV) precision goal of GCLEF is 10 cm/sec, necessary for detection of Earth-sized planets orbiting stars like our Sun in the habitable zone. This goal imposes challenging stability requirements on the optical mounts and the overall spectrograph support structures. Stability in instruments of this type is typically affected by changes in temperature, orientation, and air pressure as well as vibrations caused by telescope tracking. For these reasons, we have chosen to enclose G-CLEF's spectrograph in a thermally insulated, vibration isolated vacuum chamber and place it at a gravity invariant location on GMT's azimuth platform. Additional design constraints posed by the GMT telescope include: a limited space envelope, a thermal emission ceiling, and a maximum weight allowance. Other factors, such as manufacturability, serviceability, available technology and budget are also significant design drivers. All of the previously listed considerations must be managed while ensuring that performance requirements are achieved. In this paper, we discuss the design of G-CLEF's optical mounts and support structures including technical choices made to minimize the system's sensitivity to thermal gradients. A more general treatment of the properties of G-CLEF can be found elsewhere in these proceedings1. We discuss the design of the vacuum chamber which houses the irregularly shaped optical bench and optics while conforming to a challenging space envelope on GMT's azimuth platform. We also discuss the design of G-CLEF's insulated enclosure and thermal control systems which maintain the spectrograph at milli-Kelvin level stability while simultaneously limiting the maximum thermal emission into the telescope dome environment. Finally, we discuss G-CLEF's front-end assembly and fiber-feed system as well as other interface challenges presented by the telescope, enclosure and neighboring instrumentation.

  10. Coordinated Ground- and Space-based Multispectral Campaign to Study Equatorial Spread-F Formation

    NASA Astrophysics Data System (ADS)

    Finn, S. C.; Geddes, G.; Aryal, S.; Stephan, A. W.; Budzien, S. A.; Duggirala, P. R.; Chakrabarti, S.; Valladares, C.

    2016-12-01

    We present a concept for a multispectral campaign using coordinated data from state-of-the-art instruments aboard the International Space Station (ISS) and multiple ground-based spectrometers and digisondes deployed at low-latitudes to study the formation and development of Equatorial Spread-F (ESF). This extended observational campaign utilizes ultraviolet, visible, and radio measurements to develop a predictive capability for ESF and to study the coupling of the ionosphere-thermosphere (I-T) system during geomagnetically quiet and disturbed times. The ground-based instruments will be deployed in carefully chosen locations in the American and Indian sectors while the space-based data will provide global coverage spanning all local times and longitudes within ±51° geographic latitudes. The campaign, over an extended period covering a range of geophysical conditions, will provide the extensive data base necessary to address the important science questions. The space-based instrument suite consists of the Limb-imaging Ionospheric and Thermospheric Extreme-ultraviolet Spectrograph (LITES) and the GPS Radio Occultation and Ultraviolet Photometry-Colocated (GROUP-C) instruments, scheduled to launch to the ISS in November 2016. LITES is a compact imaging spectrograph for remote sensing of the upper atmosphere and ionosphere from 60 to 140nm and GROUP-C has a nadir-viewing FUV photometer. The ground-based instruments to be deployed for this campaign are three high-resolution imaging spectrographs capable of continuous round-the-clock airglow observations: Multiwavelength Imaging Spectrograph using Echelle grating (MISE) in India and two High Throughput and Multi-slit Imaging Spectrographs (HiT&MIS) to be deployed in Colombia and Argentina, the Low-Latitude Ionosphere Sensor Network (LISN), and the Global Ionospheric Radio Observatory (GIRO) digisondes network. We present data from the ground-based instruments, initial results from the LITES and GROUP-C instruments on-orbit, and modeling and analysis methods for the campaign. This work was supported by NSF 1315354 and 1145166, and ONR N00014-13-1-0266 grants. LITES and GROUP-C are part of the STP-H5 Payload, integrated and flown under the direction of the DoD Space Test Program.

  11. VizieR Online Data Catalog: Infrared spectroscopy of symbiotic stars. XI. (Fekel+, 2017)

    NASA Astrophysics Data System (ADS)

    Fekel, F. C.; Hinkle, K. H.; Joyce, R. R.; Wood, P. R.

    2017-06-01

    Our spectroscopic observations in the southern hemisphere were initially acquired from 2001 March through 2002 December. We observed at the Mount Stromlo Observatory (MSO), which is located near Canberra, Australia, and used the 1.88m telescope and coude spectrograph. The detector to record our spectra was an infrared camera, NICMASS, that was developed at the University of Massachusetts. It produced a 2 pixel resolving power of 44000 at a wavelength of 1.623μm. Between 2003 February and 2010 June we obtained some additional spectra with the 8m Gemini South telescope, located at Cerro Pachon, Chile. We used the Phoenix cryogenic echelle spectrograph. That spectrograph enabled us to observe at several different infrared wavelength regions including 1.563, 2.226, and 2.364μm, and the Gemini South spectra have a resolving power equal to either 50000 or 70000. >From 2009 May through 2010 June we also used the 1.5m telescope at the Cerro Tololo Inter-American Observatory (CTIO). That telescope is operated by the Small and Moderate Aperature Research Telescope System (SMARTS) consortium of universities and other organizations. During that time period, we acquired five spectra with the 1.5m telescope, a fiber fed echelle spectrograph, and a 2K SITe CCD. The spectra have a resolving power of ~25000 at 5500Å. The echelle spectrograms from the 1.5m SMARTS telescope cover the wavelength range 4020-7300Å. We chose to measure velocities in one of the reddest orders of the SMARTS echelle spectrograms at a wavelength region near 7130Å. (5 data files).

  12. VizieR Online Data Catalog: Radial velocities of 7 cataclysmic binaries (Halpern+, 2015)

    NASA Astrophysics Data System (ADS)

    Halpern, J. P.; Thorstensen, J. R.

    2016-04-01

    Our instrumentation, and reduction and analysis procedures are essentially identical to those described in Paper I (Thorstensen et al. 2013, cat. J/AJ/146/107). All of our optical data are from the MDM Observatory (http://mdm.kpno.noao.edu/index/Instrumentation.html), which comprises the 1.3m McGraw-Hill telescope and the 2.4m Hiltner telescope, both on the southwest ridge of Kitt Peak, Arizona. With a single exception, the radial velocity studies to search for the orbital periods were done on the 2.4m, while high-cadence photometry sensitive to spin periods was carried out on the 1.3m. All of our radial velocity studies used the modular spectrograph, as described in Paper I (Thorstensen et al. 2013, cat. J/AJ/146/107). Most of our velocities are from the the 2.4m telescope. Some spectra of Swift J2124.6+0500, and all the data we used for Swift J0939.7-3224, are from the McGraw-Hill 1.3m telescope, again with the modular spectrograph. For four newly identified objects we have only single spectra that were obtained on two observing runs on the 2.4m. These used the Boller and Chivens CCD spectrograph (CCDS) and the Ohio State Multi-Object Spectrograph (OSMOS). Descriptions of these instruments can be found on the MDM Observatory web page (http://mdm.kpno.noao.edu/index/Instrumentation.html). The objects observed are listed in Table1. Table2 lists the radial velocity data, and Table3 gives parameters of the best-fit sinusoids. (3 data files).

  13. The Cosmic Origins Spectrograph

    NASA Astrophysics Data System (ADS)

    Green, James C.; Froning, Cynthia S.; Osterman, Steve; Ebbets, Dennis; Heap, Sara H.; Leitherer, Claus; Linsky, Jeffrey L.; Savage, Blair D.; Sembach, Kenneth; Shull, J. Michael; Siegmund, Oswald H. W.; Snow, Theodore P.; Spencer, John; Stern, S. Alan; Stocke, John; Welsh, Barry; Béland, Stéphane; Burgh, Eric B.; Danforth, Charles; France, Kevin; Keeney, Brian; McPhate, Jason; Penton, Steven V.; Andrews, John; Brownsberger, Kenneth; Morse, Jon; Wilkinson, Erik

    2012-01-01

    The Cosmic Origins Spectrograph (COS) is a moderate-resolution spectrograph with unprecedented sensitivity that was installed into the Hubble Space Telescope (HST) in 2009 May, during HST Servicing Mission 4 (STS-125). We present the design philosophy and summarize the key characteristics of the instrument that will be of interest to potential observers. For faint targets, with flux F λ ≈ 1.0 × 10-14 erg cm-2 s-1 Å-1, COS can achieve comparable signal to noise (when compared to Space Telescope Imaging Spectrograph echelle modes) in 1%-2% of the observing time. This has led to a significant increase in the total data volume and data quality available to the community. For example, in the first 20 months of science operation (2009 September-2011 June) the cumulative redshift pathlength of extragalactic sight lines sampled by COS is nine times than sampled at moderate resolution in 19 previous years of Hubble observations. COS programs have observed 214 distinct lines of sight suitable for study of the intergalactic medium as of 2011 June. COS has measured, for the first time with high reliability, broad Lyα absorbers and Ne VIII in the intergalactic medium, and observed the He II reionization epoch along multiple sightlines. COS has detected the first CO emission and absorption in the UV spectra of low-mass circumstellar disks at the epoch of giant planet formation, and detected multiple ionization states of metals in extra-solar planetary atmospheres. In the coming years, COS will continue its census of intergalactic gas, probe galactic and cosmic structure, and explore physics in our solar system and Galaxy.

  14. Performance results from in-flight commissioning of the Juno Ultraviolet Spectrograph (Juno-UVS)

    NASA Astrophysics Data System (ADS)

    Greathouse, T. K.; Gladstone, G. R.; Davis, M. W.; Slater, D. C.; Versteeg, M. H.; Persson, K. B.; Walther, B. C.; Winters, G. S.; Persyn, S. C.; Eterno, J. S.

    2013-09-01

    We present a description of the Juno ultraviolet spectrograph (Juno-UVS) and results from its in-flight commissioning performed between December 5th and 13th 2011 and its first periodic maintenance between October 10th and 12th 2012. Juno-UVS is a modest power (9.0 W) ultraviolet spectrograph based on the Alice instruments now in flight aboard the European Space Agency's Rosetta spacecraft, NASA's New Horizons spacecraft, and the LAMP instrument aboard NASA's Lunar Reconnaissance Orbiter. However, unlike the other Alice spectrographs, Juno-UVS sits aboard a spin stabilized spacecraft. The Juno-UVS scan mirror allows for pointing of the slit approximately +/-30° from the spacecraft spin plane. This ability gives Juno-UVS access to half the sky at any given spacecraft orientation. The planned 2 rpm spin rate for the primary mission results in integration times per 0.2° spatial resolution element per spin of only ~17 ms. Thus, for calibration purposes, data were retrieved from many spins and then remapped and co-added to build up exposure times on bright stars to measure the effective area, spatial resolution, scan mirror pointing positions, etc. The primary job of Juno-UVS will be to characterize Jupiter's UV auroral emissions and relate them to in-situ particle measurements. The ability to point the slit will make operations more flexible, allowing Juno-UVS to observe the atmospheric footprints of magnetic field lines through which Juno flies, giving a direct connection between energetic particle measurements on the spacecraft and the far-ultraviolet emissions produced by Jupiter's atmosphere in response to those particles.

  15. An overview of instrumentation for the Large Binocular Telescope

    NASA Astrophysics Data System (ADS)

    Wagner, R. Mark

    2006-06-01

    An overview of instrumentation for the Large Binocular Telescope is presented. Optical instrumentation includes the Large Binocular Camera (LBC), a pair of wide-field (27' × 27') mosaic CCD imagers at the prime focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs mounted at the straight-through F/15 Gregorian focus incorporating multiple slit masks for multi-object spectroscopy over a 6' field and spectral resolutions of up to 8000. Infrared instrumentation includes the LBT Near-IR Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCIFER), a modular near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at a bent interior focal station and designed for seeing-limited (FOV: 4' × 4') imaging, long-slit spectroscopy, and multi-object spectroscopy utilizing cooled slit masks and diffraction limited (FOV: 0'.5 × 0'.5) imaging and long-slit spectroscopy. Strategic instruments under development for the remaining two combined focal stations include an interferometric cryogenic beam combiner with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench near-infrared beam combiner utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity (LINC-NIRVANA). In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. The availability of all these instruments mounted simultaneously on the LBT permits unique science, flexible scheduling, and improved operational support.

  16. An overview of instrumentation for the Large Binocular Telescope

    NASA Astrophysics Data System (ADS)

    Wagner, R. Mark

    2004-09-01

    An overview of instrumentation for the Large Binocular Telescope is presented. Optical instrumentation includes the Large Binocular Camera (LBC), a pair of wide-field (27'x 27') UB/VRI optimized mosaic CCD imagers at the prime focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs mounted at the straight-through F/15 Gregorian focus incorporating multiple slit masks for multi-object spectroscopy over a 6\\arcmin\\ field and spectral resolutions of up to 8000. Infrared instrumentation includes the LBT Near-IR Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCIFER), a modular near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at a bent interior focal station and designed for seeing-limited (FOV: 4'x 4') imaging, long-slit spectroscopy, and multi-object spectroscopy utilizing cooled slit masks and diffraction limited (FOV: 0'.5 x 0'.5) imaging and long-slit spectroscopy. Strategic instruments under development for the remaining two combined focal stations include an interferometric cryogenic beam combiner with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench beam combiner with visible and near-infrared imagers utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity (LINC/NIRVANA). In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. The availability of all these instruments mounted simultaneously on the LBT permits unique science, flexible scheduling, and improved operational support.

  17. An overview of instrumentation for the Large Binocular Telescope

    NASA Astrophysics Data System (ADS)

    Wagner, R. Mark

    2008-07-01

    An overview of instrumentation for the Large Binocular Telescope is presented. Optical instrumentation includes the Large Binocular Camera (LBC), a pair of wide-field (27' × 27') mosaic CCD imagers at the prime focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs mounted at the straight-through F/15 Gregorian focus incorporating multiple slit masks for multi-object spectroscopy over a 6 field and spectral resolutions of up to 8000. Infrared instrumentation includes the LBT Near-IR Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCIFER), a modular near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at a bent interior focal station and designed for seeing-limited (FOV: 4' × 4') imaging, long-slit spectroscopy, and multi-object spectroscopy utilizing cooled slit masks and diffraction limited (FOV: 0.5' × 0.5') imaging and long-slit spectroscopy. Strategic instruments under development for the remaining two combined focal stations include an interferometric cryogenic beam combiner with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench near-infrared beam combiner utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity (LINC-NIRVANA). In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. The availability of all these instruments mounted simultaneously on the LBT permits unique science, flexible scheduling, and improved operational support.

  18. CAFE: Calar Alto Fiber-fed Échelle spectrograph

    NASA Astrophysics Data System (ADS)

    Aceituno, J.; Sánchez, S. F.; Grupp, F.; Lillo, J.; Hernán-Obispo, M.; Benitez, D.; Montoya, L. M.; Thiele, U.; Pedraz, S.; Barrado, D.; Dreizler, S.; Bean, J.

    2013-04-01

    We present here CAFE, the Calar Alto Fiber-fed Échelle spectrograph, a new instrument built at the Centro Astronomico Hispano Alemán (CAHA). CAFE is a single-fiber, high-resolution (R ~ 70 000) spectrograph, covering the wavelength range between 3650-9800 Å. It was built on the basis of the common design for Échelle spectrographs. Its main aim is to measure radial velocities of stellar objects up to V ~ 13-14 mag with a precision as good as a few tens of m s-1. To achieve this goal the design was simplified at maximum, removing all possible movable components, the central wavelength is fixed, as is the wavelength coverage; there is no filter wheel, etc. Particular care was taken with the thermal and mechanical stability. The instrument is fully operational and publically accessible at the 2.2 m telescope of the Calar Alto Observatory. In this article we describe (i) the design, summarizing its manufacturing phase; (ii) characterize the main properties of the instrument; (iii) describe the reduction pipeline; and (iv) show the results from the first light and commissioning runs. The preliminar results indicate that the instrument fulfills the specifications and can achieve the planned goals. In particular, the results show that the instrument is more efficient than anticipated, reaching a signal-to-noise of ~20 for a stellar object as faint as V ~ 14.5 mag in ~2700 s integration time. The instrument is a wonderful machine for exoplanetary research (by studying large samples of possible systems cotaining massive planets), galactic dynamics (highly precise radial velocities in moving groups or stellar associations), or astrochemistry.

  19. Fiber developments at the Anglo-Australian Observatory for SPIRAL and AUSTRALIS

    NASA Astrophysics Data System (ADS)

    Lee, David; Taylor, Keith

    2000-08-01

    In this paper we discuss some of the recent developments with optical fibers at the Anglo-Australian Observatory. Firstly we will describe the upgrade to the SPIRAL integral field spectrograph for the Anglo-Australian Telescope. SPIRAL-B uses a crossed cylindrical microlens array to feed 512 optical fibers at F/5.5 providing a field of view of 22 by 11 arcseconds with 0.7 arcsecond spatial sampling. The performance of the fiber bundle, microlens array, and construction techniques will be described. We will also discus the development of prototype optical fiber switchyard as part of the AUSTRALIS concept study. The switchyard provides an 'optical bread' in the fiber, between the telescope and spectrograph, which allows coupling between fibers of different diameters and focal rations. A dichroic can also be incorporated into the switchyard to allow both optical and IR spectrographs to be fed simultaneously. Switchyards therefore provide much greater observing flexibility by increasing the number of possible instrument configurations. We will briefly discuss the merits of fiber switchyards and present the results of FRD and transmission test performed in the laboratory.

  20. The UV Survey Mission Concept, CETUS

    NASA Astrophysics Data System (ADS)

    Heap, Sara; and the CETUS Team

    2018-01-01

    In March 2017, NASA selected CETUS for study of a Probe-class mission concept. W. Danchi is the CETUS PI, and S. Heap is the Science PI. CETUS is primarily a UV survey telescope to complement survey telescopes of the 2020’s including E-ROSITA, Subaru Hyper Suprime Cam and Prime-Focus Spectrograph, WFIRST, and the Square Kilometer Array. CETUS comprises a 1.5-m wide-field telescope and three science instruments: a wide-field (1045” on a side) far-UV and near-UV camera; a similarly wide-field near-UV multi-object spectrograph utilizing a next-generation micro-shutter array; and a single-object spectrograph with options of spectral region (far-UV or near-UV) and spectral resolving power (2,000 or 40,000). The survey instruments will operate simultaneously thereby producing wide-field images in the near-UV and far-UV and a spectrogram containing near-UV spectra of up to 100 sources free of spectral overlap and astronomical background. ln concert with other survey telescopes, CETUS will focus on understanding galaxy evolution at cosmic noon (z~1-2).

  1. KOSMOS and COSMOS: new facility instruments for the NOAO 4-meter telescopes

    NASA Astrophysics Data System (ADS)

    Martini, Paul; Elias, J.; Points, S.; Sprayberry, D.; Derwent, Mark A.; Gonzalez, Raymond; Mason, J. A.; O'Brien, T. P.; Pappalardo, D. P.; Pogge, Richard W.; Stoll, R.; Zhelem, R.; Daly, Phil; Fitzpatrick, M.; George, J. R.; Hunten, M.; Marshall, R.; Poczulp, Gary; Rath, S.; Seaman, R.; Trueblood, M.; Zelaya, K.

    2014-07-01

    We describe the design, construction and measured performance of the Kitt Peak Ohio State Multi-Object Spectrograph (KOSMOS) for the 4-m Mayall telescope and the Cerro Tololo Ohio State Multi-Object Spectrograph (COSMOS) for the 4-m Blanco telescope. These nearly identical imaging spectrographs are modified versions of the OSMOS instrument; they provide a pair of new, high-efficiency instruments to the NOAO user community. KOSMOS and COSMOS may be used for imaging, long-slit, and multi-slit spectroscopy over a 100 square arcminute field of view with a pixel scale of 0.29 arcseconds. Each contains two VPH grisms that provide R~2500 with a one arcsecond slit and their wavelengths of peak diffraction efficiency are approximately 510nm and 750nm. Both may also be used with either a thin, blue-optimized CCD from e2v or a thick, fully depleted, red-optimized CCD from LBNL. These instruments were developed in response to the ReSTAR process. KOSMOS was commissioned in 2013B and COSMOS was commissioned in 2014A.

  2. Fireball multi object spectrograph: as-built optic performances

    NASA Astrophysics Data System (ADS)

    Grange, R.; Milliard, B.; Lemaitre, G.; Quiret, S.; Pascal, S.; Origné, A.; Hamden, E.; Schiminovich, D.

    2016-07-01

    Fireball (Faint Intergalactic Redshifted Emission Balloon) is a NASA/CNES balloon-borne experiment to study the faint diffuse circumgalactic medium from the line emissions in the ultraviolet (200 nm) above 37 km flight altitude. Fireball relies on a Multi Object Spectrograph (MOS) that takes full advantage of the new high QE, low noise 13 μm pixels UV EMCCD. The MOS is fed by a 1 meter diameter parabola with an extended field (1000 arcmin2) using a highly aspherized two mirror corrector. All the optical train is working at F/2.5 to maintain a high signal to noise ratio. The spectrograph (R 2200 and 1.5 arcsec FWHM) is based on two identical Schmidt systems acting as collimator and camera sharing a 2400 g/mm aspherized reflective Schmidt grating. This grating is manufactured from active optics methods by double replication technique of a metal deformable matrix whose active clear aperture is built-in to a rigid elliptical contour. The payload and gondola are presently under integration at LAM. We will present the alignment procedure and the as-built optic performances of the Fireball instrument.

  3. GEMINI NEAR INFRARED FIELD SPECTROGRAPH OBSERVATIONS OF THE SEYFERT 2 GALAXY MRK 573: IN SITU ACCELERATION OF IONIZED AND MOLECULAR GAS OFF FUELING FLOWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, Travis C.; Straughn, A. N.; Machuca, C.

    2017-01-01

    We present near-infrared and optical emission-line and stellar kinematics of the Seyfert 2 galaxy Mrk 573 using the Near-Infrared Field Spectrograph (NIFS) at Gemini North and Dual Imaging Spectrograph at Apache Point Observatory, respectively. By obtaining full kinematic maps of the infrared ionized and molecular gas and stellar kinematics in a ∼700 × 2100 pc{sup 2} circumnuclear region of Mrk 573, we find that kinematics within the Narrow-Line Region are largely due to a combination of both rotation and in situ acceleration of material originating in the host disk. Combining these observations with large-scale, optical long-slit spectroscopy that traces ionized gas emission out tomore » several kpcs, we find that rotation kinematics dominate the majority of the gas. We find that outflowing gas extends to distances less than 1 kpc, suggesting that outflows in Seyfert galaxies may not be powerful enough to evacuate their entire bulges.« less

  4. Development of a slicer integral field unit for the existing optical spectrograph FOCAS: progress

    NASA Astrophysics Data System (ADS)

    Ozaki, Shinobu; Tanaka, Yoko; Hattori, Takashi; Mitsui, Kenji; Fukushima, Mitsuhiro; Okada, Norio; Obuchi, Yoshiyuki; Tsuzuki, Toshihiro; Miyazaki, Satoshi; Yamashita, Takuya

    2014-07-01

    We are developing an integral field unit (IFU) with an image slicer for the existing optical spectrograph, Faint Object Camera And Spectrograph (FOCAS), on the Subaru Telescope. The slice width is 0.43 arcsec, the slice number is 23, and the field of view is 13.5 × 9.89 arcsec2. Sky spectrum separated by about 5.7 arcmin from an object field can be simultaneously obtained, which allows us precise background subtraction. Slice mirrors, pupil mirrors and slit mirrors are all glass, and their mirror surfaces are fabricated by polishing. Our IFU is about 200 mm × 300 mm × 80 mm in size and 1 kg in weight. It is installed into a mask storage in FOCAS along with one or two mask plates, and inserted into the optical path by using the existing mask exchange mechanism. This concept allow us flexible operation such as Targets of Opportunity observations. High reflectivity of multilayer dielectric coatings offers high throughput (>80%) of the IFU. In this paper, we will report a final optical layout, its performances, and results of prototyping works.

  5. VizieR Online Data Catalog: R-band light curves of type II supernovae (Rubin+, 2016)

    NASA Astrophysics Data System (ADS)

    Rubin, A.; Gal-Yam, A.; De Cia, A.; Horesh, A.; Khazov, D.; Ofek, E. O.; Kulkarni, S. R.; Arcavi, I.; Manulis, I.; Yaron, O.; Vreeswijk, P.; Kasliwal, M. M.; Ben-Ami, S.; Perley, D. A.; Cao, Y.; Cenko, S. B.; Rebbapragada, U. D.; Wozniak, P. R.; Filippenko, A. V.; Clubb, K. I.; Nugent, P. E.; Pan, Y.-C.; Badenes, C.; Howell, D. A.; Valenti, S.; Sand, D.; Sollerman, J.; Johansson, J.; Leonard, D. C.; Horst, J. C.; Armen, S. F.; Fedrow, J. M.; Quimby, R. M.; Mazzali, P.; Pian, E.; Sternberg, A.; Matheson, T.; Sullivan, M.; Maguire, K.; Lazarevic, S.

    2016-05-01

    Our sample consists of 57 SNe from the PTF (Law et al. 2009PASP..121.1395L; Rau et al. 2009PASP..121.1334R) and the intermediate Palomar Transient Factory (iPTF; Kulkarni 2013ATel.4807....1K) surveys. Data were routinely collected by the Palomar 48-inch survey telescope in the Mould R-band. Follow-up observations were conducted mainly with the robotic 60-inch telescope using an SDSS r-band filter, with additional telescopes providing supplementary photometry and spectroscopy (see Gal-Yam et al. 2011, J/ApJ/736/159). The full list of SNe, their coordinates, and classification spectra are presented in Table 1. Most of the spectra were obtained with the Double Spectrograph on the 5m Hale telescope at Palomar Observatory, the Kast spectrograph on the Shane 3m telescope at Lick Observatory, the Low Resolution Imaging Spectrometer (LRIS) on the Keck I 10m telescope, and the DEep Imaging Multi-Object Spectrograph (DEIMOS) on the Keck II 10m telescope. (2 data files).

  6. Conditional-sampling spectrograph detection system for fluorescence measurements of individual airborne biological particles

    NASA Astrophysics Data System (ADS)

    Nachman, Paul; Pinnick, R. G.; Hill, Steven C.; Chen, Gang; Chang, Richard K.; Mayo, Michael W.; Fernandez, Gilbert L.

    1996-03-01

    We report the design and operation of a prototype conditional-sampling spectrograph detection system that can record the fluorescence spectra of individual, micrometer-sized aerosols as they traverse an intense 488-nm intracavity laser beam. The instrument's image-intensified CCD detector is gated by elastic scattering or by undispersed fluorescence from particles that enter the spectrograph's field of view. It records spectra only from particles with preselected scattering-fluorescence levels (a fiber-optic-photomultiplier subsystem provides the gating signal). This conditional-sampling procedure reduces data-handling rates and increases the signal-to-noise ratio by restricting the system's exposures to brief periods when aerosols traverse the beam. We demonstrate these advantages by reliably capturing spectra from individual fluorescent microspheres dispersed in an airstream. The conditional-sampling procedure also permits some discrimination among different types of particles, so that spectra may be recorded from the few interesting particles present in a cloud of background aerosol. We demonstrate such discrimination by measuring spectra from selected fluorescent microspheres in a mixture of two types of microspheres, and from bacterial spores in a mixture of spores and nonfluorescent kaolin particles.

  7. Opto-mechanical design of a new cross dispersion unit for the CRIRES+ high resolution spectrograph for the VLT

    NASA Astrophysics Data System (ADS)

    Lizon, Jean Louis; Klein, Barbara; Oliva, Ernesto; Löwinger, Tom; Anglada Escude, Guillem; Baade, Dietrich; Bristow, Paul; Dorn, Reinhold J.; Follert, Roman; Grunhut, Jason; Hatzes, Artie; Heiter, Ulrike; Ives, Derek; Jung, Yves; Kerber, Florian; Lockhart, Matt; Marquart, Thomas; Origlia, Livia; Pasquini, Luca; Paufique, Jerome; Piskunov, N.; Pozna, Eszter; Reiners, Ansgar; Smette, Alain; Smoker, Jonathan; Seemann, Ulf; Stempels, Eric; Valenti, Elena

    2014-07-01

    CRIRES is one of the few IR (0.92-5.2 μm) high-resolution spectrographs in operation at the VLT since 2006. Despite good performance it suffers a limitation that significantly hampers its ability: a small spectral coverage per exposure. The CRIRES upgrade (CRIRES+) proposes to transform CRIRES into a cross-dispersed spectrograph while maintaining the high resolution (100000) and increasing the wavelength coverage by a factor 10 compared to the current capabilities. A major part of the upgrade is the exchange of the actual cryogenic pre-disperser module by a new cross disperser unit. In addition to a completely new optical design, a number of important changes are required on key components and functions like the slit unit and detectors units. We will outline the design of these new units fitting inside a predefined and restricted space. The mechanical design of the new functions including a description and analysis will be presented. Finally we will present the strategy for the implementation of the changes.

  8. GESE: a small UV space telescope to conduct a large spectroscopic survey of z˜1 Galaxies

    NASA Astrophysics Data System (ADS)

    Heap, Sara R.; Gong, Qian; Hull, Tony; Kruk, Jeffrey; Purves, Lloyd

    2014-11-01

    One of the key goals of NASA's astrophysics program is to answer the question: How did galaxies evolve into the spirals and elliptical galaxies that we see today? We describe a space mission concept called Galaxy Evolution Spectroscopic Explorer (GESE) to address this question by making a large spectroscopic survey of galaxies at a redshift, z˜1 (look-back time of ˜8 billion years). GESE is a 1.5-m space telescope with an ultraviolet (UV) multi-object slit spectrograph that can obtain spectra of hundreds of galaxies per exposure. The spectrograph covers the spectral range, 0.2-0.4 μm at a spectral resolving power, R˜500. This observed spectral range corresponds to 0.1-0.2 μm as emitted by a galaxy at a redshift, z=1. The mission concept takes advantage of two new technological advances: (1) light-weighted, wide-field telescope mirrors, and (2) the Next-Generation MicroShutter Array (NG-MSA) to be used as a slit generator in the multi-object slit spectrograph.

  9. Cassini UVIS Auroral Observations in 2016 and 2017

    NASA Astrophysics Data System (ADS)

    Pryor, Wayne R.; Esposito, Larry W.; Jouchoux, Alain; Radioti, Aikaterini; Grodent, Denis; Gustin, Jacques; Gerard, Jean-Claude; Lamy, Laurent; Badman, Sarah; Dyudina, Ulyana A.; Cassini UVIS Team, Cassini VIMS Team, Cassini ISS Team, HST Saturn Auroral Team

    2017-10-01

    In 2016 and 2017, the Cassini Saturn orbiter executed a final series of high-inclination, low-periapsis orbits ideal for studies of Saturn's polar regions. The Cassini Ultraviolet Imaging Spectrograph (UVIS) obtained an extensive set of auroral images, some at the highest spatial resolution obtained during Cassini's long orbital mission (2004-2017). In some cases, two or three spacecraft slews at right angles to the long slit of the spectrograph were required to cover the entire auroral region to form auroral images. We will present selected images from this set showing narrow arcs of emission, more diffuse auroral emissions, multiple auroral arcs in a single image, discrete spots of emission, small scale vortices, large-scale spiral forms, and parallel linear features that appear to cross in places like twisted wires. Some shorter features are transverse to the main auroral arcs, like barbs on a wire. UVIS observations were in some cases simultaneous with auroral observations from the Cassini Imaging Science Subsystem (ISS) the Cassini Visual and Infrared Mapping Spectrometer (VIMS), and the Hubble Space Telescope Space Telescope Imaging Spectrograph (STIS) that will also be presented.

  10. Conceptual Design of the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) for the Subaru Telescope

    NASA Technical Reports Server (NTRS)

    Peters, Mary Anne; Groff, Tyler; Kasdin, N. Jeremy; McElwain, Michael W.; Galvin, Michael; Carr, Michael A.; Lupton, Robert; Gunn, James E.; Knapp, Gillian; Gong, Qian; hide

    2012-01-01

    Recent developments in high-contrast imaging techniques now make possible both imaging and spectroscopy of planets around nearby stars. We present the conceptual design of the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS), a lenslet-based, cryogenic integral field spectrograph (IFS) for imaging exoplanets on the Subaru telescope. The IFS will provide spectral information for 140 x 140 spatial elements over a 1.75 arcsecs x 1.75 arcsecs field of view (FOV). CHARIS will operate in the near infrared (lambda = 0.9 - 2.5 micron) and provide a spectral resolution of R = 14, 33, and 65 in three separate observing modes. Taking advantage of the adaptive optics systems and advanced coronagraphs (AO188 and SCExAO) on the Subaru telescope, CHARIS will provide sufficient contrast to obtain spectra of young self-luminous Jupiter-mass exoplanets. CHARIS is in the early design phases and is projected to have first light by the end of 2015. We report here on the current conceptual design of CHARIS and the design challenges.

  11. Center Finding Algorithm on slit mask point source for IGRINS (Immersion GRating INfrared Spectrograph)

    NASA Astrophysics Data System (ADS)

    Lee, Hye-In; Pak, Soojong; Lee, Jae-Joon; Mace, Gregory N.; Jaffe, Daniel Thomas

    2017-06-01

    We developed an observation control software for the IGRINS (Immersion Grating Infrared Spectrograph) silt-viewing camera module, which points the astronomical target onto the spectroscopy slit and sends tracking feedbacks to the telescope control system (TCS). The point spread function (PSF) image is not following symmetric Gaussian profile. In addition, bright targets are easily saturated and shown as a donut shape. It is not trivial to define and find the center of the asymmetric PSF especially when most of the stellar PSF falls inside the slit. We made a center balancing algorithm (CBA) which derives the expected center position along the slit-width axis by referencing the stray flux ratios of both upper and lower sides of the slit. We compared accuracies of the CBA and those of a two-dimensional Gaussian fitting (2DGA) through simulations in order to evaluate the center finding algorithms. These methods were then verified with observational data. In this poster, we present the results of our tests and suggest a new algorithm for centering targets in the slit image of a spectrograph.

  12. GESE: A Small UV Space Telescope to Conduct a Large Spectroscopic Survey of Z-1 Galaxies

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Gong, Qian; Hull, Tony; Kruk, Jeffrey; Purves, Lloyd

    2013-01-01

    One of the key goals of NASA's astrophysics program is to answer the question: How did galaxies evolve into the spirals and elliptical galaxies that we see today? We describe a space mission concept called Galaxy Evolution Spectroscopic Explorer (GESE) to address this question by making a large spectroscopic survey of galaxies at a redshift, z is approximately 1 (look-back time of approximately 8 billion years). GESE is a 1.5-meter space telescope with an ultraviolet (UV) multi-object slit spectrograph that can obtain spectra of hundreds of galaxies per exposure. The spectrograph covers the spectral range, 0.2-0.4 micrometers at a spectral resolving power, R approximately 500. This observed spectral range corresponds to 0.1-0.2 micrometers as emitted by a galaxy at a redshift, z=1. The mission concept takes advantage of two new technological advances: (1) light-weighted, wide-field telescope mirrors, and (2) the Next- Generation MicroShutter Array (NG-MSA) to be used as a slit generator in the multi-object slit spectrograph.

  13. Minor Distortions with Major Consequences: Correcting Distortions in Imaging Spectrographs

    PubMed Central

    Esmonde-White, Francis W. L.; Esmonde-White, Karen A.; Morris, Michael D.

    2010-01-01

    Projective transformation is a mathematical correction (implemented in software) used in the remote imaging field to produce distortion-free images. We present the application of projective transformation to correct minor alignment and astigmatism distortions that are inherent in dispersive spectrographs. Patterned white-light images and neon emission spectra were used to produce registration points for the transformation. Raman transects collected on microscopy and fiber-optic systems were corrected using established methods and compared with the same transects corrected using the projective transformation. Even minor distortions have a significant effect on reproducibility and apparent fluorescence background complexity. Simulated Raman spectra were used to optimize the projective transformation algorithm. We demonstrate that the projective transformation reduced the apparent fluorescent background complexity and improved reproducibility of measured parameters of Raman spectra. Distortion correction using a projective transformation provides a major advantage in reducing the background fluorescence complexity even in instrumentation where slit-image distortions and camera rotation were minimized using manual or mechanical means. We expect these advantages should be readily applicable to other spectroscopic modalities using dispersive imaging spectrographs. PMID:21211158

  14. New developments in instrumentation at the W. M. Keck Observatory

    NASA Astrophysics Data System (ADS)

    Adkins, Sean M.; Armandroff, Taft E.; Fitzgerald, Michael P.; Johnson, James; Larkin, James E.; Lewis, Hilton A.; Martin, Christopher; Matthews, Keith Y.; Prochaska, J. X.; Wizinowich, Peter

    2014-07-01

    The W. M. Keck Observatory continues to develop new capabilities in support of our science driven strategic plan which emphasizes leadership in key areas of observational astronomy. This leadership is a key component of the scientific productivity of our observing community and depends on our ability to develop new instrumentation, upgrades to existing instrumentation, and upgrades to supporting infrastructure at the observatory. In this paper we describe the as measured performance of projects completed in 2014 and the expected performance of projects currently in the development or construction phases. Projects reaching completion in 2014 include a near-IR tip/tilt sensor for the Keck I adaptive optics system, a new center launch system for the Keck II laser guide star facility, and NIRES, a near-IR Echelle spectrograph for the Keck II telescope. Projects in development include a new seeing limited integral field spectrograph for the visible wavelength range called the Keck Cosmic Web Imager, a deployable tertiary mirror for the Keck I telescope, upgrades to the spectrograph detector and the imager of the OSIRIS instrument, and an upgrade to the telescope control systems on both Keck telescopes.

  15. A rubidium traced white-light etalon calibrator for MAROON-X

    NASA Astrophysics Data System (ADS)

    Stürmer, Julian; Seifahrt, Andreas; Schwab, Christian; Bean, Jacob L.

    2016-07-01

    We report on the construction and testing of a vacuum-gap Fabry-Perot etalon calibrator for high precision radial velocity spectrographs. The etalon is referenced against hyper fine transitions of rubidium to provide a precise wavelength calibrator for MAROON-X, a new fiber-fed, red-optical, high-precision radial-velocity spectrograph currently under construction for one of the twin 6.5m Magellan Telescopes in Chile. We demonstrate a turnkey system, ready to be installed at any current and next generation radial velocity spectrograph that requires calibration over a wide spectral band-pass. Uncertainties in the position of one etalon line are at the 10 cm s-1 level in individual measurements taken at 4 Hz. Our long-term stability is mainly limited by aging effects of the spacer material Zerodur, which imprints a 12 cm s-1 daily drift. However, as the etalon position is traced by the rubidium reference with a precision of <3 cm s-1 for integration times longer than 10s, we can fully account for this effect at the RV data reduction level.

  16. Pulsations in the atmosphere of the rapidly oscillating star 33 Lib

    NASA Astrophysics Data System (ADS)

    Sachkov, M.; Hareter, M.; Ryabchikova, T.; Wade, G.; Kochukhov, O.; Shulyak, D.; Weiss, W. W.

    2011-10-01

    In 2009, the rapidly oscillating peculiar A-type (roAp) star 33 Lib was the target of an intense observing campaign, combining ground-based spectroscopy with space photometry obtained with the Microvariability and Oscillation of STars (MOST) satellite. We collected 780 spectra using the Echelle Spectro Polarimetric Device for the Observation of Stars (ESPaDOnS) spectrograph attached at the 3.6-m Canada-France-Hawaii Telescope and 374 spectra with the Fibre-fed Echelle Spectrograph attached at the 2.56-m Nordic Optical Telescope to perform time-resolved spectroscopy of 33 Lib. In addition, we used 111 Ultraviolet and Visual Echelle Spectrograph (UVES) spectra (2004) from the European Southern Observatory archive to check mode stability. Frequency analysis of the new radial velocity (RV) measurements confirms the previously reported frequency pattern (two frequencies and the first harmonic of the main one) and reveals an additional frequency at 1.991 mHz. The new frequency solution perfectly reproduces the RV variations from the 2004 and 2009 observational sets, providing strong support for p mode stability in this roAp star over at least 5 years.

  17. Shrinking of the Be disk whilst the X-ray activity increases in the binary system A0535+262

    NASA Astrophysics Data System (ADS)

    Camero-Arranz, A.; Caballero-Garcia, M. D.; Fabregat, J.; Jelinek, M.; Castro-Tirado, A.; Peris, V.

    2015-02-01

    We report on the evolution of the H & alpha; equivalent width (EW) of the Be/X-ray binary system A 0535+262/HD 245770, using observations performed with the spectrograph COLORES at the 0.6 m telescope BOOTES-2 (M & aacute;laga, Spain) on 2015-01-27 at 22:05:31.736 UTC (MJD 57049.920), and with the spectrograph located at the 51 cm telescope of the Observatorio de Aras de los Olmos of the University of Valencia on 2015-01-29 at 01:00:00 UTC (MJD 57051.042).

  18. Performance, results, and prospects of the visible spectrograph VEGA on CHARA

    NASA Astrophysics Data System (ADS)

    Mourard, Denis; Challouf, Mounir; Ligi, Roxanne; Bério, Philippe; Clausse, Jean-Michel; Gerakis, Jérôme; Bourges, Laurent; Nardetto, Nicolas; Perraut, Karine; Tallon-Bosc, Isabelle; McAlister, H.; ten Brummelaar, T.; Ridgway, S.; Sturmann, J.; Sturmann, L.; Turner, N.; Farrington, C.; Goldfinger, P. J.

    2012-07-01

    In this paper, we review the current performance of the VEGA/CHARA visible spectrograph and make a review of the most recent astrophysical results. The science programs take benefit of the exceptional angular resolution, the unique spectral resolution and one of the main features of CHARA: Infrared and Visible parallel operation. We also discuss recent developments concerning the tools for the preparation of observations and important features of the data reduction software. A short discussion of the future developments will complete the presentation, directed towards new detectors and possible new beam combination scheme for improved sensitivity and imaging capabilities.

  19. VizieR Online Data Catalog: Reflectance spectra of 12 Trojans and Hildas (Marsset+, 2014)

    NASA Astrophysics Data System (ADS)

    Marsset, M.; Vernazza, P.; Gourgeot, F.; Dumas, C.; Birlan, M.; Lamy, P.; Binzel, R. P.

    2014-07-01

    We present 17 reflectance spectra of 12 high albedo (pv>0.14) Trojans (8 objects) and Hildas (4 objects) obtained with the ESO/VLT Echelle spectrograph X-SHOOTER in the 0.3-2.2um spectral range (14 spectra) and with the NASA/IRTF spectrograph SpeX in the 0.8-2.5um spectral range (3 spectra). X-SHOOTER spectra were normalized to unity at 0.55um and SpeX spectra were normalized to unity at 2.2um . The spectra presented in this work were collected between April and December 2013. (18 data files).

  20. The Cosmic Evolution Through UV Spectroscopy (CETUS) Probe Mission Concept

    NASA Astrophysics Data System (ADS)

    Danchi, William; Heap, Sara; Woodruff, Robert; Hull, Anthony; Kendrick, Stephen E.; Purves, Lloyd; McCandliss, Stephan; Kelly Dodson, Greg Mehle, James Burge, Martin Valente, Michael Rhee, Walter Smith, Michael Choi, Eric Stoneking

    2018-01-01

    CETUS is a mission concept for an all-UV telescope with 3 scientific instruments: a wide-field camera, a wide-field multi-object spectrograph, and a point-source high-resolution and medium resolution spectrograph. It is primarily intended to work with other survey telescopes in the 2020’s (e.g. E-ROSITA (X-ray), LSST, Subaru, WFIRST (optical-near-IR), SKA (radio) to solve major, outstanding problems in astrophysics. In this poster presentation, we give an overview of CETUS key science goals and a progress report on the CETUS mission and instrument design.

  1. Reflective correctors for the Hubble Space Telescope axial instruments

    NASA Technical Reports Server (NTRS)

    Bottema, Murk

    1993-01-01

    Reflective correctors to compensate the spherical aberration in the Hubble Space Telescope are placed in front of three of the axial scientific instruments (a camera and two spectrographs) during the first scheduled refurbishment mission. The five correctors required are deployed from a new module that replaces the fourth axial instrument. Each corrector consists of a field mirror and an aspherical, aberration-correcting reimaging mirror. In the camera the angular resolution capability is restored, be it in reduced fields, and in the spectrographs the potential for observations in crowded areas is regained along with effective light collection at the slits.

  2. Sets of spectral lines for spectrographic thermometry and manometry in d.c. arcs of geologic materials

    USGS Publications Warehouse

    Golightly, D.W.; Dorrzapf, A.F.; Thomas, C.P.

    1977-01-01

    Sets of 5 Fe(I) lines and 3 Ti(I)Ti(II) line pairs have been characterized for precise spectrographic thermometry and manometry, respectively, in d.c. arcs of geologic materials. The recommended lines are free of spectral interferences, exhibit minimal self absorption within defined concentration intervals, and are useful for chemically-unaltered silicate rocks, arced in an argon-oxygen stream. The functional character of these lines in thermometry and manometry of d.c. arcs for evaluations of electrical parameter effects, for temporal studies, and for matrix-effect investigations on real samples is illustrated. ?? 1977.

  3. Autonomous spectrographic system to analyse the main elements of fireballs and meteors

    NASA Astrophysics Data System (ADS)

    Espartero, Francisco Ángel; Martínez, Germán; Frías, Marta; Montes Moya, Francisco Simón; Castro-Tirado, Alberto Javier

    2018-01-01

    We present a meteor observation system based on imaging CCD cameras, wide-field optics and a diffraction grating. This system is composed of two independent spectrographs with different configurations, which allows us to capture images of fireballs and meteors with several fields of view and sensitivities. The complete set forms a small autonomous observatory, comprised of a sealed box with a sliding roof, weather station and computers for data storing and reduction. Since 2014, several meteors have been studied using this facility, such as the Alcalá la Real fireball recorded on 30 September 2016.

  4. WUVS simulator: detectability of spectral lines with the WSO-UV spectrographs

    NASA Astrophysics Data System (ADS)

    Marcos-Arenal, Pablo; de Castro, Ana I. Gómez; Abarca, Belén Perea; Sachkov, Mikhail

    2017-04-01

    The World Space Observatory Ultraviolet telescope is equipped with high dispersion (55,000) spectrographs working in the 1150 to 3100 Å spectral range. To evaluate the impact of the design on the scientific objectives of the mission, a simulation software tool has been developed. This simulator builds on the development made for the PLATO space mission and it is designed to generate synthetic time-series of images by including models of all important noise sources. We describe its design and performance. Moreover, its application to the detectability of important spectral features for star formation and exoplanetary research is addressed.

  5. The BUSS spectrum of Beta Lyrae. [Balloon-borne Ultraviolet Stellar Spectrograph

    NASA Technical Reports Server (NTRS)

    Hack, M.; Sahade, J.; De Jager, C.; Kondo, Y.

    1983-01-01

    The spectrum of Beta Lyrae from about 1975 to 3010 A taken with the Balloon-borne ultraviolet Stellar Spectrograph experiment in May 1976 at phase 0.61 P is analyzed. Results show the presence of N II semi-forbidden emission and provide evidence for about the same location, in the outer envelope of the system, of the layers responsible for the resonance Mg II doublet emissions and for the "narrow" H-alpha emission. In addition, three sets of absorption lines, P Cygni profiles of Fe III and broad Beals Type III emissions of Mg II, are found to be present.

  6. Metal alloy identifier

    DOEpatents

    Riley, William D.; Brown, Jr., Robert D.

    1987-01-01

    To identify the composition of a metal alloy, sparks generated from the alloy are optically observed and spectrographically analyzed. The spectrographic data, in the form of a full-spectrum plot of intensity versus wavelength, provide the "signature" of the metal alloy. This signature can be compared with similar plots for alloys of known composition to establish the unknown composition by a positive match with a known alloy. An alternative method is to form intensity ratios for pairs of predetermined wavelengths within the observed spectrum and to then compare the values of such ratios with similar values for known alloy compositions, thereby to positively identify the unknown alloy composition.

  7. PEPSI, the High-Resolution Optical-IR Spectrograph for the LBT

    NASA Astrophysics Data System (ADS)

    Andersen, Michael; Strassmeier, Klaus; Hoffman, Axel; Woche, Manfred; Spano, Paolo

    PEPSI is a high resolution fibre feed optical-IR polarimetric echelle spectrograph for the Large Binocular Telescope (LBT). PEPSI utilizes the two 8.4m LBT apertures to simultaneously record four polarization states at a resolution of 120.000. The extension of the coverage towards the IR is mainly motivated by the larger Zeeman splitting of IR lines, which would allow to study weaker/fainter magnetic structures on stars. The two optical arms, which also have an integral light mode with R up to 300.000, are under construction, while the IR arm is being designed.

  8. Design of the KOSMOS oil-coupled spectrograph camera lenses

    NASA Astrophysics Data System (ADS)

    O'Brien, Thomas P.; Derwent, Mark; Martini, Paul; Poczulp, Gary

    2014-07-01

    We present the design details of oil-coupled lens groups used in the KOSMOS spectrograph camera. The oil-coupled groups use silicone rubber O-rings in a unique way to accurately center lens elements with high radial and axial stiffness while also allowing easy assembly. The O-rings robustly seal the oil within the lens gaps to prevent oil migration. The design of an expansion diaphragm to compensate for differential expansion due to temperature changes is described. The issues of lens assembly, lens gap shimming, oil filling and draining, bubble mitigation, material compatibility, mechanical inspection, and optical testing are discussed.

  9. Volume phase holographic gratings for the Subaru Prime Focus Spectrograph: performance measurements of the prototype grating set

    NASA Astrophysics Data System (ADS)

    Barkhouser, Robert H.; Arns, James; Gunn, James E.

    2014-08-01

    The Prime Focus Spectrograph (PFS) is a major instrument under development for the 8.2 m Subaru telescope on Mauna Kea. Four identical, fixed spectrograph modules are located in a room above one Nasmyth focus. A 55 m fiber optic cable feeds light into the spectrographs from a robotic fiber positioner mounted at the telescope prime focus, behind the wide field corrector developed for Hyper Suprime-Cam. The positioner contains 2400 fibers and covers a 1.3 degree hexagonal field of view. Each spectrograph module will be capable of simultaneously acquiring 600 spectra. The spectrograph optical design consists of a Schmidt collimator, two dichroic beamsplitters to separate the light into three channels, and for each channel a volume phase holographic (VPH) grating and a dual- corrector, modified Schmidt reimaging camera. This design provides a 275 mm collimated beam diameter, wide simultaneous wavelength coverage from 380 nm to 1.26 µm, and good imaging performance at the fast f/1.1 focal ratio required from the cameras to avoid oversampling the fibers. The three channels are designated as the blue, red, and near-infrared (NIR), and cover the bandpasses 380-650 nm (blue), 630-970 nm (red), and 0.94-1.26 µm (NIR). A mosaic of two Hamamatsu 2k×4k, 15 µm pixel CCDs records the spectra in the blue and red channels, while the NIR channel employs a 4k×4k, substrate-removed HAWAII-4RG array from Teledyne, with 15 µm pixels and a 1.7 µm wavelength cutoff. VPH gratings have become the dispersing element of choice for moderate-resolution astronomical spectro- graphs due their potential for very high diffraction efficiency, low scattered light, and the more compact instru- ment designs offered by transmissive dispersers. High quality VPH gratings are now routinely being produced in the sizes required for instruments on large telescopes. These factors made VPH gratings an obvious choice for PFS. In order to reduce risk to the project, as well as fully exploit the performance potential of this technology, a set of three prototype VPH gratings (one each of the blue, red, and NIR designs) was ordered and has been recently delivered. The goal for these prototype units, but not a requirement, was to meet the specifications for the final gratings in order to serve as spares and also as early demonstration and integration articles. In this paper we present the design and specifications for the PFS gratings, the plan and setups used for testing both the prototype and final gratings, and results from recent optical testing of the prototype grating set.

  10. Progress with the Prime Focus Spectrograph for the Subaru Telescope: a massively multiplexed optical and near-infrared fiber spectrograph

    NASA Astrophysics Data System (ADS)

    Sugai, Hajime; Tamura, Naoyuki; Karoji, Hiroshi; Shimono, Atsushi; Takato, Naruhisa; Kimura, Masahiko; Ohyama, Youichi; Ueda, Akitoshi; Aghazarian, Hrand; de Arruda, Marcio V.; Barkhouser, Robert H.; Bennett, Charles L.; Bickerton, Steve; Bozier, Alexandre; Braun, David F.; Bui, Khanh; Capocasale, Christopher M.; Carr, Michael A.; Castilho, Bruno; Chang, Yin-Chang; Chen, Hsin-Yo; Chou, Richard C. Y.; Dawson, Olivia R.; Dekany, Richard G.; Ek, Eric M.; Ellis, Richard S.; English, Robin J.; Ferrand, Didier; Ferreira, Décio; Fisher, Charles D.; Golebiowski, Mirek; Gunn, James E.; Hart, Murdock; Heckman, Timothy M.; Ho, Paul T. P.; Hope, Stephen; Hovland, Larry E.; Hsu, Shu-Fu; Hu, Yen-Sang; Huang, Pin Jie; Jaquet, Marc; Karr, Jennifer E.; Kempenaar, Jason G.; King, Matthew E.; Le Fèvre, Olivier; Le Mignant, David; Ling, Hung-Hsu; Loomis, Craig; Lupton, Robert H.; Madec, Fabrice; Mao, Peter; Marrara, Lucas S.; Ménard, Brice; Morantz, Chaz; Murayama, Hitoshi; Murray, Graham J.; de Oliveira, Antonio Cesar; de Oliveira, Claudia M.; de Oliveira, Ligia S.; Orndorff, Joe D.; de Paiva Vilaça, Rodrigo; Partos, Eamon J.; Pascal, Sandrine; Pegot-Ogier, Thomas; Reiley, Daniel J.; Riddle, Reed; Santos, Leandro; dos Santos, Jesulino B.; Schwochert, Mark A.; Seiffert, Michael D.; Smee, Stephen A.; Smith, Roger M.; Steinkraus, Ronald E.; Sodré, Laerte; Spergel, David N.; Surace, Christian; Tresse, Laurence; Vidal, Clément; Vives, Sebastien; Wang, Shiang-Yu; Wen, Chih-Yi; Wu, Amy C.; Wyse, Rosie; Yan, Chi-Hung

    2014-07-01

    The Prime Focus Spectrograph (PFS) is an optical/near-infrared multi-fiber spectrograph with 2394 science fibers, which are distributed in 1.3 degree diameter field of view at Subaru 8.2-meter telescope. The simultaneous wide wavelength coverage from 0.38 μm to 1.26 μm, with the resolving power of 3000, strengthens its ability to target three main survey programs: cosmology, Galactic archaeology, and galaxy/AGN evolution. A medium resolution mode with resolving power of 5000 for 0.71 μm to 0.89 μm also will be available by simply exchanging dispersers. PFS takes the role for the spectroscopic part of the Subaru Measurement of Images and Redshifts (SuMIRe) project, while Hyper Suprime-Cam (HSC) works on the imaging part. HSC's excellent image qualities have proven the high quality of the Wide Field Corrector (WFC), which PFS shares with HSC. The PFS collaboration has succeeded in the project Preliminary Design Review and is now in a phase of subsystem Critical Design Reviews and construction. To transform the telescope plus WFC focal ratio, a 3-mm thick broad-band coated microlens is glued to each fiber tip. The microlenses are molded glass, providing uniform lens dimensions and a variety of refractive-index selection. After successful production of mechanical and optical samples, mass production is now complete. Following careful investigations including Focal Ratio Degradation (FRD) measurements, a higher transmission fiber is selected for the longest part of cable system, while one with a better FRD performance is selected for the fiber-positioner and fiber-slit components, given the more frequent fiber movements and tightly curved structure. Each Fiber positioner consists of two stages of piezo-electric rotary motors. Its engineering model has been produced and tested. After evaluating the statistics of positioning accuracies, collision avoidance software, and interferences (if any) within/between electronics boards, mass production will commence. Fiber positioning will be performed iteratively by taking an image of artificially back-illuminated fibers with the Metrology camera located in the Cassegrain container. The camera is carefully designed so that fiber position measurements are unaffected by small amounts of high special-frequency inaccuracies in WFC lens surface shapes. Target light carried through the fiber system reaches one of four identical fast-Schmidt spectrograph modules, each with three arms. All optical glass blanks are now being polished. Prototype VPH gratings have been optically tested. CCD production is complete, with standard fully-depleted CCDs for red arms and more-challenging thinner fully-depleted CCDs with blue-optimized coating for blue arms. The active damping system against cooler vibration has been proven to work as predicted, and spectrographs have been designed to avoid small possible residual resonances.

  11. The re-flight of the Colorado high-resolution Echelle stellar spectrograph (CHESS): improvements, calibrations, and post-flight results

    NASA Astrophysics Data System (ADS)

    Hoadley, Keri; France, Kevin; Kruczek, Nicholas; Fleming, Brian; Nell, Nicholas; Kane, Robert; Swanson, Jack; Green, James; Erickson, Nicholas; Wilson, Jacob

    2016-07-01

    In this proceeding, we describe the scientific motivation and technical development of the Colorado High- resolution Echelle Stellar Spectrograph (CHESS), focusing on the hardware advancements and testing supporting the second flight of the payload (CHESS-2). CHESS is a far ultraviolet (FUV) rocket-borne instrument designed to study the atomic-to-molecular transitions within translucent cloud regions in the interstellar medium (ISM). CHESS is an objective f/12.4 echelle spectrograph with resolving power > 100,000 over the band pass 1000 - 1600 Å. The spectrograph was designed to employ an R2 echelle grating with "low" line density. We compare the FUV performance of experimental echelle etching processes (lithographically by LightSmyth, Inc. and etching via electron-beam technology by JPL Microdevices Laboratory) with traditional, mechanically-ruled gratings (Bach Research, Inc. and Richardson Gratings). The cross-dispersing grating, developed and ruled by Horiba Jobin-Yvon, is a holographically-ruled, "low" line density, powered optic with a toroidal surface curvature. Both gratings were coated with aluminum and lithium fluoride (Al+LiF) at Goddard Space Flight Center (GSFC). Results from final efficiency and reflectivity measurements for the optical components of CHESS-2 are presented. CHESS-2 utilizes a 40mm-diameter cross-strip anode readout microchannel plate (MCP) detector fabricated by Sensor Sciences, Inc., to achieve high spatial resolution with high count rate capabilities (global rates 1 MHz). We present pre-flight laboratory spectra and calibration results. CHESS-2 launched on 21 February 2016 aboard NASA/CU sounding rocket mission 36.297 UG. We observed the intervening ISM material along the sightline to epsilon Per and present initial characterization of the column densities, temperature, and kinematics of atomic and molecular species in the observation.

  12. An All-reflective Integral Field Spectrograph for Far Ultraviolet Astrophysics

    NASA Astrophysics Data System (ADS)

    Kendrick, Stephen; Ebbets, D.; Hardesty, C.; Sembach, K.; Beasley, M.; Woodgate, B.

    2010-01-01

    This paper overviews the supporting optical technologies for an ultraviolet integral field spectrograph (IFS) that will be used for future space astrophysics missions. The new technology is an all-reflective image slicer that directs light to an array of imaging diffraction gratings. Previous UV instruments recorded the spectra of point sources or spatially resolved elements along a long slit. Our IFS has only one reflection more than the Cosmic Origins Spectrograph for Hubble Space Telescope, which is the most sensitive UV spectrograph yet built, but is limited to point sources. An efficient UV IFS enables simultaneous spectroscopy of many spatially resolved elements within a contiguous two dimensional field of view in diagnostically important ultraviolet lines. The output is thus a data cube having one spectral and two spatial coordinates. This is the astrophysical analog to hyperspectral imaging in Earth sciences. The scientific benefits of such an instrument were developed during Vision Missions, Origins Probes, and Astrophysics Strategic Mission Concept Studies between 2004 and 2009. Implementation can be scaled for a small payload such as a sounding rocket or Explorer-class mission, leading to a flight experiment within the next few years. Of particular interest would be the application of this technology for an instrument on a version of the Advanced Technology Large-Aperture Space Telescope (ATLAST) which will have an 8+-m aperture. We will focus on the spectral region near Lyman alpha, but the all-reflective approach is applicable to other spectral regions when matched with wavelength appropriate gratings and detectors. Our project is a collaboration between Ball Aerospace & Technologies Corp., the University of Colorado, NASA Goddard Space Flight Center and the Space Telescope Science Institute, all of which have extensive experience with the science and instrumentation for UV astrophysics.

  13. Initial observations of Jupiter's aurora from Juno's Ultraviolet Spectrograph (Juno-UVS)

    NASA Astrophysics Data System (ADS)

    Gladstone, R.; Versteeg, M.; Greathouse, T.; Hue, V.; Davis, M. W.; Gerard, J. C. M. C.; Grodent, D. C.; Bonfond, B.; Bolton, S. J.; Connerney, J. E. P.; Levin, S.; Bagenal, F.; Mauk, B.; Kurth, W. S.; McComas, D. J.; Valek, P. W.

    2016-12-01

    Juno-UVS is an imaging spectrograph with a bandpass of 70<λ<205 nm. This wavelength range includes important far-ultraviolet (FUV) emissions from the H2 bands and the H Lyman series which are produced in Jupiter's auroras, and also the absorption signatures of aurorally-produced hydrocarbons. The Juno-UVS instrument telescope has a 4x4 cm2 input aperture and uses an off-axis parabolic primary mirror. A flat scan mirror situated near the entrance of the telescope is used to observe at up to ±30° perpendicular to the Juno spin plane. The light is focused onto the spectrograph entrance slit, which has a "dog-bone" shape, with three sections of 2.55°x0.2°, 2.0°x0.025°, and 2.55°x0.2° (as projected onto the sky). Light entering the slit is dispersed by a toroidal grating which focuses FUV light onto a curved microchannel plate (MCP) cross delay line (XDL) detector with a solar blind UV-sensitive CsI photocathode. The two mirrors and the grating are coated with MgF2 to improve FUV reflectivity. Tantalum surrounds the spectrograph assembly to shield the detector and its electronics from high-energy electrons. All other electronics are located in Juno's spacecraft vault, including redundant low-voltage and high-voltage power supplies, command and data handling electronics, heater/actuator electronics, scan mirror electronics, and event processing electronics. The purpose of Juno-UVS is to remotely sense Jupiter's auroral morphology and brightness to provide context for in situ measurements by Juno's particle instruments. Here we present the first near-Jupiter results from the UVS instrument following measurements made during PJ1, Juno's first perijove pass with its instruments powered on and taking data.

  14. VizieR Online Data Catalog: Redshift survey of ALMA-identified SMGs in ECDFS (Danielson+, 2017)

    NASA Astrophysics Data System (ADS)

    Danielson, A. L. R.; Swinbank, A. M.; Smail, I.; Simpson, J. M.; Casey, C. M.; Chapman, S. C.; da Cunha, E.; Hodge, J. A.; Walter, F.; Wardlow, J. L.; Alexander, D. M.; Brandt, W. N.; De Breuck, C.; Coppin, K. E. K.; Dannerbauer, H.; Dickinson, M.; Edge, A. C.; Gawiser, E.; Ivison, R. J.; Karim, A.; Kovacs, A.; Lutz, D.; Menten, K.; Schinnerer, E.; Weiss, A.; van der Werf, P.

    2017-11-01

    The 870um LESS survey (Weiss+ 2009, J/ApJ/707/1201) was undertaken using the LABOCA camera on APEX, covering an area of 0.5°x0.5° centered on the ECDFS. Follow-up observations of the LESS sources were carried out with ALMA (Hodge+ 2013, J/ApJ/768/91). In summary, observations for each source were taken between 2011 October and November in the Cycle 0 Project #2011.1.00294.S. To search for spectroscopic redshifts, we initiated an observing campaign using the the FOcal Reducer and low dispersion Spectrograph (FORS2) and VIsible MultiObject Spectrograph (VIMOS) on VLT (program 183.A-0666), but to supplement these observations, we also obtained observations with XSHOOTER on VLT (program 090.A-0927(A) from 2012 December 7-10), the Gemini Near-Infrared Spectrograph (GNIRS; program GN-2012B-Q-90) and the Multi-Object Spectrometer for Infra-Red Exploration (MOSFIRE) on the Keck I telescope (2012B_H251M, 2013BU039M, and 2013BN114M), all of which cover the near-infrared. As part of a spectroscopic campaign targeting Herschel-selected galaxies in the ECDFS, ALESS submillimeter galaxies (SMGs) were included on DEep Imaging Multi-Object Spectrograph (DEIMOS) slit masks on Keck II (program 2012B_H251). In total, we observed 109 out of the 131 ALESS SMGs in the combined main and supp samples. Spectroscopic redshifts for two of our SMGs, ALESS61.1 and ALESS65.1, were determined from serendipitous detections of the [CII]λ158um line in the ALMA band. See section 2.7. (2 data files).

  15. CARMENES-NIR channel spectrograph cooling system AIV: thermo-mechanical performance of the instrument

    NASA Astrophysics Data System (ADS)

    Becerril, S.; Mirabet, E.; Lizon, J. L.; Abril, M.; Cárdenas, C.; Ferro, I.; Morales, R.; Pérez, D.; Ramón, A.; Sánchez-Carrasco, M. A.; Quirrenbach, A.; Amado, P.; Ribas, I.; Reiners, A.; Caballero, J. A.; Seifert, W.; Herranz, J.

    2016-07-01

    CARMENES is the new high-resolution high-stability spectrograph built for the 3.5m telescope at the Calar Alto Observatory (CAHA, Almería, Spain) by a consortium formed by German and Spanish institutions. This instrument is composed by two separated spectrographs: VIS channel (550-1050 nm) and NIR channel (950- 1700 nm). The NIR-channel spectrograph's responsible is the Instituto de Astrofísica de Andalucía (IAACSIC). It has been manufactured, assembled, integrated and verified in the last two years, delivered in fall 2015 and commissioned in December 2015. One of the most challenging systems in this cryogenic channel involves the Cooling System. Due to the highly demanding requirements applicable in terms of stability, this system arises as one of the core systems to provide outstanding stability to the channel. Really at the edge of the state-of-the-art, the Cooling System is able to provide to the cold mass ( 1 Ton) better thermal stability than few hundredths of degree within 24 hours (goal: 0.01K/day). The present paper describes the Assembly, Integration and Verification phase (AIV) of the CARMENES-NIR channel Cooling System implemented at IAA-CSIC and later installation at CAHA 3.5m Telescope, thus the most relevant highlights being shown in terms of thermal performance. The CARMENES NIR-channel Cooling System has been implemented by the IAA-CSIC through very fruitful collaboration and involvement of the ESO (European Southern Observatory) cryo-vacuum department with Jean-Louis Lizon as its head and main collaborator. The present work sets an important trend in terms of cryogenic systems for future E-ELT (European Extremely Large Telescope) large-dimensioned instrumentation in astrophysics.

  16. An overview of instrumentation for the Large Binocular Telescope

    NASA Astrophysics Data System (ADS)

    Wagner, R. Mark

    2010-07-01

    An overview of instrumentation for the Large Binocular Telescope is presented. Optical instrumentation includes the Large Binocular Camera (LBC), a pair of wide-field (27 × 27) mosaic CCD imagers at the prime focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs mounted at the straight-through F/15 Gregorian focus incorporating multiple slit masks for multi-object spectroscopy over a 6 field and spectral resolutions of up to 8000. Infrared instrumentation includes the LBT Near-IR Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCIFER), a modular near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at a bent interior focal station and designed for seeing-limited (FOV: 4 × 4) imaging, long-slit spectroscopy, and multi-object spectroscopy utilizing cooled slit masks and diffraction limited (FOV: 0.5 × 0.5) imaging and long-slit spectroscopy. Strategic instruments under development for the remaining two combined focal stations include an interferometric cryogenic beam combiner with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench near-infrared beam combiner utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity (LINC-NIRVANA). In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. The availability of all these instruments mounted simultaneously on the LBT permits unique science, flexible scheduling, and improved operational support. Over the past two years the LBC and the first LUCIFER instrument have been brought into routine scientific operation and MODS1 commissioning is set to begin in the fall of 2010.

  17. VizieR Online Data Catalog: PTF 12dam & iPTF 13dcc follow-up (Vreeswijk+, 2017)

    NASA Astrophysics Data System (ADS)

    Vreeswijk, P. M.; Leloudas, G.; Gal-Yam, A.; De Cia, A.; Perley, D. A.; Quimby, R. M.; Waldman, R.; Sullivan, M.; Yan, L.; Ofek, E. O.; Fremling, C.; Taddia, F.; Sollerman, J.; Valenti, S.; Arcavi, I.; Howell, D. A.; Filippenko, A. V.; Cenko, S. B.; Yaron, O.; Kasliwal, M. M.; Cao, Y.; Ben-Ami, S.; Horesh, A.; Rubin, A.; Lunnan, R.; Nugent, P. E.; Laher, R.; Rebbapragada, U. D.; Wozniak, P.; Kulkarni, S. R.

    2017-08-01

    Spectroscopic follow-up observations of PTF 12dam were performed with the Kast Spectrograph at the Lick 3m Shane telescope, and the Low Resolution Imaging Spectrograph (LRIS) at the Keck-I 10m telescope (on Mauna Kea, Hawaii) on 2012 May 20, 21, and 22. The full spectroscopic sequence of PTF 12dam will be presented by R. M. Quimby et al. (2016, in preparation). PTF 12dam was imaged with the Palomar Oschin 48 inch (P48) (i)PTF survey telescope in the Mould R filter, the Palomar 60 inch (P60) and CCD camera in Johnson B and Sloan Digital Sky Survey (SDSS) gri, the Las Cumbres Observatory Global Telescope Network (LCOGT) in SDSS r, and LRIS mounted on the 10m Keck-I telescope in Rs. iPTF 13dcc has not had any exposure in the literature yet. It was flagged as a transient source on 2013 August 29. Spectroscopic follow-up observations spanning 2013 Nov 26 to 2014 Jan 16 were performed with the Double Spectrograph (DBSP) at the Palomar 200 inch (P200), LRIS at Keck-I, and the Inamori-Magellan Areal Camera & Spectrograph (IMACS) at the Magellan Baade telescope, showing iPTF 13dcc to be an SLSN at z=0.4305. iPTF 13dcc was imaged with the P48 Oschin (i)PTF survey telescope in the Mould R filter, the P60 in SDSS gri, the 4.3m Discovery Channel Telescope (DCT, at Lowell Observatory, Arizona) with the Large Monolithic Imager (LMI) in SDSS ri, and finally with the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) Wide-Field Camera using filter F625W (under program GO-13858; P.I. A. De Cia). (3 data files).

  18. TIMED solar EUV experiment: preflight calibration results for the XUV photometer system

    NASA Astrophysics Data System (ADS)

    Woods, Thomas N.; Rodgers, Erica M.; Bailey, Scott M.; Eparvier, Francis G.; Ucker, Gregory J.

    1999-10-01

    The Solar EUV Experiment (SEE) on the NASA Thermosphere, Ionosphere, and Mesosphere Energetics and Dynamics (TIMED) mission will measure the solar vacuum ultraviolet (VUV) spectral irradiance from 0.1 to 200 nm. To cover this wide spectral range two different types of instruments are used: a grating spectrograph for spectra between 25 and 200 nm with a spectral resolution of 0.4 nm and a set of silicon soft x-ray (XUV) photodiodes with thin film filters as broadband photometers between 0.1 and 35 nm with individual bandpasses of about 5 nm. The grating spectrograph is called the EUV Grating Spectrograph (EGS), and it consists of a normal- incidence, concave diffraction grating used in a Rowland spectrograph configuration with a 64 X 1024 array CODACON detector. The primary calibrations for the EGS are done using the National Institute for Standards and Technology (NIST) Synchrotron Ultraviolet Radiation Facility (SURF-III) in Gaithersburg, Maryland. In addition, detector sensitivity and image quality, the grating scattered light, the grating higher order contributions, and the sun sensor field of view are characterized in the LASP calibration laboratory. The XUV photodiodes are called the XUV Photometer System (XPS), and the XPS includes 12 photodiodes with thin film filters deposited directly on the silicon photodiodes' top surface. The sensitivities of the XUV photodiodes are calibrated at both the NIST SURF-III and the Physikalisch-Technische Bundesanstalt (PTB) electron storage ring called BESSY. The other XPS calibrations, namely the electronics linearity and field of view maps, are performed in the LASP calibration laboratory. The XPS and solar sensor pre-flight calibration results are primarily discussed as the EGS calibrations at SURF-III have not yet been performed.

  19. The SLICE, CHESS, and SISTINE Ultraviolet Spectrographs: Rocket-Borne Instrumentation Supporting Future Astrophysics Missions

    NASA Astrophysics Data System (ADS)

    France, Kevin; Hoadley, Keri; Fleming, Brian T.; Kane, Robert; Nell, Nicholas; Beasley, Matthew; Green, James C.

    2016-03-01

    NASA’s suborbital program provides an opportunity to conduct unique science experiments above Earth’s atmosphere and is a pipeline for the technology and personnel essential to future space astrophysics, heliophysics, and atmospheric science missions. In this paper, we describe three astronomy payloads developed (or in development) by the Ultraviolet Rocket Group at the University of Colorado. These far-ultraviolet (UV) (100-160nm) spectrographic instruments are used to study a range of scientific topics, from gas in the interstellar medium (accessing diagnostics of material spanning five orders of magnitude in temperature in a single observation) to the energetic radiation environment of nearby exoplanetary systems. The three instruments, Suborbital Local Interstellar Cloud Experiment (SLICE), Colorado High-resolution Echelle Stellar Spectrograph (CHESS), and Suborbital Imaging Spectrograph for Transition region Irradiance from Nearby Exoplanet host stars (SISTINE) form a progression of instrument designs and component-level technology maturation. SLICE is a pathfinder instrument for the development of new data handling, storage, and telemetry techniques. CHESS and SISTINE are testbeds for technology and instrument design enabling high-resolution (R>105) point source spectroscopy and high throughput imaging spectroscopy, respectively, in support of future Explorer, Probe, and Flagship-class missions. The CHESS and SISTINE payloads support the development and flight testing of large-format photon-counting detectors and advanced optical coatings: NASA’s top two technology priorities for enabling a future flagship observatory (e.g. the LUVOIR Surveyor concept) that offers factors of ˜50-100 gain in UV spectroscopy capability over the Hubble Space Telescope. We present the design, component level laboratory characterization, and flight results for these instruments.

  20. Evidence of the presence of a Be circumstelar disk in the Be/X-ray binaries KS 1947+ 300 and Cep X-4

    NASA Astrophysics Data System (ADS)

    Ozbey-Arabaci, M.; Camero-Arranz, A.; Fabregat, J.; Ozcan, H. Bilal; Peris, V.

    2014-06-01

    We report on photometric and spectroscopic optical observations of the Be/X-ray binaries KS 1947+300 and Cep X-4, obtained with the TUG Faint Object Spectrograph and Camera (TFOSC) mounted on the focal plane of the 1.5-m Russian-Turkish Telescope (RTT150) at T & Uuml;B & #304TAK National Observatory (Antalya, Turkey) between 2014 June 18-20 (MJD 56826.933-56828.067), and with the spectrograph located at the 51-cm telescope of the Observatorio de Aras de los Olmos of the University of Valencia on 2014 June 3 (MJD 56811.097). ...

  1. STS-82 Discovery payloads being integrated in VPF

    NASA Image and Video Library

    1997-01-30

    KENNEDY SPACE CENTER, FLORIDA STS-82 PREPARATIONS VIEW --- Payload processing workers in the Kennedy Space Center (KSC) Vertical Processing Facility (VPF) prepare to integrate the Space Telescope Imaging Spectrograph (STIS), suspended at center, into the Orbiter Replacement Unit (ORU) Carrier and Scientific Instrument Protective Enclosure (SIPE). STIS will replace the Goddard High Resolution Spectrograph (GHRS) on the Hubble Space Telescope (HST). Four of the seven STS-82 crew members will perform a series of spacewalks to replace two scientific instruments with two new instruments, including STIS, and perform other tasks during the second HST servicing mission. HST was deployed nearly seven years ago and was initially serviced in 1993.

  2. Realistic Simulations of Coronagraphic Observations with WFIRST

    NASA Astrophysics Data System (ADS)

    Rizzo, Maxime; Zimmerman, Neil; Roberge, Aki; Lincowski, Andrew; Arney, Giada; Stark, Chris; Jansen, Tiffany; Turnbull, Margaret; WFIRST Science Investigation Team (Turnbull)

    2018-01-01

    We present a framework to simulate observing scenarios with the WFIRST Coronagraphic Instrument (CGI). The Coronagraph and Rapid Imaging Spectrograph in Python (crispy) is an open-source package that can be used to create CGI data products for analysis and development of post-processing routines. The software convolves time-varying coronagraphic PSFs with realistic astrophysical scenes which contain a planetary architecture, a consistent dust structure, and a background field composed of stars and galaxies. The focal plane can be read out by a WFIRST electron-multiplying CCD model directly, or passed through a WFIRST integral field spectrograph model first. Several elementary post-processing routines are provided as part of the package.

  3. Spectroscopy and CCD-photography of extended red emission in reflection nebulae

    NASA Technical Reports Server (NTRS)

    Witt, A. N.; Schild, R. E.

    1986-01-01

    Recent spectrographic studies of extended red emission (ERE) seen in the 0.6 to 0.9 micron spectral region in many reflection nebulae have shown fluorescence by amorphous hydrogenated carbon to be the most probable cause of the ERE. Spectrographic observations were performed on the nebulae NGC 2023 and NGC 7023, using the intensified Reticon scanner (IRS) of Kitt Peak National Observatory on the N0-2 0.9 mm telescope. Charge coupled device (CCD) images of NGC2023 and NGC 7023 were obtained with the CfA CCD detector on the 0.6 mm telescope of the Whipple Observatory. Results are discussed.

  4. Current and Future Capabilities of the 74-inch Telescope of Kottamia Astronomical Observatory in Egypt

    NASA Astrophysics Data System (ADS)

    Azzam, Y. A.; Ali, G. B.; Ismail, H. A.; Haroon, A.; Selim, I.

    In this paper, we are going to introduce the Kottamia Astronomical Observatory, KAO, to the astronomical community. The current status of the telescope together with the available instrumentations is described. An upgrade stage including a new optical system and a computer controlling of both the telescope and dome are achieved. The specifications of a set of CCD cameras for direct imaging and spectroscopy are given. A grating spectrograph is recently gifted to KAO from Okayama Astrophysical Observatory, OAO, of the National Astronomical Observatories in Japan. This spectrograph is successfully tested and installed at the F/18 Cassegrain focus of the KAO 74" telescope.

  5. Performance of the CHIRON high-resolution Echelle spectrograph

    NASA Astrophysics Data System (ADS)

    Schwab, Christian; Spronck, Julien F. P.; Tokovinin, Andrei; Szymkowiak, Andrew; Giguere, Matthew; Fischer, Debra A.

    2012-09-01

    CHIRON is a fiber-fed Echelle spectrograph with observing modes for resolutions from 28,000 to 120,000, built primarily for measuring precise radial velocities (RVs). We present the instrument performance as determined during integration and commissioning. We discuss the PSF, the effect of glass inhomogeneity on the cross-dispersion prism, temperature stabilization, stability of the spectrum on the CCD, and detector characteristics. The RV precision is characterized, with an iodine cell or a ThAr lamp as the wavelength reference. Including all losses from the sky to the detector, the overall efficiency is about 6%; the dominant limitation is coupling losses into the fiber due to poor guiding.

  6. VizieR Online Data Catalog: IN-SYNC. IV. YSOs in Orion A (Da Rio+, 2016)

    NASA Astrophysics Data System (ADS)

    da Rio, N.; Tan, J. C.; Covey, K. R.; Cottaar, M.; Foster, J. B.; Cullen, N. C.; Tobin, J. J.; Kim, J. S.; Meyer, M. R.; Nidever, D. L.; Stassun, K. G.; Chojnowski, S. D.; Flaherty, K. M.; Majewski, S.; Skrutskie, M. F.; Zasowski, G.; Pan, K.

    2016-04-01

    Observations were carried out in 2013 December and 2014 January, with the APOGEE spectrograph on the Sloan 2.5m telescope. APOGEE is a fiber-fed multiobject infrared spectrograph, operating in H band in the range 1.5μm<~λ<~1.6μm, capable of obtaining spectra of up to 320 sources simultaneously on a corrected FOV of ~7 square degrees, and with a resolution R~22500. Fifteen APOGEE plates, on five positions in the sky, have been designed to cover the Orion A region as shown in Figure 1. See section 2 for further explanations. (2 data files).

  7. VizieR Online Data Catalog: Lick AGN monitoring 2011: light curves (Barth+, 2015)

    NASA Astrophysics Data System (ADS)

    Barth, A. J.; Bennert, V. N.; Canalizo, G.; Filippenko, A. V.; Gates, E. L.; Greene, J. E.; Li, W.; Malkan, M. A.; Pancoast, A.; Sand, D. J.; Stern, D.; Treu, T.; Woo, J.-H.; Assef, R. J.; Bae, H.-J.; Brewer, B. J.; Cenko, S. B.; Clubb, K. I.; Cooper, M. C.; Diamond-Stanic, A. M.; Hiner, K. D.; Honig, S. F.; Hsiao, E.; Kandrashoff, M. T.; Lazarova, M. S.; Nierenberg, A. M.; Rex, J.; Silverman, J. M.; Tollerud, E. J.; Walsh, J. L.

    2015-05-01

    This project was allocated 69 nights at the Lick 3m Shane telescope, distributed between 2011 March 27 and June 13. Observations were conducted using the Kast double spectrograph (3440-5515Å on the blue side and 5410-8200Å on the red side). In order to extend our light curves for two AGNs, we also requested additional observations from other observers using the Kast spectrograph: Mrk 50 from 2011 January through March, and Zw 229-015 in June and July. For Zw 229-015, three additional observations were taken 20-23 days after the end of our main campaign. See section 3. (2 data files).

  8. Sounding Rocket Instrument Development at UAHuntsville/NASA MSFC

    NASA Technical Reports Server (NTRS)

    Kobayashi, Ken; Cirtain, Jonathan; Winebarger, Amy; Savage, Sabrina; Golub, Leon; Korreck, Kelly; Kuzin, Sergei; Walsh, Robert; DeForest, Craig; DePontieu, Bart; hide

    2013-01-01

    We present an overview of solar sounding rocket instruments developed jointly by NASA Marshall Space Flight Center and the University of Alabama in Huntsville. The High Resolution Coronal Imager (Hi-C) is an EUV (19.3 nm) imaging telescope which was flown successfully in July 2012. The Chromospheric Lyman-Alpha SpectroPolarimeter (CLASP) is a Lyman Alpha (121.6 nm) spectropolarimeter developed jointly with the National Astronomical Observatory of Japan and scheduled for launch in 2015. The Marshall Grazing Incidence X-ray Spectrograph is a soft X-ray (0.5-1.2 keV) stigmatic spectrograph designed to achieve 5 arcsecond spatial resolution along the slit.

  9. Advances in instrumentation at the W. M. Keck Observatory

    NASA Astrophysics Data System (ADS)

    Adkins, Sean M.; Armandroff, Taft; Lewis, Hilton; Martin, Chris; McLean, Ian S.; Rockosi, Constance; Wizinowich, Peter

    2010-07-01

    In this paper we describe both recently completed instrumentation projects and our current development efforts in the context of the Observatory's science driven strategic plan which seeks to address key questions in observational astronomy for extra-galactic, Galactic, and planetary science with both seeing limited capabilities and high angular resolution adaptive optics capabilities. This paper will review recently completed projects as well as new instruments in development including MOSFIRE, a near IR multi-object spectrograph nearing completion, a new seeing limited integral field spectrograph for the visible wavelength range called the Keck Cosmic Web Imager, and the Keck Next Generation Adaptive Optics facility and its first light science instrument DAVINCI.

  10. Detector Arrays for the James Webb Space Telescope Near-Infrared Spectrograph

    NASA Technical Reports Server (NTRS)

    Rauscher, Bernard J.; Alexander, David; Brambora, Clifford K.; Derro, Rebecca; Engler, Chuck; Fox, Ori; Garrison, Matthew B.; Henegar, Greg; Hill, robert J.; Johnson, Thomas; hide

    2007-01-01

    The James Webb Space Telescope's (JWST) Near Infrared Spectrograph (NIRSpec) incorporates two 5 micron cutoff (lambda(sub co) = 5 microns) 2048x2048 pixel Teledyne HgCdTe HAWAII-2RG sensor chip assemblies. These detector arrays, and the two Teledyne SIDECAR application specific integrated circuits that control them, are operated in space at T approx. 37 K. In this article, we provide a brief introduction to NIRSpec, its detector subsystem (DS), detector readout in the space radiation environment, and present a snapshot of the developmental status of the NIRSpec DS as integration and testing of the engineering test unit begins.

  11. Cosmological surveys with multi-object spectrographs

    NASA Astrophysics Data System (ADS)

    Colless, Matthew

    2016-08-01

    Multi-object spectroscopy has been a key technique contributing to the current era of `precision cosmology.' From the first exploratory surveys of the large-scale structure and evolution of the universe to the current generation of superbly detailed maps spanning a wide range of redshifts, multi-object spectroscopy has been a fundamentally important tool for mapping the rich structure of the cosmic web and extracting cosmological information of increasing variety and precision. This will continue to be true for the foreseeable future, as we seek to map the evolving geometry and structure of the universe over the full extent of cosmic history in order to obtain the most precise and comprehensive measurements of cosmological parameters. Here I briefly summarize the contributions that multi-object spectroscopy has made to cosmology so far, then review the major surveys and instruments currently in play and their prospects for pushing back the cosmological frontier. Finally, I examine some of the next generation of instruments and surveys to explore how the field will develop in coming years, with a particular focus on specialised multi-object spectrographs for cosmology and the capabilities of multi-object spectrographs on the new generation of extremely large telescopes.

  12. Development of the fibres of MOONS

    NASA Astrophysics Data System (ADS)

    Guinouard, Isabelle; Lee, David; Schnetler, Hermine; Taylor, William; Amans, Jean-Philippe; Montgomery, David; Oliva, Ernesto

    2014-07-01

    MOONS will exploit the full 500 square arcmin field of view offered by the Nasmyth focus of the Very Large Telescope and will be equipped with two identical triple arm cryogenic spectrographs covering the wavelength range 0.8 - 1.8 μm, with a multiplex capability of approximately 1000 fibres. Each triple arm spectrograph will produce spectra for half of the targets simultaneously. The system will have both a medium resolution (R~4000-6000) mode and a high resolution (R~20000) mode. The fibres are used to pick off each sub field of 1.05 arcseconds and are used to transport the light from the instrument focal plane to the two spectrographs. Each fibre has a microlens to focus the beam into the fibre at a relative fast focal ratio of F/3.65 to reduce the Focal Ratio Degradation (FRD). This paper presents the overall design of the fibre system and describes the specific developments required to optimise its performance. The design of the fibre input optics, the choice of the fibre connector, and the layout of the slit end are described. The results of preliminary tests to measure the effect of twisting on the FRD performance of prototype fibres are also discussed.

  13. MSE spectrograph optical design: a novel pupil slicing technique

    NASA Astrophysics Data System (ADS)

    Spanò, P.

    2014-07-01

    The Maunakea Spectroscopic Explorer shall be mainly devoted to perform deep, wide-field, spectroscopic surveys at spectral resolutions from ~2000 to ~20000, at visible and near-infrared wavelengths. Simultaneous spectral coverage at low resolution is required, while at high resolution only selected windows can be covered. Moreover, very high multiplexing (3200 objects) must be obtained at low resolution. At higher resolutions a decreased number of objects (~800) can be observed. To meet such high demanding requirements, a fiber-fed multi-object spectrograph concept has been designed by pupil-slicing the collimated beam, followed by multiple dispersive and camera optics. Different resolution modes are obtained by introducing anamorphic lenslets in front of the fiber arrays. The spectrograph is able to switch between three resolution modes (2000, 6500, 20000) by removing the anamorphic lenses and exchanging gratings. Camera lenses are fixed in place to increase stability. To enhance throughput, VPH first-order gratings has been preferred over echelle gratings. Moreover, throughput is kept high over all wavelength ranges by splitting light into more arms by dichroic beamsplitters and optimizing efficiency for each channel by proper selection of glass materials, coatings, and grating parameters.

  14. System engineering at the MEGARA project

    NASA Astrophysics Data System (ADS)

    Pérez-Calpena, A.; García-Vargas, María. Luisa; Gil de Paz, A.; Gallego Maestro, J.; Carrasco Licea, E.; Sánchez Moreno, F.; Iglesias-Páramo, J.

    2014-08-01

    MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is a facility instrument of the 10.4m GTC (La Palma, Spain) working at optical wavelengths that provides both Integral-Field Unit (IFU) and Multi- Object Spectrograph (MOS) capabilities at resolutions in the range R=6,000-20,000. The MEGARA focal plane subsystems are located at one of the GTC focal stations, while the MEGARA refractive VPH based spectrograph is located at one of the Nasmyth platforms. The fiber bundles conduct the light from the focal plane subsystems to the pseudo-slits at the entrance of the spectrograph. The project is an initiative led by Universidad Complutense de Madrid (Spain) in collaboration with INAOE (Mexico), IAA-CSIC (Spain) and Universidad Politécnica de Madrid (Spain) and is developed under contract with GRANTECAN. The project is carried out by a multidisciplinary and geographically distributed team, which includes the in-kind contributions of the project partners and personnel from several private companies. The MEGARA system-engineering plan has been tailored to the project and is being applied to ensure the technical control of the project in order to finally meet the science high-level requirements and GTC constrains.

  15. A modification of the U.S. Geological Survey one-sixth order semiquantitative spectrographic method for the analysis of geologic materials that improves limits of determination of some volatile to moderately volatile elements

    USGS Publications Warehouse

    Detra, D.E.; Cooley, Elmo F.

    1988-01-01

    A modification of the one-sixth order semi-quantitative emission spectrographic method for the analysis of 30 elements in geologic materials (Grimes and Marranzino 1968) improves the limits of determination of some volatile to moderately volatile elements. The modification uses a compound-pendulum-mounted filter to regulate the amount of emitted light passing into the spectrograph. One hundred percent transmission of emitted light is allowed during the initial 20 seconds of the burn, then continually reduced to 40 percent over the next 32 seconds using the pendulum-mounted filter, and followed by an additional 68 seconds of burn time. The reduction of light transmission during the latter part of the burn decreases spectral background and the line emission of less volatile elements commonly responsible for problem-causing interferences. The sensitivity of the method for some geochemically important trace elements commonly determined in mineral exploration (Ag, As, Au, Be, Bi, Cd, Cr, Cu, Pb, Sb, Sn, and Zn) is improved up to five-fold under ideal conditions without compromising precision or accuracy

  16. VIRUS: first deployment of the massively replicated fiber integral field spectrograph for the upgraded Hobby-Eberly Telescope

    NASA Astrophysics Data System (ADS)

    Hill, Gary J.; Tuttle, Sarah E.; Vattiat, Brian L.; Lee, Hanshin; Drory, Niv; Kelz, Andreas; Ramsey, Jason; Peterson, Trent W.; DePoy, D. L.; Marshall, J. L.; Gebhardt, Karl; Chonis, Taylor; Dalton, Gavin; Farrow, Daniel; Good, John M.; Haynes, Dionne M.; Indahl, Briana L.; Jahn, Thomas; Kriel, Hermanus; Montesano, Francesco; Nicklas, Harald; Noyola, Eva; Prochaska, Travis; Allen, Richard D.; Bender, Ralf; Blanc, Guillermo; Fabricius, Maximilian H.; Finkelstein, Steve; Landriau, Martin; MacQueen, Phillip J.; Roth, M. M.; Savage, R. D.; Snigula, Jan M.; Anwad, Heiko

    2016-08-01

    The Visible Integral-field Replicable Unit Spectrograph (VIRUS) consists of 156 identical spectrographs (arrayed as 78 pairs) fed by 35,000 fibers, each 1.5 arcsec diameter, at the focus of the upgraded 10 m Hobby-Eberly Telescope (HET). VIRUS has a fixed bandpass of 350-550 nm and resolving power R 700. VIRUS is the first example of industrial-scale replication applied to optical astronomy and is capable of surveying large areas of sky, spectrally. The VIRUS concept offers significant savings of engineering effort, cost, and schedule when compared to traditional instruments. The main motivator for VIRUS is to map the evolution of dark energy for the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX‡), using 0.8M Lyman-alpha emitting galaxies as tracers. The VIRUS array is undergoing staged deployment during 2016 and 2017. It will provide a powerful new facility instrument for the HET, well suited to the survey niche of the telescope, and will open up large spectroscopic surveys of the emission line universe for the first time. We will review the production, lessons learned in reaching volume production, characterization, and first deployment of this massive instrument.

  17. Affordable spectroscopy for 1m-class telescopes: recent developments and applications

    NASA Astrophysics Data System (ADS)

    Csák, B.; Kovács, J.; Szabó, Gy. M.; Kiss, L. L.; Dózsa, Á.; Sódor, Á.; Jankovics, I.

    2014-03-01

    Doppler observations of exoplanet systems have been a very expensive technique, mainly due to the high costs of high-resolution stable spectrographs. Recent advances in instrumentation enable affordable Doppler planet detections with surprisingly small optical telescopes. We investigate the possibility of measuring Doppler reflex motion of planet hosting stars with small-aperture telescopes that have traditionally been neglected for this kind of studies. After thoroughly testing the recently developed and commercially available Shelyak eShel echelle spectrograph, we demonstrated that it is routinely possible to achieve velocity precision at the 100 m s-1 level, reaching down to ¬± 50 m s-1 for the best cases. We describe our off-the-shelf instrumentation, including a new 0.5m RC telescope at the Gothard Astrophysical Observatory of Loránd E&ötv&ös University equipped with an intermediate resolution fiber-fed echelle spectrograph. We present some follow-up radial velocity measurements of planet hosting stars and point out that updating the orbital solution of Doppler-planets is a very important task that can be fulfilled with sub-meter sized optical telescopes without requesting very expensive telescope times on 2—4 m (or larger) class telescopes.

  18. First light of the CHARIS high-contrast integral-field spectrograph

    NASA Astrophysics Data System (ADS)

    Groff, Tyler; Chilcote, Jeffrey; Brandt, Timothy; Kasdin, N. Jeremy; Galvin, Michael; Loomis, Craig; Rizzo, Maxime; Knapp, Gillian; Guyon, Olivier; Jovanovic, Nemanja; Lozi, Julien; Currie, Thayne; Takato, Naruhisa; Hayashi, Masahiko

    2017-09-01

    One of the leading direct Imaging techniques, particularly in ground-based imaging, uses a coronagraphic system and integral field spectrograph (IFS). The Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) is an IFS that has been built for the Subaru telescope. CHARIS has been delivered to the observatory and now sits behind the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system. CHARIS has `high' and `low' resolution operating modes. The high-resolution mode is used to characterize targets in J, H, and K bands at R70. The low-resolution prism is meant for discovery and spans J+H+K bands (1.15-2.37 microns) with a spectral resolution of R18. This discovery mode has already proven better than 15-sigma detections of HR8799c,d,e when combining ADI+SDI. Using SDI alone, planets c and d have been detected in a single 24 second image. The CHARIS team is optimizing instrument performance and refining ADI+SDI recombination to maximize our contrast detection limit. In addition to the new observing modes, CHARIS has demonstrated a design with high robustness to spectral crosstalk. CHARIS has completed commissioning and is open for science observations.

  19. VizieR Online Data Catalog: HARPS-N radial velocities of KOI-70 (Buchhave+, 2016)

    NASA Astrophysics Data System (ADS)

    Buchhave, L. A.; Dressing, C. D.; Dumusque, X.; Rice, K.; Vanderburg, A.; Mortier, A.; Lopez-Morales, M.; Lopez, E.; Lundkvist, M. S.; Kjeldsen, H.; Affer, L.; Bonomo, A. S.; Charbonneau, D.; Collier, Cameron A.; Cosentino, R.; Figueira, P.; Fiorenzano, A. F. M.; Harutyunyan, A.; Haywood, R. D.; Johnson, J. A.; Latham, D. W.; Lovis, C.; Malavolta, L.; Mayor, M.; Micela, G.; Molinari, E.; Motalebi, F.; Nascimbeni, V.; Pepe, F.; Phillips, D. F.; Piotto, G.; Pollacco, D.; Queloz, D.; Sasselov, D.; Segransan, D.; Sozzetti, A.; Udry, S.; Watson, C.

    2017-01-01

    We obtained 125 observations of Kepler-20 (KOI-70, KIC 6850504, 2MASS J19104752+4220194) with the HARPS-N spectrograph on the 3.58m Telescopio Nazionale Galileo (TNG) located at Roque de Los Muchachos Observatory, La Palma, Spain. HARPS-N is an updated version of the original HARPS spectrograph on the 3.6m telescope at the European Southern Observatory on La Silla, Chile. HARPS-N is an ultra-stable fiber-fed high-resolution (R=115000) spectrograph with an optical wavelength coverage from 383 to 693nm. We obtained 61 and 64 observations of Kepler-20 in the 2014 and 2015 observing seasons, respectively (125 observations in total). We rejected 21 observations obtained under poor observing conditions where the internal error estimate exceeded 5m/s leaving a total of 104 observations. Kepler-20 has a mV=12.5 and required 30 minute exposure times to build up an adequate signal-to-noise ratio (S/N). The average S/N per pixel of the observations at 550nm is 30, yielding an average internal uncertainty estimate of 3.66m/s. The radial velocities and their 1σ errors are shows in Table1. (1 data file).

  20. Comparing temperature of subauroral mesopause over Yakutia with SABER radiometer data for 2002-2014

    NASA Astrophysics Data System (ADS)

    Ammosova, Anastasiya; Gavrilyeva, Galina; Ammosov, Petr; Koltovskoi, Igor

    2017-06-01

    We present the temperature database for the mesopause region, which was collected from spectral measurements of bands O2(0-1) and OH(6-2) with the infrared spectrograph SP-50 at the Maimaga station (63° N; 129.5° E) in 2002-2014. The temperature time series covers 11-year solar cycle. It is compared with the temperature obtained with the Sounding of the Atmosphere using Broadband Emission Radiometry instrument (SABER, v.1.07 and v.2.0), installed onboard the TIMED satellite. We compare temperatures measured during satellite passes at distances under 500 km from the intersection of the spectrograph sighting line with the hydroxyl emitting layer (~87 km) and oxygen emitting layer (~95 km). The time criterion is 30 min. We observe that there is a seasonal dependence of the difference between the ground-based and satellite measurements. The data obtained using SABER v2.0 show good agreement with the temperatures measured with the infrared digital spectrograph. The analysis we carried out allows us to conclude that a series of rotational temperatures obtained at the Maimaga station can be used to study temperature variations on different time scales including long-term trends at the mesopause height.

  1. WIYN bench upgrade: a revitalized spectrograph

    NASA Astrophysics Data System (ADS)

    Bershady, M.; Barden, S.; Blanche, P.-A.; Blanco, D.; Corson, C.; Crawford, S.; Glaspey, J.; Habraken, S.; Jacoby, G.; Keyes, J.; Knezek, P.; Lemaire, P.; Liang, M.; McDougall, E.; Poczulp, G.; Sawyer, D.; Westfall, K.; Willmarth, D.

    2008-07-01

    We describe the redesign and upgrade of the versatile fiber-fed Bench Spectrograph on the WIYN 3.5m telescope. The spectrograph is fed by either the Hydra multi-object positioner or integral-field units (IFUs) at two other ports, and can be configured with an adjustable camera-collimator angle to use low-order and echelle gratings. The upgrade, including a new collimator, charge-coupled device (CCD) and modern controller, and volume-phase holographic gratings (VPHG), has high performance-to-cost ratio by combining new technology with a system reconfiguration that optimizes throughput while utilizing as much of the existing instrument as possible. A faster, all-refractive collimator enhances throughput by 60%, nearly eliminates the slit-function due to vignetting, and improves image quality to maintain instrumental resolution. Two VPH gratings deliver twice the diffraction efficiency of existing surface-relief gratings: A 740 l/mm grating (float-glass and post-polished) used in 1st and 2nd-order, and a large 3300 l/mm grating (spectral resolution comparable to the R2 echelle). The combination of collimator, high-quantum efficiency (QE) CCD, and VPH gratings yields throughput gain-factors of up to 3.5.

  2. VizieR Online Data Catalog: Radial velocities for the HD 3167 system (Christiansen+, 2017)

    NASA Astrophysics Data System (ADS)

    Christiansen, J. L.; Vanderburg, A.; Burt, J.; Fulton, B. J.; Batygin, K.; Benneke, B.; Brewer, J. M.; Charbonneau, D.; Ciardi, D. R.; Cameron, A. C.; Coughlin, J. L.; Crossfield, I. J. M.; Dressing, C.; Greene, T. P.; Howard, A. W.; Latham, D. W.; Molinari, E.; Mortier, A.; Mullally, F.; Pepe, F.; Rice, K.; Sinukoff, E.; Sozzetti, A.; Thompson, S. E.; Udry, S.; Vogt, S. S.; Barman, T. S.; Batalha, N. E.; Bouchy, F.; Buchhave, L. A.; Butler, R. P.; Cosentino, R.; Dupuy, T. J.; Ehrenreich, D.; Fiorenzano, A.; Hansen, B. M. S.; Henning, T.; Hirsch, L.; Holden, B. P.; Isaacson, H. T.; Johnson, J. A.; Knutson, H. A.; Kosiarek, M.; Lopez-Morales, M.; Lovis, C.; Malavolta, L.; Mayor, M.; Micela, G.; Motalebi, F.; Petigura, E.; Phillips, D. F.; Piotto, G.; Rogers, L. A.; Sasselov, D.; Schlieder, J. E.; Segransan, D.; Watson, C. A.; Weiss, L. M.

    2018-06-01

    The final data set includes observations obtained with Keck/HIRES, Automated Planet Finder (APF)/Levy, and HARPS-N. Our observational setup for both Keck/HIRES and the APF/Levy was essentially identical to those described in Fulton et al. (2016, J/ApJ/830/46) and Burt et al. (2014ApJ...789..114B). We collected a total of 60 RV measurements using Keck/HIRES (Vogt et al. 1994SPIE.2198..362V), and 116 measurements using the Levy Spectrograph on the APF (Radovan et al. 2014SPIE.9145E..2BR; Vogt et al. 2014PASP..126..359V) at Lick Observatory between 2016 July 7 and 2016 December 2. We also observed HD 3167 with the HARPS-N spectrograph (Cosentino et al. 2012SPIE.8446E..1VC) located at the 3.58 m Telescopio Nazionale Galileo on the island of La Palma, Spain. HARPS-N is a stabilized spectrograph designed for precise RV measurements. We observed HD 3167 76 times between 2016 July 7 (independently beginning the same night as the HIRES/APF campaign) and 2016 December 7, obtaining high-resolution optical spectra with a spectral resolving power of R=115000. (1 data file).

  3. Effectiveness of using a magnetic spectrograph with the Trojan Horse method

    NASA Astrophysics Data System (ADS)

    Manwell, S.; Parikh, A.; Chen, A. A.; de Séréville, N.; Adsley, P.; Irvine, D.; Hammache, F.; Stefan, I.; Longland, R. F.; Tomlinson, J.; Morfuace, P.; Le Crom, B.

    2018-01-01

    The Trojan Horse method relies on performing reactions in a specific kinematic phase space that maximizes contributions of a quasi-free reaction mechanism. The hallmark of this method is that the incident particle can be accelerated to high enough energies to overcome the Coulomb barrier of the target, but once inside the target nucleus the relative motion of the clustered nuclei allows the reaction of interest to proceed at energies below this Coulomb Barrier. This method allows the experimentalist to probe reactions that have significance in astrophysics at low reaction energies that would otherwise be impossible due to the vanishing cross section. Traditionally the Trojan Horse method has been applied with the use of silicon detectors to observe the reaction products. In this study we apply the Trojan Horse method to a well studied reaction to examine the potential benefits of using a splitpole magnetic spectrograph to detect one of the reaction products. We have measure the three body 7Li(d,αn)α reaction to constrain the energy 7Li(d,α)α cross section. Measurements were first made using two silicon detectors, and then by replacing one detector with the magnetic spectrograph. The experimental design, limitations, and early results are discussed.

  4. High-resolution setup for measuring wavelength sensitivity of photoyellowing of translucent materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaskuri, Anna, E-mail: anna.vaskuri@aalto.fi; Kärhä, Petri; Heikkilä, Anu

    2015-10-15

    Polystyrene and many other materials turn yellow when exposed to ultraviolet (UV) radiation. All photodegradation mechanisms including photoyellowing are functions of the exposure wavelength, which can be described with an action spectrum. In this work, a new high-resolution transmittance measurement setup based on lasers has been developed for measuring color changes, such as the photoyellowing of translucent materials aged with a spectrograph. The measurement setup includes 14 power-stabilized laser lines between 325 nm and 933 nm wavelengths, of which one at a time is directed on to the aged sample. The power transmitted through the sample is measured with amore » silicon detector utilizing an integrating sphere. The sample is mounted on a high-resolution XY translation stage. Measurement at various locations aged with different wavelengths of exposure radiation gives the transmittance data required for acquiring the action spectrum. The combination of a UV spectrograph and the new high-resolution transmittance measurement setup enables a novel method for studying the UV-induced ageing of translucent materials with a spectral resolution of 3–8 nm, limited by the adjustable spectral bandwidth range of the spectrograph. These achievements form a significant improvement over earlier methods.« less

  5. A Fine-Tooth Comb to Measure the Accelerating Universe

    NASA Astrophysics Data System (ADS)

    2008-09-01

    Astronomical instruments needed to answer crucial questions, such as the search for Earth-like planets or the way the Universe expands, have come a step closer with the first demonstration at the telescope of a new calibration system for precise spectrographs. The method uses a Nobel Prize-winning technology called a 'laser frequency comb', and is published in this week's issue of Science. Uncovering the disc ESO PR Photo 26a/08 A Laser Comb for Astronomy "It looks as if we are on the way to fulfil one of astronomers' dreams," says team member Theodor Hänsch, director at the Max Planck Institute for Quantum Optics (MPQ) in Germany. Hänsch, together with John Hall, was awarded the 2005 Nobel Prize in Physics for work including the frequency comb technique. Astronomers use instruments called spectrographs to spread the light from celestial objects into its component colours, or frequencies, in the same way water droplets create a rainbow from sunlight. They can then measure the velocities of stars, galaxies and quasars, search for planets around other stars, or study the expansion of the Universe. A spectrograph must be accurately calibrated so that the frequencies of light can be correctly measured. This is similar to how we need accurate rulers to measure lengths correctly. In the present case, a laser provides a sort of ruler, for measuring colours rather than distances, with an extremely accurate and fine grid. New, extremely precise spectrographs will be needed in experiments planned for the future European Extremely Large Telescope (E-ELT), which is being designed by ESO, the European Southern Observatory. These new spectrographs will need to be calibrated with even more accurate 'rulers'. In fact, they must be accurate to about one part in 30 billions - a feat equivalent to measuring the circumference of the Earth to about a millimetre! "We'll need something beyond what current technology can offer, and that's where the laser frequency comb comes in. It is worth recalling that the kind of precision required, 1 cm/s, corresponds, on the focal plane of a typical high-resolution spectrograph, to a shift of a few tenths of a nanometre, that is, the size of some molecules," explains PhD student and team member Constanza Araujo-Hauck from ESO. The new calibration technique comes from the combination of astronomy and quantum optics, in a collaboration between researchers at ESO and the Max Planck Institute for Quantum Optics. It uses ultra-short pulses of laser light to create a 'frequency comb' - light at many frequencies separated by a constant interval - to create just the kind of precise 'ruler' needed to calibrate a spectrograph. After successful tests in the MPQ laboratory in 2007, the team have successfully tested a prototype device using the laser comb at the VTT (Vacuum Tower Telescope) solar telescope in Tenerife, on 8 March 2008, measuring the spectrum of the Sun in infrared light. The results are already impressive, and the technique promises to achieve the accuracy needed to study these big astronomical questions. "In our tests in Tenerife, we have already achieved beyond state-of-the-art accuracy. Now we are going to make the system more versatile, and develop it even further," says team member Tilo Steinmetz, from Menlo Systems GmbH, a spin-off company from the Max Planck Institute, which was founded to commercialise the frequency comb technique. Having tested the technique on a solar telescope, a new version of the system is now being built for the HARPS planet-finder instrument on ESO's 3.6-metre telescope at La Silla in Chile, before being considered for future generations of instruments. One of the ambitious project to be realised with the E-ELT, called CODEX, aims to measure the recently discovered acceleration of the universe directly, by following the velocities of distant galaxies and quasars over a 20-year period. This would let astronomers test Einstein's general relativity and the nature of the recently discovered, and mysterious, dark energy. "We have to measure the movement of these distant galaxies to a few centimetres per second, and follow this over decades. These speeds are barely faster than a snail's pace, and the laser frequency comb is absolutely crucial for this," says team member Antonio Manescau, from ESO. Astronomers also use spectrographs to hunt for planets around other stars, by watching for subtle movements of the star as the planet orbits it. To be detected with current technology, these planets must be relatively massive or close to the star, compared to Earth. A more precise spectrograph will let astronomers find planets, with characteristics similar to Earth's.

  6. Challenges to Constraining Exoplanet Masses via Transmission Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batalha, Natasha E.; Kempton, Eliza M.-R.; Mbarek, Rostom, E-mail: neb149@psu.edu

    MassSpec , a method for determining the mass of a transiting exoplanet from its transmission spectrum alone, was proposed by de Wit and Seager. The premise of this method relies on the planet’s surface gravity being extracted from the transmission spectrum via its effect on the atmospheric scale height, which in turn determines the strength of absorption features. Here, we further explore the applicability of MassSpec to low-mass exoplanets—specifically those in the super-Earth size range for which radial velocity determinations of the planetary mass can be extremely challenging and resource intensive. Determining the masses of these planets is of themore » utmost importance because their nature is otherwise highly unconstrained. Without knowledge of the mass, these planets could be rocky, icy, or gas-dominated. To investigate the effects of planetary mass on transmission spectra, we present simulated observations of super-Earths with atmospheres made up of mixtures of H{sub 2}O and H{sub 2}, both with and without clouds. We model their transmission spectra and run simulations of each planet as it would be observed with James Webb Space Telescope using the NIRISS, NIRSpec, and MIRI instruments. We find that significant degeneracies exist between transmission spectra of planets with different masses and compositions, making it impossible to unambiguously determine the planet’s mass in many cases.« less

  7. High Contrast Imaging of Exoplanets and Exoplanetary Systems with JWST

    NASA Astrophysics Data System (ADS)

    Hinkley, Sasha; Skemer, Andrew; Biller, Beth; Baraffe, I.; Bonnefoy, M.; Bowler, B.; Carter, A.; Chen, C.; Choquet, E.; Currie, T.; Danielski, C.; Fortney, J.; Grady, C.; Greenbaum, A.; Hines, D.; Janson, M.; Kalas, P.; Kennedy, G.; Kraus, A.; Lagrange, A.; Liu, M.; Marley, M.; Marois, C.; Matthews, B.; Mawet, D.; Metchev, S.; Meyer, M.; Millar-Blanchaer, M.; Perrin, M.; Pueyo, L.; Quanz, S.; Rameau, J.; Rodigas, T.; Sallum, S.; Sargent, B.; Schlieder, J.; Schneider, G.; Stapelfeldt, K.; Tremblin, P.; Vigan, A.; Ygouf, M.

    2017-11-01

    JWST will transform our ability to characterize directly imaged planets and circumstellar debris disks, including the first spectroscopic characterization of directly imaged exoplanets at wavelengths beyond 5 microns, providing a powerful diagnostic of cloud particle properties, atmospheric structure, and composition. To lay the groundwork for these science goals, we propose a 39-hour ERS program to rapidly establish optimal strategies for JWST high contrast imaging. We will acquire: a) coronagraphic imaging of a newly discovered exoplanet companion, and a well-studied circumstellar debris disk with NIRCam & MIRI; b) spectroscopy of a wide separation planetary mass companion with NIRSPEC & MIRI; and c) deep aperture masking interferometry with NIRISS. Our primary goals are to: 1) generate representative datasets in modes to be commonly used by the exoplanet and disk imaging communities; 2) deliver science enabling products to empower a broad user base to develop successful future investigations; and 3) carry out breakthrough science by characterizing exoplanets for the first time over their full spectral range from 2-28 microns, and debris disk spectrophotometry out to 15 microns sampling the 3 micron water ice feature. Our team represents the majority of the community dedicated to exoplanet and disk imaging and has decades of experience with high contrast imaging algorithms and pipelines. We have developed a collaboration management plan and several organized working groups to ensure we can rapidly and effectively deliver high quality Science Enabling Products to the community.

  8. Studying Cosmic Dawn with WFIRST

    NASA Astrophysics Data System (ADS)

    Rhoads, James; Malhotra, Sangeeta; Jansen, Rolf A.; Windhorst, Rogier; Tilvi, Vithal; Finkelstein, Steven; Wold, Isak; Papovich, Casey; Fan, Xiaohui; Mellema, Garrelt; Zackrisson, Erik; Jensen, Hannes; T

    2018-01-01

    Our understanding of Cosmic Dawn can be revolutionized using WFIRST's combination of wide-field, sensitive, high resolution near-infrared imaging and spectroscopy. Guest investigator studies of WFIRST's high latitude imaging survey and supernova search fields will yield orders of magnitude increases in our samples of Lyman break galaxies from z=7 to z>12. The high latitude spectrsocopic survey will enable an unprecedented search for z>7 quasars. Guest observer deep fields can extend these studies to flux levels of Hubble's deepest fields, over regions measured in square degrees. The resulting census of luminous objects in the Cosmic Dawn will provide key insights into the sources of the ultraviolet photons that powered reionization. Moreover, because WFIRST has a wide field (slitless) spectroscopic capability, it can be used to search for Lyman alpha emitting galaxies over the full history of reionization. By comparing the Lyman alpha galaxy statistics to those of continuum sources, we can directly probe the transparency of the intergalactic gas and chart reionization history.Our team is planning for both Guest Investigator and Guest Observer applications of WFIRST to studying Cosmic Dawn, and welcomes dialog with other interested members of the community.

  9. Full size Euclid grism prototype made by photolithography: first optical performance validation

    NASA Astrophysics Data System (ADS)

    Grange, R.; Caillat, A.; Pascal, S.; Ong, C.; Ellouzi, M.; Prieto, E.; Dohlen, K.

    2017-11-01

    The ESA Euclid mission is intended to explore the dark side of the Universe, particularly to understand the nature of the dark energy responsible of the accelerating expansion of the Universe. One of the two probes carried by this mission is the Baryonic Acoustic Oscillation (BAO) that requires the redshift measurements of millions of galaxies. In the Euclid design, these massive NIR spectroscopic measurements are based on slitless low resolution grisms. These grisms with low groove density and small blaze angle are difficult to manufacture by conventional replica process. Two years ago we started a CNES R&D program to develop grism manufacturing by the photolithographic process which is well adapted to coarse gratings. In addition, this original method allows introducing optical aberration correction by ruling curved and non-parallel grooves in order to simplify the instrument optical design. During the Euclid Phase A, we developed several prototypes of gratings made by photolithography. In this paper, we present the optical performance test results, including tests in the specific environment of the Euclid mission.

  10. The Infrared-Optical Telescope (IRT) of the Exist Observatory

    NASA Technical Reports Server (NTRS)

    Kutyrev, Alexander; Bloom, Joshua; Gehrels, Neil; Golisano, Craig; Gong, Quan; Grindlay, Jonathan; Moseley, Samuel; Woodgate, Bruce

    2010-01-01

    The IRT is a 1.1m visible and infrared passively cooled telescope, which can locate, identify and obtain spectra of GRB afterglows at redshifts up to z 20. It will also acquire optical-IR, imaging and spectroscopy of AGN and transients discovered by the EXIST (The Energetic X-ray Imaging Survey Telescope). The IRT imaging and spectroscopic capabilities cover a broad spectral range from 0.32.2m in four bands. The identical fields of view in the four instrument bands are each split in three subfields: imaging, objective prism slitless for the field and objective prism single object slit low resolution spectroscopy, and high resolution long slit on single object. This allows the instrument, to do simultaneous broadband photometry or spectroscopy of the same object over the full spectral range, thus greatly improving the efficiency of the observatory and its detection limits. A prompt follow up (within three minutes) of the transient discovered by the EXIST makes IRT a unique tool for detection and study of these events, which is particularly valuable at wavelengths unavailable to the ground based observatories.

  11. The innermost corona observed at the 1973 June 30 eclipse

    NASA Astrophysics Data System (ADS)

    Hanaoka, Yoichiro; Kanno, Mitsuo; Kurokawa, Hiroki; Tsubaki, Tokio

    1986-07-01

    Slitless flash spectrograms in heights below 8000 km above the solar limb were obtained by the University of Kyoto expedition at Atar, Mauritania. The integrated intensities of Fe XIV, Fe X, Fe XI, and the continuum are measured as a function of height above the solar limb at 11 points around the third contact point. It is found that a significant amount of the emission in Fe X originates in chromospheric levels well below 8000 km. This implies that the interspicular region of the chromosphere is occupied by coronal material. The average values of the electron temperature (0.9-1.1 million K) and the electron density in the interspicular region are derived from the Fe X and the Fe XI intensities (0.9-1 billion/cu cm) on the assumption of spherical symmetry. The intensity variations of the coronal lines and the continuum with position angle are also studied. Strong correlations between Fe XIV and the continuum and between Fe X and Fe XI are found. The Fe X intensities indicate a density fluctuation in the innermost corona by at least a factor of two.

  12. Image Registration Using Single Cluster PHD Methods

    NASA Astrophysics Data System (ADS)

    Campbell, M.; Schlangen, I.; Delande, E.; Clark, D.

    Cadets in the Department of Physics at the United States Air Force Academy are using the technique of slitless spectroscopy to analyze the spectra from geostationary satellites during glint season. The equinox periods of the year are particularly favorable for earth-based observers to detect specular reflections off satellites (glints), which have been observed in the past using broadband photometry techniques. Three seasons of glints were observed and analyzed for multiple satellites, as measured across the visible spectrum using a diffraction grating on the Academy’s 16-inch, f/8.2 telescope. It is clear from the results that the glint maximum wavelength decreases relative to the time periods before and after the glint, and that the spectral reflectance during the glint is less like a blackbody. These results are consistent with the presumption that solar panels are the predominant source of specular reflection. The glint spectra are also quantitatively compared to different blackbody curves and the solar spectrum by means of absolute differences and standard deviations. Our initial analysis appears to indicate a potential method of determining relative power capacity.

  13. Comparison of Geosynchronous Satellites Spectral Signatures During Glint Season

    NASA Astrophysics Data System (ADS)

    Weisz, D.; Dunsmore, A.; Key, J.; Tucker, R.; Weld, E.; Chun, F.; Tippets, R.

    2016-09-01

    Cadets in the Department of Physics at the United States Air Force Academy are using the technique of slitless spectroscopy to analyze the spectra from geostationary satellites during glint season. The equinox periods of the year are particularly favorable for earth-based observers to detect specular reflections off satellites (glints), which have been observed in the past using broadband photometry techniques. Three seasons of glints were observed and analyzed for multiple satellites, as measured across the visible spectrum using a diffraction grating on the Academy's 16-inch, f/8.2 telescope. It is clear from the results that the glint maximum wavelength decreases relative to the time periods before and after the glint, and that the spectral reflectance during the glint is less like a blackbody. The glint spectra are also quantitatively compared to different blackbody curves and the solar spectrum by means of absolute differences. Our initial analysis appears to indicate a potential method of determining relative power capacity. These results are consistent with the presumption that solar panels are the predominant source of specular reflection.

  14. Single Object & Time Series Spectroscopy with JWST NIRCam

    NASA Technical Reports Server (NTRS)

    Greene, Tom; Schlawin, Everett A.

    2017-01-01

    JWST will enable high signal-to-noise spectroscopic observations of the atmospheres of transiting planets with high sensitivity at wavelengths that are inaccessible with HST or other existing facilities. We plan to exploit this by measuring abundances, chemical compositions, cloud properties, and temperature-pressure parameters of a set of mostly warm (T 600 - 1200 K) and low mass (14 -200 Earth mass) planets in our guaranteed time program. These planets are expected to have significant molecular absorptions of H2O, CH4, CO2, CO, and other molecules that are key for determining these parameters and illuminating how and where the planets formed. We describe how we will use the NIRCam grisms to observe slitless transmission and emission spectra of these planets over 2.4 - 5.0 microns wavelength and how well these observations can measure our desired parameters. This will include how we set integration times, exposure parameters, and obtain simultaneous shorter wavelength images to track telescope pointing and stellar variability. We will illustrate this with specific examples showing model spectra, simulated observations, expected information retrieval results, completed Astronomer's Proposal Tools observing templates, target visibility, and other considerations.

  15. First light of a laser frequency comb at SALT

    NASA Astrophysics Data System (ADS)

    Depagne, Éric; McCracken, Richard A.; Reid, Derryck T.; Kuhn, Rudi B.; Erasmus, Nicolas; Crause, Lisa A.

    2016-08-01

    We present preliminary results of the commissioning and testing of SALT-CRISP (SALT-Calibration Ruler for Increased Spectrograph Precision), a Laser Frequency Comb (LFC) built by Heriot-Watt University and temporarily installed at the Southern African Large Telescope (SALT). The comb feeds the High Stability mode of SALT's High Resolution Spectrograph (HRS) and fully covers the wavelength range of the red channel of the HRS: 555-890 nm. The LFC provides significantly improved wavelength calibration compared to a standard Thorium-Argon (ThAr) lamp and hence offers unprecedented opportunities to characterise the resolution, stability and radial velocity precision of the HRS. Results from this field trial will be incorporated into subsequent LFC designs.

  16. DARKNESS: A Microwave Kinetic Inductance Detector Integral Field Spectrograph for High-contrast Astronomy

    NASA Astrophysics Data System (ADS)

    Meeker, Seth R.; Mazin, Benjamin A.; Walter, Alex B.; Strader, Paschal; Fruitwala, Neelay; Bockstiegel, Clint; Szypryt, Paul; Ulbricht, Gerhard; Coiffard, Grégoire; Bumble, Bruce; Cancelo, Gustavo; Zmuda, Ted; Treptow, Ken; Wilcer, Neal; Collura, Giulia; Dodkins, Rupert; Lipartito, Isabel; Zobrist, Nicholas; Bottom, Michael; Shelton, J. Chris; Mawet, Dimitri; van Eyken, Julian C.; Vasisht, Gautam; Serabyn, Eugene

    2018-06-01

    We present DARKNESS (the DARK-speckle Near-infrared Energy-resolving Superconducting Spectrophotometer), the first of several planned integral field spectrographs to use optical/near-infrared Microwave Kinetic Inductance Detectors (MKIDs) for high-contrast imaging. The photon counting and simultaneous low-resolution spectroscopy provided by MKIDs will enable real-time speckle control techniques and post-processing speckle suppression at frame rates capable of resolving the atmospheric speckles that currently limit high-contrast imaging from the ground. DARKNESS is now operational behind the PALM-3000 extreme adaptive optics system and the Stellar Double Coronagraph at Palomar Observatory. Here, we describe the motivation, design, and characterization of the instrument, early on-sky results, and future prospects.

  17. Stellar Astrophysics with a Dispersed Fourier Transform Spectrograph. II. Orbits of Double-lined Spectroscopic Binaries

    NASA Astrophysics Data System (ADS)

    Behr, Bradford B.; Cenko, Andrew T.; Hajian, Arsen R.; McMillan, Robert S.; Murison, Marc; Meade, Jeff; Hindsley, Robert

    2011-07-01

    We present orbital parameters for six double-lined spectroscopic binaries (ι Pegasi, ω Draconis, 12 Boötis, V1143 Cygni, β Aurigae, and Mizar A) and two double-lined triple star systems (κ Pegasi and η Virginis). The orbital fits are based upon high-precision radial velocity (RV) observations made with a dispersed Fourier Transform Spectrograph, or dFTS, a new instrument that combines interferometric and dispersive elements. For some of the double-lined binaries with known inclination angles, the quality of our RV data permits us to determine the masses M 1 and M 2 of the stellar components with relative errors as small as 0.2%.

  18. COSMOS: Carnegie Observatories System for MultiObject Spectroscopy

    NASA Astrophysics Data System (ADS)

    Oemler, A.; Clardy, K.; Kelson, D.; Walth, G.; Villanueva, E.

    2017-05-01

    COSMOS (Carnegie Observatories System for MultiObject Spectroscopy) reduces multislit spectra obtained with the IMACS and LDSS3 spectrographs on the Magellan Telescopes. It can be used for the quick-look analysis of data at the telescope as well as for pipeline reduction of large data sets. COSMOS is based on a precise optical model of the spectrographs, which allows (after alignment and calibration) an accurate prediction of the location of spectra features. This eliminates the line search procedure which is fundamental to many spectral reduction programs, and allows a robust data pipeline to be run in an almost fully automatic mode, allowing large amounts of data to be reduced with minimal intervention.

  19. Aries x ray objective grating spectrograph

    NASA Technical Reports Server (NTRS)

    Catura, R. C.

    1991-01-01

    This investigation was initiated in June of 1983. An Aries payload involving a single Wolter 1 telescope was developed and flown under a previous contract and the objective of this work was to add two additional mirrors, nested inside of the then existing mirror and add 12 objective reflection gratings to convert the telescope into a spectrograph. A summary of major milestones in the investigation are given. Results of efforts under this contract prior to 1987 are presented in the form of four reprints of published papers attached to this report. Results of the gamma-ray research are also included in the form of an attached reprint. A summary of other work under the contract since 1987 is given.

  20. Compact optics for high resolution spectroscopy of celestial x-ray sources

    NASA Astrophysics Data System (ADS)

    Cash, W.; Lillie, C.; McEntaffer, R.; Zhang, W.

    2011-05-01

    The astronomy community has never flown a celestial source spectrograph that can resolve natural line widths in absorption the way the ultraviolet community since OAO-3 Copernicus in 1972. Yet there is important science to be mined there, and right now there are now missions on track to pursue it. We present a modified off-plane grating spectrograph design that will support high resolution (λ/δλ ~ 4000) in the soft x-ray band with a high packing density that will enable a modest cost space mission. We discuss the design for the WHIMEx mission which was proposed as an Explorer earlier this year with the goal of detecting high temperature oxygen in the Intergalactic Medium.

  1. Industrial solutions trends for the control of HiRes spectrograph@E-ELT

    NASA Astrophysics Data System (ADS)

    Di Marcantonio, P.; Baldini, V.; Calderone, G.; Cirami, R.; Coretti, I.; Cristiani, S.

    Starting a few years ago, ESO initiated a number of projects aiming to explore the possible adoption of industrial standards and commercial off-the-shelf components (COTS) for the control of future VLT and E-ELT instrumentations. In this context, ESPRESSO, the next generation high-stability spectrograph for the VLT and to a certain extent, a precursor of HiRes, has adopted since the preliminary design phase those solutions. Based on the ESPRESSO experience and taking into account the requirements inferred from the preliminary Hi-Res studies in terms of both high-level operations as well as low-level control, I will present in this paper the current proposal for the HiRes hardware architecture.

  2. Integration of a thermo-structural analysis with an optical model for PEPSI polarimeter

    NASA Astrophysics Data System (ADS)

    Di Varano, Igor; Strassmeier, Klaus G.; Ilyin, Ilya; Woche, Manfred; Kaercher, Hans J.

    2011-09-01

    The two spectropolarimeters for PEPSI (Potsdam Echelle Polarimetric and Spectroscopic Instrument) have been de¬signed in order to reconstruct the full Stokes vector measuring linear and circular polarization simultaneously with a re¬solving power of 120,000. The polarimeters will be attached to the Gregorian focus of the so far largest LBT 2x8.4m telescope and will feed together with permanent focus stations the spectrograph via 44m long fibers connection. The spectrograph will be located in a pressure-temperature controlled chamber within the telescope pier. We present hereafter the last results from combined structural and CFD analyses in order to fulfill the optical requirements.

  3. Development of television tubes for the large space telescope

    NASA Technical Reports Server (NTRS)

    Lowrance, J. L.; Zucchino, P.

    1971-01-01

    Princeton Observatory has been working for several years under NASA sponsorship to develop television type sensors to use in place of photographic film for space astronomy. The performance of an SEC-vidicon with a 25 mm x 25 mm active area, MgF2 window, and bi-alkali photocathode is discussed. Results from ground based use on the Coude spectrograph of the 200-inch Hale telescope are included. The intended use of this tube in an echelle spectrograph sounding rocket payload and on Stratoscope 2 for direct high resolution imagery is also discussed. The paper also discusses the large space telescope image sensor requirements and the development of a larger television tube for this mission.

  4. Spectrographic imaging system

    DOEpatents

    Morris, Michael D.; Treado, Patrick J.

    1991-01-01

    An imaging system for providing spectrographically resolved images. The system incorporates a one-dimensional spatial encoding mask which enables an image to be projected onto a two-dimensional image detector after spectral dispersion of the image. The dimension of the image which is lost due to spectral dispersion on the two-dimensional detector is recovered through employing a reverse transform based on presenting a multiplicity of different spatial encoding patterns to the image. The system is especially adapted for detecting Raman scattering of monochromatic light transmitted through or reflected from physical samples. Preferably, spatial encoding is achieved through the use of Hadamard mask which selectively transmits or blocks portions of the image from the sample being evaluated.

  5. Spectrographic Polarimeter and Method of Recording State of Polarity

    NASA Technical Reports Server (NTRS)

    Sparks, William B. (Inventor)

    2015-01-01

    A single-shot real-time spectropolarimeter for use in astronomy and other sciences that captures and encodes some or all of the Stokes polarization parameters simultaneously using only static, robust optical components with no moving parts is described. The polarization information is encoded onto the spectrograph at each wavelength along the spatial dimension of the 2D output data array. The varying embodiments of the concept include both a two-Stokes implementation (in which any two of the three Stokes polarization parameters are measured) and a full Stokes implementation (in which all three of the Stokes polarization parameters are measured), each of which is provided in either single beam or dual beam forms.

  6. Microchannel plate life testing for UV spectroscopy instruments

    NASA Astrophysics Data System (ADS)

    Darling, N. T.; Siegmund, O. H. W.; Curtis, T.; McPhate, J.; Tedesco, J.; Courtade, S.; Holsclaw, G.; Hoskins, A.; Al Dhafri, S.

    2017-08-01

    The Emirates Mars Mission (EMM) UV Spectrograph (EMUS) is a far ultraviolet (102 nm to 170 nm) imaging spectrograph for characterization of the Martian exosphere and thermosphere. Imaging is accomplished by a photon counting open-face microchannel plate (MCP) detector using a cross delay line (XDL) readout. An MCP gain stabilization ("scrub") followed by lifetime spectral line burn-in simulation has been completed on a bare MCP detector at SSL. Gain and sensitivity stability of better than 7% has been demonstrated for total dose of 2.5 × 1012 photons cm-2 (2 C · cm-2 ) at 5.5 kHz mm-2 counting rates, validating the efficacy of an initial low gain full-field scrub.

  7. Investigating the Lyman photon escape in local starburst galaxies with the Cosmic Origins Spectrograph ★

    NASA Astrophysics Data System (ADS)

    Hernandez, Svea; Leitherer, Claus; Boquien, Médéric; Buat, Véronique; Burgarella, Denis; Calzetti, Daniela; Noll, Stefan

    2018-04-01

    We present a study of 7 star-forming galaxies from the Cosmic Evolution Survey (COSMOS) observed with the Cosmic Origins Spectrograph (COS) on board the Hubble Space Telescope (HST). The galaxies are located at relatively low redshifts, z ˜0.3, with morphologies ranging from extended and disturbed to compact and smooth. To complement the HST observations we also analyze observations taken with the VIMOS spectrograph on the Very Large Telescope (VLT). In our galaxy sample we identify three objects with double peak Lyman-α profiles similar to those seen in Green Pea compact galaxies and measure peak separations of 655, 374, and 275 km s-1. We measure Lyman-α escape fractions with values ranging between 5-13%. Given the low flux levels in the individual COS exposures we apply a weighted stacking approach to obtain a single spectrum. From this COS combined spectrum we infer upper limits for the absolute and relative Lyman continuum escape fractions of f_abs(LyC) = 0.4^{+10.1}_{-0.4}% and f_res(LyC) = 1.7^{+15.2}_{-1.7}%, respectively. Finally, we find that most of these galaxies have moderate UV and optical SFRs (SFRs ≲ 10 M⊙ yr-1).

  8. The Use of Color Sensors for Spectrographic Calibration

    NASA Astrophysics Data System (ADS)

    Thomas, Neil B.

    2018-04-01

    The wavelength calibration of spectrographs is an essential but challenging task in many disciplines. Calibration is traditionally accomplished by imaging the spectrum of a light source containing features that are known to appear at certain wavelengths and mapping them to their location on the sensor. This is typically required in conjunction with each scientific observation to account for mechanical and optical variations of the instrument over time, which may span years for certain projects. The method presented here investigates the usage of color itself instead of spectral features to calibrate a spectrograph. The primary advantage of such a calibration is that any broad-spectrum light source such as the sky or an incandescent bulb is suitable. This method allows for calibration using the full optical pathway of the instrument instead of incorporating separate calibration equipment that may introduce errors. This paper focuses on the potential for color calibration in the field of radial velocity astronomy, in which instruments must be finely calibrated for long periods of time to detect tiny Doppler wavelength shifts. This method is not restricted to radial velocity, however, and may find application in any field requiring calibrated spectrometers such as sea water analysis, cellular biology, chemistry, atmospheric studies, and so on. This paper demonstrates that color sensors have the potential to provide calibration with greatly reduced complexity.

  9. Investigating the Lyman photon escape in local starburst galaxies with the Cosmic Origins Spectrograph

    NASA Astrophysics Data System (ADS)

    Hernandez, Svea; Leitherer, Claus; Boquien, Médéric; Buat, Véronique; Burgarella, Denis; Calzetti, Daniela; Noll, Stefan

    2018-07-01

    We present a study of seven star-forming galaxies from the Cosmic Evolution Survey observed with the Cosmic Origins Spectrograph (COS) onboard the Hubble Space Telescope (HST). The galaxies are located at relatively low redshifts, z ˜ 0.3, with morphologies ranging from extended and disturbed to compact and smooth. To complement the HST observations, we also analyse observations taken with the Visible Multi-object Spectrograph (VIMOS) on the Very Large Telescope (VLT). In our galaxy sample, we identify three objects with double peak Lyman-α profiles similar to those seen in Green Pea compact galaxies and measure peak separations of 655, 374, and 275 km s-1. We measure Lyman-α escape fractions with values ranging between 5 per cent and 13 per cent. Given the low flux levels in the individual COS exposures, we apply a weighted stacking approach to obtain a single spectrum. From this COS combined spectrum, we infer upper limits for the absolute and relative Lyman continuum escape fractions of f_abs(LyC) = 0.4^{+10.1}_{-0.4} per cent and f_res(LyC) = 1.7^{+15.2}_{-1.7}per cent, respectively. Finally, we find that most of these galaxies have moderate ultraviolet and optical star formation rates (SFRs) (SFRs ≲10 M⊙ yr-1).

  10. Introducing CUBES: the Cassegrain U-band Brazil-ESO spectrograph

    NASA Astrophysics Data System (ADS)

    Bristow, Paul; Barbuy, Beatriz; Macanhan, Vanessa B.; Castilho, Bruno; Dekker, Hans; Delabre, Bernard; Diaz, Marcos; Gneiding, Clemens; Kerber, Florian; Kuntschner, Harald; La Mura, Giovanni; Reiss, Roland; Vernet, J.

    2014-07-01

    CUBES is a high-efficiency, medium-resolution (R ≃ 20, 000) spectrograph dedicated to the "ground based UV" (approximately the wavelength range from 300 to 400nm) destined for the Cassegrain focus of one of ESO's VLT unit telescopes in 2018/19. The CUBES project is a joint venture between ESO and Instituto de Astronomia, Geofísica e Ciências Atmosféricas (IAG) at the Universidade de São Paulo and the Brazilian Laboratório Nacional de Astrofísica (LNA). CUBES will provide access to a wealth of new and relevant information for stellar as well as extra-galactic sources. Principle science cases include the study of heavy elements in metal-poor stars, the direct determination of carbon, nitrogen and oxygen abundances by study of molecular bands in the UV range and the determination of the Beryllium abundance as well as the study of active galactic nuclei and the inter-galactic medium. With a streamlined modern instrument design, high efficiency dispersing elements and UV-sensitive detectors, it will enable a significant gain in sensitivity over existing ground based medium-high resolution spectrographs enabling vastly increased sample sizes accessible to the astronomical community. We present here a brief overview of the project, introducing the science cases that drive the design and discussing the design options and technological challenges.

  11. Spectrographs and Large Telescopes: A Study of Instrumentation

    NASA Astrophysics Data System (ADS)

    Fica, Haley Diane; Crane, Jeffrey D.; Uomoto, Alan K.; Hare, Tyson

    2017-01-01

    It is a truth universally acknowledged, that a telescope in possession of a large aperture, must be in want of a high resolution spectrograph. Subsystems of these instruments require testing and upgrading to ensure that they can continue to be scientifically productive and usher in a new era of astronomical research. The Planet Finder Spectrograph (PFS) and Magellan Inamori Kyocera Echelle (MIKE), both on the Magellan II Clay telescope at Las Campanas Observatory, and the Giant Magellan Telescope (GMT) Consortium Large Earth Finder (G-CLEF) are examples of such instruments. Bluer flat field lamps were designed for PFS and MIKE to replace lamps no longer available in order to ensure continued, efficient functionality. These newly designed lamps will result in better flat fielding and calibration of data, and thus result in increased reduction of instrument noise. When it is built and installed in 2022, G-CLEF will be be fed by a tertiary mirror on the GMT. Stepper motors attached to the back of this mirror will be used to correct misalignments in the optical relay system. These motors were characterized to ensure that they function as expected to an accuracy of a few microns. These projects incorporate several key aspects of astronomical instrumentation: designing, building, and testing.

  12. Temperature-dependent refractive index measurements of L-BBH2 glass for the Subaru CHARIS integral field spectrograph

    NASA Astrophysics Data System (ADS)

    Leviton, Douglas B.; Miller, Kevin H.; Quijada, Manuel A.; Groff, Tyler D.

    2015-09-01

    Using the Cryogenic High Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center, we have made the first cryogenic measurements of absolute refractive index for Ohara L-BBH2 glass to enable the design of a prism for the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) at the Subaru telescope. L-BBH2 is employed in CHARIS's prism design for improving the spectrograph's dispersion uniformity. Index measurements were made at temperatures from 110 to 305 K at wavelengths from 0.46 to 3.16 μm. We report absolute refractive index (n), dispersion (dn/dλ), and thermo-optic coefficient (dn/dT) for this material along with estimated single measurement uncertainties as a function of wavelength and temperature. We provide temperature-dependent Sellmeier coefficients based on our data to allow accurate interpolation of index to other wavelengths and temperatures within applicable ranges. This paper also speaks of the challenges in measuring index for a material which is not available in sufficient thickness to fabricate a typical prism for measurement in CHARMS, the tailoring of the index prism design that allowed these index measurements to be made, and the remarkable results obtained from that prism for this practical infrared material.

  13. Development of a slicer integral field unit for the existing optical imaging spectrograph FOCAS

    NASA Astrophysics Data System (ADS)

    Ozaki, Shinobu; Tanaka, Yoko; Hattori, Takashi; Mitsui, Kenji; Fukusima, Mitsuhiro; Okada, Norio; Obuchi, Yoshiyuki; Miyazaki, Satoshi; Yamashita, Takuya

    2012-09-01

    We are developing an integral field unit (IFU) with an image slicer for the existing optical imaging spectrograph, Faint Object Camera And Spectrograph (FOCAS), on the Subaru Telescope. Basic optical design has already finished. The slice width is 0.4 arcsec, slice number is 24, and field of view is 13.5x 9.6 arcsec. Sky spectra separated by about 3 arcmin from an object field can be simultaneously obtained, which allows us precise background subtraction. The IFU will be installed as a mask plate and set by the mask exchanger mechanism of FOCAS. Slice mirrors, pupil mirrors and slit mirrors are all made of glass, and their mirror surfaces are fabricated by polishing. Multilayer dielectric reflective coating with high reflectivity (< 98%) is made on each mirror surface. Slicer IFU consists of many mirrors which need to be arraigned with high accuracy. For such alignment, we will make alignment jigs and mirror holders made with high accuracy. Some pupil mirrors need off-axis ellipsoidal surfaces to reduce aberration. We are conducting some prototyping works including slice mirrors, an off-axis ellipsoidal surface, alignment jigs and a mirror support. In this paper, we will introduce our project and show those prototyping works.

  14. Temperature-Dependent Refractive Index Measurements of L-BBH2 Glass for the Subaru CHARIS Integral Field Spectrograph

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.; Miller, Kevin H.; Quijada, Manuel A.; Groff, Tyler D.

    2015-01-01

    Using the Cryogenic High Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center, we have made the first cryogenic measurements of absolute refractive index for Ohara L-BBH2 glass to enable the design of a prism for the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) at the Subaru telescope. L-BBH2 is employed in CHARIS's prism design for improving the spectrograph's dispersion uniformity. Index measurements were made at temperatures from 110 to 305 K at wavelengths from 0.46 to 3.16 micron. We report absolute refractive index (n), dispersion (dn/d(lambda), and thermo-optic coefficient (dn/dT) for this material along with estimated single measurement uncertainties as a function of wavelength and temperature. We provide temperature-dependent Sellmeier coefficients based on our data to allow accurate interpolation of index to other wavelengths and temperatures within applicable ranges. This paper also speaks of the challenges in measuring index for a material which is not available in sufficient thickness to fabricate a typical prism for measurement in CHARMS, the tailoring of the index prism design that allowed these index measurements to be made, and the remarkable results obtained from that prism for this practical infrared material.

  15. Cassini UVIS Observations of Saturn during the Grand Finale Orbits

    NASA Astrophysics Data System (ADS)

    Pryor, W. R.; Esposito, L. W.; West, R. A.; Jouchoux, A.; Radioti, A.; Grodent, D. C.; Gerard, J. C. M. C.; Gustin, J.; Lamy, L.; Badman, S. V.

    2017-12-01

    In 2016 and 2017, the Cassini Saturn orbiter executed a final series of high inclination, low-periapsis orbits ideal for studies of Saturn's polar regions. The Cassini Ultraviolet Imaging Spectrograph (UVIS) obtained an extensive set of auroral images, some at the highest spatial resolution obtained during Cassini's long orbital mission (2004-2017). In some cases, two or three spacecraft slews at right angles to the long slit of the spectrograph were required to cover the entire auroral region to form auroral images. We will present selected images from this set showing narrow arcs of emission, more diffuse auroral emissions, multiple auroral arcs in a single image, discrete spots of emission, small scale vortices, large-scale spiral forms, and parallel linear features that appear to cross in places like twisted wires. Some shorter features are transverse to the main auroral arcs, like barbs on a wire. UVIS observations were in some cases simultaneous with auroral observations from the Hubble Space Telescope Space Telescope Imaging Spectrograph (STIS) that will also be presented. UVIS polar images also contain spectral information suitable for studies of the auroral electron energy distribution. The long wavelength part of the UVIS polar images contains a signal from reflected sunlight containing absorption signatures of acetylene and other Saturn hydrocarbons. The hydrocarbon spatial distribution will also be examined.

  16. VizieR Online Data Catalog: Kepler-10 RV measurements by HARPS-N (Dumusque+, 2014)

    NASA Astrophysics Data System (ADS)

    Dumusque, X.; Bonomo, A. S.; Haywood, R. D.; Malavolta, L.; Segransan, D.; Buchhave, L. A.; Collier, Cameron A.; Latham, D. W.; Molinari, E.; Pepe, F.; Udry, S.; Charbonneau, D.; Cosentino, R.; Dressing, C. D.; Figueira, P.; Fiorenzano, A. F. M.; Gettel, S.; Harutyunyan, A.; Horne, K.; Lopez-Morales, M.; Lovis, C.; Mayor, M.; Micela, G.; Motalebi, F.; Nascimbeni, V.; Phillips, D. F.; Piotto, G.; Pollacco, D.; Queloz, D.; Rice, K.; Sasselov, D.; Sozzetti, A.; Szentgyorgyi, A.; Watson, C.

    2017-03-01

    We monitored the RV variation of Kepler-10 with the HARPS-N spectrograph installed on the 3.57-m Telescopio Nazionale Galileo at the Spanish Observatorio del Roque de los Muchachos, La Palma Island, Spain (Cosentino et al. 2012SPIE.8446E..1VC). This instrument is an updated version of the original HARPS planet hunter installed on the 3.6-m telescope at the European Southern Observatory on La Silla, Chile (Mayor et al. 2003Msngr.114...20M). Just like its older brother, the HARPS-N instrument is an ultra-stable fiber-fed high-resolution (R = 115,000) optical echelle spectrograph optimized for the measurement of very precise RVs. The use of a more modern monolithic 4kx4k CCD enclosed in a more temperature stable cryostat, and the use of octagonal fibers for a better scrambling of the incoming light fed into the spectrograph should improve the precision of the instrument compared to HARPS. Scientific operations began at HARPS-N in 2012 August. Over the first two observing seasons, we obtained 157 RV measurements of Kepler-10. Four observations that were obtained during bad weather conditions had very low signal to noise (S/N, <10) and were rejected. (1 data file).

  17. Wavefront control methods for high-contrast integral field spectroscopy

    NASA Astrophysics Data System (ADS)

    Groff, Tyler D.; Mejia Prada, Camilo; Cady, Eric; Rizzo, Maxime J.; Mandell, Avi; Gong, Qian; McElwain, Michael; Zimmerman, Neil; Saxena, Prabal; Guyon, Olivier

    2017-09-01

    Direct Imaging of exoplanets using a coronagraph has become a major field of research both on the ground and in space. Key to the science of direct imaging is the spectroscopic capabilities of the instrument, our ability to fit spectra, and understanding the composition of the observed planets. Direct imaging instruments generally use an integral field spectrograph (IFS), which encodes the spectrum into a two-dimensional image on the detector. This results in more efficient detection and characterization of targets, and the spectral information is critical to achieving detection limits below the speckle floor of the imager. The most mature application of these techniques is at more modest contrast ratios on ground-based telescopes, achieving approximately 5-6 orders of magnitude suppression. In space, where we are attempting to detect Earth-analogs, the contrast requirements are more severe and the IFS must be incorporated into the wavefront control loop to reach 1e-10 detection limits required for Earth-like planet detection. We present the objectives and application of IFS imagery for both a speckle control loop and post-processing of images. Results, tested methodologies, and the future work using the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) and the Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) at the JPL High Contrast Imaging Testbed are presented.

  18. Blind Spectroscopic Galaxy Surveys Using an Ultra-Wide-Band Imaging Spectrograph on AtLAST and LST

    NASA Astrophysics Data System (ADS)

    Kohno, Kotaro

    2018-01-01

    A novel approach to elucidation of cosmic star formation history is a blind search for CO and [CII] emissions using a ultra-wide-band imaging spectrograph on the future large submm telescopes like AtLAST and LST. In particular, searching for [CII] emitters in the appropriate frequency range allows us to sample those sources very efficiently for a redshift range of 3.5 to 9 (190 to 420 GHz), reaching the star-formation in the EoR. Further, spectroscopic analysis of CO in the lower frequency bands will constrain the evolution of CO luminosity functions across cosmic time. We conducted a feasibility study of ``CO/[CII] tomography'' based on a mock galaxy catalog containing 1.4 million objects drawn from the S(3) -SAX (Obreschkow et al. 2009). We find that a blind spectroscopic survey using a 50-m telescope equipped with a 100-pixel imaging spectrograph, which covers 70-370 GHz simultaneously, will be promising indeed. A survey of 2 deg(2) in 1,000 hr (on-source) will uncover > 10^5 line-emitting galaxies in total, including 10^3 [CII] emitters in the EoR (Tamura et al., in prep.). Wider surveys (10 deg^2 or wider) will also be discussed for RSD science cases.

  19. MIRADAS control system

    NASA Astrophysics Data System (ADS)

    Rosich Minguell, Josefina; Garzón Lopez, Francisco

    2012-09-01

    The Mid-resolution InfRAreD Astronomical Spectrograph (MIRADAS, a near-infrared multi-object echelle spectrograph operating at spectral resolution R=20,000 over the 1-2.5μm bandpass) was selected in 2010 by the Gran Telescopio Canarias (GTC) partnership as the next-generation near-infrared spectrograph for the world's largest optical/infrared telescope, and is being developed by an international consortium. The MIRADAS consortium includes the University of Florida, Universidad de Barcelona, Universidad Complutense de Madrid, Instituto de Astrofísica de Canarias, Institut de Física d'Altes Energies, Institut d'Estudis Espacials de Catalunya and Universidad Nacional Autónoma de México. This paper shows an overview of the MIRADAS control software, which follows the standards defined by the telescope to permit the integration of this software on the GTC Control System (GCS). The MIRADAS Control System is based on a distributed architecture according to a component model where every subsystem is selfcontained. The GCS is a distributed environment written in object oriented C++, which runs components in different computers, using CORBA middleware for communications. Each MIRADAS observing mode, including engineering, monitoring and calibration modes, will have its own predefined sequence, which are executed in the GCS Sequencer. These sequences will have the ability of communicating with other telescope subsystems.

  20. NEID Port Adapter: Design and Verification Plan

    NASA Astrophysics Data System (ADS)

    Logsdon, Sarah E.; McElwain, Michael; McElwain, Michael W.; Gong, Qian; Bender, Chad; Halverson, Samuel; Hearty, Fred; Hunting, Emily; Jaehnig, Kurt; Liang, Ming; Mahadevan, Suvrath; Monson, A. J.; Percival, Jeffrey; Rajagopal, Jayadev; Ramsey, Lawrence; Roy, Arpita; Santoro, Fernando; Schwab, Christian; Smith, Michael; Wolf, Marsha; Wright, Jason

    2018-01-01

    The NEID spectrograph is an optical (380-930 nm), fiber-fed, precision Doppler spectrograph currently in development for the 3.5 m WIYN Telescope at Kitt Peak National Observatory. Designed to achieve a radial velocity precision of <30 cm/s, NEID will be sensitive enough to detect terrestrial-mass exoplanets around low-mass stars. Light from the target stars is focused by the telescope to a bent-Cassegrain port at the edge of the primary mirror mechanical support. The specialized NEID “Port Adapter” system is mounted at this bent-Cassegrain port and is responsible for delivering the incident light from the telescope to the NEID fibers. In order to provide stable, high-quality images to the science instrument, the Port Adapter houses several subcomponents designed to acquire the target stars, correct for atmospheric dispersion, stabilize the light onto the science fibers, and calibrate the spectrograph by injecting known wavelength sources such as a laser frequency comb. Here we describe the overall design of the Port Adapter and outline the development of calibration tools and an on-sky test plan to verify the performance of the atmospheric dispersion corrector (ADC). We also discuss the development of an error budget and test requirements to ensure high-precision centroiding onto the NEID science fibers using a system of coherent fiber bundles.

  1. Using CeSiC for UV spectrographs for the WSO/UV

    NASA Astrophysics Data System (ADS)

    Reutlinger, A.; Gál, C.; Brandt, C.; Haberler, P.; Zuknik, K.-H.; Sedlmaier, T.; Shustov, B.; Sachkov, M.; Moisheev, A.; Kappelmann, N.; Barnstedt, J.; Werner, K.

    2017-11-01

    The World Space Observatory Ultraviolet (WSO/UV) is a multi-national project lead by the Russian Federal Space Agency (Roscosmos) with the objective of high performance observations in the ultraviolet range. The 1.7 m WSO/UV telescope feeds UV spectrometers and UV imagers. The UV spectrometers comprise two high resolution Echelle spectrographs for the 100 - 170 nm and 170 - 300 nm wavelength range and a long slit spectrograph for the 100 - 300 nm band. All three spectrometers represent individual instruments that are assembled and aligned separately. In order to save mass while maintaining high stiffness, the instruments are combined to a monoblock. Cesic has been selected to reduce CTE related distortions of the instruments. In contrast to aluminium, the stable structure of Cesic is significantly less sensitive to thermal gradients. No further mechanism for focus correction with high functional, technical and operational complexity and dedicated System costs are necessary. Using Cesic also relaxes the thermal control requirements of +/-5°C, which represents a considerable cost driver for the S/C design. The WUVS instrument is currently studied in the context of a phase B2 study by Kayser-Threde GmbH including a Structural Thermal Model (STM) for verification of thermal and mechanical loads, stability due to thermal distortions and Cesic manufacturing feasibility.

  2. Hollow-cathode lamps as optical frequency standards: the influence of optical imaging on the line-strength ratios

    NASA Astrophysics Data System (ADS)

    Huke, Philipp; Tal-Or, Lev; Sarmiento, Luis Fernando; Reiners, Ansgar

    2016-07-01

    Hollow cathode discharge lamps (HCLs) have been successfully used in recent years as calibration sources of optical astronomical spectrographs. The numerous narrow metal lines have stable wavelengths, which makes them well suited for m/s calibration accuracy of high-resolution spectrographs, while the buffer-gas lines are less stable and less useful. Accordingly, an important property is the metal-to-gas line-strength ratio (Rmetal/gas). Processes inside the lamp cause the light to be emitted from different regions between the cathode and the anode leaing to the emission of different beams with different values of Rmetal/gas. We used commercially- available HCLs to measure and characterize these beams with respect to their spatial distribution, their angle of propagation relative to the optical axis, and their values of Rmetal/gas. We conclude that a good imaging of an HCL into a fiber-fed spectrograph would consist of an aperture close to its front window in order to filter out the parts of the beam with low Rmetal/gas, and of a lens to collimate the important central beam. We show that Rmetal/gas can be further improved with only minor adjustments of the imaging parameters, and that the imaging scheme that yields the highest Rmetal/gas does not necessarily provide the highest flux.

  3. Cosmic Dawn with WFIRST

    NASA Astrophysics Data System (ADS)

    Rhoads, James

    Central objectives: WFIRST-AFTA has tremendous potential for studying the epoch of "Cosmic Dawn" the period encompassing the formation of the first galaxies and quasars, and their impact on the surrounding universe through cosmological reionization. Our goal is to ensure that this potential is realized through the middle stages of mission planning, culminating in designs for both WFIRST and its core surveys that meet the core objectives in dark energy and exoplanet science, while maximizing the complementary Cosmic Dawn science. Methods: We will consider a combined approach to studying Cosmic Dawn using a judicious mixture of guest investigator data analysis of the primary WFIRST surveys, and a specifically designed Guest Observer program to complement those surveys. The Guest Observer program will serve primarily to obtain deep field observations, with particular attention to the capabilities of WFIRST for spectroscopic deep fields using the WFI grism. We will bring to bear our years of experience with slitless spectroscopy on the Hubble Space Telescope, along with an expectation of JWST slitless grism spectroscopy. We will use this experience to examine the implications of WFIRST’s grism resolution and wavelength coverage for deep field observations, and if appropriate, to suggest potential modifications of these parameters to optimize the science return on WFIRST. We have assembled a team of experts specializing in (1) Lyman Break Galaxies at redshifts higher than 7 (2) Quasars at high redshifts (3) Lyman-alpha galaxies as probes of reionization (4) Theoretical simulations of high-redshift galaxies (5) Simulations of grism observations (6) post-processing analysis to find emission line galaxies and high redshift galaxies (7) JWST observations and calibrations. With this team we intend to do end-to-end simulations starting with halo populations and expected spectra of high redshift galaxies and finally extracting what we can learn about (a) reionization using the Lyman-alpha test (b) the sources of reionization - both galaxies and AGN and (c) how to optimize WFIRST-AFTA surveys to maximize scientific output of this mission. Along the way, we will simulate the galaxy and AGN populations expected beyond redshift 7, and will simulate observations and data analysis of these populations with WFIRST. Significance of work: Cosmic Dawn is one of the central pillars of the "New Worlds, New Horizons" decadal survey. WFIRST's highly sensitive and wide-field near-infrared capabilities offer a natural tool to obtain statistically useful samples of faint galaxies and AGN beyond redshift 7. Thus, we expect Cosmic Dawn observations will constitute a major component of the GO program ultimately executed by WFIRST. By supporting our Science Investigation Team to consider the interplay between the mission parameters and the ultimate harvest of Cosmic Dawn science, NASA will help ensure the success of WFIRST as a broadly focused flagship mission.

  4. Extreme Ultraviolet Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO): Overview of Science Objectives, Instrument Design, Data Products, and Model Developments

    NASA Technical Reports Server (NTRS)

    Woods, T. N.; Eparvier, F. G.; Hock, R.; Jones, A. R.; Woodraska, D.; Judge, D.; Didkovsky, L.; Lean, J.; Mariska, J.; Warren, H.; hide

    2010-01-01

    The highly variable solar extreme ultraviolet (EUV) radiation is the major energy input to the Earth's upper atmosphere, strongly impacting the geospace environment, affecting satellite operations, communications, and navigation. The Extreme ultraviolet Variability Experiment (EVE) onboard the NASA Solar Dynamics Observatory (SDO) will measure the solar EUV irradiance from 0.1 to 105 nm with unprecedented spectral resolution (0.1 nm), temporal cadence (ten seconds), and accuracy (20%). EVE includes several irradiance instruments: The Multiple EUV Grating Spectrographs (MEGS)-A is a grazingincidence spectrograph that measures the solar EUV irradiance in the 5 to 37 nm range with 0.1-nm resolution, and the MEGS-B is a normal-incidence, dual-pass spectrograph that measures the solar EUV irradiance in the 35 to 105 nm range with 0.1-nm resolution. To provide MEGS in-flight calibration, the EUV SpectroPhotometer (ESP) measures the solar EUV irradiance in broadbands between 0.1 and 39 nm, and a MEGS-Photometer measures the Sun s bright hydrogen emission at 121.6 nm. The EVE data products include a near real-time space-weather product (Level 0C), which provides the solar EUV irradiance in specific bands and also spectra in 0.1-nm intervals with a cadence of one minute and with a time delay of less than 15 minutes. The EVE higher-level products are Level 2 with the solar EUV irradiance at higher time cadence (0.25 seconds for photometers and ten seconds for spectrographs) and Level 3 with averages of the solar irradiance over a day and over each one-hour period. The EVE team also plans to advance existing models of solar EUV irradiance and to operationally use the EVE measurements in models of Earth s ionosphere and thermosphere. Improved understanding of the evolution of solar flares and extending the various models to incorporate solar flare events are high priorities for the EVE team.

  5. The infrared imaging spectrograph (IRIS) for TMT: volume phase holographic grating performance testing and discussion

    NASA Astrophysics Data System (ADS)

    Chen, Shaojie; Meyer, Elliot; Wright, Shelley A.; Moore, Anna M.; Larkin, James E.; Maire, Jerome; Mieda, Etsuko; Simard, Luc

    2014-07-01

    Maximizing the grating efficiency is a key goal for the first light instrument IRIS (Infrared Imaging Spectrograph) currently being designed to sample the diffraction limit of the TMT (Thirty Meter Telescope). Volume Phase Holographic (VPH) gratings have been shown to offer extremely high efficiencies that approach 100% for high line frequencies (i.e., 600 to 6000l/mm), which has been applicable for astronomical optical spectrographs. However, VPH gratings have been less exploited in the near-infrared, particularly for gratings that have lower line frequencies. Given their potential to offer high throughputs and low scattered light, VPH gratings are being explored for IRIS as a potential dispersing element in the spectrograph. Our team has procured near-infrared gratings from two separate vendors. We have two gratings with the specifications needed for IRIS current design: 1.51-1.82μm (H-band) to produce a spectral resolution of 4000 and 1.19-1.37μm (J-band) to produce a spectral resolution of 8000. The center wavelengths for each grating are 1.629μm and 1.27μm, and the groove densities are 177l/mm and 440l/mm for H-band R=4000 and J-band R=8000, respectively. We directly measure the efficiencies in the lab and find that the peak efficiencies of these two types of gratings are quite good with a peak efficiency of ~88% at the Bragg angle in both TM and TE modes at H-band, and 90.23% in TM mode, 79.91% in TE mode at J-band for the best vendor. We determine the drop in efficiency off the Bragg angle, with a 20-23% decrease in efficiency at H-band when 2.5° deviation from the Bragg angle, and 25%-28% decrease at J-band when 5° deviation from the Bragg angle.

  6. A fast new cadioptric design for fiber-fed spectrographs

    NASA Astrophysics Data System (ADS)

    Saunders, Will

    2012-09-01

    The next generation of massively multiplexed multi-object spectrographs (DESpec, SUMIRE, BigBOSS, 4MOST, HECTOR) demand fast, efficient and affordable spectrographs, with higher resolutions (R = 3000-5000) than current designs. Beam-size is a (relatively) free parameter in the design, but the properties of VPH gratings are such that, for fixed resolution and wavelength coverage, the effect on beam-size on overall VPH efficiency is very small. For alltransmissive cameras, this suggests modest beam-sizes (say 80-150mm) to minimize costs; while for cadioptric (Schmidt-type) cameras, much larger beam-sizes (say 250mm+) are preferred to improve image quality and to minimize obstruction losses. Schmidt designs have benefits in terms of image quality, camera speed and scattered light performance, and recent advances such as MRF technology mean that the required aspherics are no longer a prohibitive cost or risk. The main objections to traditional Schmidt designs are the inaccessibility of the detector package, and the loss in throughput caused by it being in the beam. With expected count rates and current read-noise technology, the gain in camera speed allowed by Schmidt optics largely compensates for the additional obstruction losses. However, future advances in readout technology may erase most of this compensation. A new Schmidt/Maksutov-derived design is presented, which differs from previous designs in having the detector package outside the camera, and adjacent to the spectrograph pupil. The telescope pupil already contains a hole at its center, because of the obstruction from the telescope top-end. With a 250mm beam, it is possible to largely hide a 6cm × 6cm detector package and its dewar within this hole. This means that the design achieves a very high efficiency, competitive with transmissive designs. The optics are excellent, as least as good as classic Schmidt designs, allowing F/1.25 or even faster cameras. The principal hardware has been costed at $300K per arm, making the design affordable.

  7. GNOSIS: The First Fiber Bragg Grating-based OH Suppression Unit

    NASA Astrophysics Data System (ADS)

    Trinh, Christopher; Ellis, S. C.; Bland-Hawthorn, J.; Lawrence, J. S.; Horton, A. J.; Leon-Saval, S. G.; Shortridge, K.; Bryant, J.; Case, S.; Colless, M.; Couch, W.; Freeman, K. C.; Löhmannsröben, H.; Gers, L.; Glazebrook, K.; Haynes, R.; Lee, S.; O'Byrne, J.; Miziarski, S.; Roth, M. M.; Schmidt, B.; Tinney, C. G.; Zheng, J.

    2013-01-01

    The sky background is over 1000 times brighter in the near-infrared (NIR) than in the visible placing severe limitations on our ability to study the redshifted light from the distant objects formed in the early Universe from the ground. It is well-known that 98% of the NIR background comes from the forest of bright and highly variable emission lines of atmospheric hydroxyl (OH) molecules. Unfortunately, astronomers have been unable to effectively remove this background from their data. We present the first OH suppression unit, GNOSIS, to utilize fiber Bragg gratings (FBGs). Simple FBGs are optical fibers with a periodic refractive index modulation imprinted within the fiber core, which induces a strong reflection in a narrow 0.2 nm) stopband. GNOSIS utilizes “OH suppression fibers” with a complex aperiodic refractive index modulation capable of removing the 103 brightest OH doublets between 1470 and 1700 nm by up 30 dB before dispersion and in a manner purely dependent on wavelength. The OH suppression fibers have high throughput 60%) and over 90% of the H band is available for spectroscopy. OH suppression units like GNOSIS may be utilized with any NIR telescope and spectrograph combination, but we commissioned GNOSIS at the 3.9-meter Anglo-Australian Telescope with the IRIS2 spectrograph for our first demonstration. Commissioning reveals excellent suppression performance. Approximately 78% of the OH lines were suppressed at the target level or greater. GNOSIS reduces the integrated background between 1500 and 1700 nm by a factor of ~ 9 but the signal-to-noise ratio is about the same as standard long-slit IRIS2 observations due to retrofitting to an un-optimized spectrograph. Nevertheless, if paired with a fiber-optimized spectrograph FBG OH suppression technology shows great promise for high sensitivity NIR spectroscopy at moderate to low resolutions from the ground.

  8. Cracking the Code of Faraway Worlds

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This infrared data from NASA's Spitzer Space Telescope - called a spectrum - tells astronomers that a distant gas planet, a so-called 'hot Jupiter' called HD 209458b, might be smothered with high clouds. It is one of the first spectra of an alien world.

    A spectrum is created when an instrument called a spectrograph spreads light from an object apart into a rainbow of different wavelengths. Patterns or ripples within the spectrum indicate the presence, or absence, of molecules making up the object.

    Astronomers using Spitzer's spectrograph were able to obtain infrared spectra for two so-called 'transiting' hot-Jupiter planets using the 'secondary eclipse' technique. In this method, the spectrograph first collects the combined infrared light from the planet plus its star, then, as the planet is eclipsed by the star, the infrared light of just the star. Subtracting the latter from the former reveals the planet's own rainbow of infrared colors.

    When astronomers first saw the infrared spectrum above, they were shocked. It doesn't look anything like what theorists had predicted. Theorists though the spectra for hot, Jupiter-like planets like this one would be filled with the signatures of molecules in the planets' atmospheres. But the spectrum doesn't show any molecules. It is what astronomers call 'flat.' For example, theorists thought there'd be signatures of water in the wavelength ranges of 8 to 9 microns. The fact that water is not seen there might indicate that the water is hidden under a thick blanket of high, dry clouds.

    This spectrum was produced by Dr. Mark R. Swain of NASA's Jet Propulsion Laboratory in Pasadena, Calif., using a complex set of mathematical tools. It was derived using two different methods, both of which led to the same result. The data were taken on July 6 and 13, 2005, by Dr. Jeremy Richardson of NASA's Goddard Space Flight Center and his team using Spitzer's infrared spectrograph.

  9. Performance Results from In-Flight Commissioning of the Juno Ultraviolet Spectrograph (Juno-UVS)

    NASA Astrophysics Data System (ADS)

    Greathouse, Thomas K.; Gladstone, G. R.; Davis, M. W.; Slater, D. C.; Versteeg, M. H.; Persson, K. B.; Winters, G. S.; Persyn, S. C.; Eterno, J. S.

    2012-10-01

    We present a description of the Juno ultraviolet spectrograph (Juno-UVS), results from the successful in-flight commissioning performed between December 5th and 13th 2011, and some predictions of future Jupiter observations. Juno-UVS is a modest power (9.0 W) ultraviolet spectrograph based on the Alice instruments now in flight aboard the European Space Agency’s Rosetta spacecraft, NASA’s New Horizons spacecraft, and the LAMP instrument aboard NASA’s Lunar Reconnaissance Orbiter. However, unlike the other Alice spectrographs, Juno-UVS sits aboard a rotationally stabilized spacecraft. The planned 2 rpm rotation rate for the primary mission results in integration times per spatial resolution element per spin of only 17 ms. Thus, data was retrieved from many spins and then remapped and co-added to build up integration times on bright stars to measure the effective area, spatial resolution, map out scan mirror pointing positions, etc. The Juno-UVS scan mirror allows for pointing of the slit approximately ±30° from the spacecraft spin plane. This ability gives Juno-UVS access to half the sky at any given spacecraft orientation. We will describe our process for solving for the pointing of the scan mirror relative to the Juno spacecraft and present our initial half sky survey of UV bright stars complete with constellation overlays. The primary job of Juno-UVS will be to characterize Jupiter’s UV auroral emissions and relate them to in situ particle measurements. The ability to point the slit will facilitate these measurements, allowing Juno-UVS to observe the surface positions of magnetic field lines Juno is flying through giving a direct connection between the particle measurements on the spacecraft to the observed reaction of Jupiter’s atmosphere to those particles. Finally, we will describe planned observations to be made during Earth flyby in October 2013 that will complete the in-flight characterization.

  10. Near InfraRed Imaging Spectrograph (NIRIS) for ground-based mesospheric OH(6-2) and O2(0-1) intensity and temperature measurements

    NASA Astrophysics Data System (ADS)

    Singh, Ravindra P.; Pallamraju, Duggirala

    2017-08-01

    This paper describes the development of a new Near InfraRed Imaging Spectrograph (NIRIS) which is capable of simultaneous measurements of OH(6-2) Meinel and O2(0-1) atmospheric band nightglow emission intensities. In this spectrographic technique, rotational line ratios are obtained to derive temperatures corresponding to the emission altitudes of 87 and 94 km. NIRIS has been commissioned for continuous operation from optical aeronomy observatory, Gurushikhar, Mount Abu (24.6°N, 72.8°E) since January 2013. NIRIS uses a diffraction grating of 1200 lines mm^{-1} and 1024× 1024 pixels thermoelectrically cooled CCD camera and has a large field-of-view (FOV) of 80° along the slit orientation. The data analysis methodology adopted for the derivation of mesospheric temperatures is also described in detail. The observed NIRIS temperatures show good correspondence with satellite (SABER) derived temperatures and exhibit both tidal and gravity waves (GW) like features. From the time taken for phase propagation in the emission intensities between these two altitudes, vertical phase speed of gravity waves, cz, is calculated and along with the coherent GW time period `τ ', the vertical wavelength, λ z, is obtained. Using large FOV observations from NIRIS, the meridional wavelengths, λ y, are also calculated. We have used one year of data to study the possible cause(s) for the occurrences of mesospheric temperature inversions (MTIs). From the statistics obtained for 234 nights, it appears that in situ chemical heating is mainly responsible for the observed MTIs than the vertical propagation of the waves. Thus, this paper describes a novel near infrared imaging spectrograph, its working principle, data analysis method for deriving OH and O2 emission intensities and the corresponding rotational temperatures at these altitudes, derivation of gravity wave parameters (τ , cz, λ z, and λ y), and results on the statistical study of MTIs that exist in the earth's mesospheric altitudes.

  11. 2dF mechanical engineering

    NASA Astrophysics Data System (ADS)

    Smith, Greg; Lankshear, Allan

    1998-07-01

    2dF is a multi-object instrument mounted at prime focus at the AAT capable of spectroscopic analysis of 400 objects in a single 2 degree field. It also prepares a second 2 degree 400 object field while the first field is being observed. At its heart is a high precision robotic positioner that places individual fiber end magnetic buttons on one of two field plates. The button gripper is carried on orthogonal gantries powered by linear synchronous motors and contains a TV camera which precisely locates backlit buttons to allow placement in user defined locations to 10 (mu) accuracy. Fiducial points on both plates can also be observed by the camera to allow repeated checks on positioning accuracy. Field plates rotate to follow apparent sky rotation. The spectrographs both analyze light from the 200 observing fibers each and back- illuminate the 400 fibers being re-positioned during the observing run. The 2dF fiber position and spectrograph system is a large and complex instrument located at the prime focus of the Anglo Australian Telescope. The mechanical design has departed somewhat from the earlier concepts of Gray et al, but still reflects the audacity of those first ideas. The positioner is capable of positioning 400 fibers on a field plate while another 400 fibers on another plate are observing at the focus of the telescope and feeding the twin spectrographs. When first proposed it must have seemed like ingenuity unfettered by caution. Yet now it works, and works wonderfully well. 2dF is a system which functions as the result of the combined and coordinated efforts of the astronomers, the mechanical designers and tradespeople, the electronic designers, the programmers, the support staff at the telescope, and the manufacturing subcontractors. The mechanical design of the 2dF positioner and spectrographs was carried out by the mechanical engineering staff of the AAO and the majority of the manufacture was carried out in the AAO workshops.

  12. An overview of instrumentation for the Large Binocular Telescope

    NASA Astrophysics Data System (ADS)

    Wagner, R. Mark

    2012-09-01

    An overview of instrumentation for the Large Binocular Telescope (LBT) is presented. Optical instrumentation includes the Large Binocular Camera (LBC), a pair of wide-field (27' x 27') mosaic CCD imagers at the prime focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs mounted at the left and right direct F/15 Gregorian foci incorporating multiple slit masks for multi-object spectroscopy over a 6' field and spectral resolutions of up to 2000. Infrared instrumentation includes the LBT Near-IR Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCI), a modular near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at the left and right front bent F/15 Gregorian foci and designed for seeing-limited (FOV: 4' × 4') imaging, long-slit spectroscopy, and multiobject spectroscopy utilizing cooled slit masks and diffraction limited (FOV: 0'.5 × 0'.5) imaging and long-slit spectroscopy. Strategic instruments under development that can utilize the full 23-m baseline of the LBT include an interferometric cryogenic beam combiner with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench near-infrared beam combiner utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity (LINC-NIRVANA). LBTI is currently undergoing commissioning on the LBT and utilizing the installed adaptive secondary mirrors in both single- sided and two-sided beam combination modes. In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. Over the past four years the LBC pair, LUCI1, and MODS1 have been commissioned and are now scheduled for routine partner science observations. The delivery of both LUCI2 and MODS2 is anticipated before the end of 2012. The availability of all these instruments mounted simultaneously on the LBT permits unique science, flexible scheduling, and improved operational support.

  13. Development and Flight-testing of Astronomical Instrumentation for Future NASA Astrophysics Missions

    NASA Astrophysics Data System (ADS)

    France, Kevin

    We propose a four year suborbital research program to continue the University of Colorado's efforts in the development and flight testing of instrument designs and critical path technologies for ultraviolet spectroscopy in support of future NASA Explorer, Probe-, and Flagship-class missions. This proposal builds on our existing program of high-resolution spectroscopy for the 100 - 160 nm bandpass with the development of a new high-efficiency imaging spectrograph operating in the same band. The ultimate goal of the University of Colorado ultraviolet rocket program is to develop the technical capabilities to enable a future, highly multiplexed ultraviolet spectrograph (with both high-resolution and imaging spectroscopy modes), e.g., an analog to the successful HST-STIS instrument, with an order-of-magnitude higher efficiency. We do this in the framework of a university led program where undergraduate, graduate, and postdoctoral training is paramount and cutting edge science investigations support our baseline technology development program. In the proposed effort, we will optimize our high-resolution (R > 100,000) echelle spectrograph payload (CHESS) with the first science flight of a new, large-format CCD array provided by our collaborators at JPL and Arizona State University. We will launch CHESS to study our local interstellar environment with spectral resolving power and bandpass that cannot be achieved with any suite of current or planned space missions. In parallel with the proposed science flights of CHESS, we will design, calibrate, and launch a new high-throughput imaging spectrograph (SISTINE); the first sub-arcsecond imaging, medium spectral resolution (R = 10,000), spectrograph ever flown with spectral coverage over the entire 100 - 160 nm bandpass. SISTINE incorporates several novel optical technologies that were highlighted as major hardware drivers for NASA's next large ultraviolet/optical/near-IR observatory by the 2014 Cosmic Origins Technology Report, including advanced mirror coatings with high broadband reflectivity (including > 20% efficiency gains below 115 nm), the first demonstration and flight test of these coatings on a shaped 0.5-meter telescope, and large-format, high-QE photon counting detectors. SISTINE will be launched to study the energetic radiation environment in the habitable zones around nearby low-mass exoplanet host stars, systems that are the top priority in NASA's search for the signatures of biological activity in the coming decade. SISTINE addresses the highest science priority in the 2010 Astronomy and Astrophysics Decadal Survey and is a crucial step towards meeting NASA's technology needs for future space observatories.

  14. Prime Focus Spectrograph: A very wide-field, massively multiplexed, optical & near-infrared spectrograph for Subaru Telescope

    NASA Astrophysics Data System (ADS)

    Tamura, Naoyuki

    This short article is about Prime Focus Spectrograph (PFS), a very wide-field, massively-multiplexed, and optical & near-infrared (NIR) spectrograph as a next generation facility instrument on Subaru Telescope. More details and updates are available on the PFS official website (http://pfs.ipmu.jp), blog (http://pfs.ipmu.jp/blog/), and references therein. The project, instrument, & timeline PFS will position 2400 fibers to science targets or blank sky in the 1.3 degree field on the Subaru prime focus. These fibers will be quickly (~60sec) reconfigurable and feed the photons during exposures to the Spectrograph System (SpS). SpS consists of 4 modules each of which accommodate ~600 fibers and deliver spectral images ranging from 380nm to 1260nm simultaneously at one exposure via the 3 arms of blue, red, and NIR cameras. The instrument development has been undertaken by the international collaboration at the initiative of Kavli IPMU. The project is now going into the construction phase aiming at system integration and on-sky engineering observations in 2017-2018, and science operation in 2019. The survey design has also been under development envisioning a survey spanning ~300 nights over ~5 years in the framework of Subaru Strategic Program (SSP). The key science areas are: Cosmology, galaxy/AGN evolution, and Galactic Archaeology (GA) (Takada et al. 2014). The cosmology program will be to constrain the nature of dark energy via a survey of emission line galaxies over a comoving volume of 10 Gpc3 at z=0.8-2.4. In the galaxy/AGN program, the wide wavelength coverage of PFS as well as the large field of view will be exploited to characterize the galaxy populations and its clustering properties over a wide redshift range. A survey of color-selected galaxies/AGN at z = 1-2 will be conducted over 20 square degrees yielding a fair sample of galaxies with stellar masses down to ~1010 M ⊙. In the GA program, radial velocities and chemical abundances of stars in the Milky Way, dwarf spheroids, and M31 will be used to understand the past assembly histories of those galaxies and the structures of their dark matter halos. Spectra will be taken for 1 million stars as faint as V = 22 mag therefore out to large distances from the Sun. PFS will provide powerful spectroscopic capabilities even in the era of Euclid, LSST, WFIRST and TMT, and the effective synergies are expected for further unique science outputs.

  15. Ultraviolet Observations of the Earth and Moon during the Juno Flyby

    NASA Astrophysics Data System (ADS)

    Gladstone, R.; Versteeg, M. H.; Davis, M.; Greathouse, T. K.; Gerard, J. M.; Grodent, D. C.; Bonfond, B.

    2013-12-01

    We present the initial results from Juno-UVS observations of the Earth and Moon obtained during the flyby of the Juno spacecraft on 9 October 2013. Juno-UVS is an imaging spectrograph with a bandpass of 70<λ<205 nm. This wavelength range includes all important ultraviolet (UV) emissions from the H2 bands and the H Lyman series which are produced in Jupiter's auroras, and also the absorption signatures of aurorally-produced hydrocarbons. The Juno-UVS instrument consists of two separate sections: a dedicated telescope/spectrograph assembly and a vault electronics box. The telescope/spectrograph assembly contains a telescope which feeds a 0.15-m Rowland circle spectrograph. The telescope has a 4 x 4 cm2 input aperture and uses an off-axis parabolic (OAP) primary mirror. A flat scan mirror situated at the front end of the telescope (used to observe at up to ×30° perpendicular to the Juno spin plane) directs incoming light to the OAP. The light is focused onto the spectrograph entrance slit, which has a 'dog-bone' shape 7.2° long, in three sections of 0.2°, 0.025°, and 0.2° width (as projected onto the sky). Light entering the slit is dispersed by a toroidal grating which focuses UV light onto a curved microchannel plate cross delay line detector with a solar blind UV-sensitive CsI photocathode, which makes up the instrument's focal plane. Tantalum surrounds the detector assembly to shield it from high-energy electrons. The detector electronics are located behind the detector. All other electronics are located in a box inside Juno's spacecraft vault, including redundant low-voltage and high-voltage power supplies, command and data handling electronics, heater/actuator electronics, scan mirror electronics, and event processing electronics. The purpose of Juno-UVS is to remotely sense Jupiter's auroral morphology and brightness to provide context for in situ measurements by Juno's particle instruments. The recent Earth flyby provided an opportunity to: 1) use observations of the lunar surface to improve flux and wavelength calibration at EUV wavelengths λ<91 nm (for which there are few stellar calibration options); 2) test the Juno spacecraft nadir-pulse system (which will be used at Jupiter to control scan mirror movements); 3) observe Earth airglow, aurora, and geocoronal emissions (for science interest); and 4) determine the effectiveness of the Ta shielding to high-energy particles (using dark observations made during Juno's passage through Earth's radiation belts). Preliminary results for each of these objectives will be presented.

  16. An overview and the current status of instrumentation at the Large Binocular Telescope Observatory

    NASA Astrophysics Data System (ADS)

    Wagner, R. Mark; Edwards, Michelle L.; Kuhn, Olga; Thompson, David; Veillet, Christian

    2014-07-01

    An overview of instrumentation for the Large Binocular Telescope (LBT) is presented. Optical instrumentation includes the Large Binocular Camera (LBC), a pair of wide-field (24' × 24') mosaic CCD imagers at the prime focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs mounted at the left and right direct F/15 Gregorian foci incorporating multiple slit masks for multi-object spectroscopy over a 6' field and spectral resolutions of up to 2000. Infrared instrumentation includes the LBT Near-IR Spectrometer (LUCI), a modular near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at the left and right front-bent F/15 Gregorian foci and designed for seeing-limited (FOV: 4' × 4') imaging, long-slit spectroscopy, and multi-object spectroscopy utilizing cooled slit masks and diffraction limited (FOV: 0'.5 x 0'.5) imaging and long-slit spectroscopy. Strategic instruments under development that can utilize the full 23 m baseline of the LBT include an interferometric cryogenic beam combiner with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench near- infrared beam combiner utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity (LINC-NIRVANA). LBTI is currently undergoing commissioning and performing science observations on the LBT utilizing the installed adaptive secondary mirrors in both single-sided and two-sided beam combination modes. In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. Installation and testing of the bench spectrograph will begin in July 2014. Over the past four years the LBC pair, LUCI1, and MODS1 have been commissioned and are now scheduled for routine partner science observations. Both LUCI2 and MODS2 passed their laboratory acceptance milestones in the summer of 2013 and have been installed on the LBT. LUCI2 is currently being commissioned and the data analysis is well underway. Diffraction-limited commissioning of its adaptive optics modes will begin in the 2014B semester. MODS2 commissioning began in May 2014 and will completed in the 2014B semester as well. Binocular testing and commissioning of both the LUCI and MODS pairs will begin in 2014B with the goal that this capability could be offered sometime in 2015. The availability of all these instruments mounted simultaneously on the LBT permits unique science, flexible scheduling, and improved operational support.

  17. VizieR Online Data Catalog: Abundances in the local region. I. G and K giants (Luck, 2015)

    NASA Astrophysics Data System (ADS)

    Luck, R. E.

    2015-10-01

    At the start of this program, the observation list for giants was set to sample the G/K giants of the local region out to about 100pc from the Sun in all directions. The region was subdivided into cubes that were 25pc on a side; from each sub-volume, appropriate stars were selected north of declination -30°. This sample yielded the 286 G/K giants found in Luck et al. 2007 (cat. J/AJ/133/2464). This data set was also augmented by the addition of numerous G/K giants, increasing the number in the 100pc volume to 594 stars. Because the volume selection criteria used in Luck et al. 2007 (cat. J/AJ/133/2464) formally extended out to 115pc, a more precise comparison is that the current sample has 740 stars out to the older limit. Additional stars from the Bright Star Catalog (Hoffleit & Jaschek, 1991bsc..book.....H) were added, driving the sample out to about 200pc. The spectral database was supplemented using the ELODIE and ESO Archives. The ESO addition adds the southern sky. The bulk of the northern stars were observed using the McDonald Observatory Struve Telescope and Sandiford Cassegrain Echelle Spectrograph. For the ELODIE and ESO data archives, a list of all stars available was obtained and spectral type for each from SIMBAD was retrieved. Stars having a spectral type of F, G, or K III were then processed. The ESO data derives from the HARPS and UVES spectrographs. Basic observational data for the program stars can be found in Table1, along with some derived quantities, such as distance. The primary source of observational data for this study is a set of high signal-to-noise ratio (S/N) spectra obtained during numerous observing runs between 1997 and 2010 at McDonald Observatory using the 2.1m Struve Telescope and the Sandiford Cassegrain Echelle Spectrograph. The spectra continuously cover a wavelength range from about 484 to 700nm, with a resolving power of about 60000. Typical S/N values for the spectra are in excess of 150. To enable cancellation of telluric lines, broad-lined B stars were regularly observed with S/N exceeding that of the program stars. The 726 stars observed with the Sandiford spectrograph are marked with an "S" in column "Sce" of Table1. A further 120 spectra were obtained from the ELODIE Archive. These echelle spectra are fully processed through order co-addition with a continuous wavelength span from about 400 to 680 nm and a resolution of 42000. Only spectra with S/N>50 were utilized in this analysis. An "E" in Table1, column "Sce", marks these stars. The ESO Archive was used to obtain spectra from the ESO 3.6m telescope and HARPS spectrograph. The HARPS spectra cover a continuous wavelength range from about 400 to 680nm with a native resolving power of 120000. To match the resolution of the Sandiford data and to increase the S/N of the data, these spectra were co-added to a resolution of 60000. Typical maximum S/N values (per pixel) for the spectra are in excess of 150. In Table1, column "Sce", these stars are marked with an "H." Spectra from the UVES spectrograph and VLT/UT2 were also utilized. These spectra are rather heterogeneous, having resolutions of 40000-80000 and non-continuous spectral coverages in the range 400-700nm. A number of the spectra from UVES stop at about 625nm, meaning that [O I] 630nm and Li I 670nm were not observed. In Table 1, "U" denotes the stars observed with UVES spectrograph. (5 data files).

  18. GIRAFFE Reaches towards the Stars

    NASA Astrophysics Data System (ADS)

    2002-07-01

    "First Light" of New Powerful Spectrograph at the VLT Summary The first observations of stellar spectra have just been performed with the new GIRAFFE multi-object spectrograph on the ESO Very Large Telescope (VLT) at the Paranal Observatory in Chile. This milestone event was achieved in the early morning of July 3, 2002. It signifies another important step towards the full implementation of the extremely powerful Fibre Large Array Multi-Element Spectrograph (FLAMES) , one of the main instruments for the ESO VLT. This project is co-ordinated by ESO and incorporates many complex components that have been constructed at various research institutions in Europe and Australia. The GIRAFFE spectrograph provides unique possibilities for detailed observations of the properties of individual stars located in our Milky Way galaxy ( PR 16b/02 ) as well as in other galaxies of the Local Group. PR Photo 16a/02 : A series of stellar spectra recorded by GIRAFFE during "First Light" . PR Photo 16b/02 : Details of some of these stellar spectra . FLAMES and GIRAFFE ESO PR Photo 16a/02 ESO PR Photo 16a/02 [Preview - JPEG: 756 x 400 pix - 363k] [Normal - JPEG: 1511 x 800 pix - 1.2M] ESO PR Photo 16b/02 ESO PR Photo 16b/02 [Preview - JPEG: 461 x 400 pix - 196k] [Normal - JPEG: 921 x 800 pix - 606k] Caption : PR Photo 16a/02 : "First Light" test observation with the GIRAFFE spectrograph of about 50 high-quality spectra (10 min exposure at spectral resolution 7,000) of stars in the Milky Way disk, in the early morning of July 3, 2002. The stars have magnitudes of 12 - 16 and are all of solar type. The photo shows part of the image recorded with a 2000 x 4000 pixel CCD detector at the focal plane of the spectrograph. Each stellar spectrum is seen as one vertical line - some of the absorption lines can be seen as dark horizontal features. PR Photo 16b/02 shows a small part of this image. The three strong absorption lines that are visible as horizontal, dark lines in the lower part of the photo are due to the common element Magnesium in the atmospheres of these stars (the Mg b triplet at wavelength 517 nm). The different intensity of the spectra is due to the different brightness of the stars. The multi-object GIRAFFE spectrograph , now installed on the 8.2-m KUEYEN Unit Telescope of ESO's Very Large Telescope (VLT) at the Paranal Observatory (Chile), achieved "First Light" in the early morning hours of July 3, 2002. This complex instrument allows to obtain high-quality spectra of a large variety of celestial objects, from individual stars in the Milky Way and other nearby galaxies, to very distant galaxies. It functions by means of multiple optical fibres that guide the light from the telescope's focal plane into the entry slit of the spectrograph. Here the light is dispersed into its different colours. Anticipating already at this early moment the future, highly effective operation of the new facility, the first data were immediately prepared for astronomical interpretation ("reduced") by means of a dedicated software package ("pipeline"). GIRAFFE and these fibres are an integral part of the advanced Fibre Large Array Multi-Element Spectrograph (FLAMES) facility which also includes the OzPoz positioner and an optical field corrector . It is the outcome of a collaboration between ESO, Observatoire de Paris-Meudon Observatoire de Genève-Lausanne and the Anglo Australian Observatory (AAO) . More details are available in ESO PR 01/02. The principle of this instrument involves the positioning in the telescope's focal plane of a large number of optical fibres. This is done in such a way that each of them guides the light from one particular celestial object towards the spectrograph that records the spectra of all these objects simultaneously. The size of the available field-of-view is no less than about 25 arcmin across, i.e. almost as large as the full moon. The individual fibres are moved and positioned "on the objects" in the field by means of the OzPoz positioner. Different observational modes FLAMES has several different modes of operation. Two of these are of the simple "multi-object" type: each fibre collects the light from one star or galaxy - up to 132 objects can be observed simultaneously, cf. PR 16a/02 . In this respect, GIRAFFE provides absolutely unique possibilities for detailed observations of the properties (age, chemical composition, rotation and space velocity) of individual stars located in the main disk, central bulge or halo of our Milky Way galaxy ( PR 16b/02 ), and also of stars in other galaxies of the Local Group. Another observational mode is known as "3-D spectroscopy" or "integrated field". This consists of obtaining simultaneous spectra of smaller areas of extended objects like galaxies or nebulae. For this, 15 deployable fibre bundles, the so-called Integral Field Units (IFUs) , cf. ESO PR 01/02 , are used. Each IFU is a microscopic, state-of-the-art two-dimensional lens array with an aperture of 3 x 2 arcsec 2 on the sky. It is like an insect's eye, with twenty micro-lenses coupled with optical fibres leading the light recorded at each point in the field to the entry slit of the spectrograph. Unique research opportunities opening The FLAMES facility, once in full operation after further testing and fine-tuning later this year, will enormously increase the possibilities to study stellar physics and the evolution of galaxies , two of the cornerstones in our understanding of the structure and evolution of the Universe. With the great light-gathering capacity of the VLT, FLAMES will be able to gather very comprehensive information about even rather faint objects, enabling the astronomers to study them in a degree of detail so far reserved for brighter, nearby stars. The quality of the first spectra from GIRAFFE, although far from exploiting the ultimate potential of the new facility, fully confirm these expectations. Note [1]: This is a joint Press Release of ESO and the Observatoire de Paris.

  19. VizieR Online Data Catalog: Wolf-Rayet population in NGC 5068 (Bibby+, 2012)

    NASA Astrophysics Data System (ADS)

    Bibby, J. L.; Crowther, P. A.

    2012-10-01

    NGC 5068 has been imaged with the ESO VLT and Focal Reduced Low-dispersion Spectrograph #1 (FORS1) covering a field of view of 6.8x6.8arcmin2 with a plate scale of 0.25arcsec/pixel. Both broad- and narrow-band imaging were obtained on 2008 April 7 under program ID 081.B-0289 (P.I. Crowther). In addition, the Gemini Multi-Object Spectrograph (GMOS) on the Gemini-South telescope was used to obtain follow-up spectroscopy in 2009 March-April under program ID GS-2009A-Q-20 (P.I. Crowther). The R150 grating was placed at a central wavelength of 510 and 530nm with a dispersion of ~3.5Å/pix. (2 data files).

  20. Space Telescope maintenance and refurbishment

    NASA Technical Reports Server (NTRS)

    Trucks, H. F.

    1983-01-01

    The Space Telescope (ST) represents a new concept regarding spaceborne astronomical observatories. Maintenance crews will be brought to the orbital worksite to make repairs and replace scientific instruments. For major overhauls the telescope can be temporarily returned to earth with the aid of the Shuttle. It will, thus, be possible to conduct astronomical studies with the ST for two decades or more. The five first-generation scientific instruments used with the ST include a wide field/planetary camera, a faint object camera, a faint object spectrograph, a high resolution spectrograph, and a high speed photometer. Attention is given to the optical telescope assembly, the support systems module, aspects of mission and science operations, unscheduled maintenance, contingency orbital maintenance, planned on-orbit maintenance, ground maintenance, ground refurbishment, and ground logistics.

Top