Sample records for slow delayed rectifier

  1. Update on the slow delayed rectifier potassium current (I(Ks)): role in modulating cardiac function.

    PubMed

    Liu, Zhenzhen; Du, Lupei; Li, Minyong

    2012-01-01

    The slow delayed rectifier current (I(Ks)) is the slow component of cardiac delayed rectifier current and is critical for the late phase repolarization of cardiac action potential. This current is also an important target for Sympathetic Nervous System (SNS) to regulate the cardiac electivity to accommodate to heart rate alterations in response to exercise or emotional stress and can be up-regulated by β- adrenergic or other signal molecules. I(Ks) channel is originated by the co-assembly of pore-forming KCNQ1 α-subunit and accessory KCNE1 β-subunit. Mutations in any subunit can bring about severe long QT syndrome (LQT-1, LQT-5) as characterized by deliquium, seizures and sudden death. This review summarizes the normal physiological functions and molecular basis of I(Ks) channels, as well as illustrates up-to-date development on its blockers and activators. Therefore, the current extensive survey should generate fundamental understanding of the role of I(Ks) channel in modulating cardiac function and donate some instructions to the progression of I(Ks) blockers and activators as potential antiarrhythmic agents or pharmacological tools to determine the physiological and pathological function of I(Ks).

  2. Rhynchophylline from Uncaria rhynchophylla functionally turns delayed rectifiers into A-Type K+ channels.

    PubMed

    Chou, Chun-Hsiao; Gong, Chi-Li; Chao, Chia-Chia; Lin, Chia-Huei; Kwan, Chiu-Yin; Hsieh, Ching-Liang; Leung, Yuk-Man

    2009-05-22

    Rhynchophylline (1), a neuroprotective agent isolated from the traditional Chinese medicinal herb Uncaria rhynchophylla, was shown to affect voltage-gated K(+) (Kv) channel slow inactivation in mouse neuroblastoma N2A cells. Extracellular 1 (30 microM) accelerated the slow decay of Kv currents and shifted the steady-state inactivation curve to the left. Intracellular dialysis of 1 did not accelerate the slow current decay, suggesting that this compound acts extracellularly. In addition, the percent blockage of Kv currents by this substance was independent of the degree of depolarization and the intracellular K(+) concentration. Therefore, 1 did not appear to directly block the outer channel pore, with the results obtained suggesting that it drastically accelerated Kv channel slow inactivation. Interestingly, 1 also shifted the activation curve to the left. This alkaloid also strongly accelerated slow inactivation and caused a left shift of the activation curve of Kv1.2 channels heterologously expressed in HEK293 cells. Thus, this compound functionally turned delayed rectifiers into A-type K(+) channels.

  3. Urocortin2 prolongs action potential duration and modulates potassium currents in guinea pig myocytes and HEK293 cells.

    PubMed

    Yang, Li-Zhen; Zhu, Yi-Chun

    2015-07-05

    We previously reported that activation of corticotropin releasing factor receptor type 2 by urocortin2 up-regulates both L-type Ca(2+) channels and intracellular Ca(2+) concentration in ventricular myocytes and plays an important role in cardiac contractility and arrhythmogenesis. This study goal was to further test the hypothesis that urocortin2 may modulate action potentials as well as rapidly and slowly activating delayed rectifier potassium currents. With whole cell patch-clamp techniques, action potentials and slowly activating delayed rectifier potassium currents were recorded in isolated guinea pig ventricular myocytes, respectively. And rapidly activating delayed rectifier potassium currents were tested in hERG-HEK293 cells. Urocortin2 produced a time- and concentration-dependent prolongation of action potential duration. The EC50 values of action potential duration and action potential duration at 90% of repolarization were 14.73 and 24.3nM respectively. The prolongation of action potential duration of urocortin2 was almost completely or partly abolished by H-89 (protein kinase A inhibitor) or KB-R7943 (Na(+)/Ca(2+) exchange inhibitor) pretreatment respectively. And urocortin2 caused reduction of rapidly activating delayed rectifier potassium currents in hERG-HEK293 cells. In addition, urocortin2 slowed the rate of slowly activating delayed rectifier potassium channel activation, and rightward shifted the threshold of slowly activating delayed rectifier potassium currents to more positive potentials. Urocortin2 prolonged action potential duration via activation of protein kinase A and Na(+)/ Ca(2+) exchange in isolated guinea pig ventricular myocytes in a time- and concentration- dependent manner. In hERG-HEK293 cells, urocortin2 reduced rapidly activating delayed rectifier potassium current density which may contribute to action potential duration prolongation. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Differential roles of two delayed rectifier potassium currents in regulation of ventricular action potential duration and arrhythmia susceptibility.

    PubMed

    Devenyi, Ryan A; Ortega, Francis A; Groenendaal, Willemijn; Krogh-Madsen, Trine; Christini, David J; Sobie, Eric A

    2017-04-01

    Arrhythmias result from disruptions to cardiac electrical activity, although the factors that control cellular action potentials are incompletely understood. We combined mathematical modelling with experiments in heart cells from guinea pigs to determine how cellular electrical activity is regulated. A mismatch between modelling predictions and the experimental results allowed us to construct an improved, more predictive mathematical model. The balance between two particular potassium currents dictates how heart cells respond to perturbations and their susceptibility to arrhythmias. Imbalances of ionic currents can destabilize the cardiac action potential and potentially trigger lethal cardiac arrhythmias. In the present study, we combined mathematical modelling with information-rich dynamic clamp experiments to determine the regulation of action potential morphology in guinea pig ventricular myocytes. Parameter sensitivity analysis was used to predict how changes in ionic currents alter action potential duration, and these were tested experimentally using dynamic clamp, a technique that allows for multiple perturbations to be tested in each cell. Surprisingly, we found that a leading mathematical model, developed with traditional approaches, systematically underestimated experimental responses to dynamic clamp perturbations. We then re-parameterized the model using a genetic algorithm, which allowed us to estimate ionic current levels in each of the cells studied. This unbiased model adjustment consistently predicted an increase in the rapid delayed rectifier K + current and a drastic decrease in the slow delayed rectifier K + current, and this prediction was validated experimentally. Subsequent simulations with the adjusted model generated the clinically relevant prediction that the slow delayed rectifier is better able to stabilize the action potential and suppress pro-arrhythmic events than the rapid delayed rectifier. In summary, iterative coupling of simulations and experiments enabled novel insight into how the balance between cardiac K + currents influences ventricular arrhythmia susceptibility. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  5. Block of HERG human K(+) channel and IKr of guinea pig cardiomyocytes by chlorpromazine.

    PubMed

    Lee, So-Young; Choi, Se-Young; Youm, Jae Boum; Ho, Won-Kyung; Earm, Yung E; Lee, Chin O; Jo, Su-Hyun

    2004-05-01

    Chlorpromazine, a commonly used antipsychotic drug, has been known to induce QT prolongation and torsades de pointes, which can cause sudden death. We studied the effects of chlorpromazine on the human ether-a-go-go-related gene (HERG) channel expressed in Xenopus oocytes and on delayed rectifier K current of guinea pig ventricular myocytes. Application of chlorpromazine showed a dose-dependent decrease in the amplitudes of steady-state currents and tail currents of HERG. The decrease became more pronounced at increasingly positive potential, suggesting that the blockade of HERG by chlorpromazine is voltage dependent. IC50 for chlorpromazine block of HERG current was progressively decreased according to depolarization: IC50 values at -30, 0, and +30 mV were 10.5, 8.8, and 4.9 microM, respectively. The block of HERG current during the voltage step increased with time starting from a level 89% of the control current. In guinea pig ventricular myocytes, bath application of 2 and 5 microM chlorpromazine at 36 degree C blocked rapidly activating delayed rectifier K current (IKr) by 31 and 83%, respectively. How-ever, the same concentrations of chlorpromazine failed to significantly block slowly activating delayed rectifier K current (IKs). Our findings suggest that the arrhythmogenic side effect of chlorpromazine is caused by blockade of HERG and rapid component of delayed rectifier K current rather than by blockade of the slow component.

  6. Blockade of HERG human K+ channel and IKr of guinea pig cardiomyocytes by prochlorperazine.

    PubMed

    Kim, Moon-Doo; Eun, Su-Yong; Jo, Su-Hyun

    2006-08-21

    Prochlorperazine, a drug for the symptomatic control of nausea, vomiting and psychiatric disorders, can induce prolonged QT, torsades de pointes and sudden death. We studied the effects of prochlorperazine on human ether-a-go-go-related gene (HERG) channels expressed in Xenopus oocytes and also in the delayed rectifier K+ current of guinea pig cardiomyocytes. Prochlorperazine induced a concentration-dependent decrease in current amplitudes at the end of the voltage steps and tail currents of HERG. The IC50 for a prochlorperazine block of HERG current in Xenopus oocytes progressively decreased relative to the degree of depolarization, from 42.1 microM at -40 mV to 37.4 microM at 0 mV to 22.6 microM at +40 mV. The block of HERG by prochlorperazine was use-dependent, exhibiting a more rapid onset and a greater steady-state block at higher frequencies of activation, while there was partial relief of the block with reduced frequencies. In guinea pig ventricular myocytes, bath applications of 0.5 and 1 muM prochlorperazine at 36 degrees C blocked rapidly activating delayed rectifier K+ current by 38.9% and 76.5%, respectively, but did not significantly block slowly activating delayed rectifier K+ current. Our findings suggest that the arrhythmogenic side effects of prochlorperazine are caused by a blockade of HERG and the rapid component of the delayed rectifier K+ current rather than by a blockade of the slow component.

  7. Quantitative analysis of the Ca2+ -dependent regulation of delayed rectifier K+ current IKs in rabbit ventricular myocytes.

    PubMed

    Bartos, Daniel C; Morotti, Stefano; Ginsburg, Kenneth S; Grandi, Eleonora; Bers, Donald M

    2017-04-01

    [Ca 2+ ] i enhanced rabbit ventricular slowly activating delayed rectifier K + current (I Ks ) by negatively shifting the voltage dependence of activation and slowing deactivation, similar to perfusion of isoproterenol. Rabbit ventricular rapidly activating delayed rectifier K + current (I Kr ) amplitude and voltage dependence were unaffected by high [Ca 2+ ] i . When measuring or simulating I Ks during an action potential, I Ks was not different during a physiological Ca 2+ transient or when [Ca 2+ ] i was buffered to 500 nm. The slowly activating delayed rectifier K + current (I Ks ) contributes to repolarization of the cardiac action potential (AP). Intracellular Ca 2+ ([Ca 2+ ] i ) and β-adrenergic receptor (β-AR) stimulation modulate I Ks amplitude and kinetics, but details of these important I Ks regulators and their interaction are limited. We assessed the [Ca 2+ ] i dependence of I Ks in steady-state conditions and with dynamically changing membrane potential and [Ca 2+ ] i during an AP. I Ks was recorded from freshly isolated rabbit ventricular myocytes using whole-cell patch clamp. With intracellular pipette solutions that controlled free [Ca 2+ ] i , we found that raising [Ca 2+ ] i from 100 to 600 nm produced similar increases in I Ks as did β-AR activation, and the effects appeared additive. Both β-AR activation and high [Ca 2+ ] i increased maximally activated tail I Ks , negatively shifted the voltage dependence of activation, and slowed deactivation kinetics. These data informed changes in our well-established mathematical model of the rabbit myocyte. In both AP-clamp experiments and simulations, I Ks recorded during a normal physiological Ca 2+ transient was similar to I Ks measured with [Ca 2+ ] i clamped at 500-600 nm. Thus, our study provides novel quantitative data as to how physiological [Ca 2+ ] i regulates I Ks amplitude and kinetics during the normal rabbit AP. Our results suggest that micromolar [Ca 2+ ] i , in the submembrane or junctional cleft space, is not required to maximize [Ca 2+ ] i -dependent I Ks activation during normal Ca 2+ transients. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  8. Quantitative analysis of the Ca2+‐dependent regulation of delayed rectifier K+ current I Ks in rabbit ventricular myocytes

    PubMed Central

    Bartos, Daniel C.; Morotti, Stefano; Ginsburg, Kenneth S.; Grandi, Eleonora

    2017-01-01

    Key points [Ca2+]i enhanced rabbit ventricular slowly activating delayed rectifier K+ current (I Ks) by negatively shifting the voltage dependence of activation and slowing deactivation, similar to perfusion of isoproterenol.Rabbit ventricular rapidly activating delayed rectifier K+ current (I Kr) amplitude and voltage dependence were unaffected by high [Ca2+]i.When measuring or simulating I Ks during an action potential, I Ks was not different during a physiological Ca2+ transient or when [Ca2+]i was buffered to 500 nm. Abstract The slowly activating delayed rectifier K+ current (I Ks) contributes to repolarization of the cardiac action potential (AP). Intracellular Ca2+ ([Ca2+]i) and β‐adrenergic receptor (β‐AR) stimulation modulate I Ks amplitude and kinetics, but details of these important I Ks regulators and their interaction are limited. We assessed the [Ca2+]i dependence of I Ks in steady‐state conditions and with dynamically changing membrane potential and [Ca2+]i during an AP. I Ks was recorded from freshly isolated rabbit ventricular myocytes using whole‐cell patch clamp. With intracellular pipette solutions that controlled free [Ca2+]i, we found that raising [Ca2+]i from 100 to 600 nm produced similar increases in I Ks as did β‐AR activation, and the effects appeared additive. Both β‐AR activation and high [Ca2+]i increased maximally activated tail I Ks, negatively shifted the voltage dependence of activation, and slowed deactivation kinetics. These data informed changes in our well‐established mathematical model of the rabbit myocyte. In both AP‐clamp experiments and simulations, I Ks recorded during a normal physiological Ca2+ transient was similar to I Ks measured with [Ca2+]i clamped at 500–600 nm. Thus, our study provides novel quantitative data as to how physiological [Ca2+]i regulates I Ks amplitude and kinetics during the normal rabbit AP. Our results suggest that micromolar [Ca2+]i, in the submembrane or junctional cleft space, is not required to maximize [Ca2+]i‐dependent I Ks activation during normal Ca2+ transients. PMID:28008618

  9. Inhibition of human ether-a-go-go-related gene K+ channel and IKr of guinea pig cardiomyocytes by antipsychotic drug trifluoperazine.

    PubMed

    Choi, Se-Young; Koh, Young-Sang; Jo, Su-Hyun

    2005-05-01

    Trifluoperazine, a commonly used antipsychotic drug, has been known to induce QT prolongation and torsades de pointes, which can cause sudden death. We studied the effects of trifluoperazine on the human ether-a-go-go-related gene (HERG) channel expressed in Xenopus oocytes and on the delayed rectifier K(+) current of guinea pig cardiomyocytes. The application of trifluoperazine showed a dose-dependent decrease in current amplitudes at the end of voltage steps and tail currents of HERG. The IC(50) for a trifluoperazine block of HERG current progressively decreased according to depolarization: IC(50) values at -40, 0, and +40 mV were 21.6, 16.6, and 9.29 microM, respectively. The voltage dependence of the block could be fitted with a monoexponential function, and the fractional electrical distance was estimated to be delta = 0.65. The block of HERG by trifluoperazine was use-dependent, exhibiting more rapid onset and greater steady-state block at higher frequencies of activation; there was partial relief of the block with decreasing frequency. In guinea pig ventricular myocytes, bath applications of 0.5 and 2 microM trifluoperazine at 36 degrees C blocked the rapidly activating delayed rectifier K(+) current by 32.4 and 72.9%, respectively; however, the same concentrations of trifluoperazine failed to significantly block the slowly activating delayed rectifier K(+) current. Our findings suggest the arrhythmogenic side effect of trifluoperazine is caused by a blockade of HERG and the rapid component of the delayed rectifier K(+) current rather than by the blockade of the slow component.

  10. Photoperiod Modulates Fast Delayed Rectifier Potassium Currents in the Mammalian Circadian Clock.

    PubMed

    Farajnia, Sahar; Meijer, Johanna H; Michel, Stephan

    2016-10-01

    One feature of the mammalian circadian clock, situated in the suprachiasmatic nucleus (SCN), is its ability to measure day length and thereby contribute to the seasonal adaptation of physiology and behavior. The timing signal from the SCN, namely the 24 hr pattern of electrical activity, is adjusted according to the photoperiod being broader in long days and narrower in short days. Vasoactive intestinal peptide and gamma-aminobutyric acid play a crucial role in intercellular communication within the SCN and contribute to the seasonal changes in phase distribution. However, little is known about the underlying ionic mechanisms of synchronization. The present study was aimed to identify cellular mechanisms involved in seasonal encoding by the SCN. Mice were adapted to long-day (light-dark 16:8) and short-day (light-dark 8:16) photoperiods and membrane properties as well as K + currents activity of SCN neurons were measured using patch-clamp recordings in acute slices. Remarkably, we found evidence for a photoperiodic effect on the fast delayed rectifier K + current, that is, the circadian modulation of this ion channel's activation reversed in long days resulting in 50% higher peak values during the night compared with the unaltered day values. Consistent with fast delayed rectifier enhancement, duration of action potentials during the night was shortened and afterhyperpolarization potentials increased in amplitude and duration. The slow delayed rectifier, transient K + currents, and membrane excitability were not affected by photoperiod. We conclude that photoperiod can change intrinsic ion channel properties of the SCN neurons, which may influence cellular communication and contribute to photoperiodic phase adjustment. © The Author(s) 2016.

  11. Block of the delayed rectifier current (IK) by the 5-HT3 antagonists ondansetron and granisetron in feline ventricular myocytes.

    PubMed Central

    de Lorenzi, F G; Bridal, T R; Spinelli, W

    1994-01-01

    1. We investigated the effects of two 5-HT3 antagonists, ondansetron and granisetron, on the action potential duration (APD) and the delayed rectifier current (IK) of feline isolated ventricular myocytes. Whole-cell current and action potential recordings were performed at 37 degrees C with the patch clamp technique. 2. Ondansetron and granisetron blocked IK with a KD of 1.7 +/- 1.0 and 4.3 +/- 1.7 microM, respectively. At a higher concentration (30 microM), both drugs blocked the inward rectifier (IKl). 3. The block of IK was dependent on channel activation. Both drugs slowed the decay of IK tail currents and produced a crossover with the pre-drug current trace. These results are consistent with block and unblock from the open state of the channel. 4. Granisetron showed an intrinsic voltage-dependence as the block increased with depolarization. The equivalent voltage-dependency of block (delta) was 0.10 +/- 0.04, suggesting that granisetron blocks from the intracellular side at a binding site located 10% across the transmembrane electrical field. 5. Ondansetron (1 microM) and granisetron (3 microM) prolonged APD by about 30% at 0.5 Hz. The prolongation of APD by ondansetron was abolished at faster frequencies (3 Hz) showing reverse rate dependence. 6. In conclusion, the 5-HT3 antagonists, ondansetron and granisetron, are open state blockers of the ventricular delayed rectifier and show a clear class III action. PMID:7834204

  12. Distinct gene-specific mechanisms of arrhythmia revealed by cardiac gene transfer of two long QT disease genes, HERG and KCNE1.

    PubMed

    Hoppe, U C; Marbán, E; Johns, D C

    2001-04-24

    The long QT syndrome (LQTS) is a heritable disorder that predisposes to sudden cardiac death. LQTS is caused by mutations in ion channel genes including HERG and KCNE1, but the precise mechanisms remain unclear. To clarify this situation we injected adenoviral vectors expressing wild-type or LQT mutants of HERG and KCNE1 into guinea pig myocardium. End points at 48-72 h included electrophysiology in isolated myocytes and electrocardiography in vivo. HERG increased the rapid component, I(Kr), of the delayed rectifier current, thereby accelerating repolarization, increasing refractoriness, and diminishing beat-to-beat action potential variability. Conversely, HERG-G628S suppressed I(Kr) without significantly delaying repolarization. Nevertheless, HERG-G628S abbreviated refractoriness and increased beat-to-beat variability, leading to early afterdepolarizations (EADs). KCNE1 increased the slow component of the delayed rectifier, I(Ks), without clear phenotypic sequelae. In contrast, KCNE1-D76N suppressed I(Ks) and markedly slowed repolarization, leading to frequent EADs and electrocardiographic QT prolongation. Thus, the two genes predispose to sudden death by distinct mechanisms: the KCNE1 mutant flagrantly undermines cardiac repolarization, and HERG-G628S subtly facilitates the genesis and propagation of premature beats. Our ability to produce electrocardiographic long QT in vivo with a clinical KCNE1 mutation demonstrates the utility of somatic gene transfer in creating genotype-specific disease models.

  13. Thermal adaptation of the crucian carp (Carassius carassius) cardiac delayed rectifier current, IKs, by homomeric assembly of Kv7.1 subunits without MinK.

    PubMed

    Hassinen, Minna; Laulaja, Salla; Paajanen, Vesa; Haverinen, Jaakko; Vornanen, Matti

    2011-07-01

    Ectothermic vertebrates experience acute and chronic temperature changes which affect cardiac excitability and may threaten electrical stability of the heart. Nevertheless, ectothermic hearts function over wide range of temperatures without cardiac arrhythmias, probably due to special molecular adaptations. We examine function and molecular basis of the slow delayed rectifier K(+) current (I(Ks)) in cardiac myocytes of a eurythermic fish (Carassius carassius L.). I(Ks) is an important repolarizing current that prevents excessive prolongation of cardiac action potential, but it is extremely slowly activating when expressed in typical molecular composition of the endothermic animals. Comparison of the I(Ks) of the crucian carp atrial myocytes with the currents produced by homomeric K(v)7.1 and heteromeric K(v)7.1/MinK channels in Chinese hamster ovary cells indicates that activation kinetics and pharmacological properties of the I(Ks) are similar to those of the homomeric K(v)7.1 channels. Consistently with electrophysiological properties and homomeric K(v)7.1 channel composition, atrial transcript expression of the MinK subunit is only 1.6-1.9% of the expression level of the K(v)7.1 subunit. Since activation kinetics of the homomeric K(v)7.1 channels is much faster than activation of the heteromeric K(v)7.1/MinK channels, the homomeric K(v)7.1 composition of the crucian carp cardiac I(Ks) is thermally adaptive: the slow delayed rectifier channels can open despite low body temperatures and curtail the duration of cardiac action potential in ectothermic crucian carp. We suggest that the homomeric K(v)7.1 channel assembly is an evolutionary thermal adaptation of ectothermic hearts and the heteromeric K(v)7.1/MinK channels evolved later to adapt I(Ks) to high body temperature of endotherms.

  14. Effects of allocryptopine on outward potassium current and slow delayed rectifier potassium current in rabbit myocardium.

    PubMed

    Fu, Yi-Cheng; Zhang, Yu; Tian, Liu-Yang; Li, Nan; Chen, Xi; Cai, Zhong-Qi; Zhu, Chao; Li, Yang

    2016-05-01

    Allocryptopine (ALL) is an effective alkaloid of Corydalis decumbens (Thunb.) Pers. Papaveraceae and has proved to be anti-arrhythmic. The purpose of our study is to investigate the effects of ALL on transmural repolarizing ionic ingredients of outward potassium current (I to) and slow delayed rectifier potassium current (I Ks). The monophasic action potential (MAP) technique was used to record the MAP duration of the epicardium (Epi), myocardium (M) and endocardium (Endo) of the rabbit heart and the whole cell patch clamp was used to record I to and I Ks in cardiomyocytes of Epi, M and Endo layers that were isolated from rabbit ventricles. The effects of ALL on MAP of Epi, M and Endo layers were disequilibrium. ALL could effectively reduce the transmural dispersion of repolarization (TDR) in rabbit transmural ventricular wall. ALL decreased the current densities of I to and I Ks in a voltage and concentration dependent way and narrowed the repolarizing differences among three layers. The analysis of gating kinetics showed ALL accelerated the channel activation of I to in M layers and partly inhibit the channel openings of I to in Epi, M and Endo cells. On the other hand, ALL mainly slowed channel deactivation of I Ks channel in Epi and Endo layers without affecting its activation. Our study gives partially explanation about the mechanisms of transmural inhibition of I to and I Ks channels by ALL in rabbit myocardium. These findings provide novel perspective regarding the anti-arrhythmogenesis application of ALL in clinical settings.

  15. Cardiac Delayed Rectifier Potassium Channels in Health and Disease.

    PubMed

    Chen, Lei; Sampson, Kevin J; Kass, Robert S

    2016-06-01

    Cardiac delayed rectifier potassium channels conduct outward potassium currents during the plateau phase of action potentials and play pivotal roles in cardiac repolarization. These include IKs, IKr and the atrial specific IKur channels. In this article, we will review their molecular identities and biophysical properties. Mutations in the genes encoding delayed rectifiers lead to loss- or gain-of-function phenotypes, disrupt normal cardiac repolarization and result in various cardiac rhythm disorders, including congenital Long QT Syndrome, Short QT Syndrome and familial atrial fibrillation. We will also discuss the prospect of using delayed rectifier channels as therapeutic targets to manage cardiac arrhythmia. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Cardiac Delayed Rectifier Potassium Channels in Health and Disease

    PubMed Central

    Chen, Lei; Sampson, Kevin J.; Kass, Robert S.

    2016-01-01

    Cardiac delayed rectifier potassium channels conduct outward potassium currents during the plateau phase of action potentials and play pivotal roles in cardiac repolarization. These include IKs, IKr and the atrial specific IKur channels. In this chapter, we will review the molecular identities and biophysical properties of these channels. Mutations in the genes encoding delayed rectifiers lead to loss- or gain-of-function phenotypes, disrupt normal cardiac repolarization and result in various cardiac rhythm disorders, including congenital Long QT Syndrome, Short QT Syndrome and familial atrial fibrillation. We will also discuss the possibility and prospect of using delayed rectifier channels as therapeutic targets to manage cardiac arrhythmia. PMID:27261823

  17. Enhancement of delayed-rectifier potassium conductance by low concentrations of local anaesthetics in spinal sensory neurones

    PubMed Central

    Olschewski, Andrea; Wolff, Matthias; Bräu, Michael E; Hempelmann, Gunter; Vogel, Werner; Safronov, Boris V

    2002-01-01

    Combining the patch-clamp recordings in slice preparation with the ‘entire soma isolation' method we studied action of several local anaesthetics on delayed-rectifier K+ currents in spinal dorsal horn neurones.Bupivacaine, lidocaine and mepivacaine at low concentrations (1–100 μM) enhanced delayed-rectifier K+ current in intact neurones within the spinal cord slice, while exhibiting a partial blocking effect at higher concentrations (>100 μM). In isolated somata 0.1–10 μM bupivacaine enhanced delayed-rectifier K+ current by shifting its steady-state activation characteristic and the voltage-dependence of the activation time constant to more negative potentials by 10–20 mV.Detailed analysis has revealed that bupivacaine also increased the maximum delayed-rectifier K+ conductance by changing the open probability, rather than the unitary conductance, of the channel.It is concluded that local anaesthetics show a dual effect on delayed-rectifier K+ currents by potentiating them at low concentrations and partially suppressing at high concentrations. The phenomenon observed demonstrated the complex action of local anaesthetics during spinal and epidural anaesthesia, which is not restricted to a suppression of Na+ conductance only. PMID:12055132

  18. Delayed rectifier potassium channels are involved in SO2 derivative-induced hippocampal neuronal injury.

    PubMed

    Li, Guangke; Sang, Nan

    2009-01-01

    Recent studies implicate the possible neurotoxicity of SO(2), however, its mechanisms remain unclear. In the present study, we investigated SO(2) derivative-induced effect on delayed rectifier potassium channels (I(K)) and cellular death/apoptosis in primary cultured hippocampal neurons. The results demonstrate that SO(2) derivatives (NaHSO(3) and Na(2)SO(3), 3:1M/M) effectively augmented I(K) and promoted the activation of delayed rectifier potassium channels. Also, SO(2) derivatives increased neuronal death percentage and contributed to the formation of DNA ladder in concentration-dependent manners. Interestingly, the neuronal death and DNA ladder formation, caused by SO(2) derivatives, could be attenuated by the delayed rectifier potassium channel blocker (tetraethylammonium, TEA), but not by the transient outward potassium channel blocker (4-aminopyridine, 4-AP). It implies that stimulating delayed rectifier potassium channels were involved in SO(2) derivative-caused hippocampal neuronal insults, and blocking these channels might be one of the possibly clinical treatment for SO(2)-caused neuronal dysfunction.

  19. Functional conversion between A-type and delayed rectifier K+ channels by membrane lipids.

    PubMed

    Oliver, Dominik; Lien, Cheng-Chang; Soom, Malle; Baukrowitz, Thomas; Jonas, Peter; Fakler, Bernd

    2004-04-09

    Voltage-gated potassium (Kv) channels control action potential repolarization, interspike membrane potential, and action potential frequency in excitable cells. It is thought that the combinatorial association between distinct alpha and beta subunits determines whether Kv channels function as non-inactivating delayed rectifiers or as rapidly inactivating A-type channels. We show that membrane lipids can convert A-type channels into delayed rectifiers and vice versa. Phosphoinositides remove N-type inactivation from A-type channels by immobilizing the inactivation domains. Conversely, arachidonic acid and its amide anandamide endow delayed rectifiers with rapid voltage-dependent inactivation. The bidirectional control of Kv channel gating by lipids may provide a mechanism for the dynamic regulation of electrical signaling in the nervous system.

  20. Inactivation and pharmacological properties of sqKv1A homotetramers in Xenopus oocytes cannot account for behavior of the squid "delayed rectifier" K(+) conductance.

    PubMed Central

    Jerng, Henry H; Gilly, William F

    2002-01-01

    Considerable published evidence suggests that alpha-subunits of the cloned channel sqKv1A compose the "delayed rectifier" in the squid giant axon system, but discrepancies regarding inactivation properties of cloned versus native channels exist. In this paper we define the mechanism of inactivation for sqKv1A channels in Xenopus oocytes to investigate these and other discrepancies. Inactivation of sqKv1A in Xenopus oocytes was found to be unaffected by genetic truncation of the N-terminus, but highly sensitive to certain amino acid substitutions around the external mouth of the pore. External TEA and K(+) ions slowed inactivation of sqKv1A channels in oocytes, and chloramine T (Chl-T) accelerated inactivation. These features are all consistent with a C-type inactivation mechanism as defined for Shaker B channels. Treatment of native channels in giant fiber lobe neurons with TEA or high K(+) does not slow inactivation, nor does Chl-T accelerate it. Pharmacological differences between the two channel types were also found for 4-aminopyridine (4AP). SqKv1A's affinity for 4AP was poor at rest and increased after activation, whereas 4AP block occurred much more readily at rest with native channels than when they were activated. These results suggest that important structural differences between sqKv1A homotetramers and native squid channels are likely to exist around the external and internal mouths of the pore. PMID:12023225

  1. Gating, modulation and subunit composition of voltage-gated K+ channels in dendritic inhibitory interneurones of rat hippocampus

    PubMed Central

    Lien, Cheng-Chang; Martina, Marco; Schultz, Jobst H; Ehmke, Heimo; Jonas, Peter

    2002-01-01

    GABAergic interneurones are diverse in their morphological and functional properties. Perisomatic inhibitory cells show fast spiking during sustained current injection, whereas dendritic inhibitory cells fire action potentials with lower frequency. We examined functional and molecular properties of K+ channels in interneurones with horizontal dendrites in stratum oriens-alveus (OA) of the hippocampal CA1 region, which mainly comprise somatostatin-positive dendritic inhibitory cells. Voltage-gated K+ currents in nucleated patches isolated from OA interneurones consisted of three major components: a fast delayed rectifier K+ current component that was highly sensitive to external 4-aminopyridine (4-AP) and tetraethylammonium (TEA) (half-maximal inhibitory concentrations < 0.1 mm for both blockers), a slow delayed rectifier K+ current component that was sensitive to high concentrations of TEA, but insensitive to 4-AP, and a rapidly inactivating A-type K+ current component that was blocked by high concentrations of 4-AP, but resistant to TEA. The relative contributions of these components to the macroscopic K+ current were estimated as 57 ± 5, 25 ± 6, and 19 ± 2 %, respectively. Dendrotoxin, a selective blocker of Kv1 channels had only minimal effects on K+ currents in nucleated patches. Coapplication of the membrane-permeant cAMP analogue 8-(4-chlorophenylthio)-adenosine 3′:5′-cyclic monophosphate (cpt-cAMP) and the phosphodiesterase blocker isobutyl-methylxanthine (IBMX) resulted in a selective inhibition of the fast delayed rectifier K+ current component. This inhibition was absent in the presence of the protein kinase A (PKA) inhibitor H-89, implying the involvement of PKA-mediated phosphorylation. Single-cell reverse transcription-polymerase chain reaction (RT-PCR) analysis revealed a high abundance of Kv3.2 mRNA in OA interneurones, whereas the expression level of Kv3.1 mRNA was markedly lower. Similarly, RT-PCR analysis showed a high abundance of Kv4.3 mRNA, whereas Kv4.2 mRNA was undetectable. This suggests that the fast delayed rectifier K+ current and the A-type K+ current component are mediated predominantly by homomeric Kv3.2 and Kv4.3 channels. Selective modulation of Kv3.2 channels in OA interneurones by cAMP is likely to be an important factor regulating the activity of dendritic inhibitory cells in principal neurone-interneurone microcircuits. PMID:11790809

  2. A New Class III Antiarrhythmic Drug Niferidil Prolongs Action Potentials in Guinea Pig Atrial Myocardium via Inhibition of Rapid Delayed Rectifier.

    PubMed

    Abramochkin, Denis V; Kuzmin, Vladislav S; Rosenshtraukh, Leonid V

    2017-12-01

    A new class III antiarrhythmic drug niferidil (RG-2) has been introduced as a highly effective therapy for cases of persistent atrial fibrillation, but ionic mechanisms of its action are poorly understood. In the present study, the effects of niferidil on action potential (AP) waveform and potassium currents responsible for AP repolarization were investigated in guinea pig atrial myocardium. APs were recorded with sharp glass microelectrodes in multicellular atrial preparations. Whole-cell patch-clamp technique was used to measure K + currents in isolated myocytes. In multicellular atrial preparations, 10 -8  M niferidil effectively prolonged APs by 15.2 ± 2.8% at 90% repolarization level. However, even the highest tested concentrations, 10 -6  M and 10 -5  M failed to prolong APs more than 32.5% of control duration. The estimated concentration of niferedil for half-maximal AP prolongation was 1.13 × 10 -8  M. Among the potassium currents responsible for AP repolarization phase, I K1 was found to be almost insensitive to niferidil. However, another inward rectifier, I KACh , was effectively suppressed by micromolar concentrations of niferidil with IC 50  = 9.2 × 10 -6  M. I KATP was much less sensitive to the drug with IC 50  = 2.26 × 10 -4  M. The slow component of delayed rectifier, I Ks , also demonstrated low sensitivity to niferidil-the highest used concentration, 10 -4  M, decreased peak I Ks density to 46.2 ± 5.5% of control. Unlike I Ks , the rapid component of delayed rectifier, I Kr , appeared to be extremely sensitive to niferidil. The IC 50 was 1.26 × 10 -9  M. I Kr measured in ventricular myocytes was found to be less sensitive to niferidil with IC 50  = 3.82 × 10 -8  M. Niferidil prolongs APs in guinea pig atrial myocardium via inhibition of I Kr .

  3. Initial segment Kv2.2 channels mediate a slow delayed rectifier and maintain high frequency action potential firing in medial nucleus of the trapezoid body neurons

    PubMed Central

    Johnston, Jamie; Griffin, Sarah J; Baker, Claire; Skrzypiec, Anna; Chernova, Tatanya; Forsythe, Ian D

    2008-01-01

    The medial nucleus of the trapezoid body (MNTB) is specialized for high frequency firing by expression of Kv3 channels, which minimize action potential (AP) duration, and Kv1 channels, which suppress multiple AP firing, during each calyceal giant EPSC. However, the outward K+ current in MNTB neurons is dominated by another unidentified delayed rectifier. It has slow kinetics and a peak conductance of ∼37 nS; it is half-activated at −9.2 ± 2.1 mV and half-inactivated at −35.9 ± 1.5 mV. It is blocked by several non-specific potassium channel antagonists including quinine (100 μm) and high concentrations of extracellular tetraethylammonium (TEA; IC50 = 11.8 mm), but no specific antagonists were found. These characteristics are similar to recombinant Kv2-mediated currents. Quantitative RT-PCR showed that Kv2.2 mRNA was much more prevalent than Kv2.1 in the MNTB. A Kv2.2 antibody showed specific staining and Western blots confirmed that it recognized a protein ∼110 kDa which was absent in brainstem tissue from a Kv2.2 knockout mouse. Confocal imaging showed that Kv2.2 was highly expressed in axon initial segments of MNTB neurons. In the absence of a specific antagonist, Hodgkin–Huxley modelling of voltage-gated conductances showed that Kv2.2 has a minor role during single APs (due to its slow activation) but assists recovery of voltage-gated sodium channels (Nav) from inactivation by hyperpolarizing interspike potentials during repetitive AP firing. Current-clamp recordings during high frequency firing and characterization of Nav inactivation confirmed this hypothesis. We conclude that Kv2.2-containing channels have a distinctive initial segment location and crucial function in maintaining AP amplitude by regulating the interspike potential during high frequency firing. PMID:18511484

  4. Involvement of Potassium and Cation Channels in Hippocampal Abnormalities of Embryonic Ts65Dn and Tc1 Trisomic Mice

    PubMed Central

    Stern, Shani; Segal, Menahem; Moses, Elisha

    2015-01-01

    Down syndrome (DS) mouse models exhibit cognitive deficits, and are used for studying the neuronal basis of DS pathology. To understand the differences in the physiology of DS model neurons, we used dissociated neuronal cultures from the hippocampi of Ts65Dn and Tc1 DS mice. Imaging of [Ca2+]i and whole cell patch clamp recordings were used to analyze network activity and single neuron properties, respectively. We found a decrease of ~ 30% in both fast (A-type) and slow (delayed rectifier) outward potassium currents. Depolarization of Ts65Dn and Tc1 cells produced fewer spikes than diploid cells. Their network bursts were smaller and slower than diploids, displaying a 40% reduction in Δf / f0 of the calcium signals, and a 30% reduction in propagation velocity. Additionally, Ts65Dn and Tc1 neurons exhibited changes in the action potential shape compared to diploid neurons, with an increase in the amplitude of the action potential, a lower threshold for spiking, and a sharp decrease of about 65% in the after-hyperpolarization amplitude. Numerical simulations reproduced the DS measured phenotype by variations in the conductance of the delayed rectifier and A-type, but necessitated also changes in inward rectifying and M-type potassium channels and in the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. We therefore conducted whole cell patch clamp measurements of M-type potassium currents, which showed a ~ 90% decrease in Ts65Dn neurons, while HCN measurements displayed an increase of ~ 65% in Ts65Dn cells. Quantitative real-time PCR analysis indicates overexpression of 40% of KCNJ15, an inward rectifying potassium channel, contributing to the increased inhibition. We thus find that changes in several types of potassium channels dominate the observed DS model phenotype. PMID:26501103

  5. [Ca2+]i Elevation and Oxidative Stress Induce KCNQ1 Protein Translocation from the Cytosol to the Cell Surface and Increase Slow Delayed Rectifier (IKs) in Cardiac Myocytes*

    PubMed Central

    Wang, Yuhong; Zankov, Dimitar P.; Jiang, Min; Zhang, Mei; Henderson, Scott C.; Tseng, Gea-Ny

    2013-01-01

    Our goals are to simultaneously determine the three-dimensional distribution patterns of KCNQ1 and KCNE1 in cardiac myocytes and to study the mechanism and functional implications for variations in KCNQ1/KCNE1 colocalization in myocytes. We monitored the distribution patterns of KCNQ1, KCNE1, and markers for subcellular compartments/organelles using immunofluorescence/confocal microscopy and confirmed the findings in ventricular myocytes by directly observing fluorescently tagged KCNQ1-GFP and KCNE1-dsRed expressed in these cells. We also monitored the effects of stress on KCNQ1-GFP and endoplasmic reticulum (ER) remodeling during live cell imaging. The data showed that 1) KCNE1 maintained a stable cell surface localization, whereas KCNQ1 exhibited variations in the cytosolic compartment (striations versus vesicles) and the degree of presence on the cell surface; 2) the degree of cell surface KCNQ1/KCNE1 colocalization was positively correlated with slow delayed rectifier (IKs) current density; 3) KCNQ1 and calnexin (an ER marker) shared a cytosolic compartment; and 4) in response to stress ([Ca2+]i elevation, oxidative overload, or AT1R stimulation), KCNQ1 exited the cytosolic compartment and trafficked to the cell periphery in vesicles. This was accompanied by partial ER fragmentation. We conclude that the cellular milieu regulates KCNQ1 distribution in cardiac myocytes and that stressful conditions can increase IKs by inducing KCNQ1 movement to the cell surface. This represents a hitherto unrecognized mechanism by which IKs fulfills its function as a repolarization reserve in ventricular myocytes. PMID:24142691

  6. Differential regulation of the slow and rapid components of guinea-pig cardiac delayed rectifier K+ channels by hypoxia

    PubMed Central

    Hool, Livia C

    2004-01-01

    The aim of this study was to examine the effects of acute hypoxia on the slow (IKs) and rapid (IKr) components of the native delayed rectifier K+ channel in the absence and presence of the β-adrenergic receptor agonist isoproterenol (isoprenaline; Iso) using the whole-cell configuration of the patch-clamp technique. Hypoxia reversibly inhibited basal IKs. The effect could be mimicked by exposing the cells to the thiol-specific reducing agent dithiothreitol (DTT) and attenuated upon exposure of cells to the membrane-impermeant thiol-specific oxidizing compound 5,5′-dithio-bis[2-nitrobenzoic acid] (DTNB). In the presence of hypoxia, the K0.5 for activation of IKs by Iso was significantly decreased from 18.3 to 1.9 nm. DTT mimicked the effect of hypoxia on the sensitivity of IKs to Iso while DTNB had no effect. Hypoxia increased the sensitivity of IKs to histamine and forskolin suggesting that the effect of hypoxia is not occurring at the β-adrenergic receptor. The increase in sensitivity of IKs to Iso could be attenuated with addition of PKCβ peptide to the pipette solution. While hypoxia and DTT inhibited basal IKs they were without effect on IKr. In addition, Iso did not appear to alter the magnitude of IKr in the absence or presence of hypoxia. These data suggest that hypoxia regulates native IKs through two distinct mechanisms: direct inhibition of basal IKs and an increase in sensitivity to Iso that occurs downstream from the β-adrenergic receptor. Both mechanisms appear to involve redox modification of thiol groups. In contrast native IKr does not appear to be regulated by Iso, hypoxia or redox state. PMID:14634203

  7. Sex differences in repolarization and slow delayed rectifier potassium current and their regulation by sympathetic stimulation in rabbits.

    PubMed

    Zhu, Yujie; Ai, Xun; Oster, Robert A; Bers, Donald M; Pogwizd, Steven M

    2013-06-01

    Slow delayed rectifier potassium current (IKs) is important in action potential (AP) repolarization and repolarization reserve. We tested the hypothesis that there are sex-specific differences in IKs, AP, and their regulation by β-adrenergic receptors (β-AR's) using whole-cell patch-clamp. AP duration (APD90) was significantly longer in control female (F) than in control male (M) myocytes. Isoproterenol (ISO, 500 nM) shortened APD90 comparably in M and F, and was largely reversed by β1-AR blocker CGP 20712A (CGP, 300 nM). Inhibition of IKs with chromanol 293B (10 μM) resulted in less APD prolongation in F at baseline (3.0 vs 8.9 %, p < 0.05 vs M) and even in the presence of ISO (5.4 vs 20.9 %, p < 0.05). This suggests that much of the ISO-induced APD abbreviation in F is independent of IKs. In F, baseline IKs was 42 % less and was more weakly activated by ISO (19 vs 68 % in M, p < 0.01). ISO enhancement of IKs was comparably attenuated by CGP in M and F. After ovariectomy, IKs in F had greater enhancement by ISO (72 %), now comparable to control M. After orchiectomy, IKs in M was only slightly enhanced by ISO (23 %), comparable to control F. Pretreatment with thapsigargin (to block SR Ca release) had bigger impact on ISO-induced APD shortening in F than that in M (p < 0.01). In conclusion, we found that there are sex differences in IKs, AP, and their regulation by β-AR's that are modulated by sex hormones, suggesting the potential for sex-specific antiarrhythmic therapy.

  8. Molecular Basis of Cardiac Delayed Rectifier Potassium Channel Function and Pharmacology.

    PubMed

    Wu, Wei; Sanguinetti, Michael C

    2016-06-01

    Human cardiomyocytes express 3 distinct types of delayed rectifier potassium channels. Human ether-a-go-go-related gene (hERG) channels conduct the rapidly activating current IKr; KCNQ1/KCNE1 channels conduct the slowly activating current IKs; and Kv1.5 channels conduct an ultrarapid activating current IKur. Here the authors provide a general overview of the mechanistic and structural basis of ion selectivity, gating, and pharmacology of the 3 types of cardiac delayed rectifier potassium ion channels. Most blockers bind to S6 residues that line the central cavity of the channel, whereas activators interact with the channel at 4 symmetric binding sites outside the cavity. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Impact of ionic current variability on human ventricular cellular electrophysiology.

    PubMed

    Romero, Lucía; Pueyo, Esther; Fink, Martin; Rodríguez, Blanca

    2009-10-01

    Abnormalities in repolarization and its rate dependence are known to be related to increased proarrhythmic risk. A number of repolarization-related electrophysiological properties are commonly used as preclinical biomarkers of arrhythmic risk. However, the variability and complexity of repolarization mechanisms make the use of cellular biomarkers to predict arrhythmic risk preclinically challenging. Our goal is to investigate the role of ionic current properties and their variability in modulating cellular biomarkers of arrhythmic risk to improve risk stratification and identification in humans. A systematic investigation into the sensitivity of the main preclinical biomarkers of arrhythmic risk to changes in ionic current conductances and kinetics was performed using computer simulations. Four stimulation protocols were applied to the ten Tusscher and Panfilov human ventricular model to quantify the impact of +/-15 and +/-30% variations in key model parameters on action potential (AP) properties, Ca(2+) and Na(+) dynamics, and their rate dependence. Simulations show that, in humans, AP duration is moderately sensitive to changes in all repolarization current conductances and in L-type Ca(2+) current (I(CaL)) and slow component of the delayed rectifier current (I(Ks)) inactivation kinetics. AP triangulation, however, is strongly dependent only on inward rectifier K(+) current (I(K1)) and delayed rectifier current (I(Kr)) conductances. Furthermore, AP rate dependence (i.e., AP duration rate adaptation and restitution properties) and intracellular Ca(2+) and Na(+) levels are highly sensitive to both I(CaL) and Na(+)/K(+) pump current (I(NaK)) properties. This study provides quantitative insights into the sensitivity of preclinical biomarkers of arrhythmic risk to variations in ionic current properties in humans. The results show the importance of sensitivity analysis as a powerful method for the in-depth validation of mathematical models in cardiac electrophysiology.

  10. [Effects of allitridum on rapidly delayed rectifier potassium current in HEK293 cell line].

    PubMed

    Zhang, Jiancheng; Lin, Kun; Wei, Zhixiong; Chen, Qian; Liu, Li; Zhao, Xiaojing; Zhao, Ying; Xu, Bin; Chen, Xi; Li, Yang

    2015-08-01

    To study the effect of allitridum on rapidly delayed rectifier potassium current (IKr) in HEK293 cell line. HEK293 cells were transiently transfected with HERG channel cDNA plasmid pcDNA3.1 via Lipofectamine. Allitridum was added to the extracellular solution by partial perfusion after giga seal at the final concentration of 30 µmol/L. Whole-cell patch clamp technique was used to record the HERG currents and gating kinetics before and after allitridum exposure at room temperature. The amplitude and density of IHERG were both suppressed by allitridum in a voltage-dependent manner. In the presence of allitridum, the peak current of IHERG was reduced from 73.5∓4.3 pA/pF to 42.1∓3.6 pA/pF at the test potential of +50 mV (P<0.01). Allitridum also concentration-dependently decreased the density of the IHERG. The IC50 of allitridum was 34.74 µmol/L with a Hill coefficient of 1.01. Allitridum at 30 µmol/L caused a significant positive shift of the steady-state activation curve of IHERG and a markedly negative shift of the steady-state inactivation of IHERG, and significantly shortened the slow time constants of IHERG deactivation. Allitridum can potently block IHERG in HEK293 cells, which might be the electrophysiological basis for its anti-arrhythmic action.

  11. Contribution of delayed rectifier potassium currents to the electrical activity of murine colonic smooth muscle

    PubMed Central

    Koh, S D; Ward, S M; Dick, G M; Epperson, A; Bonner, H P; Sanders, K M; Horowitz, B; Kenyon, J L

    1999-01-01

    We used intracellular microelectrodes to record the membrane potential (Vm) of intact murine colonic smooth muscle. Electrical activity consisted of spike complexes separated by quiescent periods (Vm≈−60 mV). The spike complexes consisted of about a dozen action potentials of approximately 30 mV amplitude. Tetraethylammonium (TEA, 1–10 mM) had little effect on the quiescent periods but increased the amplitude of the action potential spikes. 4-Aminopyridine (4-AP, ⋧ 5 mM) caused continuous spiking.Voltage clamp of isolated myocytes identified delayed rectifier K+ currents that activated rapidly (time to half-maximum current, 11.5 ms at 0 mV) and inactivated in two phases (τf = 96 ms, τs = 1.5 s at 0 mV). The half-activation voltage of the permeability was −27 mV, with significant activation at −50 mV.TEA (10 mM) reduced the outward current at potentials positive to 0 mV. 4-AP (5 mM) reduced the early current but increased outward current at later times (100–500 ms) consistent with block of resting channels relieved by depolarization. 4-AP inhibited outward current at potentials negative to −20 mV, potentials where TEA had no effect.Qualitative PCR amplification of mRNA identified transcripts encoding delayed rectifier K+ channel subunits Kv1.6, Kv4.1, Kv4.2, Kv4.3 and the Kvβ1.1 subunit in murine colon myocytes. mRNA encoding Kv 1.4 was not detected.We find that TEA-sensitive delayed rectifier currents are important determinants of action potential amplitude but not rhythmicity. Delayed rectifier currents sensitive to 4-AP are important determinants of rhythmicity but not action potential amplitude. PMID:10050014

  12. Inward Rectifier Potassium Channels Control Rotor Frequency in Ventricular Fibrillation

    PubMed Central

    Jalife, José

    2009-01-01

    Summary Ventricular fibrillation (VF) is the most important cause of sudden cardiac death. While traditionally thought to result from random activation of the ventricles by multiple independent wavelets, recent evidence suggests that VF may be determined by the sustained activation of a relatively small number of reentrant sources. In addition, recent experimental data in various species as well as computer simulations have provided important clues about its ionic and molecular mechanisms, particularly in regards to the role of potassium currents in such mechanisms. The results strongly argue that the inward rectifier current, Ik1, is an important current during functional reentry because it mediates the electrotonic interactions between the unexcited core and its immediate surroundings. In addition, IK1 is a stabilizer of reentry due to its ability to shorten action potential duration and reducing conduction velocity near the center of rotation. Increased I K1 prevents wavefront-wavetail interactions and thus averts rotor destabilization and breakup. Other studies have shown that while the slow component of the delayed rectifier potassium current, IKs, does not significantly modify rotor frequency or stability, it plays a major role in post-repolarization refractoriness and wavebreak formation. Therefore, the interplay between IK1 and the rapid sodium inward current (INa) is a major factor in the control of cardiac excitability and therefore the stability and frequency of reentry while IKs is an important determinant of fibrillatory conduction. PMID:19880073

  13. Voltage sensitivity of M2 muscarinic receptors underlies the delayed rectifier-like activation of ACh-gated K(+) current by choline in feline atrial myocytes.

    PubMed

    Navarro-Polanco, Ricardo A; Aréchiga-Figueroa, Iván A; Salazar-Fajardo, Pedro D; Benavides-Haro, Dora E; Rodríguez-Elías, Julio C; Sachse, Frank B; Tristani-Firouzi, Martin; Sánchez-Chapula, José A; Moreno-Galindo, Eloy G

    2013-09-01

    Choline (Ch) is a precursor and metabolite of the neurotransmitter acetylcholine (ACh). In canine and guinea pig atrial myocytes, Ch was shown to activate an outward K(+) current in a delayed rectifier fashion. This current has been suggested to modulate cardiac electrical activity and to play a role in atrial fibrillation pathophysiology. However, the exact nature and identity of this current has not been convincingly established. We recently described the unique ligand- and voltage-dependent properties of muscarinic activation of ACh-activated K(+) current (IKACh) and showed that, in contrast to ACh, pilocarpine induces a current with delayed rectifier-like properties with membrane depolarization. Here, we tested the hypothesis that Ch activates IKACh in feline atrial myocytes in a voltage-dependent manner similar to pilocarpine. Single-channel recordings, biophysical profiles, specific pharmacological inhibition and computational data indicate that the current activated by Ch is IKACh. Moreover, we show that membrane depolarization increases the potency and efficacy of IKACh activation by Ch and thus gives the appearance of a delayed rectifier activating K(+) current at depolarized potentials. Our findings support the emerging concept that IKACh modulation is both voltage- and ligand-specific and reinforce the importance of these properties in understanding cardiac physiology.

  14. Comprehensive Analyses of Ventricular Myocyte Models Identify Targets Exhibiting Favorable Rate Dependence

    PubMed Central

    Bugana, Marco; Severi, Stefano; Sobie, Eric A.

    2014-01-01

    Reverse rate dependence is a problematic property of antiarrhythmic drugs that prolong the cardiac action potential (AP). The prolongation caused by reverse rate dependent agents is greater at slow heart rates, resulting in both reduced arrhythmia suppression at fast rates and increased arrhythmia risk at slow rates. The opposite property, forward rate dependence, would theoretically overcome these parallel problems, yet forward rate dependent (FRD) antiarrhythmics remain elusive. Moreover, there is evidence that reverse rate dependence is an intrinsic property of perturbations to the AP. We have addressed the possibility of forward rate dependence by performing a comprehensive analysis of 13 ventricular myocyte models. By simulating populations of myocytes with varying properties and analyzing population results statistically, we simultaneously predicted the rate-dependent effects of changes in multiple model parameters. An average of 40 parameters were tested in each model, and effects on AP duration were assessed at slow (0.2 Hz) and fast (2 Hz) rates. The analysis identified a variety of FRD ionic current perturbations and generated specific predictions regarding their mechanisms. For instance, an increase in L-type calcium current is FRD when this is accompanied by indirect, rate-dependent changes in slow delayed rectifier potassium current. A comparison of predictions across models identified inward rectifier potassium current and the sodium-potassium pump as the two targets most likely to produce FRD AP prolongation. Finally, a statistical analysis of results from the 13 models demonstrated that models displaying minimal rate-dependent changes in AP shape have little capacity for FRD perturbations, whereas models with large shape changes have considerable FRD potential. This can explain differences between species and between ventricular cell types. Overall, this study provides new insights, both specific and general, into the determinants of AP duration rate dependence, and illustrates a strategy for the design of potentially beneficial antiarrhythmic drugs. PMID:24675446

  15. Comprehensive analyses of ventricular myocyte models identify targets exhibiting favorable rate dependence.

    PubMed

    Cummins, Megan A; Dalal, Pavan J; Bugana, Marco; Severi, Stefano; Sobie, Eric A

    2014-03-01

    Reverse rate dependence is a problematic property of antiarrhythmic drugs that prolong the cardiac action potential (AP). The prolongation caused by reverse rate dependent agents is greater at slow heart rates, resulting in both reduced arrhythmia suppression at fast rates and increased arrhythmia risk at slow rates. The opposite property, forward rate dependence, would theoretically overcome these parallel problems, yet forward rate dependent (FRD) antiarrhythmics remain elusive. Moreover, there is evidence that reverse rate dependence is an intrinsic property of perturbations to the AP. We have addressed the possibility of forward rate dependence by performing a comprehensive analysis of 13 ventricular myocyte models. By simulating populations of myocytes with varying properties and analyzing population results statistically, we simultaneously predicted the rate-dependent effects of changes in multiple model parameters. An average of 40 parameters were tested in each model, and effects on AP duration were assessed at slow (0.2 Hz) and fast (2 Hz) rates. The analysis identified a variety of FRD ionic current perturbations and generated specific predictions regarding their mechanisms. For instance, an increase in L-type calcium current is FRD when this is accompanied by indirect, rate-dependent changes in slow delayed rectifier potassium current. A comparison of predictions across models identified inward rectifier potassium current and the sodium-potassium pump as the two targets most likely to produce FRD AP prolongation. Finally, a statistical analysis of results from the 13 models demonstrated that models displaying minimal rate-dependent changes in AP shape have little capacity for FRD perturbations, whereas models with large shape changes have considerable FRD potential. This can explain differences between species and between ventricular cell types. Overall, this study provides new insights, both specific and general, into the determinants of AP duration rate dependence, and illustrates a strategy for the design of potentially beneficial antiarrhythmic drugs.

  16. An Inductorless Self-Controlled Rectifier for Piezoelectric Energy Harvesting

    PubMed Central

    Lu, Shaohua; Boussaid, Farid

    2015-01-01

    This paper presents a high-efficiency inductorless self-controlled rectifier for piezoelectric energy harvesting. High efficiency is achieved by discharging the piezoelectric device (PD) capacitance each time the current produced by the PD changes polarity. This is achieved automatically without the use of delay lines, thereby making the proposed circuit compatible with any type of PD. In addition, the proposed rectifier alleviates the need for an inductor, making it suitable for on-chip integration. Reported experimental results show that the proposed rectifier can harvest up to 3.9 times more energy than a full wave bridge rectifier. PMID:26610492

  17. An Inductorless Self-Controlled Rectifier for Piezoelectric Energy Harvesting.

    PubMed

    Lu, Shaohua; Boussaid, Farid

    2015-11-19

    This paper presents a high-efficiency inductorless self-controlled rectifier for piezoelectric energy harvesting. High efficiency is achieved by discharging the piezoelectric device (PD) capacitance each time the current produced by the PD changes polarity. This is achieved automatically without the use of delay lines, thereby making the proposed circuit compatible with any type of PD. In addition, the proposed rectifier alleviates the need for an inductor, making it suitable for on-chip integration. Reported experimental results show that the proposed rectifier can harvest up to 3.9 times more energy than a full wave bridge rectifier.

  18. Histamine H1-receptor-mediated modulation of the delayed rectifier K+ current in guinea-pig atrial cells: opposite effects on IKs and IKr

    PubMed Central

    Matsumoto, Yasunori; Ogura, Takehiko; Uemura, Hiroko; Saito, Toshihiro; Masuda, Yoshiaki; Nakaya, Haruaki

    1999-01-01

    Histamine receptor-mediated modulation of the rapid and slow components of the delayed rectifier K+ current (IK) was investigated in enzymatically-dissociated atrial cells of guinea-pigs using the whole cell configuration of the patch clamp technique.Histamine at a concentration of 10 μM enhanced IK recorded during strong depolarization to potentials ranging from +20 to +40 mV and inhibited IK recorded during mild depolarization to potentials ranging from −20 to −10 mV. The increase of IK was more prominent with longer depolarizing pulses, whereas the inhibition of IK was more marked with shorter depolarizing pulses, suggesting that histamine enhances IKs (the slow component of IK) and inhibits IKr (the rapid component of IK).The histamine-induced enhancement of IKs and inhibition of IKr were abolished by 3 μM chlorpheniramine but not by 10 μM cimetidine, suggesting that these opposite effects of histamine on IKr and IKs are mediated by H1-receptors.In the presence of 5 μM E-4031, an IKr blocker, histamine hardly affected IK during mild depolarization although it enhanced IK during strong depolarization in a concentration-dependent manner. Histamine increased IKs with EC50 value of 0.7 μM. In the presence of 300 μM indapamide, an IKs blocker, histamine hardly affected IKs but inhibited IKr in a concentration-dependent manner. Histamine decreased IKr with IC50 value of 0.3 μM.Pretreatment with 100 nM calphostin C or 30 nM staurosporine, protein kinase C inhibitors, abolished the histamine-induced enhancement of IKs, but failed to affect the histamine-induced inhibition of IKr.We conclude that in guinea-pig atrial cells H1-receptor stimulation enhances IKs and inhibits IKr through different intracellular mechanisms. PMID:10602335

  19. Inhibitory effects of hesperetin on Kv1.5 potassium channels stably expressed in HEK 293 cells and ultra-rapid delayed rectifier K(+) current in human atrial myocytes.

    PubMed

    Wang, Huan; Wang, Hong-Fei; Wang, Chen; Chen, Yu-Fang; Ma, Rong; Xiang, Ji-Zhou; Du, Xin-Ling; Tang, Qiang

    2016-10-15

    In the present study, the inhibitory effects of hesperetin (HSP) on human cardiac Kv1.5 channels expressed in HEK 293 cells and the ultra-rapid delayed rectifier K(+) current (Ikur) in human atrial myocytes were examined by using the whole-cell configuration of the patch-clamp techniques. We found that hesperetin rapidly and reversibly suppressed human Kv1.5 current in a concentration dependent manner with a half-maximal inhibition (IC50) of 23.15 μΜ with a Hill coefficient of 0.89. The current was maximally diminished about 71.36% at a concentration of 300μM hesperetin. Hesperetin significantly positive shifted the steady-state activation curve of Kv1.5, while negative shifted the steady-state inactivation curve. Hesperetin also accelerated the inactivation and markedly slowed the recovery from the inactivation of Kv1.5 currents. Block of Kv1.5 currents by hesperetin was in a frequency dependent manner. However, inclusion of 30μM hesperetin in pipette solution produced no effect on Kv1.5 channel current, while the current were remarkable and reversibly inhibited by extracellular application of 30μM hesperetin. We also found that hesperetin potently and reversibly inhibited the ultra-repaid delayed K(+) current (Ikur) in human atrial myocytes, which is in consistent with the effects of hesperetin on Kv1.5 currents in HEK 293 cells. In conclusion, hesperetin is a potent inhibitor of Ikur (which is encoded by Kv1.5), with blockade probably due to blocking of both open state and inactivated state channels from outside of the cell. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Arrhythmic hazard map for a 3D whole-ventricles model under multiple ion channel block.

    PubMed

    Okada, Jun-Ichi; Yoshinaga, Takashi; Kurokawa, Junko; Washio, Takumi; Furukawa, Tetsushi; Sawada, Kohei; Sugiura, Seiryo; Hisada, Toshiaki

    2018-05-10

    To date, proposed in silico models for preclinical cardiac safety testing are limited in their predictability and usability. We previously reported a multi-scale heart simulation that accurately predicts arrhythmogenic risk for benchmark drugs. We extend this approach and report the first comprehensive hazard map of drug-induced arrhythmia based on the exhaustive in silico electrocardiogram (ECG) database of drug effects, developed using a petaflop computer. A total of 9075 electrocardiograms constitute the five-dimensional hazard map, with coordinates representing the extent of the block of each of the five ionic currents (rapid delayed rectifier potassium current (IKr), fast (INa) and late (INa,L) components of the sodium current, L-type calcium current (ICa,L) and slow delayed rectifier current (IKs)), involved in arrhythmogenesis. Results of the evaluation of arrhythmogenic risk based on this hazard map agreed well with the risk assessments reported in three references. ECG database also suggested that the interval between the J-point and the T-wave peak is a superior index of arrhythmogenicity compared to other ECG biomarkers including the QT interval. Because concentration-dependent effects on electrocardiograms of any drug can be traced on this map based on in vitro current assay data, its arrhythmogenic risk can be evaluated without performing costly and potentially risky human electrophysiological assays. Hence, the map serves as a novel tool for use in pharmaceutical research and development. This article is protected by copyright. All rights reserved.

  1. Synergistic Inhibition of Delayed Rectifier K+ and Voltage-Gated Na+ Currents by Artemisinin in Pituitary Tumor (GH3) Cells.

    PubMed

    So, Edmund Cheung; Wu, Sheng-Nan; Wu, Ping-Ching; Chen, Hui-Zhen; Yang, Chia-Jung

    2017-01-01

    Artemisinin (ART) is an anti-malarial agent reported to influence endocrine function. Effects of ART on ionic currents and action potentials (APs) in pituitary tumor (GH3) cells were evaluated by patch clamp techniques. ART inhibited the amplitude of delayed-rectifier K+ current (IK(DR)) in response to membrane depolarization and accelerated the process of current inactivation. It exerted an inhibitory effect on IK(DR) with an IC50 value of 11.2 µM and enhanced IK(DR) inactivation with a KD value of 14.7 µM. The steady-state inactivation curve of IK(DR) was shifted to hyperpolarization by 10 mV. Pretreatment of chlorotoxin (1 µM) or iloprost (100 nM) did not alter the magnitude of ART-induced inhibition of IK(DR) in GH3 cells. ART also decreased the peak amplitude of voltage-gated Na+ current (INa) with a concentration-dependent slowing in inactivation rate. Application of KMUP-1, an inhibitor of late INa, was effective at reversing ART-induced prolongation in inactivation time constant of INa. Under current-clamp recordings, ART alone reduced the amplitude of APs and prolonged the duration of APs. Under ART exposure, the inhibitory actions on both IK(DR) and INa could be a potential mechanisms through which this drug influences membrane excitability of endocrine or neuroendocrine cells appearing in vivo. © 2017 The Author(s). Published by S. Karger AG, Basel.

  2. Forskolin suppresses delayed-rectifier K+ currents and enhances spike frequency-dependent adaptation of sympathetic neurons.

    PubMed

    Angel-Chavez, Luis I; Acosta-Gómez, Eduardo I; Morales-Avalos, Mario; Castro, Elena; Cruzblanca, Humberto

    2015-01-01

    In signal transduction research natural or synthetic molecules are commonly used to target a great variety of signaling proteins. For instance, forskolin, a diterpene activator of adenylate cyclase, has been widely used in cellular preparations to increase the intracellular cAMP level. However, it has been shown that forskolin directly inhibits some cloned K+ channels, which in excitable cells set up the resting membrane potential, the shape of action potential and regulate repetitive firing. Despite the growing evidence indicating that K+ channels are blocked by forskolin, there are no studies yet assessing the impact of this mechanism of action on neuron excitability and firing patterns. In sympathetic neurons, we find that forskolin and its derivative 1,9-Dideoxyforskolin, reversibly suppress the delayed rectifier K+ current (IKV). Besides, forskolin reduced the spike afterhyperpolarization and enhanced the spike frequency-dependent adaptation. Given that IKV is mostly generated by Kv2.1 channels, HEK-293 cells were transfected with cDNA encoding for the Kv2.1 α subunit, to characterize the mechanism of forskolin action. Both drugs reversible suppressed the Kv2.1-mediated K+ currents. Forskolin inhibited Kv2.1 currents and IKV with an IC50 of ~32 μM and ~24 µM, respectively. Besides, the drug induced an apparent current inactivation and slowed-down current deactivation. We suggest that forskolin reduces the excitability of sympathetic neurons by enhancing the spike frequency-dependent adaptation, partially through a direct block of their native Kv2.1 channels.

  3. Inward rectifier potassium channels control rotor frequency in ventricular fibrillation.

    PubMed

    Jalife, José

    2009-11-01

    Ventricular fibrillation (VF) is the most important cause of sudden cardiac death. While traditionally thought to result from random activation of the ventricles by multiple independent wavelets, recent evidence suggests that VF may be determined by the sustained activation of a relatively small number of reentrant sources. In addition, recent experimental data in various species as well as computer simulations have provided important clues about its ionic and molecular mechanisms, particularly in regards to the role of potassium currents in such mechanisms. The results strongly argue that the inward rectifier current, I(K1,) is an important current during functional reentry because it mediates the electrotonic interactions between the unexcited core and its immediate surroundings. In addition, I(K1) is a stabilizer of reentry due to its ability to shorten action potential duration and reduce conduction velocity near the center of rotation. Increased I(K1) prevents wave front-wave tail interactions and thus averts rotor destabilization and breakup. Other studies have shown that while the slow component of the delayed rectifier potassium current I(Ks) does not significantly modify rotor frequency or stability, it plays a major role in postrepolarization refractoriness and wave break formation. Therefore, the interplay between I(K1) and the rapid sodium inward current (I(Na)) is a major factor in the control of cardiac excitability and thus the stability and frequency of reentry, while I(Ks) is an important determinant of fibrillatory conduction.

  4. Calcium currents in a fast-twitch skeletal muscle of the rat.

    PubMed

    Donaldson, P L; Beam, K G

    1983-10-01

    Slow ionic currents were measured in the rat omohyoid muscle with the three-microelectrode voltage-clamp technique. Sodium and delayed rectifier potassium currents were blocked pharmacologically. Under these conditions, depolarizing test pulses elicited an early outward current, followed by a transient slow inward current, followed in turn by a late outward current. The early outward current appeared to be a residual delayed rectifier current. The slow inward current was identified as a calcium current on the basis that (a) its magnitude depended on extracellular calcium concentration, (b) it was blocked by the addition of the divalent cations cadmium or nickel, and reduced in magnitude by the addition of manganese or cobalt, and (c) barium was able to replace calcium as an inward current carrier. The threshold potential for inward calcium current was around -20 mV in 10mM extracellular calcium and about -35 mV in 2 mM calcium. Currents were net inward over part of their time course for potentials up to at least +30 mV. At temperatures of 20-26 degrees C, the peak inward current (at approximately 0 mV) was 139 +/- 14 microA/cm2 (mean +/- SD), increasing to 226 +/- 28 microA/cm2 at temperatures of 27-37 degrees C. The late outward current exhibited considerable fiber-to-fiber variability. In some fibers it was primarily a time-independent, nonlinear leakage current. In other fibers it was primarily a time-independent, nonlinear leakage current. In other fibers it appeared to be the sum of both leak and a slowly activated outward current. The rate of activation of inward calcium current was strongly temperature dependent. For example, in a representative fiber, the time-to-peak inward current for a +10-mV test pulse decreased from approximately 250 ms at 20 degrees C to 100 ms at 30 degrees C. At 37 degrees C, the time-to-peak current was typically approximately 25 ms. The earliest phase of activation was difficult to quantify because the ionic current was partially obscured by nonlinear charge movement. Nonetheless, at physiological temperatures, the rate of calcium channel activation in rat skeletal muscle is about five times faster than activation of calcium channels in frog muscle. This pathway may be an important source of calcium entry in mammalian muscle.

  5. Electrophysiological characterization of 14-benzoyltalatisamine, a selective blocker of the delayed rectifier K+ channel found in virtual screening.

    PubMed

    Song, Ming-Ke; Liu, Hong; Jiang, Hua-Liang; Yue, Jian-Min; Hu, Guo-Yuan

    2006-02-15

    14-Benzoyltalatisamine is a potent and selective blocker of the delayed rectifier K+ channel found in a computational virtual screening study. The compound was found to block the K+ channel from the extracellular side. However, it is unclear whether 14-benzoyltalatisamine shares the same block mechanism with tetraethylammonium (TEA). In order to elucidate how the hit compound found by the virtual screening interacts with the outer vestibule of the K+ channel, the effects of 14-benzoyltalatisamine and TEA on the delayed rectifier K+ current of rat dissociated hippocampal neurons were compared using whole-cell voltage-clamp recording. External application of 14-benzoyltalatisamine and TEA reversibly inhibited the current with IC50 values of 10.1+/-2.2 microM and 1.05+/-0.21 mM, respectively. 14-Benzoyltalatisamine exerted voltage-dependent inhibition, markedly accelerated the decay of the current, and caused a significant hyperpolarizing shift of the steady-state activation curve, whereas TEA caused voltage-independent inhibition, without affecting the kinetic parameters of the current. The blockade by 14-benzoyltalatisamine, but not by TEA, was significantly diminished in a high K+ (60 mM) external solution. The potency of 14-benzoyltalatisamine was markedly reduced in the presence of 15 mM TEA. The results suggest that 14-benzoyltalatisamine bind to the external pore entry of the delayed rectifier K+ channel with partial insertion into the selectivity filter, which is in conformity with that predicted by the molecular docking model in the virtual screening.

  6. Discovery of talatisamine as a novel specific blocker for the delayed rectifier K+ channels in rat hippocampal neurons.

    PubMed

    Song, M-K; Liu, H; Jiang, H-L; Yue, J-M; Hu, G-Y; Chen, H-Z

    2008-08-13

    Blocking specific K+ channels has been proposed as a promising strategy for the treatment of neurodegenerative diseases. Using a computational virtual screening approach and electrophysiological testing, we found four Aconitum alkaloids are potent blockers of the delayed rectifier K+ channel in rat hippocampal neurons. In the present study, we first tested the action of the four alkaloids on the voltage-gated K+, Na+ and Ca2+ currents in rat hippocampal neurons, and then identified that talatisamine is a specific blocker for the delayed rectifier K+ channel. External application of talatisamine reversibly inhibited the delayed rectifier K+ current (IK) with an IC50 value of 146.0+/-5.8 microM in a voltage-dependent manner, but exhibited very slight blocking effect on the voltage-gated Na+ and Ca2+ currents even at the high concentration of 1-3 mM. Moreover, talatisamine exerted a significant hyperpolarizing shift of the steady-state activation, but did not influence the steady state inactivation of IK and its recovery from inactivation, suggesting that talatisamine had no allosteric action on IK channel and was a pure blocker binding to the external pore entry of the channel. Our present study made the first discovery of potent and specific IK channel blocker from Aconitum alkaloids. It has been argued that suppressing K+ efflux by blocking IK channel may be favorable for Alzheimer's disease therapy. Talatisamine can therefore be considered as a leading compound worthy of further investigations.

  7. Pharmacological modulations of cardiac ultra-rapid and slowly activating delayed rectifier currents: potential antiarrhythmic approaches.

    PubMed

    Islam, Mohammed A

    2010-01-01

    Despite the emerging new insights into our understandings of the cellular mechanisms underlying cardiac arrhythmia, medical therapy for this disease remains unsatisfactory. Atrial fibrillation (AF), the most prevalent arrhythmia, is responsible for significant morbidity and mortality. On the other hand, ventricular fibrillation results in sudden cardiac deaths in many instances. Prolongation of cardiac action potential (AP) is a proven principle of antiarrhythmic therapy. Class III antiarrhythmic agents prolong AP and QT interval by blocking rapidly activating delayed rectifier current (I(Kr)). However, I(Kr) blocking drugs carry the risk of life-threatening proarrhythmia. Recently, modulation of atrial-selective ultra-rapid delayed rectifier current (I(Kur)), has emerged as a novel therapeutic approach to treat AF. A number of I(Kur) blockers are being evaluated for the treatment of AF. The inhibition of slowly activating delayed rectifier current (I(Ks)) has also been proposed as an effective and safer antiarrhythmic approach because of its distinguishing characteristics that differ in remarkable ways from other selective class III agents. Selective I(Ks) block may prolong AP duration (APD) at rapid rates without leading to proarrhythmia. This article reviews the pathophysiological roles of I(Kur) and I(Ks) in cardiac repolarization and the implications of newly developed I(Kur) and I(Ks) blocking agents as promising antiarrhythmic approaches. Several recent patents pertinent to antiarrhythmic drug development have been discussed. Further research will be required to evaluate the efficacy and safety of these agents in the clinical setting.

  8. Forskolin Suppresses Delayed-Rectifier K+ Currents and Enhances Spike Frequency-Dependent Adaptation of Sympathetic Neurons

    PubMed Central

    Castro, Elena; Cruzblanca, Humberto

    2015-01-01

    In signal transduction research natural or synthetic molecules are commonly used to target a great variety of signaling proteins. For instance, forskolin, a diterpene activator of adenylate cyclase, has been widely used in cellular preparations to increase the intracellular cAMP level. However, it has been shown that forskolin directly inhibits some cloned K+ channels, which in excitable cells set up the resting membrane potential, the shape of action potential and regulate repetitive firing. Despite the growing evidence indicating that K+ channels are blocked by forskolin, there are no studies yet assessing the impact of this mechanism of action on neuron excitability and firing patterns. In sympathetic neurons, we find that forskolin and its derivative 1,9-Dideoxyforskolin, reversibly suppress the delayed rectifier K+ current (IKV). Besides, forskolin reduced the spike afterhyperpolarization and enhanced the spike frequency-dependent adaptation. Given that IKV is mostly generated by Kv2.1 channels, HEK-293 cells were transfected with cDNA encoding for the Kv2.1 α subunit, to characterize the mechanism of forskolin action. Both drugs reversible suppressed the Kv2.1-mediated K+ currents. Forskolin inhibited Kv2.1 currents and IKV with an IC50 of ~32 μM and ~24 µM, respectively. Besides, the drug induced an apparent current inactivation and slowed-down current deactivation. We suggest that forskolin reduces the excitability of sympathetic neurons by enhancing the spike frequency-dependent adaptation, partially through a direct block of their native Kv2.1 channels. PMID:25962132

  9. β1-Adrenoceptor autoantibodies affect action potential duration and delayed rectifier potassium currents in guinea pigs.

    PubMed

    Zhao, Yuhui; Huang, Haixia; Du, Yunhui; Li, Xiao; Lv, Tingting; Zhang, Suli; Wei, Hua; Shang, Jianyu; Liu, Ping; Liu, Huirong

    2015-01-01

    β1-Adrenoceptor autoantibodies (β1-AAs) affect the action potential duration (APD) in cardiomyocytes and are related to ventricular arrhythmias. The delayed rectifier potassium current (I K) plays a crucial role in APD, but the effects of β1-AAs on I K have not been completely illuminated. This work aimed to observe the effects of β1-AAs on I K and APD and further explore the mechanisms of β1-AA-mediated ventricular arrhythmias. β1-AAs were obtained from sera of patients with coronary heart disease (CHD) and nonsustained ventricular tachycardia. With whole-cell patch clamp technique, action potentials and I K were recorded. The results illustrated 0.1 μmol/L β1-AAs shortened APD at 50 % (APD50) and 90 % (APD90) of the repolarization. However, at 0.01 μmol/L, β1-AAs had no effects on either APD90 or APD50 (P > 0.05). At 0.001 μmol/L, β1-AAs significantly prolonged APD90 and APD50. Moreover, β1-AAs (0.001, 0.01, 0.1 μmol/L) dose-dependently increased the rapidly activating delayed rectifier potassium current (I Kr), but similarly decreased the slowly activating delayed rectifier potassium current (I Ks) and increased L-type calcium currents at the different concentrations. Taken together, the IKr increase induced by high β1-AA concentrations is responsible for a significant APD reduction which would contribute to repolarization changes and trigger the malignant ventricular arrhythmias in CHD patients.

  10. Delayed rectifier and A-type potassium channels associated with Kv 2.1 and Kv 4.3 expression in embryonic rat neural progenitor cells.

    PubMed

    Smith, Dean O; Rosenheimer, Julie L; Kalil, Ronald E

    2008-02-13

    Because of the importance of voltage-activated K(+) channels during embryonic development and in cell proliferation, we present here the first description of these channels in E15 rat embryonic neural progenitor cells derived from the subventricular zone (SVZ). Activation, inactivation, and single-channel conductance properties of recorded progenitor cells were compared with those obtained by others when these Kv gene products were expressed in oocytes. Neural progenitor cells derived from the subventricular zone of E15 embryonic rats were cultured under conditions that did not promote differentiation. Immunocytochemical and Western blot assays for nestin expression indicated that almost all of the cells available for recording expressed this intermediate filament protein, which is generally accepted as a marker for uncommitted embryonic neural progenitor cells. However, a very small numbers of the cells expressed GFAP, a marker for astrocytes, O4, a marker for immature oligodendrocytes, and betaIII-tubulin, a marker for neurons. Using immunocytochemistry and Western blots, we detected consistently the expression of Kv2.1, and 4.3. In whole-cell mode, we recorded two outward currents, a delayed rectifier and an A-type current. We conclude that Kv2.1, and 4.3 are expressed in E15 SVZ neural progenitor cells, and we propose that they may be associated with the delayed-rectifier and the A-type currents, respectively, that we recorded. These results demonstrate the early expression of delayed rectifier and A-type K(+) currents and channels in embryonic neural progenitor cells prior to the differentiation of these cells.

  11. Inhibitory Effect of Vascular Endothelial Growth Factor on the Slowly Activating Delayed Rectifier Potassium Current in Guinea Pig Ventricular Myocytes.

    PubMed

    Lin, Zhenhao; Xing, Wenlu; Gao, Chuanyu; Wang, Xianpei; Qi, Datun; Dai, Guoyou; Zhao, Wen; Yan, Ganxin

    2018-01-26

    Vascular endothelial growth factor (VEGF) exerts a number of beneficial effects on ischemic myocardium via its angiogenic properties. However, little is known about whether VEGF has a direct effect on the electrical properties of cardiomyocytes. In the present study, we investigated the effects of different concentrations of VEGF on delayed rectifier potassium currents (I K ) in guinea pig ventricular myocytes and their effects on action potential (AP) parameters. I K and AP were recorded by the whole-cell patch clamp method in ventricular myocytes. Cells were superfused with control solution or solution containing VEGF at different concentrations for 10 minutes before recording. Some ventricular myocytes were pretreated with a phosphatidylinositol 3-kinase inhibitor for 1 hour before the addition of VEGF. We found that VEGF inhibited the slowly activating delayed rectifier potassium current (I K s ) in a concentration-dependent manner (18.13±1.04 versus 12.73±0.34, n=5, P =0.001; 12.73±0.34 versus 9.05±1.20, n=5, P =0.036) and prolonged AP duration (894.5±36.92 versus 746.3±33.71, n=5, P =0.021). Wortmannin, a phosphatidylinositol 3-kinase inhibitor, eliminated these VEGF-induced effects. VEGF had no significant effect on the rapidly activating delayed rectifier potassium current (I K r ), resting membrane potential, AP amplitude, or maximal velocity of depolarization. VEGF inhibited I K s in a concentration-dependent manner through a phosphatidylinositol 3-kinase-mediated signaling pathway, leading to AP prolongation. The results indicate a promising therapeutic potential of VEGF in prevention of ventricular tachyarrhythmias under conditions of high sympathetic activity and ischemia. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  12. Delayed Rectifier and A-Type Potassium Channels Associated with Kv 2.1 and Kv 4.3 Expression in Embryonic Rat Neural Progenitor Cells

    PubMed Central

    Smith, Dean O.; Rosenheimer, Julie L.; Kalil, Ronald E.

    2008-01-01

    Background Because of the importance of voltage-activated K+ channels during embryonic development and in cell proliferation, we present here the first description of these channels in E15 rat embryonic neural progenitor cells derived from the subventricular zone (SVZ). Activation, inactivation, and single-channel conductance properties of recorded progenitor cells were compared with those obtained by others when these Kv gene products were expressed in oocytes. Methodology/Principal Findings Neural progenitor cells derived from the subventricular zone of E15 embryonic rats were cultured under conditions that did not promote differentiation. Immunocytochemical and Western blot assays for nestin expression indicated that almost all of the cells available for recording expressed this intermediate filament protein, which is generally accepted as a marker for uncommitted embryonic neural progenitor cells. However, a very small numbers of the cells expressed GFAP, a marker for astrocytes, O4, a marker for immature oligodendrocytes, and βIII-tubulin, a marker for neurons. Using immunocytochemistry and Western blots, we detected consistently the expression of Kv2.1, and 4.3. In whole-cell mode, we recorded two outward currents, a delayed rectifier and an A-type current. Conclusions/Significance We conclude that Kv2.1, and 4.3 are expressed in E15 SVZ neural progenitor cells, and we propose that they may be associated with the delayed-rectifier and the A-type currents, respectively, that we recorded. These results demonstrate the early expression of delayed rectifier and A-type K+ currents and channels in embryonic neural progenitor cells prior to the differentiation of these cells. PMID:18270591

  13. Role of action potential configuration and the contribution of Ca2+ and K+ currents to isoprenaline-induced changes in canine ventricular cells

    PubMed Central

    Szentandrássy, N; Farkas, V; Bárándi, L; Hegyi, B; Ruzsnavszky, F; Horváth, B; Bányász, T; Magyar, J; Márton, I; Nánási, PP

    2012-01-01

    BACKGROUND AND PURPOSE Although isoprenaline (ISO) is known to activate several ion currents in mammalian myocardium, little is known about the role of action potential morphology in the ISO-induced changes in ion currents. Therefore, the effects of ISO on action potential configuration, L-type Ca2+ current (ICa), slow delayed rectifier K+ current (IKs) and fast delayed rectifier K+ current (IKr) were studied and compared in a frequency-dependent manner using canine isolated ventricular myocytes from various transmural locations. EXPERIMENTAL APPROACH Action potentials were recorded with conventional sharp microelectrodes; ion currents were measured using conventional and action potential voltage clamp techniques. KEY RESULTS In myocytes displaying a spike-and-dome action potential configuration (epicardial and midmyocardial cells), ISO caused reversible shortening of action potentials accompanied by elevation of the plateau. ISO-induced action potential shortening was absent in endocardial cells and in myocytes pretreated with 4-aminopyridine. Application of the IKr blocker E-4031 failed to modify the ISO effect, while action potentials were lengthened by ISO in the presence of the IKs blocker HMR-1556. Both action potential shortening and elevation of the plateau were prevented by pretreatment with the ICa blocker nisoldipine. Action potential voltage clamp experiments revealed a prominent slowly inactivating ICa followed by a rise in IKs, both currents increased with increasing the cycle length. CONCLUSIONS AND IMPLICATIONS The effect of ISO in canine ventricular cells depends critically on action potential configuration, and the ISO-induced activation of IKs– but not IKr– may be responsible for the observed shortening of action potentials. PMID:22563726

  14. Role of action potential configuration and the contribution of C²⁺a and K⁺ currents to isoprenaline-induced changes in canine ventricular cells.

    PubMed

    Szentandrássy, N; Farkas, V; Bárándi, L; Hegyi, B; Ruzsnavszky, F; Horváth, B; Bányász, T; Magyar, J; Márton, I; Nánási, P P

    2012-10-01

    Although isoprenaline (ISO) is known to activate several ion currents in mammalian myocardium, little is known about the role of action potential morphology in the ISO-induced changes in ion currents. Therefore, the effects of ISO on action potential configuration, L-type Ca²⁺ current (I(Ca)), slow delayed rectifier K⁺ current (I(Ks)) and fast delayed rectifier K⁺ current (I(Kr)) were studied and compared in a frequency-dependent manner using canine isolated ventricular myocytes from various transmural locations. Action potentials were recorded with conventional sharp microelectrodes; ion currents were measured using conventional and action potential voltage clamp techniques. In myocytes displaying a spike-and-dome action potential configuration (epicardial and midmyocardial cells), ISO caused reversible shortening of action potentials accompanied by elevation of the plateau. ISO-induced action potential shortening was absent in endocardial cells and in myocytes pretreated with 4-aminopyridine. Application of the I(Kr) blocker E-4031 failed to modify the ISO effect, while action potentials were lengthened by ISO in the presence of the I(Ks) blocker HMR-1556. Both action potential shortening and elevation of the plateau were prevented by pretreatment with the I(Ca) blocker nisoldipine. Action potential voltage clamp experiments revealed a prominent slowly inactivating I(Ca) followed by a rise in I(Ks) , both currents increased with increasing the cycle length. The effect of ISO in canine ventricular cells depends critically on action potential configuration, and the ISO-induced activation of I(Ks) - but not I(Kr) - may be responsible for the observed shortening of action potentials. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  15. Effects of Nitric Oxide on Voltage-Gated K⁺ Currents in Human Cardiac Fibroblasts through the Protein Kinase G and Protein Kinase A Pathways but Not through S-Nitrosylation.

    PubMed

    Bae, Hyemi; Choi, Jeongyoon; Kim, Young-Won; Lee, Donghee; Kim, Jung-Ha; Ko, Jae-Hong; Bang, Hyoweon; Kim, Taeho; Lim, Inja

    2018-03-12

    This study investigated the expression of voltage-gated K⁺ (K V ) channels in human cardiac fibroblasts (HCFs), and the effect of nitric oxide (NO) on the K V currents, and the underlying phosphorylation mechanisms. In reverse transcription polymerase chain reaction, two types of K V channels were detected in HCFs: delayed rectifier K⁺ channel and transient outward K⁺ channel. In whole-cell patch-clamp technique, delayed rectifier K⁺ current (I K ) exhibited fast activation and slow inactivation, while transient outward K⁺ current (I to ) showed fast activation and inactivation kinetics. Both currents were blocked by 4-aminopyridine. An NO donor, S -nitroso- N -acetylpenicillamine (SNAP), increased the amplitude of I K in a concentration-dependent manner with an EC 50 value of 26.4 µM, but did not affect I to . The stimulating effect of SNAP on I K was blocked by pretreatment with 1H-(1,2,4)oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) or by KT5823. 8-bromo-cyclic GMP stimulated the I K . The stimulating effect of SNAP on I K was also blocked by pretreatment with KT5720 or by SQ22536. Forskolin and 8-bromo-cyclic AMP each stimulated I K . On the other hand, the stimulating effect of SNAP on I K was not blocked by pretreatment of N -ethylmaleimide or by DL-dithiothreitol. Our data suggest that NO enhances I K , but not I to , among K V currents of HCFs, and the stimulating effect of NO on I K is through the PKG and PKA pathways, not through S -nitrosylation.

  16. New in vitro model for proarrhythmia safety screening: IKs inhibition potentiates the QTc prolonging effect of IKr inhibitors in isolated guinea pig hearts.

    PubMed

    Kui, Péter; Orosz, Szabolcs; Takács, Hedvig; Sarusi, Annamária; Csík, Norbert; Rárosi, Ferenc; Csekő, Csongor; Varró, András; Papp, Julius Gy; Forster, Tamás; Farkas, Attila S; Farkas, András

    2016-01-01

    Preclinical in vivo QT measurement as a proarrhythmia essay is expensive and not reliable enough. The aim of the present study was to develop a sensitive, cost-effective, Langendorff perfused guinea pig heart model for proarrhythmia safety screening. Low concentrations of dofetilide and cisapride (inhibitors of the rapid delayed rectifier potassium current, IKr) were tested alone and co-perfused with HMR-1556 (inhibitor of the slow delayed rectifier potassium current, IKs) in Langendorff perfused guinea pig hearts. The electrocardiographic rate corrected QT (QTc) interval, the Tpeak-Tend interval and the beat-to-beat variability and instability (BVI) of the QT interval were determined in sinus rhythm. Dofetilide and HMR-1556 alone or co-perfused, prolonged the QTc interval by 20±2%, 10±1% and 55±10%, respectively. Similarly, cisapride and HMR-1556 alone or co-perfused, prolonged the QTc interval by 11±3%, 11±4% and 38±6%, respectively. Catecholamine-induced fast heart rate abolished the QTc prolonging effects of the IKr inhibitors, but augmented the QTc prolongation during IKs inhibition. None of the drug perfusions increased significantly the Tpeak-Tend interval and the sinus BVI of the QT interval. IKs inhibition increased the QTc prolonging effect of IKr inhibitors in a super-additive (synergistic) manner, and the QTc interval was superior to other proarrhythmia biomarkers measured in sinus rhythm in isolated guinea pig hearts. The effect of catecholamines on the QTc facilitated differentiation between IKr and IKs inhibitors. Thus, QTc measurement in Langendorff perfused guinea pig hearts with pharmacologically attenuated repolarization reserve and periodic catecholamine perfusion seems to be suitable for preclinical proarrhythmia screening. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. The comprehensive electrophysiological study of curcuminoids on delayed-rectifier K+ currents in insulin-secreting cells.

    PubMed

    Kuo, Ping-Chung; Yang, Chia-Jung; Lee, Yu-Chi; Chen, Pei-Chun; Liu, Yen-Chin; Wu, Sheng-Nan

    2018-01-15

    Curcumin (CUR) has been demonstrated to induce insulin release from pancreatic β-cells; however, how curcuminoids (including demethoxycurcumin (DMC) and bisdemethoxycurcumin (BDMC)) exert any possible effects on membrane ion currents inherently in insulin-secreting cells remains largely unclear. The effects of CUR and other structurally similar curcuminoids on ion currents in rat insulin-secreting (INS-1) insulinoma cells were therefore investigated in this study. The effects of these compounds on ionic currents and membrane potential were studied by patch-clamp technique. CUR suppressed the amplitude of delayed-rectifier K + current (I K(DR) ) in a time-, state- and concentration-dependent manner in these cells and the inhibition was not reversed by diazoxide, nicorandil or chlorotoxin. The value of dissociation constant for CUR-induced suppression of I K(DR) in INS-1 cells was 1.26μM. Despite the inability of CUR to alter the activation rate of I K(DR) , it accelerated current inactivation elicited by membrane depolarization. Increasing CUR concentrations shifted the inactivation curve of I K(DR) to hyperpolarized potential and slowed the recovery of I K(DR) inactivation. CUR, DMC, and BDMC all exerted depressant actions on I K(DR) amplitude to a similar magnitude, although DMC and BDMC did not increase current inactivation clearly. CUR slightly suppressed the peak amplitude of voltage-gated Na + current. CUR, DMC and BDMC depolarized the resting potential and increased firing frequency of action potentials. The CUR-mediated decrease of I K(DR) and the increase of current inactivation also occurred in βTC-6 INS-1 cells. Taken these results together, these effects may be one of the possible mechanisms contributing their insulin-releasing effect. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Molecular determinants of Kv7.1/KCNE1 channel inhibition by amitriptyline.

    PubMed

    Villatoro-Gómez, Kathya; Pacheco-Rojas, David O; Moreno-Galindo, Eloy G; Navarro-Polanco, Ricardo A; Tristani-Firouzi, Martin; Gazgalis, Dimitris; Cui, Meng; Sánchez-Chapula, José A; Ferrer, Tania

    2018-06-01

    Amitriptyline (AMIT) is a compound widely prescribed for psychiatric and non-psychiatric conditions including depression, migraine, chronic pain, and anorexia. However, AMIT has been associated with risks of cardiac arrhythmia and sudden death since it can induce prolongation of the QT interval on the surface electrocardiogram and torsade de pointes ventricular arrhythmia. These complications have been attributed to the inhibition of the rapid delayed rectifier potassium current (I Kr ). The slow delayed rectifier potassium current (I Ks ) is the main repolarizing cardiac current when I Kr is compromised and it has an important role in cardiac repolarization at fast heart rates induced by an elevated sympathetic tone. Therefore, we sought to characterize the effects of AMIT on Kv7.1/KCNE1 and homomeric Kv7.1 channels expressed in HEK-293H cells. Homomeric Kv7.1 and Kv7.1/KCNE1 channels were inhibited by AMIT in a concentration-dependent manner with IC50 values of 8.8 ± 2.1 μM and 2.5 ± 0.8 μM, respectively. This effect was voltage-independent for both homomeric Kv7.1 and Kv7.1/KCNE1 channels. Moreover, mutation of residues located on the P-loop and S6 domain along with molecular docking, suggest that T312, I337 and F340 are the most important molecular determinants for AMIT-Kv7.1 channel interaction. Our experimental findings and modeling suggest that AMIT preferentially blocks the open state of Kv7.1/KCNE1 channels by interacting with specific residues that were previously reported to be important for binding of other compounds, such as chromanol 293B and the benzodiazepine L7. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Role of voltage-gated K(+) channels in regulating Ca(2+) entry in rat cortical astrocytes.

    PubMed

    Wu, King-Chuen; Kuo, Chang-Shin; Chao, Chia-Chia; Huang, Chieh-Chen; Tu, Yuan-Kun; Chan, Paul; Leung, Yuk-Man

    2015-03-01

    Astrocytes have multiple functions such as provision of nourishment and mechanical support to the nervous system, helping to clear extracellular metabolites of neurons and modulating synaptic transmission by releasing gliotransmitters. In excitable cells, voltage-gated K(+) (Kv) channels serve to repolarize during action potentials. Astrocytes are considered non-excitable cells since they are not able to generate action potentials. There is an abundant expression of various Kv channels in astrocytes but the functions of these Kv channels remain unclear. We examined whether these astrocyte Kv channels regulate astrocyte "excitability" in the form of cytosolic Ca(2+) signaling. Electrophysiological examination revealed that neonatal rat cortical astrocytes possessed both delayed rectifier type and A-type Kv channels. Pharmacological blockade of both delayed rectifier Kv channels by TEA and A-type Kv channels by quinidine significantly suppressed store-operated Ca(2+) influx; however, TEA alone or quinidine alone did not suffice to cause such suppression. TEA and quinidine together dramatically enhanced current injection-triggered membrane potential overshoot (depolarization); either drug alone caused much smaller enhancements. Taken together, the results suggest both delayed rectifier and A-type Kv channels regulate astrocyte Ca(2+) signaling via controlling membrane potential.

  20. Insulin increases excitability via a dose-dependent dual inhibition of voltage-activated K+ currents in differentiated N1E-115 neuroblastoma cells.

    PubMed

    Lima, Pedro A; Vicente, M Inês; Alves, Frederico M; Dionísio, José C; Costa, Pedro F

    2008-04-01

    A role in the control of excitability has been attributed to insulin via modulation of potassium (K(+)) currents. To investigate insulin modulatory effects on voltage-activated potassium currents in a neuronal cell line with origin in the sympathetic system, we performed whole-cell voltage-clamp recordings in differentiated N1E-115 neuroblastoma cells. Two main voltage-activated K(+) currents were identified: (a) a relatively fast inactivating current (I(fast) - time constant 50-300 ms); (b) a slow delayed rectifying K(+) current (I(slow) - time constant 1-4 s). The kinetics of inactivation of I(fast), rather than I(slow), showed clear voltage dependence. I(fast) and I(slow) exhibited different activation and inactivation dependence for voltage, and have different but nevertheless high sensitivities to tetraethylammonium, 4-aminopyridine and quinidine. In differentiated cells - rather than in non-differentiated cells - application of up to 300 nm insulin reduced I(slow) only (IC(50) = 6.7 nm), whereas at higher concentrations I(fast) was also affected (IC(50) = 7.7 microm). The insulin inhibitory effect is not due to a change in the activation or inactivation current-voltage profiles, and the time-dependent inactivation is also not altered; this is not likely to be a result of activation of the insulin-growth-factor-1 (IGF1) receptors, as application of IGF1 did not result in significant current alteration. Results suggest that the current sensitive to low concentrations of insulin is mediated by erg-like channels. Similar observations concerning the insulin inhibitory effect on slow voltage-activated K(+) currents were also made in isolated rat hippocampal pyramidal neurons, suggesting a widespread neuromodulator role of insulin on K(+) channels.

  1. An Integrated Power-Efficient Active Rectifier With Offset-Controlled High Speed Comparators for Inductively Powered Applications

    PubMed Central

    Lee, Hyung-Min; Ghovanloo, Maysam

    2011-01-01

    We present an active full-wave rectifier with offset-controlled high speed comparators in standard CMOS that provides high power conversion efficiency (PCE) in high frequency (HF) range for inductively powered devices. This rectifier provides much lower dropout voltage and far better PCE compared to the passive on-chip or off-chip rectifiers. The built-in offset-control functions in the comparators compensate for both turn-on and turn-off delays in the main rectifying switches, thus maximizing the forward current delivered to the load and minimizing the back current to improve the PCE. We have fabricated this active rectifier in a 0.5-μm 3M2P standard CMOS process, occupying 0.18 mm2 of chip area. With 3.8 V peak ac input at 13.56 MHz, the rectifier provides 3.12 V dc output to a 500 Ω load, resulting in the PCE of 80.2%, which is the highest measured at this frequency. In addition, overvoltage protection (OVP) as safety measure and built-in back telemetry capabilities have been incorporated in our design using detuning and load shift keying (LSK) techniques, respectively, and tested. PMID:22174666

  2. Unnatural amino acid photo-crosslinking of the IKs channel complex demonstrates a KCNE1:KCNQ1 stoichiometry of up to 4:4

    PubMed Central

    Murray, Christopher I; Westhoff, Maartje; Eldstrom, Jodene; Thompson, Emely; Emes, Robert; Fedida, David

    2016-01-01

    Cardiac repolarization is determined in part by the slow delayed rectifier current (IKs), through the tetrameric voltage-gated ion channel, KCNQ1, and its β-subunit, KCNE1. The stoichiometry between α and β-subunits has been controversial with studies reporting either a strict 2 KCNE1:4 KCNQ1 or a variable ratio up to 4:4. We used IKs fusion proteins linking KCNE1 to one (EQ), two (EQQ) or four (EQQQQ) KCNQ1 subunits, to reproduce compulsory 4:4, 2:4 or 1:4 stoichiometries. Whole cell and single-channel recordings showed EQQ and EQQQQ to have increasingly hyperpolarized activation, reduced conductance, and shorter first latency of opening compared to EQ - all abolished by the addition of KCNE1. As well, using a UV-crosslinking unnatural amino acid in KCNE1, we found EQQQQ and EQQ crosslinking rates to be progressively slowed compared to KCNQ1, which demonstrates that no intrinsic mechanism limits the association of up to four β-subunits within the IKs complex. DOI: http://dx.doi.org/10.7554/eLife.11815.001 PMID:26802629

  3. Photojunction field-effect transistor based on a colloidal quantum dot absorber channel layer.

    PubMed

    Adinolfi, Valerio; Kramer, Illan J; Labelle, André J; Sutherland, Brandon R; Hoogland, S; Sargent, Edward H

    2015-01-27

    The performance of photodetectors is judged via high responsivity, fast speed of response, and low background current. Many previously reported photodetectors based on size-tuned colloidal quantum dots (CQDs) have relied either on photodiodes, which, since they are primary photocarrier devices, lack gain; or photoconductors, which provide gain but at the expense of slow response (due to delayed charge carrier escape from sensitizing centers) and an inherent dark current vs responsivity trade-off. Here we report a photojunction field-effect transistor (photoJFET), which provides gain while breaking prior photoconductors' response/speed/dark current trade-off. This is achieved by ensuring that, in the dark, the channel is fully depleted due to a rectifying junction between a deep-work-function transparent conductive top contact (MoO3) and a moderately n-type CQD film (iodine treated PbS CQDs). We characterize the rectifying behavior of the junction and the linearity of the channel characteristics under illumination, and we observe a 10 μs rise time, a record for a gain-providing, low-dark-current CQD photodetector. We prove, using an analytical model validated using experimental measurements, that for a given response time the device provides a two-orders-of-magnitude improvement in photocurrent-to-dark-current ratio compared to photoconductors. The photoJFET, which relies on a junction gate-effect, enriches the growing family of CQD photosensitive transistors.

  4. Inward rectifier potassium current IKir promotes intrinsic pacemaker activity of thalamocortical neurons.

    PubMed

    Amarillo, Yimy; Tissone, Angela I; Mato, Germán; Nadal, Marcela S

    2018-06-01

    Slow repetitive burst firing by hyperpolarized thalamocortical (TC) neurons correlates with global slow rhythms (<4 Hz), which are the physiological oscillations during non-rapid eye movement sleep or pathological oscillations during idiopathic epilepsy. The pacemaker activity of TC neurons depends on the expression of several subthreshold conductances, which are modulated in a behaviorally dependent manner. Here we show that upregulation of the small and neglected inward rectifier potassium current I Kir induces repetitive burst firing at slow and delta frequency bands. We demonstrate this in mouse TC neurons in brain slices by manipulating the Kir maximum conductance with dynamic clamp. We also performed a thorough theoretical analysis that explains how the unique properties of I Kir enable this current to induce slow periodic bursting in TC neurons. We describe a new ionic mechanism based on the voltage- and time-dependent interaction of I Kir and hyperpolarization-activated cationic current I h that endows TC neurons with the ability to oscillate spontaneously at very low frequencies, even below 0.5 Hz. Bifurcation analysis of conductance-based models of increasing complexity demonstrates that I Kir induces bistability of the membrane potential at the same time that it induces sustained oscillations in combination with I h and increases the robustness of low threshold-activated calcium current I T -mediated oscillations. NEW & NOTEWORTHY The strong inwardly rectifying potassium current I Kir of thalamocortical neurons displays a region of negative slope conductance in the current-voltage relationship that generates potassium currents activated by hyperpolarization. Bifurcation analysis shows that I Kir induces bistability of the membrane potential; generates sustained subthreshold oscillations by interacting with the hyperpolarization-activated cationic current I h ; and increases the robustness of oscillations mediated by the low threshold-activated calcium current I T . Upregulation of I Kir in thalamocortical neurons induces repetitive burst firing at slow and delta frequency bands (<4 Hz).

  5. Effects of itopride hydrochloride on the delayed rectifier K+ and L-type CA2+ currents in guinea-pig ventricular myocytes.

    PubMed

    Morisawa, T; Hasegawa, J; Hama, R; Kitano, M; Kishimoto, Y; Kawasaki, H

    1999-01-01

    The effects of itopride hydrochloride, a new drug used to regulate motility in the gastrointestinal tract, on the delayed rectifier K+ current (I(K)) and the L-type Ca2+ current (I(Ca)) were evaluated in guinea-pig ventricular myocytes at concentrations of 1, 10 and 100 microM to determine whether the drug has a proarrhythmic effect through blockade of I(K). Itopride did not affect I(K) at concentrations of 100 microM or less, and no significant effects of 1, 10 or 100 microM itopride were observed on the inward rectifier K+ current (I(K1)) responsible for the resting potential and final repolarization phase of the action potential. We next investigated the effects of itopride on L-type Ca2+ current (I(Ca)). Significant inhibition of I(Ca) was observed at itopride concentrations greater than 10 microM. These results suggested that itopride hydrochloride has an inhibitory effect on I(Ca) at concentrations much higher than those in clinical use.

  6. Voltage-dependent ion channels in the mouse RPE: comparison with Norrie disease mice.

    PubMed

    Wollmann, Guido; Lenzner, Steffen; Berger, Wolfgang; Rosenthal, Rita; Karl, Mike O; Strauss, Olaf

    2006-03-01

    We studied electrophysiological properties of cultured retinal pigment epithelial (RPE) cells from mouse and a mouse model for Norrie disease. Wild-type RPE cells revealed the expression of ion channels known from other species: delayed-rectifier K(+) channels composed of Kv1.3 subunits, inward rectifier K(+) channels, Ca(V)1.3 L-type Ca(2+) channels and outwardly rectifying Cl(-) channels. Expression pattern and the ion channel characteristics current density, blocker sensitivity, kinetics and voltage-dependence were compared in cells from wild-type and Norrie mice. Although no significant differences were observed, our study provides a base for future studies on ion channel function and dysfunction in transgenic mouse models.

  7. VEGF attenuated increase of outward delayed-rectifier potassium currents in hippocampal neurons induced by focal ischemia via PI3-K pathway.

    PubMed

    Wu, K W; Yang, P; Li, S S; Liu, C W; Sun, F Y

    2015-07-09

    We recently indicated that the vascular endothelial growth factor (VEGF) protects neurons against hypoxic death via enhancement of tyrosine phosphorylation of Kv1.2, an isoform of the delayed-rectifier potassium channels through activation of the phosphatidylinositol 3-kinase (PI3-K) signaling pathway. The present study investigated whether VEGF could attenuate ischemia-induced increase of the potassium currents in the hippocampal pyramidal neurons of rats after ischemic injury. Adult male Sprague-Dawley rats were subjected to transient middle cerebral artery occlusion (MCAO) to induce brain ischemia. The whole-cell patch-clamp technique was used to record the potassium currents of hippocampal neurons in brain slices from the ischemically injured brains of the rats 24h after MCAO. We detected that transient MCAO caused a significant increase of voltage-gated potassium currents (Kv) and outward delayed-rectifier potassium currents (IK), but not outward transient potassium currents (IA), in the ipsilateral hippocampus compared with the sham. Moreover, we found that VEGF could acutely, reversibly and voltage-dependently inhibit the ischemia-induced IK increase. This inhibitory effect of VEGF could be completely abolished by wortmannin, an inhibitor of PI3-K. Our data indicate that VEGF attenuates the ischemia-induced increase of IK via activation of the PI3-K signaling pathway. Published by Elsevier Ltd.

  8. Selective suppression of the slow-inactivating potassium currents by nootropics in molluscan neurons.

    PubMed

    Bukanova, Julia V; Solntseva, Elena I; Skrebitsky, Vladimir G

    2002-09-01

    The role of the voltage-gated K+ channels in the effect of some nootropics was investigated. Earlier, the multiple effect of high concentrations of two nootropics, piracetam and its peptide analogue GVS-111 [Seredenin et al. (1995), US Patent No. 5,439,930], on Ca2+ and K+ currents of molluscan neurons was shown [Solntseva et al. (1997), General Pharmacology 29, 85-89]. In the present work, we describe the selective effect of low concentrations of these nootropics as well as vinpocetine on certain types of K+ current. The experiments were performed on isolated neurons of the land snail Helix pomatia using a two-microelectrode voltage-clamp method. The inward voltage-gated Ca2+ current (ICa) and three subtypes of the outward voltage-gated K+ current were recorded: Ca2+-dependent K+ current (IK(Ca)), delayed rectifying current (IKD), and fast-inactivating K+ current (IA). It has been found that I Ca was not changed in the presence of 30 microM vinpocetine, 100 microM piracetam or 10 nM GVS-111, while slow-inactivating, TEA-sensitive IK(Ca) and IKD were inhibited (IK(Ca) more strongly than IKD). In contrast, the fast-inactivating, 4-AP-sensitive K+ current (IA) was not diminished by low concentrations of piracetam and GVS-111, while vinpocetine even augmented it. A possible role of slow-inactivating subtypes of the K+ channels in the development of different forms of dementia is discussed.

  9. Slow light in saturable absorbers: Progress in the resolution of a controversy

    NASA Astrophysics Data System (ADS)

    Macke, Bruno; Razdobreev, Igor; Ségard, Bernard

    2017-06-01

    There are two opposing models in the analysis of the slow transmission of light pulses through saturable absorbers. The canonical incoherent bleaching model simply explains the slow transmission by combined effects of saturation and of noninstantaneous response of the medium resulting in absorption of the front part of the incident pulse larger than that of its rear. The second model, referred to as the coherent-population-oscillations (CPO) model, considers light beams whose intensity is slightly pulse modulated and attributes the time delay of the transmitted pulse to a reduction of the group velocity. We point out some inconsistencies in the CPO model and show that the two models lie in reality on the same hypotheses, the equations derived in the duly rectified CPO model being local expressions of the integral equations obtained in the incoherent bleaching model. When intense pulses without background are used, the CPO model, based on linearized equations, breaks down. The incoherent bleaching model then predicts that the transmitted light should vanish when the intensity of the incident light is strictly zero. This point is confirmed by the experiments that we have performed on ruby with square-wave incident pulses and we show that the whole shape of the observed pulses agrees with that derived analytically by means of the incoherent bleaching model. We also determine in this model the corresponding evolution of the fluorescence light, which seems to have been evidenced in other experiments.

  10. Interaction between the cardiac rapidly (IKr) and slowly (IKs) activating delayed rectifier potassium channels revealed by low K+-induced hERG endocytic degradation.

    PubMed

    Guo, Jun; Wang, Tingzhong; Yang, Tonghua; Xu, Jianmin; Li, Wentao; Fridman, Michael D; Fisher, John T; Zhang, Shetuan

    2011-10-07

    Cardiac repolarization is controlled by the rapidly (I(Kr)) and slowly (I(Ks)) activating delayed rectifier potassium channels. The human ether-a-go-go-related gene (hERG) encodes I(Kr), whereas KCNQ1 and KCNE1 together encode I(Ks). Decreases in I(Kr) or I(Ks) cause long QT syndrome (LQTS), a cardiac disorder with a high risk of sudden death. A reduction in extracellular K(+) concentration ([K(+)](o)) induces LQTS and selectively causes endocytic degradation of mature hERG channels from the plasma membrane. In the present study, we investigated whether I(Ks) compensates for the reduced I(Kr) under low K(+) conditions. Our data show that when hERG and KCNQ1 were expressed separately in human embryonic kidney (HEK) cells, exposure to 0 mM K(+) for 6 h completely eliminated the mature hERG channel expression but had no effect on KCNQ1. When hERG and KCNQ1 were co-expressed, KCNQ1 significantly delayed 0 mM K(+)-induced hERG reduction. Also, hERG degradation led to a significant reduction in KCNQ1 in 0 mM K(+) conditions. An interaction between hERG and KCNQ1 was identified in hERG+KCNQ1-expressing HEK cells. Furthermore, KCNQ1 preferentially co-immunoprecipitated with mature hERG channels that are localized in the plasma membrane. Biophysical and pharmacological analyses indicate that although hERG and KCNQ1 closely interact with each other, they form distinct hERG and KCNQ1 channels. These data extend our understanding of delayed rectifier potassium channel trafficking and regulation, as well as the pathology of LQTS.

  11. Elimination of fast inactivation in Kv4 A-type potassium channels by an auxiliary subunit domain.

    PubMed

    Holmqvist, Mats H; Cao, Jie; Hernandez-Pineda, Ricardo; Jacobson, Michael D; Carroll, Karen I; Sung, M Amy; Betty, Maria; Ge, Pei; Gilbride, Kevin J; Brown, Melissa E; Jurman, Mark E; Lawson, Deborah; Silos-Santiago, Inmaculada; Xie, Yu; Covarrubias, Manuel; Rhodes, Kenneth J; Distefano, Peter S; An, W Frank

    2002-01-22

    The Kv4 A-type potassium currents contribute to controlling the frequency of slow repetitive firing and back-propagation of action potentials in neurons and shape the action potential in heart. Kv4 currents exhibit rapid activation and inactivation and are specifically modulated by K-channel interacting proteins (KChIPs). Here we report the discovery and functional characterization of a modular K-channel inactivation suppressor (KIS) domain located in the first 34 aa of an additional KChIP (KChIP4a). Coexpression of KChIP4a with Kv4 alpha-subunits abolishes fast inactivation of the Kv4 currents in various cell types, including cerebellar granule neurons. Kinetic analysis shows that the KIS domain delays Kv4.3 opening, but once the channel is open, it disrupts rapid inactivation and slows Kv4.3 closing. Accordingly, KChIP4a increases the open probability of single Kv4.3 channels. The net effects of KChIP4a and KChIP1-3 on Kv4 gating are quite different. When both KChIP4a and KChIP1 are present, the Kv4.3 current shows mixed inactivation profiles dependent on KChIP4a/KChIP1 ratios. The KIS domain effectively converts the A-type Kv4 current to a slowly inactivating delayed rectifier-type potassium current. This conversion is opposite to that mediated by the Kv1-specific "ball" domain of the Kv beta 1 subunit. Together, these results demonstrate that specific auxiliary subunits with distinct functions actively modulate gating of potassium channels that govern membrane excitability.

  12. Estrogen Contributes to Gender Differences in Mouse Ventricular Repolarization

    PubMed Central

    Saito, Tomoaki; Ciobotaru, Andrea; Bopassa, Jean Chrisostome; Toro, Ligia; Stefani, Enrico; Eghbali, Mansoureh

    2010-01-01

    Rationale Fast-transient outward K+ (Ito,f) and ultra-rapid delayed rectifier K+ currents (IKur or IK,slow) contribute to mouse cardiac repolarization. Gender studies on these currents have reported conflicting results. Objective One key missing piece information in these studies is the animals’ estral stage. We decided to revisit gender-related differences in K+ currents, taking into consideration the females’ estral stage. Methods and Results We hypothesized that changes in estrogen levels during the estral cycle could play a role in determining the densities of K+ currents underlying ventricular repolarization. Peak total K+ current (IK,total) densities (pA/pF, at +40 mV) were much higher in males (48.6±3.0) than in females at estrus (27.2±2.3) but not at diestrus-2 (39.1±3.4). Underlying this change, Ito,f and IK,slow were lower in females at estrus vs males and diestrus-2 (IK,slow: male 21.9±1.8, estrus 14.6±0.6, diestrus-2 20.3±1.4; Ito,f: male 26.8±1.9, estrus 14.9±1.6, diestrus-2 22.1±2.1). The lower IK,slow in estrus was only due to IK,slow1 reduction without changes of IK,slow2. Estrogen treatment of ovariectomized mice decreased IK,total (46.4±3.0 to 28.4±1.6), Ito,f (26.6±1.6 to 12.8±1.0) and IK,slow (22.2±1.6 to 17.2±1.4). Transcript levels of Kv4.3 and Kv1.5 (underlying Ito,f and IK,slow, respectively) were lower in estrus vs. diestrus-2 and male. In ovariectomized mice, estrogen treatment resulted in downregulation of Kv4.3 and Kv1.5, but not Kv4.2, KChIP2 and Kv2.1 transcripts. K+ current reduction in high estrogenic conditions were associated with prolongation of the action potential duration and corrected QT interval. Conclusion Downregulation of Kv4.3 and Kv1.5 transcripts by estrogen are one mechanism defining gender-related differences in mouse ventricular repolarization. PMID:19608983

  13. Delayed Maturation of Fast-Spiking Interneurons Is Rectified by Activation of the TrkB Receptor in the Mouse Model of Fragile X Syndrome

    PubMed Central

    Nomura, Toshihiro; Zhu, Yiwen; Remmers, Christine L.; Xu, Jian; Nicholson, Daniel A.

    2017-01-01

    Fragile X syndrome (FXS) is a neurodevelopmental disorder that is a leading cause of inherited intellectual disability, and the most common known cause of autism spectrum disorder. FXS is broadly characterized by sensory hypersensitivity and several developmental alterations in synaptic and circuit function have been uncovered in the sensory cortex of the mouse model of FXS (Fmr1 KO). GABA-mediated neurotransmission and fast-spiking (FS) GABAergic interneurons are central to cortical circuit development in the neonate. Here we demonstrate that there is a delay in the maturation of the intrinsic properties of FS interneurons in the sensory cortex, and a deficit in the formation of excitatory synaptic inputs on to these neurons in neonatal Fmr1 KO mice. Both these delays in neuronal and synaptic maturation were rectified by chronic administration of a TrkB receptor agonist. These results demonstrate that the maturation of the GABAergic circuit in the sensory cortex is altered during a critical developmental period due in part to a perturbation in BDNF-TrkB signaling, and could contribute to the alterations in cortical development underlying the sensory pathophysiology of FXS. SIGNIFICANCE STATEMENT Fragile X (FXS) individuals have a range of sensory related phenotypes, and there is growing evidence of alterations in neuronal circuits in the sensory cortex of the mouse model of FXS (Fmr1 KO). GABAergic interneurons are central to the correct formation of circuits during cortical critical periods. Here we demonstrate a delay in the maturation of the properties and synaptic connectivity of interneurons in Fmr1 KO mice during a critical period of cortical development. The delays both in cellular and synaptic maturation were rectified by administration of a TrkB receptor agonist, suggesting reduced BDNF-TrkB signaling as a contributing factor. These results provide evidence that the function of fast-spiking interneurons is disrupted due to a deficiency in neurotrophin signaling during early development in FXS. PMID:29038238

  14. Input Power Characteristics of a Three-Phase Thyristor Converter

    DOT National Transportation Integrated Search

    1973-10-01

    A phase delay rectifier operating into a passive resistive load was instrumented in the laboratory. Techniques for accurate measurement of power, displacement reactive power, harmonic components, and distortion reactive power are presented. The chara...

  15. Exchange protein directly activated by cAMP mediates slow delayed-rectifier current remodeling by sustained β-adrenergic activation in guinea pig hearts.

    PubMed

    Aflaki, Mona; Qi, Xiao-Yan; Xiao, Ling; Ordog, Balazs; Tadevosyan, Artavazd; Luo, Xiaobin; Maguy, Ange; Shi, Yanfen; Tardif, Jean-Claude; Nattel, Stanley

    2014-03-14

    β-Adrenoceptor activation contributes to sudden death risk in heart failure. Chronic β-adrenergic stimulation, as occurs in patients with heart failure, causes potentially arrhythmogenic reductions in slow delayed-rectifier K(+) current (IKs). To assess the molecular mechanisms of IKs downregulation caused by chronic β-adrenergic activation, particularly the role of exchange protein directly activated by cAMP (Epac). Isolated guinea pig left ventricular cardiomyocytes were incubated in primary culture and exposed to isoproterenol (1 μmol/L) or vehicle for 30 hours. Sustained isoproterenol exposure decreased IKs density (whole cell patch clamp) by 58% (P<0.0001), with corresponding decreases in potassium voltage-gated channel subfamily E member 1 (KCNE1) mRNA and membrane protein expression (by 45% and 51%, respectively). Potassium voltage-gated channel, KQT-like subfamily, member 1 (KCNQ1) mRNA expression was unchanged. The β1-adrenoceptor antagonist 1-[2-((3-Carbamoyl-4-hydroxy)phenoxy)ethylamino]-3-[4-(1-methyl-4-trifluoromethyl-2-imidazolyl)phenoxy]-2-propanol dihydrochloride (CGP-20712A) prevented isoproterenol-induced IKs downregulation, whereas the β2-antagonist ICI-118551 had no effect. The selective Epac activator 8-pCPT-2'-O-Me-cAMP decreased IKs density to an extent similar to isoproterenol exposure, and adenoviral-mediated knockdown of Epac1 prevented isoproterenol-induced IKs/KCNE1 downregulation. In contrast, protein kinase A inhibition with a cell-permeable highly selective peptide blocker did not affect IKs downregulation. 1,2-Bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetate-AM acetoxymethyl ester (BAPTA-AM), cyclosporine, and inhibitor of nuclear factor of activated T cell (NFAT)-calcineurin association-6 (INCA6) prevented IKs reduction by isoproterenol and INCA6 suppressed isoproterenol-induced KCNE1 downregulation, consistent with signal-transduction via the Ca(2+)/calcineurin/NFAT pathway. Isoproterenol induced nuclear NFATc3/c4 translocation (immunofluorescence), which was suppressed by Epac1 knockdown. Chronic in vivo administration of isoproterenol to guinea pigs reduced IKs density and KCNE1 mRNA and protein expression while inducing cardiac dysfunction and action potential prolongation. Selective in vivo activation of Epac via sp-8-pCPT-2'-O-Me-cAMP infusion decreased IKs density and KCNE1 mRNA/protein expression. Prolonged β1-adrenoceptor stimulation suppresses IKs by downregulating KCNE1 mRNA and protein via Epac-mediated Ca(2+)/calcineurin/NFAT signaling. These results provide new insights into the molecular basis of K(+) channel remodeling under sustained adrenergic stimulation.

  16. Distortion management in slow-light pulse delay.

    PubMed

    Stenner, Michael D; Neifeld, Mark A; Zhu, Zhaoming; Dawes, Andrew M C; Gauthier, Daniel J

    2005-12-12

    We describe a methodology to maximize slow-light pulse delay subject to a constraint on the allowable pulse distortion. We show that optimizing over a larger number of physical variables can increase the distortion-constrained delay. We demonstrate these concepts by comparing the optimum slow-light pulse delay achievable using a single Lorentzian gain line with that achievable using a pair of closely-spaced gain lines. We predict that distortion management using a gain doublet can provide approximately a factor of 2 increase in slow-light pulse delay as compared with the optimum single-line delay. Experimental results employing Brillouin gain in optical fiber confirm our theoretical predictions.

  17. Regional analysis of whole cell currents from hair cells of the turtle posterior crista.

    PubMed

    Brichta, Alan M; Aubert, Anne; Eatock, Ruth Anne; Goldberg, Jay M

    2002-12-01

    The turtle posterior crista is made up of two hemicristae, each consisting of a central zone containing type I and type II hair cells and a surrounding peripheral zone containing only type II hair cells and extending from the planum semilunatum to the nonsensory torus. Afferents from various regions of a hemicrista differ in their discharge properties. To see if afferent diversity is related to the basolateral currents of the hair cells innervated, we selectively harvested type I and II hair cells from the central zone and type II hair cells from two parts of the peripheral zone, one near the planum and the other near the torus. Voltage-dependent currents were studied with the whole cell, ruptured-patch method and characterized in voltage-clamp mode. We found regional differences in both outwardly and inwardly rectifying voltage-sensitive currents. As in birds and mammals, type I hair cells have a distinctive outwardly rectifying current (I(K,L)), which begins activating at more hyperpolarized voltages than do the outward currents of type II hair cells. Activation of I(K,L) is slow and sigmoidal. Maximal outward conductances are large. Outward currents in type II cells vary in their activation kinetics. Cells with fast kinetics are associated with small conductances and with partial inactivation during 200-ms depolarizing voltage steps. Almost all type II cells in the peripheral zone and many in the central zone have fast kinetics. Some type II cells in the central zone have large outward currents with slow kinetics and little inactivation. Although these currents resemble I(K,L), they can be distinguished from the latter both electrophysiologically and pharmacologically. There are two varieties of inwardly rectifying currents in type II hair cells: activation of I(K1) is rapid and monoexponential, whereas that of I(h) is slow and sigmoidal. Many type II cells either have both inward currents or only have I(K1); very few cells only have I(h). Inward currents are less conspicuous in type I cells. Type II cells near the torus have smaller outwardly rectifying currents and larger inwardly rectifying currents than those near the planum, but the differences are too small to account for variations in discharge properties of bouton afferents innervating the two regions of the peripheral zone. The large outward conductances seen in central cells, by lowering impedances, may contribute to the low rotational gains of some central-zone afferents.

  18. A 13.56 MHz CMOS Active Rectifier With Switched-Offset and Compensated Biasing for Biomedical Wireless Power Transfer Systems.

    PubMed

    Yan Lu; Wing-Hung Ki

    2014-06-01

    A full-wave active rectifier switching at 13.56 MHz with compensated bias current for a wide input range for wirelessly powered high-current biomedical implants is presented. The four diodes of a conventional passive rectifier are replaced by two cross-coupled PMOS transistors and two comparator- controlled NMOS switches to eliminate diode voltage drops such that high voltage conversion ratio and power conversion efficiency could be achieved even at low AC input amplitude |VAC|. The comparators are implemented with switched-offset biasing to compensate for the delays of active diodes and to eliminate multiple pulsing and reverse current. The proposed rectifier uses a modified CMOS peaking current source with bias current that is quasi-inversely proportional to the supply voltage to better control the reverse current over a wide AC input range (1.5 to 4 V). The rectifier was fabricated in a standard 0.35 μm CMOS N-well process with active area of 0.0651 mm(2). For the proposed rectifier measured at |VAC| = 3.0 V, the voltage conversion ratios are 0.89 and 0.93 for RL=500 Ω and 5 kΩ, respectively, and the measured power conversion efficiencies are 82.2% to 90.1% with |VAC| ranges from 1.5 to 4 V for RL=500 Ω.

  19. Inhibition of potassium currents is involved in antiarrhythmic effect of moderate ethanol on atrial fibrillation.

    PubMed

    Yang, Baode; Li, Chenxing; Sun, Junyi; Wang, Xinghui; Liu, Xinling; Yang, Chun; Chen, Lina; Zhou, Jun; Hu, Hao

    2017-05-01

    Excessive consumption of alcohol is a well-established risk factor of atrial fibrillation (AF). However, the effects of moderate alcohol drinking remain to be elucidated. This study was designed to determine the effects of moderate ethanol ingestion on atrial fibrillation and the electrophysiological mechanisms. In acetylcholine-induced canine and mouse AF models, the moderate ethanol prevented the generation and persistence of AF through prolonging the latent period of AF and shortening the duration of AF. The action potential duration (APD) was remarkably prolonged under the concentration range of 12.5-50.0mM ethanol in guinea pig atrial myocytes. Ultra-rapid delayed rectified potassium currents (I Kv1.5 ) were markedly inhibited by 12.5-50.0mM ethanol in a concentration-dependent manner. Ethanol with 50.0mM could inhibit rapid delayed rectifier potassium currents (I hERG ). Ethanol under 6.25-50.0mM did not affect on inward rectifier potassium currents (I Kir2.1 ). Collectively, the present study provided an evidence that moderate ethanol intake can prolong the APD of atrial myocytes by inhibition of I Kv1.5 and I hERG , which contributed to preventing the development and duration of AF. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Pseudomonas fluorescens lipopolysaccharide inhibits both delayed rectifier and transient A-type K+ channels of cultured rat cerebellar granule neurons.

    PubMed

    Mezghani-Abdelmoula, Sana; Chevalier, Sylvie; Lesouhaitier, Olivier; Orange, Nicole; Feuilloley, Marc G J; Cazin, Lionel

    2003-09-05

    Pseudomonas fluorescens is a Gram-negative bacillus closely related to the pathogen P. aeruginosa known to provoke infectious disorders in the central nervous system (CNS). The endotoxin lipopolysaccharide (LPS) expressed by the bacteria is the first infectious factor that can interact with the plasma membrane of host cells. In the present study, LPS extracted from P. fluorescens MF37 was examined for its actions on delayed rectifier and A-type K(+) channels, two of the main types of voltage-activated K(+) channels involved in the action potential firing. Current recordings were performed in cultured rat cerebellar granule neurons at days 7 or 8, using the whole-cell patch-clamp technique. A 3-h incubation with LPS (200 ng/ml) markedly depressed both the delayed rectifier (I(KV)) and transient A-type (I(A)) K(+) currents evoked by depolarizations above 0 and -40 mV, respectively. The percent decrease of I(KV) and I(A) ( approximately 30%) did not vary with membrane potential, suggesting that inhibition of both types of K(+) channels by LPS was voltage-insensitive. The endotoxin did neither modify the steady-state voltage-dependent activation properties of I(KV) and I(A) nor the steady-state inactivation of I(A). The present results suggest that, by inhibiting I(KV) and I(A), LPS applied extracellulary increases the action potential firing in cerebellar granule neurons. It is concluded that P. fluorescens MF37 may provoke in the CNS disorders associated with sever alterations of membrane ionic channel functions.

  1. Slow-onset and fast-onset symptom presentations in acute coronary syndrome (ACS): new perspectives on prehospital delay in patients with ACS.

    PubMed

    O'Donnell, Sharon; McKee, Gabrielle; Mooney, Mary; O'Brien, Frances; Moser, Debra K

    2014-04-01

    Patient decision delay is the main reason why many patients fail to receive timely medical intervention for symptoms of acute coronary syndrome (ACS). This study examines the validity of slow-onset and fast-onset ACS presentations and their influence on ACS prehospital delay times. A fast-onset ACS presentation is characterized by sudden, continuous, and severe chest pain, and slow-onset ACS pertains to all other ACS presentations. Baseline data pertaining to medical profiles, prehospital delay times, and ACS symptoms were recorded for all ACS patients who participated in a large multisite randomized control trial (RCT) in Dublin, Ireland. Patients were interviewed 2-4 days after their ACS event, and data were gathered using the ACS Response to Symptom Index. Only baseline data from the RCT, N = 893 patients, were analyzed. A total of 65% (n = 577) of patients experienced slow-onset ACS presentation, whereas 35% (n = 316) experienced fast-onset ACS. Patients who experienced slow-onset ACS were significantly more likely to have longer prehospital delays than patients with fast-onset ACS (3.5 h vs. 2.0 h, respectively, t = -5.63, df 890, p < 0.001). A multivariate analysis of delay revealed that, in the presence of other known delay factors, the only independent predictors of delay were slow-onset and fast-onset ACS (β = -.096, p < 0.002) and other factors associated with patient behavior. Slow-onset ACS and fast-onset ACS presentations are associated with distinct behavioral patterns that significantly influence prehospital time frames. As such, slow-onset ACS and fast-onset ACS are legitimate ACS presentation phenomena that should be seriously considered when examining the factors associated with prehospital delay. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Regulation of the instantaneous inward rectifier and the delayed outward rectifier potassium channels by Captopril and Angiotensin II via the Phosphoinositide-3 kinase pathway in volume-overload-induced hypertrophied cardiac myocytes.

    PubMed

    Alvin, Zikiar V; Laurence, Graham G; Coleman, Bernell R; Zhao, Aiqiu; Hajj-Moussa, Majd; Haddad, Georges E

    2011-07-01

    Early development of cardiac hypertrophy may be beneficial but sustained hypertrophic activation leads to myocardial dysfunction. Regulation of the repolarizing currents can be modulated by the activation of humoral factors, such as angiotensin II (ANG II) through protein kinases. The aim of this work is to assess the regulation of IK and IK1 by ANG II through the PI3-K pathway in hypertrophied ventricular myocytes. Cardiac eccentric hypertrophy was induced through volume-overload in adult male rats by aorto-caval shunt (3 weeks). After one week half of the rats were given captopril (2 weeks; 0.5 g/l/day) and the other half served as control. The voltage-clamp and western blot techniques were used to measure the delayed outward rectifier potassium current (IK) and the instantaneous inward rectifier potassium current (IK1) and Akt activity, respectively. Hypertrophied cardiomyocytes showed reduction in IK and IK1. Treatment with captopril alleviated this difference seen between sham and shunt cardiomyocytes. Acute administration of ANG II (10-6M) to cardiocytes treated with captopril reduced IK and IK1 in shunts, but not in sham. Captopril treatment reversed ANG II effects on IK and IK1 in a PI3-K-independent manner. However in the absence of angiotensin converting enzyme inhibition, ANG II increased both IK and IK1 in a PI3-K-dependent manner in hypertrophied cardiomyocytes. Thus, captopril treatment reveals a negative effect of ANG II on IK and IK1, which is PI3-K independent, whereas in the absence of angiotensin converting enzyme inhibition IK and IK1 regulation is dependent upon PI3-K.

  3. Delayed Maturation of Fast-Spiking Interneurons Is Rectified by Activation of the TrkB Receptor in the Mouse Model of Fragile X Syndrome.

    PubMed

    Nomura, Toshihiro; Musial, Timothy F; Marshall, John J; Zhu, Yiwen; Remmers, Christine L; Xu, Jian; Nicholson, Daniel A; Contractor, Anis

    2017-11-22

    Fragile X syndrome (FXS) is a neurodevelopmental disorder that is a leading cause of inherited intellectual disability, and the most common known cause of autism spectrum disorder. FXS is broadly characterized by sensory hypersensitivity and several developmental alterations in synaptic and circuit function have been uncovered in the sensory cortex of the mouse model of FXS ( Fmr1 KO). GABA-mediated neurotransmission and fast-spiking (FS) GABAergic interneurons are central to cortical circuit development in the neonate. Here we demonstrate that there is a delay in the maturation of the intrinsic properties of FS interneurons in the sensory cortex, and a deficit in the formation of excitatory synaptic inputs on to these neurons in neonatal Fmr1 KO mice. Both these delays in neuronal and synaptic maturation were rectified by chronic administration of a TrkB receptor agonist. These results demonstrate that the maturation of the GABAergic circuit in the sensory cortex is altered during a critical developmental period due in part to a perturbation in BDNF-TrkB signaling, and could contribute to the alterations in cortical development underlying the sensory pathophysiology of FXS. SIGNIFICANCE STATEMENT Fragile X (FXS) individuals have a range of sensory related phenotypes, and there is growing evidence of alterations in neuronal circuits in the sensory cortex of the mouse model of FXS ( Fmr1 KO). GABAergic interneurons are central to the correct formation of circuits during cortical critical periods. Here we demonstrate a delay in the maturation of the properties and synaptic connectivity of interneurons in Fmr1 KO mice during a critical period of cortical development. The delays both in cellular and synaptic maturation were rectified by administration of a TrkB receptor agonist, suggesting reduced BDNF-TrkB signaling as a contributing factor. These results provide evidence that the function of fast-spiking interneurons is disrupted due to a deficiency in neurotrophin signaling during early development in FXS. Copyright © 2017 the authors 0270-6474/17/3711298-13$15.00/0.

  4. Human-induced pluripotent stem cell-derived cardiomyocytes from cardiac progenitor cells: effects of selective ion channel blockade.

    PubMed

    Altomare, Claudia; Pianezzi, Enea; Cervio, Elisabetta; Bolis, Sara; Biemmi, Vanessa; Benzoni, Patrizia; Camici, Giovanni G; Moccetti, Tiziano; Barile, Lucio; Vassalli, Giuseppe

    2016-12-01

    Human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes are likely to revolutionize electrophysiological approaches to arrhythmias. Recent evidence suggests the somatic cell origin of hiPSCs may influence their differentiation potential. Owing to their cardiomyogenic potential, cardiac-stromal progenitor cells (CPCs) are an interesting cellular source for generation of hiPSC-derived cardiomyocytes. The effect of ionic current blockade in hiPSC-derived cardiomyocytes generated from CPCs has not been characterized yet. Human-induced pluripotent stem cell-derived cardiomyocytes were generated from adult CPCs and skin fibroblasts from the same individuals. The effect of selective ionic current blockade on spontaneously beating hiPSC-derived cardiomyocytes was assessed using multi-electrode arrays. Cardiac-stromal progenitor cells could be reprogrammed into hiPSCs, then differentiated into hiPSC-derived cardiomyocytes. Human-induced pluripotent stem cell-derived cardiomyocytes of cardiac origin showed higher upregulation of cardiac-specific genes compared with those of fibroblastic origin. Human-induced pluripotent stem cell-derived cardiomyocytes of both somatic cell origins exhibited sensitivity to tetrodotoxin, a blocker of Na +  current (I Na ), nifedipine, a blocker of L-type Ca 2+  current (I CaL ), and E4031, a blocker of the rapid component of delayed rectifier K +  current (I Kr ). Human-induced pluripotent stem cell-derived cardiomyocytes of cardiac origin exhibited sensitivity to JNJ303, a blocker of the slow component of delayed rectifier K +  current (I Ks ). In hiPSC-derived cardiomyocytes of cardiac origin, I Na , I CaL , I Kr , and I Ks were present as tetrodotoxin-, nifedipine-, E4031-, and JNJ303-sensitive currents, respectively. Although cardiac differentiation efficiency was improved in hiPSCs of cardiac vs. non-cardiac origin, no major functional differences were observed between hiPSC-derived cardiomyocytes of different somatic cell origins. Further studies are warranted to characterize electrophysiological properties of hiPSC-derived cardiomyocytes generated from CPCs. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For Permissions, please email: journals.permissions@oup.com.

  5. Fast inactivation of delayed rectifier K conductance in squid giant axon and its cell bodies.

    PubMed

    Mathes, C; Rosenthal, J J; Armstrong, G M; Gilly, W F

    1997-04-01

    Inactivation of delayed rectifier K conductance (gk) was studied in squid giant axons and in the somata of giant fiber lobe (GFL) neurons. Axon measurements were made with an axial wire voltage clamp by pulsing to VK (approximately -10 mV in 50-70 mM external K) for a variable time and then assaying available gK with a strong, brief test pulse. GFL cells were studied with whole-cell patch clamp using the same prepulse procedure as well as with long depolarizations. Under our experimental conditions (12-18 degrees C, 4 mM internal MgATP) a large fraction of gK inactivates within 250 ms at -10 mV in both cell bodies and axons, although inactivation tends to be more complete in cell bodies. Inactivation in both preparations shows two kinetic components. The faster component is more temperature-sensitive and becomes very prominent above 12 degrees C. Contribution of the fast component to inactivation shows a similar voltage dependence to that of gK, suggesting a strong coupling of this inactivation path to the open state. Omission of internal MgATP or application of internal protease reduces the amount of fast inactivation. High external K decreases the amount of rapidly inactivating IK but does not greatly alter inactivation kinetics. Neither external nor internal tetraethylammonium has a marked effect on inactivation kinetics. Squid delayed rectifier K channels in GFL cell bodies and giant axons thus share complex fast inactivation properties that do not closely resemble those associated with either C-type or N-type inactivation of cloned Kvl channels studied in heterologous expression systems.

  6. K(+) channels of squid giant axons open by an osmotic stress in hypertonic solutions containing nonelectrolytes.

    PubMed

    Kukita, Fumio

    2011-08-01

    In hypertonic solutions made by adding nonelectrolytes, K(+) channels of squid giant axons opened at usual asymmetrical K(+) concentrations in two different time courses; an initial instantaneous activation (I (IN)) and a sigmoidal activation typical of a delayed rectifier K(+) channel (I (D)). The current-voltage relation curve for I (IN) was fitted well with Goldman equation described with a periaxonal K(+) concentration at the membrane potential above -10 mV. Using the activation-voltage curve obtained from tail currents, K(+) channels for I (IN) are confirmed to activate at the membrane potential that is lower by 50 mV than those for I (D). Both I (IN) and I (D) closed similarly at the holding potential below -100 mV. The logarithm of I (IN)/I (D) was linearly related with the osmolarity for various nonelectrolytes. Solute inaccessible volumes obtained from the slope increased with the nonelectrolyte size from 15 to 85 water molecules. K(+) channels representing I (D) were blocked by open channel blocker tetra-butyl ammonium (TBA) more efficiently than in the absence of I (IN), which was explained by the mechanism that K(+) channels for I (D) were first converted to those for I (IN) by the osmotic pressure and then blocked. So K(+) channels for I (IN) were suggested to be derived from the delayed rectifier K(+) channels. Therefore, the osmotic pressure is suggested to exert delayed-rectifier K(+) channels to open in shrinking rather hydrophilic flexible parts outside the pore than the pore itself, which is compatible with the recent structure of open K(+) channel pore.

  7. Fast Inactivation of Delayed Rectifier K Conductance in Squid Giant Axon and Its Cell Bodies

    PubMed Central

    Mathes, Chris; Rosenthal, Joshua J.C.; Armstrong, Clay M.; Gilly, William F.

    1997-01-01

    Inactivation of delayed rectifier K conductance (gK) was studied in squid giant axons and in the somata of giant fiber lobe (GFL) neurons. Axon measurements were made with an axial wire voltage clamp by pulsing to VK (∼−10 mV in 50–70 mM external K) for a variable time and then assaying available gK with a strong, brief test pulse. GFL cells were studied with whole-cell patch clamp using the same prepulse procedure as well as with long depolarizations. Under our experimental conditions (12–18°C, 4 mM internal MgATP) a large fraction of gK inactivates within 250 ms at −10 mV in both cell bodies and axons, although inactivation tends to be more complete in cell bodies. Inactivation in both preparations shows two kinetic components. The faster component is more temperature-sensitive and becomes very prominent above 12°C. Contribution of the fast component to inactivation shows a similar voltage dependence to that of gK, suggesting a strong coupling of this inactivation path to the open state. Omission of internal MgATP or application of internal protease reduces the amount of fast inactivation. High external K decreases the amount of rapidly inactivating IK but does not greatly alter inactivation kinetics. Neither external nor internal tetraethylammonium has a marked effect on inactivation kinetics. Squid delayed rectifier K channels in GFL cell bodies and giant axons thus share complex fast inactivation properties that do not closely resemble those associated with either C-type or N-type inactivation of cloned Kv1 channels studied in heterologous expression systems. PMID:9101403

  8. Inhibitory effects of pimozide on cloned and native voltage-gated potassium channels.

    PubMed

    Zhang, Zhi-Hao; Lee, Yan T; Rhodes, Kenneth; Wang, Kewei; Argentieri, Thomas M; Wang, Qiang

    2003-07-04

    The primary goal of this study was to use the cloned neuronal Kv channels to test if pimozide (PMZD), an antipsychotic drug, modulates the activity of Kv channels. In CHO cells, PMZD blocked Kv2.1, a major neuronal delayed rectifier, in a manner that depends upon time and concentration. The estimated IC50 was 4.2 microM at +50 mV. Tail current analysis shows that PMZD reduced the amplitude of the currents, with no effect on the steady-state activation curve (V(1/2) from 14.1 to 11.1 mV) or the slope (16.7 vs. 14.0 mV). From -120 to -20 mV, PMZD did not impact the deactivation kinetics of Kv2.1. PMZD also blocked Kv1.1, another neuronal delayed rectifier, with 16.1 microM of IC50. When Kv1.1 was co-expressed with Kvbeta1, approximately 50% of the Kv1.1 were converted into an inactivating A-type current and the Kv1.1/Kvbeta1 A-type currents were insensitive to PMZD. PMZD (10 microM) had minimal effect on Kv1.4, and had no effect on the M-current candidates, KCNQ2 and KCNQ3 when co-expressed in Xenopus oocytes. In hippocampal neurons, PMZD inhibited the delayed rectifiers by approximately 60%, and A-type currents were insensitive to PMZD. The results suggest that PMZD inhibits certain neuronal Kv channels in heterologous expression systems and in hippocampal neurons. PMZD was less effective on A-type currents, presumably because its ability to block requires a prolonged opening of the K channels. It is thus conceivable that the time-dependent and/or subunit-specific inhibition of Kv channels may increase the release of neurotransmitters such as serotonin and glutamate.

  9. Computational models of O-LM cells are recruited by low or high theta frequency inputs depending on h-channel distributions

    PubMed Central

    Sekulić, Vladislav; Skinner, Frances K

    2017-01-01

    Although biophysical details of inhibitory neurons are becoming known, it is challenging to map these details onto function. Oriens-lacunosum/moleculare (O-LM) cells are inhibitory cells in the hippocampus that gate information flow, firing while phase-locked to theta rhythms. We build on our existing computational model database of O-LM cells to link model with function. We place our models in high-conductance states and modulate inhibitory inputs at a wide range of frequencies. We find preferred spiking recruitment of models at high (4–9 Hz) or low (2–5 Hz) theta depending on, respectively, the presence or absence of h-channels on their dendrites. This also depends on slow delayed-rectifier potassium channels, and preferred theta ranges shift when h-channels are potentiated by cyclic AMP. Our results suggest that O-LM cells can be differentially recruited by frequency-modulated inputs depending on specific channel types and distributions. This work exposes a strategy for understanding how biophysical characteristics contribute to function. DOI: http://dx.doi.org/10.7554/eLife.22962.001 PMID:28318488

  10. The Electrophysiological Effects of Qiliqiangxin on Cardiac Ventricular Myocytes of Rats

    PubMed Central

    Wei, Yidong; Liu, Xiaoyu; Wei, Haidong; Hou, Lei; Che, Wenliang; The, Erlinda; Li, Gang; Jhummon, Muktanand Vikash; Wei, Wanlin

    2013-01-01

    Qiliqiangxin, a Chinese herb, represents the affection in Ca channel function of cardiac myocytes. It is unknown whether Qiliqiangxin has an effect on Na current and K current because the pharmacological actions of this herb's compound are very complex. We investigated the rational usage of Qiliqiangxin on cardiac ventricular myocytes of rats. Ventricular myocytes were exposed acutely to 1, 10, and 50 mg/L Qiliqiangxin, and whole cell patch-clamp technique was used to study the acute effects of Qiliqiangxin on Sodium current (I Na), outward currents delayed rectifier outward K+ current (I K), slowly activating delayed rectifier outward K+ current (I Ks), transient outward K+ current (I to), and inward rectifier K+ current (I K1). Qiliqiangxin can decrease I Na by 28.53% ± 5.98%, and its IC50 was 9.2 mg/L. 10 and 50 mg/L Qiliqiangxin decreased by 37.2% ± 6.4% and 55.9% ± 5.5% summit current density of I to. 10 and 50 mg/L Qiliqiangxin decreased I Ks by 15.51% ± 4.03% and 21.6% ± 5.6%. Qiliqiangxin represented a multifaceted pharmacological profile. The effects of Qiliqiangxin on Na and K currents of ventricular myocytes were more profitable in antiarrhythmic therapy in the clinic. We concluded that the relative efficacy of Qiliqiangxin was another choice for the existing antiarrhythmic therapy. PMID:24250713

  11. Combinational logic for generating gate drive signals for phase control rectifiers

    NASA Technical Reports Server (NTRS)

    Dolland, C. R.; Trimble, D. W. (Inventor)

    1982-01-01

    Control signals for phase-delay rectifiers, which require a variable firing angle that ranges from 0 deg to 180 deg, are derived from line-to-line 3-phase signals and both positive and negative firing angle control signals which are generated by comparing current command and actual current. Line-to-line phases are transformed into line-to-neutral phases and integrated to produce 90 deg phase delayed signals that are inverted to produce three cosine signals, such that for each its maximum occurs at the intersection of positive half cycles of the other two phases which are inputs to other inverters. At the same time, both positive and negative (inverted) phase sync signals are generated for each phase by comparing each with the next and producing a square wave when it is greater. Ramp, sync and firing angle controls signals are than used in combinational logic to generate the gate firing control signals SCR gate drives which fire SCR devices in a bridge circuit.

  12. Delayed rectifier K channels contribute to contrast adaptation in mammalian retinal ganglion cells

    PubMed Central

    Weick, Michael; Demb, Jonathan B.

    2011-01-01

    SUMMARY Retinal ganglion cells adapt by reducing their sensitivity during periods of high contrast. Contrast adaptation in the firing response depends on both presynaptic and intrinsic mechanisms. Here, we investigated intrinsic mechanisms for contrast adaptation in OFF Alpha ganglion cells in the in vitro guinea pig retina. Using either visual stimulation or current injection, we show that brief depolarization evoked spiking and suppressed firing during subsequent depolarization. The suppression could be explained by Na channel inactivation, as shown in salamander cells. However, brief hyperpolarization in the physiological range (5–10 mV) also suppressed firing during subsequent depolarization. This suppression was sensitive selectively to blockers of delayed-rectifier K channels (KDR). Somatic membrane patches showed TEA-sensitive KDR currents with activation near −25 mV and removal of inactivation at voltages negative to Vrest. Brief periods of hyperpolarization apparently remove KDR inactivation and thereby increase the channel pool available to suppress excitability during subsequent depolarization. PMID:21745646

  13. Delayed-rectifier K channels contribute to contrast adaptation in mammalian retinal ganglion cells.

    PubMed

    Weick, Michael; Demb, Jonathan B

    2011-07-14

    Retinal ganglion cells adapt by reducing their sensitivity during periods of high contrast. Contrast adaptation in the firing response depends on both presynaptic and intrinsic mechanisms. Here, we investigated intrinsic mechanisms for contrast adaptation in OFF Alpha ganglion cells in the in vitro guinea pig retina. Using either visual stimulation or current injection, we show that brief depolarization evoked spiking and suppressed firing during subsequent depolarization. The suppression could be explained by Na channel inactivation, as shown in salamander cells. However, brief hyperpolarization in the physiological range (5-10 mV) also suppressed firing during subsequent depolarization. This suppression was selectively sensitive to blockers of delayed-rectifier K channels (K(DR)). In somatic membrane patches, we observed tetraethylammonium-sensitive K(DR) currents that activated near -25 mV. Recovery from inactivation occurred at potentials hyperpolarized to V(rest). Brief periods of hyperpolarization apparently remove K(DR) inactivation and thereby increase the channel pool available to suppress excitability during subsequent depolarization. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. A KCNQ1 mutation causes age-dependant bradycardia and persistent atrial fibrillation.

    PubMed

    Ki, Chang-Seok; Jung, Chae Lim; Kim, Hyun-ji; Baek, Kwan-Hyuck; Park, Seung Jung; On, Young Keun; Kim, Ki-Suk; Noh, Su Jin; Youm, Jae Boum; Kim, June Soo; Cho, Hana

    2014-03-01

    Atrial fibrillation (AF) is the most common arrhythmia. Gain-of-function mutations in KCNQ1, the pore-forming α-subunit of the slow delayed rectifier K current (IKs) channel, have been associated with AF. The purpose of this study was functional assessment of a mutation in KCNQ1 identified in a family with persistent AF and sinus bradycardia. We investigated whether this KCNQ1 missense mutation could form the genetic basis for AF and bradycardia simultaneously in this family. Sanger sequencing in a family with hereditary persistent AF identified a novel KCNQ1 variant (V241F) in a highly conserved region of S4 domain. The proband and her son developed bradycardia and persistent AF in an age-dependent fashion. The other son was a mutation carrier but he showed sinus bradycardia and not AF. Whole-cell patch clamp electrophysiology showed that V241F mutation in KCNQ1 shifted the activation curve to the left and dramatically slowed deactivation, leading to a constitutively open-like phenotype. Computer modeling showed that V241F would slow pacemaker activity. Also, simulations of atrial excitation predicted that V241F results in extreme shortening of action potential duration, possibly resulting in AF. Our study indicates that V241F might cause sinus bradycardia by increasing IKs. Additionally, V241F likely shortens atrial refractoriness to promote a substrate for reentry. KCNQ1 mutations have previously been described in AF, yet this is the first time a mutation in KCNQ1 is associated with age-dependent bradycardia and persistent AF. This finding further supports the hypothesis that sinus node dysfunction contributes to the development of AF.

  15. Inhibition of the cardiac inward rectifier potassium currents by KB-R7943.

    PubMed

    Abramochkin, Denis V; Alekseeva, Eugenia I; Vornanen, Matti

    2013-09-01

    KB-R7943 (2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea) was developed as a specific inhibitor of the sarcolemmal sodium-calcium exchanger (NCX) with potential experimental and therapeutic use. However, KB-R7943 is shown to be a potent blocker of several ion currents including inward and delayed rectifier K(+) currents of cardiomyocytes. To further characterize KB-R7943 as a blocker of the cardiac inward rectifiers we compared KB-R7943 sensitivity of the background inward rectifier (IK1) and the carbacholine-induced inward rectifier (IKACh) currents in mammalian (Rattus norvegicus; rat) and fish (Carassius carassius; crucian carp) cardiac myocytes. The basal IK1 of ventricular myocytes was blocked with apparent IC50-values of 4.6×10(-6) M and 3.5×10(-6) M for rat and fish, respectively. IKACh was almost an order of magnitude more sensitive to KB-R7943 than IK1 with IC50-values of 6.2×10(-7) M for rat and 2.5×10(-7) M for fish. The fish cardiac NCX current was half-maximally blocked at the concentration of 1.9-3×10(-6) M in both forward and reversed mode of operation. Thus, the sensitivity of three cardiac currents to KB-R7943 block increases in the order IK1~INCX

  16. Effects of pioglitazone on cardiac ion currents and action potential morphology in canine ventricular myocytes.

    PubMed

    Kistamás, Kornél; Szentandrássy, Norbert; Hegyi, Bence; Ruzsnavszky, Ferenc; Váczi, Krisztina; Bárándi, László; Horváth, Balázs; Szebeni, Andrea; Magyar, János; Bányász, Tamás; Kecskeméti, Valéria; Nánási, Péter P

    2013-06-15

    Despite its widespread therapeutical use there is little information on the cellular cardiac effects of the antidiabetic drug pioglitazone in larger mammals. In the present study, therefore, the concentration-dependent effects of pioglitazone on ion currents and action potential configuration were studied in isolated canine ventricular myocytes using standard microelectrode, conventional whole cell patch clamp, and action potential voltage clamp techniques. Pioglitazone decreased the maximum velocity of depolarization and the amplitude of phase-1 repolarization at concentrations ≥3 μM. Action potentials were shortened by pioglitazone at concentrations ≥10 μM, which effect was accompanied with significant reduction of beat-to-beat variability of action potential duration. Several transmembrane ion currents, including the transient outward K(+) current (Ito), the L-type Ca(2+) current (ICa), the rapid and slow components of the delayed rectifier K(+) current (IKr and IKs, respectively), and the inward rectifier K(+) current (IK1) were inhibited by pioglitazone under conventional voltage clamp conditions. Ito was blocked significantly at concentrations ≥3 μM, ICa, IKr, IKs at concentrations ≥10 μM, while IK1 at concentrations ≥30 μM. Suppression of Ito, ICa, IKr, and IK1 has been confirmed also under action potential voltage clamp conditions. ATP-sensitive K(+) current, when activated by lemakalim, was effectively blocked by pioglitazone. Accordingly, action potentials were prolonged by 10 μM pioglitazone when the drug was applied in the presence of lemakalim. All these effects developed rapidly and were readily reversible upon washout. In conclusion, pioglitazone seems to be a harmless agent at usual therapeutic concentrations. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Population of computational rabbit-specific ventricular action potential models for investigating sources of variability in cellular repolarisation.

    PubMed

    Gemmell, Philip; Burrage, Kevin; Rodriguez, Blanca; Quinn, T Alexander

    2014-01-01

    Variability is observed at all levels of cardiac electrophysiology. Yet, the underlying causes and importance of this variability are generally unknown, and difficult to investigate with current experimental techniques. The aim of the present study was to generate populations of computational ventricular action potential models that reproduce experimentally observed intercellular variability of repolarisation (represented by action potential duration) and to identify its potential causes. A systematic exploration of the effects of simultaneously varying the magnitude of six transmembrane current conductances (transient outward, rapid and slow delayed rectifier K(+), inward rectifying K(+), L-type Ca(2+), and Na(+)/K(+) pump currents) in two rabbit-specific ventricular action potential models (Shannon et al. and Mahajan et al.) at multiple cycle lengths (400, 600, 1,000 ms) was performed. This was accomplished with distributed computing software specialised for multi-dimensional parameter sweeps and grid execution. An initial population of 15,625 parameter sets was generated for both models at each cycle length. Action potential durations of these populations were compared to experimentally derived ranges for rabbit ventricular myocytes. 1,352 parameter sets for the Shannon model and 779 parameter sets for the Mahajan model yielded action potential duration within the experimental range, demonstrating that a wide array of ionic conductance values can be used to simulate a physiological rabbit ventricular action potential. Furthermore, by using clutter-based dimension reordering, a technique that allows visualisation of multi-dimensional spaces in two dimensions, the interaction of current conductances and their relative importance to the ventricular action potential at different cycle lengths were revealed. Overall, this work represents an important step towards a better understanding of the role that variability in current conductances may play in experimentally observed intercellular variability of rabbit ventricular action potential repolarisation.

  18. Population of Computational Rabbit-Specific Ventricular Action Potential Models for Investigating Sources of Variability in Cellular Repolarisation

    PubMed Central

    Gemmell, Philip; Burrage, Kevin; Rodriguez, Blanca; Quinn, T. Alexander

    2014-01-01

    Variability is observed at all levels of cardiac electrophysiology. Yet, the underlying causes and importance of this variability are generally unknown, and difficult to investigate with current experimental techniques. The aim of the present study was to generate populations of computational ventricular action potential models that reproduce experimentally observed intercellular variability of repolarisation (represented by action potential duration) and to identify its potential causes. A systematic exploration of the effects of simultaneously varying the magnitude of six transmembrane current conductances (transient outward, rapid and slow delayed rectifier K+, inward rectifying K+, L-type Ca2+, and Na+/K+ pump currents) in two rabbit-specific ventricular action potential models (Shannon et al. and Mahajan et al.) at multiple cycle lengths (400, 600, 1,000 ms) was performed. This was accomplished with distributed computing software specialised for multi-dimensional parameter sweeps and grid execution. An initial population of 15,625 parameter sets was generated for both models at each cycle length. Action potential durations of these populations were compared to experimentally derived ranges for rabbit ventricular myocytes. 1,352 parameter sets for the Shannon model and 779 parameter sets for the Mahajan model yielded action potential duration within the experimental range, demonstrating that a wide array of ionic conductance values can be used to simulate a physiological rabbit ventricular action potential. Furthermore, by using clutter-based dimension reordering, a technique that allows visualisation of multi-dimensional spaces in two dimensions, the interaction of current conductances and their relative importance to the ventricular action potential at different cycle lengths were revealed. Overall, this work represents an important step towards a better understanding of the role that variability in current conductances may play in experimentally observed intercellular variability of rabbit ventricular action potential repolarisation. PMID:24587229

  19. Dronedarone: an amiodarone analogue.

    PubMed

    Doggrell, Sheila A; Hancox, Jules C

    2004-04-01

    Of the antiarrhythmic drugs in current use, amiodarone is one of the most effective and is associated with a comparatively low risk of drug-induced pro-arrhythmia, probably due to its multiple pharmacological actions on cardiac ion channels and receptors. However, amiodarone is associated with significant extra-cardiac side effects and this has driven development of amiodarone analogues. These analogues include short acting analogues (e.g., AT-2001) with similar acute effects to amiodarone, the thyroid receptor antagonist KB-130015 and dronedarone. Dronedarone, (SR-33589; Sanofi-Synthelabo), is a non-iodinated amiodarone derivative that inhibits Na +, K + and Ca 2+ currents. It is a potent inhibitor of the acetylcholine-activated K + current from atrial and sinoatrial nodal tissue, and inhibits the rapid delayed rectifier more potently than slow and inward rectifier K + currents and inhibits L-type calcium current. Dronedarone is an antagonist at alpha- and beta-adrenoceptors and unlike amiodarone, has little effect at thyroid receptors. Dronedarone is more potent than amiodarone in inhibiting arrhythmias and death in animal models of ischaemia- and reperfusion-induced arrhythmias. In the Dronedarone Atrial Fibrillation Study After Electrical Cardioversion (DAFNE) clinical trial, dronedarone 800 mg/day appeared to be effective and safe for the prevention of atrial fibrillation relapses after cardioversion. The Antiarrhythmic Trial with Dronedarone in Moderate-to-Severe Congestive Heart Failure Evaluating Morbidity Decrease (ANDROMEDA) trial was stopped due to a potential increased risk of death in the dronedarone group. Trials of dronedarone in the maintenance of sinus rhythm in patients with atrial fibrillation and a safety and tolerability study in patients with an implantable cardioverter defibrillator are ongoing. Further experimental and clinical studies are required before we have a definitive answer to whether dronedarone has advantages over amiodarone and other amiodarone analogues.

  20. D-Sotalol: death by the SWORD or deserving of further consideration for clinical use?

    PubMed

    Doggrell, S A; Brown, L

    2000-07-01

    D-Sotalol is the dextro-rotatory isomer of sotalol and a class III anti-arrhythmic. D-Sotalol prolongs cardiac repolarisation by inhibiting the fast component of the delayed outward rectifying potassium channel. In animal studies, D-sotalol has been shown to be more effective in prolonging atrial, rather than ventricular, action potentials, suggesting that D-sotalol may be more effective against supra-ventricular than ventricular arrhythmias. Furthermore, in animal studies, D-sotalol induces after-depolarisations, which are predictors of pro-arrhythmic activity. D-Sotalol shows little or no reverse use dependence in animal and humans and has slow offset kinetics. This suggests that, in addition to being a preventative treatment for arrhythmias, D-sotalol may be effective at the start or during arrhythmia. As D-sotalol does not block the slow component of the delayed outward rectifying potassium channel, which is activated by the sympathetic nervous system, D-sotalol will not protect against sympathetic hyperactivity. D-Sotalol also has no effect on the K(ATP) channel, which is activated in ischaemia to shorten the action potential. Thus D-sotalol is less effective in ischaemia. Anti-arrhythmic activity with D-sotalol has been demonstrated in dog models of ventricular tachycardia and sudden death. Arrhythmias with D-sotalol have been demonstrated in an ischaemic guinea-pig ventricle model in the absence of action potentials. D-Sotalol is a weak beta-adrenoceptor antagonist and may also be a positive inotrope. In humans, D-sotalol has 100% systemic oral bioavailability, a terminal half-life of 7.2 h and is mainly excreted unchanged in the urine. Preliminary, mainly hospital-based, clinical trials showed that D-sotalol was effective in a variety of supraventricular and ventricular arrhythmias. However, a large clinical trial of D-sotalol as a preventative treatment for arrhythmias and sudden death after myocardial infarction, the SWORD trial, was terminated early because of increased mortality with D-sotalol. The group at greatest risk was those with a remote myocardial infarction and relatively good left ventricular function, the group that showed the lowest mortality when untreated. It is assumed that excessive prolongation of the action potential leading to pro-arrhythmia with D-sotalol, underlies the increased risk of death. However, there is little objective evidence in the SWORD trial to support this. Obviously D-sotalol should not be used in humans with a remote myocardial infarction and relatively good left ventricular function. D-Sotalol could still be considered for short-term hospital use in resistant arrhythmias and for longer-term use to prevent atrial fibrillation in those with remote myocardial infarction and poor left ventricular function.

  1. Molecular basis of slow activation of the human ether-á-go-go related gene potassium channel

    PubMed Central

    Subbiah, Rajesh N; Clarke, Catherine E; Smith, David J; Zhao, JingTing; Campbell, Terence J; Vandenberg, Jamie I

    2004-01-01

    The human ether-á-go-go related gene (HERG) encodes the pore forming α-subunit of the rapid delayed rectifier K+ channel which is central to the repolarization phase of the cardiac action potential. HERG K+ channels have unusual kinetics characterized by slow activation and deactivation, yet rapid inactivation. The fourth transmembrane domain (S4) of HERG, like other voltage-gated K+ channels, contains multiple positive charges and is the voltage sensor for activation. In this study, we mutated each of the positively charged residues in this region to glutamine (Q), expressed the mutant and wild-type (WT) channels in Xenopus laevis oocytes and studied them using two-electrode voltage clamp methods. K525Q channels activated at more hyperpolarized potentials than WT, whereas all the other mutant channels activated at more depolarized potentials. All mutants except for R531Q also had a reduction in apparent gating charge associated with activation. Mutation of K525 to cysteine (C) resulted in a less dramatic phenotype than K525Q. The addition of the positively charged MTSET to K525C altered the phenotype to one more similar to K525Q than to WT. Therefore it is not charge per se, but the specific lysine side chain at position 525, that is crucial for stabilizing the closed state. When rates of activation and deactivation for WT and mutant channels were compared at equivalent total (chemical + electrostatic) driving forces, K525Q and R528Q accelerated activation but had no effect on deactivation, R531Q slowed activation and deactivation, R534Q accelerated activation but slowed deactivation and R537Q accelerated deactivation but had no effect on activation. The main conclusions we can draw from these data are that in WT channels K525 stabilizes the closed state, R531 stabilizes the open state and R534 participates in interactions that stabilize pre-open closed states. PMID:15181157

  2. Inhibition of potassium currents is involved in antiarrhythmic effect of moderate ethanol on atrial fibrillation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Baode; Li, Chenxing

    Excessive consumption of alcohol is a well-established risk factor of atrial fibrillation (AF). However, the effects of moderate alcohol drinking remain to be elucidated. This study was designed to determine the effects of moderate ethanol ingestion on atrial fibrillation and the electrophysiological mechanisms. In acetylcholine-induced canine and mouse AF models, the moderate ethanol prevented the generation and persistence of AF through prolonging the latent period of AF and shortening the duration of AF. The action potential duration (APD) was remarkably prolonged under the concentration range of 12.5–50.0 mM ethanol in guinea pig atrial myocytes. Ultra-rapid delayed rectified potassium currents (I{submore » Kv1.5}) were markedly inhibited by 12.5–50.0 mM ethanol in a concentration-dependent manner. Ethanol with 50.0 mM could inhibit rapid delayed rectifier potassium currents (I{sub hERG}). Ethanol under 6.25–50.0 mM did not affect on inward rectifier potassium currents (I{sub Kir2.1}). Collectively, the present study provided an evidence that moderate ethanol intake can prolong the APD of atrial myocytes by inhibition of I{sub Kv1.5} and I{sub hERG}, which contributed to preventing the development and duration of AF. - Highlights: • Moderate ethanol prevented the development of AF in animal models. • Moderate ethanol prolonged APD in guinea pig atrial myocytes. • Moderate ethanol inhibited Kv1.5 currents.« less

  3. Efficient Hybrid Actuation Using Solid-State Actuators

    NASA Technical Reports Server (NTRS)

    Leo, Donald J.; Cudney, Harley H.; Horner, Garnett (Technical Monitor)

    2001-01-01

    Piezohydraulic actuation is the use of fluid to rectify the motion of a piezoelectric actuator for the purpose of overcoming the small stroke limitations of the material. In this work we study a closed piezohydraulic circuit that utilizes active valves to rectify the motion of a hydraulic end affector. A linear, lumped parameter model of the system is developed and correlated with experiments. Results demonstrate that the model accurately predicts the filtering of the piezoelectric motion caused by hydraulic compliance. Accurate results are also obtained for predicting the unidirectional motion of the cylinder when the active valves are phased with respect to the piezoelectric actuator. A time delay associated with the mechanical response of the valves is incorporated into the model to reflect the finite time required to open or close the valves. This time delay is found to be the primary limiting factor in achieving higher speed and greater power from the piezohydraulic unit. Experiments on the piezohydraulic unit demonstrate that blocked forces on the order of 100 N and unloaded velocities of 180 micrometers/sec are achieved.

  4. Testosterone-mediated upregulation of delayed rectifier potassium channel in cardiomyocytes causes abbreviation of QT intervals in rats.

    PubMed

    Masuda, Kimiko; Takanari, Hiroki; Morishima, Masaki; Ma, FangFang; Wang, Yan; Takahashi, Naohiko; Ono, Katsushige

    2018-01-13

    Men have shorter rate-corrected QT intervals (QTc) than women, especially at the period of adolescence or later. The aim of this study was to elucidate the long-term effects of testosterone on cardiac excitability parameters including electrocardiogram (ECG) and potassium channel current. Testosterone shortened QT intervals in ECG in castrated male rats, not immediately after, but on day 2 or later. Expression of Kv7.1 (KCNQ1) mRNA was significantly upregulated by testosterone in cardiomyocytes of male and female rats. Short-term application of testosterone was without effect on delayed rectifier potassium channel current (I Ks ), whereas I Ks was significantly increased in cardiomyocytes treated with dihydrotestosterone for 24 h, which was mimicked by isoproterenol (24 h). Gene-selective inhibitors of a transcription factor SP1, mithramycin, abolished the effects of testosterone on Kv7.1. Testosterone increases Kv7.1-I Ks possibly through a pathway related to a transcription factor SP1, suggesting a genomic effect of testosterone as an active factor for cardiac excitability.

  5. Blockade of HERG human K+ channels and IKr of guinea-pig cardiomyocytes by the antipsychotic drug clozapine.

    PubMed

    Lee, So-Young; Kim, Young-Jin; Kim, Kyong-Tai; Choe, Han; Jo, Su-Hyun

    2006-06-01

    Clozapine, a commonly used antipsychotic drug, can induce QT prolongation, which may lead to torsades de pointes and sudden death. To investigate the arrhythmogenic side effects of clozapine, we studied the impact of clozapine on human ether-a-go-go-related gene (HERG) channels expressed in Xenopus oocytes and HEK293 cells, and on the delayed rectifier K(+) currents of guinea-pig cardiomyocytes. Clozapine dose-dependently decreased the amplitudes of the currents at the end of voltage steps, and the tail currents of HERG. The IC(50) for the clozapine blockade of HERG currents in Xenopus oocytes progressively decreased relative to depolarization (39.9 microM at -40 mV, 28.3 microM at 0 mV and 22.9 microM at +40 mV), whereas the IC(50) for the clozapine-induced blockade of HERG currents in HEK293 cells at 36 degrees C was 2.5 microM at +20 mV. The clozapine-induced blockade of HERG currents was time dependent: the fractional current was 0.903 of the control at the beginning of the pulse, but declined to 0.412 after 4 s at a test potential of 0 mV. The clozapine-induced blockade of HERG currents was use-dependent, exhibiting more rapid onset and greater steady state blockade at higher frequencies of activation, with a partial relief of blockade observed when the frequency of activation was decreased. In guinea-pig ventricular myocytes held at 36 degrees C, treatment with 1 and 5 microM clozapine blocked the rapidly activating delayed rectifier K(+) current (I(Kr)) by 24.7 and 79.6%, respectively, but did not significantly block the slowly activating delayed rectifier K(+) current (I(Ks)). Our findings collectively suggest that blockade of HERG currents and I(Kr), but not I(Ks), may contribute to the arrhythmogenic side effects of clozapine.

  6. Blockade of HERG human K+ channels and IKr of guinea-pig cardiomyocytes by the antipsychotic drug clozapine

    PubMed Central

    Lee, So-Young; Kim, Young-Jin; Kim, Kyong-Tai; Choe, Han; Jo, Su-Hyun

    2006-01-01

    Clozapine, a commonly used antipsychotic drug, can induce QT prolongation, which may lead to torsades de pointes and sudden death. To investigate the arrhythmogenic side effects of clozapine, we studied the impact of clozapine on human ether-a-go-go-related gene (HERG) channels expressed in Xenopus oocytes and HEK293 cells, and on the delayed rectifier K+ currents of guinea-pig cardiomyocytes. Clozapine dose-dependently decreased the amplitudes of the currents at the end of voltage steps, and the tail currents of HERG. The IC50 for the clozapine blockade of HERG currents in Xenopus oocytes progressively decreased relative to depolarization (39.9 μM at −40 mV, 28.3 μM at 0 mV and 22.9 μM at +40 mV), whereas the IC50 for the clozapine-induced blockade of HERG currents in HEK293 cells at 36°C was 2.5 μM at +20 mV. The clozapine-induced blockade of HERG currents was time dependent: the fractional current was 0.903 of the control at the beginning of the pulse, but declined to 0.412 after 4 s at a test potential of 0 mV. The clozapine-induced blockade of HERG currents was use-dependent, exhibiting more rapid onset and greater steady state blockade at higher frequencies of activation, with a partial relief of blockade observed when the frequency of activation was decreased. In guinea-pig ventricular myocytes held at 36°C, treatment with 1 and 5 μM clozapine blocked the rapidly activating delayed rectifier K+ current (IKr) by 24.7 and 79.6%, respectively, but did not significantly block the slowly activating delayed rectifier K+ current (IKs). Our findings collectively suggest that blockade of HERG currents and IKr, but not IKs, may contribute to the arrhythmogenic side effects of clozapine. PMID:16633353

  7. Arylbenzazepines Are Potent Modulators for the Delayed Rectifier K+ Channel: A Potential Mechanism for Their Neuroprotective Effects

    PubMed Central

    Chen, Xue-Qin; Zhang, Jing; Neumeyer, John L.; Jin, Guo-Zhang; Hu, Guo-Yuan; Zhang, Ao; Zhen, Xuechu

    2009-01-01

    (±) SKF83959, like many other arylbenzazepines, elicits powerful neuroprotection in vitro and in vivo. The neuroprotective action of the compound was found to partially depend on its D1-like dopamine receptor agonistic activity. The precise mechanism for the (±) SKF83959-mediated neuroprotection remains elusive. We report here that (±) SKF83959 is a potent blocker for delayed rectifier K+ channel. (±) SKF83959 inhibited the delayed rectifier K+ current (I K) dose-dependently in rat hippocampal neurons. The IC 50 value for inhibition of I K was 41.9±2.3 µM (Hill coefficient = 1.81±0.13, n = 6), whereas that for inhibition of I A was 307.9±38.5 µM (Hill coefficient = 1.37±0.08, n = 6). Thus, (±) SKF83959 is 7.3-fold more potent in suppressing I K than I A. Moreover, the inhibition of I K by (±) SKF83959 was voltage-dependent and not related to dopamine receptors. The rapidly onset of inhibition and recovery suggests that the inhibition resulted from a direct interaction of (±) SKF83959 with the K+ channel. The intracellular application of (±) SKF83959 had no effects of on I K, indicating that the compound most likely acts at the outer mouth of the pore of K+ channel. We also tested the enantiomers of (±) SKF83959, R-(+) SKF83959 (MCL-201), and S-(−) SKF83959 (MCL-202), as well as SKF38393; all these compounds inhibited I K. However, (±) SKF83959, at either 0.1 or 1 mM, exhibited the strongest inhibition on the currents among all tested drug. The present findings not only revealed a new potent blocker of I K , but also provided a novel mechanism for the neuroprotective action of arylbenzazepines such as (±) SKF83959. PMID:19503734

  8. Deletion of the Kv2.1 delayed rectifier potassium channel leads to neuronal and behavioral hyperexcitability

    PubMed Central

    Speca, David J.; Ogata, Genki; Mandikian, Danielle; Bishop, Hannah I.; Wiler, Steve W.; Eum, Kenneth; Wenzel, H. Jürgen; Doisy, Emily T.; Matt, Lucas; Campi, Katharine L.; Golub, Mari S.; Nerbonne, Jeanne M.; Hell, Johannes W.; Trainor, Brian C.; Sack, Jon T.; Schwartzkroin, Philip A.; Trimmer, James S.

    2014-01-01

    The Kv2.1 delayed rectifier potassium channel exhibits high-level expression in both principal and inhibitory neurons throughout the central nervous system, including prominent expression in hippocampal neurons. Studies of in vitro preparations suggest that Kv2.1 is a key yet conditional regulator of intrinsic neuronal excitability, mediated by changes in Kv2.1 expression, localization and function via activity-dependent regulation of Kv2.1 phosphorylation. Here we identify neurological and behavioral deficits in mutant (Kv2.1−/−) mice lacking this channel. Kv2.1−/− mice have grossly normal characteristics. No impairment in vision or motor coordination was apparent, although Kv2.1−/− mice exhibit reduced body weight. The anatomic structure and expression of related Kv channels in the brains of Kv2.1−/− mice appears unchanged. Delayed rectifier potassium current is diminished in hippocampal neurons cultured from Kv2.1−/− animals. Field recordings from hippocampal slices of Kv2.1−/− mice reveal hyperexcitability in response to the convulsant bicuculline, and epileptiform activity in response to stimulation. In Kv2.1−/− mice, long-term potentiation at the Schaffer collateral – CA1 synapse is decreased. Kv2.1−/− mice are strikingly hyperactive, and exhibit defects in spatial learning, failing to improve performance in a Morris Water Maze task. Kv2.1−/− mice are hypersensitive to the effects of the convulsants flurothyl and pilocarpine, consistent with a role for Kv2.1 as a conditional suppressor of neuronal activity. Although not prone to spontaneous seizures, Kv2.1−/− mice exhibit accelerated seizure progression. Together, these findings suggest homeostatic suppression of elevated neuronal activity by Kv2.1 plays a central role in regulating neuronal network function. PMID:24494598

  9. Control of resting membrane potential by delayed rectifier potassium currents in ferret airway smooth muscle cells.

    PubMed Central

    Fleischmann, B K; Washabau, R J; Kotlikoff, M I

    1993-01-01

    1. In order to determine the physiological role of specific potassium currents in airway smooth muscle, potassium currents were measured in freshly dissociated ferret trachealis cells using the nystatin-permeabilized, whole-cell method, at 35 degrees C. 2. The magnitude of the outward currents was markedly increased as bath temperature was increased from 22 to 35 degrees C. This increase was primarily due to the increase in maximum potassium conductance (gK,max), although there was also a small leftward shift in the relationship between gK and voltage at higher temperatures. The maximum conductance and the kinetics of current activation and inactivation were also temperature dependent. At 35 degrees C, gating of the current was steeply voltage dependent between -40 and 0 mV. Current activation was well fitted by fourth-order kinetics; the mean time constants of activation (30 mV clamp step) were 1.09 +/- 0.17 and 1.96 +/- 0.27 ms at 35 and 22 degrees C, respectively. 3. Outward currents using the nystatin method were qualitatively similar to delayed rectifier currents recorded in dialysed cells with high calcium buffering capacity solutions. 4-Aminopyridine (4-AP; 2 mM), a specific blocker of delayed rectifier potassium channels in this tissue, inhibited over 80% of the outward current evoked by voltage-clamp steps to between -10 and +20 mV (n = 6). Less than 5% of the outward current was blocked over the same voltage range by charybdotoxin (100 nM; n = 15), a specific antagonist of large-conductance, calcium-activated potassium channels in this tissue. 4. The degree to which delayed rectifier and calcium-activated potassium conductances control resting membrane potential was examined in current-clamp experiments. The resting membrane potential of current clamped cells was -33.6 +/- 1.0 mV (n = 62). Application of 4-AP (2 mM) resulted in a 14.4 +/- 1.0 mV depolarization (n = 8) and an increase in input resistance. Charybdotoxin (100 nM) had no effect on resting membrane potential (n = 6). 5. Force measurements were made in isolated strips of trachealis muscle to determine the effect of pharmacological blockade of individual potassium conductances on resting tone. In the presence of tetrodotoxin (1 microM) and atropine (1 microM), 4-AP increased baseline tension in a dose-dependent manner, with an EC50 of 1.8 mM (n = 13); application of 5 mM 4-AP increased tone to 86.8 +/- 8.1% of that produced by 1 microM methacholine, and this tone was almost completely inhibited by nifedipine (1 microM).(ABSTRACT TRUNCATED AT 400 WORDS) PMID:8271220

  10. K+ channels of Müller glial cells in retinal disorders.

    PubMed

    Gao, Feng; Xu, Linjie; Zhao, Yuan; Sun, Xinghuai; Wang, Zhongfeng

    2018-02-01

    Müller cell is the major type glial cell in the vertebrate retina. Müller cells express various types of K+ channels, such as inwardly rectifying K+ (Kir) channels, big conductance Ca2+-activated K+ (BKCa) channels, delayed rectifier K+ channels (KDR), and transient A-type K+ channels. These K+ channels play important roles in maintaining physiological functions of Müller cells. Under some retinal pathological conditions, the changed expression and functions of K+ channels may contribute to retinal pathogenesis. In this article, we reviewed the physiological properties of K+ channels in retinal Müller cells and the functional changes of these channels in retinal disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Molecular motions that shape the cardiac action potential: Insights from voltage clamp fluorometry.

    PubMed

    Zhu, Wandi; Varga, Zoltan; Silva, Jonathan R

    2016-01-01

    Very recently, voltage-clamp fluorometry (VCF) protocols have been developed to observe the membrane proteins responsible for carrying the ventricular ionic currents that form the action potential (AP), including those carried by the cardiac Na(+) channel, NaV1.5, the L-type Ca(2+) channel, CaV1.2, the Na(+)/K(+) ATPase, and the rapid and slow components of the delayed rectifier, KV11.1 and KV7.1. This development is significant, because VCF enables simultaneous observation of ionic current kinetics with conformational changes occurring within specific channel domains. The ability gained from VCF, to connect nanoscale molecular movement to ion channel function has revealed how the voltage-sensing domains (VSDs) control ion flux through channel pores, mechanisms of post-translational regulation and the molecular pathology of inherited mutations. In the future, we expect that this data will be of great use for the creation of multi-scale computational AP models that explicitly represent ion channel conformations, connecting molecular, cell and tissue electrophysiology. Here, we review the VCF protocol, recent results, and discuss potential future developments, including potential use of these experimental findings to create novel computational models. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Electrophysiological heterogeneity of pacemaker cells in the rabbit intercaval region, including the SA node: insights from recording multiple ion currents in each cell.

    PubMed

    Monfredi, Oliver; Tsutsui, Kenta; Ziman, Bruce; Stern, Michael D; Lakatta, Edward G; Maltsev, Victor A

    2018-03-01

    Cardiac pacemaker cells, including cells of the sinoatrial node, are heterogeneous in size, morphology, and electrophysiological characteristics. The exact extent to which these cells differ electrophysiologically is unclear yet is critical to understanding their functioning. We examined major ionic currents in individual intercaval pacemaker cells (IPCs) sampled from the paracristal, intercaval region (including the sinoatrial node) that were spontaneously beating after enzymatic isolation from rabbit hearts. The beating rate was measured at baseline and after inhibition of the Ca 2+ pump with cyclopiazonic acid. Thereafter, in each cell, we consecutively measured the density of funny current ( I f ), delayed rectifier K + current ( I K ) (a surrogate of repolarization capacity), and L-type Ca 2+ current ( I Ca,L ) using whole cell patch clamp . The ionic current densities varied to a greater extent than previously appreciated, with some IPCs demonstrating very small or zero I f . The density of none of the currents was correlated with cell size, while I Ca,L and I f densities were related to baseline beating rates. I f density was correlated with I K density but not with that of I Ca,L . Inhibition of Ca 2+ cycling had a greater beating rate slowing effect in IPCs with lower I f densities. Our numerical model simulation indicated that 1) IPCs with small (or zero) I f or small I Ca,L can operate via a major contribution of Ca 2+ clock, 2) I f -Ca 2+ -clock interplay could be important for robust pacemaking function, and 3) coupled I f - I K function could regulate maximum diastolic potential. Thus, we have demonstrated marked electrophysiological heterogeneity of IPCs. This heterogeneity is manifested in basal beating rate and response to interference of Ca 2+ cycling, which is linked to I f . NEW & NOTEWORTHY In the present study, a hitherto unrecognized range of heterogeneity of ion currents in pacemaker cells from the intercaval region is demonstrated. Relationships between basal beating rate and L-type Ca 2+ current and funny current ( I f ) density are uncovered, along with a positive relationship between I f and delayed rectifier K + current. Links are shown between the response to Ca 2+ cycling blockade and I f density.

  13. Diadenosine pentaphosphate affects electrical activity in guinea pig atrium via activation of potassium acetylcholine-dependent inward rectifier.

    PubMed

    Abramochkin, Denis V; Karimova, Viktoria M; Filatova, Tatiana S; Kamkin, Andre

    2017-07-01

    Diadenosine pentaphosphate (Ap5A) belongs to the family of diadenosine polyphosphates, endogenously produced compounds that affect vascular tone and cardiac performance when released from platelets. The previous findings indicate that Ap5A shortens action potentials (APs) in rat myocardium via activation of purine P2 receptors. The present study demonstrates alternative mechanism of Ap5A electrophysiological effects found in guinea pig myocardium. Ap5A (10 -4  M) shortens APs in guinea pig working atrial myocardium and slows down pacemaker activity in the sinoatrial node. P1 receptors antagonist DPCPX (10 -7  M) or selective GIRK channels blocker tertiapin (10 -6  M) completely abolished all Ap5A effects, while P2 blocker PPADS (10 -4  M) was ineffective. Patch-clamp experiments revealed potassium inward rectifier current activated by Ap5A in guinea pig atrial myocytes. The current was abolished by DPCPX or tertiapin and therefore was considered as potassium acetylcholine-dependent inward rectifier (I KACh ). Thus, unlike rat, in guinea pig atrium Ap5A produces activation of P1 receptors and subsequent opening of KACh channels leading to negative effects on cardiac electrical activity.

  14. Expression and function of a CP339,818-sensitive K+ current in a subpopulation of putative nociceptive neurons from adult mouse trigeminal ganglia

    PubMed Central

    Sforna, Luigi; D'Adamo, Maria Cristina; Servettini, Ilenio; Guglielmi, Luca; Pessia, Mauro; Franciolini, Fabio

    2015-01-01

    Trigeminal ganglion (TG) neurons are functionally and morphologically heterogeneous, and the molecular basis of this heterogeneity is still not fully understood. Here we describe experiments showing that a subpopulation of neurons expresses a delayed-rectifying K+ current (IDRK) with a characteristically high (nanomolar) sensitivity to the dihydroquinoline CP339,818 (CP). Although submicromolar CP has previously been shown to selectively block Kv1.3 and Kv1.4 channels, the CP-sensitive IDRK found in TG neurons could not be associated with either of these two K+ channels. It could neither be associated with Kv2.1 channels homomeric or heteromerically associated with the Kv9.2, Kv9.3, or Kv6.4 subunits, whose block by CP, tested using two-electrode voltage-clamp recordings from Xenopus oocytes, resulted in the low micromolar range, nor to the Kv7 subfamily, given the lack of blocking efficacy of 3 μM XE991. Within the group of multiple-firing neurons considered in this study, the CP-sensitive IDRK was preferentially expressed in a subpopulation showing several nociceptive markers, such as small membrane capacitance, sensitivity to capsaicin, and slow afterhyperpolarization (AHP); in these neurons the CP-sensitive IDRK controls the membrane resting potential, the firing frequency, and the AHP duration. A biophysical study of the CP-sensitive IDRK indicated the presence of two kinetically distinct components: a fast deactivating component having a relatively depolarized steady-state inactivation (IDRKf) and a slow deactivating component with a more hyperpolarized V1/2 for steady-state inactivation (IDRKs). PMID:25652918

  15. Adaptive control system for line-commutated inverters

    NASA Technical Reports Server (NTRS)

    Dolland, C. R.; Bailey, D. A. (Inventor)

    1983-01-01

    A control system for a permanent magnet motor driven by a multiphase line commutated inverter is provided with integration for integrating the back EMF of each phase of the motor. This is used in generating system control signals for an inverter gate logic using a sync and firing angle (alpha) control generator connected to the outputs of the integrators. A precision full wave rectifier provides a speed control feedback signal to a phase delay rectifier via a gain and loop compensation circuit and to the integrators for adaptive control of the attenuation of low frequencies by the integrators as a function of motor speed. As the motor speed increases, the attenuation of low frequency components by the integrators is increased to offset the gain of the integrators to spurious low frequencies.

  16. Taurine activates delayed rectifier KV channels via a metabotropic pathway in retinal neurons

    PubMed Central

    Bulley, Simon; Liu, Yufei; Ripps, Harris; Shen, Wen

    2013-01-01

    Taurine is one of the most abundant amino acids in the retina, throughout the CNS, and in heart and muscle cells. In keeping with its broad tissue distribution, taurine serves as a modulator of numerous basic processes, such as enzyme activity, cell development, myocardial function and cytoprotection. Despite this multitude of functional roles, the precise mechanism underlying taurine's actions has not yet been identified. In this study we report findings that indicate a novel role for taurine in the regulation of voltage-gated delayed rectifier potassium (KV) channels in retinal neurons by means of a metabotropic receptor pathway. The metabotropic taurine response was insensitive to the Cl− channel blockers, picrotoxin and strychnine, but it was inhibited by a specific serotonin 5-HT2A receptor antagonist, MDL11939. Moreover, we found that taurine enhanced KV channels via intracellular protein kinase C-mediated pathways. When 5-HT2A receptors were expressed in human embryonic kidney cells, taurine and AL34662, a non-specific 5-HT2 receptor activator, produced a similar regulation of KIR channels. In sum, this study provides new evidence that taurine activates a serotonin system, apparently via 5-HT2A receptors and related intracellular pathways. PMID:23045337

  17. Kv channel subunits that contribute to voltage-gated K+ current in renal vascular smooth muscle.

    PubMed

    Fergus, Daniel J; Martens, Jeffrey R; England, Sarah K

    2003-03-01

    The rat renal arterial vasculature displays differences in K(+) channel current phenotypes along its length. Small arcuate to cortical radial arteries express a delayed rectifier phenotype, while the predominant Kv current in larger arcuate and interlobar arteries is composed of both transient and sustained components. We sought to determine whether Kvalpha subunits in the rat renal interlobar and arcuate arteries form heterotetramers, which may account for the unique currents, and whether modulatory Kvbeta subunits are present in renal vascular smooth muscle cells. RT-PCR indicated the presence of several different Kvalpha subunit isoform transcripts. Co-immunoprecipitation with immunoblotting and immunohistochemical evidence suggests that a portion of the K(+) current phenotype is a heteromultimer containing delayed-rectifier Kv1.2 and A-type Kv1.4 channel subunits. RT-PCR and immunoblot analyses also demonstrated the presence of both Kvbeta1.2 and Kvbeta1.3 in renal arteries. These results suggest that heteromultimeric formation of Kvalpha subunits and the presence of modulatory Kvbeta subunits are important factors in mediating Kv currents in the renal microvasculature and suggest a potentially critical role for these channel subunits in blood pressure regulation.

  18. Down-regulation of delayed rectifier K+ channels in the hippocampus of seizure sensitive gerbils.

    PubMed

    Lee, Sang-Moo; Kim, Ji-Eun; Sohn, Jong-Hee; Choi, Hui-Chul; Lee, Ju-Sang; Kim, Sung-Hun; Kim, Min-Ju; Choi, Ihn-Geun; Kang, Tae-Cheon

    2009-12-16

    In order to confirm the species-specific distribution of voltage-gated K(+) (Kv) channels and the definitive relationship between their immunoreactivities and seizure activity, we investigated Kv2.x, Kv3.x and Kv4.x channel immunoreactivities in the hippocampi of seizure-resistant (SR) and seizure-sensitive (SS) gerbils. There was no difference in Kv2.1, Kv3.4, Kv4.2 and Kv4.3 immunoreactivity in the hippocampus between SR and SS gerbils. In comparison to SR gerbils, Kv3.1b immunoreactivity in neurons was significantly lower in SS gerbils instead Kv3.1b-immunoreactive astrocytes were clearly observed in SS gerbils (p<0.05). Kv3.2 immunoreactivity was also significantly lower in neurons of SS gerbils than in those of SR gerbils (p<0.05). Considering the findings of our previous study, these findings suggest that delayed rectifier K(+) channels (Kv1.1, Kv1.2, Kv1.5, Kv1.6, Kv2.1 and Kv3.1-2), not A-type K(+) channels (Kv1.4, Kv3.4 and Kv4.x), may be down-regulated in the SS gerbil hippocampus, as compared to SR gerbils.

  19. Crataegus extract blocks potassium currents in guinea pig ventricular cardiac myocytes.

    PubMed

    Müller, A; Linke, W; Klaus, W

    1999-05-01

    Crataegus extract is used in cardiology for the treatment of mild to moderate heart failure (NYHA II) in Germany. However, little is known about the electrophysiological actions of Crataegus extract in the heart. Recently, it was shown that Crataegus extract prolongs the refractory period in isolated perfused hearts and increases action potential duration in guinea pig papillary muscle. It was the aim of this study to find out the mechanism of the increase in action potential duration caused by Crataegus extract. Using the patch-clamp technique, we measured the effects of Crataegus extract (10 mg/l; flavonoid content: 2.25%, total procyanidin content: 11.3 +/- 0.4%) on the inward rectifier and the delayed rectifier potassium current in isolated guinea pig ventricular myocytes. To get some insight into the mechanism underlying the positive inotropic effect of Crataegus extract, we also looked for effects on the L-type calcium current. Crataegus extract slightly blocked both the delayed and the inward rectifier potassium current. The inhibition amounted to 25% and about 15%, respectively. This amount of inhibition of these repolarising currents is sufficient to explain the prolongation of action potential duration caused by Crataegus extract. To our surprise we could not detect any influence of Crataegus extract on the L-type calcium current. In summary, our results show that Crataegus extract blocks repolarising potassium currents in ventricular myocytes. This effect is similar to the action of class III antiarrhythmic drugs and might be the basis of the antiarrhythmic effects described for Crataegus extract. Our measurements of the L-type calcium current indicate that Crataegus extract's positive inotropic effect is not caused by phosphodiesterase inhibition or a beta-sympathomimetic effect.

  20. Molecular basis and function of voltage-gated K+ channels in pulmonary arterial smooth muscle cells.

    PubMed

    Yuan, X J; Wang, J; Juhaszova, M; Golovina, V A; Rubin, L J

    1998-04-01

    K(+)-channel activity-mediated alteration of the membrane potential and cytoplasmic free Ca2+ concentration ([Ca2+]cyt) is a pivotal mechanism in controlling pulmonary vasomotor tone. By using combined approaches of patch clamp, imaging fluorescent microscopy, and molecular biology, we examined the electrophysiological properties of K+ channels and the role of different K+ currents in regulating [Ca2+]cyt and explored the molecular identification of voltage-gated K+ (KV)- and Ca(2+)-activated K+ (KCa)-channel genes expressed in pulmonary arterial smooth muscle cells (PASMC). Two kinetically distinct KV currents [IK(V)], a rapidly inactivating (A-type) and a noninactivating delayed rectifier, as well as a slowly activated KCa current [IK(Ca)] were identified. IK(V) was reversibly inhibited by 4-aminopyridine (5 mM), whereas IK(Ca) was significantly inhibited by charybdotoxin (10-20 nM). K+ channels are composed of pore-forming alpha-subunits and auxiliary beta-subunits. Five KV-channel alpha-subunit genes from the Shaker subfamily (KV1.1, KV1.2, KV1.4, KV1.5, and KV1.6), a KV-channel alpha-subunit gene from the Shab subfamily (KV2.1), a KV-channel modulatory alpha-subunit (KV9.3), and a KCa-channel alpha-subunit gene (rSlo), as well as three KV-channel beta-subunit genes (KV beta 1.1, KV beta 2, and KV beta 3) are expressed in PASMC. The data suggest that 1) native K+ channels in PASMC are encoded by multiple genes; 2) the delayed rectifier IK(V) may be generated by the KV1.1, KV1.2, KV1.5, KV1.6, KV2.1, and/or KV2.1/KV9.3 channels; 3) the A-type IK(V) may be generated by the KV1.4 channel and/or the delayed rectifier KV channels (KV1 subfamily) associated with beta-subunits; and 4) the IK(Ca) may be generated by the rSlo gene product. The function of the KV channels plays an important role in the regulation of membrane potential and [Ca2+]cyt in PASMC.

  1. Learning maximum entropy models from finite-size data sets: A fast data-driven algorithm allows sampling from the posterior distribution.

    PubMed

    Ferrari, Ulisse

    2016-08-01

    Maximum entropy models provide the least constrained probability distributions that reproduce statistical properties of experimental datasets. In this work we characterize the learning dynamics that maximizes the log-likelihood in the case of large but finite datasets. We first show how the steepest descent dynamics is not optimal as it is slowed down by the inhomogeneous curvature of the model parameters' space. We then provide a way for rectifying this space which relies only on dataset properties and does not require large computational efforts. We conclude by solving the long-time limit of the parameters' dynamics including the randomness generated by the systematic use of Gibbs sampling. In this stochastic framework, rather than converging to a fixed point, the dynamics reaches a stationary distribution, which for the rectified dynamics reproduces the posterior distribution of the parameters. We sum up all these insights in a "rectified" data-driven algorithm that is fast and by sampling from the parameters' posterior avoids both under- and overfitting along all the directions of the parameters' space. Through the learning of pairwise Ising models from the recording of a large population of retina neurons, we show how our algorithm outperforms the steepest descent method.

  2. Slowing light down by low magnetic fields: pulse delay by transient spectral hole-burning in ruby.

    PubMed

    Riesen, Hans; Rebane, Aleksander K; Szabo, Alex; Carceller, Ivana

    2012-08-13

    We report on the observation of slow light induced by transient spectral hole-burning in a solid, that is based on excited-state population storage. Experiments were conducted in the R1-line (2E←4A2 transition) of a 2.3 mm thick pink ruby (Al2O3:Cr(III) 130 ppm). Importantly, the pulse delay can be controlled by the application of a low external magnetic field B||c≤9 mT and delays of up to 11 ns with minimal pulse distortion are observed for ~55 ns Gaussian pulses. The delay corresponds to a group velocity value of ~c/1400. The experiment is very well modelled by linear spectral filter theory and the results indicate the possibility of using transient hole-burning based slow light experiments as a spectroscopic technique.

  3. Fine Output Voltage Control Method considering Time-Delay of Digital Inverter System for X-ray Computed Tomography

    NASA Astrophysics Data System (ADS)

    Shibata, Junji; Kaneko, Kazuhide; Ohishi, Kiyoshi; Ando, Itaru; Ogawa, Mina; Takano, Hiroshi

    This paper proposes a new output voltage control for an inverter system, which has time-delay and nonlinear load. In the next generation X-ray computed tomography of a medical device (X-ray CT) that uses the contactless power transfer method, the feedback signal often contains time-delay due to AD/DA conversion and error detection/correction time. When the PID controller of the inverter system is received the adverse effects of the time-delay, the controller often has an overshoot and a oscillated response. In order to overcome this problem, this paper proposes a compensation method based on the Smith predictor for an inverter system having a time-delay and the nonlinear loads which are the diode bridge rectifier and X-ray tube. The proposed compensation method consists of the hybrid Smith predictor system based on an equivalent analog circuit and DSP. The experimental results confirm the validity of the proposed system.

  4. The contribution of cationic conductances to the potential of rod photoreceptors.

    PubMed

    Moriondo, Andrea; Rispoli, Giorgio

    2010-05-01

    The contribution of cationic conductances in shaping the rod photovoltage was studied in light adapted cells recorded under whole-cell voltage- or current-clamp conditions. Depolarising current steps (of size comparable to the light-regulated current) produced monotonic responses when the prepulse holding potential (V (h)) was -40 mV (i.e. corresponding to the membrane potential in the dark). At V (h) = -60 mV (simulating the steady-state response to an intense background of light) current injections <35 pA (mimicking a light decrement) produced instead an initial depolarisation that declined to a plateau, and voltage transiently overshot V (h) at the stimulus offset. Current steps >40 pA produced a steady depolarisation to approximately -16 mV at both V (h). The difference between the responses at the two V (h) was primarily generated by the slow delayed-rectifier-like K(+) current (I (Kx)), which therefore strongly affects both the photoresponse rising and falling phase. The steady voltage observed at both V (h) in response to large current injections was instead generated by Ca-activated K(+) channels (I (KCa)), as previously found. Both I (Kx) and I (KCa) oppose the cation influx, occurring at the light stimulus offset through the cGMP-gated channels and the voltage-activated Ca(2+) channels (I (Ca)). This avoids that the cation influx could erratically depolarise the rod past its normal resting value, thus allowing a reliable dim stimuli detection, without slowing down the photovoltage recovery kinetics. The latter kinetics was instead accelerated by the hyperpolarisation-activated, non-selective current (I (h)) and I (Ca). Blockade of all K(+) currents with external TEA unmasked a I (Ca)-dependent regenerative behaviour.

  5. Dynamic bifurcation and strange nonchaos in a two-frequency parametrically driven nonlinear oscillator

    NASA Astrophysics Data System (ADS)

    Premraj, D.; Suresh, K.; Palanivel, J.; Thamilmaran, K.

    2017-09-01

    A periodically forced series LCR circuit with Chua's diode as a nonlinear element exhibits slow passage through Hopf bifurcation. This slow passage leads to a delay in the Hopf bifurcation. The delay in this bifurcation is a unique quantity and it can be predicted using various numerical analysis. We find that when an additional periodic force is added to the system, the delay in bifurcation becomes chaotic which leads to an unpredictability in bifurcation delay. Further, we study the bifurcation of the periodic delay to chaotic delay in the slow passage effect through strange nonchaotic delay. We also report the occurrence of strange nonchaotic dynamics while varying the parameter of the additional force included in the system. We observe that the system exhibits a hitherto unknown dynamical transition to a strange nonchaotic attractor. With the help of Lyapunov exponent, we explain the new transition to strange nonchaotic attractor and its mechanism is studied by making use of rational approximation theory. The birth of SNA has also been confirmed numerically, using Poincaré maps, phase sensitivity exponent, the distribution of finite-time Lyapunov exponents and singular continuous spectrum analysis.

  6. Slow-light, band-edge waveguides for tunable time delays.

    PubMed

    Povinelli, M; Johnson, Steven; Joannopoulos, J

    2005-09-05

    We propose the use of slow-light, band-edge waveguides for compact, integrated, tunable optical time delays. We show that slow group velocities at the photonic band edge give rise to large changes in time delay for small changes in refractive index, thereby shrinking device size. Figures of merit are introduced to quantify the sensitivity, as well as the accompanying signal degradation due to dispersion. It is shown that exact calculations of the figures of merit for a realistic, three-dimensional grating structure are well predicted by a simple quadratic-band model, simplifying device design. We present adiabatic taper designs that attain <0.1% reflection in short lengths of 10 to 20 times the grating period. We show further that cascading two gratings compensates for signal dispersion and gives rise to a constant tunable time delay across bandwidths greater than 100GHz. Given typical loss values for silicon-on-insulator waveguides, we estimate that gratings can be designed to exhibit tunable delays in the picosecond range using current fabrication technology.

  7. Slow-onset myocardial infarction and its influence on help-seeking behaviors.

    PubMed

    O'Donnell, Sharon; Moser, Debra K

    2012-01-01

    Patient decision delay continues to be a major factor of delay along the pathway of care for patients with myocardial infarction (MI). Although potentially modifiable, efforts to reduce these delays through educational and media interventions have been relatively unsuccessful. This failure has been due, in part, to the lack of understanding about the complex sociopsychological and clinical dimensions associated with the phenomenon of help-seeking behavior. The aims of this study were to (1) perform an in-depth analysis of patients' MI symptom experiences and (2) describe their help-seeking behavior in response to these symptom experiences. In-depth interviews were used to examine the symptom experiences and help-seeking behavior of men and women with MI. Participants (n = 42) were interviewed 2 to 4 days after their admission to 1 of 2 hospitals in Dublin, Ireland. Two new discrete MI categories emerged from the findings-slow-onset MI and fast-onset MI. Slow-onset MI is characterized by the gradual onset of mild symptoms, whereas fast-onset MI describes the sudden onset of severe chest pain. Most participants (n = 27) experienced slow-onset MI but expected the symptom presentation associated with fast-onset MI. The mismatch of expected and experienced symptoms for participants with slow-onset MI led to the mislabeling of symptoms to a noncardiac cause and protracted help-seeking delays. Participants with fast-onset MI (n = 15) quickly attributed their symptoms to a cardiac cause, which expedited appropriate help-seeking behaviors. Definitions of MI and the educational information provided to the public need to be reviewed. Slow-onset MI and fast-onset MI provide plausible definition alternatives and, possibly, a more authentic version of real MI events than what is currently used. They also provide a unique "delay" perspective, which may inform future educational initiatives targeted at decision delay reduction.

  8. Risperidone prolongs cardiac repolarization by blocking the rapid component of the delayed rectifier potassium current.

    PubMed

    Drolet, Benoit; Yang, Tao; Daleau, Pascal; Roden, Dan M; Turgeon, Jacques

    2003-06-01

    Cases of QT prolongation and sudden death have been reported with risperidone, a neuroleptic agent increasingly prescribed worldwide. Although hypokalemia was present in some of these events, we hypothesized that risperidone may have unsuspected electrophysiologic effects predisposing patients to proarrhythmia. In six isolated guinea pig hearts, risperidone elicited prolongation of cardiac repolarization: action potential duration increased from a baseline value of 128 ms +/- 5 to 147 ms +/- 5 (15%) with risperidone 1 microM during pacing at 250-ms cycle length, whereas the increase was only 10%, from 101 ms +/- 2 to 111 ms +/- 4, with pacing at a cycle length of 150 ms. In human ether-a-go-go (HERG)-transfected Chinese hamster ovary cells (n = 16), risperidone caused concentration-dependent block of the rapid component (I(Kr)) of the delayed rectifier potassium current with an IC(50) for tail block of 261 nM. Risperidone did not block I(Ks). Risperidone exerts cardiac electrophysiologic effects similar to those of Class III antiarrhythmic drugs. These effects are observed at clinically relevant concentrations. Because risperidone is metabolized primarily by CYP2D6, these actions likely enhance risk for risperidone-related QT prolongation and proarrhythmia in specific patient subsets (e.g., poor metabolizers and those taking interacting drugs).

  9. Inhibitory Effects of Glycyrrhetinic Acid on the Delayed Rectifier Potassium Current in Guinea Pig Ventricular Myocytes and HERG Channel

    PubMed Central

    Wu, Delin; Jiang, Linqing; Wu, Hongjin; Wang, Shengqi; Zheng, Sidao; Yang, Jiyuan; Liu, Yuna; Ren, Jianxun; Chen, Xianbing

    2013-01-01

    Background. Licorice has long been used to treat many ailments including cardiovascular disorders in China. Recent studies have shown that the cardiac actions of licorice can be attributed to its active component, glycyrrhetinic acid (GA). However, the mechanism of action remains poorly understood. Aim. The effects of GA on the delayed rectifier potassium current (I K), the rapidly activating (I Kr) and slowly activating (I Ks) components of I K, and the HERG K+ channel expressed in HEK-293 cells were investigated. Materials and Methods. Single ventricular myocytes were isolated from guinea pig myocardium using enzymolysis. The wild type HERG gene was stably expressed in HEK293 cells. Whole-cell patch clamping was used to record I K (I Kr, I Ks) and the HERG K+ current. Results. GA (1, 5, and 10 μM) inhibited I K (I Kr, I Ks) and the HERG K+ current in a concentration-dependent manner. Conclusion. GA significantly inhibited the potassium currents in a dose- and voltage-dependent manner, suggesting that it exerts its antiarrhythmic action through the prolongation of APD and ERP owing to the inhibition of I K (I Kr, I Ks) and HERG K+ channel. PMID:24069049

  10. APOEε4 increases trauma induced early apoptosis via reducing delayed rectifier K(+) currents in neuronal/glial co-cultures model.

    PubMed

    Chen, Ligang; Sun, Xiaochuan; Jiang, Yong; Kuai, Li

    2015-06-10

    Traumatic brain injury (TBI) is a commonly encountered emergency and severe neurosurgical injury. Previous studies have shown that the presence of the apolipoprotein E (APOE) ε4 allele has adverse outcomes across the spectrum of TBI severity. Our objective was to evaluate the effects of APOE alleles on trauma induced early apoptosis via modification of delayed rectifier K(+) current (Ik(DR)) in neuronal/glial co-cultures model. An ex vivo neuronal/glial co-cultures model carrying individual APOE alleles (ε2, ε3, ε4) of mechanical injury was developed. Flow cytometry and patch clamp recording were performed to analyze the correlations among APOE genotypes, early apoptosis and Ik(DR). We found that APOEε4 increased early apoptosis at 24h (p<0.05) compared to the ones transfected with APOEε3 and APOEε2. Noticeably, APOEε4 significantly reduced the amplitude of the Ik(DR) at 24h compared to the APOEε3 and APOEε2 (p<0.05) which exacerbate Ca(2+) influx. This indicates a possible effect of APOEε4 on early apoptosis via inhibiting Ik(DR) following injury which may adversely affect the outcome of TBI. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Suppressive effects of diltiazem and verapamil on delayed rectifier K(+)-channel currents in murine thymocytes.

    PubMed

    Baba, Asuka; Tachi, Masahiro; Maruyama, Yoshio; Kazama, Itsuro

    2015-10-01

    Lymphocytes predominantly express delayed rectifier K(+)-channels (Kv1.3) in their plasma membranes, and these channels play crucial roles in the lymphocyte activation and proliferation. Since diltiazem and verapamil, which are highly lipophilic Ca(2+) channel blockers (CCBs), exert relatively stronger immunomodulatory effects than the other types of CCBs, they would affect the Kv1.3-channel currents in lymphocytes. Employing the standard patch-clamp whole-cell recording technique in murine thymocytes, we examined the effects of these drugs on the channel currents and the membrane capacitance. Both diltiazem and verapamil significantly suppressed the peak and the pulse-end currents of the channels, although the effects of verapamil were more marked than those of diltiazem. Both drugs significantly lowered the membrane capacitance, indicating the interactions between the drugs and the plasma membranes. This study demonstrated for the first time that CCBs, such as diltiazem and verapamil, exert inhibitory effects on Kv1.3-channels expressed in lymphocytes. The effects of these drugs may be associated with the mechanisms of immunomodulation by which they decrease the production of inflammatory cytokines. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  12. β1-adrenergic regulation of rapid component of delayed rectifier K+ currents in guinea-pig cardiac myocytes.

    PubMed

    Wang, Sen; Xu, Di; Wu, Ting-Ting; Guo, Yan; Chen, Yan-Hong; Zou, Jian-Gang

    2014-05-01

    Human ether-à-go-go-related gene (hERG) potassium channels conduct the rapid component of the delayed rectifier potassium current (IKr), which is crucial for repolarization of cardiac action potential. Patients with hERG‑associated long QT syndrome usually develop tachyarrhythmias during physical and/or emotional stress, both known to stimulate adrenergic receptors. The present study aimed to investigate a putative functional link between β1-adrenergic stimulation and IKr in guinea-pig left ventricular myocytes and to analyze how IKr is regulated following activation of the β1-adrenergic signaling pathway. The IKr current was measured using a whole-cell patch-clamp technique. A selective β1-adrenergic receptor agonist, xamoterol, at concentrations of 0.01-100 µM decreased IKr in a concentration-dependent manner. The 10 µM xamoterol-induced inhibition of IKr was attenuated by the protein kinase A (PKA) inhibitor KT5720, the protein kinase C (PKC) inhibitor chelerythrine, and the phospholipase (PLC) inhibitor U73122, indicating involvement of PKA, PKC and PLC in β1-adrenergic inhibition of IKr. The results of the present study indicate an association between IKr and the β1-adrenergic receptor in arrhythmogenesis, involving the activation of PKA, PKC and PLC.

  13. Comparison of delay enhancement mechanisms for SBS-based slow light systems.

    PubMed

    Schneider, Thomas; Henker, Ronny; Lauterbach, Kai-Uwe; Junker, Markus

    2007-07-23

    We compare two simple mechanisms for the enhancement of the time delay in slow light systems. Both are based on the superposition of the Brillouin gain with additional loss. As we will show in theory and experiment if two losses are placed at the wings of a SBS gain, contrary to other methods, the loss power increases the time delay. This leads to higher delay times at lower optical powers and to an increase of the zero gain delay of more than 50%. With this method we achieved a time delay of more than 120ns for pulses with a temporal width of 30ns. To the best of our knowledge, this is the highest time delay in just one fiber spool. Beside the enhancement of the time delay the method could have the potential to decrease the pulse distortions for high bit rate signals.

  14. Recessive cardiac phenotypes in induced pluripotent stem cell models of Jervell and Lange-Nielsen syndrome: disease mechanisms and pharmacological rescue.

    PubMed

    Zhang, Miao; D'Aniello, Cristina; Verkerk, Arie O; Wrobel, Eva; Frank, Stefan; Ward-van Oostwaard, Dorien; Piccini, Ilaria; Freund, Christian; Rao, Jyoti; Seebohm, Guiscard; Atsma, Douwe E; Schulze-Bahr, Eric; Mummery, Christine L; Greber, Boris; Bellin, Milena

    2014-12-16

    Jervell and Lange-Nielsen syndrome (JLNS) is one of the most severe life-threatening cardiac arrhythmias. Patients display delayed cardiac repolarization, associated high risk of sudden death due to ventricular tachycardia, and congenital bilateral deafness. In contrast to the autosomal dominant forms of long QT syndrome, JLNS is a recessive trait, resulting from homozygous (or compound heterozygous) mutations in KCNQ1 or KCNE1. These genes encode the α and β subunits, respectively, of the ion channel conducting the slow component of the delayed rectifier K(+) current, IKs. We used complementary approaches, reprogramming patient cells and genetic engineering, to generate human induced pluripotent stem cell (hiPSC) models of JLNS, covering splice site (c.478-2A>T) and missense (c.1781G>A) mutations, the two major classes of JLNS-causing defects in KCNQ1. Electrophysiological comparison of hiPSC-derived cardiomyocytes (CMs) from homozygous JLNS, heterozygous, and wild-type lines recapitulated the typical and severe features of JLNS, including pronounced action and field potential prolongation and severe reduction or absence of IKs. We show that this phenotype had distinct underlying molecular mechanisms in the two sets of cell lines: the previously unidentified c.478-2A>T mutation was amorphic and gave rise to a strictly recessive phenotype in JLNS-CMs, whereas the missense c.1781G>A lesion caused a gene dosage-dependent channel reduction at the cell membrane. Moreover, adrenergic stimulation caused action potential prolongation specifically in JLNS-CMs. Furthermore, sensitivity to proarrhythmic drugs was strongly enhanced in JLNS-CMs but could be pharmacologically corrected. Our data provide mechanistic insight into distinct classes of JLNS-causing mutations and demonstrate the potential of hiPSC-CMs in drug evaluation.

  15. Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers.

    PubMed

    Chin, Sanghoon; Thévenaz, Luc; Sancho, Juan; Sales, Salvador; Capmany, José; Berger, Perrine; Bourderionnet, Jérôme; Dolfi, Daniel

    2010-10-11

    We experimentally demonstrate a novel technique to process broadband microwave signals, using all-optically tunable true time delay in optical fibers. The configuration to achieve true time delay basically consists of two main stages: photonic RF phase shifter and slow light, based on stimulated Brillouin scattering in fibers. Dispersion properties of fibers are controlled, separately at optical carrier frequency and in the vicinity of microwave signal bandwidth. This way time delay induced within the signal bandwidth can be manipulated to correctly act as true time delay with a proper phase compensation introduced to the optical carrier. We completely analyzed the generated true time delay as a promising solution to feed phased array antenna for radar systems and to develop dynamically reconfigurable microwave photonic filters.

  16. Aldosterone down-regulates the slowly activated delayed rectifier potassium current in adult guinea pig cardiomyocytes.

    PubMed

    Lv, Yankun; Bai, Song; Zhang, Hua; Zhang, Hongxue; Meng, Jing; Li, Li; Xu, Yanfang

    2015-12-01

    There is emerging evidence that the mineralocorticoid hormone aldosterone is associated with arrhythmias in cardiovascular disease. However, the effect of aldosterone on the slowly activated delayed rectifier potassium current (IK s ) remains poorly understood. The present study was designed to investigate the modulation of IK s by aldosterone. Adult guinea pigs were treated with aldosterone for 28 days via osmotic pumps. Standard glass microelectrode recordings and whole-cell patch-clamp techniques were used to record action potentials in papillary muscles and IK s in ventricular cardiomyocytes. The aldosterone-treated animals exhibited a prolongation of the QT interval and action potential duration with a higher incidence of early afterdepolarizations. Patch-clamp recordings showed a significant down-regulation of IK s density in the ventricular myocytes of these treated animals. These aldosterone-induced electrophysiological changes were fully prevented by a combined treatment with spironolactone, a mineralocorticoid receptor (MR) antagonist. In addition, in in vitro cultured ventricular cardiomyocytes, treatment with aldosterone (sustained exposure for 24 h) decreased the IK s density in a concentration-dependent manner. Furthermore, a significant corresponding reduction in the mRNA/protein expression of IKs channel pore and auxiliary subunits, KCNQ1 and KCNE1 was detected in ventricular tissue from the aldosterone-treated animals. Aldosterone down-regulates IK s by inhibiting the expression of KCNQ1 and KCNE1, thus delaying the ventricular repolarization. These results provide new insights into the mechanism underlying K(+) channel remodelling in heart disease and may explain the highly beneficial effects of MR antagonists in HF. © 2015 The British Pharmacological Society.

  17. Delayed growth

    MedlinePlus

    Growth - slow (child 0 - 5 years); Weight gain - slow (child 0 - 5 years); Slow rate of growth; Retarded growth and development; ... A child should have regular, well-baby check-ups with a health care provider. These checkups are usually scheduled ...

  18. Selenium protects reproductive system and foetus development in a rat model of gestational lead exposure.

    PubMed

    Shen, W; Chen, J; Yin, J; Wang, S-L

    2016-01-01

    Lead is a common environmental contaminant. Lead accumulation in the body is especially dangerous for pregnant women and newborns. Selenium is a trace element which may rectify the damaging effects of lead. Here we tested potential protective effects of selenium against gestational lead exposure. Pregnant SD rats were exposed to 200 mg/L of lead acetate (given with water), with or without sodium selenite supplementation (2-8 mg/kg/day via intragastric administration). Pregnant rats not exposed to lead or selenium served as control animals. The outcomes in pregnant rats were serum lead and selenium levels, reproductive hormone (follicle-stimulating hormone, luteinizing hormone, prolactin, oestradiol, progesterone) levels, and uterine and ovarian morphological changes. The outcomes in the offspring were sex differentiation, survival rates (day 21 after birth), weight (days 0-35 after birth), weight of reproductive organs, and puberty onset (foreskin separation or vaginal opening). Selenium supplementation dose-dependently decreased serum lead levels, rectified reproductive hormone levels, and attenuated reproductive morphological changes caused by lead exposure. Lead exposure did not affect sex differentiation, but significantly (p < 0.05 vs. control animals) decreased the offspring weight on days 0-28 and the weight of their reproductive organs. Furthermore, lead exposure delayed the onset of puberty. These pathological changes were dose-dependently rectified or attenuated by selenium supplementation. Gestational lead exposure causes damages to the reproductive system of pregnant rats, and negatively modulates growth and reproductive system development of the offspring. These adverse effects are rectified or attenuated by selenium supplementation.

  19. Learning Maximal Entropy Models from finite size datasets: a fast Data-Driven algorithm allows to sample from the posterior distribution

    NASA Astrophysics Data System (ADS)

    Ferrari, Ulisse

    A maximal entropy model provides the least constrained probability distribution that reproduces experimental averages of an observables set. In this work we characterize the learning dynamics that maximizes the log-likelihood in the case of large but finite datasets. We first show how the steepest descent dynamics is not optimal as it is slowed down by the inhomogeneous curvature of the model parameters space. We then provide a way for rectifying this space which relies only on dataset properties and does not require large computational efforts. We conclude by solving the long-time limit of the parameters dynamics including the randomness generated by the systematic use of Gibbs sampling. In this stochastic framework, rather than converging to a fixed point, the dynamics reaches a stationary distribution, which for the rectified dynamics reproduces the posterior distribution of the parameters. We sum up all these insights in a ``rectified'' Data-Driven algorithm that is fast and by sampling from the parameters posterior avoids both under- and over-fitting along all the directions of the parameters space. Through the learning of pairwise Ising models from the recording of a large population of retina neurons, we show how our algorithm outperforms the steepest descent method. This research was supported by a Grant from the Human Brain Project (HBP CLAP).

  20. Critical period inhibition of NKCC1 rectifies synapse plasticity in the somatosensory cortex and restores adult tactile response maps in fragile X mice.

    PubMed

    He, Qionger; Arroyo, Erica D; Smukowski, Samuel N; Xu, Jian; Piochon, Claire; Savas, Jeffrey N; Portera-Cailliau, Carlos; Contractor, Anis

    2018-04-27

    Sensory perturbations in visual, auditory and tactile perception are core problems in fragile X syndrome (FXS). In the Fmr1 knockout mouse model of FXS, the maturation of synapses and circuits during critical period (CP) development in the somatosensory cortex is delayed, but it is unclear how this contributes to altered tactile sensory processing in the mature CNS. Here we demonstrate that inhibiting the juvenile chloride co-transporter NKCC1, which contributes to altered chloride homeostasis in developing cortical neurons of FXS mice, rectifies the chloride imbalance in layer IV somatosensory cortex neurons and corrects the development of thalamocortical excitatory synapses during the CP. Comparison of protein abundances demonstrated that NKCC1 inhibition during early development caused a broad remodeling of the proteome in the barrel cortex. In addition, the abnormally large size of whisker-evoked cortical maps in adult Fmr1 knockout mice was corrected by rectifying the chloride imbalance during the early CP. These data demonstrate that correcting the disrupted driving force through GABA A receptors during the CP in cortical neurons restores their synaptic development, has an unexpectedly large effect on differentially expressed proteins, and produces a long-lasting correction of somatosensory circuit function in FXS mice.

  1. Role of an inward rectifier K+ current and of hyperpolarization in human myoblast fusion

    PubMed Central

    Liu, J-H; Bijlenga, P; Fischer-Lougheed, J; Occhiodoro, T; Kaelin, A; Bader, C R; Bernheim, L

    1998-01-01

    The role of K+ channels and membrane potential in myoblast fusion was evaluated by examining resting membrane potential and timing of expression of K+ currents at three stages of differentiation of human myogenic cells: undifferentiated myoblasts, fusion-competent myoblasts (FCMBs), and freshly formed myotubes. Two K+ currents contribute to a hyperpolarization of myoblasts prior to fusion: IK(NI), a non-inactivating delayed rectifier, and IK(IR), an inward rectifier. IK(NI) density is low in undifferentiated myoblasts, increases in FCMBs and declines in myotubes. On the other hand, IK(IR) is expressed in 28 % of the FCMBs and in all myotubes. IK(IR) is reversibly blocked by Ba2+ or Cs+. Cells expressing IK(IR) have resting membrane potentials of −65 mV. A block by Ba2+ or Cs+ induces a depolarization to a voltage determined by IK(NI) (−32 mV). Cs+ and Ba2+ ions reduce myoblast fusion. It is hypothesized that the IK(IR)-mediated hyperpolarization allows FCMBs to recruit Na+, K+ and T-type Ca2+ channels which are present in these cells and would otherwise be inactivated. FCMBs, rendered thereby capable of firing action potentials, could amplify depolarizing signals and may accelerate fusion. PMID:9705997

  2. Tuning the group delay of optical wave packets in liquid-crystal light valves

    NASA Astrophysics Data System (ADS)

    Bortolozzo, U.; Residori, S.; Huignard, J. P.

    2009-05-01

    By performing two-wave mixing experiments in a liquid-crystal light valve, optical pulses are slowed down to group velocities as slow as a few tenths of mm/s, corresponding to a very large group index. We present experiments and model of the slow-light process occurring in the liquid-crystal light valve, showing that this is characterized by multiple-beam diffraction in the Raman-Nath regime. Depending on the initial frequency detuning between pump and signal, the different output order beams are distinguished by different group delays. The group delay can be tuned by changing the main parameters of the experiment: the detuning between the pump and the input wave packet, the strength of the nonlinearity, and the intensity of the pump beam.

  3. Internal combustion engine control for series hybrid electric vehicles by parallel and distributed genetic programming/multiobjective genetic algorithms

    NASA Astrophysics Data System (ADS)

    Gladwin, D.; Stewart, P.; Stewart, J.

    2011-02-01

    This article addresses the problem of maintaining a stable rectified DC output from the three-phase AC generator in a series-hybrid vehicle powertrain. The series-hybrid prime power source generally comprises an internal combustion (IC) engine driving a three-phase permanent magnet generator whose output is rectified to DC. A recent development has been to control the engine/generator combination by an electronically actuated throttle. This system can be represented as a nonlinear system with significant time delay. Previously, voltage control of the generator output has been achieved by model predictive methods such as the Smith Predictor. These methods rely on the incorporation of an accurate system model and time delay into the control algorithm, with a consequent increase in computational complexity in the real-time controller, and as a necessity relies to some extent on the accuracy of the models. Two complementary performance objectives exist for the control system. Firstly, to maintain the IC engine at its optimal operating point, and secondly, to supply a stable DC supply to the traction drive inverters. Achievement of these goals minimises the transient energy storage requirements at the DC link, with a consequent reduction in both weight and cost. These objectives imply constant velocity operation of the IC engine under external load disturbances and changes in both operating conditions and vehicle speed set-points. In order to achieve these objectives, and reduce the complexity of implementation, in this article a controller is designed by the use of Genetic Programming methods in the Simulink modelling environment, with the aim of obtaining a relatively simple controller for the time-delay system which does not rely on the implementation of real time system models or time delay approximations in the controller. A methodology is presented to utilise the miriad of existing control blocks in the Simulink libraries to automatically evolve optimal control structures.

  4. Substance P provides neuroprotection in cerebellar granule cells through Akt and MAPK/Erk activation: evidence for the involvement of the delayed rectifier potassium current.

    PubMed

    Amadoro, G; Pieri, M; Ciotti, M T; Carunchio, I; Canu, N; Calissano, P; Zona, C; Severini, C

    2007-05-01

    In the current study, we have evaluated the ability of substance P (SP) and other neurokinin 1 receptor (NK1) agonists to protect, in a dose- and time-dependent manner, primary cultures of rat cerebellar granule cells (CGCs) from serum and potassium deprivation-induced cell death (S-K5). We also established the presence of SP high affinity NK1 transcripts and the NK1 protein localization in the membrane of a sub-population of CGCs. Moreover, SP significantly and dose-dependently reduced the Akt 1/2 and Erk1/2 dephosphorylation induced by S-K5 conditions, as demonstrated by Western blot analysis. Surprisingly, in SP-treated CGCs caspase-3 activity was not inhibited, while the calpain-1 activity was moderately reduced. Corroborating this result, SP blocked calpain-mediated cleavage of tau protein, as demonstrated by the reduced appearance of a diagnostic fragment of 17 kDa by Western blot analysis. In addition, SP induced a significant reduction of the delayed rectifier K+ currents (Ik) in about 42% of the patched neurons, when these were evoked with depolarizing potential steps. Taken together, the present results demonstrate that the activation of NK1 receptors expressed in CGCs promote the neuronal survival via pathways involving Akt and Erk activation and by inhibition of Ik which can contribute to the neuroprotective effect of the peptide.

  5. Improved slow-light performance of 10 Gb/s NRZ, PSBT and DPSK signals in fiber broadband SBS.

    PubMed

    Yi, Lilin; Jaouen, Yves; Hu, Weisheng; Su, Yikai; Bigo, Sébastien

    2007-12-10

    We have demonstrated error-free operations of slow-light via stimulated Brillouin scattering (SBS) in optical fiber for 10-Gb/s signals with different modulation formats, including non-return-to-zero (NRZ), phase-shaped binary transmission (PSBT) and differential phase-shiftkeying (DPSK). The SBS gain bandwidth is broadened by using current noise modulation of the pump laser diode. The gain shape is simply controlled by the noise density function. Super-Gaussian noise modulation of the Brillouin pump allows a flat-top and sharp-edge SBS gain spectrum, which can reduce slow-light induced distortion in case of 10-Gb/s NRZ signal. The corresponding maximal delay-time with error-free operation is 35 ps. Then we propose the PSBT format to minimize distortions resulting from SBS filtering effect and dispersion accompanied with slow light because of its high spectral efficiency and strong dispersion tolerance. The sensitivity of the 10-Gb/s PSBT signal is 5.2 dB better than the NRZ case with a same 35-ps delay. The maximal delay of 51 ps with error-free operation has been achieved. Futhermore, the DPSK format is directly demodulated through a Gaussian-shaped SBS gain, which is achieved using Gaussian-noise modulation of the Brillouin pump. The maximal error-free time delay after demodulation of a 10-Gb/s DPSK signal is as high as 81.5 ps, which is the best demonstrated result for 10-Gb/s slow-light.

  6. Caffeine depression of spontaneous activity in rabbit sino-atrial node cells.

    PubMed

    Satoh, H

    1993-05-01

    1. Effects of caffeine on the action potentials and the membrane currents in spontaneously beating rabbit sino-atrial (SA) node cells were examined using a two-microelectrode technique. 2. Cumulative administrations of caffeine (1-10 mM) caused a negative chronotropic effect in a concentration-dependent manner, which was not modified by atropine (0.1 microM). At 10 mM, caffeine increased the amplitude and prolonged the duration of action potentials significantly; the other parameters were unaffected. 3. In 3 of 16 preparations, caffeine (5 mM) elicited arrhythmia. At high Ca2+ (8.1 mM), caffeine (5 mM) increased the incidence of arrhythmia. 4. Caffeine (0.5-10 mM) enhanced the slow inward current, but at 10 mM decreased the enhanced peak current by 5 mM. The hyperpolarization-activated inward current was also enhanced by caffeine, but 10 mM caffeine decreased the current peak as compared with that at 5 mM. In addition, caffeine inhibited the delayed rectifying outward current in a concentration-dependent manner, accompanied by a depressed activation curve without any shift in the half-maximum activation voltage. 5. Caffeine elevated the cytoplasmic Ca2+ level in the SA node cells loaded with Ca(2+)-sensitive fluorescent dye (fura-2). 6. These results suggest that caffeine enhances and/or inhibits the ionic currents and elicits arrhythmia due to the induction of cellular calcium overload.

  7. Electrophysiological effects of protopine in cardiac myocytes: inhibition of multiple cation channel currents.

    PubMed

    Song, L S; Ren, G J; Chen, Z L; Chen, Z H; Zhou, Z N; Cheng, H

    2000-03-01

    Protopine (Pro) from Corydalis tubers has been shown to have multiple actions on cardiovascular system, including anti-arrhythmic, anti-hypertensive and negative inotropic effects. Although it was thought that Pro exerts its actions through blocking Ca(2+) currents, the electrophysiological profile of Pro is unclear. The aim of this study is to elucidate the ionic mechanisms of Pro effects in the heart. In single isolated ventricular myocytes from guinea-pig, extracellular application of Pro markedly and reversibly abbreviates action potential duration, and decreases the rate of upstroke (dV/dt)(max), amplitude and overshoot of action potential in a dose-dependent manner. Additionally, it produces a slight, but significant hyperpolarization of the resting membrane potential. Pro at 25, 50 and 100 microM reduces L-type Ca(2+) current (I(Ca,L)) amplitude to 89.1, 61.9 and 45.8% of control, respectively, and significantly slows the decay kinetics of I(Ca,L) at higher concentration. The steady state inactivation of I(Ca,L) is shifted negatively by 5.9 - 7.0 mV (at 50 - 100 microM Pro), whereas the voltage-dependent activation of I(Ca,L) remains unchanged. In contrast, Pro at 100 microM has no evident effects on T-type Ca(2+) current (I(Ca,T)). In the presence of Pro, both the inward rectifier (I(K1)) and delayed rectifier (I(K)) potassium currents are variably inhibited, depending on Pro concentrations. Sodium current (I(Na)), recorded in low [Na(+)](o) (40 mM) solution, is more potently suppressed by Pro. At 25 microM, Pro significantly attenuated I(Na) at most of the test voltages (-60 approximately +40 mV, with a 53% reduction at -30 mV. Thus, Pro is not a selective Ca(2+) channel antagonist. Rather, it acts as a promiscuous inhibitor of cation channel currents including I(Ca,L), I(K), I(K1) as well as I(Na). These findings may provide some mechanistic explanations for the therapeutic actions of Pro in the heart.

  8. Electrophysiological effects of protopine in cardiac myocytes: inhibition of multiple cation channel currents

    PubMed Central

    Song, Long-Sheng; Ren, Guo-Jun; Chen, Zhao-Luan; Chen, Zhi-He; Zhou, Zhao-Nian; Cheng, Heping

    2000-01-01

    Protopine (Pro) from Corydalis tubers has been shown to have multiple actions on cardiovascular system, including anti-arrhythmic, anti-hypertensive and negative inotropic effects. Although it was thought that Pro exerts its actions through blocking Ca2+ currents, the electrophysiological profile of Pro is unclear. The aim of this study is to elucidate the ionic mechanisms of Pro effects in the heart. In single isolated ventricular myocytes from guinea-pig, extracellular application of Pro markedly and reversibly abbreviates action potential duration, and decreases the rate of upstroke (dV/dt)max, amplitude and overshoot of action potential in a dose-dependent manner. Additionally, it produces a slight, but significant hyperpolarization of the resting membrane potential. Pro at 25, 50 and 100 μM reduces L-type Ca2+ current (ICa,L) amplitude to 89.1, 61.9 and 45.8% of control, respectively, and significantly slows the decay kinetics of ICa,L at higher concentration. The steady state inactivation of ICa,L is shifted negatively by 5.9–7.0 mV (at 50–100 μM Pro), whereas the voltage-dependent activation of ICa,L remains unchanged. In contrast, Pro at 100 μM has no evident effects on T-type Ca2+ current (ICa,T). In the presence of Pro, both the inward rectifier (IK1) and delayed rectifier (IK) potassium currents are variably inhibited, depending on Pro concentrations. Sodium current (INa), recorded in low [Na+]o (40 mM) solution, is more potently suppressed by Pro. At 25 μM, Pro significantly attenuated INa at most of the test voltages (−60∼+40 mV, with a 53% reduction at −30 mV. Thus, Pro is not a selective Ca2+ channel antagonist. Rather, it acts as a promiscuous inhibitor of cation channel currents including ICa,L, IK, IK1 as well as INa. These findings may provide some mechanistic explanations for the therapeutic actions of Pro in the heart. PMID:10696087

  9. Slow-light transmission with high group index and large normalized delay bandwidth product through successive defect rods on intrinsic photonic crystal waveguide

    NASA Astrophysics Data System (ADS)

    Elshahat, Sayed; Khan, Karim; Yadav, Ashish; Bibbò, Luigi; Ouyang, Zhengbiao

    2018-07-01

    We proposed a strategy with successive cavities as energy reservoirs of electromagnetic energy and light-speed reducers introduced in the first and second rows of rods on the walls of an intrinsic photonic crystal waveguide (PCW) for slow-light transmission in the PCW concerning applications for optical communication, optical computation and optical signal processing. Subsequently, plane-wave expansion method (PWE) is used for studying slow-light properties and finite-difference time-domain (FDTD) method to demonstrate the slow-light propagating property of our proposed structure. We obtained group index as exceedingly large as 6123 with normalized delay bandwidth product (NDBP) as high as 0.48. We designed a facile but more generalized structure that may provide a vital theoretical basis for further enhancing the storage capacity properties of slow light with wideband and high NDBP.

  10. Physiological roles of Kv2 channels in entorhinal cortex layer II stellate cells revealed by Guangxitoxin‐1E

    PubMed Central

    Hönigsperger, Christoph; Nigro, Maximiliano J.

    2016-01-01

    Key points Kv2 channels underlie delayed‐rectifier potassium currents in various neurons, although their physiological roles often remain elusive. Almost nothing is known about Kv2 channel functions in medial entorhinal cortex (mEC) neurons, which are involved in representing space, memory formation, epilepsy and dementia.Stellate cells in layer II of the mEC project to the hippocampus and are considered to be space‐representing grid cells. We used the new Kv2 blocker Guangxitoxin‐1E (GTx) to study Kv2 functions in these neurons.Voltage clamp recordings from mEC stellate cells in rat brain slices showed that GTx inhibited delayed‐rectifier K+ current but not transient A‐type current.In current clamp, GTx had multiple effects: (i) increasing excitability and bursting at moderate spike rates but reducing firing at high rates; (ii) enhancing after‐depolarizations; (iii) reducing the fast and medium after‐hyperpolarizations; (iv) broadening action potentials; and (v) reducing spike clustering.GTx is a useful tool for studying Kv2 channels and their functions in neurons. Abstract The medial entorhinal cortex (mEC) is strongly involved in spatial navigation, memory, dementia and epilepsy. Although potassium channels shape neuronal activity, their roles in mEC are largely unknown. We used the new Kv2 blocker Guangxitoxin‐1E (GTx; 10–100 nm) in rat brain slices to investigate Kv2 channel functions in mEC layer II stellate cells (SCs). These neurons project to the hippocampus and are considered to be grid cells representing space. Voltage clamp recordings from SCs nucleated patches showed that GTx inhibited a delayed rectifier K+ current activating beyond –30 mV but not transient A‐type current. In current clamp, GTx (i) had almost no effect on the first action potential but markedly slowed repolarization of late spikes during repetitive firing; (ii) enhanced the after‐depolarization (ADP); (iii) reduced fast and medium after‐hyperpolarizations (AHPs); (iv) strongly enhanced burst firing and increased excitability at moderate spike rates but reduced spiking at high rates; and (v) reduced spike clustering and rebound potentials. The changes in bursting and excitability were related to the altered ADPs and AHPs. Kv2 channels strongly shape the activity of mEC SCs by affecting spike repolarization, after‐potentials, excitability and spike patterns. GTx is a useful tool and may serve to further clarify Kv2 channel functions in neurons. We conclude that Kv2 channels in mEC SCs are important determinants of intrinsic properties that allow these neurons to produce spatial representation. The results of the present study may also be important for the accurate modelling of grid cells. PMID:27562026

  11. Age-related delay in visual and auditory evoked responses is mediated by white- and grey-matter differences.

    PubMed

    Price, D; Tyler, L K; Neto Henriques, R; Campbell, K L; Williams, N; Treder, M S; Taylor, J R; Henson, R N A

    2017-06-09

    Slowing is a common feature of ageing, yet a direct relationship between neural slowing and brain atrophy is yet to be established in healthy humans. We combine magnetoencephalographic (MEG) measures of neural processing speed with magnetic resonance imaging (MRI) measures of white and grey matter in a large population-derived cohort to investigate the relationship between age-related structural differences and visual evoked field (VEF) and auditory evoked field (AEF) delay across two different tasks. Here we use a novel technique to show that VEFs exhibit a constant delay, whereas AEFs exhibit delay that accumulates over time. White-matter (WM) microstructure in the optic radiation partially mediates visual delay, suggesting increased transmission time, whereas grey matter (GM) in auditory cortex partially mediates auditory delay, suggesting less efficient local processing. Our results demonstrate that age has dissociable effects on neural processing speed, and that these effects relate to different types of brain atrophy.

  12. Effect of guar gum on hunger and satiety after meals of differing fat content: relationship with gastric emptying.

    PubMed

    French, S J; Read, N W

    1994-01-01

    To determine whether the satiating effects of fiber are due to delaying gastric emptying or slowing absorption of meals, 3% guar gum was added to high- and low-fat soups and gastric emptying rate, hunger, and satiety were measured in eight male volunteers. Guar gum delayed the emptying of the low-fat soup but the small delays in the return of hunger and decline of fullness were significantly correlated with the gastric emptying, suggesting mediation by gastric mechanoreceptors. The high-fat soup also emptied more slowly but this had no effect on the return of hunger or the decline in fullness. The delays in the return of hunger and decline of fullness were far greater when guar gum was added to the fatty soup; these delays were not correlated with the small additional delay in gastric emptying. This is more compatible with slowed absorption and prolonged contact of nutrients with intestinal chemoreceptors.

  13. Age-related delay in visual and auditory evoked responses is mediated by white- and grey-matter differences

    PubMed Central

    Price, D.; Tyler, L. K.; Neto Henriques, R.; Campbell, K. L.; Williams, N.; Treder, M.S.; Taylor, J. R.; Brayne, Carol; Bullmore, Edward T.; Calder, Andrew C.; Cusack, Rhodri; Dalgleish, Tim; Duncan, John; Matthews, Fiona E.; Marslen-Wilson, William D.; Rowe, James B.; Shafto, Meredith A.; Cheung, Teresa; Davis, Simon; Geerligs, Linda; Kievit, Rogier; McCarrey, Anna; Mustafa, Abdur; Samu, David; Tsvetanov, Kamen A.; van Belle, Janna; Bates, Lauren; Emery, Tina; Erzinglioglu, Sharon; Gadie, Andrew; Gerbase, Sofia; Georgieva, Stanimira; Hanley, Claire; Parkin, Beth; Troy, David; Auer, Tibor; Correia, Marta; Gao, Lu; Green, Emma; Allen, Jodie; Amery, Gillian; Amunts, Liana; Barcroft, Anne; Castle, Amanda; Dias, Cheryl; Dowrick, Jonathan; Fair, Melissa; Fisher, Hayley; Goulding, Anna; Grewal, Adarsh; Hale, Geoff; Hilton, Andrew; Johnson, Frances; Johnston, Patricia; Kavanagh-Williamson, Thea; Kwasniewska, Magdalena; McMinn, Alison; Norman, Kim; Penrose, Jessica; Roby, Fiona; Rowland, Diane; Sargeant, John; Squire, Maggie; Stevens, Beth; Stoddart, Aldabra; Stone, Cheryl; Thompson, Tracy; Yazlik, Ozlem; Barnes, Dan; Dixon, Marie; Hillman, Jaya; Mitchell, Joanne; Villis, Laura; Henson, R. N. A.

    2017-01-01

    Slowing is a common feature of ageing, yet a direct relationship between neural slowing and brain atrophy is yet to be established in healthy humans. We combine magnetoencephalographic (MEG) measures of neural processing speed with magnetic resonance imaging (MRI) measures of white and grey matter in a large population-derived cohort to investigate the relationship between age-related structural differences and visual evoked field (VEF) and auditory evoked field (AEF) delay across two different tasks. Here we use a novel technique to show that VEFs exhibit a constant delay, whereas AEFs exhibit delay that accumulates over time. White-matter (WM) microstructure in the optic radiation partially mediates visual delay, suggesting increased transmission time, whereas grey matter (GM) in auditory cortex partially mediates auditory delay, suggesting less efficient local processing. Our results demonstrate that age has dissociable effects on neural processing speed, and that these effects relate to different types of brain atrophy. PMID:28598417

  14. Application of oil-water discrimination technology in fractured reservoirs using the differences between fast and slow shear-waves

    NASA Astrophysics Data System (ADS)

    Luo, Cong; Li, Xiangyang; Huang, Guangtan

    2017-08-01

    Oil-water discrimination is of great significance in the design and adjustment of development projects in oil fields. For fractured reservoirs, based on anisotropic S-wave splitting information, it becomes possible to effectively solve such problems which are difficult to deal with in traditional longitudinal wave exploration, due to the similar bulk modulus and density of these two fluids. In this paper, by analyzing the anisotropic character of the Chapman model (2009 Geophysics 74 97-103), the velocity and reflection coefficient differences between the fast and slow S-wave caused by fluid substitution have been verified. Then, through a wave field response analysis of the theoretical model, we found that water saturation causes a longer time delay, a larger time delay gradient and a lower amplitude difference between the fast and slow S-wave, while the oil case corresponds to a lower time delay, a lower gradient and a higher amplitude difference. Therefore, a new class attribute has been proposed regarding the amplitude energy of the fast and slow shear wave, used for oil-water distinction. This new attribute, as well as that of the time delay gradient, were both applied to the 3D3C seismic data of carbonate fractured reservoirs in the Luojia area of the Shengli oil field in China. The results show that the predictions of the energy attributes are more consistent with the well information than the time delay gradient attribute, hence demonstrating the great advantages and potential of this new attribute in oil-water recognition.

  15. A packet-based dual-rate PID control strategy for a slow-rate sensing Networked Control System.

    PubMed

    Cuenca, A; Alcaina, J; Salt, J; Casanova, V; Pizá, R

    2018-05-01

    This paper introduces a packet-based dual-rate control strategy to face time-varying network-induced delays, packet dropouts and packet disorder in a Networked Control System. Slow-rate sensing enables to achieve energy saving and to avoid packet disorder. Fast-rate actuation makes reaching the desired control performance possible. The dual-rate PID controller is split into two parts: a slow-rate PI controller located at the remote side (with no permanent communication to the plant) and a fast-rate PD controller located at the local side. The remote side also includes a prediction stage in order to generate the packet of future, estimated slow-rate control actions. These actions are sent to the local side and converted to fast-rate ones to be used when a packet does not arrive at this side due to the network-induced delay or due to occurring dropouts. The proposed control solution is able to approximately reach the nominal (no-delay, no-dropout) performance despite the existence of time-varying delays and packet dropouts. Control system stability is ensured in terms of probabilistic Linear Matrix Inequalities (LMIs). Via real-time control for a Cartesian robot, results clearly reveal the superiority of the control solution compared to a previous proposal by authors. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Open channel block of A-type, kv4.3, and delayed rectifier K+ channels, Kv1.3 and Kv3.1, by sibutramine.

    PubMed

    Kim, Sung Eun; Ahn, Hye Sook; Choi, Bok Hee; Jang, Hyun-Jong; Kim, Myung-Jun; Rhie, Duck-Joo; Yoon, Shin-Hee; Jo, Yang-Hyeok; Kim, Myung-Suk; Sung, Ki-Wug; Hahn, Sang June

    2007-05-01

    The effects of sibutramine on voltage-gated K+ channel (Kv)4.3, Kv1.3, and Kv3.1, stably expressed in Chinese hamster ovary cells, were investigated using the whole-cell patch-clamp technique. Sibutramine did not significantly decrease the peak Kv4.3 currents, but it accelerated the rate of decay of current inactivation in a concentration-dependent manner. This phenomenon was effectively characterized by integrating the total current over the duration of a depolarizing pulse to +40 mV. The IC50 value for the sibutramine block of Kv4.3 was 17.3 microM. Under control conditions, the inactivation of Kv4.3 currents could be fit to a biexponential function, and the time constants for the fast and slow components were significantly decreased after the application of sibutramine. The association (k+1) and dissociation (k-1) rate constants for the sibutramine block of Kv 4.3 were 1.51 microM-1s-1 and 27.35 s-1, respectively. The theoretical KD value, derived from k-1/k+1, yielded a value of 18.11 microM. The block of Kv4.3 by sibutramine displayed a weak voltage dependence, increasing at more positive potentials, and it was use-dependent at 2 Hz. Sibutramine did not affect the time course for the deactivating tail currents. Neither steady-state activation and inactivation nor the recovery from inactivation was affected by sibutramine. Sibutramine caused the concentration-dependent block of the Kv1.3 and Kv3.1 currents with an IC50 value of 3.7 and 32.7 microM, respectively. In addition, sibutramine reduced the tail current amplitude and slowed the deactivation of the tail currents of Kv1.3 and Kv3.1, resulting in a crossover phenomenon. These results indicate that sibutramine acts on Kv4.3, Kv1.3, and Kv3.1 as an open channel blocker.

  17. The delayed rectifier, IKI, is the major conductance in type I vestibular hair cells across vestibular end organs

    NASA Technical Reports Server (NTRS)

    Ricci, A. J.; Rennie, K. J.; Correia, M. J.

    1996-01-01

    Hair cells were dissociated from the semicircular canal, utricle, lagena and saccule of white king pigeons. Type I hair cells were identified morphologically based on the ratios of neck width to cuticular plate width (NPR < 0.72) as well as neck width to cell body width (NBR < 0.64). The perforated patch variant of the whole-cell recording technique was used to measure electrical properties from type I hair cells. In voltage-clamp, the membrane properties of all identified type I cells were dominated by a predominantly outward potassium current, previously characterized in semicircular canal as IKI. Zero-current potential, activation, deactivation, slope conductance, pharmacologic and steady-state properties of the complex currents were not statistically different between type I hair cells of different vestibular end organs. The voltage dependence causes a significant proportion of this conductance to be active about the cell's zero-current potential. The first report of the whole-cell activation kinetics of the conductance is presented, showing a voltage dependence that could be best fit by an equation for a single exponential. Results presented here are the first data from pigeon dissociated type I hair cells from utricle, saccule and lagena suggesting that the basolateral conductances of a morphologically identified population of type I hair cells are conserved between functionally different vestibular end organs; the major conductance being a delayed rectifier characterized previously in semicircular canal hair cells as IKI.

  18. Practical solution for control of the pre-analytical phase in decentralized clinical laboratories for meeting the requirements of the medical laboratory accreditation standard DIN EN ISO 15189.

    PubMed

    Vacata, Vladimir; Jahns-Streubel, Gerlinde; Baldus, Mirjana; Wood, William Graham

    2007-01-01

    This report was written in response to the article by Wood published recently in this journal. It describes a practical solution to the problems of controlling the pre-analytical phase in the clinical diagnostic laboratory. As an indicator of quality in the pre-analytical phase of sample processing, a target analyte was chosen which is sensitive to delay in centrifugation and/or analysis. The results of analyses of the samples sent by satellite medical practitioners were compared with those from an on-site hospital laboratory with a controllable optimized pre-analytical phase. The aim of the comparison was: (a) to identify those medical practices whose mean/median sample values significantly deviate from those of the control situation in the hospital laboratory due to the possible problems in the pre-analytical phase; (b) to aid these laboratories in the process of rectifying these problems. A Microsoft Excel-based Pre-Analytical Survey tool (PAS tool) has been developed which addresses the above mentioned problems. It has been tested on serum potassium which is known to be sensitive to delay and/or irregularities in sample treatment. The PAS tool has been shown to be one possibility for improving the quality of the analyses by identifying the sources of problems within the pre-analytical phase, thus allowing them to be rectified. Additionally, the PAS tool has an educational value and can also be adopted for use in other decentralized laboratories.

  19. Effects of nerve growth factor on the action potential duration and repolarizing currents in a rabbit model of myocardial infarction

    PubMed Central

    Lan, Yun-Feng; Zhang, Jian-Cheng; Gao, Jin-Lao; Wang, Xue-Ping; Fang, Zhou; Fu, Yi-Cheng; Chen, Mei-Yan; Lin, Min; Xue, Qiao; Li, Yang

    2013-01-01

    Objectives To investigate the effect of nerve growth factor (NGF) on the action potential and potassium currents of non-infarcted myocardium in the myocardial infarcted rabbit model. Methods Rabbits with occlusion of the left anterior descending coronary artery were prepared and allowed to recover for eight weeks (healed myocardial infarction, HMI). During ligation surgery of the left coronary artery, a polyethylene tube was placed near the left stellate ganglion in the subcutis of the neck for the purpose of administering NGF 400 U/d for eight weeks (HMI + NGF group). Cardiomyocytes were isolated from regions of the non-infarcted left ventricular wall and the action potentials and ion currents in these cells were recorded using whole-cell patch clamps. Results Compared with HMI and control cardiomyocytes, significant prolongation of APD50 or APD90 (Action potential duration (APD) measured at 50% and 90% of repolarization) in HMI + NGF cardiomyocytes was found. The results showed that the 4-aminopyridine sensitive transient outward potassium current (Ito), the rapidly activated omponent of delayed rectifier potassium current (IKr), the slowly activated component of delayed rectifier potassium current (IKs), and the L-type calcium current (ICaL) were significantly altered in NGF + HMI cardiomyocytes compared with HMI and control cells. Conclusions Our results suggest that NGF treatment significantly prolongs APD in HMI cardiomyocytes and that a decrease in outward potassium currents and an increase of inward Ca2+ current are likely the underlying mechanism of action. PMID:23610573

  20. Effects of nerve growth factor on the action potential duration and repolarizing currents in a rabbit model of myocardial infarction.

    PubMed

    Lan, Yun-Feng; Zhang, Jian-Cheng; Gao, Jin-Lao; Wang, Xue-Ping; Fang, Zhou; Fu, Yi-Cheng; Chen, Mei-Yan; Lin, Min; Xue, Qiao; Li, Yang

    2013-03-01

    To investigate the effect of nerve growth factor (NGF) on the action potential and potassium currents of non-infarcted myocardium in the myocardial infarcted rabbit model. Rabbits with occlusion of the left anterior descending coronary artery were prepared and allowed to recover for eight weeks (healed myocardial infarction, HMI). During ligation surgery of the left coronary artery, a polyethylene tube was placed near the left stellate ganglion in the subcutis of the neck for the purpose of administering NGF 400 U/d for eight weeks (HMI + NGF group). Cardiomyocytes were isolated from regions of the non-infarcted left ventricular wall and the action potentials and ion currents in these cells were recorded using whole-cell patch clamps. Compared with HMI and control cardiomyocytes, significant prolongation of APD50 or APD90 (Action potential duration (APD) measured at 50% and 90% of repolarization) in HMI + NGF cardiomyocytes was found. The results showed that the 4-aminopyridine sensitive transient outward potassium current (I to), the rapidly activated omponent of delayed rectifier potassium current (I Kr), the slowly activated component of delayed rectifier potassium current (I Ks), and the L-type calcium current (I CaL) were significantly altered in NGF + HMI cardiomyocytes compared with HMI and control cells. Our results suggest that NGF treatment significantly prolongs APD in HMI cardiomyocytes and that a decrease in outward potassium currents and an increase of inward Ca(2+) current are likely the underlying mechanism of action.

  1. Sildenafil (Viagra) prolongs cardiac repolarization by blocking the rapid component of the delayed rectifier potassium current.

    PubMed

    Geelen, P; Drolet, B; Rail, J; Bérubé, J; Daleau, P; Rousseau, G; Cardinal, R; O'Hara, G E; Turgeon, J

    2000-07-18

    BACKGROUND-Several cases of unexpected death have been reported with sildenafil in patients predisposed to ischemic cardiac events. Although acute episodes of ischemia could account for some of these deaths, we hypothesized that sildenafil may have unsuspected electrophysiological effects predisposing some patients to proarrhythmia. METHODS AND RESULTS-Studies were undertaken in 10 isolated guinea pig hearts that demonstrated prolongation of cardiac repolarization in a reverse use-dependent manner by sildenafil 30 mcmol/L. Action potential duration increased 15% from baseline 117+/-3 to 134+/-2 ms with sildenafil during pacing at 250 ms cycle length, whereas a 6% increase from 99+/-2 to 105+/-2 ms was seen with pacing at 150 ms cycle length. Experiments in human ether-a-go-go-related gene (HERG)-transfected HEK293 cells (n=30) demonstrated concentration-dependent block of the rapid component (I(Kr)) of the delayed rectifier potassium current: activating current was 50% decreased at 100 mcmol/L. This effect was confirmed using HERG-transfected Chinese hamster ovary (CHO) cells, which exhibit no endogenous I(K)-like current. CONCLUSIONS-Sildenafil possesses direct cardiac electrophysiological effects similar to class III antiarrhythmic drugs. These effects are observed at concentrations that may be found in conditions of impaired drug elimination such as renal or hepatic insufficiency, during coadministration of another CYP3A substrate/inhibitor, or after drug overdose and offer a new potential explanation for sudden death during sildenafil treatment.

  2. Aldosterone downregulates delayed rectifier potassium currents through an angiotensin type 1 receptor-dependent mechanism.

    PubMed

    Lv, Yankun; Wang, Yanjun; Zhu, Xiaoran; Zhang, Hua

    2018-01-01

    We have previously shown that aldosterone downregulates delayed rectifier potassium currents (I Ks ) via activation of the mineralocorticoid receptor (MR) in adult guinea pig cardiomyocytes. Here, we investigate whether angiotensin II/angiotensin type 1 receptor (AngII/AT1R) and intracellular calcium also play a role in these effects. Ventricular cardiomyocytes were isolated from adult guinea pigs and incubated with aldosterone (1 μmol·L -1 ) either alone or in combination with enalapril (1 μmol·L -1 ), losartan (1 μmol·L -1 ), nimodipine (1 μmol·L -1 ), or BAPTA-AM (2.5 μmol·L -1 ) for 24 h. We used the conventional whole cell patch-clamp technique to record the I Ks component. In addition, we evaluated expression of the I Ks subunits KCNQ1 and KCNE1 using Western blotting. Our results showed that both enalapril and losartan, but not nimodipine or BAPTA-AM, completely reversed the aldosterone-induced inhibition of I Ks and its effects on KCNQ1/KCNE1 protein levels. Furthermore, we found that AngII/AT1R mediates the inhibitory effects of aldosterone on I Ks . Finally, the downregulation of I Ks induced by aldosterone did not occur secondarily to a change in intracellular calcium concentrations. Taken together, our findings demonstrate that crosstalk between MR and AT1R underlies the effects of aldosterone, and provide new insights into the mechanism underlying potassium channels.

  3. Docetaxel modulates the delayed rectifier potassium current (IK) and ATP-sensitive potassium current (IKATP) in human breast cancer cells.

    PubMed

    Sun, Tao; Song, Zhi-Guo; Jiang, Da-Qing; Nie, Hong-Guang; Han, Dong-Yun

    2015-04-01

    Ion channel expression and activity may be affected during tumor development and cancer growth. Activation of potassium (K(+)) channels in human breast cancer cells is reported to be involved in cell cycle progression. In this study, we investigated the effects of docetaxel on the delayed rectifier potassium current (I K) and the ATP-sensitive potassium current (I KATP) in two human breast cancer cell lines, MCF-7 and MDA-MB-435S, using the whole-cell patch-clamp technique. Our results show that docetaxel inhibited the I K and I KATP in both cell lines in a dose-dependent manner. Compared with the control at a potential of +60 mV, treatment with docetaxel at doses of 0.1, 1, 5, and 10 µM significantly decreased the I K in MCF-7 cells by 16.1 ± 3.5, 30.2 ± 5.2, 42.5 ± 4.3, and 46.4 ± 9% (n = 5, P < 0.05), respectively and also decreased the I KATP at +50 mV. Similar results were observed in MDA-MB-435S cells. The G-V curves showed no significant changes after treatment of either MCF-7 or MDA-MB-435S cells with 10 μM docetaxel. The datas indicate that the possible mechanisms of I K and I KATP inhibition by docetaxel may be responsible for its effect on the proliferation of human breast cancer cells.

  4. A comparison of modelling techniques used to characterise oxygen uptake kinetics during the on-transient of exercise.

    PubMed

    Bell, C; Paterson, D H; Kowalchuk, J M; Padilla, J; Cunningham, D A

    2001-09-01

    We compared estimates for the phase 2 time constant (tau) of oxygen uptake (VO2) during moderate- and heavy-intensity exercise, and the slow component of VO2 during heavy-intensity exercise using previously published exponential models. Estimates for tau and the slow component were different (P < 0.05) among models. For moderate-intensity exercise, a two-component exponential model, or a mono-exponential model fitted from 20 s to 3 min were best. For heavy-intensity exercise, a three-component model fitted throughout the entire 6 min bout of exercise, or a two-component model fitted from 20 s were best. When the time delays for the two- and three-component models were equal the best statistical fit was obtained; however, this model produced an inappropriately low DeltaVO2/DeltaWR (WR, work rate) for the projected phase 2 steady state, and the estimate of phase 2 tau was shortened compared with other models. The slow component was quantified as the difference between VO2 at end-exercise (6 min) and at 3 min (DeltaVO2 (6-3 min)); 259 ml x min(-1)), and also using the phase 3 amplitude terms (truncated to end-exercise) from exponential fits (409-833 ml x min(-1)). Onset of the slow component was identified by the phase 3 time delay parameter as being of delayed onset approximately 2 min (vs. arbitrary 3 min). Using this delay DeltaVO2 (6-2 min) was approximately 400 ml x min(-1). Use of valid consistent methods to estimate tau and the slow component in exercise are needed to advance physiological understanding.

  5. Idiopathic slow transit constipation is rare. But delayed passage of meconium is common in the constipation clinic.

    PubMed

    Croaker, G D H; Pearce, R; Li, J; Nahon, I; Javaid, A; Kecskes, Z

    2007-12-01

    We hypothesise that constipated children would be more likely to come from a socially deprived background. We also hypothesise that a percentage of children with resistant constipation would have a congenital gut motility problem that might be recognised at birth, and that some of these would have slow transit constipation that could be recognised on nuclear transit study. One hundred and forty children with a constipation related diagnosis were seen in the last 4 years, and were reviewed as a retrospective audit. Twenty-six children who were felt likely to have a congenital cause for their constipation were offered nuclear colon transit study to search for slow transit constipation. One hundred and forty children from the constipation clinic were reviewed. There were 67 females (47.9%) and 73 males (52.1%), a sex ratio near equality. The mean age at presentation was 5.38 years. Forty-one percent were formally discharged, 36% were lost to follow up, and 23% are still being seen. There was a highly significant tendency for these children to have delayed passage of meconium, as compared normal newborns (P < 0.001). Twenty-six children were considered for possible transit study, and 14 were performed. Four of these were normal, seven showed hold up in the recto-sigmoid, and three showed more proximal slow transit. Two of these probably have non ISTC diagnoses. Social class seems similar to the general population on the criterion employed. Delayed passage of meconium in this group was significantly more frequent than in the general population, but only one of the group seems likely to have truly idiopathic slow transit constipation, and he did not have delayed passage of meconium. There is no evidence for an effect of social class in this population. Idiopathic slow transit constipation itself is rare.

  6. Differentiation of original and regenerated skeletal muscle fibres in mdx dystrophic muscles.

    PubMed

    Earnshaw, John C; Kyprianou, Phillip; Krishan, Kewal; Dhoot, Gurtej K

    2002-07-01

    The differentiation of both original muscle fibres and the regenerated muscle fibres following necrosis in mdx muscles was investigated using immunoblotting and immunocytochemical procedures. Before the onset of necrosis, postnatal skeletal muscles in mdx mouse differentiated well with only a slight delay in differentiation indicated by the level of developmental isoforms of troponin T. Prior to the onset of apparent myopathic change, both fast and slow skeletal muscle fibre types in mdx leg muscles also differentiated well when investigated by analysis of specific myosin heavy chain expression pattern. While the original muscle fibres in mdx leg muscles developed well, the differentiation of regenerated myotubes into both slow and distinct fast muscle fibre types, however, was markedly delayed or inhibited as indicated by several clusters of homogeneously staining fibres even at 14 weeks of age. The number of slow myosin heavy chain-positive myotubes amongst the regenerated muscle clusters was quite small even in soleus. This study thus established that while muscle fibres initially develop normally with only a slight delay in the differentiation process, the differentiation of regenerated myotubes in mdx muscles is markedly compromised and consequently delayed.

  7. Fast and slow light generated by surface plasmon wave and gold grating coupling effects

    NASA Astrophysics Data System (ADS)

    Amiri, Iraj S.; Ariannejad, M. M.; Tajdidzadeh, M.; Sorger, Volker J.; Ling, Xi; Yupapin, P.

    2018-06-01

    We present here the results of a simulation of the effect of gold and graphene coatings on silicon micro-ring resonators. We studied the effect of different radii of graphene on the time delay, from which one an interesting aspect of light pulse behaviors, such as fast light, was numerically investigated. The obtained results indicate that the time delay can be varied, which is in good agreement with theoretical predictions. Fast and slow light pulse trains can be obtained by modifying the throughput port, which forms the gold grating length. The temporal gaps between the fast and slow light in the used graphene and gold are 140 and 168 fs, respectively, which can be tuned by varying the radius or grating length. The obtained results show that such a device may be useful in applications requiring fast and slow light pulse train pairs, such as optical switching, sensors, communications, and security applications.

  8. Fast and slow light generated by surface plasmon wave and gold grating coupling effects

    NASA Astrophysics Data System (ADS)

    Amiri, Iraj S.; Ariannejad, M. M.; Tajdidzadeh, M.; Sorger, Volker J.; Ling, Xi; Yupapin, P.

    2018-01-01

    We present here the results of a simulation of the effect of gold and graphene coatings on silicon micro-ring resonators. We studied the effect of different radii of graphene on the time delay, from which one an interesting aspect of light pulse behaviors, such as fast light, was numerically investigated. The obtained results indicate that the time delay can be varied, which is in good agreement with theoretical predictions. Fast and slow light pulse trains can be obtained by modifying the throughput port, which forms the gold grating length. The temporal gaps between the fast and slow light in the used graphene and gold are 140 and 168 fs, respectively, which can be tuned by varying the radius or grating length. The obtained results show that such a device may be useful in applications requiring fast and slow light pulse train pairs, such as optical switching, sensors, communications, and security applications.

  9. G-protein mediated gating of inward-rectifier K+ channels.

    PubMed

    Mark, M D; Herlitze, S

    2000-10-01

    G-protein regulated inward-rectifier potassium channels (GIRK) are part of a superfamily of inward-rectifier K+ channels which includes seven family members. To date four GIRK subunits, designated GIRK1-4 (also designated Kir3.1-4), have been identified in mammals, and GIRK5 has been found in Xenopus oocytes. GIRK channels exist in vivo both as homotetramers and heterotetramers. In contrast to the other mammalian GIRK family members, GIRK1 can not form functional channels by itself and has to assemble with GIRK2, 3 or 4. As the name implies, GIRK channels are modulated by G-proteins; they are also modulated by phosphatidylinositol 4,5-bisphosphate, intracellular sodium, ethanol and mechanical stretch. Recently a family of GTPase activating proteins known as regulators of G-protein signaling were shown to be the missing link for the fast deactivation kinetics of GIRK channels in native cells, which contrast with the slow kinetics observed in heterologously expressed channels. GIRK1, 2 and 3 are highly abundant in brain, while GIRK4 has limited distribution. Here, GIRK1/2 seems to be the predominant heterotetramer. In general, neuronal GIRK channels are involved in the regulation of the excitability of neurons and may contribute to the resting potential. Interestingly, only the GIRK1 and 4 subunits are distributed in the atrial and sinoatrial node cells of the heart and are involved in the regulation of cardiac rate. Our main objective of this review is to assess the current understanding of the G-protein modulation of GIRK channels and their physiological importance in mammals.

  10. Atrial-selective K+ channel blockers: potential antiarrhythmic drugs in atrial fibrillation?

    PubMed

    Ravens, Ursula

    2017-11-01

    In the wake of demographic change in Western countries, atrial fibrillation has reached an epidemiological scale, yet current strategies for drug treatment of the arrhythmia lack sufficient efficacy and safety. In search of novel medications, atrial-selective drugs that specifically target atrial over other cardiac functions have been developed. Here, I will address drugs acting on potassium (K + ) channels that are either predominantly expressed in atria or possess electrophysiological properties distinct in atria from ventricles. These channels include the ultra-rapidly activating, delayed outward-rectifying Kv1.5 channel conducting I Kur , the acetylcholine-activated inward-rectifying Kir3.1/Kir3.4 channel conducting I K,ACh , the Ca 2+ -activated K + channels of small conductance (SK) conducting I SK , and the two-pore domain K + (K2P) channels (tandem of P domains, weak inward-rectifying K + channels (TWIK-1), TWIK-related acid-sensitive K + channels (TASK-1 and TASK-3)) that are responsible for voltage-independent background currents I TWIK-1 , I TASK-1 , and I TASK-3 . Direct drug effects on these channels are described and their putative value in treatment of atrial fibrillation is discussed. Although many potential drug targets have emerged in the process of unravelling details of the pathophysiological mechanisms responsible for atrial fibrillation, we do not know whether novel antiarrhythmic drugs will be more successful when modulating many targets or a single specific one. The answer to this riddle can only be solved in a clinical context.

  11. Ergodic properties of spiking neuronal networks with delayed interactions

    NASA Astrophysics Data System (ADS)

    Palmigiano, Agostina; Wolf, Fred

    The dynamical stability of neuronal networks, and the possibility of chaotic dynamics in the brain pose profound questions to the mechanisms underlying perception. Here we advance on the tractability of large neuronal networks of exactly solvable neuronal models with delayed pulse-coupled interactions. Pulse coupled delayed systems with an infinite dimensional phase space can be studied in equivalent systems of fixed and finite degrees of freedom by introducing a delayer variable for each neuron. A Jacobian of the equivalent system can be analytically obtained, and numerically evaluated. We find that depending on the action potential onset rapidness and the level of heterogeneities, the asynchronous irregular regime characteristic of balanced state networks loses stability with increasing delays to either a slow synchronous irregular or a fast synchronous irregular state. In networks of neurons with slow action potential onset, the transition to collective oscillations leads to an increase of the exponential rate of divergence of nearby trajectories and of the entropy production rate of the chaotic dynamics. The attractor dimension, instead of increasing linearly with increasing delay as reported in many other studies, decreases until eventually the network reaches full synchrony

  12. Getting to the heart of hERG K(+) channel gating.

    PubMed

    Perry, Matthew D; Ng, Chai-Ann; Mann, Stefan A; Sadrieh, Arash; Imtiaz, Mohammad; Hill, Adam P; Vandenberg, Jamie I

    2015-06-15

    Potassium ion channels encoded by the human ether-a-go-go related gene (hERG) form the ion-conducting subunit of the rapid delayed rectifier potassium current (IKr ). Although hERG channels exhibit a widespread tissue distribution they play a particularly important role in the heart. There has been considerable interest in hERG K(+) channels for three main reasons. First, they have very unusual gating kinetics, most notably rapid and voltage-dependent inactivation coupled to slow deactivation, which has led to the suggestion that they may play a specific role in the suppression of arrhythmias. Second, mutations in hERG are the cause of 30-40% of cases of congenital long QT syndrome (LQTS), the commonest inherited primary arrhythmia syndrome. Third, hERG is the molecular target for the vast majority of drugs that cause drug-induced LQTS, the commonest cause of drug-induced arrhythmias and cardiac death. Drug-induced LQTS has now been reported for a large range of both cardiac and non-cardiac drugs, in which this side effect is entirely undesired. In recent years there have been comprehensive reviews published on hERG K(+) channels (Vandenberg et al. 2012) and we will not re-cover this ground. Rather, we focus on more recent work on the structural basis and dynamics of hERG gating with an emphasis on how the latest developments may facilitate translational research in the area of stratifying risk of arrhythmias. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  13. Getting to the heart of hERG K+ channel gating

    PubMed Central

    Perry, Matthew D; Ng, Chai-Ann; Mann, Stefan A; Sadrieh, Arash; Imtiaz, Mohammad; Hill, Adam P; Vandenberg, Jamie I

    2015-01-01

    Potassium ion channels encoded by the human ether-a-go-go related gene (hERG) form the ion-conducting subunit of the rapid delayed rectifier potassium current (IKr). Although hERG channels exhibit a widespread tissue distribution they play a particularly important role in the heart. There has been considerable interest in hERG K+ channels for three main reasons. First, they have very unusual gating kinetics, most notably rapid and voltage-dependent inactivation coupled to slow deactivation, which has led to the suggestion that they may play a specific role in the suppression of arrhythmias. Second, mutations in hERG are the cause of 30–40% of cases of congenital long QT syndrome (LQTS), the commonest inherited primary arrhythmia syndrome. Third, hERG is the molecular target for the vast majority of drugs that cause drug-induced LQTS, the commonest cause of drug-induced arrhythmias and cardiac death. Drug-induced LQTS has now been reported for a large range of both cardiac and non-cardiac drugs, in which this side effect is entirely undesired. In recent years there have been comprehensive reviews published on hERG K+ channels (Vandenberg et al. 2012) and we will not re-cover this ground. Rather, we focus on more recent work on the structural basis and dynamics of hERG gating with an emphasis on how the latest developments may facilitate translational research in the area of stratifying risk of arrhythmias. PMID:25820318

  14. Clinical Concentrations of Local Anesthetics Bupivacaine and Lidocaine Differentially Inhibit Human Kir2.x Inward Rectifier K+ Channels.

    PubMed

    Nakahira, Kei; Oshita, Kensuke; Itoh, Masayuki; Takano, Makoto; Sakaguchi, Yoshiro; Ishihara, Keiko

    2016-04-01

    Inward rectifier K channels of the Kir2.x subfamily are widely expressed in neuronal tissues, controlling neuronal excitability. Previous studies reported that local anesthetics (LAs) do not affect Kir2 channels. However, the effects have not been studied at large concentrations used in regional anesthesia. This study used the patch-clamp technique to examine the effects of bupivacaine and lidocaine on Kir2.1, Kir2.2, and Kir2.3 channels expressed in human embryonic kidney 293 cells. When applied extracellularly in whole-cell recordings, both LAs inhibited Kir2.x currents in a voltage-independent manner. Inhibition with bupivacaine was slow and irreversible, whereas that with lidocaine was fast and reversible. Kir2.3 displayed a greater sensitivity to bupivacaine than Kir2.1 and Kir2.2 (50% inhibitory concentrations at approximately 5 minutes, 0.6 vs 8-10 mM), whereas their sensitivities to lidocaine were similar (50% inhibitory concentrations, 1.5-2.7 mM). Increases in the charged/neutral ratio of the LAs at an acidic extracellular pH attenuated their inhibitory effects, and a permanently charged lidocaine derivative QX-314 exhibited no effects when applied extracellularly. Inside-out experiments demonstrated that inhibition of Kir2.1 with cytoplasmic lidocaine and QX-314 was rapid and reversible, whereas that induced by bupivacaine was slow and irreversible. Furthermore, dose-inhibition relations for the charged form of bupivacaine and lidocaine obtained at different cytoplasmic pHs could be approximated by a single relation for each LA. The results indicate that both LAs at clinical concentrations equilibrated rapidly with the intracellular milieu, differentially inhibiting Kir2.x channel function from the cytoplasmic side.

  15. Comparison of the open-close kinetics of the cloned inward rectifier K+ channel IRK1 and its point mutant (Q140E) in the pore region.

    PubMed

    Guo, L; Kubo, Y

    1998-01-01

    To test whether a single amino-acid residue at the center of pore region can dictate the difference of open-close kinetics in a steady-state at hyperpolarized potentials among members of the inward K+ channel family, the Q140E mutant of the inward rectifier K+ channel (IRK1) was made and its gating properties were compared with those of IRK1 wild type (Wt) in Xenopus oocytes. The distinct differences were observed only at the single channel level. The open time constant of mutant tau(o)(Q140E) at -80 mV was over ten-fold shorter than that of Wt tau(o)(Wt); in Wt, the closed time distribution was fitted with a sum of two exponentials (c-slow and c-fast), whereas it could be fitted with three exponentials (c-slow, c-fast, and additional c-extrafast) in Q140E. However, the time constant of burst duration of mutant tau(b)(Q140E) was close to tau(o)(Wt) and both showed a similarly strong voltage dependence, and a high sensitivity to pH0 in the absence of Mg02+, indicating that tau(b)(Q140E) is closely related to tau(o)(Wt). These results demonstrated that Q140E shortened the channel openings by acquiring an extra-fast closing state. From the analysis of the effects of cations on both Wt and Q140E, it was suggested that the transition from the open state to this extra-fast closing state was not due to the block by H+ or Mg2+ but possibly by extracellular K+.

  16. Slowdown of group velocity of light in dual-frequency laser-pumped cascade structure of Er3+-doped optical fiber at room temperature

    NASA Astrophysics Data System (ADS)

    Qiu, Wei; Yang, Yujing; Gao, Yuan; Liu, Jianjun; Lv, Pin; Jiang, Qiuli

    2018-04-01

    Slow light is demonstrated in the cascade structure of an erbium-doped fiber with two forward propagation pumps. The results of the numerical simulation of the time delay and the optimum modulation frequency complement each other. The time delay and the optimum modulation frequency depend on the pump ratio G (G  =  {{P}1480}:{{P}980} ). The discussion results of this paper show that a larger time delay of slow light propagation can be obtained in the cascade structure of Er3+-doped optical fibers with dual-frequency laser pumping. Compared to previous research methods, the dual-frequency laser-pumped cascade structure of an Er3+-doped optical fiber is more controllable. Based on our discussion the pump ratio G should be selected in order to obtain a more appropriate time delay and the slowdown of group velocity.

  17. Quick Vegas: Improving Performance of TCP Vegas for High Bandwidth-Delay Product Networks

    NASA Astrophysics Data System (ADS)

    Chan, Yi-Cheng; Lin, Chia-Liang; Ho, Cheng-Yuan

    An important issue in designing a TCP congestion control algorithm is that it should allow the protocol to quickly adjust the end-to-end communication rate to the bandwidth on the bottleneck link. However, the TCP congestion control may function poorly in high bandwidth-delay product networks because of its slow response with large congestion windows. In this paper, we propose an enhanced version of TCP Vegas called Quick Vegas, in which we present an efficient congestion window control algorithm for a TCP source. Our algorithm improves the slow-start and congestion avoidance techniques of original Vegas. Simulation results show that Quick Vegas significantly improves the performance of connections as well as remaining fair when the bandwidth-delay product increases.

  18. Optimal pulse design for communication-oriented slow-light pulse detection.

    PubMed

    Stenner, Michael D; Neifeld, Mark A

    2008-01-21

    We present techniques for designing pulses for linear slow-light delay systems which are optimal in the sense that they maximize the signal-to-noise ratio (SNR) and signal-to-noise-plus-interference ratio (SNIR) of the detected pulse energy. Given a communication model in which input pulses are created in a finite temporal window and output pulse energy in measured in a temporally-offset output window, the SNIR-optimal pulses achieve typical improvements of 10 dB compared to traditional pulse shapes for a given output window offset. Alternatively, for fixed SNR or SNIR, window offset (detection delay) can be increased by 0.3 times the window width. This approach also invites a communication-based model for delay and signal fidelity.

  19. Study of SBS slow light based on nano-material doped fiber

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Lang, Pei-Lin; Zhang, Ru

    2009-03-01

    A novel optical fiber doped with nano material InP is manufactured by the modified chemical vapor deposition (MCVD). The slow light based on stimulated Brillouin scattering (SBS) in the optical fiber is studied. The results show that a time delay of ˜738 ps is obtained when the input Stokes pulse is 900 ps(FWHM) and the SBS gain is ˜15. It shows that a considerable time delay and an amplification of the input light can be achieved by this novel optical fiber.

  20. The delayed rectifier potassium conductance in the sarcolemma and the transverse tubular system membranes of mammalian skeletal muscle fibers

    PubMed Central

    DiFranco, Marino; Quinonez, Marbella

    2012-01-01

    A two-microelectrode voltage clamp and optical measurements of membrane potential changes at the transverse tubular system (TTS) were used to characterize delayed rectifier K currents (IKV) in murine muscle fibers stained with the potentiometric dye di-8-ANEPPS. In intact fibers, IKV displays the canonical hallmarks of KV channels: voltage-dependent delayed activation and decay in time. The voltage dependence of the peak conductance (gKV) was only accounted for by double Boltzmann fits, suggesting at least two channel contributions to IKV. Osmotically treated fibers showed significant disconnection of the TTS and displayed smaller IKV, but with similar voltage dependence and time decays to intact fibers. This suggests that inactivation may be responsible for most of the decay in IKV records. A two-channel model that faithfully simulates IKV records in osmotically treated fibers comprises a low threshold and steeply voltage-dependent channel (channel A), which contributes ∼31% of gKV, and a more abundant high threshold channel (channel B), with shallower voltage dependence. Significant expression of the IKV1.4 and IKV3.4 channels was demonstrated by immunoblotting. Rectangular depolarizing pulses elicited step-like di-8-ANEPPS transients in intact fibers rendered electrically passive. In contrast, activation of IKV resulted in time- and voltage-dependent attenuations in optical transients that coincided in time with the peaks of IKV records. Normalized peak attenuations showed the same voltage dependence as peak IKV plots. A radial cable model including channels A and B and K diffusion in the TTS was used to simulate IKV and average TTS voltage changes. Model predictions and experimental data were compared to determine what fraction of gKV in the TTS accounted simultaneously for the electrical and optical data. Best predictions suggest that KV channels are approximately equally distributed in the sarcolemma and TTS membranes; under these conditions, >70% of IKV arises from the TTS. PMID:22851675

  1. Junction barrier Schottky rectifier with an improved P-well region

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Li, Ting; Cao, Fei; Shao, Lei; Chen, Yu-Xian

    2012-12-01

    A junction barrier Schottky (JBS) rectifier with an improved P-well on 4H—SiC is proposed to improve the VF—IR trade-off and the breakdown voltage. The reverse current density of the proposed JBS rectifier at 300 K and 800 V is about 3.3×10-8 times that of the common JBS rectifier at no expense of the forward voltage drop. This is because the depletion layer thickness in the P-well region at the same reverse voltage is larger than in the P+ grid, resulting in a lower spreading current and tunneling current. As a result, the breakdown voltage of the proposed JBS rectifier is over 1.6 kV, that is about 0.8 times more than that of the common JBS rectifier due to the uniform electric field. Although the series resistance of the proposed JBS rectifier is a little larger than that of the common JBS rectifier, the figure of merit (FOM) of the proposed JBS rectifier is about 2.9 times that of the common JBS rectifier. Based on simulating the values of susceptibility of the two JBS rectifiers to electrostatic discharge (ESD) in the human body model (HBM) circuits, the failure energy of the proposed JBS rectifier increases 17% compared with that of the common JBS rectifier.

  2. Development and Performance of the W/Sb2O3/KIO4/Lubricant Pyrotechnic Delay in the US Army Hand-Held Signal

    DTIC Science & Technology

    2013-01-01

    Gany, Investigation of Slow-Propagation Tung- sten Delay Mixtures, Propellants Explos. Pyrotech. 1997, 22, 207–211. [3] Tungsten Delay Composition ...apex. This delay ele- ment then ignites an expulsion charge, which ejects and ig- nites the smoke or illumination payload. The current delay composition ...used in HHS consists of 32.0% tungsten, 56.3% barium chromate, 11.4% potassium perchlorate, and 0.3% VAAR. (All composition percentages in this

  3. Rate dependency of delayed rectifier currents during the guinea-pig ventricular action potential

    PubMed Central

    Rocchetti, Marcella; Besana, Alessandra; Gurrola, Georgina B; Possani, Lourival D; Zaza, Antonio

    2001-01-01

    The action potential clamp technique was exploited to evaluate the rate dependency of delayed rectifier currents (IKr and IKs) during physiological electrical activity. IKr and IKs were measured in guinea-pig ventricular myocytes at pacing cycle lengths (CL) of 1000 and 250 ms.A shorter CL, with the attendant changes in action potential shape, was associated with earlier activation and increased magnitude of both IKr and IKs. Nonetheless, the relative contributions of IKr and IKs to total transmembrane current were independent of CL.Shortening of diastolic interval only (constant action potential shape) enhanced IKs, but not IKr.IKr was increased by a change in the action potential shape only (constant diastolic interval).In ramp clamp experiments, IKr amplitude was directly proportional to repolarization rate at values within the low physiological range (< 1.0 V s−1); at higher repolarization rates proportionality became shallower and finally reversed.When action potential duration (APD) was modulated by constant current injection (I-clamp), repolarization rates > 1.0 V s−1 were associated with a reduced effect of IKr block on APD. The effect of changes in repolarization rate was independent of CL and occurred in the presence of IKs blockade.In spite of its complexity, the behaviour of IKr was accurately predicted by a numerical model based entirely on known kinetic properties of the current.Both IKr and IKs may be increased at fast heart rates, but this may occur through completely different mechanisms. The mechanisms identified are such as to contribute to abnormal rate dependency of repolarization in prolonged repolarization syndromes. PMID:11483703

  4. Changes in the mRNA levels of delayed rectifier potassium channels in human atrial fibrillation.

    PubMed

    Lai, L P; Su, M J; Lin, J L; Lin, F Y; Tsai, C H; Chen, Y S; Tseng, Y Z; Lien, W P; Huang, S K

    1999-01-01

    We measured mRNA levels of delayed rectifier potassium channels in human atrial tissue to investigate the mechanism of the shortening of the atrial effective refractory period and the loss of rate-adaptive shortening of the atrial effective refractory period in human atrial fibrillation. A total of 34 patients undergoing open heart surgery were included. Atrial tissue was obtained from the right atrial free wall, right atrial appendage, left atrial free wall and left atrial appendage, respectively. The mRNA amounts of KVLQT1 (IKs), minK (beta-subunit of IKs), HERG (IKr), and KV1.5 (IKur) were measured by reverse transcription-polymerase chain reaction and normalized to the mRNA amount of GAPDH. We found that the mRNA levels of KV1.5, HERG and KVLQT1 were all significantly decreased in patients with persistent atrial fibrillation for more than 3 months. In contrast, the mRNA level of minK was significantly increased in patients with persistent atrial fibrillation for more than 3 months. We further showed that these changes were independent of the underlying cardiac disease, atrial filling pressure, gender and age. We also found that there was no spatial dispersion of mRNA levels among the four atrial sampling sites. Because the decrease in potassium currents results in a prolonged action potential, the shortening of the atrial effective refractory period in atrial fibrillation should be attributed to other factors. However, the decrease in IKs might contribute, at least in part, to the loss of rate-adaptive shortening of the atrial refractory period.

  5. Flux pumping for non-insulated and metal-insulated HTS coils

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Geng, Jianzhao; Coombs, T. A.

    2018-01-01

    High-temperature superconducting (HTS) coils wound from coated conductors without turn-to-turn insulation (non-insulated (NI) coils) have been proven with excellent electrical and thermal performances. However, the slow charging of NI coils has been a long-lasting problem. In this work, we explore using a transformer-rectifier HTS flux pump to charge an NI coil and a metal-insulated coil. The charging performance comparison is made between different coils. Comprehensive study is done to thoroughly understand the electrical-magnetic transience in charging these coils. We will show that the low-voltage high-current flux pump is especially suitable for charging NI coils with very low characteristic resistance.

  6. Expanding the Bandwidth of Slow and Fast Pulse Propagation in Coupled Micro-resonators

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Chang, Hongrok

    2007-01-01

    Coupled resonators exhibit coherence effects which can be exploited for the delay or advancement of pulses with minimal distortion. The bandwidth and normalized pulse delay are simultaneously enhanced by proper choice of the inter-resonator couplings.

  7. Wireless power transmission for biomedical implants: The role of near-zero threshold CMOS rectifiers.

    PubMed

    Mohammadi, Ali; Redoute, Jean-Michel; Yuce, Mehmet R

    2015-01-01

    Biomedical implants require an electronic power conditioning circuitry to provide a stable electrical power supply. The efficiency of wireless power transmission is strongly dependent on the power conditioning circuitry specifically the rectifier. A cross-connected CMOS bridge rectifier is implemented to demonstrate the impact of thresholds of rectifiers on wireless power transfer. The performance of the proposed rectifier is experimentally compared with a conventional Schottky diode full wave rectifier over 9 cm distance of air and tissue medium between the transmitter and receiver. The output voltage generated by the CMOS rectifier across a 1 KΩ resistive load is around twice as much as the Schottky rectifier.

  8. Winter-injury following horticultural treatments to overcome juvenility in citrus seedlings

    USDA-ARS?s Scientific Manuscript database

    Citrus seedling juvenility delays new hybrid evaluation, slows cultivar release, and slows introgression of new traits. A horticultural program reported to overcome citrus juvenility was tested at the Whitmore Citrus Research Foundation farm (Lake County), using replicated Hirado Buntan x Clementine...

  9. Ion channels in plants.

    PubMed

    Hedrich, Rainer

    2012-10-01

    Since the first recordings of single potassium channel activities in the plasma membrane of guard cells more than 25 years ago, patch-clamp studies discovered a variety of ion channels in all cell types and plant species under inspection. Their properties differed in a cell type- and cell membrane-dependent manner. Guard cells, for which the existence of plant potassium channels was initially documented, advanced to a versatile model system for studying plant ion channel structure, function, and physiology. Interestingly, one of the first identified potassium-channel genes encoding the Shaker-type channel KAT1 was shown to be highly expressed in guard cells. KAT1-type channels from Arabidopsis thaliana and its homologs from other species were found to encode the K(+)-selective inward rectifiers that had already been recorded in early patch-clamp studies with guard cells. Within the genome era, additional Arabidopsis Shaker-type channels appeared. All nine members of the Arabidopsis Shaker family are localized at the plasma membrane, where they either operate as inward rectifiers, outward rectifiers, weak voltage-dependent channels, or electrically silent, but modulatory subunits. The vacuole membrane, in contrast, harbors a set of two-pore K(+) channels. Just very recently, two plant anion channel families of the SLAC/SLAH and ALMT/QUAC type were identified. SLAC1/SLAH3 and QUAC1 are expressed in guard cells and mediate Slow- and Rapid-type anion currents, respectively, that are involved in volume and turgor regulation. Anion channels in guard cells and other plant cells are key targets within often complex signaling networks. Here, the present knowledge is reviewed for the plant ion channel biology. Special emphasis is drawn to the molecular mechanisms of channel regulation, in the context of model systems and in the light of evolution.

  10. On the Generation and Use of TCP Acknowledgments

    NASA Technical Reports Server (NTRS)

    Allman, Mark

    1998-01-01

    This paper presents a simulation study of various TCP acknowledgment generation and utilization techniques. We investigate the standard version of TCP and the two standard acknowledgment strategies employed by receivers: those that acknowledge each incoming segment and those that implement delayed acknowledgments. We show the delayed acknowledgment mechanism hurts TCP performance, especially during slow start. Next we examine three alternate mechanisms for generating and using acknowledgments designed to mitigate the negative impact of delayed acknowledgments. The first method is to generate delayed ACKs only when the sender is not using the slow start algorithm. The second mechanism, called byte counting, allows TCP senders to increase the amount of data being injected into the network based on the amount of data acknowledged rather than on the number of acknowledgments received. The last mechanism is a limited form of byte counting. Each of these mechanisms is evaluated in a simulated network with no competing traffic, as well as a dynamic environment with a varying amount of competing traffic. We study the costs and benefits of the alternate mechanisms when compared to the standard algorithm with delayed ACKs.

  11. Slow and fast light via SBS in optical fibers for short pulses and broadband pump

    NASA Astrophysics Data System (ADS)

    Kalosha, V. P.; Chen, Liang; Bao, Xiaoyi

    2006-12-01

    Slow-light effect via stimulated Brillouin scattering (SBS) in single-mode optical fibers was considered for short probe pulses of nanosecond duration relevant to Gb/s data streams. Unlike recent estimations of delay versus pump based on steady-state small-signal approximation we have used numerical solution of three-wave equations describing SBS for a realistic fiber length. Both regimes of small signal and pump depletion (gain saturation) were considered. The physical origin of Stokes pulse distortion is revealed which is related to excitation of long-living acoustic field behind the pulse and prevents effective delay control by pump power increase at cw pumping. We have shown different slope of the gain-dependent delay for different pulse durations. Spectrally broadened pumping by multiple cw components, frequency-modulated pump and pulse train were studied for short pulses which allow to obtain large delay and suppress pulse distortion. In the pump-depletion regime of pumping by pulse train, both pulse delay and distortion decrease with increasing pump, and the pulse achieves advancement.

  12. Fast to forgive, slow to retaliate: intuitive responses in the ultimatum game depend on the degree of unfairness.

    PubMed

    Ferguson, Eamonn; Maltby, John; Bibby, Peter A; Lawrence, Claire

    2014-01-01

    Evolutionary accounts have difficulty explaining why people cooperate with anonymous strangers they will never meet. Recently models, focusing on emotional processing, have been proposed as a potential explanation, with attention focusing on a dual systems approach based on system 1 (fast, intuitive, automatic, effortless, and emotional) and system 2 (slow, reflective, effortful, proactive and unemotional). Evidence shows that when cooperation is salient, people are fast (system 1) to cooperate, but with longer delays (system 2) they show greed. This is interpreted within the framework of the social heuristic hypothesis (SHH), whereby people overgeneralize potentially advantageous intuitively learnt and internalization social norms to 'atypical' situations. We extend this to explore intuitive reactions to unfairness by integrating the SHH with the 'fast to forgive, slow to anger' (FFSA) heuristic. This suggests that it is advantageous to be prosocial when facing uncertainty. We propose that whether or not someone intuitively shows prosociality (cooperation) or retaliation is moderated by the degree (certainty) of unfairness. People should intuitively cooperate when facing mild levels of unfairness (fast to forgive) but when given longer to decide about another's mild level of unfairness should retaliate (slow to anger). However, when facing severe levels of unfairness, the intuitive response is always retaliation. We test this using a series of one-shot ultimatum games and manipulate level of offer unfairness (50:50 60:40, 70:30, 80:20, 90:10) and enforced time delays prior to responding (1s, 2s, 8s, 15s). We also measure decision times to make responses after the time delays. The results show that when facing mildly unfair offers (60:40) people are fast (intuitive) to cooperate but with longer delays reject these mildly unfair offers: 'fast to forgive, and slow to retaliate'. However, for severely unfair offers (90:10) the intuitive and fast response is to always reject.

  13. Fast to Forgive, Slow to Retaliate: Intuitive Responses in the Ultimatum Game Depend on the Degree of Unfairness

    PubMed Central

    Ferguson, Eamonn; Maltby, John; Bibby, Peter A.; Lawrence, Claire

    2014-01-01

    Evolutionary accounts have difficulty explaining why people cooperate with anonymous strangers they will never meet. Recently models, focusing on emotional processing, have been proposed as a potential explanation, with attention focusing on a dual systems approach based on system 1 (fast, intuitive, automatic, effortless, and emotional) and system 2 (slow, reflective, effortful, proactive and unemotional). Evidence shows that when cooperation is salient, people are fast (system 1) to cooperate, but with longer delays (system 2) they show greed. This is interpreted within the framework of the social heuristic hypothesis (SHH), whereby people overgeneralize potentially advantageous intuitively learnt and internalization social norms to ‘atypical’ situations. We extend this to explore intuitive reactions to unfairness by integrating the SHH with the ‘fast to forgive, slow to anger’ (FFSA) heuristic. This suggests that it is advantageous to be prosocial when facing uncertainty. We propose that whether or not someone intuitively shows prosociality (cooperation) or retaliation is moderated by the degree (certainty) of unfairness. People should intuitively cooperate when facing mild levels of unfairness (fast to forgive) but when given longer to decide about another's mild level of unfairness should retaliate (slow to anger). However, when facing severe levels of unfairness, the intuitive response is always retaliation. We test this using a series of one-shot ultimatum games and manipulate level of offer unfairness (50:50 60:40, 70:30, 80:20, 90:10) and enforced time delays prior to responding (1s, 2s, 8s, 15s). We also measure decision times to make responses after the time delays. The results show that when facing mildly unfair offers (60:40) people are fast (intuitive) to cooperate but with longer delays reject these mildly unfair offers: ‘fast to forgive, and slow to retaliate’. However, for severely unfair offers (90:10) the intuitive and fast response is to always reject. PMID:24820479

  14. RF rectifiers for EM power harvesting in a Deep Brain Stimulating device.

    PubMed

    Hosain, Md Kamal; Kouzani, Abbas Z; Tye, Susannah; Kaynak, Akif; Berk, Michael

    2015-03-01

    A passive deep brain stimulation (DBS) device can be equipped with a rectenna, consisting of an antenna and a rectifier, to harvest energy from electromagnetic fields for its operation. This paper presents optimization of radio frequency rectifier circuits for wireless energy harvesting in a passive head-mountable DBS device. The aim is to achieve a compact size, high conversion efficiency, and high output voltage rectifier. Four different rectifiers based on the Delon doubler, Greinacher voltage tripler, Delon voltage quadrupler, and 2-stage charge pumped architectures are designed, simulated, fabricated, and evaluated. The design and simulation are conducted using Agilent Genesys at operating frequency of 915 MHz. A dielectric substrate of FR-4 with thickness of 1.6 mm, and surface mount devices (SMD) components are used to fabricate the designed rectifiers. The performance of the fabricated rectifiers is evaluated using a 915 MHz radio frequency (RF) energy source. The maximum measured conversion efficiency of the Delon doubler, Greinacher tripler, Delon quadrupler, and 2-stage charge pumped rectifiers are 78, 75, 73, and 76 % at -5 dBm input power and for load resistances of 5-15 kΩ. The conversion efficiency of the rectifiers decreases significantly with the increase in the input power level. The Delon doubler rectifier provides the highest efficiency at both -5 and 5 dBm input power levels, whereas the Delon quadrupler rectifier gives the lowest efficiency for the same inputs. By considering both efficiency and DC output voltage, the charge pump rectifier outperforms the other three rectifiers. Accordingly, the optimised 2-stage charge pumped rectifier is used together with an antenna to harvest energy in our DBS device.

  15. Utility of multi-channel surface electromyography in assessment of focal hand dystonia.

    PubMed

    Sivadasan, Ajith; Sanjay, M; Alexander, Mathew; Devasahayam, Suresh R; Srinivasa, Babu K

    2013-09-01

    Surface electromyography (SEMG) allows objective assessment and guides selection of appropriate treatment in focal hand dystonia (FHD). Sixteen-channel SEMG obtained during different phases of a writing task was used to study timing, activation patterns, and spread of muscle contractions in FHD compared with normal controls. Customized software was developed to acquire and analyze EMG signals. SEMG of FHD subjects (20) showed "early onset" during motor imagery, rapid proximal muscle recruitment, agonist-antagonist co-contraction involving proximal muscle groups, "delayed offset" after stopping writing, higher rectified mean amplitudes, and mirror activity in contralateral limb compared with controls (16). Muscle activation latencies were heterogenous in FHD. Anticipation, delayed relaxation, and mirror EMG activation were noted in FHD. A clear pattern of muscle activation cannot be ascertained. Multi-channel SEMG can aid in objective assessment of temporal-spatial distribution of activity and can refine targeted therapies like chemodenervation and biofeedback. Copyright © 2013 Wiley Periodicals, Inc.

  16. Activity of Palythoa caribaeorum Venom on Voltage-Gated Ion Channels in Mammalian Superior Cervical Ganglion Neurons.

    PubMed

    Lazcano-Pérez, Fernando; Castro, Héctor; Arenas, Isabel; García, David E; González-Muñoz, Ricardo; Arreguín-Espinosa, Roberto

    2016-05-05

    The Zoanthids are an order of cnidarians whose venoms and toxins have been poorly studied. Palythoa caribaeorum is a zoanthid commonly found around the Mexican coastline. In this study, we tested the activity of P. caribaeorum venom on voltage-gated sodium channel (NaV1.7), voltage-gated calcium channel (CaV2.2), the A-type transient outward (IA) and delayed rectifier (IDR) currents of KV channels of the superior cervical ganglion (SCG) neurons of the rat. These results showed that the venom reversibly delays the inactivation process of voltage-gated sodium channels and inhibits voltage-gated calcium and potassium channels in this mammalian model. The compounds responsible for these effects seem to be low molecular weight peptides. Together, these results provide evidence for the potential use of zoanthids as a novel source of cnidarian toxins active on voltage-gated ion channels.

  17. Activity of Palythoa caribaeorum Venom on Voltage-Gated Ion Channels in Mammalian Superior Cervical Ganglion Neurons

    PubMed Central

    Lazcano-Pérez, Fernando; Castro, Héctor; Arenas, Isabel; García, David E.; González-Muñoz, Ricardo; Arreguín-Espinosa, Roberto

    2016-01-01

    The Zoanthids are an order of cnidarians whose venoms and toxins have been poorly studied. Palythoa caribaeorum is a zoanthid commonly found around the Mexican coastline. In this study, we tested the activity of P. caribaeorum venom on voltage-gated sodium channel (NaV1.7), voltage-gated calcium channel (CaV2.2), the A-type transient outward (IA) and delayed rectifier (IDR) currents of KV channels of the superior cervical ganglion (SCG) neurons of the rat. These results showed that the venom reversibly delays the inactivation process of voltage-gated sodium channels and inhibits voltage-gated calcium and potassium channels in this mammalian model. The compounds responsible for these effects seem to be low molecular weight peptides. Together, these results provide evidence for the potential use of zoanthids as a novel source of cnidarian toxins active on voltage-gated ion channels. PMID:27164140

  18. Inactivation properties of voltage-gated K+ channels altered by presence of beta-subunit.

    PubMed

    Rettig, J; Heinemann, S H; Wunder, F; Lorra, C; Parcej, D N; Dolly, J O; Pongs, O

    1994-05-26

    Structural and functional diversity of voltage-gated Kv1-type potassium channels in rat brain is enhanced by the association of two different types of subunits, the membrane-bound, poreforming alpha-subunits and a peripheral beta-subunit. We have cloned a beta-subunit (Kv beta 1) that is specifically expressed in the rat nervous system. Association of Kv beta 1 with alpha-subunits confers rapid A-type inactivation on non-inactivating Kv1 channels (delayed rectifiers) in expression systems in vitro. This effect is mediated by an inactivating ball domain in the Kv beta 1 amino terminus.

  19. Allowing Brief Delays in Responding Improves Event-Based Prospective Memory for Young Adults Living with HIV Disease

    PubMed Central

    Loft, Shayne; Doyle, Katie L.; Naar-King, Sylvie; Outlaw, Angulique Y.; Nichols, Sharon L.; Weber, Erica; Blackstone, Kaitlin; Woods, Steven Paul

    2014-01-01

    Event-based prospective memory (PM) tasks require individuals to remember to perform an action when they encounter a specific cue in the environment, and have clear relevance for daily functioning for individuals with HIV. In many everyday tasks, the individual must not only maintain the intent to perform the PM task, but the PM task response also competes with the alternative and more habitual task response. The current study examined whether event-based PM can be improved by slowing down the pace of the task environment. Fifty-seven young adults living with HIV performed an ongoing lexical decision task while simultaneously performing a PM task of monitoring for a specific word (which was focal to the ongoing task of making lexical decisions) or syllable contained in a word (which was nonfocal). Participants were instructed to refrain from making task responses until after a tone was presented, which occurred at varying onsets (0–1600ms) after each stimulus appeared. Improvements in focal and non-focal PM accuracy were observed with response delays of 600ms. Furthermore, the difference in PM accuracy between the low demand focal PM task and the resource demanding non-focal PM task was reduced by half across increasingly longer delays, falling from 31% at 0ms delay to only 14% at 1600ms delay. The degree of ongoing task response slowing for the PM conditions, relative to a control condition that did not have a PM task and made lexical decisions only, also decreased with increased delay. Overall, the evidence indicates that delaying the task responses of younger HIV-infected adults increased the probability that the PM relevant features of task stimuli were adequately assessed prior to the ongoing task response, and by implication that younger HIV infected adults can more adequately achieve PM goals when the pace of the task environment is slowed down. PMID:25116075

  20. David Triggle: Research collaborations and scientific exchanges with the China Pharmaceutical University, Nanjing, China.

    PubMed

    Dai, De-Zai

    2015-11-15

    Over the period 1995-2012, David Triggle was a frequent visitor to the China Pharmaceutical University in Nanjing, China making many important contributions that enhanced the activities of the Research Division of Pharmacology at the University. In addition to providing collegial advice and facilitating interactions with the international pharmacological community, Professor Triggle's international reputation as a thought leader in the field of ion channel research and drug discovery provided important insights into the potential pathophysiological and therapeutic effects of targeting ion channels. This included the L-type calcium channel and the outward delayed rectified potassium currents of rapid (IKr) and slow (IKs) components in the myocardium. The Nanjing research team had been particularly interested in ion channel dysfunction in the context of cardiac arrhythmias, remodeling and drug discovery. With Professor Triggle's assistance, the relationship between an increase in ICa.L and other biological events including an enhancement of IKr and IKr currents, NADPH oxidase and endothelin receptor activation, down regulation of calcium modulating protein FKBP12.6, sarco/endoplasmic reticulum Ca(2+)ATPse (SERCA2A) and calsequens 2 (CASQ2), calcium leak at the diastole and endoplasmic reticulum stress, were evaluated and are discussed. Additionally, the organization of several international symposia was greatly enhanced by input from Professor Triggle as were the published research manuscripts in international pharmacology journals. During his association with the China Pharmaceutical University, Professor Triggle aided in enhancing the scientific standing of the Pharmacology department and was a highly effective ambassador for international research cooperation. Copyright © 2015. Published by Elsevier Inc.

  1. Characterization of ionic currents of cells of the subfornical organ that project to the supraoptic nuclei

    NASA Technical Reports Server (NTRS)

    Johnson, R. F.; Beltz, T. G.; Jurzak, M.; Wachtel, R. E.; Johnson, A. K.

    1999-01-01

    The subfornical organ (SFO) is a forebrain structure that converts peripheral blood-borne signals reflecting the hydrational state of the body to neural signals and then through efferent fibers conveys this information to several central nervous system structures. One of the forebrain areas receiving input from the SFO is the supraoptic nucleus (SON), a source of vasopressin synthesis and control of release from the posterior pituitary. Little is known of the transduction and transmission processes by which this conversion of systemic information to brain input occurs. As a step in elucidating these mechanisms, the present study characterized the ionic currents of dissociated cells of the SFO that were identified as neurons that send efferents to the SON. A retrograde tracer was injected into the SON area in eleven-day-old rats. After three days for retrograde transport of the label, the SFOs of these animals were dissociated and plated for tissue culture. The retrograde tracer was used to identify the soma of SFO cells projecting to the SON so that voltage-dependent ionic currents using whole-cell voltage clamp methods could be studied. The three types of currents in labeled SFO neurons were characterized as a 1) rapid, transient inward current that can be blocked by tetrodotoxin (TTX) characteristic of a sodium current; 2) slow-onset sustained outward current that can be blocked by tetraethylammonium (TEA) characteristic of a delayed rectifier potassium current; and 3) remaining outward current that has a rapid-onset and transient characteristic of a potassium A-type current. Copyright 1999 Elsevier Science B.V.

  2. Effects of sildenafil on cardiac repolarization.

    PubMed

    Chiang, Chern-En; Luk, Hsiang-Ning; Wang, Tsui-Min; Ding, Philip Yu-An

    2002-08-01

    Sudden death has occasionally been reported in patients taking sildenafil. The objective of this study was to investigate the effect of sildenafil on cardiac repolarization. We used conventional microelectrode recording technique in isolated guinea pig papillary muscles and canine Purkinje fibers, whole-cell patch clamp techniques in guinea pig ventricular myocytes, and in vivo ECG measurements in guinea pigs. Action potential duration at 90% repolarization (APD(90)) was not affected by sildenafil in the therapeutic ranges (< or =1 microM), but shortened by higher concentration (> or =10 microM) in both guinea pig papillary muscles and canine Purkinje fibers. D-Sotalol prolonged APD(90) in the same preparations with concentrations > or =1 microM in a reverse frequency-dependent manner. Co-administration of sildenafil (10 and 30 microM) abolished the APD-prolonging effects of D-sotalol (30 microM) and amiodarone (100 microM). Sildenafil, with concentrations up to 30 microM, had no significant effect on both the rapid (I(Kr)) and the slow (I(Ks)) components of the delayed rectifier potassium currents in guinea pig ventricular myocytes. Sildenafil dose-dependently blocked L-type Ca(2+) current (I(Ca,L)), but had no effect on persistent Na(+) current in guinea pig ventricular myocytes. ECG recordings in intact guinea pigs revealed significant shortening of QTc interval by sildenafil (10 and 30 mg/kg orally). The QT-prolonging effects by D,L-sotalol (50 mg/kg) and amiodarone (100 mg/kg) were abolished by sildenafil (30 mg/kg). Sildenafil does not prolong cardiac repolarization. Instead, in supra-therapeutic concentrations, it accelerates cardiac repolarization, presumably through its blocking effect on I(Ca,L).

  3. Voltage balanced multilevel voltage source converter system

    DOEpatents

    Peng, Fang Zheng; Lai, Jih-Sheng

    1997-01-01

    A voltage balanced multilevel converter for high power AC applications such as adjustable speed motor drives and back-to-back DC intertie of adjacent power systems. This converter provides a multilevel rectifier, a multilevel inverter, and a DC link between the rectifier and the inverter allowing voltage balancing between each of the voltage levels within the multilevel converter. The rectifier is equipped with at least one phase leg and a source input node for each of the phases. The rectifier is further equipped with a plurality of rectifier DC output nodes. The inverter is equipped with at least one phase leg and a load output node for each of the phases. The inverter is further equipped with a plurality of inverter DC input nodes. The DC link is equipped with a plurality of rectifier charging means and a plurality of inverter discharging means. The plurality of rectifier charging means are connected in series with one of the rectifier charging means disposed between and connected in an operable relationship with each adjacent pair of rectifier DC output nodes. The plurality of inverter discharging means are connected in series with one of the inverter discharging means disposed between and connected in an operable relationship with each adjacent pair of inverter DC input nodes. Each of said rectifier DC output nodes are individually electrically connected to the respective inverter DC input nodes. By this means, each of the rectifier DC output nodes and each of the inverter DC input nodes are voltage balanced by the respective charging and discharging of the rectifier charging means and the inverter discharging means.

  4. Voltage balanced multilevel voltage source converter system

    DOEpatents

    Peng, F.Z.; Lai, J.S.

    1997-07-01

    Disclosed is a voltage balanced multilevel converter for high power AC applications such as adjustable speed motor drives and back-to-back DC intertie of adjacent power systems. This converter provides a multilevel rectifier, a multilevel inverter, and a DC link between the rectifier and the inverter allowing voltage balancing between each of the voltage levels within the multilevel converter. The rectifier is equipped with at least one phase leg and a source input node for each of the phases. The rectifier is further equipped with a plurality of rectifier DC output nodes. The inverter is equipped with at least one phase leg and a load output node for each of the phases. The inverter is further equipped with a plurality of inverter DC input nodes. The DC link is equipped with a plurality of rectifier charging means and a plurality of inverter discharging means. The plurality of rectifier charging means are connected in series with one of the rectifier charging means disposed between and connected in an operable relationship with each adjacent pair of rectifier DC output nodes. The plurality of inverter discharging means are connected in series with one of the inverter discharging means disposed between and connected in an operable relationship with each adjacent pair of inverter DC input nodes. Each of said rectifier DC output nodes are individually electrically connected to the respective inverter DC input nodes. By this means, each of the rectifier DC output nodes and each of the inverter DC input nodes are voltage balanced by the respective charging and discharging of the rectifier charging means and the inverter discharging means. 15 figs.

  5. Nicotine depresses the functions of multiple cardiac potassium channels.

    PubMed

    Wang, H; Shi, H; Wang, Z

    1999-01-01

    Nicotine is the main constituent of tobacco smoke responsible for the elevated risk of the cardiovascular disease and sudden coronary death associated with smoking, presumably by provoking cardiac arrhythmias. The cellular mechanisms may be related to the ability of nicotine to prolong action potentials and to depolarize membrane potential. However, the underlying ionic mechanisms remained unknown. We showed here that nicotine blocked multiple types of K+ currents, including the native currents in canine ventricular myocytes and the cloned channels expressed in Xenopus oocytes: A-type K+ currents (I(to)/Kv4.3), delayed rectifier K+ currents (I(Kr)/HERG) and inward rectifier K+ currents (I(K1)/Kir2.1). Most noticeably, nicotine at a concentration as low as of 10 nM significantly suppressed I(to) and Kv4.3 by approximately 20%. The effects of nicotine were independent of nicotinic receptor simulation or catecholamine release. Our results indicate that nicotine is a non-specific blocker of K+ channels and the inhibitory effects are the consequence of direct interactions between nicotine molecules and the channel proteins. Our study provided for the first time the evidence for the direct inhibition of cardiac K+ channels by nicotine and established a novel aspect of nicotine pharmacology.

  6. Enhanced excitability and down-regulated voltage-gated potassium channels in colonic drg neurons from neonatal maternal separation rats.

    PubMed

    Luo, Jia-Lie; Qin, Hong-Yan; Wong, Chun-Kit; Tsang, Suk-Ying; Huang, Yu; Bian, Zhao-Xiang

    2011-05-01

    Irritable bowel syndrome (IBS), characterized mainly by abdominal pain, is a functional bowel disorder. The present study aimed to examine changes in the excitability and the activity of the voltage-gated K(+) channel in dorsal root ganglia (DRG) neurons innervating the colon of rats subjected to neonatal maternal separation (NMS). Colonic DRG neurons from NMS rats as identified by FAST DiI™ labeling showed an increased cell size compared with those from nonhandled (NH) rats. Whole cell current-clamp recordings showed that colonic DRG neurons from NMS rats displayed: 1) depolarized resting membrane potential; 2) increased input resistance; 3) a dramatic reduction in rheobase; and 4) a significant increase in the number of action potentials evoked at twice rheobase. Whole cell voltage-clamp recordings revealed that neurons from both groups exhibited transient A-type (I(A)) and delayed rectifier (I(K)) K(+) currents. Compared with NH rat neurons, the averaged density of I(K) was significantly reduced in NMS rat neurons. Furthermore, the Kv1.2 expression was significantly decreased in NMS rat colonic DRG neurons. These results suggest that NMS increases the excitability of colonic DRG neurons mainly by suppressing the I(K) current, which is likely accounted for by the downregulation of the Kv1.2 expression and somal hypertrophy. This study demonstrates the alteration of delayed rectifier K current and Kv1.2 expression in DRG neurons from IBS model rats, representing a molecular mechanism underlying visceral pain and sensitization in IBS, suggesting the potential of Kv1.2 as a therapeutic target for the treatment of IBS. Copyright © 2011 American Pain Society. Published by Elsevier Inc. All rights reserved.

  7. The human ether-a-go-go-related gene (hERG) current inhibition selectively prolongs action potential of midmyocardial cells to augment transmural dispersion.

    PubMed

    Yasuda, C; Yasuda, S; Yamashita, H; Okada, J; Hisada, T; Sugiura, S

    2015-08-01

    The majority of drug induced arrhythmias are related to the prolongation of action potential duration following inhibition of rapidly activating delayed rectifier potassium current (I(Kr)) mediated by the hERG channel. However, for arrhythmias to develop and be sustained, not only the prolongation of action potential duration but also its transmural dispersion are required. Herein, we evaluated the effect of hERG inhibition on transmural dispersion of action potential duration using the action potential clamp technique that combined an in silico myocyte model with the actual I(Kr) measurement. Whole cell I(Kr) current was measured in Chinese hamster ovary cells stably expressing the hERG channel. The measured current was coupled with models of ventricular endocardial, M-, and epicardial cells to calculate the action potentials. Action potentials were evaluated under control condition and in the presence of 1, 10, or 100 μM disopyramide, an hERG inhibitor. Disopyramide dose-dependently increased the action potential durations of the three cell types. However, action potential duration of M-cells increased disproportionately at higher doses, and was significantly different from that of epicardial and endocardial cells (dispersion of repolarization). By contrast, the effects of disopyramide on peak I(Kr) and instantaneous current-voltage relation were similar in all cell types. Simulation study suggested that the reduced repolarization reserve of M-cell with smaller amount of slowly activating delayed rectifier potassium current levels off at longer action potential duration to make such differences. The action potential clamp technique is useful for studying the mechanism of arrhythmogenesis by hERG inhibition through the transmural dispersion of repolarization.

  8. Heterogeneity in Kv2 Channel Expression Shapes Action Potential Characteristics and Firing Patterns in CA1 versus CA2 Hippocampal Pyramidal Neurons

    PubMed Central

    Chevaleyre, Vivien; Murray, Karl D.; Piskorowski, Rebecca A.

    2017-01-01

    Abstract The CA1 region of the hippocampus plays a critical role in spatial and contextual memory, and has well-established circuitry, function and plasticity. In contrast, the properties of the flanking CA2 pyramidal neurons (PNs), important for social memory, and lacking CA1-like plasticity, remain relatively understudied. In particular, little is known regarding the expression of voltage-gated K+ (Kv) channels and the contribution of these channels to the distinct properties of intrinsic excitability, action potential (AP) waveform, firing patterns and neurotransmission between CA1 and CA2 PNs. In the present study, we used multiplex fluorescence immunolabeling of mouse brain sections, and whole-cell recordings in acute mouse brain slices, to define the role of heterogeneous expression of Kv2 family Kv channels in CA1 versus CA2 pyramidal cell excitability. Our results show that the somatodendritic delayed rectifier Kv channel subunits Kv2.1, Kv2.2, and their auxiliary subunit AMIGO-1 have region-specific differences in expression in PNs, with the highest expression levels in CA1, a sharp decrease at the CA1-CA2 boundary, and significantly reduced levels in CA2 neurons. PNs in CA1 exhibit a robust contribution of Guangxitoxin-1E-sensitive Kv2-based delayed rectifier current to AP shape and after-hyperpolarization potential (AHP) relative to that seen in CA2 PNs. Our results indicate that robust Kv2 channel expression confers a distinct pattern of intrinsic excitability to CA1 PNs, potentially contributing to their different roles in hippocampal network function. PMID:28856240

  9. Computational Modeling Reveals Key Contributions of KCNQ and hERG Currents to the Malleability of Uterine Action Potentials Underpinning Labor

    PubMed Central

    Tong, Wing-Chiu; Tribe, Rachel M.; Smith, Roger; Taggart, Michael J.

    2014-01-01

    The electrical excitability of uterine smooth muscle cells is a key determinant of the contraction of the organ during labor and is manifested by spontaneous, periodic action potentials (APs). Near the end of term, APs vary in shape and size reflecting an ability to change the frequency, duration and amplitude of uterine contractions. A recent mathematical model quantified several ionic features of the electrical excitability in uterine smooth muscle cells. It replicated many of the experimentally recorded uterine AP configurations but its limitations were evident when trying to simulate the long-duration bursting APs characteristic of labor. A computational parameter search suggested that delayed rectifying K+ currents could be a key model component requiring improvement to produce the longer-lasting bursting APs. Of the delayed rectifying K+ currents family it is of interest that KCNQ and hERG channels have been reported to be gestationally regulated in the uterus. These currents exhibit features similar to the broadly defined uterine I K1 of the original mathematical model. We thus formulated new quantitative descriptions for several I KCNQ and I hERG. Incorporation of these currents into the uterine cell model enabled simulations of the long-lasting bursting APs. Moreover, we used this modified model to simulate the effects of different contributions of I KCNQ and I hERG on AP form. Our findings suggest that the alterations in expression of hERG and KCNQ channels can potentially provide a mechanism for fine tuning of AP forms that lends a malleability for changing between plateau-like and long-lasting bursting-type APs as uterine cells prepare for parturition. PMID:25474527

  10. [Effect of down-regulation of IKs repolarization-reserve on ventricular arrhythmogenesis in a guinea pig model of cardiac hypertrophy].

    PubMed

    Wang, Hegui; Huang, Ting; Wang, Zheng; Ge, Nannan; Ke, Yongsheng

    2018-04-28

    To observe the changes of rapidly activated delayed rectifier potassium channel (IKr) and slowly activated delayed rectifier potassium channel (IKs) in cardiac hypertrophy and to evaluate the effects of IKr and IKs blocker on the incidence of ventricular arrhythmias in guinea pigs with left ventricular hypertrophy (LVH).
 Methods: Guinea pigs were divided into a sham operation group and a left ventricular hypertrophy (LVH) group. LVH model was prepared. Whole cell patch-clamp technique was used to record IKr and IKs tail currents in a guinea pig model with LVH. The changes of QTc and the incidence rate of ventricular arrhythmias in LVH guinea pigs were observed by using the IKr and IKs blockers.
 Results: Compared with cardiac cells in the control group, the interventricular septal thickness at end systole (IVSs), left ventricular posterior wall thickness at end systole (LVPWs), QTc interval and cell capacitance in guinea pigs with LVH were significantly increased (P<0.05); while IKs densities were significantly reduced [+60 mV: (0.36±0.03) pA/pF vs (0.58±0.05) pA/pF, P<0.01]. However, LVH exerted no significant effect on IKr densities. IKr blocker markedly prolonged the QTc interval (P<0.01) and increased the incidence of ventricular arrhythmias in guinea pigs with LVH compared with the control guinea pigs. In contrast, IKs blocker produced modest increase in QTc interval in guinea pigs of control group with no increase in LVH animals. IKs blocker did not induce ventricular arrhythmias incidence in either control or LVH animals.
 Conclusion: The cardiac hypertrophy-induced arrhythmogenesis is due to the down-regulation 
of IKs.

  11. Different protein kinase C isoenzymes mediate inhibition of cardiac rapidly activating delayed rectifier K+ current by different G-protein coupled receptors.

    PubMed

    Liu, Xueli; Wang, Yuhong; Zhang, Hua; Shen, Li; Xu, Yanfang

    2017-12-01

    Elevated angiotensin II (Ang II) and sympathetic activity contributes to a high risk of ventricular arrhythmias in heart disease. The rapidly activating delayed rectifier K + current (I Kr ) carried by the hERG channels plays a critical role in cardiac repolarization, and decreased I Kr is involved in increased cardiac arrhythmogenicity. Stimulation of α 1A -adrenoreceptors or angiotensin II AT 1 receptors is known to inhibit I Kr via PKC. Here, we have identified the PKC isoenzymes mediating the inhibition of I Kr by activation of these two different GPCRs. The whole-cell patch-clamp technique was used to record I Kr in guinea pig cardiomyocytes and HEK293 cells co-transfected with hERG and α 1A -adrenoreceptor or AT 1 receptor genes. A broad spectrum PKC inhibitor Gö6983 (not inhibiting PKCε), a selective cPKC inhibitor Gö6976 and a PKCα-specific inhibitor peptide, blocked the inhibition of I Kr by the α 1A -adrenoreceptor agonist A61603. However, these inhibitors did not affect the reduction of I Kr by activation of AT 1 receptors, whereas the PKCε-selective inhibitor peptide did block the effect. The effects of angiotensin II and the PKCε activator peptide were inhibited in mutant hERG channels in which 17 of the 18 PKC phosphorylation sites were deleted, whereas a deletion of the N-terminus of the hERG channels selectively prevented the inhibition elicited by A61603 and the cPKC activator peptide. Our results indicated that inhibition of I Kr by activation of α 1A -adrenoreceptors or AT 1 receptors were mediated by PKCα and PKCε isoforms respectively, through different molecular mechanisms. © 2017 The British Pharmacological Society.

  12. Attenuation of ischemia/reperfusion-induced inhibition of the rapid component of delayed rectifier potassium current by Isosteviol through scavenging reactive oxygen species.

    PubMed

    Yin, Chunxia; Chen, Yaoxu; Wu, Huanlin; Xu, Danping; Tan, Wen

    2017-12-01

    Isosteviol has been demonstrated to play a protective role during ischemia reperfusion (I/R) myocardial infarction. However, the underlying electrophysiological mechanisms of isosteviol are still unknown. Our previous study showed that the rapid component of the delayed rectifier potassium channel (I Kr ) plays an important role in the prolongation of I/R-induced QT interval-related arrhythmia. This study aimed to investigate whether isosteviol could attenuate I/R-induced prolongation of the action potential duration (APD) along with inhibition of I Kr , and we aimed to clarify the electrophysiological mechanism of isosteviol to determine its cardioprotective effects in guinea pigs. We observed that the APD 90 were 298.5±41.6ms in control, 528.6±56.7ms during I/R, and reduced to 327.8±40.5ms after 10μmol/L of isosteviol treatment. The I Kr currents were 1.44±0.06 pA·pF -1 in the control group, 0.50±0.07pA·pF -1 during I/R, and recovered to 1.20±0.12pA·pF -1 after 10μmol/L of isoteviol treatment. Moreover, isosteviol reduced the over-production of reactive oxygen species (ROS) during I/R. Importantly, isosteviol does not affect the I Kr and human ether-a-go-go-related gene currents of normal cardiomyocytes. It attenuated the I/R-induced inhibition of I Kr due to reduced over-production of ROS. Furthermore, isosteviol is safe and has no cardiotoxicity, and it might be beneficial for coronary reperfusion therapy. Copyright © 2017. Published by Elsevier B.V.

  13. Molecular basis and drug sensitivity of the delayed rectifier (IKr) in the fish heart.

    PubMed

    Hassinen, Minna; Haverinen, Jaakko; Vornanen, Matti

    2015-01-01

    Fishes are increasingly used as models for human cardiac diseases, creating a need for a better understanding of the molecular basis of fish cardiac ion currents. To this end we cloned KCNH6 channel of the crucian carp (Carassius carassius) that produces the rapid component of the delayed rectifier K(+) current (IKr), the main repolarising current of the fish heart. KCNH6 (ccErg2) was the main isoform of the Kv11 potassium channel family with relative transcript levels of 98.9% and 99.6% in crucian carp atrium and ventricle, respectively. KCNH2 (ccErg1), an orthologue to human cardiac Erg (Herg) channel, was only slightly expressed in the crucian carp heart. The native atrial IKr and the cloned ccErg2 were inhibited by similar concentrations of verapamil, terfenadine and KB-R7943 (P>0.05), while the atrial IKr was about an order of magnitude more sensitive to E-4031 than ccErg2 (P<0.05) suggesting that some accessory β-subunits may be involved. Sensitivity of the crucian carp atrial IKr to E-4031, terfenadine and KB-R7943 was similar to what has been reported for the Herg channel. In contrast, the sensitivity of the crucian carp IKr to verapamil was approximately 30 times higher than the previously reported values for the Herg current. In conclusion, the cardiac IKr is produced by non-orthologous gene products in fish (Erg2) and mammalian hearts (Erg1) and some marked differences exist in drug sensitivity between fish and mammalian Erg1/2 which need to be taken into account when using fish heart as a model for human heart. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Adenosine A₂A receptors inhibit delayed rectifier potassium currents and cell differentiation in primary purified oligodendrocyte cultures.

    PubMed

    Coppi, Elisabetta; Cellai, Lucrezia; Maraula, Giovanna; Pugliese, Anna Maria; Pedata, Felicita

    2013-10-01

    Oligodendrocyte progenitor cells (OPCs) are a population of cycling cells which persist in the adult central nervous system (CNS) where, under opportune stimuli, they differentiate into mature myelinating oligodendrocytes. Adenosine A(2A) receptors are Gs-coupled P1 purinergic receptors which are widely distributed throughout the CNS. It has been demonstrated that OPCs express A(2A) receptors, but their functional role in these cells remains elusive. Oligodendrocytes express distinct voltage-gated ion channels depending on their maturation. Here, by electrophysiological recordings coupled with immunocytochemical labeling, we studied the effects of adenosine A(2A) receptors on membrane currents and differentiation of purified primary OPCs isolated from the rat cortex. We found that the selective A(2A) agonist, CGS21680, inhibits sustained, delayed rectifier, K(+) currents (I(K)) without modifying transient (I(A)) conductances. The effect was observed in all cells tested, independently from time in culture. CGS21680 inhibition of I(K) current was concentration-dependent (10-200 nM) and blocked in the presence of the selective A(2A) antagonist SCH58261 (100 nM). It is known that I(K) currents play an important role during OPC development since their block decreases cell proliferation and differentiation. In light of these data, our further aim was to investigate whether A(2A) receptors modulate these processes. CGS21680, applied at 100 nM in the culture medium of oligodendrocyte cultures, inhibits OPC differentiation (an effect prevented by SCH58261) without affecting cell proliferation. Data demonstrate that cultured OPCs express functional A(2A) receptors whose activation negatively modulate I(K) currents. We propose that, by this mechanism, A(2A) adenosine receptors inhibit OPC differentiation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Ginseng gintonin activates the human cardiac delayed rectifier K+ channel: involvement of Ca2+/calmodulin binding sites.

    PubMed

    Choi, Sun-Hye; Lee, Byung-Hwan; Kim, Hyeon-Joong; Jung, Seok-Won; Kim, Hyun-Sook; Shin, Ho-Chul; Lee, Jun-Hee; Kim, Hyoung-Chun; Rhim, Hyewhon; Hwang, Sung-Hee; Ha, Tal Soo; Kim, Hyun-Ji; Cho, Hana; Nah, Seung-Yeol

    2014-09-01

    Gintonin, a novel, ginseng-derived G protein-coupled lysophosphatidic acid (LPA) receptor ligand, elicits [Ca(2+)]i transients in neuronal and non-neuronal cells via pertussis toxin-sensitive and pertussis toxin-insensitive G proteins. The slowly activating delayed rectifier K(+) (I(Ks)) channel is a cardiac K(+) channel composed of KCNQ1 and KCNE1 subunits. The C terminus of the KCNQ1 channel protein has two calmodulin-binding sites that are involved in regulating I(Ks) channels. In this study, we investigated the molecular mechanisms of gintonin-mediated activation of human I(Ks) channel activity by expressing human I(Ks) channels in Xenopus oocytes. We found that gintonin enhances IKs channel currents in concentration- and voltage-dependent manners. The EC50 for the I(Ks) channel was 0.05 ± 0.01 μg/ml. Gintonin-mediated activation of the I(Ks) channels was blocked by an LPA1/3 receptor antagonist, an active phospholipase C inhibitor, an IP3 receptor antagonist, and the calcium chelator BAPTA. Gintonin-mediated activation of both the I(Ks) channel was also blocked by the calmodulin (CaM) blocker calmidazolium. Mutations in the KCNQ1 [Ca(2+)]i/CaM-binding IQ motif sites (S373P, W392R, or R539W)blocked the action of gintonin on I(Ks) channel. However, gintonin had no effect on hERG K(+) channel activity. These results show that gintonin-mediated enhancement of I(Ks) channel currents is achieved through binding of the [Ca(2+)]i/CaM complex to the C terminus of KCNQ1 subunit.

  16. Chronic Ca2+ influx through voltage-dependent Ca2+ channels enhance delayed rectifier K+ currents via activating Src family tyrosine kinase in rat hippocampal neurons.

    PubMed

    Yang, Yoon-Sil; Jeon, Sang-Chan; Kim, Dong-Kwan; Eun, Su-Yong; Jung, Sung-Cherl

    2017-03-01

    Excessive influx and the subsequent rapid cytosolic elevation of Ca 2+ in neurons is the major cause to induce hyperexcitability and irreversible cell damage although it is an essential ion for cellular signalings. Therefore, most neurons exhibit several cellular mechanisms to homeostatically regulate cytosolic Ca 2+ level in normal as well as pathological conditions. Delayed rectifier K + channels (I DR channels) play a role to suppress membrane excitability by inducing K + outflow in various conditions, indicating their potential role in preventing pathogenic conditions and cell damage under Ca 2+ -mediated excitotoxic conditions. In the present study, we electrophysiologically evaluated the response of I DR channels to hyperexcitable conditions induced by high Ca 2+ pretreatment (3.6 mM, for 24 hours) in cultured hippocampal neurons. In results, high Ca 2+ -treatment significantly increased the amplitude of I DR without changes of gating kinetics. Nimodipine but not APV blocked Ca 2+ -induced I DR enhancement, confirming that the change of I DR might be targeted by Ca 2+ influx through voltage-dependent Ca 2+ channels (VDCCs) rather than NMDA receptors (NMDARs). The VDCC-mediated I DR enhancement was not affected by either Ca 2+ -induced Ca 2+ release (CICR) or small conductance Ca 2+ -activated K + channels (SK channels). Furthermore, PP2 but not H89 completely abolished I DR enhancement under high Ca 2+ condition, indicating that the activation of Src family tyrosine kinases (SFKs) is required for Ca 2+ -mediated I DR enhancement. Thus, SFKs may be sensitive to excessive Ca 2+ influx through VDCCs and enhance I DR to activate a neuroprotective mechanism against Ca 2+ -mediated hyperexcitability in neurons.

  17. Hydrogen peroxide-induced reduction of delayed rectifier potassium current in hippocampal neurons involves oxidation of sulfhydryl groups.

    PubMed

    Hasan, Sonia M K; Redzic, Zoran B; Alshuaib, Waleed B

    2013-07-03

    This study examined the effect of H2O2 on the delayed rectifier potassium current (IKDR) in isolated hippocampal neurons. Whole-cell voltage-clamp experiments were performed on freshly dissociated hippocampal CA1 neurons of SD rats before and after treatment with H2O2. To reveal the mechanism behind H2O2-induced changes in IKDR, cells were treated with different oxidizing and reducing agents. External application of membrane permeable H2O2 reduced the amplitude and voltage-dependence of IKDR in a concentration dependent manner. Desferoxamine (DFO), an iron-chelator that prevents hydroxyl radical (OH) generation, prevented H2O2-induced reduction in IKDR. Application of the sulfhydryl-oxidizing agent 5,5 dithio-bis-nitrobenzoic acid (DTNB) mimicked the effect of H2O2. Sulfhydryl-reducing agents dithiothreitol (DTT) and glutathione (GSH) alone did not affect IKDR; however, DTT and GSH reversed and prevented the H2O2-induced inhibition of IKDR, respectively. Membrane impermeable agents GSH and DTNB showed effects only when added intracellularly identifying intracellular sulfhydryl groups as potential targets for hydroxyl-mediated oxidation. However, the inhibitory effects of DTNB and H2O2 at the positive test potentials were completely and partially abolished by DTT, respectively, suggesting an additional mechanism of action for H2O2, that is not shared by DTNB. In summary, this study provides evidence for the redox modulation of IKDR, identifies hydroxyl radical as an intermediate oxidant responsible for the H2O2-induced decrease in current amplitude and identifies intracellular sulfhydryl groups as an oxidative target. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Bepridil differentially inhibits two delayed rectifier K+ currents, IKr and IKs, in guinea-pig ventricular myocytes

    PubMed Central

    Wang, Jin-Cheng; Kiyosue, Tatsuto; Kiriyama, Kuninori; Arita, Makoto

    1999-01-01

    We investigated the effects of bepridil on the two components of the delayed rectifier K+ current, i.e., the rapidly activating (IKr) and the slowly activating (IKs) currents using tight-seal whole-cell patch-clamp techniques in guinea-pig ventricular myocytes, under blockade of L-type Ca2+ current with nitrendipine (5 μM) or D600 (1 μM).Bepridil decreased IKs under blockade of IKr with E4031 (5 μM), in a concentration-dependent manner. The concentration-dependent inhibition of IKs by bepridil was fitted by a curve, assuming one-to-one interactions between the channel and the drug molecule. The concentration of half-maximal inhibition (IC50) was found to be 6.2 μM.The effect of bepridil on IKr was assessed using an envelope-of-tails test. In the control condition, a ratio of the tail current to the time-dependent current measured during depolarization was large (>1) at shorter pulses (<200 ms), and it decreased to a steady state value of ∼0.4 with increases in the pulse duration. Bepridil at a concentration of 2 μM did not decrease this ratio at shorter pulses.In a short-pulse (duration=50 ms) experiment that largely activates IKr, the drug was found to block IKr in a cooperative manner (Hill coefficient=3.03) and the IC50 was 13.2 μM.These results suggest that bepridil at a clinical therapeutic concentration (∼2 μM) selectively blocks IKs but does not inhibit IKr. This may relate to the characteristic frequency-dependent effects of bepridil on the action potential duration (APD), e.g., the non-reverse use-dependent prolongation of APD. PMID:10588929

  19. Isoflurane depolarizes bronchopulmonary C neurons by inhibiting transient A-type and delayed rectifier potassium channels.

    PubMed

    Zhang, Zhenxiong; Zhuang, Jianguo; Zhang, Cancan; Xu, Fadi

    2013-04-01

    Inhalation of isoflurane (ISO), a widely used volatile anesthetic, can produce clinical tachypnea. In dogs, this response is reportedly mediated by bronchopulmonary C-fibers (PCFs), but the relevant mechanisms remain unclear. Activation of transient A-type potassium current (IA) channels and delayed rectifier potassium current (IK) channels hyperpolarizes neurons, and inhibition of both channels by ISO increases neural firing. Due to the presence of these channels in the cell bodies of rat PCFs, we determined whether ISO could stimulate PCFs to produce tachypnea in anesthetized rats, and, if so, whether this response resulted from ISO-induced depolarization of the pulmonary C neurons via the inhibition of IA and IK. We recorded ventilatory responses to 5% ISO exposure in anesthetized rats before and after blocking PCF conduction and the responses of pulmonary C neurons (extracellularly recorded) to ISO exposure. ISO-induced (1mM) changes in pulmonary C neuron membrane potential and IA/IK were tested using the perforated patch clamp technique. We found that: (1) ISO inhalation evoked a brief tachypnea (∼7s) and that this response disappeared after blocking PCF conduction; (2) the ISO significantly elevated (by 138%) the firing rate of most pulmonary C neurons (17 out of 21) in the nodose ganglion; and (3) ISO perfusion depolarized the pulmonary C neurons in the vitro and inhibited both IA and IK, and this evoked-depolarization was largely diminished after blocking both IA and IK. Our results suggest that ISO is able to stimulate PCFs to elicit tachypnea in rats, at least partly, via inhibiting IA and IK, thereby depolarizing the pulmonary C neurons. Copyright © 2013. Published by Elsevier B.V.

  20. A Slowed Cell Cycle Stabilizes the Budding Yeast Genome.

    PubMed

    Vinton, Peter J; Weinert, Ted

    2017-06-01

    During cell division, aberrant DNA structures are detected by regulators called checkpoints that slow division to allow error correction. In addition to checkpoint-induced delay, it is widely assumed, though rarely shown, that merely slowing the cell cycle might allow more time for error detection and correction, thus resulting in a more stable genome. Fidelity by a slowed cell cycle might be independent of checkpoints. Here we tested the hypothesis that a slowed cell cycle stabilizes the genome, independent of checkpoints, in the budding yeast Saccharomyces cerevisiae We were led to this hypothesis when we identified a gene ( ERV14 , an ER cargo membrane protein) that when mutated, unexpectedly stabilized the genome, as measured by three different chromosome assays. After extensive studies of pathways rendered dysfunctional in erv14 mutant cells, we are led to the inference that no particular pathway is involved in stabilization, but rather the slowed cell cycle induced by erv14 stabilized the genome. We then demonstrated that, in genetic mutations and chemical treatments unrelated to ERV14 , a slowed cell cycle indeed correlates with a more stable genome, even in checkpoint-proficient cells. Data suggest a delay in G2/M may commonly stabilize the genome. We conclude that chromosome errors are more rarely made or are more readily corrected when the cell cycle is slowed (even ∼15 min longer in an ∼100-min cell cycle). And, some chromosome errors may not signal checkpoint-mediated responses, or do not sufficiently signal to allow correction, and their correction benefits from this "time checkpoint." Copyright © 2017 by the Genetics Society of America.

  1. Controlling pulse delay by light and low magnetic fields: slow light in emerald induced by transient spectral hole-burning.

    PubMed

    Rajan, Rajitha Papukutty; Riesen, Hans; Rebane, Aleksander

    2013-11-15

    Slow light based on transient spectral hole-burning is reported for emerald, Be(3)Al(2)Si(6)O(18):Cr(3+). Experiments were conducted in π polarization on the R(1)(± 3/2) line (E2 ← A(2)4) at 2.2 K in zero field and low magnetic fields B||c. The hole width was strongly dependent on B||c, and this allowed us to smoothly tune the pulse delay from 40 to 154 ns between zero field and B||c = 15.2 mT. The latter corresponds to a group velocity of 16 km/s. Slow light in conjunction with a linear filter theory can be used as a powerful and accurate technique in time-resolved spectroscopy, e.g., to determine spectral hole-widths as a function of time.

  2. Delay-tunable gap-soliton-based slow-light system

    NASA Astrophysics Data System (ADS)

    Mok, Joe T.; de Sterke, C. Martijn; Eggleton, Benjamin J.

    2006-12-01

    We numerically and analytically evaluate the delay of solitons propagating slowly, and without broadening, in an apodized Bragg grating. Simulations indicate that a 100 mm Bragg grating with Δn = 10-3 can delay sub-nanosecond pulses by nearly 20 pulse widths without any change in the output pulse width. Delay tunability is achieved by simultaneously adjusting the launch power and detuning. A simple analytic model is developed to describe the monotonic dependence of delay on Δn and compared with simulations. As the intensity may be greatly enhanced due to a reduced velocity, a procedure for improving the delay while avoiding material damage is outlined.

  3. Meta-analysis to refine map position and reduce confidence intervals for delayed canopy wilting QTLs in soybean

    USDA-ARS?s Scientific Manuscript database

    Slow canopy wilting in soybean has been identified as a potentially beneficial trait for ameliorating drought effects on yield. Previous research identified QTLs for slow wilting from two different bi-parental populations and this information was combined with data from three other populations to id...

  4. Feedback loop compensates for rectifier nonlinearity

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Signal processing circuit with two negative feedback loops rectifies two sinusoidal signals which are 180 degrees out of phase and produces a single full-wave rectified output signal. Each feedback loop incorporates a feedback rectifier to compensate for the nonlinearity of the circuit.

  5. Effects of protein-protein interactions and ligand binding on the ion permeation in KCNQ1 potassium channel.

    PubMed

    Jalily Hasani, Horia; Ganesan, Aravindhan; Ahmed, Marawan; Barakat, Khaled H

    2018-01-01

    The voltage-gated KCNQ1 potassium ion channel interacts with the type I transmembrane protein minK (KCNE1) to generate the slow delayed rectifier (IKs) current in the heart. Mutations in these transmembrane proteins have been linked with several heart-related issues, including long QT syndromes (LQTS), congenital atrial fibrillation, and short QT syndrome. Off-target interactions of several drugs with that of KCNQ1/KCNE1 ion channel complex have been known to cause fatal cardiac irregularities. Thus, KCNQ1/KCNE1 remains an important avenue for drug-design and discovery research. In this work, we present the structural and mechanistic details of potassium ion permeation through an open KCNQ1 structural model using the combined molecular dynamics and steered molecular dynamics simulations. We discuss the processes and key residues involved in the permeation of a potassium ion through the KCNQ1 ion channel, and how the ion permeation is affected by (i) the KCNQ1-KCNE1 interactions and (ii) the binding of chromanol 293B ligand and its derivatives into the complex. The results reveal that interactions between KCNQ1 with KCNE1 causes a pore constriction in the former, which in-turn forms small energetic barriers in the ion-permeation pathway. These findings correlate with the previous experimental reports that interactions of KCNE1 dramatically slows the activation of KCNQ1. Upon ligand-binding onto the complex, the energy-barriers along ion permeation path are more pronounced, as expected, therefore, requiring higher force in our steered-MD simulations. Nevertheless, pulling the ion when a weak blocker is bound to the channel does not necessitate high force in SMD. This indicates that our SMD simulations have been able to discern between strong and week blockers and reveal their influence on potassium ion permeation. The findings presented here will have some implications in understanding the potential off-target interactions of the drugs with the KCNQ1/KCNE1 channel that lead to cardiotoxic effects.

  6. 46 CFR 183.360 - Semiconductor rectifier systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Semiconductor rectifier systems. 183.360 Section 183.360... TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.360 Semiconductor rectifier systems. (a) Each semiconductor rectifier system must have an adequate heat removal system that prevents...

  7. 46 CFR 183.360 - Semiconductor rectifier systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Semiconductor rectifier systems. 183.360 Section 183.360... TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.360 Semiconductor rectifier systems. (a) Each semiconductor rectifier system must have an adequate heat removal system that prevents...

  8. An RF Energy Harvester System Using UHF Micropower CMOS Rectifier Based on a Diode Connected CMOS Transistor

    PubMed Central

    Shokrani, Mohammad Reza; Hamidon, Mohd Nizar B.; Rokhani, Fakhrul Zaman; Shafie, Suhaidi Bin

    2014-01-01

    This paper presents a new type diode connected MOS transistor to improve CMOS conventional rectifier's performance in RF energy harvester systems for wireless sensor networks in which the circuits are designed in 0.18 μm TSMC CMOS technology. The proposed diode connected MOS transistor uses a new bulk connection which leads to reduction in the threshold voltage and leakage current; therefore, it contributes to increment of the rectifier's output voltage, output current, and efficiency when it is well important in the conventional CMOS rectifiers. The design technique for the rectifiers is explained and a matching network has been proposed to increase the sensitivity of the proposed rectifier. Five-stage rectifier with a matching network is proposed based on the optimization. The simulation results shows 18.2% improvement in the efficiency of the rectifier circuit and increase in sensitivity of RF energy harvester circuit. All circuits are designed in 0.18 μm TSMC CMOS technology. PMID:24782680

  9. An RF energy harvester system using UHF micropower CMOS rectifier based on a diode connected CMOS transistor.

    PubMed

    Shokrani, Mohammad Reza; Khoddam, Mojtaba; Hamidon, Mohd Nizar B; Kamsani, Noor Ain; Rokhani, Fakhrul Zaman; Shafie, Suhaidi Bin

    2014-01-01

    This paper presents a new type diode connected MOS transistor to improve CMOS conventional rectifier's performance in RF energy harvester systems for wireless sensor networks in which the circuits are designed in 0.18  μm TSMC CMOS technology. The proposed diode connected MOS transistor uses a new bulk connection which leads to reduction in the threshold voltage and leakage current; therefore, it contributes to increment of the rectifier's output voltage, output current, and efficiency when it is well important in the conventional CMOS rectifiers. The design technique for the rectifiers is explained and a matching network has been proposed to increase the sensitivity of the proposed rectifier. Five-stage rectifier with a matching network is proposed based on the optimization. The simulation results shows 18.2% improvement in the efficiency of the rectifier circuit and increase in sensitivity of RF energy harvester circuit. All circuits are designed in 0.18 μm TSMC CMOS technology.

  10. Molecular Coupling between Voltage Sensor and Pore Opening in the Arabidopsis Inward Rectifier K+ Channel KAT1

    PubMed Central

    Latorre, Ramon; Olcese, Riccardo; Basso, Claudia; Gonzalez, Carlos; Muñoz, Fabian; Cosmelli, Diego; Alvarez, Osvaldo

    2003-01-01

    Animal and plant voltage-gated ion channels share a common architecture. They are made up of four subunits and the positive charges on helical S4 segments of the protein in animal K+ channels are the main voltage-sensing elements. The KAT1 channel cloned from Arabidopsis thaliana, despite its structural similarity to animal outward rectifier K+ channels is, however, an inward rectifier. Here we detected KAT1-gating currents due to the existence of an intrinsic voltage sensor in this channel. The measured gating currents evoked in response to hyperpolarizing voltage steps consist of a very fast (τ = 318 ± 34 μs at −180 mV) and a slower component (4.5 ± 0.5 ms at −180 mV) representing charge moved when most channels are closed. The observed gating currents precede in time the ionic currents and they are measurable at voltages (less than or equal to −60) at which the channel open probability is negligible (≈10−4). These two observations, together with the fact that there is a delay in the onset of the ionic currents, indicate that gating charge transits between several closed states before the KAT1 channel opens. To gain insight into the molecular mechanisms that give rise to the gating currents and lead to channel opening, we probed external accessibility of S4 domain residues to methanethiosulfonate-ethyltrimethylammonium (MTSET) in both closed and open cysteine-substituted KAT1 channels. The results demonstrate that the putative voltage–sensing charges of S4 move inward when the KAT1 channels open. PMID:14517271

  11. Histamine facilitates GABAergic transmission in the rat entorhinal cortex: Roles of H1 and H2 receptors, Na+ -permeable cation channels, and inward rectifier K+ channels.

    PubMed

    Cilz, Nicholas I; Lei, Saobo

    2017-05-01

    In the brain, histamine (HA) serves as a neuromodulator and a neurotransmitter released from the tuberomammillary nucleus (TMN). HA is involved in wakefulness, thermoregulation, energy homeostasis, nociception, and learning and memory. The medial entorhinal cortex (MEC) receives inputs from the TMN and expresses HA receptors (H 1 , H 2 , and H 3 ). We investigated the effects of HA on GABAergic transmission in the MEC and found that HA significantly increased the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) with an EC 50 of 1.3 µM, but failed to significantly alter sIPSC amplitude. HA-induced increases in sIPSC frequency were sensitive to tetrodotoxin (TTX), required extracellular Ca 2+ , and persisted when GDP-β-S, a G-protein inactivator, was applied postsynaptically via the recording pipettes, indicating that HA increased GABA release by facilitating the excitability of GABAergic interneurons in the MEC. Recordings from local MEC interneurons revealed that HA significantly increased their excitability as determined by membrane depolarization, generation of an inward current at -65 mV, and augmentation of action potential firing frequency. Both H 1 and H 2 receptors were involved in HA-induced increases in sIPSCs and interneuron excitability. Immunohistochemical staining showed that both H 1 and H 2 receptors are expressed on GABAergic interneurons in the MEC. HA-induced depolarization of interneurons involved a mixed ionic mechanism including activation of a Na + -permeable cation channel and inhibition of a cesium-sensitive inward rectifier K + channel, although HA also inhibited the delayed rectifier K + channels. Our results may provide a cellular mechanism, at least partially, to explain the roles of HA in the brain. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. 46 CFR 129.360 - Semiconductor-rectifier systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Semiconductor-rectifier systems. 129.360 Section 129.360... INSTALLATIONS Power Sources and Distribution Systems § 129.360 Semiconductor-rectifier systems. (a) Each semiconductor-rectifier system must have an adequate heat-removal system to prevent overheating. (b) If a...

  13. 46 CFR 120.360 - Semiconductor rectifier systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Semiconductor rectifier systems. 120.360 Section 120.360... INSTALLATION Power Sources and Distribution Systems § 120.360 Semiconductor rectifier systems. (a) Each semiconductor rectifier system must have an adequate heat removal system that prevents overheating. (b) Where a...

  14. 46 CFR 129.360 - Semiconductor-rectifier systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Semiconductor-rectifier systems. 129.360 Section 129.360... INSTALLATIONS Power Sources and Distribution Systems § 129.360 Semiconductor-rectifier systems. (a) Each semiconductor-rectifier system must have an adequate heat-removal system to prevent overheating. (b) If a...

  15. 46 CFR 120.360 - Semiconductor rectifier systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Semiconductor rectifier systems. 120.360 Section 120.360... INSTALLATION Power Sources and Distribution Systems § 120.360 Semiconductor rectifier systems. (a) Each semiconductor rectifier system must have an adequate heat removal system that prevents overheating. (b) Where a...

  16. Resonant Rectifier ICs for Piezoelectric Energy Harvesting Using Low-Voltage Drop Diode Equivalents

    PubMed Central

    Din, Amad Ud; Chandrathna, Seneke Chamith; Lee, Jong-Wook

    2017-01-01

    Herein, we present the design technique of a resonant rectifier for piezoelectric (PE) energy harvesting. We propose two diode equivalents to reduce the voltage drop in the rectifier operation, a minuscule-drop-diode equivalent (MDDE) and a low-drop-diode equivalent (LDDE). The diode equivalents are embedded in resonant rectifier integrated circuits (ICs), which use symmetric bias-flip to reduce the power used for charging and discharging the internal capacitance of a PE transducer. The self-startup function is supported by synchronously generating control pulses for the bias-flip from the PE transducer. Two resonant rectifier ICs, using both MDDE and LDDE, are fabricated in a 0.18 μm CMOS process and their performances are characterized under external and self-power conditions. Under the external-power condition, the rectifier using LDDE delivers an output power POUT of 564 μW and a rectifier output voltage VRECT of 3.36 V with a power transfer efficiency of 68.1%. Under self-power conditions, the rectifier using MDDE delivers a POUT of 288 μW and a VRECT of 2.4 V with a corresponding efficiency of 78.4%. Using the proposed bias-flip technique, the power extraction capability of the proposed rectifier is 5.9 and 3.0 times higher than that of a conventional full-bridge rectifier. PMID:28422085

  17. Resonant Rectifier ICs for Piezoelectric Energy Harvesting Using Low-Voltage Drop Diode Equivalents.

    PubMed

    Din, Amad Ud; Chandrathna, Seneke Chamith; Lee, Jong-Wook

    2017-04-19

    Herein, we present the design technique of a resonant rectifier for piezoelectric (PE) energy harvesting. We propose two diode equivalents to reduce the voltage drop in the rectifier operation, a minuscule-drop-diode equivalent (MDDE) and a low-drop-diode equivalent (LDDE). The diode equivalents are embedded in resonant rectifier integrated circuits (ICs), which use symmetric bias-flip to reduce the power used for charging and discharging the internal capacitance of a PE transducer. The self-startup function is supported by synchronously generating control pulses for the bias-flip from the PE transducer. Two resonant rectifier ICs, using both MDDE and LDDE, are fabricated in a 0.18 μm CMOS process and their performances are characterized under external and self-power conditions. Under the external-power condition, the rectifier using LDDE delivers an output power P OUT of 564 μW and a rectifier output voltage V RECT of 3.36 V with a power transfer efficiency of 68.1%. Under self-power conditions, the rectifier using MDDE delivers a P OUT of 288 μW and a V RECT of 2.4 V with a corresponding efficiency of 78.4%. Using the proposed bias-flip technique, the power extraction capability of the proposed rectifier is 5.9 and 3.0 times higher than that of a conventional full-bridge rectifier.

  18. Academic Procrastinators, Strategic Delayers and Something Betwixt and Between: An Interview Study

    ERIC Educational Resources Information Center

    Lindblom-Ylänne, Sari; Saariaho, Emmi; Inkinen, Mikko; Haarala-Muhonen, Anne; Hailikari, Telle

    2015-01-01

    The study explored university undergraduates' dilatory behaviour, more precisely, procrastination and strategic delaying. Using qualitative interview data, we applied a theory-driven and person-oriented approach to test the theoretical model of Klingsieck (2013). The sample consisted of 28 Bachelor students whose study pace had been slow during…

  19. Effect of colectomy on gastric emptying in idiopathic slow-transit constipation.

    PubMed

    Hemingway, D M; Finlay, I G

    2000-09-01

    Gastric emptying is delayed in patients with idiopathic slow-transit constipation (ISTC). Gastric emptying was measured before and after colectomy and ileorectal anastomosis in patients with ISTC to determine whether the abnormality persists after operation. Twelve patients undergoing colectomy for severe ISTC had solid-phase gastric emptying measured after an overnight fast. All 12 had an uncomplicated subtotal colectomy and ileorectal anastomosis; 11 had an excellent functional outcome. In ten of these patients gastric emptying was repeated within 3 months of operation. Seven patients (including the remaining two) had the study performed at 1 year. All 12 patients had severely delayed gastric emptying before operation. Gastric emptying remained delayed in the ten patients who underwent an early postoperative gastric emptying study. Six of seven patients assessed at 1 year had improved gastric emptying, of whom four had returned to normal. Functional outcome did not relate to gastric emptying. Patients with ISTC have delayed gastric emptying. In some patients this returns to normal after colectomy, but is persistent in others. This may have implications for our understanding of ISTC.

  20. Interaction between Liénard and Ikeda dynamics in a nonlinear electro-optical oscillator with delayed bandpass feedback.

    PubMed

    Marquez, Bicky A; Larger, Laurent; Brunner, Daniel; Chembo, Yanne K; Jacquot, Maxime

    2016-12-01

    We report on experimental and theoretical analysis of the complex dynamics generated by a nonlinear time-delayed electro-optic bandpass oscillator. We investigate the interaction between the slow- and fast-scale dynamics of autonomous oscillations in the breather regime. We analyze in detail the coupling between the fast-scale behavior associated to a characteristic low-pass Ikeda behavior and the slow-scale dynamics associated to a Liénard limit-cycle. Finally, we show that when projected onto a two-dimensional phase space, the attractors corresponding to periodic and chaotic breathers display a spiral-like pattern, which strongly depends on the shape of the nonlinear function.

  1. Lower Extremity Muscle Activity During a Women’s Overhand Lacrosse Shot

    PubMed Central

    Millard, Brianna M.; Mercer, John A.

    2014-01-01

    The purpose of this study was to describe lower extremity muscle activity during the lacrosse shot. Participants (n=5 females, age 22±2 years, body height 162.6±15.2 cm, body mass 63.7±23.6 kg) were free from injury and had at least one year of lacrosse experience. The lead leg was instrumented with electromyography (EMG) leads to measure muscle activity of the rectus femoris (RF), biceps femoris (BF), tibialis anterior (TA), and medial gastrocnemius (GA). Participants completed five trials of a warm-up speed shot (Slow) and a game speed shot (Fast). Video analysis was used to identify the discrete events defining specific movement phases. Full-wave rectified data were averaged per muscle per phase (Crank Back Minor, Crank Back Major, Stick Acceleration, Stick Deceleration). Average EMG per muscle was analyzed using a 4 (Phase) × 2 (Speed) ANOVA. BF was greater during Fast vs. Slow for all phases (p<0.05), while TA was not influenced by either Phase or Speed (p>0.05). RF and GA were each influenced by the interaction of Phase and Speed (p<0.05) with GA being greater during Fast vs. Slow shots during all phases and RF greater during Crank Back Minor and Major as well as Stick Deceleration (p<0.05) but only tended to be greater during Stick Acceleration (p=0.076) for Fast vs. Slow. The greater muscle activity (BF, RF, GA) during Fast vs. Slow shots may have been related to a faster approach speed and/or need to create a stiff lower extremity to allow for faster upper extremity movements. PMID:25114727

  2. 75 FR 24747 - SCI, LLC/Zener-Rectifier Operations Division A Wholly Owned Subsidiary of SCI, LLC/ON...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-05

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-70,235] SCI, LLC/Zener-Rectifier... Adjustment Assistance on October 19, 2009, applicable to workers of SCI LLC/Zener-Rectifier, Operations... Technical Resources were employed on-site at the Phoenix Arizona location of SCI LLC/Zener-Rectifier...

  3. Apparatus for controlling the firing of rectifiers in polyphase rectifying circuits

    DOEpatents

    Yarema, R.J.

    1979-09-18

    A polyphase rectifier is controlled with precision by a circuit that filters and shifts a reference signal associated with each phase and that starts a ramp signal at a zero crossing of the shifted reference signal. The difference between the ramp signal and an external trigger signal is used to generate a pulse that switches power rectifiers into conduction. The circuit reduces effects of variations that introduce subharmonics into a rectified signal and it can be used for constant or time-varying external trigger signals.

  4. Photonuclear Contributions to SNS Pulse Shapes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClanahan, Tucker C.; Iverson, Erik B.; Gallmeier, Franz X.

    Short-pulsed sources like the Spallation Neutron Source (SNS) and ISIS produce bursts of neutron pulses at rates of 10-60 Hz, with sub-microsecond proton pulses impacting on high-Z target materials. Moderators are grouped around the target to receive the fast neutrons generated from spallation reactions to moderate them effciently to thermal and sub-thermal energies and to feed narrow neutron pulses to neutron scattering instruments. The scattering instruments use the neutrons as a probe for material investigations, and make use of time-of-flight (TOF) methods for resolving the neutron energy. The energy resolution of scattering instruments depends on the narrow time-structure of themore » neutron pulses, while neutrons in the long tail of the emission time distributions can degrade the instrument performance and add undesired background to measurements. The SNS neutronics team is investigating a possible source term impacting the background at short-pulsed spallation sources. The ISIS TS2 project claims to have significantly reduced neutron scattering instrument background levels by the elimination or reduction of iron shielding in the target-moderator-reflector assembly. An alternative hypothesis, also proposed by ISIS, suggests that this apparent reduction arises from moving beamline shielding away from the neutron guide channels, reducing albedo down the beamlines. In both hypotheses, the background neutrons in question are believed to be generated by photonuclear reactions. If the background neutrons are indeed generated via photonuclear channels, then they are generated in a time-dependent fashion, since most of the high-energy photons capable of inducing photonuclear production are gone within a few microseconds following the proton pulse. To evaluate this e ect, we have enabled photonuclear reactions in a series of studies for the SNS first target station (FTS) taking advantage of its Monte Carlo model. Using a mixture of ENDF/B VII.0 and TENDL-2014 photonuclear cross sections available and the CEM03 physics model within MCNPX 2.6.0 in the simulation, we are able to estimate the impact of photoneutron production on both overall neutron production and delayed neutron production. We find that a significant number of photon-induced neutrons are produced a few milliseconds after the proton pulse, following prompt gamma emission through the capture of neutrons in the slowing-down and thermalization processes. We name these "slowing-down delayed neutrons" to distinguish them from either "activation-delayed neutrons" or "beta-delayed neutrons." The beta-delayed and activation-delayed neutrons were not part of this study, and will be addressed elsewhere. While these other delayed neutron channels result in the time-independent (constant) production of fast neutrons outside of the prompt pulse, the slowing-down delayed neutrons also a ect the shape of the pulses. Although numerically insignificant in most cases, we describe a set of scenarios related to T0-chopper operation in which the slowing-down delayed neutrons may be important.« less

  5. Do Aging and Dual-Tasking Impair the Capacity to Store and Retrieve Visuospatial Information Needed to Guide Perturbation-Evoked Reach-To-Grasp Reactions?

    PubMed Central

    Cheng, Kenneth C.; Pratt, Jay; Maki, Brian E.

    2013-01-01

    A recent study involving young adults showed that rapid perturbation-evoked reach-to-grasp balance-recovery reactions can be guided successfully with visuospatial-information (VSI) retained in memory despite: 1) a reduction in endpoint accuracy due to recall-delay (time between visual occlusion and perturbation-onset, PO) and 2) slowing of the reaction when performing a concurrent cognitive task during the recall-delay interval. The present study aimed to determine whether this capacity is compromised by effects of aging. Ten healthy older adults were tested with the previous protocol and compared with the previously-tested young adults. Reactions to recover balance by grasping a small handhold were evoked by unpredictable antero-posterior platform-translation (barriers deterred stepping reactions), while using liquid-crystal goggles to occlude vision post-PO and for varying recall-delay times (0-10s) prior to PO (the handhold was moved unpredictably to one of four locations 2s prior to vision-occlusion). Subjects also performed a spatial- or non-spatial-memory cognitive task during the delay-time in a subset of trials. Results showed that older adults had slower reactions than the young across all experimental conditions. Both age groups showed similar reduction in medio-lateral end-point accuracy when recall-delay was longest (10s), but differed in the effect of recall delay on vertical hand elevation. For both age groups, engaging in either the non-spatial or spatial-memory task had similar (slowing) effects on the arm reactions; however, the older adults also showed a dual-task interference effect (poorer cognitive-task performance) that was specific to the spatial-memory task. This provides new evidence that spatial working memory plays a role in the control of perturbation-evoked balance-recovery reactions. The delays in completing the reaction that occurred when performing either cognitive task suggest that such dual-task situations in daily life could increase risk of falling in seniors, particularly when combined with the general age-related slowing that was observed across all experimental conditions. PMID:24223942

  6. Fragile Spectral and Temporal Auditory Processing in Adolescents with Autism Spectrum Disorder and Early Language Delay

    ERIC Educational Resources Information Center

    Boets, Bart; Verhoeven, Judith; Wouters, Jan; Steyaert, Jean

    2015-01-01

    We investigated low-level auditory spectral and temporal processing in adolescents with autism spectrum disorder (ASD) and early language delay compared to matched typically developing controls. Auditory measures were designed to target right versus left auditory cortex processing (i.e. frequency discrimination and slow amplitude modulation (AM)…

  7. Effects of joint attention on long-term memory in 9-month-old infants: an event-related potentials study.

    PubMed

    Kopp, Franziska; Lindenberger, Ulman

    2011-07-01

    Joint attention develops during the first year of life but little is known about its effects on long-term memory. We investigated whether joint attention modulates long-term memory in 9-month-old infants. Infants were familiarized with visually presented objects in either of two conditions that differed in the degree of joint attention (high versus low). EEG indicators in response to old and novel objects were probed directly after the familiarization phase (immediate recognition), and following a 1-week delay (delayed recognition). In immediate recognition, the amplitude of positive slow-wave activity was modulated by joint attention. In the delayed recognition, the amplitude of the Pb component differentiated between high and low joint attention. In addition, the positive slow-wave amplitude during immediate and delayed recognition correlated with the frequency of infants' looks to the experimenter during familiarization. Under both high- and low-joint-attention conditions, the processing of unfamiliar objects was associated with an enhanced Nc component. Our results show that the degree of joint attention modulates EEG during immediate and delayed recognition. We conclude that joint attention affects long-term memory processing in 9-month-old infants by enhancing the relevance of attended items. © 2010 Blackwell Publishing Ltd.

  8. The chaotic physician work world.

    PubMed

    Paterick, Timothy E

    2014-01-01

    Physicians are immersed in a work environment where daily challenges seem to represent a condition or place of increasing disorder and confusion. The degree of "entropy" in the physician workplace is increasing exponentially. Healthcare systems are in a state of chaos and are dynamic--meaning the behavior at one time influences its behavior in the future. The initial changes have future exponential fluctuations that have created a state of healthcare crisis. These systems are nonlinear; the metaphor to describe the unruly nature of the physician work world is that in which the flap of a butterfly wing in Brazil can set off a tornado in Texas. The tornado affecting physician work life must be understood to be rectified. Physicians must slow down and pay attention.

  9. Electrophysiology of the mammillary complex in vitro. I. Tuberomammillary and lateral mammillary neurons

    NASA Technical Reports Server (NTRS)

    Llinas, R. R.; Alonso, A.

    1992-01-01

    1. The electrophysiological properties of the tuberomammillary and lateral mammillary neurons in the guinea pig mammillary body were studied using an in vitro brain slice preparation. 2. Tuberomammillary (n = 79) neurons were recorded mainly ventral to the lateral mammillary body as well as ventromedially to the fornix within the rostral part of the medial mammillary nucleus. Intracellular staining with horseradish peroxidase (n = 9) and Lucifer yellow (n = 3) revealed that these cells have several thick, long, spiny dendrites emerging from large (20-35 microns) fusiform somata. 3. Most tuberomammillary neurons (66%) fired spontaneously at a relatively low frequency (0.5-10 Hz) at the resting membrane potential. The action potentials were broad (2.3 ms) with a prominent Ca(2+)-dependent shoulder on the falling phase. Deep (17.8 mV), long-lasting spike afterhyperpolarizations were largely Ca(2+)-independent. 4. All tuberomammillary neurons recorded displayed pronounced delayed firing when the cells were activated from a potential negative to the resting level. The cells also displayed a delayed return to the baseline at the break of hyperpolarizing pulses applied from a membrane potential level close to firing threshold. Analysis of the voltage- and time dependence of this delayed rectification suggested the presence of a transient outward current similar to the A current (IA). These were not completely blocked by high concentrations of 4-aminopyridine, whereas the delayed onset of firing was always abolished when voltage-dependent Ca2+ conductances were blocked by superfusion with Cd2+. 5. Tuberomammillary neurons also displayed inward rectification in the hyperpolarizing and, primarily, depolarizing range. Block of voltage-gated Na(+)-dependent conductances with tetrodotoxin (TTX) selectively abolished inward rectification in the depolarizing range, indicating the presence of a persistent low-threshold sodium-dependent conductance (gNap). In fact, persistent TTX-sensitive, plateau potentials were always elicited following Ca2+ block with Cd2+ when K+ currents were reduced by superfusion with tetraethylammonium. 6. The gNap in tuberomammillary neurons may subserve the pacemaker current underlying the spontaneous firing of these cells. The large-amplitude spike afterhyperpolarization of these neurons sets the availability of the transient outward rectifier, which, in conjunction with the pacemaker current, establishes the rate at which membrane potential approaches spike threshold. 7. Repetitive firing elicited by direct depolarization enhanced the spike shoulder of tuberomammillary neurons. Spike trains were followed by a Ca(2+)-dependent, apamine-sensitive, slow afterhyperpolarization. 8. Lateral mammillary neurons were morphologically and electrophysiologically different from tuberomammillary neurons. All lateral mammillary neurons neurons recorded (n = 44) were silent at rest (-60 mV).(ABSTRACT TRUNCATED AT 400 WORDS).

  10. What Does Ipsilateral Delay Activity Reflect? Inferences from Slow Potentials in a Lateralized Visual Working Memory Task

    ERIC Educational Resources Information Center

    Arend, Anna M.; Zimmer, Hubert D.

    2011-01-01

    In the lateralized change detection task, two item arrays are presented, one on each side of the display. Participants have to remember the items in the relevant hemifield and ignore the items in the irrelevant hemifield. A difference wave between contralateral and ipsilateral slow potentials with respect to the relevant items, the contralateral…

  11. 76 FR 14279 - Safety Zone; Todd Pacific Shipyards Vessel Roll-Out, West Duwamish Waterway, Seattle, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-16

    ... from entering or remaining in the safety zone unless authorized by the Captain of the Port or a... published. In addition, given the dangers involved with a large slow moving dry dock maneuvering close to... with a large slow moving dry dock maneuvering close to the shore, delaying the effective date of this...

  12. The race between infection and immunity - how do pathogens set the pace?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ribiero, Ruy M

    2009-01-01

    Infection is often referred to as a race between pathogen and immune response. This metaphor suggests that slower growing pathogens should be more easily controlled. However, a growing body ofevidence shows that many chronic infections are caused by failure to control slow growing pathogens. The slow growth of pathogens appears to directly affect the kinetics of the immune response. Compared with the response to fast growing pathogens, the T cell response to slow pathogens is delayed in its initiation, lymphocyte expansion is slow and the response often fails to clear the pathogen, leading to chronic infection. Understanding the 'rules ofthemore » race' for slow growing pathogens has important implications for vaccine design and immune control of many chronic infections.« less

  13. Magnetic-field-dependent slow light in strontium atom-cavity system

    NASA Astrophysics Data System (ADS)

    Liu, Zeng-Xing; Wang, Bao; Kong, Cui; Xiong, Hao; Wu, Ying

    2018-03-01

    Realizing and controlling a long-lived slow light is of fundamental importance in physics and may find applications in quantum router and quantum information processing. In this work, we propose a feasible scheme to realize the slow light in a strontium atom-cavity system, in which the value of group delay can be continuously adjusted within a range of different Zeeman splittings and vacuum Rabi frequencies by varying the applied static magnetic field and the atom number instead of a strong coherent field. In our scheme, the major limitations of the slow-light structure, namely, dispersion and loss, can be effectively resolved, and so our scheme may help to achieve the practical application of slow light relevant to the optical communication network.

  14. Different patterns of modality dominance across development.

    PubMed

    Barnhart, Wesley R; Rivera, Samuel; Robinson, Christopher W

    2018-01-01

    The present study sought to better understand how children, young adults, and older adults attend and respond to multisensory information. In Experiment 1, young adults were presented with two spoken words, two pictures, or two word-picture pairings and they had to determine if the two stimuli/pairings were exactly the same or different. Pairing the words and pictures together slowed down visual but not auditory response times and delayed the latency of first fixations, both of which are consistent with a proposed mechanism underlying auditory dominance. Experiment 2 examined the development of modality dominance in children, young adults, and older adults. Cross-modal presentation attenuated visual accuracy and slowed down visual response times in children, whereas older adults showed the opposite pattern, with cross-modal presentation attenuating auditory accuracy and slowing down auditory response times. Cross-modal presentation also delayed first fixations in children and young adults. Mechanisms underlying modality dominance and multisensory processing are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. CNFET-based voltage rectifier circuit for biomedical implantable applications

    NASA Astrophysics Data System (ADS)

    Tu, Yonggen; Qian, Libo; Xia, Yinshui

    2017-02-01

    Carbon nanotube field effect transistor (CNFET) shows lower threshold voltage and smaller leakage current in comparison to its CMOS counterpart. In this paper, two kinds of CNFET-based rectifiers, full-wave rectifiers and voltage doubler rectifiers are presented for biomedical implantable applications. Based on the standard 32 nm CNFET model, the electrical performance of CNFET rectifiers is analyzed and compared. Simulation results show the voltage conversion efficiency (VCE) and power conversion efficiency (PCE) achieve 70.82% and 72.49% for CNFET full-wave rectifiers and 56.60% and 61.17% for CNFET voltage double rectifiers at typical 1.0 V input voltage excitation, which are higher than that of CMOS design. Moreover, considering the controllable property of CNFET threshold voltage, the effect of various design parameters on the electrical performance is investigated. It is observed that the VCE and PCE of CNFET rectifier increase with increasing CNT diameter and number of tubes. The proposed results would provide some guidelines for design and optimization of CNFET-based rectifier circuits. Project supported by the National Natural Science Foundation of China (Nos. 61131001, 61404077, 61571248), the Science and Technology Fund of Zhejiang Province (No. 2015C31090), the Natural Science Foundation of Ningbo (No. 2014A610147), State Key Laboratory of ASIC & System (No. 2015KF006) and the K. C. Wong Magna Fund in Ningbo University.

  16. Pharmacological Conversion of a Cardiac Inward Rectifier into an Outward Rectifier Potassium Channel.

    PubMed

    Moreno-Galindo, Eloy G; Sanchez-Chapula, Jose A; Tristani-Firouzi, Martin; Navarro-Polanco, Ricardo A

    2016-09-01

    Potassium (K(+)) channels are crucial for determining the shape, duration, and frequency of action-potential firing in excitable cells. Broadly speaking, K(+) channels can be classified based on whether their macroscopic current outwardly or inwardly rectifies, whereby rectification refers to a change in conductance with voltage. Outwardly rectifying K(+) channels conduct greater current at depolarized membrane potentials, whereas inward rectifier channels conduct greater current at hyperpolarized membrane potentials. Under most circumstances, outward currents through inwardly rectifying K(+) channels are reduced at more depolarized potentials. However, the acetylcholine-gated K(+) channel (KACh) conducts current that inwardly rectifies when activated by some ligands (such as acetylcholine), and yet conducts current that outwardly rectifies when activated by other ligands (for example, pilocarpine and choline). The perplexing and paradoxical behavior of KACh channels is due to the intrinsic voltage sensitivity of the receptor that activates KACh channels, the M2 muscarinic receptor (M2R). Emerging evidence reveals that the affinity of M2R for distinct ligands varies in a voltage-dependent and ligand-specific manner. These intrinsic receptor properties determine whether current conducted by KACh channels inwardly or outwardly rectifies. This review summarizes the most recent concepts regarding the intrinsic voltage sensitivity of muscarinic receptors and the consequences of this intriguing behavior on cardiac physiology and pharmacology of KACh channels. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  17. High-voltage 4H-SiC trench MOS barrier Schottky rectifier with low forward voltage drop using enhanced sidewall layer

    NASA Astrophysics Data System (ADS)

    Cho, Doohyung; Sim, Seulgi; Park, Kunsik; Won, Jongil; Kim, Sanggi; Kim, Kwangsoo

    2015-12-01

    In this paper, a 4H-SiC trench MOS barrier Schottky (TMBS) rectifier with an enhanced sidewall layer (ESL) is proposed. The proposed structure has a high doping concentration at the trench sidewall. This high doping concentration improves both the reverse blocking and forward characteristics of the structure. The ESL-TMBS rectifier has a 7.4% lower forward voltage drop and a 24% higher breakdown voltage. However, this structure has a reverse leakage current that is approximately three times higher than that of a conventional TMBS rectifier owing to the reduction in energy barrier height. This problem is solved when ESL is used partially, since its use provides a reverse leakage current that is comparable to that of a conventional TMBS rectifier. Thus, the forward voltage drop and breakdown voltage improve without any loss in static and dynamic characteristics in the ESL-TMBS rectifier compared with the performance of a conventional TMBS rectifier.

  18. Rectenna for high-voltage applications

    NASA Technical Reports Server (NTRS)

    Epp, Larry W. (Inventor); Khan, Abdur R. (Inventor)

    2002-01-01

    An energy transfer system is disclosed. The system includes patch elements, shielding layers, and energy rectifying circuits. The patch elements receive and couple radio frequency energy. The shielding layer includes at least one opening that allows radio frequency energy to pass through. The openings are formed and positioned to receive the radio frequency energy and to minimize any re-radiating back toward the source of energy. The energy rectifying circuit includes a circuit for rectifying the radio frequency energy into dc energy. A plurality of energy rectifying circuits is arranged in an array to provide a sum of dc energy generated by the energy rectifying circuit.

  19. 27 CFR 1.21 - Domestic producers, rectifiers, blenders, and warehousemen.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... in the business of distilling distilled spirits, producing wine, rectifying or blending distilled... or indirectly or through an affiliate, distilled spirits or wine so distilled, produced, rectified...

  20. Generator voltage stabilisation for series-hybrid electric vehicles.

    PubMed

    Stewart, P; Gladwin, D; Stewart, J; Cowley, R

    2008-04-01

    This paper presents a controller for use in speed control of an internal combustion engine for series-hybrid electric vehicle applications. Particular reference is made to the stability of the rectified DC link voltage under load disturbance. In the system under consideration, the primary power source is a four-cylinder normally aspirated gasoline internal combustion engine, which is mechanically coupled to a three-phase permanent magnet AC generator. The generated AC voltage is subsequently rectified to supply a lead-acid battery, and permanent magnet traction motors via three-phase full bridge power electronic inverters. Two complementary performance objectives exist. Firstly to maintain the internal combustion engine at its optimal operating point, and secondly to supply a stable 42 V supply to the traction drive inverters. Achievement of these goals minimises the transient energy storage requirements at the DC link, with a consequent reduction in both weight and cost. These objectives imply constant velocity operation of the internal combustion engine under external load disturbances and changes in both operating conditions and vehicle speed set-points. An electronically operated throttle allows closed loop engine velocity control. System time delays and nonlinearities render closed loop control design extremely problematic. A model-based controller is designed and shown to be effective in controlling the DC link voltage, resulting in the well-conditioned operation of the hybrid vehicle.

  1. Mibefradil (Ro 40-5967) inhibits several Ca2+ and K+ currents in human fusion-competent myoblasts

    PubMed Central

    Liu, Jian-Hui; Bijlenga, Philippe; Occhiodoro, Teresa; Fischer-Lougheed, Jacqueline; Bader, Charles R; Bernheim, Laurent

    1999-01-01

    The effect of mibefradil (Ro 40-5967), an inhibitor of T-type Ca2+ current (ICa(T)), on myoblast fusion and on several voltage-gated currents expressed by fusion-competent myoblasts was examined.At a concentration of 5 μM, mibefradil decreases myoblast fusion by 57%. At this concentration, the peak amplitudes of ICa(T) and L-type Ca2+ current (ICa(L)) measured in fusion-competent myoblasts are reduced by 95 and 80%, respectively. The IC50 of mibefradil for ICa(T) and ICa(L) are 0.7 and 2 μM, respectively.At low concentrations, mibefradil increased the amplitude of ICa(L) with respect to control.Mibefradil blocked three voltage-gated K+ currents expressed by human fusion-competent myoblasts: a delayed rectifier K+ current, an ether-à-go-go K+ current, and an inward rectifier K+ current, with a respective IC50 of 0.3, 0.7 and 5.6 μM.It is concluded that mibefradil can interfere with myoblast fusion, a mechanism fundamental to muscle growth and repair, and that the interpretation of the effect of mibefradil in a given system should take into account the action of this drug on ionic currents other than Ca2+ currents. PMID:10051142

  2. Atrial fibrillation: Therapeutic potential of atrial K+ channel blockers.

    PubMed

    Ravens, Ursula; Odening, Katja E

    2017-08-01

    Despite the epidemiological scale of atrial fibrillation, current treatment strategies are of limited efficacy and safety. Ideally, novel drugs should specifically correct the pathophysiological mechanisms responsible for atrial fibrillation with no other cardiac or extracardiac actions. Atrial-selective drugs are directed toward cellular targets with sufficiently different characteristics in atria and ventricles to modify only atrial function. Several potassium (K + ) channels with either predominant expression in atria or distinct electrophysiological properties in atria and ventricles can serve as atrial-selective drug targets. These channels include the ultra-rapidly activating, delayed outward-rectifying Kv1.5 channel conducting I Kur , the acetylcholine-activated inward-rectifying Kir3.1/Kir3.4 channel conducting I K,ACh , the Ca 2+ -activated K + channels of small conductance (SK) conducting I SK , and the two pore domain K + (K2P) channels TWIK-1, TASK-1 and TASK-3 that are responsible for voltage-independent background currents I TWIK-1 , I TASK-1 , and I TASK-3 . Here, we briefly review the characteristics of these K + channels and their roles in atrial fibrillation. The antiarrhythmic potential of drugs targeting the described channels is discussed as well as their putative value in treatment of atrial fibrillation. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Seasonal acclimatization of the cardiac action potential in the Arctic navaga cod (Eleginus navaga, Gadidae).

    PubMed

    Hassinen, Minna; Abramochkin, Denis V; Vornanen, Matti

    2014-04-01

    Freshwater fishes of north-temperate latitudes adjust electrical excitability of the heart to seasonal temperature changes by changing expression levels of ion channel isoforms. However, little is known about thermal responses of action potential (AP) in the hearts of marine polar fishes. To this end, we examined cardiac AP in the atrial myocardium of the Arctic navaga cod (Eleginus navaga) from the White Sea (Russia) acclimatized to winter (March) and summer (September) seasons. Acute increases in temperature from 4 to 10 °C were associated with increases in heart rate, maximum velocity of AP upstroke and negative resting membrane potential, while duration of AP was shortened in both winter-acclimatized and summer-acclimatized navaga hearts. In winter, there was a compensatory shortening (41.1%) of atrial AP duration and this was associated with a strong increase in transcript expression of Erg K(+) channels, known to produce the rapid component of the delayed rectifier K(+) current, I(Kr). Smaller increases were found in the expression of Kir2.1 channels that produce the inward rectifier K(+) current, I(K1). These findings indicate that the heart of navaga cod has a good acclimatory capacity in electrical excitation of cardiac myocytes, which enables cardiac function in the cold-eurythermal waters of the subarctic White Sea.

  4. Effects of astragaloside IV on action potentials and ionic currents in guinea-pig ventricular myocytes.

    PubMed

    Zhao, Meimi; Zhao, Jinsheng; He, Guilin; Sun, Xuefei; Huang, Xueshi; Hao, Liying

    2013-01-01

    Astragaloside IV (AS-IV) is one of the main active constituents of Astragalus membranaceus, which has various actions on the cardiovascular system. However, its electrophysiological mechanisms are not clear. In the present study, we investigated the effects of AS-IV on action potentials and membrane currents using the whole-cell patch clamp technique in isolated guinea-pig ventricular myocytes. AS-IV prolonged the action potential duration (APD) at all three tested concentrations. The peak effect was achieved with 1×10(-6) M, at which concentration AS-IV significantly prolonged the APD at 95% repolarization from 313.1±38.9 to 785.3±83.7 ms. AS-IV at 1×10(-6) M also enhanced the inward rectifier K(+) currents (I(K1)) and inhibited the delayed rectifier K(+) currents (I(K)). AS-IV (1×10(-6) M) strongly depressed the peak of voltage-dependent Ca(2+) channel current (I(CaL)) from -607.3±37.5 to -321.1±38.3 pA. However, AS-IV was not found to affect the Na(+) currents. Taken together, AS-IV prolonged APD of guinea-pig ventricular myocytes, which might be explained by its inhibition of I(K). AS-IV also influences Ca(2+) signaling through suppressing ICaL.

  5. Ventricular septal defect

    MedlinePlus

    ... causing an irregular or slow heart rhythm) Delayed growth and development ( failure to thrive in infancy) Heart failure Infective endocarditis (bacterial infection of the heart) Pulmonary hypertension (high blood ...

  6. Stimulus-driven and knowledge-driven processes in attention to warbles

    NASA Astrophysics Data System (ADS)

    Dowling, W. Jay; Tillmann, Barbara

    2003-10-01

    Listeners identified warbles differing in amplitude-modulation rate (3-10 Hz). And measured RT while listeners maintained above 90% correct responses. After a practice session listeners identified target warbles following stimulus-driven or knowledge-driven cues. The stimulus-driven cue was a 250-ms ``beep'' at the target pitch (valid) or another pitch (invalid); the knowledge-driven cue was a midrange ``melody'' pointing to the target pitch (always valid). A 500-ms target warble followed the cue after delays of 0-500 ms (250-750 ms SOA). The listener pressed a key to indicate ``slow'' or ``fast.'' RTs were shortest at the briefest delay. In contrast to results from a memory task, RTs here were much shorter, and we found no evidence for IOR or attentional blink. Listeners began generating responses while the target was still sounding. Invalid ``beeps'' slowed responses at the briefest (but not the longer) delays; adding a valid ``beep'' to the valid ``melody'' did not speed responses.

  7. Delayed Repolarization Underlies Ventricular Arrhythmias in Rats With Heart Failure and Preserved Ejection Fraction.

    PubMed

    Cho, Jae Hyung; Zhang, Rui; Kilfoil, Peter J; Gallet, Romain; de Couto, Geoffrey; Bresee, Catherine; Goldhaber, Joshua I; Marbán, Eduardo; Cingolani, Eugenio

    2017-11-21

    Heart failure with preserved ejection fraction (HFpEF) represents approximately half of heart failure, and its incidence continues to increase. The leading cause of mortality in HFpEF is sudden death, but little is known about the underlying mechanisms. Dahl salt-sensitive rats were fed a high-salt diet (8% NaCl) from 7 weeks of age to induce HFpEF (n=38). Rats fed a normal-salt diet (0.3% NaCl) served as controls (n=13). Echocardiograms were performed to assess systolic and diastolic function from 14 weeks of age. HFpEF-verified and control rats underwent programmed electrical stimulation. Corrected QT interval was measured by surface ECG. The mechanisms of ventricular arrhythmias (VA) were probed by optical mapping, whole-cell patch clamp to measure action potential duration and ionic currents, and quantitative polymerase chain reaction and Western blotting to investigate changes in ion channel expression. After 7 weeks of a high-salt diet, 31 of 38 rats showed diastolic dysfunction and preserved ejection fraction along with signs of heart failure and hence were diagnosed with HFpEF. Programmed electric stimulation demonstrated increased susceptibility to VA in HFpEF rats ( P <0.001 versus controls). The arrhythmogenicity index was increased ( P <0.001) and the corrected QT interval on ECG was prolonged ( P <0.001) in HFpEF rats. Optical mapping of HFpEF hearts demonstrated prolonged action potentials ( P <0.05) and multiple reentry circuits during induced VA. Single-cell recordings of cardiomyocytes isolated from HFpEF rats confirmed a delay of repolarization ( P =0.001) and revealed downregulation of transient outward potassium current ( I to ; P <0.05). The rapid components of the delayed rectifier potassium current ( I Kr ) and the inward rectifier potassium current ( I K1 ) were also downregulated ( P <0.05), but the current densities were much lower than for I to . In accordance with the reduction of I to , both Kcnd3 transcript and Kv4.3 protein levels were decreased in HFpEF rat hearts. Susceptibility to VA was markedly increased in rats with HFpEF. Underlying abnormalities include QT prolongation, delayed repolarization from downregulation of potassium currents, and multiple reentry circuits during VA. Our findings are consistent with the hypothesis that potassium current downregulation leads to abnormal repolarization in HFpEF, which in turn predisposes to VA and sudden cardiac death. © 2017 American Heart Association, Inc.

  8. Inhibitory effects of sevoflurane on pacemaking activity of sinoatrial node cells in guinea-pig heart

    PubMed Central

    Kojima, Akiko; Kitagawa, Hirotoshi; Omatsu-Kanbe, Mariko; Matsuura, Hiroshi; Nosaka, Shuichi

    2012-01-01

    BACKGROUND AND PURPOSE The volatile anaesthetic sevoflurane affects heart rate in clinical settings. The present study investigated the effect of sevoflurane on sinoatrial (SA) node automaticity and its underlying ionic mechanisms. EXPERIMENTAL APPROACH Spontaneous action potentials and four ionic currents fundamental for pacemaking, namely, the hyperpolarization-activated cation current (If), T-type and L-type Ca2+ currents (ICa,T and ICa,L, respectively), and slowly activating delayed rectifier K+ current (IKs), were recorded in isolated guinea-pig SA node cells using perforated and conventional whole-cell patch-clamp techniques. Heart rate in guinea-pigs was recorded ex vivo in Langendorff mode and in vivo during sevoflurane inhalation. KEY RESULTS In isolated SA node cells, sevoflurane (0.12–0.71 mM) reduced the firing rate of spontaneous action potentials and its electrical basis, diastolic depolarization rate, in a qualitatively similar concentration-dependent manner. Sevoflurane (0.44 mM) reduced spontaneous firing rate by approximately 25% and decreased If, ICa,T, ICa,L and IKs by 14.4, 31.3, 30.3 and 37.1%, respectively, without significantly affecting voltage dependence of current activation. The negative chronotropic effect of sevoflurane was partly reproduced by a computer simulation of SA node cell electrophysiology. Sevoflurane reduced heart rate in Langendorff-perfused hearts, but not in vivo during sevoflurane inhalation in guinea-pigs. CONCLUSIONS AND IMPLICATIONS Sevoflurane at clinically relevant concentrations slowed diastolic depolarization and thereby reduced pacemaking activity in SA node cells, at least partly due to its inhibitory effect on If, ICa,T and ICa,L. These findings provide an important electrophysiological basis of alterations in heart rate during sevoflurane anaesthesia in clinical settings. PMID:22356456

  9. Modulation of KCNQ1 alternative splicing regulates cardiac IKs and action potential repolarization.

    PubMed

    Lee, Hsiang-Chun; Rudy, Yoram; Po-Yuan, Phd; Sheu, Sheng-Hsiung; Chang, Jan-Gowth; Cui, Jianmin

    2013-08-01

    Slow delayed-rectifier potassium current (IKs) channels, made of the pore-forming KCNQ1 and auxiliary KCNE1 subunits, play a key role in determining action potential duration (APD) in cardiac myocytes. The consequences of drug-induced KCNQ1 splice alteration remain unknown. To study the modulation of KCNQ1 alternative splicing by amiloride and the consequent changes in IKs and action potentials (APs) in ventricular myocytes. Canine endocardial, midmyocardial, and epicardial ventricular myocytes were isolated. Levels of KCNQ1a and KCNQ1b as well as a series of splicing factors were quantified by using the reverse transcriptase-polymerase chain reaction and Western blot. The effect of amiloride-induced changes in the KCNQ1b/total KCNQ1 ratio on AP was measured by using whole-cell patch clamp with and without isoproterenol. With 50 μmol/L of amiloride for 6 hours, KCNQ1a at transcriptional and translational levels increased in midmyocardial myocytes but decreased in endo- and epicardial myocytes. Likewise, changes in splicing factors in midmyocardial were opposite to that in endo- and epicardial myocytes. In midmyocardial myocytes amiloride shortened APD and decreased isoproterenol-induced early afterdepolarizations significantly. The same amiloride-induced effects were demonstrated by using human ventricular myocyte model for AP simulations under beta-adrenergic stimulation. Moreover, amiloride reduced the transmural dispersion of repolarization in pseudo-electrocardiogram. Amiloride regulates IKs and APs with transmural differences and reduces arrhythmogenicity through the modulation of KCNQ1 splicing. We suggested that the modulation of KCNQ1 splicing may help prevent arrhythmia. Copyright © 2013 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  10. BK potassium channels facilitate high-frequency firing and cause early spike frequency adaptation in rat CA1 hippocampal pyramidal cells

    PubMed Central

    Gu, Ning; Vervaeke, Koen; Storm, Johan F

    2007-01-01

    Neuronal potassium (K+) channels are usually regarded as largely inhibitory, i.e. reducing excitability. Here we show that BK-type calcium-activated K+ channels enhance high-frequency firing and cause early spike frequency adaptation in neurons. By combining slice electrophysiology and computational modelling, we investigated functions of BK channels in regulation of high-frequency firing in rat CA1 pyramidal cells. Blockade of BK channels by iberiotoxin (IbTX) selectively reduced the initial discharge frequency in response to strong depolarizing current injections, thus reducing the early spike frequency adaptation. IbTX also blocked the fast afterhyperpolarization (fAHP), slowed spike rise and decay, and elevated the spike threshold. Simulations with a computational model of a CA1 pyramidal cell confirmed that the BK channel-mediated rapid spike repolarization and fAHP limits activation of slower K+ channels (in particular the delayed rectifier potassium current (IDR)) and Na+ channel inactivation, whereas M-, sAHP- or SK-channels seem not to be important for the early facilitating effect. Since the BK current rapidly inactivates, its facilitating effect diminishes during the initial discharge, thus producing early spike frequency adaptation by an unconventional mechanism. This mechanism is highly frequency dependent. Thus, IbTX had virtually no effect at spike frequencies < 40 Hz. Furthermore, extracellular field recordings demonstrated (and model simulations supported) that BK channels contribute importantly to high-frequency burst firing in response to excitatory synaptic input to distal dendrites. These results strongly support the idea that BK channels play an important role for early high-frequency, rapidly adapting firing in hippocampal pyramidal neurons, thus promoting the type of bursting that is characteristic of these cells in vivo, during behaviour. PMID:17303637

  11. Calcium Currents of Olfactory Bulb Juxtaglomerular Cells: Profile and Multiple Conductance Plateau Potential Simulation

    PubMed Central

    Masurkar, Arjun V.; Chen, Wei R.

    2011-01-01

    The olfactory glomerulus is the locus of information transfer between olfactory sensory neurons and output neurons of the olfactory bulb. Juxtaglomerular cells (JGCs) may influence intraglomerular processing by firing plateau potentials that support multiple spikes. It is unclear what inward currents mediate this firing pattern. In previous work, we characterized potassium currents of JGCs. We focus here on the inward currents using whole cell current clamp and voltage recording in a rat in vitro slice preparation, as well as computer simulation. We first showed that sodium current was not required to mediate plateau potentials. Voltage clamp characterization of calcium current (ICa) determined that ICa consisted of a slow activating, rapidly inactivating (τ10%–90% rise 6–8ms, τinactivation 38–77ms) component Icat1, similar to T-type currents, and a sustained (τinactivation≫500ms) component Icat2, likely composed of L-type and P/Q-type currents. We used computer simulation to test their roles in plateau potential firing. We robustly modeled Icat1 and Icat2 to Hodgkin-Huxley schemes (m3h and m2, respectively) and simulated a JGC plateau potential with 6 conductances: calcium currents as above, potassium currents from our prior study (A-type Ikt1, D-type Ikt2, delayed rectifier Ikt3), and a fast sodium current (INa). We demonstrated that Icat1 was required for mediating the plateau potential, unlike INa and Icat2, and its τinactivation determined plateau duration. We also found that Ikt1 dictated plateau potential shape more than Ikt2 and Ikt3. The influence of these two transient and opposing conductances suggests a unique mechanism of plateau potential physiology. PMID:21704681

  12. Properties and ionic mechanisms of action potential adaptation, restitution, and accommodation in canine epicardium.

    PubMed

    Decker, Keith F; Heijman, Jordi; Silva, Jonathan R; Hund, Thomas J; Rudy, Yoram

    2009-04-01

    Computational models of cardiac myocytes are important tools for understanding ionic mechanisms of arrhythmia. This work presents a new model of the canine epicardial myocyte that reproduces a wide range of experimentally observed rate-dependent behaviors in cardiac cell and tissue, including action potential (AP) duration (APD) adaptation, restitution, and accommodation. Model behavior depends on updated formulations for the 4-aminopyridine-sensitive transient outward current (I(to1)), the slow component of the delayed rectifier K(+) current (I(Ks)), the L-type Ca(2+) channel current (I(Ca,L)), and the Na(+)-K(+) pump current (I(NaK)) fit to data from canine ventricular myocytes. We found that I(to1) plays a limited role in potentiating peak I(Ca,L) and sarcoplasmic reticulum Ca(2+) release for propagated APs but modulates the time course of APD restitution. I(Ks) plays an important role in APD shortening at short diastolic intervals, despite a limited role in AP repolarization at longer cycle lengths. In addition, we found that I(Ca,L) plays a critical role in APD accommodation and rate dependence of APD restitution. Ca(2+) entry via I(Ca,L) at fast rate drives increased Na(+)-Ca(2+) exchanger Ca(2+) extrusion and Na(+) entry, which in turn increases Na(+) extrusion via outward I(NaK). APD accommodation results from this increased outward I(NaK). Our simulation results provide valuable insight into the mechanistic basis of rate-dependent phenomena important for determining the heart's response to rapid and irregular pacing rates (e.g., arrhythmia). Accurate simulation of rate-dependent phenomena and increased understanding of their mechanistic basis will lead to more realistic multicellular simulations of arrhythmia and identification of molecular therapeutic targets.

  13. Down-regulation of A-type potassium channel in gastric-specific DRG neurons in a rat model of functional dyspepsia.

    PubMed

    Li, S; Chen, J D Z

    2014-07-01

    Although without evidence of organic structural abnormalities, pain or discomfort is a prominent symptom of functional dyspepsia and considered to reflect visceral hypersensitivity whose underlying mechanism is poorly understood. Here, we studied electrophysiological properties and expression of voltage-gated potassium channels in dorsal root ganglion (DRG) neurons in a rat model of functional dyspepsia induced by neonatal gastric irritation. Male Sprague-Dawley rat pups at 10-day old received 0.1% iodoacetamide (IA) or vehicle by oral gavage for 6 days and studied at adulthood. Retrograde tracer-labeled gastric-specific T8 -T12 DRG neurons were harvested for the patch-clamp study in voltage and current-clamp modes and protein expression of K(+) channel in T8 -T12 DRGs was examined by western blotting. (1) Gastric specific but not non-gastric DRG neurons showed an enhanced excitability in neonatal IA-treated rats compared to the control: depolarized resting membrane potentials, a lower current threshold for action potential (AP) activation, and an increase in the number of APs in response to current stimulation. (2) The current density of tetraethylammonium insensitive (transiently inactivating A-type current), but not the tetraethylammonium sensitive (slow-inactivating delayed rectifier K(+) currents), was significantly smaller in IA-treated rats (65.4 ± 6.9 pA/pF), compared to that of control (93.1 ± 8.3 pA/pF). (3) Protein expression of KV 4.3 was down-regulated in IA-treated rats. A-type potassium channels are significantly down-regulated in the gastric-specific DRG neurons in adult rats with mild neonatal gastric irritation, which in part contribute to the enhanced DRG neuron excitabilities that leads to the development of gastric hypersensitivity. © 2014 John Wiley & Sons Ltd.

  14. 3-D printed 2.4 GHz rectifying antenna for wireless power transfer applications

    NASA Astrophysics Data System (ADS)

    Skinner, Matthew

    In this work, a 3D printed rectifying antenna that operates at the 2.4GHz WiFi band was designed and manufactured. The printed material did not have the same properties of bulk material, so the printed materials needed to be characterized. The antenna and rectifying circuit was printed out of Acrylonitrile Butadiene Styrene (ABS) filament and a conductive silver paste, with electrical components integrated into the circuit. Before printing the full rectifying antenna, each component was printed and evaluated. The printed antenna operated at the desired frequency with a return loss of -16 dBm with a bandwidth of 70MHz. The radiation pattern was measured in an anechoic chamber with good matching to the model. The rectifying circuit was designed in Ansys Circuit Simulation using Schottky diodes to enable the circuit to operate at lower input power levels. Two rectifying circuits were manufactured, one by printing the conductive traces with silver ink, and one with traces made from copper. The printed silver ink is less conductive than the bulk copper and therefore the output voltage of the printed rectifier was lower than the copper circuit. The copper circuit had an efficiency of 60% at 0dBm and the printed silver circuit had an efficiency of 28.6% at 0dBm. The antenna and rectifying circuits were then connected to each other and the performance was compared to a fully printed integrated rectifying antenna. The rectifying antennas were placed in front of a horn antenna while changing the power levels at the antenna. The efficiency of the whole system was lower than the individual components but an efficiency of 11% at 10dBm was measured.

  15. Capacity of Heterogeneous Mobile Wireless Networks with D-Delay Transmission Strategy.

    PubMed

    Wu, Feng; Zhu, Jiang; Xi, Zhipeng; Gao, Kai

    2016-03-25

    This paper investigates the capacity problem of heterogeneous wireless networks in mobility scenarios. A heterogeneous network model which consists of n normal nodes and m helping nodes is proposed. Moreover, we propose a D-delay transmission strategy to ensure that every packet can be delivered to its destination nodes with limited delay. Different from most existing network schemes, our network model has a novel two-tier architecture. The existence of helping nodes greatly improves the network capacity. Four types of mobile networks are studied in this paper: i.i.d. fast mobility model and slow mobility model in two-dimensional space, i.i.d. fast mobility model and slow mobility model in three-dimensional space. Using the virtual channel model, we present an intuitive analysis of the capacity of two-dimensional mobile networks and three-dimensional mobile networks, respectively. Given a delay constraint D, we derive the asymptotic expressions for the capacity of the four types of mobile networks. Furthermore, the impact of D and m to the capacity of the whole network is analyzed. Our findings provide great guidance for the future design of the next generation of networks.

  16. Oxytocin versus no treatment or delayed treatment for slow progress in the first stage of spontaneous labour.

    PubMed

    Bugg, George J; Siddiqui, Farah; Thornton, Jim G

    2013-06-23

    Slow progress in the first stage of spontaneous labour is associated with an increased caesarean section rate and fetal and maternal morbidity. Oxytocin has long been advocated as a treatment for slow progress in labour but it is unclear to what extent it improves the outcomes for that labour and whether it actually reduces the caesarean section rate or maternal and fetal morbidity. This review will address the use of oxytocin and whether it improves the outcomes for women who are progressing slowly in labour compared to situations where it is not used or where its administration is delayed. To determine if the use of oxytocin for the treatment of slow progress in the first stage of spontaneous labour is associated with a reduction in the incidence of caesarean sections, or maternal and fetal morbidity compared to situations where it is not used or where its administration is delayed. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (23 February 2013) and bibliographies of relevant papers. Randomised controlled trials which compared oxytocin with either placebo, no treatment or delayed oxytocin in the active stage of spontaneous labour in low-risk women at term. Two authors independently assessed studies for inclusion, assessed risk of bias and extracted data. We sought additional information from trial authors. We included eight studies in the review involving a total of 1338 low-risk women in the first stage of spontaneous labour at term. Two comparisons were made; 1) the use of oxytocin versus placebo or no treatment (three trials); 2) the early use of oxytocin versus its delayed use (five trials). There were no significant differences in the rates of caesarean section or instrumental vaginal delivery in either comparison. Early use of oxytocin resulted in an increase in uterine hyperstimulation associated with fetal heart changes. However, the early use of oxytocin versus its delayed use resulted in no significant differences in a range of neonatal and maternal outcomes. Use of early oxytocin resulted in a statistically significant reduction in the mean duration in labour of approximately two hours but did not increase the normal delivery rate. There was significant heterogeneity for this analysis and we carried out a random-effects meta-analysis; however, all of the trials are strongly in the same direction so it is reasonable to conclude that this is the true effect. We also performed a random-effects meta-analysis for the four other analyses which showed substantial heterogeneity in the review. For women making slow progress in spontaneous labour, treatment with oxytocin as compared with no treatment or delayed oxytocin treatment did not result in any discernable difference in the number of caesarean sections performed. In addition there were no detectable adverse effects for mother or baby. The use of oxytocin was associated with a reduction in the time to delivery of approximately two hours which might be important to some women. However, if the primary goal of this treatment is to reduce caesarean section rates, then doctors and midwives may have to look for alternative options.

  17. Slow Inactivation in Shaker K Channels Is Delayed by Intracellular Tetraethylammonium

    PubMed Central

    González-Pérez, Vivian; Neely, Alan; Tapia, Christian; González-Gutiérrez, Giovanni; Contreras, Gustavo; Orio, Patricio; Lagos, Verónica; Rojas, Guillermo; Estévez, Tania; Stack, Katherine; Naranjo, David

    2008-01-01

    After removal of the fast N-type inactivation gate, voltage-sensitive Shaker (Shaker IR) K channels are still able to inactivate, albeit slowly, upon sustained depolarization. The classical mechanism proposed for the slow inactivation observed in cell-free membrane patches—the so called C inactivation—is a constriction of the external mouth of the channel pore that prevents K+ ion conduction. This constriction is antagonized by the external application of the pore blocker tetraethylammonium (TEA). In contrast to C inactivation, here we show that, when recorded in whole Xenopus oocytes, slow inactivation kinetics in Shaker IR K channels is poorly dependent on external TEA but severely delayed by internal TEA. Based on the antagonism with internally or externally added TEA, we used a two-pulse protocol to show that half of the channels inactivate by way of a gate sensitive to internal TEA. Such gate had a recovery time course in the tens of milliseconds range when the interpulse voltage was −90 mV, whereas C-inactivated channels took several seconds to recover. Internal TEA also reduced gating charge conversion associated to slow inactivation, suggesting that the closing of the internal TEA-sensitive inactivation gate could be associated with a significant amount of charge exchange of this type. We interpreted our data assuming that binding of internal TEA antagonized with U-type inactivation (Klemic, K.G., G.E. Kirsch, and S.W. Jones. 2001. Biophys. J. 81:814–826). Our results are consistent with a direct steric interference of internal TEA with an internally located slow inactivation gate as a “foot in the door” mechanism, implying a significant functional overlap between the gate of the internal TEA-sensitive slow inactivation and the primary activation gate. But, because U-type inactivation is reduced by channel opening, trapping the channel in the open conformation by TEA would also yield to an allosteric delay of slow inactivation. These results provide a framework to explain why constitutively C-inactivated channels exhibit gating charge conversion, and why mutations at the internal exit of the pore, such as those associated to episodic ataxia type I in hKv1.1, cause severe changes in inactivation kinetics. PMID:19029372

  18. DISCRIMINATION ACQUISITION IN CHILDREN WITH DEVELOPMENTAL DISABILITIES UNDER IMMEDIATE AND DELAYED REINFORCEMENT

    PubMed Central

    Sy, Jolene R.; Vollmer, Timothy R.

    2012-01-01

    We evaluated the discrimination acquisition of individuals with developmental disabilities under immediate and delayed reinforcement. In Experiment 1, discrimination between two alternatives was examined when reinforcement was immediate or delayed by 20 s, 30 s, or 40 s. In Experiment 2, discrimination between 2 alternatives was compared across an immediate reinforcement condition and a delayed reinforcement condition in which subjects could respond during the delay. In Experiment 3, discrimination among 4 alternatives was compared across immediate and delayed reinforcement. In Experiment 4, discrimination between 2 alternatives was examined when reinforcement was immediate and 0-s or 30-s intertrial intervals (ITI) were programmed. For most subjects, discrimination acquisition occurred under immediate reinforcement. However, for some subjects, introducing delays slowed or prevented discrimination acquisition under some conditions. Results from Experiment 4 suggest that longer ITIs cannot account for the lack of discrimination under delayed reinforcement. PMID:23322925

  19. Break-before-make CMOS inverter for power-efficient delay implementation.

    PubMed

    Puhan, Janez; Raič, Dušan; Tuma, Tadej; Bűrmen, Árpád

    2014-01-01

    A modified static CMOS inverter with two inputs and two outputs is proposed to reduce short-circuit current in order to increment delay and reduce power overhead where slow operation is required. The circuit is based on bidirectional delay element connected in series with the PMOS and NMOS switching transistors. It provides differences in the dynamic response so that the direct-path current in the next stage is reduced. The switching transistors are never ON at the same time. Characteristics of various delay element implementations are presented and verified by circuit simulations. Global optimization procedure is used to obtain the most power-efficient transistor sizing. The performance of the modified CMOS inverter chain is compared to standard implementation for various delays. The energy (charge) per delay is reduced up to 40%. The use of the proposed delay element is demonstrated by implementing a low-power delay line and a leading-edge detector cell.

  20. Break-before-Make CMOS Inverter for Power-Efficient Delay Implementation

    PubMed Central

    Raič, Dušan

    2014-01-01

    A modified static CMOS inverter with two inputs and two outputs is proposed to reduce short-circuit current in order to increment delay and reduce power overhead where slow operation is required. The circuit is based on bidirectional delay element connected in series with the PMOS and NMOS switching transistors. It provides differences in the dynamic response so that the direct-path current in the next stage is reduced. The switching transistors are never ON at the same time. Characteristics of various delay element implementations are presented and verified by circuit simulations. Global optimization procedure is used to obtain the most power-efficient transistor sizing. The performance of the modified CMOS inverter chain is compared to standard implementation for various delays. The energy (charge) per delay is reduced up to 40%. The use of the proposed delay element is demonstrated by implementing a low-power delay line and a leading-edge detector cell. PMID:25538951

  1. Mechanisms of Firing Patterns in Fast-Spiking Cortical Interneurons

    PubMed Central

    Golomb, David; Donner, Karnit; Shacham, Liron; Shlosberg, Dan; Amitai, Yael; Hansel, David

    2007-01-01

    Cortical fast-spiking (FS) interneurons display highly variable electrophysiological properties. Their spike responses to step currents occur almost immediately following the step onset or after a substantial delay, during which subthreshold oscillations are frequently observed. Their firing patterns include high-frequency tonic firing and rhythmic or irregular bursting (stuttering). What is the origin of this variability? In the present paper, we hypothesize that it emerges naturally if one assumes a continuous distribution of properties in a small set of active channels. To test this hypothesis, we construct a minimal, single-compartment conductance-based model of FS cells that includes transient Na+, delayed-rectifier K+, and slowly inactivating d-type K+ conductances. The model is analyzed using nonlinear dynamical system theory. For small Na+ window current, the neuron exhibits high-frequency tonic firing. At current threshold, the spike response is almost instantaneous for small d-current conductance, g d, and it is delayed for larger g d. As g d further increases, the neuron stutters. Noise substantially reduces the delay duration and induces subthreshold oscillations. In contrast, when the Na+ window current is large, the neuron always fires tonically. Near threshold, the firing rates are low, and the delay to firing is only weakly sensitive to noise; subthreshold oscillations are not observed. We propose that the variability in the response of cortical FS neurons is a consequence of heterogeneities in their g d and in the strength of their Na+ window current. We predict the existence of two types of firing patterns in FS neurons, differing in the sensitivity of the delay duration to noise, in the minimal firing rate of the tonic discharge, and in the existence of subthreshold oscillations. We report experimental results from intracellular recordings supporting this prediction. PMID:17696606

  2. Mechanisms of firing patterns in fast-spiking cortical interneurons.

    PubMed

    Golomb, David; Donner, Karnit; Shacham, Liron; Shlosberg, Dan; Amitai, Yael; Hansel, David

    2007-08-01

    Cortical fast-spiking (FS) interneurons display highly variable electrophysiological properties. Their spike responses to step currents occur almost immediately following the step onset or after a substantial delay, during which subthreshold oscillations are frequently observed. Their firing patterns include high-frequency tonic firing and rhythmic or irregular bursting (stuttering). What is the origin of this variability? In the present paper, we hypothesize that it emerges naturally if one assumes a continuous distribution of properties in a small set of active channels. To test this hypothesis, we construct a minimal, single-compartment conductance-based model of FS cells that includes transient Na(+), delayed-rectifier K(+), and slowly inactivating d-type K(+) conductances. The model is analyzed using nonlinear dynamical system theory. For small Na(+) window current, the neuron exhibits high-frequency tonic firing. At current threshold, the spike response is almost instantaneous for small d-current conductance, gd, and it is delayed for larger gd. As gd further increases, the neuron stutters. Noise substantially reduces the delay duration and induces subthreshold oscillations. In contrast, when the Na(+) window current is large, the neuron always fires tonically. Near threshold, the firing rates are low, and the delay to firing is only weakly sensitive to noise; subthreshold oscillations are not observed. We propose that the variability in the response of cortical FS neurons is a consequence of heterogeneities in their gd and in the strength of their Na(+) window current. We predict the existence of two types of firing patterns in FS neurons, differing in the sensitivity of the delay duration to noise, in the minimal firing rate of the tonic discharge, and in the existence of subthreshold oscillations. We report experimental results from intracellular recordings supporting this prediction.

  3. Effects of 22 MeV protons on single junction and silicon controlled rectifiers

    NASA Technical Reports Server (NTRS)

    Beatty, M. E., III

    1972-01-01

    The effects of 22-MeV protons on various types of silicon single junction and silicon controlled rectifiers were investigated. The results show that low-leakage devices and silicon controlled rectifiers are the most susceptable to radiation damage. There are also differences noted between single junction rectifiers of the same type made by different manufacturers, which emphasizes the need for better selection of devices used in spacecraft.

  4. Organization of Anti-Phase Synchronization Pattern in Neural Networks: What are the Key Factors?

    PubMed Central

    Li, Dong; Zhou, Changsong

    2011-01-01

    Anti-phase oscillation has been widely observed in cortical neural network. Elucidating the mechanism underlying the organization of anti-phase pattern is of significance for better understanding more complicated pattern formations in brain networks. In dynamical systems theory, the organization of anti-phase oscillation pattern has usually been considered to relate to time delay in coupling. This is consistent to conduction delays in real neural networks in the brain due to finite propagation velocity of action potentials. However, other structural factors in cortical neural network, such as modular organization (connection density) and the coupling types (excitatory or inhibitory), could also play an important role. In this work, we investigate the anti-phase oscillation pattern organized on a two-module network of either neuronal cell model or neural mass model, and analyze the impact of the conduction delay times, the connection densities, and coupling types. Our results show that delay times and coupling types can play key roles in this organization. The connection densities may have an influence on the stability if an anti-phase pattern exists due to the other factors. Furthermore, we show that anti-phase synchronization of slow oscillations can be achieved with small delay times if there is interaction between slow and fast oscillations. These results are significant for further understanding more realistic spatiotemporal dynamics of cortico-cortical communications. PMID:22232576

  5. Comparison study on disturbance estimation techniques in precise slow motion control

    NASA Astrophysics Data System (ADS)

    Fan, S.; Nagamune, R.; Altintas, Y.; Fan, D.; Zhang, Z.

    2010-08-01

    Precise low speed motion control is important for the industrial applications of both micro-milling machine tool feed drives and electro-optical tracking servo systems. It calls for precise position and instantaneous velocity measurement and disturbance, which involves direct drive motor force ripple, guide way friction and cutting force etc., estimation. This paper presents a comparison study on dynamic response and noise rejection performance of three existing disturbance estimation techniques, including the time-delayed estimators, the state augmented Kalman Filters and the conventional disturbance observers. The design technique essentials of these three disturbance estimators are introduced. For designing time-delayed estimators, it is proposed to substitute Kalman Filter for Luenberger state observer to improve noise suppression performance. The results show that the noise rejection performances of the state augmented Kalman Filters and the time-delayed estimators are much better than the conventional disturbance observers. These two estimators can give not only the estimation of the disturbance but also the low noise level estimations of position and instantaneous velocity. The bandwidth of the state augmented Kalman Filters is wider than the time-delayed estimators. In addition, the state augmented Kalman Filters can give unbiased estimations of the slow varying disturbance and the instantaneous velocity, while the time-delayed estimators can not. The simulation and experiment conducted on X axis of a 2.5-axis prototype micro milling machine are provided.

  6. Mechanics of the Delayed Fracture of Viscoelastic Bodies with Cracks: Theory and Experiment (Review)

    NASA Astrophysics Data System (ADS)

    Kaminsky, A. A.

    2014-09-01

    Theoretical and experimental studies on the deformation and delayed fracture of viscoelastic bodies due to slow subcritical crack growth are reviewed. The focus of this review is on studies of subcritical growth of cracks with well-developed fracture process zones, the conditions that lead to their critical development, and all stages of slow crack growth from initiation to the onset of catastrophic growth. Models, criteria, and methods used to study the delayed fracture of viscoelastic bodies with through and internal cracks are analyzed. Experimental studies of the fracture process zones in polymers using physical and mechanical methods as well as theoretical studies of these zones using fracture mesomechanics models that take into account the structural and rheological features of polymers are reviewed. Particular attention is given to crack growth in anisotropic media, the effect of the aging of viscoelastic materials on their delayed fracture, safe external loads that do not cause cracks to propagate, the mechanism of multiple-flaw fracture of viscoelastic bodies with several cracks and, especially, processes causing cracks to coalesce into a main crack, which may result in a break of the body. Methods and results of solving two- and three-dimensional problems of the mechanics of delayed fracture of aging and non-aging viscoelastic bodies with cracks under constant and variable external loads, wedging, and biaxial loads are given

  7. Automatic method of measuring silicon-controlled-rectifier holding current

    NASA Technical Reports Server (NTRS)

    Maslowski, E. A.

    1972-01-01

    Development of automated silicon controlled rectifier circuit for measuring minimum anode current required to maintain rectifiers in conducting state is discussed. Components of circuit are described and principles of operation are explained. Illustration of circuit is provided.

  8. Inhibition of cardiac inward rectifier currents by cationic amphiphilic drugs.

    PubMed

    van der Heyden, M A G; Stary-Weinzinger, A; Sanchez-Chapula, J A

    2013-09-01

    Cardiac inward rectifier channels belong to three different classes of the KIR channel protein family. The KIR2.x proteins generate the classical inward rectifier current, IK1, while KIR3 and KIR6 members are responsible for the acetylcholine responsive and ATP sensitive inward rectifier currents IKAch and IKATP, respectively. Aberrant function of these channels has been correlated with severe cardiac arrhythmias, indicating their significant contribution to normal cardiac electrophysiology. A common feature of inward rectifier channels is their dependence on the lipid phosphatidyl-4,5-bisphospate (PIP2) interaction for functional activity. Cationic amphiphilic drugs (CADs) are one of the largest classes of pharmaceutical compounds. Several widely used CADs have been associated with inward rectifier current disturbances, and recent evidence points to interference of the channel-PIP2 interaction as the underlying mechanism of action. Here, we will review how six of these well known drugs, used for treatment in various different conditions, interfere in cardiac inward rectifier functioning. In contrast, KIR channel inhibition by the anionic anesthetic thiopental is achieved by a different mechanism of channel-PIP2 interference. We will discuss the latest basic science insights of functional inward rectifier current characteristics, recently derived KIR channel structures and specific PIP2-receptor interactions at the molecular level and provide insight in how these drugs interfere in the structure-function relationships.

  9. Slow light generation in single-mode rectangular core photonic crystal fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, Sandeep; Saini, Than Singh; Kumar, Ajeet, E-mail: ajeetdph@gmail.com

    2016-05-06

    In this paper, we have designed and analyzed a rectangular core photonic crystal fiber (PCF) in Tellurite material. For the designed photonics crystal fiber, we have calculated the values of confinement loss and effective mode area for different values of air filling fraction (d/Λ). For single mode operation of the designed photonic crystal fiber, we have taken d/Λ= 0.4 for the further calculation of stimulated Brillouin scattering based time delay. A maximum time delay of 158 ns has been achieved for input pump power of 39 mW. We feel the detailed theoretical investigations and simulations carried out in the study have themore » potential impact on the design and development of slow light-based photonic devices.« less

  10. Acousto-Optic Adaptive Processing (AOAP).

    DTIC Science & Technology

    1983-12-01

    2.03 mm 136 mm 41.6 mm Dense Flint Glass .58 1.06 48.6 21.7 LiNbO3 .65 2.24 250 46 1011 1 -: PbMoO4 .207 1.25 84.3 25.3 .- Slow Shear TeO2 .0586...mm 41.6 m Dense Flint Glass 5.9 1.06 3.2 21.7 LiNbO3 6.6 2.24 16.3 46 PbMoO4 2.1 1.25 5.5 25.6 TeO2 ’" ’" (slow,•...: Shear) 0.59 0.21 0.15 4.32 It is...was observed. 3.1.3 Delay Line The delay line used for the initial experiment is an Isomet Type 1201 AO modulator. This is a glass unit operat- ing at

  11. Genistein and tyrphostin AG556 decrease ultra-rapidly activating delayed rectifier K+ current of human atria by inhibiting EGF receptor tyrosine kinase.

    PubMed

    Xiao, Guo-Sheng; Zhang, Yan-Hui; Wu, Wei; Sun, Hai-Ying; Wang, Yan; Li, Gui-Rong

    2017-03-01

    The ultra-rapidly activating delayed rectifier K + current I Kur (encoded by K v 1.5 or KCNA5) plays an important role in human atrial repolarization. The present study investigates the regulation of this current by protein tyrosine kinases (PTKs). Whole-cell patch voltage clamp technique and immunoprecipitation and Western blotting analysis were used to investigate whether the PTK inhibitors genistein, tyrphostin AG556 (AG556) and PP2 regulate human atrial I Kur and hKv1.5 channels stably expressed in HEK 293 cells. Human atrial I Kur was decreased by genistein (a broad-spectrum PTK inhibitor) and AG556 (a highly selective EGFR TK inhibitor) in a concentration-dependent manner. Inhibition of I Kur induced by 30 μM genistein or 10 μM AG556 was significantly reversed by 1 mM orthovanadate (a protein tyrosine phosphatase inhibitor). Similar results were observed in HEK 293 cells stably expressing hK v 1.5 channels. On the other hand, the Src family kinase inhibitor PP2 (1 μM) slightly enhanced I Kur and hK v 1.5 current, and the current increase was also reversed by orthovanadate. Immunoprecipitation and Western blotting analysis showed that genistein, AG556, and PP2 decreased tyrosine phosphorylation of hK v 1.5 channels and that the decrease was countered by orthovanadate. The PTK inhibitors genistein and AG556 decrease human atrial I Kur and cloned hK v 1.5 channels by inhibiting EGFR TK, whereas the Src kinase inhibitor PP2 increases I Kur and hK v 1.5 current. These results imply that EGFR TK and the soluble Src kinases may have opposite effects on human atrial I Kur . © 2017 The British Pharmacological Society.

  12. The actions of mdivi-1, an inhibitor of mitochondrial fission, on rapidly activating delayed-rectifier K⁺ current and membrane potential in HL-1 murine atrial cardiomyocytes.

    PubMed

    So, Edmund Cheung; Hsing, Chung-Hsi; Liang, Chia-Hua; Wu, Sheng-Nan

    2012-05-15

    Mdivi-1 is an inhibitor of dynamin related protein 1- (drp1)-mediated mitochondrial fission. However, the mechanisms through which this compound interacts directly with ion currents in heart cells remain unknown. In this study, its effects on ion currents and membrane potential in murine HL-1 cardiomyocytes were investigated. In whole-cell recordings, the addition of mdivi-1 decreased the amplitude of tail current (I(tail)) for the rapidly activating delayed-rectifier K⁺ current (I(Kr)) in a concentration-dependent manner with an IC₅₀ value at 11.6 μM, a value that resembles the inhibition requirement for mitochondrial division. It shifted the activation curve of I(tail) to depolarized voltages with no change in the gating charge. However, mdivi-1 did not alter the rate of recovery from current inactivation. In cell-attached configuration, mdivi-1 inside the pipette suppressed the activity of acetylcholine-activated K⁺ channels without modifying the single-channel conductance. Mdivi-1 (30 μM) slightly depressed the peak amplitude of Na⁺ current with no change in the overall current-voltage relationship. Under current-clamp recordings, addition of mdivi-1 resulted in prolongation for the duration of action potentials (APs) and to increase the firing of spontaneous APs in HL-1 cells. Similarly, in pituitary GH₃ cells, mdivi-1 was effective in directly suppressing the amplitude of ether-à-go-go-related gene-mediated K⁺ current. Therefore, the lengthening of AP duration and increased firing of APs caused by mdivi-1 can be primarily explained by its inhibition of these K⁺ channels enriched in heart cells. The observed effects of mdivi-1 on ion currents were direct and not associated with its inhibition of mitochondrial division. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Automated and manual patch clamp data of human induced pluripotent stem cell-derived dopaminergic neurons.

    PubMed

    Franz, Denise; Olsen, Hervør Lykke; Klink, Oliver; Gimsa, Jan

    2017-04-25

    Human induced pluripotent stem cells can be differentiated into dopaminergic neurons (Dopa.4U). Dopa.4U neurons expressed voltage-gated Na V and K V channels and showed neuron-like spontaneous electrical activity. In automated patch clamp measurements with suspended Dopa.4U neurons, delayed rectifier K + current (delayed K V ) and rapidly inactivating A-type K + current (fast K V ) were identified. Examination of the fast K V current with inhibitors yielded IC 50 values of 0.4 mM (4-aminopyridine) and 0.1 mM (tetraethylammonium). In manual patch clamp measurements with adherent Dopa.4U neurons, fast K V current could not be detected, while the delayed K V current showed an IC 50 of 2 mM for 4-aminopyridine. The Na V channels in adherent and suspended Dopa.4U neurons showed IC 50 values for tetrodotoxin of 27 and 2.9 nM, respectively. GABA-induced currents that could be observed in adherent Dopa.4U neurons could not be detected in suspended cells. Application of current pulses induced action potentials in approx. 70 % of the cells. Our results proved the feasibility of automated electrophysiological characterization of neuronal cells.

  14. Effects of electrical loads containing non-resistive components on electromagnetic vibration energy harvester performance

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Corr, Lawrence R.; Ma, Tianwei

    2018-02-01

    To further advance the existing knowledge base on rectified vibration energy harvester design, this study investigates the fundamental effects of electrical loads containing non-resistive components (e.g., rectifiers and capacitors) on electromagnetic energy harvester performance. Three types of electrical loads, namely (I) a resistor with a rectifier, (II) a resistor with a rectifier and a capacitor, and (III) a simple charging circuit consisting of a rectifier and a capacitor, were considered. A linear electromagnetic energy harvester was used as an illustrative example. Results have verified that device performance obtained from pure-resistive loads cannot be generalized to applications involving rectifier and/or capacitor loads. Such generalization caused not only an overestimation in the maximum power delivered to the load resistance for cases (I) and (II), but also an underestimation of the optimal load resistance and an overestimation of device natural frequency for case (II). Results obtained from case (II) also showed that it is possible to tune the mechanical natural frequency of device using an adjustable regulating capacitor. For case (III), it was found that a larger storing capacitor, with a low rectifier voltage drop, improves the performance of the electromagnetic harvester.

  15. New Analysis and Design of a RF Rectifier for RFID and Implantable Devices

    PubMed Central

    Liu, Dong-Sheng; Li, Feng-Bo; Zou, Xue-Cheng; Liu, Yao; Hui, Xue-Mei; Tao, Xiong-Fei

    2011-01-01

    New design and optimization of charge pump rectifiers using diode-connected MOS transistors is presented in this paper. An analysis of the output voltage and Power Conversion Efficiency (PCE) is given to guide and evaluate the new design. A novel diode-connected MOS transistor for UHF rectifiers is presented and optimized, and a high efficiency N-stage charge pump rectifier based on this new diode-connected MOS transistor is designed and fabricated in a SMIC 0.18-μm 2P3M CMOS embedded EEPROM process. The new diode achieves 315 mV turn-on voltage and 415 nA reverse saturation leakage current. Compared with the traditional rectifier, the one based on the proposed diode-connected MOS has higher PCE, higher output voltage and smaller ripple coefficient. When the RF input is a 900-MHz sinusoid signal with the power ranging from −15 dBm to −4 dBm, PCEs of the charge pump rectifier with only 3-stage are more than 30%, and the maximum output voltage is 5.5 V, and its ripple coefficients are less than 1%. Therefore, the rectifier is especially suitableto passive UHF RFID tag IC and implantable devices. PMID:22163968

  16. New analysis and design of a RF rectifier for RFID and implantable devices.

    PubMed

    Liu, Dong-Sheng; Li, Feng-Bo; Zou, Xue-Cheng; Liu, Yao; Hui, Xue-Mei; Tao, Xiong-Fei

    2011-01-01

    New design and optimization of charge pump rectifiers using diode-connected MOS transistors is presented in this paper. An analysis of the output voltage and Power Conversion Efficiency (PCE) is given to guide and evaluate the new design. A novel diode-connected MOS transistor for UHF rectifiers is presented and optimized, and a high efficiency N-stage charge pump rectifier based on this new diode-connected MOS transistor is designed and fabricated in a SMIC 0.18-μm 2P3M CMOS embedded EEPROM process. The new diode achieves 315 mV turn-on voltage and 415 nA reverse saturation leakage current. Compared with the traditional rectifier, the one based on the proposed diode-connected MOS has higher PCE, higher output voltage and smaller ripple coefficient. When the RF input is a 900-MHz sinusoid signal with the power ranging from -15 dBm to -4 dBm, PCEs of the charge pump rectifier with only 3-stage are more than 30%, and the maximum output voltage is 5.5 V, and its ripple coefficients are less than 1%. Therefore, the rectifier is especially suitable to passive UHF RFID tag IC and implantable devices.

  17. Research on the speed of light transmission in a dual-frequency laser pumped single fiber with two directions

    NASA Astrophysics Data System (ADS)

    Qiu, Wei; Liu, Jianjun; Wang, Yuda; Yang, Yujing; Gao, Yuan; Lv, Pin; Jiang, Qiuli

    2018-01-01

    In this article a general theory of the coherent population oscillation effect in an erbium-doped fiber at room temperature is presented. We use dual pumping light waves with a simplified two-level system. Thus the time delay equations can be calculated from rate equations and the transmission equation. Using numerical simulation, in the case of dual-frequency pump light waves (1480 nm and 980 nm) with two directions, we analyze the influence of the pump power ratio on the group speed of light propagation. In addition, we compare slow light propagation with a single-pumping light and slow light propagation with a dual-pumping light at room temperature. The discussion shows that a larger time delay of slow light propagation can be obtained with a dual-frequency pumping laser. Compared to previous research methods, a dual-frequency laser pumped fiber with two directions is more controllable. Moreover, we conclude that the group velocity of light can be varied by changing the pump ratio.

  18. 46 CFR 129.360 - Semiconductor-rectifier systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Semiconductor-rectifier systems. 129.360 Section 129.360 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS ELECTRICAL INSTALLATIONS Power Sources and Distribution Systems § 129.360 Semiconductor-rectifier systems. (a) Each...

  19. 46 CFR 129.360 - Semiconductor-rectifier systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Semiconductor-rectifier systems. 129.360 Section 129.360 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS ELECTRICAL INSTALLATIONS Power Sources and Distribution Systems § 129.360 Semiconductor-rectifier systems. (a) Each...

  20. 46 CFR 129.360 - Semiconductor-rectifier systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Semiconductor-rectifier systems. 129.360 Section 129.360 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS ELECTRICAL INSTALLATIONS Power Sources and Distribution Systems § 129.360 Semiconductor-rectifier systems. (a) Each...

  1. Controlling slow and fast light and dynamic pulse-splitting with tunable optical gain in a whispering-gallery-mode microcavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asano, M.; Ikuta, R.; Imoto, N.

    We report controllable manipulation of slow and fast light in a whispering-gallery-mode microtoroid resonator fabricated from Erbium (Er{sup 3+}) doped silica. We observe continuous transition of the coupling between the fiber-taper waveguide and the microresonator from undercoupling to critical coupling and then to overcoupling regimes by increasing the pump power even though the spatial distance between the resonator and the waveguide was kept fixed. This, in turn, enables switching from fast to slow light and vice versa just by increasing the optical gain. An enhancement of delay of two-fold over the passive silica resonator (no optical gain) was observed inmore » the slow light regime. Moreover, we show dynamic pulse splitting and its control in slow/fast light systems using optical gain.« less

  2. NON-INVASIVE EVALUATION OF NERVE CONDUCTION IN SMALL DIAMETER FIBERS IN THE RAT.

    PubMed

    Zotova, Elena G; Arezzo, Joseph C

    2013-01-01

    A novel non-invasive technique was applied to measure velocity within slow conducting axons in the distal extreme of the sciatic nerve (i.e., digital nerve) in a rat model. The technique is based on the extraction of rectified multiple unit activity (MUA) from in vivo whole nerve compound responses. This method reliably identifies compound action potentials in thinly myelinated fibers conducting at a range of 9-18 m/s (Aδ axons), as well as in a subgroup of unmylinated C fibers conducting at approximately 1-2 m/s. The sensitivity of the method to C-fiber conduction was confirmed by the progressive decrement of the responses in the 1-2 m/s range over a 20-day period following the topical application of capsaicin (ANOVA p <0.03). Increasing the frequency of applied repetitive stimulation over a range of 0.75 Hz to 6.0 Hz produced slowing of conduction and a significant decrease in the magnitude of the compound C-fiber response (ANOVA p <0.01). This technique offers a unique opportunity for the non-invasive, repeatable, and quantitative assessment of velocity in the subsets of Aδ and C fibers in parallel with evaluation of fast nerve conduction.

  3. An overview of self-switching diode rectifiers using green materials

    NASA Astrophysics Data System (ADS)

    Kasjoo, Shahrir Rizal; Zailan, Zarimawaty; Zakaria, Nor Farhani; Isa, Muammar Mohamad; Arshad, Mohd Khairuddin Md; Taking, Sanna

    2017-09-01

    A unipolar two-terminal nanodevice, known as the self-switching diode (SSD), has recently been demonstrated as a room-temperature rectifier at microwave and terahertz frequencies due to its nonlinear current-voltage characteristic. The planar architecture of SSD not only makes the fabrication process of the device faster, simpler and at a lower cost when compared with other rectifying diodes, but also allows the use of various materials to realize and fabricate SSDs. This includes the utilization of `green' materials such as organic and graphene thin films for environmental sustainability. This paper reviews the properties of current `green' SSD rectifiers with respect to their operating frequencies and rectifying performances, including responsivity and noise-equivalent power of the devices, along with the applications.

  4. 46 CFR 183.360 - Semiconductor rectifier systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Semiconductor rectifier systems. 183.360 Section 183.360 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.360 Semiconductor rectifier...

  5. 46 CFR 183.360 - Semiconductor rectifier systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Semiconductor rectifier systems. 183.360 Section 183.360 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.360 Semiconductor rectifier...

  6. 46 CFR 183.360 - Semiconductor rectifier systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Semiconductor rectifier systems. 183.360 Section 183.360 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.360 Semiconductor rectifier...

  7. An efficient hybrid method for stochastic reaction-diffusion biochemical systems with delay

    NASA Astrophysics Data System (ADS)

    Sayyidmousavi, Alireza; Ilie, Silvana

    2017-12-01

    Many chemical reactions, such as gene transcription and translation in living cells, need a certain time to finish once they are initiated. Simulating stochastic models of reaction-diffusion systems with delay can be computationally expensive. In the present paper, a novel hybrid algorithm is proposed to accelerate the stochastic simulation of delayed reaction-diffusion systems. The delayed reactions may be of consuming or non-consuming delay type. The algorithm is designed for moderately stiff systems in which the events can be partitioned into slow and fast subsets according to their propensities. The proposed algorithm is applied to three benchmark problems and the results are compared with those of the delayed Inhomogeneous Stochastic Simulation Algorithm. The numerical results show that the new hybrid algorithm achieves considerable speed-up in the run time and very good accuracy.

  8. Inducing jet-lag in older people: directional asymmetry

    NASA Technical Reports Server (NTRS)

    Monk, T. H.; Buysse, D. J.; Carrier, J.; Kupfer, D. J.

    2000-01-01

    Twenty healthy elderly subjects (12 female, 8 male; mean age 81 years, range 67-87 years) each experienced a 15-day time isolation protocol in which they lived individually in a special laboratory apartment in which sleep and circadian rhythm measures could be taken. There were two experiments: one (6 females, 4 males) involved a 6-h phase advance of the sleep/wake cycle, and the other (6 females, 4 males) a 6-h phase delay. Each started with 5 baseline days, immediately followed by the phase shift. The subject was then held to the phase shifted routine for the remainder of the study. Rectal temperatures were recorded minute-by-minute throughout the entire experiment and each night of sleep was recorded using polysomnography. A directional asymmetry in phase-shift effects was apparent, with significantly more sleep disruption and circadian rhythm amplitude disruption after the phase advance than after the phase delay. Sleep disruption was reflected in reduced time spent asleep, and in changed REM latency, which increased in the phase advance direction but decreased in the phase delay direction. Although the phase advance led to a significant increase in wakefulness in the first half of the night, the phase delay did not lead to an equivalent increase in wakefulness during the second half of the night. Examination of both raw and 'demasked' circadian rectal temperature rhythms confirmed that phase adjustment was slow in both directions, but was less slow (and more monotonic) after the phase delay than after the phase advance. Subjective alertness suffered more disruption after the phase advance than after the phase delay.

  9. Standard cosmology delayed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhury, Debajyoti; Ghoshal, Debashis; Sen, Anjan Ananda, E-mail: debajyoti.choudhury@gmail.com, E-mail: dghoshal@mail.jnu.ac.in, E-mail: anjan.ctp@jmi.ac.in

    2012-02-01

    The introduction of a delay in the Friedmann equation of cosmological evolution is shown to result in the very early universe undergoing the necessary accelerated expansion in the usual radiation (or matter) dominated phase. Occurring even without a violation of the strong energy condition, this expansion slows down naturally to go over to the decelerated phase, namely the standard Hubble expansion. This may obviate the need for a scalar field driven inflationary epoch.

  10. 27 CFR 1.21 - Domestic producers, rectifiers, blenders, and warehousemen.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Domestic producers, rectifiers, blenders, and warehousemen. 1.21 Section 1.21 Alcohol, Tobacco Products and Firearms ALCOHOL AND... BOTTLING OF DISTILLED SPIRITS Basic Permits When Required § 1.21 Domestic producers, rectifiers, blenders...

  11. 27 CFR 26.40 - Marking containers of distilled spirits.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... spirits. The distiller, rectifier, or bottler shall serially number each case, barrel, cask, or similar... the container, the distiller, rectifier, or bottler shall plainly print, stamp, or stencil with..., rectifier, or bottler. (b) The brand name and kind of liquor; (c) The wine and proof gallon contents; or...

  12. Brushless exciters using a high temperature superconducting field winding

    DOEpatents

    Garces, Luis Jose [Schenectady, NY; Delmerico, Robert William [Clifton Park, NY; Jansen, Patrick Lee [Scotia, NY; Parslow, John Harold [Scotia, NY; Sanderson, Harold Copeland [Tribes Hill, NY; Sinha, Gautam [Chesterfield, MO

    2008-03-18

    A brushless exciter for a synchronous generator or motor generally includes a stator and a rotor rotatably disposed within the stator. The rotor has a field winding and a voltage rectifying bridge circuit connected in parallel to the field winding. A plurality of firing circuits are connected the voltage rectifying bridge circuit. The firing circuit is configured to fire a signal at an angle of less than 90.degree. or at an angle greater than 90.degree.. The voltage rectifying bridge circuit rectifies the AC voltage to excite or de-excite the field winding.

  13. Tunable all-optical plasmonic rectifier in nanoscale metal-insulator-metal waveguides.

    PubMed

    Xu, Yi; Wang, Xiaomeng; Deng, Haidong; Guo, Kangxian

    2014-10-15

    We propose a tunable all-optical plasmonic rectifier based on the nonlinear Fano resonance in a metal-insulator-metal plasmonic waveguide and cavities coupling system. We develop a theoretical model based on the temporal coupled-mode theory to study the device physics of the nanoscale rectifier. We further demonstrate via the finite difference time domain numerical experiment that our idea can be realized in a plasmonic system with an ultracompact size of ~120×800  nm². The tunable plasmonic rectifier could facilitate the all-optical signal processing in nanoscale.

  14. Changes in Inward Rectifier K+ Channels in Hepatic Stellate Cells During Primary Culture

    PubMed Central

    Lee, Dong Hyeon; Kong, In Deok; Lee, Joong-Woo

    2008-01-01

    Purpose This study examined the expression and function of inward rectifier K+ channels in cultured rat hepatic stellate cells (HSC). Materials and Methods The expression of inward rectifier K+ channels was measured using real-time RT-PCR, and electrophysiological properties were determined using the gramicidin-perforated patch-clamp technique. Results The dominant inward rectifier K+ channel subtypes were Kir2.1 and Kir6.1. These dominant K+ channel subtypes decreased significantly during the primary culture throughout activation process. HSC can be classified into two subgroups: one with an inward-rectifying K+ current (type 1) and the other without (type 2). The inward current was blocked by Ba2+ (100 µM) and enhanced by high K+ (140 mM), more prominently in type 1 HSC. There was a correlation between the amplitude of the Ba2+-sensitive current and the membrane potential. In addition, Ba2+ (300 µM) depolarized the membrane potential. After the culture period, the amplitude of the inward current decreased and the membrane potential became depolarized. Conclusion HSC express inward rectifier K+ channels, which physiologically regulate membrane potential and decrease during the activation process. These results will potentially help determine properties of the inward rectifier K+ channels in HSC as well as their roles in the activation process. PMID:18581597

  15. Hyperventilation assists proarrhythmia development during delayed repolarization in clofilium-treated, anaesthetized, mechanically ventilated rabbits.

    PubMed

    Papp, H; Sarusi, A; Farkas, A S; Takacs, H; Kui, P; Vincze, D; Ivany, E; Varro, A; Papp, J G; Forster, T; Farkas, A

    2016-10-01

    Hyperventilation reduces partial pressure of CO 2 (PCO 2 ) in the blood, which results in hypokalaemia. Hypokalaemia helps the development of the life-threatening torsades de pointes type ventricular arrhythmia (TdP) evoked by repolarization delaying drugs. This implies that hyperventilation may assist the development of proarrhythmic events. Therefore, this study experimentally investigated the effect of hyperventilation on proarrhythmia development during delayed repolarization. Phenylephrine (an α 1 -adrenoceptor agonist) and clofilium (as a representative repolarization delaying agent inhibiting the rapid component of the delayed rectifier potassium current, I Kr ) were administered intravenously to pentobarbital-anaesthetized, mechanically ventilated, open chest rabbits. ECG was recorded, and the onset times and incidences of the arrhythmias were determined. Serum K + , pH and PCO 2 were measured in arterial blood samples. Clofilium prolonged the rate corrected QT interval. TdP occurred in 15 animals (TdP+ group), and did not occur in 14 animals (TdP- group). We found a strong, positive, linear correlation between serum K + and PCO 2 . There was no relationship between the occurrence of TdP and the baseline K + and PCO 2 values. However, a positive, linear correlation was found between the onset time of the first arrhythmias and the K + and PCO 2 values. The regression lines describing the relationship between PCO 2 and onset time of first arrhythmias were parallel in the TdP+ and TdP- groups, but the same PCO 2 resulted in earlier arrhythmia onset in the TdP+ group than in the TdP- group. We conclude that hyperventilation and hypocapnia with the resultant hypokalaemia assist the multifactorial process of proarrhythmia development during delayed repolarization. This implies that PCO 2 and serum K + should be controlled tightly during mechanical ventilation in experimental investigations and clinical settings when repolarization-delaying drugs are applied.

  16. Improving Heat Transfer at the Bottom of Vials for Consistent Freeze Drying with Unidirectional Structured Ice.

    PubMed

    Rosa, Mónica; Tiago, João M; Singh, Satish K; Geraldes, Vítor; Rodrigues, Miguel A

    2016-10-01

    The quality of lyophilized products is dependent of the ice structure formed during the freezing step. Herein, we evaluate the importance of the air gap at the bottom of lyophilization vials for consistent nucleation, ice structure, and cake appearance. The bottom of lyophilization vials was modified by attaching a rectified aluminum disc with an adhesive material. Freezing was studied for normal and converted vials, with different volumes of solution, varying initial solution temperature (from 5°C to 20°C) and shelf temperature (from -20°C to -40°C). The impact of the air gap on the overall heat transfer was interpreted with the assistance of a computational fluid dynamics model. Converted vials caused nucleation at the bottom and decreased the nucleation time up to one order of magnitude. The formation of ice crystals unidirectionally structured from bottom to top lead to a honeycomb-structured cake after lyophilization of a solution with 4% mannitol. The primary drying time was reduced by approximately 35%. Converted vials that were frozen radially instead of bottom-up showed similar improvements compared with normal vials but very poor cake quality. Overall, the curvature of the bottom of glass vials presents a considerable threat to consistency by delaying nucleation and causing radial ice growth. Rectifying the vials bottom with an adhesive material revealed to be a relatively simple alternative to overcome this inconsistency.

  17. Evaluation of dispersive Bragg gratings (BG) structures for the processing of RF signals with large time delays and bandwidths

    NASA Astrophysics Data System (ADS)

    Kaba, M.; Zhou, F. C.; Lim, A.; Decoster, D.; Huignard, J.-P.; Tonda, S.; Dolfi, D.; Chazelas, J.

    2007-11-01

    The applications of microwave optoelectronics are extremely large since they extend from the Radio-over-Fibre to the Homeland security and defence systems. Then, the improved maturity of the optoelectronic components operating up to 40GHz permit to consider new optical processing functions (filtering, beamforming, ...) which can operate over very wideband microwave analogue signals. Specific performances are required which imply optical delay lines able to exhibit large Time-Bandwidth product values. It is proposed to evaluate slow light approach through highly dispersive structures based on either uniform or chirped Bragg Gratings. Therefore, we highlight the impact of the major parameters of such structures: index modulation depth, grating length, grating period, chirp coefficient and demonstrate the high potentiality of Bragg Grating for Large RF signals bandwidth processing under slow-light propagation.

  18. Scintigraphic measurement of regional gut transit in idiopathic constipation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stivland, T.; Camilleri, M.; Vassallo, M.

    1991-07-01

    In this study, total gut transit and regional colonic transit in patients with idiopathic constipation were measured scintigraphically. Eight patients with severe constipation were studied, none of whom had evidence of abnormal function of the pelvic floor. 99mTc-radiolabeled Amberlite resin particles with a mixed meal were used to assess gastric emptying and small bowel transit; similar particles labeled with 111In were ingested in a coated capsule that dispersed in the ileocecal region. These were used to quantify colonic transit. Five healthy volunteers were also studied. Two patients showed delayed gastric emptying and two had slow small bowel transit. Seven ofmore » the eight patients had slow colonic transit. In five, delay affected the whole colon (pancolonic inertia); in two, transit in the ascending and transverse colon was normal, but solids moved through the left colon slowly. Mean colonic transit was also measured using radiopaque markers; this technique identified the patients with slow transit, as shown by measurements of overall colonic transit by simultaneous scintigraphy. However, estimated transit through the ascending and transverse colons was considerably shorter by the radiopaque marker technique. In conclusion, idiopathic constipation is characterized by either exaggerated reservoir functions of the ascending and transverse colons and/or impairment of propulsive function in the descending colon. Particle size may influence the result of regional colonic transit tests. Transit delays in other parts of the gut suggest that, in some patients, the condition may be a more generalized motor dysfunction.« less

  19. Evaluation of Swift Start TCP in Long-Delay Environment

    NASA Technical Reports Server (NTRS)

    Lawas-Grodek, Frances J.; Tran, Diepchi T.

    2004-01-01

    This report presents the test results of the Swift Start algorithm in single-flow and multiple-flow testbeds under the effects of high propagation delays, various slow bottlenecks, and small queue sizes. Although this algorithm estimates capacity and implements packet pacing, the findings were that in a heavily congested link, the Swift Start algorithm will not be applicable. The reason is that the bottleneck estimation is falsely influenced by timeouts induced by retransmissions and the expiration of delayed acknowledgment (ACK) timers, thus causing the modified Swift Start code to fall back to regular transmission control protocol (TCP).

  20. Automatic toilet seat lowering apparatus

    DOEpatents

    Guerty, Harold G.

    1994-09-06

    A toilet seat lowering apparatus includes a housing defining an internal cavity for receiving water from the water supply line to the toilet holding tank. A descent delay assembly of the apparatus can include a stationary dam member and a rotating dam member for dividing the internal cavity into an inlet chamber and an outlet chamber and controlling the intake and evacuation of water in a delayed fashion. A descent initiator is activated when the internal cavity is filled with pressurized water and automatically begins the lowering of the toilet seat from its upright position, which lowering is also controlled by the descent delay assembly. In an alternative embodiment, the descent initiator and the descent delay assembly can be combined in a piston linked to the rotating dam member and provided with a water channel for creating a resisting pressure to the advancing piston and thereby slowing the associated descent of the toilet seat. A toilet seat lowering apparatus includes a housing defining an internal cavity for receiving water from the water supply line to the toilet holding tank. A descent delay assembly of the apparatus can include a stationary dam member and a rotating dam member for dividing the internal cavity into an inlet chamber and an outlet chamber and controlling the intake and evacuation of water in a delayed fashion. A descent initiator is activated when the internal cavity is filled with pressurized water and automatically begins the lowering of the toilet seat from its upright position, which lowering is also controlled by the descent delay assembly. In an alternative embodiment, the descent initiator and the descent delay assembly can be combined in a piston linked to the rotating dam member and provided with a water channel for creating a resisting pressure to the advancing piston and thereby slowing the associated descent of the toilet seat.

  1. Inward rectifier potassium currents in mammalian skeletal muscle fibres

    PubMed Central

    DiFranco, Marino; Yu, Carl; Quiñonez, Marbella; Vergara, Julio L

    2015-01-01

    Inward rectifying potassium (Kir) channels play a central role in maintaining the resting membrane potential of skeletal muscle fibres. Nevertheless their role has been poorly studied in mammalian muscles. Immunohistochemical and transgenic expression were used to assess the molecular identity and subcellular localization of Kir channel isoforms. We found that Kir2.1 and Kir2.2 channels were targeted to both the surface andthe transverse tubular system membrane (TTS) compartments and that both isoforms can be overexpressed up to 3-fold 2 weeks after transfection. Inward rectifying currents (IKir) had the canonical features of quasi-instantaneous activation, strong inward rectification, depended on the external [K+], and could be blocked by Ba2+ or Rb+. In addition, IKir records show notable decays during large 100 ms hyperpolarizing pulses. Most of these properties were recapitulated by model simulations of the electrical properties of the muscle fibre as long as Kir channels were assumed to be present in the TTS. The model also simultaneously predicted the characteristics of membrane potential changes of the TTS, as reported optically by a fluorescent potentiometric dye. The activation of IKir by large hyperpolarizations resulted in significant attenuation of the optical signals with respect to the expectation for equal magnitude depolarizations; blocking IKir with Ba2+ (or Rb+) eliminated this attenuation. The experimental data, including the kinetic properties of IKir and TTS voltage records, and the voltage dependence of peak IKir, while measured at widely dissimilar bulk [K+] (96 and 24 mm), were closely predicted by assuming Kir permeability (PKir) values of ∼5.5 × 10−6 cm s−1 and equal distribution of Kir channels at the surface and TTS membranes. The decay of IKir records and the simultaneous increase in TTS voltage changes were mostly explained by K+ depletion from the TTS lumen. Most importantly, aside from allowing an accurate estimation of most of the properties of IKir in skeletal muscle fibres, the model demonstrates that a substantial proportion of IKir (>70%) arises from the TTS. Overall, our work emphasizes that measured intrinsic properties (inward rectification and external [K] dependence) and localization of Kir channels in the TTS membranes are ideally suited for re-capturing potassium ions from the TTS lumen during, and immediately after, repetitive stimulation under physiological conditions. Key points This paper provides a comprehensive electrophysiological characterization of the external [K+] dependence and inward rectifying properties of Kir channels in fast skeletal muscle fibres of adult mice. Two isoforms of inward rectifier K channels (IKir2.1 and IKir2.2) are expressed in both the surface and the transverse tubular system (TTS) membranes of these fibres. Optical measurements demonstrate that Kir currents (IKir) affect the membrane potential changes in the TTS membranes, and result in a reduction in luminal [K+]. A model of the muscle fibre assuming that functional Kir channels are equally distributed between the surface and TTS membranes accounts for both the electrophysiological and the optical data. Model simulations demonstrate that the more than 70% of IKir arises from the TTS membranes. [K+] increases in the lumen of the TTS resulting from the activation of K delayed rectifier channels (Kv) lead to drastic enhancements of IKir, and to right-shifts in their reversal potential. These changes are predicted by the model. PMID:25545278

  2. Time delay generation at high frequency using SOA based slow and fast light.

    PubMed

    Berger, Perrine; Bourderionnet, Jérôme; Bretenaker, Fabien; Dolfi, Daniel; Alouini, Mehdi

    2011-10-24

    We show how Up-converted Coherent Population Oscillations (UpCPO) enable to get rid of the intrinsic limitation of the carrier lifetime, leading to the generation of time delays at any high frequencies in a single SOA device. The linear dependence of the RF phase shift with respect to the RF frequency is theoretically predicted and experimentally evidenced at 16 and 35 GHz. © 2011 Optical Society of America

  3. How decoherence affects the probability of slow-roll eternal inflation

    NASA Astrophysics Data System (ADS)

    Boddy, Kimberly K.; Carroll, Sean M.; Pollack, Jason

    2017-07-01

    Slow-roll inflation can become eternal if the quantum variance of the inflaton field around its slowly rolling classical trajectory is converted into a distribution of classical spacetimes inflating at different rates, and if the variance is large enough compared to the rate of classical rolling that the probability of an increased rate of expansion is sufficiently high. Both of these criteria depend sensitively on whether and how perturbation modes of the inflaton interact and decohere. Decoherence is inevitable as a result of gravitationally sourced interactions whose strength are proportional to the slow-roll parameters. However, the weakness of these interactions means that decoherence is typically delayed until several Hubble times after modes grow beyond the Hubble scale. We present perturbative evidence that decoherence of long-wavelength inflaton modes indeed leads to an ensemble of classical spacetimes with differing cosmological evolutions. We introduce the notion of per-branch observables—expectation values with respect to the different decohered branches of the wave function—and show that the evolution of modes on individual branches varies from branch to branch. Thus, single-field slow-roll inflation fulfills the quantum-mechanical criteria required for the validity of the standard picture of eternal inflation. For a given potential, the delayed decoherence can lead to slight quantitative adjustments to the regime in which the inflaton undergoes eternal inflation.

  4. Comparison between Phase-Shift Full-Bridge Converters with Noncoupled and Coupled Current-Doubler Rectifier

    PubMed Central

    Tsai, Cheng-Tao; Tseng, Sheng-Yu

    2013-01-01

    This paper presents comparison between phase-shift full-bridge converters with noncoupled and coupled current-doubler rectifier. In high current capability and high step-down voltage conversion, a phase-shift full-bridge converter with a conventional current-doubler rectifier has the common limitations of extremely low duty ratio and high component stresses. To overcome these limitations, a phase-shift full-bridge converter with a noncoupled current-doubler rectifier (NCDR) or a coupled current-doubler rectifier (CCDR) is, respectively, proposed and implemented. In this study, performance analysis and efficiency obtained from a 500 W phase-shift full-bridge converter with two improved current-doubler rectifiers are presented and compared. From their prototypes, experimental results have verified that the phase-shift full-bridge converter with NCDR has optimal duty ratio, lower component stresses, and output current ripple. In component count and efficiency comparison, CCDR has fewer components and higher efficiency at full load condition. For small size and high efficiency requirements, CCDR is relatively suitable for high step-down voltage and high efficiency applications. PMID:24381521

  5. A metamaterial electromagnetic energy rectifying surface with high harvesting efficiency

    NASA Astrophysics Data System (ADS)

    Duan, Xin; Chen, Xing; Zhou, Lin

    2016-12-01

    A novel metamaterial rectifying surface (MRS) for electromagnetic energy capture and rectification with high harvesting efficiency is presented. It is fabricated on a three-layer printed circuit board, which comprises an array of periodic metamaterial particles in the shape of mirrored split rings, a metal ground, and integrated rectifiers employing Schottky diodes. Perfect impedance matching is engineered at two interfaces, i.e. one between free space and the surface, and the other between the metamaterial particles and the rectifiers, which are connected through optimally positioned vias. Therefore, the incident electromagnetic power is captured with almost no reflection by the metamaterial particles, then channeled maximally to the rectifiers, and finally converted to direct current efficiently. Moreover, the rectifiers are behind the metal ground, avoiding the disturbance of high power incident electromagnetic waves. Such a MRS working at 2.45 GHz is designed, manufactured and measured, achieving a harvesting efficiency up to 66.9% under an incident power density of 5 mW/cm2, compared with a simulated efficiency of 72.9%. This high harvesting efficiency makes the proposed MRS an effective receiving device in practical microwave power transmission applications.

  6. Comparison between phase-shift full-bridge converters with noncoupled and coupled current-doubler rectifier.

    PubMed

    Tsai, Cheng-Tao; Su, Jye-Chau; Tseng, Sheng-Yu

    2013-01-01

    This paper presents comparison between phase-shift full-bridge converters with noncoupled and coupled current-doubler rectifier. In high current capability and high step-down voltage conversion, a phase-shift full-bridge converter with a conventional current-doubler rectifier has the common limitations of extremely low duty ratio and high component stresses. To overcome these limitations, a phase-shift full-bridge converter with a noncoupled current-doubler rectifier (NCDR) or a coupled current-doubler rectifier (CCDR) is, respectively, proposed and implemented. In this study, performance analysis and efficiency obtained from a 500 W phase-shift full-bridge converter with two improved current-doubler rectifiers are presented and compared. From their prototypes, experimental results have verified that the phase-shift full-bridge converter with NCDR has optimal duty ratio, lower component stresses, and output current ripple. In component count and efficiency comparison, CCDR has fewer components and higher efficiency at full load condition. For small size and high efficiency requirements, CCDR is relatively suitable for high step-down voltage and high efficiency applications.

  7. Integrable microwave filter based on a photonic crystal delay line.

    PubMed

    Sancho, Juan; Bourderionnet, Jerome; Lloret, Juan; Combrié, Sylvain; Gasulla, Ivana; Xavier, Stephane; Sales, Salvador; Colman, Pierre; Lehoucq, Gaelle; Dolfi, Daniel; Capmany, José; De Rossi, Alfredo

    2012-01-01

    The availability of a tunable delay line with a chip-size footprint is a crucial step towards the full implementation of integrated microwave photonic signal processors. Achieving a large and tunable group delay on a millimetre-sized chip is not trivial. Slow light concepts are an appropriate solution, if propagation losses are kept acceptable. Here we use a low-loss 1.5 mm-long photonic crystal waveguide to demonstrate both notch and band-pass microwave filters that can be tuned over the 0-50-GHz spectral band. The waveguide is capable of generating a controllable delay with limited signal attenuation (total insertion loss below 10 dB when the delay is below 70 ps) and degradation. Owing to the very small footprint of the delay line, a fully integrated device is feasible, also featuring more complex and elaborate filter functions.

  8. Slow light effect with high group index and wideband by saddle-like mode in PC-CROW

    NASA Astrophysics Data System (ADS)

    Wan, Yong; Jiang, Li-Jun; Xu, Sheng; Li, Meng-Xue; Liu, Meng-Nan; Jiang, Cheng-Yi; Yuan, Feng

    2018-04-01

    Slow light with high group index and wideband is achieved in photonic crystal coupled-resonator optical waveguides (PC-CROWs). According to the eye-shaped scatterers and various microcavities, saddle-like curves between the normalized frequency f and wave number k can be obtained by adjusting the parameters of the scatterers, parameters of the coupling microcavities, and positions of the scatterers. Slow light with decent flat band and group index can then be achieved by optimizing the parameters. Simulations prove that the maximal value of the group index is > 104, and the normalized delay bandwidth product within a new varying range of n g > 102 or n g > 103 can be a new and effective criterion of evaluation for the slow light in PC-CROWs.

  9. Memory effects in funnel ratchet of self-propelled particles

    NASA Astrophysics Data System (ADS)

    Hu, Cai-Tian; Wu, Jian-Chun; Ai, Bao-Quan

    2017-05-01

    The transport of self-propelled particles with memory effects is investigated in a two-dimensional periodic channel. Funnel-shaped barriers are regularly arrayed in the channel. Due to the asymmetry of the barriers, the self-propelled particles can be rectified. It is found that the memory effects of the rotational diffusion can strongly affect the rectified transport. The memory effects do not always break the rectified transport, and there exists an optimal finite value of correlation time at which the rectified efficiency takes its maximal value. We also find that the optimal values of parameters (the self-propulsion speed, the translocation diffusion coefficient, the rotational noise intensity, and the self-rotational diffusion coefficient) can facilitate the rectified transport. When introducing a finite load, particles with different self-propulsion speeds move to different directions and can be separated.

  10. PHASE DETECTOR

    DOEpatents

    Kippenhan, D.O.

    1959-09-01

    A phase detector circuit is described for use at very high frequencies of the order of 50 megacycles. The detector circuit includes a pair of rectifiers inverted relative to each other. One voltage to be compared is applied to the two rectifiers in phase opposition and the other voltage to be compared is commonly applied to the two rectifiers. The two result:ng d-c voltages derived from the rectifiers are combined in phase opposition to produce a single d-c voltage having amplitude and polarity characteristics dependent upon the phase relation between the signals to be compared. Principal novelty resides in the employment of a half-wave transmission line to derive the phase opposing signals from the first voltage to be compared for application to the two rectifiers in place of the transformer commonly utilized for such purpose in phase detector circuits for operation at lower frequency.

  11. Stone-age mass spectrometry: the beginnings of "SIMS" at RCA Laboratories, Princeton

    NASA Astrophysics Data System (ADS)

    Honig, Richard E.

    1995-05-01

    This paper takes you back almost half a century, to the time when mass spectrometry was young and exciting, and research was exploring new frontiers every day. Our early experiments called "sputtering of surfaces by positive ion beams", now known as "SIMS", were carried out with the simple, yet flexible instrumentation available at that time and produced many interesting results that are still valid today. Since commercial equipment did not exist in those days, just about everything had to be designed and constructed in-house - hardware as well as circuitry. Thus progress was slow, but occasional malfunctioning of a component could be readily rectified. It is gratifying to see how SIMS has developed in the interim from our early feasibility studies into a major research effort carried out worldwide in many laboratories.

  12. Determination of preferred parameters for multichannel compression using individually fitted simulated hearing AIDS and paired comparisons.

    PubMed

    Moore, Brian C J; Füllgrabe, Christian; Stone, Michael A

    2011-01-01

    To determine preferred parameters of multichannel compression using individually fitted simulated hearing aids and a method of paired comparisons. Fourteen participants with mild to moderate hearing loss listened via a simulated five-channel compression hearing aid fitted using the CAMEQ2-HF method to pairs of speech sounds (a male talker and a female talker) and musical sounds (a percussion instrument, orchestral classical music, and a jazz trio) presented sequentially and indicated which sound of the pair was preferred and by how much. The sounds in each pair were derived from the same token and differed along a single dimension in the type of processing applied. For the speech sounds, participants judged either pleasantness or clarity; in the latter case, the speech was presented in noise at a 2-dB signal-to-noise ratio. For musical sounds, they judged pleasantness. The parameters explored were time delay of the audio signal relative to the gain control signal (the alignment delay), compression speed (attack and release times), bandwidth (5, 7.5, or 10 kHz), and gain at high frequencies relative to that prescribed by CAMEQ2-HF. Pleasantness increased with increasing alignment delay only for the percussive musical sound. Clarity was not affected by alignment delay. There was a trend for pleasantness to decrease slightly with increasing bandwidth, but this was significant only for female speech with fast compression. Judged clarity was significantly higher for the 7.5- and 10-kHz bandwidths than for the 5-kHz bandwidth for both slow and fast compression and for both talker genders. Compression speed had little effect on pleasantness for 50- or 65-dB SPL input levels, but slow compression was generally judged as slightly more pleasant than fast compression for an 80-dB SPL input level. Clarity was higher for slow than for fast compression for input levels of 80 and 65 dB SPL but not for a level of 50 dB SPL. Preferences for pleasantness were approximately equal with CAMEQ2-HF gains and with gains slightly reduced at high frequencies and were lower when gains were slightly increased at high frequencies. Speech clarity was not affected by changing the gain at high frequencies. Effects of alignment delay were small except for the percussive sound. A wider bandwidth was slightly preferred for speech clarity. Speech clarity was slightly greater with slow compression, especially at high levels. Preferred high-frequency gains were close to or a little below those prescribed by CAMEQ2-HF.

  13. Control of rectification and permeation by two distinct sites after the second transmembrane region in Kir2.1 K+ channel

    PubMed Central

    Kubo, Yoshihiro; Murata, Yoshimichi

    2001-01-01

    The rectification property of the inward rectifier K+ channel is chiefly due to the block of outward current by cytoplasmic Mg2+ and polyamines. In the cloned inward rectifier K+ channel Kir2.1 (IRK1), Asp172 in the second transmembrane region (M2) and Glu224 in the putative cytoplasmic region after M2 are reported to be critical for the sensitivity to these blockers. However, the difference in the inward rectification properties between Kir2.1 and a very weak inward rectifier sWIRK could not be explained by differences at these two sites. Following sequence comparison of Kir2.1 and sWIRK, we focused this study on Glu299 located in the centre of the putative cytoplasmic region after M2. Single-point mutants of Kir2.1 (Glu224Gly and Glu299Ser) and a double-point mutant (Glu224Gly-Glu299Ser) were made and expressed in Xenopus oocytes or in HEK293T cells. Their electrophysiological properties were compared with those of wild-type (WT) Kir2.1 and the following observations were made. (a) Glu299Ser showed a weaker inward rectification, a slower activation upon hyperpolarization, a slower decay of the outward current upon depolarization, a lower sensitivity to block by cytoplasmic spermine and a smaller single-channel conductance than WT. (b) The features of Glu224Gly were similar to those of Glu299Ser. (c) In the double mutant (Glu224Gly-Glu299Ser), the differences from WT described above were more prominent. These results demonstrate that Glu299 as well as Glu224 control rectification and permeation, and suggest the possibility that the two sites contribute to the inner vestibule of the channel pore. The slowing down of the on- and off-blocking processes by mutation of these sites implies that Glu224 and Glu299 function to facilitate the entry (and exit) of spermine to (and from) the blocking site. PMID:11251047

  14. Synchronous Half-Wave Rectifier

    NASA Technical Reports Server (NTRS)

    Rippel, Wally E.

    1989-01-01

    Synchronous rectifying circuit behaves like diode having unusually low voltage drop during forward-voltage half cycles. Circuit particularly useful in power supplies with potentials of 5 Vdc or less, where normal forward-voltage drops in ordinary diodes unacceptably large. Fabricated as monolithic assembly or as hybrid. Synchronous half-wave rectifier includes active circuits to attain low forward voltage drop and high rectification efficiency.

  15. Interannual variability in the atmospheric CO2 rectification over a boreal forest region

    NASA Astrophysics Data System (ADS)

    Chen, Baozhang; Chen, Jing M.; Worthy, Douglas E. J.

    2005-08-01

    Ecosystem CO2 exchange with the atmosphere and the planetary boundary layer (PBL) dynamics are correlated diurnally and seasonally. The strength of this kind of covariation is quantified as the rectifier effect, and it affects the vertical gradient of CO2 and thus the global CO2 distribution pattern. An 11-year (1990-1996, 1999-2002), continuous CO2 record from Fraserdale, Ontario (49°52'29.9″N, 81°34'12.3″W), along with a coupled vertical diffusion scheme (VDS) and ecosystem model named Boreal Ecosystem Productivity Simulator (BEPS), are used to investigate the interannual variability of the rectifier effect over a boreal forest region. The coupled model performed well (r2 = 0.70 and 0.87, at 40 m at hourly and daily time steps, respectively) in simulating CO2 vertical diffusion processes. The simulated annual atmospheric rectifier effect varies from 3.99 to 5.52 ppm, while the diurnal rectifying effect accounted for about a quarter of the annual total (22.8˜28.9%).The atmospheric rectification of CO2 is not simply influenced by terrestrial source and sink strengths, but by seasonal and diurnal variations in the land CO2 flux and their interaction with PBL dynamics. Air temperature and moisture are found to be the dominant climatic factors controlling the rectifier effect. The annual rectifier effect is highly correlated with annual mean temperature (r2 = 0.84), while annual mean air relative humidity can explain 51% of the interannual variation in rectification. Seasonal rectifier effect is also found to be more sensitive to climate variability than diurnal rectifier effect.

  16. Tunable electromagnetically induced transparency in integrated silicon photonics circuit.

    PubMed

    Li, Ang; Bogaerts, Wim

    2017-12-11

    We comprehensively simulate and experimentally demonstrate a novel approach to generate tunable electromagnetically induced transparency (EIT) in a fully integrated silicon photonics circuit. It can also generate tunable fast and slow light. The circuit is a single ring resonator with two integrated tunable reflectors inside, which form an embedded Fabry-Perot (FP) cavity inside the ring cavity. The mode of the FP cavity can be controlled by tuning the reflections using integrated thermo-optic tuners. Under correct tuning conditions, the interaction of the FP mode and the ring resonance mode will generate a Fano resonance and an EIT response. The extinction ratio and bandwidth of the EIT can be tuned by controlling the reflectors. Measured group delay proves that both fast light and slow light can be generated under different tuning conditions. A maximum group delay of 1100 ps is observed because of EIT. Pulse advance around 1200 ps is also demonstrated.

  17. Components of visual search in childhood-onset schizophrenia and attention-deficit/hyperactivity disorder.

    PubMed

    Karatekin, C; Asarnow, R F

    1998-10-01

    This study tested the hypotheses that visual search impairments in schizophrenia are due to a delay in initiation of search or a slow rate of serial search. We determined the specificity of these impairments by comparing children with schizophrenia to children with attention-deficit hyperactivity disorder (ADHD) and age-matched normal children. The hypotheses were tested within the framework of feature integration theory by administering children tasks tapping parallel and serial search. Search rate was estimated from the slope of the search functions, and duration of the initial stages of search from time to make the first saccade on each trial. As expected, manual response times were elevated in both clinical groups. Contrary to expectation, ADHD, but not schizophrenic, children were delayed in initiation of serial search. Finally, both groups showed a clear dissociation between intact parallel search rates and slowed serial search rates.

  18. Beyond the faster-is-slower effect

    NASA Astrophysics Data System (ADS)

    Sticco, I. M.; Cornes, F. E.; Frank, G. A.; Dorso, C. O.

    2017-11-01

    The "faster-is-slower" effect arises when crowded people push each other to escape through an exit during an emergency situation. As individuals push harder, a statistical slowing down in the evacuation time can be achieved. The slowing down is caused by the presence of small groups of pedestrians (say, a small human cluster) that temporarily block the way out when trying to leave the room. The pressure on the pedestrians belonging to this blocking cluster increases for increasing anxiety levels and/or a larger number of individuals trying to leave the room through the same door. Our investigation shows, however, that very high pressures alter the dynamics in the blocking cluster and, thus, change the statistics of the time delays along the escaping process. A reduction in the long lasting delays can be acknowledged, while the overall evacuation performance improves. We present results on this phenomenon taking place beyond the faster-is-slower regime.

  19. The use of Bacillus thuringiensis kurstaki for managing gypsy moth populations under the Slow the Spread Program, 1996-2010, relative to the distributional range of threatened and endangered species

    Treesearch

    Laura M. Blackburn; Donna S. Leonard; Patrick C. Tobin

    2011-01-01

    The Slow the Spread Program operates along the expanding population front of the gypsy moth, from Minnesota to North Carolina. The primary objective of the program is to eliminate newly-founded colonies that form ahead of the leading edge to reduce the gypsy moth's rate of spread and delay the costs associated with infestation and outbreaks. Although the majority...

  20. Ripple feedback for the resonant-filter unity-power-factor rectifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Streng, S.A.; King, R.J.

    1992-07-01

    An unusual bucklike unity-power-factor rectifier with a resonant load-balancing network permits current-limited operation down to zero output voltage in a single-stage-topology. However, this rectifier has been found to be sensitive to ac-line voltage distortion and is potentially unstable with realistic values of ac-line impedance. In this paper, a new ripple feedback is proposed that solves both problems. A large-signal time-varying analysis is given along with incremental, quasi-static, and low-frequency approximations. Experimental verification is provided by a 500-W 50-kHz rectifier operating from the 120-V 60-Hz distribution system.

  1. Rectifying behavior in the GaN/graded-AlxGa1‑xN/GaN double heterojunction structure

    NASA Astrophysics Data System (ADS)

    Wang, Caiwei; Jiang, Yang; Ma, Ziguang; Zuo, Peng; Yan, Shen; Die, Junhui; Wang, Lu; Jia, Haiqiang; Wang, Wenxin; Chen, Hong

    2018-05-01

    Rectifying characteristics induced by the polarization fields are achieved in the GaN/graded-AlxGa1‑xN/GaN double heterojunction structure (DHS). By grading AlxGa1‑xN from x  =  0.4(0.3) to 0.1, the DHS displays a better conductivity for smaller reverse bias than for forward bias voltages (reverse rectifying behavior) which is opposite to p–n junction rectifying characteristics. The mechanism of reverse rectifying behavior is illustrated via calculating the energy band structures of the samples. The band gap narrowing caused by decreasing Al composition could compensate the for the band tilt due to the polarization effect in AlxGa1‑xN barriers, thus lowering the barrier height for electron transport from top to bottom. The reverse rectifying behavior could be enhanced by increasing the Al content and the thickness of the multi-layer graded AlxGa1‑xN barriers. This work gives a better understanding of the mechanism of carrier transport in a DHS and makes it possible to realize novel GaN-based heterojunction transistors.

  2. Timing considerations of Helmet Mounted Display performance

    NASA Technical Reports Server (NTRS)

    Tharp, Gregory; Liu, Andrew; French, Lloyd; Lai, Steve; Stark, Lawrence

    1992-01-01

    The Helmet Mounted Display (HMD) system developed in our lab should be a useful teleoperator systems display if it increases operator performance of the desired task; it can, however, introduce degradation in performance due to display update rate constraints and communication delays. Display update rates are slowed by communication bandwidth and/or computational power limitations. We used simulated 3D tracking and pick-and-place tasks to characterize performance levels for a range of update rates. Initial experiments with 3D tracking indicate that performance levels plateau at an update rate between 10 and 20 Hz. We have found that using the HMD with delay decreases performance as delay increases.

  3. Delayed embryonic development in the Indian short-nosed fruit bat, Cynopterus sphinx.

    PubMed

    Meenakumari, Karukayil J; Krishna, Amitabh

    2005-01-01

    The unusual feature of the breeding cycle of Cynopterus sphinx at Varanasi is the significant variation in gestation length of the two successive pregnancies of the year. The aim of this study was to investigate whether the prolongation of the first pregnancy in C. sphinx is due to delayed embryonic development. The first (winter) pregnancy commences in late October and lasts until late March and has a gestation period of about 150 days. The second (summer) pregnancy commences in April and lasts until the end of July or early August with a gestation period of about 125 days. Changes in the size and weight of uterine cornua during the two successive pregnancies suggest retarded embryonic growth during November and December. Histological analysis during the period of retarded embryonic development in November and December showed a slow gastrulation process. The process of amniogenesis was particularly slow. When the embryos attained the early primitive streak stage, their developmental rate suddenly increased considerably. During the summer pregnancy, on the other hand, the process of gastrulation was much faster and proceeded quickly. A comparison of the pattern of embryonic development for 4 consecutive years consistently showed retarded or delayed embryonic development during November and December. The time of parturition and post-partum oestrus showed only a limited variation from 1 year to another. This suggests that delayed embryonic development in C. sphinx may function to synchronize parturition among females. The period of delayed embryonic development in this species clearly coincides with the period of fat deposition. The significance of this correlation warrants further investigation.

  4. Rapid identification of slow healing wounds

    PubMed Central

    Jung, Kenneth; Covington, Scott; Sen, Chandan K.; Januszyk, Michael; Kirsner, Robert S.; Gurtner, Geoffrey C.; Shah, Nigam H.

    2016-01-01

    Chronic nonhealing wounds have a prevalence of 2% in the United States, and cost an estimated $50 billion annually. Accurate stratification of wounds for risk of slow healing may help guide treatment and referral decisions. We have applied modern machine learning methods and feature engineering to develop a predictive model for delayed wound healing that uses information collected during routine care in outpatient wound care centers. Patient and wound data was collected at 68 outpatient wound care centers operated by Healogics Inc. in 26 states between 2009 and 2013. The dataset included basic demographic information on 59,953 patients, as well as both quantitative and categorical information on 180,696 wounds. Wounds were split into training and test sets by randomly assigning patients to training and test sets. Wounds were considered delayed with respect to healing time if they took more than 15 weeks to heal after presentation at a wound care center. Eleven percent of wounds in this dataset met this criterion. Prognostic models were developed on training data available in the first week of care to predict delayed healing wounds. A held out subset of the training set was used for model selection, and the final model was evaluated on the test set to evaluate discriminative power and calibration. The model achieved an area under the curve of 0.842 (95% confidence interval 0.834–0.847) for the delayed healing outcome and a Brier reliability score of 0.00018. Early, accurate prediction of delayed healing wounds can improve patient care by allowing clinicians to increase the aggressiveness of intervention in patients most at risk. PMID:26606167

  5. Does manipulating the speed of visual flow in virtual reality change distance estimation while walking in Parkinson's disease?

    PubMed

    Ehgoetz Martens, Kaylena A; Ellard, Colin G; Almeida, Quincy J

    2015-03-01

    Although dopaminergic replacement therapy is believed to improve sensory processing in PD, while delayed perceptual speed is thought to be caused by a predominantly cholinergic deficit, it is unclear whether sensory-perceptual deficits are a result of corrupt sensory processing, or a delay in updating perceived feedback during movement. The current study aimed to examine these two hypotheses by manipulating visual flow speed and dopaminergic medication to examine which influenced distance estimation in PD. Fourteen PD and sixteen HC participants were instructed to estimate the distance of a remembered target by walking to the position the target formerly occupied. This task was completed in virtual reality in order to manipulate the visual flow (VF) speed in real time. Three conditions were carried out: (1) BASELINE: VF speed was equal to participants' real-time movement speed; (2) SLOW: VF speed was reduced by 50 %; (2) FAST: VF speed was increased by 30 %. Individuals with PD performed the experiment in their ON and OFF state. PD demonstrated significantly greater judgement error during BASELINE and FAST conditions compared to HC, although PD did not improve their judgement error during the SLOW condition. Additionally, PD had greater variable error during baseline compared to HC; however, during the SLOW conditions, PD had significantly less variable error compared to baseline and similar variable error to HC participants. Overall, dopaminergic medication did not significantly influence judgement error. Therefore, these results suggest that corrupt processing of sensory information is the main contributor to sensory-perceptual deficits during movement in PD rather than delayed updating of sensory feedback.

  6. Ultrasonic inspection of studs (bolts) using dynamic predictive deconvolution and wave shaping.

    PubMed

    Suh, D M; Kim, W W; Chung, J G

    1999-01-01

    Bolt degradation has become a major issue in the nuclear industry since the 1980's. If small cracks in stud bolts are not detected early enough, they grow rapidly and cause catastrophic disasters. Their detection, despite its importance, is known to be a very difficult problem due to the complicated structures of the stud bolts. This paper presents a method of detecting and sizing a small crack in the root between two adjacent crests in threads. The key idea is from the fact that the mode-converted Rayleigh wave travels slowly down the face of the crack and turns from the intersection of the crack and the root of thread to the transducer. Thus, when a crack exists, a small delayed pulse due to the Rayleigh wave is detected between large regularly spaced pulses from the thread. The delay time is the same as the propagation delay time of the slow Rayleigh wave and is proportional to the site of the crack. To efficiently detect the slow Rayleigh wave, three methods based on digital signal processing are proposed: wave shaping, dynamic predictive deconvolution, and dynamic predictive deconvolution combined with wave shaping.

  7. Silicon Controlled Switch for Detection of Ionizing Radiation

    DTIC Science & Technology

    2015-12-01

    sensitivity of previous NPS silicon controlled rectifier (SCR) based circuits. Additionally, the circuit in this thesis was able to detect AM-241 and...sensitivity of previous NPS silicon controlled rectifier (SCR) based circuits. Additionally, the circuit in this thesis was able to detect AM-241 and...Controlled Rectifier SCS Silicon-Controlled Switch SONAR SOund Navigation and Ranging VBIAS Applied Bias Voltage VH Holding Voltage VS Standalone SCS

  8. Inadequate Antioxidative Responses in Kidneys of Brain-Dead Rats.

    PubMed

    Hoeksma, Dane; Rebolledo, Rolando A; Hottenrott, Maximilia; Bodar, Yves S; Wiersema-Buist, Janneke J; Van Goor, Harry; Leuvenink, Henri G D

    2017-04-01

    Brain death (BD)-related lipid peroxidation, measured as serum malondialdehyde (MDA) levels, correlates with delayed graft function in renal transplant recipients. How BD affects lipid peroxidation is not known. The extent of BD-induced organ damage is influenced by the speed at which intracranial pressure increases. To determine possible underlying causes of lipid peroxidation, we investigated the renal redox balance by assessing oxidative and antioxidative processes in kidneys of brain-dead rats after fast and slow BD induction. Brain death was induced in 64 ventilated male Fisher rats by inflating a 4.0F Fogarty catheter in the epidural space. Fast and slow inductions were achieved by an inflation speed of 0.45 and 0.015 mL/min, respectively, until BD confirmation. Healthy non-brain-dead rats served as reference values. Brain-dead rats were monitored for 0.5, 1, 2, or 4 hours, after which organs and blood were collected. Increased MDA levels became evident at 2 hours of slow BD induction at which increased superoxide levels, decreased glutathione peroxidase (GPx) activity, decreased glutathione levels, increased inducible nitric oxide synthase and heme-oxygenase 1 expression, and increased plasma creatinine levels were evident. At 4 hours after slow BD induction, superoxide, MDA, and plasma creatinine levels increased further, whereas GPx activity remained decreased. Increased MDA and plasma creatinine levels also became evident after 4 hours fast BD induction. Brain death leads to increased superoxide production, decreased GPx activity, decreased glutathione levels, increased inducible nitric oxide synthase and heme-oxygenase 1 expression, and increased MDA and plasma creatinine levels. These effects were more pronounced after slow BD induction. Modulation of these processes could lead to decreased incidence of delayed graft function.

  9. Multi-time resolution analysis of speech: evidence from psychophysics

    PubMed Central

    Chait, Maria; Greenberg, Steven; Arai, Takayuki; Simon, Jonathan Z.; Poeppel, David

    2015-01-01

    How speech signals are analyzed and represented remains a foundational challenge both for cognitive science and neuroscience. A growing body of research, employing various behavioral and neurobiological experimental techniques, now points to the perceptual relevance of both phoneme-sized (10–40 Hz modulation frequency) and syllable-sized (2–10 Hz modulation frequency) units in speech processing. However, it is not clear how information associated with such different time scales interacts in a manner relevant for speech perception. We report behavioral experiments on speech intelligibility employing a stimulus that allows us to investigate how distinct temporal modulations in speech are treated separately and whether they are combined. We created sentences in which the slow (~4 Hz; Slow) and rapid (~33 Hz; Shigh) modulations—corresponding to ~250 and ~30 ms, the average duration of syllables and certain phonetic properties, respectively—were selectively extracted. Although Slow and Shigh have low intelligibility when presented separately, dichotic presentation of Shigh with Slow results in supra-additive performance, suggesting a synergistic relationship between low- and high-modulation frequencies. A second experiment desynchronized presentation of the Slow and Shigh signals. Desynchronizing signals relative to one another had no impact on intelligibility when delays were less than ~45 ms. Longer delays resulted in a steep intelligibility decline, providing further evidence of integration or binding of information within restricted temporal windows. Our data suggest that human speech perception uses multi-time resolution processing. Signals are concurrently analyzed on at least two separate time scales, the intermediate representations of these analyses are integrated, and the resulting bound percept has significant consequences for speech intelligibility—a view compatible with recent insights from neuroscience implicating multi-timescale auditory processing. PMID:26136650

  10. Clinical and psychoeducational profile of children with borderline intellectual functioning.

    PubMed

    Karande, Sunil; Kanchan, Sandeep; Kulkarni, Madhuri

    2008-08-01

    To document the clinical profile and academic history of children with borderline intellectual functioning ("slow learners"); and to assess parental knowledge and attitudes regarding this condition. From November 2004 to April 2005, 55 children (35 boys, 20 girls) were diagnosed as slow learners based on current level of academic functioning and global IQ scores (71-84) done by the WISC test. Detailed clinical and academic history; and physical and neurological examination findings were noted. The parents were counseled about the diagnosis and the option of special education. The mean age of slow learners was 11.9 years (+/-SD 2.3, range 8-17). Eighteen (32.7%) children had a significant perinatal history, 15 (27.3%) had delayed walking, 17 (30.9%) had delayed talking, 17 (30.9%) had microcephaly, 34 (61.8%) had presence of soft neurologic signs, and 10 (18.2%) were on complementary and alternative medication therapy. There were no differentiating features between the two gender groups. Their chief academic problems were difficulty in writing (92.7%), overall poor performance in all subjects (89.1%), and difficulty in mathematics (76.4%). Forty-six (83.6%) children had failed in examinations, 34 (61.8%) had experienced grade retention, and 32 (58.2%) had behavior problems. Most parents (83.3%) were reluctant to consider the option of special education. Slow learners struggle to cope up with the academic demands of the regular classroom. They need to be identified at an early age and their parents counseled to understand their academic abilities.

  11. Upregulation of an inward rectifying K+ channel can rescue slow Ca2+ oscillations in K(ATP) channel deficient pancreatic islets.

    PubMed

    Yildirim, Vehpi; Vadrevu, Suryakiran; Thompson, Benjamin; Satin, Leslie S; Bertram, Richard

    2017-07-01

    Plasma insulin oscillations are known to have physiological importance in the regulation of blood glucose. In insulin-secreting β-cells of pancreatic islets, K(ATP) channels play a key role in regulating glucose-dependent insulin secretion. In addition, they convey oscillations in cellular metabolism to the membrane by sensing adenine nucleotides, and are thus instrumental in mediating pulsatile insulin secretion. Blocking K(ATP) channels pharmacologically depolarizes the β-cell plasma membrane and terminates islet oscillations. Surprisingly, when K(ATP) channels are genetically knocked out, oscillations in islet activity persist, and relatively normal blood glucose levels are maintained. Compensation must therefore occur to overcome the loss of K(ATP) channels in K(ATP) knockout mice. In a companion study, we demonstrated a substantial increase in Kir2.1 protein occurs in β-cells lacking K(ATP) because of SUR1 deletion. In this report, we demonstrate that β-cells of SUR1 null islets have an upregulated inward rectifying K+ current that helps to compensate for the loss of K(ATP) channels. This current is likely due to the increased expression of Kir2.1 channels. We used mathematical modeling to determine whether an ionic current having the biophysical characteristics of Kir2.1 is capable of rescuing oscillations that are similar in period to those of wild-type islets. By experimentally testing a key model prediction we suggest that Kir2.1 current upregulation is a likely mechanism for rescuing the oscillations seen in islets from mice deficient in K(ATP) channels.

  12. [Research progress in the role of aquaproin-4 and inward rectifying potassium channel 4.1 in spinal cord edema].

    PubMed

    Chen, Tiege; Dang, Yuexiu; Wang, Ming; Zhang, Dongliang; Guo, Yongqiang; Zhang, Haihong

    2018-05-28

    Spinal edema is a very important pathophysiological basis for secondary spinal cord injury, which affects the repair and prognosis of spinal cord injury. Aquaporin-4 is widely distributed in various organs of the body, and is highly expressed in the brain and spinal cord. Inward rectifying potassium channel 4.1 is a protein found in astrocytes of central nervous system. It interacts with aquaporins in function. Aquaporin-4 and inward rectifying potassium channel 4.1 play an important role in the formation and elimination of spinal cord edema, inhibition of glial scar formation and promotion of excitotoxic agents exclusion. The distribution and function of aquaporin-4 and inward rectifying potassium channel 4.1 in the central nervous system and their expression after spinal cord injury have multiple effects on spinal edema. Studies of aquaporin-4 and inward rectifying potassium channel 4.1 in the spinal cord may provide new ideas for the elimination and treatment of spinal edema.

  13. Power converter for raindrop energy harvesting application: Half-wave rectifier

    NASA Astrophysics Data System (ADS)

    Izrin, Izhab Muhammad; Dahari, Zuraini

    2017-10-01

    Harvesting raindrop energy by capturing vibration from impact of raindrop have been explored extensively. Basically, raindrop energy is generated by converting the kinetic energy of raindrop into electrical energy by using polyvinylidene fluoride (PVDF) piezoelectric. In this paper, a power converter using half-wave rectifier for raindrop harvesting energy application is designed and proposed to convert damping alternating current (AC) generated by PVDF into direct current (DC). This research presents parameter analysis of raindrop simulation used in the experiment and resistive load effect on half-wave rectifier converter. The experiment is conducted by using artificial raindrop from the height of 1.3 m to simulate the effect of different resistive load on the output of half-wave rectifier converter. The results of the 0.68 MΩ resistive load showed the best performance of the half-wave rectifier converter used in raindrop harvesting energy system, which generated 3.18 Vaverage. The peak instantaneous output generated from this experiment is 15.36 µW.

  14. A high speed PE-ALD ZnO Schottky diode rectifier with low interface-state density

    NASA Astrophysics Data System (ADS)

    Jin, Jidong; Zhang, Jiawei; Shaw, Andrew; Kudina, Valeriya N.; Mitrovic, Ivona Z.; Wrench, Jacqueline S.; Chalker, Paul R.; Balocco, Claudio; Song, Aimin; Hall, Steve

    2018-02-01

    Zinc oxide (ZnO) has recently attracted attention for its potential application to high speed electronics. In this work, a high speed Schottky diode rectifier was fabricated based on a ZnO thin film deposited by plasma-enhanced atomic layer deposition and a PtOx Schottky contact deposited by reactive radio-frequency sputtering. The rectifier shows an ideality factor of 1.31, an effective barrier height of 0.79 eV, a rectification ratio of 1.17  ×  107, and cut-off frequency as high as 550 MHz. Low frequency noise measurements reveal that the rectifier has a low interface-state density of 5.13  ×  1012 cm-2 eV-1, and the noise is dominated by the mechanism of a random walk of electrons at the PtO x /ZnO interface. The work shows that the rectifier can be used for both noise sensitive and high frequency electronics applications.

  15. A high-efficiency low-voltage CMOS rectifier for harvesting energy in implantable devices.

    PubMed

    Hashemi, S Saeid; Sawan, Mohamad; Savaria, Yvon

    2012-08-01

    We present, in this paper, a new full-wave CMOS rectifier dedicated for wirelessly-powered low-voltage biomedical implants. It uses bootstrapped capacitors to reduce the effective threshold voltage of selected MOS switches. It achieves a significant increase in its overall power efficiency and low voltage-drop. Therefore, the rectifier is good for applications with low-voltage power supplies and large load current. The rectifier topology does not require complex circuit design. The highest voltages available in the circuit are used to drive the gates of selected transistors in order to reduce leakage current and to lower their channel on-resistance, while having high transconductance. The proposed rectifier was fabricated using the standard TSMC 0.18 μm CMOS process. When connected to a sinusoidal source of 3.3 V peak amplitude, it allows improving the overall power efficiency by 11% compared to the best recently published results given by a gate cross-coupled-based structure.

  16. New Targeted Treatment May Slow Disease in Patients with Advanced GIST

    Cancer.gov

    A new oral drug, regorafenib (Stivarga®), may delay the progression of advanced gastrointestinal stromal tumors (GIST) that are resistant to treatment, according to results from an international clinical trial published November 22, 2012, in The Lancet.

  17. Energy Harvesting from Energetic Porous Silicon

    DTIC Science & Technology

    2016-07-01

    ignition. Here we investigate a means to convert this mechanical energy to electrical energy via a piezoelectric cantilever and rectifying circuit. This...mechanical energy to electrical energy via a piezoelectric cantilever and an associated rectifying circuit. A small PSi sample is placed on the...cantilever is wired to a direct current (DC) full-bridge rectifier circuit (EHE001NC) also purchased from Midé. Test points have been added at the

  18. A post-processing method to simulate the generalized RF sheath boundary condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myra, James R.; Kohno, Haruhiko

    For applications of ICRF power in fusion devices, control of RF sheath interactions is of great importance. A sheath boundary condition (SBC) was previously developed to provide an effective surface impedance for the interaction of the RF sheath with the waves. The SBC enables the surface power flux and rectified potential energy available for sputtering to be calculated. For legacy codes which cannot easily implement the SBC, or to speed convergence in codes which do implement it, we consider here an approximate method to simulate SBCs by post-processing results obtained using other, e.g. conducting wall, boundary conditions. The basic approximationmore » is that the modifications resulting from the generalized SBC are driven by a fixed incoming wave which could be either a fast wave or a slow wave. Finally, the method is illustrated in slab geometry and compared with exact numerical solutions; it is shown to work very well.« less

  19. A post-processing method to simulate the generalized RF sheath boundary condition

    DOE PAGES

    Myra, James R.; Kohno, Haruhiko

    2017-10-23

    For applications of ICRF power in fusion devices, control of RF sheath interactions is of great importance. A sheath boundary condition (SBC) was previously developed to provide an effective surface impedance for the interaction of the RF sheath with the waves. The SBC enables the surface power flux and rectified potential energy available for sputtering to be calculated. For legacy codes which cannot easily implement the SBC, or to speed convergence in codes which do implement it, we consider here an approximate method to simulate SBCs by post-processing results obtained using other, e.g. conducting wall, boundary conditions. The basic approximationmore » is that the modifications resulting from the generalized SBC are driven by a fixed incoming wave which could be either a fast wave or a slow wave. Finally, the method is illustrated in slab geometry and compared with exact numerical solutions; it is shown to work very well.« less

  20. Anesthesiologists and anesthetist: are we paying for outcome or process?

    PubMed

    Rutsohn, Phil

    2005-01-01

    The concept of Value Exchange is fundamental to any discipline that focuses on interactions between providers and consumers. In both the study of Marketing and the study of Economics, one learns that a producer and consumer will engage in an exchange relationship only so long as the value/cost relationship is positive. Once the cost of the exchange is equal to the value of that exchange, further economic activity is irrational. In a market-based economy, the market is obviously the regulator unless there is some imperfection inhibiting the interaction of the buyer and seller. When there is an imperfection, it is the government's responsibility to intervene and function as a proxy promoting rational buying and selling. In this paper, the author will attempt to demonstrate that the consumer has been economically irrational when purchasing anesthesia services and government has been slow and minimally effective when intervening to rectify this market imperfection.

  1. A self-powered piezoelectric energy harvesting interface circuit with efficiency-enhanced P-SSHI rectifier

    NASA Astrophysics Data System (ADS)

    Liu, Lianxi; Pang, Yanbo; Yuan, Wenzhi; Zhu, Zhangming; Yang, Yintang

    2018-04-01

    The key to self-powered technique is initiative to harvest energy from the surrounding environment. Harvesting energy from an ambient vibration source utilizing piezoelectrics emerged as a popular method. Efficient interface circuits become the main limitations of existing energy harvesting techniques. In this paper, an interface circuit for piezoelectric energy harvesting is presented. An active full bridge rectifier is adopted to improve the power efficiency by reducing the conduction loss on the rectifying path. A parallel synchronized switch harvesting on inductor (P-SSHI) technique is used to improve the power extraction capability from piezoelectric harvester, thereby trying to reach the theoretical maximum output power. An intermittent power management unit (IPMU) and an output capacitor-less low drop regulator (LDO) are also introduced. Active diodes (AD) instead of traditional passive ones are used to reduce the voltage loss over the rectifier, which results in a good power efficiency. The IPMU with hysteresis comparator ensures the interface circuit has a large transient output power by limiting the output voltage ranges from 2.2 to 2 V. The design is fabricated in a SMIC 0.18 μm CMOS technology. Simulation results show that the flipping efficiency of the P-SSHI circuit is over 80% with an off-chip inductor value of 820 μH. The output power the proposed rectifier can obtain is 44.4 μW, which is 6.7× improvement compared to the maximum output power of a traditional rectifier. Both the active diodes and the P-SSHI help to improve the output power of the proposed rectifier. LDO outputs a voltage of 1.8 V with the maximum 90% power efficiency. The proposed P-SSHI rectifier interface circuit can be self-powered without the need for additional power supply. Project supported by the National Natural Science Foundation of China (Nos. 61574103, U1709218) and the Key Research and Development Program of Shaanxi Province (No. 2017ZDXM-GY-006).

  2. Induction of slow oscillations by rhythmic acoustic stimulation.

    PubMed

    Ngo, Hong-Viet V; Claussen, Jens C; Born, Jan; Mölle, Matthias

    2013-02-01

    Slow oscillations are electrical potential oscillations with a spectral peak frequency of ∼0.8 Hz, and hallmark the electroencephalogram during slow-wave sleep. Recent studies have indicated a causal contribution of slow oscillations to the consolidation of memories during slow-wave sleep, raising the question to what extent such oscillations can be induced by external stimulation. Here, we examined whether slow oscillations can be effectively induced by rhythmic acoustic stimulation. Human subjects were examined in three conditions: (i) with tones presented at a rate of 0.8 Hz ('0.8-Hz stimulation'); (ii) with tones presented at a random sequence ('random stimulation'); and (iii) with no tones presented in a control condition ('sham'). Stimulation started during wakefulness before sleep and continued for the first ∼90 min of sleep. Compared with the other two conditions, 0.8-Hz stimulation significantly delayed sleep onset. However, once sleep was established, 0.8-Hz stimulation significantly increased and entrained endogenous slow oscillation activity. Sleep after the 90-min period of stimulation did not differ between the conditions. Our data show that rhythmic acoustic stimulation can be used to effectively enhance slow oscillation activity. However, the effect depends on the brain state, requiring the presence of stable non-rapid eye movement sleep. © 2012 European Sleep Research Society.

  3. Phospholipase C-independent effects of 3M3FBS in murine colon.

    PubMed

    Dwyer, Laura; Kim, Hyun Jin; Koh, Byoung Ho; Koh, Sang Don

    2010-02-25

    The muscarinic receptor subtype M(3) is coupled to Gq/11 proteins. Muscarinic receptor agonists such as carbachol stimulate these receptors that result in activation of phospholipase C (PLC) which hydrolyzes phosphatidylinositol 4,5-bisphosphate into diacylglycerol and Ins(1,4,5)P(3). This pathway leads to excitation and smooth muscle contraction. In this study the PLC agonist, 2, 4, 6-trimethyl-N-(meta-3-trifluoromethyl-phenyl)-benezenesulfonamide (m-3M3FBS), was used to investigate whether direct PLC activation mimics carbachol-induced excitation. We examined the effects of m-3M3FBS and 2, 4, 6-trimethyl-N-(ortho-3-trifluoromethyl-phenyl)-benzenesulfonamide (o-3M3FBS), on murine colonic smooth muscle tissue and cells by performing conventional microelectrode recordings, isometric force measurements and patch clamp experiments. Application of m-3M3FBS decreased spontaneous contractility in murine colonic smooth muscle without affecting the resting membrane potential. Patch clamp studies revealed that delayed rectifier K(+) channels were reversibly inhibited by m-3M3FBS and o-3M3FBS. The PLC inhibitor, 1-(6-((17b-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122), did not prevent this inhibition by m-3M3FBS. Both m-3M3FBS and o-3M3FBS decreased two components of delayed rectifier K(+) currents in the presence of tetraethylammonium chloride or 4-aminopyridine. Ca(2+) currents were significantly suppressed by m-3M3FBS and o-3M3FBS with a simultaneous increase in intracellular Ca(2+). Pretreatment with U73122 did not prevent the decrease in Ca(2+) currents upon m-3M3FBS application. In conclusion, both m-3M3FBS and o-3M3FBS inhibit inward and outward currents via mechanisms independent of PLC acting in an antagonistic manner. In contrast, both compounds also caused an increase in [Ca(2+)](i) in an agonistic manner. Therefore caution must be employed when interpreting their effects at the tissue and cellular level.

  4. Portable Plating System

    NASA Technical Reports Server (NTRS)

    Flores, R.

    1984-01-01

    Plating system mounted on portable cart includes 30-gallon (23.5 liter) electrolyte tank, filler pump, heaters, replenishing anodes, plating rectifiers and tank rectifier to continously remove contaminants.

  5. Slow-Wave Phase Shifters, Based on Thin Ferroelectric Films, for Reflectarray Antennas. Frequency-Agile Radio: Systems and Technlogies, WMG 139

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.

    2006-01-01

    We have developed relatively broadband K- and Ka-band phase shifters using synthetic (slow-wave) transmission lines employing coupled microstripline "varactors". The tunable coupled microstripline circuits are based on laser ablated BaSrTiO films on lanthanum aluminate substrates. A model and design criteria for these novel circuits will be presented, along with measured performance including anomalous phase delay characteristics. The critical role of phase shifter loss and transient response in reflectarray antennas will be emphasized.

  6. Possibility designing half-wave and full-wave molecular rectifiers by using single benzene molecule

    NASA Astrophysics Data System (ADS)

    Abbas, Mohammed A.; Hanoon, Falah H.; Al-Badry, Lafy F.

    2018-02-01

    This work focused on possibility designing half-wave and full-wave molecular rectifiers by using single and two benzene rings, respectively. The benzene rings were threaded by a magnetic flux that changes over time. The quantum interference effect was considered as the basic idea in the rectification action, the para and meta configurations were investigated. All the calculations are performed by using steady-state theoretical model, which is based on the time-dependent Hamiltonian model. The electrical conductance and the electric current are considered as DC output signals of half-wave and full-wave molecular rectifiers. The finding in this work opens up the exciting potential to use these molecular rectifiers in molecular electronics.

  7. Applying behavioral insights to delay school start times.

    PubMed

    Kohl Malone, Susan; Ziporyn, Terra; Buttenheim, Alison M

    2017-12-01

    Healthy People 2020 established a national objective to increase the proportion of 9th-to-12th-grade students reporting sufficient sleep. A salient approach for achieving this objective is to delay middle and high school start times. Despite decades of research supporting the benefits of delayed school start times on adolescent sleep, health, and well-being, progress has been slow. Accelerating progress will require new approaches incorporating strategies that influence how school policy decisions are made. In this commentary, we introduce four strategies that influence decision-making processes and demonstrate how they can be applied to efforts aimed at changing school start time policies. Copyright © 2017 National Sleep Foundation. All rights reserved.

  8. How to induce multiple delays in coupled chaotic oscillators?

    NASA Astrophysics Data System (ADS)

    Bhowmick, Sourav K.; Ghosh, Dibakar; Roy, Prodyot K.; Kurths, Jürgen; Dana, Syamal K.

    2013-12-01

    Lag synchronization is a basic phenomenon in mismatched coupled systems, delay coupled systems, and time-delayed systems. It is characterized by a lag configuration that identifies a unique time shift between all pairs of similar state variables of the coupled systems. In this report, an attempt is made how to induce multiple lag configurations in coupled systems when different pairs of state variables attain different time shift. A design of coupling is presented to realize this multiple lag synchronization. Numerical illustration is given using examples of the Rössler system and the slow-fast Hindmarsh-Rose neuron model. The multiple lag scenario is physically realized in an electronic circuit of two Sprott systems.

  9. Gastric emptying in patients with constipation following childbirth and due to idiopathic slow transit.

    PubMed

    MacDonald, A; Baxter, J N; Bessent, R G; Gray, H W; Finlay, I G

    1997-08-01

    Idiopathic slow transit constipation (ISTC) is considered to be a heterogeneous condition in which patients have varying sites and degrees of delayed gastrointestinal transit. The majority of patients have pancolonic disease, and colectomy with ileocolorectal anastomosis has been the mainstay of surgical treatment. Severe constipation following traumatic childbirth is now being recognized and this subgroup of patients may have delayed transit confined to the rectosigmoid colon. In theory, proximal transit in these patients should be normal. Gastric emptying was studied in patients with constipation following childbirth or ISTC and in controls. After an overnight fast, both patients and controls received breakfast, which consisted of cornflakes, sugar and milk. The liquid marker 111In-labelled di-ethylene tri-amine penta-acetic acid (DTPA) was added to the milk. A solid marker, 99mTc-labelled colloid, was impregnated on to paper and sealed with cellulose. The t1/2 for gastric emptying was calculated. Liquid phase emptying was normal in both constipation following childbirth and ISTC. Solid phase emptying was delayed significantly in ISTC compared with that in patients with constipation following childbirth and controls. In addition, half the patients with ISTC had delayed transit through the small bowel and proximal colon. Small bowel and colonic transit were normal in patients with constipation following childbirth. Patients with constipation following childbirth represent a distinct subgroup with normal proximal gastrointestinal function. Gastric emptying studies may be helpful in selecting patients for surgical management of severe constipation.

  10. Role of processing speed and depressed mood on encoding, storage, and retrieval memory functions in patients diagnosed with schizophrenia.

    PubMed

    Brébion, Gildas; David, Anthony S; Bressan, Rodrigo A; Pilowsky, Lyn S

    2007-01-01

    The role of various types of slowing of processing speed, as well as the role of depressed mood, on each stage of verbal memory functioning in patients diagnosed with schizophrenia was investigated. Mixed lists of high- and low-frequency words were presented, and immediate and delayed free recall and recognition were required. Two levels of encoding were studied by contrasting the relatively automatic encoding of the high-frequency words and the more effortful encoding of the low-frequency words. Storage was studied by contrasting immediate and delayed recall. Retrieval was studied by contrasting free recall and recognition. Three tests of motor and cognitive processing speed were administered as well. Regression analyses involving the three processing speed measures revealed that cognitive speed was the only predictor of the recall and recognition of the low-frequency words. Furthermore, slowing in cognitive speed accounted for the deficit in recall and recognition of the low-frequency words relative to a healthy control group. Depressed mood was significantly associated with recognition of the low-frequency words. Neither processing speed nor depressed mood was associated with storage efficiency. It is concluded that both cognitive speed slowing and depressed mood impact on effortful encoding processes.

  11. Rapid identification of slow healing wounds.

    PubMed

    Jung, Kenneth; Covington, Scott; Sen, Chandan K; Januszyk, Michael; Kirsner, Robert S; Gurtner, Geoffrey C; Shah, Nigam H

    2016-01-01

    Chronic nonhealing wounds have a prevalence of 2% in the United States, and cost an estimated $50 billion annually. Accurate stratification of wounds for risk of slow healing may help guide treatment and referral decisions. We have applied modern machine learning methods and feature engineering to develop a predictive model for delayed wound healing that uses information collected during routine care in outpatient wound care centers. Patient and wound data was collected at 68 outpatient wound care centers operated by Healogics Inc. in 26 states between 2009 and 2013. The dataset included basic demographic information on 59,953 patients, as well as both quantitative and categorical information on 180,696 wounds. Wounds were split into training and test sets by randomly assigning patients to training and test sets. Wounds were considered delayed with respect to healing time if they took more than 15 weeks to heal after presentation at a wound care center. Eleven percent of wounds in this dataset met this criterion. Prognostic models were developed on training data available in the first week of care to predict delayed healing wounds. A held out subset of the training set was used for model selection, and the final model was evaluated on the test set to evaluate discriminative power and calibration. The model achieved an area under the curve of 0.842 (95% confidence interval 0.834-0.847) for the delayed healing outcome and a Brier reliability score of 0.00018. Early, accurate prediction of delayed healing wounds can improve patient care by allowing clinicians to increase the aggressiveness of intervention in patients most at risk. © 2015 by the Wound Healing Society.

  12. Electrophysiologic studies in atrial fibrillation. Slow conduction of premature impulses: a possible manifestation of the background for reentry.

    PubMed

    Cosio, F G; Palacios, J; Vidal, J M; Cocina, E G; Gómez-Sánchez, M A; Tamargo, L

    1983-01-01

    Extrastimulus-induced intraatrial conduction delays were measured in 12 patients with documented episodes of atrial fibrillation (AF) by recording atrial electrograms at the high right atrium, His bundle region, and coronary sinus. Seventeen patients with and without heart disease, but without atrial arrhythmias served as the control group. During baseline-paced atrial rhythms, a conduction delay zone could be delineated, near the atrial effective refractory period, during which all extrastimuli produced conduction delays. When compared at the same paced cycle lengths (500 to 650 ms), the patients with AF had shorter atrial effective refractory periods (mean +/- standard deviation 206 +/- 24.1 versus 233 +/- 28.2 in control patients, p less than 0.02), wider conduction delay zones (79 +/- 21.7 ms versus 52 +/- 21 in control patients, p less than 0.01), and longer conduction delays both to the His bundle region (64 +/- 18.3 ms versus 35 +/- 21.7 in control patients, p less than 0.005) and the coronary sinus (76 +/- 18.9 ms versus 35 +/- 16.1 in control patients, p less than 0.001). Repetitive atrial responses were recorded in 6 patients with AF and in 9 control subjects. Sinus nodal function abnormalities were detected in 6 of the patients with fibrillation. Patients with AF had a higher tendency than control subjects to develop slow intraatrial conduction, as well as shorter effective refractory periods. Since both features would favor reentry, they may be the electrophysiologic manifestations of the abnormalities making these patients prone to atrial reentrant arrhythmias. Repetitive atrial responses were of no predictive value. Sinus nodal dysfunction was frequently found, but was not essential for the occurrence of AF.

  13. Prenatal nicotinic exposure prolongs superior laryngeal C-fiber-mediated apnea and bradycardia through enhancing neuronal TRPV1 expression and excitation.

    PubMed

    Gao, Xiuping; Zhao, Lei; Zhuang, Jianguo; Zang, Na; Xu, Fadi

    2017-10-01

    Maternal cigarette smoke, including prenatal nicotinic exposure (PNE), is responsible for sudden infant death syndrome (SIDS). The fatal events of SIDS are characterized by severe bradycardia and life-threatening apneas. Although activation of transient receptor potential vanilloid 1 (TRPV1) of superior laryngeal C fibers (SLCFs) could induce bradycardia and apnea and has been implicated in SIDS pathogenesis, how PNE affects the SLCF-mediated cardiorespiratory responses remains unexplored. Here, we tested the hypothesis that PNE would aggravate the SLCF-mediated apnea and bradycardia via up-regulating TRPV1 expression and excitation of laryngeal C neurons in the nodose/jugular (N/J) ganglia. To this end, we compared the following outcomes between control and PNE rat pups at postnatal days 11-14: 1 ) the cardiorespiratory responses to intralaryngeal application of capsaicin (10 µg/ml, 50 µl), a selective stimulant for TRPV1 receptors, in anesthetized preparation; 2 ) immunoreactivity and mRNA of TRPV1 receptors of laryngeal sensory C neurons in the N/J ganglia retrogradely traced by 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate; and 3 ) TRPV1 currents and electrophysiological characteristics of these neurons by using whole-cell patch-clamp technique in vitro Our results showed that PNE markedly prolonged the apneic response and exacerbated the bradycardic response to intralaryngeal perfusion of capsaicin, which was associated with up-regulation of TRPV1 expression in laryngeal C neurons. In addition, PNE increased the TRPV1 currents, depressed the slow delayed rectifier potassium currents, and increased the resting membrane potential of these neurons. Our results suggest that PNE is capable of aggravating the SLCF-mediated apnea and bradycardia through TRPV1 sensitization and neuronal excitation, which may contribute to the pathogenesis of SIDS.-Gao, X., Zhao, L., Zhuang, J., Zang, N., Xu, F. Prenatal nicotinic exposure prolongs superior laryngeal C-fiber-mediated apnea and bradycardia through enhancing neuronal TRPV1 expression and excitation. © FASEB.

  14. In Silico QT and APD Prolongation Assay for Early Screening of Drug-Induced Proarrhythmic Risk.

    PubMed

    Romero, Lucia; Cano, Jordi; Gomis-Tena, Julio; Trenor, Beatriz; Sanz, Ferran; Pastor, Manuel; Saiz, Javier

    2018-04-23

    Drug-induced proarrhythmicity is a major concern for regulators and pharmaceutical companies. For novel drug candidates, the standard assessment involves the evaluation of the potassium hERG channels block and the in vivo prolongation of the QT interval. However, this method is known to be too restrictive and to stop the development of potentially valuable therapeutic drugs. The aim of this work is to create an in silico tool for early detection of drug-induced proarrhythmic risk. The system is based on simulations of how different compounds affect the action potential duration (APD) of isolated endocardial, midmyocardial, and epicardial cells as well as the QT prolongation in a virtual tissue. Multiple channel-drug interactions and state-of-the-art human ventricular action potential models ( O'Hara , T. , PLos Comput. Biol. 2011 , 7 , e1002061 ) were used in our simulations. Specifically, 206.766 cellular and 7072 tissue simulations were performed by blocking the slow and the fast components of the delayed rectifier current ( I Ks and I Kr , respectively) and the L-type calcium current ( I CaL ) at different levels. The performance of our system was validated by classifying the proarrhythmic risk of 84 compounds, 40 of which present torsadogenic properties. On the basis of these results, we propose the use of a new index (Tx) for discriminating torsadogenic compounds, defined as the ratio of the drug concentrations producing 10% prolongation of the cellular endocardial, midmyocardial, and epicardial APDs and the QT interval, over the maximum effective free therapeutic plasma concentration (EFTPC). Our results show that the Tx index outperforms standard methods for early identification of torsadogenic compounds. Indeed, for the analyzed compounds, the Tx tests accuracy was in the range of 87-88% compared with a 73% accuracy of the hERG IC 50 based test.

  15. Hydroxychloroquine reduces heart rate by modulating the hyperpolarization-activated current If: Novel electrophysiological insights and therapeutic potential

    PubMed Central

    Capel, Rebecca A.; Herring, Neil; Kalla, Manish; Yavari, Arash; Mirams, Gary R.; Douglas, Gillian; Bub, Gil; Channon, Keith; Paterson, David J.; Terrar, Derek A.; Burton, Rebecca-Ann B.

    2015-01-01

    Background Bradycardic agents are of interest for the treatment of ischemic heart disease and heart failure, as heart rate is an important determinant of myocardial oxygen consumption. Objectives The purpose of this study was to investigate the propensity of hydroxychloroquine (HCQ) to cause bradycardia. Methods We assessed the effects of HCQ on (1) cardiac beating rate in vitro (mice); (2) the “funny” current (If) in isolated guinea pig sinoatrial node (SAN) myocytes (1, 3, 10 µM); (3) heart rate and blood pressure in vivo by acute bolus injection (rat, dose range 1–30 mg/kg), (4) blood pressure and ventricular function during feeding (mouse, 100 mg/kg/d for 2 wk, tail cuff plethysmography, anesthetized echocardiography). Results In mouse atria, spontaneous beating rate was significantly (P < .05) reduced (by 9% ± 3% and 15% ± 2% at 3 and 10 µM HCQ, n = 7). In guinea pig isolated SAN cells, HCQ conferred a significant reduction in spontaneous action potential firing rate (17% ± 6%, 1 μM dose) and a dose-dependent reduction in If (13% ± 3% at 1 µM; 19% ± 2% at 3 µM). Effects were also observed on L-type calcium ion current (ICaL) (12% ± 4% reduction) and rapid delayed rectifier potassium current (IKr) (35% ± 4%) at 3 µM. Intravenous HCQ decreased heart rate in anesthetized rats (14.3% ± 1.1% at 15mg/kg; n = 6) without significantly reducing mean arterial blood pressure. In vivo feeding studies in mice showed no significant change in systolic blood pressure nor left ventricular function. Conclusions We have shown that HCQ acts as a bradycardic agent in SAN cells, in atrial preparations, and in vivo. HCQ slows the rate of spontaneous action potential firing in the SAN through multichannel inhibition, including that of If. PMID:26025323

  16. Hydroxychloroquine reduces heart rate by modulating the hyperpolarization-activated current If: Novel electrophysiological insights and therapeutic potential.

    PubMed

    Capel, Rebecca A; Herring, Neil; Kalla, Manish; Yavari, Arash; Mirams, Gary R; Douglas, Gillian; Bub, Gil; Channon, Keith; Paterson, David J; Terrar, Derek A; Burton, Rebecca-Ann B

    2015-10-01

    Bradycardic agents are of interest for the treatment of ischemic heart disease and heart failure, as heart rate is an important determinant of myocardial oxygen consumption. The purpose of this study was to investigate the propensity of hydroxychloroquine (HCQ) to cause bradycardia. We assessed the effects of HCQ on (1) cardiac beating rate in vitro (mice); (2) the "funny" current (If) in isolated guinea pig sinoatrial node (SAN) myocytes (1, 3, 10 µM); (3) heart rate and blood pressure in vivo by acute bolus injection (rat, dose range 1-30 mg/kg), (4) blood pressure and ventricular function during feeding (mouse, 100 mg/kg/d for 2 wk, tail cuff plethysmography, anesthetized echocardiography). In mouse atria, spontaneous beating rate was significantly (P < .05) reduced (by 9% ± 3% and 15% ± 2% at 3 and 10 µM HCQ, n = 7). In guinea pig isolated SAN cells, HCQ conferred a significant reduction in spontaneous action potential firing rate (17% ± 6%, 1 μM dose) and a dose-dependent reduction in If (13% ± 3% at 1 µM; 19% ± 2% at 3 µM). Effects were also observed on L-type calcium ion current (ICaL) (12% ± 4% reduction) and rapid delayed rectifier potassium current (IKr) (35% ± 4%) at 3 µM. Intravenous HCQ decreased heart rate in anesthetized rats (14.3% ± 1.1% at 15mg/kg; n = 6) without significantly reducing mean arterial blood pressure. In vivo feeding studies in mice showed no significant change in systolic blood pressure nor left ventricular function. We have shown that HCQ acts as a bradycardic agent in SAN cells, in atrial preparations, and in vivo. HCQ slows the rate of spontaneous action potential firing in the SAN through multichannel inhibition, including that of If. Copyright © 2015 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  17. Phosphatidylinositol-4,5-bisphosphate is required for KCNQ1/KCNE1 channel function but not anterograde trafficking

    PubMed Central

    Royal, Alice A.

    2017-01-01

    The slow delayed-rectifier potassium current (IKs) is crucial for human cardiac action potential repolarization. The formation of IKs requires co-assembly of the KCNQ1 α-subunit and KCNE1 β-subunit, and mutations in either of these subunits can lead to hereditary long QT syndrome types 1 and 5, respectively. It is widely recognised that the KCNQ1/KCNE1 (Q1/E1) channel requires phosphatidylinositol-4,5-bisphosphate (PIP2) binding for function. We previously identified a cluster of basic residues in the proximal C-terminus of KCNQ1 that form a PIP2/phosphoinositide binding site. Upon charge neutralisation of these residues we found that the channel became more retained in the endoplasmic reticulum, which raised the possibility that channel–phosphoinositide interactions could play a role in channel trafficking. To explore this further we used a chemically induced dimerization (CID) system to selectively deplete PIP2 and/or phosphatidylinositol-4-phosphate (PI(4)P) at the plasma membrane (PM) or Golgi, and we subsequently monitored the effects on both channel trafficking and function. The depletion of PIP2 and/or PI(4)P at either the PM or Golgi did not alter channel cell-surface expression levels. However, channel function was extremely sensitive to the depletion of PIP2 at the PM, which is in contrast to the response of other cardiac potassium channels tested (Kir2.1 and Kv11.1). Surprisingly, when using the CID system IKs was dramatically reduced even before dimerization was induced, highlighting limitations regarding the utility of this system when studying processes highly sensitive to PIP2 depletion. In conclusion, we identify that the Q1/E1 channel does not require PIP2 or PI(4)P for anterograde trafficking, but is heavily reliant on PIP2 for channel function once at the PM. PMID:29020060

  18. Phosphatidylinositol-4,5-bisphosphate is required for KCNQ1/KCNE1 channel function but not anterograde trafficking.

    PubMed

    Royal, Alice A; Tinker, Andrew; Harmer, Stephen C

    2017-01-01

    The slow delayed-rectifier potassium current (IKs) is crucial for human cardiac action potential repolarization. The formation of IKs requires co-assembly of the KCNQ1 α-subunit and KCNE1 β-subunit, and mutations in either of these subunits can lead to hereditary long QT syndrome types 1 and 5, respectively. It is widely recognised that the KCNQ1/KCNE1 (Q1/E1) channel requires phosphatidylinositol-4,5-bisphosphate (PIP2) binding for function. We previously identified a cluster of basic residues in the proximal C-terminus of KCNQ1 that form a PIP2/phosphoinositide binding site. Upon charge neutralisation of these residues we found that the channel became more retained in the endoplasmic reticulum, which raised the possibility that channel-phosphoinositide interactions could play a role in channel trafficking. To explore this further we used a chemically induced dimerization (CID) system to selectively deplete PIP2 and/or phosphatidylinositol-4-phosphate (PI(4)P) at the plasma membrane (PM) or Golgi, and we subsequently monitored the effects on both channel trafficking and function. The depletion of PIP2 and/or PI(4)P at either the PM or Golgi did not alter channel cell-surface expression levels. However, channel function was extremely sensitive to the depletion of PIP2 at the PM, which is in contrast to the response of other cardiac potassium channels tested (Kir2.1 and Kv11.1). Surprisingly, when using the CID system IKs was dramatically reduced even before dimerization was induced, highlighting limitations regarding the utility of this system when studying processes highly sensitive to PIP2 depletion. In conclusion, we identify that the Q1/E1 channel does not require PIP2 or PI(4)P for anterograde trafficking, but is heavily reliant on PIP2 for channel function once at the PM.

  19. Modulation of K+ currents in Xenopus spinal neurons by p2y receptors: a role for ATP and ADP in motor pattern generation

    PubMed Central

    Brown, Paul; Dale, Nicholas

    2002-01-01

    We have investigated the pharmacological properties and targets of p2y purinoceptors in Xenopus embryo spinal neurons. ATP reversibly inhibited the voltage-gated K+ currents by 10 ± 3 %. UTP and the analogues α,β-methylene-ATP and 2-methylthio-ATP also inhibited K+ currents. This agonist profile is similar to that reported for a p2y receptor cloned from Xenopus embryos. Voltage-gated K+ currents could be inhibited by ADP (9 ± 0.8 %) suggesting that a further p2y1-like receptor is also present in the embryo spinal cord. Unexpectedly we found that α,β-methylene-ADP, often used to block the ecto-5′-nucleotidase, also inhibited voltage-gated K+ currents (7 ± 2.3 %). This inhibition was occluded by ADP, suggesting that α,β-methylene-ADP is an agonist at p2y1 receptors. We have directly studied the properties of the ecto-5′-nucleotidase in Xenopus embryo spinal cord. Although ADP inhibited this enzyme, α,β-methylene-ADP had no action. Caution therefore needs to be used when interpreting the actions of α,β-methylene-ADP as it has previously unreported agonist activity at P2 receptors. Xenopus spinal neurons possess fast and slow voltage-gated K+ currents. By using catechol to selectively block the fast current, we completely occluded the actions of ATP and ADP. Furthermore, the purines appeared to block only the fast relaxation component of the tail currents. We therefore conclude that the p2y receptors target only the fast component of the delayed rectifier. As ATP breakdown to ADP is rapid and ADP may accumulate at higher levels than ATP, the contribution of ADP acting through p2y1-like receptors may be an important additional mechanism for the control of spinal motor pattern generation. PMID:11986373

  20. Improving slowness estimate stability and visualization using limited sensor pair correlation on seismic arrays

    NASA Astrophysics Data System (ADS)

    Gibbons, Steven J.; Näsholm, S. P.; Ruigrok, E.; Kværna, T.

    2018-04-01

    Seismic arrays enhance signal detection and parameter estimation by exploiting the time-delays between arriving signals on sensors at nearby locations. Parameter estimates can suffer due to both signal incoherence, with diminished waveform similarity between sensors, and aberration, with time-delays between coherent waveforms poorly represented by the wave-front model. Sensor-to-sensor correlation approaches to parameter estimation have an advantage over direct beamforming approaches in that individual sensor-pairs can be omitted without necessarily omitting entirely the data from each of the sensors involved. Specifically, we can omit correlations between sensors for which signal coherence in an optimal frequency band is anticipated to be poor or for which anomalous time-delays are anticipated. In practice, this usually means omitting correlations between more distant sensors. We present examples from International Monitoring System seismic arrays with poor parameter estimates resulting when classical f-k analysis is performed over the full array aperture. We demonstrate improved estimates and slowness grid displays using correlation beamforming restricted to correlations between sufficiently closely spaced sensors. This limited sensor-pair correlation (LSPC) approach has lower slowness resolution than would ideally be obtained by considering all sensor-pairs. However, this ideal estimate may be unattainable due to incoherence and/or aberration and the LSPC estimate can often exploit all channels, with the associated noise-suppression, while mitigating the complications arising from correlations between very distant sensors. The greatest need for the method is for short-period signals on large aperture arrays although we also demonstrate significant improvement for secondary regional phases on a small aperture array. LSPC can also provide a robust and flexible approach to parameter estimation on three-component seismic arrays.

  1. 27 CFR 5.61 - Application.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... § 5.61 Application. No person engaged in business as a distiller, rectifier, importer, wholesaler, or... distiller, rectifier, importer, wholesaler, or warehouseman and bottler of distilled spirits, directly or...

  2. Oscillations in motor unit discharge are reflected in the low-frequency component of rectified surface EMG and the rate of change in force.

    PubMed

    Yoshitake, Yasuhide; Shinohara, Minoru

    2013-11-01

    Common drive to a motor unit (MU) pool manifests as low-frequency oscillations in MU discharge rate, producing fluctuations in muscle force. The aim of the study was to examine the temporal correlation between instantaneous MU discharge rate and rectified EMG in low frequencies. Additionally, we attempted to examine whether there is a temporal correlation between the low-frequency oscillations in MU discharge rate and the first derivative of force (dF/dt). Healthy young subjects produced steady submaximal force with their right finger as a single task or while maintaining a pinch-grip force with the left hand as a dual task. Surface EMG and fine-wire MU potentials were recorded from the first dorsal interosseous muscle in the right hand. Surface EMG was band-pass filtered (5-1,000 Hz) and full-wave rectified. Rectified surface EMG and the instantaneous discharge rate of MUs were smoothed by a Hann-window of 400 ms duration (equivalent to 2 Hz low-pass filtering). In each of the identified MUs, the smoothed MU discharge rate was positively correlated with the rectified-and-smoothed EMG as confirmed by the distinct peak in cross-correlation function with greater values in the dual task compared with the single task. Additionally, the smoothed MU discharge rate was temporally correlated with dF/dt more than with force and with rectified-and-smoothed EMG. The results indicated that the low-frequency component of rectified surface EMG and the first derivative of force provide temporal information on the low-frequency oscillations in the MU discharge rate.

  3. Design and test of a 2.25-MW transformer rectifier assembly

    NASA Technical Reports Server (NTRS)

    Cormier, R.; Daeges, J.

    1989-01-01

    A new 2.25-MW transformer rectifier assembly was fabricated for DSS-13 at Goldstone, California. The transformer rectifier will provide constant output power of 2.25 MW at any voltage from 31 kV to 125 kV. This will give a new capability of 1 MW of RF power at X-band, provided appropriate microwave tubes are in the power amplifier. A description of the design and test results is presented.

  4. Power combining in an array of microwave power rectifiers

    NASA Technical Reports Server (NTRS)

    Gutmann, R. J.; Borrego, J. M.

    1979-01-01

    This work analyzes the resultant efficiency degradation when identical rectifiers operate at different RF power levels as caused by the power beam taper. Both a closed-form analytical circuit model and a detailed computer-simulation model are used to obtain the output dc load line of the rectifier. The efficiency degradation is nearly identical with series and parallel combining, and the closed-form analytical model provides results which are similar to the detailed computer-simulation model.

  5. 27 CFR 4.60 - Application.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... person engaged in the business as a producer, rectifier, blender, importer, or wholesaler of wine... engaged in business as a producer, rectifier, blender, importer, or wholesaler of wine, directly or...

  6. Impact of delayed information in sub-second complex systems

    NASA Astrophysics Data System (ADS)

    Manrique, Pedro D.; Zheng, Minzhang; Johnson Restrepo, D. Dylan; Hui, Pak Ming; Johnson, Neil F.

    What happens when you slow down the delivery of information in large-scale complex systems that operate faster than the blink of an eye? This question just adopted immediate commercial, legal and political importance following U.S. regulators' decision to allow an intentional 350 microsecond delay to be added in the ultrafast network of financial exchanges. However there is still no scientific understanding available to policymakers of the potential system-wide impact of such delays. Here we take a first step in addressing this question using a minimal model of a population of competing, heterogeneous, adaptive agents which has previously been shown to produce similar statistical features to real markets. We find that while certain extreme system-level behaviors can be prevented by such delays, the duration of others is increased. This leads to a highly non-trivial relationship between delays and system-wide instabilities which warrants deeper empirical investigation. The generic nature of our model suggests there should be a fairly wide class of complex systems where such delay-driven extreme behaviors can arise, e.g. sub-second delays in brain function possibly impacting individuals' behavior, and sub-second delays in navigational systems potentially impacting the safety of driverless vehicles.

  7. Luteal cell steroidogenesis in relation to delayed embryonic development in the Indian short-nosed fruit bat, Cynopterus sphinx.

    PubMed

    Meenakumari, Karukayil J; Banerjee, Arnab; Krishna, Amitabh

    2009-01-01

    The primary aim of this study was to determine the possible cause of slow or delayed embryonic development in Cynopterus sphinx by investigating morphological and steroidogenic changes in the corpus luteum (CL) and circulating hormone concentrations during two pregnancies of a year. This species showed delayed post-implantational embryonic development during gastrulation of the first pregnancy. Morphological features of the CL showed normal luteinization during both pregnancies. The CL did not change significantly in luteal cell size during the delay period of the first pregnancy as compared with the second pregnancy. The circulating progesterone and 17beta-estradiol concentrations were significantly lower during the period of delayed embryonic development as compared with the same stage of embryonic development during the second pregnancy. We also showed a marked decline in the activity of 3beta-hydroxysteroid dehydrogenase, P450 side chain cleavage enzyme, and steroidogenic acute regulatory peptide in the CL during the delay period. This may cause low circulating progesterone and estradiol synthesis and consequently delay embryonic development. What causes the decrease in steroidogenic factors in the CL during the period of delayed development in C. sphinx is under investigation.

  8. RNA Editing Underlies Temperature Adaptation in K+ Channels from Polar Octopuses

    PubMed Central

    Garrett, Sandra; Rosenthal, Joshua J.C.

    2014-01-01

    To operate in the extreme cold, ion channels from psychrophiles must have evolved structural changes to compensate for their thermal environment. A reasonable assumption would be that the underlying adaptations lie within the encoding genes. Here we show that delayed rectifier K+ channel genes from an Antarctic and a tropical octopus encode channels that differ at only four positions and display very similar behavior when expressed in Xenopus oocytes. However, the transcribed mRNAs are extensively edited, creating functional diversity. One editing site, which recodes an isoleucine to a valine in the channel’s pore, greatly accelerates gating kinetics by destabilizing the open state. This site is extensively edited in both Antarctic and Arctic species, but mostly unedited in tropical species. Thus A-to-I RNA editing can respond to the physical environment. PMID:22223739

  9. Two-dimensional coherent spectroscopy of a THz quantum cascade laser: observation of multiple harmonics.

    PubMed

    Markmann, Sergej; Nong, Hanond; Pal, Shovon; Fobbe, Tobias; Hekmat, Negar; Mohandas, Reshma A; Dean, Paul; Li, Lianhe; Linfield, Edmund H; Davies, A Giles; Wieck, Andreas D; Jukam, Nathan

    2017-09-04

    Two-dimensional spectroscopy is performed on a terahertz (THz) frequency quantum cascade laser (QCL) with two broadband THz pulses. Gain switching is used to amplify the first THz pulse and the second THz pulse is used to probe the system. Fourier transforms are taken with respect to the delay time between the two THz pulses and the sampling time of the THz probe pulse. The two-dimensional spectrum consists of three peaks at (ω τ = 0, ω t = ω 0 ), (ω τ = ω 0 , ω t = ω 0 ), and (ω τ = 2ω 0 , ω t = ω 0 ) where ω 0 denotes the lasing frequency. The peak at ω τ = 0 represents the response of the probe to the zero-frequency (rectified) component of the instantaneous intensity and can be used to measure the gain recovery.

  10. 30 CFR 75.380 - Escapeways; bituminous and lignite mines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Underground transformer stations, battery charging stations, substations, and rectifiers except— (A) Where... rectifiers and power centers with transformers that are either dry-type or contain nonflammable liquid...

  11. Driver circuit for solid state light sources

    DOEpatents

    Palmer, Fred; Denvir, Kerry; Allen, Steven

    2016-02-16

    A driver circuit for a light source including one or more solid state light sources, a luminaire including the same, and a method of so driving the solid state light sources are provided. The driver circuit includes a rectifier circuit that receives an alternating current (AC) input voltage and provides a rectified AC voltage. The driver circuit also includes a switching converter circuit coupled to the light source. The switching converter circuit provides a direct current (DC) output to the light source in response to the rectified AC voltage. The driver circuit also includes a mixing circuit, coupled to the light source, to switch current through at least one solid state light source of the light source in response to each of a plurality of consecutive half-waves of the rectified AC voltage.

  12. Theoretical study on the rectifying performance of organoimido derivatives of hexamolybdates.

    PubMed

    Wen, Shizheng; Yang, Guochun; Yan, Likai; Li, Haibin; Su, Zhongmin

    2013-02-25

    We design a new type of molecular diode, based on the organoimido derivatives of hexamolybdates, by exploring the rectifying performances using density functional theory combined with the non-equilibrium Green's function. Asymmetric current-voltage characteristics were obtained for the models with an unexpected large rectification ratio. The rectifying behavior can be understood by the asymmetrical shift of the transmission peak observed under different polarities. It is interesting to find that the preferred electron-transport direction in our studied system is different from that of the organic D-bridge-A system. The results show that the studied organic-inorganic hybrid systems have an intrinsically robust rectifying ratio, which should be taken into consideration in the design of the molecular diodes. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Effects of Asymmetric Local Joule Heating on Silicon Nanowire-Based Devices Formed by Dielectrophoresis Alignment Across Pt Electrodes

    NASA Astrophysics Data System (ADS)

    Ho, Hsiang-Hsi; Lin, Chun-Lung; Tsai, Wei-Che; Hong, Liang-Zheng; Lyu, Cheng-Han; Hsu, Hsun-Feng

    2018-01-01

    We demonstrate the fabrication and characterization of silicon nanowire-based devices in metal-nanowire-metal configuration using direct current dielectrophoresis. The current-voltage characteristics of the devices were found rectifying, and their direction of rectification could be determined by voltage sweep direction due to the asymmetric Joule heating effect that occurred in the electrical measurement process. The photosensing properties of the rectifying devices were investigated. It reveals that when the rectifying device was in reverse-biased mode, the excellent photoresponse was achieved due to the strong built-in electric field at the junction interface. It is expected that rectifying silicon nanowire-based devices through this novel and facile method can be potentially applied to other applications such as logic gates and sensors.

  14. Optimal Control for Aperiodic Dual-Rate Systems With Time-Varying Delays

    PubMed Central

    Salt, Julián; Guinaldo, María; Chacón, Jesús

    2018-01-01

    In this work, we consider a dual-rate scenario with slow input and fast output. Our objective is the maximization of the decay rate of the system through the suitable choice of the n-input signals between two measures (periodic sampling) and their times of application. The optimization algorithm is extended for time-varying delays in order to make possible its implementation in networked control systems. We provide experimental results in an air levitation system to verify the validity of the algorithm in a real plant. PMID:29747441

  15. Experience of Comamonas acidovorans keratitis with delayed onset and treatment response in immunocompromised cornea.

    PubMed

    Lee, Sang Mok; Kim, Mee Kum; Lee, Jae Lim; Wee, Won Ryang; Lee, Jin Hak

    2008-03-01

    To report 2 cases of Comamonas acidovorans keratitis in immunocompromised cornea. A complete review of the medical records of the two cases of Comamonas acidovorans keratitis. We found some similarities in clinical courses of two cases. Both of them showed development of keratitis during the management with corticosteroids, delayed onset, slow response to antibiotics, and relatively less affected corneal epithelium. Comamonas acidovorans is known as a less virulent organism. However it can cause an indolent infection that responds slowly even to adequate antibiotics therapy in immunocompromised corneas.

  16. Optimal Control for Aperiodic Dual-Rate Systems With Time-Varying Delays.

    PubMed

    Aranda-Escolástico, Ernesto; Salt, Julián; Guinaldo, María; Chacón, Jesús; Dormido, Sebastián

    2018-05-09

    In this work, we consider a dual-rate scenario with slow input and fast output. Our objective is the maximization of the decay rate of the system through the suitable choice of the n -input signals between two measures (periodic sampling) and their times of application. The optimization algorithm is extended for time-varying delays in order to make possible its implementation in networked control systems. We provide experimental results in an air levitation system to verify the validity of the algorithm in a real plant.

  17. 46 CFR 111.33-1 - General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Power Semiconductor Rectifier Systems § 111.33-1 General. This subpart is applicable to all power semiconductor rectifier systems. In addition to the regulations contained in this subpart, the requirements of...

  18. Fabrication and characterization of the organic rectifying junctions by electrolysis

    NASA Astrophysics Data System (ADS)

    Karimov, Khasan; Ahmad, Zubair; Ali, Rashid; Noor, Adnan; Akmal, M.; Najeeb, M. A.; Shakoor, R. A.

    2017-08-01

    Unlike the conventional solution processable deposition techniques, in this study, we propose a novel and economical method for the fabrication of organic rectifying junctions. The solutions of the orange dye, copper phthalocyanine and NaCl were deposited on the surface-type interdigitated silver electrodes using electrolysis technique. Using the current-voltage (I-V) characteristics, the presence of rectifying behavior in the samples has been confirmed. This phenomenon, in principle, can be used for fabrication of the diodes, transistors and memory devices.

  19. Flutter Generator Control and Force Computer.

    DTIC Science & Technology

    1985-07-01

    exciter module 2. Mechanical load 3. Rectifier and triac 4. Overall system 5. Velocity control 6. Microprocessor 7. Operation in 1 ’g’ environment 8...amplifier Output voltage from the rectifier/ triac circuit (figure 3) is a function of the conduction angle of each triac . In a 400 Hz 3-phase system...3IIGCICI FIRING CIRCUIT FIRING CIRCUIT TO MOTOR Figure 3. Rectifier and triac _____ -=low AEL-0242-TNI Figure 4 DEMAND(V V49 -9 APIFE M O T OR

  20. 37 CFR 201.7 - Cancellation of completed registrations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... or omissions which would generally have been rectified before registration, the Copyright Office will attempt to rectify the error through correspondence with the remitter. Except in those cases enumerated in...

  1. 27 CFR 26.206 - Marking packages and cases.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., rectifier, or bottler shall serially number each case, barrel, cask, or similar container of distilled... distiller, rectifier, or bottler shall plainly print, stamp, or stencil with durable coloring material, in...

  2. 46 CFR 111.33-9 - Ventilation exhaust.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-9 Ventilation exhaust. The exhaust of each forced-air semiconductor rectifier system must: (a) Terminate in a location other than a hazardous location...

  3. Relationship between platelet-to-lymphocyte ratio and coronary slow flow.

    PubMed

    Oylumlu, Muhammed; Doğan, Adnan; Oylumlu, Mustafa; Yıldız, Abdülkadir; Yüksel, Murat; Kayan, Fethullah; Kilit, Celal; Amasyalı, Basri

    2015-05-01

    The coronary slow flow phenomenon (CSFP), which is characterized by delayed distal vessel opacification in the absence of significant epicardial coronary disease, is an angiographic finding. The aim of this study is to investigate the association between platelet-to-lymphocyte ratio (PLR) and coronary blood flow rate. This is a retrospective observational study. It was based on two medical centers. A total of 197 patients undergoing coronary angiography were included in the study, 95 of whom were patients with coronary slow flow without stenosis in coronary angiography and 102 of whom had normal coronary arteries and normal flow. The PLR was higher in the coronary slow flow group compared with the control groups (p=0.001). In the correlation analysis, PLR showed a significant correlation with left anterior descending (LAD) artery thrombolysis in myocardial infarction (TIMI) frame count. After multiple logistic regression, high levels of PLR were independently associated with coronary slow flow, together with hemoglobin. PLR was higher in patients with CSFP, and we also showed that PLR was significantly and independently associated with CSFP.

  4. Dynamics of one- and two-dimensional fronts in a bistable equation with time-delayed global feedback: Propagation failure and control mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boubendir, Yassine; Mendez, Vicenc; Rotstein, Horacio G.

    2010-09-15

    We study the evolution of fronts in a bistable equation with time-delayed global feedback in the fast reaction and slow diffusion regime. This equation generalizes the Hodgkin-Grafstein and Allen-Cahn equations. We derive a nonlinear equation governing the motion of fronts, which includes a term with delay. In the one-dimensional case this equation is linear. We study the motion of one- and two-dimensional fronts, finding a much richer dynamics than for the previously studied cases (without time-delayed global feedback). We explain the mechanism by which localized fronts created by inhibitory global coupling loose stability in a Hopf bifurcation as the delaymore » time increases. We show that for certain delay times, the prevailing phase is different from that corresponding to the system in the absence of global coupling. Numerical simulations of the partial differential equation are in agreement with the analytical predictions.« less

  5. Energy management - The delayed flap approach

    NASA Technical Reports Server (NTRS)

    Bull, J. S.

    1976-01-01

    Flight test evaluation of a Delayed Flap approach procedure intended to provide reductions in noise and fuel consumption is underway using the NASA CV-990 test aircraft. Approach is initiated at a high airspeed (240 kt) and in a drag configuration that allows for low thrust. The aircraft is flown along the conventional ILS glide slope. A Fast/Slow message display signals the pilot when to extend approach flaps, landing gear, and land flaps. Implementation of the procedure in commercial service may require the addition of a DME navigation aid co-located with the ILS glide slope transmitter. The Delayed Flap approach saves 250 lb of fuel over the Reduced Flap approach, with a 95 EPNdB noise contour only 43% as large.

  6. 46 CFR 111.33-7 - Alarms and shutdowns.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-7 Alarms and shutdowns. Each power semiconductor rectifier must have a high temperature alarm or shutdown, except as provided in § 111.33-11. ...

  7. Tags, wireless communication systems, tag communication methods, and wireless communications methods

    DOEpatents

    Scott,; Jeff W. , Pratt; Richard, M [Richland, WA

    2006-09-12

    Tags, wireless communication systems, tag communication methods, and wireless communications methods are described. In one aspect, a tag includes a plurality of antennas configured to receive a plurality of first wireless communication signals comprising data from a reader, a plurality of rectifying circuits coupled with. respective individual ones of the antennas and configured to provide rectified signals corresponding to the first wireless communication signals, wherein the rectified signals are combined to produce a composite signal, an adaptive reference circuit configured to vary a reference signal responsive to the composite signal, a comparator coupled with the adaptive reference circuit and the rectifying circuits and configured to compare the composite signal with respect to the reference signal and to output the data responsive to the comparison, and processing circuitry configured to receive the data from the comparator and to process the data.

  8. A Novel Phase-Shift Control of Semibridgeless Active Rectifier for Wireless Power Transfer

    DOE PAGES

    Colak, Kerim; Asa, Erdem; Bojarski, Mariusz; ...

    2015-05-12

    We investigated a novel phase-shift control of a semibridgeless active rectifier (S-BAR) in order to utilize the S-BAR in wireless energy transfer applications. The standard receiver-side rectifier topology is developed by replacing rectifier lower diodes with synchronous switches controlled by a phase-shifted PWM signal. Moreover, theoretical and simulation results showthat with the proposed control technique, the output quantities can be regulated without communication between the receiver and transmitter. In order to confirm the performance of the proposed converter and control, experimental results are provided using 8-, 15-, and 23-cm air gap coreless transformer which has dimension of 76 cm xmore » 76 cm, with 120-V input and the output power range of 0 to 1kW with a maximum efficiency of 94.4%.« less

  9. White matter apoptosis is increased by delayed hypothermia and rewarming in a neonatal piglet model of hypoxic ischemic encephalopathy.

    PubMed

    Wang, B; Armstrong, J S; Reyes, M; Kulikowicz, E; Lee, J-H; Spicer, D; Bhalala, U; Yang, Z-J; Koehler, R C; Martin, L J; Lee, J K

    2016-03-01

    Therapeutic hypothermia is widely used to treat neonatal hypoxic ischemic (HI) brain injuries. However, potentially deleterious effects of delaying the induction of hypothermia and of rewarming on white matter injury remain unclear. We used a piglet model of HI to assess the effects of delayed hypothermia and rewarming on white matter apoptosis. Piglets underwent HI injury or sham surgery followed by normothermic or hypothermic recovery at 2h. Hypothermic groups were divided into those with no rewarming, slow rewarming at 0.5°C/h, or rapid rewarming at 4°C/h. Apoptotic cells in the subcortical white matter of the motor gyrus, corpus callosum, lateral olfactory tract, and internal capsule at 29h were identified morphologically and counted by hematoxylin & eosin staining. Cell death was verified by terminal deoxynucleotidyl transferase (TdT) dUTP nick end labeling (TUNEL) assay. White matter neurons were also counted, and apoptotic cells were immunophenotyped with the oligodendrocyte marker 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase). Hypothermia, slow rewarming, and rapid rewarming increased apoptosis in the subcortical white matter relative to normothermia (p<0.05). The number of white matter neurons was not lower in groups with more apoptosis after hypothermia or rapid rewarming, indicating that the apoptosis occurred among glial cells. Hypothermic piglets had more apoptosis in the lateral olfactory tract than those that were rewarmed (p<0.05). The promotion of apoptosis by hypothermia and rewarming in these regions was independent of HI. In the corpus callosum, HI piglets had more apoptosis than shams after normothermia, slow rewarming, and rapid rewarming (p<0.05). Many apoptotic cells were myelinating oligodendrocytes identified by CNPase positivity. Our results indicate that delaying the induction of hypothermia and rewarming are associated with white matter apoptosis in a piglet model of HI; in some regions these temperature effects are independent of HI. Vulnerable cells include myelinating oligodendrocytes. This study identifies a deleterious effect of therapeutic hypothermia in the developing brain. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Formation of an Isomeric State of Zn$sup 67$ by Bombardment with Slow Neutrons; FORMACION DE UN ESTADO ISOMERO DEL ZN$sup 67$$sub 30$ MEDIANTE BOMBARDEO CON NEUTRONES LENTOS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montes Ponce De Leon, J.; Sanchez Del Rio, C.

    1956-01-01

    In this paper the identification of the isomeric state of Zn/sup 67/ by a new method is described. The isotopes Zn/sup 68/ and Zn/sup 67/ being both stable, the capture of slow neutrons by Zn/sup 68/ leads sometimes to the formation of the isomeric state of Zn/sup 67/; the state is identified by its half life, measured by delayed coincidences between the capture and the isomeric gamma rays. (auth)

  11. Correlates of spreading depolarization in human scalp electroencephalography

    PubMed Central

    Drenckhahn, Christoph; Winkler, Maren K. L.; Major, Sebastian; Scheel, Michael; Kang, Eun-Jeung; Pinczolits, Alexandra; Grozea, Cristian; Hartings, Jed A.; Woitzik, Johannes

    2012-01-01

    It has been known for decades that suppression of spontaneous scalp electroencephalographic activity occurs during ischaemia. Trend analysis for such suppression was found useful for intraoperative monitoring during carotid endarterectomy, or as a screening tool to detect delayed cerebral ischaemia after aneurismal subarachnoid haemorrhage. Nevertheless, pathogenesis of such suppression of activity has remained unclear. In five patients with aneurismal subarachnoid haemorrhage and four patients with decompressive hemicraniectomy after malignant hemispheric stroke due to middle cerebral artery occlusion, we here performed simultaneously full-band direct and alternating current electroencephalography at the scalp and direct and alternating current electrocorticography at the cortical surface. After subarachnoid haemorrhage, 275 slow potential changes, identifying spreading depolarizations, were recorded electrocorticographically over 694 h. Visual inspection of time-compressed scalp electroencephalography identified 193 (70.2%) slow potential changes [amplitude: −272 (−174, −375) µV (median quartiles), duration: 5.4 (4.0, 7.1) min, electrocorticography–electroencephalography delay: 1.8 (0.8, 3.5) min]. Intervals between successive spreading depolarizations were significantly shorter for depolarizations with electroencephalographically identified slow potential change [33.0 (27.0, 76.5) versus 53.0 (28.0, 130.5) min, P = 0.009]. Electroencephalography was thus more likely to display slow potential changes of clustered than isolated spreading depolarizations. In contrast to electrocorticography, no spread of electroencephalographic slow potential changes was seen, presumably due to superposition of volume-conducted electroencephalographic signals from widespread cortical generators. In two of five patients with subarachnoid haemorrhage, serial magnetic resonance imaging revealed large delayed infarcts at the recording site, while electrocorticography showed clusters of spreading depolarizations with persistent depression of spontaneous activity. Alternating current electroencephalography similarly displayed persistent depression of spontaneous activity, and direct current electroencephalography slow potential changes riding on a shallow negative ultraslow potential. Isolated spreading depolarizations with depression of both spontaneous electrocorticographic and electroencephalographic activity displayed significantly longer intervals between successive spreading depolarizations than isolated depolarizations with only depression of electrocorticographic activity [44.0 (28.0, 132.0) min, n = 96, versus 30.0 (26.5, 51.5) min, n = 109, P = 0.001]. This suggests fusion of electroencephalographic depression periods at high depolarization frequency. No propagation of electroencephalographic depression was seen between scalp electrodes. Durations/magnitudes of isolated electroencephalographic and corresponding electrocorticographic depression periods correlated significantly. Fewer spreading depolarizations were recorded in patients with malignant hemispheric stroke but characteristics were similar to those after subarachnoid haemorrhage. In conclusion, spreading depolarizations and depressions of spontaneous activity display correlates in time-compressed human scalp direct and alternating current electroencephalography that may serve for their non-invasive detection. PMID:22366798

  12. Role of suppression of the inward rectifier current in terminal action potential repolarization in the failing heart.

    PubMed

    Klein, Michael G; Shou, Matie; Stohlman, Jayna; Solhjoo, Soroosh; Haigney, Myles; Tidwell, Richard R; Goldstein, Robert E; Flagg, Thomas P; Haigney, Mark C

    2017-08-01

    The failing heart exhibits an increased arrhythmia susceptibility that is often attributed to action potential (AP) prolongation due to significant ion channel remodeling. The inwardly rectifying K + current (I K1 ) has been reported to be reduced, but its contribution to shaping the AP waveform and cell excitability in the failing heart remains unclear. The purpose of this study was to define the effect of I K1 suppression on the cardiac AP and excitability in the normal and failing hearts. We used electrophysiological and pharmacological approaches to investigate I K1 function in a swine tachy-pacing model of heart failure (HF). Terminal repolarization of the AP (TRAP; the time constant of the exponential fit to terminal repolarization) was markedly prolonged in both myocytes and arterially perfused wedges from animals with HF. TRAP was increased by 54.1% in HF myocytes (P < .001) and 26.2% in HF wedges (P = .014). The increase in TRAP was recapitulated by the potent and specific I K1 inhibitor, PA-6 (pentamidine analog 6), indicating that I K1 is the primary determinant of the final phase of repolarization. Moreover, we find that I K1 suppression reduced the ratio of effective refractory period to AP duration at 90% of repolarization, permitting re-excitation before full repolarization, reduction of AP upstroke velocity, and likely promotion of slow conduction. Using an objective measure of terminal repolarization, we conclude that I K1 is the major determinant of the terminal repolarization time course. Moreover, suppression of I K1 prolongs repolarization and reduces postrepolarization refractoriness without marked effects on the overall AP duration. Collectively, these findings demonstrate how I K1 suppression may contribute to arrhythmogenesis in the failing heart. Published by Elsevier Inc.

  13. The changes of potassium currents in rabbit ventricle with healed myocardial infarction.

    PubMed

    Liu, Nian; Niu, Huiyan; Li, Yang; Zhang, Cuntai; Zhou, Qiang; Ruan, Yanfei; Pu, Jun; Lu, Zaiying

    2004-01-01

    To elucidate the mechanism of arrhythmia in healed myocardial infarction (HMI), the changes of action potential duration (APD), transient outward potassium current (Ito), delayed rectifier potassium current (IK) and inward rectifier potassium current (IK1) of left ventricular myocytes in non-infarcted zone of HMI were investigated. Rabbits were randomly assigned into two groups: HMI group, in which animals were subjected to thoracotomy and ligation of the circumflex coronary and sham-operated group, in which rabbits underwent thoracotomy but no conorary ligation. 3 months after the operation, the whole myocyte patch clamp technique was used to record APD, Ito, IK, and IK1 of ventricular myocytes in non-infarcted zone. Our results showed that the membrane capacitance was larger in HMI group than in sham-operated group. Action potential duration was significantly lengthened in HMI group and early afterdepolarization (EAD) appeared in HMI group. The densities of Ito, I(K, tail), and IK1 were reduced significantly in HMI group, from 6.72 +/- 0.42 pA/pF, 1.54 +/- 0.13 pA/pF and 25.6 +/- 2.6 pA/pF in sham-operated group to 4.03 +/- 0.33 pA/pF, 1.14 +/- 0.11 pA/pF and 17.6 +/- 2.3 pA/pF, respectively. It is concluded that the reduced densities of Ito, I(K, tail) and IK1 in ventricular myocytes of non-infarcted zone in HMI were responsible for the prolongation of APD and the presentation of EAD which played important roles in the development of malignant arrhythmia in HMI.

  14. Shear wave splitting and crustal anisotropy at the Mid-Atlantic Ridge, 35°N

    NASA Astrophysics Data System (ADS)

    Barclay, Andrew H.; Toomey, Douglas R.

    2003-08-01

    Shear wave splitting observed in microearthquake data at the axis of the Mid-Atlantic Ridge near 35°N has a fast polarization direction that is parallel to the trend of the axial valley. The time delays between fast and slow S wave arrivals range from 35 to 180 ms, with an average of 90 ms, and show no relationship with ray path length, source-to-receiver azimuth, or receiver location. The anisotropy is attributed to a shallow distribution of vertical, fluid-filled cracks, aligned parallel to the trend of the axial valley. Joint modeling of the shear wave anisotropy and coincident P wave anisotropy results, using recent theoretical models for the elasticity of a porous medium with aligned cracks, suggests that the crack distribution that causes the observed P wave anisotropy can account for at most 10 ms of the shear wave delay. Most of the shear wave delay thus likely accrues within the shallowmost 500 m (seismic layer 2A), and the percent S wave anisotropy within this highly fissured layer is 8-30%. Isolated, fluid-filled cracks at 500 m to 3 km depth that are too thin or too shallow to be detected by the P wave experiment may also contribute to the shear wave delays. The joint analysis of P and S wave anisotropy is an important approach for constraining the crack distributions in the upper oceanic crust and is especially suited for seismically active hydrothermal systems at slow and intermediate spreading mid-ocean ridges.

  15. INCREASED VOLUNTARY DRIVE IS ASSOCIATED WITH CHANGES IN COMMON OSCILLATIONS FROM 13 TO 60 HZ OF INTERFERENCE BUT NOT RECTIFIED ELECTROMYOGRAPHY

    PubMed Central

    NETO, OSMAR P.; BAWEJA, HARSIMRAN S.; CHRISTOU, EVANGELOS A.

    2013-01-01

    The purpose of this study was to compare the capability of interference and rectified electromyography (EMG) to detect changes in the beta (13–30-HZ) and Piper (30–60-HZ) bands when voluntary force is increased. Twenty adults exerted a constant force abduction of the index finger at 15% and 50% of maximum. The common oscillations at various frequency bands (0–500 HZ) were estimated from the first dorsal interosseous muscle using cross wavelets of interference and rectified EMG. For the interference EMG signals, normalized power significantly (P < 0.01) increased with force in the beta (9.0 ± 0.9 vs. 15.5 ± 2.1%) and Piper (13.6 ± 0.9 vs. 21 ± 1.7%) bands. For rectified EMG signals, however, the beta and Piper bands remained unchanged (P > 0.4). Although rectified EMG is used in many clinical studies to identify changes in the oscillatory drive to the muscle, our findings suggest that only interference EMG can accurately capture the increase in oscillatory drive from 13 to 60 HZ with voluntary force. PMID:20589885

  16. Self-Rectifying Effect in Resistive Switching Memory Using Amorphous InGaZnO

    NASA Astrophysics Data System (ADS)

    Lee, Jin-Woo; Kwon, Hyeon-Min; Kim, Myeong-Ho; Lee, Seung-Ryul; Kim, Young-Bae; Choi, Duck-Kyun

    2014-05-01

    Resistance random access memory (ReRAM) has received attention as next-generation memory because of its excellent operating properties and high density integration capability as a crossbar array. However, the application of the existing ReRAM as a crossbar array may lead to crosstalk between adjacent cells due to its symmetric I- V characteristics. In this study, the self-rectifying effect of contact between amorphous In-Ga-Zn-O (a-IGZO) and TaO x was examined in a Pt/a-IGZO/TaO x /Al2O3/W structure. The experimental results show not only self-rectifying behavior but also forming-free characteristics. During the deposition of a-IGZO on the TaO x , an oxygen-rich TaO x interfacial layer was formed. The rectifying effect was observed regardless of the interface formation and is believed to be associated with Schottky contact formation between a-IGZO and TaO x . The current level remained unchanged despite repeated DC sweep cycles. The low resistance state/high resistance state ratio was about 101 at a read voltage of -0.5 V, and the rectifying ratio was about 103 at ±2 V.

  17. Acute ethanol does not always affect delay discounting in rats selected to prefer or avoid ethanol.

    PubMed

    Wilhelm, Clare J; Mitchell, Suzanne H

    2012-01-01

    The purpose of this study was to determine whether animals predisposed to prefer alcohol possess an altered acute response to alcohol on a delay discounting task relative to animals predisposed to avoid alcohol. We used rats selected to prefer or avoid alcohol to assess whether genotype moderates changes in delay discounting induced by acute ethanol exposure. Selectively bred rat lines of Sardinian alcohol-preferring (sP; n = 8) and non-preferring (sNP; n = 8) rats, and alko alcohol (AA, n = 8) and alko non-alcohol (ANA, n = 8) rats were trained in an adjusting amount task to assess delay discounting. There were no significant effects of line on baseline discounting; however, both lines of alcohol-preferring rats exhibit slowed reaction times. Acute ethanol (0, 0.25, 0.5 g/kg) treatment also had no effect on delay discounting in any of the selectively bred rat lines. Our data indicate that in these lines of animals, alcohol preference or avoidance has no impact on delay discounting following acute ethanol exposure. It is possible that other genetic models or lines may be differentially affected by alcohol and exhibit qualitatively and quantitatively different responses in delay discounting tasks.

  18. Characteristics of action potentials and their underlying outward currents in rat taste receptor cells.

    PubMed

    Chen, Y; Sun, X D; Herness, S

    1996-02-01

    1. Taste receptor cells produce action potentials as a result of transduction mechanisms that occur when these cells are stimulated with tastants. These action potentials are thought to be key signaling events in relaying information to the central nervous system. We explored the ionic basis of action potentials from dissociated posterior rat taste cells using the patch-clamp recording technique in both voltage-clamp and current-clamp modes. 2. Action potentials were evoked by intracellular injection of depolarizing current pulses from a holding potential of -80 mV. The threshold potential for firing of action potentials was approximately -35 mV; the input resistance of these cells averaged 6.9 G omega. With long depolarizing pulses, two or three action potentials could be elicited with successive attenuation of the spike height. Afterhyperpolarizations were observed often. 3. Both sodium and calcium currents contribute to depolarizing phases of the action potential. Action potentials were blocked completely in the presence of the sodium channel blocker tetrodotoxin. Calcium contributions could be visualized as prolonged calcium plateaus when repolarizing potassium currents were blocked and barium was used as a charge carrier. 4. Outward currents were composed of sustained delayed rectifier current, transient potassium current, and calcium-activated potassium current. Transient and sustained potassium currents activated close to -30 mV and increased monotonically with further depolarization. Up to half the outward current inactivated with decay constants on the order of seconds. Sustained and transient currents displayed steep voltage dependence in conductance and inactivation curves. Half inactivation occurred at -20 +/- 3.1 mV (mean +/- SE) with a decrease of 11.2 +/- 0.5 mV per e-fold. Half maximal conductance occurred at 3.6 +/- 1.8 mV and increased 12.2 +/- 0.6 mV per e-fold. Calcium-activated potassium current was evidenced by application of apamin and the use of calcium-free bathing solution. It was most obvious at more depolarized holding potentials that inactivated much of the transient and sustained outward currents. 5. Potassium currents contribute to both the repolarization and afterhyperpolarization phases of the action potential. These currents were blocked by bath application of tetraethylammonium, which also substantially broadened the action potential. Application of 4-aminopyridine was able to selectively block transient potassium currents without affecting sustained currents. This also broadened the action potential as well as eliminated the afterhyperpolarization. 6. A second type of action potential was observed that differed in duration. These slow action potentials had t1/2 durations of 9.6 ms compared with 1.4 ms for fast action potentials. Input resistances of the two groups were indistinguishable. Approximately one-fourth of the cells eliciting action potentials were of the slow type. 7. Cells eliciting fast action potentials had large outward currents capable of producing a quick repolarization, whereas cells with slow action potentials had small outward currents by comparison. The average values of fast cells were 2,563 pA and 1.4 ms compared with 373 pA and 9.6 ms for slow cells. Current and duration values were related exponentially. No significant difference was noted for inward currents. 8. These results suggest that many taste receptor cells conduct action potentials, which may be classified broadly into two groups on the basis of action potential duration and potassium current magnitude. These groups may be related to cell turnover. The physiological role of action potentials remains to be elucidated but may be important for communication within the taste bud as well as to the afferent nerve.

  19. 31 CFR 27.7 - Final Notice of Assessment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... civil or equitable remedy deemed necessary to rectify the potential for a continued misuse or harm from... determined, and the terms of any civil or equitable remedy deemed necessary to rectify the potential for a...

  20. 31 CFR 27.7 - Final Notice of Assessment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... civil or equitable remedy deemed necessary to rectify the potential for a continued misuse or harm from... determined, and the terms of any civil or equitable remedy deemed necessary to rectify the potential for a...

  1. 78 FR 60186 - Airworthiness Directives; AgustaWestland S.p.A. (Agusta) Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-01

    ... avionics bay and the baggage compartment resulting from an Auto Transformer Rectifier Unit internal circuit... resulting in failure of the FIPS Auto Transformer Rectifier Unit to contain the internal circuit overload...

  2. Storing wind energy into electrical accumulators

    NASA Astrophysics Data System (ADS)

    Dordescu, M.; Petrescu, D. I.; Erdodi, G. M.

    2016-12-01

    Shall be determined, in this work, the energy stored in the accumulators electrical, AE, at a wind system operating at wind speeds time-varying. mechanical energy caught in the turbine from the wind, (TV), is transformed into electrical energy by the generator synchronous with the permanent magnets, GSMP. The Generator synchronous with the permanent magnets saws, via a rectifier, energy in a battery AE, finished in a choice of two: variant 1-unregulated rectifier and variant of the 2-controlled rectifier and task adapted. Through simulation determine the differences between the two versions

  3. Recovery Act: High-Efficiency, Wideband Three-Phase Rectifiers and Adaptive Rectifier Management for Telecomm Central Office and Large Data Center Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mark A. Johnson

    2012-06-29

    Lineage Power and Verizon teamed up to address a DOE funding opportunity focused on improving the power conversion chain in telecommunications facilities and data centers. The project had three significant elements: the design and development of high efficiency and high power three-phase rectifiers by Lineage Power, design and development of software to optimize overall plant energy efficiency by Lineage Power, and a field trial in active Verizon telecommunications facilities where energy consumption was measured before and after efficiency upgrades.

  4. Endothelialization of sirolimus-eluting stents with slow and extended drug release in the porcine overstretch model.

    PubMed

    Frey, Daniela; Billinger, Michael; Meier, Pascal; Beslac, Olgica; Grossenbacher, Raphael; Hänni, Beat; Hess, Otto M

    2008-12-01

    Vascular healing of intracoronary stents has been shown to be delayed in drug-eluting stents (DES) due to the cytotoxic compounds on the stent surface that prevent stent ingrowth and endothelialization. The lack of endothelialization explains the occurrence of late and very late stent thrombosis in DES. In 11 house swines (body weight 38-45 kg), 3 stents were implanted randomly into the 3 large epicardial coronary arteries, namely a bare-metal stent (BMS), a sirolimus-eluting stent with slow-release (SES) and a SES with extended-release (SESXR). Stent length was 18 mm, and stent diameter 3 mm. All stents were of identical design. Animals were followed for 3 (n = 3), 7 (n = 4) and 14 (n = 4) days, respectively. One animal died before implantation due to hyperthermia. On the day of explantation, the animals were euthanized and endothelialization was tested by scanning electron microscopy after drying and sputtering the samples. Endothelial coverage was determined semiquantitatively by 2 observers. Endothelialization was more rapid with BMS and SESXR than SES at 3 and 14 days. At 7 days there were no significant differences between the 2 SES. Endothelialization of intracoronary stents is faster with BMS and SESXR at 3 days than with SES. These differences persist at 14 days, suggesting delayed vascular healing with the slow-release SES.

  5. Theoretical investigation and optimization of fiber grating based slow light

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Wang, Peng; Du, Chao; Li, Jin; Hu, Haifeng; Zhao, Yong

    2017-07-01

    On the edge of bandgap in a fiber grating, narrow peaks of high transimittivity exist at frequencies where light interferes constructively in the forward direction. In the vicinity of these transmittivity peaks, light reflects back and forth numerous times across the periodic structure and experiences a large group delay. In order to generate the extremely slow light in fiber grating for applications, in this research, the common sense of formation mechanism of slow light in fiber grating was introduced. The means of producing and operating fiber grating was studied to support structural slow light with a group index that can be in principle as high as several thousand. The simulations proceeded by transfer matrix method in the paper were presented to elucidate how the fiber grating parameters effect group refractive index. The main parameters that need to be optimized include grating length, refractive index contrast, grating period, loss coefficient, chirp and apodization functions, those can influence fiber grating characteristics.

  6. Shear Wave Splitting Inversion in a Complex Crust

    NASA Astrophysics Data System (ADS)

    Lucas, A.

    2015-12-01

    Shear wave splitting (SWS) inversion presents a method whereby the upper crust can be interrogated for fracture density. It is caused when a shear wave traverses an area of anisotropy, splits in two, with each wave experiencing a different velocity resulting in an observable separation in arrival times. A SWS observation consists of the first arrival polarization direction and the time delay. Given the large amount of data common in SWS studies, manual inspection for polarization and time delay is considered prohibitively time intensive. All automated techniques used can produce high amounts of observations falsely interpreted as SWS. Thus introducing error into the interpretation. The technique often used for removing these false observations is to manually inspect all SWS observations defined as high quality by the automated routine, and remove false identifications. We investigate the nature of events falsely identified compared to those correctly identified. Once this identification is complete we conduct a inversion for crack density from SWS time delay. The current body of work on linear SWS inversion utilizes an equation that defines the time delay between arriving shear waves with respect to fracture density. This equation makes the assumption that no fluid flow occurs as a result of the passing shear wave, a situation called squirt flow. We show that the assumption is not applicable in all geological situations. When it is not true, its use in an inversion produces a result which is negatively affected by the assumptions. This is shown to be the case at the test case of 6894 SWS observations gathered in a small area at Puna geothermal field, Hawaii. To rectify this situation, a series of new time delay formulae, applicable to linear inversion, are derived from velocity equations presented in literature. The new formula use a 'fluid influence parameter' which indicates the degree to which squirt flow is influencing the SWS. It is found that accounting for squirt flow better fits the data and is more applicable. The fluid influence factor that best describes the data can be identified prior to solving the inversion. Implementing this formula in a linear inversion has a significantly improved fit to the time delay observations than that of the current methods.

  7. GaN Microwave DC-DC Converters

    NASA Astrophysics Data System (ADS)

    Ramos Franco, Ignacio

    Increasing the operating frequency of switching converters can have a direct impact in the miniaturization and integration of power converters. The size of energy-storage passive components and the difficulty to integrate them with the rest of the circuitry is a major challenge in the development of a fully integrated power supply on a chip. The work presented in this thesis attempts to address some of the difficulties encountered in the design of high-frequency converters by applying concepts and techniques usually used in the design of high-efficiency power amplifiers and high-efficiency rectifiers at microwave frequencies. The main focus is in the analysis, design, and characterization of dc-dc converters operating at microwave frequencies in the low gigahertz range. The concept of PA-rectifier duality, where a high-efficiency power amplifier operates as a high-efficiency rectifier is investigated through non-linear simulations and experimentally validated. Additionally, the concept of a self-synchronous rectifier, where a transistor rectifier operates synchronously without the need of a RF source or driver is demonstrated. A theoretical analysis of a class-E self-synchronous rectifier is presented and validated through non-linear simulations and experiments. Two GaN class-E2 dc-dc converters operating at a switching frequency of 1 and 1.2 GHz are demonstrated. The converters achieve 80 % and 75 % dc-dc efficiency respectively and are among the highest-frequency and highest-efficiency reported in the literature. The application of the concepts established in the analysis of a self-synchronous rectifier to a power amplifier culminated in the development of an oscillating, self-synchronous class-E 2 dc-dc converter. Finally, a proof-of-concept fully integrated GaN MMIC class-E 2 dc-dc converter switching at 4.6 GHz is demonstrated for the first time to the best of our knowledge. The 3.8 mm x 2.6 mm chip contains distributed inductors and does not require any external components. The maximum measured dc-dc efficiency is approximately 45%.

  8. Membrane augmented distillation to separate solvents from water

    DOEpatents

    Huang, Yu; Baker, Richard W.; Daniels, Rami; Aldajani, Tiem; Ly, Jennifer H.; Alvarez, Franklin R.; Vane, Leland M.

    2012-09-11

    Processes for removing water from organic solvents, such as ethanol. The processes include distillation to form a rectified overhead vapor, compression of the rectified vapor, and treatment of the compressed vapor by two sequential membrane separation steps.

  9. Thin-film semiconductor rectifier has improved properties

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Cadmium selenide-zinc selenide film is used as a thin film semiconductor rectifier. The film is vapor-deposited in a controlled concentration gradient into a glass substrate to form the required junctions between vapor-deposited gold electrodes.

  10. Gate-Controlled BP-WSe2 Heterojunction Diode for Logic Rectifiers and Logic Optoelectronics.

    PubMed

    Li, Dong; Wang, Biao; Chen, Mingyuan; Zhou, Jun; Zhang, Zengxing

    2017-06-01

    p-n junctions play an important role in modern semiconductor electronics and optoelectronics, and field-effect transistors are often used for logic circuits. Here, gate-controlled logic rectifiers and logic optoelectronic devices based on stacked black phosphorus (BP) and tungsten diselenide (WSe 2 ) heterojunctions are reported. The gate-tunable ambipolar charge carriers in BP and WSe 2 enable a flexible, dynamic, and wide modulation on the heterojunctions as isotype (p-p and n-n) and anisotype (p-n) diodes, which exhibit disparate rectifying and photovoltaic properties. Based on such characteristics, it is demonstrated that BP-WSe 2 heterojunction diodes can be developed for high-performance logic rectifiers and logic optoelectronic devices. Logic optoelectronic devices can convert a light signal to an electric one by applied gate voltages. This work should be helpful to expand the applications of 2D crystals. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Temperature-gated thermal rectifier for active heat flow control.

    PubMed

    Zhu, Jia; Hippalgaonkar, Kedar; Shen, Sheng; Wang, Kevin; Abate, Yohannes; Lee, Sangwook; Wu, Junqiao; Yin, Xiaobo; Majumdar, Arun; Zhang, Xiang

    2014-08-13

    Active heat flow control is essential for broad applications of heating, cooling, and energy conversion. Like electronic devices developed for the control of electric power, it is very desirable to develop advanced all-thermal solid-state devices that actively control heat flow without consuming other forms of energy. Here we demonstrate temperature-gated thermal rectification using vanadium dioxide beams in which the environmental temperature actively modulates asymmetric heat flow. In this three terminal device, there are two switchable states, which can be regulated by global heating. In the "Rectifier" state, we observe up to 28% thermal rectification. In the "Resistor" state, the thermal rectification is significantly suppressed (<1%). To the best of our knowledge, this is the first demonstration of solid-state active-thermal devices with a large rectification in the Rectifier state. This temperature-gated rectifier can have substantial implications ranging from autonomous thermal management of heating and cooling systems to efficient thermal energy conversion and storage.

  12. Competitive inhibition can linearize dose-response and generate a linear rectifier.

    PubMed

    Savir, Yonatan; Tu, Benjamin P; Springer, Michael

    2015-09-23

    Many biological responses require a dynamic range that is larger than standard bi-molecular interactions allow, yet the also ability to remain off at low input. Here we mathematically show that an enzyme reaction system involving a combination of competitive inhibition, conservation of the total level of substrate and inhibitor, and positive feedback can behave like a linear rectifier-that is, a network motif with an input-output relationship that is linearly sensitive to substrate above a threshold but unresponsive below the threshold. We propose that the evolutionarily conserved yeast SAGA histone acetylation complex may possess the proper physiological response characteristics and molecular interactions needed to perform as a linear rectifier, and we suggest potential experiments to test this hypothesis. One implication of this work is that linear responses and linear rectifiers might be easier to evolve or synthetically construct than is currently appreciated.

  13. Specific residues of the cytoplasmic domains of cardiac inward rectifier potassium channels are effective antifibrillatory targets

    PubMed Central

    Noujaim, Sami F.; Stuckey, Jeanne A.; Ponce-Balbuena, Daniela; Ferrer-Villada, Tania; López-Izquierdo, Angelica; Pandit, Sandeep; Calvo, Conrado J.; Grzeda, Krzysztof R.; Berenfeld, Omer; Sánchez Chapula, José A.; Jalife, José

    2010-01-01

    Atrial and ventricular tachyarrhythmias can be perpetuated by up-regulation of inward rectifier potassium channels. Thus, it may be beneficial to block inward rectifier channels under conditions in which their function becomes arrhythmogenic (e.g., inherited gain-of-function mutation channelopathies, ischemia, and chronic and vagally mediated atrial fibrillation). We hypothesize that the antimalarial quinoline chloroquine exerts potent antiarrhythmic effects by interacting with the cytoplasmic domains of Kir2.1 (IK1), Kir3.1 (IKACh), or Kir6.2 (IKATP) and reducing inward rectifier potassium currents. In isolated hearts of three different mammalian species, intracoronary chloroquine perfusion reduced fibrillatory frequency (atrial or ventricular), and effectively terminated the arrhythmia with resumption of sinus rhythm. In patch-clamp experiments chloroquine blocked IK1, IKACh, and IKATP. Comparative molecular modeling and ligand docking of chloroquine in the intracellular domains of Kir2.1, Kir3.1, and Kir6.2 suggested that chloroquine blocks or reduces potassium flow by interacting with negatively charged amino acids facing the ion permeation vestibule of the channel in question. These results open a novel path toward discovering antiarrhythmic pharmacophores that target specific residues of the cytoplasmic domain of inward rectifier potassium channels.—Noujaim, S. F., Stuckey, J. A., Ponce-Balbuena, D., Ferrer-Villada, T., López-Izquierdo, A., Pandit, S., Calvo, C. J., Grzeda, K. R., Berenfeld, O., Sánchez Chapula, J. A., Jalife, J. Specific residues of the cytoplasmic domains of cardiac inward rectifier potassium channels are effective antifibrillatory targets. PMID:20585026

  14. An efficient and cost-effective microchannel plate detector for slow neutron radiography

    NASA Astrophysics Data System (ADS)

    Wiggins, B. B.; Vadas, J.; Bancroft, D.; deSouza, Z. O.; Huston, J.; Hudan, S.; Baxter, D. V.; deSouza, R. T.

    2018-05-01

    A novel approach for efficiently imaging objects with slow neutrons in two dimensions is realized. Neutron sensitivity is achieved by use of a boron doped microchannel plate (MCP). The resulting electron avalanche is further amplified with a Z-stack MCP before being sensed by two orthogonally oriented wire planes. Coupling of the wire planes to delay lines efficiently encodes the position information as a time difference. To determine the position resolution, slow neutrons were used to illuminate a Cd-mask placed directly in front of the detector. Peaks in the resulting spectrum exhibited an average peak width of 329 μm FWHM, corresponding to an average intrinsic resolution of 216 μm. The center region of the detector exhibits a significantly better spatial resolution with an intrinsic resolution of <100 μm observed.

  15. Experience of Comamonas Acidovorans Keratitis with Delayed Onset and Treatment Response in Immunocompromised Cornea

    PubMed Central

    Lee, Sang Mok; Lee, Jae Lim; Wee, Won Ryang; Lee, Jin Hak

    2008-01-01

    Purpose To report 2 cases of Comamonas Acidovorans keratitis in immunocompromised cornea. Methods A complete review of the medical records of the two cases of Comamonas acidovorans keratitis. Results We found some similarities in clinical courses of two cases. Both of them showed development of keratitis during the management with corticosteroids, delayed onset, slow response to antibiotics, and relatively less affected corneal epithelium. Conclusions Comamonas Acidovorans is known as a less virulent organism. However it can cause an indolent infection that responds slowly even to adequate antibiotics therapy in immunocompromised corneas. PMID:18323706

  16. Influence of load type on power factor and harmonic composition of three-phase rectifier current

    NASA Astrophysics Data System (ADS)

    Nikolayzin, N. V.; Vstavskaya, E. V.; Konstantinov, V. I.; Konstantinova, O. V.

    2018-05-01

    This article is devoted to research of the harmonic composition of the three-phase rectifier current consumed when it operates with different types of load. The results are compared with Standard requirements.

  17. 27 CFR 70.31 - Entry of premises for examination of taxable objects.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... by day, enter any plant or any other premises where distilled spirits are produced or rectified, or... premises where spirits are produced or rectified, or any ground adjoining or near to such plant or premises...

  18. Homeostatic effect of laughter on diabetic cardiovascular complications: The myth turned to fact.

    PubMed

    Noureldein, Mohamed H; Eid, Assaad A

    2018-01-01

    Laughter has been used for centuries to alleviate pain in morbid conditions. It was not until 1976 that scientists thought about laughter as a form of therapy that can modulate hormonal and immunological parameters that affect the outcome of many serious diseases. Moreover, laughter therapy was shown to be beneficial in type 2 diabetes mellitus (T2DM) by delaying the onset of many diabetic complications. Laughter is also described to influence the cardiovascular and endothelial functions and thus may protect against diabetic cardiovascular complications. In this review, we outline the different biochemical, physiological and immunological mechanisms by which laughter may influence the overall state of wellbeing and enhance disease prognosis. We also focus on the biological link between laughter therapy and diabetic cardiovascular complications as well as the underlying mechanisms involved in T2DM. Reviewing all the essential databases for "laughter" and "type 2 diabetes mellitus". Although laughter therapy is still poorly investigated, recent studies show that laughter may retard the onset of diabetic complications, enhance cardiovascular functions and rectify homeostatic abnormalities associated with T2DM. Laughter therapy is effective in delaying diabetic complications and should be used as an adjuvant therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Visual short-term memory load modulates the early attention and perception of task-irrelevant emotional faces

    PubMed Central

    Yang, Ping; Wang, Min; Jin, Zhenlan; Li, Ling

    2015-01-01

    The ability to focus on task-relevant information, while suppressing distraction, is critical for human cognition and behavior. Using a delayed-match-to-sample (DMS) task, we investigated the effects of emotional face distractors (positive, negative, and neutral faces) on early and late phases of visual short-term memory (VSTM) maintenance intervals, using low and high VSTM loads. Behavioral results showed decreased accuracy and delayed reaction times (RTs) for high vs. low VSTM load. Event-related potentials (ERPs) showed enhanced frontal N1 and occipital P1 amplitudes for negative faces vs. neutral or positive faces, implying rapid attentional alerting effects and early perceptual processing of negative distractors. However, high VSTM load appeared to inhibit face processing in general, showing decreased N1 amplitudes and delayed P1 latencies. An inverse correlation between the N1 activation difference (high-load minus low-load) and RT costs (high-load minus low-load) was found at left frontal areas when viewing negative distractors, suggesting that the greater the inhibition the lower the RT cost for negative faces. Emotional interference effect was not found in the late VSTM-related parietal P300, frontal positive slow wave (PSW) and occipital negative slow wave (NSW) components. In general, our findings suggest that the VSTM load modulates the early attention and perception of emotional distractors. PMID:26388763

  20. Delay in breast cancer: implications for stage at diagnosis and survival.

    PubMed

    Caplan, Lee

    2014-01-01

    Breast cancer continues to be a disease with tremendous public health significance. Primary prevention of breast cancer is still not available, so efforts to promote early detection continue to be the major focus in fighting breast cancer. Since early detection is associated with decreased mortality, one would think that it is important to minimize delays in detection and diagnosis. There are two major types of delay. Patient delay is delay in seeking medical attention after self-discovering a potential breast cancer symptom. System delay is delay within the health care system in getting appointments, scheduling diagnostic tests, receiving a definitive diagnosis, and initiating therapy. Earlier studies of the consequences of delay on prognosis tended to show that increased delay is associated with more advanced stage cancers at diagnosis, thus resulting in poorer chances for survival. More recent studies have had mixed results, with some studies showing increased survival with longer delays. One hypothesis is that diagnostic difficulties could perhaps account for this survival paradox. A rapidly growing lump may suggest cancer to both doctors and patients, while a slow growing lump or other symptoms could be less obvious to them. If this is the case, then the shorter delays would be seen with the more aggressive tumors for which the prognosis is worse leading to reduced survival. It seems logical that a tumor that is more advanced at diagnosis would lead to shorter survival but the several counter-intuitive studies in this review show that it is dangerous to make assumptions.

  1. 99. POWER DISTRIBUTION UNITS FOR BATTERIES AND RECTIFIERS, NORTHEAST SIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    99. POWER DISTRIBUTION UNITS FOR BATTERIES AND RECTIFIERS, NORTHEAST SIDE OF LANDLINE INSTRUMENTATION ROOM (106), LSB (BLDG. 770) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  2. 40 CFR 63.341 - Definitions and nomenclature.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... electrical insulation) using a chromic acid solution. In chromium anodizing, the part to be anodized acts as... chromium anodizing: rectifiers fitted with controls to allow for voltage adjustments, heat exchanger... electroplating: Rectifiers, anodes, heat exchanger equipment, circulation pumps, and air agitation systems...

  3. Rectifier cabinet static breaker

    DOEpatents

    Costantino, Jr, Roger A.; Gliebe, Ronald J.

    1992-09-01

    A rectifier cabinet static breaker replaces a blocking diode pair with an SCR and the installation of a power transistor in parallel with the latch contactor to commutate the SCR to the off state. The SCR serves as a static breaker with fast turnoff capability providing an alternative way of achieving reactor scram in addition to performing the function of the replaced blocking diodes. The control circuitry for the rectifier cabinet static breaker includes on-line test capability and an LED indicator light to denote successful test completion. Current limit circuitry provides high-speed protection in the event of overload.

  4. CMOS-Compatible Room-Temperature Rectifier Toward Terahertz Radiation Detection

    NASA Astrophysics Data System (ADS)

    Varlamava, Volha; De Amicis, Giovanni; Del Monte, Andrea; Perticaroli, Stefano; Rao, Rosario; Palma, Fabrizio

    2016-08-01

    In this paper, we present a new rectifying device, compatible with the technology of CMOS image sensors, suitable for implementing a direct-conversion detector operating at room temperature for operation at up to terahertz frequencies. The rectifying device can be obtained by introducing some simple modifications of the charge-storage well in conventional CMOS integrated circuits, making the proposed solution easy to integrate with the existing imaging systems. The rectifying device is combined with the different elements of the detector, composed of a 3D high-performance antenna and a charge-storage well. In particular, its position just below the edge of the 3D antenna takes maximum advantage of the high electric field concentrated by the antenna itself. In addition, the proposed structure ensures the integrity of the charge-storage well of the detector. In the structure, it is not necessary to use very scaled and costly technological nodes, since the CMOS transistor only provides the necessary integrated readout electronics. On-wafer measurements of RF characteristics of the designed junction are reported and discussed. The overall performances of the entire detector in terms of noise equivalent power (NEP) are evaluated by combining low-frequency measurements of the rectifier with numerical simulations of the 3D antenna and the semiconductor structure at 1 THz, allowing prediction of the achievable NEP.

  5. A transparent diode with high rectifying ratio using amorphous indium-gallium-zinc oxide/SiN{sub x} coupled junction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Myung-Jea; Kim, Myeong-Ho; Choi, Duck-Kyun, E-mail: duck@hanyang.ac.kr

    2015-08-03

    We introduce a transparent diode that shows both high rectifying ratio and low leakage current at process temperature below 250 °C. This device is clearly distinguished from all previous transparent diodes in that the rectifying behavior results from the junction between a semiconductor (amorphous indium-gallium-zinc oxide (a-IGZO)) and insulator (SiN{sub x}). We systematically study the properties of each junction within the device structure and demonstrate that the a-IGZO/SiN{sub x} junction is the source of the outstanding rectification. The electrical characteristics of this transparent diode are: 2.8 A/cm{sup 2} on-current density measured at −7 V; lower than 7.3 × 10{sup −9} A/cm{sup 2} off-currentmore » density; 2.53 ideality factor; and high rectifying ratio of 10{sup 8}–10{sup 9}. Furthermore, the diode structure has a transmittance of over 80% across the visible light range. The operating principle of the indium-tin oxide (ITO)/a-IGZO/SiN{sub x}/ITO device was examined with an aid of the energy band diagram and we propose a preliminary model for the rectifying behavior. Finally, we suggest further directions for research on this transparent diode.« less

  6. Speeding Up the Drug Review Process: Results Encouraging -- But Progress Slow.

    DTIC Science & Technology

    1981-11-23

    the Division of Biopharma - ceutics, which reviews studies of such things as the drug’s rate of dissolution in the blood. These divisions’ data...BIOPHARMACEUTICAL REVIEWS CONTINUE TO BE DELAYED Efforts to speed up the reviews of the Division of Biopharma - ceutics, which reviews such things as the rate of

  7. Antagonistic effects of pemoline to colchicine and caffeine.

    PubMed

    Röper, W

    1975-10-15

    Pemoline, the constituent of Tradon, is able to slow down the decrease of the mitotic index caused by 0.1% caffeine in roots of Vicia faba, and mitotic aberrations are reduced. With 0.005% colchicine and 3 x 10(-4) g/ml pemoline, no metaphase-accumulation can be observed, and anaphase-disorder is delayed.

  8. Early Boost and Slow Consolidation in Motor Skill Learning

    ERIC Educational Resources Information Center

    Hotermans, Christophe; Peigneux, Philippe; de Noordhout, Alain Maertens; Moonen, Gustave; Maquet, Pierre

    2006-01-01

    Motor skill learning is a dynamic process that continues covertly after training has ended and eventually leads to delayed increments in performance. Current theories suggest that this off-line improvement takes time and appears only after several hours. Here we show an early transient and short-lived boost in performance, emerging as early as…

  9. Nutrient sensing pathways as therapeutic targets for healthy ageing.

    PubMed

    Aiello, Anna; Accardi, Giulia; Candore, Giuseppina; Gambino, Caterina Maria; Mirisola, Mario; Taormina, Giusi; Virruso, Claudia; Caruso, Calogero

    2017-04-01

    In the present paper, the authors have discussed anti-aging strategies which aim to slow the aging process and to delay the onset of age-related diseases, focusing on nutrient sensing pathways (NSPs) as therapeutic targets. Indeed, several studies have already demonstrated that both in animal models and humans, dietary interventions might have a positive impact on the aging process through the modulation of these pathways. Areas covered: Achieving healthy aging is the main challenge of the twenty-first century because lifespan is increasing, but not in tandem with good health. The authors have illustrated different approaches that can act on NSPs, modulating the rate of the aging process. Expert opinion: Humanity's lasting dream is to reverse or, at least, postpone aging. In recent years, increasing attention has been devoted to anti-aging therapies. The subject is very popular among the general public, whose imagination runs wild with all the possible tools to delay aging and to gain immortality. Some approaches discussed in the present review should be able to substantially slow down the aging process, extending our productive, youthful lives, without frailty.

  10. Neuronal Susceptibility to GRIM in Drosophila melanogaster Measures the Rate of Genetic Changes that Scale to Lifespan

    PubMed Central

    Bedoukian, Matthew A.; Rodriguez, Sarah M.; Cohen, Matthew B.; Duncan Smith, Stuart V.; Park, Jennifer

    2009-01-01

    Gene expression in Drosophila melanogaster changes significantly throughout life and some of these changes can be delayed by lowering ambient temperature and also by dietary restriction. These two interventions are known to slow the rate of aging as well as the accumulation of damage. It is unknown, however, whether gene expression changes that occur during development and early adult life make an animal more vulnerable to death. Here we develop a method capable of measuring the rate of programmed genetic changes during young adult life in Drosophila melanogaster and show that these changes can be delayed or accelerated in a manner that is predictive of longevity. We show that temperature shifts and dietary restriction, which slow the rate of aging in Drosophila melanogaster, extend the window of neuronal susceptibility to GRIM over-expression in a way that scales to lifespan. We propose that this susceptibility can be used to test compounds and genetic manipulations that alter the onset of senescence by changing the programmed timing of gene expression that correlates and may be causal to aging. PMID:19428445

  11. Control of a small working robot on a large flexible manipulator for suppressing vibrations: Development of a robust control law for flexible robot and it's stability analysis

    NASA Technical Reports Server (NTRS)

    Soo, Han Lee

    1991-01-01

    Researchers developed a robust control law for slow motions for the accurate trajectory control of a flexible robot. The control law does not need larger velocity gains than position gains, which some researchers need to ensure the stability of a rigid robot. Initial experimentation for the Small Articulated Manipulator (SAM) shows that control laws that use smaller velocity gains are more robust to signal noise than the control laws that use larger velocity gains. Researchers analyzed the stability of the composite control law, the robust control for the slow motion, and the strain rate feedback for the fast control. The stability analysis was done by using a quadratic Liapunov function. Researchers found that the flexible motion of links could be controlled by relating the input force to the flexible signals which are sensed at the near tip of each link. The signals are contaminated by the time delayed input force. However, the effect of the time delayed input force can be reduced by giving a certain configuration to the SAM.

  12. Celecoxib extends C. elegans lifespan via inhibition of insulin-like signaling but not cyclooxygenase-2 activity

    PubMed Central

    Ching, Tsui-Ting; Chiang, Wei-Chung; Chen, Ching-Shih; Hsu, Ao-Lin

    2011-01-01

    Summary One goal of aging research is to develop interventions that combat age-related illnesses and slow aging. Although numerous mutations have been shown to achieve this in various model organisms, only a handful of chemicals have been identified to slow aging. Here we report that celecoxib, a non-steroidal anti-inflammatory drug (NSAID) widely used to treat pain and inflammation, extends C. elegans lifespan and delays the age-associated physiological changes, such as motor activity declines. Celecoxib also delays the progression of age-related proteotoxicity as well as tumor growth in C. elegans. Celecoxib was originally developed as a potent COX-2 inhibitor. However, the result from a structural-activity analysis demonstrated that the anti-aging effect of celecoxib might be independent of its COX-2 inhibitory activity, as analogs of celecoxib that lack cyclooxygenase-2 (COX-2) inhibitory activity produces a similar effect on lifespan. Furthermore, we found that celecoxib acts directly on 3’-phosphoinositide-dependent kinase-1 (PDK-1), a component of the insulin/IGF-1 signaling (IIS) cascade to increase lifespan. PMID:21348927

  13. 2D modeling of electromagnetic waves in cold plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crombé, K.; Van Eester, D.; Koch, R.

    2014-02-12

    The consequences of sheath (rectified) electric fields, resulting from the different mobility of electrons and ions as a response to radio frequency (RF) fields, are a concern for RF antenna design as it can cause damage to antenna parts, limiters and other in-vessel components. As a first step to a more complete description, the usual cold plasma dielectric description has been adopted, and the density profile was assumed to be known as input. Ultimately, the relevant equations describing the wave-particle interaction both on the fast and slow timescale will need to be tackled but prior to doing so was feltmore » as a necessity to get a feeling of the wave dynamics involved. Maxwell's equations are solved for a cold plasma in a 2D antenna box with strongly varying density profiles crossing also lower hybrid and ion-ion hybrid resonance layers. Numerical modelling quickly becomes demanding on computer power, since a fine grid spacing is required to capture the small wavelengths effects of strongly evanescent modes.« less

  14. Disentangling fast and slow attentional influences of negative and taboo spoken words in the emotional Stroop paradigm.

    PubMed

    Bertels, Julie; Kolinsky, Régine

    2016-09-01

    Although the influence of the emotional content of stimuli on attention has been considered as occurring within trial, recent studies revealed that the presentation of such stimuli would also involve a slow component. The aim of the present study was to investigate fast and slow effects of negative (Exp. 1) and taboo (Exp. 2) spoken words. For this purpose, we used an auditory variant of the emotional Stroop paradigm in which each emotional word was followed by a sequence of neutral words. Replicating results from our previous study, we observed slow but no fast effects of negative and taboo words, which we interpreted as reflecting difficulties to disengage attention from their emotional dimension. Interestingly, while the presentation of a negative word only delayed the processing of the immediately subsequent neutral word, slow effects of taboo words were long-lasting. Nevertheless, such attentional effects were only observed when the emotional words were presented in the first block of trials, suggesting that once participants develop strategies to perform the task, attention-grabbing effects of emotional words disappear. Hence, far from being automatic, the occurrence of these effects would depend on participants' attentional set.

  15. 46 CFR 111.33-5 - Installation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Installation. 111.33-5 Section 111.33-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-5 Installation. Each semiconductor rectifier system...

  16. 46 CFR 111.33-5 - Installation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Installation. 111.33-5 Section 111.33-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-5 Installation. Each semiconductor rectifier system...

  17. 46 CFR 111.33-5 - Installation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Installation. 111.33-5 Section 111.33-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-5 Installation. Each semiconductor rectifier system...

  18. 46 CFR 111.33-5 - Installation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Installation. 111.33-5 Section 111.33-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-5 Installation. Each semiconductor rectifier system...

  19. 76 FR 37660 - Amendment of the Schedule of Application Fees Set Forth In Sections 1.1102 Through 1.1109 of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    .... This clarification is intended to rectify a possible inconsistency throughout the Commission's rules... fee need not accompany a high bidder's long-form application, on the other. To rectify this...

  20. Harmonic Characteristics of Rectifier Substations and Their Impact on Audio Frequency Track Circuits

    DOT National Transportation Integrated Search

    1982-05-01

    This report describes the basic operation of substation rectifier equipment and the modes of possible interference with audio frequency track circuits used for train detection, cab signalling, and vehicle speed control. It also includes methods of es...

  1. 46 CFR 111.33-5 - Installation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Installation. 111.33-5 Section 111.33-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-5 Installation. Each semiconductor rectifier system...

  2. Migratory behavior of adult sea lamprey and cumulative passage performance through four fishways

    USGS Publications Warehouse

    Castro-Santos, Theodore R.; Shi, Xiaotao; Haro, Alexander

    2017-01-01

    This article describes a study of PIT-tagged sea lamprey (Petromyzon marinus) ascending four fishways comprising three designs at two dams on the Connecticut River, USA. Migration between dams was rapid (median migration rate = 23 km·day−1). Movement through the fishways was much slower, however (median = 0.02–0.33 km·day−1). Overall delay at dams was substantial (median = 13.6–14.6 days); many fish failed to pass (percent passage ranged from 29% to 55%, depending on fishway), and repeated passage attempts compounded delay for both passers and failers. Cox regression revealed that fishway entry rates were influenced by flow, temperature, and diel cycle, with most lampreys entering at night and at elevated flows, but with no apparent effect of sex or length. Overall delay was influenced by slow movement through the fishways, but repeated failures were the primary factor determining delay. These data suggest that although some lamprey were able to pass fishways, they did so with difficulty, and delays incurred as they attempted to pass may act to limit their distribution within their native range.

  3. Enhancing the detection of edges and non-differentiable points in an NMR spectrum using delayed-acquisition.

    PubMed

    Gong, Zhaoyuan; Walls, Jamie D

    2018-02-01

    Delayed-acquisition, which is a common technique for improving spectral resolution in Fourier transform based spectroscopies, typically relies upon differences in T 2 relaxation rates that are often due to underlying differences in dynamics and/or complexities of the spin systems being studied. After an acquisition delay, the broad signals from fast T 2 -relaxing species are more suppressed relative to the sharp signals from slow T 2 -relaxing species. In this paper, an alternative source of differential "dephasing" under delayed-acquisition is demonstrated that is based solely upon the mathematical properties of the line shape and is independent of the underlying spin dynamics and/or complexity. Signals associated with frequencies where the line shape either changes sharply and/or is non-differentiable at some finite order dephase at a much slower rate than those signals associated with frequencies where the line shape is smooth. Experiments employing delayed-acquisition to study interfaces in biphasic samples, to measure spatially-dependent longitudinal relaxation, and to highlight sharp features in NMR spectra are presented. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Enhancing the detection of edges and non-differentiable points in an NMR spectrum using delayed-acquisition

    NASA Astrophysics Data System (ADS)

    Gong, Zhaoyuan; Walls, Jamie D.

    2018-02-01

    Delayed-acquisition, which is a common technique for improving spectral resolution in Fourier transform based spectroscopies, typically relies upon differences in T2 relaxation rates that are often due to underlying differences in dynamics and/or complexities of the spin systems being studied. After an acquisition delay, the broad signals from fast T2 -relaxing species are more suppressed relative to the sharp signals from slow T2 -relaxing species. In this paper, an alternative source of differential "dephasing" under delayed-acquisition is demonstrated that is based solely upon the mathematical properties of the line shape and is independent of the underlying spin dynamics and/or complexity. Signals associated with frequencies where the line shape either changes sharply and/or is non-differentiable at some finite order dephase at a much slower rate than those signals associated with frequencies where the line shape is smooth. Experiments employing delayed-acquisition to study interfaces in biphasic samples, to measure spatially-dependent longitudinal relaxation, and to highlight sharp features in NMR spectra are presented.

  5. Interannual Variability In the Atmospheric CO2 Rectification Over Boreal Forests Based On A Coupled Ecosystem-Atmosphere Model

    NASA Astrophysics Data System (ADS)

    Chen, B.; Chen, J. M.; Worthy, D.

    2004-05-01

    Ecosystem CO2 exchange and the planetary boundary layer (PBL) are correlated diurnally and seasonally. The simulation of this atmospheric rectifier effect is important in understanding the global CO2 distribution pattern. A 12-year (1990-1996, 1999-2003), continuous CO2 measurement record from Fraserdale, Ontario (located ~150 km north of Timmons), along with a coupled Vertical Diffusion Scheme (VDS) and ecosystem model (Boreal Ecosystem Productivity Simulator, BEPS), is used to investigate the interannual variability in this effect over a boreal forest region. The coupled model performed well in simulating CO2 vertical diffusion processes. Simulated annual atmospheric rectifier effects, (including seasonal and diurnal), quantified as the variation in the mean CO2 concentration from the surface to the top of the PBL, varied from 2.8 to 4.1 ppm, even though the modeled seasonal variations in the PBL depth were similar throughout the 12-year period. The differences in the interannual rectifier effect primarily resulted from changes in the biospheric CO2 uptake and heterotrophic respiration. Correlations in the year-to year variations of the CO2 rectification were found with mean annual air temperatures, simulated gross primary productivity (GPP) and heterotrophic respiration (Rh) (r2=0.5, 0.46, 0.42, respectively). A small increasing trend in the CO2 rectification was also observed. The year-to-year variation in the vertical distribution of the monthly mean CO2 mixing ratios (reflecting differences in the diurnal rectifier effect) was related to interannual climate variability, however, the seasonal rectifier effects were found to be more sensitive to climate variability than the diurnal rectifier effects.

  6. Direct block of native and cloned (Kir2.1) inward rectifier K+ channels by chloroethylclonidine

    PubMed Central

    Barrett-Jolley, R; Dart, C; Standen, N B

    1999-01-01

    We have investigated the inhibition of inwardly rectifying potassium channels by the α-adrenergic agonist/antagonist chloroethylclonidine (CEC). We used two preparations; two-electrode voltage-clamp of rat isolated flexor digitorum brevis muscle and whole-cell patch-clamp of cell lines transfected with Kir2.1 (IRK1).In skeletal muscle and at a membrane potential of −50 mV, chloroethylclonidine (CEC), an agonist at α2-adrenergic receptors and an antagonist at α1x-receptors, was found to inhibit the inward rectifier current with a Ki of 30 μM.The inhibition of skeletal muscle inward rectifier current by CEC was not mimicked by clonidine, adrenaline or noradrenaline and was not sensitive to high concentrations of α1-(prazosin) or α2-(rauwolscine) antagonists.The degree of current inhibition by CEC was found to vary with the membrane potential (approximately 70% block at −50 mV c.f. ∼10% block at −190 mV). The kinetics of this voltage dependence were further investigated using recombinant inward rectifier K+ channels (Kir2.1) expressed in the MEL cell line. Using a two pulse protocol, we calculated the time constant for block to be ∼8 s at 0 mV, and the rate of unblock was described by the relationship τ=exp((Vm+149)/22) s.This block was effective when CEC was applied to either the inside or the outside of patch clamped cells, but ineffective when a polyamine binding site (aspartate 172) was mutated to asparagine.The data suggest that the clonidine-like imidazoline compound, CEC, inhibits inward rectifier K+ channels independently of α-receptors by directly blocking the channel pore, possibly at an intracellular polyamine binding site. PMID:10516659

  7. Protein kinase C epsilon mediates the inhibition of angiotensin II on the slowly activating delayed-rectifier potassium current through channel phosphorylation.

    PubMed

    Gou, Xiangbo; Wang, Wenying; Zou, Sihao; Qi, Yajuan; Xu, Yanfang

    2018-03-01

    The slowly activating delayed rectifier K + current (I Ks ) is one of the main repolarizing currents in the human heart. Evidence has shown that angiotensin II (Ang II) regulates I Ks through the protein kinase C (PKC) pathway, but the related results are controversial. This study was designed to identify PKC isoenzymes involved in the regulation of I Ks by Ang II and the underlying molecular mechanism. The whole-cell patch-clamp technique was used to record I Ks in isolated guinea pig ventricular cardiomyocytes and in human embryonic kidney (HEK) 293 cells co-transfected with human KCNQ1/KCNE1 genes and Ang II type 1 receptor genes. Ang II inhibited I Ks in a concentration-dependent manner in native cardiomyocytes. A broad PKC inhibitor Gö6983 (not inhibiting PKCε) and a selective cPKC inhibitor Gö6976 did not affect the inhibitory action of Ang II. In contrast, the inhibition was significantly attenuated by PKCε-selective peptide inhibitor εV1-2. However, direct activation of PKC by phorbol 12-myristate 13-acetate (PMA) increased the cloned human I Ks in HEK293 cells. Similarly, the cPKC peptide activator significantly enhanced the current. In contrast, the PKCε peptide activator inhibited the current. Further evidence showed that PKCε knockdown by siRNA antagonized the Ang II-induced inhibition on KCNQ1/KCNE1 current, whereas knockdown of cPKCs (PKCα and PKCβ) attenuated the potentiation of the current by PMA. Moreover, deletion of four putative phosphorylation sites in the C-terminus of KCNQ1 abolished the action of PMA. Mutation of two putative phosphorylation sites in the N-terminus of KCNQ1 and one site in KCNE1 (S102) blocked the inhibition of Ang II. Our results demonstrate that PKCε isoenzyme mediates the inhibitory action of Ang II on I Ks and by phosphorylating distinct sites in KCNQ1/KCNE1, cPKC and PKCε isoenzymes produce the contrary regulatory effects on the channel. These findings have provided new insight into the molecular mechanism underlying the modulation of the KCNQ1/KCNE1 channel. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. 35 GHz integrated circuit rectifying antenna with 33 percent efficiency

    NASA Technical Reports Server (NTRS)

    Yoo, T.-W.; Chang, K.

    1991-01-01

    A 35 GHz integrated circuit rectifying antenna (rectenna) has been developed using a microstrip dipole antenna and beam-lead mixer diode. Greater than 33 percent conversion efficiency has been achieved. The circuit should have applications in microwave/millimeter-wave power transmission and detection.

  9. Silicon carbide semiconductor device fabrication and characterization

    NASA Technical Reports Server (NTRS)

    Davis, R. F.; Das, K.

    1990-01-01

    A number of basic building blocks i.e., rectifying and ohmic contacts, implanted junctions, MOS capacitors, pnpn diodes and devices, such as, MESFETs on both alpha and beta SiC films were fabricated and characterized. Gold forms a rectifying contact on beta SiC. Since Au contacts degrade at high temperatures, these are not considered to be suitable for high temperature device applications. However, it was possible to utilize Au contact diodes for electrically characterizing SiC films. Preliminary work indicates that sputtered Pt or Pt/Si contacts on beta SiC films are someways superior to Au contacts. Sputtered Pt layers on alpha SiC films form excellent rectifying contacts, whereas Ni layers following anneal at approximately 1050 C provide an ohmic contact. It has demonstrated that ion implantation of Al in substrates held at 550 C can be successfully employed for the fabrication of rectifying junction diodes. Feasibility of fabricating pnpn diodes and platinum gated MESFETs on alpha SiC films was also demonstrated.

  10. High static gain single-phase PFC based on a hybrid boost converter

    NASA Astrophysics Data System (ADS)

    Flores Cortez, Daniel; Maccarini, Marcello C.; Mussa, Samir A.; Barbi, Ivo

    2017-05-01

    In this paper, a single-phase unity power factor rectifier, based on a hybrid boost converter, resulting from the integration of a conventional dc-dc boost converter and a switched-capacitor voltage doubler is proposed, analysed, designed and tested. The high-power rectifier is controlled by two feedback loops with the same control strategy employed in the conventional boost-based rectifier. The main feature of the proposed rectifier is its ability to output a dc voltage larger than the double of the peak value of the input line voltage, while subjecting the power switches to half of the dc-link voltage, which contributes to reducing the cost and increasing the efficiency. Experimental data were obtained from a laboratory prototype with an input voltage of 220 Vrms, line frequency of 60 Hz, output voltage of 800 Vdc, load power of 1000 W and switching frequency of 50 kHz. The efficiency of the prototype, measured in the laboratory, was 96.5% for full load and 97% for half load.

  11. NASA Ames Research Center 60 MW Power Supply Modernization

    NASA Technical Reports Server (NTRS)

    Choy, Yuen Ching; Ilinets, Boris V.; Miller, Ted; Nagel, Kirsten (Technical Monitor)

    2001-01-01

    The NASA Ames Research Center 60 MW DC Power Supply was built in 1974 to provide controlled DC power for the Thermophysics Facility Arc Jet Laboratory. The Power Supply has gradually losing reliability due to outdated technology and component life limitation. NASA has decided to upgrade the existing rectifier modules with contemporary high-power electronics and control equipment. NASA plans to complete this project in 2001. This project includes a complete replacement of obsolete thyristor stacks in all six rectifier modules and rectifier bridge control system. High power water-cooled thyristors and freewheeling diodes will be used. The rating of each of the six modules will be 4000 A at 5500 V. The control firing angle signal will be sent from the Facility Control System to six modules via fiberoptic cable. The Power Supply control and monitoring system will include a Master PLC in the Facility building and a Slave PLC in each rectifier module. This system will also monitor each thyristor level in each stack and the auxiliary equipment.

  12. Thermal rectification in thin films driven by gradient grain microstructure

    NASA Astrophysics Data System (ADS)

    Cheng, Zhe; Foley, Brian M.; Bougher, Thomas; Yates, Luke; Cola, Baratunde A.; Graham, Samuel

    2018-03-01

    As one of the basic components of phononics, thermal rectifiers transmit heat current asymmetrically similar to electronic rectifiers in microelectronics. Heat can be conducted through them easily in one direction while being blocked in the other direction. In this work, we report a thermal rectifier that is driven by the gradient grain structure and the inherent gradient in thermal properties as found in these materials. To demonstrate their thermal rectification properties, we build a spectral thermal conductivity model with complete phonon dispersion relationships using the thermophysical properties of chemical vapor deposited (CVD) diamond films which possess gradient grain microstructures. To explain the observed significant thermal rectification, the temperature and thermal conductivity distribution are studied. Additionally, the effects of temperature bias and film thickness are discussed, which shed light on tuning the thermal rectification based on the gradient microstructures. Our results show that the columnar grain microstructure makes CVD materials unique candidates for mesoscale thermal rectifiers without a sharp temperature change.

  13. Failure Detecting Method of Fault Current Limiter System with Rectifier

    NASA Astrophysics Data System (ADS)

    Tokuda, Noriaki; Matsubara, Yoshio; Asano, Masakuni; Ohkuma, Takeshi; Sato, Yoshibumi; Takahashi, Yoshihisa

    A fault current limiter (FCL) is extensively needed to suppress fault current, particularly required for trunk power systems connecting high-voltage transmission lines, such as 500kV class power system which constitutes the nucleus of the electric power system. We proposed a new type FCL system (rectifier type FCL), consisting of solid-state diodes, DC reactor and bypass AC reactor, and demonstrated the excellent performances of this FCL by developing the small 6.6kV and 66kV model. It is important to detect the failure of power devices used in the rectifier under the normal operating condition, for keeping the excellent reliability of the power system. In this paper, we have proposed a new failure detecting method of power devices most suitable for the rectifier type FCL. This failure detecting system is simple and compact. We have adapted the proposed system to the 66kV prototype single-phase model and successfully demonstrated to detect the failure of power devices.

  14. Fast switching wideband rectifying circuit for future RF energy harvesting

    NASA Astrophysics Data System (ADS)

    Asmeida, Akrem; Mustam, Saizalmursidi Md; Abidin, Z. Z.; Ashyap, A. Y. I.

    2017-09-01

    This paper presents the design and simulation of fast switching microwave rectifying circuit for ultra wideband patch antenna over a dual-frequency band (1.8 GHz for GSM and 2.4 GHz for ISM band). This band was chosen due to its high signal availability in the surrounding environment. New rectifying circuit topology with pair-matching trunks is designed using Advanced Design System (ADS) software. These trunks are interfaced with power divider to achieve good bandwidth, fast switching and high efficiency. The power divider acts as a good isolator between the trunks and its straightforward design structure makes it a good choice for a single feed UWB antenna. The simulated results demonstrate that the maximum output voltage is 2.13 V with an input power of -5 dBm. Moreover, the rectifier offers maximum efficiency of 86% for the input power of -5 dBm at given band, which could easily power up wireless sensor networks (WSN) and other small devices sufficiently.

  15. Modelling a single phase voltage controlled rectifier using Laplace transforms

    NASA Technical Reports Server (NTRS)

    Kraft, L. Alan; Kankam, M. David

    1992-01-01

    The development of a 20 kHz, AC power system by NASA for large space projects has spurred a need to develop models for the equipment which will be used on these single phase systems. To date, models for the AC source (i.e., inverters) have been developed. It is the intent of this paper to develop a method to model the single phase voltage controlled rectifiers which will be attached to the AC power grid as an interface for connected loads. A modified version of EPRI's HARMFLO program is used as the shell for these models. The results obtained from the model developed in this paper are quite adequate for the analysis of problems such as voltage resonance. The unique technique presented in this paper uses the Laplace transforms to determine the harmonic content of the load current of the rectifier rather than a curve fitting technique. Laplace transforms yield the coefficient of the differential equations which model the line current to the rectifier directly.

  16. Microfluidic rectifier based on poly(dimethylsiloxane) membrane and its application to a micropump

    PubMed Central

    Wang, Yao-Nan; Tsai, Chien-Hsiung; Fu, Lung-Ming; Lin Liou, Lung-Kai

    2013-01-01

    A microfluidic rectifier incorporating an obstructed microchannel and a PDMS membrane is proposed. During forward flow, the membrane deflects in the upward direction; thereby allowing the fluid to pass over the obstacle. Conversely, during reverse flow, the membrane seals against the obstacle, thereby closing the channel and preventing flow. It is shown that the proposed device can operate over a wide pressure range by increasing or decreasing the membrane thickness as required. A microfluidic pump is realized by integrating the rectifier with a simple stepper motor mechanism. The experimental results show that the pump can achieve a vertical left height of more than 2 m. Moreover, it is shown that a maximum flow rate of 6.3 ml/min can be obtained given a membrane thickness of 200 μm and a motor velocity of 80 rpm. In other words, the proposed microfluidic rectifier not only provides an effective means of preventing reverse flow but also permits the realization of a highly efficient microfluidic pump. PMID:24404051

  17. Microfluidic rectifier based on poly(dimethylsiloxane) membrane and its application to a micropump.

    PubMed

    Wang, Yao-Nan; Tsai, Chien-Hsiung; Fu, Lung-Ming; Lin Liou, Lung-Kai

    2013-01-01

    A microfluidic rectifier incorporating an obstructed microchannel and a PDMS membrane is proposed. During forward flow, the membrane deflects in the upward direction; thereby allowing the fluid to pass over the obstacle. Conversely, during reverse flow, the membrane seals against the obstacle, thereby closing the channel and preventing flow. It is shown that the proposed device can operate over a wide pressure range by increasing or decreasing the membrane thickness as required. A microfluidic pump is realized by integrating the rectifier with a simple stepper motor mechanism. The experimental results show that the pump can achieve a vertical left height of more than 2 m. Moreover, it is shown that a maximum flow rate of 6.3 ml/min can be obtained given a membrane thickness of 200 μm and a motor velocity of 80 rpm. In other words, the proposed microfluidic rectifier not only provides an effective means of preventing reverse flow but also permits the realization of a highly efficient microfluidic pump.

  18. Quake clamps down on slow slip

    NASA Astrophysics Data System (ADS)

    Wallace, Laura M.; Bartlow, Noel; Hamling, Ian; Fry, Bill

    2014-12-01

    Using continuous GPS (cGPS) data from the Hikurangi subduction zone in New Zealand, we show for the first time that stress changes induced by a local earthquake can arrest an ongoing slow slip event (SSE). The cGPS data show that the slip rate in the northern portion of the 2013/2014 Kapiti SSE decreased abruptly following a nearby intraslab earthquake. We suggest that deceleration of the Kapiti SSE in early 2014 occurred due to a tenfold increase in the normal stress relative to shear stress in the SSE source, induced by the nearby Mw 6.3 earthquake, consistent with expectations of rate and state friction. Our observation of an abrupt halting/slowing of the SSE in response to stress changes imposed by a local earthquake has implications for the strength of fault zones hosting SSEs and supports the premise that static stress changes are an important ingredient in triggering (or delaying) fault slip.

  19. Efficient Direct-Matching Rectenna Design for RF Power Transfer Applications

    NASA Astrophysics Data System (ADS)

    Keyrouz, Shady; Visser, Huib

    2013-12-01

    This paper presents the design, simulation, fabrication and measurements of a 50 ohm rectenna system. The paper investigates each part (in terms of input impedance) of the rectenna system starting from the antenna, followed by the matching network, to the rectifier. The system consists of an antenna, which captures the transmitted RF signal, connected to a rectifier which converts the AC captured signal into a DC power signal. For maximum power transfer, a matching network is designed between the rectifier and the antenna. At an input power level of -10 dBm, the system is able to achieve an RF/DC power conversion efficiency of 49.7%.

  20. Static analysis of rectifier cabinet for nuclear power generating stations based on finite element method

    NASA Astrophysics Data System (ADS)

    Yin, Qiang; Chen, Tian-jin; Li, Wei-yang; Xiong, Ze-cheng; Ma, Rui

    2017-09-01

    In order to obtain the deformation map and equivalent stress distribution of rectifier cabinet for nuclear power generating stations, the quality distribution of structure and electrical are described, the tensile bond strengths of the rings are checked, and the finite element model of cabinet is set up by ANSYS. The transport conditions of the hoisting state and fork loading state are analyzed. The deformation map and equivalent stress distribution are obtained. The attentive problems are put forward. It is a reference for analysis method and the obtained results for the transport of rectifier cabinet for nuclear power generating stations.

  1. Field-effect P-N junction

    DOEpatents

    Regan, William; Zettl, Alexander

    2015-05-05

    This disclosure provides systems, methods, and apparatus related to field-effect p-n junctions. In one aspect, a device includes an ohmic contact, a semiconductor layer disposed on the ohmic contact, at least one rectifying contact disposed on the semiconductor layer, a gate including a layer disposed on the at least one rectifying contact and the semiconductor layer and a gate contact disposed on the layer. A lateral width of the rectifying contact is less than a semiconductor depletion width of the semiconductor layer. The gate contact is electrically connected to the ohmic contact to create a self-gating feedback loop that is configured to maintain a gate electric field of the gate.

  2. LC-oscillator with automatic stabilized amplitude via bias current control. [power supply circuit for transducers

    NASA Technical Reports Server (NTRS)

    Hamlet, J. F. (Inventor)

    1974-01-01

    A stable excitation supply for measurement transducers is described. It consists of a single-transistor oscillator with a coil connected to the collector and a capacitor connected from the collector to the emitter. The output of the oscillator is rectified and the rectified signal acts as one input to a differential amplifier; the other input being a reference potential. The output of the amplifier is connected at a point between the emitter of the transistor and ground. When the rectified signal is greater than the reference signal, the differential amplifier produces a signal of polarity to reduce bias current and, consequently, amplification.

  3. 46 CFR 111.33-3 - Nameplate data.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Nameplate data. 111.33-3 Section 111.33-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-3 Nameplate data. (a) Each semiconductor rectifier...

  4. 46 CFR 111.33-3 - Nameplate data.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Nameplate data. 111.33-3 Section 111.33-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-3 Nameplate data. (a) Each semiconductor rectifier...

  5. 46 CFR 111.33-3 - Nameplate data.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Nameplate data. 111.33-3 Section 111.33-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-3 Nameplate data. (a) Each semiconductor rectifier...

  6. 46 CFR 111.33-3 - Nameplate data.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Nameplate data. 111.33-3 Section 111.33-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-3 Nameplate data. (a) Each semiconductor rectifier...

  7. 46 CFR 111.33-3 - Nameplate data.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Nameplate data. 111.33-3 Section 111.33-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-3 Nameplate data. (a) Each semiconductor rectifier...

  8. Pulse generator using transistors and silicon controlled rectifiers produces high current pulses with fast rise and fall times

    NASA Technical Reports Server (NTRS)

    Woolfson, M. G.

    1966-01-01

    Electrical pulse generator uses power transistors and silicon controlled rectifiers for producing a high current pulse having fast rise and fall times. At quiescent conditions, the standby power consumption of the circuit is equal to zero.

  9. Serotonin regulates voltage-dependent currents in type Ie(A) and Ii interneurons of Hermissenda

    PubMed Central

    Jin, Nan Ge

    2011-01-01

    Serotonin (5-HT) has both direct and modulatory actions on central neurons contributing to behavioral arousal and cellular-synaptic plasticity in diverse species. In Hermissenda, 5-HT produces changes in intrinsic excitability of different types of identified interneurons in the circumesophageal nervous system. Using whole cell patch-clamp techniques we have examined membrane conductance changes produced by 5-HT that contribute to intrinsic excitability in two identified classes of interneurons, types Ii and IeA. Whole cell currents were examined before and after 5-HT application to the isolated nervous system. A 4-aminopyridine-sensitive transient outward K+ current [IK(A)], a tetraethylammonium-sensitive delayed rectifier K+ current [IK(V)], an inward rectifier K+ current [IK(IR)], and a hyperpolarization-activated current (Ih) were characterized. 5-HT decreased the amplitude of IK(A) and IK(V) in both type Ii and IeA interneurons. However, differences in 5-HT's effects on the activation-inactivation kinetics were observed in different types of interneurons. 5-HT produced a depolarizing shift in the activation curve of IK(V) and a hyperpolarizing shift in the inactivation curve of IK(A) in type Ii interneurons. In contrast, 5-HT produced a depolarizing shift in the activation curve and a hyperpolarizing shift in the inactivation curve of both IK(V) and IK(A) in type IeA interneurons. In addition, 5-HT decreased the amplitude of IK(IR) in type Ii interneurons and increased the amplitude of Ih in type IeA interneurons. These results indicate that 5-HT-dependent changes in IK(A), IK(V), IK(IR), and Ih contribute to multiple mechanisms that synergistically support modulation of increased intrinsic excitability associated with different functional classes of identified type I interneurons. PMID:21813747

  10. Enhanced basal late sodium current appears to underlie the age-related prolongation of action potential duration in guinea pig ventricular myocytes.

    PubMed

    Song, Yejia; Belardinelli, Luiz

    2017-12-14

    Aging hearts have prolonged QT interval and are vulnerable to oxidative stress. Because the QT interval indirectly reflects the action potential duration (APD), we examined the hypotheses that 1) the APD of ventricular myocytes increases with age; 2) the age-related prolongation of APD is due to an enhancement of basal late Na + current (I NaL ); 3) inhibition of I NaL may protect aging hearts from arrhythmogenic effects of hydrogen peroxide (H 2 O 2 ). Experiments were performed on ventricular myocytes isolated from one-month (young) and one-year (old) guinea pigs (GPs). The APD of myocytes from old GPs was significantly longer than that from young GPs and was shortened by the I NaL inhibitors GS967 and tetrodotoxin. The magnitude of I NaL was significantly larger in myocytes from old than from young GPs. The CaMKII inhibitors KN-93 and AIP and the Na V 1.5-channel blocker MTSEA blocked the I NaL . There were no significant differences between myocytes from young and old GPs in L-type Ca 2+ current and the rapidly- and slowly-activating delayed rectifier K + currents, although the inward rectifier K + current was slightly decreased in myocytes from old GPs. H 2 O 2 induced more early afterdepolarizations in myocytes from old than from young GPs. The effect of H 2 O 2 was attenuated by GS967. The results suggest that 1) the APD of myocytes from old GPs is prolonged, 2) a CaMKII-mediated increase in Na V 1.5-channel I NaL is responsible for the prolongation of APD, and 3) Inhibition of I NaL may be beneficial for maintaining electrical stability under oxidative stress in myocytes of old GPs.

  11. Long-Term Fish Oil Supplementation Induces Cardiac Electrical Remodeling by Changing Channel Protein Expression in the Rabbit Model

    PubMed Central

    Xu, Xulin; Jiang, Min; Wang, Yuhong; Smith, Timothy; Baumgarten, Clive M.; Wood, Mark A.; Tseng, Gea-Ny

    2010-01-01

    Clinical trials and epidemiological studies have suggested that dietary fish oil (FO) supplementation can provide an anti-arrhythmic benefit in some patient populations. The underlying mechanisms are not entirely clear. We wanted to understand how FO supplementation (for 4 weeks) affected the action potential configuration/duration of ventricular myocytes, and the ionic mechanism(s)/molecular basis for these effects. The experiments were conducted on adult rabbits, a widely used animal model for cardiac electrophysiology and pathophysiology. We used gas chromatography - mass spectroscopy to confirm that FO feeding produced a marked increase in the content of n-3 polyunsaturated fatty acids in the phospholipids of rabbit hearts. Left ventricular myocytes were used in current and voltage clamp experiments to monitor action potentials and ionic currents, respectively. Action potentials of myocytes from FO-fed rabbits exhibited much more positive plateau voltages and prolonged durations. These changes could be explained by an increase in the L-type Ca current (ICaL) and a decrease in the transient outward current (Ito) in these myocytes. FO feeding did not change the delayed rectifier or inward rectifier current. Immunoblot experiments showed that the FO-feeding induced changes in ICaL and Ito were associated with corresponding changes in the protein levels of major pore-forming subunits of these channels: increase in Cav1.2 and decrease in Kv4.2 and Kv1.4. There was no change in other channel subunits (Cav1.1, Kv4.3, KChIP2, and ERG1). We conclude that long-term fish oil supplementation can impact on cardiac electrical activity at least partially by changing channel subunit expression in cardiac myocytes. PMID:20405051

  12. Effects of phloretin and phloridzin on Ca2+ handling, the action potential, and ion currents in rat ventricular myocytes.

    PubMed

    Olson, Marnie L; Kargacin, Margaret E; Ward, Christopher A; Kargacin, Gary J

    2007-06-01

    The effects of the phytoestrogens phloretin and phloridzin on Ca(2+) handling, cell shortening, the action potential, and Ca(2+) and K(+) currents in freshly isolated cardiac myocytes from rat ventricle were examined. Phloretin increased the amplitude and area and decreased the rate of decline of electrically evoked Ca(2+) transients in the myocytes. These effects were accompanied by an increase in the Ca(2+) load of the sarcoplasmic reticulum, as determined by the area of caffeine-evoked Ca(2+) transients. An increase in the extent of shortening of the myocytes in response to electrically evoked action potentials was also observed in the presence of phloretin. To further examine possible mechanisms contributing to the observed changes in Ca(2+) handling and contractility, the effects of phloretin on the cardiac action potential and plasma membrane Ca(2+) and K(+) currents were examined. Phloretin markedly increased the action potential duration in the myocytes, and it inhibited the Ca(2+)-independent transient outward K(+) current (I(to)). The inwardly rectifying K(+) current, the sustained outward delayed rectifier K(+) current, and L-type Ca(2+) currents were not significantly different in the presence and absence of phloretin, nor was there any evidence that the Na(+)/Ca(2+) exchanger was affected. The effects of phloretin on Ca(2+) handling in the myocytes are consistent with its effects on I(to). Phloridzin did not significantly alter the amplitude or area of electrically evoked Ca(2+) transients in the myocytes, nor did it have detectable effects on the sarcoplasmic reticulum Ca(2+) load, cell shortening, or the action potential.

  13. Reduction of I(Ca,L) and I(to1) density in hypertrophied right ventricular cells by simulated high altitude in adult rats.

    PubMed

    Chouabe, C; Espinosa, L; Megas, P; Chakir, A; Rougier, O; Freminet, A; Bonvallet, R

    1997-01-01

    The present paper describes the effect of a simulated hypobaric condition (at the altitude of 4500 m) on morphological characteristics and on some ionic currents in ventricular cells of adult rats. According to current data, chronic high-altitude exposure led to mild right ventricular hypertrophy. Increase in right ventricular weight appeared to be due wholly or partly to an enlargement of myocytes. The whole-cell patch-clamp technique was used and this confirmed, by cell capacitance measurement, that chronic high-altitude exposure induced an increase in the size of the right ventricular cells. Hypertrophied cells showed prolongation of action potential (AP). Four ionic currents, playing a role along with many others in the precise balance of inward and outward currents that control the duration of cardiac AP, were investigated. We report a significant decrease in the transient outward (I(to1)) and in the L-type calcium current (I(Ca,L)) densities while there was no significant difference in the delayed rectifier current (I(K)) or in the inward rectifier current (I(K1)) densities in hypertrophied right ventricular cells compared to control cells. At a given potential the decrease in I(to 1) density was relatively more important than the decrease in I(Ca,L) density. In both cell types, all the currents displayed the same voltage dependence. The inactivation kinetics of I(to 1) and I(Ca,L) or the steady-state activation and inactivation relationships were not significantly modified by chronic high-altitude exposure. We conclude that chronic high-altitude exposure induced true right ventricular myocyte hypertrophy and that the decrease in I(to 1) density might account for the lengthened action potential, or have a partial effect.

  14. Comparison of Rectified and Unrectified Sockets for Transtibial Amputees.

    PubMed

    Engsberg, Jack R; Sprouse, S Wayne; Uhrich, Mary L; Ziegler, Barbara R; Luitjohan, F Daniel

    2008-01-01

    The current method for fabricating prosthetic sockets is to modify a positive mold to account for the non-homogeneity of the residual limb to tolerate load (i.e., rectified socket). We tested unrectified sockets by retaining the shape of the residual limb, except for a distal end pad, using an alginate gel process instead of casting. This investigation compared rectified and unrectified sockets. Forty-three adults with unilateral transtibial amputations were tested after randomly wearing both rectified and unrectified sockets for at least 4 weeks. Testing included a gait analysis, energy expenditure and Prosthesis Evaluation Questionnaire (PEQ). Results indicated no differences between sockets for gait speed and timing, gait kinematics and kinetics, and gait energy expenditure. There were also no differences in the Prosthetic Evaluation Questionnaire and 16 subjects selected the rectified socket, 25 selected the unrectified socket, and 2 subjects selected to use both sockets as their exit socket. Results seemed to indicate that more than one paradigm exists for shaping prosthetic sockets, and this paradigm may be helpful in understanding the mechanisms of socket fit. The alginate gel fabrication method was simpler than the traditional method. The method could be helpful in other countries where prosthetic care is lacking, may be helpful with new amputees, and may be helpful in typical clinics to reduce costs and free the prosthetist to focus more time on patient needs.

  15. Comparison of Rectified and Unrectified Sockets for Transtibial Amputees

    PubMed Central

    Engsberg, Jack R.; Sprouse, S. Wayne; Uhrich, Mary L.; Ziegler, Barbara R.; Luitjohan, F. Daniel

    2008-01-01

    The current method for fabricating prosthetic sockets is to modify a positive mold to account for the non-homogeneity of the residual limb to tolerate load (i.e., rectified socket). We tested unrectified sockets by retaining the shape of the residual limb, except for a distal end pad, using an alginate gel process instead of casting. This investigation compared rectified and unrectified sockets. Forty-three adults with unilateral transtibial amputations were tested after randomly wearing both rectified and unrectified sockets for at least 4 weeks. Testing included a gait analysis, energy expenditure and Prosthesis Evaluation Questionnaire (PEQ). Results indicated no differences between sockets for gait speed and timing, gait kinematics and kinetics, and gait energy expenditure. There were also no differences in the Prosthetic Evaluation Questionnaire and 16 subjects selected the rectified socket, 25 selected the unrectified socket, and 2 subjects selected to use both sockets as their exit socket. Results seemed to indicate that more than one paradigm exists for shaping prosthetic sockets, and this paradigm may be helpful in understanding the mechanisms of socket fit. The alginate gel fabrication method was simpler than the traditional method. The method could be helpful in other countries where prosthetic care is lacking, may be helpful with new amputees, and may be helpful in typical clinics to reduce costs and free the prosthetist to focus more time on patient needs. PMID:18776945

  16. Slow Mapping: Color Word Learning as a Gradual Inductive Process

    ERIC Educational Resources Information Center

    Wagner, Katie; Dobkins, Karen; Barner, David

    2013-01-01

    Most current accounts of color word acquisition propose that the delay between children's first production of color words and adult-like understanding is due to problems abstracting color as a domain of meaning. Here we present evidence against this hypothesis, and show that, from the time children produce color words in a labeling task they use…

  17. Modeling of the Modulation by Buffers of Ca2+ Release through Clusters of IP3 Receptors

    PubMed Central

    Zeller, S.; Rüdiger, S.; Engel, H.; Sneyd, J.; Warnecke, G.; Parker, I.; Falcke, M.

    2009-01-01

    Abstract Intracellular Ca2+ release is a versatile second messenger system. It is modeled here by reaction-diffusion equations for the free Ca2+ and Ca2+ buffers, with spatially discrete clusters of stochastic IP3 receptor channels (IP3Rs) controlling the release of Ca2+ from the endoplasmic reticulum. IP3Rs are activated by a small rise of the cytosolic Ca2+ concentration and inhibited by large concentrations. Buffering of cytosolic Ca2+ shapes global Ca2+ transients. Here we use a model to investigate the effect of buffers with slow and fast reaction rates on single release spikes. We find that, depending on their diffusion coefficient, fast buffers can either decouple clusters or delay inhibition. Slow buffers have little effect on Ca2+ release, but affect the time course of the signals from the fluorescent Ca2+ indicator mainly by competing for Ca2+. At low [IP3], fast buffers suppress fluorescence signals, slow buffers increase the contrast between bulk signals and signals at open clusters, and large concentrations of buffers, either fast or slow, decouple clusters. PMID:19686646

  18. A contemporary view of atrioventricular nodal physiology.

    PubMed

    Markowitz, Steven M; Lerman, Bruce B

    2018-06-16

    In delaying transmission of the cardiac impulse from the atria to the ventricles, the atrioventricular (AV) node serves a critical function in augmenting ventricular filling during diastole and limiting the ventricular response during atrial tachyarrhythmias. The complex structure of the nodal region, however, also provides the substrate for reentrant rhythms. Recent discoveries have elucidated the cellular basis and anatomical determinants of slow conduction in the node. Based on analysis of gap junction proteins, distinct structural components of the AV node have been defined, including the compact node, right and left inferior nodal extensions, the lower nodal bundle, and transitional tissue. Emerging evidence supports the role of the inferior nodal extensions in mediating slow pathway conduction. The most common form of reentry involving the node, slow-fast AV nodal reentrant tachycardia (AVNRT), utilizes the inferior nodal extensions for anterograde slow pathway conduction; the structures responsible for retrograde fast pathway activation in the superior septum are less well defined and likely heterogeneous. Atypical forms of AVNRT arise from circuits that activate at least one of the inferior extensions in the retrograde direction.

  19. Hybrid assemblies of ATP-sensitive K+ channels determine their muscle-type-dependent biophysical and pharmacological properties.

    PubMed

    Tricarico, Domenico; Mele, Antonietta; Lundquist, Andrew L; Desai, Reshma R; George, Alfred L; Conte Camerino, Diana

    2006-01-24

    ATP-sensitive K(+) channels (K(ATP)) are an octameric complex of inwardly rectifying K(+) channels (Kir6.1 and Kir6.2) and sulfonylurea receptors (SUR1 and SUR2A/B), which are involved in several diseases. The tissue-selective expression of the subunits leads to different channels; however, the composition and role of the functional channel in native muscle fibers is not known. In this article, the properties of K(ATP) channels of fast-twitch and slow-twitch muscles were compared by combining patch-clamp experiments with measurements of gene expression. We found that the density of K(ATP) currents/area was muscle-type specific, being higher in fast-twitch muscles compared with the slow-twitch muscle. The density of K(ATP) currents/area was correlated with the level of Kir6.2 expression. SUR2A was the most abundant subunit expressed in all muscles, whereas the vascular SUR2B subunit was expressed but at lower levels. A significant expression of the pancreatic SUR1 was also found in fast-twitch muscles. Pharmacological experiments showed that the channel response to the SUR1 agonist diazoxide, SUR2A/B agonist cromakalim, SUR1 antagonist tolbutamide, and the SUR1/SUR2A/B-antagonist glibenclamide matched the SURs expression pattern. Muscle-specific K(ATP) subunit compositions contribute to the physiological performance of different muscle fiber types and determine the pharmacological actions of drugs modulating K(ATP) activity in muscle diseases.

  20. WASTE MINIMIZATION ASSESSMENT FOR A MANUFACTURER OF SILICON-CONTROLLED RECTIFIERS AND SCHOTTKY RECTIFIERS

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small- and medium-size manufacturers who want to minimize their generation of waste but who lack the expertise to do so. In an effort to assist these manufacturers Waste Minimization Assessment Ce...

Top