Sample records for slow binding kinetics

  1. Alterations of rings B and C of colchicine are cumulative in overall binding to tubulin but modify each kinetic step.

    PubMed

    Dumortier, C; Gorbunoff, M J; Andreu, J M; Engelborghs, Y

    1996-12-10

    The role of the elimination of ring B and/or the modification of ring C of colchicine in tubulin binding kinetics and thermodynamics has been characterized, using four different molecules. These ligands are colchicine (COL); 2-methoxy-5-(2',3',4'-trimethoxyphenyl)-2,4,6-cycloheptatrien-1-on e (MTC), in which the central ring B has been reduced to one bond; allocolchicine (ALLO), in which ring C has been replaced by a six-membered ring; and 2,3,4-trimethoxy-4'-carbomethoxy-1,1'-biphenyl (TCB), where the same two modifications are made simultaneously. This paper describes the kinetics of association of ALLO with tubulin. The binding is accompanied by a fluorescence increase with slow biphasic kinetics, indicating binding to fast and slow tubulin isotypes. Binding to each of these isotypes occurs in two steps: a fast initial binding followed by a slower isomerization step. The K1 and k2 values for ALLO at 25 degrees C are 14,000 +/- 2,000 and 25,000 +/- 6,000 M-1 (fast and slow isotypes) and 0.055 +/- 0.003 s-1 and 0.013 +/- 0.001 s-1 (fast and slow isotype), respectively. For ALLO the reaction standard enthalpy change of the initial binding is 68 +/- 5 kJ.mol-1 (fast isotype) and 45 +/- 33 kJ.mol-1 (slow isotype) and the activation energy for the second forward step is 58 +/- 14 kJ.mol-1 (fast isotype) and 81 +/- 17 kJ.mol-1 (slow isotype). Displacement kinetics of bound ALLO by podophyllotoxin was monoexponential. The activation energy for the isomerization in the off direction is 107 +/- 7 kJ.mol-1. Comparison of the thermodynamic parameters for all four compounds shows that the modifications of both rings are cumulative with respect to overall binding. For the intermediate state there is a mutual influence of both modifications, suggesting an alteration of the reaction pathway.

  2. Comparative Analysis of Binding Kinetics and Thermodynamics of Dipeptidyl Peptidase-4 Inhibitors and Their Relationship to Structure.

    PubMed

    Schnapp, Gisela; Klein, Thomas; Hoevels, Yvette; Bakker, Remko A; Nar, Herbert

    2016-08-25

    The binding kinetics and thermodynamics of dipeptidyl peptidase (DPP)-4 inhibitors (gliptins) were investigated using surface plasmon resonance and isothermal titration calorimetry. Binding of gliptins to DPP-4 is a rapid electrostatically driven process. Off-rates were generally slow partly because of reversible covalent bond formation by some gliptins, and partly because of strong and extensive interactions. Binding of all gliptins is enthalpy-dominated due to strong ionic interactions and strong solvent-shielded hydrogen bonds. Using a congeneric series of molecules which represented the intermediates in the lead optimization program of linagliptin, the onset of slow binding kinetics and development of the thermodynamic repertoire were analyzed in the context of incremental changes of the chemical structures. All compounds rapidly associated, and therefore the optimization of affinity and residence time is highly correlated. The major contributor to the increasing free energy of binding was a strong increase of binding enthalpy, whereas entropic contributions remained low and constant despite significant addition of lipophilicity.

  3. Visual evaluation of kinetic characteristics of PET probe for neuroreceptors using a two-phase graphic plot analysis.

    PubMed

    Ito, Hiroshi; Ikoma, Yoko; Seki, Chie; Kimura, Yasuyuki; Kawaguchi, Hiroshi; Takuwa, Hiroyuki; Ichise, Masanori; Suhara, Tetsuya; Kanno, Iwao

    2017-05-01

    Objectives In PET studies for neuroreceptors, tracer kinetics are described by the two-tissue compartment model (2-TCM), and binding parameters, including the total distribution volume (V T ), non-displaceable distribution volume (V ND ), and binding potential (BP ND ), can be determined from model parameters estimated by kinetic analysis. The stability of binding parameter estimates depends on the kinetic characteristics of radioligands. To describe these kinetic characteristics, we previously developed a two-phase graphic plot analysis in which V ND and V T can be estimated from the x-intercept of regression lines for early and delayed phases, respectively. In this study, we applied this graphic plot analysis to visual evaluation of the kinetic characteristics of radioligands for neuroreceptors, and investigated a relationship between the shape of these graphic plots and the stability of binding parameters estimated by the kinetic analysis with 2-TCM in simulated brain tissue time-activity curves (TACs) with various binding parameters. Methods 90-min TACs were generated with the arterial input function and assumed kinetic parameters according to 2-TCM. Graphic plot analysis was applied to these simulated TACs, and the curvature of the plot for each TAC was evaluated visually. TACs with several noise levels were also generated with various kinetic parameters, and the bias and variation of binding parameters estimated by kinetic analysis were calculated in each TAC. These bias and variation were compared with the shape of graphic plots. Results The graphic plots showed larger curvature for TACs with higher specific binding and slower dissociation of specific binding. The quartile deviations of V ND and BP ND determined by kinetic analysis were smaller for radioligands with slow dissociation. Conclusions The larger curvature of graphic plots for radioligands with slow dissociation might indicate a stable determination of V ND and BP ND by kinetic analysis. For investigation of the kinetics of radioligands, such kinetic characteristics should be considered.

  4. Evidence for a kinetic heterogeneity in ligand binding to R-state haemoglobin Kempsey [Asp-G1(99) beta----Asn].

    PubMed Central

    Coletta, M; Brittain, T; Brunori, M

    1986-01-01

    Thermodynamic and kinetic properties of O2 and CO binding to haemoglobin (Hb) Kempsey [Asp-G1(99) beta----Asn] were investigated and the activation parameters for the two ligands were determined. At every temperature the O2-binding isotherms display a weak co-operativity, n ranging between 1.1 and 1.2, and dissociation kinetics show a single-exponential behaviour. O2-binding kinetics were studied at 25 degrees C by temperature jump and are characterized at each saturation (from Y = 0.31 to Y = 1.0) by two processes, a fast bimolecular one and a slow monomolecular one (tau -1 = 20 s-1), which contributes to approx. 30% of the whole relaxation amplitude at every Y. CO-binding kinetics to Hb Kempsey were followed at several temperatures by flash photolysis and stopped flow. The process is biphasic, as reported elsewhere [Bunn, Wohl, Bradley, Cooley & Gibson (1974) J. Biol. Chem. 249, 7402-7409], and the relative contributions of the two bimolecular rates to the whole process are only slightly affected by temperature. On taking account for the fraction of dimers at every protein concentration, the slow phase corresponds to approx. 50% of the ligand binding to tetramers. Correlation of these results with previous spectroscopic data leads to the hypothesis that the biphasic time course of CO binding may be attributed to alpha/beta heterogeneity of the R-state of tetrameric Hb Kempsey. PMID:3800943

  5. Crystal Structure of an LSD-Bound Human Serotonin Receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wacker, Daniel; Wang, Sheng; McCorvy, John D.

    The prototypical hallucinogen LSD acts via serotonin receptors, and here we describe the crystal structure of LSD in complex with the human serotonin receptor 5-HT2B. The complex reveals conformational rearrangements to accommodate LSD, providing a structural explanation for the conformational selectivity of LSD’s key diethylamide moiety. LSD dissociates exceptionally slow from both 5-HT2BR and 5-HT2AR—a major target for its psychoactivity. Molecular dynamics (MD) simulations suggest that LSD’s slow binding kinetics may be due to a “lid” formed by extracellular loop 2 (EL2) at the entrance to the binding pocket. A mutation predicted to increase the mobility of this lid greatlymore » accelerates LSD’s binding kinetics and selectively dampens LSD-mediated β-arrestin2 recruitment. This study thus reveals an unexpected binding mode of LSD; illuminates key features of its kinetics, stereochemistry, and signaling; and provides a molecular explanation for LSD’s actions at human serotonin receptors.« less

  6. Crystal Structure of an LSD-Bound Human Serotonin Receptor.

    PubMed

    Wacker, Daniel; Wang, Sheng; McCorvy, John D; Betz, Robin M; Venkatakrishnan, A J; Levit, Anat; Lansu, Katherine; Schools, Zachary L; Che, Tao; Nichols, David E; Shoichet, Brian K; Dror, Ron O; Roth, Bryan L

    2017-01-26

    The prototypical hallucinogen LSD acts via serotonin receptors, and here we describe the crystal structure of LSD in complex with the human serotonin receptor 5-HT 2B . The complex reveals conformational rearrangements to accommodate LSD, providing a structural explanation for the conformational selectivity of LSD's key diethylamide moiety. LSD dissociates exceptionally slow from both 5-HT 2B R and 5-HT 2A R-a major target for its psychoactivity. Molecular dynamics (MD) simulations suggest that LSD's slow binding kinetics may be due to a "lid" formed by extracellular loop 2 (EL2) at the entrance to the binding pocket. A mutation predicted to increase the mobility of this lid greatly accelerates LSD's binding kinetics and selectively dampens LSD-mediated β-arrestin2 recruitment. This study thus reveals an unexpected binding mode of LSD; illuminates key features of its kinetics, stereochemistry, and signaling; and provides a molecular explanation for LSD's actions at human serotonin receptors. PAPERCLIP. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. NMR Chemical Exchange as a Probe for Ligand-Binding Kinetics in a Theophylline-Binding RNA Aptamer

    PubMed Central

    Latham, Michael P.; Zimmermann, Grant R.; Pardi, Arthur

    2009-01-01

    The apparent on- and off-rate constants for theophylline binding to its RNA aptamer in the absence of Mg2+ were determined here by 2D 1H-1H NMR ZZ-exchange spectroscopy. Analysis of the build-up rate of the exchange cross peaks for several base-paired imino protons in the RNA yielded an apparent kon of 600 M-1 s-1. This small apparent kon results from the free RNA existing as a dynamic equilibrium of inactive states rapidly interconverting with a low population of active species. The data here indicate that the RNA aptamer employs a conformational selection mechanism for binding theophylline in the absence of Mg2+. The kinetic data here also explain a very unusual property of this RNA-theophylline system, slow exchange on the NMR chemical shift timescale for a weak-binding complex. To our knowledge, it is unprecedented to have such a weak binding complex (Kd ≈ 3.0 mM at 15 °C) show slow exchange on the NMR chemical shift timescale, but the results clearly demonstrate that slow exchange and weak binding are readily rationalized by a small kon. Comparisons with other ligand-receptor interactions are presented. PMID:19317486

  8. The role of repressor kinetics in relief of transcriptional interference between convergent promoters

    PubMed Central

    Hao, Nan; Palmer, Adam C.; Ahlgren-Berg, Alexandra; Shearwin, Keith E.; Dodd, Ian B.

    2016-01-01

    Transcriptional interference (TI), where transcription from a promoter is inhibited by the activity of other promoters in its vicinity on the same DNA, enables transcription factors to regulate a target promoter indirectly, inducing or relieving TI by controlling the interfering promoter. For convergent promoters, stochastic simulations indicate that relief of TI can be inhibited if the repressor at the interfering promoter has slow binding kinetics, making it either sensitive to frequent dislodgement by elongating RNA polymerases (RNAPs) from the target promoter, or able to be a strong roadblock to these RNAPs. In vivo measurements of relief of TI by CI or Cro repressors in the bacteriophage λ PR–PRE system show strong relief of TI and a lack of dislodgement and roadblocking effects, indicative of rapid CI and Cro binding kinetics. However, repression of the same λ promoter by a catalytically dead CRISPR Cas9 protein gave either compromised or no relief of TI depending on the orientation at which it binds DNA, consistent with dCas9 being a slow kinetics repressor. This analysis shows how the intrinsic properties of a repressor can be evolutionarily tuned to set the magnitude of relief of TI. PMID:27378773

  9. A kinetic and thermodynamic framework for the Azoarcus group I ribozyme reaction

    PubMed Central

    Gleitsman, Kristin R.

    2014-01-01

    Determination of quantitative thermodynamic and kinetic frameworks for ribozymes derived from the Azoarcus group I intron and comparisons to their well-studied analogs from the Tetrahymena group I intron reveal similarities and differences between these RNAs. The guanosine (G) substrate binds to the Azoarcus and Tetrahymena ribozymes with similar equilibrium binding constants and similar very slow association rate constants. These and additional literature observations support a model in which the free ribozyme is not conformationally competent to bind G and in which the probability of assuming the binding-competent state is determined by tertiary interactions of peripheral elements. As proposed previously, the slow binding of guanosine may play a role in the specificity of group I intron self-splicing, and slow binding may be used analogously in other biological processes. The internal equilibrium between ribozyme-bound substrates and products is similar for these ribozymes, but the Azoarcus ribozyme does not display the coupling in the binding of substrates that is observed with the Tetrahymena ribozyme, suggesting that local preorganization of the active site and rearrangements within the active site upon substrate binding are different for these ribozymes. Our results also confirm the much greater tertiary binding energy of the 5′-splice site analog with the Azoarcus ribozyme, binding energy that presumably compensates for the fewer base-pairing interactions to allow the 5′-exon intermediate in self splicing to remain bound subsequent to 5′-exon cleavage and prior to exon ligation. Most generally, these frameworks provide a foundation for design and interpretation of experiments investigating fundamental properties of these and other structured RNAs. PMID:25246656

  10. Influence of fast and slow alkali myosin light chain isoforms on the kinetics of stretch-induced force transients of fast-twitch type IIA fibres of rat.

    PubMed

    Andruchov, Oleg; Galler, Stefan

    2008-03-01

    This study contributes to understand the physiological role of slow myosin light chain isoforms in fast-twitch type IIA fibres of skeletal muscle. These isoforms are often attached to the myosin necks of rat type IIA fibres, whereby the slow alkali myosin light chain isoform MLC1s is much more frequent and abundant than the slow regulatory myosin light chain isoform MLC2s. In the present study, single-skinned rat type IIA fibres were maximally Ca(2+) activated and subjected to stepwise stretches for causing a perturbation of myosin head pulling cycles. From the time course of the resulting force transients, myosin head kinetics was deduced. Fibres containing MLC1s exhibited slower kinetics independently of the presence or absence of MLC2s. At the maximal MLC1s concentration of about 75%, the slowing was about 40%. The slowing effect of MLC1s is possibly due to differences in the myosin heavy chain binding sites of the fast and slow alkali MLC isoforms, which changes the rigidity of the myosin neck. Compared with the impact of myosin heavy chain isoforms in various fast-twitch fibre types, the influence of MLC1s on myosin head kinetics of type IIA fibres is much smaller. In conclusion, the physiological role of fast and slow MLC isoforms in type IIA fibres is a fine-tuning of the myosin head kinetics.

  11. Structure–kinetic relationship study of CDK8/CycC specific compounds

    PubMed Central

    Schneider, Elisabeth V.; Böttcher, Jark; Huber, Robert; Maskos, Klaus; Neumann, Lars

    2013-01-01

    In contrast with the very well explored concept of structure–activity relationship, similar studies are missing for the dependency between binding kinetics and compound structure of a protein ligand complex, the structure–kinetic relationship. Here, we present a structure–kinetic relationship study of the cyclin-dependent kinase 8 (CDK8)/cyclin C (CycC) complex. The scaffold moiety of the compounds is anchored in the kinase deep pocket and extended with diverse functional groups toward the hinge region and the front pocket. These variations can cause the compounds to change from fast to slow binding kinetics, resulting in an improved residence time. The flip of the DFG motif (“DMG” in CDK8) to the inactive DFG-out conformation appears to have relatively little influence on the velocity of binding. Hydrogen bonding with the kinase hinge region contributes to the residence time but has less impact than hydrophobic complementarities within the kinase front pocket. PMID:23630251

  12. Lacosamide Inhibition of Nav1.7 Voltage-Gated Sodium Channels: Slow Binding to Fast-Inactivated States

    PubMed Central

    Jo, Sooyeon

    2017-01-01

    Lacosamide is an antiseizure agent that targets voltage-dependent sodium channels. Previous experiments have suggested that lacosamide is unusual in binding selectively to the slow-inactivated state of sodium channels, in contrast to drugs like carbamazepine and phenytoin, which bind tightly to fast-inactivated states. Using heterologously expressed human Nav1.7 sodium channels, we examined the state-dependent effects of lacosamide. Lacosamide induced a reversible shift in the voltage dependence of fast inactivation studied with 100-millisecond prepulses, suggesting binding to fast-inactivated states. Using steady holding potentials, lacosamide block was very weak at −120 mV (3% inhibition by 100 µM lacosamide) but greatly enhanced at −80 mV (43% inhibition by 100 µM lacosamide), where there is partial fast inactivation but little or no slow inactivation. During long depolarizations, lacosamide slowly (over seconds) put channels into states that recovered availability slowly (hundreds of milliseconds) at −120 mV. This resembles enhancement of slow inactivation, but the effect was much more pronounced at −40 mV, where fast inactivation is complete, but slow inactivation is not, than at 0 mV, where slow inactivation is maximal, more consistent with slow binding to fast-inactivated states than selective binding to slow-inactivated states. Furthermore, inhibition by lacosamide was greatly reduced by pretreatment with 300 µM lidocaine or 300 µM carbamazepine, suggesting that lacosamide, lidocaine, and carbamazepine all bind to the same site. The results suggest that lacosamide binds to fast-inactivated states in a manner similar to other antiseizure agents but with slower kinetics of binding and unbinding. PMID:28119481

  13. Lacosamide Inhibition of Nav1.7 Voltage-Gated Sodium Channels: Slow Binding to Fast-Inactivated States.

    PubMed

    Jo, Sooyeon; Bean, Bruce P

    2017-04-01

    Lacosamide is an antiseizure agent that targets voltage-dependent sodium channels. Previous experiments have suggested that lacosamide is unusual in binding selectively to the slow-inactivated state of sodium channels, in contrast to drugs like carbamazepine and phenytoin, which bind tightly to fast-inactivated states. Using heterologously expressed human Nav1.7 sodium channels, we examined the state-dependent effects of lacosamide. Lacosamide induced a reversible shift in the voltage dependence of fast inactivation studied with 100-millisecond prepulses, suggesting binding to fast-inactivated states. Using steady holding potentials, lacosamide block was very weak at -120 mV (3% inhibition by 100 µ M lacosamide) but greatly enhanced at -80 mV (43% inhibition by 100 µ M lacosamide), where there is partial fast inactivation but little or no slow inactivation. During long depolarizations, lacosamide slowly (over seconds) put channels into states that recovered availability slowly (hundreds of milliseconds) at -120 mV. This resembles enhancement of slow inactivation, but the effect was much more pronounced at -40 mV, where fast inactivation is complete, but slow inactivation is not, than at 0 mV, where slow inactivation is maximal, more consistent with slow binding to fast-inactivated states than selective binding to slow-inactivated states. Furthermore, inhibition by lacosamide was greatly reduced by pretreatment with 300 µ M lidocaine or 300 µ M carbamazepine, suggesting that lacosamide, lidocaine, and carbamazepine all bind to the same site. The results suggest that lacosamide binds to fast-inactivated states in a manner similar to other antiseizure agents but with slower kinetics of binding and unbinding. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  14. Reshaping the Energy Landscape Transforms the Mechanism and Binding Kinetics of DNA Threading Intercalation.

    PubMed

    Clark, Andrew G; Naufer, M Nabuan; Westerlund, Fredrik; Lincoln, Per; Rouzina, Ioulia; Paramanathan, Thayaparan; Williams, Mark C

    2018-02-06

    Molecules that bind DNA via threading intercalation show high binding affinity as well as slow dissociation kinetics, properties ideal for the development of anticancer drugs. To this end, it is critical to identify the specific molecular characteristics of threading intercalators that result in optimal DNA interactions. Using single-molecule techniques, we quantify the binding of a small metal-organic ruthenium threading intercalator (Δ,Δ-B) and compare its binding characteristics to a similar molecule with significantly larger threading moieties (Δ,Δ-P). The binding affinities of the two molecules are the same, while comparison of the binding kinetics reveals significantly faster kinetics for Δ,Δ-B. However, the kinetics is still much slower than that observed for conventional intercalators. Comparison of the two threading intercalators shows that the binding affinity is modulated independently by the intercalating section and the binding kinetics is modulated by the threading moiety. In order to thread DNA, Δ,Δ-P requires a "lock mechanism", in which a large length increase of the DNA duplex is required for both association and dissociation. In contrast, measurements of the force-dependent binding kinetics show that Δ,Δ-B requires a large DNA length increase for association but no length increase for dissociation from DNA. This contrasts strongly with conventional intercalators, for which almost no DNA length change is required for association but a large DNA length change must occur for dissociation. This result illustrates the fundamentally different mechanism of threading intercalation compared with conventional intercalation and will pave the way for the rational design of therapeutic drugs based on DNA threading intercalation.

  15. Kinetic method for the large-scale analysis of the binding mechanism of histone deacetylase inhibitors.

    PubMed

    Meyners, Christian; Baud, Matthias G J; Fuchter, Matthew J; Meyer-Almes, Franz-Josef

    2014-09-01

    Performing kinetic studies on protein ligand interactions provides important information on complex formation and dissociation. Beside kinetic parameters such as association rates and residence times, kinetic experiments also reveal insights into reaction mechanisms. Exploiting intrinsic tryptophan fluorescence a parallelized high-throughput Förster resonance energy transfer (FRET)-based reporter displacement assay with very low protein consumption was developed to enable the large-scale kinetic characterization of the binding of ligands to recombinant human histone deacetylases (HDACs) and a bacterial histone deacetylase-like amidohydrolase (HDAH) from Bordetella/Alcaligenes. For the binding of trichostatin A (TSA), suberoylanilide hydroxamic acid (SAHA), and two other SAHA derivatives to HDAH, two different modes of action, simple one-step binding and a two-step mechanism comprising initial binding and induced fit, were verified. In contrast to HDAH, all compounds bound to human HDAC1, HDAC6, and HDAC8 through a two-step mechanism. A quantitative view on the inhibitor-HDAC systems revealed two types of interaction, fast binding and slow dissociation. We provide arguments for the thesis that the relationship between quantitative kinetic and mechanistic information and chemical structures of compounds will serve as a valuable tool for drug optimization. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Strong DNA deformation required for extremely slow DNA threading intercalation by a binuclear ruthenium complex

    PubMed Central

    Almaqwashi, Ali A.; Paramanathan, Thayaparan; Lincoln, Per; Rouzina, Ioulia; Westerlund, Fredrik; Williams, Mark C.

    2014-01-01

    DNA intercalation by threading is expected to yield high affinity and slow dissociation, properties desirable for DNA-targeted therapeutics. To measure these properties, we utilize single molecule DNA stretching to quantify both the binding affinity and the force-dependent threading intercalation kinetics of the binuclear ruthenium complex Δ,Δ-[μ‐bidppz‐(phen)4Ru2]4+ (Δ,Δ-P). We measure the DNA elongation at a range of constant stretching forces using optical tweezers, allowing direct characterization of the intercalation kinetics as well as the amount intercalated at equilibrium. Higher forces exponentially facilitate the intercalative binding, leading to a profound decrease in the binding site size that results in one ligand intercalated at almost every DNA base stack. The zero force Δ,Δ-P intercalation Kd is 44 nM, 25-fold stronger than the analogous mono-nuclear ligand (Δ-P). The force-dependent kinetics analysis reveals a mechanism that requires DNA elongation of 0.33 nm for association, relaxation to an equilibrium elongation of 0.19 nm, and an additional elongation of 0.14 nm from the equilibrium state for dissociation. In cells, a molecule with binding properties similar to Δ,Δ-P may rapidly bind DNA destabilized by enzymes during replication or transcription, but upon enzyme dissociation it is predicted to remain intercalated for several hours, thereby interfering with essential biological processes. PMID:25245944

  17. The discovery of slowness: low-capacity transport and slow anion channel gating by the glutamate transporter EAAT5.

    PubMed

    Gameiro, Armanda; Braams, Simona; Rauen, Thomas; Grewer, Christof

    2011-06-08

    Excitatory amino acid transporters (EAATs) control the glutamate concentration in the synaptic cleft by glial and neuronal glutamate uptake. Uphill glutamate transport is achieved by the co-/countertransport of Na(+) and other ions down their concentration gradients. Glutamate transporters also display an anion conductance that is activated by the binding of Na(+) and glutamate but is not thermodynamically coupled to the transport process. Of the five known glutamate transporter subtypes, the retina-specific subtype EAAT5 has the largest conductance relative to glutamate uptake activity. Our results suggest that EAAT5 behaves as a slow-gated anion channel with little glutamate transport activity. At steady state, EAAT5 was activated by glutamate, with a K(m)= 61 ± 11 μM. Binding of Na(+) to the empty transporter is associated with a K(m) = 229 ± 37 mM, and binding to the glutamate-bound form is associated with a K(m) = 76 ± 40 mM. Using laser-pulse photolysis of caged glutamate, we determined the pre-steady-state kinetics of the glutamate-induced anion current of EAAT5. This was characterized by two exponential components with time constants of 30 ± 1 ms and 200 ± 15 ms, which is an order of magnitude slower than those observed in other glutamate transporters. A voltage-jump analysis of the anion currents indicates that the slow activation behavior is caused by two slow, rate-limiting steps in the transport cycle, Na(+) binding to the empty transporter, and translocation of the fully loaded transporter. We propose a kinetic transport scheme that includes these two slow steps and can account for the experimentally observed data. Overall, our results suggest that EAAT5 may not act as a classical high-capacity glutamate transporter in the retina; rather, it may function as a slow-gated glutamate receptor and/or glutamate buffering system. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Kinetics of the cooperative binding of glucose to dimeric yeast hexokinase P-I.

    PubMed

    Hoggett, J G; Kellett, G L

    1995-01-15

    Kinetic studies of the cooperative binding of glucose to yeast hexokinase P-I at pH 6.5 have been carried out using the fluorescence temperature-jump technique. Three relaxation effects were observed: a fast low-amplitude effect which could only be resolved at low glucose concentrations (tau 1(-1) = 500-800 s-1), an intermediate effect (tau 2) which showed a linear dependence of reciprocal relaxation time on concentration, and a slow effect (tau 3) which showed a curved dependence on glucose concentration, increasing from approximately 28 s-1 at low concentrations to 250 s-1 at high levels. The findings are interpreted in terms of the concerted Monod-Wyman-Changeux mechanism, the two faster relaxations being assigned to binding to the R and T states, and the slow relaxation to isomerization between the states. Quantitative fitting of the kinetic data to the mechanism has been carried out using independent estimates of the equilibrium parameters of the model; these have been derived from equilibrium dialysis data and by determining the enhancement of the intrinsic ATPase activity of the enzyme by the non-phosphorylatable sugar lyxose, which switches the conformation of the enzyme to the active R state.

  19. Binding site stoichiometry and the effects of phosphorylation on human α1 homomeric glycine receptors

    PubMed Central

    Gentet, Luc J; Clements, John D

    2002-01-01

    The kinetic properties of the human α1 homomeric glycine receptor were investigated. Receptors were expressed in HEK 293 cells, and glycine was applied to outside-out membrane patches with sub-millisecond solution exchange. The activation time course of the glycine response was used to investigate receptor stoichiometry. The unbinding of three strychnine molecules and the cooperative binding of two glycine molecules were required to activate the channel. The effects of phosphorylation on glycine receptor kinetics were investigated by pretreating cells with phosphorylators or with phosphatases. Phosphorylation accelerated desensitisation, but slowed deactivation and recovery from desensitisation. A chemical-kinetic model was developed that reproduced the experimental observations. The model suggests that only three binding sites on the glycine channel are functional, while the remaining two binding sites are ‘silent’, possibly due to strong negative cooperativity. PMID:12356883

  20. Energetics and kinetics of cooperative cofilin-actin filament interactions.

    PubMed

    Cao, Wenxiang; Goodarzi, Jim P; De La Cruz, Enrique M

    2006-08-11

    We have evaluated the thermodynamic parameters associated with cooperative cofilin binding to actin filaments, accounting for contributions of ion-linked equilibria, and determined the kinetic basis of cooperative cofilin binding. Ions weaken non-contiguous (isolated, non-cooperative) cofilin binding to an actin filament without affecting cooperative filament interactions. Non-contiguous cofilin binding is coupled to the dissociation of approximately 1.7 thermodynamically bound counterions. Counterion dissociation contributes approximately 40% of the total cofilin binding free energy (in the presence of 50 mM KCl). The non-contiguous and cooperative binding free energies are driven entirely by large, positive entropy changes, consistent with a cofilin-mediated increase in actin filament structural dynamics. The rate constant for cofilin binding to an isolated site on an actin filament is slow and likely to be limited by filament breathing. Cooperative cofilin binding arises from an approximately tenfold more rapid association rate constant and an approximately twofold slower dissociation rate constant. The more rapid association rate constant is presumably a consequence of cofilin-dependent changes in the average orientation of subdomain 2, subunit angular disorder and filament twist, which increase the accessibility of a neighboring cofilin-binding site on an actin filament. Cooperative association is more rapid than binding to an isolated site, but still slow for a second-order reaction, suggesting that cooperative binding is limited also by binding site accessibility. We suggest that the dissociation of actin-associated ions weakens intersubunit interactions in the actin filament lattice that enhance cofilin-binding site accessibility, favor cooperative binding and promote filament severing.

  1. Kinetics of the cooperative binding of glucose to dimeric yeast hexokinase P-I.

    PubMed Central

    Hoggett, J G; Kellett, G L

    1995-01-01

    Kinetic studies of the cooperative binding of glucose to yeast hexokinase P-I at pH 6.5 have been carried out using the fluorescence temperature-jump technique. Three relaxation effects were observed: a fast low-amplitude effect which could only be resolved at low glucose concentrations (tau 1(-1) = 500-800 s-1), an intermediate effect (tau 2) which showed a linear dependence of reciprocal relaxation time on concentration, and a slow effect (tau 3) which showed a curved dependence on glucose concentration, increasing from approximately 28 s-1 at low concentrations to 250 s-1 at high levels. The findings are interpreted in terms of the concerted Monod-Wyman-Changeux mechanism, the two faster relaxations being assigned to binding to the R and T states, and the slow relaxation to isomerization between the states. Quantitative fitting of the kinetic data to the mechanism has been carried out using independent estimates of the equilibrium parameters of the model; these have been derived from equilibrium dialysis data and by determining the enhancement of the intrinsic ATPase activity of the enzyme by the non-phosphorylatable sugar lyxose, which switches the conformation of the enzyme to the active R state. Images Figure 1 PMID:7832753

  2. Separation of β-amyloid binding and white matter uptake of 18F-flutemetamol using spectral analysis

    PubMed Central

    Heurling, Kerstin; Buckley, Christopher; Vandenberghe, Rik; Laere, Koen Van; Lubberink, Mark

    2015-01-01

    The kinetic components of the β-amyloid ligand 18F-flutemetamol binding in grey and white matter were investigated through spectral analysis, and a method developed for creation of parametric images separating grey and white matter uptake. Tracer uptake in grey and white matter and cerebellar cortex was analyzed through spectral analysis in six subjects, with (n=4) or without (n=2) apparent β-amyloid deposition, having undergone dynamic 18F-flutemetamol scanning with arterial blood sampling. The spectra were divided into three components: slow, intermediate and fast basis function rates. The contribution of each of the components to total volume of distribution (VT) was assessed for different tissue types. The slow component dominated in white matter (average 90%), had a higher contribution to grey matter VT in subjects with β-amyloid deposition (average 44%) than without (average 6%) and was absent in cerebellar cortex, attributing the slow component of 18F-flutemetamol uptake in grey matter to β-amyloid binding. Parametric images of voxel-based spectral analysis were created for VT, the slow component and images segmented based on the slow component contribution; confirming that grey matter and white matter uptake can be discriminated on voxel-level using a threshold for the contribution from the slow component to VT. PMID:26550542

  3. Multiple Interactions between Cytoplasmic Domains Regulate Slow Deactivation of Kv11.1 Channels*

    PubMed Central

    Ng, Chai Ann; Phan, Kevin; Hill, Adam P.; Vandenberg, Jamie I.; Perry, Matthew D.

    2014-01-01

    The intracellular domains of many ion channels are important for fine-tuning their gating kinetics. In Kv11.1 channels, the slow kinetics of channel deactivation, which are critical for their function in the heart, are largely regulated by the N-terminal N-Cap and Per-Arnt-Sim (PAS) domains, as well as the C-terminal cyclic nucleotide-binding homology (cNBH) domain. Here, we use mutant cycle analysis to probe for functional interactions between the N-Cap/PAS domains and the cNBH domain. We identified a specific and stable charge-charge interaction between Arg56 of the PAS domain and Asp803 of the cNBH domain, as well an additional interaction between the cNBH domain and the N-Cap, both of which are critical for maintaining slow deactivation kinetics. Furthermore, we found that positively charged arginine residues within the disordered region of the N-Cap interact with negatively charged residues of the C-linker domain. Although this interaction is likely more transient than the PAS-cNBD interaction, it is strong enough to stabilize the open conformation of the channel and thus slow deactivation. These findings provide novel insights into the slow deactivation mechanism of Kv11.1 channels. PMID:25074935

  4. Footprinting reveals that nogalamycin and actinomycin shuffle between DNA binding sites.

    PubMed Central

    Fox, K R; Waring, M J

    1986-01-01

    The hypothesis that sequence-selective DNA-binding antibiotics locate their preferred binding sites by a process involving migration from nonspecific sites has been tested by footprinting with DNAase I. Footprinting patterns on the tyrT DNA fragment produced by nogalamycin and actinomycin change with time after mixing the antibiotic with the DNA. Sites of protection as well as enhanced cleavage are seen to develop in a fashion which is both temperature and concentration-dependent. At certain sites cutting is transiently enhanced, then blocked. Limited evidence for slow reaction with echinomycin and mithramycin is presented, but the kinetics of footprinting with daunomycin and distamycin appear instantaneous. The feasibility of adducing direct evidence for shuffling by footprinting seems to be governed by slow dissociation of the antibiotic-DNA complex. It may also be dependent upon the mode of binding, be it intercalative or non-intercalative in character. Images PMID:2421246

  5. Mass-transport limitations in spot-based microarrays.

    PubMed

    Zhao, Ming; Wang, Xuefeng; Nolte, David

    2010-09-20

    Mass transport of analyte to surface-immobilized affinity reagents is the fundamental bottleneck for sensitive detection in solid-support microarrays and biosensors. Analyte depletion in the volume adjacent to the sensor causes deviation from ideal association, significantly slows down reaction kinetics, and causes inhomogeneous binding across the sensor surface. In this paper we use high-resolution molecular interferometric imaging (MI2), a label-free optical interferometry technique for direct detection of molecular films, to study the inhomogeneous distribution of intra-spot binding across 100 micron-diameter protein spots. By measuring intra-spot binding inhomogeneity, reaction kinetics can be determined accurately when combined with a numerical three-dimensional finite element model. To ensure homogeneous binding across a spot, a critical flow rate is identified in terms of the association rate k(a) and the spot diameter. The binding inhomogeneity across a spot can be used to distinguish high-affinity low-concentration specific reactions from low-affinity high-concentration non-specific binding of background proteins.

  6. Fluorescence stopped-flow study of the interaction of tubulin with the antimitotic drug MDL 27048.

    PubMed

    Silence, K; D'Hoore, A; Engelborghs, Y; Peyrot, V; Briand, C

    1992-11-17

    The kinetics of the binding of MDL 27048 to tubulin have been studied by fluorescence stopped flow. The binding is accompanied by a fluorescence increase. The time course can be described by a sum of two exponentials, assumed to be due to the presence of two major tubulin isoforms. The observed rate constants depend in a nonlinear way on the concentration of MDL in pseudo-first-order conditions. This concentration dependence can be described by the presence of a fast equilibrium of low affinity, followed by an isomerization of the initial complex. The dissociation kinetics have been studied by displacement experiments, in which MTC was used as a competitive ligand. The reaction enthalpy change for the first binding equilibrium and the activation energies for the forward and reverse steps of the isomerization were determined from the temperature dependence. This was possible for the two tubulin isotype populations. The kinetics of the binding of MDL to tubulin are slowed down in the presence of 3',4',5'-trimethoxyacetophenone, a fast binding analog of the colchicine A-ring, but are not influenced by the binding of tropolone methyl ether, indicating that the binding site of MDL has the A-subsite in common with colchicine, but not the C-subsite.

  7. Affinity, Avidity, and Kinetics of Target Sequence Binding to LC8 Dynein Light Chain Isoforms*

    PubMed Central

    Radnai, László; Rapali, Péter; Hódi, Zsuzsa; Süveges, Dániel; Molnár, Tamás; Kiss, Bence; Bécsi, Bálint; Erdödi, Ferenc; Buday, László; Kardos, József; Kovács, Mihály; Nyitray, László

    2010-01-01

    LC8 dynein light chain (DYNLL) is a highly conserved eukaryotic hub protein with dozens of binding partners and various functions beyond being a subunit of dynein and myosin Va motor proteins. Here, we compared the kinetic and thermodynamic parameters of binding of both mammalian isoforms, DYNLL1 and DYNLL2, to two putative consensus binding motifs (KXTQTX and XG(I/V)QVD) and report only subtle differences. Peptides containing either of the above motifs bind to DYNLL2 with micromolar affinity, whereas a myosin Va peptide (lacking the conserved Gln) and the noncanonical Pak1 peptide bind with Kd values of 9 and 40 μm, respectively. Binding of the KXTQTX motif is enthalpy-driven, although that of all other peptides is both enthalpy- and entropy-driven. Moreover, the KXTQTX motif shows strikingly slower off-rate constant than the other motifs. As most DYNLL partners are homodimeric, we also assessed the binding of bivalent ligands to DYNLL2. Compared with monovalent ligands, a significant avidity effect was found as follows: Kd values of 37 and 3.5 nm for a dimeric myosin Va fragment and a Leu zipper dimerized KXTQTX motif, respectively. Ligand binding kinetics of DYNLL can best be described by a conformational selection model consisting of a slow isomerization and a rapid binding step. We also studied the binding of the phosphomimetic S88E mutant of DYNLL2 to the dimeric myosin Va fragment, and we found a significantly lower apparent Kd value (3 μm). We conclude that the thermodynamic and kinetic fine-tuning of binding of various ligands to DYNLL could have physiological relevance in its interaction network. PMID:20889982

  8. Probing the electrostatics and pharmacologic modulation of sequence-specific binding by the DNA-binding domain of the ETS-family transcription factor PU.1: a binding affinity and kinetics investigation

    PubMed Central

    Munde, Manoj; Poon, Gregory M. K.; Wilson, W. David

    2013-01-01

    Members of the ETS family of transcription factors regulate a functionally diverse array of genes. All ETS proteins share a structurally-conserved but sequence-divergent DNA-binding domain, known as the ETS domain. Although the structure and thermodynamics of the ETS-DNA complexes are well known, little is known about the kinetics of sequence recognition, a facet that offers potential insight into its molecular mechanism. We have characterized DNA binding by the ETS domain of PU.1 by biosensor-surface plasmon resonance (SPR). SPR analysis revealed a striking kinetic profile for DNA binding by the PU.1 ETS domain. At low salt concentrations, it binds high-affinity cognate DNA with a very slow association rate constant (≤105 M−1 s−1), compensated by a correspondingly small dissociation rate constant. The kinetics are strongly salt-dependent but mutually balance to produce a relatively weak dependence in the equilibrium constant. This profile contrasts sharply with reported data for other ETS domains (e.g., Ets-1, TEL) for which high-affinity binding is driven by rapid association (>107 M−1 s−1). We interpret this difference in terms of the hydration properties of ETS-DNA binding and propose that at least two mechanisms of sequence recognition are employed by this family of DNA-binding domain. Additionally, we use SPR to demonstrate the potential for pharmacological inhibition of sequence-specific ETS-DNA binding, using the minor groove-binding distamycin as a model compound. Our work establishes SPR as a valuable technique for extending our understanding of the molecular mechanisms of ETS-DNA interactions as well as developing potential small-molecule agents for biotechnological and therapeutic purposes. PMID:23416556

  9. Andrographolide sodium bisulphite-induced inactivation of urease: inhibitory potency, kinetics and mechanism.

    PubMed

    Mo, Zhi-Zhun; Wang, Xiu-Fen; Zhang, Xie; Su, Ji-Yan; Chen, Hai-Ming; Liu, Yu-Hong; Zhang, Zhen-Biao; Xie, Jian-Hui; Su, Zi-Ren

    2015-07-16

    The inhibitory effect of andrographolide sodium bisulphite (ASB) on jack bean urease (JBU) and Helicobacter pylori urease (HPU) was performed to elucidate the inhibitory potency, kinetics and mechanism of inhibition in 20 mM phosphate buffer, pH 7.0, 2 mM EDTA, 25 °C. The ammonia formations, indicator of urease activity, were examined using modified spectrophotometric Berthelot (phenol-hypochlorite) method. The inhibitory effect of ASB was characterized with IC50 values. Lineweaver-Burk and Dixon plots for JBU inhibition of ASB was constructed from the kinetic data. SH-blocking reagents and competitive active site Ni2+ binding inhibitors were employed for mechanism study. Molecular docking technique was used to provide some information on binding conformations as well as confirm the inhibition mode. The IC50 of ASB against JBU and HPU was 3.28±0.13 mM and 3.17±0.34 mM, respectively. The inhibition proved to be competitive and concentration- dependent in a slow-binding progress. The rapid formation of initial ASB-JBU complex with an inhibition constant of Ki=2.86×10(-3) mM was followed by a slow isomerization into the final complex with an overall inhibition constant of Ki*=1.33×10(-4) mM. The protective experiment proved that the urease active site is involved in the binding of ASB. Thiol reagents (L-cysteine and dithiothreithol) strongly protect the enzyme from the loss of enzymatic activity, while boric acid and fluoride show weaker protection, indicating that the active-site sulfhydryl group of JBU was potentially involved in the blocking process. Moreover, inhibition of ASB proved to be reversible since ASB-inactivated JBU could be reactivated by dithiothreitol application. Molecular docking assay suggested that ASB made contacts with the important sulfhydryl group Cys-592 residue and restricted the mobility of the active-site flap. ASB was a competitive inhibitor targeting thiol groups of urease in a slow-binding manner both reversibly and concentration-dependently, serving as a promising urease inhibitor for the treatment of urease-related diseases.

  10. Binding of trivalent chromium to serum transferrin is sufficiently rapid to be physiologically relevant.

    PubMed

    Deng, Ge; Wu, Kristi; Cruce, Alex A; Bowman, Michael K; Vincent, John B

    2015-02-01

    Transferrin, the major iron transport protein in the blood, also transports trivalent chromium in vivo. Recent in vitro studies have, however, suggested that the binding of chromic ions to apotransferrin is too slow to be biologically relevant. Nevertheless, the in vitro studies have generally failed to adequately take physiological bicarbonate concentrations into account. In aqueous buffer (with ambient (bi)carbonate concentrations), the binding of chromium to transferrin is too slow to be physiologically relevant, taking days to reach equilibrium with the protein's associated conformational changes. However, in the presence of 25mM (bi)carbonate, the concentration in human blood, chromic ions bind rapidly and tightly to transferrin. Details of the kinetics of chromium binding to human serum transferrin and conalbumin (egg white transferrin) in the presence of bicarbonate and other major potential chromium ligands are described and are consistent with transferrin being the major chromic ion transporter from the blood to tissues. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. A heteronuclear zero quantum coherence Nz-exchange experiment that resolves resonance overlap and its application to measure the rates of heme binding to the IsdC protein.

    PubMed

    Robson, Scott A; Peterson, Robert; Bouchard, Louis-S; Villareal, Valerie A; Clubb, Robert T

    2010-07-21

    Chemical exchange phenomena in NMR spectra can be quantitatively interpreted to measure the rates of ligand binding, as well as conformational and chemical rearrangements. In macromolecules, processes that occur slowly on the chemical shift time scale are frequently studied using 2D heteronuclear ZZ or N(z)-exchange spectroscopy. However, to successfully apply this method, peaks arising from each exchanging species must have unique chemical shifts in both dimensions, a condition that is often not satisfied in protein-ligand binding equilibria for (15)N nuclei. To overcome the problem of (15)N chemical shift degeneracy we developed a heteronuclear zero-quantum (and double-quantum) coherence N(z)-exchange experiment that resolves (15)N chemical shift degeneracy in the indirect dimension. We demonstrate the utility of this new experiment by measuring the heme binding kinetics of the IsdC protein from Staphylococcus aureus. Because of peak overlap, we could not reliably analyze binding kinetics using conventional methods. However, our new experiment resulted in six well-resolved systems that yielded interpretable data. We measured a relatively slow k(off) rate of heme from IsdC (<10 s(-1)), which we interpret as necessary so heme loaded IsdC has time to encounter downstream binding partners to which it passes the heme. The utility of using this new exchange experiment can be easily expanded to (13)C nuclei. We expect our heteronuclear zero-quantum coherence N(z)-exchange experiment will expand the usefulness of exchange spectroscopy to slow chemical exchange events that involve ligand binding.

  12. Characterization of ligand binding to melanocortin 4 receptors using fluorescent peptides with improved kinetic properties.

    PubMed

    Link, Reet; Veiksina, Santa; Rinken, Ago; Kopanchuk, Sergei

    2017-03-15

    Melanocortin 4 (MC 4 ) receptors are important drug targets as they regulate energy homeostasis, eating behaviour and sexual functions. The ligand binding process to these G protein-coupled receptors is subject to considerable complexity. Different steps in the complex dynamic regulation can be characterized by ligand binding kinetics. Optimization of these kinetic parameters in terms of on-rate and residence time can increase the rapid onset of drug action and reduce off-target effects. Fluorescence anisotropy (FA) is one of the homogeneous fluorescence-based assays that enable continuous online monitoring of ligand binding kinetics. FA has been implemented for the kinetic study of melanocortin MC 4 receptors expressed on budded baculoviruses. However, the slow dissociation of the fluorescently labelled peptide NDP-α-MSH does not enable reaching equilibrium nor enable more in-depth study of the binding mechanisms. To overcome this problem, two novel red-shifted fluorescent ligands were designed. These cyclized heptapeptide derivatives (UTBC101 and UTBC102) exhibited nanomolar affinity toward melanocortin MC 4 receptors but had relatively different kinetic properties. The dissociation half-lives of UTBC101 (τ 1/2 =160min) and UTBC102 (τ 1/2 =7min) were shorter compared to that what was previously reported for Cy3B-NDP-α-MSH (τ 1/2 =224min). The significantly shorter dissociation half-life of UTBC102 enables equilibrium in screening assays, whereas the higher affinity of UTBC101 helps to resolve a wider range of competitor potencies. These two ligands are suitable for further kinetic screening of novel melanocortin MC 4 receptor specific ligands and could complement each other in these studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Totoritis, Rachel; Duraiswami, Chaya; Taylor, Amy N.

    The continual bacterial adaptation to antibiotics creates an ongoing medical need for the development of novel therapeutics. Polypeptide deformylase (PDF) is a highly conserved bacterial enzyme, which is essential for viability. It has previously been shown that PDF inhibitors represent a promising new area for the development of antimicrobial agents, and that many of the best PDF inhibitors demonstrate slow, time-dependent binding. To improve our understanding of the mechanistic origin of this time-dependent inhibition, we examined in detail the kinetics of PDF catalysis and inhibition by several different PDF inhibitors. Varying pH and solvent isotope led to clear changes inmore » time-dependent inhibition parameters, as did inclusion of NaCl, which binds to the active site metal of PDF. Quantitative analysis of these results demonstrated that the observed time dependence arises from slow binding of the inhibitors to the active site metal. However, we also found several metal binding inhibitors that exhibited rapid, non-time-dependent onset of inhibition. By a combination of structural and chemical modification studies, we show that metal binding is only slow when the rest of the inhibitor makes optimal hydrogen bonds within the subsites of PDF. Both of these interactions between the inhibitor and enzyme were found to be necessary to observe time-dependent inhibition, as elimination of either leads to its loss.« less

  14. Selective and slow-binding inhibition of shikonin derivatives isolated from Lithospermum erythrorhizon on glycosyl hydrolase 33 and 34 sialidases.

    PubMed

    Kim, Ji Young; Jeong, Hyung Jae; Park, Ji-Young; Kim, Young Min; Park, Su-Jin; Cho, Jung Keun; Park, Ki Hun; Ryu, Young Bae; Lee, Woo Song

    2012-03-01

    Sialidases are enzymes that catalyze the hydrolysis of sialic acid residues from various glycoconjugates, which are widely found in a number of viral and microbial pathogens. In this study, we investigated the biological evaluation of isolated six shikonins (1-6) and three shikonofurans (7-9) from Lithospermum erythrorhizon. The nine isolated compounds 1-9 showed strong and selective inhibition of glycosyl hydrolase (GH) 33 and -34 sialidases activities. In GH33 bacterial-sialidase inhibition assay, the inhibitory activities against GH33 siadliase of all shikonofuran derivatives (7-9) were greater than shikonin derivatives (1-6). Shikonofuran E (8) exhibited the most potent inhibitory activity toward GH33 sialidases (IC(50)=0.24μM). Moreover, our detailed kinetic analysis of these species unveiled that they are all competitive and simple reversible slow-binding inhibitors. Otherwise, they showed different inhibitory capacities and kinetic modes to GH34 viral-sialidase activity. All the naphthoquinone derivatives (1-6) were of almost equal efficiency with IC(50) value of 40μM and shikonofurans (7-9) did not show the significant inhibitory effect to GH34 sialidase. Kinetic analyses indicated that naphthoquinones acted via a noncompetitive mechanism. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Efficient analysis of stochastic gene dynamics in the non-adiabatic regime using piecewise deterministic Markov processes

    PubMed Central

    2018-01-01

    Single-cell experiments show that gene expression is stochastic and bursty, a feature that can emerge from slow switching between promoter states with different activities. In addition to slow chromatin and/or DNA looping dynamics, one source of long-lived promoter states is the slow binding and unbinding kinetics of transcription factors to promoters, i.e. the non-adiabatic binding regime. Here, we introduce a simple analytical framework, known as a piecewise deterministic Markov process (PDMP), that accurately describes the stochastic dynamics of gene expression in the non-adiabatic regime. We illustrate the utility of the PDMP on a non-trivial dynamical system by analysing the properties of a titration-based oscillator in the non-adiabatic limit. We first show how to transform the underlying chemical master equation into a PDMP where the slow transitions between promoter states are stochastic, but whose rates depend upon the faster deterministic dynamics of the transcription factors regulated by these promoters. We show that the PDMP accurately describes the observed periods of stochastic cycles in activator and repressor-based titration oscillators. We then generalize our PDMP analysis to more complicated versions of titration-based oscillators to explain how multiple binding sites lengthen the period and improve coherence. Last, we show how noise-induced oscillation previously observed in a titration-based oscillator arises from non-adiabatic and discrete binding events at the promoter site. PMID:29386401

  16. Substrate binding stoichiometry and kinetics of the norepinephrine transporter.

    PubMed

    Schwartz, Joel W; Novarino, Gaia; Piston, David W; DeFelice, Louis J

    2005-05-13

    The human norepinephrine (NE) transporter (hNET) attenuates neuronal signaling by rapid NE clearance from the synaptic cleft, and NET is a target for cocaine and amphetamines as well as therapeutics for depression, obsessive-compulsive disorder, and post-traumatic stress disorder. In spite of its central importance in the nervous system, little is known about how NET substrates, such as NE, 1-methyl-4-tetrahydropyridinium (MPP+), or amphetamine, interact with NET at the molecular level. Nor do we understand the mechanisms behind the transport rate. Previously we introduced a fluorescent substrate similar to MPP+, which allowed separate and simultaneous binding and transport measurement (Schwartz, J. W., Blakely, R. D., and DeFelice, L. J. (2003) J. Biol. Chem. 278, 9768-9777). Here we use this substrate, 4-(4-(dimethylamino)styrl)-N-methyl-pyridinium (ASP+), in combination with green fluorescent protein-tagged hNETs to measure substrate-transporter stoichiometry and substrate binding kinetics. Calibrated confocal microscopy and fluorescence correlation spectroscopy reveal that hNETs, which are homomultimers, bind one substrate molecule per transporter subunit. Substrate residence at the transporter, obtained from rapid on-off kinetics revealed in fluorescence correlation spectroscopy, is 526 micros. Substrate residence obtained by infinite dilution is 1000 times slower. This novel examination of substrate-transporter kinetics indicates that a single ASP+ molecule binds and unbinds thousands of times before being transported or ultimately dissociated from hNET. Calibrated fluorescent images combined with mass spectroscopy give a transport rate of 0.06 ASP+/hNET-protein/s, thus 36,000 on-off binding events (and 36 actual departures) occur for one transport event. Therefore binding has a low probability of resulting in transport. We interpret these data to mean that inefficient binding could contribute to slow transport rates.

  17. Rational Modulation of the Induced-Fit Conformational Change for Slow-Onset Inhibition in Mycobacterium tuberculosis InhA.

    PubMed

    Lai, Cheng-Tsung; Li, Huei-Jiun; Yu, Weixuan; Shah, Sonam; Bommineni, Gopal R; Perrone, Victoria; Garcia-Diaz, Miguel; Tonge, Peter J; Simmerling, Carlos

    2015-08-04

    Slow-onset enzyme inhibitors are the subject of considerable interest as an approach to increasing the potency of pharmaceutical compounds by extending the residence time of the inhibitor on the target (the lifetime of the drug-receptor complex). However, rational modulation of residence time presents significant challenges because it requires additional mechanistic insight, such as the nature of the transition state for postbinding isomerization. Our previous work, based on X-ray crystallography, enzyme kinetics, and molecular dynamics simulation, suggested that the slow step in inhibition of the Mycobacterium tuberculosis enoyl-ACP reductase InhA involves a change in the conformation of the substrate binding loop from an open state in the initial enzyme-inhibitor complex to a closed state in the final enzyme-inhibitor complex. Here, we use multidimensional free energy landscapes for loop isomerization to obtain a computational model for the transition state. The results suggest that slow-onset inhibitors crowd key side chains on helices that slide past each other during isomerization, resulting in a steric clash. The landscapes become significantly flatter when residues involved in the steric clash are replaced with alanine. Importantly, this lower barrier can be increased by rational inhibitor redesign to restore the steric clash. Crystallographic studies and enzyme kinetics confirm the predicted effects on loop structure and flexibility, as well as inhibitor residence time. These loss and regain of function studies validate our mechanistic hypothesis for interactions controlling substrate binding loop isomerization, providing a platform for the future design of inhibitors with longer residence times and better in vivo potency. Similar opportunities for slow-onset inhibition via the same mechanism are identified in other pathogens.

  18. Efficient analysis of stochastic gene dynamics in the non-adiabatic regime using piecewise deterministic Markov processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Yen Ting; Buchler, Nicolas E.

    Single-cell experiments show that gene expression is stochastic and bursty, a feature that can emerge from slow switching between promoter states with different activities. In addition to slow chromatin and/or DNA looping dynamics, one source of long-lived promoter states is the slow binding and unbinding kinetics of transcription factors to promoters, i.e. the non-adiabatic binding regime. Here, we introduce a simple analytical framework, known as a piecewise deterministic Markov process (PDMP), that accurately describes the stochastic dynamics of gene expression in the non-adiabatic regime. We illustrate the utility of the PDMP on a non-trivial dynamical system by analysing the propertiesmore » of a titration-based oscillator in the non-adiabatic limit. We first show how to transform the underlying chemical master equation into a PDMP where the slow transitions between promoter states are stochastic, but whose rates depend upon the faster deterministic dynamics of the transcription factors regulated by these promoters. We show that the PDMP accurately describes the observed periods of stochastic cycles in activator and repressor-based titration oscillators. We then generalize our PDMP analysis to more complicated versions of titration-based oscillators to explain how multiple binding sites lengthen the period and improve coherence. Finally, we show how noise-induced oscillation previously observed in a titration-based oscillator arises from non-adiabatic and discrete binding events at the promoter site.« less

  19. Efficient analysis of stochastic gene dynamics in the non-adiabatic regime using piecewise deterministic Markov processes

    DOE PAGES

    Lin, Yen Ting; Buchler, Nicolas E.

    2018-01-31

    Single-cell experiments show that gene expression is stochastic and bursty, a feature that can emerge from slow switching between promoter states with different activities. In addition to slow chromatin and/or DNA looping dynamics, one source of long-lived promoter states is the slow binding and unbinding kinetics of transcription factors to promoters, i.e. the non-adiabatic binding regime. Here, we introduce a simple analytical framework, known as a piecewise deterministic Markov process (PDMP), that accurately describes the stochastic dynamics of gene expression in the non-adiabatic regime. We illustrate the utility of the PDMP on a non-trivial dynamical system by analysing the propertiesmore » of a titration-based oscillator in the non-adiabatic limit. We first show how to transform the underlying chemical master equation into a PDMP where the slow transitions between promoter states are stochastic, but whose rates depend upon the faster deterministic dynamics of the transcription factors regulated by these promoters. We show that the PDMP accurately describes the observed periods of stochastic cycles in activator and repressor-based titration oscillators. We then generalize our PDMP analysis to more complicated versions of titration-based oscillators to explain how multiple binding sites lengthen the period and improve coherence. Finally, we show how noise-induced oscillation previously observed in a titration-based oscillator arises from non-adiabatic and discrete binding events at the promoter site.« less

  20. Molecular simulations and Markov state modeling reveal the structural diversity and dynamics of a theophylline-binding RNA aptamer in its unbound state

    PubMed Central

    Warfield, Becka M.

    2017-01-01

    RNA aptamers are oligonucleotides that bind with high specificity and affinity to target ligands. In the absence of bound ligand, secondary structures of RNA aptamers are generally stable, but single-stranded and loop regions, including ligand binding sites, lack defined structures and exist as ensembles of conformations. For example, the well-characterized theophylline-binding aptamer forms a highly stable binding site when bound to theophylline, but the binding site is unstable and disordered when theophylline is absent. Experimental methods have not revealed at atomic resolution the conformations that the theophylline aptamer explores in its unbound state. Consequently, in the present study we applied 21 microseconds of molecular dynamics simulations to structurally characterize the ensemble of conformations that the aptamer adopts in the absence of theophylline. Moreover, we apply Markov state modeling to predict the kinetics of transitions between unbound conformational states. Our simulation results agree with experimental observations that the theophylline binding site is found in many distinct binding-incompetent states and show that these states lack a binding pocket that can accommodate theophylline. The binding-incompetent states interconvert with binding-competent states through structural rearrangement of the binding site on the nanosecond to microsecond timescale. Moreover, we have simulated the complete theophylline binding pathway. Our binding simulations supplement prior experimental observations of slow theophylline binding kinetics by showing that the binding site must undergo a large conformational rearrangement after the aptamer and theophylline form an initial complex, most notably, a major rearrangement of the C27 base from a buried to solvent-exposed orientation. Theophylline appears to bind by a combination of conformational selection and induced fit mechanisms. Finally, our modeling indicates that when Mg2+ ions are present the population of binding-competent aptamer states increases more than twofold. This population change, rather than direct interactions between Mg2+ and theophylline, accounts for altered theophylline binding kinetics. PMID:28437473

  1. Kinetic Contributions to Gating by Interactions Unique to N-methyl-d-aspartate (NMDA) Receptors*

    PubMed Central

    Borschel, William F.; Cummings, Kirstie A.; Tindell, LeeAnn K.; Popescu, Gabriela K.

    2015-01-01

    Among glutamate-gated channels, NMDA receptors produce currents that subside with unusually slow kinetics, and this feature is essential to the physiology of central excitatory synapses. Relative to the homologous AMPA and kainate receptors, NMDA receptors have additional intersubunit contacts in the ligand binding domain that occur at both conserved and non-conserved sites. We examined GluN1/GluN2A single-channel currents with kinetic analyses and modeling to probe these class-specific intersubunit interactions for their role in glutamate binding and receptor gating. We found that substitutions that eliminate such interactions at non-conserved sites reduced stationary gating, accelerated deactivation, and imparted sensitivity to aniracetam, an AMPA receptor-selective positive modulator. Abolishing unique contacts at conserved sites also reduced stationary gating and accelerated deactivation. These results show that contacts specific to NMDA receptors, which brace the heterodimer interface within the ligand binding domain, stabilize actively gating receptor conformations and result in longer bursts and slower deactivations. They support the view that the strength of the heterodimer interface modulates gating in both NMDA and non-NMDA receptors and that unique interactions at this interface are responsible in part for basic differences between the kinetics of NMDA and non-NMDA currents at glutamatergic synapses. PMID:26370091

  2. Kinetic, Thermodynamic, and Structural Characterizations of the Association between Nrf2-DLGex Degron and Keap1

    PubMed Central

    Fukutomi, Toshiaki; Takagi, Kenji; Mizushima, Tsunehiro; Ohuchi, Noriaki

    2014-01-01

    Transcription factor Nrf2 (NF-E2-related factor 2) coordinately regulates cytoprotective gene expression, but under unstressed conditions, Nrf2 is degraded rapidly through Keap1 (Kelch-like ECH-associated protein 1)-mediated ubiquitination. Nrf2 harbors two Keap1-binding motifs, DLG and ETGE. Interactions between these two motifs and Keap1 constitute a key regulatory nexus for cellular Nrf2 activity through the formation of a two-site binding hinge-and-latch mechanism. In this study, we determined the minimum Keap1-binding sequence of the DLG motif, the low-affinity latch site, and defined a new DLGex motif that covers a sequence much longer than that previously defined. We have successfully clarified the crystal structure of the Keap1-DC-DLGex complex at 1.6 Å. DLGex possesses a complicated helix structure, which interprets well the human-cancer-derived loss-of-function mutations in DLGex. In thermodynamic analyses, Keap1-DLGex binding is characterized as enthalpy and entropy driven, while Keap1-ETGE binding is characterized as purely enthalpy driven. In kinetic analyses, Keap1-DLGex binding follows a fast-association and fast-dissociation model, while Keap1-ETGE binding contains a slow-reaction step that leads to a stable conformation. These results demonstrate that the mode of DLGex binding to Keap1 is distinct from that of ETGE structurally, thermodynamically, and kinetically and support our contention that the DLGex motif serves as a converter transmitting environmental stress to Nrf2 induction as the latch site. PMID:24366543

  3. Modulation of the binding of basic fibroblast growth factor and heparanase activity by purified λ-carrageenan oligosaccharides.

    PubMed

    Niu, Ting-Ting; Zhang, Dong-Sheng; Chen, Hai-Min; Yan, Xiao-Jun

    2015-07-10

    Inhibitors of angiogenesis and tumor metastasis are increasingly emerging as promising agents for cancer therapy. Here, we report λ-carrageenan oligosaccharides (λ-COs), highly-sulfated oligosaccharides acting as a basic fibroblast growth factor (bFGF) antagonist and heparanase inhibitor. λ-COs with degree of polymerization (DP) from 2 to 8 degraded by λ-carrageenase were separated and purified. The structures were identified by mass spectrometry. The activities of λ-COs are closely related with DP. λ-COs showed no cytotoxicity, but inactivated bFGF-induced cell proliferation; among them, λ-carraheptaose showed highest capability. Only λ-carraheptaose can effectively bind to bFGF. Binding kinetics showed that λ-carraheptaose and suramin had different binding modes, i.e., suramin displayed a fast association and fast dissociation, but λ-carraheptaose exhibited a slow association and slow dissociation. In addition, λ-COs showed the highest heparanase inhibitory ability and abolished the endothelial cell invasion. Thus, λ-COs may provide a tool to develop of new carbohydrate-based therapeutics against cancer and angiogenesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Slow-Binding Inhibition: A Theoretical and Practical Course for Students

    ERIC Educational Resources Information Center

    Golicnik, Marko; Stojan, Jure

    2004-01-01

    Tyrosinase (EC 1.14.18.1) catalyzes the oxidation of L-3,4-dihydroxyphenylalanine (L-DOPA) to 2,3,5,6-tetrahydro-5,6-dioxo-1H-indole-2-carboxylate (dopachrome), according to the classical Michaelis-Menten kinetic mechanism. The enzyme is strongly but slowly inhibited by alpha-amino-beta-[N-(3-hydroxy-4-pyridone)] propionic acid (L-mimosine), a…

  5. Communication between Thiamin Cofactors in the Escherichia coli Pyruvate Dehydrogenase Complex E1 Component Active Centers EVIDENCE FOR A DIRECT PATHWAY BETWEEN THE 4′-AMINOPYRIMIDINE N1′ ATOMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemeria, Natalia S; Arjunan, Palaniappa; Chandrasekhar, Krishnamoorthy

    2010-11-03

    Kinetic, spectroscopic, and structural analysis tested the hypothesis that a chain of residues connecting the 4{prime}-aminopyrimidine N1{prime} atoms of thiamin diphosphates (ThDPs) in the two active centers of the Escherichia coli pyruvate dehydrogenase complex E1 component provides a signal transduction pathway. Substitution of the three acidic residues (Glu{sup 571}, Glu{sup 235}, and Glu{sup 237}) and Arg{sup 606} resulted in impaired binding of the second ThDP, once the first active center was filled, suggesting a pathway for communication between the two ThDPs. (1) Steady-state kinetic and fluorescence quenching studies revealed that upon E571A, E235A, E237A, and R606A substitutions, ThDP binding inmore » the second active center was affected. (2) Analysis of the kinetics of thiazolium C2 hydrogen/deuterium exchange of enzyme-bound ThDP suggests half-of-the-sites reactivity for the E1 component, with fast (activated site) and slow exchanging sites (dormant site). The E235A and E571A variants gave no evidence for the slow exchanging site, indicating that only one of two active sites is filled with ThDP. (3) Titration of the E235A and E237A variants with methyl acetylphosphonate monitored by circular dichroism suggested that only half of the active sites were filled with a covalent predecarboxylation intermediate analog. (4) Crystal structures of E235A and E571A in complex with ThDP revealed the structural basis for the spectroscopic and kinetic observations and showed that either substitution affects cofactor binding, despite the fact that Glu{sup 235} makes no direct contact with the cofactor. The role of the conserved Glu{sup 571} residue in both catalysis and cofactor orientation is revealed by the combined results for the first time.« less

  6. Non-equilibrium repressor binding kinetics link DNA damage dose to transcriptional timing within the SOS gene network.

    PubMed

    Culyba, Matthew J; Kubiak, Jeffrey M; Mo, Charlie Y; Goulian, Mark; Kohli, Rahul M

    2018-06-01

    Biochemical pathways are often genetically encoded as simple transcription regulation networks, where one transcription factor regulates the expression of multiple genes in a pathway. The relative timing of each promoter's activation and shut-off within the network can impact physiology. In the DNA damage repair pathway (known as the SOS response) of Escherichia coli, approximately 40 genes are regulated by the LexA repressor. After a DNA damaging event, LexA degradation triggers SOS gene transcription, which is temporally separated into subsets of 'early', 'middle', and 'late' genes. Although this feature plays an important role in regulating the SOS response, both the range of this separation and its underlying mechanism are not experimentally defined. Here we show that, at low doses of DNA damage, the timing of promoter activities is not separated. Instead, timing differences only emerge at higher levels of DNA damage and increase as a function of DNA damage dose. To understand mechanism, we derived a series of synthetic SOS gene promoters which vary in LexA-operator binding kinetics, but are otherwise identical, and then studied their activity over a large dose-range of DNA damage. In distinction to established models based on rapid equilibrium assumptions, the data best fit a kinetic model of repressor occupancy at promoters, where the drop in cellular LexA levels associated with higher doses of DNA damage leads to non-equilibrium binding kinetics of LexA at operators. Operators with slow LexA binding kinetics achieve their minimal occupancy state at later times than operators with fast binding kinetics, resulting in a time separation of peak promoter activity between genes. These data provide insight into this remarkable feature of the SOS pathway by demonstrating how a single transcription factor can be employed to control the relative timing of each gene's transcription as a function of stimulus dose.

  7. Adenine phosphoribosyltransferase from Sulfolobus solfataricus is an enzyme with unusual kinetic properties and a crystal structure that suggests it evolved from a 6-oxopurine phosphoribosyltransferase.

    PubMed

    Jensen, Kaj Frank; Hansen, Michael Riis; Jensen, Kristine Steen; Christoffersen, Stig; Poulsen, Jens-Christian Navarro; Mølgaard, Anne; Kadziola, Anders

    2015-04-14

    The adenine phosphoribosyltransferase (APRTase) encoded by the open reading frame SSO2342 of Sulfolobus solfataricus P2 was subjected to crystallographic, kinetic, and ligand binding analyses. The enzyme forms dimers in solution and in the crystals, and binds one molecule of the reactants 5-phosphoribosyl-α-1-pyrophosphate (PRPP) and adenine or the product adenosine monophosphate (AMP) or the inhibitor adenosine diphosphate (ADP) in each active site. The individual subunit adopts an overall structure that resembles a 6-oxopurine phosphoribosyltransferase (PRTase) more than known APRTases implying that APRT functionality in Crenarchaeotae has its evolutionary origin in this family of PRTases. Only the N-terminal two-thirds of the polypeptide chain folds as a traditional type I PRTase with a five-stranded β-sheet surrounded by helices. The C-terminal third adopts an unusual three-helix bundle structure that together with the nucleobase-binding loop undergoes a conformational change upon binding of adenine and phosphate resulting in a slight contraction of the active site. The inhibitor ADP binds like the product AMP with both the α- and β-phosphates occupying the 5'-phosphoribosyl binding site. The enzyme shows activity over a wide pH range, and the kinetic and ligand binding properties depend on both pH and the presence/absence of phosphate in the buffers. A slow hydrolysis of PRPP to ribose 5-phosphate and pyrophosphate, catalyzed by the enzyme, may be facilitated by elements in the C-terminal three-helix bundle part of the protein.

  8. Fragment-based lead generation: identification of seed fragments by a highly efficient fragment screening technology

    NASA Astrophysics Data System (ADS)

    Neumann, Lars; Ritscher, Allegra; Müller, Gerhard; Hafenbradl, Doris

    2009-08-01

    For the detection of the precise and unambiguous binding of fragments to a specific binding site on the target protein, we have developed a novel reporter displacement binding assay technology. The application of this technology for the fragment screening as well as the fragment evolution process with a specific modelling based design strategy is demonstrated for inhibitors of the protein kinase p38alpha. In a fragment screening approach seed fragments were identified which were then used to build compounds from the deep-pocket towards the hinge binding area of the protein kinase p38alpha based on a modelling approach. BIRB796 was used as a blueprint for the alignment of the fragments. The fragment evolution of these deep-pocket binding fragments towards the fully optimized inhibitor BIRB796 included the modulation of the residence time as well as the affinity. The goal of our study was to evaluate the robustness and efficiency of our novel fragment screening technology at high fragment concentrations, compare the screening data with biochemical activity data and to demonstrate the evolution of the hit fragments with fast kinetics, into slow kinetic inhibitors in an in silico approach.

  9. Kinetics and Mechanism Study of Competitive Inhibition of Jack-Bean Urease by Baicalin

    PubMed Central

    Tan, Lirong; Su, Jiyan; Wu, Dianwei; Yu, Xiaodan; Su, Zuqing; Wu, Xiaoli; Kong, Songzhi; Lai, Xiaoping; Lin, Ji; Su, Ziren

    2013-01-01

    Baicalin (BA) is the principal component of Radix Scutellariae responsible for its pharmacological activity. In this study, kinetics and mechanism of inhibition by BA against jack-bean urease were investigated for its therapeutic potential. It was revealed that the IC50 of BA against jack-bean urease was 2.74 ± 0.51 mM, which was proved to be a competitive and concentration-dependent inhibition with slow-binding progress curves. The rapid formation of initial BA-urease complex with an inhibition constant of K i = 3.89 × 10−3 mM was followed by a slow isomerization into the final complex with an overall inhibition constant of K i* = 1.47 × 10−4 mM. High effectiveness of thiol protectors against BA inhibition indicated that the strategic role of the active-site sulfhydryl group of the urease was involved in the blocking process. Moreover, the inhibition of BA was proved to be reversible due to the fact that urease could be reactivated by dithiothreitol but not reactant dilution. Molecular docking assay suggested that BA made contacts with the important activating sulfhydryl group Cys-592 residues and restricted the mobility of the active-site flap. Taken together, it could be deduced that BA was a competitive inhibitor targeting thiol groups of urease in a slow-binding manner both reversibly and concentration-dependently, serving as a promising urease inhibitor for treatments on urease-related diseases. PMID:24198731

  10. The ligand binding mechanism to purine nucleoside phosphorylase elucidated via molecular dynamics and machine learning.

    PubMed

    Decherchi, Sergio; Berteotti, Anna; Bottegoni, Giovanni; Rocchia, Walter; Cavalli, Andrea

    2015-01-27

    The study of biomolecular interactions between a drug and its biological target is of paramount importance for the design of novel bioactive compounds. In this paper, we report on the use of molecular dynamics (MD) simulations and machine learning to study the binding mechanism of a transition state analogue (DADMe-immucillin-H) to the purine nucleoside phosphorylase (PNP) enzyme. Microsecond-long MD simulations allow us to observe several binding events, following different dynamical routes and reaching diverse binding configurations. These simulations are used to estimate kinetic and thermodynamic quantities, such as kon and binding free energy, obtaining a good agreement with available experimental data. In addition, we advance a hypothesis for the slow-onset inhibition mechanism of DADMe-immucillin-H against PNP. Combining extensive MD simulations with machine learning algorithms could therefore be a fruitful approach for capturing key aspects of drug-target recognition and binding.

  11. Evaluation of [11C]TAZA for amyloid β plaque imaging in postmortem human Alzheimer's disease brain region and whole body distribution in rodent PET/CT.

    PubMed

    Pan, Min-Liang; Mukherjee, Meenakshi T; Patel, Himika H; Patel, Bhavin; Constantinescu, Cristian C; Mirbolooki, M Reza; Liang, Christopher; Mukherjee, Jogeshwar

    2016-04-01

    Alzheimer's disease (AD) is a neurodegenerative disease characterized by Aβ plaques in the brain. The aim of this study was to evaluate the effectiveness of a novel radiotracer, 4-[(11) C]methylamino-4'-N,N-dimethylaminoazobenzene ([(11)C]TAZA), for binding to Aβ plaques in postmortem human brain (AD and normal control (NC)). Radiosyntheses of [(11)C]TAZA, related [(11)C]Dalene ((11)C-methylamino-4'-dimethylaminostyrylbenzene), and reference [(11)C]PIB were carried out using [(11)C]methyltriflate prepared from [(11) C]CO(2) and purified using HPLC. In vitro binding affinities were carried out in human AD brain homogenate with Aβ plaques labeled with [(3) H]PIB. In vitro autoradiography studies with the three radiotracers were performed on hippocampus of AD and NC brains. PET/CT studies were carried out in normal rats to study brain and whole body distribution. The three radiotracers were produced in high radiochemical yields (>40%) and had specific activities >37 GBq/μmol. TAZA had an affinity, K(i) = 0.84 nM and was five times more potent than PIB. [(11)C]TAZA bound specifically to Aβ plaques present in AD brains with gray matter to white matter ratios >20. [(11)C]TAZA was displaced by PIB (>90%), suggesting similar binding site for [(11)C]TAZA and [(11)C]PIB. [(11)C]TAZA exhibited slow kinetics of uptake in the rat brain and whole body images showed uptake in interscapular brown adipose tissue (IBAT). Binding in brain and IBAT were affected by preinjection of atomoxetine, a norepinephrine transporter blocker. [(11)C]TAZA exhibited high binding to Aβ plaques in human AD hippocampus. Rat brain kinetics was slow and peripheral binding to IBAT needs to be further evaluated. © 2016 Wiley Periodicals, Inc.

  12. Increased Titin Compliance Reduced Length-Dependent Contraction and Slowed Cross-Bridge Kinetics in Skinned Myocardial Strips from Rbm (20ΔRRM) Mice.

    PubMed

    Pulcastro, Hannah C; Awinda, Peter O; Methawasin, Mei; Granzier, Henk; Dong, Wenji; Tanner, Bertrand C W

    2016-01-01

    Titin is a giant protein spanning from the Z-disk to the M-band of the cardiac sarcomere. In the I-band titin acts as a molecular spring, contributing to passive mechanical characteristics of the myocardium throughout a heartbeat. RNA Binding Motif Protein 20 (RBM20) is required for normal titin splicing, and its absence or altered function leads to greater expression of a very large, more compliant N2BA titin isoform in Rbm20 homozygous mice (Rbm20 (ΔRRM) ) compared to wild-type mice (WT) that almost exclusively express the stiffer N2B titin isoform. Prior studies using Rbm20 (ΔRRM) animals have shown that increased titin compliance compromises muscle ultrastructure and attenuates the Frank-Starling relationship. Although previous computational simulations of muscle contraction suggested that increasing compliance of the sarcomere slows the rate of tension development and prolongs cross-bridge attachment, none of the reported effects of Rbm20 (ΔRRM) on myocardial function have been attributed to changes in cross-bridge cycling kinetics. To test the relationship between increased sarcomere compliance and cross-bridge kinetics, we used stochastic length-perturbation analysis in Ca(2+)-activated, skinned papillary muscle strips from Rbm20 (ΔRRM) and WT mice. We found increasing titin compliance depressed maximal tension, decreased Ca(2+)-sensitivity of the tension-pCa relationship, and slowed myosin detachment rate in myocardium from Rbm20 (ΔRRM) vs. WT mice. As sarcomere length increased from 1.9 to 2.2 μm, length-dependent activation of contraction was eliminated in the Rbm20 (ΔRRM) myocardium, even though myosin MgADP release rate decreased ~20% to prolong strong cross-bridge binding at longer sarcomere length. These data suggest that increasing N2BA expression may alter cardiac performance in a length-dependent manner, showing greater deficits in tension production and slower cross-bridge kinetics at longer sarcomere length. This study also supports the idea that passive mechanical characteristics of the myocardium influence ensemble cross-bridge behavior and maintenance of tension generation throughout the sarcomere.

  13. Fast- or Slow-inactivated State Preference of Na+ Channel Inhibitors: A Simulation and Experimental Study

    PubMed Central

    Karoly, Robert; Lenkey, Nora; Juhasz, Andras O.; Vizi, E. Sylvester; Mike, Arpad

    2010-01-01

    Sodium channels are one of the most intensively studied drug targets. Sodium channel inhibitors (e.g., local anesthetics, anticonvulsants, antiarrhythmics and analgesics) exert their effect by stabilizing an inactivated conformation of the channels. Besides the fast-inactivated conformation, sodium channels have several distinct slow-inactivated conformational states. Stabilization of a slow-inactivated state has been proposed to be advantageous for certain therapeutic applications. Special voltage protocols are used to evoke slow inactivation of sodium channels. It is assumed that efficacy of a drug in these protocols indicates slow-inactivated state preference. We tested this assumption in simulations using four prototypical drug inhibitory mechanisms (fast or slow-inactivated state preference, with either fast or slow binding kinetics) and a kinetic model for sodium channels. Unexpectedly, we found that efficacy in these protocols (e.g., a shift of the “steady-state slow inactivation curve”), was not a reliable indicator of slow-inactivated state preference. Slowly associating fast-inactivated state-preferring drugs were indistinguishable from slow-inactivated state-preferring drugs. On the other hand, fast- and slow-inactivated state-preferring drugs tended to preferentially affect onset and recovery, respectively. The robustness of these observations was verified: i) by performing a Monte Carlo study on the effects of randomly modifying model parameters, ii) by testing the same drugs in a fundamentally different model and iii) by an analysis of the effect of systematically changing drug-specific parameters. In patch clamp electrophysiology experiments we tested five sodium channel inhibitor drugs on native sodium channels of cultured hippocampal neurons. For lidocaine, phenytoin and carbamazepine our data indicate a preference for the fast-inactivated state, while the results for fluoxetine and desipramine are inconclusive. We suggest that conclusions based on voltage protocols that are used to detect slow-inactivated state preference are unreliable and should be re-evaluated. PMID:20585544

  14. A kinetic study of Trichoderma reesei Cel7B catalyzed cellulose hydrolysis.

    PubMed

    Song, Xiangfei; Zhang, Shujun; Wang, Yefei; Li, Jingwen; He, Chunyan; Yao, Lishan

    2016-06-01

    One prominent feature of Trichoderma reesei (Tr) endoglucanases catalyzed cellulose hydrolysis is that the reaction slows down quickly after it starts (within minutes). But the mechanism of the slowdown is not well understood. A structural model of Tr- Cel7B catalytic domain bound to cellulose was built computationally and the potentially important binding residues were identified and tested experimentally. The 13 tested mutants show different binding properties in the adsorption to phosphoric acid swollen cellulose and filter paper. Though the partitioning parameter to filter paper is about 10 times smaller than that to phosphoric acid swollen cellulose, a positive correlation is shown for two substrates. The kinetic studies show that the reactions slow down quickly for both substrates. This slowdown is not correlated to the binding constant but anticorrelated to the enzyme initial activity. The amount of reducing sugars released after 24h by Cel7B in phosphoric acid swollen cellulose, Avicel and filter paper cellulose hydrolysis is correlated with the enzyme activity against a soluble substrate p-nitrophenyl lactoside. Six of the 13 tested mutants, including N47A, N52D, S99A, N323D, S324A, and S346A, yield ∼15-35% more reducing sugars than the wild type (WT) Cel7B in phosphoric acid swollen cellulose and filter paper hydrolysis. This study reveals that the slowdown of the reaction is not due to the binding of the enzyme to cellulose. The activity of Tr- Cel7B against the insoluble substrate cellulose is determined by the enzyme's capability in hydrolyzing the soluble substrate. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Experiments and Modeling of Uranium Adsorption in the Presence of Other Ions in Simulated Seawater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ladshaw, Austin; Das, Sadananda; Liao, Wei-Po

    2015-11-19

    Seawater contains uranium at an average concentration of 3.3 ppb, as well as a variety of other ions at either overwhelmingly higher or similar concentrations, which complicate the recovery of uranium. This report describes an investigation of the effects of various factors such as uranium speciation and presence of salts including sodium, calcium, magnesium, and bicarbonate, as well as trace elements such as vanadium on uranium adsorption kinetics in laboratory experiments. Adsorption models are also developed to describe the experimental data of uranium extraction from seawater. Results show that the presence of calcium and magnesium significantly slows down the uraniummore » adsorption kinetics. Vanadium can replace uranium from amidoxime-based adsorbent in the presence of sodium in the solution. Results also show that bicarbonate in the solution strongly competes with amidoxime for binding uranium, and thus slows down the uranium adsorption kinetics. Developed on the basis of the experimental findings, the model is capable of describing the effects of pH, ionic strength, temperature, and concentration of various species. The results of this work are useful in the understanding of the important factors that control the adsorbent capacity and kinetics of uranium uptake by amidoxime-based adsorbents.« less

  16. Effect of Alkali Metal Cations on Slow Inactivation of Cardiac Na+ Channels

    PubMed Central

    Townsend, Claire; Horn, Richard

    1997-01-01

    Human heart Na+ channels were expressed transiently in both mammalian cells and Xenopus oocytes, and Na+ currents measured using 150 mM intracellular Na+. The kinetics of decaying outward Na+ current in response to 1-s depolarizations in the F1485Q mutant depends on the predominant cation in the extracellular solution, suggesting an effect on slow inactivation. The decay rate is lower for the alkali metal cations Li+, Na+, K+, Rb+, and Cs+ than for the organic cations Tris, tetramethylammonium, N-methylglucamine, and choline. In whole cell recordings, raising [Na+]o from 10 to 150 mM increases the rate of recovery from slow inactivation at −140 mV, decreases the rate of slow inactivation at relatively depolarized voltages, and shifts steady-state slow inactivation in a depolarized direction. Single channel recordings of F1485Q show a decrease in the number of blank (i.e., null) records when [Na+]o is increased. Significant clustering of blank records when depolarizing at a frequency of 0.5 Hz suggests that periods of inactivity represent the sojourn of a channel in a slow-inactivated state. Examination of the single channel kinetics at +60 mV during 90-ms depolarizations shows that neither open time, closed time, nor first latency is significantly affected by [Na+]o. However raising [Na+]o decreases the duration of the last closed interval terminated by the end of the depolarization, leading to an increased number of openings at the depolarized voltage. Analysis of single channel data indicates that at a depolarized voltage a single rate constant for entry into a slow-inactivated state is reduced in high [Na+]o, suggesting that the binding of an alkali metal cation, perhaps in the ion-conducting pore, inhibits the closing of the slow inactivation gate. PMID:9234168

  17. Utilization of extracellular information before ligand-receptor binding reaches equilibrium expands and shifts the input dynamic range

    PubMed Central

    Ventura, Alejandra C.; Bush, Alan; Vasen, Gustavo; Goldín, Matías A.; Burkinshaw, Brianne; Bhattacharjee, Nirveek; Folch, Albert; Brent, Roger; Chernomoretz, Ariel; Colman-Lerner, Alejandro

    2014-01-01

    Cell signaling systems sense and respond to ligands that bind cell surface receptors. These systems often respond to changes in the concentration of extracellular ligand more rapidly than the ligand equilibrates with its receptor. We demonstrate, by modeling and experiment, a general “systems level” mechanism cells use to take advantage of the information present in the early signal, before receptor binding reaches a new steady state. This mechanism, pre-equilibrium sensing and signaling (PRESS), operates in signaling systems in which the kinetics of ligand-receptor binding are slower than the downstream signaling steps, and it typically involves transient activation of a downstream step. In the systems where it operates, PRESS expands and shifts the input dynamic range, allowing cells to make different responses to ligand concentrations so high as to be otherwise indistinguishable. Specifically, we show that PRESS applies to the yeast directional polarization in response to pheromone gradients. Consideration of preexisting kinetic data for ligand-receptor interactions suggests that PRESS operates in many cell signaling systems throughout biology. The same mechanism may also operate at other levels in signaling systems in which a slow activation step couples to a faster downstream step. PMID:25172920

  18. Impact of ion binding on poly-L-lysine (un)folding energy landscape and kinetics.

    PubMed

    Xiong, Kan; Asher, Sanford A

    2012-06-21

    We utilize T-jump UV resonance Raman spectroscopy (UVRR) to study the impact of ion binding on the equilibrium energy landscape and on (un)folding kinetics of poly-L-lysine (PLL). We observe that the relaxation rates of the folded conformations (including π-helix (bulge), pure α-helix, and turns) of PLL are slower than those of short alanine-based peptides. The PLL pure α-helix folding time is similar to that of short alanine-based peptides. We for the first time have directly observed that turn conformations are α-helix and π-helix (bulge) unfolding intermediates. ClO(4)(-) binding to the Lys side chain -NH(3)(+) groups and the peptide backbone slows the α-helix unfolding rate compared to that in pure water, but little impacts the folding rate, resulting in an increased α-helix stability. ClO(4)(-) binding significantly increases the PLL unfolding activation barrier but little impacts the folding barrier. Thus, the PLL folding coordinate(s) differs from the unfolding coordinate(s). The-π helix (bulge) unfolding and folding coordinates do not directly go through the α-helix energy well. Our results clearly demonstrate that PLL (un)folding is not a two-state process.

  19. Pre-steady-state kinetic analysis of the three Escherichia coli pseudouridine synthases TruB, TruA, and RluA reveals uniformly slow catalysis

    PubMed Central

    Wright, Jaden R.; Keffer-Wilkes, Laura C.; Dobing, Selina R.; Kothe, Ute

    2011-01-01

    Pseudouridine synthases catalyze formation of the most abundant modification of functional RNAs by site-specifically isomerizing uridines to pseudouridines. While the structure and substrate specificity of these enzymes have been studied in detail, the kinetic and the catalytic mechanism of pseudouridine synthases remain unknown. Here, the first pre-steady-state kinetic analysis of three Escherichia coli pseudouridine synthases is presented. A novel stopped-flow absorbance assay revealed that substrate tRNA binding by TruB takes place in two steps with an overall rate of 6 sec−1. In order to observe catalysis of pseudouridine formation directly, the traditional tritium release assay was adapted for the quench-flow technique, allowing, for the first time, observation of a single round of pseudouridine formation. Thereby, the single-round rate constant of pseudouridylation (kΨ) by TruB was determined to be 0.5 sec−1. This rate constant is similar to the kcat obtained under multiple-turnover conditions in steady-state experiments, indicating that catalysis is the rate-limiting step for TruB. In order to investigate if pseudouridine synthases are characterized by slow catalysis in general, the rapid kinetic quench-flow analysis was also performed with two other E. coli enzymes, RluA and TruA, which displayed rate constants of pseudouridine formation of 0.7 and 0.35 sec−1, respectively. Hence, uniformly slow catalysis might be a general feature of pseudouridine synthases that share a conserved catalytic domain and supposedly use the same catalytic mechanism. PMID:21998096

  20. Indirect coupling of phosphate release to de novo tension generation during muscle contraction.

    PubMed Central

    Davis, J S; Rodgers, M E

    1995-01-01

    A key question in muscle contraction is how tension generation is coupled to the chemistry of the actomyosin ATPase. Biochemical and mechanochemical experiments link tension generation to a change in structure associated with phosphate release. Length-jump and temperature-jump experiments, on the other hand, implicate phase 2slow, a significantly faster, markedly strain-sensitive kinetic process in tension generation. We use a laser temperature jump to probe the kinetics and mechanism of tension generation in skinned rabbit psoas fibers--an appropriate method since both phosphate release and phase 2slow are readily perturbed by temperature. Kinetics characteristic of the structural change associated with phosphate release are observed only when phosphate is added to fibers. When present, it causes a reduction in fiber tension; otherwise, no force is generated when it is perturbed. We therefore exclude this step from tension generation. The kinetics of de novo tension generation by the temperature-jump equivalent of phase 2slow appear unaffected by phosphate binding. We therefore propose that phosphate release is indirectly coupled to de novo tension generation via a steady-state flux through an irreversible step. We conclude that tension generation occurs in the absence of chemical change as the result of an entropy-driven transition between strongly bound crossbridges in the actomyosin-ADP state. The mechanism resembles the operation of a clock, with phosphate release providing the energy to tension the spring, and the irreversible step functions as the escapement mechanism, which is followed in turn by tension generation as the movement of the hands. Images Fig. 6 PMID:7479824

  1. Single-molecule enzymology of steroid transforming enzymes: Transient kinetic studies and what they tell us.

    PubMed

    Penning, Trevor M

    2016-07-01

    Structure-function studies on steroid transforming enzymes often use site-directed mutagenesis to inform mechanisms of catalysis and effects on steroid binding, and data are reported in terms of changes in steady state kinetic parameters kcat, Km and kcat/Km. However, this dissection of function is limited since kcat is governed by the rate-determining step and Km is a complex macroscopic kinetic constant. Often site-directed mutagenesis can lead to a change in the rate-determining step which cannot be revealed by just reporting a decrease in kcat alone. These issues are made more complex when it is considered that many steroid transforming enzymes have more than one substrate and product. We present the case for using transient-kinetics performed with stopped-flow spectrometry to assign rate constants to discrete steps in these multi-substrate reactions and their use to interpret enzyme mechanism and the effects of disease and engineered mutations. We demonstrate that fluorescence kinetic transients can be used to measure ligand binding that may be accompanied by isomerization steps, revealing the existence of new enzyme intermediates. We also demonstrate that single-turnover reactions can provide a klim for the chemical step and Ks for steroid-substrate binding and that when coupled with kinetic isotope effect measurements can provide information on transition state intermediates. We also demonstrate how multiple turnover experiments can provide evidence for either "burst-phase" kinetics, which can reveal a slow product release step, or linear-phase kinetics, in which the chemical step can be rate-determining. With these assignments it becomes more straightforward to analyze the effects of mutations. We use examples from the hydroxysteroid dehydrogenases (AKR1Cs) and human steroid 5β-reductase (AKR1D1) to illustrate the utility of the approach, which are members of the aldo-keto reductase (AKR) superfamily. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Chemical modification of protein A chromatography ligands with polyethylene glycol. I: Effects on IgG adsorption equilibrium, kinetics, and transport.

    PubMed

    Weinberg, Justin; Zhang, Shaojie; Crews, Gillian; Carta, Giorgio; Przybycien, Todd

    2018-04-20

    Chemical modification of Protein A (ProA) chromatography ligands with polyethylene glycol (PEGylation) has been proposed as a strategy to increase the process selectivity and resin robustness by providing the ligand with a steric repulsion barrier against non-specific binding. This article comprises a comprehensive study of IgG adsorption and transport in Repligen CaptivA PriMAB resin with PEGylated ProA ligands that are modified using 5.2 and 21.5 kDa PEG chains. We studied the impact of the molecular weight of the PEG as well as the extent of PEGylation for the 5.2 kDa PEG modification. In all cases, PEGylation of ProA ligands decreases the resin average pore size, particle porosity, and static binding capacity for IgG proportional to the volume of conjugated PEG in the resin. Resin batch uptake experiments conducted in bulk via a stirred-tank system and with individual resin particles under confocal laser scanning microscopy suggests that PEGylation introduces heterogeneity into IgG binding kinetics: a fraction of the IgG binding sites are transformed from typical fast association kinetic behavior to slow kinetic behavior. pH gradient elution experiments of an IgG molecule on the modified resins show an increase in IgG elution pH for all modified resins, implying a decrease in IgG-ProA binding affinity on modification. Despite losses in static binding capacity for all resins with PEGylated ligands, the loss of dynamic binding capacity at 10% breakthrough (DBC 10% ) ranged more broadly from almost 0-47% depending on the PEG molecular weight and the extent of PEGylation. Minimal losses in DBC 10% were observed with a low extent of PEGylation with a smaller molecular weight PEG, while higher losses were observed at higher extents of PEGylation and with higher molecular weight PEG due to decreased static binding capacity and increased mass transfer resistance. This work provides insight into the practical implications for resin performance if PEGylation is considered as a strategy for selectivity enhancement in affinity chromatography with macromolecular ligands. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Characterization of the slow calcium channel binding sites for ( sup 3 H)SR 33557 in rat heart sarcolemmal membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatelain, P.; Beaufort, P.; Meysmans, L.

    1991-01-01

    SR 33557 represents a new class of compounds (indolizine sulfone) that inhibit L-type Ca2+ channels. ({sup 3}H)SR 33557 has been shown to bind with high affinity (Kd congruent to 0.36 nM, calculated from saturation isotherms and association/dissociation kinetics) to a single class of sites in a purified preparation of rat cardiac sarcolemmal membranes. The binding was found to be saturable and reversible. The maximal binding capacity was in approximately 1:1 stoichiometry with that of other Ca2+ channel antagonists. Various divalent cations (Mg2+, Mn2+, Ca2+, Ba2+, and Cd2+) were shown to inhibit specific ({sup 3}H)SR 33557 binding, with Cd2+ being themore » most potent. Among several receptor or channel ligands (including omega-conotoxin and Na+ and K+ channel modulators), only the L-type Ca2+ channel antagonists were found to displace ({sup 3}H)SR 33557. However, dihydropyridines, phenylalkylamines, benzothiazepines, and diphenylbutylpiperidines were found to inhibit ({sup 3}H)SR 33557 in a noncompetitive manner as demonstrated by displacement and saturation experiments in addition to dissociation kinetics. From these results, we suggest that SR 33557 binds with high affinity to a unique site on the L-type Ca2+ channel found in rat cardiac sarcolemmal membranes.« less

  4. DNA-Binding Kinetics Determines the Mechanism of Noise-Induced Switching in Gene Networks

    PubMed Central

    Tse, Margaret J.; Chu, Brian K.; Roy, Mahua; Read, Elizabeth L.

    2015-01-01

    Gene regulatory networks are multistable dynamical systems in which attractor states represent cell phenotypes. Spontaneous, noise-induced transitions between these states are thought to underlie critical cellular processes, including cell developmental fate decisions, phenotypic plasticity in fluctuating environments, and carcinogenesis. As such, there is increasing interest in the development of theoretical and computational approaches that can shed light on the dynamics of these stochastic state transitions in multistable gene networks. We applied a numerical rare-event sampling algorithm to study transition paths of spontaneous noise-induced switching for a ubiquitous gene regulatory network motif, the bistable toggle switch, in which two mutually repressive genes compete for dominant expression. We find that the method can efficiently uncover detailed switching mechanisms that involve fluctuations both in occupancies of DNA regulatory sites and copy numbers of protein products. In addition, we show that the rate parameters governing binding and unbinding of regulatory proteins to DNA strongly influence the switching mechanism. In a regime of slow DNA-binding/unbinding kinetics, spontaneous switching occurs relatively frequently and is driven primarily by fluctuations in DNA-site occupancies. In contrast, in a regime of fast DNA-binding/unbinding kinetics, switching occurs rarely and is driven by fluctuations in levels of expressed protein. Our results demonstrate how spontaneous cell phenotype transitions involve collective behavior of both regulatory proteins and DNA. Computational approaches capable of simulating dynamics over many system variables are thus well suited to exploring dynamic mechanisms in gene networks. PMID:26488666

  5. Kinetic recognition of the retinoblastoma tumor suppressor by a specific protein target.

    PubMed

    Chemes, Lucía B; Sánchez, Ignacio E; de Prat-Gay, Gonzalo

    2011-09-16

    The retinoblastoma tumor suppressor (Rb) plays a key role in cell cycle control and is linked to various types of human cancer. Rb binds to the LxCxE motif, present in a number of cellular and viral proteins such as AdE1A, SV40 large T-antigen and human papillomavirus (HPV) E7, all instrumental in revealing fundamental mechanisms of tumor suppression, cell cycle control and gene expression. A detailed kinetic study of RbAB binding to the HPV E7 oncoprotein shows that an LxCxE-containing E7 fragment binds through a fast two-state reaction strongly favored by electrostatic interactions. Conversely, full-length E7 binds through a multistep process involving a pre-equilibrium between E7 conformers, a fast electrostatically driven association step guided by the LxCxE motif and a slow conformational rearrangement. This kinetic complexity arises from the conformational plasticity and intrinsically disordered nature of E7 and from multiple interaction surfaces present in both proteins. Affinity differences between E7N domains from high- and low-risk types are explained by their dissociation rates. In fact, since Rb is at the center of a large protein interaction network, fast and tight recognition provides an advantage for disruption by the viral proteins, where the balance of physiological and pathological interactions is dictated by kinetic ligand competition. The localization of the LxCxE motif within an intrinsically disordered domain provides the fast, diffusion-controlled interaction that allows viral proteins to outcompete physiological targets. We describe the interaction mechanism of Rb with a protein ligand, at the same time an LxCxE-containing model target, and a paradigmatic intrinsically disordered viral oncoprotein. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Muscle weakness in TPM3-myopathy is due to reduced Ca2+-sensitivity and impaired acto-myosin cross-bridge cycling in slow fibres

    PubMed Central

    Yuen, Michaela; Cooper, Sandra T.; Marston, Steve B.; Nowak, Kristen J.; McNamara, Elyshia; Mokbel, Nancy; Ilkovski, Biljana; Ravenscroft, Gianina; Rendu, John; de Winter, Josine M.; Klinge, Lars; Beggs, Alan H.; North, Kathryn N.; Ottenheijm, Coen A.C.; Clarke, Nigel F.

    2015-01-01

    Dominant mutations in TPM3, encoding α-tropomyosinslow, cause a congenital myopathy characterized by generalized muscle weakness. Here, we used a multidisciplinary approach to investigate the mechanism of muscle dysfunction in 12 TPM3-myopathy patients. We confirm that slow myofibre hypotrophy is a diagnostic hallmark of TPM3-myopathy, and is commonly accompanied by skewing of fibre-type ratios (either slow or fast fibre predominance). Patient muscle contained normal ratios of the three tropomyosin isoforms and normal fibre-type expression of myosins and troponins. Using 2D-PAGE, we demonstrate that mutant α-tropomyosinslow was expressed, suggesting muscle dysfunction is due to a dominant-negative effect of mutant protein on muscle contraction. Molecular modelling suggested mutant α-tropomyosinslow likely impacts actin–tropomyosin interactions and, indeed, co-sedimentation assays showed reduced binding of mutant α-tropomyosinslow (R168C) to filamentous actin. Single fibre contractility studies of patient myofibres revealed marked slow myofibre specific abnormalities. At saturating [Ca2+] (pCa 4.5), patient slow fibres produced only 63% of the contractile force produced in control slow fibres and had reduced acto-myosin cross-bridge cycling kinetics. Importantly, due to reduced Ca2+-sensitivity, at sub-saturating [Ca2+] (pCa 6, levels typically released during in vivo contraction) patient slow fibres produced only 26% of the force generated by control slow fibres. Thus, weakness in TPM3-myopathy patients can be directly attributed to reduced slow fibre force at physiological [Ca2+], and impaired acto-myosin cross-bridge cycling kinetics. Fast myofibres are spared; however, they appear to be unable to compensate for slow fibre dysfunction. Abnormal Ca2+-sensitivity in TPM3-myopathy patients suggests Ca2+-sensitizing drugs may represent a useful treatment for this condition. PMID:26307083

  7. Muscle weakness in TPM3-myopathy is due to reduced Ca2+-sensitivity and impaired acto-myosin cross-bridge cycling in slow fibres.

    PubMed

    Yuen, Michaela; Cooper, Sandra T; Marston, Steve B; Nowak, Kristen J; McNamara, Elyshia; Mokbel, Nancy; Ilkovski, Biljana; Ravenscroft, Gianina; Rendu, John; de Winter, Josine M; Klinge, Lars; Beggs, Alan H; North, Kathryn N; Ottenheijm, Coen A C; Clarke, Nigel F

    2015-11-15

    Dominant mutations in TPM3, encoding α-tropomyosinslow, cause a congenital myopathy characterized by generalized muscle weakness. Here, we used a multidisciplinary approach to investigate the mechanism of muscle dysfunction in 12 TPM3-myopathy patients. We confirm that slow myofibre hypotrophy is a diagnostic hallmark of TPM3-myopathy, and is commonly accompanied by skewing of fibre-type ratios (either slow or fast fibre predominance). Patient muscle contained normal ratios of the three tropomyosin isoforms and normal fibre-type expression of myosins and troponins. Using 2D-PAGE, we demonstrate that mutant α-tropomyosinslow was expressed, suggesting muscle dysfunction is due to a dominant-negative effect of mutant protein on muscle contraction. Molecular modelling suggested mutant α-tropomyosinslow likely impacts actin-tropomyosin interactions and, indeed, co-sedimentation assays showed reduced binding of mutant α-tropomyosinslow (R168C) to filamentous actin. Single fibre contractility studies of patient myofibres revealed marked slow myofibre specific abnormalities. At saturating [Ca(2+)] (pCa 4.5), patient slow fibres produced only 63% of the contractile force produced in control slow fibres and had reduced acto-myosin cross-bridge cycling kinetics. Importantly, due to reduced Ca(2+)-sensitivity, at sub-saturating [Ca(2+)] (pCa 6, levels typically released during in vivo contraction) patient slow fibres produced only 26% of the force generated by control slow fibres. Thus, weakness in TPM3-myopathy patients can be directly attributed to reduced slow fibre force at physiological [Ca(2+)], and impaired acto-myosin cross-bridge cycling kinetics. Fast myofibres are spared; however, they appear to be unable to compensate for slow fibre dysfunction. Abnormal Ca(2+)-sensitivity in TPM3-myopathy patients suggests Ca(2+)-sensitizing drugs may represent a useful treatment for this condition. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Kinetic memory based on the enzyme-limited competition.

    PubMed

    Hatakeyama, Tetsuhiro S; Kaneko, Kunihiko

    2014-08-01

    Cellular memory, which allows cells to retain information from their environment, is important for a variety of cellular functions, such as adaptation to external stimuli, cell differentiation, and synaptic plasticity. Although posttranslational modifications have received much attention as a source of cellular memory, the mechanisms directing such alterations have not been fully uncovered. It may be possible to embed memory in multiple stable states in dynamical systems governing modifications. However, several experiments on modifications of proteins suggest long-term relaxation depending on experienced external conditions, without explicit switches over multi-stable states. As an alternative to a multistability memory scheme, we propose "kinetic memory" for epigenetic cellular memory, in which memory is stored as a slow-relaxation process far from a stable fixed state. Information from previous environmental exposure is retained as the long-term maintenance of a cellular state, rather than switches over fixed states. To demonstrate this kinetic memory, we study several models in which multimeric proteins undergo catalytic modifications (e.g., phosphorylation and methylation), and find that a slow relaxation process of the modification state, logarithmic in time, appears when the concentration of a catalyst (enzyme) involved in the modification reactions is lower than that of the substrates. Sharp transitions from a normal fast-relaxation phase into this slow-relaxation phase are revealed, and explained by enzyme-limited competition among modification reactions. The slow-relaxation process is confirmed by simulations of several models of catalytic reactions of protein modifications, and it enables the memorization of external stimuli, as its time course depends crucially on the history of the stimuli. This kinetic memory provides novel insight into a broad class of cellular memory and functions. In particular, applications for long-term potentiation are discussed, including dynamic modifications of calcium-calmodulin kinase II and cAMP-response element-binding protein essential for synaptic plasticity.

  9. Kinetic operational models of agonism for G-protein-coupled receptors.

    PubMed

    Hoare, Samuel R J; Pierre, Nicolas; Moya, Arturo Gonzalez; Larson, Brad

    2018-06-07

    The application of kinetics to research and therapeutic development of G-protein-coupled receptors has become increasingly valuable. Pharmacological models provide the foundation of pharmacology, providing concepts and measurable parameters such as efficacy and potency that have underlain decades of successful drug discovery. Currently there are few pharmacological models that incorporate kinetic activity in such a way as to yield experimentally-accessible drug parameters. In this study, a kinetic model of pharmacological response was developed that provides a kinetic descriptor of efficacy (the transduction rate constant, k τ ) and allows measurement of receptor-ligand binding kinetics from functional data. The model assumes: (1) receptor interacts with a precursor of the response ("Transduction potential") and converts it to the response. (2) The response can decay. Familiar response vs time plots emerge, depending on whether transduction potential is depleted and/or response decays. These are the straight line, the "association" exponential curve, and the rise-and-fall curve. Convenient, familiar methods are described for measuring the model parameters and files are provided for the curve-fitting program Prism (GraphPad Software) that can be used as a guide. The efficacy parameter k τ is straightforward to measure and accounts for receptor reserve; all that is required is measurement of response over time at a maximally-stimulating concentration of agonist. The modular nature of the model framework allows it to be extended. Here this is done to incorporate antagonist-receptor binding kinetics and slow agonist-receptor equilibration. In principle, the modular framework can incorporate other cellular processes, such as receptor desensitization. The kinetic response model described here can be applied to measure kinetic pharmacological parameters than can be used to advance the understanding of GPCR pharmacology and optimize new and improved therapeutics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Spatially and time resolved kinetics of indirect magnetoexcitons

    NASA Astrophysics Data System (ADS)

    Hasling, Matthew; Dorow, Chelsey; Calman, Erica; Butov, Leonid; Wilkes, Joe; Campman, Kenneth; Gossard, Arthur

    The small exciton mass and binding energy give the opportunity to realize the high magnetic field regime for excitons in magnetic fields of few Tesla achievable in lab Long lifetimes of indirect exciton give the opportunity to study kinetics of magnetoexciton transport by time-resolved optical imaging of exciton emission. We present spatially and time resolved measurements showing the effect of increased magnetic field on transport of magnetoexcitons. We observe that increased magnetic field leads to slowing down of magnetoexciton transport. Supported by NSF Grant No. 1407277. J.W. was supported by the EPSRC (Grant EP/L022990/1). C.J.D. was supported by the NSF Graduate Research Fellowship Program under Grant No. DGE-1144086.

  11. Reduced Fluorescent Protein Switching Fatigue by Binding-Induced Emissive State Stabilization

    PubMed Central

    Dedecker, Peter

    2017-01-01

    Reversibly switchable fluorescent proteins (RSFPs) enable advanced fluorescence imaging, though the performance of this imaging crucially depends on the properties of the labels. We report on the use of an existing small binding peptide, named Enhancer, to modulate the spectroscopic properties of the recently developed rsGreen series of RSFPs. Fusion constructs of Enhancer with rsGreen1 and rsGreenF revealed an increased molecular brightness and pH stability, although expression in living E. coli or HeLa cells resulted in a decrease of the overall emission. Surprisingly, Enhancer binding also increased off-switching speed and resistance to switching fatigue. Further investigation suggested that the RSFPs can interconvert between fast- and slow-switching emissive states, with the overall protein population gradually converting to the slow-switching state through irradiation. The Enhancer modulates the spectroscopic properties of both states, but also preferentially stabilizes the fast-switching state, supporting the increased fatigue resistance. This work demonstrates how the photo-physical properties of RSFPs can be influenced by their binding to other small proteins, which opens up new horizons for applications that may require such modulation. Furthermore, we provide new insights into the photoswitching kinetics that should be of general consideration when developing new RSFPs with improved or different photochromic properties. PMID:28930199

  12. Yeast hexokinase. A fluorescence temperature-jump study of the kinetics of the binding of glucose to the monomer forms of hexokinases P-I and P-II.

    PubMed

    Hoggett, J G; Kellett, G L

    1976-09-15

    The binding of glucose to the monomeric forms of hexokinases P-I and P-II in Tris and phosphate buffers at pH 8.0 in the presence of 1 mol l-1 KCl has been studied using the fluorescence temperature-jump technique. For both isozymes only one relaxation time was observed; values of tau-1 increased linearly with increasing concentration of free reacting partners. The apparent second-order rate constant for association was about 2 X 10(6) 1 mol-1 s-1 for both isozymes; the differences in the stabilities of the complexes with P-I and P-II are entirely attributable to the fact that glucose dissociates more slowly from its complex with P-I than P-II (approximately 300 s-1 and 1100 s-1 respectively). Although the kinetic data are compatible with a single-step mechanism for glucose binding the association rate constant was much lower than that expected for a diffusion-limited rate of encounter. Other mechanisms for describing an induced-fit are discussed. It is shown that the data are incompatible with a slow 'prior-isomerization' pathway of substrate binding, but are consistent with a 'substrate-guided' pathway involving isomerization of the enzyme-substrate complex.

  13. Deciphering the kinetic mechanisms controlling selected plant ADP-glucose pyrophosphorylases.

    PubMed

    Boehlein, Susan K; Shaw, Janine R; Hwang, Seon K; Stewart, Jon D; Curtis Hannah, L

    2013-07-15

    ADP-Glc pyrophosphorylase (AGPase), a rate-limiting enzyme in starch biosynthesis, is controlled by thermostability and allosteric regulation. Previous studies suggested that redox affects turnover number and heat stability of AGPases. Here, we investigated how allostery and redox state affect kinetic mechanisms of the reduced, heat labile and the oxidized, heat stable potato tuber enzymes; the heat labile maize endosperm enzyme and a chimeric maize/potato heat stable enzyme that lacks the cysteine responsible for redox changes. With 3-PGA, all AGPases followed a Theorell-Chance Bi Bi mechanism with ATP binding first and ADP-Glc releasing last. 3-PGA increases the binding affinity for both substrates with little effect on velocity for the maize and MP isoforms. By contrast, 3-PGA increases the velocity and the affinity for G-1-P for the potato enzymes. Redox state does not affect kcat of the two potato isoforms. Without 3-PGA the oxidized potato enzyme exhibits a rapid equilibrium random Bi Bi mechanism with a dead end ternary complex. This fundamental change from rapid, ordered binding with little buildup of intermediates to a mechanism featuring relatively slow, random binding is unique to the oxidized potato tuber enzyme. Finally, ADP-Glc the physiologically relevant product of this enzyme has complex, isoform-specific effects on catalysis. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Application of the principle of linked functions to ATP-driven ion pumps: kinetics of activation by ATP.

    PubMed Central

    Reynolds, J A; Johnson, E A; Tanford, C

    1985-01-01

    If a ligand binds with unequal affinity to two distinct states of a protein, then the equilibrium between the two states becomes a function of the concentration of the ligand. A necessary consequence is that the ligand must also affect the forward and/or reverse rate constants for transition between the two states. For an enzyme or transport protein with such a transition as a slow step in the catalytic cycle, the overall rate also becomes a function of ligand concentration. These conclusions are independent of whether or not the ligand is a direct participant in the reaction. If it is a direct participant, then the kinetic effect arising from the principle of linked functions is distinct from the direct catalytic effect. These principles suffice to account for the biphasic response of the hydrolytic activity of ATP-driven ion pumps to the concentration of ATP, without the need to invoke more than one ATP binding site per catalytic center. PMID:2987939

  15. Combination of human acetylcholinesterase and serum albumin sensing surfaces as highly informative analytical tool for inhibitor screening.

    PubMed

    Fabini, Edoardo; Tramarin, Anna; Bartolini, Manuela

    2018-06-05

    In the continuous research for potential drug lead candidates, the availability of highly informative screening methodologies may constitute a decisive element in the selection of best-in-class compounds. In the present study, a surface plasmon resonance (SPR)-based assay was developed and employed to investigate interactions between human recombinant AChE (hAChE) and four known ligands: galantamine, tacrine, donepezil and edrophonium. To this aim, a sensor chip was functionalized with hAChE using mild immobilization conditions to best preserve enzyme integrity. Binding affinities and, for the first time, kinetic rate constants for all drug-hAChE complexes formation/disruption were determined. Inhibitors were classified in two groups: slow-reversible and fast-reversible binders according to respective target residence time. Combining data obtained on drug-target residence time with data obtained on serum albumin binding levels, a good correlation with potency, plasma protein binding in vivo, and administration regimen was found. The outcomes of this work demonstrated that the developed SPR-based assay is suitable for the screening, the binding affinity ranking and the kinetic evaluation of hAChE inhibitors. The method proposed ensures a simpler and cost-effective assay to quantify kinetic rate constants for inhibitor-hAChE interaction as compared with other proposed and published methods. Eventually, the determination of residence time in combination with preliminary ADME studies might constitute a better tool to predict in vivo behaviour, a key information for the research of new potential drug candidates. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Quantification of Transthyretin Kinetic Stability in Human Plasma Using Subunit Exchange

    PubMed Central

    2015-01-01

    The transthyretin (TTR) amyloidoses are a group of degenerative diseases caused by TTR aggregation, requiring rate-limiting tetramer dissociation. Kinetic stabilization of TTR, by preferential binding of a drug to the native tetramer over the dissociative transition state, dramatically slows the progression of familial amyloid polyneuropathy. An established method for quantifying the kinetic stability of recombinant TTR tetramers in buffer is subunit exchange, in which tagged TTR homotetramers are added to untagged homotetramers at equal concentrations to measure the rate at which the subunits exchange. Herein, we report a subunit exchange method for quantifying the kinetic stability of endogenous TTR in human plasma. The subunit exchange reaction is initiated by the addition of a substoichiometric quantity of FLAG-tagged TTR homotetramers to endogenous TTR in plasma. Aliquots of the subunit exchange reaction, taken as a function of time, are then added to an excess of a fluorogenic small molecule, which immediately arrests further subunit exchange. After binding, the small molecule reacts with the TTR tetramers, rendering them fluorescent and detectable in human plasma after subsequent ion exchange chromatography. The ability to report on the extent of TTR kinetic stabilization resulting from treatment with oral tafamidis is important, especially for selection of the appropriate dose for patients carrying rare mutations. This method could also serve as a surrogate biomarker for the prediction of the clinical outcome. Subunit exchange was used to quantify the stabilization of WT TTR from senile systemic amyloidosis patients currently being treated with tafamidis (20 mg orally, once daily). TTR kinetic stability correlated with the tafamidis plasma concentration. PMID:24661308

  17. Prediction of consensus binding mode geometries for related chemical series of positive allosteric modulators of adenosine and muscarinic acetylcholine receptors.

    PubMed

    Sakkal, Leon A; Rajkowski, Kyle Z; Armen, Roger S

    2017-06-05

    Following insights from recent crystal structures of the muscarinic acetylcholine receptor, binding modes of Positive Allosteric Modulators (PAMs) were predicted under the assumption that PAMs should bind to the extracellular surface of the active state. A series of well-characterized PAMs for adenosine (A 1 R, A 2A R, A 3 R) and muscarinic acetylcholine (M 1 R, M 5 R) receptors were modeled using both rigid and flexible receptor CHARMM-based molecular docking. Studies of adenosine receptors investigated the molecular basis of the probe-dependence of PAM activity by modeling in complex with specific agonist radioligands. Consensus binding modes map common pharmacophore features of several chemical series to specific binding interactions. These models provide a rationalization of how PAM binding slows agonist radioligand dissociation kinetics. M 1 R PAMs were predicted to bind in the analogous M 2 R PAM LY2119620 binding site. The M 5 R NAM (ML-375) was predicted to bind in the PAM (ML-380) binding site with a unique induced-fit receptor conformation. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. Evaluation of BTEX and phenol removal from aqueous solution by multi-solute adsorption onto smectite organoclay.

    PubMed

    Carvalho, M N; da Motta, M; Benachour, M; Sales, D C S; Abreu, C A M

    2012-11-15

    The removal process of BTEX and phenol was evaluated. The smectite organoclay for single-solute system reached removal was evaluated by adsorption on smectite organoclay adsorbent by kinetic and equilibrium efficiencies between 55 and 90% while was reached between 30 and 90% for multi-solute system at 297 K and pH 9. The Langmuir-Freundlich model was used to fit the experimental data with correlation coefficient between 0.98 and 0.99 providing kinetic and equilibrium parameter values. Phenol and ethylbenzene presented high maximum adsorbed amount, 8.28 and 6.67 mg/g, respectively, compared to the other compounds for single-solute. Toluene and p-xylene presented high values of adsorption constant which indicates a high adsorption affinity of compounds to organoclay surface and high binding energy of adsorption. Phenol presented low kinetic adsorption constant value indicating slow rate of adsorption. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. The natural naphthoquinone plumbagin exhibits antiproliferative activity and disrupts the microtubule network through tubulin binding.

    PubMed

    Acharya, Bipul R; Bhattacharyya, Bhabatarak; Chakrabarti, Gopal

    2008-07-29

    Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone), a naphthoquinone isolated from the roots of Plumbaginaceae plants, has potential antiproliferative activity against several tumor types. We have examined the effects of plumbagin on cellular microtubules ex vivo as well as its binding with purified tubulin and microtubules in vitro. Cell viability experiments using human non-small lung epithelium carcinoma cells (A549) indicated that the IC 50 value for plumbagin is 14.6 microM. Immunofluorescence studies using an antitubulin FITC conjugated antibody showed a significant perturbation of the interphase microtubule network in a dose dependent manner. In vitro polymerization of purified tubulin into microtubules is inhibited by plumbagin with an IC 50 value of 38 +/- 0.5 microM. Its binding to tubulin quenches protein tryptophan fluorescence in a time and concentration dependent manner. Binding of plumbagin to tubulin is slow, taking 60 min for equilibration at 25 degrees C. The association reaction kinetics is biphasic in nature, and the association rate constants for fast and slow phases are 235.12 +/- 36 M (-1) s (-1) and 11.63 +/- 11 M (-1) s (-1) at 25 degrees C respectively. The stoichiometry of plumbagin binding to tubulin is 1:1 (mole:mole) with a dissociation constant of 0.936 +/- 0.71 microM at 25 degrees C. Plumbagin competes for the colchicine binding site with a K i of 7.5 microM as determined from a modified Dixon plot. Based on these data we conclude that plumbagin recognizes the colchicine binding site to tubulin. Further study is necessary to locate the pharmacophoric point of attachment of the inhibitor to the colchicine binding site of tubulin.

  20. Differential RPA-1 and RAD-51 recruitment in vivo throughout the C. elegans germline, as revealed by laser microirradiation.

    PubMed

    Koury, Emily; Harrell, Kailey; Smolikove, Sarit

    2018-01-25

    Studies of the repair pathways associated with DNA double strand breaks (DSBs) are numerous, and provide evidence for cell-cycle specific regulation of homologous recombination (HR) by the regulation of its associated proteins. Laser microirradiation is a well-established method to examine in vitro kinetics of repair and allows for live-imaging of DSB repair from the moment of induction. Here we apply this method to whole, live organisms, introducing an effective system to analyze exogenous, microirradiation-induced breaks in the Caenorhabditis elegans germline. Through this method we observed the sequential kinetics of the recruitment of ssDNA binding proteins RPA-1 and RAD-51 in vivo. We analyze these kinetics throughout different regions of the germline, and thus throughout a range of developmental stages of mitotic and meiotic nuclei. Our analysis demonstrates a largely conserved timing of recruitment of ssDNA binding proteins to DSBs throughout the germline, with a delay of RAD-51 recruitment at mid-pachytene nuclei. Microirradiated nuclei are viable and undergo a slow kinetics of resolution. We observe RPA-1 and RAD-51 colocalization for hours post-microirradiation throughout the germline, suggesting that there are mixed RPA-1/RAD-51 filaments. Finally, through live imaging analysis we observed RAD-51 foci movement with low frequency of coalescence. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Differential RPA-1 and RAD-51 recruitment in vivo throughout the C. elegans germline, as revealed by laser microirradiation

    PubMed Central

    Koury, Emily; Harrell, Kailey

    2018-01-01

    Abstract Studies of the repair pathways associated with DNA double strand breaks (DSBs) are numerous, and provide evidence for cell-cycle specific regulation of homologous recombination (HR) by the regulation of its associated proteins. Laser microirradiation is a well-established method to examine in vitro kinetics of repair and allows for live-imaging of DSB repair from the moment of induction. Here we apply this method to whole, live organisms, introducing an effective system to analyze exogenous, microirradiation-induced breaks in the Caenorhabditis elegans germline. Through this method we observed the sequential kinetics of the recruitment of ssDNA binding proteins RPA-1 and RAD-51 in vivo. We analyze these kinetics throughout different regions of the germline, and thus throughout a range of developmental stages of mitotic and meiotic nuclei. Our analysis demonstrates a largely conserved timing of recruitment of ssDNA binding proteins to DSBs throughout the germline, with a delay of RAD-51 recruitment at mid-pachytene nuclei. Microirradiated nuclei are viable and undergo a slow kinetics of resolution. We observe RPA-1 and RAD-51 colocalization for hours post-microirradiation throughout the germline, suggesting that there are mixed RPA-1/RAD-51 filaments. Finally, through live imaging analysis we observed RAD-51 foci movement with low frequency of coalescence. PMID:29244155

  2. The slow cell death response when screening chemotherapeutic agents.

    PubMed

    Blois, Joseph; Smith, Adam; Josephson, Lee

    2011-09-01

    To examine the correlation between cell death and a common surrogate of death used in screening assays, we compared cell death responses to those obtained with the sulforhodamine B (SRB) cell protein-based "cytotoxicity" assay. With the SRB assay, the Hill equation was used to obtain an IC50 and final cell mass, or cell mass present at infinite agent concentrations, with eight adherent cell lines and four agents (32 agent/cell combinations). Cells were treated with high agent concentrations (well above the SRB IC50) and the death response determined as the time-dependent decrease in cells failing to bind both annexin V and vital fluorochromes by flow cytometry. Death kinetics were categorized as fast (5/32) (similar to the reference nonadherent Jurkat line), slow (17/32), or none (10/32), despite positive responses in the SRB assay in all cases. With slow cell death, a single exposure to a chemotherapeutic agent caused a slow, progressive increase in dead (necrotic) and dying (apoptotic) cells for at least 72 h. Cell death (defined by annexin and/or fluorochrome binding) did not correlate with the standard SRB "cytotoxicity" assay. With the slow cell death response, a single exposure to an agent caused a slow conversion from vital to apoptotic and necrotic cells over at least 72 h (the longest time point examined). Here, increasing the time of exposure to agent concentrations modestly above the SRB IC50 provides a method of maximizing cell kill. If tumors respond similarly, sustained low doses of chemotherapeutic agents, rather than a log-kill, maximum tolerated dose strategy may be an optimal strategy of maximizing tumor cell death.

  3. KINETIC CHARACTERIZATION AND MOLECULAR DOCKING OF A NOVEL, POTENT, AND SELECTIVE SLOW-BINDING INHIBITOR OF HUMAN CATHEPSIN L

    PubMed Central

    Shah, Parag P.; Myers, Michael C.; Beavers, Mary Pat; Purvis, Jeremy E.; Jing, Huiyan; Grieser, Heather J.; Sharlow, Elizabeth R.; Napper, Andrew D.; Huryn, Donna M.; Cooperman, Barry S.; Smith, Amos B.; Diamond, Scott L.

    2008-01-01

    A novel small molecule thiocarbazate (PubChem SID 26681509), a potent inhibitor of human cathepsin L (EC 3.4.22.15) with an IC50 of 56 nM, was developed following a 57,821 compound screen of the NIH Molecular Libraries Small Molecule Repository. After a 4 hr preincubation with cathepsin L, this compound became even more potent, demonstrating an IC50 of 1.0 nM. The thiocarbazate was determined to be a slow-binding and slowly reversible competitive inhibitor. Through a transient kinetic analysis for single-step reversibility, inhibition rate constants were kon = 24,000 M-1s-1 and koff = 2.2 × 10-5 s-1 (Ki = 0.89 nM). Molecular docking studies were undertaken using the experimentally-derived X-ray crystal structure of papain/CLIK-148 (1cvz.pdb). These studies revealed critical hydrogen bonding patterns of the thiocarbazate with key active site residues in papain. The thiocarbazate displayed 7- to 151-fold greater selectivity toward cathepsin L than papain and cathepsins B, K, V, and S with no activity against cathepsin G. The inhibitor demonstrated a lack of toxicity in human aortic endothelial cells and zebrafish. Additionally, the thiocarbazate inhibited in vitro propagation of malaria parasite Plasmodium falciparum with an IC50 of 15.4 μM and inhibited Leishmania major with an IC50 of 12.5 μM. PMID:18403718

  4. Effects of target binding kinetics on in vivo drug efficacy: koff , kon and rebinding.

    PubMed

    Vauquelin, Georges

    2016-08-01

    Optimal drug therapy often requires continuing high levels of target occupancy. Besides the traditional pharmacokinetic contribution, target binding kinetics is increasingly considered to play an important role as well. While most attention has been focused on the dissociation rate of the complex, recent reports expressed doubt about the unreserved translatability of this pharmacodynamic property into clinical efficacy. 'Micro'-pharmacokinetic mechanisms like drug rebinding and partitioning into the cell membrane may constitute a potential fix. Simulations were based on solving differential equations. Based on a selected range of association and dissociation rate constants, kon and koff , and rebinding potencies of the drugs as variables, their effects on the temporal in vivo occupancy profile of their targets, after one or multiple repetitive dosings, have here been simulated. Most strikingly, the simulations show that, when rebinding is also taken into account, increasing kon may produce closely the same outcome as decreasing koff when dosing is performed in accordance with the therapeutically most relevant constant [Lmax ]/KD ratio paradigm. Also, under certain conditions, rebinding may produce closely the same outcome as invoking slow diffusion of the drug between the plasma compartment and a target-containing 'effect' compartment. Although the present simulations should only be regarded as a 'proof of principle', these findings may help pharmacologists and medicinal chemists to devise ex vivo and in vitro binding kinetic assays that are more relevant and translatable to in vivo settings. © 2016 The British Pharmacological Society.

  5. Load-dependent ADP binding to myosins V and VI: Implications for subunit coordination and function

    PubMed Central

    Oguchi, Yusuke; Mikhailenko, Sergey V.; Ohki, Takashi; Olivares, Adrian O.; De La Cruz, Enrique M.; Ishiwata, Shin'ichi

    2008-01-01

    Dimeric myosins V and VI travel long distances in opposite directions along actin filaments in cells, taking multiple steps in a “hand-over-hand” fashion. The catalytic cycles of both myosins are limited by ADP dissociation, which is considered a key step in the walking mechanism of these motors. Here, we demonstrate that external loads applied to individual actomyosin V or VI bonds asymmetrically affect ADP affinity, such that ADP binds weaker under loads assisting motility. Model-based analysis reveals that forward and backward loads modulate the kinetics of ADP binding to both myosins, although the effect is less pronounced for myosin VI. ADP dissociation is modestly accelerated by forward loads and inhibited by backward loads. Loads applied in either direction slow ADP binding to myosin V but accelerate binding to myosin VI. We calculate that the intramolecular load generated during processive stepping is ≈2 pN for both myosin V and myosin VI. The distinct load dependence of ADP binding allows these motors to perform different cellular functions. PMID:18509050

  6. Recruitment and Regulation of the Non-ribosomal Peptide Synthetase Modifying Cytochrome P450 Involved in Nikkomycin Biosynthesis.

    PubMed

    Wise, Courtney E; Makris, Thomas M

    2017-05-19

    The β-hydroxylation of l-histidine is the first step in the biosynthesis of the imidazolone base of the antifungal drug nikkomycin. The cytochrome P450 (NikQ) hydroxylates the amino acid while it is appended via a phosphopantetheine linker to the non-ribosomal peptide synthetase (NRPS) NikP1. The latter enzyme is comprised of an MbtH and single adenylation and thiolation domains, a minimal composition that allows for detailed binding and kinetics studies using an intact and homogeneous NRPS substrate. Electron paramagnetic resonance studies confirm that a stable complex is formed with NikQ and NikP1 when the amino acid is tethered. Size exclusion chromatography is used to further refine the principal components that are required for this interaction. NikQ binds NikP1 in the fully charged state, but binding also occurs when NikP1 is lacking both the phosphopantetheine arm and appended amino acid. This demonstrates that the interaction is mainly guided by presentation of the thiolation domain interface, rather than the attached amino acid. Electrochemistry and transient kinetics have been used to probe the influence of l-His-NikP1 binding on catalysis by NikQ. Unlike many P450s, the binding of substrate fails to induce significant changes on the redox potential and autoxidation properties of NikQ and slows down the binding of dioxygen to the ferrous enzyme to initiate catalysis. Collectively, these studies demonstrate a complex interplay between the NRPS maturation process and the recruitment and regulation of an auxiliary tailoring enzyme required for natural product biosynthesis.

  7. Kinetic and equilibrium properties of regulatory Ca(2+)-binding domains in sodium-calcium exchangers 2 and 3.

    PubMed

    Tal, Inbal; Kozlovsky, Tom; Brisker, Dafna; Giladi, Moshe; Khananshvili, Daniel

    2016-04-01

    In mammals, three sodium-calcium exchanger (NCX) protein isoforms (NCX1, NCX2, and NCX3) mediate Ca(2+) fluxes across the membrane to maintain cellular Ca(2+) homeostasis. NCX isoforms and their splice variants are expressed in a tissue-specific manner to meet physiological demands. NCX1 is ubiquitously expressed, NCX2 is expressed in the brain and spinal cord, and NCX3 is expressed in the brain and skeletal muscle. Eukaryotic NCXs contain two cytosolic regulatory Ca(2+)-binding domains, CBD1 and CBD2, which form a two-domain tandem (CBD12) through a short linker. Ca(2+) binding to the CBDs underlies allosteric regulation of NCX. Previous structural and functional studies in NCX1 have shown that the CBDs synergistically interact, where their interactions are modulated in a splice variant-specific manner by splicing segment at CBD2. Here, we analyze the equilibrium and kinetic properties of Ca(2+) binding to purified preparations of CBD1, CBD2, and CBD12 from NCX2 and from NCX3 splice variants. We show that CBD1 interacts with CBD2 in the context of the CBD12 tandem in all NCX isoforms, where these interactions specifically modulate Ca(2+) sensing at the primary sensor of CBD1 to meet the physiological requirements. For example, the rate-limiting slow dissociation of "occluded" Ca(2+) from the primary allosteric sensor of variants expressed in skeletal muscle is ∼10-fold slower than that of variants expressed in the brain. Notably, these kinetic differences between NCX variants occur while maintaining a similar Ca(2+) affinity of the primary sensor, since the resting [Ca(2+)]i levels are similar among different cell types. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Formin and capping protein together embrace the actin filament in a ménage à trois

    PubMed Central

    Shekhar, Shashank; Kerleau, Mikael; Kühn, Sonja; Pernier, Julien; Romet-Lemonne, Guillaume; Jégou, Antoine; Carlier, Marie-France

    2015-01-01

    Proteins targeting actin filament barbed ends play a pivotal role in motile processes. While formins enhance filament assembly, capping protein (CP) blocks polymerization. On their own, they both bind barbed ends with high affinity and very slow dissociation. Their barbed-end binding is thought to be mutually exclusive. CP has recently been shown to be present in filopodia and controls their morphology and dynamics. Here we explore how CP and formins may functionally coregulate filament barbed-end assembly. We show, using kinetic analysis of individual filaments by microfluidics-assisted fluorescence microscopy, that CP and mDia1 formin are able to simultaneously bind barbed ends. This is further confirmed using single-molecule imaging. Their mutually weakened binding enables rapid displacement of one by the other. We show that formin FMNL2 behaves similarly, thus suggesting that this is a general property of formins. Implications in filopodia regulation and barbed-end structural regulation are discussed. PMID:26564775

  9. Pre-steady-state Kinetic Analysis of a Family D DNA Polymerase from Thermococcus sp. 9°N Reveals Mechanisms for Archaeal Genomic Replication and Maintenance*

    PubMed Central

    Schermerhorn, Kelly M.; Gardner, Andrew F.

    2015-01-01

    Family D DNA polymerases (polDs) have been implicated as the major replicative polymerase in archaea, excluding the Crenarchaeota branch, and bear little sequence homology to other DNA polymerase families. Here we report a detailed kinetic analysis of nucleotide incorporation and exonuclease activity for a Family D DNA polymerase from Thermococcus sp. 9°N. Pre-steady-state single-turnover nucleotide incorporation assays were performed to obtain the kinetic parameters, kpol and Kd, for correct nucleotide incorporation, incorrect nucleotide incorporation, and ribonucleotide incorporation by exonuclease-deficient polD. Correct nucleotide incorporation kinetics revealed a relatively slow maximal rate of polymerization (kpol ∼2.5 s−1) and especially tight nucleotide binding (Kd(dNTP) ∼1.7 μm), compared with DNA polymerases from Families A, B, C, X, and Y. Furthermore, pre-steady-state nucleotide incorporation assays revealed that polD prevents the incorporation of incorrect nucleotides and ribonucleotides primarily through reduced nucleotide binding affinity. Pre-steady-state single-turnover assays on wild-type 9°N polD were used to examine 3′-5′ exonuclease hydrolysis activity in the presence of Mg2+ and Mn2+. Interestingly, substituting Mn2+ for Mg2+ accelerated hydrolysis rates >40-fold (kexo ≥110 s−1 versus ≥2.5 s−1). Preference for Mn2+ over Mg2+ in exonuclease hydrolysis activity is a property unique to the polD family. The kinetic assays performed in this work provide critical insight into the mechanisms that polD employs to accurately and efficiently replicate the archaeal genome. Furthermore, despite the unique properties of polD, this work suggests that a conserved polymerase kinetic pathway is present in all known DNA polymerase families. PMID:26160179

  10. First-principles study of nitric oxide oxidation on Pt(111) versus Pt overlayer on 3d transition metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arevalo, Ryan Lacdao; Escaño, Mary Clare Sison; Kasai, Hideaki, E-mail: kasai@dyn.ap.eng.osaka-u.ac.jp

    2015-03-15

    Catalytic oxidation of NO to NO{sub 2} is a significant research interest for improving the quality of air through exhaust gas purification systems. In this paper, the authors studied this reaction on pure Pt and Pt overlayer on 3d transition metals using kinetic Monte Carlo simulations coupled with density functional theory based first principles calculations. The authors found that on the Pt(111) surface, NO oxidation proceeds via the Eley–Rideal mechanism, with O{sub 2} dissociative adsorption as the rate-determining step. The oxidation path via the Langmuir–Hinshelwood mechanism is very slow and does not significantly contribute to the overall reaction. However, inmore » the Pt overlayer systems, the oxidation of NO on the surface is more thermodynamically and kinetically favorable compared to pure Pt. These findings are attributed to the weaker binding of O and NO on the Pt overlayer systems and the binding configuration of NO{sub 2} that promotes easier N-O bond formation. These results present insights for designing affordable and efficient catalysts for NO oxidation.« less

  11. Chemical Editing of Macrocyclic Natural Products and Kinetic Profiling Reveal Slow, Tight-Binding Histone Deacetylase Inhibitors with Picomolar Affinities.

    PubMed

    Kitir, Betül; Maolanon, Alex R; Ohm, Ragnhild G; Colaço, Ana R; Fristrup, Peter; Madsen, Andreas S; Olsen, Christian A

    2017-09-26

    Histone deacetylases (HDACs) are validated targets for treatment of certain cancer types and play numerous regulatory roles in biology, ranging from epigenetics to metabolism. Small molecules are highly important as tool compounds for probing these mechanisms as well as for the development of new medicines. Therefore, detailed mechanistic information and precise characterization of the chemical probes used to investigate the effects of HDAC enzymes are vital. We interrogated Nature's arsenal of macrocyclic nonribosomal peptide HDAC inhibitors by chemical synthesis and evaluation of more than 30 natural products and analogues. This furnished surprising trends in binding affinities for the various macrocycles, which were then exploited for the design of highly potent class I and IIb HDAC inhibitors. Furthermore, thorough kinetic investigation revealed unexpected inhibitory mechanisms of important tool compounds as well as the approved drug Istodax (romidepsin). This work provides novel inhibitors with varying potencies, selectivity profiles, and mechanisms of inhibition and, importantly, affords insight into known tool compounds that will improve the interpretation of their effects in biology and medicine.

  12. Interaction of D2 with H2O amorphous ice studied by temperature-programmed desorption experiments.

    PubMed

    Amiaud, L; Fillion, J H; Baouche, S; Dulieu, F; Momeni, A; Lemaire, J L

    2006-03-07

    The gas-surface interaction of molecular hydrogen D2 with a thin film of porous amorphous solid water (ASW) grown at 10 K by slow vapor deposition has been studied by temperature-programmed-desorption (TPD) experiments. Molecular hydrogen diffuses rapidly into the porous network of the ice. The D2 desorption occurring between 10 and 30 K is considered here as a good probe of the effective surface of ASW interacting with the gas. The desorption kinetics have been systematically measured at various coverages. A careful analysis based on the Arrhenius plot method has provided the D2 binding energies as a function of the coverage. Asymmetric and broad distributions of binding energies were found, with a maximum population peaking at low energy. We propose a model for the desorption kinetics that assumes a complete thermal equilibrium of the molecules with the ice film. The sample is characterized by a distribution of adsorption sites that are filled according to a Fermi-Dirac statistic law. The TPD curves can be simulated and fitted to provide the parameters describing the distribution of the molecules as a function of their binding energy. This approach contributes to a correct description of the interaction of molecular hydrogen with the surface of possibly porous grain mantles in the interstellar medium.

  13. Kinetic studies of the folding of heterodimeric monellin: evidence for switching between alternative parallel pathways.

    PubMed

    Aghera, Nilesh; Udgaonkar, Jayant B

    2012-07-13

    Determining whether or not a protein uses multiple pathways to fold is an important goal in protein folding studies. When multiple pathways are present, defined by transition states that differ in their compactness and structure but not significantly in energy, they may manifest themselves by causing the dependence on denaturant concentration of the logarithm of the observed rate constant of folding to have an upward curvature. In this study, the folding mechanism of heterodimeric monellin [double-chain monellin (dcMN)] has been studied over a range of protein and guanidine hydrochloride (GdnHCl) concentrations, using the intrinsic tryptophan fluorescence of the protein as the probe for the folding reaction. Refolding is shown to occur in multiple kinetic phases. In the first stage of refolding, which is silent to any change in intrinsic fluorescence, the two chains of monellin bind to one another to form an encounter complex. Interrupted folding experiments show that the initial encounter complex folds to native dcMN via two folding routes. A productive folding intermediate population is identified on one route but not on both of these routes. Two intermediate subpopulations appear to form in a fast kinetic phase, and native dcMN forms in a slow kinetic phase. The chevron arms for both the fast and slow phases of refolding are shown to have upward curvatures, suggesting that at least two pathways each defined by a different intermediate are operational during these kinetic phases of structure formation. Refolding switches from one pathway to the other as the GdnHCl concentration is increased. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Null mutation in the rhodopsin kinase gene slows recovery kinetics of rod and cone phototransduction in man

    PubMed Central

    Cideciyan, Artur V.; Zhao, Xinyu; Nielsen, Lori; Khani, Shahrokh C.; Jacobson, Samuel G.; Palczewski, Krzysztof

    1998-01-01

    Rhodopsin kinase (RK), a specialized G-protein-coupled receptor kinase expressed in retina, is involved in quenching of light-induced signal transduction in photoreceptors. The role of RK in recovery after photoactivation has been explored in vitro and in vivo experimentally but has not been specifically defined in humans. We investigated the effects on human vision of a mutation in the RK gene causing Oguchi disease, a recessively inherited retinopathy. In vitro experiments demonstrated that the mutation, a deletion of exon 5, abolishes the enzymatic activity of RK and is likely a null. Both a homozygote and heterozygote with this RK mutation had recovery phase abnormalities of rod-isolated photoresponses by electroretinography (ERG); photoactivation was normal. Kinetics of rod bleaching adaptation by psychophysics were dramatically slowed in the homozygote but normal final thresholds were attained. Light adaptation was normal at low backgrounds but became abnormal at higher backgrounds. A slight slowing of cone deactivation kinetics in the homozygote was detected by ERG. Cone bleaching adaptation and background adaptation were normal. In this human in vivo condition without a functional RK and probable lack of phosphorylation and arrestin binding to activated rhodopsin, reduction of photolyzed chromophore and regeneration processes with 11-cis-retinal probably constitute the sole pathway for recovery of rod sensitivity. The role of RK in rods would thus be to accelerate inactivation of activated rhodopsin molecules that in concert with regeneration leads to the normal rate of recovery of sensitivity. Cones may rely mainly on regeneration for the inactivation of photolyzed visual pigment, but RK also contributes to cone recovery. PMID:9419375

  15. Relative Propensities of Cytochrome c Oxidase and Cobalt Corrins for Reaction with Cyanide and Oxygen: Implications for Amelioration of Cyanide Toxicity.

    PubMed

    Yuan, Quan; Pearce, Linda L; Peterson, Jim

    2017-12-18

    In aqueous media at neutral pH, the binding of two cyanide molecules per cobinamide can be described by two formation constants, K f1 = 1.1 (±0.6) × 10 5 M -1 and K f2 = 8.5 (±0.1) × 10 4 M -1 , or an overall cyanide binding constant of ∼1 × 10 10 M -2 . In comparison, the cyanide binding constants for cobalamin and a fully oxidized form of cytochrome c oxidase, each binding a single cyanide anion, were found to be 7.9 (±0.5) × 10 4 M -1 and 1.6 (±0.2) × 10 7 M -1 , respectively. An examination of the cyanide-binding properties of cobinamide at neutral pH by stopped-flow spectrophotometry revealed two kinetic phases, rapid and slow, with apparent second-order rate constants of 3.2 (±0.5) × 10 3 M -1 s -1 and 45 (±1) M -1 s -1 , respectively. Under the same conditions, cobalamin exhibited a single slow cyanide-binding kinetic phase with a second-order rate constant of 35 (±1) M -1 s -1 . All three of these processes are significantly slower than the rate at which cyanide is bound by complex IV during enzyme turnover (>10 6 M -1 s -1 ). Overall, it can be understood from these findings why cobinamide is a measurably better cyanide scavenger than cobalamin, but it is unclear how either cobalt corrin can be antidotal toward cyanide intoxication as neither compound, by itself, appears able to out-compete cytochrome c oxidase for available cyanide. Furthermore, it has also been possible to unequivocally show in head-to-head comparison assays that the enzyme does indeed have greater affinity for cyanide than both cobalamin and cobinamide. A plausible resolution of the paradox that both cobalamin and cobinamide clearly are antidotal toward cyanide intoxication, involving the endogenous auxiliary agent nitric oxide, is suggested. Additionally, the catalytic consumption of oxygen by the cobalt corrins is demonstrated and, in the case of cobinamide, the involvement of cytochrome c when present. Particularly in the case of cobinamide, these oxygen-dependent reactions could potentially lead to erroneous assessment of the ability of the cyanide scavenger to restore the activity of cyanide-inhibited cytochrome c oxidase.

  16. Mechanistic models enable the rational use of in vitro drug-target binding kinetics for better drug effects in patients.

    PubMed

    de Witte, Wilhelmus E A; Wong, Yin Cheong; Nederpelt, Indira; Heitman, Laura H; Danhof, Meindert; van der Graaf, Piet H; Gilissen, Ron A H J; de Lange, Elizabeth C M

    2016-01-01

    Drug-target binding kinetics are major determinants of the time course of drug action for several drugs, as clearly described for the irreversible binders omeprazole and aspirin. This supports the increasing interest to incorporate newly developed high-throughput assays for drug-target binding kinetics in drug discovery. A meaningful application of in vitro drug-target binding kinetics in drug discovery requires insight into the relation between in vivo drug effect and in vitro measured drug-target binding kinetics. In this review, the authors discuss both the relation between in vitro and in vivo measured binding kinetics and the relation between in vivo binding kinetics, target occupancy and effect profiles. More scientific evidence is required for the rational selection and development of drug-candidates on the basis of in vitro estimates of drug-target binding kinetics. To elucidate the value of in vitro binding kinetics measurements, it is necessary to obtain information on system-specific properties which influence the kinetics of target occupancy and drug effect. Mathematical integration of this information enables the identification of drug-specific properties which lead to optimal target occupancy and drug effect in patients.

  17. Vitamin K3 disrupts the microtubule networks by binding to tubulin: a novel mechanism of its antiproliferative activity.

    PubMed

    Acharya, Bipul R; Choudhury, Diptiman; Das, Amlan; Chakrabarti, Gopal

    2009-07-28

    Vitamin K3 (2-methyl-1,4-naphthoquinone), also known as menadione, is the synthetic precursor of all the naturally occurring vitamin K in the body. Vitamin K is necessary for the production of prothrombin and five other blood-clotting factors in humans. We have examined the effects of menadione on cellular microtubules ex vivo as well as its binding with purified tubulin and microtubules in vitro. Cell viability experiments using human cervical epithelial cancer cells (HeLa) and human oral epithelial cancer cells (KB) indicated that the IC(50) values for menadione are 25.6 +/- 0.6 and 64.3 +/- 0.36 microM, respectively, in those cells. Mendione arrests HeLa cells in mitosis. Immunofluorescence studies using an anti-alpha-tubulin antibody showed a significant irreversible depolymeriztion of the interphase microtubule network and spindle microtubule in a dose-dependent manner. In vitro polymerization of purified tubulin into microtubules is inhibited by menadione with an IC(50) value of 47 +/- 0.65 microM. The binding of menadione with tubulin was studied using menadione fluorescence and intrinsic tryptophan fluorescence of tubulin. Binding of menadione to tubulin is slow, taking 35 min for equilibration at 25 degrees C. The association reaction kinetics is biphasic in nature, and the association rate constants for fast and slow phases are 189.12 +/- 17 and 32.44 +/- 21 M(-1) s(-1) at 25 degrees C, respectively. The stoichiometry of menadione binding to tubulin is 1:1 (molar ratio) with a dissociation constant from 2.44 +/- 0.34 to 3.65 +/- 0.25 microM at 25 degrees C. Menadione competes for the colchicine binding site with a K(i) of 2.5 muM as determined from a modified Dixon plot. The obtained data suggested that menadione binds at the colchicine binding site to tubulin. Thus, we can conclude one novel mechanism of inhibition of cancer cell proliferation by menadione is through tubulin binding.

  18. Functional Insights Revealed by the Kinetic Mechanism of CRISPR/Cas9.

    PubMed

    Raper, Austin T; Stephenson, Anthony A; Suo, Zucai

    2018-02-28

    The discovery of prokaryotic adaptive immunity prompted widespread use of the RNA-guided clustered regularly interspaced short palindromic repeat (CRISPR)-associated (Cas) endonuclease Cas9 for genetic engineering. However, its kinetic mechanism remains undefined, and details of DNA cleavage are poorly characterized. Here, we establish a kinetic mechanism of Streptococcus pyogenes Cas9 from guide-RNA binding through DNA cleavage and product release. Association of DNA to the binary complex of Cas9 and guide-RNA is rate-limiting during the first catalytic turnover, while DNA cleavage from a pre-formed ternary complex of Cas9, guide-RNA, and DNA is rapid. Moreover, an extremely slow release of DNA products essentially restricts Cas9 to be a single-turnover enzyme. By simultaneously measuring the contributions of the HNH and RuvC nuclease activities of Cas9 to DNA cleavage, we also uncovered the kinetic basis by which HNH conformationally regulates the RuvC cleavage activity. Together, our results provide crucial kinetic and functional details regarding Cas9 which will inform gene-editing experiments, guide future research to understand off-target DNA cleavage by Cas9, and aid in the continued development of Cas9 as a biotechnological tool.

  19. Tetrapentylammonium block of chloramine-T and veratridine modified rat brain type IIA sodium channels

    PubMed Central

    Ghatpande, A S; Rao, S; Sikdar, S K

    2001-01-01

    Tetrapentylammonium (TPeA) block of rat brain type IIA sodium channel α subunit was studied using whole cell patch clamp. Results indicate that TPeA blocks the inactivating brain sodium channel in a potential and use-dependent manner similar to that of the cardiac sodium channel. Removal of inactivation using chloramine-T (CT) unmasks a time-dependent block by TPeA consistent with slow blocking kinetics. On the other hand, no time dependence is observed when inactivation is abolished by modification with veratridine. TPeA does not bind in a potential-dependent fashion to veratridine-modified channels and does not significantly affect gating of veratridine-modified channels suggesting that high affinity binding of TPeA to the brain sodium channel is lost after veratridine modification. PMID:11309247

  20. Dependence of cross-bridge kinetics on myosin light chain isoforms in rabbit and rat skeletal muscle fibres.

    PubMed

    Andruchov, Oleg; Andruchova, Olena; Wang, Yishu; Galler, Stefan

    2006-02-15

    Cross-bridge kinetics underlying stretch-induced force transients was studied in fibres with different myosin light chain (MLC) isoforms from skeletal muscles of rabbit and rat. The force transients were induced by stepwise stretches (< 0.3% of fibre length) applied on maximally Ca2+-activated skinned fibres. Fast fibre types IIB, IID (or IIX) and IIA and the slow fibre type I containing the myosin heavy chain isoforms MHC-IIb, MHC-IId (or MHC-IIx), MHC-IIa and MHC-I, respectively, were investigated. The MLC isoform content varied within fibre types. Fast fibre types contained the fast regulatory MLC isoform MLC2f and different proportions of the fast alkali MLC isoforms MLC1f and MLC3f. Type I fibres contained the slow regulatory MLC isoform MLC2s and the slow alkali MLC isoform MLC1s. Slow MLC isoforms were also present in several type IIA fibres. The kinetics of force transients differed by a factor of about 30 between fibre types (order from fastest to slowest kinetics: IIB > IID > IIA > I). The kinetics of the force transients was not dependent on the relative content of MLC1f and MLC3f. Type IIA fibres containing fast and slow MLC isoforms were about 1.2 times slower than type IIA fibres containing only fast MLC isoforms. We conclude that while the cross-bridge kinetics is mainly determined by the MHC isoforms present, it is affected by fast and slow MLC isoforms but not by the relative content of MLC1f and MLC3f. Thus, the physiological role of fast and slow MLC isoforms in type IIA fibres is a fine-tuning of the cross-bridge kinetics.

  1. Effects of target binding kinetics on in vivo drug efficacy: koff, kon and rebinding

    PubMed Central

    2016-01-01

    Abstract Background and Purpose Optimal drug therapy often requires continuing high levels of target occupancy. Besides the traditional pharmacokinetic contribution, target binding kinetics is increasingly considered to play an important role as well. While most attention has been focused on the dissociation rate of the complex, recent reports expressed doubt about the unreserved translatability of this pharmacodynamic property into clinical efficacy. ‘Micro’‐pharmacokinetic mechanisms like drug rebinding and partitioning into the cell membrane may constitute a potential fix. Experimental Approach Simulations were based on solving differential equations. Key Results Based on a selected range of association and dissociation rate constants, kon and koff, and rebinding potencies of the drugs as variables, their effects on the temporal in vivo occupancy profile of their targets, after one or multiple repetitive dosings, have here been simulated. Conclusions and Implications Most strikingly, the simulations show that, when rebinding is also taken into account, increasing kon may produce closely the same outcome as decreasing koff when dosing is performed in accordance with the therapeutically most relevant constant [Lmax]/K D ratio paradigm. Also, under certain conditions, rebinding may produce closely the same outcome as invoking slow diffusion of the drug between the plasma compartment and a target‐containing ‘effect’ compartment. Although the present simulations should only be regarded as a ‘proof of principle’, these findings may help pharmacologists and medicinal chemists to devise ex vivo and in vitro binding kinetic assays that are more relevant and translatable to in vivo settings. PMID:27129075

  2. The binding of quinone to the photosynthetic reaction centers: kinetics and thermodynamics of reactions occurring at the QB-site in zwitterionic and anionic liposomes.

    PubMed

    Mavelli, Fabio; Trotta, Massimo; Ciriaco, Fulvio; Agostiano, Angela; Giotta, Livia; Italiano, Francesca; Milano, Francesco

    2014-07-01

    Liposomes represent a versatile biomimetic environment for studying the interaction between integral membrane proteins and hydrophobic ligands. In this paper, the quinone binding to the QB-site of the photosynthetic reaction centers (RC) from Rhodobacter sphaeroides has been investigated in liposomes prepared with either the zwitterionic phosphatidylcholine (PC) or the negatively charged phosphatidylglycerol (PG) to highlight the role of the different phospholipid polar heads. Quinone binding (K Q) and interquinone electron transfer (L AB) equilibrium constants in the two type of liposomes were obtained by charge recombination reaction of QB-depleted RC in the presence of increasing amounts of ubiquinone-10 over the temperature interval 6-35 °C. The kinetic of the charge recombination reactions has been fitted by numerically solving the ordinary differential equations set associated with a detailed kinetic scheme involving electron transfer reactions coupled with quinone release and uptake. The entire set of traces at each temperature was accurately fitted using the sole quinone release constants (both in a neutral and a charge separated state) as adjustable parameters. The temperature dependence of the quinone exchange rate at the QB-site was, hence, obtained. It was found that the quinone exchange regime was always fast for PC while it switched from slow to fast in PG as the temperature rose above 20 °C. A new method was introduced in this paper for the evaluation of constant K Q using the area underneath the charge recombination traces as the indicator of the amount of quinone bound to the QB-site.

  3. External Barium Affects the Gating of KCNQ1 Potassium Channels and Produces a Pore Block via Two Discrete Sites

    PubMed Central

    Gibor, Gilad; Yakubovich, Daniel; Peretz, Asher; Attali, Bernard

    2004-01-01

    The pore properties and the reciprocal interactions between permeant ions and the gating of KCNQ channels are poorly understood. Here we used external barium to investigate the permeation characteristics of homomeric KCNQ1 channels. We assessed the Ba2+ binding kinetics and the concentration and voltage dependence of Ba2+ steady-state block. Our results indicate that extracellular Ba2+ exerts a series of complex effects, including a voltage-dependent pore blockade as well as unique gating alterations. External barium interacts with the permeation pathway of KCNQ1 at two discrete and nonsequential sites. (a) A slow deep Ba2+ site that occludes the channel pore and could be simulated by a model of voltage-dependent block. (b) A fast superficial Ba2+ site that barely contributes to channel block and mostly affects channel gating by shifting rightward the voltage dependence of activation, slowing activation, speeding up deactivation kinetics, and inhibiting channel inactivation. A model of voltage-dependent block cannot predict the complex impact of Ba2+ on channel gating in low external K+ solutions. Ba2+ binding to this superficial site likely modifies the gating transitions states of KCNQ1. Both sites appear to reside in the permeation pathway as high external K+ attenuates Ba2+ inhibition of channel conductance and abolishes its impact on channel gating. Our data suggest that despite the high degree of homology of the pore region among the various K+ channels, KCNQ1 channels display significant structural and functional uniqueness. PMID:15226366

  4. Time-dependent slowly-reversible inhibition of monoamine oxidase A by N-substituted 1,2,3,6-tetrahydropyridines.

    PubMed

    Wichitnithad, Wisut; O'Callaghan, James P; Miller, Diane B; Train, Brian C; Callery, Patrick S

    2011-12-15

    A novel class of N-substituted tetrahydropyridine derivatives was found to have multiple kinetic mechanisms of monoamine oxidase A inhibition. Eleven structurally similar tetrahydropyridine derivatives were synthesized and evaluated as inhibitors of MAO-A and MAO-B. The most potent MAO-A inhibitor in the series, 2,4-dichlorophenoxypropyl analog 12, displayed time-dependent mixed noncompetitive inhibition. The inhibition was reversed by dialysis, indicating reversible enzyme inhibition. Evidence that the slow-binding inhibition of MAO-A with 12 involves a covalent bond was gained from stabilizing a covalent reversible intermediate product by reduction with sodium borohydride. The reduced enzyme complex was not reversible by dialysis. The results are consistent with slowly reversible, mechanism-based inhibition. Two tetrahydropyridine analogs that selectively inhibited MAO-A were characterized by kinetic mechanisms differing from the kinetic mechanism of 12. As reversible inhibitors of MAO-A, tetrahydropyridine analogs are at low risk of having an adverse effect of tyramine-induced hypertension. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Stoichiometry and kinetics of mercury uptake by photosynthetic bacteria.

    PubMed

    Kis, Mariann; Sipka, Gábor; Maróti, Péter

    2017-05-01

    Mercury adsorption on the cell surface and intracellular uptake by bacteria represent the key first step in the production and accumulation of highly toxic mercury in living organisms. In this work, the biophysical characteristics of mercury bioaccumulation are studied in intact cells of photosynthetic bacteria by use of analytical (dithizone) assay and physiological photosynthetic markers (pigment content, fluorescence induction, and membrane potential) to determine the amount of mercury ions bound to the cell surface and taken up by the cell. It is shown that the Hg(II) uptake mechanism (1) has two kinetically distinguishable components, (2) includes co-opted influx through heavy metal transporters since the slow component is inhibited by Ca 2+ channel blockers, (3) shows complex pH dependence demonstrating the competition of ligand binding of Hg(II) ions with H + ions (low pH) and high tendency of complex formation of Hg(II) with hydroxyl ions (high pH), and (4) is not a passive but an energy-dependent process as evidenced by light activation and inhibition by protonophore. Photosynthetic bacteria can accumulate Hg(II) in amounts much (about 10 5 ) greater than their own masses by well-defined strong and weak binding sites with equilibrium binding constants in the range of 1 (μM) -1 and 1 (mM) -1 , respectively. The strong binding sites are attributed to sulfhydryl groups as the uptake is blocked by use of sulfhydryl modifying agents and their number is much (two orders of magnitude) smaller than the number of weak binding sites. Biofilms developed by some bacteria (e.g., Rvx. gelatinosus) increase the mercury binding capacity further by a factor of about five. Photosynthetic bacteria in the light act as a sponge of Hg(II) and can be potentially used for biomonitoring and bioremediation of mercury-contaminated aqueous cultures.

  6. Actinomycin D binding mode reveals the basis for its potent HIV-1 and cancer activity

    NASA Astrophysics Data System (ADS)

    Paramanathan, Thayaparan; Vladescu, Ioana D.; McCauley, Micah J.; Rouzina, Ioulia; Williams, Mark C.

    2011-03-01

    Actinomycin D (ActD) is one of the most studied antibiotics, which has been used as an anti-cancer agent and also shown to inhibit HIV reverse transcription. Initial studies with ActD established that it intercalates double stranded DNA (dsDNA). However, recent studies have shown that ActD binds with even higher affinity to single stranded DNA (ssDNA). In our studies we use optical tweezers to stretch and hold single dsDNA molecule at constant force in the presence of varying ActD concentrations until the binding reaches equilibrium. The change in dsDNA length upon ActD binding measured as a function of time yields the rate of binding in addition to the equilibrium lengthening of DNA. The results suggest extremely slow kinetics, on the order of several minutes and 0.52 +/- 0.06 μ M binding affinity. Holding DNA at constant force while stretching and relaxing suggests that ActD binds to two single strands that are close to each other rather than to pure dsDNA or ssDNA. This suggests that biological activity of ActD that contributes towards the inhibition of cellular replication is due to its ability to bind at DNA bubbles during RNA transcription, thereby stalling the transcription process.

  7. Modulation of enrofloxacin binding in OmpF by Mg2+ as revealed by the analysis of fast flickering single-porin current

    PubMed Central

    Brauser, Annemarie; Schroeder, Indra; Gutsmann, Thomas; Cosentino, Cristian; Moroni, Anna; Winterhalter, Mathias

    2012-01-01

    One major determinant of the efficacy of antibiotics on Gram-negative bacteria is the passage through the outer membrane. During transport of the fluoroquinolone enrofloxacin through the trimeric outer membrane protein OmpF of Escherichia coli, the antibiotic interacts with two binding sites within the pore, thus partially blocking the ionic current. The modulation of one affinity site by Mg2+ reveals further details of binding sites and binding kinetics. At positive membrane potentials, the slow blocking events induced by enrofloxacin in Mg2+-free media are converted to flickery sojourns at the highest apparent current level (all three pores flickering). This indicates weaker binding in the presence of Mg2+. Analysis of the resulting amplitude histograms with β distributions revealed the rate constants of blocking (kOB) and unblocking (kBO) in the range of 1,000 to 120,000 s−1. As expected for a bimolecular reaction, kOB was proportional to blocker concentration and kBO independent of it. kOB was approximately three times lower for enrofloxacin coming from the cis side than from the trans side. The block was not complete, leading to a residual conductivity of the blocked state being ∼25% of that of the open state. Interpretation of the results has led to the following model: fast flickering as caused by interaction of Mg2+ and enrofloxacin is related to the binding site at the trans side, whereas the cis site mediates slow blocking events which are also found without Mg2+. The difference in the accessibility of the binding sites also explains the dependency of kOB on the side of enrofloxacin addition and yields a means of determining the most plausible orientation of OmpF in the bilayer. The voltage dependence suggests that the dipole of the antibiotic has to be adequately oriented to facilitate binding. PMID:22689827

  8. Mechanism of inhibition of mammalian tumor and other thymidylate synthases by N sup 4 -hydroxy-dCMP, N sup 4 -hydroxy-5-fluoro-dCMP, and related analogues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rode, W.; Zielinski, Z.; Dzik, J.M.

    1990-12-01

    N{sup 4}-Hydroxy-dCMP (N{sup 4}-OH-dCMP), N{sup 4}-methoxy-dCMP (N{sup 4}-OMe-dCMP), and their 5-fluoro congeners were all slow-binding inhibitors of Ehrlich carcinoma thymidylate synthase (TS), competitive with respect to dUMP, and had differing kinetic constants describing interactions with the two TS binding sites. N{sup 4}-OH-dCMP was not a substrate and its inactivation of TS was methylenetetrahydrofolate-dependent, hence mechanism-based. K{sub i} values for N{sup 4}-OH-dCMP and its 5-fluoro analogue were in the range 10{sup {minus}7}-10{sup {minus}8} M, 2-3 orders of magnitude higher for the corresponding N{sup 4}-OMe analogues. The 5-methyl analogue of N{sup 4}-OHdCMP was 10{sup 4}-fold less potent, pointing to the anti rotamermore » of the imino form of exocyclic N{sup 4}-OH, relative to the ring N(3), as the active species. This is consistent with weaker slow-binding inhibition of the altered enzyme from 5-FdUrd-resistant, relative to parent, L1210 cells by both FdUMP and N{sup 4}-OH-dCMP, suggesting interaction of both N{sup 4}-OH and C(5)-F groups with the same region of the active center. Kinetic studies with purified enzyme from five sources, viz., Ehrlich carcinoma, L1210 parental, and 5-FdUrd-resistant cells, regenerating rat liver, and the tapeworm Hymenolepis diminuta, demonstrated that addition of a 5-fluoro substituent to N{sup 4}-OH-dCMP increased its affinity from 2- to 20-fold for the enzyme from different sources. With the Ehrlich and tapeworm enzymes, N{sup 4}-OH-FdCMP and FdUMP were almost equally effective inhibitors.« less

  9. Biomolecular conformational changes and ligand binding: from kinetics to thermodynamics† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc01627a

    PubMed Central

    Wang, Yong; Martins, João Miguel

    2017-01-01

    The behaviour of biomolecular systems is governed by their thermodynamic and kinetic properties. It is thus important to be able to calculate, for example, both the affinity and rate of binding and dissociation of a protein–ligand complex, or the populations and exchange rates between distinct conformational states. Because these are typically rare events, calculating these properties from long molecular dynamics simulations remains extremely difficult. Instead, one often adopts a divide-and-conquer strategy in which equilibrium free-energy differences and the fastest state-to-state transition (e.g. ligand association or minor-to-major state conversion) are combined to estimate the slow rate (e.g. ligand dissociation) using a two-state assumption. Here we instead address these problems by using a previously developed method to calculate both the forward and backward rates directly from simulations. We then estimate the thermodynamics from the rates, and validate these values by independent means. We applied the approach to three systems of increasing complexity, including the association and dissociation of benzene to a fully buried cavity inside the L99A mutant variant of T4 lysozyme. In particular, we were able to determine both millisecond association and dissociation rates, and the affinity, of the protein–ligand system by directly observing dozens of rare events in atomic detail. Our approach both sheds light on the precision of methods for calculating kinetics and further provides a generally useful test for the internal consistency of kinetics and thermodynamics. We also expect our route to be useful for obtaining both the kinetics and thermodynamics at the same time in more challenging cases. PMID:29619200

  10. A pre-steady state and steady state kinetic analysis of the N-ribosyl hydrolase activity of hCD157.

    PubMed

    Preugschat, Frank; Carter, Luke H; Boros, Eric E; Porter, David J T; Stewart, Eugene L; Shewchuk, Lisa M

    2014-12-15

    hCD157 catalyzes the hydrolysis of nicotinamide riboside (NR) and nicotinic acid riboside (NAR). The release of nicotinamide or nicotinic acid from NR or NAR was confirmed by spectrophotometric, HPLC and NMR analyses. hCD157 is inactivated by a mechanism-based inhibitor, 2'-deoxy-2'-fluoro-nicotinamide arabinoside (fNR). Modification of the enzyme during the catalytic cycle by NR, NAR, or fNR increased the intrinsic protein fluorescence by approximately 50%. Pre-steady state and steady state data were used to derive a minimal kinetic scheme for the hydrolysis of NR. After initial complex formation a reversible step (360 and 30s(-1)) is followed by a slow irreversible step (0.1s(-1)) that defined the rate limiting step, or kcat. The calculated KMapp value for NR in the hydrolytic reaction is 6nM. The values of the kinetic constants suggest that one biological function of cell-surface hCD157 is to bind and slowly hydrolyze NR, possibly converting it to a ligand-activated receptor. Differences in substrate preference between hCD157 and hCD38 were rationalized through a comparison of the crystal structures of the two proteins. This comparison identified several residues in hCD157 (F108 and F173) that can potentially hinder the binding of dinucleotide substrates (NAD+). Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Protein-mediated antagonism between HIV reverse transcriptase ligands nevirapine and MgATP.

    PubMed

    Zheng, Xunhai; Mueller, Geoffrey A; DeRose, Eugene F; London, Robert E

    2013-06-18

    Nonnucleoside reverse transcriptase inhibitors (NNRTIs) play a central role in the treatment of AIDS, but their mechanisms of action are incompletely understood. The interaction of the NNRTI nevirapine (NVP) with HIV-1 reverse transcriptase (RT) is characterized by a preference for the open conformation of the fingers/thumb subdomains, and a reported variation of three orders of magnitude between the binding affinity of NVP for RT in the presence or absence of primer/template DNA. To investigate the relationship between conformation and ligand binding, we evaluated the use of methionine NMR probes positioned near the tip of the fingers or thumb subdomains. Such probes would be expected to be sensitive to changes in the local environment depending on the fractions of open and closed RT. Comparisons of the NMR spectra of three conservative mutations, I63M, L74M, and L289M, indicated that M63 showed the greatest shift sensitivity to the addition of NVP. The exchange kinetics of the M63 resonance are fast on the chemical shift timescale, but become slow in the presence of NVP due to the slow binding of RT with the inhibitor. The simplest model consistent with this behavior involves a rapid open/closed equilibrium coupled with a slow interaction of the inhibitor with the open conformation. Studies of RT in the presence of both NVP and MgATP indicate a strong negative cooperativity. Binding of MgATP reduces the fraction of RT bound to NVP, as indicated by the intensity of the NVP-perturbed M230 resonance, and enhances the dissociation rate constant of the NVP, resulting in an increase of the open/closed interconversion rate, so that the M63 resonance moves into the fast/intermediate-exchange regime. Protein-mediated interactions appear to explain most of the affinity variation of NVP for RT. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. Kinetics of M1 muscarinic receptor and G protein signaling to phospholipase C in living cells

    PubMed Central

    Falkenburger, Björn H.; Jensen, Jill B.

    2010-01-01

    G protein–coupled receptors (GPCRs) mediate responses to external stimuli in various cell types. Early events, such as the binding of ligand and G proteins to the receptor, nucleotide exchange (NX), and GTPase activity at the Gα subunit, are common for many different GPCRs. For Gq-coupled M1 muscarinic (acetylcholine) receptors (M1Rs), we recently measured time courses of intermediate steps in the signaling cascade using Förster resonance energy transfer (FRET). The expression of FRET probes changes the density of signaling molecules. To provide a full quantitative description of M1R signaling that includes a simulation of kinetics in native (tsA201) cells, we now determine the density of FRET probes and construct a kinetic model of M1R signaling through Gq to activation of phospholipase C (PLC). Downstream effects on the trace membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2) and PIP2-dependent KCNQ2/3 current are considered in our companion paper in this issue (Falkenburger et al. 2010. J. Gen. Physiol. doi:10.1085/jgp.200910345). By calibrating their fluorescence intensity, we found that we selected transfected cells for our experiments with ∼3,000 fluorescently labeled receptors, G proteins, or PLC molecules per µm2 of plasma membrane. Endogenous levels are much lower, 1–40 per µm2. Our kinetic model reproduces the time courses and concentration–response relationships measured by FRET and explains observed delays. It predicts affinities and rate constants that align well with literature values. In native tsA201 cells, much of the delay between ligand binding and PLC activation reflects slow binding of G proteins to receptors. With M1R and Gβ FRET probes overexpressed, 10% of receptors have G proteins bound at rest, rising to 73% in the presence of agonist. In agreement with previous work, the model suggests that binding of PLC to Gαq greatly speeds up NX and GTPase activity, and that PLC is maintained in the active state by cycles of rapid GTP hydrolysis and NX on Gαq subunits bound to PLC. PMID:20100890

  13. Dynamic Disorder in Quasi-Equilibrium Enzymatic Systems

    PubMed Central

    Chaudhury, Srabanti; Igoshin, Oleg A.

    2010-01-01

    Conformations and catalytic rates of enzymes fluctuate over a wide range of timescales. Despite these fluctuations, there exist some limiting cases in which the enzymatic catalytic rate follows the macroscopic rate equation such as the Michaelis-Menten law. In this paper we investigate the applicability of macroscopic rate laws for fluctuating enzyme systems in which catalytic transitions are slower than ligand binding-dissociation reactions. In this quasi-equilibrium limit, for an arbitrary reaction scheme we show that the catalytic rate has the same dependence on ligand concentrations as obtained from mass-action kinetics even in the presence of slow conformational fluctuations. These results indicate that the timescale of conformational dynamics – no matter how slow – will not affect the enzymatic rate in quasi-equilibrium limit. Our numerical results for two enzyme-catalyzed reaction schemes involving multiple substrates and inhibitors further support our general theory. PMID:20808776

  14. Kinetics and Mechanism of Mammalian Mitochondrial Ribosome Assembly.

    PubMed

    Bogenhagen, Daniel F; Ostermeyer-Fay, Anne G; Haley, John D; Garcia-Diaz, Miguel

    2018-02-13

    Mammalian mtDNA encodes only 13 proteins, all essential components of respiratory complexes, synthesized by mitochondrial ribosomes. Mitoribosomes contain greatly truncated RNAs transcribed from mtDNA, including a structural tRNA in place of 5S RNA as a scaffold for binding 82 nucleus-encoded proteins, mitoribosomal proteins (MRPs). Cryoelectron microscopy (cryo-EM) studies have determined the structure of the mitoribosome, but its mechanism of assembly is unknown. Our SILAC pulse-labeling experiments determine the rates of mitochondrial import of MRPs and their assembly into intact mitoribosomes, providing a basis for distinguishing MRPs that bind at early and late stages in mitoribosome assembly to generate a working model for mitoribosome assembly. Mitoribosome assembly is a slow process initiated at the mtDNA nucleoid driven by excess synthesis of individual MRPs. MRPs that are tightly associated in the structure frequently join the complex in a coordinated manner. Clinically significant MRP mutations reported to date affect proteins that bind early on during assembly. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. Kinetics of the initial steps of G protein-coupled receptor-mediated cellular signaling revealed by single-molecule imaging.

    PubMed

    Lill, Yoriko; Martinez, Karen L; Lill, Markus A; Meyer, Bruno H; Vogel, Horst; Hecht, Bert

    2005-08-12

    We report on an in vivo single-molecule study of the signaling kinetics of G protein-coupled receptors (GPCR) performed using the neurokinin 1 receptor (NK1R) as a representative member. The NK1R signaling cascade is triggered by the specific binding of a fluorescently labeled agonist, substance P (SP). The diffusion of single receptor-ligand complexes in plasma membrane of living HEK 293 cells is imaged using fast single-molecule wide-field fluorescence microscopy at 100 ms time resolution. Diffusion trajectories are obtained which show intra- and intertrace heterogeneity in the diffusion mode. To investigate universal patterns in the diffusion trajectories we take the ligand-binding event as the common starting point. This synchronization allows us to observe changes in the character of the ligand-receptor-complex diffusion. Specifically, we find that the diffusion of ligand-receptor complexes is slowed down significantly and becomes more constrained as a function of time during the first 1000 ms. The decelerated and more constrained diffusion is attributed to an increasing interaction of the GPCR with cellular structures after the ligand-receptor complex is formed.

  16. A desensitization-selective potentiator of AMPA-type glutamate receptors

    PubMed Central

    Sekiguchi, Masayuki; Nishikawa, Kaori; Aoki, Shunsuke; Wada, Keiji

    2002-01-01

    We examined the effects of PEPA, an allosteric potentiator of AMPA receptors, on AMPA receptor kinetics. PEPA did not affect the deactivation of glutamate responses but potently attenuated the extent of receptor desensitization without slowing the onset of desensitization in most of the recombinant AMPA receptors (GluR1-flip, GluR1-flop, GluR3-flip, GluR3-flip + GluR2-flip, and GluR3-flop + GluR2-flop) expressed in Xenopus oocytes. For the GluR3-flop subunit, PEPA attenuated the extent of desensitization and only weakly prolonged deactivation (1.3 fold). PEPA did not significantly affect recovery from desensitization in oocytes expressing GluR3-flip, GluR1-flop, and GluR1-flop, but weakly accelerated (2.6 fold) recovery from desensitization in oocytes expressing GluR3-flop. PEPA's effect on desensitization of GluR3-flop-containing receptors is unique in that onset is very slow. Simulation studies using simplified kinetic models for AMPA receptors are utilized to explore the differential effects of PEPA on GluR3-flip and -flop. It is possible to simulate the action on GluR3-flip by modulating two rate constants in a 12-state kinetic model. For simulation of the action on GluR3-flop, the 12-state kinetic model is not enough, and it is necessary to invoke a 13th state, a PEPA-bound receptor to which glutamate cannot bind. These results suggest that attenuation of extent of desensitization represents the principal mechanism underlying the potentiation of AMPA receptors by PEPA, and that PEPA exhibits different mechanisms with respect to GluR3-flip and GluR3-flop. PMID:12145103

  17. Interaction of sigma factor sigmaN with Escherichia coli RNA polymerase core enzyme.

    PubMed

    Scott, D J; Ferguson, A L; Gallegos, M T; Pitt, M; Buck, M; Hoggett, J G

    2000-12-01

    The equilibrium binding and kinetics of assembly of the DNA-dependent RNA polymerase (RNAP) sigma(N)-holoenzyme has been investigated using biosynthetically labelled 7-azatryptophyl- (7AW)sigma(N). The spectroscopic properties of such 7AW proteins allows their absorbance and fluorescence to be monitored selectively, even in the presence of high concentrations of other tryptophan-containing proteins. The 7AWsigma(N) retained its biological activity in stimulating transcription from sigma(N)-specific promoters, and in in vitro gel electrophoresis assays of binding to core RNAP from Escherichia coli. Furthermore, five Trp-->Ala single mutants of sigma(N) were shown to support growth under conditions of nitrogen limitation, and showed comparable efficiency in activating the sigma(N)-dependent nifH promoter in vivo, indicating that none of the tryptophan residues were essential for activity. The equilibrium binding of 7AWsigma(N) to core RNAP was examined by analytical ultracentrifugation. In sedimentation equilibrium experiments, absorbance data at 315 nm (which reports selectively on the distribution of free and bound 7AWsigma(N)) established that a 1:1 complex was formed, with a dissociation constant lower than 2 microM. The kinetics of the interaction between 7AWsigma(N) and core RNAP was investigated using stopped-flow spectrofluorimetry. A biphasic decrease in fluorescence intensity was observed when samples were excited at 280 nm, whereas only the slower of the two phases was observed at 315 nm. The kinetic data were analysed in terms of a mechanism in which a fast bimolecular association of sigma(N) with core RNAP is followed by a relatively slow isomerization step. The consequences of these findings on the competition between sigma(N) and the major sigma factor, sigma(70), in Escherichia coli are discussed.

  18. Interaction of sigma factor sigmaN with Escherichia coli RNA polymerase core enzyme.

    PubMed Central

    Scott, D J; Ferguson, A L; Gallegos, M T; Pitt, M; Buck, M; Hoggett, J G

    2000-01-01

    The equilibrium binding and kinetics of assembly of the DNA-dependent RNA polymerase (RNAP) sigma(N)-holoenzyme has been investigated using biosynthetically labelled 7-azatryptophyl- (7AW)sigma(N). The spectroscopic properties of such 7AW proteins allows their absorbance and fluorescence to be monitored selectively, even in the presence of high concentrations of other tryptophan-containing proteins. The 7AWsigma(N) retained its biological activity in stimulating transcription from sigma(N)-specific promoters, and in in vitro gel electrophoresis assays of binding to core RNAP from Escherichia coli. Furthermore, five Trp-->Ala single mutants of sigma(N) were shown to support growth under conditions of nitrogen limitation, and showed comparable efficiency in activating the sigma(N)-dependent nifH promoter in vivo, indicating that none of the tryptophan residues were essential for activity. The equilibrium binding of 7AWsigma(N) to core RNAP was examined by analytical ultracentrifugation. In sedimentation equilibrium experiments, absorbance data at 315 nm (which reports selectively on the distribution of free and bound 7AWsigma(N)) established that a 1:1 complex was formed, with a dissociation constant lower than 2 microM. The kinetics of the interaction between 7AWsigma(N) and core RNAP was investigated using stopped-flow spectrofluorimetry. A biphasic decrease in fluorescence intensity was observed when samples were excited at 280 nm, whereas only the slower of the two phases was observed at 315 nm. The kinetic data were analysed in terms of a mechanism in which a fast bimolecular association of sigma(N) with core RNAP is followed by a relatively slow isomerization step. The consequences of these findings on the competition between sigma(N) and the major sigma factor, sigma(70), in Escherichia coli are discussed. PMID:11085949

  19. An Ultraviolet Resonance Raman Spectroscopic Study of Cisplatin and Transplatin Interactions with Genomic DNA.

    PubMed

    Geng, Jiafeng; Aioub, Mena; El-Sayed, Mostafa A; Barry, Bridgette A

    2017-09-28

    Ultraviolet resonance Raman (UVRR) spectroscopy is a label-free method to define biomacromolecular interactions with anticancer compounds. Using UVRR, we describe the binding interactions of two Pt(II) compounds, cisplatin (cis-diamminedichloroplatinum(II)) and its isomer, transplatin, with nucleotides and genomic DNA. Cisplatin binds to DNA and other cellular components and triggers apoptosis, whereas transplatin is clinically ineffective. Here, a 244 nm UVRR study shows that purine UVRR bands are altered in frequency and intensity when mononucleotides are treated with cisplatin. This result is consistent with previous suggestions that purine N7 provides the cisplatin-binding site. The addition of cisplatin to DNA also causes changes in the UVRR spectrum, consistent with binding of platinum to purine N7 and disruption of hydrogen-bonding interactions between base pairs. Equally important is that transplatin treatment of DNA generates similar UVRR spectral changes, when compared to cisplatin-treated samples. Kinetic analysis, performed by monitoring decreases of the 1492 cm -1 band, reveals biphasic kinetics and is consistent with a two-step binding mechanism for both platinum compounds. For cisplatin-DNA, the rate constants (6.8 × 10 -5 and 6.5 × 10 -6 s -1 ) are assigned to the formation of monofunctional adducts and to bifunctional, intrastrand cross-linking, respectively. In transplatin-DNA, there is a 3.4-fold decrease in the rate constant of the slow phase, compared with the cisplatin samples. This change is attributed to generation of interstrand, rather than intrastrand, adducts. This longer reaction time may result in increased competition in the cellular environment and account, at least in part, for the lower pharmacological efficacy of transplatin.

  20. Kinetic controls on the complexation between mercury and dissolved organic matter in a contaminated environment.

    PubMed

    Miller, Carrie L; Southworth, George; Brooks, Scott; Liang, Liyuan; Gu, Baohua

    2009-11-15

    The interaction of mercury (Hg) with dissolved natural organic matter (NOM) under equilibrium conditions is the focus of many studies but the kinetic controls on Hg-NOM complexation in aquatic systems have often been overlooked. We examined the rates of Hg-NOM complexation both in a contaminated Upper East Fork Poplar Creek (UEFPC) in Oak Ridge, Tennessee, and in controlled laboratory experiments using reducible Hg (Hg(R)) measurements and C(18) solid phase extraction techniques. Of the filterable Hg at the headwaters of UEFPC, >90% was present as Hg(R) and this fraction decreased downstream but remained >29% of the filterable Hg at all sites. The presence of higher Hg(R) concentrations than would be predicted under equilibrium conditions in UEFPC and in experiments with a NOM isolate suggests that kinetic reactions are controlling the complexation between Hg and NOM. The slow formation of Hg-NOM complexes is attributed to competitive ligand exchange among various moieties and functional groups in NOM with a range of binding strengths and configurations. This study demonstrates the need to consider the effects of Hg-NOM complexation kinetics on processes such as Hg methylation and solid phase partitioning.

  1. Novel anode catalyst for direct methanol fuel cells.

    PubMed

    Basri, S; Kamarudin, S K; Daud, W R W; Yaakob, Z; Kadhum, A A H

    2014-01-01

    PtRu catalyst is a promising anodic catalyst for direct methanol fuel cells (DMFCs) but the slow reaction kinetics reduce the performance of DMFCs. Therefore, this study attempts to improve the performance of PtRu catalysts by adding nickel (Ni) and iron (Fe). Multiwalled carbon nanotubes (MWCNTs) are used to increase the active area of the catalyst and to improve the catalyst performance. Electrochemical analysis techniques, such as energy dispersive X-ray spectrometry (EDX), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS), are used to characterize the kinetic parameters of the hybrid catalyst. Cyclic voltammetry (CV) is used to investigate the effects of adding Fe and Ni to the catalyst on the reaction kinetics. Additionally, chronoamperometry (CA) tests were conducted to study the long-term performance of the catalyst for catalyzing the methanol oxidation reaction (MOR). The binding energies of the reactants and products are compared to determine the kinetics and potential surface energy for methanol oxidation. The FESEM analysis results indicate that well-dispersed nanoscale (2-5 nm) PtRu particles are formed on the MWCNTs. Finally, PtRuFeNi/MWCNT improves the reaction kinetics of anode catalysts for DMFCs and obtains a mass current of 31 A g(-1) catalyst.

  2. Novel Anode Catalyst for Direct Methanol Fuel Cells

    PubMed Central

    Basri, S.; Kamarudin, S. K.; Daud, W. R. W.; Yaakob, Z.; Kadhum, A. A. H.

    2014-01-01

    PtRu catalyst is a promising anodic catalyst for direct methanol fuel cells (DMFCs) but the slow reaction kinetics reduce the performance of DMFCs. Therefore, this study attempts to improve the performance of PtRu catalysts by adding nickel (Ni) and iron (Fe). Multiwalled carbon nanotubes (MWCNTs) are used to increase the active area of the catalyst and to improve the catalyst performance. Electrochemical analysis techniques, such as energy dispersive X-ray spectrometry (EDX), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS), are used to characterize the kinetic parameters of the hybrid catalyst. Cyclic voltammetry (CV) is used to investigate the effects of adding Fe and Ni to the catalyst on the reaction kinetics. Additionally, chronoamperometry (CA) tests were conducted to study the long-term performance of the catalyst for catalyzing the methanol oxidation reaction (MOR). The binding energies of the reactants and products are compared to determine the kinetics and potential surface energy for methanol oxidation. The FESEM analysis results indicate that well-dispersed nanoscale (2–5 nm) PtRu particles are formed on the MWCNTs. Finally, PtRuFeNi/MWCNT improves the reaction kinetics of anode catalysts for DMFCs and obtains a mass current of 31 A g−1 catalyst. PMID:24883406

  3. From pan-reactive KV7 channel opener to subtype selective opener/inhibitor by addition of a methyl group.

    PubMed

    Blom, Sigrid Marie; Rottländer, Mario; Kehler, Jan; Bundgaard, Christoffer; Schmitt, Nicole; Jensen, Henrik Sindal

    2014-01-01

    The voltage-gated potassium channels of the KV7 family (KV7.1-5) play important roles in controlling neuronal excitability and are therefore attractive targets for treatment of CNS disorders linked to hyperexcitability. One of the main challenges in developing KV7 channel active drugs has been to identify compounds capable of discriminating between the neuronally expressed subtypes (KV7.2-5), aiding the identification of the subunit composition of KV7 currents in various tissues, and possessing better therapeutic potential for particular indications. By taking advantage of the structure-activity relationship of acrylamide KV7 channel openers and the effects of these compounds on mutant KV7 channels, we have designed and synthesized a novel KV7 channel modulator with a unique profile. The compound, named SMB-1, is an inhibitor of KV7.2 and an activator of KV7.4. SMB-1 inhibits KV7.2 by reducing the current amplitude and increasing the time constant for the slow component of the activation kinetics. The activation of KV7.4 is seen as an increase in the current amplitude and a slowing of the deactivation kinetics. Experiments studying mutant channels with a compromised binding site for the KV7.2-5 opener retigabine indicate that SMB-1 binds within the same pocket as retigabine for both inhibition of KV7.2 and activation of KV7.4. SMB-1 may serve as a valuable tool for KV7 channel research and may be used as a template for further design of better subtype selective KV7 channel modulators. A compound with this profile could hold novel therapeutic potential such as the treatment of both positive and cognitive symptoms in schizophrenia.

  4. Experimental Proof of the Bifunctional Mechanism for the Hydrogen Oxidation in Alkaline Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jingkun; Ghoshal, Shraboni; Bates, Michael K.

    Realization of the hydrogen economy relies on effective hydrogen production, storage, and utilization. The slow kinetics of hydrogen evolution and oxidation reaction (HER/HOR) in alkaline media limits many practical applications involving hydrogen generation and utilization, and how to overcome this fundamental limitation remains debatable. Here we present a kinetic study of the HOR on representative catalytic systems in alkaline media. Electrochemical measurements show that the HOR rate of Pt-Ru/C and Ru/C systems is decoupled to their hydrogen binding energy (HBE), challenging the current prevailing HBE mechanism. The alternative bifunctional mechanism is verified by combined electrochemical and in situ spectroscopic data,more » which provide convincing evidence for the presence of hydroxy groups on surface Ru sites in the HOR potential region and its key role in promoting the rate-determining Volmer step. The conclusion presents important references for design and selection of HOR catalysts.« less

  5. Experimental Proof of the Bifunctional Mechanism for the Hydrogen Oxidation in Alkaline Media

    DOE PAGES

    Li, Jingkun; Ghoshal, Shraboni; Bates, Michael K.; ...

    2017-10-16

    Realization of the hydrogen economy relies on effective hydrogen production, storage, and utilization. The slow kinetics of hydrogen evolution and oxidation reaction (HER/HOR) in alkaline media limits many practical applications involving hydrogen generation and utilization, and how to overcome this fundamental limitation remains debatable. Here we present a kinetic study of the HOR on representative catalytic systems in alkaline media. Electrochemical measurements show that the HOR rate of Pt-Ru/C and Ru/C systems is decoupled to their hydrogen binding energy (HBE), challenging the current prevailing HBE mechanism. The alternative bifunctional mechanism is verified by combined electrochemical and in situ spectroscopic data,more » which provide convincing evidence for the presence of hydroxy groups on surface Ru sites in the HOR potential region and its key role in promoting the rate-determining Volmer step. The conclusion presents important references for design and selection of HOR catalysts.« less

  6. Inhibition of Neuronal Voltage-Gated Sodium Channels by Brilliant Blue G

    PubMed Central

    Jo, Sooyeon

    2011-01-01

    Brilliant blue G (BBG), best known as an antagonist of P2X7 receptors, was found to inhibit voltage-gated sodium currents in N1E-115 neuroblastoma cells. Sodium currents elicited from a holding potential of −60 mV were blocked with an IC50 of 2 μM. Block was enhanced in a use-dependent manner at higher stimulation rates. The voltage-dependence of inactivation was shifted in the hyperpolarizing direction, and recovery from inactivation was slowed by BBG. The most dramatic effect of BBG was to slow recovery from inactivation after long depolarizations, with 3 μM BBG increasing half-time for recovery (measured at −120 mV) from 24 to 854 ms after a 10-s step to 0 mV. These results were mimicked by a kinetic model in which BBG binds weakly to resting channels (Kd = 170 μM) but tightly to fast-inactivated channels (Kd = 5 μM) and even more tightly (Kd = 0.2 μM) to slow-inactivated channels. In contrast to BBG, the structurally related food-coloring dye Brilliant Blue FCF had very little effect at concentrations up to 30 μM. These results show that BBG inhibits voltage-gated sodium channels at micromolar concentrations. Although BBG inhibition of sodium channels is less potent than inhibition of P2X7 receptors, there may be significant inhibition of sodium channels at BBG concentrations achieved in spinal cord or brain during experimental treatment of spinal cord injury or Huntington's disease. Considered as a sodium channel blocker, BBG is remarkably potent, acting with more than 10-fold greater potency than lacosamide, another blocker thought to bind to slow-inactivated channels. PMID:21536754

  7. Buffer kinetics shape the spatiotemporal patterns of IP3-evoked Ca2+ signals

    PubMed Central

    Dargan, Sheila L; Parker, Ian

    2003-01-01

    Ca2+ liberation through inositol 1,4,5-trisphosphate receptors (IP3Rs) plays a universal role in cell regulation, and specificity of cell signalling is achieved through the spatiotemporal patterning of Ca2+ signals. IP3Rs display Ca2+-induced Ca2+ release (CICR), but are grouped in clusters so that regenerative Ca2+ signals may remain localized to individual clusters, or propagate globally between clusters by successive cycles of Ca2+ diffusion and CICR. We used confocal microscopy and photoreleased IP3 in Xenopus oocytes to study how these properties are modulated by mobile cytosolic Ca2+ buffers. EGTA (a buffer with slow ‘on-rate’) speeded Ca2+ signals and ‘balkanized’ Ca2+ waves by dissociating them into local signals. In contrast, BAPTA (a fast buffer with similar affinity) slowed Ca2+ responses and promoted ‘globalization’ of spatially uniform Ca2+ signals. These actions are likely to arise through differential effects on Ca2+ feedback within and between IP3R clusters, because Ca2+ signals evoked by influx through voltage-gated channels were little affected. We propose that cell-specific expression of Ca2+-binding proteins with distinct kinetics may shape the time course and spatial distribution of IP3-evoked Ca2+ signals for specific physiological roles. PMID:14555715

  8. Cr(3+) Binding to DNA Backbone Phosphate and Bases: Slow Ligand Exchange Rates and Metal Hydrolysis.

    PubMed

    Zhou, Wenhu; Yu, Tianmeng; Vazin, Mahsa; Ding, Jinsong; Liu, Juewen

    2016-08-15

    The interaction between chromium ions and DNA is of great interest in inorganic chemistry, toxicology, and analytical chemistry. Most previous studies focused on in situ reduction of Cr(VI), producing Cr(3+) for DNA binding. Recently, Cr(3+) was reported to activate the Ce13d DNAzyme for RNA cleavage. Herein, the Ce13d is used to study two types of Cr(3+) and DNA interactions. First, Cr(3+) binds to the DNA phosphate backbone weakly through reversible electrostatic interactions, which is weakened by adding competing inorganic phosphate. However, Cr(3+) coordinates with DNA nucleobases forming stable cross-links that can survive denaturing gel electrophoresis condition. The binding of Cr(3+) to different nucleobases was further studied in terms of binding kinetics and affinity by exploiting carboxyfluorescein-labeled DNA homopolymers. Once binding takes place, the stable Cr(3+)/DNA complex cannot be dissociated by EDTA, attributable to the ultraslow ligand exchange rate of Cr(3+). The binding rate follows the order of G > C > T ≈ A. Finally, Cr(3+) gradually loses its DNA binding ability after being stored at neutral or high pH, attributable to hydrolysis. This hydrolysis can be reversed by lowering the pH. This work provides a deeper insight into the bioinorganic chemistry of Cr(3+) coordination with DNA, clarifies some inconsistency in the previous literature, and offers practically useful information for generating reproducible results.

  9. Human skeletal muscle: transition between fast and slow fibre types.

    PubMed

    Neunhäuserer, Daniel; Zebedin, Michaela; Obermoser, Magdalena; Moser, Gerhard; Tauber, Mark; Niebauer, Josef; Resch, Herbert; Galler, Stefan

    2011-05-01

    Human skeletal muscles consist of different fibre types: slow fibres (slow twitch or type I) containing the myosin heavy chain isoform (MHC)-I and fast fibres (fast twitch or type II) containing MHC-IIa (type IIA) or MHC-IId (type IID). The following order of decreasing kinetics is known: type IID > type IIA > type I. This order is especially based on the kinetics of stretch activation, which is the most discriminative property among fibre types. In this study we tested if hybrid fibres containing both MHC-IIa and MHC-I (type C fibres) provide a transition in kinetics between fast (type IIA) and slow fibres (type I). Our data of stretch activation kinetics suggest that type C fibres, with different ratios of MHC-IIa and MHC-I, do not provide a continuous transition. Instead, a specialized group of slow fibres, which we called "transition fibres", seems to provide a transition. Apart of their kinetics of stretch activation, which is most close to that of type IIA, the transition fibres are characterized by large cross-sectional areas and low maximal tensions. The molecular cause for the mechanical properties of the transition fibres is unknown. It is possible that the transition fibres contain an unknown slow MHC isoform, which cannot be separated by biochemical methods. Alternatively, or in addition, isoforms of myofibrillar proteins, other than MHC, and posttranslational modifications of myofibrillar proteins could play a role regarding the characteristics of the transition fibres.

  10. Emergence of ion channel modal gating from independent subunit kinetics.

    PubMed

    Bicknell, Brendan A; Goodhill, Geoffrey J

    2016-09-06

    Many ion channels exhibit a slow stochastic switching between distinct modes of gating activity. This feature of channel behavior has pronounced implications for the dynamics of ionic currents and the signaling pathways that they regulate. A canonical example is the inositol 1,4,5-trisphosphate receptor (IP3R) channel, whose regulation of intracellular Ca(2+) concentration is essential for numerous cellular processes. However, the underlying biophysical mechanisms that give rise to modal gating in this and most other channels remain unknown. Although ion channels are composed of protein subunits, previous mathematical models of modal gating are coarse grained at the level of whole-channel states, limiting further dialogue between theory and experiment. Here we propose an origin for modal gating, by modeling the kinetics of ligand binding and conformational change in the IP3R at the subunit level. We find good agreement with experimental data over a wide range of ligand concentrations, accounting for equilibrium channel properties, transient responses to changing ligand conditions, and modal gating statistics. We show how this can be understood within a simple analytical framework and confirm our results with stochastic simulations. The model assumes that channel subunits are independent, demonstrating that cooperative binding or concerted conformational changes are not required for modal gating. Moreover, the model embodies a generally applicable principle: If a timescale separation exists in the kinetics of individual subunits, then modal gating can arise as an emergent property of channel behavior.

  11. On Kinetic Slow Modes, Fluid Slow Modes, and Pressure-balanced Structures in the Solar Wind

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verscharen, Daniel; Chen, Christopher H. K.; Wicks, Robert T., E-mail: daniel.verscharen@unh.edu, E-mail: christopher.chen@imperial.ac.uk, E-mail: r.wicks@ucl.ac.uk

    Observations in the solar wind suggest that the compressive component of inertial-range solar-wind turbulence is dominated by slow modes. The low collisionality of the solar wind allows for nonthermal features to survive, which suggests the requirement of a kinetic plasma description. The least-damped kinetic slow mode is associated with the ion-acoustic (IA) wave and a nonpropagating (NP) mode. We derive analytical expressions for the IA-wave dispersion relation in an anisotropic plasma in the framework of gyrokinetics and then compare them to fully kinetic numerical calculations, results from two-fluid theory, and magnetohydrodynamics (MHD). This comparison shows major discrepancies in the predictedmore » wave phase speeds from MHD and kinetic theory at moderate to high β . MHD and kinetic theory also dictate that all plasma normal modes exhibit a unique signature in terms of their polarization. We quantify the relative amplitude of fluctuations in the three lowest particle velocity moments associated with IA and NP modes in the gyrokinetic limit and compare these predictions with MHD results and in situ observations of the solar-wind turbulence. The agreement between the observations of the wave polarization and our MHD predictions is better than the kinetic predictions, which suggests that the plasma behaves more like a fluid in the solar wind than expected.« less

  12. pH dependence of cyanide binding to the ferric heme domain of the direct oxygen sensor from Escherichia coli and the effect of alkaline denaturation.

    PubMed

    Bidwai, Anil K; Ok, Esther Y; Erman, James E

    2008-09-30

    The spectrum of the ferric heme domain of the direct oxygen sensor protein from Escherichia coli ( EcDosH) has been measured between pH 3.0 and 12.6. EcDosH undergoes acid denaturation with an apparent p K a of 4.24 +/- 0.05 and a Hill coefficient of 3.1 +/- 0.6 and reversible alkaline denaturation with a p K a of 9.86 +/- 0.04 and a Hill coefficient of 1.1 +/- 0.1. Cyanide binding to EcDosH has been investigated between pH 4 and 11. The EcDosH-cyanide complex is most stable at pH 9 with a K D of 0.29 +/- 0.06 microM. The kinetics of cyanide binding are monophasic between pH 4 and 8. At pH >or=8.5, the reaction is biphasic with the fast phase dependent upon the cyanide concentration and the slow phase independent of cyanide. The slow phase is attributed to conversion of denatured EcDosH to the native state, with a pH-independent rate of 0.052 +/- 0.006 s (-1). The apparent association rate constant for cyanide binding to EcDosH increases from 3.6 +/- 0.1 M (-1) s (-1) at pH 4 to 520 +/- 20 M (-1) s (-1) at pH 11. The dissociation rate constant averages (8.6 +/- 1.3) x 10 (-5) s (-1) between pH 5 and 9, increasing to (1.4 +/- 0.1) x 10 (-3) s (-1) at pH 4 and (2.5 +/- 0.1) x 10 (-3) s (-1) at pH 12.2. The mechanism of cyanide binding is consistent with preferential binding of the cyanide anion to native EcDosH. The reactions of imidazole and H 2O 2 with ferric EcDosH were also investigated and show little reactivity.

  13. The effects of bound state motion on macromolecular diffusion

    NASA Astrophysics Data System (ADS)

    Hough, Loren; Stefferson, Michael; Norris, Samantha; Maguire, Laura; Vernerey, Franck; Betterton, Meredith

    The diffusion of macromolecules is modified in crowded environments by both inert obstacles and interaction sites. Molecules are generally slowed in their movement inducing transient anomalous subdiffusion. Obstacles also modify the kinetics and equilibrium behavior of interaction between mobile proteins. In some biophysical contexts, bound molecules can still experience mobility, for example transcription factors sliding along DNA, membrane proteins with some entry and diffusion within lipid domains, or proteins that can enter into non-membrane bound compartments such as the nucleolus. We used lattice and continuum models to study the diffusive behavior of tracer particles which bind to obstacles and can diffuse within them. We show that binding significantly alters the motion of tracers. The type and degree of motion while bound is a key determinant of the tracer mobility. Our work has implications for protein-protein movement and interactions within living cells, including those involving intrinsically disordered proteins.

  14. Cross-bridge kinetics of fast and slow fibres of cat jaw and limb muscles: correlations with myosin subunit composition.

    PubMed

    Hoh, Joseph F Y; Li, Zhao-Bo; Qin, Han; Hsu, Michael K H; Rossmanith, Gunther H

    2007-01-01

    Mechanical properties of the jaw-closing muscles of the cat are poorly understood. These muscles are known to differ in myosin and fibre type compositions from limb muscles. This work aims to correlate mechanical properties of single fibres in cat jaw and limb muscles with their myosin subunit compositions. The stiffness minimum frequency, f(min), which reflects isometric cross-bridge kinetics, was measured in Ca(2+)-activated glycerinated fast and slow fibres from cat jaw and limb muscles for temperatures ranging between 15 and 30 degrees C by mechanical perturbation analysis. At 15 degrees C, f(min) was 0.5 Hz for limb-slow fibres, 4-6 Hz for jaw-slow fibres, and 10-13 Hz for limb-fast and jaw-fast fibres. The activation energy for f(min) obtained from the slope of the Arrhenius plot for limb-slow fibres was 30-40% higher than values for the other three types of fibres. SDS-PAGE and western blotting using highly specific antibodies verified that limb-fast fibres contained IIA or IIX myosin heavy chain (MyHC). Jaw-fast fibres expressed masticatory MyHC while both jaw-fast and jaw-slow fibres expressed masticatory myosin light chains (MLCs). The nucleotide sequences of the 3' ends of the slow MyHC cDNAs isolated from cat masseter and soleus cDNA libraries showed identical coding and 3'-untranslated regions, suggesting that jaw-slow and limb-slow fibres express the same slow MyHC gene. We conclude that the isometric cross-bridge cycling kinetics of jaw-fast and limb-fast fibres detected by f(min) are indistinguishable in spite of differences in MyHC and light chain compositions. However, jaw-slow fibres, in which the same slow MyHCs are found in combination with MLCs of the jaw type, show enhanced cross-bridge cycling kinetics and reduced activation energy for cross-bridge detachment.

  15. Kinetic, mechanistic, and structural modeling studies of truncated wild-type leucine-rich repeat kinase 2 and the G2019S mutant.

    PubMed

    Liu, Min; Kang, Stephanie; Ray, Soumya; Jackson, Justin; Zaitsev, Alexandra D; Gerber, Scott A; Cuny, Gregory D; Glicksman, Marcie A

    2011-11-01

    Leucine-rich repeat kinase 2 (LRRK2), a large and complex protein that possesses two enzymatic properties, kinase and GTPase, is one of the major genetic factors in Parkinson's disease (PD). Here, we characterize the kinetic and catalytic mechanisms of truncated wild-type (t-wt) LRRK2 and its most common mutant, G2019S (t-G2019S), with a structural interpretation of the kinase domain. First, the substitution of threonine with serine in the LRRKtide peptide results in a much less efficient substrate as demonstrated by a 26-fold decrease in k(cat) and a 6-fold decrease in binding affinity. The significant decrease in k(cat) is attributed to a slow chemical transfer step as evidenced by the inverse solvent kinetic isotope effect in the proton inventory and pL (pH or pD)-dependent studies. The shape of the proton inventory and pL profile clearly signals the involvement of a general base (pK(a) = 7.5) in the catalysis with a low fractionation factor in the ground state. We report for the first time that the increased kinase activity of the G2019S mutant is substrate-dependent. Homology modeling of the kinase domain (open and closed forms) and structural analysis of the docked peptide substrates suggest that electrostatic interactions play an important role in substrate recognition, which is affected by G2019S and may directly influence the kinetic properties of the enzyme. Finally, the GTPase activity of the t-G2019S mutant was characterized, and the mutation modestly decreases GTPase activity without significantly affecting GTP binding affinity.

  16. Processes and kinetics of Cd2+ sorption by a calcareous aquifer sand

    USGS Publications Warehouse

    Fuller, C.C.; Davis, J.A.

    1987-01-01

    The rate of Cd2+ sorption by a calcareous aquifer sand was characterized by two reaction steps, with the first step reaching completion in 24 hours. The second step proceeded at a slow and nearly constant rate for at least seven days. The first step includes a fast adsorption reaction which is followed by diffusive transport into either a disordered surface film of hydrated calcium carbonate or into pore spaces. After 24 hours the rate of Cd2+ sorption was constant and controlled by the rate of surface coprecipitation, as a solid solution of CdCO3 in CaCO3 formed in recrystallizing material. Desorption of Cd2+ from the sand was slow. Clean grains of primary minerals, e.g. quartz and aluminosilicates. sorbed much less Cd2+ than grains which had surface patches of secondary minerals, e.g. carbonates, iron and manganese oxides. Calcite grains sorbed the greatest amount of Cd2+ on a weight-normalized basis despite the greater abundance of quartz. A method is illustrated for determining empirical binding constants for trace metals at in situ pH values without introducing the experimental problem of supersaturation. The binding constants are useful for solute transport models which include a computation of aqueous speciation. ?? 1987.

  17. A model of stereocilia adaptation based on single molecule mechanical studies of myosin I.

    PubMed Central

    Batters, Christopher; Wallace, Mark I; Coluccio, Lynne M; Molloy, Justin E

    2004-01-01

    We have used an optical tweezers-based apparatus to perform single molecule mechanical experiments using the unconventional myosins, Myo1b and Myo1c. The single-headed nature and slow ATPase kinetics of these myosins make them ideal for detailed studies of the molecular mechanism of force generation by acto-myosin. Myo1c exhibits several features that have not been seen using fast skeletal muscle myosin II. (i) The working stroke occurs in two, distinct phases, producing an initial 3 nm and then a further 1.5 nm of movement. (ii) Two types of binding interaction were observed: short-lived ATP-independent binding events that produced no movement and longer-lived, ATP-dependent events that produced a full working stroke. The stiffness of both types of interaction was similar. (iii) In a new type of experiment, using feedback to apply controlled displacements to a single acto-myosin cross-bridge, we found abrupt changes in force during attachment of the acto-Myo1b cross-bridge, a result that is consistent with the classical 'T2' behaviour of single muscle fibres. Given that these myosins might exhibit the classical T2 behaviour, we propose a new model to explain the slow phase of sensory adaptation of the hair cells of the inner ear. PMID:15647165

  18. Slow-binding inhibition of sialidase from influenza virus.

    PubMed

    Pegg, M S; von Itzstein, M

    1994-04-01

    Sialidase from influenza virus A (Tokyo/3/67, N2) is inhibited in slow-binding fashion by 2,3-didehydro-2,4-dideoxy-4-guanidino-N-acetyl-D-neuraminic acid. The Ki observed for the tightly-bound form at steady-state is 3 x 10(-11) M. Slow-binding, which is a consequence of the guanidinyl moiety of the inhibitor, is observed only for influenza virus A sialidase and not for influenza virus B or any other viral, bacterial, or mammalian sialidase investigated. The different results obtained for sialidases from influenza virus A and B, whose active sites are conserved, point to the involvement of the expulsion of a structural water molecule in the slow-binding mechanism.

  19. Substrate Binding Drives Active-Site Closing of Human Blood Group B Galactosyltransferase as Revealed by Hot-Spot Labeling and NMR Spectroscopy Experiments.

    PubMed

    Weissbach, Sophie; Flügge, Friedemann; Peters, Thomas

    2018-05-04

    Crystallography has shown that human blood group A (GTA) and B (GTB) glycosyltransferases undergo transitions between "open", "semiclosed", and "closed" conformations upon substrate binding. However, the timescales of the corresponding conformational reorientations are unknown. Crystal structures show that the Trp and Met residues are located at "conformational hot spots" of the enzymes. Therefore, we utilized 15 N side-chain labeling of Trp residues and 13 C-methyl labeling of Met residues to study substrate-induced conformational transitions of GTB. Chemical-shift perturbations (CSPs) of Met and Trp residues in direct contact with substrate ligands reflect binding kinetics, whereas the CSPs of Met and Trp residues at remote sites reflect conformational changes of the enzyme upon substrate binding. Acceptor binding is fast on the chemical-shift timescale with rather small CSPs in the range of less than approximately 20 Hz. Donor binding matches the intermediate exchange regime to yield an estimate for exchange rate constants of approximately 200-300 Hz. Donor or acceptor binding to GTB saturated with acceptor or donor substrate, respectively, is slow (<10 Hz), as are coupled protein motions, reflecting mutual allosteric control of donor and acceptor binding. Remote CSPs suggest that substrate binding drives the enzyme into the closed state required for catalysis. These findings should contribute to better understanding of the mechanism of glycosyl transfer of GTA and GTB. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Comparison between Slow Components of HR and V[Combining Dot Above]O2 Kinetics: Functional Significance.

    PubMed

    Zuccarelli, Lucrezia; Porcelli, Simone; Rasica, Letizia; Marzorati, Mauro; Grassi, Bruno

    2018-03-22

    Aerobic exercise prescription is often based on a linear relationship between pulmonary oxygen consumption (V[Combining Dot Above]O2) and heart rate (HR). The aim of the present study was to test the hypothesis that during constant work rate (CWR) exercises at different intensities the slow component of HR kinetics occurs at lower work rate and is more pronounced that the slow component of V[Combining Dot Above]O2 kinetics. Seventeen male (age, 27±4yr) subjects performed on a cycle ergometer an incremental exercise to voluntary exhaustion and several CWR exercises: 1) moderate CWR exercises (MODERATE), below gas exchange threshold (GET); 2) heavy CWR exercise (HEAVY), at 45% of the difference between GET and V[Combining Dot Above]O2 peak (□); 3) severe CWR exercise (SEVERE), at 95% of Δ; 4) "HRCLAMPED" exercise in which work rate was continuously adjusted to maintain a constant HR, slightly higher than that determined at GET. Breath-by-breath V[Combining Dot Above]O2, HR and other variables were determined. In MODERATE, no slow component of V[Combining Dot Above]O2 kinetics was observed, whereas a slow component with a relative amplitude (with respect to the total response) of 24.8±11.0% was observed for HR kinetics. During HEAVY, the relative amplitude of the HR slow component was more pronounced than that for V[Combining Dot Above]O2 (31.6±11.2 and 23.3±9.0%, respectively). During HRCLAMPED the decrease in work rate (~14%) needed in order to maintain a constant HR was associated with a decreased V[Combining Dot Above]O2 (~10%). The HR slow component occurred at a lower work rate and was more pronounced than the V[Combining Dot Above]O2 slow component. Exercise prescriptions at specific HR values, when carried out for periods longer than a few minutes, could lead to premature fatigue.

  1. Long-term bioconcentration kinetics of hydrophobic chemicals in Selenastrum capricornutum and Microcystis aeruginosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koelmans, A.A.; Woude, H. van der; Hattink, J.

    1999-06-01

    The bioconcentration of two chlorobenzenes (CBs) and of seven polychlorobiphenyls (PCBs) to Selenastrum capricornutum and Microcystis aeruginosa was studied with accumulation experiments followed by gas purge elimination experiments. Henry's law constants at 10 C were needed to interpret the gas purge results and were measured in control experiments. For the M. aerogunisa culture, steady-state uptake was reached within days, whereas uptake by S. capricornutum took several weeks. The relationships between the log bioconcentration factors (BCF) and log octanol-water partition coefficients (K[sub OW]) were nonlinear, with relatively low values for the more hydrophobic PCBs. Rate constants for the elimination of CBsmore » and PCBs from the algal cells were shown to be larger than 1 per day when calculated with a one-compartment model. With such large rate constants, it is unlikely that the curvature observed for these species is caused by slow kinetics or that algal growth affects BCF by dilution of CB or PCB concentrations. The log BCF-log K[sub OW] relationships could be described by a simple three-phase model that accounted for the binding of CBs and PCBs to dissolved organic carbon (DOC). Modeling bioconcentration of hydrophobic chemicals in phytoplankton should account for the binding to DOC.« less

  2. Slow Inactivation in Shaker K Channels Is Delayed by Intracellular Tetraethylammonium

    PubMed Central

    González-Pérez, Vivian; Neely, Alan; Tapia, Christian; González-Gutiérrez, Giovanni; Contreras, Gustavo; Orio, Patricio; Lagos, Verónica; Rojas, Guillermo; Estévez, Tania; Stack, Katherine; Naranjo, David

    2008-01-01

    After removal of the fast N-type inactivation gate, voltage-sensitive Shaker (Shaker IR) K channels are still able to inactivate, albeit slowly, upon sustained depolarization. The classical mechanism proposed for the slow inactivation observed in cell-free membrane patches—the so called C inactivation—is a constriction of the external mouth of the channel pore that prevents K+ ion conduction. This constriction is antagonized by the external application of the pore blocker tetraethylammonium (TEA). In contrast to C inactivation, here we show that, when recorded in whole Xenopus oocytes, slow inactivation kinetics in Shaker IR K channels is poorly dependent on external TEA but severely delayed by internal TEA. Based on the antagonism with internally or externally added TEA, we used a two-pulse protocol to show that half of the channels inactivate by way of a gate sensitive to internal TEA. Such gate had a recovery time course in the tens of milliseconds range when the interpulse voltage was −90 mV, whereas C-inactivated channels took several seconds to recover. Internal TEA also reduced gating charge conversion associated to slow inactivation, suggesting that the closing of the internal TEA-sensitive inactivation gate could be associated with a significant amount of charge exchange of this type. We interpreted our data assuming that binding of internal TEA antagonized with U-type inactivation (Klemic, K.G., G.E. Kirsch, and S.W. Jones. 2001. Biophys. J. 81:814–826). Our results are consistent with a direct steric interference of internal TEA with an internally located slow inactivation gate as a “foot in the door” mechanism, implying a significant functional overlap between the gate of the internal TEA-sensitive slow inactivation and the primary activation gate. But, because U-type inactivation is reduced by channel opening, trapping the channel in the open conformation by TEA would also yield to an allosteric delay of slow inactivation. These results provide a framework to explain why constitutively C-inactivated channels exhibit gating charge conversion, and why mutations at the internal exit of the pore, such as those associated to episodic ataxia type I in hKv1.1, cause severe changes in inactivation kinetics. PMID:19029372

  3. Virus Neutralisation: New Insights from Kinetic Neutralisation Curves

    PubMed Central

    Magnus, Carsten

    2013-01-01

    Antibodies binding to the surface of virions can lead to virus neutralisation. Different theories have been proposed to determine the number of antibodies that must bind to a virion for neutralisation. Early models are based on chemical binding kinetics. Applying these models lead to very low estimates of the number of antibodies needed for neutralisation. In contrast, according to the more conceptual approach of stoichiometries in virology a much higher number of antibodies is required for virus neutralisation by antibodies. Here, we combine chemical binding kinetics with (virological) stoichiometries to better explain virus neutralisation by antibody binding. This framework is in agreement with published data on the neutralisation of the human immunodeficiency virus. Knowing antibody reaction constants, our model allows us to estimate stoichiometrical parameters from kinetic neutralisation curves. In addition, we can identify important parameters that will make further analysis of kinetic neutralisation curves more valuable in the context of estimating stoichiometries. Our model gives a more subtle explanation of kinetic neutralisation curves in terms of single-hit and multi-hit kinetics. PMID:23468602

  4. Substrate-Triggered Exosite Binding: Synergistic Dendrimer/Folic Acid Action for Achieving Specific, Tight-Binding to Folate Binding Protein.

    PubMed

    Chen, Junjie; van Dongen, Mallory A; Merzel, Rachel L; Dougherty, Casey A; Orr, Bradford G; Kanduluru, Ananda Kumar; Low, Philip S; Marsh, E Neil G; Banaszak Holl, Mark M

    2016-03-14

    Polymer-ligand conjugates are designed to bind proteins for applications as drugs, imaging agents, and transport scaffolds. In this work, we demonstrate a folic acid (FA)-triggered exosite binding of a generation five poly(amidoamine) (G5 PAMAM) dendrimer scaffold to bovine folate binding protein (bFBP). The protein exosite is a secondary binding site on the protein surface, separate from the FA binding pocket, to which the dendrimer binds. Exosite binding is required to achieve the greatly enhanced binding constants and protein structural change observed in this study. The G5Ac-COG-FA1.0 conjugate bound tightly to bFBP, was not displaced by a 28-fold excess of FA, and quenched roughly 80% of the initial fluorescence. Two-step binding kinetics were measured using the intrinsic fluorescence of the FBP tryptophan residues to give a KD in the low nanomolar range for formation of the initial G5Ac-COG-FA1.0/FBP* complex, and a slow conversion to the tight complex formed between the dendrimer and the FBP exosite. The extent of quenching was sensitive to the choice of FA-dendrimer linker chemistry. Direct amide conjugation of FA to G5-PAMAM resulted in roughly 50% fluorescence quenching of the FBP. The G5Ac-COG-FA, which has a longer linker containing a 1,2,3-triazole ring, exhibited an ∼80% fluorescence quenching. The binding of the G5Ac-COG-FA1.0 conjugate was compared to poly(ethylene glycol) (PEG) conjugates of FA (PEGn-FA). PEG2k-FA had a binding strength similar to that of FA, whereas other PEG conjugates with higher molecular weight showed weaker binding. However, no PEG conjugates gave an increased degree of total fluorescence quenching.

  5. Sorption of lead onto two gram-negative marine bacteria in seawater

    USGS Publications Warehouse

    Harvey, Ronald W.; Leckie, James O.

    1985-01-01

    Laboratory adsorption experiments performed at environmentally significant lead (Pb) and cell concentrations indicate that the marine bacteria examined have significant binding capacities for Pb. However, the behavior governing Pb sorption onto gram-negative bacteria in seawater may be quite complex. The sorption kinetics appear to involve two distinct phases, i.e., a rapid removal of Pb from solution within the first few minutes, followed by a slow but nearly constant removal over many hours. Also, the average binding coefficient, calculated for Pb sorption onto bacteria and a measure of binding intensity, increases with decreasing sorption density (amounts of bacteria-associated Pb per unit bacterial surface) at low cell concentrations (105 cells ml−1), but decreases with decreasing sorption density at higher cell concentrations (107 cells ml−1). The latter effect is apparently due to the production of significant amounts of extra-cellular organics at high cell concentrations that compete directly with bacterial surfaces for available lead. Lead toxicity and active uptake by marine bacteria did not appear significant at the Pb concentrations used.

  6. The Dual Role of Disorder on the Dissociation of Interfacial Charge Transfer Excitons

    NASA Astrophysics Data System (ADS)

    Shi, Liang; Lee, Chee-Kong; Willard, Adam

    In organic-based photovoltaics (OPV), dissociation of neutral photo-excitations (i.e., Frenkel excitons) into free charge carriers requires the excitons to overcome binding energy that can significantly exceed thermal energies. The inability of bound charges to overcome this large binding energy has been implicated as a primary source of efficiency loss in OPVs. Despite the potential impact on the performance of organic solar cells much remains to be understood about the microscopic mechanism of exciton dissociation in OPV materials. Here we explore the role of static molecular disorder in mediating this charge dissociation process. Using a simple lattice model of exciton dynamics we demonstrate that random spatial variations in the energetic landscape can mitigate the effects of the exciton binding energy by lowering the free energy barrier. By considering the competition between this thermodynamic effect and the disorder-induced slowing of dissociation kinetics we demonstrate that exciton dissociation yields are expected to depend non-monotonically on the degree of static disorder. We conclude that a certain amount of molecular-scale disorder is desirable in order to optimize the performance of organic photovoltaic materials.

  7. Carbachol dimers as homobivalent modulators of muscarinic receptors.

    PubMed

    Matucci, Rosanna; Nesi, Marta; Martino, Maria Vittoria; Bellucci, Cristina; Manetti, Dina; Ciuti, Elisa; Mazzolari, Angelica; Dei, Silvia; Guandalini, Luca; Teodori, Elisabetta; Vistoli, Giulio; Romanelli, Maria Novella

    2016-05-15

    A series of homodimers of the well-known cholinergic agonist carbachol have been synthesized, showing the two agonist units symmetrically connected through a methylene chain of variable length. The new compounds have been tested on the five cloned muscarinic receptors (hM1-5) expressed in CHO cells by means of equilibrium binding studies, showing an increase in affinity by rising the number of methylene units up to 7 and 9. Functional experiments on guinea-pig ileum and assessment of ERK1/2 phosphorylation on hM1, hM2 and hM3 on CHO cells have shown that the new compounds are endowed with muscarinic antagonistic properties. Kinetic binding studies have revealed that some of the tested compounds are able to slow the rate of dissociation of NMS, suggesting a bitopic behavior. Docking simulations, performed on the hM1 and hM2 receptors, give a sound rationalization of the experimental data revealing how these compounds are able to interact with both orthosteric and allosteric binding sites depending on the length of their connecting chain. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Rate constants of agonist binding to muscarinic receptors in rat brain medulla. Evaluation by competition kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schreiber, G.; Henis, Y.I.; Sokolovsky, M.

    The method of competition kinetics, which measures the binding kinetics of an unlabeled ligand through its effect on the binding kinetics of a labeled ligand, was employed to investigate the kinetics of muscarinic agonist binding to rat brain medulla pons homogenates. The agonists studied were acetylcholine, carbamylcholine, and oxotremorine, with N-methyl-4-(TH)piperidyl benzilate employed as the radiolabeled ligand. Our results suggested that the binding of muscarinic agonists to the high affinity sites is characterized by dissociation rate constants higher by 2 orders of magnitude than those of antagonists, with rather similar association rate constants. Our findings also suggest that isomerization ofmore » the muscarinic receptors following ligand binding is significant in the case of antagonists, but not of agonists. Moreover, it is demonstrated that in the medulla pons preparation, agonist-induced interconversion between high and low affinity bindings sites does not occur to an appreciable extent.« less

  9. Comparison of 16-iodohexadecanoic acid (IHDA) and 15-p-iodophenylpentadecanoic acid (IPPA) metabolism and kinetics in the isolated rat heart.

    PubMed

    DeGrado, T R; Holden, J E; Ng, C K; Raffel, D M; Gatley, S J

    1988-01-01

    Time courses of radioactivity (residue curves) were obtained following bolus injection into working rat hearts of two 125I-labeled long chain fatty acids: 16-iodohexadecanoic acid (IHDA) and 15-p-iodophenylpentadecanoic acid (IPPA). Residue curves were analyzed in terms of a rapid vascular washout component, an early tissue clearance component, and a very slow late component. For IHDA and IPPA in control hearts, early myocardial clearance kinetics were rate limited by the diffusion of catabolites. Sensitivity of the kinetics to impaired fatty acid oxidation was examination by pretreatment of animals with 2[5(4-chlorophenyl)pentyl]oxirane-2-carboxylate (POCA). Decreased fatty acid oxidation was indicated in IHDA and IPPA residue curves by a decrease in the relative size of the early clearance component. Analysis of radiolabeled species in coronary effluent and heart homogenates showed that back diffusion of IPPA was slower than that of IHDA; this discrepancy was most apparent in POCA hearts. In vitro binding assays suggested higher tissue:albumin relative affinity for IPPA than for IHDA. Thus, IPPA early clearance kinetics were more closely related to the clearance of labeled catabolite(s) and were therefore more sensitive to the oxidation rate of long chain fatty acids.

  10. Mex3a marks slow-proliferating multilineage progenitors of the intestinal epithelium

    PubMed Central

    Barriga, Francisco M.; Montagni, Elisa; Mana, Miyeko; Guillaumet-Adkins, Amy; Hernando-Momblona, Xavier; Sevillano, Marta; Rodriguez-Esteban, Gustavo; Mendez-Lago, Maria; Buczacki, Simon J. A.; Gut, Ivo; Gut, Marta; Winton, Douglas J.; Yilmaz, Omer; Stephan-Otto, Camille; Hein, Holger; Batlle, Eduard

    2017-01-01

    SUMMARY The intestinal epithelium is continuously regenerated by highly proliferative Lgr5+ intestinal stem cells (ISCs). The existence of a population of quiescent ISCs has been suggested yet its identity and features remain controversial. Here we describe that the expression of the RNA-binding protein Mex3a labels a subpopulation of Lgr5+ cells that divide less frequently and contribute to regenerate all intestinal lineages with slow kinetics. Single cell transcriptomic analysis revealed two classes of Lgr5-high cells, one of them defined by the Mex3a-expression program and by low levels of proliferation genes. Lineage tracing experiments show that large fraction of Mex3a+ cell population is continuously recalled into the rapidly dividing self-renewing ISC pool in homeostatic conditions. Chemotherapy and radiation target preferentially rapidly dividing Lgr5+ cells but spare the Mex3a-high/Lgr5+ population, which helps sustain the renewal of the intestinal epithelium during treatment. PMID:28285904

  11. Slow domain reconfiguration causes power-law kinetics in a two-state enzyme.

    PubMed

    Grossman-Haham, Iris; Rosenblum, Gabriel; Namani, Trishool; Hofmann, Hagen

    2018-01-16

    Protein dynamics are typically captured well by rate equations that predict exponential decays for two-state reactions. Here, we describe a remarkable exception. The electron-transfer enzyme quiescin sulfhydryl oxidase (QSOX), a natural fusion of two functionally distinct domains, switches between open- and closed-domain arrangements with apparent power-law kinetics. Using single-molecule FRET experiments on time scales from nanoseconds to milliseconds, we show that the unusual open-close kinetics results from slow sampling of an ensemble of disordered domain orientations. While substrate accelerates the kinetics, thus suggesting a substrate-induced switch to an alternative free energy landscape of the enzyme, the power-law behavior is also preserved upon electron load. Our results show that the slow sampling of open conformers is caused by a variety of interdomain interactions that imply a rugged free energy landscape, thus providing a generic mechanism for dynamic disorder in multidomain enzymes.

  12. New approaches for the reliable in vitro assessment of binding affinity based on high-resolution real-time data acquisition of radioligand-receptor binding kinetics.

    PubMed

    Zeilinger, Markus; Pichler, Florian; Nics, Lukas; Wadsak, Wolfgang; Spreitzer, Helmut; Hacker, Marcus; Mitterhauser, Markus

    2017-12-01

    Resolving the kinetic mechanisms of biomolecular interactions have become increasingly important in early-phase drug development. Since traditional in vitro methods belong to dose-dependent assessments, binding kinetics is usually overlooked. The present study aimed at the establishment of two novel experimental approaches for the assessment of binding affinity of both, radiolabelled and non-labelled compounds targeting the A 3 R, based on high-resolution real-time data acquisition of radioligand-receptor binding kinetics. A novel time-resolved competition assay was developed and applied to determine the K i of eight different A 3 R antagonists, using CHO-K1 cells stably expressing the hA 3 R. In addition, a new kinetic real-time cell-binding approach was established to quantify the rate constants k on and k off , as well as the dedicated K d of the A 3 R agonist [ 125 I]-AB-MECA. Furthermore, lipophilicity measurements were conducted to control influences due to physicochemical properties of the used compounds. Two novel real-time cell-binding approaches were successfully developed and established. Both experimental procedures were found to visualize the kinetic binding characteristics with high spatial and temporal resolution, resulting in reliable affinity values, which are in good agreement with values previously reported with traditional methods. Taking into account the lipophilicity of the A 3 R antagonists, no influences on the experimental performance and the resulting affinity were investigated. Both kinetic binding approaches comprise tracer administration and subsequent binding to living cells, expressing the dedicated target protein. Therefore, the experiments resemble better the true in vivo physiological conditions and provide important markers of cellular feedback and biological response.

  13. Modulators of actin-myosin dissociation: basis for muscle type functional differences during fatigue

    PubMed Central

    Karatzaferi, Christina; Adamek, Nancy

    2017-01-01

    The muscle types present with variable fatigue tolerance, in part due to the myosin isoform expressed. However, the critical steps that define “fatigability” in vivo of fast vs. slow myosin isoforms, at the molecular level, are not yet fully understood. We examined the modulation of the ATP-induced myosin subfragment 1 (S1) dissociation from pyrene-actin by inorganic phosphate (Pi), pH, and temperature using a specially modified stopped-flow system that allowed fast kinetics measurements at physiological temperature. We contrasted the properties of rabbit psoas (fast) and bovine masseter (slow) myosins (obtained from samples collected from New Zealand rabbits and from a licensed abattoir, respectively, according to institutional and national ethics permits). To identify ATP cycling biochemical intermediates, we assessed ATP binding to a preequilibrated mixture of actomyosin and variable [ADP], pH (pH 7 vs. pH 6.2), and Pi (zero, 15, or 30 added mM Pi) in a range of temperatures (5 to 45°C). Temperature and pH variations had little, if any, effect on the ADP dissociation constant (KADP) for fast S1, but for slow S1, KADP was weakened with increasing temperature or low pH. In the absence of ADP, the dissociation constant for phosphate (KPi) was weakened with increasing temperature for fast S1. In the presence of ADP, myosin type differences were revealed at the apparent phosphate affinity, depending on pH and temperature. Overall, the newly revealed kinetic differences between myosin types could help explain the in vivo observed muscle type functional differences at rest and during fatigue. PMID:28931538

  14. Modification of the kinetic parameters of aldolase on binding to the actin-containing filaments of skeletal muscle.

    PubMed Central

    Walsh, T P; Clarke, F M; Masters, C J

    1977-01-01

    The kinetic parameters of fructose bisphosphate aldolase (EC 4.1.2.13) were shown to be modified on binding of the enzyme to the actin-containing filaments of skeletal muscle. Although binding to F-actin or F-actin-tropomyosin filaments results in relative minor changes in kinetic properties, binding to F-actin-tropomyosin-troponin filaments produces major alterations in the kinetic parameters, and, in addition, renders them Ca2+-sensitive. These observations may be relevant to an understanding of the function of this enzyme within the muscle fibre. PMID:889571

  15. Computational modeling approaches to quantitative structure-binding kinetics relationships in drug discovery.

    PubMed

    De Benedetti, Pier G; Fanelli, Francesca

    2018-03-21

    Simple comparative correlation analyses and quantitative structure-kinetics relationship (QSKR) models highlight the interplay of kinetic rates and binding affinity as an essential feature in drug design and discovery. The choice of the molecular series, and their structural variations, used in QSKR modeling is fundamental to understanding the mechanistic implications of ligand and/or drug-target binding and/or unbinding processes. Here, we discuss the implications of linear correlations between kinetic rates and binding affinity constants and the relevance of the computational approaches to QSKR modeling. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Complete dissection of transcription elongation reveals slow translocation of RNA polymerase II in a linear ratchet mechanism

    DOE PAGES

    Dangkulwanich, Manchuta; Ishibashi, Toyotaka; Liu, Shixin; ...

    2013-09-24

    During transcription elongation, RNA polymerase has been assumed to attain equilibrium between pre- and post-translocated states rapidly relative to the subsequent catalysis. Under this assumption, recent single-molecule studies proposed a branched Brownian ratchet mechanism that necessitates a putative secondary nucleotide binding site on the enzyme. By challenging individual yeast RNA polymerase II with a nucleosomal barrier, we separately measured the forward and reverse translocation rates. Surprisingly, we found that the forward translocation rate is comparable to the catalysis rate. This finding reveals a linear, non-branched ratchet mechanism for the nucleotide addition cycle in which translocation is one of the rate-limitingmore » steps. We further determined all the major on- and off-pathway kinetic parameters in the elongation cycle. The resulting translocation energy landscape shows that the off-pathway states are favored thermodynamically but not kinetically over the on-pathway states, conferring the enzyme its propensity to pause and furnishing the physical basis for transcriptional regulation.« less

  17. Physical controls on directed virus assembly at nanoscale chemical templates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheung, C L; Chung, S; Chatterji, A

    2006-05-10

    Viruses are attractive building blocks for nanoscale heterostructures, but little is understood about the physical principles governing their directed assembly. In-situ force microscopy was used to investigate organization of Cowpea Mosaic Virus engineered to bind specifically and reversibly at nanoscale chemical templates with sub-30nm features. Morphological evolution and assembly kinetics were measured as virus flux and inter-viral potential were varied. The resulting morphologies were similar to those of atomic-scale epitaxial systems, but the underlying thermodynamics was analogous to that of colloidal systems in confined geometries. The 1D templates biased the location of initial cluster formation, introduced asymmetric sticking probabilities, andmore » drove 1D and 2D condensation at subcritical volume fractions. The growth kinetics followed a t{sup 1/2} law controlled by the slow diffusion of viruses. The lateral expansion of virus clusters that initially form on the 1D templates following introduction of polyethylene glycol (PEG) into the solution suggests a significant role for weak interaction.« less

  18. Heparin-based hydrogels with tunable sulfation & degradation for anti-inflammatory small molecule delivery.

    PubMed

    Peng, Yifeng; Tellier, Liane E; Temenoff, Johnna S

    2016-08-16

    Sustained release of anti-inflammatory agents remains challenging for small molecule drugs due to their low molecular weight and hydrophobicity. Therefore, the goal of this study was to control the release of a small molecule anti-inflammatory agent, crystal violet (CV), from hydrogels fabricated with heparin, a highly sulfated glycosaminoglycan capable of binding positively-charged molecules such as CV. In this system, both electrostatic interactions between heparin and CV and hydrogel degradation were tuned simultaneously by varying the level of heparin sulfation and varying the amount of dithiothreitol within hydrogels, respectively. It was found that heparin sulfation significantly affected CV release, whereby more sulfated heparin hydrogels (Hep and Hep(-N)) released CV with near zero-order release kinetics (R-squared values between 0.96-0.99). Furthermore, CV was released more quickly from fast-degrading hydrogels than slow-degrading hydrogels, providing a method to tune total CV release between 5-15 days while maintaining linear release kinetics. In particular, N-desulfated heparin hydrogels exhibited efficient CV loading (∼90% of originally included CV), near zero-order CV release kinetics, and maintenance of CV bioactivity after release, making this hydrogel formulation a promising CV delivery vehicle for a wide range of inflammatory diseases.

  19. Negative Cooperativity in the Interaction of Prostaglandin H Synthase-1 with the Competitive Inhibitor Naproxen Can Be Described as the Interaction of a Non-competitive Inhibitor with Heterogeneous Enzyme Preparation.

    PubMed

    Filimonov, I S; Berzova, A P; Barkhatov, V I; Krivoshey, A V; Trushkin, N A; Vrzheshch, P V

    2018-02-01

    The kinetic mechanism of the interaction of nonsteroidal anti-inflammatory drugs (NSAIDs) with their main pharmacological target, prostaglandin H synthase (PGHS), has not yet been established. We showed that inhibition of PGHS-1 from sheep vesicular glands by naproxen (a representative of NSAIDs) demonstrates a non-competitive character with respect to arachidonic acid and cannot be described within a framework of the commonly used kinetic schemes. However, it can be described by taking into account the negative cooperativity of naproxen binding to the cyclooxygenase active sites of the PGHS-1 homodimer (the first naproxen molecule forms a more stable complex (K 1 = 0.1 µM) with the enzyme than the second naproxen molecule (K 2 = 9.2 µM)). An apparent non-competitive interaction of PGHS-1 with naproxen is due to slow dissociation of the enzyme-inhibitor complexes. The same experimental data could also be described using commonly accepted kinetic schemes, assuming that naproxen interacts was a mixture of two enzyme species with the inhibition constants K α = 0.05 µM and K β = 18.3 µM. Theoretical analysis and numerical calculations show that the phenomenon of kinetic convergence of these two models has a general nature: when K 2 > K 1 , the kinetic patterns (for transient kinetics and equilibrium state) generated by the cooperative model could be described by a scheme assuming the presence of two enzyme forms with the inhibition constants K α = K 1 /2, K β = 2·K 2 . When K 2 < K 1 , the cooperative model can be presented as a scheme with two inhibitor molecules simultaneously binding to the enzyme with the observed inhibition constant K (K = K 1 ·K 2 ). The assumption on the heterogeneity of the enzyme preparation in relation to its affinity to the inhibitor can be used instead of the assumption on the negative cooperativity of the enzyme-inhibitor interactions for convenient and easy practical description of such phenomena in enzymology, biotechnology, pharmacology, and other fields of science.

  20. Dissecting the Dynamic Pathways of Stereoselective DNA Threading Intercalation

    PubMed Central

    Almaqwashi, Ali A.; Andersson, Johanna; Lincoln, Per; Rouzina, Ioulia; Westerlund, Fredrik; Williams, Mark C.

    2016-01-01

    DNA intercalators that have high affinity and slow kinetics are developed for potential DNA-targeted therapeutics. Although many natural intercalators contain multiple chiral subunits, only intercalators with a single chiral unit have been quantitatively probed. Dumbbell-shaped DNA threading intercalators represent the next order of structural complexity relative to simple intercalators, and can provide significant insights into the stereoselectivity of DNA-ligand intercalation. We investigated DNA threading intercalation by binuclear ruthenium complex [μ-dppzip(phen)4Ru2]4+ (Piz). Four Piz stereoisomers are defined by the chirality of the intercalating subunit (Ru(phen)2dppz) and the distal subunit (Ru(phen)2ip), respectively, each of which can be either right-handed (Δ) or left-handed (Λ). We used optical tweezers to measure single DNA molecule elongation due to threading intercalation, revealing force-dependent DNA intercalation rates and equilibrium dissociation constants. The force spectroscopy analysis provided the zero-force DNA binding affinity, the equilibrium DNA-ligand elongation Δxeq, and the dynamic DNA structural deformations during ligand association xon and dissociation xoff. We found that Piz stereoisomers exhibit over 20-fold differences in DNA binding affinity, from a Kd of 27 ± 3 nM for (Δ,Λ)-Piz to a Kd of 622 ± 55 nM for (Λ,Δ)-Piz. The striking affinity decrease is correlated with increasing Δxeq from 0.30 ± 0.02 to 0.48 ± 0.02 nm and xon from 0.25 ± 0.01 to 0.46 ± 0.02 nm, but limited xoff changes. Notably, the affinity and threading kinetics is 10-fold enhanced for right-handed intercalating subunits, and 2- to 5-fold enhanced for left-handed distal subunits. These findings demonstrate sterically dispersed transition pathways and robust DNA structural recognition of chiral intercalators, which are critical for optimizing DNA binding affinity and kinetics. PMID:27028636

  1. Kinetics of heavy metal adsorption and desorption in soil: Developing a unified model based on chemical speciation

    NASA Astrophysics Data System (ADS)

    Peng, Lanfang; Liu, Paiyu; Feng, Xionghan; Wang, Zimeng; Cheng, Tao; Liang, Yuzhen; Lin, Zhang; Shi, Zhenqing

    2018-03-01

    Predicting the kinetics of heavy metal adsorption and desorption in soil requires consideration of multiple heterogeneous soil binding sites and variations of reaction chemistry conditions. Although chemical speciation models have been developed for predicting the equilibrium of metal adsorption on soil organic matter (SOM) and important mineral phases (e.g. Fe and Al (hydr)oxides), there is still a lack of modeling tools for predicting the kinetics of metal adsorption and desorption reactions in soil. In this study, we developed a unified model for the kinetics of heavy metal adsorption and desorption in soil based on the equilibrium models WHAM 7 and CD-MUSIC, which specifically consider metal kinetic reactions with multiple binding sites of SOM and soil minerals simultaneously. For each specific binding site, metal adsorption and desorption rate coefficients were constrained by the local equilibrium partition coefficients predicted by WHAM 7 or CD-MUSIC, and, for each metal, the desorption rate coefficients of various binding sites were constrained by their metal binding constants with those sites. The model had only one fitting parameter for each soil binding phase, and all other parameters were derived from WHAM 7 and CD-MUSIC. A stirred-flow method was used to study the kinetics of Cd, Cu, Ni, Pb, and Zn adsorption and desorption in multiple soils under various pH and metal concentrations, and the model successfully reproduced most of the kinetic data. We quantitatively elucidated the significance of different soil components and important soil binding sites during the adsorption and desorption kinetic processes. Our model has provided a theoretical framework to predict metal adsorption and desorption kinetics, which can be further used to predict the dynamic behavior of heavy metals in soil under various natural conditions by coupling other important soil processes.

  2. Kinetic analysis of a monoclonal therapeutic antibody and its single-chain homolog by surface plasmon resonance.

    PubMed

    Patel, Rekha; Andrien, Bruce A

    2010-01-01

    Monoclonal antibodies (mAbs) and antibody fragments have become an emerging class of therapeutics since 1986. Their versatility enables them to be engineered for optimal efficiency and decreased immunogenicity, and the path to market has been set by recent regulatory approvals. One of the initial criteria for success of any protein or antibody therapeutic is to understand its binding characteristics to the target antigen. Surface plasmon resonance (SPR) has been widely used and is an important tool for ligand-antigen binding characterization. In this work, the binding kinetics of a recombinant mAb and its single-chain antibody homolog, single-chain variable fragment (scFv), was analyzed by SPR. These two proteins target the same antigen. The binding kinetics of the mAb (bivalent antibody) and scFv (monovalent scFv) for this antigen was analyzed along with an assessment of the thermodynamics of the binding interactions. Alternative binding configurations were investigated to evaluate potential experimental bias because theoretically experimental binding configuration should have no impact on binding kinetics. Self-association binding kinetics in the proteins' respective formulation solutions and antigen epitope mapping were also evaluated. Functional characterization of monoclonal and single-chain antibodies has become just as important as structural characterization in the biotechnology field.

  3. Noninvasive bi-graphical analysis for the quantification of slowly reversible radioligand binding

    NASA Astrophysics Data System (ADS)

    Seo, Seongho; Kim, Su Jin; Yoo, Hye Bin; Lee, Jee-Young; Kyeong Kim, Yu; Lee, Dong Soo; Zhou, Yun; Lee, Jae Sung

    2016-09-01

    In this paper, we presented a novel reference-region-based (noninvasive) bi-graphical analysis for the quantification of a reversible radiotracer binding that may be too slow to reach relative equilibrium (RE) state during positron emission tomography (PET) scans. The proposed method indirectly implements the noninvasive Logan plot, through arithmetic combination of the parameters of two other noninvasive methods and the apparent tissue-to-plasma efflux rate constant for the reference region (k2\\prime ). We investigated its validity and statistical properties, by performing a simulation study with various noise levels and k2\\prime values, and also evaluated its feasibility for [18F]FP-CIT PET in human brain. The results revealed that the proposed approach provides distribution volume ratio estimation comparable to the Logan plot at low noise levels while improving underestimation caused by non-RE state differently depending on k2\\prime . Furthermore, the proposed method was able to avoid noise-induced bias of the Logan plot, and the variability of its results was less dependent on k2\\prime than the Logan plot. Therefore, this approach, without issues related to arterial blood sampling given a pre-estimate of k2\\prime (e.g. population-based), could be useful in parametric image generation for slow kinetic tracers staying in a non-RE state within a PET scan.

  4. Proline 54 trans-cis isomerization is responsible for the kinetic partitioning at the last-step photocycle of photoactive yellow protein

    PubMed Central

    Lee, Byoung-Chul; Hoff, Wouter D.

    2008-01-01

    Photoactive yellow protein (PYP), a blue-light photoreceptor for Ectothiorhodospira halophila, has provided a unique system for studying protein folding that is coupled with a photocycle. Upon receptor activation by blue light, PYP proceeds through a photocycle that includes a partially folded signaling state. The last-step photocycle is a thermal recovery reaction from the signaling state to the native state. Bi-exponential kinetics had been observed for the last-step photocycle; however, the slow phase of the bi-exponential kinetics has not been extensively studied. Here we analyzed both fast and slow phases of the last-step photocycle in PYP. From the analysis of the denaturant dependence of the fast and slow phases, we found that the last-step photocycle proceeds through parallel channels of the folding pathway. The burial of the solvent-accessible area was responsible for the transition state of the fast phase, while structural rearrangement from the compact state to the native state was responsible for the transition state of the slow phase. The photocycle of PYP was linked to the thermodynamic cycle that includes both unfolding and refolding of the fast- and slow-phase intermediates. In order to test the hypothesis of proline-limited folding for the slow phase, we constructed two proline mutants: P54A and P68A. We found that only a single phase of the last-step photocycle was observed in P54A. This suggests that there is a low energy barrier between trans to cis conformation in P54 in the light-induced state of PYP, and the resulting cis conformation of P54 generates a slow-phase kinetic trap during the photocycle-coupled folding pathway of PYP. PMID:18794212

  5. Nonlinear Analyte Concentration Gradients for One-Step Kinetic Analysis Employing Optical Microring Resonators

    PubMed Central

    Marty, Michael T.; Kuhnline Sloan, Courtney D.; Bailey, Ryan C.; Sligar, Stephen G.

    2012-01-01

    Conventional methods to probe the binding kinetics of macromolecules at biosensor surfaces employ a stepwise titration of analyte concentrations and measure the association and dissociation to the immobilized ligand at each concentration level. It has previously been shown that kinetic rates can be measured in a single step by monitoring binding as the analyte concentration increases over time in a linear gradient. We report here the application of nonlinear analyte concentration gradients for determining kinetic rates and equilibrium binding affinities in a single experiment. A versatile nonlinear gradient maker is presented, which is easily applied to microfluidic systems. Simulations validate that accurate kinetic rates can be extracted for a wide range of association and dissociation rates, gradient slopes and curvatures, and with models for mass transport. The nonlinear analyte gradient method is demonstrated with a silicon photonic microring resonator platform to measure prostate specific antigen-antibody binding kinetics. PMID:22686186

  6. Nonlinear analyte concentration gradients for one-step kinetic analysis employing optical microring resonators.

    PubMed

    Marty, Michael T; Sloan, Courtney D Kuhnline; Bailey, Ryan C; Sligar, Stephen G

    2012-07-03

    Conventional methods to probe the binding kinetics of macromolecules at biosensor surfaces employ a stepwise titration of analyte concentrations and measure the association and dissociation to the immobilized ligand at each concentration level. It has previously been shown that kinetic rates can be measured in a single step by monitoring binding as the analyte concentration increases over time in a linear gradient. We report here the application of nonlinear analyte concentration gradients for determining kinetic rates and equilibrium binding affinities in a single experiment. A versatile nonlinear gradient maker is presented, which is easily applied to microfluidic systems. Simulations validate that accurate kinetic rates can be extracted for a wide range of association and dissociation rates, gradient slopes, and curvatures, and with models for mass transport. The nonlinear analyte gradient method is demonstrated with a silicon photonic microring resonator platform to measure prostate specific antigen-antibody binding kinetics.

  7. Proline Can Have Opposite Effects on Fast and Slow Protein Folding Phases

    PubMed Central

    Osváth, Szabolcs; Gruebele, Martin

    2003-01-01

    Proline isomerization is well known to cause additional slow phases during protein refolding. We address a new question: does the presence of prolines significantly affect the very fast kinetics that lead to the formation of folding intermediates? We examined both the very slow (10–100 min) and very fast (4 μs–2.5 ms) folding kinetics of the two-domain enzyme yeast phosphoglycerate kinase by temperature-jump relaxation. Phosphoglycerate kinase contains a conserved cis-proline in position 204, in addition to several trans-prolines. Native cis-prolines have the largest effect on folding kinetics because the unfolded state favors trans isomerization, so we compared the kinetics of a P204H mutant with the wild-type as a proof of principle. The presence of Pro-204 causes an additional slow phase upon refolding from the cold denatured state, as reported in the literature. Contrary to this, the fast folding events are sped up in the presence of the cis-proline, probably by restriction of the conformational space accessible to the molecule. The wild-type and Pro204His mutant would be excellent models for off-lattice simulations probing the effects of conformational restriction on short timescales. PMID:12885665

  8. Reactions of ferric hemoglobin and myoglobin with hydrogen sulfide under physiological conditions.

    PubMed

    Jensen, Birgitte; Fago, Angela

    2018-05-01

    Ferric hemoglobin (metHb) and myoglobin (metMb), present at low levels in vivo, have been recently found to oxidize hydrogen sulfide (H 2 S) in excess, thus potentially contributing to removal of toxic H 2 S in blood and heart, respectively. Here, we present a kinetic and thermodynamic study of the reaction of metHb and metMb with H 2 S under physiological conditions, i.e. at low H 2 S concentrations and with protein in excess of H 2 S. We show here that both proteins react with sub-stoichiometric H 2 S:heme ratios following two processes: a fast reversible binding of H 2 S to ferric heme that prevails at high H 2 S and a slow heme reduction to the ferrous state that prevails at low H 2 S. While these two processes are fast for metMb, H 2 S-induced heme reduction is slow for metHb and the metHb-H 2 S complex once formed is therefore relatively stable. We find that metHb binds H 2 S reversibly and cooperatively with a pH-dependent ligand affinity that is within the physiological range of H 2 S concentrations found in blood. Stopped-flow kinetics show identical association rate constants for H 2 S at varying pH, demonstrating that H 2 S and not HS - enters the ferric heme pocket. Dissociation rates of the metHb-H 2 S complex increase when decreasing pH, consistent with the pH-dependent affinity. Taken together, these data are consistent with a novel biological role of metHb as a H 2 S carrier in the blood, in parallel with the oxygen carrier function of the much more abundant ferrous Hb. In contrast, metMb in the heart could participate to redox-signaling involving H 2 S. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Kinetics of Cation and Oxyanion Adsorption and Desorption on Ferrihydrite: Roles of Ferrihydrite Binding Sites and a Unified Model.

    PubMed

    Tian, Lei; Shi, Zhenqing; Lu, Yang; Dohnalkova, Alice C; Lin, Zhang; Dang, Zhi

    2017-09-19

    Quantitative understanding the kinetics of toxic ion reactions with various heterogeneous ferrihydrite binding sites is crucial for accurately predicting the dynamic behavior of contaminants in environment. In this study, kinetics of As(V), Cr(VI), Cu(II), and Pb(II) adsorption and desorption on ferrihydrite was studied using a stirred-flow method, which showed that metal adsorption/desorption kinetics was highly dependent on the reaction conditions and varied significantly among four metals. High resolution scanning transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy showed that all four metals were distributed within the ferrihydrite aggregates homogeneously after adsorption reactions. Based on the equilibrium model CD-MUSIC, we developed a novel unified kinetics model applicable for both cation and oxyanion adsorption and desorption on ferrihydrite, which is able to account for the heterogeneity of ferrihydrite binding sites, different binding properties of cations and oxyanions, and variations of solution chemistry. The model described the kinetic results well. We quantitatively elucidated how the equilibrium properties of the cation and oxyanion binding to various ferrihydrite sites and the formation of various surface complexes controlled the adsorption and desorption kinetics at different reaction conditions and time scales. Our study provided a unified modeling method for the kinetics of ion adsorption/desorption on ferrihydrite.

  10. Stochastic model of template-directed elongation processes in biology.

    PubMed

    Schilstra, Maria J; Nehaniv, Chrystopher L

    2010-10-01

    We present a novel modular, stochastic model for biological template-based linear chain elongation processes. In this model, elongation complexes (ECs; DNA polymerase, RNA polymerase, or ribosomes associated with nascent chains) that span a finite number of template units step along the template, one after another, with semaphore constructs preventing overtaking. The central elongation module is readily extended with modules that represent initiation and termination processes. The model was used to explore the effect of EC span on motor velocity and dispersion, and the effect of initiation activator and repressor binding kinetics on the overall elongation dynamics. The results demonstrate that (1) motors that move smoothly are able to travel at a greater velocity and closer together than motors that move more erratically, and (2) the rate at which completed chains are released is proportional to the occupancy or vacancy of activator or repressor binding sites only when initiation or activator/repressor dissociation is slow in comparison with elongation. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  11. N-isopropyl-(/sup 123/I)p-iodoamphetamine: single-pass brain uptake and washout; binding to brain synaptosomes; and localization in dog and monkey brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winchell, H.S.; Horst, W.D.; Braun, L.

    1980-10-01

    The kinetics of N-isopropyl-p-(/sup 123/I)iodoamphetamine in rat brains were determined by serial measurements of brain uptake index (BUI) after intracarotid injection; also studied were its effects on amine uptake and release in rat's brain cortical synaptosomes; and its in vivo distribution in the dog and monkey. No specific localization in brain nuclei of the dog was seen, but there was progressive accumulation in the eyes. Rapid initial brain uptake in the ketamine-sedated monkey was noted, and further slow brain uptake occurred during the next 20 min but without retinal localization. High levels of brain activity were maintained for several hours.more » The quantitative initial single-pass clearance of the agent in the brain suggests its use in evaluation of regional brain perfusion. Its interaction with brain amine-binding sites suggests its possible application in studies of cerebral amine metabolism.« less

  12. Structural basis of GM-CSF and IL-2 sequestration by the viral decoy receptor GIF

    PubMed Central

    Felix, Jan; Kandiah, Eaazhisai; De Munck, Steven; Bloch, Yehudi; van Zundert, Gydo C.P.; Pauwels, Kris; Dansercoer, Ann; Novanska, Katka; Read, Randy J.; Bonvin, Alexandre M.J.J.; Vergauwen, Bjorn; Verstraete, Kenneth; Gutsche, Irina; Savvides, Savvas N.

    2016-01-01

    Subversion of the host immune system by viruses is often mediated by molecular decoys that sequester host proteins pivotal to mounting effective immune responses. The widespread mammalian pathogen parapox Orf virus deploys GIF, a member of the poxvirus immune evasion superfamily, to antagonize GM-CSF (granulocyte macrophage colony-stimulating factor) and IL-2 (interleukin-2), two pleiotropic cytokines of the mammalian immune system. However, structural and mechanistic insights into the unprecedented functional duality of GIF have remained elusive. Here we reveal that GIF employs a dimeric binding platform that sequesters two copies of its target cytokines with high affinity and slow dissociation kinetics to yield distinct complexes featuring mutually exclusive interaction footprints. We illustrate how GIF serves as a competitive decoy receptor by leveraging binding hotspots underlying the cognate receptor interactions of GM-CSF and IL-2, without sharing any structural similarity with the cytokine receptors. Our findings contribute to the tracing of novel molecular mimicry mechanisms employed by pathogenic viruses. PMID:27819269

  13. Effects of mutation, truncation, and temperature on the folding kinetics of a WW domain.

    PubMed

    Maisuradze, Gia G; Zhou, Rui; Liwo, Adam; Xiao, Yi; Scheraga, Harold A

    2012-07-20

    The purpose of this work is to show how mutation, truncation, and change of temperature can influence the folding kinetics of a protein. This is accomplished by principal component analysis of molecular-dynamics-generated folding trajectories of the triple β-strand WW domain from formin binding protein 28 (FBP28) (Protein Data Bank ID: 1E0L) and its full-size, and singly- and doubly-truncated mutants at temperatures below and very close to the melting point. The reasons for biphasic folding kinetics [i.e., coexistence of slow (three-state) and fast (two-state) phases], including the involvement of a solvent-exposed hydrophobic cluster and another delocalized hydrophobic core in the folding kinetics, are discussed. New folding pathways are identified in free-energy landscapes determined in terms of principal components for full-size mutants. Three-state folding is found to be a main mechanism for folding the FBP28 WW domain and most of the full-size and truncated mutants. The results from the theoretical analysis are compared to those from experiment. Agreements and discrepancies between the theoretical and experimental results are discussed. Because of its importance in understanding protein kinetics and function, the diffusive mechanism by which the FBP28 WW domain and its full-size and truncated mutants explore their conformational space is examined in terms of the mean-square displacement and principal component analysis eigenvalue spectrum analyses. Subdiffusive behavior is observed for all studied systems. Copyright © 2012. Published by Elsevier Ltd.

  14. Effects of mutation, truncation and temperature on the folding kinetics of a WW domain

    PubMed Central

    Maisuradze, Gia G.; Zhou, Rui; Liwo, Adam; Xiao, Yi; Scheraga, Harold A.

    2013-01-01

    The purpose of this work is to show how mutation, truncation and change of temperature can influence the folding kinetics of a protein. This is accomplished by principal component analysis (PCA) of molecular dynamics (MD)-generated folding trajectories of the triple β-strand WW domain from the Formin binding protein 28 (FBP) [PDB: 1E0L] and its full-size, and singly- and doubly-truncated mutants at temperatures below and very close to the melting point. The reasons for biphasic folding kinetics [i.e., coexistence of slow (three-state) and fast (two-state) phases], including the involvement of a solvent-exposed hydrophobic cluster and another delocalized hydrophobic core in the folding kinetics, are discussed. New folding pathways are identified in free-energy landscapes determined in terms of principal components for full-size mutants. Three-state folding is found to be a main mechanism for folding FBP28 WW domain and most of the full-size and truncated mutants. The results from the theoretical analysis are compared to those from experiment. Agreements and discrepancies between the theoretical and experimental results are discussed. Because of its importance in understanding protein kinetics and function, the diffusive mechanism by which FBP28 WW domain and its full-size and truncated mutants explore their conformational space is examined in terms of the mean-square displacement, (MSD), and PCA eigenvalue spectrum analyses. Subdiffusive behavior is observed for all studied systems. PMID:22560992

  15. Interfacial disorder drives charge separation in molecular semiconductors

    NASA Astrophysics Data System (ADS)

    Willard, Adam

    One of the fundamental microscopic processes in photocurrent generation is the dissociation of neutral photo-excitations (i.e., Frenkel excitons) into free charge carriers (i.e., electrons and holes). This process requires the physical separation of oppositely charged electrons and holes, which are held to together by an attractive electrostatic binding energy. In traditional inorganic-based photovoltaic (PV) materials, this binding energy is generally small and easily overcome, however, in organic-based PVs (OPVs) the exciton binding energy can significantly exceed thermal energies. The inability of bound charges to overcome this large binding energy has been implicated as a primary source of efficiency loss in OPVs. Here I present results from our recent efforts to explore the role of static molecular disorder in mediating this process. Using a simple lattice model of exciton dynamics we demonstrate that random spatial variations in the energetic landscape can mitigate the attractive Coulomb interaction between electrons and holes. We show that this effect manifests as a reduction in the free energy barrier for exciton dissociation that grows more pronounced with increasing disorder. By considering the competition between this thermodynamic effect and the disorder-induced slowing of dissociation kinetics we demonstrate that exciton dissociation yields are expected to depend non-monotonically on the degree of static disorder.

  16. Kinetic Measurements Reveal Enhanced Protein-Protein Interactions at Intercellular Junctions

    PubMed Central

    Shashikanth, Nitesh; Kisting, Meridith A.; Leckband, Deborah E.

    2016-01-01

    The binding properties of adhesion proteins are typically quantified from measurements with soluble fragments, under conditions that differ radically from the confined microenvironment of membrane bound proteins in adhesion zones. Using classical cadherin as a model adhesion protein, we tested the postulate that confinement within quasi two-dimensional intercellular gaps exposes weak protein interactions that are not detected in solution binding assays. Micropipette-based measurements of cadherin-mediated, cell-cell binding kinetics identified a unique kinetic signature that reflects both adhesive (trans) bonds between cadherins on opposing cells and lateral (cis) interactions between cadherins on the same cell. In solution, proposed lateral interactions were not detected, even at high cadherin concentrations. Mutations postulated to disrupt lateral cadherin association altered the kinetic signatures, but did not affect the adhesive (trans) binding affinity. Perturbed kinetics further coincided with altered cadherin distributions at junctions, wound healing dynamics, and paracellular permeability. Intercellular binding kinetics thus revealed cadherin interactions that occur within confined, intermembrane gaps but not in solution. Findings further demonstrate the impact of these revealed interactions on the organization and function of intercellular junctions. PMID:27009566

  17. Lactate Dehydrogenase Undergoes a Substantial Structural Change to Bind its Substrate

    PubMed Central

    Qiu, Linlin; Gulotta, Miriam; Callender, Robert

    2007-01-01

    Employing temperature-jump relaxation spectroscopy, we investigate the kinetics and thermodynamics of the formation of a very early ternary binding intermediate formed when lactate dehydrogenase (LDH) binds a substrate mimic on its way to forming the productive LDH/NADH·substrate Michaelis complex. Temperature-jump scans show two distinct submillisecond processes are involved in the formation of this ternary binding intermediate, called the encounter complex here. The on-rate of the formation of the encounter complex from LDH/NADH with oxamate (a substrate mimic) is determined as a function of temperature and in the presence of small concentrations of a protein destabilizer (urea) and protein stabilizer (TMAO). It shows a strong temperature dependence with inverse Arrhenius behavior and a temperature-dependent enthalpy (heat capacity of 610 ± 84 cal/Mol K), is slowed in the presence of TMAO and speeded up in the presence of urea. These results suggest that LDH/NADH occupies a range of conformations, some competent to bind substrate (open structure; a minority population) and others noncompetent (closed), in fast equilibrium with each other in accord with a select fit model of binding. From the thermodynamic results, the two species differ in the rearrangement of low energy hydrogen bonds as would arise from changes in internal hydrogen bonding and/or increases in the solvation of the protein structure. The binding-competent species can bind ligand at or very near diffusion-limited speeds, suggesting that the binding pocket is substantially exposed to solvent in these species. This would be in contrast to the putative closed structure where the binding pocket resides deep within the protein interior. PMID:17483169

  18. Negative cooperativity in binding of muscarinic receptor agonists and GDP as a measure of agonist efficacy

    PubMed Central

    Jakubík, J; Janíčková, H; El-Fakahany, EE; Doležal, V

    2011-01-01

    BACKGROUND AND PURPOSE Conventional determination of agonist efficacy at G-protein coupled receptors is measured by stimulation of guanosine-5′-γ−thiotriphosphate (GTPγS) binding. We analysed the role of guanosine diphosphate (GDP) in the process of activation of the M2 muscarinic acetylcholine receptor and provide evidence that negative cooperativity between agonist and GDP binding is an alternative measure of agonist efficacy. EXPERIMENTAL APPROACH Filtration and scintillation proximity assays measured equilibrium binding as well as binding kinetics of [35S]GTPγS and [3H]GDP to a mixture of G-proteins as well as individual classes of G-proteins upon binding of structurally different agonists to the M2 muscarinic acetylcholine receptor. KEY RESULTS Agonists displayed biphasic competition curves with the antagonist [3H]-N-methylscopolamine. GTPγS (1 µM) changed the competition curves to monophasic with low affinity and 50 µM GDP produced a similar effect. Depletion of membrane-bound GDP increased the proportion of agonist high-affinity sites. Carbachol accelerated the dissociation of [3H]GDP from membranes. The inverse agonist N-methylscopolamine slowed GDP dissociation and GTPγS binding without changing affinity for GDP. Carbachol affected both GDP association with and dissociation from Gi/o G-proteins but only its dissociation from Gs/olf G-proteins. CONCLUSIONS AND IMPLICATIONS These findings suggest the existence of a low-affinity agonist-receptor conformation complexed with GDP-liganded G-protein. Also the negative cooperativity between GDP and agonist binding at the receptor/G-protein complex determines agonist efficacy. GDP binding reveals differences in action of agonists versus inverse agonists as well as differences in activation of Gi/o versus Gs/olf G-proteins that are not identified by conventional GTPγS binding. PMID:20958290

  19. Negative cooperativity in binding of muscarinic receptor agonists and GDP as a measure of agonist efficacy.

    PubMed

    Jakubík, J; Janíčková, H; El-Fakahany, E E; Doležal, V

    2011-03-01

    Conventional determination of agonist efficacy at G-protein coupled receptors is measured by stimulation of guanosine-5'-γ-thiotriphosphate (GTPγS) binding. We analysed the role of guanosine diphosphate (GDP) in the process of activation of the M₂ muscarinic acetylcholine receptor and provide evidence that negative cooperativity between agonist and GDP binding is an alternative measure of agonist efficacy. Filtration and scintillation proximity assays measured equilibrium binding as well as binding kinetics of [³⁵S]GTPγS and [³H]GDP to a mixture of G-proteins as well as individual classes of G-proteins upon binding of structurally different agonists to the M₂ muscarinic acetylcholine receptor. Agonists displayed biphasic competition curves with the antagonist [³H]-N-methylscopolamine. GTPγS (1 µM) changed the competition curves to monophasic with low affinity and 50 µM GDP produced a similar effect. Depletion of membrane-bound GDP increased the proportion of agonist high-affinity sites. Carbachol accelerated the dissociation of [³H]GDP from membranes. The inverse agonist N-methylscopolamine slowed GDP dissociation and GTPγS binding without changing affinity for GDP. Carbachol affected both GDP association with and dissociation from G(i/o) G-proteins but only its dissociation from G(s/olf) G-proteins. These findings suggest the existence of a low-affinity agonist-receptor conformation complexed with GDP-liganded G-protein. Also the negative cooperativity between GDP and agonist binding at the receptor/G-protein complex determines agonist efficacy. GDP binding reveals differences in action of agonists versus inverse agonists as well as differences in activation of G(i/o) versus G(s/olf) G-proteins that are not identified by conventional GTPγS binding. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  20. Multi-scale analysis of compressible fluctuations in the solar wind

    NASA Astrophysics Data System (ADS)

    Roberts, Owen W.; Narita, Yasuhito; Escoubet, C.-Philippe

    2018-01-01

    Compressible plasma turbulence is investigated in the fast solar wind at proton kinetic scales by the combined use of electron density and magnetic field measurements. Both the scale-dependent cross-correlation (CC) and the reduced magnetic helicity (σm) are used in tandem to determine the properties of the compressible fluctuations at proton kinetic scales. At inertial scales the turbulence is hypothesised to contain a mixture of Alfvénic and slow waves, characterised by weak magnetic helicity and anti-correlation between magnetic field strength B and electron density ne. At proton kinetic scales the observations suggest that the fluctuations have stronger positive magnetic helicities as well as strong anti-correlations within the frequency range studied. These results are interpreted as being characteristic of either counter-propagating kinetic Alfvén wave packets or a mixture of anti-sunward kinetic Alfvén waves along with a component of kinetic slow waves.

  1. Combinatoric analysis of heterogeneous stochastic self-assembly.

    PubMed

    D'Orsogna, Maria R; Zhao, Bingyu; Berenji, Bijan; Chou, Tom

    2013-09-28

    We analyze a fully stochastic model of heterogeneous nucleation and self-assembly in a closed system with a fixed total particle number M, and a fixed number of seeds Ns. Each seed can bind a maximum of N particles. A discrete master equation for the probability distribution of the cluster sizes is derived and the corresponding cluster concentrations are found using kinetic Monte-Carlo simulations in terms of the density of seeds, the total mass, and the maximum cluster size. In the limit of slow detachment, we also find new analytic expressions and recursion relations for the cluster densities at intermediate times and at equilibrium. Our analytic and numerical findings are compared with those obtained from classical mass-action equations and the discrepancies between the two approaches analyzed.

  2. Receptor binding kinetics equations: Derivation using the Laplace transform method.

    PubMed

    Hoare, Sam R J

    Measuring unlabeled ligand receptor binding kinetics is valuable in optimizing and understanding drug action. Unfortunately, deriving equations for estimating kinetic parameters is challenging because it involves calculus; integration can be a frustrating barrier to the pharmacologist seeking to measure simple rate parameters. Here, a well-known tool for simplifying the derivation, the Laplace transform, is applied to models of receptor-ligand interaction. The method transforms differential equations to a form in which simple algebra can be applied to solve for the variable of interest, for example the concentration of ligand-bound receptor. The goal is to provide instruction using familiar examples, to enable investigators familiar with handling equilibrium binding equations to derive kinetic equations for receptor-ligand interaction. First, the Laplace transform is used to derive the equations for association and dissociation of labeled ligand binding. Next, its use for unlabeled ligand kinetic equations is exemplified by a full derivation of the kinetics of competitive binding equation. Finally, new unlabeled ligand equations are derived using the Laplace transform. These equations incorporate a pre-incubation step with unlabeled or labeled ligand. Four equations for measuring unlabeled ligand kinetics were compared and the two new equations verified by comparison with numerical solution. Importantly, the equations have not been verified with experimental data because no such experiments are evident in the literature. Equations were formatted for use in the curve-fitting program GraphPad Prism 6.0 and fitted to simulated data. This description of the Laplace transform method will enable pharmacologists to derive kinetic equations for their model or experimental paradigm under study. Application of the transform will expand the set of equations available for the pharmacologist to measure unlabeled ligand binding kinetics, and for other time-dependent pharmacological activities. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Antidepressant Binding Site in a Bacterial Homologue of Neurotransmitter Transporters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh,S.; Yamashita, A.; Gouaux, E.

    Sodium-coupled transporters are ubiquitous pumps that harness pre-existing sodium gradients to catalyse the thermodynamically unfavourable uptake of essential nutrients, neurotransmitters and inorganic ions across the lipid bilayer. Dysfunction of these integral membrane proteins has been implicated in glucose/galactose malabsorption, congenital hypothyroidism, Bartter's syndrome, epilepsy, depression, autism and obsessive-compulsive disorder. Sodium-coupled transporters are blocked by a number of therapeutically important compounds, including diuretics, anticonvulsants and antidepressants, many of which have also become indispensable tools in biochemical experiments designed to probe antagonist binding sites and to elucidate transport mechanisms. Steady-state kinetic data have revealed that both competitive and noncompetitive modes of inhibitionmore » exist. Antagonist dissociation experiments on the serotonin transporter (SERT) have also unveiled the existence of a low-affinity allosteric site that slows the dissociation of inhibitors from a separate high-affinity site. Despite these strides, atomic-level insights into inhibitor action have remained elusive. Here we screen a panel of molecules for their ability to inhibit LeuT, a prokaryotic homologue of mammalian neurotransmitter sodium symporters, and show that the tricyclic antidepressant (TCA) clomipramine noncompetitively inhibits substrate uptake. Cocrystal structures show that clomipramine, along with two other TCAs, binds in an extracellular-facing vestibule about 11 {angstrom} above the substrate and two sodium ions, apparently stabilizing the extracellular gate in a closed conformation. Off-rate assays establish that clomipramine reduces the rate at which leucine dissociates from LeuT and reinforce our contention that this TCA inhibits LeuT by slowing substrate release. Our results represent a molecular view into noncompetitive inhibition of a sodium-coupled transporter and define principles for the rational design of new inhibitors.« less

  4. Drug-DNA interactions at single molecule level: A view with optical tweezers

    NASA Astrophysics Data System (ADS)

    Paramanathan, Thayaparan

    Studies of small molecule--DNA interactions are essential for developing new drugs for challenging diseases like cancer and HIV. The main idea behind developing these molecules is to target and inhibit the reproduction of the tumor cells and infected cells. We mechanically manipulate single DNA molecule using optical tweezers to investigate two molecules that have complex and multiple binding modes. Mononuclear ruthenium complexes have been extensively studied as a test for rational drug design. Potential drug candidates should have high affinity to DNA and slow dissociation kinetics. To achieve this, motifs of the ruthenium complexes are altered. Our collaborators designed a dumb-bell shaped binuclear ruthenium complex that can only intercalate DNA by threading through its bases. Studying the binding properties of this complex in bulk studies took hours. By mechanically manipulating a single DNA molecule held with optical tweezers, we lower the barrier to thread and make it fast compared to the bulk experiments. Stretching single DNA molecules with different concentration of drug molecules and holding it at a constant force allows the binding to reach equilibrium. By this we can obtain the equilibrium fractional ligand binding and length of DNA at saturated binding. Fitting these results yields quantitative measurements of the binding thermodynamics and kinetics of this complex process. The second complex discussed in this study is Actinomycin D (ActD), a well studied anti-cancer agent that is used as a prototype for developing new generations of drugs. However, the biophysical basis of its activity is still unclear. Because ActD is known to intercalate double stranded DNA (dsDNA), it was assumed to block replication by stabilizing dsDNA in front of the replication fork. However, recent studies have shown that ActD binds with even higher affinity to imperfect duplexes and some sequences of single stranded DNA (ssDNA). We directly measure the on and off rates by stretching the DNA molecule to a certain force and holding it at constant force while adding the drug and then while washing off the drug. Our finding resolves the long lasting controversy of ActD binding modes, clearly showing that both the dsDNA binding and ssDNA binding converge to the same single mode. The result supports the hypothesis that the primary characteristic of ActD that contributes to its biological activity is its ability to inhibit cellular replication by binding to transcription bubbles and causing cell death.

  5. The role of nonconserved residues of Archaeoglobus fulgidus ferritin on its unique structure and biophysical properties.

    PubMed

    Sana, Barindra; Johnson, Eric; Le Magueres, Pierre; Criswell, Angela; Cascio, Duilio; Lim, Sierin

    2013-11-08

    Archaeoglobus fulgidus ferritin (AfFtn) is the only tetracosameric ferritin known to form a tetrahedral cage, a structure that remains unique in structural biology. As a result of the tetrahedral (2-3) symmetry, four openings (∼45 Å in diameter) are formed in the cage. This open tetrahedral assembly contradicts the paradigm of a typical ferritin cage: a closed assembly having octahedral (4-3-2) symmetry. To investigate the molecular mechanism affecting this atypical assembly, amino acid residues Lys-150 and Arg-151 were replaced by alanine. The data presented here shed light on the role that these residues play in shaping the unique structural features and biophysical properties of the AfFtn. The x-ray crystal structure of the K150A/R151A mutant, solved at 2.1 Å resolution, indicates that replacement of these key residues flips a "symmetry switch." The engineered molecule no longer assembles with tetrahedral symmetry but forms a typical closed octahedral ferritin cage. Small angle x-ray scattering reveals that the overall shape and size of AfFtn and AfFtn-AA in solution are consistent with those observed in their respective crystal structures. Iron binding and release kinetics of the AfFtn and AfFtn-AA were investigated to assess the contribution of cage openings to the kinetics of iron oxidation, mineralization, or reductive iron release. Identical iron binding kinetics for AfFtn and AfFtn-AA suggest that Fe(2+) ions do not utilize the triangular pores for access to the catalytic site. In contrast, relatively slow reductive iron release was observed for the closed AfFtn-AA, demonstrating involvement of the large pores in the pathway for iron release.

  6. Characterization of the kinetics of Fe (II) binding by the R2 protein subunit of E. coli ribonucleotide reductase

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Dipankar; , Joseph Martin Bollinger, Jr.

    2008-07-01

    The kinetics of Fe(II) binding to Escherichia coli Ribonucleotide reductase (R2) has been studied using rapid kinetics techniques including chemical quenched flow (CQF) Mössbauer spectroscopy. Based on the stopped flow absorption (SF-Abs) and CQF Mössbauer spectroscopy results, the pre-steady kinetics of binding of Fe(II) to the two sites A and B on R2 have been established with attendant conformational changes. Fe (II) binds to Site B tighter and faster and these and other results provide important information towards the di-iron cofactor assembly mechanism in R2 and could have possible implications for the development of modified and new anticancer and antiviral drugs.

  7. Kinetic energy of Ps formed by Ore mechanism in Ar gas

    NASA Astrophysics Data System (ADS)

    Sano, Yosuke; Kino, Yasushi; Oka, Toshitaka; Sekine, Tsutomu

    2015-06-01

    In order to investigate kinetic energy of positronium(Ps) formed by Ore mechanism, we performed positron annihilation age-momentum correlation (AMOC) measurements in Argas for 5.0 MPa and 7.5 MPa at room temperature. From the time dependence of Doppler broadening of para-Ps (p-Ps) self-annihilation gramma-ray component, we observed Ps slowing down process. Using a simple slowing down model, we obtained the initial kinetic energy of Ps formed by Ore mechanism and Ps-Armomentum transfer cross section. The initial kinetic energy was 3.9 eV which was higher than the kinetic energy of Ps formed at the upper limit of Ore gap. The momentum transfer cross section was 0.019 ± 0.010 nm2 in between 1 eV and 3.9 eV, and was close to the theoretical calculation.

  8. P/Q-type calcium channels activate neighboring calcium-dependent potassium channels in mouse motor nerve terminals.

    PubMed

    Protti, D A; Uchitel, O D

    1997-08-01

    The identity of the voltage-dependent calcium channels (VDCC), which trigger the Ca2+-gated K+ currents (IK(Ca)) in mammalian motor nerve terminals, was investigated by means of perineurial recordings. The effects of Ca2+ chelators with different binding kinetics on the activation of IK(Ca) were also examined. The calcium channel blockers of the P/Q family, omega-agatoxin IVA (omega-Aga-IVA) and funnel-web spider toxin (FTX), have been shown to exert a strong blocking effect on IK(Ca). In contrast, nitrendipine and omega-conotoxin GVIA (omega-CgTx) did not affect the Ca2+-activated K+ currents. The intracellular action of the fast Ca2+ buffers BAPTA and DM-BAPTA prevented the activation of the IK(Ca), while the slow Ca2+ buffer EGTA was ineffective at blocking it. These data indicate that P/Q-type VDCC mediate the Ca2+ influx which activates IK(Ca). The spatial association between Ca2+ and Ca2+-gated K+ channels is discussed, on the basis of the differential effects of the fast and slow Ca2+ chelators.

  9. Dimensionality of Motion and Binding Valency Govern Receptor-Ligand Kinetics As Revealed by Agent-Based Modeling.

    PubMed

    Lehnert, Teresa; Figge, Marc Thilo

    2017-01-01

    Mathematical modeling and computer simulations have become an integral part of modern biological research. The strength of theoretical approaches is in the simplification of complex biological systems. We here consider the general problem of receptor-ligand binding in the context of antibody-antigen binding. On the one hand, we establish a quantitative mapping between macroscopic binding rates of a deterministic differential equation model and their microscopic equivalents as obtained from simulating the spatiotemporal binding kinetics by stochastic agent-based models. On the other hand, we investigate the impact of various properties of B cell-derived receptors-such as their dimensionality of motion, morphology, and binding valency-on the receptor-ligand binding kinetics. To this end, we implemented an algorithm that simulates antigen binding by B cell-derived receptors with a Y-shaped morphology that can move in different dimensionalities, i.e., either as membrane-anchored receptors or as soluble receptors. The mapping of the macroscopic and microscopic binding rates allowed us to quantitatively compare different agent-based model variants for the different types of B cell-derived receptors. Our results indicate that the dimensionality of motion governs the binding kinetics and that this predominant impact is quantitatively compensated by the bivalency of these receptors.

  10. Dimensionality of Motion and Binding Valency Govern Receptor–Ligand Kinetics As Revealed by Agent-Based Modeling

    PubMed Central

    Lehnert, Teresa; Figge, Marc Thilo

    2017-01-01

    Mathematical modeling and computer simulations have become an integral part of modern biological research. The strength of theoretical approaches is in the simplification of complex biological systems. We here consider the general problem of receptor–ligand binding in the context of antibody–antigen binding. On the one hand, we establish a quantitative mapping between macroscopic binding rates of a deterministic differential equation model and their microscopic equivalents as obtained from simulating the spatiotemporal binding kinetics by stochastic agent-based models. On the other hand, we investigate the impact of various properties of B cell-derived receptors—such as their dimensionality of motion, morphology, and binding valency—on the receptor–ligand binding kinetics. To this end, we implemented an algorithm that simulates antigen binding by B cell-derived receptors with a Y-shaped morphology that can move in different dimensionalities, i.e., either as membrane-anchored receptors or as soluble receptors. The mapping of the macroscopic and microscopic binding rates allowed us to quantitatively compare different agent-based model variants for the different types of B cell-derived receptors. Our results indicate that the dimensionality of motion governs the binding kinetics and that this predominant impact is quantitatively compensated by the bivalency of these receptors. PMID:29250071

  11. Characterization of 12 GnRH peptide agonists - a kinetic perspective.

    PubMed

    Nederpelt, Indira; Georgi, Victoria; Schiele, Felix; Nowak-Reppel, Katrin; Fernández-Montalván, Amaury E; IJzerman, Adriaan P; Heitman, Laura H

    2016-01-01

    Drug-target residence time is an important, yet often overlooked, parameter in drug discovery. Multiple studies have proposed an increased residence time to be beneficial for improved drug efficacy and/or longer duration of action. Currently, there are many drugs on the market targeting the gonadotropin-releasing hormone (GnRH) receptor for the treatment of hormone-dependent diseases. Surprisingly, the kinetic receptor-binding parameters of these analogues have not yet been reported. Therefore, this project focused on determining the receptor-binding kinetics of 12 GnRH peptide agonists, including many marketed drugs. A novel radioligand-binding competition association assay was developed and optimized for the human GnRH receptor with the use of a radiolabelled peptide agonist, [(125) I]-triptorelin. In addition to radioligand-binding studies, a homogeneous time-resolved FRET Tag-lite™ method was developed as an alternative assay for the same purpose. Two novel competition association assays were successfully developed and applied to determine the kinetic receptor-binding characteristics of 12 high-affinity GnRH peptide agonists. Results obtained from both methods were highly correlated. Interestingly, the binding kinetics of the peptide agonists were more divergent than their affinities with residence times ranging from 5.6 min (goserelin) to 125 min (deslorelin). Our research provides new insights by incorporating kinetic, next to equilibrium, binding parameters in current research and development that can potentially improve future drug discovery targeting the GnRH receptor. © 2015 The British Pharmacological Society.

  12. Characterization of 12 GnRH peptide agonists – a kinetic perspective

    PubMed Central

    Nederpelt, Indira; Georgi, Victoria; Schiele, Felix; Nowak‐Reppel, Katrin; Fernández‐Montalván, Amaury E.; IJzerman, Adriaan P.

    2015-01-01

    Background and Purpose Drug‐target residence time is an important, yet often overlooked, parameter in drug discovery. Multiple studies have proposed an increased residence time to be beneficial for improved drug efficacy and/or longer duration of action. Currently, there are many drugs on the market targeting the gonadotropin‐releasing hormone (GnRH) receptor for the treatment of hormone‐dependent diseases. Surprisingly, the kinetic receptor‐binding parameters of these analogues have not yet been reported. Therefore, this project focused on determining the receptor‐binding kinetics of 12 GnRH peptide agonists, including many marketed drugs. Experimental Approach A novel radioligand‐binding competition association assay was developed and optimized for the human GnRH receptor with the use of a radiolabelled peptide agonist, [125I]‐triptorelin. In addition to radioligand‐binding studies, a homogeneous time‐resolved FRET Tag‐lite™ method was developed as an alternative assay for the same purpose. Key Results Two novel competition association assays were successfully developed and applied to determine the kinetic receptor‐binding characteristics of 12 high‐affinity GnRH peptide agonists. Results obtained from both methods were highly correlated. Interestingly, the binding kinetics of the peptide agonists were more divergent than their affinities with residence times ranging from 5.6 min (goserelin) to 125 min (deslorelin). Conclusions and Implications Our research provides new insights by incorporating kinetic, next to equilibrium, binding parameters in current research and development that can potentially improve future drug discovery targeting the GnRH receptor. PMID:26398856

  13. The Universal Statistical Distributions of the Affinity, Equilibrium Constants, Kinetics and Specificity in Biomolecular Recognition

    PubMed Central

    Zheng, Xiliang; Wang, Jin

    2015-01-01

    We uncovered the universal statistical laws for the biomolecular recognition/binding process. We quantified the statistical energy landscapes for binding, from which we can characterize the distributions of the binding free energy (affinity), the equilibrium constants, the kinetics and the specificity by exploring the different ligands binding with a particular receptor. The results of the analytical studies are confirmed by the microscopic flexible docking simulations. The distribution of binding affinity is Gaussian around the mean and becomes exponential near the tail. The equilibrium constants of the binding follow a log-normal distribution around the mean and a power law distribution in the tail. The intrinsic specificity for biomolecular recognition measures the degree of discrimination of native versus non-native binding and the optimization of which becomes the maximization of the ratio of the free energy gap between the native state and the average of non-native states versus the roughness measured by the variance of the free energy landscape around its mean. The intrinsic specificity obeys a Gaussian distribution near the mean and an exponential distribution near the tail. Furthermore, the kinetics of binding follows a log-normal distribution near the mean and a power law distribution at the tail. Our study provides new insights into the statistical nature of thermodynamics, kinetics and function from different ligands binding with a specific receptor or equivalently specific ligand binding with different receptors. The elucidation of distributions of the kinetics and free energy has guiding roles in studying biomolecular recognition and function through small-molecule evolution and chemical genetics. PMID:25885453

  14. Kinetic and thermodynamic consequences of the substitution of SMe for OMe substituents of cryptophane hosts on the binding of neutral and cationic guests.

    PubMed

    Garcia, Chantal; Humilière, Delphine; Riva, Nathalie; Collet, André; Dutasta, Jean-Pierre

    2003-06-21

    To investigate the origin of the high selectivity of cryptophane-E (1) towards Me3NH+, Me4N+, and CHCl3, and particularly to discriminate the different contributions that stabilize the supramolecular complexes, we have synthesized the new cryptophane 2 bearing six MeS groups instead of MeO groups in 1. This led to a decrease of the negative charge density in the equatorial region of 2 without affecting notably the size of the molecular cavity. The binding properties of 1 and 2 towards the three guests were examined in solution and showed a slight decrease of the deltaGa favoring the complexes of 1, accompanied by a significant modification of the deltaHa vs. deltaSa balance. The binding of the ammonium guests to 1 and 2 was strongly entropy driven, while that of CHCl3 was purely enthalpy driven. A combination of spectroscopic and computational techniques was used to assign the main intermolecular interactions that occurred during the inclusion process. The neutral CHCl3 molecule is more stabilized in the less negatively charged CTV cap of 1. The different behavior towards the ammonium cations can be explained in term of interactions with the electronegative heteroatoms and cation-pi interactions. Moreover, this study revealed a considerable slowing down of the guest exchange kinetics with host 2, for which the association and dissociation rates are reduced by a factor 10(3) to 10(4) with respect to 1. For example, at room temperature, the Me4N+@2 complex exhibits a half-life of ca. 2 years, instead of a few hours for the corresponding complex of 1.

  15. The Proteasomal ATPases Use a Slow but Highly Processive Strategy to Unfold Proteins

    PubMed Central

    Snoberger, Aaron; Anderson, Raymond T.; Smith, David M.

    2017-01-01

    All domains of life have ATP-dependent compartmentalized proteases that sequester their peptidase sites on their interior. ATPase complexes will often associate with these compartmentalized proteases in order to unfold and inject substrates into the protease for degradation. Significant effort has been put into understanding how ATP hydrolysis is used to apply force to proteins and cause them to unfold. The unfolding kinetics of the bacterial ATPase, ClpX, have been shown to resemble a fast motor that traps unfolded intermediates as a strategy to unfold proteins. In the present study, we sought to determine if the proteasomal ATPases from eukaryotes and archaea exhibit similar unfolding kinetics. We found that the proteasomal ATPases appear to use a different kinetic strategy for protein unfolding, behaving as a slower but more processive and efficient translocation motor, particularly when encountering a folded domain. We expect that these dissimilarities are due to differences in the ATP binding/exchange cycle, the presence of a trans-arginine finger, or the presence of a threading ring (i.e., the OB domain), which may be used as a rigid platform to pull folded domains against. We speculate that these differences may have evolved due to the differing client pools these machines are expected to encounter. PMID:28421184

  16. The study of zinc ions binding to casein.

    PubMed

    Pomastowski, P; Sprynskyy, M; Buszewski, B

    2014-08-01

    The presented research was focused on physicochemical study of casein properties and the kinetics of zinc ions binding to the protein. Moreover, a fast and simple method of casein extraction from cow's milk has been proposed. Casein isoforms, zeta potential (ζ) and particle size of the separated caseins were characterized with the use of capillary electrophoresis, zeta potential analysis and field flow fractionation (FFF) technique, respectively. The kinetics of the metal-binding process was investigated in batch adsorption experiments. Intraparticle diffusion model, first-order and zero-order kinetic models were applied to test the kinetic experimental data. Analysis of changes in infrared bands registered for casein before and after zinc binding was also performed. The obtained results showed that the kinetic process of zinc binding to casein is not homogeneous but is expressed with an initial rapid stage with about 70% of zinc ions immobilized by casein and with a much slower second step. Maximum amount of bound zinc in the experimental conditions was 30.04mgZn/g casein. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. The kinetics of competitive antagonists on guinea-pig ileum.

    PubMed Central

    Roberts, F; Stephenson, R P

    1976-01-01

    1 The kinetics of action of some competitive muscarinic and histamine antagonists were examined on guinea-pig isolated ileum and their behaviour compared with the predictions of the interaction-limited model described by Paton (1961). 2 The kinetics of antagonism were not consistent with the predictions of this model: (1) The apparent dissociation rate constant calculated from the decrease in occupancy on washout was not independent of the concentration of antagonist. (2) The dissociation rate constant of a 'slow' antagonist calculated from the change in occupancy when a 'fast' antagonist was superimposed varied with the concentration of fast antagonist. (3) If the concentration of slow antagonist was increased when the fast antagonist was superimposed so that the equilibrium occupancy of the 'slow' was the same as before, a transitional phase was observed. 3 The kinetics of antagonism were observed in longitudinal muscle strips and intact pieces of ileum, bathed in Tyrode or Krebs solution, and with isometric and isotonic recording. No evidence was found that the discrepancies between the interaction-limited model and the observed kinetics could be accounted for by the experimental method used. 4 It is therefore concluded that either access is rate-limiting in these circumstances or, if interaction is rate-limiting, some alternative interaction-limited model is required to describe the kinetics of antagonism. In either case it would seem unwise at this time to calculate antagonist-receptor rate constants from the observed kinetics of antagonism. PMID:974378

  18. The oxidation/reduction kinetics of the plastoquinone pool controls the appearance of the I-peak in the O-J-I-P chlorophyll fluorescence rise: effects of various electron acceptors.

    PubMed

    Joly, David; Carpentier, Robert

    2007-07-27

    Quantitative analysis of the fluorescence induction (FI) rise was used in this study to elucidate the complex effects of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) on thylakoids. Reduced TMPD molecules, responsible for the ADRY agent effect, caused an increase in the amplitude of the O-J rise. Also, only oxidized TMPD molecules were shown to have the ability to bind the Q(B) pocket of photosystem II (PSII). On the other hand, the I-P rise was slowed in proportion with the oxidized TMPD concentration, inducing the clear appearance of the I-peak. While this property was previously thought to be unique to TMPD, this study shows that some artificial electron acceptors of PSII, silicomolybdate, 2,5-dichloro-p-benzoquinone, and phenyl-p-benzoquinone, have a similar effect. These results demonstrated a major role of the oxido-reduction kinetics of the PQ-pool in the resolution of J-I and I-P phases in the FI of isolated thylakoids.

  19. A Novel Selective Inverse Agonist of the CB2 Receptor as a Radiolabeled Tool Compound for Kinetic Binding Studies.

    PubMed

    Martella, Andrea; Sijben, Huub; Rufer, Arne C; Grether, Uwe; Fingerle, Juergen; Ullmer, Christoph; Hartung, Thomas; IJzerman, Adriaan P; van der Stelt, Mario; Heitman, Laura H

    2017-10-01

    The endocannabinoid system, and in particular the cannabinoid type 2 receptor (CB2R), raised the interest of many medicinal chemistry programs for its therapeutic relevance in several (patho)physiologic processes. However, the physico-chemical properties of tool compounds for CB2R (e.g., the radioligand [ 3 H]CP55,940) are not optimal, despite the research efforts in developing effective drugs to target this system. At the same time, the importance of drug-target binding kinetics is growing since the kinetic binding profile of a ligand may provide important insights for the resulting in vivo efficacy. In this context we synthesized and characterized [ 3 H]RO6957022, a highly selective CB2R inverse agonist, as a radiolabeled tool compound. In equilibrium and kinetic binding experiments [ 3 H]RO6957022 showed high affinity for human CB2R with fast association ( k on ) and moderate dissociation ( k off ) kinetics. To demonstrate the robustness of [ 3 H]RO6957022 binding, affinity studies were carried out for a wide range of CB2R reference ligands, spanning the range of full, partial, and inverse agonists. Finally, we used [ 3 H]RO6957022 to study the kinetic binding profiles (i.e., k on and k off values) of selected synthetic and endogenous (i.e., 2-arachidonoylglycerol, anandamide, and noladin ether) CB2R ligands by competition association experiments. All tested ligands, and in particular the endocannabinoids, displayed distinct kinetic profiles, shedding more light on their mechanism of action and the importance of association rates in the determination of CB2R affinity. Altogether, this study shows that the use of a novel tool compound, i.e., [ 3 H]RO6957022, can support the development of novel ligands with a repertoire of kinetic binding profiles for CB2R. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  20. Kinetics of removal of intravenous testosterone pulses in normal men.

    PubMed

    Veldhuis, Johannes D; Keenan, Daniel M; Liu, Peter Y; Takahashi, Paul Y

    2010-04-01

    Testosterone is secreted into the bloodstream episodically, putatively distributing into total, bioavailable (bio) nonsex hormone-binding globulin (nonSHBG-bound), and free testosterone moieties. The kinetics of total, bio, and free testosterone pulses are unknown. Design Adrenal and gonadal steroidogenesis was blocked pharmacologically, glucocorticoid was replaced, and testosterone was infused in pulses in four distinct doses in 14 healthy men under two different paradigms (a total of 220 testosterone pulses). Testosterone kinetics were assessed by deconvolution analysis of total, free, bioavailable, SHBG-bound, and albumin-bound testosterone concentration-time profiles. Independently of testosterone dose or paradigm, rapid-phase half-lives (min) of total, free, bioavailable, SHBG-bound, and albumin-bound testosterone were comparable at 1.4+/-0.22 min (grand mean+/-S.E.M. of geometric means). Slow-phase testosterone half-lives were highest for SHBG-bound testosterone (32 min) and total testosterone (27 min) with the former exceeding that of free testosterone (18 min), bioavailable testosterone (14 min), and albumin-bound testosterone (18 min; P<0.001). Collective outcomes indicate that i) the rapid phase of testosterone disappearance from point sampling in the circulation is not explained by testosterone dose; ii) SHBG-bound testosterone and total testosterone kinetics are prolonged; and iii) the half-lives of bioavailable, albumin-bound, and free testosterone are short. A frequent-sampling strategy comprising an experimental hormone clamp, estimation of hormone concentrations as bound and free moieties, mimicry of physiological pulses, and deconvolution analysis may have utility in estimating the in vivo kinetics of other hormones, substrates, and metabolites.

  1. Wave kinetics of random fibre lasers

    PubMed Central

    Churkin, D V.; Kolokolov, I V.; Podivilov, E V.; Vatnik, I D.; Nikulin, M A.; Vergeles, S S.; Terekhov, I S.; Lebedev, V V.; Falkovich, G.; Babin, S A.; Turitsyn, S K.

    2015-01-01

    Traditional wave kinetics describes the slow evolution of systems with many degrees of freedom to equilibrium via numerous weak non-linear interactions and fails for very important class of dissipative (active) optical systems with cyclic gain and losses, such as lasers with non-linear intracavity dynamics. Here we introduce a conceptually new class of cyclic wave systems, characterized by non-uniform double-scale dynamics with strong periodic changes of the energy spectrum and slow evolution from cycle to cycle to a statistically steady state. Taking a practically important example—random fibre laser—we show that a model describing such a system is close to integrable non-linear Schrödinger equation and needs a new formalism of wave kinetics, developed here. We derive a non-linear kinetic theory of the laser spectrum, generalizing the seminal linear model of Schawlow and Townes. Experimental results agree with our theory. The work has implications for describing kinetics of cyclical systems beyond photonics. PMID:25645177

  2. Quartz crystal microbalance for the cardiac markers/antibodies binding kinetic measurements in the plasma samples

    NASA Astrophysics Data System (ADS)

    Agafonova, L. E.; Shumyantseva, V. V.; Archakov, A. I.

    2014-06-01

    The quartz crystal microbalance (QCM) was exploited for cardiac markers detection and kinetic studies of immunochemical reaction of cardiac troponin I (cTnI) and human heart fatty acid binding protein (H-FABP) with the corresponding monoclonal antibodies in undiluted plasma (serum) and standard solutions. The QCM technique allowed to dynamically monitor the kinetic differences in specific interactions and nonspecific sorption, without multiple labeling procedures and separation steps. The affinity binding process was characterized by the association (ka) and the dissociation (kd) kinetic constants and the equilibrium association (K) constant, all of which were obtained from experimental data.

  3. From receptor binding kinetics to signal transduction; a missing link in predicting in vivo drug-action.

    PubMed

    Nederpelt, Indira; Kuzikov, Maria; de Witte, Wilbert E A; Schnider, Patrick; Tuijt, Bruno; Gul, Sheraz; IJzerman, Adriaan P; de Lange, Elizabeth C M; Heitman, Laura H

    2017-10-26

    An important question in drug discovery is how to overcome the significant challenge of high drug attrition rates due to lack of efficacy and safety. A missing link in the understanding of determinants for drug efficacy is the relation between drug-target binding kinetics and signal transduction, particularly in the physiological context of (multiple) endogenous ligands. We hypothesized that the kinetic binding parameters of both drug and endogenous ligand play a crucial role in determining cellular responses, using the NK1 receptor as a model system. We demonstrated that the binding kinetics of both antagonists (DFA and aprepitant) and endogenous agonists (NKA and SP) have significantly different effects on signal transduction profiles, i.e. potency values, in vitro efficacy values and onset rate of signal transduction. The antagonistic effects were most efficacious with slowly dissociating aprepitant and slowly associating NKA while the combination of rapidly dissociating DFA and rapidly associating SP had less significant effects on the signal transduction profiles. These results were consistent throughout different kinetic assays and cellular backgrounds. We conclude that knowledge of the relationship between in vitro drug-target binding kinetics and cellular responses is important to ultimately improve the understanding of drug efficacy in vivo.

  4. Lactose-installed poly(ethylene glycol)-poly(d,l-lactide) block copolymer micelles exhibit fast-rate binding and high affinity toward a protein bed simulating a cell surface. A surface plasmon resonance study.

    PubMed

    Jule, Eduardo; Nagasaki, Yukio; Kataoka, Kazunori

    2003-01-01

    Lactose molecules were installed on the surface of poly(ethylene glycol)-poly(d,l-lactide) (PEG-PLA) block copolymer micelles in the scope of seeking specific recognition by cell surface receptors at hepatic sites. This, in turn, is expected to result in the formation of a complex displaying prolonged retention times and thus enhanced cellular internalization by receptor-mediated endocytosis. The so-obtained particles based on a block copolymer of molecular weight 9400 g/mol (4900/4500 g/mol for the PEG and PLA blocks, respectively) were found to have an average hydrodynamic diameter of 31.8 nm, as measured by dynamic light scattering. Further, the particle size distribution (micro(2)/Gamma(2)) was found to be lower than 0.08. Lactose-PEG-PLA micelles (Lac-micelles) were then injected over a gold surface containing Ricinus communis agglutinin lectins simulating the aforementioned glycoreceptors, and their interaction was studied by surface plasmon resonance. Then, a kinetic evaluation was carried out, by fitting the observed data mathematically. It appears that Lac-micelles bind in a multivalent manner to the lectin protein bed, which logically results in low dissociation constants. Micelles bearing a ligand density of 80% (Lac-micelles 80%: 80 lactose molecules per 100 copolymer chains) exhibit fast association phases (k(a1) = 3.2 x 10(4) M(-)(1) s(-)(1)), but also extremely slow dissociation phases (k(d1) = 1.3 x 10(-)(4) s(-)(1)). Recorded sensorgrams were fitted with a trivalent model, conveying a calculated equilibrium dissociation constant (K(D1) = k(d1)/k(a1)) of about 4 nM. The importance of cooperative binding was also assessed, by preparing Lac-micelles bearing different ligand densities, and by discussing the influence of the latter on kinetic constants. Interestingly enough, whereas Lac-micelles 80% bind in a trivalent manner to the protein bed, Lac-micelles 20% are still capable of forming bivalent complexes with the same protein bed (K(D1) = 1360 nM). Therefore, despite enhanced kinetic values brought about by a supplementary bond, lower ligand densities appear to be more effective on a molecular basis.

  5. The structural and electronical factors that contribute affinity for the time-dependent inhibition of PGHS-1 by indomethacin, diclofenac and fenamates

    NASA Astrophysics Data System (ADS)

    Pouplana, R.; Pérez, C.; Sánchez, J.; Lozano, J. J.; Puig-Parellada, P.

    1999-05-01

    PGHS-1 and PGHS-2 are the targets of nonsteroidal anti- inflammatory drugs (NSAIDs). It appears that the high degree of selectivity for inhibition of PGHS-2 shown by certain compounds is the result of two mechanisms (time-dependent and time-independent inhibition), by which they interact with each isoform. The fenamic acids can be divided into competitive inhibitors of substrate binding and competitive inhibitors that cause time-dependent losses of cyclooxygenase activity. The cyclooxygenase activity was measured by oxygen consumption following preincubation of the enzyme and the inhibitor for increasing periods of time. The rate constants associated with binding inhibition kinetics and structure-activity relationships were calculated for a large number of fenamates, diclofenac and indomethacin. The KI* values are similar but the individual rate constants are markedly different: KI is two-fold lower, and k2 is six-fold slower for diclofenac than for indomethacin. All the active time-dependent compounds show MEPs with a negative conical surface, with their vertex on the minimum of the carboxyl group, which extends around the first aromatic ring to the central region. The conical surface keeps an open angle of 61° or larger, and a close contact surface with the residues Ala527, Ileu523, Val349, and Ser530, in the zones surrounding the bridging amino group and the chlorine atoms for meclofenamate and diclofenac, or in the region around the carbonyl group for indomethacin. The KI* and IC50 values indicate that the interactions that promote the slow binding kinetics must be examined in relation to the reaction energies of formation (ΔHr) of an ionic bond between the deprotonated carboxylic acid group of acid NSAIDs with the monocationic guanidinum group of Arg120, the free energies of solvation in aqueous solution, and the molecular volumes measured. Presumably indomethacin, diclofenac and meclofenamate cause the enzyme to undergo a subtle conformational change to a form that binds compounds even more tightly, with some slight structural changes confined to reorientations of the Arg277 and Gln358 side chains. These results show that the model has reliably chosen regions of biological significance consistent with both the X-ray crystallographic and kinetic results.

  6. Nanoporous sorbent material as an oral phosphate binder and for aqueous phosphate, chromate, and arsenate removal

    PubMed Central

    Sangvanich, Thanapon; Ngamcherdtrakul, Worapol; Lee, Richard; Morry, Jingga; Castro, David; Fryxell, Glen E.; Yantasee, Wassana

    2014-01-01

    Phosphate removal is both biologically and environmentally important. Biologically, hyperphosphatemia is a critical condition in end-stage chronic kidney disease patients. Patients with hyperphosphatemia are treated long-term with oral phosphate binders to prevent phosphate absorption to the body by capturing phosphate in the gastrointestinal (GI) tract followed by fecal excretion. Environmentally, phosphate levels in natural water resources must be regulated according to limits set forth by the US Environmental Protection Agency. By utilizing nanotechnology and ligand design, we developed a new material to overcome limitations of traditional sorbent materials such as low phosphate binding capacity, slow binding kinetics, and negative interference by other anions. A phosphate binder based on iron-ethylenediamine on nanoporous silica (Fe-EDA-SAMMS) has been optimized for substrates and Fe(III) deposition methods. The Fe-EDA-SAMMS material had a 4-fold increase in phosphate binding capacity and a broader operating pH window compared to other reports. The material had a faster phosphate binding rate and was significantly less affected by other anions than Sevelamer HCl, the gold standard oral phosphate binder, and AG® 1-X8, a commercially available anion exchanger. It had less cytotoxicity to Caco-2 cells than lanthanum carbonate, another prescribed oral phosphate binder. The Fe-EDA-SAMMS also had high capacity for arsenate and chromate, two of the most toxic anions in natural water. PMID:25554735

  7. Catalytic oxidation of o-aminophenols and aromatic amines by mushroom tyrosinase.

    PubMed

    Muñoz-Muñoz, Jose Luis; Garcia-Molina, Francisco; Garcia-Ruiz, Pedro Antonio; Varon, Ramon; Tudela, Jose; Rodriguez-Lopez, Jose N; Garcia-Canovas, Francisco

    2011-12-01

    The kinetics of tyrosinase acting on o-aminophenols and aromatic amines as substrates was studied. The catalytic constants of aromatic monoamines and o-diamines were both low, these results are consistent with our previous mechanism in which the slow step is the transfer of a proton by a hydroxyl to the peroxide in oxy-tyrosinase (Fenoll et al., Biochem. J. 380 (2004) 643-650). In the case of o-aminophenols, the hydroxyl group indirectly cooperates in the transfer of the proton and consequently the catalytic constants in the action of tyrosinase on these compounds are higher. In the case of aromatic monoamines, the Michaelis constants are of the same order of magnitude than for monophenols, which suggests that the monophenols bind better (higher binding constant) to the enzyme to facilitate the π-π interactions between the aromatic ring and a possible histidine of the active site. In the case of aromatic o-diamines, both the catalytic and Michaelis constants are low, the values of the catalytic constants being lower than those of the corresponding o-diphenols. The values of the Michaelis constants of the aromatic o-diamines are slightly lower than those of their corresponding o-diphenols, confirming that the aromatic o-diamines bind less well (lower binding constant) to the enzyme. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. [Cardiopulmonary dynamics during a maximal exertion test in Mexican endurance athletes].

    PubMed

    Padilla, J; Martínez, E; Olvera, G; Ojeda Cruz, P; Caudillo Pérez, D

    2000-01-01

    To search for cardiopulmonary (CP) kinetic and dynamic differences between Mexican resistance athletes (RES = 10) and non athletes (NON = 19). From the expired volume (Ve), measured by an open circuit spirometry, we calculated both VO2 and VCO2 during stress test while the volunteer pedalled seated on an electronic cycloergometer that started at 50 W.2 min-1 followed by increments of 25 W.2 min-1 each, until VO2máx was reached. The exercise transient time course (min) response (VO2, VCO2, Ve and heart rate, HR; and also O2 pulse, PulO2) was transformed to seconds and modelled by computer using linear regression technique by the interactive minimum squares method, and the mean response time (MRT) was used as an overall kinetic CP parameter. The transient MRTs for VO2, VCO2 and Ve were slow in RES compared to NON. While the transient CP dynamics in NON lasted MRT_VO2 < (MRT_PulO2, MRT_FC) < MRT_VCO2 < MRT_Ve; the RES: both MRT_PulO2 and MRT_HR shifted to the right ((MRT_VO2, MRT_VCO2) < (MRT_PulO2, MRT_FC) < MRT_Ve). The relationships between the best sport profit mean velocity and both the MRT_VO2, MRT_VCO2 and MRT_PulO2 (GEK = gas exchange kinetics) showed fast_RES and slow_GEK, and slow_RES and fast_GEK. The transient CP kinetics was slow in RES compared NON. It is possible to distinguish cardiopulmonary kinetic differences among resistance athletes holding different sport profiles.

  9. Progesterone binding nano-carriers based on hydrophobically modified hyperbranched polyglycerols

    NASA Astrophysics Data System (ADS)

    Alizadeh Noghani, M.; Brooks, D. E.

    2016-02-01

    Progesterone (Pro) is a potent neurosteroid and promotes recovery from moderate Traumatic Brain Injury but its clinical application is severely impeded by its poor water solubility. Here we demonstrate that reversibly binding Pro within hydrophobically modified hyperbranched polyglycerol (HPG-Cn-MPEG) enhances its solubility, stability and bioavailability. Synthesis, characterization and Pro loading into HPG-Cn-MPEG is described. The release kinetics are correlated with structural properties and the results of Differential Scanning Calorimetry studies of a family of HPG-Cn-MPEGs of varying molecular weight and alkylation. While the maximum amount of Pro bound correlates well with the amount of alkyl carbon per molecule contributing to its hydrophobicity, the dominant first order rate constant for Pro release correlates strongly with the amount of structured or bound water in the dendritic domain of the polymer. The results provide evidence to justify more detailed studies of interactions with biological systems, both single cells and in animal models.Progesterone (Pro) is a potent neurosteroid and promotes recovery from moderate Traumatic Brain Injury but its clinical application is severely impeded by its poor water solubility. Here we demonstrate that reversibly binding Pro within hydrophobically modified hyperbranched polyglycerol (HPG-Cn-MPEG) enhances its solubility, stability and bioavailability. Synthesis, characterization and Pro loading into HPG-Cn-MPEG is described. The release kinetics are correlated with structural properties and the results of Differential Scanning Calorimetry studies of a family of HPG-Cn-MPEGs of varying molecular weight and alkylation. While the maximum amount of Pro bound correlates well with the amount of alkyl carbon per molecule contributing to its hydrophobicity, the dominant first order rate constant for Pro release correlates strongly with the amount of structured or bound water in the dendritic domain of the polymer. The results provide evidence to justify more detailed studies of interactions with biological systems, both single cells and in animal models. Electronic supplementary information (ESI) available: Fig. S-1: chemical structure of progesterone (Pro). Fig. S-2: 1H NMR spectrum of HPG-C8-MPEG. Fig. S-3: GPC chromatogram of HPG-C8-MPEG. Fig. S-4: 1H NMR spectrum of HPG-C12-MPEG. Fig. S-5: GPC chromatogram of HPG-C8-MPEG. Fig. S-6: FTIR spectrum of HPG-C8-MPEG. Fig. S-7: inverse-gated 13C NMR spectrum of HPG-C8-MPEG in methanol-d4. Fig. S-8: semi-log plot to determine initial rapid release kinetics for HPG-C8-MPEG/Pro in PBS. Fig. S-9: semi-log plot to determine secondary slow release kinetics for HPG-C8-MPEG/Pro in PBS. Fig. S-10: semi-log plot illustrating the kinetics of Pro release from HPG-C8-MPEG/Pro in plasma. Fig. S-11: dependence of k1 and Vp - Va. Fig. S-12: correlation between the maximum binding capacity of HPG-Cn-MPEG polymeric systems for binding Pro and their total mass of alkyl carbon external to the oxygen (R2 = 0.77 and p < 0.025). Table S-1: effect of loaded Pro on HPG-Cn-MPEG size. Fig. S-13. DLS size determination of HPG-C10-MPEG at 2 mg ml-1 (on the left) and HPG-C10-MPEG/Pro at 2 mg ml-1 of polymer and 25 μg ml-1 of Pro (on the right). The minor population of larger particles was reduced in diameter by Pro binding, illustrated above, consistent with an earlier report.11 See DOI: 10.1039/c5nr08175k

  10. Correlation between cross-bridge kinetics obtained from Trp fluorescence of myofibril suspensions and mechanical studies of single muscle fibers in rabbit psoas.

    PubMed

    Candau, Robin; Kawai, Masataka

    2011-12-01

    Our goal is to correlate kinetic constants obtained from fluorescence studies of myofibril suspension with those from mechanical studies of skinned muscle fibers from rabbit psoas. In myofibril studies, the stopped-flow technique with tryptophan fluorescence was used; in muscle fiber studies, tension transients with small amplitude sinusoidal length perturbations were used. All experiments were performed using the equivalent solution conditions (200 mM ionic strength, pH 7.00) at 10°C. The concentration of MgATP was varied to characterize kinetic constants of the ATP binding step 1 (K (1): dissociation constant), the binding induced cross-bridge detachment step 2 (k (2), k (-2): rate constants), and the ATP cleavage step 3 (k (3), k (-3)). In myofibrils we found that K (1) = 0.52 ± 0.08 mM (±95% confidence limits), k (2) = 242 ± 24 s(-1), and k (-2) ≈ 0; in muscle fibers, K (1) = 0.46 ± 0.06 mM, k (2) = 286 ± 32 s(-1), and k (-2) = 57 ± 21 s(-1). From these results, we conclude that myofibrils and muscle fibers exhibit nearly equal ATP binding step, and nearly equal ATP binding induced cross-bridge detachment step. Consequently, there is a good correlation between process C (phase 2 of step analysis) and the cross-bridge detachment step. The reverse detachment step is finite in fibers, but almost absent in myofibrils. We further studied partially cross-linked myofibrils and found little change in steps 2 and 3, indicating that cross-linking does not affect these steps. However, we found that K (1) is 2.5× of native myofibrils, indicating that MgATP binding is weakened by the presence of the extra load. We further studied the phosphate (Pi) effect in myofibrils, and found that Pi is a competitive inhibitor of MgATP, with the inhibitory dissociation constant of ~9 mM. Similar results were also deduced from fiber studies. To characterize the ATP cleavage step in myofibrils, we measured the slow rate constant in fluorescence, and found that k (3) + k (-3) = 16 ± 1 s(-1).

  11. Different enzyme kinetic models.

    PubMed

    Seibert, Eleanore; Tracy, Timothy S

    2014-01-01

    As described in Chapter 2 , a large number of enzymatic reactions can be adequately described by Michaelis-Menten kinetics. The Michaelis-Menten equation represents a rectangular hyperbola, with a y-asymptote at the V max value. In many cases, more complex kinetic models are required to explain the observed data. Atypical kinetic profiles are believed to arise from the simultaneous binding of multiple molecules within the active site of the enzyme (Tracy and Hummel, Drug Metab Rev 36:231-242, 2004). Several cytochromes P450 have large active sites that enable binding of multiple molecules (Wester et al. J Biol Chem 279:35630-35637, 2004; Yano et al. J Biol Chem 279:38091-38094, 2004). Thus, atypical kinetics are not uncommon in in vitro drug metabolism studies. This chapter covers enzyme kinetic reactions in which a single enzyme has multiple binding sites for substrates and/or inhibitors as well as reactions catalyzed by multiple enzymes.

  12. Histone Deacetylase (HDAC) Inhibitor Kinetic Rate Constants Correlate with Cellular Histone Acetylation but Not Transcription and Cell Viability

    PubMed Central

    Lauffer, Benjamin E. L.; Mintzer, Robert; Fong, Rina; Mukund, Susmith; Tam, Christine; Zilberleyb, Inna; Flicke, Birgit; Ritscher, Allegra; Fedorowicz, Grazyna; Vallero, Roxanne; Ortwine, Daniel F.; Gunzner, Janet; Modrusan, Zora; Neumann, Lars; Koth, Christopher M.; Lupardus, Patrick J.; Kaminker, Joshua S.; Heise, Christopher E.; Steiner, Pascal

    2013-01-01

    Histone deacetylases (HDACs) are critical in the control of gene expression, and dysregulation of their activity has been implicated in a broad range of diseases, including cancer, cardiovascular, and neurological diseases. HDAC inhibitors (HDACi) employing different zinc chelating functionalities such as hydroxamic acids and benzamides have shown promising results in cancer therapy. Although it has also been suggested that HDACi with increased isozyme selectivity and potency may broaden their clinical utility and minimize side effects, the translation of this idea to the clinic remains to be investigated. Moreover, a detailed understanding of how HDACi with different pharmacological properties affect biological functions in vitro and in vivo is still missing. Here, we show that a panel of benzamide-containing HDACi are slow tight-binding inhibitors with long residence times unlike the hydroxamate-containing HDACi vorinostat and trichostatin-A. Characterization of changes in H2BK5 and H4K14 acetylation following HDACi treatment in the neuroblastoma cell line SH-SY5Y revealed that the timing and magnitude of histone acetylation mirrored both the association and dissociation kinetic rates of the inhibitors. In contrast, cell viability and microarray gene expression analysis indicated that cell death induction and changes in transcriptional regulation do not correlate with the dissociation kinetic rates of the HDACi. Therefore, our study suggests that determining how the selective and kinetic inhibition properties of HDACi affect cell function will help to evaluate their therapeutic utility. PMID:23897821

  13. A second dihydroorotate dehydrogenase (Type A) of the human pathogen Enterococcus faecalis: expression, purification, and steady-state kinetic mechanism.

    PubMed

    Marcinkeviciene, J; Jiang, W; Locke, G; Kopcho, L M; Rogers, M J; Copeland, R A

    2000-05-01

    We report the identification, expression, and characterization of a second Dihydroorotate dehydrogenase (DHODase A) from the human pathogen Enterococcus faecalis. The enzyme consists of a polypeptide chain of 322 amino acids that shares 68% identity with the cognate type A enzyme from the bacterium Lactococcus lactis. E. faecalis DHODase A catalyzed the oxidation of l-dihydroorotate while reducing a number of substrates, including fumarate, coenzyme Q(0), and menadione. The steady-state kinetic mechanism has been determined with menadione as an oxidizing substrate at pH 7.5. Initial velocity and product inhibition data suggest that the enzyme follows a two-site nonclassical ping-pong kinetic mechanism. The absorbance of the active site FMN cofactor is quenched in a concentration-dependent manner by titration with orotate and barbituric acid, two competitive inhibitors with respect to dihydroorotate. In contrast, titration of the enzyme with menadione had no effect on FMN absorbance, consistent with nonoverlapping binding sites for dihyroorotate and menadione, as suggested from the kinetic mechanism. The reductive half-reaction has been shown to be only partially rate limiting, and an attempt to evaluate the slow step in the overall reaction has been made by simulating orotate production under steady-state conditions. Our data indicate that the oxidative half-reaction is a rate-limiting segment, while orotate, most likely, retains significant affinity for the reduced enzyme, as suggested by the product inhibition pattern. Copyright 2000 Academic Press.

  14. Histone deacetylase (HDAC) inhibitor kinetic rate constants correlate with cellular histone acetylation but not transcription and cell viability.

    PubMed

    Lauffer, Benjamin E L; Mintzer, Robert; Fong, Rina; Mukund, Susmith; Tam, Christine; Zilberleyb, Inna; Flicke, Birgit; Ritscher, Allegra; Fedorowicz, Grazyna; Vallero, Roxanne; Ortwine, Daniel F; Gunzner, Janet; Modrusan, Zora; Neumann, Lars; Koth, Christopher M; Lupardus, Patrick J; Kaminker, Joshua S; Heise, Christopher E; Steiner, Pascal

    2013-09-13

    Histone deacetylases (HDACs) are critical in the control of gene expression, and dysregulation of their activity has been implicated in a broad range of diseases, including cancer, cardiovascular, and neurological diseases. HDAC inhibitors (HDACi) employing different zinc chelating functionalities such as hydroxamic acids and benzamides have shown promising results in cancer therapy. Although it has also been suggested that HDACi with increased isozyme selectivity and potency may broaden their clinical utility and minimize side effects, the translation of this idea to the clinic remains to be investigated. Moreover, a detailed understanding of how HDACi with different pharmacological properties affect biological functions in vitro and in vivo is still missing. Here, we show that a panel of benzamide-containing HDACi are slow tight-binding inhibitors with long residence times unlike the hydroxamate-containing HDACi vorinostat and trichostatin-A. Characterization of changes in H2BK5 and H4K14 acetylation following HDACi treatment in the neuroblastoma cell line SH-SY5Y revealed that the timing and magnitude of histone acetylation mirrored both the association and dissociation kinetic rates of the inhibitors. In contrast, cell viability and microarray gene expression analysis indicated that cell death induction and changes in transcriptional regulation do not correlate with the dissociation kinetic rates of the HDACi. Therefore, our study suggests that determining how the selective and kinetic inhibition properties of HDACi affect cell function will help to evaluate their therapeutic utility.

  15. Dissecting the hybridization of oligonucleotides to structured complementary sequences.

    PubMed

    Peracchi, Alessio

    2016-06-01

    When oligonucleotides hybridize to long target molecules, the process is slowed by the secondary structure in the targets. The phenomenon has been analyzed in several previous studies, but many details remain poorly understood. I used a spectrofluorometric strategy, focusing on the formation/breaking of individual base pairs, to study the kinetics of association between a DNA hairpin and >20 complementary oligonucleotides ('antisenses'). Hybridization rates differed by over three orders of magnitude. Association was toehold-mediated, both for antisenses binding to the target's ends and for those designed to interact with the loop. Binding of these latter, besides being consistently slower, was affected to variable, non-uniform extents by the asymmetric loop structure. Divalent metal ions accelerated hybridization, more pronouncedly when nucleation occurred at the loop. Incorporation of locked nucleic acid (LNA) residues in the antisenses substantially improved the kinetics only when LNAs participated to the earliest hybridization steps. The effects of individual LNAs placed along the antisense indicated that the reaction transition state occurred after invading at least the first base pair of the stem. The experimental approach helps dissect hybridization reactions involving structured nucleic acids. Toehold-dependent, nucleation-invasion models appear fully appropriate for describing such reactions. Estimating the stability of nucleation complexes formed at internal toeholds is the major hurdle for the quantitative prediction of hybridization rates. While analyzing the mechanisms of a fundamental biochemical process (hybridization), this work also provides suggestions for the improvement of technologies that rely on such process. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Quantitative and predictive model of kinetic regulation by E. coli TPP riboswitches

    PubMed Central

    Guedich, Sondés; Puffer-Enders, Barbara; Baltzinger, Mireille; Hoffmann, Guillaume; Da Veiga, Cyrielle; Jossinet, Fabrice; Thore, Stéphane; Bec, Guillaume; Ennifar, Eric; Burnouf, Dominique; Dumas, Philippe

    2016-01-01

    ABSTRACT Riboswitches are non-coding elements upstream or downstream of mRNAs that, upon binding of a specific ligand, regulate transcription and/or translation initiation in bacteria, or alternative splicing in plants and fungi. We have studied thiamine pyrophosphate (TPP) riboswitches regulating translation of thiM operon and transcription and translation of thiC operon in E. coli, and that of THIC in the plant A. thaliana. For all, we ascertained an induced-fit mechanism involving initial binding of the TPP followed by a conformational change leading to a higher-affinity complex. The experimental values obtained for all kinetic and thermodynamic parameters of TPP binding imply that the regulation by A. thaliana riboswitch is governed by mass-action law, whereas it is of kinetic nature for the two bacterial riboswitches. Kinetic regulation requires that the RNA polymerase pauses after synthesis of each riboswitch aptamer to leave time for TPP binding, but only when its concentration is sufficient. A quantitative model of regulation highlighted how the pausing time has to be linked to the kinetic rates of initial TPP binding to obtain an ON/OFF switch in the correct concentration range of TPP. We verified the existence of these pauses and the model prediction on their duration. Our analysis also led to quantitative estimates of the respective efficiency of kinetic and thermodynamic regulations, which shows that kinetically regulated riboswitches react more sharply to concentration variation of their ligand than thermodynamically regulated riboswitches. This rationalizes the interest of kinetic regulation and confirms empirical observations that were obtained by numerical simulations. PMID:26932506

  17. Quantitative and predictive model of kinetic regulation by E. coli TPP riboswitches.

    PubMed

    Guedich, Sondés; Puffer-Enders, Barbara; Baltzinger, Mireille; Hoffmann, Guillaume; Da Veiga, Cyrielle; Jossinet, Fabrice; Thore, Stéphane; Bec, Guillaume; Ennifar, Eric; Burnouf, Dominique; Dumas, Philippe

    2016-01-01

    Riboswitches are non-coding elements upstream or downstream of mRNAs that, upon binding of a specific ligand, regulate transcription and/or translation initiation in bacteria, or alternative splicing in plants and fungi. We have studied thiamine pyrophosphate (TPP) riboswitches regulating translation of thiM operon and transcription and translation of thiC operon in E. coli, and that of THIC in the plant A. thaliana. For all, we ascertained an induced-fit mechanism involving initial binding of the TPP followed by a conformational change leading to a higher-affinity complex. The experimental values obtained for all kinetic and thermodynamic parameters of TPP binding imply that the regulation by A. thaliana riboswitch is governed by mass-action law, whereas it is of kinetic nature for the two bacterial riboswitches. Kinetic regulation requires that the RNA polymerase pauses after synthesis of each riboswitch aptamer to leave time for TPP binding, but only when its concentration is sufficient. A quantitative model of regulation highlighted how the pausing time has to be linked to the kinetic rates of initial TPP binding to obtain an ON/OFF switch in the correct concentration range of TPP. We verified the existence of these pauses and the model prediction on their duration. Our analysis also led to quantitative estimates of the respective efficiency of kinetic and thermodynamic regulations, which shows that kinetically regulated riboswitches react more sharply to concentration variation of their ligand than thermodynamically regulated riboswitches. This rationalizes the interest of kinetic regulation and confirms empirical observations that were obtained by numerical simulations.

  18. Mechanism of calmodulin recognition of the binding domain of isoform 1b of the plasma membrane Ca2+-ATPase: kinetic pathway and effects of methionine oxidation

    PubMed Central

    Slaughter, Brian D.; Bieber Urbauer, Ramona J.; Urbauer, Jeffrey L.; Johnson, Carey K.

    2008-01-01

    Calmodulin (CaM) binds to a domain near the C-terminus of the plasma-membrane Ca2+-ATPase (PMCA), causing the release of this domain and relief of its autoinhibitory function. We investigated the kinetics of dissociation and binding of Ca2+-CaM with a 28-residue peptide (C28W(1b)) corresponding to the CaM binding domain of isoform 1b of PMCA. CaM was labeled with a fluorescent probe on either the N-terminal domain at residue 34 or on the C-terminal domain at residue 110. Formation of complexes of CaM with C28W(1b) results in a decrease in the fluorescence yield of the fluorophore, allowing the kinetics of dissociation or binding to be detected. Using a maximum entropy method, we determined the minimum number and magnitudes of rate constants required to fit the data. Comparison of the fluorescence changes for CaM labeled on the C-terminal or N-terminal domain suggests sequential and ordered binding of the C-terminal and N-terminal domains of CaM with C28W(1b). For dissociation of C28W(1b) from CaM labeled on the N-terminal domain, we observed three time constants, indicating the presence of two intermediate states in the dissociation pathway. However, for CaM labeled on the C-terminal domain, we observed only two time constants, suggesting that the fluorescence label on the C-terminal domain was not sensitive to one of the kinetic steps. The results were modeled by a kinetic mechanism where an initial complex forms upon binding of the C-terminal domain of CaM to C28W(1b), followed by binding of the N-terminal domain, and then formation of a tight binding complex. Oxidation of methionine residues in CaM resulted in significant perturbations to the binding kinetics. The rate of formation of a tight binding complex was reduced, consistent with the lower effectiveness of oxidized CaM in activating the Ca2+ pump. PMID:17343368

  19. Kinetics of bacterial phospholipase C activity at micellar interfaces: effect of substrate aggregate microstructure and a model for the kinetic parameters.

    PubMed

    Singh, Jasmeet; Ranganathan, Radha; Hajdu, Joseph

    2008-12-25

    Activity at micellar interfaces of bacterial phospholipase C from Bacillus cereus on phospholipids solubilized in micelles was investigated with the goal of elucidating the role of the interface microstructure and developing further an existing kinetic model. Enzyme kinetics and physicochemical characterization of model substrate aggregates were combined, thus enabling the interpretation of kinetics in the context of the interface. Substrates were diacylphosphatidylcholine of different acyl chain lengths in the form of mixed micelles with dodecyldimethylammoniopropanesulfonate. An early kinetic model, reformulated to reflect the interfacial nature of the kinetics, was applied to the kinetic data. A better method of data treatment is proposed, use of which makes the presence of microstructure effects quite transparent. Models for enzyme-micelle binding and enzyme-lipid binding are developed, and expressions incorporating the microstructural properties are derived for the enzyme-micelle dissociation constant K(s) and the interface Michaelis-Menten constant, K(M). Use of these expressions in the interface kinetic model brings excellent agreement between the kinetic data and the model. Numerical values for the thermodynamic and kinetic parameters are determined. Enzyme-lipid binding is found to be an activated process with an acyl chain length dependent free energy of activation that decreases with micelle lipid molar fraction with a coefficient of about -15RT and correlates with the tightness of molecular packing in the substrate aggregate. Thus, the physical insight obtained includes a model for the kinetic parameters that shows that these parameters depend on the substrate concentration and acyl chain length of the lipid. Enzyme-micelle binding is indicated to be hydrophobic and solvent mediated with a dissociation constant of 1.2 mM.

  20. Glycoprotein D actively induces rapid internalization of two nectin-1 isoforms during herpes simplex virus entry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stiles, Katie M., E-mail: stileskm@mail.med.upenn.ed; Krummenacher, Claude

    2010-03-30

    Entry of herpes simplex virus (HSV) occurs either by fusion at the plasma membrane or by endocytosis and fusion with an endosome. Binding of glycoprotein D (gD) to a receptor such as nectin-1 is essential in both cases. We show that virion gD triggered the rapid down-regulation of nectin-1 with kinetics similar to those of virus entry. In contrast, nectin-1 was not constitutively recycled from the surface of uninfected cells. Both the nectin-1alpha and beta isoforms were internalized in response to gD despite having different cytoplasmic tails. However, deletion of the nectin-1 cytoplasmic tail slowed down-regulation of nectin-1 and internalizationmore » of virions. These data suggest that nectin-1 interaction with a cytoplasmic protein is not required for its down-regulation. Overall, this study shows that gD binding actively induces the rapid internalization of various forms of nectin-1. We suggest that HSV activates a nectin-1 internalization pathway to use for endocytic entry.« less

  1. Quantitative pharmacological analysis of antagonist binding kinetics at CRF1 receptors in vitro and in vivo

    PubMed Central

    Ramsey, Simeon J; Attkins, Neil J; Fish, Rebecca; van der Graaf, Piet H

    2011-01-01

    BACKGROUND AND PURPOSE A series of novel non-peptide corticotropin releasing factor type-1 receptor (CRF1) antagonists were found to display varying degrees of insurmountable and non-competitive behaviour in functional in vitro assays. We describe how we attempted to relate this behaviour to ligand receptor-binding kinetics in a quantitative manner and how this resulted in the development and implementation of an efficient pharmacological screening method based on principles described by Motulsky and Mahan. EXPERIMENTAL APPROACH A non-equilibrium binding kinetic assay was developed to determine the receptor binding kinetics of non-peptide CRF1 antagonists. Nonlinear, mixed-effects modelling was used to obtain estimates of the compounds association and dissociation rates. We present an integrated pharmacokinetic–pharmacodynamic (PKPD) approach, whereby the time course of in vivo CRF1 receptor binding of novel compounds can be predicted on the basis of in vitro assays. KEY RESULTS The non-competitive antagonist behaviour appeared to be correlated to the CRF1 receptor off-rate kinetics. The integrated PKPD model suggested that, at least in a qualitative manner, the in vitro assay can be used to triage and select compounds for further in vivo investigations. CONCLUSIONS AND IMPLICATIONS This study provides evidence for a link between ligand offset kinetics and insurmountable/non-competitive antagonism at the CRF1 receptor. The exact molecular pharmacological nature of this association remains to be determined. In addition, we have developed a quantitative framework to study and integrate in vitro and in vivo receptor binding kinetic behaviour of CRF1 receptor antagonists in an efficient manner in a drug discovery setting. PMID:21449919

  2. Effect of DNA Binding on Geminate CO Recombination Kinetics in CO-sensing Transcription Factor CooA*

    PubMed Central

    Benabbas, Abdelkrim; Karunakaran, Venugopal; Youn, Hwan; Poulos, Thomas L.; Champion, Paul M.

    2012-01-01

    Carbon monoxide oxidation activator (CooA) proteins are heme-based CO-sensing transcription factors. Here we study the ultrafast dynamics of geminate CO rebinding in two CooA homologues, Rhodospirillum rubrum (RrCooA) and Carboxydothermus hydrogenoformans (ChCooA). The effects of DNA binding and the truncation of the DNA-binding domain on the CO geminate recombination kinetics were specifically investigated. The CO rebinding kinetics in these CooA complexes take place on ultrafast time scales but remain non-exponential over many decades in time. We show that this non-exponential kinetic response is due to a quenched enthalpic barrier distribution resulting from a distribution of heme geometries that is frozen or slowly evolving on the time scale of CO rebinding. We also show that, upon CO binding, the distal pocket of the heme in the CooA proteins relaxes to form a very efficient hydrophobic trap for CO. DNA binding further tightens the narrow distal pocket and slightly weakens the iron-proximal histidine bond. Comparison of the CO rebinding kinetics of RrCooA, truncated RrCooA, and DNA-bound RrCooA proteins reveals that the uncomplexed and inherently flexible DNA-binding domain adds additional structural heterogeneity to the heme doming coordinate. When CooA forms a complex with DNA, the flexibility of the DNA-binding domain decreases, and the distribution of the conformations available in the heme domain becomes restricted. The kinetic studies also offer insights into how the architecture of the heme environment can tune entropic barriers in order to control the geminate recombination of CO in heme proteins, whereas spin selection rules play a minor or non-existent role. PMID:22544803

  3. Effect of DNA binding on geminate CO recombination kinetics in CO-sensing transcription factor CooA.

    PubMed

    Benabbas, Abdelkrim; Karunakaran, Venugopal; Youn, Hwan; Poulos, Thomas L; Champion, Paul M

    2012-06-22

    Carbon monoxide oxidation activator (CooA) proteins are heme-based CO-sensing transcription factors. Here we study the ultrafast dynamics of geminate CO rebinding in two CooA homologues, Rhodospirillum rubrum (RrCooA) and Carboxydothermus hydrogenoformans (ChCooA). The effects of DNA binding and the truncation of the DNA-binding domain on the CO geminate recombination kinetics were specifically investigated. The CO rebinding kinetics in these CooA complexes take place on ultrafast time scales but remain non-exponential over many decades in time. We show that this non-exponential kinetic response is due to a quenched enthalpic barrier distribution resulting from a distribution of heme geometries that is frozen or slowly evolving on the time scale of CO rebinding. We also show that, upon CO binding, the distal pocket of the heme in the CooA proteins relaxes to form a very efficient hydrophobic trap for CO. DNA binding further tightens the narrow distal pocket and slightly weakens the iron-proximal histidine bond. Comparison of the CO rebinding kinetics of RrCooA, truncated RrCooA, and DNA-bound RrCooA proteins reveals that the uncomplexed and inherently flexible DNA-binding domain adds additional structural heterogeneity to the heme doming coordinate. When CooA forms a complex with DNA, the flexibility of the DNA-binding domain decreases, and the distribution of the conformations available in the heme domain becomes restricted. The kinetic studies also offer insights into how the architecture of the heme environment can tune entropic barriers in order to control the geminate recombination of CO in heme proteins, whereas spin selection rules play a minor or non-existent role.

  4. Comparison of colorimetry and electrothermal atomic absorption spectroscopy for the quantification of non-transferrin bound iron in human sera.

    PubMed

    Jittangprasert, Piyada; Wilairat, Prapin; Pootrakul, Pensri

    2004-12-01

    This paper describes a comparison of two analytical techniques, one employing bathophenanthrolinedisulfonate (BPT), a most commonly-used reagent for Fe (II) determination, as chromogen and an electrothermal atomic absorption spectroscopy (ETAAS) for the quantification of non-transferrin bound iron (NTBI) in sera from thalassemic patients. Nitrilotriacetic acid (NTA) was employed as the ligand for binding iron from low molecular weight iron complexes present in the serum but without removing iron from the transferrin protein. After ultrafiltration the Fe (III)-NTA complex was then quantified by both methods. Kinetic study of the rate of the Fe (II)-BPT complex formation for various excess amounts of NTA ligand was also carried out. The kinetic data show that a minimum time duration (> 60 minutes) is necessary for complete complex formation when large excess of NTA is used. Calibration curves given by colorimetric and ETAAS methods were linear over the range of 0.15-20 microM iron (III). The colorimetric and ETAAS methods exhibited detection limit (3sigma) of 0.13 and 0.14 microM, respectively. The NTBI concentrations from 55 thalassemic serum samples measured employing BPT as chromogen were statistically compared with the results determined by ETAAS. No significant disagreement at 95% confidence level was observed. It is, therefore, possible to select any one of these two techniques for determination of NTBI in serum samples of thalassemic patients. However, the colorimetric procedure requires a longer analysis time because of a slow rate of exchange of NTA ligand with BPT, leading to the slow rate of formation of the colored complex.

  5. IKs channels open slowly because KCNE1 accessory subunits slow the movement of S4 voltage sensors in KCNQ1 pore-forming subunits

    PubMed Central

    Ruscic, Katarina J.; Miceli, Francesco; Villalba-Galea, Carlos A.; Dai, Hui; Mishina, Yukiko; Bezanilla, Francisco; Goldstein, Steve A. N.

    2013-01-01

    Human IKs channels activate slowly with the onset of cardiac action potentials to repolarize the myocardium. IKs channels are composed of KCNQ1 (Q1) pore-forming subunits that carry S4 voltage-sensor segments and KCNE1 (E1) accessory subunits. Together, Q1 and E1 subunits recapitulate the conductive and kinetic properties of IKs. How E1 modulates Q1 has been unclear. Investigators have variously posited that E1 slows the movement of S4 segments, slows opening and closing of the conduction pore, or modifies both aspects of electromechanical coupling. Here, we show that Q1 gating current can be resolved in the absence of E1, but not in its presence, consistent with slowed movement of the voltage sensor. E1 was directly demonstrated to slow S4 movement with a fluorescent probe on the Q1 voltage sensor. Direct correlation of the kinetics of S4 motion and ionic current indicated that slowing of sensor movement by E1 was both necessary and sufficient to determine the slow-activation time course of IKs. PMID:23359697

  6. Functionally heterogenous ryanodine receptors in avian cerebellum.

    PubMed

    Sierralta, J; Fill, M; Suárez-Isla, B A

    1996-07-19

    The functional heterogeneity of the ryanodine receptor (RyR) channels in avian cerebellum was defined. Heavy endoplasmic reticulum microsomes had significant levels of ryanodine and inositol 1,4,5-trisphosphate binding. Scatchard analysis and kinetic studies indicated the existence of at least two distinct ryanodine binding sites. Ryanodine binding was calcium-dependent but was not significantly enhanced by caffeine. Incorporation of microsomes into planar lipid bilayers revealed ion channels with pharmacological features (calcium, magnesium, ATP, and caffeine sensitivity) similar to the RyR channels found in mammalian striated muscle. Despite a wide range of unitary conductances (220-500 picosiemens, symmetrical cesium methanesulfonate), ryanodine locked both channels into a characteristic slow gating subconductance state, positively identifying them as RyR channels. Two populations of avian RyR channels were functionally distinguished by single channel calcium sensitivity. One population was defined by a bell-shaped calcium sensitivity analogous to the skeletal muscle RyR isoform (type I). The calcium sensitivity of the second RyR population was sigmoidal and analogous to the cardiac muscle RyR isoform (type II). These data show that there are at least two functionally distinct RyR channel populations in avian cerebellum. This leads to the possibility that these functionally distinct RyR channels are involved in different intracellular calcium signaling pathways.

  7. Cooperativity in Monomeric Enzymes with Single Ligand-Binding Sites

    PubMed Central

    Porter, Carol M.

    2011-01-01

    Cooperativity is widespread in biology. It empowers a variety of regulatory mechanisms and impacts both the kinetic and thermodynamic properties of macromolecular systems. Traditionally, cooperativity is viewed as requiring the participation of multiple, spatially distinct binding sites that communicate via ligand-induced structural rearrangements; however, cooperativity requires neither multiple ligand binding events nor multimeric assemblies. An underappreciated manifestation of cooperativity has been observed in the non-Michaelis-Menten kinetic response of certain monomeric enzymes that possess only a single ligand-binding site. In this review, we present an overview of kinetic cooperativity in monomeric enzymes. We discuss the primary mechanisms postulated to give rise to monomeric cooperativity and highlight modern experimental methods that could offer new insights into the nature of this phenomenon. We conclude with an updated list of single subunit enzymes that are suspected of displaying cooperativity, and a discussion of the biological significance of this unique kinetic response. PMID:22137502

  8. Rate Constants and Mechanisms of Protein–Ligand Binding

    PubMed Central

    Pang, Xiaodong; Zhou, Huan-Xiang

    2017-01-01

    Whereas protein–ligand binding affinities have long-established prominence, binding rate constants and binding mechanisms have gained increasing attention in recent years. Both new computational methods and new experimental techniques have been developed to characterize the latter properties. It is now realized that binding mechanisms, like binding rate constants, can and should be quantitatively determined. In this review, we summarize studies and synthesize ideas on several topics in the hope of providing a coherent picture of and physical insight into binding kinetics. The topics include microscopic formulation of the kinetic problem and its reduction to simple rate equations; computation of binding rate constants; quantitative determination of binding mechanisms; and elucidation of physical factors that control binding rate constants and mechanisms. PMID:28375732

  9. Chaperonin-based biolayer interferometry to assess the kinetic stability of metastable, aggregation-prone proteins

    PubMed Central

    Lea, Wendy A.; Naik, Subhashchandra; Chaudhri, Tapan; Machen, Alexandra J.; O’Neil, Pierce T.; McGinn-Straub, Wesley; Tischer, Alexander; Auton, Matthew T.; Burns, Joshua R.; Baldwin, Michael R.; Khar, Karen R.; Karanicolas, John; Fisher, Mark T.

    2017-01-01

    Stabilizing the folded state of metastable and/or aggregation-prone proteins through exogenous ligand binding is an appealing strategy to decrease disease pathologies brought on by protein folding defects or deleterious kinetic transitions. Current methods of examining ligand binding to these marginally stable native states are limited, because protein aggregation typically interferes with analysis. Here, we describe a rapid method for assessing the kinetic stability of folded proteins and monitoring the effects of ligand stabilization for both intrinsically stable proteins (monomers, oligomers, multi-domain) and metastable proteins (e.g. low Tm) that uses a new GroEL chaperonin-based biolayer interferometry (BLI) denaturant-pulse platform. A kinetically controlled denaturation isotherm is generated by exposing a target protein immobilized on a BLI biosensor to increasing denaturant concentrations (urea or GnHCl) in a pulsatile manner to induce partial or complete unfolding of the attached protein population. Following the rapid removal of the denaturant, the extent of hydrophobic unfolded/partially folded species that remain is detected by increased GroEL binding. Since this kinetic denaturant pulse is brief, the amplitude of the GroEL binding to the immobilized protein depends on the duration of exposure to denaturant, the concentration of denaturant, wash times, and the underlying protein unfolding/refolding kinetics; fixing all other parameters and plotting GroEL binding amplitude versus denaturant pulse concentration results in a kinetically controlled denaturation isotherm. When folding osmolytes or stabilizing ligands are added to the immobilized target proteins before and during the denaturant pulse, the diminished population of unfolded/partially folded protein is manifested by a decreased GroEL binding and/or a marked shift in these kinetically controlled denaturation profiles to higher denaturant concentrations. This particular platform approach can be used to identify small molecules/solution conditions that can stabilize or destabilize thermally stable proteins, multi-domain proteins, oligomeric proteins, and most importantly, aggregation prone metastable proteins. PMID:27505032

  10. Constructive methods of invariant manifolds for kinetic problems

    NASA Astrophysics Data System (ADS)

    Gorban, Alexander N.; Karlin, Iliya V.; Zinovyev, Andrei Yu.

    2004-06-01

    The concept of the slow invariant manifold is recognized as the central idea underpinning a transition from micro to macro and model reduction in kinetic theories. We present the Constructive Methods of Invariant Manifolds for model reduction in physical and chemical kinetics, developed during last two decades. The physical problem of reduced description is studied in the most general form as a problem of constructing the slow invariant manifold. The invariance conditions are formulated as the differential equation for a manifold immersed in the phase space ( the invariance equation). The equation of motion for immersed manifolds is obtained ( the film extension of the dynamics). Invariant manifolds are fixed points for this equation, and slow invariant manifolds are Lyapunov stable fixed points, thus slowness is presented as stability. A collection of methods to derive analytically and to compute numerically the slow invariant manifolds is presented. Among them, iteration methods based on incomplete linearization, relaxation method and the method of invariant grids are developed. The systematic use of thermodynamics structures and of the quasi-chemical representation allow to construct approximations which are in concordance with physical restrictions. The following examples of applications are presented: nonperturbative deviation of physically consistent hydrodynamics from the Boltzmann equation and from the reversible dynamics, for Knudsen numbers Kn∼1; construction of the moment equations for nonequilibrium media and their dynamical correction (instead of extension of list of variables) to gain more accuracy in description of highly nonequilibrium flows; determination of molecules dimension (as diameters of equivalent hard spheres) from experimental viscosity data; model reduction in chemical kinetics; derivation and numerical implementation of constitutive equations for polymeric fluids; the limits of macroscopic description for polymer molecules, etc.

  11. Stopped-flow kinetic studies of poly(amidoamine) dendrimer-calf thymus DNA to form dendriplexes.

    PubMed

    Dey, Debabrata; Kumar, Santosh; Maiti, Souvik; Dhara, Dibakar

    2013-11-07

    Poly(amidoamine) (PAMAM) dendrimers are known to be highly efficient nonviral carriers in gene delivery. Dendrimer-mediated transfection is known to be a function of the dendrimer to DNA charge ratio as well as the size of the dendrimer. In the present study, the binding kinetics of four PAMAM dendrimers (G1, G2, G3, and G4) with calf thymus DNA (CT-DNA) has been studied using stopped-flow fluorescence spectroscopy. The effect of dendrimer-to-DNA charge ratio and dendrimer generation on the binding kinetics was investigated. In most cases, the results of dendrimer-CT-DNA binding can be explained by a two-step reaction mechanism: a rapid electrostatic binding between the dendrimer and DNA, followed by a conformational change of the dendrimer-DNA complex that ultimately leads to DNA condensation. It was observed that the charge ratio on the dendrimer and the DNA phosphate groups, as well as the dendrimer generation (size), has a marked effect on the kinetics of binding between the DNA and the dendrimers. The rate constant (k'1) of the first step was much higher compared to that of the second step (k'2), and both were found to increase with an increase in dendrimer concentration. Among the four generations of dendrimers, G4 exhibited significantly faster binding kinetics compared to the three smaller generation dendrimers.

  12. Covalent binding of aniline to humic substances. 1. Kinetic studies

    USGS Publications Warehouse

    Weber, E.J.; Spidle, D.L.; Thorn, K.A.

    1996-01-01

    The reaction kinetics for the covalent binding of aniline with reconstituted IHSS humic and fulvic acids, unfractionated DOM isolated from Suwannee River water, and whole samples of Suwannee River water have been investigated. The reaction kinetics in each of these systems can be adequately described by a simple second-order rate expression. The effect of varying the initial concentration of aniline on reaction kinetics suggested that approximately 10% of the covalent binding sites associated with Suwannee River fulvic acid are highly reactive sites that are quickly saturated. Based on the kinetic parameters determined for the binding of aniline with the Suwannee River fulvic and humic acid isolates, it was estimated that 50% of the aniline concentration decrease in a Suwannee River water sample could be attributed to reaction with the fulvic and humic acid components of the whole water sample. Studies with Suwannee River fulvic acid demonstrated that the rate of binding decreased with decreasing pH, which parallels the decrease in the effective concentration of the neutral form, or reactive nucleophilic species of aniline. The covalent binding of aniline with Suwannee River fulvic acid was inhibited by prior treatment of the fulvic acid with hydrogen sulfide, sodium borohydride, or hydroxylamine. These observations are consistent with a reaction pathway involving nucleophilic addition of aniline to carbonyl moieties present in the fulvic acid.

  13. Fevipiprant (QAW039), a Slowly Dissociating CRTh2 Antagonist with the Potential for Improved Clinical Efficacy.

    PubMed

    Sykes, David A; Bradley, Michelle E; Riddy, Darren M; Willard, Elizabeth; Reilly, John; Miah, Asadh; Bauer, Carsten; Watson, Simon J; Sandham, David A; Dubois, Gerald; Charlton, Steven J

    2016-05-01

    Here we describe the pharmacologic properties of a series of clinically relevant chemoattractant receptor-homologous molecules expressed on T-helper type 2 (CRTh2) receptor antagonists, including fevipiprant (NVP-QAW039 or QAW039), which is currently in development for the treatment of allergic diseases. [(3)H]-QAW039 displayed high affinity for the human CRTh2 receptor (1.14 ± 0.44 nM) expressed in Chinese hamster ovary cells, the binding being reversible and competitive with the native agonist prostaglandin D2(PGD2). The binding kinetics of QAW039 determined directly using [(3)H]-QAW039 revealed mean kinetic on (kon) and off (koff) values for QAW039 of 4.5 × 10(7)M(-1)min(-1)and 0.048 minute(-1), respectively. Importantly, thekoffof QAW039 (half-life = 14.4 minutes) was >7-fold slower than the slowest reference compound tested, AZD-1981. In functional studies, QAW039 behaved as an insurmountable antagonist of PGD2-stimulated [(35)S]-GTPγS activation, and its effects were not fully reversed by increasing concentrations of PGD2after an initial 15-minute incubation period. This behavior is consistent with its relatively slow dissociation from the human CRTh2 receptor. In contrast for the other ligands tested this time-dependent effect on maximal stimulation was fully reversed by the 15-minute time point, whereas QAW039's effects persisted for >180 minutes. All CRTh2 antagonists tested inhibited PGD2-stimulated human eosinophil shape change, but importantly QAW039 retained its potency in the whole-blood shape-change assay relative to the isolated shape change assay, potentially reflective of its relatively slower off rate from the CRTh2 receptor. QAW039 was also a potent inhibitor of PGD2-induced cytokine release in human Th2 cells. Slow CRTh2 antagonist dissociation could provide increased receptor coverage in the face of pathologic PGD2concentrations, which may be clinically relevant. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  14. Preparation and Properties of a Novel Semi-IPN Slow-Release Fertilizer with the Function of Water Retention.

    PubMed

    Xiang, Yang; Ru, Xudong; Shi, Jinguo; Song, Jiang; Zhao, Haidong; Liu, Yaqing; Guo, Dongdong; Lu, Xin

    2017-12-20

    A new semi-interpenetrating polymer network (semi-IPN) slow-release fertilizer (SISRF) with water absorbency, based on the kaolin-g-poly(acrylic acid-co-acrylic amide) (kaolin-g-P(AA-co-AM)) network and linear urea-formaldehyde oligomers (UF), was prepared by solution polymerization. Nutrients phosphorus and potassium were supplied by adding dipotassium hydrogen phosphate during the preparation process. The structure and properties of SISRF were characterized by various characterization methods. SISRF showed excellent water absorbency of 68 g g -1 in tap water. The slow-release behavior of nutrients and water-retention capacity of SISRF were also measured. Meanwhile, the swelling kinetics was well described by a pseudo-second-order kinetics model. Results suggested the formation of SISRF with simultaneously good slow-release and water-retention capacity, which was expected to apply in modern agriculture and horticulture.

  15. Drug-Target Kinetics in Drug Discovery.

    PubMed

    Tonge, Peter J

    2018-01-17

    The development of therapies for the treatment of neurological cancer faces a number of major challenges including the synthesis of small molecule agents that can penetrate the blood-brain barrier (BBB). Given the likelihood that in many cases drug exposure will be lower in the CNS than in systemic circulation, it follows that strategies should be employed that can sustain target engagement at low drug concentration. Time dependent target occupancy is a function of both the drug and target concentration as well as the thermodynamic and kinetic parameters that describe the binding reaction coordinate, and sustained target occupancy can be achieved through structural modifications that increase target (re)binding and/or that decrease the rate of drug dissociation. The discovery and deployment of compounds with optimized kinetic effects requires information on the structure-kinetic relationships that modulate the kinetics of binding, and the molecular factors that control the translation of drug-target kinetics to time-dependent drug activity in the disease state. This Review first introduces the potential benefits of drug-target kinetics, such as the ability to delineate both thermodynamic and kinetic selectivity, and then describes factors, such as target vulnerability, that impact the utility of kinetic selectivity. The Review concludes with a description of a mechanistic PK/PD model that integrates drug-target kinetics into predictions of drug activity.

  16. Drug–Target Kinetics in Drug Discovery

    PubMed Central

    2017-01-01

    The development of therapies for the treatment of neurological cancer faces a number of major challenges including the synthesis of small molecule agents that can penetrate the blood-brain barrier (BBB). Given the likelihood that in many cases drug exposure will be lower in the CNS than in systemic circulation, it follows that strategies should be employed that can sustain target engagement at low drug concentration. Time dependent target occupancy is a function of both the drug and target concentration as well as the thermodynamic and kinetic parameters that describe the binding reaction coordinate, and sustained target occupancy can be achieved through structural modifications that increase target (re)binding and/or that decrease the rate of drug dissociation. The discovery and deployment of compounds with optimized kinetic effects requires information on the structure–kinetic relationships that modulate the kinetics of binding, and the molecular factors that control the translation of drug–target kinetics to time-dependent drug activity in the disease state. This Review first introduces the potential benefits of drug-target kinetics, such as the ability to delineate both thermodynamic and kinetic selectivity, and then describes factors, such as target vulnerability, that impact the utility of kinetic selectivity. The Review concludes with a description of a mechanistic PK/PD model that integrates drug–target kinetics into predictions of drug activity. PMID:28640596

  17. Accounting for unintended binding events in the analysis of quartz crystal microbalance kinetic data.

    PubMed

    Heller, Gabriella T; Zwang, Theodore J; Sarapata, Elizabeth A; Haber, Michael A; Sazinsky, Matthew H; Radunskaya, Ami E; Johal, Malkiat S

    2014-05-01

    Previous methods for analyzing protein-ligand binding events using the quartz crystal microbalance with dissipation monitoring (QCM-D) fail to account for unintended binding that inevitably occurs during surface measurements and obscure kinetic information. In this article, we present a system of differential equations that accounts for both reversible and irreversible unintended interactions. This model is tested on three protein-ligand systems, each of which has different features, to establish the feasibility of using the QCM-D for protein binding analysis. Based on this analysis, we were able to obtain kinetic information for the intended interaction that is consistent with those obtained in literature via bulk-phase methods. In the appendix, we include a method for decoupling these from the intended binding events and extracting relevant affinity information. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. The Kinetic Mechanism for Cytochrome P450 Metabolism of Type II Binding Compounds: Evidence Supporting Direct Reduction

    PubMed Central

    Pearson, Joshua; Dahal, Upendra P.; Rock, Daniel; Peng, Chi-Chi; Schenk, James O.; Joswig-Jones, Carolyn; Jones, Jeffrey P.

    2011-01-01

    The metabolic stability of a drug is an important property that should be optimized during drug design and development. Nitrogen incorporation is hypothesized to increase the stability by coordination of nitrogen to the heme iron of cytochrome P450, a binding mode that is referred to as type II binding. However, we noticed that the type II binding compound 1 has less metabolic stability at subsaturating conditions than a closely related type I binding compound 3. Three kinetic models will be presented for type II binder metabolism; 1) Dead-end type II binding, 2) a rapid equilibrium between type I and II binding modes before reduction, and 3) a direct reduction of the type II coordinated heme. Data will be presented on reduction rates of iron, the off rates of substrate (using surface plasmon resonance) and the catalytic rate constants. These data argue against the dead-end, and rapid equilibrium models, leaving the direct reduction kinetic mechanism for metabolism of the type II binding compound 1. PMID:21530484

  19. Interaction of lactoferrin and lysozyme with casein micelles.

    PubMed

    Anema, Skelte G; de Kruif, C G Kees

    2011-11-14

    On addition of lactoferrin (LF) to skim milk, the turbidity decreases. The basic protein binds to the caseins in the casein micelles, which is then followed by a (partial) disintegration of the casein micelles. The amount of LF initially binding to casein micelles follows a Langmuir adsorption isotherm. The kinetics of the binding of LF could be described by first-order kinetics and similarly the disintegration kinetics. The disintegration was, however, about 10 times slower than the initial adsorption, which allowed investigating both phenomena. Kinetic data were also obtained from turbidity measurements, and all data could be described with one equation. The disintegration of the casein micelles was further characterized by an activation energy of 52 kJ/mol. The initial increase in hydrodynamic size of the casein micelles could be accounted for by assuming that it would go as the cube root of the mass using the adsorption and disintegration kinetics as determined from gel electrophoresis. The results show that LF binds to casein micelles and that subsequently the casein micelles partly disintegrate. All micelles behave in a similar manner as average particle size decreases. Lysozyme also bound to the casein micelles, and this binding followed a Langmuir adsorption isotherm. However, lysozyme did not cause the disintegration of the casein micelles.

  20. A hierarchy of functionally important relaxations within myoglobin based on solvent effects, mutations and kinetic model.

    PubMed

    Dantsker, David; Samuni, Uri; Friedman, Joel M; Agmon, Noam

    2005-06-01

    Geminate CO rebinding in myoglobin is studied for two viscous solvents, trehalose and sol-gel (bathed in 100% glycerol) at several temperatures. Mutations in key distal hemepocket residues are used to eliminate or enhance specific relaxation modes. The time-resolved data are analyzed with a modified Agmon-Hopfield model which is capable of providing excellent fits in cases where a single relaxation mode is dominant. Using this approach, we determine the relaxation rate constants of specific functionally important modes, obtaining also their Arrhenius activation energies. We find a hierarchy of distal pocket modes controlling the rebinding kinetics. The "heme access mode" (HAM) is responsible for the major slow-down in rebinding. It is a solvent-coupled cooperative mode which restricts ligand return from the xenon cavities. Bulky side-chains, like those His64 and Trp29 (in the L29W mutant), operate like overdamped pendulums which move over and block the binding site. They may be either unslaved (His64) or moderately slaved (Trp29) to the solvent. Small side-chain relaxations, most notably of leucines, are revealed in some mutants (V68L, V68A). They are conjectured to facilitate inter-cavity ligand motion. When all relaxations are arrested (H64L in trehalose), we observe pure inhomogeneous kinetics with no temperature dependence, suggesting that proximal relaxation is not a factor on the investigated timescale.

  1. Grain-Boundary Engineering for Aging and Slow-Crack-Growth Resistant Zirconia.

    PubMed

    Zhang, F; Chevalier, J; Olagnon, C; Batuk, M; Hadermann, J; Van Meerbeek, B; Vleugels, J

    2017-07-01

    Ceramic materials are prone to slow crack growth, resulting in strength degradation over time. Although yttria-stabilized zirconia (Y-TZP) ceramics have higher crack resistance than other dental ceramics, their aging susceptibility threatens their long-term performance in aqueous environments such as the oral cavity. Unfortunately, increasing the aging resistance of Y-TZP ceramics normally reduces their crack resistance. Our recently conducted systematic study of doping 3Y-TZP with various trivalent cations revealed that lanthanum oxide (La 2 O 3 ) and aluminum oxide (Al 2 O 3 ) have the most potent effect to retard the aging kinetics of 3Y-TZP. In this study, the crack-propagation behavior of La 2 O 3 and Al 2 O 3 co-doped 3Y-TZP ceramics was investigated by double-torsion methods. The grain boundaries were examined using scanning transmission electron microscopy and energy-dispersive spectroscopy (STEM-EDS). Correlating these analytic data with hydrothermal aging studies using different doping systems, a strategy to strongly bind the segregated dopant cations with the oxygen vacancies at the zirconia-grain boundary was found to improve effectively the aging resistance of Y-TZP ceramics without affecting the resistance to crack propagation.

  2. Solvent-Exposed Salt Bridges Influence the Kinetics of α-Helix Folding and Unfolding.

    PubMed

    Meuzelaar, Heleen; Tros, Martijn; Huerta-Viga, Adriana; van Dijk, Chris N; Vreede, Jocelyne; Woutersen, Sander

    2014-03-06

    Salt bridges are known to play an essential role in the thermodynamic stability of the folded conformation of many proteins, but their influence on the kinetics of folding remains largely unknown. Here, we investigate the effect of Glu-Arg salt bridges on the kinetics of α-helix folding using temperature-jump transient-infrared spectroscopy and steady-state UV circular dichroism. We find that geometrically optimized salt bridges (Glu - and Arg + are spaced four peptide units apart, and the Glu/Arg order is such that the side-chain rotameric preferences favor salt-bridge formation) significantly speed up folding and slow down unfolding, whereas salt bridges with unfavorable geometry slow down folding and slightly speed up unfolding. Our observations suggest a possible explanation for the surprising fact that many biologically active proteins contain salt bridges that do not stabilize the native conformation: these salt bridges might have a kinetic rather than a thermodynamic function.

  3. Cooperative Allosteric Ligand Binding in Calmodulin

    NASA Astrophysics Data System (ADS)

    Nandigrami, Prithviraj

    Conformational dynamics is often essential for a protein's function. For example, proteins are able to communicate the effect of binding at one site to a distal region of the molecule through changes in its conformational dynamics. This so called allosteric coupling fine tunes the sensitivity of ligand binding to changes in concentration. A conformational change between a "closed" (apo) and an "open" (holo) conformation upon ligation often produces this coupling between binding sites. Enhanced sensitivity between the unbound and bound ensembles leads to a sharper binding curve. There are two basic conceptual frameworks that guide our visualization about ligand binding mechanisms. First, a ligand can stabilize the unstable "open" state from a dynamic ensemble of conformations within the unbound basin. This binding mechanism is called conformational selection. Second, a ligand can weakly bind to the low-affinity "closed" state followed by a conformational transition to the "open" state. In this dissertation, I focus on molecular dynamics simulations to understand microscopic origins of ligand binding cooperativity. A minimal model of allosteric binding transitions must include ligand binding/unbinding events, while capturing the transition mechanism between two distinct meta-stable free energy basins. Due in part to computational timescales limitations, work in this dissertation describes large-scale conformational transitions through a simplified, coarse-grained model based on the energy basins defined by the open and closed conformations of the protein Calmodulin (CaM). CaM is a ubiquitous calcium-binding protein consisting of two structurally similar globular domains connected by a flexible linker. The two domains of CaM, N-terminal domain (nCaM) and C-terminal domain (cCaM) consists of two helix-loop-helix motifs (the EF-hands) connected by a flexible linker. Each domain of CaM consists of two binding loops and binds 2 calcium ions each. The intact domain binds up to 4 calcium ions. The simulations use a coupled molecular dynamics/monte carlo scheme where the protein dynamics is simulated explicitly, while ligand binding/unbinding are treated implicitly. In the model, ligand binding/unbinding events coupled with a conformational change of the protein within the grand canonical ensemble. Here, ligand concentration is controlled through the chemical potential (micro). This allows us to use a simple thermodynamic model to analyze the simulated data and quantify binding cooperativity. Simulated binding titration curves are calculated through equilibrium simulations at different values of micro. First, I study domain opening transitions of isolated nCaM and cCaM in the absence of calcium. This work is motivated by results from a recent analytic variational model that predicts distinct domain opening transition mechanism for the domains of CaM. This is a surprising result because the domains have the same folded state topology. In the simulations, I find the two domains of CaM have distinct transition mechanism over a broad range of temperature, in harmony with the analytic predictions. In particular, the simulated transition mechanism of nCaM follows a two-state behavior, while domain opening in cCaM involves global unfolding and refolding of the tertiary structure. The unfolded intermediate also appears in the landscape of nCaM, but at a higher temperature than it appears in cCaM's energy landscape. This is consistent with nCaM's higher thermal stability. Under approximate physiological conditions, majority of the sampled transitions in cCaM involves unfolding and refolding during conformational change. Kinetically, the transient unfolding and refolding in cCaM significantly slows the domain opening and closing rates in cCaM. Second, I investigate the structural origins of binding affinity and allosteric cooperativity of binding 2 calcium-ions to each domain of CaM. In my work, I predict the order of binding strength of CaM's loops. I analyze simulated binding curves within the framework of the classic Monod-Wyman-Changeux (MWC) model of allostery to extract the binding free energies to the closed and open ensembles. The simulations predict that cCaM binds calcium with higher affinity and greater cooperativity than nCaM. Where it is possible to compare, these predictions are in good agreement with experimental results. The analysis of the simulations offers a rationale for why the two domains differ in cooperativity: the higher cooperativity of cCaM is due to larger difference in affinity of its binding loops. Third, I extend the work to investigate structural origins of binding cooperativity of 4 calcium-ions to intact CaM. I characterize the microscopic cooperativities of each ligation state and provide a kinetic description of the binding mechanism. Due to the heterogeneous nature of CaM's loops, as predicted in our simulations of isolated domains, I focus on investigating the influence of this heterogeneity on the kinetic flux of binding pathways as a function of concentration. The formalism developed for Network Models of protein folding kinetics, is used to evaluate the directed flux of all possible pathways between unligated and fully loaded CaM. (Abstract shortened by ProQuest.).

  4. Kinetic Mechanism and Rate-Limiting Steps of Focal Adhesion Kinase-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneck, Jessica L.; Briand, Jacques; Chen, Stephanie

    2010-12-07

    Steady-state kinetic analysis of focal adhesion kinase-1 (FAK1) was performed using radiometric measurement of phosphorylation of a synthetic peptide substrate (Ac-RRRRRRSETDDYAEIID-NH{sub 2}, FAK-tide) which corresponds to the sequence of an autophosphorylation site in FAK1. Initial velocity studies were consistent with a sequential kinetic mechanism, for which apparent kinetic values k{sub cat} (0.052 {+-} 0.001 s{sup -1}), K{sub MgATP} (1.2 {+-} 0.1 {micro}M), K{sub iMgATP} (1.3 {+-} 0.2 {micro}M), K{sub FAK-tide} (5.6 {+-} 0.4 {micro}M), and K{sub iFAK-tide} (6.1 {+-} 1.1 {micro}M) were obtained. Product and dead-end inhibition data indicated that enzymatic phosphorylation of FAK-tide by FAK1 was best described bymore » a random bi bi kinetic mechanism, for which both E-MgADP-FAK-tide and E-MgATP-P-FAK-tide dead-end complexes form. FAK1 catalyzed the {beta}{gamma}-bridge:{beta}-nonbridge positional oxygen exchange of [{gamma}-{sup 18}O{sub 4}]ATP in the presence of 1 mM [{gamma}-{sup 18}O{sub 4}]ATP and 1.5 mM FAK-tide with a progressive time course which was commensurate with catalysis, resulting in a rate of exchange to catalysis of k{sub x}/k{sub cat} = 0.14 {+-} 0.01. These results indicate that phosphoryl transfer is reversible and that a slow kinetic step follows formation of the E-MgADP-P-FAK-tide complex. Further kinetic studies performed in the presence of the microscopic viscosogen sucrose revealed that solvent viscosity had no effect on k{sub cat}/K{sub FAK-tide}, while k{sub cat} and k{sub cat}/K{sub MgATP} were both decreased linearly at increasing solvent viscosity. Crystallographic characterization of inactive versus AMP-PNP-liganded structures of FAK1 showed that a large conformational motion of the activation loop upon ATP binding may be an essential step during catalysis and would explain the viscosity effect observed on k{sub cat}/K{sub m} for MgATP but not on k{sub cat}/K{sub m} for FAK-tide. From the positional isotope exchange, viscosity, and structural data it may be concluded that enzyme turnover (k{sub cat}) is rate-limited by both reversible phosphoryl group transfer (k{sub forward} {approx} 0.2 s{sup -1} and k{sub reverse} {approx} 0.04 s{sup -1}) and a slow step (k{sub conf} {approx} 0.1 s{sup -1}) which is probably the opening of the activation loop after phosphoryl group transfer but preceding product release.« less

  5. Trelagliptin (SYR-472, Zafatek), novel once-weekly treatment for type 2 diabetes, inhibits dipeptidyl peptidase-4 (DPP-4) via a non-covalent mechanism

    DOE PAGES

    Grimshaw, Charles E.; Jennings, Andy; Kamran, Ruhi; ...

    2016-06-21

    Trelagliptin (SYR-472), a novel dipeptidyl peptidase-4 inhibitor, shows sustained efficacy by once-weekly dosing in type 2 diabetes patients. In this study, we characterized in vitro properties of trelagliptin, which exhibited approximately 4-and 12-fold more potent inhibition against human dipeptidyl peptidase-4 than alogliptin and sitagliptin, respectively, and >10,000-fold selectivity over related proteases including dipeptidyl peptidase-8 and dipeptidyl peptidase-9. Kinetic analysis revealed reversible, competitive and slow-binding inhibition of dipeptidyl peptidase-4 by trelagliptin (t 1/2 for dissociation ≈ 30 minutes). X-ray diffraction data indicated a non-covalent interaction between dipeptidyl peptidase and trelagliptin. Altogether, potent dipeptidyl peptidase inhibitionmay partially contribute to sustained efficacy ofmore » trelagliptin.« less

  6. Trelagliptin (SYR-472, Zafatek), novel once-weekly treatment for type 2 diabetes, inhibits dipeptidyl peptidase-4 (DPP-4) via a non-covalent mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grimshaw, Charles E.; Jennings, Andy; Kamran, Ruhi

    Trelagliptin (SYR-472), a novel dipeptidyl peptidase-4 inhibitor, shows sustained efficacy by once-weekly dosing in type 2 diabetes patients. In this study, we characterized in vitro properties of trelagliptin, which exhibited approximately 4-and 12-fold more potent inhibition against human dipeptidyl peptidase-4 than alogliptin and sitagliptin, respectively, and >10,000-fold selectivity over related proteases including dipeptidyl peptidase-8 and dipeptidyl peptidase-9. Kinetic analysis revealed reversible, competitive and slow-binding inhibition of dipeptidyl peptidase-4 by trelagliptin (t 1/2 for dissociation ≈ 30 minutes). X-ray diffraction data indicated a non-covalent interaction between dipeptidyl peptidase and trelagliptin. Altogether, potent dipeptidyl peptidase inhibitionmay partially contribute to sustained efficacy ofmore » trelagliptin.« less

  7. Extrusion induced low-order starch matrices: Enzymic hydrolysis and structure.

    PubMed

    Zhang, Bin; Dhital, Sushil; Flanagan, Bernadine M; Luckman, Paul; Halley, Peter J; Gidley, Michael J

    2015-12-10

    Waxy, normal and highwaymen maize starches were extruded with water as sole plasticizer to achieve low-order starch matrices. Of the three starches, we found that only high-amylose extrudate showed lower digestion rate/extent than starches cooked in excess water. The ordered structure of high-amylose starches in cooked and extruded forms was similar, as judged by NMR, XRD and DSC techniques, but enzyme resistance was much greater for extruded forms. Size exclusion chromatography suggested that longer chains were involved in enzyme resistance. We propose that the local molecular density of packing of amylose chains can control the digestion kinetics rather than just crystallinity, with the principle being that density sufficient to either prevent/limit binding and/or slow down catalysis can be achieved by dense amorphous packing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. NEUTRALIZATION OF THE ASPARTIC ACID RESIDUE D367, BUT NOT D454, INHIBITS BINDING OF NA+ TO THE GLUTAMATE-FREE FORM AND CYCLING OF THE GLUTAMATE TRANSPORTER EAAC1

    PubMed Central

    Tao, Zhen; Zhang, Zhou; Grewer, Christof

    2008-01-01

    Substrate transport by the plasma membrane glutamate transporter EAAC1 is coupled to cotransport of three sodium ions. One of these Na+ ions binds to the transporter already in the absence of glutamate. Here, we have investigated the possible involvement of two conserved aspartic acid residues in transmembrane segments 7 and 8 of EAAC1, D367 and D454, in Na+ cotransport. In order to test the effect of charge neutralization mutations in these positions on Na+ binding to the glutamate-free transporter, we recorded the Na+-induced anion leak current to determine the Km of EAAC1 for Na+. For EAAC1WT, this Km was determined as 120 mM. When the negative charge of D367 was neutralized by mutagenesis to asparagine, Na+ activated the anion leak current with a Km of about 2 M, indicating dramatically impaired Na+ binding to the mutant transporter. In contrast, the Na+ affinity of EAAC1D454N was virtually unchanged compared to the wild type transporter (Km = 90 mM). The reduced occupancy of the Na+ binding site of EAAC1D367N resulted in a dramatic reduction in glutamate affinity (Km = 3.6 mM, 140 mM [Na+]), which could be partially overcome by increasing extracellular [Na+]. In addition to impairing Na+ binding, the D367N mutation slowed glutamate transport, as shown by pre-steady-state kinetic analysis of transport currents, by strongly decreasing the rate of a reaction step associated with glutamate translocation. Our data are consistent with a model in which D367, but not D454 is involved in coordinating the bound Na+ in the glutamate-free transporter form. PMID:16478724

  9. Oxidations of N-(3-indoleethyl) cyclic aliphatic amines by horseradish peroxidase: the indole ring binds to the enzyme and mediates electron-transfer amine oxidation.

    PubMed

    Ling, Ke-Qing; Li, Wen-Shan; Sayre, Lawrence M

    2008-01-23

    Although oxidations of aromatic amines by horseradish peroxidase (HRP) are well-known, typical aliphatic amines are not substrates of HRP. In this study, the reactions of N-benzyl and N-methyl cyclic amines with HRP were found to be slow, but reactions of N-(3-indoleethyl) cyclic amines were 2-3 orders of magnitude faster. Analyses of pH-rate profiles revealed a dominant contribution to reaction by the amine-free base forms, the only species found to bind to the enzyme. A metabolic study on a family of congeneric N-(3-indoleethyl) cyclic amines indicated competition between amine and indole oxidation pathways. Amine oxidation dominated for the seven- and eight-membered azacycles, where ring size supports the change in hybridization from sp3 to sp2 that occurs upon one-electron amine nitrogen oxidation, whereas only indole oxidation was observed for the six-membered ring congener. Optical difference spectroscopic binding data and computational docking simulations suggest that all the arylalkylamine substrates bind to the enzyme through their aromatic termini with similar binding modes and binding affinities. Kinetic saturation was observed for a particularly soluble substrate, consistent with an obligatory role of an enzyme-substrate complexation preceding electron transfer. The significant rate enhancements seen for the indoleethylamine substrates suggest the ability of the bound indole ring to mediate what amounts to medium long-range electron-transfer oxidation of the tertiary amine center by the HRP oxidants. This is the first systematic investigation to document aliphatic amine oxidation by HRP at rates consistent with normal metabolic turnover, and the demonstration that this is facilitated by an auxiliary electron-rich aromatic ring.

  10. Modulation of the conformational state of the SV2A protein by an allosteric mechanism as evidenced by ligand binding assays

    PubMed Central

    Daniels, V; Wood, M; Leclercq, K; Kaminski, R M; Gillard, M

    2013-01-01

    Background and Purpose Synaptic vesicle protein 2A (SV2A) is the specific binding site of the anti-epileptic drug levetiracetam (LEV) and its higher affinity analogue UCB30889. Moreover, the protein has been well validated as a target for anticonvulsant therapy. Here, we report the identification of UCB1244283 acting as a SV2A positive allosteric modulator of UCB30889. Experimental Approach UCB1244283 was characterized in vitro using radioligand binding assays with [3H]UCB30889 on recombinant SV2A expressed in HEK cells and on rat cortex. In vivo, the compound was tested in sound-sensitive mice. Key Results Saturation binding experiments in the presence of UCB1244283 demonstrated a fivefold increase in the affinity of [3H]UCB30889 for human recombinant SV2A, combined with a twofold increase of the total number of binding sites. Similar results were obtained on rat cortex. In competition binding experiments, UCB1244283 potentiated the affinity of UCB30889 while the affinity of LEV remained unchanged. UCB1244283 significantly slowed down both the association and dissociation kinetics of [3H]UCB30889. Following i.c.v. administration in sound-sensitive mice, UCB1244283 showed a clear protective effect against both tonic and clonic convulsions. Conclusions and Implications These results indicate that UCB1244283 can modulate the conformation of SV2A, thereby inducing a higher affinity state for UCB30889. Our results also suggest that the conformation of SV2A per se might be an important determinant of its functioning, especially during epileptic seizures. Therefore, agents that act on the conformation of SV2A might hold great potential in the search for new SV2A-based anticonvulsant therapies. PMID:23530581

  11. Understanding the in vivo uptake kinetics of a phosphatidylethanolamine-binding agent 99mTc-Duramycin

    PubMed Central

    Audi, Said; Li, Zhixin; Capacete, Joseph; Liu, Yu; Fang, Wei; Shu, Laura G.; Zhao, Ming

    2013-01-01

    Introduction 99mTc-Duramycin is a peptide-based molecular probe that binds specifically to phosphatidylethanolamine (PE). The goal was to characterize the kinetics of molecular interactions between 99mTc-Duramycin and the target tissue. Methods High level of accessible PE is induced in cardiac tissues by myocardial ischemia (30 min) and reperfusion (120 min) in Sprague Dawley rats. Target binding and biodistribution of 99mTc-duramycin was captured using SPECT/CT. To quantify the binding kinetics, the presence of radioactivity in ischemic versus normal cardiac tissues was measured by gamma counting at 3, 10, 20, 60 and 180 min after injection. A partially inactivated form of 99mTc-Duramycin was analyzed in the same fashion. A compartment model was developed to quantify the uptake kinetics of 99mTc-Duramycin in normal and ischemic myocardial tissue. Results 99mTc-duramycin binds avidly to the damaged tissue with a high target-to-background radio. Compartment modeling shows that accessibility of binding sites in myocardial tissue to 99mTc-Duramycin is not a limiting factor and the rate constant of target binding in the target tissue is at 2.2 ml/nmol/min/g. The number of available binding sites for 99mTc-Duramycin in ischemic myocardium was estimated at 0.14 nmol/g. Covalent modification of D15 resulted in a 9 fold reduction in binding affinity. Conclusion 99mTc-Duramycin accumulates avidly in target tissues in a PE-dependent fashion. Model results reflect an efficient uptake mechanism, consistent with the low molecular weight of the radiopharmaceutical and the relatively high density of available binding sites. These data help better define the imaging utilities of 99mTc-Duramycin as a novel PE-binding agent. PMID:22534031

  12. Sulfide binding properties of truncated hemoglobins.

    PubMed

    Nicoletti, Francesco P; Comandini, Alessandra; Bonamore, Alessandra; Boechi, Leonardo; Boubeta, Fernando Martin; Feis, Alessandro; Smulevich, Giulietta; Boffi, Alberto

    2010-03-16

    The truncated hemoglobins from Bacillus subtilis (Bs-trHb) and Thermobifida fusca (Tf-trHb) have been shown to form high-affinity complexes with hydrogen sulfide in their ferric state. The recombinant proteins, as extracted from Escherichia coli cells after overexpression, are indeed partially saturated with sulfide, and even highly purified samples still contain a small but significant amount of iron-bound sulfide. Thus, a complete thermodynamic and kinetic study has been undertaken by means of equilibrium and kinetic displacement experiments to assess the relevant sulfide binding parameters. The body of experimental data indicates that both proteins possess a high affinity for hydrogen sulfide (K = 5.0 x 10(6) and 2.8 x 10(6) M(-1) for Bs-trHb and Tf-trHb, respectively, at pH 7.0), though lower with respect to that reported previously for the sulfide avid Lucina pectinata I hemoglobins (2.9 x 10(8) M(-1)). From the kinetic point of view, the overall high affinity resides in the slow rate of sulfide release, attributed to hydrogen bonding stabilization of the bound ligand by distal residue WG8. A set of point mutants in which these residues have been replaced with Phe indicates that the WG8 residue represents the major kinetic barrier to the escape of the bound sulfide species. Accordingly, classical molecular dynamics simulations of SH(-)-bound ferric Tf-trHb show that WG8 plays a key role in the stabilization of coordinated SH(-) whereas the YCD1 and YB10 contributions are negligible. Interestingly, the triple Tf-trHb mutant bearing only Phe residues in the relevant B10, G8, and CD1 positions is endowed with a higher overall affinity for sulfide characterized by a very fast second-order rate constant and 2 order of magnitude faster kinetics of sulfide release with respect to the wild-type protein. Resonance Raman spectroscopy data indicate that the sulfide adducts are typical of a ferric iron low-spin derivative. In analogy with other low-spin ferric sulfide adducts, the strong band at 375 cm(-1) is tentatively assigned to a Fe-S stretching band. The high affinity for hydrogen sulfide is thought to have a possible physiological significance as H(2)S is produced in bacteria at metabolic steps involved in cysteine biosynthesis and hence in thiol redox homeostasis.

  13. Molecular and Functional Effects of a Splice Site Mutation in the MYL2 Gene Associated with Cardioskeletal Myopathy and Early Cardiac Death in Infants

    PubMed Central

    Zhou, Zhiqun; Huang, Wenrui; Liang, Jingsheng; Szczesna-Cordary, Danuta

    2016-01-01

    The homozygous appearance of the intronic mutation (IVS6-1) in the MYL2 gene encoding for myosin ventricular/slow-twitch skeletal regulatory light chain (RLC) was recently linked to the development of slow skeletal muscle fiber type I hypotrophy and early cardiac death. The IVS6-1 (c403-1G>C) mutation resulted from a cryptic splice site in MYL2 causing a frameshift and replacement of the last 32 codons by 19 different amino acids in the RLC mutant protein. Infants who were IVS6-1+∕+-positive died between 4 and 6 months of age due to cardiomyopathy and heart failure. In this report we have investigated the molecular mechanism and functional consequences associated with the IVS6-1 mutation using recombinant human cardiac IVS6-1 and wild-type (WT) RLC proteins. Recombinant proteins were reconstituted into RLC-depleted porcine cardiac muscle preparations and subjected to enzymatic and functional assays. IVS6-1-RLC showed decreased binding to the myosin heavy chain (MHC) compared with WT, and IVS6-1-reconstituted myosin displayed reduced binding to actin in rigor. The IVS6-1 myosin demonstrated a significantly lower Vmax of the actin-activated myosin ATPase activity compared with WT. In stopped-flow experiments, IVS6-1 myosin showed slower kinetics of the ATP induced dissociation of the acto-myosin complex and a significantly reduced slope of the kobs-[MgATP] relationship compared to WT. In skinned porcine cardiac muscles, RLC-depleted and IVS6-1 reconstituted muscle strips displayed a significant decrease in maximal contractile force and a significantly increased Ca2+ sensitivity, both hallmarks of hypertrophic cardiomyopathy-associated mutations in MYL2. Our results showed that the amino-acid changes in IVS6-1 were sufficient to impose significant conformational alterations in the RLC protein and trigger a series of abnormal protein-protein interactions in the cardiac muscle sarcomere. Notably, the mutation disrupted the RLC-MHC interaction and the steady-state and kinetics of the acto-myosin interaction. Specifically, slower myosin cross-bridge turnover rates and slower second-order MgATP binding rates of acto-myosin interactions were observed in IVS6-1 vs. WT reconstituted cardiac preparations. Our in vitro results suggest that when placed in vivo, IVS6-1 may lead to cardiomyopathy and early death of homozygous infants by severely compromising the ability of myosin to develop contractile force and maintain normal systolic and diastolic cardiac function. PMID:27378946

  14. Rational and Computational Design of Stabilized Variants of Cyanovirin-N which Retain Affinity and Specificity for Glycan Ligands

    PubMed Central

    Patsalo, Vadim; Raleigh, Daniel P.; Green, David F.

    2011-01-01

    Cyanovirin-N (CVN) is an 11-kDa pseudo-symmetric cyanobacterial lectin that has been shown to inhibit infection by the Human Immunodeficiency Virus (HIV) by binding to high-mannose oligosaccharides on the surface of the viral envelope glycoprotein gp120. In this work we describe rationally-designed CVN variants that stabilize the protein fold while maintaining high affinity and selectivity for their glycan targets. Poisson–Boltzmann calculations and protein repacking algorithms were used to select stabilizing mutations in the protein core. By substituting the buried polar side chains of Ser11, Ser20, and Thr61 with aliphatic groups, we stabilized CVN by nearly 12 °C against thermal denaturation, and by 1 m of GuaHCl against chemical denaturation, relative to a previously-characterized stabilized mutant. Glycan microarray binding experiments confirmed that the specificity profile of carbohydrate binding is unperturbed by the mutations, and is identical for all variants. In particular, the variants selectively bound glycans containing the Manα(1→2)Man linkage, which is the known minimal binding unit of CVN. We also report the slow denaturation kinetics of CVN and show that they can complicate thermodynamic analysis; in particular, the unfolding of CVN cannot be described as a fixed two-state transition. Accurate thermodynamic parameters are needed to describe the complicated free energy landscape of CVN, and we provide updated values for CVN unfolding. PMID:22032696

  15. The kinetics of effector binding to phosphofructokinase. The allosteric conformational transition induced by 1,N6-ethenoadenosine triphosphate.

    PubMed Central

    Roberts, D; Kellett, G L

    1979-01-01

    1. The fluorescent ATP analogue 1,N6-etheno-ATP is a good substrate and an efficient allosteric inhibitor of rabbit skeletal-muscle phosphofructokinase. 2. Fluorescence energy transfer occurs between bound 1,N6-etheno-ATP and phosphofructokinase. 1,N6-Etheno-ATP fluorescence is enhanced, intrinsic protein fluorescence is quenched, and the excitation spectrum of 1,N6-etheno-ATP fluorescence is characteristic of protein absorption. 3. The binding reaction of 1,N6-etheno-ATP observed by stopped-flow fluorimetry is biphasic. The fast phase results from binding to the catalytic site alone. The slow phase results from the allosteric transition of the R conformation into the T conformation induced by the binding of 1,N6-etheno-ATP to the regulatory site. 4. The fluorescence signal that allows the transition of the R conformation into the T conformation to be observed does not arise from 1,N6-etheno-ATP bound to the regulatory site. It arises instead from 1,N6-etheno-ATP bound to the catalytic site as a consequence of changes at the catalytic site caused by the transition of the R conformation into the T conformation. 5. In the presence of excess of Mg2+, the affinity of 1,N6-etheno-ATP for the regulatory site is very much greater in the T state than in the R state. Images Fig. 5. Fig. 8. PMID:160791

  16. A single mutation in a tunnel to the active site changes the mechanism and kinetics of product release in haloalkane dehalogenase LinB.

    PubMed

    Biedermannová, Lada; Prokop, Zbyněk; Gora, Artur; Chovancová, Eva; Kovács, Mihály; Damborsky, Jiří; Wade, Rebecca C

    2012-08-17

    Many enzymes have buried active sites. The properties of the tunnels connecting the active site with bulk solvent affect ligand binding and unbinding and also the catalytic properties. Here, we investigate ligand passage in the haloalkane dehalogenase enzyme LinB and the effect of replacing leucine by a bulky tryptophan at a tunnel-lining position. Transient kinetic experiments show that the mutation significantly slows down the rate of product release. Moreover, the mechanism of bromide ion release is changed from a one-step process in the wild type enzyme to a two-step process in the mutant. The rate constant of bromide ion release corresponds to the overall steady-state turnover rate constant, suggesting that product release became the rate-limiting step of catalysis in the mutant. We explain the experimental findings by investigating the molecular details of the process computationally. Analysis of trajectories from molecular dynamics simulations with a tunnel detection software reveals differences in the tunnels available for ligand egress. Corresponding differences are seen in simulations of product egress using a specialized enhanced sampling technique. The differences in the free energy barriers for egress of a bromide ion obtained using potential of mean force calculations are in good agreement with the differences in rates obtained from the transient kinetic experiments. Interactions of the bromide ion with the introduced tryptophan are shown to affect the free energy barrier for its passage. The study demonstrates how the mechanism of an enzymatic catalytic cycle and reaction kinetics can be engineered by modification of protein tunnels.

  17. Quantitative in vivo receptor binding. III. Tracer kinetic modeling of muscarinic cholinergic receptor binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frey, K.A.; Hichwa, R.D.; Ehrenkaufer, R.L.

    1985-10-01

    A tracer kinetic method is developed for the in vivo estimation of high-affinity radioligand binding to central nervous system receptors. Ligand is considered to exist in three brain pools corresponding to free, nonspecifically bound, and specifically bound tracer. These environments, in addition to that of intravascular tracer, are interrelated by a compartmental model of in vivo ligand distribution. A mathematical description of the model is derived, which allows determination of regional blood-brain barrier permeability, nonspecific binding, the rate of receptor-ligand association, and the rate of dissociation of bound ligand, from the time courses of arterial blood and tissue tracer concentrations.more » The term ''free receptor density'' is introduced to describe the receptor population measured by this method. The technique is applied to the in vivo determination of regional muscarinic acetylcholine receptors in the rat, with the use of (TH)scopolamine. Kinetic estimates of free muscarinic receptor density are in general agreement with binding capacities obtained from previous in vivo and in vitro equilibrium binding studies. In the striatum, however, kinetic estimates of free receptor density are less than those in the neocortex--a reversal of the rank ordering of these regions derived from equilibrium determinations. A simplified model is presented that is applicable to tracers that do not readily dissociate from specific binding sites during the experimental period.« less

  18. Ordered Self-Assembly Mechanism of a Spherical Oncoprotein Oligomer Triggered by Zinc Removal and Stabilized by an Intrinsically Disordered Domain

    PubMed Central

    Smal, Clara; Alonso, Leonardo G.; Wetzler, Diana E.; Heer, Angeles; de Prat Gay, Gonzalo

    2012-01-01

    Background Self-assembly is a common theme in proteins of unrelated sequences or functions. The human papillomavirus E7 oncoprotein is an extended dimer with an intrinsically disordered domain, that can form large spherical oligomers. These are the major species in the cytosol of HPV transformed and cancerous cells. E7 binds to a large number of targets, some of which lead to cell transformation. Thus, the assembly process not only is of biological relevance, but represents a model system to investigate a widely distributed mechanism. Methodology/Principal Findings Using various techniques, we monitored changes in secondary, tertiary and quaternary structure in a time course manner. By applying a robust kinetic model developed by Zlotnik, we determined the slow formation of a monomeric “Z-nucleus” after zinc removal, followed by an elongation phase consisting of sequential second-order events whereby one monomer is added at a time. This elongation process takes place at a strikingly slow overall average rate of one monomer added every 28 seconds at 20 µM protein concentration, strongly suggesting either a rearrangement of the growing complex after binding of each monomer or the existence of a “conformation editing” mechanism through which the monomer binds and releases until the appropriate conformation is adopted. The oligomerization determinant lies within its small 5 kDa C-terminal globular domain and, remarkably, the E7 N-terminal intrinsically disordered domain stabilizes the oligomer, preventing an insoluble amyloid route. Conclusion We described a controlled ordered mechanism with features in common with soluble amyloid precursors, chaperones, and other spherical oligomers, thus sharing determining factors for symmetry, size and shape. In addition, such a controlled and discrete polymerization reaction provides a valuable tool for nanotechnological applications. Finally, its increased immunogenicity related to its supramolecular structure is the basis for the development of a promising therapeutic vaccine candidate for treating HPV cancerous lesions. PMID:22590549

  19. Mercury conversion processes in Amazon soils evaluated by thermodesorption analysis.

    PubMed

    do Valle, Cláudia M; Santana, Genilson P; Windmöller, Cláudia C

    2006-12-01

    This paper reports on the speciation study and the Hg redox behavior in Amazon soils not influenced by gold mining and collected near Manaus, AM, Brazil. The samples were incubated by adding Hg(0) and HgCl(2) to dry soil. Solid phase Hg speciation analysis was carried out using a Hg thermodesorption technique with the aim of distinguishing elemental Hg(0) from Hg(II) binding forms. In the first case, we observed the conversion of Hg(0) to Hg(II) binding forms in the range of 28-68% and a correlation between the percent of oxidation and OM content. Samples incubated with Hg(II) showed the formation of Hg(I) and/or Hg(0) in the range of 19-69%. The lowest values corresponded to the samples with the lowest clay contents. The kinetics of conversion of Hg(0) as well as HgCl(2) were roughly fitted to the two first order reactions, a fast one and a slow one. It was not possible to evaluate differences between sampling sites and types of soils, but the mean half-life of the first order reaction obtained by the addition of Hg(II) was slower (t(1/2)=365d) than the one obtained by the addition of Hg(0) (t(1/2)=148d). Previous studies have shown the predominance of organically bound Hg in these samples. Thus, the kinetic difference between Hg oxidation and reduction in combination with the efficient retention processes by OM may explain the high background values found in Amazon soils.

  20. Kinetic mechanism of L-α-glycerophosphate oxidase from Mycoplasma pneumoniae.

    PubMed

    Maenpuen, Somchart; Watthaisong, Pratchaya; Supon, Pacharee; Sucharitakul, Jeerus; Parsonage, Derek; Karplus, P Andrew; Claiborne, Al; Chaiyen, Pimchai

    2015-08-01

    L-α-glycerophosphate oxidase is an FAD-dependent enzyme that catalyzes the oxidation of L-α-glycerophosphate (Glp) by molecular oxygen to generate dihydroxyacetone phosphate (DHAP) and hydrogen peroxide (H2O2). The catalytic properties of recombinant His6-GlpO from Mycoplasma pneumoniae (His6-MpGlpO) were investigated through transient and steady-state kinetics and ligand binding studies. The results indicate that the reaction mechanism of His6-MpGlpO follows a ping-pong model. Double-mixing mode stopped-flow experiments show that, after flavin-mediated substrate oxidation, DHAP leaves rapidly prior to the oxygen reaction. The values determined for the individual rate constants and kcat (4.2 s(-1) at 4 °C), in addition to the finding that H2 O2 binds to the oxidized enzyme, suggest that H2O2 release is the rate-limiting step for the overall reaction. The results indicate that His6 -MpGlpO contains mixed populations of fast- and slow-reacting species. It is predominantly the fast-reacting species that participates in turnover. In contrast to other GlpO enzymes previously described, His6-MpGlpO is able to catalyze the reverse reaction of reduced enzyme and DHAP. This result may be explained by the standard reduction potential value of His6-MpGlpO (-167 ± 1 mV), which is lower than those of GlpO from other species. We found that D,L-glyceraldehyde 3-phosphate (GAP) may be used as a substrate in the His6-MpGlpO reaction, although it exhibited an approximately 100-fold lower kcat value in comparison with the reaction of Glp. These results also imply involvement of GlpO in glycolysis, as well as in lipid and glycerol metabolism. The kinetic models and distinctive properties of His6-MpGlpO reported here should be useful for future drug development against Mycoplasma pneumoniae infection. © 2015 FEBS.

  1. Rate and Equilibrium Constants for an Enzyme Conformational Change during Catalysis by Orotidine 5'-Monophosphate Decarboxylase.

    PubMed

    Goryanova, Bogdana; Goldman, Lawrence M; Ming, Shonoi; Amyes, Tina L; Gerlt, John A; Richard, John P

    2015-07-28

    The caged complex between orotidine 5'-monophosphate decarboxylase (ScOMPDC) and 5-fluoroorotidine 5'-monophosphate (FOMP) undergoes decarboxylation ∼300 times faster than the caged complex between ScOMPDC and the physiological substrate, orotidine 5'-monophosphate (OMP). Consequently, the enzyme conformational changes required to lock FOMP at a protein cage and release product 5-fluorouridine 5'-monophosphate (FUMP) are kinetically significant steps. The caged form of ScOMPDC is stabilized by interactions between the side chains from Gln215, Tyr217, and Arg235 and the substrate phosphodianion. The control of these interactions over the barrier to the binding of FOMP and the release of FUMP was probed by determining the effect of all combinations of single, double, and triple Q215A, Y217F, and R235A mutations on kcat/Km and kcat for turnover of FOMP by wild-type ScOMPDC; its values are limited by the rates of substrate binding and product release, respectively. The Q215A and Y217F mutations each result in an increase in kcat and a decrease in kcat/Km, due to a weakening of the protein-phosphodianion interactions that favor fast product release and slow substrate binding. The Q215A/R235A mutation causes a large decrease in the kinetic parameters for ScOMPDC-catalyzed decarboxylation of OMP, which are limited by the rate of the decarboxylation step, but much smaller decreases in the kinetic parameters for ScOMPDC-catalyzed decarboxylation of FOMP, which are limited by the rate of enzyme conformational changes. By contrast, the Y217A mutation results in large decreases in kcat/Km for ScOMPDC-catalyzed decarboxylation of both OMP and FOMP, because of the comparable effects of this mutation on rate-determining decarboxylation of enzyme-bound OMP and on the rate-determining enzyme conformational change for decarboxylation of FOMP. We propose that kcat = 8.2 s(-1) for decarboxylation of FOMP by the Y217A mutant is equal to the rate constant for cage formation from the complex between FOMP and the open enzyme, that the tyrosyl phenol group stabilizes the closed form of ScOMPDC by hydrogen bonding to the substrate phosphodianion, and that the phenyl group of Y217 and F217 facilitates formation of the transition state for the rate-limiting conformational change. An analysis of kinetic data for mutant enzyme-catalyzed decarboxylation of OMP and FOMP provides estimates for the rate and equilibrium constants for the conformational change that traps FOMP at the enzyme active site.

  2. Endosomal receptor kinetics determine the stability of intracellular growth factor signalling complexes

    PubMed Central

    Tzafriri, A. Rami; Edelman, Elazer R.

    2006-01-01

    There is an emerging paradigm that growth factor signalling continues in the endosome and that cell response to a growth factor is defined by the integration of cell surface and endosomal events. As activated receptors in the endosome are exposed to a different set of binding partners, they probably elicit differential signals compared with when they are at the cell surface. As such, complete appreciation of growth factor signalling requires understanding of growth factor–receptor binding and trafficking kinetics both at the cell surface and in endosomes. Growth factor binding to surface receptors is well characterized, and endosomal binding is assumed to follow surface kinetics if one accounts for changes in pH. Yet, specific binding kinetics within the endosome has not been examined in detail. To parse the factors governing the binding state of endosomal receptors we analysed a whole-cell mathematical model of epidermal growth factor receptor trafficking and binding. We discovered that the stability of growth factor–receptor complexes within endosomes is governed by three primary independent factors: the endosomal dissociation constant, total endosomal volume and the number of endosomal receptors. These factors were combined into a single dimensionless parameter that determines the endosomal binding state of the growth factor–receptor complex and can distinguish different growth factors from each other and different cell states. Our findings indicate that growth factor binding within endosomal compartments cannot be appreciated solely on the basis of the pH-dependence of the dissociation constant and that the concentration of receptors in the endosomal compartment must also be considered. PMID:17117924

  3. The mechanism of tubulin-colchicine recognition--a kinetic study of the binding of a bicyclic colchicine analogue with a minor modification of the A ring.

    PubMed

    Dumortier, C; Potenziano, J L; Bane, S; Engelborghs, Y

    1997-10-01

    2-Methoxy-5-(2',3',4'-trimethoxy)-2,4,6-cycloheptatrien-1-one (MTC) is a colchicine analogue that lacks the B ring. 2-Methoxy-5-(2',4'-dimethoxyphenyl)-2,4,6-cycloheptatrien-1-one (MD) is an A-ring analogue of MTC, in which one methoxy group is replaced by a hydrogen atom. This paper describes the kinetic features of MDC binding to tubulin, and compares its behaviour with MTC to analyse the effect of the A-ring modification on the recognition process by tubulin. Binding is accompanied by a strong enhancement of MDC fluorescence and quenching of protein fluorescence. The kinetic and thermodynamic parameters were obtained from fluorescence stopped-flow measurements. The kinetics are described by a single exponential, indicating that this drug does not discriminate between the different tubulin isotypes. The observed pseudo-first-order rate constant of the fluorescence increase upon binding increases in a non-linear way, indicating that this ligand binds with a similar overall mechanism as colchicine and MTC, consisting of a fast initial binding of low affinity followed by a slower isomerisation step leading to full affinity. The K1 and k2 values for MDC at 25 degrees C were 540 +/- 65 M(-1) and 70 +/- 6 s(-1) respectively. From the temperature dependence, a reaction enthalpy change (deltaH(o)1) of the initial binding of 49 +/- 11 kJ/mol(-1) and an activation energy for the second step of 28 +/- 9 kJ/mol(-1) were calculated. Displacement experiments of bound MDC by MTC allowed the determination of a rate constant of reverse isomerisation of 0.60 +/- 0.07 s(-1) at 25 degrees C and the activation energy of 81 +/- 6 kJ/mol(-1). The overall binding constant was (6.3 +/- 0.2) x 10(4) M(-1) at 25 degrees C. Combination of these results with the kinetic parameters for association gives a full characterisation of the enthalpy pathway for the binding of MDC. The pathway of MDC is shown to differ considerably from that of MTC binding. Since its structural difference is located in ring A, this result indicates the use of ring A in the first step. The kinetics of the binding of MDC in the presence of some A-ring colchicine analogues (podophyllotoxin, 3',4',5'-trimethoxyacetophenone and N-acetylmescaline) and a C-ring analogue (tropolone methyl ether) suggest that the A and C rings are involved in the binding of MDC.

  4. Navigating ligand protein binding free energy landscapes: universality and diversity of protein folding and molecular recognition mechanisms

    NASA Astrophysics Data System (ADS)

    Verkhivker, Gennady M.; Rejto, Paul A.; Bouzida, Djamal; Arthurs, Sandra; Colson, Anthony B.; Freer, Stephan T.; Gehlhaar, Daniel K.; Larson, Veda; Luty, Brock A.; Marrone, Tami; Rose, Peter W.

    2001-03-01

    Thermodynamic and kinetic aspects of ligand-protein binding are studied for the methotrexate-dihydrofolate reductase system from the binding free energy profile constructed as a function of the order parameter. Thermodynamic stability of the native complex and a cooperative transition to the unique native structure suggest the nucleation kinetic mechanism at the equilibrium transition temperature. Structural properties of the transition state ensemble and the ensemble of nucleation conformations are determined by kinetic simulations of the transmission coefficient and ligand-protein association pathways. Structural analysis of the transition states and the nucleation conformations reconciles different views on the nucleation mechanism in protein folding.

  5. The human mitochondrial single-stranded DNA-binding protein displays distinct kinetics and thermodynamics of DNA binding and exchange

    PubMed Central

    Qian, Yufeng; Johnson, Kenneth A.

    2017-01-01

    The human mitochondrial ssDNA-binding protein (mtSSB) is a homotetrameric protein, involved in mtDNA replication and maintenance. Although mtSSB is structurally similar to SSB from Escherichia coli (EcoSSB), it lacks the C-terminal disordered domain, and little is known about the biophysics of mtSSB–ssDNA interactions. Here, we characterized the kinetics and thermodynamics of mtSSB binding to ssDNA by equilibrium titrations and stopped-flow kinetic measurements. We show that the mtSSB tetramer can bind to ssDNA in two distinct binding modes: (SSB)30 and (SSB)60, defined by DNA binding site sizes of 30 and 60 nucleotides, respectively. We found that the binding mode is modulated by magnesium ion and NaCl concentration, but unlike EcoSSB, the mtSSB does not show negative intersubunit cooperativity. Global fitting of both the equilibrium and kinetic data afforded estimates for the rate and equilibrium constants governing the formation of (SSB)60 and (SSB)30 complexes and for the transitions between the two binding modes. We found that the mtSSB tetramer binds to ssDNA with a rate constant near the diffusion limit (2 × 109 m−1 s−1) and that longer DNA (≥60 nucleotides) rapidly wraps around all four monomers, as revealed by FRET assays. We also show that the mtSSB tetramer can directly transfer from one ssDNA molecule to another via an intermediate with two DNA molecules bound to the mtSSB. In conclusion, our results indicate that human mtSSB shares many physicochemical properties with EcoSSB and that the differences may be explained by the lack of an acidic, disordered C-terminal tail in human mtSSB protein. PMID:28615444

  6. Replacing the Axial Ligand Tyrosine 75 or Its Hydrogen Bond Partner Histidine 83 Minimally Affects Hemin Acquisition by the Hemophore HasAp from Pseudomonas aeruginosa

    PubMed Central

    2015-01-01

    Hemophores from Pseudomonas aeruginosa (HasAp), Serratia marcescens (HasAsm), and Yersinia pestis (HasAyp) bind hemin between two loops. One of the loops harbors conserved axial ligand Tyr75 (Y75 loop) in all three structures, whereas the second loop (H32 loop) contains axial ligand His32 in HasAp and HasAsm, but a noncoordinating Gln32 in HasAyp. Binding of hemin to the Y75 loop of HasAp or HasAsm causes a large rearrangement of the H32 loop that allows His32 coordination. The Q32 loop in apo-HasAyp is already in the closed conformation, such that binding of hemin to the conserved Y75 loop occurs with minimal structural rearrangement and without coordinative interaction with the Q32 loop. In this study, structural and spectroscopic investigations of the hemophore HasAp were conducted to probe (i) the role of the conserved Tyr75 loop in hemin binding and (ii) the proposed requirement of the His83–Tyr75 hydrogen bond to allow the coordination of hemin by Tyr75. High-resolution crystal structures of H83A holo-HasAp obtained at pH 6.5 (0.89 Å) and pH 5.4 (1.25 Å) show that Tyr75 remains coordinated to the heme iron, and that a water molecule can substitute for Nδ of His83 to interact with the Oη atom of Tyr75, likely stabilizing the Tyr75–Fe interaction. Nuclear magnetic resonance spectroscopy revealed that in apo-Y75A and apo-H83A HasAp, the Y75 loop is disordered, and that disorder propagates to nearby elements of secondary structure, suggesting that His83 Nδ–Tyr75 Oη interaction is important to the organization of the Y75 loop in apo-HasA. Kinetic analysis of hemin loading conducted via stopped-flow UV–vis and rapid-freeze-quench resonance Raman shows that both mutants load hemin with biphasic kinetic parameters that are not significantly dissimilar from those previously observed for wild-type HasAp. When the structural and kinetic data are taken together, a tentative model emerges, which suggests that HasA hemophores utilize hydrophobic, π–π stacking, and van der Waals interactions to load hemin efficiently, while axial ligation likely functions to slow hemin release, thus allowing the hemophore to meet the challenge of capturing hemin under inhospitable conditions and delivering it selectively to its cognate receptor. PMID:24625274

  7. Kinetics of Ca2+ binding to parvalbumin in bovine chromaffin cells: implications for [Ca2+] transients of neuronal dendrites

    PubMed Central

    Lee, Suk-Ho; Schwaller, Beat; Neher, Erwin

    2000-01-01

    The effect of parvalbumin (PV) on [Ca2+] transients was investigated by perfusing adrenal chromaffin cells with fura-2 and fluorescein isothiocyanate (FITC)-labelled PV. As PV diffused into cells, the decay of [Ca2+] transients was transformed from monophasic into biphasic. The proportion of the initial fast decay phase increased in parallel with the fluorescence intensity of FITC, indicating that PV is responsible for the initial fast decay phase.The relationship between the fast decay phase and the [Ca2+] level was investigated using depolarizing trains of stimuli. Within a train the relative amplitude of the fast decay phase was inversely dependent on the [Ca2+] level preceding a given stimulus.Based on these observations, we estimated the Ca2+ binding ratio of PV (κP), the apparent dissociation constant of PV for Ca2+ (Kdc,app), and the unbinding rate constant of Ca2+ from PV (kc-) in the cytosol of chromaffin cells. Assuming free [Mg2+] to be 0.14 mm, we obtained values of 51.4 ± 2.0 nm (n = 3) and 0.95 ± 0.026 s−1 (n = 3), for Kdc,app and kc-, respectively.With the parameters obtained in the perfusion study, we simulated [Ca2+] transients, using two different Ca2+ extrusion rates (γ) – 20 and 300 s−1– which represent typical values for chromaffin cells and neuronal dendrites, respectively. The simulation indicated that Ca2+ is pumped out before it is equilibrated with PV, when γ is comparable to the equilibration rates between PV and Ca2+, resulting in the fast decay phase of a biexponential [Ca2+] transient.From these results we conclude that Ca2+ buffers with slow kinetics, such as PV, may cause biexponential decays in [Ca2+] transients, thereby complicating the analysis of endogenous Ca2+ binding ratios (κS) based on time constants. Nevertheless, estimates of κS based on Ca2+ increments provide reasonable estimates for Ca2+ binding ratios before equilibration with PV. PMID:10835044

  8. Photoluminescence kinetics in CdS nanoclusters formed by the Langmuir-Blodgett technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarubanov, A. A., E-mail: alexsundr@mail.ru; Zhuravlev, K. S.

    2015-03-15

    The photoluminescence kinetics in CdS nanocrystals produced by the Langmuir-Blodgett technique is studied at a temperature of 5 K. The photoluminescence kinetics is described by the sum of two exponential functions, with characteristic times of about 30 and 160 ns. It is found that the fast and slow decay times become longer, as the nanocrystal size increases. Analysis of the data shows that the fast decay time is controlled by trion recombination in nanocrystals with defects, whereas the slow decay time is controlled by the annihilation of optically inactive excitons in nanocrystals without defects. It is established that, as themore » nanocrystal size is decreased, the fraction of imperfect nanocrystals is reduced because of an increase in the energy of defect formation.« less

  9. Analysis of the reaction of carbachol with acetylcholinesterase using thioflavin T as a coupled fluorescence reporter.

    PubMed

    Rosenberry, Terrone L; Sonoda, Leilani K; Dekat, Sarah E; Cusack, Bernadette; Johnson, Joseph L

    2008-12-09

    Acetylcholinesterase (AChE) contains a narrow and deep active site gorge with two sites of ligand binding, an acylation site (or A-site) at the base of the gorge and a peripheral site (or P-site) near the gorge entrance. The P-site contributes to catalytic efficiency by transiently binding substrates on their way to the acylation site, where a short-lived acylated enzyme intermediate is produced. Carbamates are very poor substrates that, like other AChE substrates, form an initial enzyme-substrate complex with free AChE (E) and proceed to an acylated enzyme intermediate (EC), which is then hydrolyzed. However, the hydrolysis of EC is slow enough to resolve the acylation and deacylation steps on the catalytic pathway. Here, we focus on the reaction of carbachol (carbamoylcholine) with AChE. The kinetics and thermodynamics of this reaction are of special interest because carbachol is an isosteric analogue of the physiological substrate acetylcholine. We show that the reaction can be monitored with thioflavin T as a fluorescent reporter group. The fluorescence of thioflavin T is strongly enhanced when it binds to the P-site of AChE, and this fluorescence is partially quenched when a second ligand binds to the A-site to form a ternary complex. Analysis of the fluorescence reaction profiles was challenging because four thermodynamic parameters and two fluorescence coefficients were fitted from the combined data both for E and for EC. Respective equilibrium dissociation constants of 6 and 26 mM were obtained for carbachol binding to the A- and P-sites in E and of 2 and 32 mM for carbachol binding to the A- and P-sites in EC. These constants for the binding of carbachol to the P-site are about an order of magnitude larger (i.e., indicating lower affinity) than previous estimates for the binding of acetylthiocholine to the P-site.

  10. Analysis of the reaction of carbachol with acetylcholinesterase with thioflavin T as a coupled fluorescence reporter†

    PubMed Central

    Rosenberry, Terrone L.; Sonoda, Leilani K.; Dekat, Sarah E.; Cusack, Bernadette; Johnson, Joseph L.

    2009-01-01

    Acetylcholinesterase (AChE) contains a narrow and deep active site gorge with two sites of ligand binding, an acylation site (or A-site) at the base of the gorge and a peripheral site (or P-site) near the gorge entrance. The P-site contributes to catalytic efficiency by transiently binding substrates on their way to the acylation site, where a short-lived acylated enzyme intermediate is produced. Carbamates are very poor substrates that, like other AChE substrates, form an initial enzyme-substrate complex with free AChE (E) and proceed to an acylated enzyme intermediate (EC) which is then hydrolyzed. However, the hydrolysis of EC is slow enough to resolve the acylation and deacylation steps on the catalytic pathway. Here we focus on the reaction of carbachol (carbamoylcholine) with AChE. The kinetics and thermodynamics of this reaction are of special interest because carbachol is an isosteric analog of the physiological substrate acetylcholine. We show that the reaction can be monitored with thioflavin T as a fluorescent reporter group. The fluorescence of thioflavin T is strongly enhanced when it binds to the P-site of AChE, and this fluorescence is partially quenched when a second ligand binds to the A-site to form a ternary complex. Analysis of the fluorescence reaction profiles was challenging, because four thermodynamic parameters and two fluorescence coefficients were fitted from the combined data both for E and for EC. Respective equilibrium dissociation constants of 6 and 26 mM were obtained for carbachol binding to the A- and P-sites in E and of 2 and 32 mM for carbachol binding to the A- and P-sites in EC. These constants for the binding of carbachol to the P-site are about an order of magnitude larger (i.e., indicating lower affinity) than previous estimates for the binding of acetylthiocholine to the P-site. PMID:19006330

  11. Kinome-wide selectivity profiling of ATP-competitive mammalian target of rapamycin (mTOR) inhibitors and characterization of their binding kinetics.

    PubMed

    Liu, Qingsong; Kirubakaran, Sivapriya; Hur, Wooyoung; Niepel, Mario; Westover, Kenneth; Thoreen, Carson C; Wang, Jinhua; Ni, Jing; Patricelli, Matthew P; Vogel, Kurt; Riddle, Steve; Waller, David L; Traynor, Ryan; Sanda, Takaomi; Zhao, Zheng; Kang, Seong A; Zhao, Jean; Look, A Thomas; Sorger, Peter K; Sabatini, David M; Gray, Nathanael S

    2012-03-23

    An intensive recent effort to develop ATP-competitive mTOR inhibitors has resulted in several potent and selective molecules such as Torin1, PP242, KU63794, and WYE354. These inhibitors are being widely used as pharmacological probes of mTOR-dependent biology. To determine the potency and specificity of these agents, we have undertaken a systematic kinome-wide effort to profile their selectivity and potency using chemical proteomics and assays for enzymatic activity, protein binding, and disruption of cellular signaling. Enzymatic and cellular assays revealed that all four compounds are potent inhibitors of mTORC1 and mTORC2, with Torin1 exhibiting ∼20-fold greater potency for inhibition of Thr-389 phosphorylation on S6 kinases (EC(50) = 2 nM) relative to other inhibitors. In vitro biochemical profiling at 10 μM revealed binding of PP242 to numerous kinases, although WYE354 and KU63794 bound only to p38 kinases and PI3K isoforms and Torin1 to ataxia telangiectasia mutated, ATM and Rad3-related protein, and DNA-PK. Analysis of these protein targets in cellular assays did not reveal any off-target activities for Torin1, WYE354, and KU63794 at concentrations below 1 μM but did show that PP242 efficiently inhibited the RET receptor (EC(50), 42 nM) and JAK1/2/3 kinases (EC(50), 780 nM). In addition, Torin1 displayed unusually slow kinetics for inhibition of the mTORC1/2 complex, a property likely to contribute to the pharmacology of this inhibitor. Our results demonstrated that, with the exception of PP242, available ATP-competitive compounds are highly selective mTOR inhibitors when applied to cells at concentrations below 1 μM and that the compounds may represent a starting point for medicinal chemistry efforts aimed at developing inhibitors of other PI3K kinase-related kinases.

  12. Contribution of partner switching and SpoIIAA cycling to regulation of sigmaF activity in sporulating Bacillus subtilis.

    PubMed

    Magnin, T; Lord, M; Yudkin, M D

    1997-06-01

    sigmaF, the first compartment-specific transcription factor in sporulating Bacillus subtilis, is negatively regulated by an anti-sigma factor, SpoIIAB. SpoIIAB has an alternative binding partner, SpoIIAA. To see whether (as has been proposed) SpoIIAB's binding preference for SpoIIAA or sigmaF depends on the nature of the adenine nucleotide present, we used surface plasmon resonance to measure the dissociation constants of the three complexes SpoIIAA-SpoIIAB-ADP, sigmaF-SpoIIAB-ADP, and sigmaF-SpoIIAB-ATP. The results suggested that SpoIIAB's choice of binding partner is unlikely to depend on the ATP/ADP ratio in the cell. The intracellular concentrations of sigmaF, SpoIIAB, SpoIIAA, and SpoIIAA-phosphate (SpoIIAA-P) were measured by quantitative immunoblotting between 0 and 3 h after the beginning of sporulation (t0 to t3). sigmaF and SpoIIAB were barely detectable at t0, but their concentrations increased in parallel to reach maxima at about t1.5. SpoIIAA-P increased steadily to a maximum at t3, but nonphosphorylated SpoIIAA was detectable only from t1.5, reached a maximum at t2.5, and then declined. Kinetic studies of the phosphorylation of SpoIIAA catalyzed by SpoIIAB suggested that the reaction was limited by a very slow release of one of the products (SpoIIAA-P or ADP) from SpoIIAB, with a turnover of about once per 20 min. This remarkable kinetic property provides an unexpected mechanism for the regulation of sigmaF. We propose that when SpoIIE (which dephosphorylates SpoIIAA-P) is active at the same time as SpoIIAB, SpoIIAA cycles repeatedly between the phosphorylated and nonphosphorylated forms. This cycling sequesters SpoIIAB in a long-lived complex and prevents it from inhibiting sigmaF.

  13. Observation of fast and slow interatomic Coulombic decay in argon dimers induced by electron-impact ionization

    NASA Astrophysics Data System (ADS)

    Ren, Xueguang; Miteva, Tsveta; Kolorenč, Přemysl; Gokhberg, Kirill; Kuleff, Alexander I.; Cederbaum, Lorenz S.; Dorn, Alexander

    2017-09-01

    We investigate the interatomic Coulombic decay (ICD) in argon dimers induced by electron-impact ionization (E0=90 eV ) using a multiparticle coincidence experiment in which the momentum vectors and, consequently, the kinetic energies for electrons and fragment ions are determined. The signature of the ICD process is obtained from a correlation map between ejected electron energy and kinetic energy release (KER) for Ar++Ar+ fragment ions where low-energy ICD electrons can be identified. Furthermore, two types of ICD processes, termed fast and slow interatomic decay, are separated by the ICD initial-state energies and projectile energy losses. The dependence of the energies of emitted low-energy ICD electrons on the initial-state energy is studied. ICD electron energy spectra and KER spectra are obtained separately for fast and slow decay processes where the KER spectra for the slow decay channel are strongly influenced by nuclear motion. The KER and ICD electron energy spectra are well reproduced by ab initio calculations.

  14. Kinetic modeling of benzodiazepine receptor binding with PET and high specific activity [(11)C]Iomazenil in healthy human subjects.

    PubMed

    Bremner, J D; Horti, A; Staib, L H; Zea-Ponce, Y; Soufer, R; Charney, D S; Baldwin, R

    2000-01-01

    Quantitation of the PET benzodiazepine receptor antagonist, [(11)C]Iomazenil, using low specific activity radioligand was recently described. The purpose of this study was to quantitate benzodiazepine receptor binding in human subjects using PET and high specific activity [(11)C]Iomazenil. Six healthy human subjects underwent PET imaging following a bolus injection of high specific activity (>100 Ci/mmol) [(11)C]iomazenil. Arterial samples were collected at multiple time points after injection for measurement of unmetabolized total and nonprotein-bound parent compound in plasma. Time activity curves of radioligand concentration in brain and plasma were analyzed using two and three compartment model. Kinetic rate constants of transfer of radioligand between plasma, nonspecifically bound brain tissue, and specifically bound brain tissue compartments were fitted to the model. Values for fitted kinetic rate constants were used in the calculation of measures of benzodiazepine receptor binding, including binding potential (the ratio of receptor density to affinity), and product of BP and the fraction of free nonprotein-bound parent compound (V(3)'). Use of the three compartment model improved the goodness of fit in comparison to the two compartment model. Values for kinetic rate constants and measures of benzodiazepine receptor binding, including BP and V(3)', were similar to results obtained with the SPECT radioligand [(123)I]iomazenil, and a prior report with low specific activity [(11)C]Iomazenil. Kinetic modeling using the three compartment model with PET and high specific activity [(11)C]Iomazenil provides a reliable measure of benzodiazepine receptor binding. Synapse 35:68-77, 2000. Published 2000 Wiley-Liss, Inc.

  15. Kinetic analysis of central ( sup 11 C)raclopride binding to D2-dopamine receptors studied by PET--a comparison to the equilibrium analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farde, L.; Eriksson, L.; Blomquist, G.

    1989-10-01

    (11C)Raclopride binding to central D2-dopamine receptors in humans has previously been examined by positron emission tomography (PET). Based on the rapid occurrence of binding equilibrium, a saturation analysis has been developed for the determination of receptor density (Bmax) and affinity (Kd). For analysis of PET measurements obtained with other ligands, a kinetic three-compartment model has been used. In the present study, the brain uptake of (11C)raclopride was analyzed further by applying both a kinetic and an equilibrium analysis to data obtained from four PET experiments in each of three healthy subjects. First regional CBV was determined. In the second andmore » third experiment, (11C)-raclopride with high and low specific activity was used. In a fourth experiment, the (11C)raclopride enantiomer (11C)FLB472 was used to examine the concentration of free radioligand and nonspecific binding in brain. Radio-activity in arterial blood was measured using an automated blood sampling system. Bmax and Kd values for (11C)raclopride binding could be determined also with the kinetic analysis. As expected theoretically, those values were similar to those obtained with the equilibrium analysis. In addition, the kinetic analysis allowed separate determination of the association and dissociation rate constants, kon and koff, respectively. Examination of (11C)raclopride and (11C)FLB472 uptake in brain regions devoid of specific D2-dopamine receptor binding indicated a fourth compartment in which uptake was reversible, nonstereoselective, and nonsaturable in the dose range studied.« less

  16. Understanding the kinetics of ligand binding to globins with molecular dynamics simulations: the necessity of multiple state models.

    PubMed

    Estarellas Martin, Carolina; Seira Castan, Constantí; Luque Garriga, F Javier; Bidon-Chanal Badia, Axel

    2015-10-01

    Residue conformational changes and internal cavity migration processes play a key role in regulating the kinetics of ligand migration and binding events in globins. Molecular dynamics simulations have demonstrated their value in the study of these processes in different haemoglobins, but derivation of kinetic data demands the use of more complex techniques like enhanced sampling molecular dynamics methods. This review discusses the different methodologies that are currently applied to study the ligand migration process in globins and highlight those specially developed to derive kinetic data. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Effects of soft interactions and bound mobility on diffusion in crowded environments: a model of sticky and slippery obstacles

    NASA Astrophysics Data System (ADS)

    Stefferson, Michael W.; Norris, Samantha L.; Vernerey, Franck J.; Betterton, Meredith D.; E Hough, Loren

    2017-08-01

    Crowded environments modify the diffusion of macromolecules, generally slowing their movement and inducing transient anomalous subdiffusion. The presence of obstacles also modifies the kinetics and equilibrium behavior of tracers. While previous theoretical studies of particle diffusion have typically assumed either impenetrable obstacles or binding interactions that immobilize the particle, in many cellular contexts bound particles remain mobile. Examples include membrane proteins or lipids with some entry and diffusion within lipid domains and proteins that can enter into membraneless organelles or compartments such as the nucleolus. Using a lattice model, we studied the diffusive movement of tracer particles which bind to soft obstacles, allowing tracers and obstacles to occupy the same lattice site. For sticky obstacles, bound tracer particles are immobile, while for slippery obstacles, bound tracers can hop without penalty to adjacent obstacles. In both models, binding significantly alters tracer motion. The type and degree of motion while bound is a key determinant of the tracer mobility: slippery obstacles can allow nearly unhindered diffusion, even at high obstacle filling fraction. To mimic compartmentalization in a cell, we examined how obstacle size and a range of bound diffusion coefficients affect tracer dynamics. The behavior of the model is similar in two and three spatial dimensions. Our work has implications for protein movement and interactions within cells.

  18. Apigenin shows synergistic anticancer activity with curcumin by binding at different sites of tubulin.

    PubMed

    Choudhury, Diptiman; Ganguli, Arnab; Dastidar, Debabrata Ghosh; Acharya, Bipul R; Das, Amlan; Chakrabarti, Gopal

    2013-06-01

    Apigenin, a natural flavone, present in many plants sources, induced apoptosis and cell death in lung epithelium cancer (A549) cells with an IC50 value of 93.7 ± 3.7 μM for 48 h treatment. Target identification investigations using A549 cells and also in cell-free system demonstrated that apigenin depolymerized microtubules and inhibited reassembly of cold depolymerized microtubules of A549 cells. Again apigenin inhibited polymerization of purified tubulin with an IC50 value of 79.8 ± 2.4 μM. It bounds to tubulin in cell-free system and quenched the intrinsic fluorescence of tubulin in a concentration- and time-dependent manner. The interaction was temperature-dependent and kinetics of binding was biphasic in nature with binding rate constants of 11.5 × 10(-7) M(-1) s(-1) and 4.0 × 10(-9) M(-1) s(-1) for fast and slow phases at 37 °C, respectively. The stoichiometry of tubulin-apigenin binding was 1:1 and binding the binding constant (Kd) was 6.08 ± 0.096 μM. Interestingly, apigenin showed synergistic anti-cancer effect with another natural anti-tubulin agent curcumin. Apigenin and curcumin synergistically induced cell death and apoptosis and also blocked cell cycle progression at G2/M phase of A549 cells. The synergistic activity of apigenin and curcumin was also apparent from their strong depolymerizing effects on interphase microtubules and inhibitory effect of reassembly of cold depolymerized microtubules when used in combinations, indicating that these ligands bind to tubulin at different sites. In silico modeling suggested apigenin bounds at the interphase of α-β-subunit of tubulin. The binding site is 19 Å in distance from the previously predicted curcumin binding site. Binding studies with purified protein also showed both apigenin and curcumin can simultaneously bind to purified tubulin. Understanding the mechanism of synergistic effect of apigenin and curcumin could be helped to develop anti-cancer combination drugs from cheap and readily available nutraceuticals. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  19. Quantitatively and Kinetically Identifying Binding Motifs of Amelogenin Proteins to Mineral Crystals Through Biochemical and Spectroscopic Assays

    PubMed Central

    Zhu, Li; Hwang, Peter; Witkowska, H. Ewa; Liu, Haichuan; Li, Wu

    2014-01-01

    Tooth enamel is the hardest tissue in vertebrate animals. Consisting of millions of carbonated hydroxyapatite crystals, this highly mineralized tissue develops from a protein matrix in which amelogenin is the predominant component. The enamel matrix proteins are eventually and completely degraded and removed by proteinases to form mineral-enriched tooth enamel. Identification of the apatite-binding motifs in amelogenin is critical for understanding the amelogenin–crystal interactions and amelogenin–proteinases interactions during tooth enamel biomineralization. A stepwise strategy is introduced to kinetically and quantitatively identify the crystal-binding motifs in amelogenin, including a peptide screening assay, a competitive adsorption assay, and a kinetic-binding assay using amelogenin and gene-engineered amelogenin mutants. A modified enzyme-linked immunosorbent assay on crystal surfaces is also applied to compare binding amounts of amelogenin and its mutants on different planes of apatite crystals. We describe the detailed protocols for these assays and provide the considerations for these experiments in this chapter. PMID:24188774

  20. Kinetics and equilibria of cyanide binding to prostaglandin H synthase.

    PubMed

    MacDonald, I D; Dunford, H B

    1989-09-01

    Cyanide binding to prostaglandin H (PGH) synthase results in a spectral shift in the Soret region. This shift was exploited to determine equilibrium and kinetic parameters of the cyanide binding process. At pH 8.0, ionic strength 0.22 M, 4 degrees C, the cyanide dissociation constant, determined from equilibrium experiments, is (65 +/- 10) microM. The binding rate constant is (2.8 +/- 0.2) x 10(3) M-1 s-1, and the dissociation rate constant is zero within experimental error. Through a kinetic study of the binding process as a function of pH, from pH 3.96 to 8.00, it was possible to determine the pKa of a heme-linked acid group on the enzyme of 4.15 +/- 0.10 with citrate buffer. An apparent pKa of 4.75 +/- 0.03 was determined with acetate buffer; this different value is attributed to complexation of the enzyme with one of the components of the acetate buffer.

  1. Adsorption and Exchange Kinetics of Hydrophilic and Hydrophobic Phosphorus Ligands on Gold Surface

    NASA Astrophysics Data System (ADS)

    Zhuge, X. Q.; Bian, Z. C.; Luo, Z. H.; Mu, Y. Y.; Luo, K.

    2017-02-01

    The adsorption kinetics process of hydrophobic ligand (triphenylphosphine, PPh3) and hydrophilic ligand (tris(hydroxymethyl)phosphine oxide, THPO) on the surface of gold electrode were estimated by using electrical double layer capacitance (EDLC). Results showed that the adsorption process of both ligands included fast and slow adsorption processes, and the fast adsorption process could fit the first order kinetic equation of Langmuir adsorption isotherm. During the slow adsorption process, the surface coverage (θ) of PPh3 was higher than that of THPO due to the larger adsorption kinetic constant of PPh3 than that of THPO, which implied that PPh3 could replace THPO on the gold electrode. The exchange process of both ligands on the surface of gold electrode proved that PPh3 take the place of THPO by testing the variation of EDLC which promote the preparation of Janus gold, and the theoretic simulation explained the reason of ligands exchange from the respect of energy..

  2. Kinetics of rapid covalent bond formation of aniline with humic acid: ESR investigations with nitroxide spin labels

    NASA Astrophysics Data System (ADS)

    Glinka, Kevin; Matthies, Michael; Theiling, Marius; Hideg, Kalman; Steinhoff, Heinz-Jürgen

    2016-04-01

    Sulfonamide antibiotics used in livestock farming are distributed to farmland by application of slurry as fertilizer. Previous work suggests rapid covalent binding of the aniline moiety to humic acids found in soil. In the current work, kinetics of this binding were measured in X-band EPR spectroscopy by incubating Leonardite humic acid (LHA) with a paramagnetic aniline spin label (anilino-NO (2,5,5-Trimethyl-2-(3-aminophenyl)pyrrolidin-1-oxyl)). Binding was detected by a pronounced broadening of the spectral lines after incubation of LHA with anilino-NO. The time evolution of the amplitude of this feature was used for determining the reaction kinetics. Single- and double-exponential models were fitted to the data obtained for modelling one or two first-order reactions. Reaction rates of 0.16 min-1 and 0.012 min-1, were found respectively. Addition of laccase peroxidase did not change the kinetics but significantly enhanced the reacting fraction of anilino-NO. This EPR-based method provides a technically simple and effective method for following rapid binding processes of a xenobiotic substance to humic acids.

  3. Kinetic studies of amino acid-based surfactant binding to DNA.

    PubMed

    Santhiya, Deenan; Dias, Rita S; Dutta, Sounak; Das, Prasanta Kumar; Miguel, Maria G; Lindman, Björn; Maiti, Souvik

    2012-05-24

    In this work, the binding kinetics of amino acid-based surfactants, presenting different linkers and head groups, with calf thymus (CT)-DNA was studied using stopped-flow fluorescence spectroscopy. The kinetic studies were carried out as a function of Na(+) concentration and surfactant-to-DNA charge ratio. The surfactant binding on DNA took place in two consecutive steps, for which the corresponding first and second relative rate constants (k(1) and k(2)) were determined. The fast step was attributed to the surfactant binding to DNA and micelle formation in its vicinity, the slower step to DNA condensation and possible rearrangement of the surfactant aggregates. In general, both relative rate constants increase with surfactant concentration and decrease with the ionic strength of the medium. The architecture of the surfactant was found to have a significant impact on the kinetics of the DNA-surfactant complexation. Surfactants with amide linkers showed larger relative rate constants than those with ester linkers. The variation of the relative rate constants with the head groups of the surfactants, alanine and proline, was found to be less obvious, being partially dependent on the surfactant concentration.

  4. Detection and size analysis of proteins with switchable DNA layers.

    PubMed

    Rant, Ulrich; Pringsheim, Erika; Kaiser, Wolfgang; Arinaga, Kenji; Knezevic, Jelena; Tornow, Marc; Fujita, Shozo; Yokoyama, Naoki; Abstreiter, Gerhard

    2009-04-01

    We introduce a chip-compatible scheme for the label-free detection of proteins in real-time that is based on the electrically driven conformation switching of DNA oligonucleotides on metal surfaces. The switching behavior is a sensitive indicator for the specific recognition of IgG antibodies and antibody fragments, which can be detected in quantities of less than 10(-18) mol on the sensor surface. Moreover, we show how the dynamics of the induced molecular motion can be monitored by measuring the high-frequency switching response. When proteins bind to the layer, the increase in hydrodynamic drag slows the switching dynamics, which allows us to determine the size of the captured proteins. We demonstrate the identification of different antibody fragments by means of their kinetic fingerprint. The switchDNA method represents a generic approach to simultaneously detect and size target molecules using a single analytical platform.

  5. The DUSP–Ubl domain of USP4 enhances its catalytic efficiency by promoting ubiquitin exchange

    PubMed Central

    Clerici, Marcello; Luna-Vargas, Mark P. A.; Faesen, Alex C.; Sixma, Titia K.

    2014-01-01

    Ubiquitin-specific protease USP4 is emerging as an important regulator of cellular pathways, including the TGF-β response, NF-κB signalling and splicing, with possible roles in cancer. Here we show that USP4 has its catalytic triad arranged in a productive conformation. Nevertheless, it requires its N-terminal DUSP–Ubl domain to achieve full catalytic turnover. Pre-steady-state kinetics measurements reveal that USP4 catalytic domain activity is strongly inhibited by slow dissociation of ubiquitin after substrate hydrolysis. The DUSP–Ubl domain is able to enhance ubiquitin dissociation, hence promoting efficient turnover. In a mechanism that requires all USP4 domains, binding of the DUSP–Ubl domain promotes a change of a switching loop near the active site. This ‘allosteric regulation of product discharge’ provides a novel way of regulating deubiquitinating enzymes that may have relevance for other enzyme classes. PMID:25404403

  6. Heart failure drug changes the mechanoenzymology of the cardiac myosin powerstroke.

    PubMed

    Rohde, John A; Thomas, David D; Muretta, Joseph M

    2017-03-07

    Omecamtiv mecarbil (OM), a putative heart failure therapeutic, increases cardiac contractility. We hypothesize that it does this by changing the structural kinetics of the myosin powerstroke. We tested this directly by performing transient time-resolved FRET on a ventricular cardiac myosin biosensor. Our results demonstrate that OM stabilizes myosin's prepowerstroke structural state, supporting previous measurements showing that the drug shifts the equilibrium constant for myosin-catalyzed ATP hydrolysis toward the posthydrolysis biochemical state. OM slowed the actin-induced powerstroke, despite a twofold increase in the rate constant for actin-activated phosphate release, the biochemical step in myosin's ATPase cycle associated with force generation and the conversion of chemical energy into mechanical work. We conclude that OM alters the energetics of cardiac myosin's mechanical cycle, causing the powerstroke to occur after myosin weakly binds to actin and releases phosphate. We discuss the physiological implications for these changes.

  7. Protein Quality Control Acts on Folding Intermediates to Shape the Effects of Mutations on Organismal Fitness

    PubMed Central

    Bershtein, Shimon; Mu, Wanmeng; Serohijos, Adrian W. R.; Zhou, Jingwen; Shakhnovich, Eugene I.

    2012-01-01

    Summary What are the molecular properties of proteins that fall on the radar of protein quality control (PQC)? Here we mutate the E. coli’s gene encoding dihydrofolate reductase (DHFR), and replace it with bacterial orthologous genes to determine how components of PQC modulate fitness effects of these genetic changes. We find that chaperonins GroEL/ES and protease Lon compete for binding to molten globule intermediate of DHFR, resulting in a peculiar symmetry in their action: Over-expression of GroEL/ES and deletion of Lon both restore growth of deleterious DHFR mutants and most of the slow-growing orthologous DHFR strains. Kinetic steady-state modeling predicts and experimentation verifies that mutations affect fitness by shifting the flux balance in cellular milieu between protein production, folding and degradation orchestrated by PQC through the interaction with folding intermediates. PMID:23219534

  8. The role of multivalency in the association kinetics of patchy particle complexes.

    PubMed

    Newton, Arthur C; Groenewold, Jan; Kegel, Willem K; Bolhuis, Peter G

    2017-06-21

    Association and dissociation of particles are elementary steps in many natural and technological relevant processes. For many such processes, the presence of multiple binding sites is essential. For instance, protein complexes and regular structures such as virus shells are formed from elementary building blocks with multiple binding sites. Here we address a fundamental question concerning the role of multivalency of binding sites in the association kinetics of such complexes. Using single replica transition interface sampling simulations, we investigate the influence of the multivalency on the binding kinetics and the association mechanism of patchy particles that form polyhedral clusters. When the individual bond strength is fixed, the kinetics naturally is very dependent on the multivalency, with dissociation rate constants exponentially decreasing with the number of bonds. In contrast, we find that when the total bond energy per particle is kept constant, association and dissociation rate constants turn out rather independent of multivalency, although of course still very dependent on the total energy. The association and dissociation mechanisms, however, depend on the presence and nature of the intermediate states. For instance, pathways that visit intermediate states are less prevalent for particles with five binding sites compared to the case of particles with only three bonds. The presence of intermediate states can lead to kinetic trapping and malformed aggregates. We discuss implications for natural forming complexes such as virus shells and for the design of artificial colloidal patchy particles.

  9. The role of multivalency in the association kinetics of patchy particle complexes

    NASA Astrophysics Data System (ADS)

    Newton, Arthur C.; Groenewold, Jan; Kegel, Willem K.; Bolhuis, Peter G.

    2017-06-01

    Association and dissociation of particles are elementary steps in many natural and technological relevant processes. For many such processes, the presence of multiple binding sites is essential. For instance, protein complexes and regular structures such as virus shells are formed from elementary building blocks with multiple binding sites. Here we address a fundamental question concerning the role of multivalency of binding sites in the association kinetics of such complexes. Using single replica transition interface sampling simulations, we investigate the influence of the multivalency on the binding kinetics and the association mechanism of patchy particles that form polyhedral clusters. When the individual bond strength is fixed, the kinetics naturally is very dependent on the multivalency, with dissociation rate constants exponentially decreasing with the number of bonds. In contrast, we find that when the total bond energy per particle is kept constant, association and dissociation rate constants turn out rather independent of multivalency, although of course still very dependent on the total energy. The association and dissociation mechanisms, however, depend on the presence and nature of the intermediate states. For instance, pathways that visit intermediate states are less prevalent for particles with five binding sites compared to the case of particles with only three bonds. The presence of intermediate states can lead to kinetic trapping and malformed aggregates. We discuss implications for natural forming complexes such as virus shells and for the design of artificial colloidal patchy particles.

  10. Molecular basis of HHQ biosynthesis: molecular dynamics simulations, enzyme kinetic and surface plasmon resonance studies

    PubMed Central

    2013-01-01

    Background PQS (PseudomonasQuinolone Signal) and its precursor HHQ are signal molecules of the P. aeruginosa quorum sensing system. They explicate their role in mammalian pathogenicity by binding to the receptor PqsR that induces virulence factor production and biofilm formation. The enzyme PqsD catalyses the biosynthesis of HHQ. Results Enzyme kinetic analysis and surface plasmon resonance (SPR) biosensor experiments were used to determine mechanism and substrate order of the biosynthesis. Comparative analysis led to the identification of domains involved in functionality of PqsD. A kinetic cycle was set up and molecular dynamics (MD) simulations were used to study the molecular bases of the kinetics of PqsD. Trajectory analysis, pocket volume measurements, binding energy estimations and decompositions ensured insights into the binding mode of the substrates anthraniloyl-CoA and β-ketodecanoic acid. Conclusions Enzyme kinetics and SPR experiments hint at a ping-pong mechanism for PqsD with ACoA as first substrate. Trajectory analysis of different PqsD complexes evidenced ligand-dependent induced-fit motions affecting the modified ACoA funnel access to the exposure of a secondary channel. A tunnel-network is formed in which Ser317 plays an important role by binding to both substrates. Mutagenesis experiments resulting in the inactive S317F mutant confirmed the importance of this residue. Two binding modes for β-ketodecanoic acid were identified with distinct catalytic mechanism preferences. PMID:23916145

  11. Understanding the in vivo uptake kinetics of a phosphatidylethanolamine-binding agent (99m)Tc-Duramycin.

    PubMed

    Audi, Said; Li, Zhixin; Capacete, Joseph; Liu, Yu; Fang, Wei; Shu, Laura G; Zhao, Ming

    2012-08-01

    (99m)Tc-Duramycin is a peptide-based molecular probe that binds specifically to phosphatidylethanolamine (PE). The goal was to characterize the kinetics of molecular interactions between (99m)Tc-Duramycin and the target tissue. High level of accessible PE is induced in cardiac tissues by myocardial ischemia (30 min) and reperfusion (120 min) in Sprague-Dawley rats. Target binding and biodistribution of (99m)Tc-duramycin were captured using SPECT/CT. To quantify the binding kinetics, the presence of radioactivity in ischemic versus normal cardiac tissues was measured by gamma counting at 3, 10, 20, 60 and 180 min after injection. A partially inactivated form of (99m)Tc-Duramycin was analyzed in the same fashion. A compartment model was developed to quantify the uptake kinetics of (99m)Tc-Duramycin in normal and ischemic myocardial tissue. (99m)Tc-duramycin binds avidly to the damaged tissue with a high target-to-background radio. Compartment modeling shows that accessibility of binding sites in myocardial tissue to (99m)Tc-Duramycin is not a limiting factor and the rate constant of target binding in the target tissue is at 2.2 ml/nmol/min/g. The number of available binding sites for (99m)Tc-Duramycin in ischemic myocardium was estimated at 0.14 nmol/g. Covalent modification of D15 resulted in a 9-fold reduction in binding affinity. (99m)Tc-Duramycin accumulates avidly in target tissues in a PE-dependent fashion. Model results reflect an efficient uptake mechanism, consistent with the low molecular weight of the radiopharmaceutical and the relatively high density of available binding sites. These data help better define the imaging utilities of (99m)Tc-Duramycin as a novel PE-binding agent. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Unsurmountable antagonism of brain 5-hydroxytryptamine2 receptors by (+)-lysergic acid diethylamide and bromo-lysergic acid diethylamide.

    PubMed

    Burris, K D; Sanders-Bush, E

    1992-11-01

    Lysergic acid diethylamide (LSD) and its structural analogue 2-bromo-lysergic acid diethylamide (BOL) act as unsurmountable antagonists of serotonin-elicited contractions in smooth muscle preparations. Two different models, allosteric and kinetic, have been invoked to explain these findings. The present studies investigate the mechanism of antagonism of brain 5-hydroxytryptamine (5HT)2 receptors, utilizing cells transfected with 5HT2 receptor cDNA cloned from rat brain. A proximal cellular response, phosphoinositide hydrolysis, was examined in order to minimize possible postreceptor effects. Even though LSD behaved as a partial agonist and BOL as a pure antagonist, both drugs blocked the effect of serotonin in an unsurmountable manner, i.e., increasing concentrations of serotonin could not overcome the blocking effect of LSD or BOL. Radioligand binding studies showed that preincubation of membranes with either LSD or BOL reduced the density of [3H]ketanserin binding sites, suggesting that the drugs bind tightly to the 5HT2 receptor and are not displaced during the binding assay. Two additional experiments supported this hypothesis. First, the off-rate of [3H] LSD was slow (20 min), relative to that of [3H]ketanserin (approximately 4 min). Second, when the length of incubation with [3H]ketanserin was increased to 60 min, the LSD-induced decrease in Bmax was essentially eliminated. The possibility that LSD and BOL decrease [3H]ketanserin binding by interacting with an allosteric site was rejected, because neither drug altered the rate of dissociation of [3H]ketanserin. The most parsimonious interpretation of these results is that unsurmountable antagonism reflects prolonged occupancy of the receptor by slowly reversible antagonists.

  13. Spike Timing and Reliability in Cortical Pyramidal Neurons: Effects of EPSC Kinetics, Input Synchronization and Background Noise on Spike Timing

    PubMed Central

    Rodriguez-Molina, Victor M.; Aertsen, Ad; Heck, Detlef H.

    2007-01-01

    In vivo studies have shown that neurons in the neocortex can generate action potentials at high temporal precision. The mechanisms controlling timing and reliability of action potential generation in neocortical neurons, however, are still poorly understood. Here we investigated the temporal precision and reliability of spike firing in cortical layer V pyramidal cells at near-threshold membrane potentials. Timing and reliability of spike responses were a function of EPSC kinetics, temporal jitter of population excitatory inputs, and of background synaptic noise. We used somatic current injection to mimic population synaptic input events and measured spike probability and spike time precision (STP), the latter defined as the time window (Δt) holding 80% of response spikes. EPSC rise and decay times were varied over the known physiological spectrum. At spike threshold level, EPSC decay time had a stronger influence on STP than rise time. Generally, STP was highest (≤2.45 ms) in response to synchronous compounds of EPSCs with fast rise and decay kinetics. Compounds with slow EPSC kinetics (decay time constants>6 ms) triggered spikes at lower temporal precision (≥6.58 ms). We found an overall linear relationship between STP and spike delay. The difference in STP between fast and slow compound EPSCs could be reduced by incrementing the amplitude of slow compound EPSCs. The introduction of a temporal jitter to compound EPSCs had a comparatively small effect on STP, with a tenfold increase in jitter resulting in only a five fold decrease in STP. In the presence of simulated synaptic background activity, precisely timed spikes could still be induced by fast EPSCs, but not by slow EPSCs. PMID:17389910

  14. The action of blocking agents applied to the inner face of Ca(2+)-activated K+ channels from human erythrocytes.

    PubMed

    Dunn, P M

    1998-09-15

    The actions of clotrimazole and cetiedil, two drugs known to inhibit the Gardos channel, have been studied on single intermediate conductance calcium-activated potassium (IKCa) channels in inside out patches from human red blood cells, and compared with those of TEA and Ba2+ applied to the cytoplasmic face of the membrane. TEA produced a fast block which was observed as a reduction in the amplitude of the single channel current. This effect was weakly voltage dependent with the fraction of the membrane potential sensed by TEA at its binding site (delta) of 0.18 and a Kd at 0 mV of 20.5 mM. Ba2+ was a very potent blocker of the channel, breaking the single channel activity up into bursts, inter-spersed with silent periods lasting several seconds. The effect of Ba2+ was very voltage sensitive, delta = 0.44, and a Kd at 0 mV of 0.15 microM. Clotrimazole applied to the inner face of the membrane at a concentration < or = 1 microM produced a slow block resulting in bursts of channel activity separated by quiescent periods lasting many seconds. The effect of clotrimazole was mimicked by a quaternary derivative UCL 1559, in keeping with an action at the cytoplasmic face of the channel. A high concentration of cetiedil (100 microM) produced only a weak block of the channel. The kinetics of this action were very slow, with burst and inter-burst intervals lasting several minutes. While inhibition of the Gardos channel by cetiedil is unlikely to involve an intracellular site of action, if clotrimazole is able to penetrate the membrane, part of its effect may result from binding to an intracellular site on the channel.

  15. Synthetic spectral analysis of a kinetic model for slow-magnetosonic waves in solar corona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruan, Wenzhi; He, Jiansen; Tu, Chuanyi

    We propose a kinetic model of slow-magnetosonic waves to explain various observational features associated with the propagating intensity disturbances (PIDs) occurring in the solar corona. The characteristics of slow mode waves, e.g, inphase oscillations of density, velocity, and thermal speed, are reproduced in this kinetic model. Moreover, the red-blue (R-B) asymmetry of the velocity distribution as self-consistently generated in the model is found to be contributed from the beam component, as a result of the competition between Landau resonance and Coulomb collisions. Furthermore, we synthesize the spectral lines and make the spectral analysis, based on the kinetic simulation data ofmore » the flux tube plasmas and the hypothesis of the surrounding background plasmas. It is found that the fluctuations of parameters of the synthetic spectral lines are basically consistent with the observations: (1) the line intensity, Doppler shift, and line width are fluctuating in phase; (2) the R-B asymmetry usually oscillate out of phase with the former three parameters; (3) the blueward asymmetry is more evident than the redward asymmetry in the R-B fluctuations. The oscillations of line parameters become weakened for the case with denser surrounding background plasmas. Similar to the observations, there is no doubled-frequency oscillation of the line width for the case with flux-tube plasmas flowing bulkly upward among the static background plasmas. Therefore, we suggest that the “wave + beam flow” kinetic model may be a viable interpretation for the PIDs observed in the solar corona.« less

  16. An Experimental and Theoretical Evaluation of Multi-site Cadmium(II) Exchange in Designed Three-Stranded Coiled Coil Peptides

    PubMed Central

    Chakraborty, Saumen; Iranzo, Olga; Zuiderweg, Erik R.P.; Pecoraro, Vincent L.

    2012-01-01

    An important factor that defines the toxicity of elements such as cadmium(II), mercury(II), and lead(II) with biological macromolecules is metal ion exchange dynamics. Intriguingly, little is known about the fundamental rates and mechanisms of metal ion exchange into proteins, especially helical bundles. Herein, we investigate the exchange kinetics of cadmium(II) using de novo designed three-stranded coiled coil peptides that contain metal complexing cysteine thiolates as a model for the incorporation of this ion into trimeric, parallel helical bundles. Peptides were designed containing both single cadmium(II) binding site, GrandL12AL16C [Grand=AcG-(LKALEEK)5-GNH2], GrandL26AL30C, and GrandL26AE28QL30C, as well as GrandL12AL16CL26AL30C with two cadmium(II) binding sites. The binding of cadmium(II) to any of these sites is of high affinity (KA > 3×107 M−1). Using 113Cd NMR spectroscopy, cadmium(II) binding to these designed peptides was monitored. While the cadmium(II) binding is in extreme slow exchange without showing any chemical shift changes, incremental line broadening for the bound 113cadmium(II) signal is observed when excess 113cadmium(II) is titrated into the peptides. Most dramatically, for one site, L26AL30C, all 113cadmium(II) NMR signals disappear once a 1.7:1 ratio of cadmium(II)/(peptide)3 is reached. The observed processes are not compatible with simple “free-bound” two-site exchange kinetics at any time regime. The experimental results can, however, be simulated in detail with a multi-site binding model, which features additional cadmium(II) binding site(s) which, once occupied, perturb the primary binding site. This model is expanded into differential equations for five-site NMR chemical exchange. The numerical integration of these equations exhibits progressive loss of the primary site NMR signal without a chemical shift change and with limited line broadening, in good agreement with the observed experimental data. The mathematical model is interpreted in molecular terms as representing binding of excess cadmium(II) to surface Glu residues located at the helical interfaces. In the absence of cadmium(II), the Glu residues stabilize the three-helical structure though salt bridge interactions with surface Lys residues. We hypothesize that cadmium(II) interferes with these surface ion pairs, destabilizing the helical structure, and perturbing the primary cadmium(II) binding site. This hypothesis is supported by the observation that the cadmium(II)-excess line broadening is attenuated in GrandL26AE28QL30C where a surface Glu(28), close to the metal binding site, was changed to Gln. The external binding site may function as an entry pathway for cadmium(II) to find its internal binding site following a molecular rearrangement which may serve as a basis for our understanding of metal complexation, transport and exchange in complex native systems containing α-helical bundles. PMID:22394049

  17. Rapid kinetics of iron responsive element (IRE) RNA/iron regulatory protein 1 and IRE-RNA/eIF4F complexes respond differently to metal ions.

    PubMed

    Khan, Mateen A; Ma, Jia; Walden, William E; Merrick, William C; Theil, Elizabeth C; Goss, Dixie J

    2014-06-01

    Metal ion binding was previously shown to destabilize IRE-RNA/IRP1 equilibria and enhanced IRE-RNA/eIF4F equilibria. In order to understand the relative importance of kinetics and stability, we now report rapid rates of protein/RNA complex assembly and dissociation for two IRE-RNAs with IRP1, and quantitatively different metal ion response kinetics that coincide with the different iron responses in vivo. kon, for FRT IRE-RNA binding to IRP1 was eight times faster than ACO2 IRE-RNA. Mn(2+) decreased kon and increased koff for IRP1 binding to both FRT and ACO2 IRE-RNA, with a larger effect for FRT IRE-RNA. In order to further understand IRE-mRNA regulation in terms of kinetics and stability, eIF4F kinetics with FRT IRE-RNA were determined. kon for eIF4F binding to FRT IRE-RNA in the absence of metal ions was 5-times slower than the IRP1 binding to FRT IRE-RNA. Mn(2+) increased the association rate for eIF4F binding to FRT IRE-RNA, so that at 50 µM Mn(2+) eIF4F bound more than 3-times faster than IRP1. IRP1/IRE-RNA complex has a much shorter life-time than the eIF4F/IRE-RNA complex, which suggests that both rate of assembly and stability of the complexes are important, and that allows this regulatory system to respond rapidly to change in cellular iron. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Analysis of the interaction between membrane proteins and soluble binding partners by surface plasmon resonance.

    PubMed

    Wu, Zht Cheng; de Keyzer, Jeanine; Kusters, Ilja; Driessen, Arnold J M

    2013-01-01

    The interaction between membrane proteins and their (protein) ligands is conventionally investigated by nonequilibrium methods such as co-sedimentation or pull-down assays. Surface Plasmon Resonance can be used to monitor such binding events in real-time using isolated membranes immobilized to a surface providing insights in the kinetics of binding under equilibrium conditions. This application provides a fast, automated way to detect interacting species and to determine the kinetics and affinity (Kd) of the interaction.

  19. Transient state kinetics of transcription elongation by T7 RNA polymerase.

    PubMed

    Anand, Vasanti Subramanian; Patel, Smita S

    2006-11-24

    The single subunit DNA-dependent RNA polymerase (RNAP) from bacteriophage T7 catalyzes both promoter-dependent transcription initiation and promoter-independent elongation. Using a promoter-free substrate, we have dissected the kinetic pathway of single nucleotide incorporation during elongation. We show that T7 RNAP undergoes a slow conformational change (0.01-0.03 s(-1)) to form an elongation competent complex with the promoter-free substrate (dissociation constant (Kd) of 96 nM). The complex binds to a correct NTP (Kd of 80 microM) and incorporates the nucleoside monophosphate (NMP) into RNA primer very efficiently (220 s(-1) at 25 degrees C). An overall free energy change (-5.5 kcal/mol) and internal free energy change (-3.7 kcal/mol) of single NMP incorporation was calculated from the measured equilibrium constants. In the presence of inorganic pyrophosphate (PPi), the elongation complex catalyzes the reverse pyrophosphorolysis reaction at a maximum rate of 0.8 s(-1) with PPi Kd of 1.2 mM. Several experiments were designed to investigate the rate-limiting step in the pathway of single nucleotide addition. Acid-quench and pulse-chase kinetics indicated that an isomerization step before chemistry is rate-limiting. The very similar rate constants of sequential incorporation of two nucleotides indicated that the steps after chemistry are fast. Based on available data, we propose that the preinsertion to insertion isomerization of NTP observed in the crystallographic studies of T7 RNAP is a likely candidate for the rate-limiting step. The studies here provide a kinetic framework to investigate structure-function and fidelity of RNA synthesis and to further explore the role of the conformational change in nucleotide selection during RNA synthesis.

  20. The effects of intensity on V̇O2 kinetics during incremental free swimming.

    PubMed

    de Jesus, Kelly; Sousa, Ana; de Jesus, Karla; Ribeiro, João; Machado, Leandro; Rodríguez, Ferran; Keskinen, Kari; Vilas-Boas, João Paulo; Fernandes, Ricardo J

    2015-09-01

    Swimming and training are carried out with wide variability in distances and intensities. However, oxygen uptake kinetics for the intensities seen in swimming has not been reported. The purpose of this study was to assess and compare the oxygen uptake kinetics throughout low-moderate to severe intensities during incremental swimming exercise. We hypothesized that the oxygen uptake kinetic parameters would be affected by swimming intensity. Twenty male trained swimmers completed an incremental protocol of seven 200-m crawl swims to exhaustion (0.05 m·s(-1) increments and 30-s intervals). Oxygen uptake was continuously measured by a portable gas analyzer connected to a respiratory snorkel and valve system. Oxygen uptake kinetics was assessed using a double exponential regression model that yielded both fast and slow components of the response of oxygen uptake to exercise. From low-moderate to severe swimming intensities changes occurred for the first and second oxygen uptake amplitudes (P ≤ 0.04), time constants (P = 0.01), and time delays (P ≤ 0.02). At the heavy and severe intensities, a notable oxygen uptake slow component (>255 mL·min(-1)) occurred in all swimmers. Oxygen uptake kinetics whilst swimming at different intensities offers relevant information regarding cardiorespiratory and metabolic stress that might be useful for appropriate performance diagnosis and training prescription.

  1. Kinetics of natural oxidant demand by permanganate in aquifer solids.

    PubMed

    Urynowicz, Michael A; Balu, Balamurali; Udayasankar, Umamaheshwari

    2008-02-19

    During in situ chemical oxidation with permanganate, natural organic matter and other reduced species in the subsurface compete with the target compounds for the available oxidant and can exert a significant natural oxidant demand. This competition between target and nontarget compounds can have a significant impact on the permeation, dispersal, and persistence of permanganate in the subsurface. The kinetics of natural oxidant demand by permanganate was investigated using a composite sample made up of aquifer material collected from three different sites. The study found that although the depletion of organic carbon increased with increased permanganate dosage and increased reaction period, the mass ratio of MnO(4)(-):OC (wt/wt) was relatively constant over time (11.4+/-0.9). The reaction order and rate with respect to permanganate were found to decrease with time suggesting a continuum of reactions with the slower reactions becoming more controlling with time. However, the data also suggests that this continuum of reactions can be simplified into short- and long-term kinetic expressions representing fast and slow reactions. An independent first-order kinetic model with separate fast and slow reaction rate constants was used to successfully describe the complete kinetic expression of natural oxidant demand. The kinetic parameters used in the model are easily determined and can be used to better understand the complex kinetics of natural oxidant demand.

  2. Second Harmonic Correlation Spectroscopy: Theory and Principles for Determining Surface Binding Kinetics.

    PubMed

    Sly, Krystal L; Conboy, John C

    2017-06-01

    A novel application of second harmonic correlation spectroscopy (SHCS) for the direct determination of molecular adsorption and desorption kinetics to a surface is discussed in detail. The surface-specific nature of second harmonic generation (SHG) provides an efficient means to determine the kinetic rates of adsorption and desorption of molecular species to an interface without interference from bulk diffusion, which is a significant limitation of fluorescence correlation spectroscopy (FCS). The underlying principles of SHCS for the determination of surface binding kinetics are presented, including the role of optical coherence and optical heterodyne mixing. These properties of SHCS are extremely advantageous and lead to an increase in the signal-to-noise (S/N) of the correlation data, increasing the sensitivity of the technique. The influence of experimental parameters, including the uniformity of the TEM00 laser beam, the overall photon flux, and collection time are also discussed, and are shown to significantly affect the S/N of the correlation data. Second harmonic correlation spectroscopy is a powerful, surface-specific, and label-free alternative to other correlation spectroscopic methods for examining surface binding kinetics.

  3. Specific strychnine binding sites on acrosome-associated membranes of golden hamster spermatozoa.

    PubMed

    Llanos, Miguel N; Ronco, Ana M; Aguirre, María C

    2003-06-27

    This study demonstrates for the first time, that membrane vesicles originated from the hamster sperm head after the occurrence of the acrosome reaction, possess specific strychnine binding sites. [3H]Strychnine binding was saturable and reversible, being displaced by unlabeled strychnine (IC(50)=26.7+/-2.3 microM). Kinetic analysis revealed one binding site with K(d)=120nM and B(max)=142fmol/10(6) spermatozoa. Glycine receptor agonists beta-alanine and taurine inhibited strychnine binding by 20-30%. Surprisingly, glycine stimulated binding by about 40-50%. Results obtained in this study strongly suggest the presence of glycine receptors-with distinctive kinetic properties on the periacrosomal plasma membrane of hamster spermatozoa. Localization of this receptor fits well with its previously proposed role in acrosomal exocytosis during mammalian fertilization.

  4. 49 CFR 665.5 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... kinetic energy for on-board storage and subsequent use. Retarder means a system other than the service brakes that slows a bus by dissipating kinetic energy. Seated load weight means the weight of the bus... which is capable of capturing, storing, and re-using energy. Major change in chassis design means, for...

  5. 49 CFR 665.5 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... kinetic energy for on-board storage and subsequent use. Retarder means a system other than the service brakes that slows a bus by dissipating kinetic energy. Seated load weight means the weight of the bus... which is capable of capturing, storing, and re-using energy. Major change in chassis design means, for...

  6. 49 CFR 665.5 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... kinetic energy for on-board storage and subsequent use. Retarder means a system other than the service brakes that slows a bus by dissipating kinetic energy. Seated load weight means the weight of the bus... which is capable of capturing, storing, and re-using energy. Major change in chassis design means, for...

  7. 49 CFR 665.5 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... kinetic energy for on-board storage and subsequent use. Retarder means a system other than the service brakes that slows a bus by dissipating kinetic energy. Seated load weight means the weight of the bus... which is capable of capturing, storing, and re-using energy. Major change in chassis design means, for...

  8. Role of biological membranes in slow-wave sleep.

    PubMed

    Karnovsky, M L

    1991-02-01

    Two involvements of cellular membranes in slow-wave sleep (SWS) are discussed. In the first the endoplasmic reticulum (ER) is focussed upon, and in the second, the plasmalemma, where specific binding sites (receptors?) for promoters of slow-wave sleep are believed to be located. The study concerning the ER focuses on an enzyme in the brain, glucose-6-phosphatase, which, although present at low levels, manifests greatly increased activity during SWS compared to the waking state. The work on the plasmalemma has to do with the specific binding of muramyl peptides, inducers of slow-wave sleep, to various cells, and membrane preparations of various sorts, including those from brain tissue. Such cells as macrophages from mice, B-lymphocytes from human blood, and cells from a cell line (C-6 glioma) have been examined in this context.

  9. Kinetic Analysis of Drug Release from Compounded Slow-release Capsules of Liothyronine Sodium (T3).

    PubMed

    Bakhteyar, Hamid; Cassone, Clayton; Kohan, Hamed Gilzad; Sani, Shabnam N

    2017-01-01

    The purpose of this study was to formulate extemporaneously compounded Liothyronine Sodium (T3) slow-release capsules and to evaluate their in vitro drug release performance. Twenty-one formulations containing T3 (7.5 µg) with various compositions of two different grades of Methocel E4M and K100M premium (30% to 90%), and/or SimpleCap/Lactose (10% to 70%) were examined. Quality assessment of the capsules was conducted by standard quality control criteria of the United States Pharmacopeia (i.e., weight variation, content uniformity) to ensure their compliance. The dissolution release profile of the formulations was evaluated using United States Pharmacopeia Apparatus type II (paddle method) at a speed of 50 rpm and temperature of 37°C in phosphate buffered saline media ( pH = 7.2 to 7.4). Aliquots from the media were taken periodically up to 24 hours and analyzed using a validated enzyme-linked immunosorbent assay method. The cumulative percentage of drug release for each formulation was fitted to eleven major release kinetic equations to determine the best-fit model of drug release, as well as the mechanism of release. Assay sensitivity was as low as 1 ng/mL and the optimal calibration range was found to be between 0 ng/mL and 7.5 ng/mL, which corresponded well with the average physiological plasma concentrations of T3. Liothyronine sodium with either SimpleCap (100%) or Methocel E4M (100%) exhibited slowrelease kinetic patterns of Peppas and Zero Order, respectively. The formulation with SimpleCap (100%) had a higher percentage of drug release (as compared to 100% Methocel E4M) within the first four hours; this formulation released 80% of the drug within 12 hours when the release was plateaued thereafter. The formulation with 30% Methocel E4M and 70% SimpleCap released 100% of the drug within the initial 12 hours and exhibited a Zero Order slow-release kinetic pattern. In general, the release kinetic rate of the formulations containing Methocel K100M appeared to be slower than Methocel E4M. This alteration may be due to a higher molecular weight and apparent viscosity of Methocel K100M. While most of the formulations were fitted to a slow-release kinetic pattern, several others including Methocel E4M 100%, 30% Methocel E4M+ 70% Simple Cap, 40% Methocel K100M+ 60% SimpleCap, 50% Methocel K100M+ 50% SimpleCap, 30% Methocel E4M+ 70% Lactose, 90% Methocel E4M+ 10% Lactose, 40% Methocel K100M+ 60% Lactose, and 50% Methocel K100M+ 50% Lactose followed an ideal slow-release kinetic pattern of Zero Order or Higuchi. The results of this study successfully demonstrated the optiomal composition of slow-release compounded capsules of T3. Future studies are warranted to evaluate the in vivo performance of the optimal formulations and to establish an in vitro-in vivo correlation. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  10. Tensor to scalar ratio and large scale power suppression from pre-slow roll initial conditions

    NASA Astrophysics Data System (ADS)

    Lello, Louis; Boyanovsky, Daniel

    2014-05-01

    We study the corrections to the power spectra of curvature and tensor perturbations and the tensor-to-scalar ratio r in single field slow roll inflation with standard kinetic term due to initial conditions imprinted by a ``fast-roll'' stage prior to slow roll. For a wide range of initial inflaton kinetic energy, this stage lasts only a few e-folds and merges smoothly with slow-roll thereby leading to non-Bunch-Davies initial conditions for modes that exit the Hubble radius during slow roll. We describe a program that yields the dynamics in the fast-roll stage while matching to the slow roll stage in a manner that is independent of the inflationary potentials. Corrections to the power spectra are encoded in a ``transfer function'' for initial conditions Script Tα(k), Script Pα(k) = PBDα(k)Script Tα(k), implying a modification of the ``consistency condition'' for the tensor to scalar ratio at a pivot scale k0: r(k0) = -8nT(k0) [Script TT(k0)/Script TScript R(k0)]. We obtain Script Tα(k) to leading order in a Born approximation valid for modes of observational relevance today. A fit yields Script Tα(k) = 1+Aαk-pcos [2πωk/Hsr+varphiα], with 1.5lesssimplesssim2, ω simeq 1 and Hsr the Hubble scale during slow roll inflation, where curvature and tensor perturbations feature the same p,ω for a wide range of initial conditions. These corrections lead to both a suppression of the quadrupole and oscillatory features in both PR(k) and r(k0) with a period of the order of the Hubble scale during slow roll inflation. The results are quite general and independent of the specific inflationary potentials, depending solely on the ratio of kinetic to potential energy κ and the slow roll parameters epsilonV, ηV to leading order in slow roll. For a wide range of κ and the values of epsilonV ηV corresponding to the upper bounds from Planck, we find that the low quadrupole is consistent with the results from Planck, and the oscillations in r(k0) as a function of k0 could be observable if the modes corresponding to the quadrupole and the pivot scale crossed the Hubble radius very few (2-3) e-folds after the onset of slow roll. We comment on possible impact on the recent BICEP2 results.

  11. Conformational Transition Pathway in the Activation Process of Allosteric Glucokinase

    PubMed Central

    Shi, Ting; Zhao, Yaxue; Chen, Yingyi; Li, Xiaobai; Liu, Xinyi; Huang, Zhimin; Zhang, Jian

    2013-01-01

    Glucokinase (GK) is a glycolytic enzyme that plays an important role in regulating blood glucose level, thus acting as a potentially attractive target for drug discovery in the treatment of diabetes of the young type 2 and persistent hyperinsulinemic hypoglycemia of infancy. To characterize the activation mechanism of GK from the super-open state (inactive state) to the closed state (active state), a series of conventional molecular dynamics (MD) and targeted MD (TMD) simulations were performed on this enzyme. Conventional MD simulation showed a specific conformational ensemble of GK when the enzyme is inactive. Seven TMD simulations depicted a reliably conformational transition pathway of GK from the inactive state to the active state, and the components important to the conformational change of GK were identified by analyzing the detailed structures of the TMD trajectories. In combination with the inactivation process, our findings showed that the whole conformational pathway for the activation-inactivation-activation of GK is a one-direction circulation, and the active state is less stable than the inactive state in the circulation. Additionally, glucose was demonstrated to gradually modulate its binding pose with the help of residues in the large domain and connecting region of GK during the activation process. Furthermore, the obtained energy barriers were used to explain the preexisting equilibrium and the slow binding kinetic process of the substrate by GK. The simulated results are in accordance with the recent findings from the mutagenesis experiments and kinetic analyses. Our observations reveal a complicated conformational process in the allosteric protein, resulting in new knowledge about the delicate mechanisms for allosteric biological macromolecules that will be useful in drug design for targeting allosteric proteins. PMID:23409066

  12. Kinetics of binding of chicken cystatin to papain.

    PubMed

    Björk, I; Alriksson, E; Ylinenjärvi, K

    1989-02-21

    The kinetics of binding of chicken cystatin to papain were studied by stopped-flow fluorometry under pseudo-first-order conditions, i.e., with an excess of inhibitor. All reactions showed first-order behavior, and the observed pseudo-first-order rate constant increased linearly with the cystatin concentration up to the highest concentration that could be studied, 35 microM. The analyses thus provided no evidence for a limiting rate resulting from a conformational change stabilizing an initial encounter complex, in contrast with previous studies of reactions between serine proteinases and their protein inhibitors. The second-order association rate constant for complex formation was 9.9 X 10(6) M-1 s-1 at 25 degrees C, pH 7.4, I = 0.15, for both forms of cystatin, 1 and 2. This value approaches that expected for a diffusion-controlled rate. The temperature dependence of the association rate constant gave an enthalpy of activation at 25 degrees C of 31.5 kJ mol-1 and an entropy of activation at 25 degrees C of -7 J K-1 mol-1, compatible with no appreciable conformational change during the reaction. The association rate constant was independent of pH between pH 6 and 8 but decreased at lower and higher pH in a manner consistent with involvement of an unprotonated acid group with a pKa of 4-4.5 and a protonated basic group with a pKa of 9-9.5 in the interaction. The association rate constant was unaffected by ionic strengths between 0.15 and 1.0 but decreased somewhat at lower ionic strengths. Incubation of the complex between cystatin 2 and papain with an excess of cystatin 1 resulted in slow displacement of cystatin 2 from the complex.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. REVEALING THE ACTIVATION PATHWAY FOR TMEM16A CHLORIDE CHANNELS FROM MACROSCOPIC CURRENTS AND KINETIC MODELS

    PubMed Central

    Contreras-Vite, Juan A.; Cruz-Rangel, Silvia; De Jesús-Pérez, José J.; Aréchiga Figueroa, Iván A.; Rodríguez-Menchaca, Aldo A.; Pérez-Cornejo, Patricia; Hartzell, H. Criss; Arreola, Jorge

    2017-01-01

    TMEM16A (ANO1), the pore-forming subunit of calcium-activated chloride channels, regulates several physiological and pathophysiological processes such as smooth muscle contraction, cardiac and neuronal excitability, salivary secretion, tumour growth, and cancer progression. Gating of TMEM16A is complex because it involves the interplay between increases in intracellular calcium concentration ([Ca2+]i), membrane depolarization, extracellular Cl− or permeant anions, and intracellular protons. Our goal here was to understand how these variables regulate TMEM16A gating and to explain four observations. a) TMEM16A is activated by voltage in the absence of intracellular Ca2+. b) The Cl− conductance is decreased after reducing extracellular Cl− concentration ([Cl−]o). c) ICl is regulated by physiological concentrations of [Cl−]o. d) In cells dialyzed with 0.2 µM [Ca2+]i, Cl− has a bimodal effect: at [Cl−]o < 30 mM TMEM16A current activates with a monoexponential time course, but above 30 mM [Cl−]o ICl activation displays fast and slow kinetics. To explain the contribution of Vm, Ca2+ and Cl− to gating, we developed a 12-state Markov chain model. This model explains TMEM16A activation as a sequential, direct, and Vm-dependent binding of two Ca2+ ions coupled to a Vm-dependent binding of an external Cl− ion, with Vm-dependent transitions between states. Our model predicts that extracellular Cl− does not alter the apparent Ca2+ affinity of TMEM16A, which we corroborated experimentally. Rather, extracellular Cl− acts by stabilizing the open configuration induced by Ca2+ and by contributing to the Vm dependence of activation. PMID:27138167

  14. Calmodulin and calcium differentially regulate the neuronal Nav1.1 voltage-dependent sodium channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaudioso, Christelle; Carlier, Edmond; Youssouf, Fahamoe

    2011-07-29

    Highlights: {yields} Both Ca{sup ++}-Calmodulin (CaM) and Ca{sup ++}-free CaM bind to the C-terminal region of Nav1.1. {yields} Ca{sup ++} and CaM have both opposite and convergent effects on I{sub Nav1.1}. {yields} Ca{sup ++}-CaM modulates I{sub Nav1.1} amplitude. {yields} CaM hyperpolarizes the voltage-dependence of activation, and increases the inactivation rate. {yields} Ca{sup ++} alone antagonizes CaM for both effects, and depolarizes the voltage-dependence of inactivation. -- Abstract: Mutations in the neuronal Nav1.1 voltage-gated sodium channel are responsible for mild to severe epileptic syndromes. The ubiquitous calcium sensor calmodulin (CaM) bound to rat brain Nav1.1 and to the human Nav1.1 channelmore » expressed by a stably transfected HEK-293 cell line. The C-terminal region of the channel, as a fusion protein or in the yeast two-hybrid system, interacted with CaM via a consensus C-terminal motif, the IQ domain. Patch clamp experiments on HEK1.1 cells showed that CaM overexpression increased peak current in a calcium-dependent way. CaM had no effect on the voltage-dependence of fast inactivation, and accelerated the inactivation kinetics. Elevating Ca{sup ++} depolarized the voltage-dependence of fast inactivation and slowed down the fast inactivation kinetics, and for high concentrations this effect competed with the acceleration induced by CaM alone. Similarly, the depolarizing action of calcium antagonized the hyperpolarizing shift of the voltage-dependence of activation due to CaM overexpression. Fluorescence spectroscopy measurements suggested that Ca{sup ++} could bind the Nav1.1 C-terminal region with micromolar affinity.« less

  15. A Histidine Aspartate Ionic Lock Gates the Iron Passage in Miniferritins from Mycobacterium smegmatis*

    PubMed Central

    Williams, Sunanda Margrett; Chandran, Anu V.; Vijayabaskar, Mahalingam S.; Roy, Sourav; Balaram, Hemalatha; Vishveshwara, Saraswathi; Vijayan, Mamannamana; Chatterji, Dipankar

    2014-01-01

    Dps (DNA-binding protein from starved cells) are dodecameric assemblies belonging to the ferritin family that can bind DNA, carry out ferroxidation, and store iron in their shells. The ferritin-like trimeric pore harbors the channel for the entry and exit of iron. By representing the structure of Dps as a network we have identified a charge-driven interface formed by a histidine aspartate cluster at the pore interface unique to Mycobacterium smegmatis Dps protein, MsDps2. Site-directed mutagenesis was employed to generate mutants to disrupt the charged interactions. Kinetics of iron uptake/release of the wild type and mutants were compared. Crystal structures were solved at a resolution of 1.8–2.2 Å for the various mutants to compare structural alterations vis à vis the wild type protein. The substitutions at the pore interface resulted in alterations in the side chain conformations leading to an overall weakening of the interface network, especially in cases of substitutions that alter the charge at the pore interface. Contrary to earlier findings where conserved aspartate residues were found crucial for iron release, we propose here that in the case of MsDps2, it is the interplay of negative-positive potentials at the pore that enables proper functioning of the protein. In similar studies in ferritins, negative and positive patches near the iron exit pore were found to be important in iron uptake/release kinetics. The unique ionic cluster in MsDps2 makes it a suitable candidate to act as nano-delivery vehicle, as these gated pores can be manipulated to exhibit conformations allowing for slow or fast rates of iron release. PMID:24573673

  16. Kinetic evidence for folding and unfolding intermediates in staphylococcal nuclease.

    PubMed

    Walkenhorst, W F; Green, S M; Roder, H

    1997-05-13

    The complex kinetic behavior commonly observed in protein folding studies suggests that a heterogeneous population of molecules exists in solution and that a number of discrete steps are involved in the conversion of unfolded molecules to the fully native form. A central issue in protein folding is whether any of these kinetic events represent conformational steps important for efficient folding rather than side reactions caused by slow steps such as proline isomerization or misfolding of the polypeptide chain. In order to address this question, we used stopped-flow fluorescence techniques to characterize the kinetic mechanism of folding and unfolding for a Pro- variant of SNase in which all six proline residues were replaced by glycines or alanines. Compared to the wild-type protein, which exhibits a series of proline-dependent slow folding phases, the folding kinetics of Pro- SNase were much simpler, which made quantitative kinetic analysis possible. Despite the absence of prolines or other complicating factors, the folding kinetics still contain several phases and exhibit a complex denaturant dependence. The GuHCl dependence of the major observable folding phase and a distinct lag in the appearance of the native state provide clear evidence for an early folding intermediate. The fluorescence of Trp140 in the alpha-helical domain is insensitive to the formation of this early intermediate, which is consistent with a partially folded state with a stable beta-domain and a largely disordered alpha-helical region. A second intermediate is required to model the kinetics of unfolding for the Pro- variant, which shows evidence for a denaturant-induced change in the rate-limiting unfolding step. With the inclusion of these two intermediates, we are able to completely model the major phase(s) in both folding and unfolding across a wide range of denaturant concentrations using a sequential four-state folding mechanism. In order to model the minor slow phase observed for the Pro- mutant, a six-state scheme containing a parallel pathway originating from a distinct unfolded state was required. The properties of this alternate unfolded conformation are consistent with those expected due to the presence of a non-prolyl cis peptide bond. To test the kinetic model, we used simulations based on the six-state scheme and were able to completely reproduce the folding kinetics for Pro- SNase across a range of denaturant concentrations.

  17. Stimulatory and inhibitory mechanisms of slow muscle-specific myosin heavy chain gene expression in fish: Transient and transgenic analysis of torafugu MYH{sub M86-2} promoter in zebrafish embryos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asaduzzaman, Md.; Kinoshita, Shigeharu, E-mail: akino@mail.ecc.u-tokyo.ac.jp; Bhuiyan, Sharmin Siddique

    The myosin heavy chain gene, MYH{sub M86-2}, exhibited restricted expression in slow muscle fibers of torafugu embryos and larvae, suggesting its functional roles for embryonic and larval muscle development. However, the transcriptional mechanisms involved in its expression are still ambiguous. The present study is the first extensive analysis of slow muscle-specific MYH{sub M86-2} promoter in fish for identifying the cis-elements that are crucial for its expression. Combining both transient transfection and transgenic approaches, we demonstrated that the 2614 bp 5′-flanking sequences of MYH{sub M86-2} contain a sufficient promoter activity to drive gene expression specific to superficial slow muscle fibers. Bymore » cyclopamine treatment, we also demonstrated that the differentiation of such superficial slow muscle fibers depends on hedgehog signaling activity. The deletion analyses defined an upstream fragment necessary for repressing ectopic MYH{sub M86-2} expression in the fast muscle fibers. The transcriptional mechanism that prevents MYH{sub M86-2} expression in the fast muscle fibers is mediated through Sox6 binding elements. We also demonstrated that Sox6 may function as a transcriptional repressor of MYH{sub M86-2} expression. We further discovered that nuclear factor of activated T cells (NFAT) binding elements plays a key role and myocyte enhancer factor-2 (MEF2) binding elements participate in the transcriptional regulation of MYH{sub M86-2} expression. - Highlights: ► MYH{sub M86-2} is highly expressed in slow muscle fibers of torafugu embryos and larvae. ► MYH{sub M86-2} promoter activity depends on the hedgehog signaling. ► Sox6 binding elements inhibits MYH{sub M86-2} expression in fast muscle fibers. ► Sox6 elements function as transcriptional repressor of MYH{sub M86-2} promoter activity. ► NFAT and MEF2 binding elements play a key role for directing MYH{sub M86-2} expression.« less

  18. Origami Arrays as Substrates for the Determination of Reaction Kinetics Using High-Speed Atomic Force Microscopy.

    PubMed

    Rahman, Masudur; Day, B Scott; Neff, David; Norton, Michael L

    2017-08-01

    DNA nanostructures (DN) are powerful platforms for the programmable assembly of nanomaterials. As applications for DN both as a structural material and as a support for functional biomolecular sensing systems develop, methods enabling the determination of reaction kinetics in real time become increasingly important. In this report, we present a study of the kinetics of streptavidin binding onto biotinylated DN constructs enabled by these planar structures. High-speed AFM was employed at a 2.5 frame/s rate to evaluate the kinetics and indicates that the binding fully saturates in less than 60 s. When the the data was fitted with an adsorption-limited kinetic model, a forward rate constant of 5.03 × 10 5 s -1 was found.

  19. Kinetic Energy Distribution of D(2p) Atoms From Analysis of the D Lyman-a Line Profile

    NASA Technical Reports Server (NTRS)

    Ciocca, Marco; Ajello, Joseph M.; Liu, Xianming; Maki, Justin

    1997-01-01

    The absolute cross sections of the line center (slow atoms) and wings (fast atoms) and total emission line profile were measured from threshold to 400 eV. Analytical model coeffiecients are given for the energy dependence of the measured slow atom cross section.

  20. Electrostatic forces govern the binding mechanism of intrinsically disordered histone chaperones

    PubMed Central

    Liu, Chuanbo; Wang, Tianshu; Bai, Yawen; Wang, Jin

    2017-01-01

    A unified picture to understand the protein recognition and function must include the native binding complex structure ensembles and the underlying binding mechanisms involved in specific biological processes. However, quantifications of both binding complex structures and dynamical mechanisms are still challenging for IDP. In this study, we have investigated the underlying molecular mechanism of the chaperone Chz1 and histone H2A.Z-H2B association by equilibrium and kinetic stopped-flow fluorescence spectroscopy. The dependence of free energy and kinetic rate constant on electrolyte mean activity coefficient and urea concentration are uncovered. Our results indicate a previous unseen binding kinetic intermediate. An initial conformation selection step of Chz1 is also revealed before the formation of this intermediate state. Based on these observations, a mixed mechanism of three steps including both conformation selection and induced fit is proposed. By combination of the ion- and denaturant-induced experiments, we demonstrate that electrostatic forces play a dominant role in the recognition of bipolar charged intrinsically disordered protein Chz1 to its preferred partner H2A.Z-H2B. Both the intra-chain and inter-chain electrostatic interactions have direct impacts on the native collapsed structure and binding mechanism. PMID:28552960

  1. Cellular level models as tools for cytokine design.

    PubMed

    Radhakrishnan, Mala L; Tidor, Bruce

    2010-01-01

    Cytokines and growth factors are critical regulators that connect intracellular and extracellular environments through binding to specific cell-surface receptors. They regulate a wide variety of immunological, growth, and inflammatory response processes. The overall signal initiated by a population of cytokine molecules over long time periods is controlled by the subtle interplay of binding, signaling, and trafficking kinetics. Building on the work of others, we abstract a simple kinetic model that captures relevant features from cytokine systems as well as related growth factor systems. We explore a large range of potential biochemical behaviors, through systematic examination of the model's parameter space. Different rates for the same reaction topology lead to a dramatic range of biochemical network properties and outcomes. Evolution might productively explore varied and different portions of parameter space to create beneficial behaviors, and effective human therapeutic intervention might be achieved through altering network kinetic properties. Quantitative analysis of the results reveals the basis for tensions among a number of different network characteristics. For example, strong binding of cytokine to receptor can increase short-term receptor activation and signal initiation but decrease long-term signaling due to internalization and degradation. Further analysis reveals the role of specific biochemical processes in modulating such tensions. For instance, the kinetics of cytokine binding and receptor activation modulate whether ligand-receptor dissociation can generally occur before signal initiation or receptor internalization. Beyond analysis, the same models and model behaviors provide an important basis for the design of more potent cytokine therapeutics by providing insight into how binding kinetics affect ligand potency. (c) 2010 American Institute of Chemical Engineers

  2. KINETIC SIMULATION OF SLOW MAGNETOSONIC WAVES AND QUASI-PERIODIC UPFLOWS IN THE SOLAR CORONA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruan, Wenzhi; He, Jiansen; Tu, Chuanyi

    Quasi-periodic disturbances of emission-line parameters are frequently observed in the corona. These disturbances propagate upward along the magnetic field with speeds of ∼100 km s{sup −1}. This phenomenon has been interpreted as evidence of the propagation of slow magnetosonic waves or has been argued to be a signature of intermittent outflows superposed on the background plasmas. Here we aim to present a new “wave + flow” model to interpret these observations. In our scenario, the oscillatory motion is a slow-mode wave, and the flow is associated with a beam created by the wave–particle interaction owing to Landau resonance. With themore » help of a kinetic model, we simulate the propagation of slow-mode waves and the generation of beam flows. We find that weak periodic beam flows can be generated by to Landau resonance in the solar corona, and the phase with the strongest blueward asymmetry is ahead of that with the strongest blueshift by about 1/4 period. We also find that the slow wave damps to the level of 1/ e after the transit time of two wave periods, owing to Landau damping and Coulomb collisions in our simulation. This damping timescale is similar to that resulting from thermal conduction in the MHD regime. The beam flow is weakened/attenuated with increasing wave period and decreasing wave amplitude since Coulomb collisions become more and more dominant over the wave action. We suggest that this “wave + flow” kinetic model provides an alternative explanation for the observed quasi-periodic propagating perturbations in various parameters in the solar corona.« less

  3. Cationic cure kinetics of a polyoxometalate loaded epoxy nanocomposite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Benjamin J.

    2012-08-06

    The reaction cure kinetics of a novel polyoxometalate (POM) loaded epoxy nanocomposite is described. The POM is dispersed in the epoxy resin up to volume fractions of 0.1. Differential scanning calorimetry measurements show the cure of the epoxy resin to be sensitive to the POM loading. A kinetics study of the cure exotherm confirms that POM acts as a catalyst promoting cationic homopolymerization of the epoxy resin. The cure reaction is shown to propagate through two cure regimes. A fast cure at short time is shown to be propagation by the activated chain end (ACE) mechanism. A slow cure atmore » long time is shown to be propagation by the activated monomer (AM) mechanism. The activation energies for the fast and slow cure regimes agree well with other epoxy based systems that have been confirmed to propagate by the ACE and AM mechanisms.« less

  4. Identification of a human synaptotagmin-1 mutation that perturbs synaptic vesicle cycling

    PubMed Central

    Baker, Kate; Gordon, Sarah L.; Grozeva, Detelina; van Kogelenberg, Margriet; Roberts, Nicola Y.; Pike, Michael; Blair, Edward; Hurles, Matthew E.; Chong, W. Kling; Baldeweg, Torsten; Kurian, Manju A.; Boyd, Stewart G.; Cousin, Michael A.; Raymond, F. Lucy

    2015-01-01

    Synaptotagmin-1 (SYT1) is a calcium-binding synaptic vesicle protein that is required for both exocytosis and endocytosis. Here, we describe a human condition associated with a rare variant in SYT1. The individual harboring this variant presented with an early onset dyskinetic movement disorder, severe motor delay, and profound cognitive impairment. Structural MRI was normal, but EEG showed extensive neurophysiological disturbances that included the unusual features of low-frequency oscillatory bursts and enhanced paired-pulse depression of visual evoked potentials. Trio analysis of whole-exome sequence identified a de novo SYT1 missense variant (I368T). Expression of rat SYT1 containing the equivalent human variant in WT mouse primary hippocampal cultures revealed that the mutant form of SYT1 correctly localizes to nerve terminals and is expressed at levels that are approximately equal to levels of endogenous WT protein. The presence of the mutant SYT1 slowed synaptic vesicle fusion kinetics, a finding that agrees with the previously demonstrated role for I368 in calcium-dependent membrane penetration. Expression of the I368T variant also altered the kinetics of synaptic vesicle endocytosis. Together, the clinical features, electrophysiological phenotype, and in vitro neuronal phenotype associated with this dominant negative SYT1 mutation highlight presynaptic mechanisms that mediate human motor control and cognitive development. PMID:25705886

  5. CBLB502, an agonist of Toll-like receptor 5, has antioxidant and scavenging free radicals activities in vitro.

    PubMed

    Li, Weiguang; Ge, Changhui; Yang, Liu; Wang, Ruixue; Lu, Yiming; Gao, Yan; Li, Zhihui; Wu, Yonghong; Zheng, Xiaofei; Wang, Zhaoyan; Zhang, Chenggang

    2016-01-01

    The bacterial protein flagellin is the known agonist of Toll-like receptor 5 (TLR5). It has been reported that CBLB502, a novel agonist of TLR5 derived from Salmonella flagellin, could reduce radiation toxicity in mouse and primate models, protect mice from dermatitis and oral mucositis caused by radiation, inhibit acute renal ischemic failure, and inhibit the growth of A549 lung cancer cell. The property of CBLB502 is able to bind to TLR5 and activates NF-κB signaling. In this study, we investigated the antioxidant potential and free radicals scavenging properties of CBLB502 in vitro. Interestingly, we found that CBLB502 has a direct and distinct antioxidant capacity and can efficiently scavenge a variety of free radicals, including superoxide anion, hydroxyl radical, and ABTS cation (ABTS(+)). Through wave scanning and kinetic evaluation of scavenging ABTS(+), we found that the ABTS(+) scavenging process of CBLB502 is relatively slow, and the ABTS(+) scavenging activity of CBLB502 has a consistently kinetics characteristics. In conclusion, our results suggested that CBLB502 has antioxidant and scavenging free radicals activities in vitro. It is implied that CBLB502 might partially promote the beneficial protective effect through its scavenging free radicals. Copyright © 2015. Published by Elsevier B.V.

  6. Entropic stabilization of a deubiquitinase provides conformational plasticity and slow unfolding kinetics beneficial for functioning on the proteasome

    PubMed Central

    Lee, Yun-Tzai Cloud; Chang, Chia-Yun; Chen, Szu-Yu; Pan, Yun-Ru; Ho, Meng-Ru; Hsu, Shang-Te Danny

    2017-01-01

    Human ubiquitin C-terminal hydrolyase UCH-L5 is a topologically knotted deubiquitinase that is activated upon binding to the proteasome subunit Rpn13. The length of its intrinsically disordered cross-over loop is essential for substrate recognition. Here, we showed that the catalytic domain of UCH-L5 exhibits higher equilibrium folding stability with an unfolding rate on the scale of 10−8 s−1, over four orders of magnitudes slower than its paralogs, namely UCH-L1 and -L3, which have shorter cross-over loops. NMR relaxation dynamics analysis confirmed the intrinsic disorder of the cross-over loop. Hydrogen deuterium exchange analysis further revealed a positive correlation between the length of the cross-over loop and the degree of local fluctuations, despite UCH-L5 being thermodynamically and kinetically more stable than the shorter UCHs. Considering the role of UCH-L5 in removing K48-linked ubiquitin to prevent proteasomal degradation of ubiquitinated substrates, our findings offered mechanistic insights into the evolution of UCH-L5. Compared to its paralogs, it is entropically stabilized to withstand mechanical unfolding by the proteasome while maintaining structural plasticity. It can therefore accommodate a broad range of substrate geometries at the cost of unfavourable entropic loss. PMID:28338014

  7. Butyrylcholinesterase for protection from organophosphorus poisons; catalytic complexities and hysteretic behavior

    PubMed Central

    Masson, Patrick; Lockridge, Oksana

    2009-01-01

    Butyrylcholinesterase is a promiscuous enzyme that displays complex kinetic behavior. It is toxicologically important because it detoxifies organophosphorus poisons (OP) by making a covalent bond with the OP. The OP and the butyrylcholinesterase are both inactivated in the process. Inactivation of butyrylcholinesterase has no adverse effects. However inactivation of acetylcholinesterase in nerve synapses can be lethal. OP-inhibited butyrylcholinesterase and acetylcholinesterase can be reactivated with oximes provided the OP has not aged. Strategies for preventing the toxicity of OP include a) treatment with an OP scavenger, b) reaction of nonaged enzyme with oximes, c) reactivation of aged enzyme, d) slowing down aging with peripheral site ligands, and e) design of mutants that rapidly hydrolyze OP. Option (a) has progressed through phase I clinical trials with human butyrylcholinesterase. Option (b) is in routine clinical use. The others are at the basic research level. Butyrylcholinesterase displays complex kinetic behavior including activation by positively charged esters, ability to hydrolyze amides, and a lag time (hysteresis) preceding hydrolysis of benzoylcholine and N-methyl indoxyl acetate. Mass spectrometry has identified new OP binding motifs on tyrosine and lysine in proteins that have no active site serine. It is proposed, but not yet proven, that low dose exposure involves OP modification of proteins that have no active site serine. PMID:20004171

  8. Erythroblast transferrin receptors and transferrin kinetics in iron deficiency and various anemias

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muta, K.; Nishimura, J.; Ideguchi, H.

    1987-06-01

    To clarify the role of transferrin receptors in cases of altered iron metabolism in clinical pathological conditions, we studied: number of binding sites; affinity; and recycling kinetics of transferrin receptors on human erythroblasts. Since transferrin receptors are mainly present on erythroblasts, the number of surface transferrin receptors was determined by assay of binding of /sup 125/I-transferrin and the percentage of erythroblasts in bone marrow mononuclear cells. The number of binding sites on erythroblasts from patients with an iron deficiency anemia was significantly greater than in normal subjects. Among those with an aplastic anemia, hemolytic anemia, myelodysplastic syndrome, and polycythemia veramore » compared to normal subjects, there were no considerable differences in the numbers of binding sites. The dissociation constants (Kd) were measured using Scatchard analysis. The apparent Kd was unchanged (about 10 nmol/L) in patients and normal subjects. The kinetics of endocytosis and exocytosis of /sup 125/I-transferrin, examined by acid treatment, revealed no variations in recycling kinetics among the patients and normal subjects. These data suggest that iron uptake is regulated by modulation of the number of surface transferrin receptors, thereby reflecting the iron demand of the erythroblast.« less

  9. Single-molecule force measurement via optical tweezers reveals different kinetic features of two BRaf mutants responsible for cardio-facial-cutaneous (CFC) syndrome

    PubMed Central

    Wen, Cheng; Ye, Anpei

    2013-01-01

    BRaf (B- Rapid Accelerated Fibrosarcoma) protein is an important serine/threonine-protein kinase. Two domains on BRaf can independently bind its upstream kinase, Ras (Rat Sarcoma) protein. These are the Ras binding domain (RBD) and cysteine-rich-domain (CRD). Herein we use customized optical tweezers to compare the Ras binding process in two pathological mutants of BRaf responsible for CFC syndrome, abbreviated BRaf (A246P) and BRaf (Q257R). The two mutants differ in their kinetics of Ras-binding, though both bind Ras with similar increased overall affinity. BRaf (A246P) exhibits a slightly higher Ras/CRD unbinding force and a significantly higher Ras/RBD unbinding force versus the wild type. The contrary phenomenon is observed in the Q257R mutation. Simulations of the unstressed-off rate, koff(0), yield results in accordance with the changes revealed by the mean unbinding force. Our approach can be applied to rapidly assess other mutated proteins to deduce the effects of mutation on their kinetics compared to wild type proteins and to each other. PMID:24409384

  10. Exploring the interaction of silver nanoparticles with pepsin and its adsorption isotherms and kinetics.

    PubMed

    Li, Xiangrong; Wang, Kaiwei; Peng, Yanru

    2018-04-25

    The interaction of nanoparticles (NPs) with proteins is a topic of high relevance for the medical application of nanomaterials. In the study, a comprehensive investigation was performed for the binding properties of silver nanoparticles (AgNPs) to pepsin. The results indicate that the binding of AgNPs to pepsin may be a static quenching mechanism. Thermodynamic analysis reveals that AgNPs binds to pepsin is synergistically driven by enthalpy and entropy, and the major driving forces are hydrophobic and electrostatic interactions. Synchronous fluorescence spectroscopy shows that AgNPs may induce microenvironmental changes of pepsin. The hydrophobicity of Trp is increased while the hydrophility of Tyr is increased. The adsorption of pepsin on AgNPs was analyzed by Langmuir and Freundlich models, suggesting that the equilibrium adsorption data fit well with Freundlich model. The equilibrium adsorption data were modeled using the pseudo-first-order and pseudo-second-order kinetic equations. The results indicate that pseudo-second-order kinetic equation better describes the adsorption kinetics. The study provides an accurate and full basic data for clarifying the binding mechanism, adsorption isotherms and kinetic behaviors of AgNPs with pepsin. These fundamental works will provide some new insights into the safe and effective application of AgNPs in biological and medical areas. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Probing the General Time Scale Question of Boronic Acid Binding with Sugars in Aqueous Solution at Physiological pH

    PubMed Central

    Ni, Nanting; Laughlin, Sarah; Wang, Yingji; Feng, You; Zheng, Yujun

    2012-01-01

    The boronic acid group is widely used in chemosensor design due to its ability to reversibly bind diol-containing compounds. The thermodynamic properties of the boronic acid-diol binding process have been investigated extensively. However, there are few studies of the kinetic properties of such binding processes. In this report, stopped-flow method was used for the first time to study the kinetic properties of the binding between three model arylboronic acids, 4-, 5-, and 8-isoquinolinylboronic acids, and various sugars. With all the boronic acid-diol pair sexamined, reactions were complete within seconds. The kon values with various sugars follow the order of D-fructose >D-tagatose>D-mannose >D-glucose. This trend tracks the thermodynamic binding affinities for these sugars and demonstrates that the “on” rate is the key factor determining the binding constant. PMID:22464680

  12. Mechanistic Investigation of the Bypass of a Bulky Aromatic DNA Adduct Catalyzed by a Y-family DNA Polymerase

    PubMed Central

    Gadkari, Varun V.; Tokarsky, E. John; Malik, Chanchal K.; Basu, Ashis K.; Suo, Zucai

    2014-01-01

    3-Nitrobenzanthrone (3-NBA), a nitropolyaromatic hydrocarbon (NitroPAH) pollutant in diesel exhaust, is a potent mutagen and carcinogen. After metabolic activation, the primary metabolites of 3-NBA react with DNA to form dG and dA adducts. One of the three major adducts identified is N-(2’-deoxyguanosin-8-yl)-3-aminobenzanthrone (dGC8-N-ABA). This bulky adduct likely stalls replicative DNA polymerases but can be traversed by lesion bypass polymerases in vivo. Here, we employed running start assays to show that a site-specifically placed dGC8-N-ABA is bypassed in vitro by Sulfolobus solfataricus DNA polymerase IV (Dpo4), a model Y-family DNA polymerase. However, the nucleotide incorporation rate of Dpo4 was significantly reduced opposite both the lesion and the template position immediately downstream from the lesion site, leading to two strong pause sites. To investigate the kinetic effect of dGC8-N-ABA on polymerization, we utilized pre-steady-state kinetic methods to determine the kinetic parameters for individual nucleotide incorporations upstream, opposite, and downstream from the dGC8-N-ABA lesion. Relative to the replication of the corresponding undamaged DNA template, both nucleotide incorporation efficiency and fidelity of Dpo4 were considerably decreased during dGC8-N-ABA lesion bypass and the subsequent extension step. The lower nucleotide incorporation efficiency caused by the lesion is a result of a significantly reduced dNTP incorporation rate constant and modestly weaker dNTP binding affinity. At both pause sites, nucleotide incorporation followed biphasic kinetics with a fast and a slow phase and their rates varied with nucleotide concentration. In contrast, only the fast phase was observed with undamaged DNA. A kinetic mechanism was proposed for the bypass of dGC8-N-ABA bypass catalyzed by Dpo4. PMID:25048879

  13. Mechanistic investigation of the bypass of a bulky aromatic DNA adduct catalyzed by a Y-family DNA polymerase.

    PubMed

    Gadkari, Varun V; Tokarsky, E John; Malik, Chanchal K; Basu, Ashis K; Suo, Zucai

    2014-09-01

    3-Nitrobenzanthrone (3-NBA), a nitropolyaromatic hydrocarbon (NitroPAH) pollutant in diesel exhaust, is a potent mutagen and carcinogen. After metabolic activation, the primary metabolites of 3-NBA react with DNA to form dG and dA adducts. One of the three major adducts identified is N-(2'-deoxyguanosin-8-yl)-3-aminobenzanthrone (dG(C8-N-ABA)). This bulky adduct likely stalls replicative DNA polymerases but can be traversed by lesion bypass polymerases in vivo. Here, we employed running start assays to show that a site-specifically placed dG(C8-N-ABA) is bypassed in vitro by Sulfolobus solfataricus DNA polymerase IV (Dpo4), a model Y-family DNA polymerase. However, the nucleotide incorporation rate of Dpo4 was significantly reduced opposite both the lesion and the template position immediately downstream from the lesion site, leading to two strong pause sites. To investigate the kinetic effect of dG(C8-N-ABA) on polymerization, we utilized pre-steady-state kinetic methods to determine the kinetic parameters for individual nucleotide incorporations upstream, opposite, and downstream from the dG(C8-N-ABA) lesion. Relative to the replication of the corresponding undamaged DNA template, both nucleotide incorporation efficiency and fidelity of Dpo4 were considerably decreased during dG(C8-N-ABA) lesion bypass and the subsequent extension step. The lower nucleotide incorporation efficiency caused by the lesion is a result of a significantly reduced dNTP incorporation rate constant and modestly weaker dNTP binding affinity. At both pause sites, nucleotide incorporation followed biphasic kinetics with a fast and a slow phase and their rates varied with nucleotide concentration. In contrast, only the fast phase was observed with undamaged DNA. A kinetic mechanism was proposed for the bypass of dG(C8-N-ABA) bypass catalyzed by Dpo4. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Plasmonic Nanoholes in a Multi-Channel Microarray Format for Parallel Kinetic Assays and Differential Sensing

    PubMed Central

    Im, Hyungsoon; Lesuffleur, Antoine; Lindquist, Nathan C.; Oh, Sang-Hyun

    2009-01-01

    We present nanohole arrays in a gold film integrated with a 6-channel microfluidic chip for parallel measurements of molecular binding kinetics. Surface plasmon resonance effects in the nanohole arrays enable real-time label-free measurements of molecular binding events in each channel, while adjacent negative reference channels can record measurement artifacts such as bulk solution index changes, temperature variations, or changing light absorption in the liquid. Using this platform, streptavidin-biotin specific binding kinetics are measured at various concentrations with negative controls. A high-density microarray of 252 biosensing pixels is also demonstrated with a packing density of 106 sensing elements/cm2, which can potentially be coupled with a massively parallel array of microfluidic channels for protein microarray applications. PMID:19284776

  15. The S4–S5 Linker Acts as a Signal Integrator for hERG K+ Channel Activation and Deactivation Gating

    PubMed Central

    Ng, Chai Ann; Perry, Matthew D.; Tan, Peter S.; Hill, Adam P.; Kuchel, Philip W.; Vandenberg, Jamie I.

    2012-01-01

    Human ether-à-go-go-related gene (hERG) K+ channels have unusual gating kinetics. Characterised by slow activation/deactivation but rapid inactivation/recovery from inactivation, the unique gating kinetics underlie the central role hERG channels play in cardiac repolarisation. The slow activation and deactivation kinetics are regulated in part by the S4–S5 linker, which couples movement of the voltage sensor domain to opening of the activation gate at the distal end of the inner helix of the pore domain. It has also been suggested that cytosolic domains may interact with the S4–S5 linker to regulate activation and deactivation kinetics. Here, we show that the solution structure of a peptide corresponding to the S4–S5 linker of hERG contains an amphipathic helix. The effects of mutations at the majority of residues in the S4–S5 linker of hERG were consistent with the previously identified role in coupling voltage sensor movement to the activation gate. However, mutations to Ser543, Tyr545, Gly546 and Ala548 had more complex phenotypes indicating that these residues are involved in additional interactions. We propose a model in which the S4–S5 linker, in addition to coupling VSD movement to the activation gate, also contributes to interactions that stabilise the closed state and a separate set of interactions that stabilise the open state. The S4–S5 linker therefore acts as a signal integrator and plays a crucial role in the slow deactivation kinetics of the channel. PMID:22359612

  16. Variational Koopman models: Slow collective variables and molecular kinetics from short off-equilibrium simulations

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Nüske, Feliks; Paul, Fabian; Klus, Stefan; Koltai, Péter; Noé, Frank

    2017-04-01

    Markov state models (MSMs) and master equation models are popular approaches to approximate molecular kinetics, equilibria, metastable states, and reaction coordinates in terms of a state space discretization usually obtained by clustering. Recently, a powerful generalization of MSMs has been introduced, the variational approach conformation dynamics/molecular kinetics (VAC) and its special case the time-lagged independent component analysis (TICA), which allow us to approximate slow collective variables and molecular kinetics by linear combinations of smooth basis functions or order parameters. While it is known how to estimate MSMs from trajectories whose starting points are not sampled from an equilibrium ensemble, this has not yet been the case for TICA and the VAC. Previous estimates from short trajectories have been strongly biased and thus not variationally optimal. Here, we employ the Koopman operator theory and the ideas from dynamic mode decomposition to extend the VAC and TICA to non-equilibrium data. The main insight is that the VAC and TICA provide a coefficient matrix that we call Koopman model, as it approximates the underlying dynamical (Koopman) operator in conjunction with the basis set used. This Koopman model can be used to compute a stationary vector to reweight the data to equilibrium. From such a Koopman-reweighted sample, equilibrium expectation values and variationally optimal reversible Koopman models can be constructed even with short simulations. The Koopman model can be used to propagate densities, and its eigenvalue decomposition provides estimates of relaxation time scales and slow collective variables for dimension reduction. Koopman models are generalizations of Markov state models, TICA, and the linear VAC and allow molecular kinetics to be described without a cluster discretization.

  17. Different kinetic pathways of the binding of two biphenyl analogues of colchicine to tubulin.

    PubMed

    Dumortier, C; Gorbunoff, M J; Andreu, J M; Engelborghs, Y

    1996-04-09

    The kinetics of the interaction of tubulin with two biphenyl analogues of colchicine were measured by fluorescence stopped flow. The ligands were 2,3,4-trimethoxy-4'-carbomethoxy-1,1'-biphenyl (TCB) and 2,3,4-trimethoxy-4'-acetyl-1,1'-biphenyl (TKB). The binding of both analogues is accompanied by a fluorescence increase with monophasic kinetics, which indicates that these drugs, unlike colchicine, do not discriminate between the isoforms of tubulin. The observed pseudo-first-order rate constant increases in a nonlinear way with the drug concentration, indicating that the binding of the biphenyl analogues to tubulin occurs, like colchicine, in two steps: a fast reversible equilibrium followed by an isomerization of the initial complex. Kinetic analysis shows that TCB and TKB exhibit differences in their K1 values. At 25 degrees C, these are 114,000 +/- 15,000 M(-1) for TCB and 8,300 +/- 900 M(-1) for TKB. Both molecules show a much higher affinity than colchicine for the initial binding site. Also at 25 degrees C, the k2 value is 0.66 +/- 0.04 s(-1) for TCB and 3.0 +/- 0.2 s(-1) for TKB. From the temperature dependence, a reaction enthalpy change for the initial binding (deltaH(zero)1) of 44 +/- 9 kJ x mol(-1) (TCB) and -40 +/- 14 kJ x mol(-1) (TKB) and an activation energy for the second forward step of 64 +/- 2 kJ x mol(-1) (TCB) and 101 +/- 10 kJ x mol(-1) (TKB) were calculated. The dissociation kinetics were studied by displacement experiments, in which podophyllotoxin was used as a displacing ligand. The rate constant for the second step in the off direction (k(-2)) is 0.25 +/- 0.05 s(-1) for TCB and 0.093 +/- 0.009 s(-1) for TKB at 25 degrees C. The activation energies for the backward isomerization of the complexes were found to be 86 +/- 20 kJ x mol(-1) (TCB) and 79 +/- 5 kJ x mol(-1) (TKB). Combination of these results with the kinetic parameters for association gives a full characterization of the enthalpy pathway for the binding of TCB and TKB. The pathway of TCB binding is shown to differ considerably from that of TKB binding. Since their structural difference is located in ring C', this result points to their use of the ring C' in the first binding step. The competitiveness of the binding of TCB and TKB with those of podophyllotoxin, MTC, and MDL 27048 indicates that the two biphenyls interact as well with the trimethoxyphenyl-specific subsite.

  18. In Silico Docking and Electrophysiological Characterization of Lacosamide Binding Sites on Collapsin Response Mediator Protein-2 Identifies a Pocket Important in Modulating Sodium Channel Slow Inactivation*

    PubMed Central

    Wang, Yuying; Brittain, Joel M.; Jarecki, Brian W.; Park, Ki Duk; Wilson, Sarah M.; Wang, Bo; Hale, Rachel; Meroueh, Samy O.; Cummins, Theodore R.; Khanna, Rajesh

    2010-01-01

    The anti-epileptic drug (R)-lacosamide ((2R)-2-(acetylamino)-N-benzyl-3-methoxypropanamide (LCM)) modulates voltage-gated sodium channels (VGSCs) by preferentially interacting with slow inactivated sodium channels, but the observation that LCM binds to collapsin response mediator protein 2 (CRMP-2) suggests additional mechanisms of action for LCM. We postulated that CRMP-2 levels affects the actions of LCM on VGSCs. CRMP-2 labeling by LCM analogs was competitively displaced by excess LCM in rat brain lysates. Manipulation of CRMP-2 levels in the neuronal model system CAD cells affected slow inactivation of VGSCs without any effects on other voltage-dependent properties. In silico docking was performed to identify putative binding sites in CRMP-2 that may modulate the effects of LCM on VGSCs. These studies identified five cavities in CRMP-2 that can accommodate LCM. CRMP-2 alanine mutants of key residues within these cavities were functionally similar to wild-type CRMP-2 as assessed by similar levels of enhancement in dendritic complexity of cortical neurons. Next, we examined the effects of expression of wild-type and mutant CRMP-2 constructs on voltage-sensitive properties of VGSCs in CAD cells: 1) steady-state voltage-dependent activation and fast-inactivation properties were not affected by LCM, 2) CRMP-2 single alanine mutants reduced the LCM-mediated effects on the ability of endogenous Na+ channels to transition to a slow inactivated state, and 3) a quintuplicate CRMP-2 alanine mutant further decreased this slow inactivated fraction. Collectively, these results identify key CRMP-2 residues that can coordinate LCM binding thus making it more effective on its primary clinical target. PMID:20538611

  19. Evolution of inhibitor-resistant natural mutant forms of HIV-1 protease probed by pre-steady state kinetic analysis.

    PubMed

    Zakharova, Maria Yu; Kuznetsova, Alexandra A; Kaliberda, Elena N; Dronina, Maria A; Kolesnikov, Alexander V; Kozyr, Arina V; Smirnov, Ivan V; Rumsh, Lev D; Fedorova, Olga S; Knorre, Dmitry G; Gabibov, Alexander G; Kuznetsov, Nikita A

    2017-11-01

    Pre-steady state kinetic analysis of mechanistic features of substrate binding and processing is crucial for insight into the evolution of inhibitor-resistant forms of HIV-1 protease. These data may provide a correct vector for rational drug design assuming possible intrinsic dynamic effects. These data should also give some clues to the molecular mechanism of protease action and resistance to inhibitors. Here we report pre-steady state kinetics of the interaction of wild type or mutant forms of HIV-1 protease with a FRET-labeled peptide. The three-stage "minimal" kinetic scheme with first and second reversible steps of substrate binding and with following irreversible peptide cleavage step adequately described experimental data. For the first time, a set of "elementary" kinetic parameters of wild type HIV-1 protease and its natural mutant inhibitor-resistant forms MDR-HM, ANAM-11 and prDRV4 were compared. Inhibitors of the first and second generation were used to estimate the inhibitory effects on HIV-1 protease activity. The resulting set of kinetic data supported that the mutant forms are kinetically unaffected by inhibitors of the first generation, proving their functional resistance to these compounds. The second generation inhibitor darunavir inhibited mutant forms MDR-HM and ANAM-11, but was ineffective against prDRV4. Our kinetic data revealed that these inhibitors induced different conformational changes in the enzyme and, thereby they have different mode of binding in the enzyme active site. These data confirmed hypothesis that the driving force of the inhibitor-resistance evolution is disruption of enzyme-inhibitor complex by changing of the contact network in the inhibitor binding site. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  20. A Three-Pool Model Dissecting Readily Releasable Pool Replenishment at the Calyx of Held

    PubMed Central

    Guo, Jun; Ge, Jian-long; Hao, Mei; Sun, Zhi-cheng; Wu, Xin-sheng; Zhu, Jian-bing; Wang, Wei; Yao, Pan-tong; Lin, Wei; Xue, Lei

    2015-01-01

    Although vesicle replenishment is critical in maintaining exo-endocytosis recycling, the underlying mechanisms are not well understood. Previous studies have shown that both rapid and slow endocytosis recycle into a very large recycling pool instead of within the readily releasable pool (RRP), and the time course of RRP replenishment is slowed down by more intense stimulation. This finding contradicts the calcium/calmodulin-dependence of RRP replenishment. Here we address this issue and report a three-pool model for RRP replenishment at a central synapse. Both rapid and slow endocytosis provide vesicles to a large reserve pool (RP) ~42.3 times the RRP size. When moving from the RP to the RRP, vesicles entered an intermediate pool (IP) ~2.7 times the RRP size with slow RP-IP kinetics and fast IP-RRP kinetics, which was responsible for the well-established slow and rapid components of RRP replenishment. Depletion of the IP caused the slower RRP replenishment observed after intense stimulation. These results establish, for the first time, a realistic cycling model with all parameters measured, revealing the contribution of each cycling step in synaptic transmission. The results call for modification of the current view of the vesicle recycling steps and their roles. PMID:25825223

  1. Slowed muscle oxygen uptake kinetics with raised metabolism are not dependent on blood flow or recruitment dynamics

    PubMed Central

    Wüst, Rob C I; McDonald, James R; Sun, Yi; Ferguson, Brian S; Rogatzki, Matthew J; Spires, Jessica; Kowalchuk, John M; Gladden, L Bruce; Rossiter, Harry B

    2014-01-01

    Oxygen uptake kinetics (τ) are slowed when exercise is initiated from a raised metabolic rate. Whether this reflects the recruitment of muscle fibres differing in oxidative capacity, or slowed blood flow () kinetics is unclear. This study determined τ in canine muscle in situ, with experimental control over muscle activation and during contractions initiated from rest and a raised metabolic rate. The gastrocnemius complex of nine anaesthetised, ventilated dogs was isolated and attached to a force transducer. Isometric tetanic contractions (50 Hz; 200 ms duration) via supramaximal sciatic nerve stimulation were used to manipulate metabolic rate: 3 min stimulation at 0.33 Hz (S1), followed by 3 min at 0.67 Hz (S2). Circulation was initially intact (SPON), and subsequently isolated for pump-perfusion (PUMP) above the greatest value in SPON. Muscle was determined contraction-by-contraction using an ultrasonic flowmeter and venous oximeter, and normalised to tension-time integral (TTI). τ/TTI and τ were less in S1SPON (mean ± s.d.: 13 ± 3 s and 12 ± 4 s, respectively) than in S2SPON (29 ± 19 s and 31 ± 13 s, respectively; P < 0.05). τ/TTI was unchanged by pump-perfusion (S1PUMP, 12 ± 4 s; S2PUMP, 24 ± 6 s; P < 0.001) despite increased O2 delivery; at S2 onset, venous O2 saturation was 21 ± 4% and 65 ± 5% in SPON and PUMP, respectively. kinetics remained slowed when contractions were initiated from a raised metabolic rate despite uniform muscle stimulation and increased O2 delivery. The intracellular mechanism may relate to a falling energy state, approaching saturating ADP concentration, and/or slowed mitochondrial activation; but further study is required. These data add to the evidence that muscle control is more complex than previously suggested. PMID:24469073

  2. Kinetics of proton uptake and dye binding by photoactive yellow protein in wild type and in the E46Q and E46A mutants.

    PubMed

    Borucki, Berthold; Devanathan, Savitha; Otto, Harald; Cusanovich, Michael A; Tollin, Gordon; Heyn, Maarten P

    2002-08-06

    We studied the kinetics of proton uptake and release by photoactive yellow protein (PYP) from Ectothiorhodospira halophila in wild type and the E46Q and E46A mutants by transient absorption spectroscopy with the pH-indicator dyes bromocresol purple or cresol red in unbuffered solution. In parallel, we investigated the kinetics of chromophore protonation as monitored by the rise and decay of the blue-shifted state I(2) (lambda(max) = 355 nm). For wild type the proton uptake kinetics is synchronized with the fast phase of I(2) formation (tau = 500 micros at pH 6.2). The transient absorption signal from the dye also contains a slower component which is not due to dye deprotonation but is caused by dye binding to a hydrophobic patch that is transiently exposed in the structurally changed and partially unfolded I(2) intermediate. This conclusion is based on the wavelength, pH, and concentration dependence of the dye signal and on dye measurements in the presence of buffer. SVD analysis, moreover, indicates the presence of two components in the dye signal: protonation and dye binding. The dye binding has a rise time of about 4 ms and is coupled kinetically with a transition between two I(2) intermediates. In the mutant E46Q, which lacks the putative internal proton donor E46, the formation of I(2) is accelerated, but the proton uptake kinetics remains kinetically coupled to the fast phase of I(2) formation (tau = 100 micros at pH 6.3). For this mutant the protein conformational change, as monitored by the dye binding, occurs with about the same time constant as in wild type but with reduced amplitude. In the alkaline form of the mutant E46A the formation of the I(2)-like intermediate is even faster as is the proton uptake (tau = 20 micros at pH 8.3). No dye binding occurred in E46A, suggesting the absence of a conformational change. In all of the systems proton release is synchronized with the decay of I(2). Our results support mechanisms in which the chromophore of PYP is protonated directly from the external medium rather than by the internal donor E46.

  3. Effect of substrate RNA sequence on the cleavage reaction by a short ribozyme.

    PubMed Central

    Ohmichi, T; Okumoto, Y; Sugimoto, N

    1998-01-01

    Leadzyme is a ribozyme that requires Pb2+. The catalytic sequence, CUGGGAGUCC, binds to an RNA substrate, GGACC downward arrowGAGCCAG, cleaving the RNA substrate at one site. We have investigated the effect of the substrate sequence on the cleavage activity of leadzyme using mutant substrates in order to structurally understand the RNA catalysis. The results showed that leadzyme acted as a catalyst for single site cleavage of a C5 deletion mutant substrate, GGAC downward arrowGAGCCAG, as well as the wild-type substrate. However, a mutant substrate GGACCGACCAG, which had G8 deleted from the wild-type substrate, was not cleaved. Kinetic studies by surface plasmon resonance indicated that the difference between active and inactive structures reflected the slow association and dissociation rate constants of complex formation induced by Pb2+rather than differences in complex stability. CD spectra showed that the active form of the substrate-leadzyme complex was rearranged by Pb2+binding. The G8 of the wild-type substrate, which was absent in the inactive complex, is not near the cleavage site. Thus, these results show that the active substrate-leadzyme complex has a Pb2+binding site at the junction between the unpaired region (asymmetric internal loop) and the stem region, which is distal to the cleavage site. Pb2+may play a role in rearranging the bases in the asymmetric internal loop to the correct position for catalysis. PMID:9837996

  4. Kinetics and microscopic processes of long term fracture in polyethylene piping materials

    NASA Astrophysics Data System (ADS)

    Brown, N.; Lu, X.

    1992-07-01

    The report contains 9 completed works as follows: The Dependence of Slow Crack Growth in a Polyethylene Copolymer on Testing Temperature and Morphology; A Test of Slow Crack Growth Failure of PE Under Constant Load; Effect of Annealing on Slow Crack Growth in an Ethylene-Hexene Copolymer; The Fundamental Material Parameters that Govern Slow Crack Growth in Linear Polyethylene; Slow Crack Growth in Blends of HDPE and UHMWPE; The Mechanism of Fatigue Failure in a Polyethylene Copolymer; PENT Quality Control Test for PE Gas Pipes and Resins; International Round Robin Study of a Fatigue Test Approach to the Ranking of Polyethylene Pipe Material; and Proposed ASTM Specification for ASTM F17.40 Test Methods Committee.

  5. Multiple Ion Binding Equilibria, Reaction Kinetics, and Thermodynamics in Dynamic Models of Biochemical Pathways

    PubMed Central

    Vinnakota, Kalyan C.; Wu, Fan; Kushmerick, Martin J.; Beard, Daniel A.

    2009-01-01

    The operation of biochemical systems in vivo and in vitro is strongly influenced by complex interactions between biochemical reactants and ions such as H+, Mg2+, K+, and Ca2+. These are important second messengers in metabolic and signaling pathways that directly influence the kinetics and thermodynamics of biochemical systems. Herein we describe the biophysical theory and computational methods to account for multiple ion binding to biochemical reactants and demonstrate the crucial effects of ion binding on biochemical reaction kinetics and thermodynamics. In simulations of realistic systems, the concentrations of these ions change with time due to dynamic buffering and competitive binding. In turn, the effective thermodynamic properties vary as functions of cation concentrations and important environmental variables such as temperature and overall ionic strength. Physically realistic simulations of biochemical systems require incorporating all of these phenomena into a coherent mathematical description. Several applications to physiological systems are demonstrated based on this coherent simulation framework. PMID:19216922

  6. Switchable DNA interfaces for the highly sensitive detection of label-free DNA targets.

    PubMed

    Rant, Ulrich; Arinaga, Kenji; Scherer, Simon; Pringsheim, Erika; Fujita, Shozo; Yokoyama, Naoki; Tornow, Marc; Abstreiter, Gerhard

    2007-10-30

    We report a method to detect label-free oligonucleotide targets. The conformation of surface-tethered probe nucleic acids is modulated by alternating electric fields, which cause the molecules to extend away from or fold onto the biased surface. Binding (hybridization) of targets to the single-stranded probes results in a pronounced enhancement of the layer-height modulation amplitude, monitored optically in real time. The method features an exceptional detection limit of <3 x 10(8) bound targets per cm(2) sensor area. Single base-pair mismatches in the sequences of DNA complements may readily be identified; moreover, binding kinetics and binding affinities can be determined with high accuracy. When driving the DNA to oscillate at frequencies in the kHz regime, distinct switching kinetics are revealed for single- and double-stranded DNA. Molecular dynamics are used to identify the binding state of molecules according to their characteristic kinetic fingerprints by using a chip-compatible detection format.

  7. Switchable DNA interfaces for the highly sensitive detection of label-free DNA targets

    PubMed Central

    Rant, Ulrich; Arinaga, Kenji; Scherer, Simon; Pringsheim, Erika; Fujita, Shozo; Yokoyama, Naoki; Tornow, Marc; Abstreiter, Gerhard

    2007-01-01

    We report a method to detect label-free oligonucleotide targets. The conformation of surface-tethered probe nucleic acids is modulated by alternating electric fields, which cause the molecules to extend away from or fold onto the biased surface. Binding (hybridization) of targets to the single-stranded probes results in a pronounced enhancement of the layer-height modulation amplitude, monitored optically in real time. The method features an exceptional detection limit of <3 × 108 bound targets per cm2 sensor area. Single base-pair mismatches in the sequences of DNA complements may readily be identified; moreover, binding kinetics and binding affinities can be determined with high accuracy. When driving the DNA to oscillate at frequencies in the kHz regime, distinct switching kinetics are revealed for single- and double-stranded DNA. Molecular dynamics are used to identify the binding state of molecules according to their characteristic kinetic fingerprints by using a chip-compatible detection format. PMID:17951434

  8. Kinetics of phloretin binding to phosphatidylcholine vesicle membranes

    PubMed Central

    1980-01-01

    The submillisecond kinetics for phloretin binding to unilamellar phosphatidylcholine (PC) vesicles was investigated using the temperature-jump technique. Spectrophotometric studies of the equilibrium binding performed at 328 nm demonstrated that phloretin binds to a single set of independent, equivalent sites on the vesicle with a dissociation constant of 8.0 microM and a lipid/site ratio of 4.0. The temperature of the phloretin-vesicle solution was jumped by 4 degrees C within 4 microseconds producing a monoexponential, concentration-dependent relaxation process with time constants in the 30--200-microseconds time range. An analysis of the concentration dependence of relaxation time constants at pH 7.30 and 24 degrees C yielded a binding rate constant of 2.7 X 10(8) M-1 s-1 and an unbinding constant of 2,900 s-1; approximately 66 percent of total binding sites are exposed at the outer vesicle surface. The value of the binding rate constant and three additional observations suggest that the binding kinetics are diffusion limited. The phloretin analogue, naringenin, which has a diffusion coefficient similar to phloretin yet a dissociation constant equal to 24 microM, bound to PC vesicle with the same rate constant as phloretin did. In addition, the phloretin-PC system was studied in buffers made one to six times more viscous than water by addition of sucrose or glycerol to the differ. The equilibrium affinity for phloretin binding to PC vesicles is independent of viscosity, yet the binding rate constant decreases with the expected dependence (kappa binding alpha 1/viscosity) for diffusion-limited processes. Thus, the binding rate constant is not altered by differences in binding affinity, yet depends upon the diffusion coefficient in buffer. Finally, studies of the pH dependence of the binding rate constant showed a dependence (kappa binding alpha [1 + 10pH-pK]) consistent with the diffusion-limited binding of a weak acid. PMID:7391812

  9. Surface structure modification of single crystal graphite after slow, highly charged ion irradiation

    NASA Astrophysics Data System (ADS)

    Alzaher, I.; Akcöltekin, S.; Ban-d'Etat, B.; Manil, B.; Dey, K. R.; Been, T.; Boduch, P.; Rothard, H.; Schleberger, M.; Lebius, H.

    2018-04-01

    Single crystal graphite was irradiated by slow, highly charged ions. The modification of the surface structure was studied by means of Low-Energy Electron Diffraction. The observed damage cross section increases with the potential energy, i.e. the charge state of the incident ion, at a constant kinetic energy. The potential energy is more efficient for the damage production than the kinetic energy by more than a factor of twenty. Comparison with earlier results hints to a strong link between early electron creation and later target atom rearrangement. With increasing ion fluence, the initially large-scale single crystal is first transformed into μ m-sized crystals, before complete amorphisation takes place.

  10. Development of a Surface Plasmon Resonance Assay for the Characterization of Small-Molecule Binding Kinetics and Mechanism of Binding to Kynurenine 3-Monooxygenase.

    PubMed

    Poda, Suresh B; Kobayashi, Masakazu; Nachane, Ruta; Menon, Veena; Gandhi, Adarsh S; Budac, David P; Li, Guiying; Campbell, Brian M; Tagmose, Lena

    2015-10-01

    Kynurenine 3-monooxygenase (KMO), a pivotal enzyme in the kynurenine pathway, was identified as a potential therapeutic target for treating neurodegenerative and psychiatric disorders. In this article, we describe a surface plasmon resonance (SPR) assay that delivers both kinetics and the mechanism of binding (MoB) data, enabling a detailed characterization of KMO inhibitors for the enzyme in real time. SPR assay development included optimization of the protein construct and the buffer conditions. The stability and inhibitor binding activity of the immobilized KMO were significantly improved when the experiments were performed at 10°C using a buffer containing 0.05% n-dodecyl-β-d-maltoside (DDM) as the detergent. The KD values of the known KMO inhibitors (UPF648 and RO61-8048) from the SPR assay were in good accordance with the biochemical LC/MS/MS assay. Also, the SPR assay was able to differentiate the binding kinetics (k(a) and k(d)) of the selected unknown KMO inhibitors. For example, the inhibitors that showed comparable IC50 values in the LC/MS/MS assay displayed differences in their residence time (τ = 1/k(d)) in the SPR assay. To better define the MoB of the inhibitors to KMO, an SPR-based competition assay was developed, which demonstrated that both UPF648 and RO61-8048 bound to the substrate-binding site. These results demonstrate the potential of the SPR assay for characterizing the affinity, the kinetics, and the MoB profiles of the KMO inhibitors.

  11. Rate and extent of protein localization is controlled by peptide-binding domain association kinetics and morphology.

    PubMed

    Mills, Evan; Truong, Kevin

    2009-06-01

    Protein localization is an important regulatory mechanism in many cell signaling pathways such as cytoskeletal organization and genetic regulation. The specific mechanism of protein localization determines the kinetics and morphological constraints of protein translocation, and thus affects the rate and extent of localization. To investigate the affect of localization kinetics and morphology on protein localization, we designed a protein localization system based on Ca(2+)-calmodulin and Src homology 3 domain binding peptides that can translocate between specific localizations in response to a Ca(2+) signal. We used a stochastic biomolecular simulator to predict that such a protein localization system will exhibit slower and less complete translocations when the association kinetics of a binding domain and peptide are reduced. As well, we predicted that increasing the diffusion resistance by manipulating the morphology of the system would similarly impair translocation speed and completeness. We then constructed a network of synthetic fusion proteins and showed that these predictions could be qualitatively confirmed in vitro. This work provides a basis for explaining the different characteristics (rate and extent) of protein transport and localization in cells as a consequence of the kinetics and morphology of the transport mechanism.

  12. Neuronal ensemble for visual working memory via interplay of slow and fast oscillations.

    PubMed

    Mizuhara, Hiroaki; Yamaguchi, Yoko

    2011-05-01

    The current focus of studies on neural entities for memory maintenance is on the interplay between fast neuronal oscillations in the gamma band and slow oscillations in the theta or delta band. The hierarchical coupling of slow and fast oscillations is crucial for the rehearsal of sensory inputs for short-term storage, as well as for binding sensory inputs that are represented in spatially segregated cortical areas. However, no experimental evidence for the binding of spatially segregated information has yet been presented for memory maintenance in humans. In the present study, we actively manipulated memory maintenance performance with an attentional blink procedure during human scalp electroencephalography (EEG) recordings and identified that slow oscillations are enhanced when memory maintenance is successful. These slow oscillations accompanied fast oscillations in the gamma frequency range that appeared at spatially segregated scalp sites. The amplitude of the gamma oscillation at these scalp sites was simultaneously enhanced at an EEG phase of the slow oscillation. Successful memory maintenance appears to be achieved by a rehearsal of sensory inputs together with a coordination of distributed fast oscillations at a preferred timing of the slow oscillations. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  13. Mechanism of Na+ binding to thrombin resolved by ultra-rapid kinetics

    PubMed Central

    Gianni, Stefano; Ivarsson, Ylva; Bah, Alaji; Bush-Pelc, Leslie A.; Di Cera, Enrico

    2007-01-01

    The interaction of Na+ and K+ with proteins is at the basis of numerous processes of biological importance. However, measurement of the kinetic components of the interaction has eluded experimentalists for decades because the rate constants are too fast to resolve with conventional stopped-flow methods. Using a continuous-flow apparatus with a dead time of 50 μs we have been able to resolve the kinetic rate constants and entire mechanism of Na+ binding to thrombin, an interaction that is at the basis of the procoagulant and prothrombotic roles of the enzyme in the blood. PMID:17935858

  14. Reversible binding kinetics of a cytoskeletal protein at the erythrocyte submembrane.

    PubMed Central

    Stout, A. L.; Axelrod, D.

    1994-01-01

    Reversible binding among components of the cellular submembrane cytoskeleton and reversible binding of some of these components with the plasma membrane likely play a role in nonelastic morphological changes and mechanoplastic properties of cells. However, relatively few studies have been devoted to investigating directly the kinetic aspects of the interactions of individual components of the membrane skeleton with the membrane. The experiments described here investigated whether one component of the erythrocyte membrane cytoskeleton, protein 4.1, binds to its sites on the membrane reversibly and if so, whether the different 4.1-binding sites display distinct kinetic behavior. Protein 4.1 is known to stabilize the membrane and to mediate the attachment of spectrin filaments to the membrane. Protein 4.1 previously has been shown to bind to integral membrane proteins band 3, glycophorin C, and to negatively charged phospholipids. To examine the kinetic rates of dissociation of carboxymethyl fluorescein-labeled 4.1 (CF-4.1) to the cytofacial surface of erythrocyte membrane, a special preparation of hemolyzed erythrocyte ghosts was used, in which the ghosts became flattened on a glass surface and exposed their cytofacial surfaces to the solution through a membrane rip in a distinctive characteristic pattern. This preparation was examined by the microscopy technique of total internal reflection/fluorescence recovery after photobleaching (TIR/FRAP). Four different treatments were employed to help identify which membrane binding sites gave rise to the multiplicity of observed kinetic rates. The first treatment, the control, stripped off the native spectrin, actin, 4.1, and ankyrin. About 60% of the CF-4.1 bound to this control binded irreversibly (dissociation time > 20 min), but the remaining approximately 40% binded reversibly with a range of residency times averaging approximately 3 s. The second treatment subjected these stripped membranes to trypsin, which presumably removed most of the band 3. CF-4.1 binded significantly less to these trypsinized membranes and most of the decrease was a loss of the irreversibly binding sites. The third treatment simply preserved the native 4.1 and ankyrin. CF-4.1 binded less to this sample too, and the loss involved both the irreversible and reversible sites. The fourth treatment blocked the gycophorin C sites on the native 4.1-stripped membranes with an antibody. CF-4.1 again binded less to this sample than to a nonimmune serum control, and almost all of the decrease is a loss of irreversible sites. These rest suggest that 1) protein 4.1 binds to membrane or submembrane sites at least in part reversibly ; 2) the most reversible sites are probably not proteinaceous and not glycophorin C, but possibly are phospholipids (especially phosphatidylserine); and 3) TIWRFRAP can successfully examine the fast reversible dynamics of cytoskeletal components binding to biological membranes. Images FIGURE 2 FIGURE 3 FIGURE 4 PMID:7811947

  15. Binding Isotherms and Time Courses Readily from Magnetic Resonance.

    PubMed

    Xu, Jia; Van Doren, Steven R

    2016-08-16

    Evidence is presented that binding isotherms, simple or biphasic, can be extracted directly from noninterpreted, complex 2D NMR spectra using principal component analysis (PCA) to reveal the largest trend(s) across the series. This approach renders peak picking unnecessary for tracking population changes. In 1:1 binding, the first principal component captures the binding isotherm from NMR-detected titrations in fast, slow, and even intermediate and mixed exchange regimes, as illustrated for phospholigand associations with proteins. Although the sigmoidal shifts and line broadening of intermediate exchange distorts binding isotherms constructed conventionally, applying PCA directly to these spectra along with Pareto scaling overcomes the distortion. Applying PCA to time-domain NMR data also yields binding isotherms from titrations in fast or slow exchange. The algorithm readily extracts from magnetic resonance imaging movie time courses such as breathing and heart rate in chest imaging. Similarly, two-step binding processes detected by NMR are easily captured by principal components 1 and 2. PCA obviates the customary focus on specific peaks or regions of images. Applying it directly to a series of complex data will easily delineate binding isotherms, equilibrium shifts, and time courses of reactions or fluctuations.

  16. Epiberberine, a natural protoberberine alkaloid, inhibits urease of Helicobacter pylori and jack bean: Susceptibility and mechanism.

    PubMed

    Tan, Lihua; Li, Cailan; Chen, Hanbin; Mo, Zhizhun; Zhou, Jiangtao; Liu, Yuhong; Ma, Zhilin; Xu, Yuyao; Yang, Xiaobo; Xie, Jianhui; Su, Ziren

    2017-12-15

    In our previous study, Rhizoma Coptidis extract was found to exert more potent inhibitory effect than its major component berberine towards urease from Helicobacter pylori (HPU) and jack bean (JBU). In continuation of our work, the present study was designed to further comparatively investigate the urease inhibitory activities of five major protoberberine alkaloids in Rhizoma Coptidis, namely berberine, palmatine, coptisine, epiberberine, jateorhizine to identify the bioactive constituent, and illuminate the potential mechanism of action. Results indicated that the five protoberberine alkaloids acted as concentration-dependent inactivators of urease with IC 50 values ranging between 3.0 and 5087μM for HPU and 2.3->10,000μM for JBU, respectively. Notably, epiberberine (EB) was found to be the most potent inhibitor against both ureases with IC 50 values of 3.0±0.01μM for HPU and 2.3±0.01μM for JBU, which was more effective than the standard urease inhibitor, acetohydroxamic acid (83±0.01μM for HPU and 22±0.01μM for JBU, respectively). Further kinetic analysis revealed that the type of EB inhibition against HPU was slow-binding and uncompetitive, with K i of 10.6±0.01μM, while slow-binding and competitive against JBU with K i of 4.6±0.01μM. Addition of thiol reagents, such as l-cysteine, glutathione and dithiothreitol, significantly abolished the inhibition, while Ni 2+ competitive inhibitors, boric acid and sodium fluoride, synergetically inhibited urease with EB, indicating the obligatory role of the active site sulfhydryl group for the inhibition. In addition, binding of EB with the urease proved to be reversible, as about 65% and 90% enzymatic activity of HPU and JBU, respectively, could be restored by dithiothreitol application. These findings highlighted the potential role of Rhizoma Coptidis protoberberine alkaloids, especially EB, as a lead urease inhibitor in the treatment of diseases associated with ureolytic bacteria. Thus, EB had good potential for further development into a promising therapeutic approach for the treatment of urease-related diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Catalytic site interactions in yeast OMP synthase.

    PubMed

    Hansen, Michael Riis; Barr, Eric W; Jensen, Kaj Frank; Willemoës, Martin; Grubmeyer, Charles; Winther, Jakob R

    2014-01-15

    The enigmatic kinetics, half-of-the-sites binding, and structural asymmetry of the homodimeric microbial OMP synthases (orotate phosphoribosyltransferase, EC 2.4.2.10) have been proposed to result from an alternating site mechanism in these domain-swapped enzymes [R.W. McClard et al., Biochemistry 45 (2006) 5330-5342]. This behavior was investigated in the yeast enzyme by mutations in the conserved catalytic loop and 5-phosphoribosyl-1-diphosphate (PRPP) binding motif. Although the reaction is mechanistically sequential, the wild-type (WT) enzyme shows parallel lines in double reciprocal initial velocity plots. Replacement of Lys106, the postulated intersubunit communication device, produced intersecting lines in kinetic plots with a 2-fold reduction of kcat. Loop (R105G K109S H111G) and PRPP-binding motif (D131N D132N) mutant proteins, each without detectable enzymatic activity and ablated ability to bind PRPP, complemented to produce a heterodimer with a single fully functional active site showing intersecting initial velocity plots. Equilibrium binding of PRPP and orotidine 5'-monophosphate showed a single class of two binding sites per dimer in WT and K106S enzymes. Evidence here shows that the enzyme does not follow half-of-the-sites cooperativity; that interplay between catalytic sites is not an essential feature of the catalytic mechanism; and that parallel lines in steady-state kinetics probably arise from tight substrate binding. Copyright © 2013. Published by Elsevier Inc.

  18. Utilizing time-lapse micro-CT-correlated bisphosphonate binding kinetics and soft tissue-derived input functions to differentiate site-specific changes in bone metabolism in vivo.

    PubMed

    Tower, R J; Campbell, G M; Müller, M; Glüer, C C; Tiwari, S

    2015-05-01

    The turnover of bone is a tightly regulated process between bone formation and resorption to ensure skeletal homeostasis. This process differs between bone types, with trabecular bone often associated with higher turnover than cortical bone. Analyses of bone by micro-computed tomography (micro-CT) reveal changes in structure and mineral content, but are limited in the study of metabolic activity at a single time point, while analyses of serum markers can reveal changes in bone metabolism, but cannot delineate the origin of any aberrant findings. To obtain a site-specific assessment of bone metabolic status, bisphosphonate binding kinetics were utilized. Using a fluorescently-labeled bisphosphonate, we show that early binding kinetics monitored in vivo using fluorescent molecular tomography (FMT) can monitor changes in bone metabolism in response to bone loss, stimulated by ovariectomy (OVX), or bone gain, resulting from treatment with the anabolic bone agent parathyroid hormone (PTH), and is capable of distinguishing different, metabolically distinct skeletal sites. Using time-lapse micro-CT, longitudinal bone turnover was quantified. The spine showed a significantly greater percent resorbing volume and surface in response to OVX, while mice treated with PTH showed significantly greater resorbing volume per bone surface in the spine and significantly greater forming surfaces in the knee. Correlation studies between binding kinetics and micro-CT suggest that forming surfaces, as assessed by time-lapse micro-CT, are preferentially reflected in the rate constant values while forming and resorbing bone volumes primarily affect plateau values. Additionally, we developed a blood pool correction method which now allows for quantitative multi-compartment analyses to be conducted using FMT. These results further expand our understanding of bisphosphonate binding and the use of bisphosphonate binding kinetics as a tool to monitor site-specific changes in bone metabolism in vivo. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Kinetic, Thermodynamic, and Structural Insight into the Mechanism of Phosphopantetheine Adenylyltransferase from Mycobacterium tuberculosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wubben, Thomas J.; Mesecar, Andrew D.; UIC)

    Phosphopantetheine adenylyltransferase (PPAT) catalyzes the penultimate step in the coenzyme A (CoA) biosynthetic pathway, reversibly transferring an adenylyl group from ATP to 4'-phosphopantetheine (PhP) to form dephosphocoenzyme A. This reaction sits at the branch point between the de novo pathway and the salvage pathway, and has been shown to be a rate-limiting step in the biosynthesis of CoA. Importantly, bacterial and mammalian PPATs share little sequence homology, making the enzyme a potential target for antibiotic development. A series of steady-state kinetic, product inhibition, and direct binding studies with Mycobacterium tuberculosis PPAT (MtPPAT) was conducted and suggests that the enzyme utilizesmore » a nonrapid-equilibrium random bi-bi mechanism. The kinetic response of MtPPAT to the binding of ATP was observed to be sigmoidal under fixed PhP concentrations, but substrate inhibition was observed at high PhP concentrations under subsaturating ATP concentrations, suggesting a preferred pathway to ternary complex formation. Negative cooperativity in the kinetic response of MtPPAT to PhP binding was observed under certain conditions and confirmed thermodynamically by isothermal titration calorimetry, suggesting the formation of an asymmetric quaternary structure during sequential ligation of substrates. Asymmetry in binding was also observed in isothermal titration calorimetry experiments with dephosphocoenzyme A and CoA. X-ray structures of MtPPAT in complex with PhP and the nonhydrolyzable ATP analogue adenosine-5'-[({alpha},{beta})-methyleno]triphosphate were solved to 1.57 {angstrom} and 2.68 {angstrom}, respectively. These crystal structures reveal small conformational changes in enzyme structure upon ligand binding, which may play a role in the nonrapid-equilibrium mechanism. We suggest that the proposed kinetic mechanism and asymmetric character in MtPPAT ligand binding may provide a means of reaction and pathway regulation in addition to that of the previously determined CoA feedback.« less

  20. Measurement of nucleotide exchange rate constants in single rabbit soleus myofibrils during shortening and lengthening using a fluorescent ATP analog.

    PubMed Central

    Shirakawa, I; Chaen, S; Bagshaw, C R; Sugi, H

    2000-01-01

    The kinetics of displacement of a fluorescent nucleotide, 2'(3')-O-[N[2-[[Cy3]amido]ethyl]carbamoyl]-adenosine 5'-triphosphate (Cy3-EDA-ATP), bound to rabbit soleus muscle myofibrils were studied using flash photolysis of caged ATP. Use of myofibrils from this slow twitch muscle allowed better resolution of the kinetics of nucleotide exchange than previous studies with psoas muscle myofibrils (, Biophys. J. 73:2033-2042). Soleus myofibrils in the presence of Cy3-EDA-nucleotides (Cy3-EDA-ATP or Cy3-EDA-ADP) showed selective fluorescence staining of the A-band. The K(m) for Cy3-EDA-ATP and the K(d) for Cy3-EDA-ADP binding to the myofibril A-band were 1.9 microM and 3.8 microM, respectively, indicating stronger binding of nucleotide to soleus cross-bridges compared to psoas cross-bridges (2.6 microM and 50 microM, respectively). After flash photolysis of caged ATP, the A-band fluorescence of the myofibril in the Cy3-EDA-ATP solution under isometric conditions decayed exponentially with a rate constant of 0.045 +/- 0.007 s(-1) (n = 32) at 10 degrees C, which was about seven times slower than that for psoas myofibrils. When a myofibril was allowed to shorten with a constant velocity, the nucleotide displacement rate constant increased from 0.066 s(-1) (isometric) to 0.14 s(-1) at 20 degrees C with increasing shortening velocity up to 0.1 myofibril length/s (V(max), the shortening velocity under no load was approximately 0. 2 myofibril lengths/s). The rate constant was not significantly affected by an isovelocity stretch of up to 0.1 myofibril lengths/s. These results suggest that the cross-bridge kinetics are not significantly affected at higher strain during lengthening but depend on the lower strain during shortening. These data also indicate that the interaction distance between a cross-bridge and the actin filament is at least 16 nm for a single cycle of the ATPase. PMID:10653804

  1. Steady-state kinetics of substrate binding and iron release in tomato ACC oxidase.

    PubMed

    Thrower, J S; Blalock, R; Klinman, J P

    2001-08-14

    1-Aminocyclopropane-1-carboxylate oxidase (ACC oxidase) catalyzes the last step in the biosynthetic pathway of the plant hormone, ethylene. This unusual reaction results in the oxidative ring cleavage of 1-aminocyclopropane carboxylate (ACC) into ethylene, cyanide, and CO2 and requires ferrous ion, ascorbate, and molecular oxygen for catalysis. A new purification procedure and assay method have been developed for tomato ACC oxidase that result in greatly increased enzymatic activity. This method allowed us to determine the rate of iron release from the enzyme and the effect of the activator, CO2, on this rate. Initial velocity studies support an ordered kinetic mechanism where ACC binds first followed by O2; ascorbate can bind after O2 or possibly before ACC. This kinetic mechanism differs from one recently proposed for the ACC oxidase from avocado.

  2. Modeling the dynamics and kinetics of HIV-1 Gag during viral assembly.

    PubMed

    Tomasini, Michael D; Johnson, Daniel S; Mincer, Joshua S; Simon, Sanford M

    2018-01-01

    We report a computational model for the assembly of HIV-1 Gag into immature viral particles at the plasma membrane. To reproduce experimental structural and kinetic properties of assembly, a process occurring on the order of minutes, a coarse-grained representation consisting of a single particle per Gag molecule is developed. The model uses information relating the functional interfaces implicated in Gag assembly, results from cryo electron-tomography, and biophysical measurements from fluorescence microscopy, such as the dynamics of Gag assembly at single virions. These experimental constraints eliminated many classes of potential interactions, and narrowed the model to a single interaction scheme with two non-equivalent interfaces acting to form Gags into a hexamer, and a third interface acting to link hexamers together. This model was able to form into a hexameric structure with correct lattice spacing and reproduced biologically relevant growth rates. We explored the effect of genomic RNA seeding punctum growth, finding that RNA may be a factor in locally concentrating Gags to initiate assembly. The simulation results infer that completion of assembly cannot be governed simply by Gag binding kinetics. However the addition of membrane curvature suggests that budding of the virion from the plasma membrane could factor into slowing incorporation of Gag at an assembly site resulting in virions of the same size and number of Gag molecules independent of Gag concentration or the time taken to complete assembly. To corroborate the results of our simulation model, we developed an analytic model for Gag assembly finding good agreement with the simulation results.

  3. Deactivation kinetics of acid-sensing ion channel 1a are strongly pH-sensitive.

    PubMed

    MacLean, David M; Jayaraman, Vasanthi

    2017-03-21

    Acid-sensing ion channels (ASICs) are trimeric cation-selective ion channels activated by protons in the physiological range. Recent reports have revealed that postsynaptically localized ASICs contribute to the excitatory postsynaptic current by responding to the transient acidification of the synaptic cleft that accompanies neurotransmission. In response to such brief acidic transients, both recombinant and native ASICs show extremely rapid deactivation in outside-out patches when jumping from a pH 5 stimulus to a single resting pH of 8. Given that the resting pH of the synaptic cleft is highly dynamic and depends on recent synaptic activity, we explored the kinetics of ASIC1a and 1a/2a heteromers to such brief pH transients over a wider [H + ] range to approximate neuronal conditions better. Surprisingly, the deactivation of ASICs was steeply dependent on the pH, spanning nearly three orders of magnitude from extremely fast (<1 ms) at pH 8 to very slow (>300 ms) at pH 7. This study provides an example of a ligand-gated ion channel whose deactivation is sensitive to agonist concentrations that do not directly activate the receptor. Kinetic simulations and further mutagenesis provide evidence that ASICs show such steeply agonist-dependent deactivation because of strong cooperativity in proton binding. This capacity to signal across such a large synaptically relevant bandwidth enhances the response to small-amplitude acidifications likely to occur at the cleft and may provide ASICs with the ability to shape activity in response to the recent history of the synapse.

  4. Modeling the dynamics and kinetics of HIV-1 Gag during viral assembly

    PubMed Central

    Tomasini, Michael D.; Johnson, Daniel S.; Mincer, Joshua S.

    2018-01-01

    We report a computational model for the assembly of HIV-1 Gag into immature viral particles at the plasma membrane. To reproduce experimental structural and kinetic properties of assembly, a process occurring on the order of minutes, a coarse-grained representation consisting of a single particle per Gag molecule is developed. The model uses information relating the functional interfaces implicated in Gag assembly, results from cryo electron-tomography, and biophysical measurements from fluorescence microscopy, such as the dynamics of Gag assembly at single virions. These experimental constraints eliminated many classes of potential interactions, and narrowed the model to a single interaction scheme with two non-equivalent interfaces acting to form Gags into a hexamer, and a third interface acting to link hexamers together. This model was able to form into a hexameric structure with correct lattice spacing and reproduced biologically relevant growth rates. We explored the effect of genomic RNA seeding punctum growth, finding that RNA may be a factor in locally concentrating Gags to initiate assembly. The simulation results infer that completion of assembly cannot be governed simply by Gag binding kinetics. However the addition of membrane curvature suggests that budding of the virion from the plasma membrane could factor into slowing incorporation of Gag at an assembly site resulting in virions of the same size and number of Gag molecules independent of Gag concentration or the time taken to complete assembly. To corroborate the results of our simulation model, we developed an analytic model for Gag assembly finding good agreement with the simulation results. PMID:29677208

  5. Exocytosis from chromaffin cells: hydrostatic pressure slows vesicle fusion

    PubMed Central

    Stühmer, Walter

    2015-01-01

    Pressure affects reaction kinetics because chemical transitions involve changes in volume, and therefore pressure is a standard thermodynamic parameter to measure these volume changes. Many organisms live in environments at external pressures other than one atmosphere (0.1 MPa). Marine animals have adapted to live at depths of over 7000 m (at pressures over 70 MPa), and microorganisms living in trenches at over 110 MPa have been retrieved. Here, kinetic changes in secretion from chromaffin cells, measured as capacitance changes using the patch-clamp technique at pressures of up to 20 MPa are presented. It is known that these high pressures drastically slow down physiological functions. High hydrostatic pressure also affects the kinetics of ion channel gating and the amount of current carried by them, and it drastically slows down synaptic transmission. The results presented here indicate a similar change in volume (activation volume) of 390 ± 57 Å3 for large dense-core vesicles undergoing fusion in chromaffin cells and for degranulation of mast cells. It is significantly larger than activation volumes of voltage-gated ion channels in chromaffin cells. This information will be useful in finding possible protein conformational changes during the reactions involved in vesicle fusion and in testing possible molecular dynamic models of secretory processes. PMID:26009771

  6. Optical tweezers reveal how proteins alter replication

    NASA Astrophysics Data System (ADS)

    Chaurasiya, Kathy

    Single molecule force spectroscopy is a powerful method that explores the DNA interaction properties of proteins involved in a wide range of fundamental biological processes such as DNA replication, transcription, and repair. We use optical tweezers to capture and stretch a single DNA molecule in the presence of proteins that bind DNA and alter its mechanical properties. We quantitatively characterize the DNA binding mechanisms of proteins in order to provide a detailed understanding of their function. In this work, we focus on proteins involved in replication of Escherichia coli (E. coli ), endogenous eukaryotic retrotransposons Ty3 and LINE-1, and human immunodeficiency virus (HIV). DNA polymerases replicate the entire genome of the cell, and bind both double-stranded DNA (dsDNA) and single-stranded DNA (ssDNA) during DNA replication. The replicative DNA polymerase in the widely-studied model system E. coli is the DNA polymerase III subunit alpha (DNA pol III alpha). We use optical tweezers to determine that UmuD, a protein that regulates bacterial mutagenesis through its interactions with DNA polymerases, specifically disrupts alpha binding to ssDNA. This suggests that UmuD removes alpha from its ssDNA template to allow DNA repair proteins access to the damaged DNA, and to facilitate exchange of the replicative polymerase for an error-prone translesion synthesis (TLS) polymerase that inserts nucleotides opposite the lesions, so that bacterial DNA replication may proceed. This work demonstrates a biophysical mechanism by which E. coli cells tolerate DNA damage. Retroviruses and retrotransposons reproduce by copying their RNA genome into the nuclear DNA of their eukaryotic hosts. Retroelements encode proteins called nucleic acid chaperones, which rearrange nucleic acid secondary structure and are therefore required for successful replication. The chaperone activity of these proteins requires strong binding affinity for both single- and double-stranded nucleic acids. We use single molecule DNA stretching to show that the nucleocapsid protein (NC) of the yeast retrotransposon Ty3, which is likely to be an ancestor of HIV NC, has optimal nucleic acid chaperone activity with only a single zinc finger. We also show that the chaperone activity of the ORF1 protein is responsible for successful replication of the mouse LINE-1 retrotransposon. LINE-1 is also 17% of the human genome, where it generates insertion mutations and alters gene expression. Retrotransposons such as LINE-1 and Ty3 are likely to be ancestors of retroviruses such as HIV. Human APOBEC3G (A3G) inhibits HIV-1 replication via cytidine deamination of the viral ssDNA genome, as well as via a distinct deamination-independent mechanism. Efficient deamination requires rapid on-off binding kinetics, but a slow dissociation rate is required for the proposed deaminase-independent mechanism. We resolve this apparent contradiction with a new quantitative single molecule method, which shows that A3G initially binds ssDNA with fast on-off rates and subsequently converts to a slow binding mode. This suggests that oligomerization transforms A3G from a fast enzyme to a slow binding protein, which is the biophysical mechanism that allows A3G to inhibit HIV replication. A complete understanding of the mechanism of A3G-mediated antiviral activity is required to design drugs that disrupt the viral response to A3G, enhance A3G packaging inside the viral core, and other potential strategies for long-term treatment of HIV infection. We use single molecule biophysics to explore the function of proteins involved in bacterial DNA replication, endogenous retrotransposition of retroelements in eukaryotic hosts such yeast and mice, and HIV replication in human cells. Our quantitative results provide insight into protein function in a range of complex biological systems and have wide-ranging implications for human health.

  7. Binding kinetics of five drugs to beta2-adrenoceptor using peak profiling method and nonlinear chromatography.

    PubMed

    Liang, Yuan; Wang, Jing; Fei, Fuhuan; Sun, Huanmei; Liu, Ting; Li, Qian; Zhao, Xinfeng; Zheng, Xiaohui

    2018-02-23

    Investigations of drug-protein interactions have advanced our knowledge of ways to design more rational drugs. In addition to extensive thermodynamic studies, ongoing works are needed to enhance the exploration of drug-protein binding kinetics. In this work, the beta2-adrenoceptor (β 2 -AR) was immobilized on N, N'-carbonyldiimidazole activated amino polystyrene microspheres to prepare an affinity column (4.6 mm × 5.0 cm, 8 μm). The β 2 -AR column was utilized to determine the binding kinetics of five drugs to the receptor. Introducing peak profiling method into this receptor chromatographic analysis, we determined the dissociation rate constants (k d ) of salbutamol, terbutaline, methoxyphenamine, isoprenaline hydrochloride and ephedrine hydrochloride to β 2 -AR to be 15 (±1), 22 (±1), 3.3 (±0.2), 2.3 (±0.2) and 2.1 (±0.1) s -1 , respectively. The employment of nonlinear chromatography (NLC) in this case exhibited the same rank order of k d values for the five drugs bound to β 2 -AR. We confirmed that both the peak profiling method and NLC were capable of routine measurement of receptor-drug binding kinetics. Compared with the peak profiling method, NLC was advantageous in the simultaneous assessment of the kinetic and apparent thermodynamic parameters. It will become a powerful method for high throughput drug-receptor interaction analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Solution structure, mutagenesis, and NH exchange studies of the MutT enzyme-Mg 2+-8-oxo-dGMP complex

    NASA Astrophysics Data System (ADS)

    Massiah, M. A.; Saraswat, V.; Azurmendi, H. F.; Mildvan, A. S.

    2004-08-01

    The MutT pyrophosphohydrolase from E. coli (129 residues) catalyzes the hydrolysis of nucleoside triphosphates (NTP), including 8-oxo-dGTP, by substitution at Pβ, to yield NMP and pyrophosphate. The product, 8-oxo-dGMP is an unusually tight binding, slowly exchanging inhibitor with a KD=52 nM, (Δ G°=-9.8 kcal/mol) which is 6.1 kcal/mol tighter than the binding of dGMP (Δ G°=-3.7 kcal/mol). The higher affinity for 8-oxo-dGMP results from a more favorable Δ Hbinding (-32 kcal/mol) despite an unfavorable - TΔ S° binding (+22 kcal/mol). The solution structure of the MutT-Mg 2+-8-oxo-dGMP complex shows a narrowed, hydrophobic nucleotide-binding cleft with Asn-119 and Arg-78 among the few polar residues. The N119A, N119D, R78K and R78A single mutations, and the R78K+N119A double mutant all showed largely intact active sites, on the basis of small changes in the kinetic parameters of dGTP hydrolysis and in 1H- 15N HSQC spectra. However, the N119A mutation profoundly weakened the active site binding of 8-oxo-dGMP by 4.3 kcal/mol (1650-fold). The N119D mutation also weakened 8-oxo-dGMP binding but only by 2.1 kcal/mol (37-fold), suggesting that Asn-119 functioned both as a hydrogen bond donor to C8O, and a hydrogen bond acceptor from N7H of 8-oxo-dGMP, while aspartate at position -119 functioned as an acceptor of a single hydrogen bond. Much smaller weakening effects (0.3-0.4 kcal/mol) on the binding of dGMP and dAMP were found, indicating specific hydrogen bonding of Asn-119 to 8-oxo-dGMP. While formation of the wild type MutT-Mg 2+-8-oxo-dGMP complex slowed the backbone NH exchange rates of 45 residues distributed throughout the protein, the same complex of the N119A mutant slowed the exchange rates of only 11 residues at or near the active site, indicating an increase in conformational flexibility of the N119A mutant. The R78K and R78A mutations weakened the binding of 8-oxo-dGMP by 1.7 and 1.1 kcal/mol, respectively, indicating a lesser role of Arg-78 than of Asn-119 in the selective binding of 8-oxo-dGMP, likely donating a single hydrogen bond to its C6O. The R78K+N119A double mutant weakened the binding of 8-oxo-dGMP ( KIslope=3.1 mM) by 6.5±0.2 kcal/mol which overlaps, within error with the sum of the effects of the two single mutants (6.0±0.3 kcal/mol). Such additive effects of the two single mutants in the double mutant are most simply explained by the independent functioning of Asn-119 and Arg-78 in the binding of 8-oxo-dGMP. Independent functioning of these two residues in nucleotide binding is consistent with their locations in the MutT-Mg 2+-8-oxo-dGMP complex, on opposite sides of the active site cleft, with a distance of 8.4±0.5 Å between their side chain nitrogens.

  9. An Improved Method for Measuring Chromatin-binding Dynamics Using Time-dependent Formaldehyde Crosslinking

    PubMed Central

    Hoffman, Elizabeth A.; Zaidi, Hussain; Shetty, Savera J.; Bekiranov, Stefan; Auble, David T.

    2018-01-01

    Formaldehyde crosslinking is widely used in combination with chromatin immunoprecipitation (ChIP) to measure the locations along DNA and relative levels of transcription factor (TF)-DNA interactions in vivo. However, the measurements that are typically made do not provide unambiguous information about the dynamic properties of these interactions. We have developed a method to estimate binding kinetic parameters from time-dependent formaldehyde crosslinking data, called crosslinking kinetics (CLK) analysis. Cultures of yeast cells are crosslinked with formaldehyde for various periods of time, yielding the relative ChIP signal at particular loci. We fit the data using the mass-action CLK model to extract kinetic parameters of the TF-chromatin interaction, including the on- and off-rates and crosslinking rate. From the on- and off-rate we obtain the occupancy and residence time. The following protocol is the second iteration of this method, CLKv2, updated with improved crosslinking and quenching conditions, more information about crosslinking rates, and systematic procedures for modeling the observed kinetic regimes. CLKv2 analysis has been applied to investigate the binding behavior of the TATA-binding protein (TBP), and a selected subset of other TFs. The protocol was developed using yeast cells, but may be applicable to cells from other organisms as well. PMID:29682595

  10. Studies on the fate of flocoumafen in the Japanese quail (Coturnix coturnix japonica).

    PubMed

    Huckle, K R; Warburton, P A; Forbes, S; Logan, C J

    1989-01-01

    1. 14C-Flocoumafen, administered to Japanese quail as a single oral or i.p. dose, was rapidly and extensively eliminated in excreta; most was eliminated within 24 h. Extensive metabolism of the rodenticide was seen, with at least 8 metabolites detected; unchanged flocoumafen comprised 9% dose. The elimination kinetics and metabolic profiles were qualitatively similar after oral and i.p. dosing. 2. The major metabolites (60% dose) were labile to beta-glucuronidase, liberating aglycones with identical chromatographic mobilities to those of the unchanged flocoumafen isomers. 3. Radioactivity was retained mostly in the liver; largely as unchanged flocoumafen associated with the mitochondrial and microsomal fractions. Elimination of radioactivity from most tissues was biphasic with an initially rapid depletion (5 days) followed by a slow terminal elimination phase. The elimination half life from liver was greater than 100 days. 4. Livers of quail receiving extended dietary exposure to flocoumafen at 5, 15 and 50 ppm had concentrations of flocoumafen (1.0 nmol/g) that were independent of dose, indicating a capacity-limited binding site. These hepatic concentrations were similar to those after a single oral dose and were also similar to those in rats. The data indicate the presence in quail liver of a saturable high affinity flocoumafin binding site with similar characteristics and capacity to that in the rat. 5. The selective toxicity of flocoumafen to rats (highly toxic) and quail (moderately toxic) appears to arise from differences in metabolism rather than from anticoagulant binding in the liver. When hepatic binding sites of rats are saturated anticoagulant action becomes lethal, whereas quail are able to survive and extensively metabolize the compound.

  11. Modelling the delay between pharmacokinetics and EEG effects of morphine in rats: binding kinetic versus effect compartment models.

    PubMed

    de Witte, Wilhelmus E A; Rottschäfer, Vivi; Danhof, Meindert; van der Graaf, Piet H; Peletier, Lambertus A; de Lange, Elizabeth C M

    2018-05-18

    Drug-target binding kinetics (as determined by association and dissociation rate constants, k on and k off ) can be an important determinant of the kinetics of drug action. However, the effect compartment model is used most frequently instead of a target binding model to describe hysteresis. Here we investigate when the drug-target binding model should be used in lieu of the effect compartment model. The utility of the effect compartment (EC), the target binding kinetics (TB) and the combined effect compartment-target binding kinetics (EC-TB) model were tested on either plasma (EC PL , TB PL and EC-TB PL ) or brain extracellular fluid (ECF) (EC ECF , TB ECF and EC-TB ECF ) morphine concentrations and EEG amplitude in rats. It was also analyzed when a significant shift in the time to maximal target occupancy (Tmax TO ) with increasing dose, the discriminating feature between the TB and EC model, occurs in the TB model. All TB models assumed a linear relationship between target occupancy and drug effect on the EEG amplitude. All three model types performed similarly in describing the morphine pharmacodynamics data, although the EC model provided the best statistical result. The analysis of the shift in Tmax TO (∆Tmax TO ) as a result of increasing dose revealed that ∆Tmax TO is decreasing towards zero if the k off is much smaller than the elimination rate constant or if the target concentration is larger than the initial morphine concentration. The results for the morphine PKPD modelling and the analysis of ∆Tmax TO indicate that the EC and TB models do not necessarily lead to different drug effect versus time curves for different doses if a delay between drug concentrations and drug effect (hysteresis) is described. Drawing mechanistic conclusions from successfully fitting one of these two models should therefore be avoided. Since the TB model can be informed by in vitro measurements of k on and k off , a target binding model should be considered more often for mechanistic modelling purposes.

  12. Microbiology neutralization of zearalenone using Lactococcus lactis and Bifidobacterium sp.

    PubMed

    Król, A; Pomastowski, P; Rafińska, K; Railean-Plugaru, V; Walczak, J; Buszewski, B

    2018-01-01

    The aim of the study was to neutralize zearalenone by lactic acid bacteria (LAB) such as Lactococcus lactis and Bifidobacterium sp. and investigate the mechanism of zearalenone (ZEA) binding. Neutralization of ZEA by LAB was confirmed by identification of binding kinetics and spectroscopic studies such as Fourier transform infrared spectroscopy (FT-IR) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The obtained results showed that the kinetic process of zearalenone binding to L. lactis is not homogeneous but is expressed with an initial rapid stage with about 90% of ZEA biosorption and with a much slower second step. In case of Bifidobacterium sp., the neutralization process is homogeneous; the main stage can be described with about 88% of ZEA biosorption. MALDI-TOF-MS measurements and FTIR analysis confirmed the uptake of zearalenone molecules by bacterial species. Moreover, the assessment of dead and live lactic acid bacteria cells after zearalenone treatment was performed using fluorescence microscopy. Graphical abstract Microbiology neutralization of zearalenone using Lactococcus lactis and Bifidobacterium sp. was confirmed by identification of binding kinetics and spectroscopic studies such as FT-IR spectroscopy and MALDI-TOF-MS spectrometry. The mechanism of ZEA binding was also investigated.

  13. The diffusion of a Ga atom on GaAs(001)β2(2 × 4): Local superbasin kinetic Monte Carlo

    NASA Astrophysics Data System (ADS)

    Lin, Yangzheng; Fichthorn, Kristen A.

    2017-10-01

    We use first-principles density-functional theory to characterize the binding sites and diffusion mechanisms for a Ga adatom on the GaAs(001)β 2(2 × 4) surface. Diffusion in this system is a complex process involving eleven unique binding sites and sixteen different hops between neighboring binding sites. Among the binding sites, we can identify four different superbasins such that the motion between binding sites within a superbasin is much faster than hops exiting the superbasin. To describe diffusion, we use a recently developed local superbasin kinetic Monte Carlo (LSKMC) method, which accelerates a conventional kinetic Monte Carlo (KMC) simulation by describing the superbasins as absorbing Markov chains. We find that LSKMC is up to 4300 times faster than KMC for the conditions probed in this study. We characterize the distribution of exit times from the superbasins and find that these are sometimes, but not always, exponential and we characterize the conditions under which the superbasin exit-time distribution should be exponential. We demonstrate that LSKMC simulations assuming an exponential superbasin exit-time distribution yield the same diffusion coefficients as conventional KMC.

  14. Role of Desolvation in Thermodynamics and Kinetics of Ligand Binding to a Kinase

    PubMed Central

    2015-01-01

    Computer simulations are used to determine the free energy landscape for the binding of the anticancer drug Dasatinib to its src kinase receptor and show that before settling into a free energy basin the ligand must surmount a free energy barrier. An analysis based on using both the ligand-pocket separation and the pocket-water occupancy as reaction coordinates shows that the free energy barrier is a result of the free energy cost for almost complete desolvation of the binding pocket. The simulations further show that the barrier is not a result of the reorganization free energy of the binding pocket. Although a continuum solvent model gives the location of free energy minima, it is not able to reproduce the intermediate free energy barrier. Finally, it is shown that a kinetic model for the on rate constant in which the ligand diffuses up to a doorway state and then surmounts the desolvation free energy barrier is consistent with published microsecond time-scale simulations of the ligand binding kinetics for this system [Shaw, D. E. et al. J. Am. Chem. Soc.2011, 133, 9181−918321545110]. PMID:25516727

  15. Chloroperoxidase-catalyzed oxidation of 4,6-dimethyldibenzothiophene as dimer complexes: evidence for kinetic cooperativity.

    PubMed

    Torres, Eduardo; Aburto, Jorge

    2005-05-15

    A sigmoidal kinetic behavior of chloroperoxidase for the oxidation of 4,6-dimethyldibenzothiophene (4,6-DMDBT) in water-miscible organic solvent is for the first time reported. Kinetics of 4,6-DMDBT oxidation showed a cooperative profile probably due to the capacity of chloroperoxidase to recognize a substrate dimer (pi-pi dimer) in its active site. Experimental evidence is given for dimer formation and its presence in the active site of chloroperoxidase. The kinetic data were adjusted for a binding site able to interact with either monomer or dimer substrates, producing a cooperative model describing a one-site binding of two related species. Determination of kinetics constants by iterative calculations of possible oxidation paths of 4,6-DMDBT suggests that kinetics oxidation of dimer substrate is preferred when compared to monomer oxidation. Steady-state fluorometry of substrate in the absence and presence of chloroperoxidase, described by the spectral center of mass, supports this last conclusion.

  16. An Active Learning Mammalian Skeletal Muscle Lab Demonstrating Contractile and Kinetic Properties of Fast- and Slow-Twitch Muscle

    ERIC Educational Resources Information Center

    Head, S. I.; Arber, M. B.

    2013-01-01

    The fact that humans possess fast and slow-twitch muscle in the ratio of approximately 50% has profound implications for designing exercise training strategies for power and endurance activities. With the growth of exercise and sport science courses, we have seen the need to develop an undergraduate student laboratory that demonstrates the basic…

  17. SPM observation of nano-dots induced by slow highly charged ions

    NASA Astrophysics Data System (ADS)

    Nakamura, Nobuyuki; Terada, Masashi; Nakai, Yoichi; Kanai, Yasuyuki; Ohtani, Shunsuke; Komaki, Ken-ichiro; Yamazaki, Yasunori

    2005-05-01

    We have observed nano-dots on a highly oriented pyrolytic graphite (HOPG) surface produced by highly charged ion impacts with a scanning probe microscope. In order to clarify the role of potential and kinetic energies in surface modification, we have measured the kinetic energy and incident ion charge dependences of the dot size. The results showed that the potential energy or the incident ion charge has strong influence on the surface modification rather than the kinetic energy.

  18. Muscle glycogen reduction in man: relationship between surface EMG activity and oxygen uptake kinetics during heavy exercise.

    PubMed

    Osborne, Mark A; Schneider, Donald A

    2006-01-01

    The purpose of this study was to determine whether muscle glycogen reduction prior to exercise would alter muscle fibre recruitment pattern and change either on-transient O2 uptake (VO2) kinetics or the VO2 slow component. Eight recreational cyclists (VO2peak, 55.6 +/- 1.3 ml kg (-1) min(-1)) were studied during 8 min of heavy constant-load cycling performed under control conditions (CON) and under conditions of reduced type I muscle glycogen content (GR). VO2 was measured breath-by-breath for the determination of VO2 kinetics using a double-exponential model with independent time delays. VO2 was higher in the GR trial compared to the CON trial as a result of augmented phase I and II amplitudes, with no difference between trials in the phase II time constant or the magnitude of the slow component. The mean power frequency (MPF) of electromyography activity for the vastus medialis increased over time during both trials, with a greater rate of increase observed in the GR trial compared to the CON trial. The results suggest that the recruitment of additional type II motor units contributed to the slow component in both trials. An increase in fat metabolism and augmented type II motor unit recruitment contributed to the higher VO2 in the GR trial. However, the greater rate of increase in the recruitment of type II motor units in the GR trial may not have been of sufficient magnitude to further elevate the slow component when VO2 was already high and approaching VO2peak .

  19. Nanomedicines for Inflammatory Arthritis: Head-To-Head Comparison of Glucocorticoid-Containing Polymers, Micelles and Liposomes

    PubMed Central

    Crielaard, Bart J.; Dusad, Anand; Lele, Subodh M.; Rijcken, Cristianne J. F.; Metselaar, Josbert M; Kostková, Hana; Etrych, Tomáš; Ulbrich, Karel; Kiessling, Fabian; Mikuls, Ted R.; Hennink, Wim E.; Storm, Gert; Lammers, Twan; Wang, Dong

    2014-01-01

    As an emerging research direction, nanomedicine has been increasingly utilized to treat inflammatory diseases. In this head-to-head comparison study, four established nanomedicine formulations of dexamethasone, including liposomes (L-Dex), core-crosslinked micelles (M-Dex), slow releasing polymeric prodrugs (P-Dex-slow) and fast releasing polymeric prodrugs (P-Dex-fast), were evaluated in an adjuvant-induced arthritis rat model with an equivalent dose treatment design. It was found that after a single i.v. injection, the formulations with the slower drug release kinetics (i.e. M-Dex and P-Dex-slow) maintained longer duration of therapeutic activity than those with relatively faster drug release kinetics, resulting in better joint protection. This finding will be instructional in the future development and optimization of nanomedicines for the clinical management of rheumatoid arthritis. The outcome of this study also illustrates the value of such head-to-head comparison studies in translational nanomedicine research. PMID:24341611

  20. Non-equilibrium reactive flux: A unified framework for slow and fast reaction kinetics.

    PubMed

    Bose, Amartya; Makri, Nancy

    2017-10-21

    The flux formulation of reaction rate theory is recast in terms of the expectation value of the reactive flux with an initial condition that corresponds to a non-equilibrium, factorized reactant density. In the common case of slow reactive processes, the non-equilibrium expression reaches the plateau regime only slightly slower than the equilibrium flux form. When the reactants are described by a single quantum state, as in the case of electron transfer reactions, the factorized reactant density describes the true initial condition of the reactive process. In such cases, the time integral of the non-equilibrium flux expression yields the reactant population as a function of time, allowing characterization of the dynamics in cases where there is no clear separation of time scales and thus a plateau regime cannot be identified. The non-equilibrium flux offers a unified approach to the kinetics of slow and fast chemical reactions and is ideally suited to mixed quantum-classical methods.

  1. Binding characteristics of levetiracetam to synaptic vesicle protein 2A (SV2A) in human brain and in CHO cells expressing the human recombinant protein.

    PubMed

    Gillard, Michel; Chatelain, Pierre; Fuks, Bruno

    2006-04-24

    A specific binding site for the antiepileptic drug levetiracetam (2S-(oxo-1-pyrrolidinyl)butanamide, Keppra) in rat brain, referred to as the levetiracetam binding site, was discovered several years ago. More recently, this binding site has been identified as the synaptic vesicle protein 2A (SV2A), a protein present in synaptic vesicles [Lynch, B., Lambeng, N., Nocka, K., Kensel-Hammes, P., Bajjalieh, S.M., Matagne, A., Fuks, B., 2004. The synaptic vesicle protein SV2A is the binding site for the antiepileptic drug levetiracetam. Proc. Natl. Acad. Sci. USA, 101, 9861-9866.]. In this study, we characterized the binding properties of levetiracetam in post-mortem human brain and compared them to human SV2A expressed in Chinese hamster ovary (CHO) cells. The results showed that the binding properties of levetiracetam and [3H]ucb 30889, an analogue that was previously characterized as a suitable ligand for levetiracetam binding site/SV2A in rat brain [Gillard, M., Fuks, B., Michel, P., Vertongen, P., Massingham, R. Chatelain, P., 2003. Binding characteristics of [3H]ucb 30889 to levetiracetam binding sites in rat brain. Eur. J. Pharmacol. 478, 1-9.], are almost identical in human brain samples (cerebral cortex, hippocampus and cerebellum) and in CHO cell membranes expressing the human SV2A protein. Moreover, the results are also similar to those previously obtained in rat brain. [3H]ucb 30889 binding in human brain and to SV2A was saturable and reversible. At 4 degrees C, its binding kinetics were best fitted assuming a two-phase model in all tissues. The half-times of association for the fast component ranged between 1 to 2 min and represent 30% to 36% of the sites whereas the half-times for the slow component ranged from 20 to 29 min. In dissociation experiments, the half-times were from 2 to 4 min for the fast component (33% to 49% of the sites) and 20 to 41 min for the slow component. Saturation binding curves led to Kd values for [3H]ucb 30889 of 53+/-7, 55+/-9, 70+/-11 and 75+/-33 nM in human cerebral cortex, hippocampus, cerebellum and CHO cells expressing SV2A respectively. Bmax values around 3-4 pmol/mg protein were calculated in all brain regions. Some of the saturation curves displayed curvilinear Scatchard plots indicating the presence of high and low affinity binding sites. When this was the case, Kd values from 25 to 30 nM for the high affinity sites (24% to 34% of total sites) and from 200 to 275 nM for the low affinity sites were calculated. This was observed in all brain regions and in CHO cell membranes expressing the SV2A protein. It cannot be explained by putative binding of [3H]ucb 30889 to SV2B or C isoforms but may reflect different patterns of SV2A glycosylation or the formation of SV2A oligomers. Competition experiments were performed to determine the affinities for SV2A of a variety of compounds including levetiracetam, some of its analogues and other molecules known to interact with levetiracetam binding sites in rat brain such as bemegride, pentylenetetrazol and chlordiazepoxide. We found an excellent correlation between the affinities of these compounds measured in human brain, rat brain and CHO cells expressing human SV2A. In conclusion, we report for the first time that the binding characteristics of native levetiracetam binding sites/SV2A in human brain and rat brain share very similar properties with human recombinant SV2A expressed in CHO cells.

  2. Kinetic and Thermodynamic Characterization of Dihydrotestosterone-Induced Conformational Perturbations in Androgen Receptor Ligand-Binding Domain

    PubMed Central

    Jasuja, Ravi; Ulloor, Jagadish; Yengo, Christopher M.; Choong, Karen; Istomin, Andrei Y.; Livesay, Dennis R.; Jacobs, Donald J.; Swerdloff, Ronald S.; Mikšovská, Jaroslava; Larsen, Randy W.; Bhasin, Shalender

    2009-01-01

    Ligand-induced conformational perturbations in androgen receptor (AR) are important in coactivator recruitment and transactivation. However, molecular rearrangements in AR ligand-binding domain (AR-LBD) associated with agonist binding and their kinetic and thermodynamic parameters are poorly understood. We used steady-state second-derivative absorption and emission spectroscopy, pressure and temperature perturbations, and 4,4′-bis-anilinonaphthalene 8-sulfonate (bis-ANS) partitioning to determine the kinetics and thermodynamics of the conformational changes in AR-LBD after dihydrotestosterone (DHT) binding. In presence of DHT, the second-derivative absorption spectrum showed a red shift and a change in peak-to-peak distance. Emission intensity increased upon DHT binding, and center of spectral mass was blue shifted, denoting conformational changes resulting in more hydrophobic environment for tyrosines and tryptophans within a more compact DHT-bound receptor. In pressure perturbation calorimetry, DHT-induced energetic stabilization increased the Gibbs free energy of unfolding to 8.4 ± 1.3 kcal/mol from 3.5 ± 1.6 kcal/mol. Bis-ANS partitioning studies revealed that upon DHT binding, AR-LBD underwent biphasic rearrangement with a high activation energy (13.4 kcal/mol). An initial, molten globule-like burst phase (k ∼30 sec−1) with greater solvent accessibility was followed by rearrangement (k ∼0.01 sec−1), leading to a more compact conformation than apo-AR-LBD. Molecular simulations demonstrated unique sensitivity of tyrosine and tryptophan residues during pressure unfolding with rearrangement of residues in the coactivator recruitment surfaces distant from the ligand-binding pocket. In conclusion, DHT binding leads to energetic stabilization of AR-LBD domain and substantial rearrangement of residues distant from the ligand-binding pocket. DHT binding to AR-LBD involves biphasic receptor rearrangement including population of a molten globule-like intermediate state. PMID:19443608

  3. The race between infection and immunity - how do pathogens set the pace?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ribiero, Ruy M

    2009-01-01

    Infection is often referred to as a race between pathogen and immune response. This metaphor suggests that slower growing pathogens should be more easily controlled. However, a growing body ofevidence shows that many chronic infections are caused by failure to control slow growing pathogens. The slow growth of pathogens appears to directly affect the kinetics of the immune response. Compared with the response to fast growing pathogens, the T cell response to slow pathogens is delayed in its initiation, lymphocyte expansion is slow and the response often fails to clear the pathogen, leading to chronic infection. Understanding the 'rules ofthemore » race' for slow growing pathogens has important implications for vaccine design and immune control of many chronic infections.« less

  4. Ammonoxidised lignins as slow nitrogen-releasing soil amendments and CO₂-binding matrix.

    PubMed

    Liebner, Falk; Pour, Georg; de la Rosa Arranz, José Maria; Hilscher, André; Rosenau, Thomas; Knicker, Heike

    2011-09-05

    Nitrogen (N) is a major nutrient element controlling the cycling of organic matter in the biosphere. Its availability in soils is closely related to biological productivity. In order to reduce the negative environmental impact, associated with the application of mineral N-fertilizers, the use of ammonoxidised technical lignins is suggested. They can act as potential slow N-release fertilisers which concomitantly may increase C sequestration of soils by its potential to bind CO₂. The idea of our study was to combine an improved chemical characterisation of ammonoxidised ligneous matter as well as their CO₂-binding potential, with laboratory pot experiments, performed to enable an evaluation of their behaviour and stability during the biochemical reworking occurring in active soils.

  5. Probing the positron moderation process using high-intensity, highly polarized slow-positron beams

    NASA Technical Reports Server (NTRS)

    Van House, J.; Zitzewitz, P. W.

    1984-01-01

    A highly polarized (P = 0.48 + or - 0.02) intense (500,000/sec) beam of 'slow' (Delta E = about 2 eV) positrons (e+) is generated, and it is shown that it is possible to achieve polarization as high as P = 0.69 + or - 0.04 with reduced intensity. The measured polarization of the slow e+ emitted by five different positron moderators showed no dependence on the moderator atomic number (Z). It is concluded that only source positrons with final kinetic energy below 17 keV contribute to the slow-e+ beam, in disagreement with recent yield functions derived from low-energy measurements. Measurements of polarization and yield with absorbers of different Z between the source and moderator show the effects of the energy and angular distributions of the source positrons on P. The depolarization of fast e+ transmitted through high-Z absorbers has been measured. Applications of polarized slow-e+ beams are discussed.

  6. Adsorption, Desorption, and Displacement Kinetics of H2O and CO2 on Forsterite, Mg2SiO4(011)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, R. Scott; Li, Zhenjun; Dohnalek, Zdenek

    We have examined the adsorbate-substrate interaction kinetics of CO2 and H2O on a natural forsterite crystal surface, Mg2SiO4(011), with 10-15% of substitutional Fe2+. We use temperature programmed desorption (TPD) and molecular beam techniques to determine the adsorption, desorption, and displacement kinetics for H2O and CO2. Neither CO2 nor H2O has distinct sub-monolayer desorption peaks but instead both have a broad continuous desorption feature that evolve smoothly into multilayer desorption. Inversion of the monolayer coverage spectra for both molecules reveals that the corresponding binding energies for H2O are greater than that for CO2 on all sites. The relative strength of thesemore » interactions is the dominant factor in the competitive adsorption/displacement kinetics. In experiments where the two adsorbates are co-dosed, H2O always binds to the highest energy binding sites available and displaces CO2. The onset of CO2 displacement by H2O occurs between 65 and 75 K.« less

  7. Influence of growth conditions on subsequent submonolayer oxide decomposition on Si(111)

    NASA Astrophysics Data System (ADS)

    Shklyaev, A. A.; Aono, Masakazu; Suzuki, Takanori

    1996-10-01

    The decomposition kinetics of oxide with a coverage between 0.1 and 0.5 ML, grown by oxidation of the Si(111)-7×7 surface at temperatures between 550 and 800 °C for oxygen pressures (Pox) between 3×10-8 and 2×10-6 Torr, is investigated with optical second-harmonic generation. Through the analysis of the pressure dependence of the initial oxide-growth rate, we separate the conditions for a slow oxide growth at Pox near Ptr(T) and for a rapid oxide growth at Pox>3Ptr(T), where Ptr(T) is the transition pressure to Si-etching regime without oxide growth. For the rapidly grown oxide, the oxide decomposition rate decreases with increasing oxide coverage, whereas the activation energy of about 3 eV does not change significantly. While in the case when the oxide is desorbed at the same temperature as are used for oxide growth, the oxide decomposition is described by an apparent activation energy of 1.5 eV. For the slowly grown oxide of 0.1 ML coverage, the oxide desorption kinetics shows a rapid decomposition stage followed by a slow stage. For the slowly grown oxide of 0.3 ML coverage, the slow stage with a large activation energy of 4.1 eV becomes dominant in the latter part of decomposition. The dependence of the desorption kinetics on the oxide-growth conditions described here could be a reason for the scattering of the kinetic parameters in the literature for O2 interaction with silicon at elevated temperatures.

  8. Using Chemical Reaction Kinetics to Predict Optimal Antibiotic Treatment Strategies.

    PubMed

    Abel Zur Wiesch, Pia; Clarelli, Fabrizio; Cohen, Ted

    2017-01-01

    Identifying optimal dosing of antibiotics has proven challenging-some antibiotics are most effective when they are administered periodically at high doses, while others work best when minimizing concentration fluctuations. Mechanistic explanations for why antibiotics differ in their optimal dosing are lacking, limiting our ability to predict optimal therapy and leading to long and costly experiments. We use mathematical models that describe both bacterial growth and intracellular antibiotic-target binding to investigate the effects of fluctuating antibiotic concentrations on individual bacterial cells and bacterial populations. We show that physicochemical parameters, e.g. the rate of drug transmembrane diffusion and the antibiotic-target complex half-life are sufficient to explain which treatment strategy is most effective. If the drug-target complex dissociates rapidly, the antibiotic must be kept constantly at a concentration that prevents bacterial replication. If antibiotics cross bacterial cell envelopes slowly to reach their target, there is a delay in the onset of action that may be reduced by increasing initial antibiotic concentration. Finally, slow drug-target dissociation and slow diffusion out of cells act to prolong antibiotic effects, thereby allowing for less frequent dosing. Our model can be used as a tool in the rational design of treatment for bacterial infections. It is easily adaptable to other biological systems, e.g. HIV, malaria and cancer, where the effects of physiological fluctuations of drug concentration are also poorly understood.

  9. Using Chemical Reaction Kinetics to Predict Optimal Antibiotic Treatment Strategies

    PubMed Central

    Abel zur Wiesch, Pia; Cohen, Ted

    2017-01-01

    Identifying optimal dosing of antibiotics has proven challenging—some antibiotics are most effective when they are administered periodically at high doses, while others work best when minimizing concentration fluctuations. Mechanistic explanations for why antibiotics differ in their optimal dosing are lacking, limiting our ability to predict optimal therapy and leading to long and costly experiments. We use mathematical models that describe both bacterial growth and intracellular antibiotic-target binding to investigate the effects of fluctuating antibiotic concentrations on individual bacterial cells and bacterial populations. We show that physicochemical parameters, e.g. the rate of drug transmembrane diffusion and the antibiotic-target complex half-life are sufficient to explain which treatment strategy is most effective. If the drug-target complex dissociates rapidly, the antibiotic must be kept constantly at a concentration that prevents bacterial replication. If antibiotics cross bacterial cell envelopes slowly to reach their target, there is a delay in the onset of action that may be reduced by increasing initial antibiotic concentration. Finally, slow drug-target dissociation and slow diffusion out of cells act to prolong antibiotic effects, thereby allowing for less frequent dosing. Our model can be used as a tool in the rational design of treatment for bacterial infections. It is easily adaptable to other biological systems, e.g. HIV, malaria and cancer, where the effects of physiological fluctuations of drug concentration are also poorly understood. PMID:28060813

  10. Generation kinetics of boron-oxygen complexes in p-type compensated c-Si

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yichao; Yu, Xuegong, E-mail: yuxuegong@zju.edu.cn; Chen, Peng

    2014-03-10

    Kinetics characteristics of boron-oxygen complexes responsible for light-induced degradation in p-type compensated c-Si have been investigated. The generation of B-O complexes is well fitted by a fast-forming process and a slow-forming one. Activation energies of complexes generation during the fast-forming process are determined to be 0.29 and 0.24 eV in compensated and non-compensated c-Si, respectively, and those during the slow-forming process are the same, about 0.44 eV. Moreover, it is found that the pre-exponential factors of complexes generation in compensated c-Si is proportional to the square of the net doping concentration, which suggests that the latent centers should exist.

  11. Kinetics of Methane Hydrate Decomposition Studied via in Situ Low Temperature X-ray Powder Diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Everett, Susan M; Rawn, Claudia J; Keffer, David J.

    Gas hydrates are known to have a slowed decomposition rate at ambient pressure and temperatures below the melting point of ice termed self-preservation or anomalous preservation. As hydrate exothermically decomposes, gas is released and water of the clathrate cages transforms into ice. Two regions of slowed decomposition for methane hydrate, 180 200 K and 230 260 K, were observed, and the kinetics were studied by in situ low temperature x-ray powder diffraction. The kinetic constants for ice formation from methane hydrate were determined by the Avrami model within each region and activation energies, Ea, were determined by the Arrhenius plot.more » Ea determined from the data for 180 200 K was 42 kJ/mol and for 230 260 K was 22 kJ/mol. The higher Ea in the colder temperature range was attributed to a difference in the microstructure of ice between the two regions.« less

  12. Effects of ligand binding on the conformation and internal dynamics in specific regions of porcine pancreatic phospholipase A2 with tryptophan as a probe: a study combining time-resolved fluorescence spectroscopy and site-directed mutagenesis (same as p. 100)

    NASA Astrophysics Data System (ADS)

    Kuipers, Oscar; Vincent, Michel; Brochon, Jean-Claude; Verheij, Bert; de Haas, Gerard; Gallay, Jacques

    1990-05-01

    Exploration of the effect of ligand-protein interactions on conformational substates and internal dynamics in different regions of phospholipase A2 from porcine pancreas (PLA2), was performed by combining site-directed mutagenesis and time-resolved fluorescence measurements. The single tryptophan residue (Trp-3) in the wild type protein was replaced by a phenylalanine residue, whereafter Trp was substituted either for leucine-31 ,located in the calcium binding loop, or for phenylalanine-94, located at the "back side" of the enzyme, in a-helix E (Dijkstra et al., J. Mol. Biol., 147, 97-123, 1981). Analyses by the Maximum Entropy Method (MIEM) of the total fluorescence intensity decays, provide in each case a distribution of separate lifetime classes, which can be interpreted as reflecting the existence of discrete conformational substates in slow exchange with respect to the time-scale of the decay kinetics. The fluorescence decay of the W94 mutant is dominated by an extremely short excited state lifetime of ~60 ps, probably arising from the presence of two proximate disulfide bridges. Time-resolved fluorescence anisotropy studies show that the Trp residue near the NH2 terminus (Trp-3) undergoes a more limited rotational motion than the Trp-3 1 located in the calcium binding loop. The widest angular rotation is observed at position 94, in a-helix E. Calcium binding displays the strongest influence on the lifetime distribution of Trp-31: a major local conformation corresponding to a lifetime class with a barycenter value of ~5.5 ns and contributing to ~50% of the decay is selected. The conformations giving rise to the short lifetimes ((tau)1 and (tau)2 lifetime classes) become less important. The contribution of the third lifetime class (c3) stays at a constant value of 30%. In the presence of calcium, the amplitude of motion is wider than without the ion. There is virtually no effect of calcium binding on the lifetime distribution of the Trp residue at the 3 or the 94 position. Binding of the monomeric substrate analog n-dodecylphosphocholine (C12PN) in the presence of calcium hardly affects neither the Trp-3 excited state population distribution, nor its rotational dynamics. The binding of C12PN monomers to the W31 mutant further increases the contribution of the t4lifetime class at the expense of c2. A more restricted rotation of the Trp-31 residue is also induced. The binding of the micellar substrate analog n-hexadecylphosphocholine (C16PN) in the presence of calcium is very efficient in modifying the lifetime distribution of Trp-3. Essentially, one major broad lifetime population (centered at ~2.6 ns) is revealed by MEM analysis of the total intensity decay. The internal motion is slowed down and the angle of rotation is much smaller in this conformation. Neither the excited state lifetime distribution of Trp-31 nor its dynamics are affected by micelle binding relative to monomer binding. In conclusion, by placing a single Tip-residue at strategic positions along the peptide chain of PLA2, relevant to the binding of biological ligands, an excellent model system for the study of selective perturbations of conformational substates and internal dynamics is provided.

  13. Effects of ligand binding on the conformation and internal dynamics in specific regions of porcine pancreatic phospholipase A2 with tryptophan as a probe: a study combinging time-resolved fluorescence spectroscopy and site-directed mutagenesis (same as p. 628)

    NASA Astrophysics Data System (ADS)

    Kuipers, Oscar; Vincent, Michel; Brochon, Jean-Claude; Verheij, Bert; de Haas, Gerard; Gallay, Jacques

    1990-05-01

    Exploration of the effect of ligand-protein interactions on conformational substates and internal dynamics in different regions of phospholipase A2 from porcine pancreas (PLA2), was performed by combining site-directed mutagenesis and time-resolved fluorescence measurements. The single tryptophan residue (Trp-3) in the wild type protein was replaced by a phenylalanine residue, whereafter Tip was substituted either for leucine-3 1 ,located in the calcium binding ioop, or for phenylalanine-94, located at the "back side" of the enzyme, in a-helix E (Dijkstra et al., J. Mol. Biol., 147, 97-123, 1981). Analyses by the Maximum Entropy Method (MEM) of the total fluorescence intensity decays, provide in each case a distribution of separate lifetime classes, which can be interpreted as reflecting the existence of discrete conformational substates in slow exchange with respect to the time-scale of the decay kinetics. The fluorescence decay of the W94 mutant is. dominated by an extremely short excited state lifetime of ~60 ps, probably arising from the presence of two proximate disulfide bridges. Time-resolved fluorescence anisotropy studies show that the Trp residue near the NH2 terminus (Trp-3) undergoes a more limited rotational motion than the Trp-3 1 located in the calcium binding loop. The widest angular rotation is observed at position 94, in a-helix E. Calcium binding displays the strongest influence on the lifetime distribution of Trp-3 1: a major local conformation corresponding to a lifetime class with a barycenter value of -5.5 ns and contributing to ~50% of the decay is selected. The conformations giving rise to the short lifetimes (τ1 and τ2 lifetime classes) become less important. The contribution of the third lifetime class (c3) stays at a constant value of 30%. In the presence of calcium, the amplitude of motion is wider than without the ion. There is virtually no effect of calcium binding on the lifetime distribution of the Trp residue at the 3 or the 94 position. Binding of the monomeric substrate analog n-dodecylphosphocholine (C12PN) in the presence of calcium hardly affects neither the Trp-3 excited state population distribution, nor its rotational dynamics. The binding of C12PN monomers to the W31 mutant further increases the contribution of the τ4 lifetime class at the expense of c2. A more restricted rotation of the Trp-3 1 residue is also induced. The binding of the micellar substrate analog n-hexadecylphosphocholine (C16PN) in the presence of calcium is very efficient in modifying the lifetime distribution of Trp-3. Essentially, one major broad lifetime population (centered at ~2.6 ns) is revealed by MEM analysis of the total intensity decay. The internal motion is slowed down and the angle of rotation is much smaller in this conformation. Neither the excited state lifetime distribution of Trp-31 nor its dynamics are affected by micelle binding relative to monomer binding. In conclusion, by placing a single Tip-residue at strategic positions along the peptide chain of PLA2, relevant to the binding of biological ligands, an excellent model system for the study of selective perturbations of conformational substates and internal dynamics is provided.

  14. THE EFFECTS OF TYPE II BINDING ON METABOLIC STABILITY AND BINDING AFFINITY IN CYTOCHROME P450 CYP3A4

    PubMed Central

    Peng, Chi-Chi; Pearson, Josh T.; Rock, Dan A.; Joswig-Jones, Carolyn A.; Jones, Jeffrey P.

    2010-01-01

    One goal in drug design is to decrease clearance due to metabolism. It has been suggested that a compound’s metabolic stability can be increased by incorporation of a sp2 nitrogen into an aromatic ring. Nitrogen incorporation is hypothesized to increase metabolic stability by coordination of nitrogen to the heme iron (termed type II binding). However, questions regarding binding affinity, metabolic stability, and how metabolism of type II binders occurs remain unanswered. Herein, we use pyridinyl quinoline-4-carboxamide analogs to answer these questions. We show that type II binding can have a profound influence on binding affinity for CYP3A4, and the difference in binding affinity can be as high as 1,200 fold. We also find that type II binding compounds can be extensively metabolized, which is not consistent with the dead-end complex kinetic model assumed for type II binders. Two alternate kinetic mechanisms are presented to explain the results. The first involves a rapid equilibrium between the type II bound substrate and a metabolically oriented binding mode. The second involves direct reduction of the nitrogen-coordinated heme followed by oxygen binding. PMID:20346909

  15. Tuning of Recombinant Protein Expression in Escherichia coli by Manipulating Transcription, Translation Initiation Rates, and Incorporation of Noncanonical Amino Acids.

    PubMed

    Schlesinger, Orr; Chemla, Yonatan; Heltberg, Mathias; Ozer, Eden; Marshall, Ryan; Noireaux, Vincent; Jensen, Mogens Høgh; Alfonta, Lital

    2017-06-16

    Protein synthesis in cells has been thoroughly investigated and characterized over the past 60 years. However, some fundamental issues remain unresolved, including the reasons for genetic code redundancy and codon bias. In this study, we changed the kinetics of the Eschrichia coli transcription and translation processes by mutating the promoter and ribosome binding domains and by using genetic code expansion. The results expose a counterintuitive phenomenon, whereby an increase in the initiation rates of transcription and translation lead to a decrease in protein expression. This effect can be rescued by introducing slow translating codons into the beginning of the gene, by shortening gene length or by reducing initiation rates. On the basis of the results, we developed a biophysical model, which suggests that the density of co-transcriptional-translation plays a role in bacterial protein synthesis. These findings indicate how cells use codon bias to tune translation speed and protein synthesis.

  16. Design principles for radiation-resistant solid solutions

    NASA Astrophysics Data System (ADS)

    Schuler, Thomas; Trinkle, Dallas R.; Bellon, Pascal; Averback, Robert

    2017-05-01

    We develop a multiscale approach to quantify the increase in the recombined fraction of point defects under irradiation resulting from dilute solute additions to a solid solution. This methodology provides design principles for radiation-resistant materials. Using an existing database of solute diffusivities, we identify Sb as one of the most efficient solutes for this purpose in a Cu matrix. We perform density-functional-theory calculations to obtain binding and migration energies of Sb atoms, vacancies, and self-interstitial atoms in various configurations. The computed data informs the self-consistent mean-field formalism to calculate transport coefficients, allowing us to make quantitative predictions of the recombined fraction of point defects as a function of temperature and irradiation rate using homogeneous rate equations. We identify two different mechanisms according to which solutes lead to an increase in the recombined fraction of point defects; at low temperature, solutes slow down vacancies (kinetic effect), while at high temperature, solutes stabilize vacancies in the solid solution (thermodynamic effect). Extension to other metallic matrices and solutes are discussed.

  17. Fate of 90Sr and U(VI) in Dounreay sediments following saline inundation and erosion.

    PubMed

    Eagling, Jane; Worsfold, Paul J; Blake, William H; Keith-Roach, Miranda J

    2013-08-01

    There is concern that sea level rise associated with projected climate change will lead to the inundation, flooding and erosion of soils and sediments contaminated with radionuclides at coastal nuclear sites, such as Dounreay (UK), with seawater. Here batch and column experiments were designed to simulate these scenarios and sequential extractions were used to identify the key radionuclide solid phase associations. Strontium was exchangeable and was mobilised rapidly by ion exchange with seawater Mg(2+) in both batch and column experiments. In contrast, U was more strongly bound to the sediments and mobilisation was initially limited by the influence of the sediment on the pH of the water. Release was only observed when the pH increased above 6.9, suggesting that the formation of soluble U(VI)-carbonate species was important. Under dynamic flow conditions, long term release was significant (47%), but controlled by slow desorption kinetics from a range of binding sites. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Optical Biosensing: Kinetics of Protein A-IGG Binding Using Biolayer Interferometry

    ERIC Educational Resources Information Center

    Wilson, Jo Leanna; Scott, Israel M.; McMurry, Jonathan L.

    2010-01-01

    An undergraduate biochemistry laboratory experiment has been developed using biolayer interferometry (BLI), an optical biosensing technique similar to surface plasmon resonance (SPR), in which students obtain and analyze kinetic data for a protein-protein interaction. Optical biosensing is a technique of choice to determine kinetic and affinity…

  19. Rapid transport of CCL11 across the blood-brain barrier: regional variation and importance of blood cells.

    PubMed

    Erickson, Michelle A; Morofuji, Yoichi; Owen, Joshua B; Banks, William A

    2014-06-01

    Increased blood levels of the eotaxin chemokine C-C motif ligand 11 (CCL11) in aging were recently shown to negatively regulate adult hippocampal neurogenesis. How circulating CCL11 could affect the central nervous system (CNS) is not clear, but one possibility is that it can cross the blood-brain barrier (BBB). Here, we show that CCL11 undergoes bidirectional transport across the BBB. Transport of CCL11 from blood into whole brain (influx) showed biphasic kinetics, with a slow phase preceding a rapid phase of uptake. We found that the slow phase was explained by binding of CCL11 to cellular components in blood, whereas the rapid uptake phase was mediated by direct interactions with the BBB. CCL11, even at high doses, did not cause BBB disruption. All brain regions except striatum showed a delayed rapid-uptake phase. Striatum had only an early rapid-uptake phase, which was the fastest of any brain region. We also observed a slow but saturable transport system for CCL11 from brain to blood. C-C motif ligand 3 (CCR3), an important receptor for CCL11, did not facilitate CCL11 transport across the BBB, although high concentrations of a CCR3 inhibitor increased brain uptake without causing BBB disruption. Our results indicate that CCL11 in the circulation can access many regions of the brain outside of the neurogenic niche via transport across the BBB. This suggests that blood-borne CCL11 may have important physiologic functions in the CNS and implicates the BBB as an important regulator of physiologic versus pathologic effects of this chemokine.

  20. Rapid Transport of CCL11 across the Blood-Brain Barrier: Regional Variation and Importance of Blood Cells

    PubMed Central

    Erickson, Michelle A.; Morofuji, Yoichi; Owen, Joshua B.

    2014-01-01

    Increased blood levels of the eotaxin chemokine C-C motif ligand 11 (CCL11) in aging were recently shown to negatively regulate adult hippocampal neurogenesis. How circulating CCL11 could affect the central nervous system (CNS) is not clear, but one possibility is that it can cross the blood-brain barrier (BBB). Here, we show that CCL11 undergoes bidirectional transport across the BBB. Transport of CCL11 from blood into whole brain (influx) showed biphasic kinetics, with a slow phase preceding a rapid phase of uptake. We found that the slow phase was explained by binding of CCL11 to cellular components in blood, whereas the rapid uptake phase was mediated by direct interactions with the BBB. CCL11, even at high doses, did not cause BBB disruption. All brain regions except striatum showed a delayed rapid-uptake phase. Striatum had only an early rapid-uptake phase, which was the fastest of any brain region. We also observed a slow but saturable transport system for CCL11 from brain to blood. C-C motif ligand 3 (CCR3), an important receptor for CCL11, did not facilitate CCL11 transport across the BBB, although high concentrations of a CCR3 inhibitor increased brain uptake without causing BBB disruption. Our results indicate that CCL11 in the circulation can access many regions of the brain outside of the neurogenic niche via transport across the BBB. This suggests that blood-borne CCL11 may have important physiologic functions in the CNS and implicates the BBB as an important regulator of physiologic versus pathologic effects of this chemokine. PMID:24706984

  1. Validation of a patch clamp screening protocol that simultaneously measures compound activity in multiple states of the voltage-gated sodium channel Nav1.2.

    PubMed

    Liu, Yi; Beck, Edward J; Flores, Christopher M

    2011-12-01

    Hyperactivity of voltage-gated sodium channels underlies, at least in part, a range of pathological states, including pain and epilepsy. Selective blockers of these channels may offer effective treatment of such disorders. Currently employed methods to screen for sodium channel blockers, however, are inadequate to rationally identify mechanistically diverse blockers, limiting the potential range of indications that may be treated by such agents. Here, we describe an improved patch clamp screening assay that increases the mechanistic diversity of sodium channel blockers being identified. Using QPatch HT, a medium-throughput, automated patch clamp system, we tested three common sodium channel blockers (phenytoin, lidocaine, and tetrodotoxin) with distinct mechanistic profiles at Nav1.2. The single-voltage protocol employed in this assay simultaneously measured the compound activity in multiple states, including the slow inactivated state, of the channel. A long compound incubation period (10 s) was introduced during channel inactivation to increase the probability of identifying "slow binders." As such, phenytoin, which preferentially binds with slow kinetics to the fast inactivated state, exhibited significantly higher potency than that obtained from a brief exposure (100 ms) used in typical assays. This assay also successfully detected the use-dependent block of tetrodotoxin, a well-documented property of this molecule yet unobserved in typical patch clamp protocols. These results indicate that the assay described here can increase the likelihood of identification and mechanistic diversity of sodium channel blockers from a primary screen. It can also be used to efficiently guide the in vitro optimization of leads that retain the desired mechanistic properties. © MARY ANN LIEBERT, INC.

  2. Photoregeneration of bovine rhodopsin from its signaling state.

    PubMed

    Arnis, S; Hofmann, K P

    1995-07-25

    In rhodopsin, 11-cis-retinal is bound by a protonated Schiff base and acts as a strong antagonist, which holds the receptor in its inactive ground state conformation. Light induces cis-/trans-retinal isomerization and a sequence of thermal transitions through intermediates. The active conformation that catalyzes GDP/GTP exchange in the G-protein (Gt) is generated from the metarhodopsin II intermediate (MII) and mediated by Schiff base proton translocation and proton uptake from the aqueous phase. In the stable nucleotide-free MII-Gt complex, any thermal transition of MII into other forms of rhodopsin is blocked. We have now studied how Gt affects flash-induced photochemical conversions of MII. Difference spectra from measured absorption changes show that MII photolyzes through two parallel pathways, with fast (1 ms) and slow (50 ms) kinetics (12 degrees C, pH 6). The slow pathway regenerates rhodopsin (9- or 11-cis) via Schiff base reprotonation and proton release. We infer a cis-isomerized early photoproduct (reverted meta, RM) preceding these thermal transitions. When MII is photolyzed in the MII-Gt complex, the slow absorption change is abolished, indicating that Gt blocks the completion of the regeneration process. This is due to the formation of a stable RM-Gt complex, as shown by successive photolysis of MII, RM, and ground state rhodopsin, and the application of GTP gamma S at different stages. The complex dissociates with GTP gamma S, and rhodopsin relaxes to the ground state. The results indicate that cis-retinal and Gt can bind to the receptor at the same time. We discuss the result that the protonations in the meta II state uncouple retinal geometry from Gt interaction.

  3. Nucleation of stoichiometric compounds from liquid: Role of the kinetic factor

    DOE PAGES

    Song, H.; Sun, Y.; Zhang, F.; ...

    2018-02-02

    The nucleation rate depends on the free-energy barrier and the kinetic factor. While the role of the free energy barrier is a text-book subject, the importance of the kinetic factor is frequently underestimated. Here in this study, we applied the mean first-passage time method, to obtain the free-energy landscape and kinetic factor directly from the molecular dynamics (MD) simulations of the nucleation of the face-centered cubic (fcc) phase in the pure Ni and the B2 phases in the Ni 50Al 50 and Cu 50Zr 50 alloys. The obtained data show that while the free-energy barrier for nucleation is higher inmore » pure Ni the nucleation rate is considerably lower in the Ni 50Al 50 alloy. This result can be explained by the slow attachment kinetics in the N i 50 A l 50 alloy, which was related to the ordered nature of the B2 phase. Even smaller fraction of the antisite defects in the C u 50 Z r 50 alloy leads to such a slow attachment kinetics that the nucleation is never observed for this alloy in the course of the MD simulation. Finally, this is consistent with the experimental facts that the Cu 50Zr 50 alloy is a good glass forming alloy and the Ni 50Al 50 alloy is not. Thus the present study demonstrates that the atom attachment rate can be the critical factor that controls the nucleation process under certain conditions.« less

  4. Nucleation of stoichiometric compounds from liquid: Role of the kinetic factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, H.; Sun, Y.; Zhang, F.

    The nucleation rate depends on the free-energy barrier and the kinetic factor. While the role of the free energy barrier is a text-book subject, the importance of the kinetic factor is frequently underestimated. Here in this study, we applied the mean first-passage time method, to obtain the free-energy landscape and kinetic factor directly from the molecular dynamics (MD) simulations of the nucleation of the face-centered cubic (fcc) phase in the pure Ni and the B2 phases in the Ni 50Al 50 and Cu 50Zr 50 alloys. The obtained data show that while the free-energy barrier for nucleation is higher inmore » pure Ni the nucleation rate is considerably lower in the Ni 50Al 50 alloy. This result can be explained by the slow attachment kinetics in the N i 50 A l 50 alloy, which was related to the ordered nature of the B2 phase. Even smaller fraction of the antisite defects in the C u 50 Z r 50 alloy leads to such a slow attachment kinetics that the nucleation is never observed for this alloy in the course of the MD simulation. Finally, this is consistent with the experimental facts that the Cu 50Zr 50 alloy is a good glass forming alloy and the Ni 50Al 50 alloy is not. Thus the present study demonstrates that the atom attachment rate can be the critical factor that controls the nucleation process under certain conditions.« less

  5. Dominant role of local dipolar interactions in phosphate binding to a receptor cleft with an electronegative charge surface: equilibrium, kinetic, and crystallographic studies.

    PubMed

    Ledvina, P S; Tsai, A L; Wang, Z; Koehl, E; Quiocho, F A

    1998-12-01

    Stringent specificity and complementarity between the receptor, a periplasmic phosphate-binding protein (PBP) with a two-domain structure, and the completely buried and dehydrated phosphate are achieved by hydrogen bonding or dipolar interactions. We recently found that the surface charge potential of the cleft between the two domains that contains the anion binding site is intensely electronegative. This novel finding prompted the study reported here of the effect of ionic strength on the equilibrium and rapid kinetics of phosphate binding. To facilitate this study, Ala197, located on the edge of the cleft, was replaced by a Trp residue (A197W PBP) to generate a fluorescence reporter group. The A197W PBP-phosphate complex retains wild-type Kd and X-ray structure beyond the replacement residue. The Kd (0.18 microM) at no salt is increased by 20-fold at greater than 0.30 M NaCl. Stopped-flow fluorescence kinetic studies indicate a two-step binding process: (1) The phosphate (L) binds, at near diffusion-controlled rate, to the open cleft form (Po) of PBP to produce an intermediate, PoL. This rate decreases with increasing ionic strength. (2) The intermediate isomerizes to the closed-conformation form, PcL. The results indicate that the high specificity, affinity, and rate of phosphate binding are not influenced by the noncomplementary electronegative surface potential of the cleft. That binding depends almost entirely on local dipolar interactions with the receptor has important ramification in electrostatic interactions in protein structures and in ligand recognition.

  6. Compound-Specific Effects of Mutations at Val787 in DII-S6 of Nav1.4 Sodium Channels on the Action of Sodium Channel Inhibitor Insecticides

    PubMed Central

    von Stein, Richard T.; Soderlund, David M.

    2012-01-01

    Sodium channel inhibitor (SCI) insecticides are hypothesized to inhibit voltage-gated sodium channels by binding selectively to the slow-inactivated state. Replacement of valine at position 787 in the S6 segment of homology domain II of the rat Nav1.4 sodium channel by lysine (V787K) enchances slow inactivation of this channel whereas replacement by alanine or cysteine (V787A, V787C) inhibits slow inactivation. To test the hypothesis that SCI insecticides bind selectively to the slow-inactivated state, we constructed mutated Nav1.4/V787A, Nav1.4/V787C, and Nav1.4/V787K cDNAs, expressed wildtype and mutated channels with the auxiliary β1 subunit in Xenopus oocytes, and used the two-electrode voltage clamp technique to examine the effects of these mutations on channel inhibition by four SCI insecticides (indoxacarb, its bioactivated metabolite DCJW, metaflumizone, and RH3421). Mutations at Val787 affected SCI insecticide sensitivity in a manner that was independent of mutation-induced changes in slow inactivation gating. Sensitivity to inhibition by 10 μM indoxacarb was significantly increased in all three mutated channels, whereas sensitivity to inhibition by 10 μM metaflumizone was significantly reduced in Nav1.4/V787A channels and completely abolished in Nav1.4/V787K channels. The effects of Val787 mutations on metaflumizone were correlated with the hydrophobicity of the substituted amino acid rather than the extent of slow inactivation. None of the mutations at Val787 significantly affected the sensitivity to inhibition by DCJW or RH3421. These results demonstrate that the impact of mutations at Val787 on sodium channel inhibition by SCI insecticides depends on the specific insecticide examined and is independent of mutation-induced changes in slow inactivation gating. We propose that Val787 may be a unique determinant of metaflumizone binding. PMID:22983119

  7. Small Changes in the Primary Structure of Transportan 10 Alter the Thermodynamics and Kinetics of its Interaction with Phospholipid Vesicles

    PubMed Central

    2008-01-01

    The kinetics and thermodynamics of binding of transportan 10 (tp10) and four of its variants to phospholipid vesicles, and the kinetics of peptide-induced dye efflux, were compared. Tp10 is a 21-residue, amphipathic, cationic, cell-penetrating peptide similar to helical antimicrobial peptides. The tp10 variants examined include amidated and free peptides, and replacements of tyrosine by tryptophan. Carboxy-terminal amidation or substitution of tryptophan for tyrosine enhance binding and activity. The Gibbs energies of peptide binding to membranes determined experimentally and calculated from the interfacial hydrophobicity scale are in good agreement. The Gibbs energy for insertion into the bilayer core was calculated using hydrophobicity scales of residue transfer from water to octanol and to the membrane/water interface. Peptide-induced efflux becomes faster as the Gibbs energies for binding and insertion of the tp10 variants decrease. If anionic lipids are included, binding and efflux rate increase, as expected because all tp10 variants are cationic and an electrostatic component is added. Whether the most important effect of peptide amidation is the change in charge or an enhancement of helical structure, however, still needs to be established. Nevertheless, it is clear that the changes in efflux rate reflect the differences in the thermodynamics of binding and insertion of the free and amidated peptide groups. PMID:18260641

  8. Calcium currents, charge movement and dihydropyridine binding in fast- and slow-twitch muscles of rat and rabbit.

    PubMed Central

    Lamb, G D; Walsh, T

    1987-01-01

    1. The Vaseline-gap technique was used to record slow calcium currents and asymmetric charge movement in single fibres of fast-twitch muscles (extensor digitorum longus (e.d.l.) and sternomastoid) and slow-twitch muscles (soleus) from rat and rabbit, at a holding potential of -90 mV. 2. The slow calcium current in soleus fibres was about one-third of the size of the current in e.d.l. fibres, but was very similar otherwise. In both e.d.l. and soleus fibres, the dihydropyridine (DHP), nifedipine, suppressed the calcium current entirely. 3. In these normally polarized fibres, nifedipine suppressed only part (qns) of the asymmetric charge movement. The proportion of qns suppressed by various concentrations of nifedipine was linearly related to the associated reduction of the calcium current. Half-maximal suppression of both parameters was obtained with about 0.5 microM-nifedipine. The calcium current and the qns component of the charge movement also were suppressed over the same time course by nifedipine. Another DHP calcium antagonist, (+)PN200/110, was indistinguishable from nifedipine in its effects of suppressing calcium currents and qns. 4. In all muscle types, the total amount of qns in each fibre was linearly related to the size of the calcium current (in the absence of DHP). On average, qns was 3.3 times larger in e.d.l. fibres than in soleus fibres. 5. In contrast to the other dihydropyridines, (-)bay K8644, a calcium channel agonist, did not suppress any asymmetric charge movement. 6. The potential dependence of the slow calcium current implied a minimum gating charge of about five or six electronic charges. The movement of qns occurred over a more negative potential range than the change in calcium conductance. 7. Experiments on the binding of (+)PN200/110 indicated that e.d.l. muscles had between about 2 and 3 times more specific DHP binding sites than did soleus muscle. 8. These results point to a close relationship between slow calcium channels, the qns component of the charge movement and DHP binding sites, in both fast- and slow-twitch mammalian muscle. qns appears to be part of the gating current of the T-system calcium channels. PMID:2451745

  9. Facile characterization of aptamer kinetic and equilibrium binding properties using surface plasmon resonance

    PubMed Central

    Chang, Andrew L.; McKeague, Maureen; Smolke, Christina D.

    2015-01-01

    Nucleic acid aptamers find widespread use as targeting and sensing agents in nature and biotechnology. Their ability to bind an extensive range of molecular targets, including small molecules, proteins, and ions, with high affinity and specificity enables their use in diverse diagnostic, therapeutic, imaging, and gene-regulatory applications. Here, we describe methods for characterizing aptamer kinetic and equilibrium binding properties using a surface plasmon resonance-based platform. This aptamer characterization platform is broadly useful for studying aptamer–ligand interactions, comparing aptamer properties, screening functional aptamers during in vitro selection processes, and prototyping aptamers for integration into nucleic acid devices. PMID:25432760

  10. Multiplexed evaluation of capture agent binding kinetics using arrays of silicon photonic microring resonators.

    PubMed

    Byeon, Ji-Yeon; Bailey, Ryan C

    2011-09-07

    High affinity capture agents recognizing biomolecular targets are essential in the performance of many proteomic detection methods. Herein, we report the application of a label-free silicon photonic biomolecular analysis platform for simultaneously determining kinetic association and dissociation constants for two representative protein capture agents: a thrombin-binding DNA aptamer and an anti-thrombin monoclonal antibody. The scalability and inherent multiplexing capability of the technology make it an attractive platform for simultaneously evaluating the binding characteristics of multiple capture agents recognizing the same target antigen, and thus a tool complementary to emerging high-throughput capture agent generation strategies.

  11. Convection, diffusion and reaction in a surface-based biosensor: modeling of cooperativity and binding site competition on the surface and in the hydrogel.

    PubMed

    Lebedev, Konstantin; Mafé, Salvador; Stroeve, Pieter

    2006-04-15

    We study theoretically the transport and kinetic processes underlying the operation of a biosensor (particularly the surface plasmon sensor "Biacore") used to study the surface binding kinetics of biomolecules in solution to immobilized receptors. Unlike previous studies, we concentrate mainly on the modeling of system-specific phenomena rather than on the influence of mass transport limitations on the intrinsic kinetic rate constants determined from binding data. In the first problem, the case of two-site binding where each receptor unit on the surface can accommodate two analyte molecules on two different sites is considered. One analyte molecule always binds first to a specific site. Subsequently, the second analyte molecule can bind to the adjacent unoccupied site. In the second problem, two different analytes compete for one binding site on the same surface receptor. Finally, the third problem considers the case of positive cooperativity among bound molecules in the hydrogel using a simple mean-field approach. The transport in both the flow channel and the hydrogel phases of the biosensor is taken into account in this case (with few exceptions, most previous studies assume a simpler model in which the hydrogel is treated as a planar surface with the receptors). We consider simultaneously diffusion and convection through the flow channel together with diffusion and cooperativity binding on the surface and in the hydrogel. In each case, typical results for the concentration contours of the free and bound molecules in the flow channel and hydrogel regions are presented together with the time-dependent association/dissociation curves and reaction rates. For binding site competition, the analysis predicts overshoot phenomena.

  12. In situ hybridisation of a large repertoire of muscle-specific transcripts in fish larvae: the new superficial slow-twitch fibres exhibit characteristics of fast-twitch differentiation.

    PubMed

    Chauvigné, F; Ralliere, C; Cauty, C; Rescan, P Y

    2006-01-01

    Much of the present information on muscle differentiation in fish concerns the early embryonic stages. To learn more about the maturation and the diversification of the fish myotomal fibres in later stages of ontogeny, we investigated, by means of in situ hybridisation, the developmental expression of a large repertoire of muscle-specific genes in trout larvae from hatching to yolk resorption. At hatching, transcripts for fast and slow muscle protein isoforms, namely myosins, tropomyosins, troponins and myosin binding protein C were present in the deep fast and the superficial slow areas of the myotome, respectively. During myotome expansion that follows hatching, the expression of fast isoforms became progressively confined to the borders of the fast muscle mass, whereas, in contrast, slow muscle isoform transcripts were uniformly expressed in all the slow fibres. Transcripts for several enzymes involved in oxidative metabolism such as citrate synthase, cytochrome oxidase component IV and succinate dehydrogenase, were present throughout the whole myotome of hatching embryos but in later stages became concentrated in slow fibre as well as in lateral fast fibres. Surprisingly, the slow fibres that are added externally to the single superficial layer of the embryonic (original) slow muscle fibres expressed not only slow twitch muscle isoforms but also, transiently, a subset of fast twitch muscle isoforms including MyLC1, MyLC3, MyHC and myosin binding protein C. Taken together these observations show that the growth of the myotome of the fish larvae is associated with complex patterns of muscular gene expression and demonstrate the unexpected presence of fast muscle isoform-expressing fibres in the most superficial part of the slow muscle.

  13. Development and dissolution studies of bisphosphonate (clodronate)-containing hydroxyapatite-polylactic acid biocomposites for slow drug delivery.

    PubMed

    Macha, Innocent J; Cazalbou, Sophie; Shimmon, Ronald; Ben-Nissan, Besim; Milthorpe, Bruce

    2017-06-01

    An increase in clinical demand on the controlled release of bisphosphonates (BPs) due to complications associated with systemic administration, has been the current driving force on the development of BP drug-release systems. Bisphosphonates have the ability to bind to divalent metal ions, such as Ca 2+ , in bone mineral and prevent bone resorption by influencing the apoptosis of osteoclasts. Localized delivery using biodegradable materials, such as polylactic acid (PLA) and hydroxyapatite (HAp), which are ideal in this approach, have been used in this study to investigate the dissolution of clodronate (non-nitrogen-containing bisphosphonate) in a new release system. The effects of coral structure-derived HAp and the release kinetics of the composites were evaluated. The release kinetics of clodronate from PLA-BP and PLA-HAp-BP systems seemed to follow the power law model described by Korsmeyer-Peppas. Drug release was quantified by 31 P-NMR with detection and quantification limits of 9.2 and 30.7 mM, respectively. The results suggest that these biocomposite systems could be tuned to release clodronate for both relatively short and prolonged period of time. In addition to drug delivery, the degradation of HAp supplies both Ca 2+ and phosphate ions that can help in bone mineralization. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  14. Conformational flexibility related to enzyme activity: evidence for a dynamic active-site gatekeeper function of Tyr(215) in Aerococcus viridans lactate oxidase.

    PubMed

    Stoisser, Thomas; Brunsteiner, Michael; Wilson, David K; Nidetzky, Bernd

    2016-06-15

    L-Lactate oxidase (LOX) belongs to a large family of flavoenzymes that catalyze oxidation of α-hydroxy acids. How in these enzymes the protein structure controls reactivity presents an important but elusive problem. LOX contains a prominent tyrosine in the substrate binding pocket (Tyr(215) in Aerococcus viridans LOX) that is partially responsible for securing a flexible loop which sequesters the active site. To characterize the role of Tyr(215), effects of substitutions of the tyrosine (Y215F, Y215H) were analyzed kinetically, crystallographically and by molecular dynamics simulations. Enzyme variants showed slowed flavin reduction and oxidation by up to 33-fold. Pyruvate release was also decelerated and in Y215F, it was the slowest step overall. A 2.6-Å crystal structure of Y215F in complex with pyruvate shows the hydrogen bond between the phenolic hydroxyl and the keto oxygen in pyruvate is replaced with a potentially stronger hydrophobic interaction between the phenylalanine and the methyl group of pyruvate. Residues 200 through 215 or 216 appear to be disordered in two of the eight monomers in the asymmetric unit suggesting that they function as a lid controlling substrate entry and product exit from the active site. Substitutions of Tyr(215) can thus lead to a kinetic bottleneck in product release.

  15. Inhibition of ligand exchange kinetics via active-site trapping with an antibody fragment.

    PubMed

    Oyen, David; Steyaert, Jan; Barlow, John N

    2014-04-01

    We describe the first example of an inhibitory antibody fragment (nanobody ca1697) that binds simultaneously to an enzyme (the enzyme dihydrofolate reductase from Escherichia coli) and its bound substrate (folate). Binding of the antibody to the substrate causes a 20-fold reduction in the rate of folate exchange kinetics. This work opens up the prospect of designing new types of antibody-based inhibitors of enzymes and receptors through suitable design of immunogens.

  16. Transport direction determines the kinetics of substrate transport by the glutamate transporter EAAC1

    PubMed Central

    Zhang, Zhou; Tao, Zhen; Gameiro, Armanda; Barcelona, Stephanie; Braams, Simona; Rauen, Thomas; Grewer, Christof

    2007-01-01

    Glutamate transport by the excitatory amino acid carrier EAAC1 is known to be reversible. Thus, glutamate can either be taken up into cells, or it can be released from cells through reverse transport, depending on the electrochemical gradient of the co- and countertransported ions. However, it is unknown how fast and by which reverse transport mechanism glutamate can be released from cells. Here, we determined the steady- and pre-steady-state kinetics of reverse glutamate transport with submillisecond time resolution. First, our results suggest that glutamate and Na+ dissociate from their cytoplasmic binding sites sequentially, with glutamate dissociating first, followed by the three cotransported Na+ ions. Second, the kinetics of glutamate transport depend strongly on transport direction, with reverse transport being faster but less voltage-dependent than forward transport. Third, electrogenicity is distributed over several reverse transport steps, including intracellular Na+ binding, reverse translocation, and reverse relocation of the K+-bound EAAC1. We propose a kinetic model, which is based on a “first-in-first-out” mechanism, suggesting that glutamate association, with its extracellular binding site as well as dissociation from its intracellular binding site, precedes association and dissociation of at least one Na+ ion. Our model can be used to predict rates of glutamate release from neurons under physiological and pathophysiological conditions. PMID:17991780

  17. Structure/Function Analysis of Cotton-Based Peptide-Cellulose Conjugates: Spatiotemporal/Kinetic Assessment of Protease Aerogels Compared to Nanocrystalline and Paper Cellulose

    PubMed Central

    Edwards, J. Vincent; Fontenot, Krystal; Liebner, Falk; Pircher, Nicole Doyle nee; French, Alfred D.; Condon, Brian D.

    2018-01-01

    Nanocellulose has high specific surface area, hydration properties, and ease of derivatization to prepare protease sensors. A Human Neutrophil Elastase sensor designed with a nanocellulose aerogel transducer surface derived from cotton is compared with cotton filter paper, and nanocrystalline cellulose versions of the sensor. X-ray crystallography was employed along with Michaelis–Menten enzyme kinetics, and circular dichroism to contrast the structure/function relations of the peptide-cellulose conjugate conformation to enzyme/substrate binding and turnover rates. The nanocellulosic aerogel was found to have a cellulose II structure. The spatiotemporal relation of crystallite surface to peptide-cellulose conformation is discussed in light of observed enzyme kinetics. A higher substrate binding affinity (Km) of elastase was observed with the nanocellulose aerogel and nanocrystalline peptide-cellulose conjugates than with the solution-based elastase substrate. An increased Km observed for the nanocellulosic aerogel sensor yields a higher enzyme efficiency (kcat/Km), attributable to binding of the serine protease to the negatively charged cellulose surface. The effect of crystallite size and β-turn peptide conformation are related to the peptide-cellulose kinetics. Models demonstrating the orientation of cellulose to peptide O6-hydroxymethyl rotamers of the conjugates at the surface of the cellulose crystal suggest the relative accessibility of the peptide-cellulose conjugates for enzyme active site binding. PMID:29534033

  18. The mechanism of interactions between tea polyphenols and porcine pancreatic alpha‐amylase: Analysis by inhibition kinetics, fluorescence quenching, differential scanning calorimetry and isothermal titration calorimetry

    PubMed Central

    Sun, Lijun; Gidley, Michael J.

    2017-01-01

    Scope This study aims to use a combination of biochemical and biophysical methods to derive greater mechanistic understanding of the interactions between tea polyphenols and porcine pancreatic α‐amylase (PPA). Methods and results The interaction mechanism was studied through fluorescence quenching (FQ), differential scanning calorimetry (DSC) and isothermal titration calorimetry (ITC) and compared with inhibition kinetics. The results showed that a higher quenching effect of polyphenols corresponded to a stronger inhibitory activity against PPA. The red‐shift of maximum emission wavelength of PPA bound with some polyphenols indicated a potential structural unfolding of PPA. This was also suggested by the decreased thermostability of PPA with these polyphenols in DSC thermograms. Through thermodynamic binding analysis of ITC and inhibition kinetics, the equilibrium of competitive inhibition was shown to result from the binding of particularly galloylated polyphenols with specific sites on PPA. There were positive linear correlations between the reciprocal of competitive inhibition constant (1/K ic), quenching constant (K FQ) and binding constant (K itc). Conclusion The combination of inhibition kinetics, FQ, DSC and ITC can reasonably characterize the interactions between tea polyphenols and PPA. The galloyl moiety is an important group in catechins and theaflavins in terms of binding with and inhibiting the activity of PPA. PMID:28618113

  19. Steady-state kinetic mechanism of the NADP+- and NAD+-dependent reactions catalysed by betaine aldehyde dehydrogenase from Pseudomonas aeruginosa.

    PubMed Central

    Velasco-García, R; González-Segura, L; Muñoz-Clares, R A

    2000-01-01

    Betaine aldehyde dehydrogenase (BADH) catalyses the irreversible oxidation of betaine aldehyde to glycine betaine with the concomitant reduction of NAD(P)(+) to NADP(H). In Pseudomonas aeruginosa this reaction is a compulsory step in the assimilation of carbon and nitrogen when bacteria are growing in choline or choline precursors. The kinetic mechanisms of the NAD(+)- and NADP(+)-dependent reactions were examined by steady-state kinetic methods and by dinucleotide binding experiments. The double-reciprocal patterns obtained for initial velocity with NAD(P)(+) and for product and dead-end inhibition establish that both mechanisms are steady-state random. However, quantitative analysis of the inhibitions, and comparison with binding data, suggest a preferred route of addition of substrates and release of products in which NAD(P)(+) binds first and NAD(P)H leaves last, particularly in the NADP(+)-dependent reaction. Abortive binding of the dinucleotides, or their analogue ADP, in the betaine aldehyde site was inferred from total substrate inhibition by the dinucleotides, and parabolic inhibition by NADH and ADP. A weak partial uncompetitive substrate inhibition by the aldehyde was observed only in the NADP(+)-dependent reaction. The kinetics of P. aeruginosa BADH is very similar to that of glucose-6-phosphate dehydrogenase, suggesting that both enzymes fulfil a similar amphibolic metabolic role when the bacteria grow in choline and when they grow in glucose. PMID:11104673

  20. Structure/Function Analysis of Cotton-Based Peptide-Cellulose Conjugates: Spatiotemporal/Kinetic Assessment of Protease Aerogels Compared to Nanocrystalline and Paper Cellulose.

    PubMed

    Edwards, J Vincent; Fontenot, Krystal; Liebner, Falk; Pircher, Nicole Doyle Nee; French, Alfred D; Condon, Brian D

    2018-03-13

    Nanocellulose has high specific surface area, hydration properties, and ease of derivatization to prepare protease sensors. A Human Neutrophil Elastase sensor designed with a nanocellulose aerogel transducer surface derived from cotton is compared with cotton filter paper, and nanocrystalline cellulose versions of the sensor. X-ray crystallography was employed along with Michaelis-Menten enzyme kinetics, and circular dichroism to contrast the structure/function relations of the peptide-cellulose conjugate conformation to enzyme/substrate binding and turnover rates. The nanocellulosic aerogel was found to have a cellulose II structure. The spatiotemporal relation of crystallite surface to peptide-cellulose conformation is discussed in light of observed enzyme kinetics. A higher substrate binding affinity ( K m ) of elastase was observed with the nanocellulose aerogel and nanocrystalline peptide-cellulose conjugates than with the solution-based elastase substrate. An increased K m observed for the nanocellulosic aerogel sensor yields a higher enzyme efficiency ( k cat / K m ), attributable to binding of the serine protease to the negatively charged cellulose surface. The effect of crystallite size and β-turn peptide conformation are related to the peptide-cellulose kinetics. Models demonstrating the orientation of cellulose to peptide O6-hydroxymethyl rotamers of the conjugates at the surface of the cellulose crystal suggest the relative accessibility of the peptide-cellulose conjugates for enzyme active site binding.

  1. Density controls the kinetic stability of ultrastable glasses

    NASA Astrophysics Data System (ADS)

    Fullerton, Christopher J.; Berthier, Ludovic

    2017-08-01

    We use a swap Monte Carlo algorithm to numerically prepare bulk glasses with kinetic stability comparable to that of glass films produced experimentally by physical vapor deposition. By melting these systems into the liquid state, we show that some of our glasses retain their amorphous structures longer than 105 times the equilibrium structural relaxation time. This “exceptional” kinetic stability cannot be achieved for bulk glasses produced by slow cooling. We perform simulations at both constant volume and constant pressure to demonstrate that the density mismatch between the ultrastable glass and the equilibrium liquid accounts for a major part of the observed kinetic stability.

  2. Plasma kinetic effects on atomistic mix in one dimension and at structured interfaces (I)

    NASA Astrophysics Data System (ADS)

    Yin, L.; Albright, B. J.; Vold, E. L.; Taitano, W.; Chacon, L.; Simakov, A.

    2017-10-01

    Kinetic effects on interfacial mix are examined using VPIC simulations. In 1D, comparisons are made to the results of analytic theory in the small Knudsen number limit. While the bulk mixing properties of interfaces are in general agreement, differences arise near the low-concentration fronts during the early evolution of a sharp interface when the species' perpendicular scattering rate dominates over the slowing down rate. In kinetic simulations, the diffusion velocities can be larger or comparable to the ion thermal speeds, and the Knudsen number can be large. Super-diffusive growth in mix widths (Δx ta where a >=1/2) is seen before transition to the slow diffusive process predicted from theory (a =1/2). Mixing at interfaces leads to persistent, bulk, hydrodynamic features in the center of mass flow profiles as a result of diffusion and momentum conservation. These conclusions are drawn from VPIC results together with simulations from the RAGE hydrodynamics code with an implementation of diffusion and viscosity from theory and an implicit Vlasov-Fokker-Planck code iFP. In perturbed 2D and 3D interfaces, it is found that 1D ambipolarity is still valid and that initial perturbations flatten out on a-few-ps time scale, implying that finite diffusivity and viscosity can slow instability growth in ICF and HED settings. Work supported by the LANL ASC and Science programs.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pack, Chan-Gi, E-mail: changipack@amc.seoul.kr; Ahn, Sang-Gun

    The cellular response to stress is primarily controlled in cells via transcriptional activation by heat shock factor 1 (HSF1). HSF1 is well-known to form homotrimers for activation upon heat shock and subsequently bind to target DNAs, such as heat-shock elements, by forming stress granules. A previous study demonstrated that nuclear HSF1 and HSF2 molecules in live cells interacted with target DNAs on the stress granules. However, the process underlying the binding interactions of HSF family in cells upon heat shock remains unclear. This study demonstrate for the first time that the interaction kinetics among nuclear HSF1, HSF2, and HSF4 uponmore » heat shock can be detected directly in live cells using dual color fluorescence cross-correlation spectroscopy (FCCS). FCCS analyses indicated that the binding between HSFs was dramatically changed by heat shock. Interestingly, the recovery kinetics of interaction between HSF1 molecules after heat shock could be represented by changes in the relative interaction amplitude and mobility. - Highlights: • The binding interactions among nuclear HSFs were successfully detected. • The binding kinetics between HSF1s during recovery was quantified. • HSF2 and HSF4 strongly formed hetero-complex, even before heat shock. • Nuclear HSF2 and HSF4 bound to HSF1 only after heat shock.« less

  4. Thermodynamic and Kinetics Analysis of Peptides Derived from CapZ, NDR, p53, HDM2, and HDM4 Binding to Human S100B

    PubMed Central

    Wafer, Lucas N.; Streicher, Werner W.; McCallum, Scott A.; Makhatadze, George I.

    2012-01-01

    S100B is a member of the S100 subfamily of EF-hand proteins that has been implicated in malignant melanoma and neurodegenerative conditions such as Alzheimer's and Parkinson's disease. Calcium-induced conformational changes expose a hydrophobic binding cleft, facilitating interactions with a wide variety of nuclear, cytoplasmic, and extracellular target proteins. Previously, peptides derived from CapZ, p53, NDR, HDM2 and HDM4 have been shown to interact with S100B in a calcium-dependent manner. However, the thermodynamic and kinetic basis of these interactions remains largely unknown. To gain further insight, these peptides were screened against the S100B protein using isothermal titration calorimetry and nuclear magnetic resonance. All peptides were found to have binding affinities in the low micromolar to nanomolar range. Binding-induced changes in the line shapes of S100B backbone 1H and 15N were monitored to obtain the dissociation constants and the kinetic binding parameters. The large microscopic Kon rate constants observed in this study, Kon ≥1×107 M-1s-1, suggest that S100B utilizes a “fly casting mechanism” in the recognition of these peptide targets. PMID:22913742

  5. Mechanism of hERG channel block by the psychoactive indole alkaloid ibogaine.

    PubMed

    Thurner, Patrick; Stary-Weinzinger, Anna; Gafar, Hend; Gawali, Vaibhavkumar S; Kudlacek, Oliver; Zezula, Juergen; Hilber, Karlheinz; Boehm, Stefan; Sandtner, Walter; Koenig, Xaver

    2014-02-01

    Ibogaine is a psychoactive indole alkaloid. Its use as an antiaddictive agent has been accompanied by QT prolongation and cardiac arrhythmias, which are most likely caused by human ether a go-go-related gene (hERG) potassium channel inhibition. Therefore, we studied in detail the interaction of ibogaine with hERG channels heterologously expressed in mammalian kidney tsA-201 cells. Currents through hERG channels were blocked regardless of whether ibogaine was applied via the extracellular or intracellular solution. The extent of inhibition was determined by the relative pH values. Block occurred during activation of the channels and was not observed for resting channels. With increasing depolarizations, ibogaine block grew and developed faster. Steady-state activation and inactivation of the channel were shifted to more negative potentials. Deactivation was slowed, whereas inactivation was accelerated. Mutations in the binding site reported for other hERG channel blockers (Y652A and F656A) reduced the potency of ibogaine, whereas an inactivation-deficient double mutant (G628C/S631C) was as sensitive as wild-type channels. Molecular drug docking indicated binding within the inner cavity of the channel independently of the protonation of ibogaine. Experimental current traces were fit to a kinetic model of hERG channel gating, revealing preferential binding of ibogaine to the open and inactivated state. Taken together, these findings show that ibogaine blocks hERG channels from the cytosolic side either in its charged form alone or in company with its uncharged form and alters the currents by changing the relative contribution of channel states over time.

  6. Kinetic intermediates of unfolding of dimeric prostatic phosphatase.

    PubMed

    Kuciel, Radosława; Mazurkiewicz, Aleksandra; Dudzik, Paulina

    2007-01-01

    Kinetics of guanidine hydrochloride (GdnHCl)-induced unfolding of human prostatic acid phosphatase (hPAP), a homodimer of 50 kDa subunit molecular mass was investigated with enzyme activity measurements, capacity for binding an external hydrophobic probe, 1-anilinonaphtalene-8-sulfonate (ANS), accessibility of thiols to reaction with 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) and 2-(4'-maleimidylanilino)naphthalene-6-sulfonate (MIANS) and ability to bind Congo red dye. Kinetic analysis was performed to describe a possible mechanism of hPAP unfolding and dissociation that leads to generation of an inactive monomeric intermediate that resembles, in solution of 1.25 M GdnHCl pH 7.5, at 20 degrees C, in equilibrium, a molten globule state. The reaction of hPAP inactivation in 1.25 M GdnHCl followed first order kinetics with the reaction rate constant 0.0715 +/- 0.0024 min(-1) . The rate constants of similar range were found for the pseudo-first-order reactions of ANS and Congo red binding: 0.0366 +/- 0.0018 min(-1) and 0.0409 +/- 0.0052 min(-1), respectively. Free thiol groups, inaccessible in the native protein, were gradually becoming, with the progress of unfolding, exposed for the reactions with DTNB and MIANS, with the pseudo-first-order reaction rate constants 0.327 +/- 0.014 min(-1) and 0.216 +/- 0.010 min(-1), respectively. The data indicated that in the course of hPAP denaturation exposure of thiol groups to reagents took place faster than the enzyme inactivation and exposure of the protein hydrophobic surface. This suggested the existence of a catalytically active, partially unfolded, but probably dimeric kinetic intermediate in the process of hPAP unfolding. On the other hand, the protein inactivation was accompanied by exposure of a hydrophobic, ANS-binding surface, and with an increased capacity to bind Congo red. Together with previous studies these results suggest that the stability of the catalytically active conformation of the enzyme depends mainly on the dimeric structure of the native hPAP.

  7. Using engineered single-chain antibodies to correlate molecular binding properties and nanoparticle adhesion dynamics.

    PubMed

    Haun, Jered B; Pepper, Lauren R; Boder, Eric T; Hammer, Daniel A

    2011-11-15

    Elucidation of the relationship between targeting molecule binding properties and the adhesive behavior of therapeutic or diagnostic nanocarriers would aid in the design of optimized vectors and lead to improved efficacy. We measured the adhesion of 200-nm-diameter particles under fluid flow that was mediated by a diverse array of molecular interactions, including recombinant single-chain antibodies (scFvs), full antibodies, and the avidin/biotin interaction. Within the panel of scFvs, we used a family of mutants that display a spectrum of binding kinetics, allowing us to compare nanoparticle adhesion to bond chemistry. In addition, we explored the effect of molecular size by inserting a protein linker into the scFv fusion construct and by employing scFvs that are specific for targets with vastly different sizes. Using computational models, we extracted multivalent kinetic rate constants for particle attachment and detachment from the adhesion data and correlated the results to molecular binding properties. Our results indicate that the factors that increase encounter probability, such as adhesion molecule valency and size, directly enhance the rate of nanoparticle attachment. Bond kinetics had no influence on scFv-mediated nanoparticle attachment within the kinetic range tested, however, but did appear to affect antibody/antigen and avidin/biotin mediated adhesion. We attribute this finding to a combination of multivalent binding and differences in bond mechanical strength between recombinant scFvs and the other adhesion molecules. Nanoparticle detachment probability correlated directly with adhesion molecule valency and size, as well as the logarithm of the affinity for all molecules tested. On the basis of this work, scFvs can serve as viable targeting receptors for nanoparticles, but improvements to their bond mechanical strength would likely be required to fully exploit their tunable kinetic properties and maximize the adhesion efficiency of nanoparticles that bear them.

  8. Revealing kinetics and state-dependent binding properties of IKur-targeting drugs that maximize atrial fibrillation selectivity

    NASA Astrophysics Data System (ADS)

    Ellinwood, Nicholas; Dobrev, Dobromir; Morotti, Stefano; Grandi, Eleonora

    2017-09-01

    The KV1.5 potassium channel, which underlies the ultra-rapid delayed-rectifier current (IKur) and is predominantly expressed in atria vs. ventricles, has emerged as a promising target to treat atrial fibrillation (AF). However, while numerous KV1.5-selective compounds have been screened, characterized, and tested in various animal models of AF, evidence of antiarrhythmic efficacy in humans is still lacking. Moreover, current guidelines for pre-clinical assessment of candidate drugs heavily rely on steady-state concentration-response curves or IC50 values, which can overlook adverse cardiotoxic effects. We sought to investigate the effects of kinetics and state-dependent binding of IKur-targeting drugs on atrial electrophysiology in silico and reveal the ideal properties of IKur blockers that maximize anti-AF efficacy and minimize pro-arrhythmic risk. To this aim, we developed a new Markov model of IKur that describes KV1.5 gating based on experimental voltage-clamp data in atrial myocytes from patient right-atrial samples in normal sinus rhythm. We extended the IKur formulation to account for state-specificity and kinetics of KV1.5-drug interactions and incorporated it into our human atrial cell model. We simulated 1- and 3-Hz pacing protocols in drug-free conditions and with a [drug] equal to the IC50 value. The effects of binding and unbinding kinetics were determined by examining permutations of the forward (kon) and reverse (koff) binding rates to the closed, open, and inactivated states of the KV1.5 channel. We identified a subset of ideal drugs exhibiting anti-AF electrophysiological parameter changes at fast pacing rates (effective refractory period prolongation), while having little effect on normal sinus rhythm (limited action potential prolongation). Our results highlight that accurately accounting for channel interactions with drugs, including kinetics and state-dependent binding, is critical for developing safer and more effective pharmacological anti-AF options.

  9. Peptide-functionalized iron oxide magnetic nanoparticle for gold mining

    NASA Astrophysics Data System (ADS)

    Shen, Wei-Zheng; Cetinel, Sibel; Sharma, Kumakshi; Borujeny, Elham Rafie; Montemagno, Carlo

    2017-02-01

    Here, we present our work on preparing a novel nanomaterial composed of inorganic binding peptides and magnetic nanoparticles for inorganic mining. Two previously selected and well-characterized gold-binding peptides from cell surface display, AuBP1 and AuBP2, were exploited. This nanomaterial (AuBP-MNP) was designed to fulfill the following two significant functions: the surface conjugated gold-binding peptide will recognize and selectively bind to gold, while the magnetic nano-sized core will respond and migrate according to the applied external magnetic field. This will allow the smart nanomaterial to mine an individual material (gold) from a pool of mixture, without excessive solvent extraction, filtration, and concentration steps. The working efficiency of AuBP-MNP was determined by showing a dramatic reduction of gold nanoparticle colloid concentration, monitored by spectroscopy. The binding kinetics of AuBP-MNP onto the gold surface was determined using surface plasmon resonance (SPR) spectroscopy, which exhibits around 100 times higher binding kinetics than peptides alone. The binding capacity of AuBP-MNP was demonstrated by a bench-top mining test with gold microparticles.

  10. Glutamate 90 at the Luminal Ion Gate of Sarcoplasmic Reticulum Ca2+-ATPase Is Critical for Ca2+ Binding on Both Sides of the Membrane*

    PubMed Central

    Clausen, Johannes D.; Andersen, Jens Peter

    2010-01-01

    The roles of Ser72, Glu90, and Lys297 at the luminal ends of transmembrane helices M1, M2, and M4 of sarcoplasmic reticulum Ca2+-ATPase were examined by transient and steady-state kinetic analysis of mutants. The dependence on the luminal Ca2+ concentration of phosphorylation by Pi (“Ca2+ gradient-dependent E2P formation”) showed a reduction of the apparent affinity for luminal Ca2+ in mutants with alanine or leucine replacement of Glu90, whereas arginine replacement of Glu90 or Ser72 allowed E2P formation from Pi even at luminal Ca2+ concentrations much too small to support phosphorylation in wild type. The latter mutants further displayed a blocked dephosphorylation of E2P and an increased rate of conversion of the ADP-sensitive E1P phosphoenzyme intermediate to ADP-insensitive E2P as well as insensitivity of the E2·BeF3− complex to luminal Ca2+. Altogether, these findings, supported by structural modeling, indicate that the E2P intermediate is stabilized in the mutants with arginine replacement of Glu90 or Ser72, because the positive charge of the arginine side chain mimics Ca2+ occupying a luminally exposed low affinity Ca2+ site of E2P, thus identifying an essential locus (a “leaving site”) on the luminal Ca2+ exit pathway. Mutants with alanine or leucine replacement of Glu90 further displayed a marked slowing of the Ca2+ binding transition as well as slowing of the dissociation of Ca2+ from Ca2E1 back toward the cytoplasm, thus demonstrating that Glu90 is also critical for the function of the cytoplasmically exposed Ca2+ sites on the opposite side of the membrane relative to where Glu90 is located. PMID:20421308

  11. Nucleophilic modification of human complement protein C3: correlation of conformational changes with acquisition of C3b-like functional properties.

    PubMed

    Isenman, D E; Kells, D I; Cooper, N R; Müller-Eberhard, H J; Pangburn, M K

    1981-07-21

    Inactivation of C3 by enzymatic cleavage, nucleophilic addition, or slow freezing and thawing resulted in the acquisition of similar end-state conformations as judged by near-UV circular dichroism. Although inactivation by the two nonenzymatic processes involves no peptide bond scission, the inactivated C3 resembled C3b in that it possessed a free sulfhydryl group not present in the native protein and an increased surface hydrophobicity as evidenced by enhanced binding of the fluorophore 8-anilino-1-naphthalensulfonate (ANS). The C3b-like functional properties of modified C3 [Pangburn, M. K., & Müller-Eberhard, H. J. (1980) J. Exp. Med. 152, 1102-1114] may thus be understood in terms of the similarity of its conformation to that of C3b. The rate of the conformational change following proteolytic cleavage was fast and appeared to be limited by the rate of the enzymatic reaction. In contrast, the rate of conformational change following addition of methylamine was slow and rate limited by the conformational rearrangement itself, not by the chemical modification. A kinetic analysis of the changes in circular dichroism and ANS fluorescence enhancement suggested that the nucleophilic addition was spectroscopically undetectable and was followed by a minimally biphasic, spectroscopically demonstrable conformational rearrangement. The appearance of C3b-like functional activity in nucleophile-modified C3 largely parallels the time course of the spectroscopically detectable conformational change but is distinctly slower than the rate at which hemolytic activity is lost. While fully transconformed methylamine-inactivated C3 can bind factor B and is susceptible to cleavage by C3b inactivator and its cofactor beta 1H, this cleavage occurs at a substantially slower rate than the equivalent process in C3b. The implications of these findings in terms of the mechanism through which the alterative pathway of complement is initiated are discussed.

  12. Side-binding proteins modulate actin filament dynamics

    PubMed Central

    Crevenna, Alvaro H; Arciniega, Marcelino; Dupont, Aurélie; Mizuno, Naoko; Kowalska, Kaja; Lange, Oliver F; Wedlich-Söldner, Roland; Lamb, Don C

    2015-01-01

    Actin filament dynamics govern many key physiological processes from cell motility to tissue morphogenesis. A central feature of actin dynamics is the capacity of filaments to polymerize and depolymerize at their ends in response to cellular conditions. It is currently thought that filament kinetics can be described by a single rate constant for each end. In this study, using direct visualization of single actin filament elongation, we show that actin polymerization kinetics at both filament ends are strongly influenced by the binding of proteins to the lateral filament surface. We also show that the pointed-end has a non-elongating state that dominates the observed filament kinetic asymmetry. Estimates of flexibility as well as effects on fragmentation and growth suggest that the observed kinetic diversity arises from structural alteration. Tuning elongation kinetics by exploiting the malleability of the filament structure may be a ubiquitous mechanism to generate a rich variety of cellular actin dynamics. DOI: http://dx.doi.org/10.7554/eLife.04599.001 PMID:25706231

  13. Chloride Anions Regulate Kinetics but Not Voltage-Sensor Qmax of the Solute Carrier SLC26a5.

    PubMed

    Santos-Sacchi, Joseph; Song, Lei

    2016-06-07

    In general, SLC26 solute carriers serve to transport a variety of anions across biological membranes. However, prestin (SLC26a5) has evolved, now serving as a motor protein in outer hair cells (OHCs) of the mammalian inner ear and is required for cochlear amplification, a mechanical feedback mechanism to boost auditory performance. The mechanical activity of the OHC imparted by prestin is driven by voltage and controlled by anions, chiefly intracellular chloride. Current opinion is that chloride anions control the Boltzmann characteristics of the voltage sensor responsible for prestin activity, including Qmax, the total sensor charge moved within the membrane, and Vh, a measure of prestin's operating voltage range. Here, we show that standard narrow-band, high-frequency admittance measures of nonlinear capacitance (NLC), an alternate representation of the sensor's charge-voltage (Q-V) relationship, is inadequate for assessment of Qmax, an estimate of the sum of unitary charges contributed by all voltage sensors within the membrane. Prestin's slow transition rates and chloride-binding kinetics adversely influence these estimates, contributing to the prevalent concept that intracellular chloride level controls the quantity of sensor charge moved. By monitoring charge movement across frequency, using measures of multifrequency admittance, expanded displacement current integration, and OHC electromotility, we find that chloride influences prestin kinetics, thereby controlling charge magnitude at any particular frequency of interrogation. Importantly, however, this chloride dependence vanishes as frequency decreases, with Qmax asymptoting at a level irrespective of the chloride level. These data indicate that prestin activity is significantly low-pass in the frequency domain, with important implications for cochlear amplification. We also note that the occurrence of voltage-dependent charge movements in other SLC26 family members may be hidden by inadequate interrogation timescales, and that revelation of such activity could highlight an evolutionary means for kinetic modifications within the family to address hearing requirements in mammals. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. Biphasic Activation of Ribulose Bisphosphate Carboxylase in Spinach Leaves as Determined from Nonsteady-State CO2 Exchange 1

    PubMed Central

    Woodrow, Ian E.; Mott, Keith A.

    1992-01-01

    The activation kinetics of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) following an increase in photon flux density (PFD) were studied by analyzing CO2 assimilation time courses in spinach leaves (Spinacia oleracea). When leaves were exposed to 45 minutes of darkness before illumination at 690 micromoles per square meter per second, Rubisco activation followed apparent first-order kinetics with a relaxation time of about 3.8 minutes. But when leaves were illuminated for 45 minutes at 160 micromoles per square meter per second prior to illumination at 690 micromoles per square meter per second the relaxation time for Rubisco activation was only 2.1 minutes. The kinetics of this change in relaxation times were investigated by exposing dark-adapted leaves to 160 micromoles per square meter per second for different periods before increasing the PFD to 690 micromoles per square meter per second. It was found that the apparent relaxation time for Rubisco activation changed from 3.8 to 2.1 minutes slowly, requiring at least 8 minutes for completion. This result indicates that at least two sequential, slow processes are involved in light-mediated activation of Rubisco in spinach leaves and that the relaxation times characterizing these two processes are about 4 and 2 minutes, respectively. The kinetics of the first process in the reverse direction and the dependence of the relaxation time for the second process on the magnitude of the increase in PFD were also determined. Evidence that the first slow process is activation of the enzyme Rubisco activase and that the second slow process is the catalytic activation of Rubisco by activase is discussed. PMID:16668865

  15. Reduction of O2 slow component by priming exercise: novel mechanistic insights from time-resolved near-infrared spectroscopy

    PubMed Central

    Fukuoka, Yoshiyuki; Poole, David C; Barstow, Thomas J; Kondo, Narihiko; Nishiwaki, Masato; Okushima, Dai; Koga, Shunsaku

    2015-01-01

    Novel time-resolved near-infrared spectroscopy (TR-NIRS), with adipose tissue thickness correction, was used to test the hypotheses that heavy priming exercise reduces the V̇O2 slow component (V̇O2SC) (1) by elevating microvascular [Hb] volume at multiple sites within the quadriceps femoris (2) rather than reducing the heterogeneity of muscle deoxygenation kinetics. Twelve subjects completed two 6-min bouts of heavy work rate exercise, separated by 6 min of unloaded cycling. Priming exercise induced faster overall V̇O2 kinetics consequent to a substantial reduction in the V̇O2SC (0.27 ± 0.12 vs. 0.11 ± 0.09 L·min−1, P < 0.05) with an unchanged primary V̇O2 time constant. An increased baseline for the primed bout [total (Hb + Mb)] (197.5 ± 21.6 vs. 210.7 ± 22.5 μmol L−1, P < 0.01), reflecting increased microvascular [Hb] volume, correlated significantly with the V̇O2SC reduction. At multiple sites within the quadriceps femoris, priming exercise reduced the baseline and slowed the increase in [deoxy (Hb + Mb)]. Changes in the intersite coefficient of variation in the time delay and time constant of [deoxy (Hb + Mb)] during the second bout were not correlated with the V̇O2SC reduction. These results support a mechanistic link between priming exercise-induced increase in muscle [Hb] volume and the reduced V̇O2SC that serves to speed overall V̇O2 kinetics. However, reduction in the heterogeneity of muscle deoxygenation kinetics does not appear to be an obligatory feature of the priming response. PMID:26109190

  16. Effect of muscle tone on ankle kinetics during gait with ankle-foot orthoses in persons with stroke.

    PubMed

    Mizuno, Shiho; Sonoda, Shigeru; Takeda, Kotaro; Maeshima, Shinichiro

    2017-12-01

    Background Individuals exhibiting hemiplegia and increased ankle plantar flexors muscle tone following stroke are frequently prescribed an ankle-foot orthosis (AFO) to regain functional ambulation. The effect of muscle tone on ankle kinetics when walking with an AFO remains unknown. Objectives To investigate the effect of plantar flexion (PF) muscle tone on ankle plantar flexion torque during walking with an ankle-foot orthosis Methods The study included 80 participants with first-ever stroke whose manual muscle testing (MMT) of ankle DF 0-4, and 10 healthy subjects. Participants were instructed to walk on a treadmill, at a comfortable speed, wearing an instrumented AFO. Minimum PF torque during the last half of swing was extracted as an outcome measure. Resistive PF torques during passive slow and fast stretches were measured with a custom-built device, with torques at 10° DF (T10°-slow and T10°-fast) extracted as defining parameters for stiffness and muscle tone, respectively. Results Correlations between both T10°-slow and T10°-fast variables with minimum PF torque were fair among ankle DF MMT 0-3 groups (r = 0.71 -0.74, p < 0.01), with no correlation observed among the MMT 4 group and healthy subjects. Conclusions Effects of muscle tone on ankle kinetics during swing phase, with an AFO, were observed in persons with severe ankle DF paresis. Quantitative evaluation of ankle kinetics during gait with an AFO in addition to evaluation of muscle tone at rest is contributory to objective assessment of a muscle tone, not subjective rating scale at rest, or visual inspection of walking.

  17. Database-Centric Method for Automated High-Throughput Deconvolution and Analysis of Kinetic Antibody Screening Data.

    PubMed

    Nobrega, R Paul; Brown, Michael; Williams, Cody; Sumner, Chris; Estep, Patricia; Caffry, Isabelle; Yu, Yao; Lynaugh, Heather; Burnina, Irina; Lilov, Asparouh; Desroches, Jordan; Bukowski, John; Sun, Tingwan; Belk, Jonathan P; Johnson, Kirt; Xu, Yingda

    2017-10-01

    The state-of-the-art industrial drug discovery approach is the empirical interrogation of a library of drug candidates against a target molecule. The advantage of high-throughput kinetic measurements over equilibrium assessments is the ability to measure each of the kinetic components of binding affinity. Although high-throughput capabilities have improved with advances in instrument hardware, three bottlenecks in data processing remain: (1) intrinsic molecular properties that lead to poor biophysical quality in vitro are not accounted for in commercially available analysis models, (2) processing data through a user interface is time-consuming and not amenable to parallelized data collection, and (3) a commercial solution that includes historical kinetic data in the analysis of kinetic competition data does not exist. Herein, we describe a generally applicable method for the automated analysis, storage, and retrieval of kinetic binding data. This analysis can deconvolve poor quality data on-the-fly and store and organize historical data in a queryable format for use in future analyses. Such database-centric strategies afford greater insight into the molecular mechanisms of kinetic competition, allowing for the rapid identification of allosteric effectors and the presentation of kinetic competition data in absolute terms of percent bound to antigen on the biosensor.

  18. Ligand-promoted protein folding by biased kinetic partitioning.

    PubMed

    Hingorani, Karan S; Metcalf, Matthew C; Deming, Derrick T; Garman, Scott C; Powers, Evan T; Gierasch, Lila M

    2017-04-01

    Protein folding in cells occurs in the presence of high concentrations of endogenous binding partners, and exogenous binding partners have been exploited as pharmacological chaperones. A combined mathematical modeling and experimental approach shows that a ligand improves the folding of a destabilized protein by biasing the kinetic partitioning between folding and alternative fates (aggregation or degradation). Computationally predicted inhibition of test protein aggregation and degradation as a function of ligand concentration are validated by experiments in two disparate cellular systems.

  19. Ligand-Promoted Protein Folding by Biased Kinetic Partitioning

    PubMed Central

    Hingorani, Karan S.; Metcalf, Matthew C.; Deming, Derrick T.; Garman, Scott C.; Powers, Evan T.; Gierasch, Lila M.

    2017-01-01

    Protein folding in cells occurs in the presence of high concentrations of endogenous binding partners, and exogenous binding partners have been exploited as pharmacological chaperones. A combined mathematical modeling and experimental approach shows that a ligand improves the folding of a destabilized protein by biasing the kinetic partitioning between folding and alternative fates (aggregation or degradation). Computationally predicted inhibition of test protein aggregation and degradation as a function of ligand concentration are validated by experiments in two disparate cellular systems. PMID:28218913

  20. First Observation of Switch-Off Slow Shocks in Fully Kinetic Particle in Cell Simulation of Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Lapenta, G.; Sanna, L.; Goldman, M. V.; Newman, D. L.; Markidis, S.

    2014-12-01

    A perduring challenge in the study of reconnection it has long been the failing attempts to reconcile the large scale MHD view based on the Petschek model with the small scale view based on kinetic theory. The first is based on the existence of standing switch off slow shocks (SSS) that eliminate the horizontal (the x component in the usual GSM coordinates) reconnecting magnetic field component forming vertical magnetic field lines. The second is based on nested diffusion regions where the magnetic field lines become decoupled first from ions and then from electrons. The kinetic picture when observed superficially does seem to have seem resemblance to the Petschek topology, despite the nested boxes being more of a Sweet-Parker concept. Nevertheless, the question has always been: if expanded to sufficiently large scales, does the kinetic description eventually lead tot the formation os SSS? The question remains answered. Recently a first negative answer has been proposed in Ref. [1]. The proposed answer is in essence that SSS are made impossible by the presence of a firehose instability in the reconnection exhaust and by the formation of a plateau in the firehose parameter at a value of 0.25 corresponding to the condition where nonlinear slow and intermediate wave become degenerate. We report a new series of simulations where we demonstrate that this is not the case in general. While for the specific case used in Ref [1], we indeed re-obtain the same conclusions reached by the authors. But our study demonstrates that case to be very peculiar and not representative of the more general kinetic answer. We will report direct evidence of the presence of extended SSS (over regions of hundreds of ion inertial lengths) in fully kinetic simulations for parameters typical of the magntotail and of the solar wind. Our results indicate that SSS are the natural extension of kinetic reconnection to large scales. The simulations required for the study are heroic and were conducted with state of the art massively parallel computers provided by the PRACE system in Europe (specifically the Curie and SuperMUC computers) and by NASA Pleiades. The present work was funded by the NASA MMS mission and by the EC-funded project eHeroes (www.eheroes.eu)[1] Liu, Yi-Hsin, et al., PoP 18.6 (2011): 062110.

  1. Calculation of Relative Binding Free Energy in the Water-Filled Active Site of Oligopeptide-Binding Protein A.

    PubMed

    Maurer, Manuela; de Beer, Stephanie B A; Oostenbrink, Chris

    2016-04-15

    The periplasmic oligopeptide binding protein A (OppA) represents a well-known example of water-mediated protein-ligand interactions. Here, we perform free-energy calculations for three different ligands binding to OppA, using a thermodynamic integration approach. The tripeptide ligands share a high structural similarity (all have the sequence KXK), but their experimentally-determined binding free energies differ remarkably. Thermodynamic cycles were constructed for the ligands, and simulations conducted in the bound and (freely solvated) unbound states. In the unbound state, it was observed that the difference in conformational freedom between alanine and glycine leads to a surprisingly slow convergence, despite their chemical similarity. This could be overcome by increasing the softness parameter during alchemical transformations. Discrepancies remained in the bound state however, when comparing independent simulations of the three ligands. These difficulties could be traced to a slow relaxation of the water network within the active site. Fluctuations in the number of water molecules residing in the binding cavity occur mostly on a timescale larger than the simulation time along the alchemical path. After extensive simulations, relative binding free energies that were converged to within thermal noise could be obtained, which agree well with available experimental data.

  2. Calculation of Relative Binding Free Energy in the Water-Filled Active Site of Oligopeptide-Binding Protein A

    PubMed Central

    Maurer, Manuela; de Beer, Stephanie B. A.; Oostenbrink, Chris

    2018-01-01

    The periplasmic oligopeptide binding protein A (OppA) represents a well-known example of water-mediated protein-ligand interactions. Here, we perform free-energy calculations for three different ligands binding to OppA, using a thermodynamic integration approach. The tripeptide ligands share a high structural similarity (all have the sequence KXK), but their experimentally-determined binding free energies differ remarkably. Thermodynamic cycles were constructed for the ligands, and simulations conducted in the bound and (freely solvated) unbound states. In the unbound state, it was observed that the difference in conformational freedom between alanine and glycine leads to a surprisingly slow convergence, despite their chemical similarity. This could be overcome by increasing the softness parameter during alchemical transformations. Discrepancies remained in the bound state however, when comparing independent simulations of the three ligands. These difficulties could be traced to a slow relaxation of the water network within the active site. Fluctuations in the number of water molecules residing in the binding cavity occur mostly on a timescale larger than the simulation time along the alchemical path. After extensive simulations, relative binding free energies that were converged to within thermal noise could be obtained, which agree well with available experimental data. PMID:27092480

  3. Correcting speleothem oxygen isotopic variations for growth-rate controlled kinetic fractionation effects

    NASA Astrophysics Data System (ADS)

    Stoll, Heather; Moreno, Ana; Cacho, Isabel; Mendez Vicence, Ana; Gonzalez Lemos, Saul; Pirla Casasayas, Gemma; Cheng, Hai; Wang, Xianfeng; Edwards, R. Lawrence

    2015-04-01

    The oxygen isotopic signature may be the most widely used climate indicator in stalagmites, but recent experimental and theoretical studies indicate the potential for kinetic fractionation effects which may be significant, especially in situations where the primary signal from rainfall isotopic composition and cave temperature is limited to a few permil. Here we use a natural set of stalagmites to illustrate the magnitude of such effects and the potential for deconvolving kinetic signals from the primary temperature and rainfall signals. We compare isotopic records from 6 coeval stalagmites covering the interval 140 to 70 ka, from two proximal caves in NW Spain which experienced the same primary variations in temperature and rainfall d18O, but exhibit a large range in growth rates and temporal trends in growth rate. Stalagmites growing at faster rates near 50 microns/year have oxygen isotopic ratios more than 1 permil more negative than coeval stalagmites with very slow (5 micron/year) growth rates. Because growth rate variations also occur over time within any given stalagmite, the measured oxygen isotopic time series for a given stalagmite includes both climatic and kinetic components. Removal of the kinetic component of variation in each stalagmite, based on the dependence of the kinetic component on growth rate, is effective at distilling a common temporal evolution among the oxygen isotopic records of the multiple stalagmites. However, this approach is limited by the quality of the age model. For time periods characterized by very slow growth and long durations between dates, the presence of crypto-hiatus may result in average growth rates which underestimate the instantaneous speleothem deposition rates and which therefore underestimate the magnitude of kinetic effects. We compare the composite corrected oxygen isotopic record with other records of the timing of glacial inception in the North Atlantic realm.

  4. The protonation state around TyrD/TyrD• in photosystem II is reflected in its biphasic oxidation kinetics.

    PubMed

    Sjöholm, Johannes; Ho, Felix; Ahmadova, Nigar; Brinkert, Katharina; Hammarström, Leif; Mamedov, Fikret; Styring, Stenbjörn

    2017-02-01

    The tyrosine residue D2-Tyr160 (Tyr D ) in photosystem II (PSII) can be oxidized through charge equilibrium with the oxygen evolving complex in PSII. The kinetics of the electron transfer from Tyr D has been followed using time-resolved EPR spectroscopy after triggering the oxidation of pre-reduced Tyr D by a short laser flash. After its oxidation Tyr D is observed as a neutral radical (Tyr D • ) indicating that the oxidation is coupled to a deprotonation event. The redox state of Tyr D was reported to be determined by the two water positions identified in the crystal structure of PSII [Saito et al. (2013) Proc. Natl. Acad. Sci. USA 110, 7690]. To assess the mechanism of the proton coupled electron transfer of Tyr D the oxidation kinetics has been followed in the presence of deuterated buffers, thereby resolving the kinetic isotope effect (KIE) of Tyr D oxidation at different H/D concentrations. Two kinetic phases of Tyr D oxidation - the fast phase (msec-sec time range) and the slow phase (tens of seconds time range) were resolved as was previously reported [Vass and Styring (1991) Biochemistry 30, 830]. In the presence of deuterated buffers the kinetics was significantly slower compared to normal buffers. Furthermore, although the kinetics were faster at both high pH and pD values the observed KIE was found to be similar (~2.4) over the whole pL range investigated. We assign the fast and slow oxidation phases to two populations of PSII centers with different water positions, proximal and distal respectively, and discuss possible deprotonation events in the vicinity of Tyr D . Copyright © 2016 Elsevier B.V. All rights reserved.

  5. An EGFR autocrine loop encodes a slow-reacting but dominant mode of mechanotransduction in a polarized epithelium

    PubMed Central

    Kojic, Nikola; Chung, Euiheon; Kho, Alvin T.; Park, Jin-Ah; Huang, Austin; So, Peter T. C.; Tschumperlin, Daniel J.

    2010-01-01

    The mechanical landscape in biological systems can be complex and dynamic, with contrasting sustained and fluctuating loads regularly superposed within the same tissue. How resident cells discriminate between these scenarios to respond accordingly remains largely unknown. Here, we show that a step increase in compressive stress of physiological magnitude shrinks the lateral intercellular space between bronchial epithelial cells, but does so with strikingly slow exponential kinetics (time constant ∼110 s). We confirm that epidermal growth factor (EGF)-family ligands are constitutively shed into the intercellular space and demonstrate that a step increase in compressive stress enhances EGF receptor (EGFR) phosphorylation with magnitude and onset kinetics closely matching those predicted by constant-rate ligand shedding in a slowly shrinking intercellular geometry. Despite the modest degree and slow nature of EGFR activation evoked by compressive stress, we find that the majority of transcriptomic responses to sustained mechanical loading require ongoing activity of this autocrine loop, indicating a dominant role for mechanotransduction through autocrine EGFR signaling in this context. A slow deformation response to a step increase in loading, accompanied by synchronous increases in ligand concentration and EGFR activation, provides one means for cells to mount a selective and context-appropriate response to a sustained change in mechanical environment.—Kojic, N., Chung, E., Kho, A. T., Park, J.-A., Huang, A., So, P. T. C., Tschumperlin, D. J. An EGFR autocrine loop encodes a slow-reacting but dominant mode of mechanotransduction in a polarized epithelium. PMID:20056713

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Fuke, E-mail: wufuke@mail.hust.edu.cn; Tian, Tianhai, E-mail: tianhai.tian@sci.monash.edu.au; Rawlings, James B., E-mail: james.rawlings@wisc.edu

    The frequently used reduction technique is based on the chemical master equation for stochastic chemical kinetics with two-time scales, which yields the modified stochastic simulation algorithm (SSA). For the chemical reaction processes involving a large number of molecular species and reactions, the collection of slow reactions may still include a large number of molecular species and reactions. Consequently, the SSA is still computationally expensive. Because the chemical Langevin equations (CLEs) can effectively work for a large number of molecular species and reactions, this paper develops a reduction method based on the CLE by the stochastic averaging principle developed in themore » work of Khasminskii and Yin [SIAM J. Appl. Math. 56, 1766–1793 (1996); ibid. 56, 1794–1819 (1996)] to average out the fast-reacting variables. This reduction method leads to a limit averaging system, which is an approximation of the slow reactions. Because in the stochastic chemical kinetics, the CLE is seen as the approximation of the SSA, the limit averaging system can be treated as the approximation of the slow reactions. As an application, we examine the reduction of computation complexity for the gene regulatory networks with two-time scales driven by intrinsic noise. For linear and nonlinear protein production functions, the simulations show that the sample average (expectation) of the limit averaging system is close to that of the slow-reaction process based on the SSA. It demonstrates that the limit averaging system is an efficient approximation of the slow-reaction process in the sense of the weak convergence.« less

  7. Probing the kinetic stabilities of Friedreich's ataxia clinical variants using a solid phase GroEL chaperonin capture platform.

    PubMed

    Correia, Ana R; Naik, Subhashchandra; Fisher, Mark T; Gomes, Cláudio M

    2014-10-20

    Numerous human diseases are caused by protein folding defects where the protein may become more susceptible to degradation or aggregation. Aberrant protein folding can affect the kinetic stability of the proteins even if these proteins appear to be soluble in vivo. Experimental discrimination between functional properly folded and misfolded nonfunctional conformers is not always straightforward at near physiological conditions. The differences in the kinetic behavior of two initially folded frataxin clinical variants were examined using a high affinity chaperonin kinetic trap approach at 25 °C. The kinetically stable wild type frataxin (FXN) shows no visible partitioning onto the chaperonin. In contrast, the clinical variants FXN-p.Asp122Tyr and FXN-p.Ile154Phe kinetically populate partial folded forms that tightly bind the GroEL chaperonin platform. The initially soluble FXN-p.Ile154Phe variant partitions onto GroEL more rapidly and is more kinetically liable. These differences in kinetic stability were confirmed using differential scanning fluorimetry. The kinetic and aggregation stability differences of these variants may lead to the distinct functional impairments described in Friedreich's ataxia, the neurodegenerative disease associated to frataxin functional deficiency. This chaperonin platform approach may be useful for identifying small molecule stabilizers since stabilizing ligands to frataxin variants should lead to a concomitant decrease in chaperonin binding.

  8. Influence of quasi-specific sites on kinetics of target DNA search by a sequence-specific DNA-binding protein.

    PubMed

    Kemme, Catherine A; Esadze, Alexandre; Iwahara, Junji

    2015-11-10

    Functions of transcription factors require formation of specific complexes at particular sites in cis-regulatory elements of genes. However, chromosomal DNA contains numerous sites that are similar to the target sequences recognized by transcription factors. The influence of such "quasi-specific" sites on functions of the transcription factors is not well understood at present by experimental means. In this work, using fluorescence methods, we have investigated the influence of quasi-specific DNA sites on the efficiency of target location by the zinc finger DNA-binding domain of the inducible transcription factor Egr-1, which recognizes a 9 bp sequence. By stopped-flow assays, we measured the kinetics of Egr-1's association with a target site on 143 bp DNA in the presence of various competitor DNAs, including nonspecific and quasi-specific sites. The presence of quasi-specific sites on competitor DNA significantly decelerated the target association by the Egr-1 protein. The impact of the quasi-specific sites depended strongly on their affinity, their concentration, and the degree of their binding to the protein. To quantitatively describe the kinetic impact of the quasi-specific sites, we derived an analytical form of the apparent kinetic rate constant for the target association and used it for fitting to the experimental data. Our kinetic data with calf thymus DNA as a competitor suggested that there are millions of high-affinity quasi-specific sites for Egr-1 among the 3 billion bp of genomic DNA. This study quantitatively demonstrates that naturally abundant quasi-specific sites on DNA can considerably impede the target search processes of sequence-specific DNA-binding proteins.

  9. Influence of Quasi-Specific Sites on Kinetics of Target DNA Search by a Sequence-Specific DNA-Binding Protein

    PubMed Central

    2015-01-01

    Functions of transcription factors require formation of specific complexes at particular sites in cis-regulatory elements of genes. However, chromosomal DNA contains numerous sites that are similar to the target sequences recognized by transcription factors. The influence of such “quasi-specific” sites on functions of the transcription factors is not well understood at present by experimental means. In this work, using fluorescence methods, we have investigated the influence of quasi-specific DNA sites on the efficiency of target location by the zinc finger DNA-binding domain of the inducible transcription factor Egr-1, which recognizes a 9 bp sequence. By stopped-flow assays, we measured the kinetics of Egr-1’s association with a target site on 143 bp DNA in the presence of various competitor DNAs, including nonspecific and quasi-specific sites. The presence of quasi-specific sites on competitor DNA significantly decelerated the target association by the Egr-1 protein. The impact of the quasi-specific sites depended strongly on their affinity, their concentration, and the degree of their binding to the protein. To quantitatively describe the kinetic impact of the quasi-specific sites, we derived an analytical form of the apparent kinetic rate constant for the target association and used it for fitting to the experimental data. Our kinetic data with calf thymus DNA as a competitor suggested that there are millions of high-affinity quasi-specific sites for Egr-1 among the 3 billion bp of genomic DNA. This study quantitatively demonstrates that naturally abundant quasi-specific sites on DNA can considerably impede the target search processes of sequence-specific DNA-binding proteins. PMID:26502071

  10. Effect of Time-Dependent Pinning Pressure on Abnormal Grain Growth: Phase Field Simulation

    NASA Astrophysics Data System (ADS)

    Kim, Jeong Min; Min, Guensik; Shim, Jae-Hyeok; Lee, Kyung Jong

    2018-05-01

    The effect of the time-dependent pinning pressure of precipitates on abnormal grain growth has been investigated by multiphase field simulation with a simple precipitation model. The application of constant pinning pressure is problematic because it always induces abnormal grain growth or no grain growth, which is not reasonable considering the real situation. To produce time-dependent pinning pressure, both precipitation kinetics and precipitate coarsening kinetics have been considered with two rates: slow and fast. The results show that abnormal grain growth is suppressed at the slow precipitation rate. At the slow precipitation rate, the overall grain growth caused by the low pinning pressure in the early stage indeed plays a role in preventing abnormal grain growth by reducing the mobility advantage of abnormal grains. In addition, the fast precipitate coarsening rate tends to more quickly transform abnormal grain growth into normal grain growth by inducing the active growth of grains adjacent to the abnormal grains in the early stage. Therefore, the present study demonstrates that the time dependence of the pinning pressure of precipitates is a critical factor that determines the grain growth mode.

  11. Effect of Time-Dependent Pinning Pressure on Abnormal Grain Growth: Phase Field Simulation

    NASA Astrophysics Data System (ADS)

    Kim, Jeong Min; Min, Guensik; Shim, Jae-Hyeok; Lee, Kyung Jong

    2018-03-01

    The effect of the time-dependent pinning pressure of precipitates on abnormal grain growth has been investigated by multiphase field simulation with a simple precipitation model. The application of constant pinning pressure is problematic because it always induces abnormal grain growth or no grain growth, which is not reasonable considering the real situation. To produce time-dependent pinning pressure, both precipitation kinetics and precipitate coarsening kinetics have been considered with two rates: slow and fast. The results show that abnormal grain growth is suppressed at the slow precipitation rate. At the slow precipitation rate, the overall grain growth caused by the low pinning pressure in the early stage indeed plays a role in preventing abnormal grain growth by reducing the mobility advantage of abnormal grains. In addition, the fast precipitate coarsening rate tends to more quickly transform abnormal grain growth into normal grain growth by inducing the active growth of grains adjacent to the abnormal grains in the early stage. Therefore, the present study demonstrates that the time dependence of the pinning pressure of precipitates is a critical factor that determines the grain growth mode.

  12. Toroidal Alfvénic Eigenmodes Driven by Energetic Particles with Maxwell and Slowing-down Distributions

    NASA Astrophysics Data System (ADS)

    Hou, Yawei; Zhu, Ping; Zou, Zhihui; Kim, Charlson C.; Hu, Zhaoqing; Wang, Zhengxiong

    2016-10-01

    The energetic-particle (EP) driven toroidal Alfvén eigenmodes (TAEs) in a circular-shaped large aspect ratio tokamak are studied using the hybrid kinetic-MHD model in the NIMROD code, where the EPs are advanced using the δf particle-in-cell (PIC) method and their kinetic effects are coupled to the bulk plasma through moment closures. Two initial distributions of EPs, Maxwell and slowing-down, are considered. The influence of EP parameters, including density, temperature and density gradient, on the frequency and the growth rate of TAEs are obtained and benchmarked with theory and gyrokinetic simulations for the Maxwell distribution with good agreement. When the density and temperature of EPs are above certain thresholds, the transition from TAE to energetic particle modes (EPM) occurs and the mode structure also changes. Comparisons between Maxwell and slowing-down distributions in terms of EP-driven TAEs and EPMs will also be presented and discussed. Supported by the National Magnetic Confinement Fusion Science Program of China Grant Nos. 2014GB124002 and 2015GB101004, and the Natural Science Foundation of China Grant No. 11205194.

  13. Signatures of van der Waals binding: A coupling-constant scaling analysis

    NASA Astrophysics Data System (ADS)

    Jiao, Yang; Schröder, Elsebeth; Hyldgaard, Per

    2018-02-01

    The van der Waals (vdW) density functional (vdW-DF) method [Rep. Prog. Phys. 78, 066501 (2015), 10.1088/0034-4885/78/6/066501] describes dispersion or vdW binding by tracking the effects of an electrodynamic coupling among pairs of electrons and their associated exchange-correlation holes. This is done in a nonlocal-correlation energy term Ecnl, which permits density functional theory calculation in the Kohn-Sham scheme. However, to map the nature of vdW forces in a fully interacting materials system, it is necessary to also account for associated kinetic-correlation energy effects. Here, we present a coupling-constant scaling analysis, which permits us to compute the kinetic-correlation energy Tcnl that is specific to the vdW-DF account of nonlocal correlations. We thus provide a more complete spatially resolved analysis of the electrodynamical-coupling nature of nonlocal-correlation binding, including vdW attraction, in both covalently and noncovalently bonded systems. We find that kinetic-correlation energy effects play a significant role in the account of vdW or dispersion interactions among molecules. Furthermore, our mapping shows that the total nonlocal-correlation binding is concentrated to pockets in the sparse electron distribution located between the material fragments.

  14. Nucleation of stoichiometric compounds from liquid: Role of the kinetic factor

    NASA Astrophysics Data System (ADS)

    Song, H.; Sun, Y.; Zhang, F.; Wang, C. Z.; Ho, K. M.; Mendelev, M. I.

    2018-02-01

    The nucleation rate depends on the free-energy barrier and the kinetic factor. While the role of the free energy barrier is a text-book subject, the importance of the kinetic factor is frequently underestimated. In this study, we applied the mean first-passage time method, to obtain the free-energy landscape and kinetic factor directly from the molecular dynamics (MD) simulations of the nucleation of the face-centered cubic (fcc) phase in the pure Ni and the B2 phases in the N i50A l50 and C u50Z r50 alloys. The obtained data show that while the free-energy barrier for nucleation is higher in pure Ni the nucleation rate is considerably lower in the N i50A l50 alloy. This result can be explained by the slow attachment kinetics in the N i50A l50 alloy, which was related to the ordered nature of the B2 phase. Even smaller fraction of the antisite defects in the C u50Z r50 alloy leads to such a slow attachment kinetics that the nucleation is never observed for this alloy in the course of the MD simulation. This is consistent with the experimental facts that the C u50Z r50 alloy is a good glass forming alloy and the N i50A l50 alloy is not. Thus the present study demonstrates that the atom attachment rate can be the critical factor that controls the nucleation process under certain conditions.

  15. Physical and metabolic requirements for early interaction of poliovirus and human rhinovirus with HeLa cells.

    PubMed Central

    Lonberg-Holm, K; Whiteley, N M

    1976-01-01

    Attachment, ""tight binding'' and eclipse of radioactive poliovirus 2 (P2) and human rhinovirus 2 (HRV 2) were investigated. The activation energy for attachment of both HRV2 and P2 was about 13 kcal/mol. HRV2 differed from P2 in two respects: the Arrhenius plot for attachment of HRV2 showed a break at 15 to 19 degrees C when the cells were first treated several hours at 0 degrees C, and attachment of HRV2 was inhibited by treatment of cells with metabolic poisons able to reduce cellular ATP by more than 90%. Tight binding was determined by isolation of a specific P2-membrane complex or by loss of EDTA dissociability of HRV2. Tight binding of both viruses was slowed by 0.01 M iodoacetamide but not by 0.02 M F-; F- plus 0.002 M CN- slowed tight binding of HRV2 but not of P2. Eclipse, the irreversible alteration of parental virions, was detected by isolation of cell-associated subviral particles or by loss of cell-associated infectious virus. Eclipse of both viruses is slowed by iodoacetamide or F-. It seems likely that the early steps of infection with picornaviruses may be sensitive to alterations in the cell membrane produced by metabolic inhibitors or by treatment at low temperature. PMID:184301

  16. Single-Molecule Imaging of an in Vitro-Evolved RNA Aptamer Reveals Homogeneous Ligand Binding Kinetics

    PubMed Central

    2009-01-01

    Many studies of RNA folding and catalysis have revealed conformational heterogeneity, metastable folding intermediates, and long-lived states with distinct catalytic activities. We have developed a single-molecule imaging approach for investigating the functional heterogeneity of in vitro-evolved RNA aptamers. Monitoring the association of fluorescently labeled ligands with individual RNA aptamer molecules has allowed us to record binding events over the course of multiple days, thus providing sufficient statistics to quantitatively define the kinetic properties at the single-molecule level. The ligand binding kinetics of the highly optimized RNA aptamer studied here displays a remarkable degree of uniformity and lack of memory. Such homogeneous behavior is quite different from the heterogeneity seen in previous single-molecule studies of naturally derived RNA and protein enzymes. The single-molecule methods we describe may be of use in analyzing the distribution of functional molecules in heterogeneous evolving populations or even in unselected samples of random sequences. PMID:19572753

  17. An investigation about the structures, thermodynamics and kinetics of the formic acid involved molecular clusters

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Jiang, Shuai; Liu, Yi-Rong; Wen, Hui; Feng, Ya-Juan; Huang, Teng; Huang, Wei

    2018-05-01

    Despite the very important role of atmospheric aerosol nucleation in climate change and air quality, the detailed aerosol nucleation mechanism is still unclear. Here we investigated the formic acid (FA) involved multicomponent nucleation molecular clusters including sulfuric acid (SA), dimethylamine (DMA) and water (W) through a quantum chemical method. The thermodynamics and kinetics analysis was based on the global minima given by Basin-Hopping (BH) algorithm coupled with Density Functional Theory (DFT) and subsequent benchmarked calculations. Then the interaction analysis based on ElectroStatic Potential (ESP), Topological and Atomic Charges analysis was made to characterize the binding features of the clusters. The results show that FA binds weakly with the other molecules in the cluster while W binds more weakly. Further kinetic analysis about the time evolution of the clusters show that even though the formic acid's weak interaction with other nucleation precursors, its effect on sulfuric acid dimer steady state concentration cannot be neglected due to its high concentration in the atmosphere.

  18. Killing K channels with TEA+.

    PubMed

    Khodakhah, K; Melishchuk, A; Armstrong, C M

    1997-11-25

    Tetraethylammonium (TEA+) is widely used for reversible blockade of K channels in many preparations. We noticed that intracellular perfusion of voltage-clamped squid giant axons with a solution containing K+ and TEA+ irreversibly decreased the potassium current when there was no K+ outside. Five minutes of perfusion with 20 mM TEA+, followed by removal of TEA+, reduced potassium current to < 5% of its initial value. The irreversible disappearance of K channels with TEA+ could be prevented by addition of > or = 10 mM K+ to the extracellular solution. The rate of disappearance of K channels followed first-order kinetics and was slowed by reducing the concentration of TEA+. Killing is much less evident when an axon is held at -110 mV to tightly close all of the channels. The longer-chain TEA+ derivative decyltriethylammonium (C10+) had irreversible effects similar to TEA+. External K+ also protected K channels against the irreversible action of C10+. It has been reported that removal of all K+ internally and externally (dekalification) can result in the disappearance of K channels, suggesting that binding of K+ within the pore is required to maintain function. Our evidence further suggests that the crucial location for K+ binding is external to the (internal) TEA+ site and that TEA+ prevents refilling of this location by intracellular K+. Thus in the absence of extracellular K+, application of TEA+ (or C10+) has effects resembling dekalification and kills the K channels.

  19. Anomalous versus Slowed-Down Brownian Diffusion in the Ligand-Binding Equilibrium

    PubMed Central

    Soula, Hédi; Caré, Bertrand; Beslon, Guillaume; Berry, Hugues

    2013-01-01

    Measurements of protein motion in living cells and membranes consistently report transient anomalous diffusion (subdiffusion) that converges back to a Brownian motion with reduced diffusion coefficient at long times after the anomalous diffusion regime. Therefore, slowed-down Brownian motion could be considered the macroscopic limit of transient anomalous diffusion. On the other hand, membranes are also heterogeneous media in which Brownian motion may be locally slowed down due to variations in lipid composition. Here, we investigate whether both situations lead to a similar behavior for the reversible ligand-binding reaction in two dimensions. We compare the (long-time) equilibrium properties obtained with transient anomalous diffusion due to obstacle hindrance or power-law-distributed residence times (continuous-time random walks) to those obtained with space-dependent slowed-down Brownian motion. Using theoretical arguments and Monte Carlo simulations, we show that these three scenarios have distinctive effects on the apparent affinity of the reaction. Whereas continuous-time random walks decrease the apparent affinity of the reaction, locally slowed-down Brownian motion and local hindrance by obstacles both improve it. However, only in the case of slowed-down Brownian motion is the affinity maximal when the slowdown is restricted to a subregion of the available space. Hence, even at long times (equilibrium), these processes are different and exhibit irreconcilable behaviors when the area fraction of reduced mobility changes. PMID:24209851

  20. Crystallography Coupled with Kinetic Analysis Provide Mechanistic Underpinnings of a Nicotine-Degrading Enzyme.

    PubMed

    Tararina, Margarita A; Xue, Song; Smith, Lauren C; Muellers, Samantha N; Miranda, Pedro O; Janda, Kim D; Allen, Karen N

    2018-05-29

    Nicotine oxidoreductase (NicA2) is a bacterial flavoenzyme, which catalyzes the first step of nicotine catabolism by oxidizing S-nicotine into N-methyl-myosmine. Its use has been proposed as a biotherapeutic for nicotine addiction due to its nanomolar substrate binding affinity. The first crystal structure of NicA2 has been reported, establishing NicA2 as a member of the monoamine oxidase (MAO) family. However, substrate specificity and structural determinants of substrate binding/catalysis have not been explored. Herein, analysis of pH-rate profile, single-turnover kinetics and binding data establish that pH does not significantly affect catalytic rate and product release is not rate limiting. The X-ray crystal structure of NicA2 with S-nicotine refined to 2.65 Å resolution reveals a hydrophobic binding site with a solvent exclusive cavity. Hydrophobic interactions predominantly orient the substrate, promoting the binding of a deprotonated species and supporting a hydride-transfer mechanism. Notably, NicA2 showed no activity against neurotransmitters oxidized by the two isoforms of human MAO. To further probe the substrate range of NicA2, enzyme activity was evaluated using a series of substrate analogs, indicating that S-nicotine is the optimal substrate and substitutions within the pyridyl ring abolish NicA2 activity. Moreover, mutagenesis and kinetic analysis of active-site residues reveal that removal of a hydrogen bond between the pyridyl ring of S-nicotine and the hydroxyl group of T381 has a 10-fold effect on KM, supporting the role of this bond in positioning the catalytically competent form of the substrate. Together, crystallography combined with kinetic analysis provide a deeper understanding of this enzyme's remarkable specificity.

  1. CYP2E1 hydroxylation of aniline involves negative cooperativity.

    PubMed

    Hartman, Jessica H; Knott, Katie; Miller, Grover P

    2014-02-01

    CYP2E1 plays a role in the metabolic activation and elimination of aniline, yet there are conflicting reports on its mechanism of action, and hence relevance, in aniline metabolism. Based on our work with similar compounds, we hypothesized that aniline binds two CYP2E1 sites during metabolism resulting in cooperative reaction kinetics and tested this hypothesis through rigorous in vitro studies. The kinetic profile for recombinant CYP2E1 demonstrated significant negative cooperativity based on a fit of data to the Hill equation (n=0.56). Mechanistically, the data were best explained through a two-binding site cooperative model in which aniline binds with high affinity (K(s)=30 μM) followed by a second weaker binding event (K(ss)=1100 uM) resulting in a threefold increase in the oxidation rate. Binding sites for aniline were confirmed by inhibition studies with 4-methylpyrazole. Inhibitor phenotyping experiments with human liver microsomes validated the central role for CYP2E1 in aniline hydroxylation and indicated minor roles for CYP2A6 and CYP2C9. Importantly, inhibition of minor metabolic pathways resulted in a kinetic profile for microsomal CYP2E1 that replicated the preferred mechanism and parameters observed with the recombinant enzyme. Scaled modeling of in vitro CYP2E1 metabolism of aniline to in vivo clearance, especially at low aniline levels, led to significant deviations from the traditional model based on non-cooperative, Michaelis-Menten kinetics. These findings provide a critical mechanistic perspective on the potential importance of CYP2E1 in the metabolic activation and elimination of aniline as well as the first experimental evidence of a negatively cooperative metabolic reaction catalyzed by CYP2E1. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Connecting the dots across time: reconstruction of single-cell signalling trajectories using time-stamped data

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sayak; Stewart, David; Stewart, William; Lanier, Lewis L.; Das, Jayajit

    2017-08-01

    Single-cell responses are shaped by the geometry of signalling kinetic trajectories carved in a multidimensional space spanned by signalling protein abundances. It is, however, challenging to assay a large number (more than 3) of signalling species in live-cell imaging, which makes it difficult to probe single-cell signalling kinetic trajectories in large dimensions. Flow and mass cytometry techniques can measure a large number (4 to more than 40) of signalling species but are unable to track single cells. Thus, cytometry experiments provide detailed time-stamped snapshots of single-cell signalling kinetics. Is it possible to use the time-stamped cytometry data to reconstruct single-cell signalling trajectories? Borrowing concepts of conserved and slow variables from non-equilibrium statistical physics we develop an approach to reconstruct signalling trajectories using snapshot data by creating new variables that remain invariant or vary slowly during the signalling kinetics. We apply this approach to reconstruct trajectories using snapshot data obtained from in silico simulations, live-cell imaging measurements, and, synthetic flow cytometry datasets. The application of invariants and slow variables to reconstruct trajectories provides a radically different way to track objects using snapshot data. The approach is likely to have implications for solving matching problems in a wide range of disciplines.

  3. Hydrogenation properties of KSi and NaSi Zintl phases.

    PubMed

    Tang, Wan Si; Chotard, Jean-Noël; Raybaud, Pascal; Janot, Raphaël

    2012-10-14

    The recently reported KSi-KSiH(3) system can store 4.3 wt% of hydrogen reversibly with slow kinetics of several hours for complete absorption at 373 K and complete desorption at 473 K. From the kinetics measured at different temperatures, the Arrhenius plots give activation energies (E(a)) of 56.0 ± 5.7 kJ mol(-1) and 121 ± 17 kJ mol(-1) for the absorption and desorption processes, respectively. Ball-milling with 10 wt% of carbon strongly improves the kinetics of the system, i.e. specifically the initial rate of absorption becomes about one order of magnitude faster than that of pristine KSi. However, this fast absorption causes a disproportionation into KH and K(8)Si(46), instead of forming the KSiH(3) hydride from a slow absorption. This disproportionation, due to the formation of stable KH, leads to a total loss of reversibility. In a similar situation, when the pristine Zintl NaSi phase absorbs hydrogen, it likewise disproportionates into NaH and Na(8)Si(46), indicating a very poorly reversible reaction.

  4. Dissociative electron attachments to ethanol and acetaldehyde: A combined experimental and simulation study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xu-Dong; Xuan, Chuan-Jin; Feng, Wen-Ling

    Dissociation dynamics of the temporary negative ions of ethanol and acetaldehyde formed by the low-energy electron attachments is investigated by using the anion velocity map imaging technique and ab initio molecular dynamics simulations. The momentum images of the dominant fragments O{sup −}/OH{sup −} and CH{sub 3}{sup −} are recorded, indicating the low kinetic energies of O{sup −}/OH{sup −} for ethanol while the low and high kinetic energy distributions of O{sup −} ions for acetaldehyde. The CH{sub 3}{sup −} image for acetaldehyde also shows the low kinetic energy. With help of the dynamics simulations, the fragmentation processes are qualitatively clarified. Amore » new cascade dissociation pathway to produce the slow O{sup −} ion via the dehydrogenated intermediate, CH{sub 3}CHO{sup −} (acetaldehyde anion), is proposed for the dissociative electron attachment to ethanol. After the electron attachment to acetaldehyde molecule, the slow CH{sub 3}{sup −} is produced quickly in the two-body dissociation with the internal energy redistributions in different aspects before bond cleavages.« less

  5. The glycocalyx promotes cooperative binding and clustering of adhesion receptors.

    PubMed

    Xu, Guang-Kui; Qian, Jin; Hu, Jinglei

    2016-05-18

    Cell adhesion plays a pivotal role in various biological processes, e.g., immune responses, cancer metastasis, and stem cell differentiation. The adhesion behaviors depend subtly on the binding kinetics of receptors and ligands restricted at the cell-substrate interfaces. Although much effort has been directed toward investigating the kinetics of adhesion molecules, the role of the glycocalyx, anchored on cell surfaces as an exterior layer, is still unclear. In this paper, we propose a theoretical approach to study the collective binding kinetics of a few and a large number of binders in the presence of the glycocalyx, representing the cases of initial and mature adhesions of cells, respectively. The analytical results are validated by finding good agreement with our Monte Carlo simulations. In the force loading case, the on-rate and affinity increase as more bonds form, whereas this cooperative effect is not observed in the displacement loading case. The increased thickness and stiffness of the glycocalyx tend to decrease the affinity for a few bonds, while they have less influence on the affinity for a large number of bonds. Moreover, for a flexible membrane with thermally-excited shape fluctuations, the glycocalyx is exhibited to promote the formation of bond clusters, mainly due to the cooperative binding of binders. This study helps to understand the cooperative kinetics of adhesion receptors under physiologically relevant loading conditions and sheds light on the novel role of the glycocalyx in cell adhesion.

  6. Kinetics of the Tau PET Tracer 18F-AV-1451 (T807) in Subjects with Normal Cognitive Function, Mild Cognitive Impairment, and Alzheimer Disease.

    PubMed

    Shcherbinin, Sergey; Schwarz, Adam J; Joshi, Abhinay; Navitsky, Michael; Flitter, Matthew; Shankle, William R; Devous, Michael D; Mintun, Mark A

    2016-10-01

    We report kinetic modeling results of dynamic acquisition data from 0 to 100 min after injection with the tau PET tracer 18 F-AV-1451 in 19 subjects. Subjects were clinically diagnosed as 4 young cognitively normal, 5 old cognitively normal, 5 mild cognitive impairment, and 5 Alzheimer disease (AD). Kinetic modeling was performed using Logan graphical analysis with the cerebellum crus as a reference region. Voxelwise binding potential ([Formula: see text]) and SUV ratio ([Formula: see text]) images were compared. In AD subjects, slower and spatially nonuniform clearance from cortical regions was observed as compared with the controls, which led to focal uptake and elevated retention in the imaging data from 80 to 100 min after injection. BP from the dynamic data from 0 to 100 min correlated strongly (R 2 > 0.86) with corresponding regional [Formula: see text] values. In the putamen, the observed kinetics (positive [Formula: see text] at the tracer delivery stage and plateauing time-SUVR curves for all diagnostic categories) may suggest either additional off-target binding or a second binding site with different kinetics. The kinetics of the 18 F-AV-1451 tracer in cortical areas, as examined in this small group of subjects, differed by diagnostic stage. A delayed 80- to 100-min scan provided a reasonable substitute for a dynamic 0- to 100-min acquisition for cortical regions although other windows (e.g., 75-105 min) may be useful to evaluate. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  7. Time-lagged autoencoders: Deep learning of slow collective variables for molecular kinetics

    NASA Astrophysics Data System (ADS)

    Wehmeyer, Christoph; Noé, Frank

    2018-06-01

    Inspired by the success of deep learning techniques in the physical and chemical sciences, we apply a modification of an autoencoder type deep neural network to the task of dimension reduction of molecular dynamics data. We can show that our time-lagged autoencoder reliably finds low-dimensional embeddings for high-dimensional feature spaces which capture the slow dynamics of the underlying stochastic processes—beyond the capabilities of linear dimension reduction techniques.

  8. Role of the Local Anesthetic Receptor in the State-Dependent Inhibition of Voltage-Gated Sodium Channels by the Insecticide Metaflumizone

    PubMed Central

    von Stein, Richard T.

    2012-01-01

    Sodium channel inhibitor (SCI) insecticides selectively target voltage-gated sodium (Nav) channels in the slow-inactivated state by binding at or near the local anesthetic receptor within the sodium channel pore. Metaflumizone is a new insecticide for the treatment of fleas on domesticated pets and has recently been reported to block insect sodium channels in the slow-inactivated state, thereby implying that it is also a member of the SCI class. Using the two-electrode voltage-clamp technique, we examined metaflumizone inhibition of rat Nav1.4 sodium channels expressed in Xenopus laevis oocytes. Metaflumizone selectively inhibited Nav1.4 channels at potentials that promoted slow inactivation and shifted the voltage dependence of slow inactivation in the direction of hyperpolarization. Metaflumizone perfusion at a hyperpolarized holding potential also shifted the conductance-voltage curve for activation in the direction of depolarization and antagonized use-dependent lidocaine inhibition of fast-inactivated sodium channels, actions not previously observed with other SCI insecticides. We expressed mutated Nav1.4/F1579A and Nav1.4/Y1586A channels to investigate whether metaflumizone shares the domain IV segment S6 (DIV-S6) binding determinants identified for other SCI insecticides. Consistent with previous investigations of SCI insecticides on rat Nav1.4 channels, the F1579A mutation reduced sensitivity to block by metaflumizone, whereas the Y1586A mutation paradoxically increased the sensitivity to metaflumizone. We conclude that metaflumizone selectively inhibits slow-inactivated Nav1.4 channels and shares DIV-S6 binding determinants with other SCI insecticides and therapeutic drugs. However, our results suggest that metaflumizone interacts with resting and fast-inactivated channels in a manner that is distinct from other compounds in this insecticide class. PMID:22127519

  9. Binding equilibrium and kinetics of membrane-anchored receptors and ligands in cell adhesion: Insights from computational model systems and theory.

    PubMed

    Weikl, Thomas R; Hu, Jinglei; Xu, Guang-Kui; Lipowsky, Reinhard

    2016-09-02

    The adhesion of cell membranes is mediated by the binding of membrane-anchored receptor and ligand proteins. In this article, we review recent results from simulations and theory that lead to novel insights on how the binding equilibrium and kinetics of these proteins is affected by the membranes and by the membrane anchoring and molecular properties of the proteins. Simulations and theory both indicate that the binding equilibrium constant [Formula: see text] and the on- and off-rate constants of anchored receptors and ligands in their 2-dimensional (2D) membrane environment strongly depend on the membrane roughness from thermally excited shape fluctuations on nanoscales. Recent theory corroborated by simulations provides a general relation between [Formula: see text] and the binding constant [Formula: see text] of soluble variants of the receptors and ligands that lack the membrane anchors and are free to diffuse in 3 dimensions (3D).

  10. Binding equilibrium and kinetics of membrane-anchored receptors and ligands in cell adhesion: Insights from computational model systems and theory

    PubMed Central

    Weikl, Thomas R.; Hu, Jinglei; Xu, Guang-Kui; Lipowsky, Reinhard

    2016-01-01

    ABSTRACT The adhesion of cell membranes is mediated by the binding of membrane-anchored receptor and ligand proteins. In this article, we review recent results from simulations and theory that lead to novel insights on how the binding equilibrium and kinetics of these proteins is affected by the membranes and by the membrane anchoring and molecular properties of the proteins. Simulations and theory both indicate that the binding equilibrium constant K2D and the on- and off-rate constants of anchored receptors and ligands in their 2-dimensional (2D) membrane environment strongly depend on the membrane roughness from thermally excited shape fluctuations on nanoscales. Recent theory corroborated by simulations provides a general relation between K2D and the binding constant K3D of soluble variants of the receptors and ligands that lack the membrane anchors and are free to diffuse in 3 dimensions (3D). PMID:27294442

  11. Thermodynamic and kinetic analyses of curcumin and bovine serum albumin binding.

    PubMed

    Hudson, Eliara Acipreste; de Paula, Hauster Maximiler Campos; Ferreira, Guilherme Max Dias; Ferreira, Gabriel Max Dias; Hespanhol, Maria do Carmo; da Silva, Luis Henrique Mendes; Pires, Ana Clarissa Dos S

    2018-03-01

    Bovine serum albumin (BSA)/curcumin binding and dye photodegradation stability were evaluated. BSA/curcumin complex showed 1:1 stoichiometry, but the thermodynamic binding parameters depended on the technique used and BSA conformation. The binding constant was of the order of 10 5 L·mol -1 by fluorescence and microcalorimetric, and 10 3 and 10 4 L·mol -1 by surface plasmon resonance (steady-state equilibrium and kinetic experiments, respectively). For native BSA/curcumin, fluorescence indicated an enthalpic and entropic driven process based on the standard enthalpy change (ΔH ○ F =-8.67kJ·mol -1 ), while microcalorimetry showed an entropic driven binding process (ΔH ○ cal =29.11kJ·mol -1 ). For the unfolded BSA/curcumin complex, it was found thatp ΔH ○ F =-16.12kJ·mol -1 and ΔH ○ cal =-42.63kJ·mol -1 . BSA (mainly native) increased the curcumin photodegradation stability. This work proved the importance of using different techniques to characterize the protein-ligand binding. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Kinetic rate constant prediction supports the conformational selection mechanism of protein binding.

    PubMed

    Moal, Iain H; Bates, Paul A

    2012-01-01

    The prediction of protein-protein kinetic rate constants provides a fundamental test of our understanding of molecular recognition, and will play an important role in the modeling of complex biological systems. In this paper, a feature selection and regression algorithm is applied to mine a large set of molecular descriptors and construct simple models for association and dissociation rate constants using empirical data. Using separate test data for validation, the predicted rate constants can be combined to calculate binding affinity with accuracy matching that of state of the art empirical free energy functions. The models show that the rate of association is linearly related to the proportion of unbound proteins in the bound conformational ensemble relative to the unbound conformational ensemble, indicating that the binding partners must adopt a geometry near to that of the bound prior to binding. Mirroring the conformational selection and population shift mechanism of protein binding, the models provide a strong separate line of evidence for the preponderance of this mechanism in protein-protein binding, complementing structural and theoretical studies.

  13. Kinetics of incorporation/redistribution of photosensitizer hypericin to/from high-density lipoproteins.

    PubMed

    Joniova, Jaroslava; Buriankova, Luboslava; Buzova, Diana; Miskovsky, Pavol; Jancura, Daniel

    2014-11-20

    By means of fluorescence spectroscopy we have studied the kinetics of interaction of a photosensitizer hypericin (Hyp) with high-density lipoproteins (HDL). Hyp is incorporated into HDL molecules as monomer till ratio Hyp/HDL ∼8:1 and above this ratio forms non-fluorescent aggregates. This number is different from that found in the case of Hyp incorporation into low-density lipoprotein (LDL) molecules (8:1 vs 30:1). The difference is mainly attributed to the smaller size of HDL in comparison with LDL molecule. Biphasic kinetics of Hyp association with HDL was observed. The rapid phase of incorporation is completed within seconds, while the slow one lasts several minutes. The kinetics of the association of Hyp molecules with free HDL, Hyp/HDL=10:1 complex and the redistribution of Hyp from Hyp/HDL=70:1 complex to free HDL molecules reveal a qualitative similar characteristics of these processes with those observed for the interaction of Hyp with LDL. However, the incorporation of Hyp into HDL in the "slow" phase is more rapid than to LDL and extend of Hyp penetration into lipoproteins in the fast phase is also much higher in the case of HDL. The lower concentration of cholesterol molecules in outer shell of HDL particles is probably the determining factor for the more rapid kinetics of Hyp incorporation to and redistribution from these molecules when comparing with LDL particles. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Properties of short-wavelength oblique Alfvén and slow waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, J. S.; Wu, D. J.; Voitenko, Y.

    Linear properties of kinetic Alfvén waves (KAWs) and kinetic slow waves (KSWs) are studied in the framework of two-fluid magnetohydrodynamics. We obtain the wave dispersion relations that are valid in a wide range of the wave frequency ω and plasma-to-magnetic pressure ratio β. The KAW frequency can reach and exceed the ion-cyclotron frequency at ion kinetic scales, whereas the KSW frequency remains sub-cyclotron. At β ∼ 1, the plasma and magnetic pressure perturbations of both modes are in anti-phase, so that there is nearly no total pressure perturbations. However, these modes also exhibit several opposite properties. At high β, themore » electric polarization ratios of KAWs and KSWs are opposite at the ion gyroradius scale, where KAWs are polarized in the sense of electron gyration (right-hand polarized) and KSWs are left-hand polarized. The magnetic helicity σ ∼ 1 for KAWs and σ ∼ –1 for KSWs, and the ion Alfvén ratio R{sub Ai} << 1 for KAWs and R{sub Ai} >> 1 for KSWs. We also found transition wavenumbers where KAWs change their polarization from left-handed to right-handed. These new properties can be used to discriminate KAWs and KSWs when interpreting kinetic-scale electromagnetic fluctuations observed in various solar-terrestrial plasmas. This concerns, in particular, identification of modes responsible for kinetic-scale pressure-balanced fluctuations and turbulence in the solar wind.« less

  15. Iodine Clock Reaction.

    ERIC Educational Resources Information Center

    Mitchell, Richard S.

    1996-01-01

    Describes a combination of solutions that can be used in the study of kinetics using the iodine clock reaction. The combination slows down degradation of the prepared solutions and can be used successfully for several weeks. (JRH)

  16. On the origins of approximations for stochastic chemical kinetics.

    PubMed

    Haseltine, Eric L; Rawlings, James B

    2005-10-22

    This paper considers the derivation of approximations for stochastic chemical kinetics governed by the discrete master equation. Here, the concepts of (1) partitioning on the basis of fast and slow reactions as opposed to fast and slow species and (2) conditional probability densities are used to derive approximate, partitioned master equations, which are Markovian in nature, from the original master equation. Under different conditions dictated by relaxation time arguments, such approximations give rise to both the equilibrium and hybrid (deterministic or Langevin equations coupled with discrete stochastic simulation) approximations previously reported. In addition, the derivation points out several weaknesses in previous justifications of both the hybrid and equilibrium systems and demonstrates the connection between the original and approximate master equations. Two simple examples illustrate situations in which these two approximate methods are applicable and demonstrate the two methods' efficiencies.

  17. Essential role of conformational selection in ligand binding.

    PubMed

    Vogt, Austin D; Pozzi, Nicola; Chen, Zhiwei; Di Cera, Enrico

    2014-02-01

    Two competing and mutually exclusive mechanisms of ligand recognition - conformational selection and induced fit - have dominated our interpretation of ligand binding in biological macromolecules for almost six decades. Conformational selection posits the pre-existence of multiple conformations of the macromolecule from which the ligand selects the optimal one. Induced fit, on the other hand, postulates the existence of conformational rearrangements of the original conformation into an optimal one that are induced by binding of the ligand. In the former case, conformational transitions precede the binding event; in the latter, conformational changes follow the binding step. Kineticists have used a facile criterion to distinguish between the two mechanisms based on the dependence of the rate of relaxation to equilibrium, kobs, on the ligand concentration, [L]. A value of kobs decreasing hyperbolically with [L] has been seen as diagnostic of conformational selection, while a value of kobs increasing hyperbolically with [L] has been considered diagnostic of induced fit. However, this simple conclusion is only valid under the rather unrealistic assumption of conformational transitions being much slower than binding and dissociation events. In general, induced fit only produces values of kobs that increase with [L] but conformational selection is more versatile and is associated with values of kobs that increase with, decrease with or are independent of [L]. The richer repertoire of kinetic properties of conformational selection applies to kinetic mechanisms with single or multiple saturable relaxations and explains the behavior of nearly all experimental systems reported in the literature thus far. Conformational selection is always sufficient and often necessary to account for the relaxation kinetics of ligand binding to a biological macromolecule and is therefore an essential component of any binding mechanism. On the other hand, induced fit is never necessary and only sufficient in a few cases. Therefore, the long assumed importance and preponderance of induced fit as a mechanism of ligand binding should be reconsidered. © 2013 Elsevier B.V. All rights reserved.

  18. Limiting Energy Dissipation Induces Glassy Kinetics in Single-Cell High-Precision Responses

    PubMed Central

    Das, Jayajit

    2016-01-01

    Single cells often generate precise responses by involving dissipative out-of-thermodynamic-equilibrium processes in signaling networks. The available free energy to fuel these processes could become limited depending on the metabolic state of an individual cell. How does limiting dissipation affect the kinetics of high-precision responses in single cells? I address this question in the context of a kinetic proofreading scheme used in a simple model of early-time T cell signaling. Using exact analytical calculations and numerical simulations, I show that limiting dissipation qualitatively changes the kinetics in single cells marked by emergence of slow kinetics, large cell-to-cell variations of copy numbers, temporally correlated stochastic events (dynamic facilitation), and ergodicity breaking. Thus, constraints in energy dissipation, in addition to negatively affecting ligand discrimination in T cells, can create a fundamental difficulty in determining single-cell kinetics from cell-population results. PMID:26958894

  19. Binding energies and modelling of nuclei in semiclassical simulations

    NASA Astrophysics Data System (ADS)

    Pérez-García, M. Ángeles; Tsushima, K.; Valcarce, A.

    2008-03-01

    We study the binding energies of spin isospin saturated nuclei with nucleon number 8⩽A⩽100 in semiclassical Monte Carlo many-body simulations. The model Hamiltonian consists of (i) nucleon kinetic energy, (ii) a nucleon nucleon interaction potential, and (iii) an effective Pauli potential which depends on density. The basic ingredients of the nucleon nucleon potential are a short-range repulsion, and a medium-range attraction. Our results demonstrate that one can always expect to obtain the empirical binding energies for a set of nuclei by introducing a proper density dependent Pauli potential in terms of a single variable, the nucleon number, A. The present work shows that in the suggested procedure there is a delicate counterbalance of kinetic and potential energetic contributions allowing a good reproduction of the experimental nuclear binding energies. This type of calculations may be of interest in further reproduction of other properties of nuclei such as radii and also exotic nuclei.

  20. Inhibition of tyrosinase by 4H-chromene analogs: Synthesis, kinetic studies, and computational analysis.

    PubMed

    Brasil, Edikarlos M; Canavieira, Luciana M; Cardoso, Érica T C; Silva, Edilene O; Lameira, Jerônimo; Nascimento, José L M; Eifler-Lima, Vera L; Macchi, Barbarella M; Sriram, Dharmarajan; Bernhardt, Paul V; Silva, José Rogério Araújo; Williams, Craig M; Alves, Cláudio N

    2017-11-01

    Inhibition of mushroom tyrosinase was observed with synthetic dihydropyrano[3,2-b]chromenediones. Among them, DHPC04 displayed the most potent tyrosinase inhibitory activity with a K i value of 4 μm, comparable to the reference standard inhibitor kojic acid. A kinetic study suggested that these synthetic heterocyclic compounds behave as competitive inhibitors for the L-DOPA binding site of the enzyme. Furthermore, molecular modeling provided important insight into the mechanism of binding interactions with the tyrosinase copper active site. © 2017 John Wiley & Sons A/S.

  1. Role of Electrostatics in Protein-RNA Binding: The Global vs the Local Energy Landscape.

    PubMed

    Ghaemi, Zhaleh; Guzman, Irisbel; Gnutt, David; Luthey-Schulten, Zaida; Gruebele, Martin

    2017-09-14

    U1A protein-stem loop 2 RNA association is a basic step in the assembly of the spliceosomal U1 small nuclear ribonucleoprotein. Long-range electrostatic interactions due to the positive charge of U1A are thought to provide high binding affinity for the negatively charged RNA. Short range interactions, such as hydrogen bonds and contacts between RNA bases and protein side chains, favor a specific binding site. Here, we propose that electrostatic interactions are as important as local contacts in biasing the protein-RNA energy landscape toward a specific binding site. We show by using molecular dynamics simulations that deletion of two long-range electrostatic interactions (K22Q and K50Q) leads to mutant-specific alternative RNA bound states. One of these states preserves short-range interactions with aromatic residues in the original binding site, while the other one does not. We test the computational prediction with experimental temperature-jump kinetics using a tryptophan probe in the U1A-RNA binding site. The two mutants show the distinct predicted kinetic behaviors. Thus, the stem loop 2 RNA has multiple binding sites on a rough RNA-protein binding landscape. We speculate that the rough protein-RNA binding landscape, when biased to different local minima by electrostatics, could be one way that protein-RNA interactions evolve toward new binding sites and novel function.

  2. Radioligand binding analysis of α 2 adrenoceptors with [11C]yohimbine in brain in vivo: Extended Inhibition Plot correction for plasma protein binding.

    PubMed

    Phan, Jenny-Ann; Landau, Anne M; Jakobsen, Steen; Wong, Dean F; Gjedde, Albert

    2017-11-22

    We describe a novel method of kinetic analysis of radioligand binding to neuroreceptors in brain in vivo, here applied to noradrenaline receptors in rat brain. The method uses positron emission tomography (PET) of [ 11 C]yohimbine binding in brain to quantify the density and affinity of α 2 adrenoceptors under condition of changing radioligand binding to plasma proteins. We obtained dynamic PET recordings from brain of Spraque Dawley rats at baseline, followed by pharmacological challenge with unlabeled yohimbine (0.3 mg/kg). The challenge with unlabeled ligand failed to diminish radioligand accumulation in brain tissue, due to the blocking of radioligand binding to plasma proteins that elevated the free fractions of the radioligand in plasma. We devised a method that graphically resolved the masking of unlabeled ligand binding by the increase of radioligand free fractions in plasma. The Extended Inhibition Plot introduced here yielded an estimate of the volume of distribution of non-displaceable ligand in brain tissue that increased with the increase of the free fraction of the radioligand in plasma. The resulting binding potentials of the radioligand declined by 50-60% in the presence of unlabeled ligand. The kinetic unmasking of inhibited binding reflected in the increase of the reference volume of distribution yielded estimates of receptor saturation consistent with the binding of unlabeled ligand.

  3. Excitation energy dependence of excited states dynamics in all- trans-carotenes determined by femtosecond absorption and fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Kosumi, Daisuke; Yanagi, Kazuhiro; Nishio, Tomohiro; Hashimoto, Hideki; Yoshizawa, Masayuki

    2005-06-01

    Ultrafast relaxation kinetics in β-carotene and lycopene has been investigated by femtosecond absorption and fluorescence spectroscopies using tunable excitation pulses. The transient signals induced by the photoexcitation with larger excess energy have broader bands and longer lifetimes both in the 11Bu+and21Ag- excited states. The excess vibrational energy remains longer than several picoseconds and slows the relaxation kinetics in carotenoids.

  4. SLOW MAGNETOACOUSTIC WAVES OBSERVED ABOVE A QUIET-SUN REGION IN A DARK CAVITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Jiajia; Zhou Zhenjun; Wang Yuming

    Waves play a crucial role in diagnosing the plasma properties of various structures in the solar corona and coronal heating. Slow magnetoacoustic (MA) waves are one of the important types of magnetohydrodynamic waves. In past decades, numerous slow MA waves were detected above active regions and coronal holes, but were rarely found elsewhere. Here, we investigate a 'tornado'-like structure consisting of quasi-periodic streaks within a dark cavity at about 40-110 Mm above a quiet-Sun region on 2011 September 25. Our analysis reveals that these streaks are actually slow MA wave trains. The properties of these wave trains, including phase speed,more » compression ratio, and kinetic energy density, are similar to those of the reported slow MA waves, except that the period of these waves is about 50 s, much shorter than the typical reported values (3-5 minutes).« less

  5. Slowed Relaxation in Fatigued Skeletal Muscle Fibers of Xenopus and Mouse

    PubMed Central

    Westerblad, Håkan; Lännergren, Jan; Allen, David G.

    1997-01-01

    Slowing of relaxation is an important characteristic of skeletal muscle fatigue. The aim of the present study was to quantify the relative contribution of altered Ca2+ handling (calcium component) and factors down-stream to Ca2+ (cross-bridge component) to the slowing of relaxation in fatigued fibers of Xenopus and mouse. Two types of Xenopus fibers were used: easily fatigued, type 1 fibers and fatigue resistant, type 2 fibers. In these Xenopus fibers the free myoplasmic [Ca2+] ([Ca2+]i) was measured with indo-1, and the relaxation of Ca2+-derived force, constructed from tetanic [Ca2+]i records and in vivo [Ca2+]i-force curves, was analyzed. An alternative method was used in both Xenopus and mouse fibers: fibers were rapidly shortened during the initial phase of relaxation, and the time to the peak of force redevelopment was measured. These two methods gave similar results and showed proportional slowing of the calcium and cross-bridge components of relaxation in both fatigued type 1 and type 2 Xenopus fibers, whereas only the cross-bridge component was slowed in fatigued mouse fibers. Ca2+ removal from the myoplasm during relaxation was markedly less effective in Xenopus fibers as compared to mouse fibers. Fatigued Xenopus fibers displayed a reduced rate of sarcoplasmic reticulum Ca2+ uptake and increased sarcoplasmic reticulum Ca2+ leak. Some fibers were stretched at various times during relaxation. The resistance to these stretches was increased during fatigue, especially in Xenopus fibers, which indicates that longitudinal movements during relaxation had become less pronounced and this might contribute to the increased cross-bridge component of relaxation in fatigue. In conclusion, slowing of relaxation in fatigued Xenopus fibers is caused by impaired Ca2+ handling and altered cross-bridge kinetics, whereas the slowing in mouse fibers is only due to altered cross-bridge kinetics. PMID:9089444

  6. Simple views on critical binary liquid mixtures in porous glass

    NASA Astrophysics Data System (ADS)

    Tremblay, L.; Socol, S. M.; Lacelle, S.

    2000-01-01

    A simple scenario, different from previous attempts, is proposed to resolve the problem of the slow phase separation dynamics of binary liquid mixtures confined in porous Vycor glass. We demonstrate that simply mutual diffusion, renormalized by critical composition fluctuations and geometrical hindrance of the porous glass, accounts for the slow phase separation kinetics. Capillary invasion studies of porous Vycor glass by the critical isobutyric acid-water mixture, close to the consolute solution temperature, corroborate our analysis.

  7. Mechanism of Positive Allosteric Modulators Acting on AMPA Receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin,R.; Clark, S.; Weeks, A.

    2005-01-01

    Ligand-gated ion channels involved in the modulation of synaptic strength are the AMPA, kainate, and NMDA glutamate receptors. Small molecules that potentiate AMPA receptor currents relieve cognitive deficits caused by neurodegenerative diseases such as Alzheimer's disease and show promise in the treatment of depression. Previously, there has been limited understanding of the molecular mechanism of action for AMPA receptor potentiators. Here we present cocrystal structures of the glutamate receptor GluR2 S1S2 ligand-binding domain in complex with aniracetam [1-(4-methoxybenzoyl)-2-pyrrolidinone] or CX614 (pyrrolidino-1, 3-oxazino benzo-1, 4-dioxan-10-one), two AMPA receptor potentiators that preferentially slow AMPA receptor deactivation. Both potentiators bind within the dimermore » interface of the nondesensitized receptor at a common site located on the twofold axis of molecular symmetry. Importantly, the potentiator binding site is adjacent to the 'hinge' in the ligand-binding core 'clamshell' that undergoes conformational rearrangement after glutamate binding. Using rapid solution exchange, patch-clamp electrophysiology experiments, we show that point mutations of residues that interact with potentiators in the cocrystal disrupt potentiator function. We suggest that the potentiators slow deactivation by stabilizing the clamshell in its closed-cleft, glutamate-bound conformation.« less

  8. A comparison of slow, uphill and fast, level walking on lower extremity biomechanics and tibiofemoral joint loading in obese and nonobese adults.

    PubMed

    Haight, Derek J; Lerner, Zachary F; Board, Wayne J; Browning, Raymond C

    2014-02-01

    We determined if slow, uphill walking (0.75 m/s, 6°) reduced tibiofemoral (TF) loading compared to faster, level walking (1.50 m/s) in obese and nonobese adults. We collected kinematic, kinetic, and electromyographic data as 9 moderately obese and 10 nonobese participants walked on a dual-belt instrumented treadmill. We used OpenSim to scale a musculoskeletal model and calculate joint kinematics, kinetics, muscle forces, and TF forces. Compressive TF forces were greater in the obese adults during both speed/grade combinations. During level walking, obese participants walked with a straighter leg than nonobese participants, resulting in early stance vasti muscle forces that were similar in the obese and nonobese participants. Early stance peak compressive TF forces were reduced by 23% in obese (2,352 to 1,811 N) and 35% in nonobese (1,994 to 1,303 N) individuals during slow, uphill walking compared to brisk level walking. Late stance peak TF forces were similar across speeds/grades, but were greater in obese (∼2,900 N) compared to nonobese (∼1,700 N) individuals. Smaller early stance TF loads and loading rates suggest that slow, uphill walking may be appropriate exercise for obese individuals at risk for musculoskeletal pathology or pain. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  9. Electrogenic Binding of Intracellular Cations Defines a Kinetic Decision Point in the Transport Cycle of the Human Serotonin Transporter.

    PubMed

    Hasenhuetl, Peter S; Freissmuth, Michael; Sandtner, Walter

    2016-12-09

    The plasmalemmal monoamine transporters clear the extracellular space from their cognate substrates and sustain cellular monoamine stores even during neuronal activity. In some instances, however, the transporters enter a substrate-exchange mode, which results in release of intracellular substrate. Understanding what determines the switch between these two transport modes demands time-resolved measurements of intracellular (co-)substrate binding and release. Here, we report an electrophysiological investigation of intracellular solute-binding to the human serotonin transporter (SERT) expressed in HEK-293 cells. We measured currents induced by rapid application of serotonin employing varying intracellular (co-)substrate concentrations and interpreted the data using kinetic modeling. Our measurements revealed that the induction of the substrate-exchange mode depends on both voltage and intracellular Na + concentrations because intracellular Na + release occurs before serotonin release and is highly electrogenic. This voltage dependence was blunted by electrogenic binding of intracellular K + and, notably, also H + In addition, our data suggest that Cl - is bound to SERT during the entire catalytic cycle. Our experiments, therefore, document an essential role of electrogenic binding of K + or of H + to the inward-facing conformation of SERT in (i) cancelling out the electrogenic nature of intracellular Na + release and (ii) in selecting the forward-transport over the substrate-exchange mode. Finally, the kinetics of intracellular Na + release and K + (or H + ) binding result in a voltage-independent rate-limiting step where SERT may return to the outward-facing state in a KCl- or HCl-bound form. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Kinetic mechanism of Toxoplasma gondii adenosine kinase and the highly efficient utilization of adenosine

    PubMed Central

    Naguib, Fardos N. M.; Rais, Reem H.; Al Safarjalani, Omar N.; el Kouni, Mahmoud H.

    2015-01-01

    Toxoplasma gondii has an extraordinarily ability to utilize adenosine (Ado) as the primary source of all necessary purines in this parasite which lacks de novo purine biosynthesis. The activity of T. gondii adenosine kinase (TgAK, EC 2.7.1.20) is responsible for this efficient salvage of Ado in T. gondii. To fully understand this remarkable efficiency of TgAK in the utilization of Ado, complete kinetic parameters of this enzyme are necessary. Initial velocity and product inhibition studies of TgAK demonstrated that the basic mechanism of this enzyme is a hybrid random bi-uni ping-pong uni-bi. Initial velocity studies showed an intersecting pattern, consistent with substrate-enzyme-co-substrate complex formation and a binding pattern indicating that binding of the substrate interferes with the binding of the co-substrate and vice versa. Estimated kinetic parameters were KAdo = 0.002 ± 0.0002 mM, KATP = 0.05 ± 0.008 mM, and Vmax = 920 ± 35 μmol/min/mg protein. Ado exhibited substrate inhibition suggesting the presence of more than one binding site for Ado on the enzyme. ATP relieved substrate inhibition by Ado. Thus, Ado also binds to the ATP binding site. AMP was competitive with ATP, inferring that AMP binds to the same site as ATP. AMP, ADP and ATP were non-competitive with Ado, therefore, none of these nucleotides binds to the Ado binding site. Combining ATP with ADP was additive. Therefore, the binding of either ATP or ADP does not interfere with the binding of the other. It is concluded that for every ATP consumed, TgAK generates three new AMPs. These findings along with the fact that a wide range of nucleoside 5′-mono, di, and triphosphates could substitute for ATP as phosphate donors in this reaction may explain the efficient and central role played by TgAK in the utilization of Ado as the major source from which all other purines can be synthesized in T. gondii. PMID:26112826

  11. The transition state structure for binding between TAZ1 of CBP and the disordered Hif-1α CAD.

    PubMed

    Lindström, Ida; Andersson, Eva; Dogan, Jakob

    2018-05-18

    Intrinsically disordered proteins (IDPs) are common in eukaryotes. However, relatively few experimental studies have addressed the nature of the rate-limiting transition state for the coupled binding and folding reactions involving IDPs. By using site-directed mutagenesis in combination with kinetics measurements we have here characterized the transition state for binding between the globular TAZ1 domain of CREB binding protein and the intrinsically disordered C-terminal activation domain of Hif-1α (Hif-1α CAD). A total of 17 Hif-1α CAD point-mutations were generated and a Φ-value binding analysis was carried out. We found that native hydrophobic binding interactions are not formed at the transition state. We also investigated the effect the biologically important Hif-1α CAD Asn-803 hydroxylation has on the binding kinetics, and found that the whole destabilization effect due the hydroxylation is within the dissociation rate constant. Thus, the rate-limiting transition state is "disordered-like", with native hydrophobic binding contacts being formed cooperatively after the rate-limiting barrier, which is clearly shown by linear free energy relationships. The same behavior was observed in a previously characterized TAZ1/IDP interaction, which may suggest common features for the rate-limiting transition state for TAZ1/IDP interactions.

  12. A comparative study of charge movement in rat and frog skeletal muscle fibres.

    PubMed

    Hollingworth, S; Marshall, M W

    1981-12-01

    1. The middle of the fibre voltage--clamp technique (Adrian & Marshall, 1977), modified where necessary for electrically short muscle fibres, has been used to measure non-linear charge movements in mammalian fast twitch (rat extensor digitorum longus), mammalian slow twitch (rat soleus) and frog (sartorius) muscles. 2. The maximum amount of charge moved in mammalian fast twitch muscle at 2 degrees C in hypertonic solution, was 3--5 times greater than in slow twitch muscle. The voltage distribution of fast twitch charge was 10--15 mV more positive when compared to slow twitch. 3. In both mammalian muscle types hypertonic Ringer solution negatively shifted the voltage distribution of charge some 6 mV. The steepness of charge moved around mechanical threshold was unaffected by hypertonicity. 4. The amount of charge in frog sartorius fibres at 2 degrees C in hypertonic solution was about half of that in rat fast twitch muscle; the voltage distribution of the frog charge was similar to rat soleus muscle. 5. Warming between 2 and 15 degrees C had no effect on either the amount of steady-state distribution of charge in mammalian or frog muscles. 6. At 2 degrees C, the kinetics of charge movement in fast and slow twitch mammalian muscles were similar and 2--3 times faster than frog muscle at the same temperature. In fast and slow mammalian fibres at 2 degrees C similar times were taken to shift the same fractions of the total amount of charge. The Q10 of charge movement kinetics was between 1.2 and 2.0 in the three muscles studied.

  13. Kinetics of Cd(ii) adsorption and desorption on ferrihydrite: experiments and modeling.

    PubMed

    Liang, Yuzhen; Tian, Lei; Lu, Yang; Peng, Lanfang; Wang, Pei; Lin, Jingyi; Cheng, Tao; Dang, Zhi; Shi, Zhenqing

    2018-05-15

    The kinetics of Cd(ii) adsorption/desorption on ferrihydrite is an important process affecting the fate, transport, and bioavailability of Cd(ii) in the environment, which was rarely systematically studied and understood at quantitative levels. In this work, a combination of stirred-flow kinetic experiments, batch adsorption equilibrium experiments, high-resolution transmission electron microscopy (HR-TEM), and mechanistic kinetic modeling were used to study the kinetic behaviors of Cd(ii) adsorption/desorption on ferrihydrite. HR-TEM images showed the open, loose, and sponge-like structure of ferrihydrite. The batch adsorption equilibrium experiments revealed that higher pH and initial metal concentration increased Cd(ii) adsorption on ferrihydrite. The stirred-flow kinetic results demonstrated the increased adsorption rate and capacity as a result of the increased pH, influent concentration, and ferrihydrite concentration. The mechanistic kinetic model successfully described the kinetic behaviors of Cd(ii) during the adsorption and desorption stages under various chemistry conditions. The model calculations showed that the adsorption rate coefficients varied as a function of solution chemistry, and the relative contributions of the weak and strong ferrihydrite sites for Cd(ii) binding varied with time at different pH and initial metal concentrations. Our model is able to quantitatively assess the contributions of each individual ferrihydrite binding site to the overall Cd(ii) adsorption/desorption kinetics. This study provided insights into the dynamic behavior of Cd(ii) and a predictive modeling tool for Cd(ii) adsorption/desorption kinetics when ferrihydrite is present, which may be helpful for the risk assessment and management of Cd contaminated sites.

  14. Kinetic coupling of phosphate release, force generation and rate-limiting steps in the cross-bridge cycle.

    PubMed

    Stehle, Robert; Tesi, Chiara

    2017-08-01

    A basic goal in muscle research is to understand how the cyclic ATPase activity of cross-bridges is converted into mechanical force. A direct approach to study the chemo-mechanical coupling between P i release and the force-generating step is provided by the kinetics of force response induced by a rapid change in [P i ]. Classical studies on fibres using caged-P i discovered that rapid increases in [P i ] induce fast force decays dependent on final [P i ] whose kinetics were interpreted to probe a fast force-generating step prior to P i release. However, this hypothesis was called into question by studies on skeletal and cardiac myofibrils subjected to P i jumps in both directions (increases and decreases in [P i ]) which revealed that rapid decreases in [P i ] trigger force rises with slow kinetics, similar to those of calcium-induced force development and mechanically-induced force redevelopment at the same [P i ]. A possible explanation for this discrepancy came from imaging of individual sarcomeres in cardiac myofibrils, showing that the fast force decay upon increase in [P i ] results from so-called sarcomere 'give'. The slow force rise upon decrease in [P i ] was found to better reflect overall sarcomeres cross-bridge kinetics and its [P i ] dependence, suggesting that the force generation coupled to P i release cannot be separated from the rate-limiting transition. The reasons for the different conclusions achieved in fibre and myofibril studies are re-examined as the recent findings on cardiac myofibrils have fundamental consequences for the coupling between P i release, rate-limiting steps and force generation. The implications from P i -induced force kinetics of myofibrils are discussed in combination with historical and recent models of the cross-bridge cycle.

  15. Photoaffinity Labeling Studies on a Promoter of Dendritic Spine Formation

    NASA Astrophysics Data System (ADS)

    Sibucao, Kevin Carlo Abril

    The small molecule BTA-EG4 has been shown to be a promoter of dendritic spine formation. The mechanism behind this phenomenon, however, is not well understood. The work in this dissertation is motivated by this gap in knowledge. The first part of this dissertation focuses on photoaffinity labeling studies to identify the cellular targets of BTA-EG4. Chapter 1 provides a summary of Alzheimer's disease, the rational design of BTA-EG 4, and methods to determine targets of small molecules. In Chapter 2, the synthesis of a BTA-EG4-based photoaffinity labeling probe and photodegradation studies are presented. Kinetic studies demonstrate that the probe photolyzes rapidly under UV light. In Chapter 3, photoaffinity labeling studies and subsequent protein identification experiments are reported. Competition experiments with the photoaffinity labeling probe and BTA-EG4 demonstrate that the probe labels a 55-kDa protein specifically. Tandem mass spectrometry revealed that the 55-kDa protein is the actin binding protein fascin 1. The second part of this dissertation focuses on the major protein identified from photoaffinity labeling studies, fascin 1. Chapter 4 provides a brief survey of the structure and function of fascin 1. In Chapter 5, characterizations of the interaction between BTA-EG4 and fascin 1 are reported. Isothermal titration calorimetry confirms the physical binding between fascin 1 and BTA-EG6, a BTA-EG4 analog. Slow speed sedimentation assays reveal that BTA-EG4 does not affect the actin-bundling activity of fascin 1. However, GST pull-down experiments show that BTA-EG4 inhibits the binding of fascin 1 with the GTPase Rab35. In addition, this work demonstrates that BTA-EG4 may be mechanistically distinct from the known fascin inhibitor G2.

  16. Reduced Plasminogen Binding and Delayed Activation Render γ′-Fibrin More Resistant to Lysis than γA-Fibrin*

    PubMed Central

    Kim, Paul Y.; Vu, Trang T.; Leslie, Beverly A.; Stafford, Alan R.; Fredenburgh, James C.; Weitz, Jeffrey I.

    2014-01-01

    Fibrin (Fn) clots formed from γ′-fibrinogen (γ′-Fg), a variant with an elongated γ-chain, are resistant to lysis when compared with clots formed from the predominant γA-Fg, a finding previously attributed to differences in clot structure due to delayed thrombin-mediated fibrinopeptide (FP) B release or impaired cross-linking by factor XIIIa. We investigated whether slower lysis of γ′-Fn reflects delayed plasminogen (Pg) binding and/or activation by tissue plasminogen activator (tPA), reduced plasmin-mediated proteolysis of γ′-Fn, and/or altered cross-linking. Clots formed from γ′-Fg lysed more slowly than those formed from γA-Fg when lysis was initiated with tPA/Pg when FPA and FPB were both released, but not when lysis was initiated with plasmin, or when only FPA was released. Pg bound to γ′-Fn with an association rate constant 22% lower than that to γA-Fn, and the lag time for initiation of Pg activation by tPA was longer with γ′-Fn than with γA-Fn. Once initiated, however, Pg activation kinetics were similar. Factor XIIIa had similar effects on clots formed from both Fg isoforms. Therefore, slower lysis of γ′-Fn clots reflects delayed FPB release, which results in delayed binding and activation of Pg. When clots were formed from Fg mixtures containing more than 20% γ′-Fg, the upper limit of the normal level, the delay in lysis was magnified. These data suggest that circulating levels of γ′-Fg modulate the susceptibility of clots to lysis by slowing Pg activation by tPA and provide another example of the intimate connections between coagulation and fibrinolysis. PMID:25128532

  17. Regulation of Response Regulator Autophosphorylation through Interdomain Contacts*♦

    PubMed Central

    Barbieri, Christopher M.; Mack, Timothy R.; Robinson, Victoria L.; Miller, Matthew T.; Stock, Ann M.

    2010-01-01

    DNA-binding response regulators (RRs) of the OmpR/PhoB subfamily alternate between inactive and active conformational states, with the latter having enhanced DNA-binding affinity. Phosphorylation of an aspartate residue in the receiver domain, usually via phosphotransfer from a cognate histidine kinase, stabilizes the active conformation. Many of the available structures of inactive OmpR/PhoB family proteins exhibit extensive interfaces between the N-terminal receiver and C-terminal DNA-binding domains. These interfaces invariably involve the α4-β5-α5 face of the receiver domain, the locus of the largest differences between inactive and active conformations and the surface that mediates dimerization of receiver domains in the active state. Structures of receiver domain dimers of DrrB, DrrD, and MtrA have been determined, and phosphorylation kinetics were analyzed. Analysis of phosphotransfer from small molecule phosphodonors has revealed large differences in autophosphorylation rates among OmpR/PhoB RRs. RRs with substantial domain interfaces exhibit slow rates of phosphorylation. Rates are greatly increased in isolated receiver domain constructs. Such differences are not observed between autophosphorylation rates of full-length and isolated receiver domains of a RR that lacks interdomain interfaces, and they are not observed in histidine kinase-mediated phosphotransfer. These findings suggest that domain interfaces restrict receiver domain conformational dynamics, stabilizing an inactive conformation that is catalytically incompetent for phosphotransfer from small molecule phosphodonors. Inhibition of phosphotransfer by domain interfaces provides an explanation for the observation that some RRs cannot be phosphorylated by small molecule phosphodonors in vitro and provides a potential mechanism for insulating some RRs from small molecule-mediated phosphorylation in vivo. PMID:20702407

  18. From Aβ Filament to Fibril: Molecular Mechanism of Surface-Activated Secondary Nucleation from All-Atom MD Simulations.

    PubMed

    Schwierz, Nadine; Frost, Christina V; Geissler, Phillip L; Zacharias, Martin

    2017-02-02

    Secondary nucleation pathways in which existing amyloid fibrils catalyze the formation of new aggregates and neurotoxic oligomers are of immediate importance for the onset and progression of Alzheimer's disease. Here, we apply extensive all-atom molecular dynamics simulations in explicit water to study surface-activated secondary nucleation pathways at the extended lateral β-sheet surface of a preformed Aβ 9-40 filament. Calculation of free-energy profiles allows us to determine binding free energies and conformational intermediates for nucleation complexes consisting of 1-4 Aβ peptides. In addition, we combine the free-energy profiles with position-dependent diffusion profiles to extract complementary kinetic information and macroscopic growth rates. Single monomers bind to the β-sheet surface in a disordered, hydrophobically collapsed conformation, whereas dimers and larger oligomers can retain a cross-β conformation resembling a more ordered fibril structure. The association processes during secondary nucleation follow a dock/lock mechanism consisting of a fast initial encounter phase (docking) and a slow structural rearrangement phase (locking). The major driving forces for surface-activated secondary nucleation are the release of a large number of hydration water molecules and the formation of hydrophobic interface contacts, the latter being in contrast to the elongation process at filament tips, which is dominated by the formation of stable and highly specific interface hydrogen bonds. The calculated binding free energies and the association rates for the attachment of Aβ monomers and oligomers to the extended lateral β-sheet surface of the filament seed are higher compared to those for elongation at the filament tips, indicating that secondary nucleation pathways can become important once a critical concentration of filaments has formed.

  19. Recognition of T·G mismatched base pairs in DNA by stacked imidazole-containing polyamides: surface plasmon resonance and circular dichroism studies

    PubMed Central

    Lacy, Eilyn R.; Cox, Kari K.; Wilson, W. David; Lee, Moses

    2002-01-01

    An imidazole-containing polyamide trimer, f-ImImIm, where f is a formamido group, was recently found using NMR methods to recognize T·G mismatched base pairs. In order to characterize in detail the T·G recognition affinity and specificity of imidazole-containing polyamides, f-ImIm, f-ImImIm and f-PyImIm were synthesized. The kinetics and thermodynamics for the polyamides binding to Watson–Crick and mismatched (containing one or two T·G, A·G or G·G mismatched base pairs) hairpin oligonucleotides were determined by surface plasmon resonance and circular dichroism (CD) methods. f-ImImIm binds significantly more strongly to the T·G mismatch-containing oligonucleotides than to the sequences with other mismatched or with Watson–Crick base pairs. Compared with the Watson–Crick CCGG sequence, f-ImImIm associates more slowly with DNAs containing T·G mismatches in place of one or two C·G base pairs and, more importantly, the dissociation rate from the T·G oligonucleotides is very slow (small kd). These results clearly demonstrate the binding selectivity and enhanced affinity of side-by-side imidazole/imidazole pairings for T·G mismatches and show that the affinity and specificity increase arise from much lower kd values with the T·G mismatched duplexes. CD titration studies of f-ImImIm complexes with T·G mismatched sequences produce strong induced bands at ∼330 nm with clear isodichroic points, in support of a single minor groove complex. CD DNA bands suggest that the complexes remain in the B conformation. PMID:11937638

  20. Anomalous versus slowed-down Brownian diffusion in the ligand-binding equilibrium.

    PubMed

    Soula, Hédi; Caré, Bertrand; Beslon, Guillaume; Berry, Hugues

    2013-11-05

    Measurements of protein motion in living cells and membranes consistently report transient anomalous diffusion (subdiffusion) that converges back to a Brownian motion with reduced diffusion coefficient at long times after the anomalous diffusion regime. Therefore, slowed-down Brownian motion could be considered the macroscopic limit of transient anomalous diffusion. On the other hand, membranes are also heterogeneous media in which Brownian motion may be locally slowed down due to variations in lipid composition. Here, we investigate whether both situations lead to a similar behavior for the reversible ligand-binding reaction in two dimensions. We compare the (long-time) equilibrium properties obtained with transient anomalous diffusion due to obstacle hindrance or power-law-distributed residence times (continuous-time random walks) to those obtained with space-dependent slowed-down Brownian motion. Using theoretical arguments and Monte Carlo simulations, we show that these three scenarios have distinctive effects on the apparent affinity of the reaction. Whereas continuous-time random walks decrease the apparent affinity of the reaction, locally slowed-down Brownian motion and local hindrance by obstacles both improve it. However, only in the case of slowed-down Brownian motion is the affinity maximal when the slowdown is restricted to a subregion of the available space. Hence, even at long times (equilibrium), these processes are different and exhibit irreconcilable behaviors when the area fraction of reduced mobility changes. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

Top