Sample records for slow dissolution rate

  1. Stirring effect on kaolinite dissolution rate

    NASA Astrophysics Data System (ADS)

    Metz, Volker; Ganor, Jiwchar

    2001-10-01

    Experiments were carried out measuring kaolinite dissolution rates using stirred and nonstirred flow-through reactors at pHs 2 to 4 and temperatures of 25°C, 50°C, and 70°C. The results show an increase of kaolinite dissolution rate with increasing stirring speed. The stirring effect is reversible, i.e., as the stirring slows down the dissolution rate decreases. The effect of stirring speed on kaolinite dissolution rate is higher at 25°C than at 50°C and 70°C and at pH 4 than at pHs 2 and 3. It is suggested that fine kaolinite particles are formed as a result of stirring-induced spalling or abrasion of kaolinite. These very fine particles have an increased ratio of reactive surface area to specific surface area, which results in enhancement of kaolinite dissolution rate. A balance between production and dissolution of the fine particles explains both the reversibility and the temperature and pH dependence of the stirring effect. Since the stirring effect on kaolinite dissolution rate varies with temperature and pH, measurement of kinetic parameters such as activation energy may be influenced by stirring. Therefore, standard use of nonagitated reaction vessels for kinetic experiments of mineral dissolution and precipitation is recommended, at least for slow reactions that are surface controlled.

  2. Integrating In Vitro, Modeling, and In Vivo Approaches to Investigate Warfarin Bioequivalence

    PubMed Central

    Wen, H; Fan, J; Vince, B; Li, T; Gao, W; Kinjo, M; Brown, J; Sun, W; Jiang, W; Lionberger, R

    2017-01-01

    We demonstrate the use of modeling and simulation to investigate bioequivalence (BE) concerns raised about generic warfarin products. To test the hypothesis that the loss of isopropyl alcohol and slow dissolution in acidic pH has significant impact on the pharmacokinetics of warfarin sodium tablets, we conducted physiologically based pharmacokinetic absorption modeling and simulation using formulation factors or in vitro dissolution profiles as input parameters. Sensitivity analyses indicated that warfarin pharmacokinetics was not sensitive to solubility, particle size, density, or dissolution rate in pH 4.5, but was affected by dissolution rate in pH 6.8 and potency. Virtual BE studies suggested that stressed warfarin sodium tablets with slow dissolution rate in pH 4.5 but having similar dissolution rate in pH 6.8 would be bioequivalent to the unstressed warfarin sodium tablets. A four‐way, crossover, single‐dose BE study in healthy subjects was conducted to test the same hypothesis and confirmed the simulation conclusion. PMID:28379643

  3. Etching of semiconductor cubic crystals: Determination of the dissolution slowness surfaces

    NASA Astrophysics Data System (ADS)

    Tellier, C. R.

    1990-03-01

    Equations of the representative surface of dissolution slowness for cubic crystals are determined in the framework of a tensorial approach of the orientation-dependent etching process. The independent dissolution constants are deduced from symmetry considerations. Using previous data on the chemical etching of germanium and gallium arsenide crystals, some possible polar diagrams of the dissolution slowness are proposed. A numerical and graphical simulation method is used to obtain the derived dissolution shapes. The influence of extrema in the dissolution slowness on the successive dissolution shapes is also examined. A graphical construction of limiting shapes of etched crystals appears possible using the tensorial representation of the dissolution slowness.

  4. Physical heterogeneity control on effective mineral dissolution rates

    NASA Astrophysics Data System (ADS)

    Jung, Heewon; Navarre-Sitchler, Alexis

    2018-04-01

    Hydrologic heterogeneity may be an important factor contributing to the discrepancy in laboratory and field measured dissolution rates, but the governing factors influencing mineral dissolution rates among various representations of physical heterogeneity remain poorly understood. Here, we present multiple reactive transport simulations of anorthite dissolution in 2D latticed random permeability fields and link the information from local grid scale (1 cm or 4 m) dissolution rates to domain-scale (1m or 400 m) effective dissolution rates measured by the flux-weighted average of an ensemble of flow paths. We compare results of homogeneous models to heterogeneous models with different structure and layered permeability distributions within the model domain. Chemistry is simplified to a single dissolving primary mineral (anorthite) distributed homogeneously throughout the domain and a single secondary mineral (kaolinite) that is allowed to dissolve or precipitate. Results show that increasing size in correlation structure (i.e. long integral scales) and high variance in permeability distribution are two important factors inducing a reduction in effective mineral dissolution rates compared to homogeneous permeability domains. Larger correlation structures produce larger zones of low permeability where diffusion is an important transport mechanism. Due to the increased residence time under slow diffusive transport, the saturation state of a solute with respect to a reacting mineral approaches equilibrium and reduces the reaction rate. High variance in permeability distribution favorably develops large low permeability zones that intensifies the reduction in mixing and effective dissolution rate. However, the degree of reduction in effective dissolution rate observed in 1 m × 1 m domains is too small (<1% reduction from the corresponding homogeneous case) to explain several orders of magnitude reduction observed in many field studies. When multimodality in permeability distribution is approximated by high permeability variance in 400 m × 400 m domains, the reduction in effective dissolution rate increases due to the effect of long diffusion length scales through zones with very slow reaction rates. The observed scale dependence becomes complicated when pH dependent kinetics are compared to the results from pH independent rate constants. In small domains where the entire domain is reactive, faster anorthite dissolution rates and slower kaolinite precipitation rates relative to pH independent rates at far-from-equilibrium conditions reduce the effective dissolution rate by increasing the saturation state. However, in large domains where less- or non-reactive zones develop, higher kaolinite precipitation rates in less reactive zones increase the effective anorthite dissolution rates relative to the rates observed in pH independent cases.

  5. Pharmacokinetics of a slow-release formulation of soybean isoflavones in healthy postmenopausal women.

    PubMed

    Setchell, Kenneth D R; Brzezinski, Amnon; Brown, Nadine M; Desai, Pankaj B; Melhem, Murad; Meredith, Trevor; Zimmer-Nechimias, Linda; Wolfe, Brian; Cohen, Yoram; Blatt, Yoav

    2005-03-23

    Pharmacokinetic studies of soybean isoflavones have shown that following oral ingestion, the two major isoflavones, daidzin and genistin, are hydrolyzed in the intestine, rapidly absorbed into the peripheral circulation, and eliminated from the body with a terminal half-life of 7-8 h. These characteristics make maintenance of steady-state plasma isoflavone concentrations difficult to attain unless there is repeated daily ingestion of foods or supplements containing isoflavones. In an attempt to sustain more constant plasma isoflavone concentrations, a new slow-release formulation of a soybean isoflavone extract was prepared by microencapsulation with a mixture of hydroxypropylcellulose and ethylcellulose to alter its dissolution characteristics. In vitro experiments confirmed slow aqueous dissolution of isoflavones from this formulation when compared with the conventional isoflavone extract. The pharmacokinetics of this slow-release isoflavone extract was studied in 10 healthy postmenopausal women after oral administration of a single capsule containing the equivalent of 22.3 mg of genistein and 7.47 mg of daidzein expressed as aglycons. A comparison of the key pharmacokinetic parameters obtained in this study with those established in extensive studies performed previously in this laboratory indicated that the mean residence time of genistein and daidzein increased 2-fold with microencapsulation. These findings are indicative of a decreased rate of absorption, consistent with the observed slow in vitro dissolution rate. These findings show that it is feasible to employ polymer matrices that slow the aqueous dissolution for preparing sustained-release formulations of soy isoflavones. Further studies to optimize such formulations are warranted.

  6. Coupled alkali feldspar dissolution and secondary mineral precipitation in batch systems: 4. Numerical modeling of kinetic reaction paths

    NASA Astrophysics Data System (ADS)

    Zhu, Chen; Lu, Peng; Zheng, Zuoping; Ganor, Jiwchar

    2010-07-01

    This paper explores how dissolution and precipitation reactions are coupled in batch reactor experimental systems at elevated temperatures. This is the fourth paper in our series of "Coupled Alkali Feldspar Dissolution and Secondary Mineral Precipitation in Batch Systems". In our third paper, we demonstrated via speciation-solubility modeling that partial equilibrium between secondary minerals and aqueous solutions was not attained in feldspar hydrolysis batch reactors at 90-300 °C and that a strong coupling between dissolution and precipitation reactions follows as a consequence of the slower precipitation of secondary minerals ( Zhu and Lu, 2009). Here, we develop this concept further by using numerical reaction path models to elucidate how the dissolution and precipitation reactions are coupled. Modeling results show that a quasi-steady state was reached. At the quasi-steady state, dissolution reactions proceeded at rates that are orders of magnitude slower than the rates measured at far from equilibrium. The quasi-steady state is determined by the relative rate constants, and strongly influenced by the function of Gibbs free energy of reaction ( ΔG) in the rate laws. To explore the potential effects of fluid flow rates on the coupling of reactions, we extrapolate a batch system ( Ganor et al., 2007) to open systems and simulated one-dimensional reactive mass transport for oligoclase dissolution and kaolinite precipitation in homogeneous porous media. Different steady states were achieved at different locations along the one-dimensional domain. The time-space distribution and saturation indices (SI) at the steady states were a function of flow rates for a given kinetic model. Regardless of the differences in SI, the ratio between oligoclase dissolution rates and kaolinite precipitation rates remained 1.626, as in the batch system case ( Ganor et al., 2007). Therefore, our simulation results demonstrated coupling among dissolution, precipitation, and flow rates. Results reported in this communication lend support to our hypothesis that slow secondary mineral precipitation explains part of the well-known apparent discrepancy between lab measured and field estimated feldspar dissolution rates ( Zhu et al., 2004). Here we show how the slow secondary mineral precipitation provides a regulator to explain why the systems are held close to equilibrium and show how the most often-quoted "near equilibrium" explanation for an apparent field-lab discrepancy can work quantitatively. The substantiated hypothesis now offers the promise of reconciling part of the apparent field-lab discrepancy.

  7. Carbonate dissolution rates in high salinity brines: Implications for post-Noachian chemical weathering on Mars

    NASA Astrophysics Data System (ADS)

    Phillips-Lander, Charity M.; Parnell, S. R.; McGraw, L. E.; Elwood Madden, M. E.

    2018-06-01

    A diverse suite of carbonate minerals including calcite (CaCO3) and magnesite (MgCO3) have been observed on the martian surface and in meteorites. Terrestrial carbonates usually form via aqueous processes and often record information about the environment in which they formed, including chemical and textural biosignatures. In addition, terrestrial carbonates are often found in association with evaporite deposits on Earth. Similar high salinity environments and processes were likely active on Mars and some areas may contain active high salinity brines today. In this study, we directly compare calcite and magnesite dissolution in ultrapure water, dilute sulfate and chloride solutions, as well as near-saturated sulfate and chloride brines with known activity of water (aH2O) to determine how dissolution rates vary with mineralogy and aH2O, as well as aqueous cation and anion chemistry to better understand how high salinity fluids may have altered carbonate deposits on Mars. We measured both calcite and magnesite initial dissolution rates at 298 K and near neutral pH (6-8) in unbuffered solutions containing ultrapure water (18 MΩ cm-1 UPW; aH2O = 1), dilute (0.1 mol kg-1; aH2O = 1) and near-saturated Na2SO4 (2.5 mol kg-1, aH2O = 0.92), dilute (0.1 mol kg-1, aH2O = 1) and near-saturated NaCl (5.7 mol kg-1, aH2O = 0.75). Calcite dissolution rates were also measured in dilute and near-saturated MgSO4 (0.1 mol kg-1, aH2O = 1 and 2.7 mol kg-1, aH2O = 0.92, respectively) and MgCl2 (0.1 mol kg-1, aH2O = 1 and 3 mol kg-1, aH2O = 0.73, respectively), while magnesite dissolution rates were measured in dilute and near-saturated CaCl2 (0.1 mol kg-1, aH2O = 1 and 9 mol kg-1, aH2O = 0.35). Initial calcite dissolution rates were fastest in near-saturated MgCl2 brine, while magnesite dissolution rates were fastest in dilute (0.1 mol kg-1) NaCl and CaCl2 solutions. Calcite dissolution rates in near-saturated Na2SO4 were similar to those observed in the dilute solutions (-8.00 ± 0.12 log mol m-2 s-1), while dissolution slowed in both NaCl solutions (0.1 mol kg-1; -8.23 ± 0.10 log mol m-2 s-1 and (5.7 mol kg-1; -8.44 ± 0.11 log mol m-2 s-1), as well as near-saturated MgSO4 brine (2.7 mol kg-1; -8.35 ± 0.05 log mol m-2 s-1). The slowest calcite dissolution rates observed in the near-saturated NaCl brine. Magnesite dissolution rates were ∼5 times faster in the dilute salt solutions relative to UPW, but similar to UPW (-8.47 ± 0.06 log mol m-2 s-1) in near-saturated Na2SO4 brines (-8.41 ± 0.18 log mol m-2 s-1). Magnesite dissolution slowed significantly in near-saturated CaCl2 brine (-9.78 ± 0.10 log mol m-2 s-1), likely due to the significantly lower water activity in these experiments. Overall, magnesite dissolution rates are slower than calcite dissolution rates and follow the trend: All dilute salt solutions >2.5 mol kg-1 Na2SO4 ≈ UPW > 5.7 mol kg-1 NaCl >> 9 mol kg-1 CaCl2. Calcite rates follow the trend 3 mol kg-1 MgCl2 > 2.5 mol kg-1 Na2SO4 ≈ UPW ≈ all dilute salt solutions >2.7 mol kg-1 MgSO4 ≈ 5.7 mol kg-1 NaCl. Magnesite dissolution rates in salt solutions generally decrease with decreasing aH2O in both chloride and sulfate brines, which indicates water molecules act as ligands and participate in the rate-limiting magnesite dissolution step. However, there is no general trend associated with water activity observed in the calcite dissolution rates. Calcite dissolution accelerates in near-saturated MgCl2, but slows in near-saturated NaCl brine despite both brines having similar water activities (aH2O = 0.73 and 0.75, respectively). High Mg calcite was observed as a reaction product in the near-saturated MgCl2, indicating Mg2+ from solution likely substituted for Ca2+ in the initial calcite, releasing additional Ca2+ into solution and increasing the observed calcite dissolution rate. Calcite dissolution rates also increase slightly as Na2SO4 concentration increases, while calcite dissolution rates slow slightly with increasing concentration of MgSO4 and NaCl. However, all of the carbonate rates vary by less than 0.5 log units and are within or near the standard deviation observed for each set of replicate experiments. Carbonate mineral lifetimes in high salinity brines indicate magnesite may be preferentially preserved compared to calcite on Mars. Therefore, Mg-carbonates that have experienced post-depositional aqueous alteration are more likely to preserve paleoenvironmental indicators and potential biosignatures. Rapid weathering of carbonates in circum-neutral pH sulfate brines may provide a potential source of cations for abundant sulfate minerals observed on Mars, Ceres, and other planetary bodies.

  8. Effects of Bacillus subtilis endospore surface reactivity on the rate of forsterite dissolution

    NASA Astrophysics Data System (ADS)

    Harrold, Z.; Gorman-Lewis, D.

    2013-12-01

    Primary mineral dissolution products, such as silica (Si), calcium (Ca) and magnesium (Mg), play an important role in numerous biologic and geochemical cycles including microbial metabolism, plant growth and secondary mineral precipitation. The flux of these and other dissolution products into the environment is largely controlled by the rate of primary silicate mineral dissolution. Bacteria, a ubiquitous component in water-rock systems, are known to facilitate mineral dissolution and may play a substantial role in determining the overall flux of dissolution products into the environment. Bacterial cell walls are complex and highly reactive organic surfaces that can affect mineral dissolution rates directly through microbe-mineral adsorption or indirectly by complexing dissolution products. The effect of bacterial surface adsorption on chemical weathering rates may even outweigh the influence of active processes in environments where a high proportion of cells are metabolically dormant or cell metabolism is slow. Complications associated with eliminating or accounting for ongoing metabolic processes in long-term dissolution studies have made it challenging to isolate the influence of cell wall interactions on mineral dissolution rates. We utilized Bacillus subtilis endospores, a robust and metabolically dormant cell type, to isolate and quantify the effects of bacterial surface reactivity on forsterite (Mg2SiO4) dissolution rates. We measured the influence of both direct and indirect microbe-mineral interactions on forsterite dissolution. Indirect pathways were isolated using dialysis tubing to prevent mineral-microbe contact while allowing free exchange of dissolved mineral products and endospore-ion adsorption. Homogenous experimental assays allowed both direct microbe-mineral and indirect microbe-ion interactions to affect forsterite dissolution rates. Dissolution rates were calculated based on silica concentrations and zero-order dissolution kinetics. Additional analyses including Mg concentrations, microprobe and BET analyses support mineral dissolution rate calculations and stoichiometry considerations. All experimental assays containing endospores show increased forsterite dissolution rates relative to abiotic controls. Forsterite dissolution rates increased by approximately one order of magnitude in dialysis bound, biotic experiments relative to abiotic assays. Homogenous biotic assays exhibited a more complex dissolution rate profile that changes over time. All microbially mediated forsterite dissolution rates returned to abiotic control rates after 10 to 15 days of incubation. This shift in dissolution rate likely corresponds to maximum endospore surface adsorption capacity. The Bacillus subtilis endospore surface serves as a first-order proxy for studying the effect of metabolizing microbe surfaces on silicate dissolution rates. Comparisons with published abiotic, microbial, and organic acid mediated forsterite dissolution rates will provide insight on the importance of bacterial surfaces in primary mineral dissolution processes.

  9. Calcium isotope evidence for suppression of carbonate dissolution in carbonate-bearing organic-rich sediments

    NASA Astrophysics Data System (ADS)

    Turchyn, Alexandra V.; DePaolo, Donald J.

    2011-11-01

    Pore fluid calcium isotope, calcium concentration and strontium concentration data are used to measure the rates of diagenetic dissolution and precipitation of calcite in deep-sea sediments containing abundant clay and organic material. This type of study of deep-sea sediment diagenesis provides unique information about the ultra-slow chemical reactions that occur in natural marine sediments that affect global geochemical cycles and the preservation of paleo-environmental information in carbonate fossils. For this study, calcium isotope ratios (δ 44/40Ca) of pore fluid calcium from Ocean Drilling Program (ODP) Sites 984 (North Atlantic) and 1082 (off the coast of West Africa) were measured to augment available pore fluid measurements of calcium and strontium concentration. Both study sites have high sedimentation rates and support quantitative sulfate reduction, methanogenesis and anaerobic methane oxidation. The pattern of change of δ 44/40Ca of pore fluid calcium versus depth at Sites 984 and 1082 differs markedly from that of previously studied deep-sea Sites like 590B and 807, which are composed of nearly pure carbonate sediment. In the 984 and 1082 pore fluids, δ 44/40Ca remains elevated near seawater values deep in the sediments, rather than shifting rapidly toward the δ 44/40Ca of carbonate solids. This observation indicates that the rate of calcite dissolution is far lower than at previously studied carbonate-rich sites. The data are fit using a numerical model, as well as more approximate analytical models, to estimate the rates of carbonate dissolution and precipitation and the relationship of these rates to the abundance of clay and organic material. Our models give mutually consistent results and indicate that calcite dissolution rates at Sites 984 and 1082 are roughly two orders of magnitude lower than at previously studied carbonate-rich sites, and the rate correlates with the abundance of clay. Our calculated rates are conservative for these sites (the actual rates could be significantly slower) because other processes that impact the calcium isotope composition of sedimentary pore fluid have not been included. The results provide direct geochemical evidence for the anecdotal observation that the best-preserved carbonate fossils are often found in clay or organic-rich sedimentary horizons. The results also suggest that the presence of clay minerals has a strong passivating effect on the surfaces of biogenic carbonate minerals, slowing dissolution dramatically even in relation to the already-slow rates typical of carbonate-rich sediments.

  10. How does natural groundwater flow affect CO2 dissolution in saline aquifers?

    NASA Astrophysics Data System (ADS)

    Rosenzweig, R.; Michel-Meyer, I.; Tsinober, A.; Shavit, U.

    2017-12-01

    The dissolution of supercritical CO2 in aquifer brine is one of the most important trapping mechanisms in CO2 geological storage. Diffusion-limited dissolution is a very slow process. However, since the CO2-rich water is slightly denser than the CO2-free water, when CO2-free water is overlaid by heavier CO2-rich water, convective instability results in fingers of dense CO2-rich water that propagate downwards, causing CO2-unsaturated water to move upwards. This convection process significantly accelerates the dissolution rate of CO2 into the aquifer water.Most previous works have neglected the effect of natural groundwater flow and assumed it has no effect on the dissolution dynamics. However, it was found that in some of the saline aquifers groundwater flow rate, although small, is not zero. In this research, we study the effect of groundwater flow on dissolution by performing laboratory experiments in a bead pack cell using a mixture of methanol and ethylene-glycol as a CO2 analog while varying the water horizontal flow rate. We find that water horizontal flow decreases the number of fingers, their wavelength and their propagation velocity. When testing high water flow rates, no fingers were developed and the dissolution process was entirely diffusive. The effect of water flow on the dissolution rate did not show a clear picture. When increasing the horizontal flow rate the convective dissolution flux slightly decreased and then increased again. It seems that the combination of density-driven flow, water horizontal flow, mechanical dispersion and molecular diffusion affect the dissolution rate in a complex and non-monotonic manner. These intriguing dynamics should be further studied to understand their effect on dissolution trapping.

  11. Determination of the dissolution slowness surface by study of etched shapes I. Morphology of the dissolution slowness surface and theoretical etched shapes

    NASA Astrophysics Data System (ADS)

    Leblois, T.; Tellier, C. R.

    1992-07-01

    We propose a theoretical model for the anisotropic etching of crystals, in order to be applied in the micromachining. The originality of the model is due to the introduction of dissolution tensors to express the representative surface of the dissolution slowness. The knowledge of the equation of the slowness surface allows us to determine the trajectories of all the elements which compose the starting surface. It is then possible to construct the final etched shape by numerical simulation. Several examples are given in this paper which show that the final etched shapes are correlated to the extrema of the dissolution slowness. Since the slowness surface must be determined from experiments, emphasis is placed on difficulties encountered when we correlate theory to experiments. Nous avons modélisé le processus de dissolution anisotrope des cristaux en vue d'une application à la simulation des formes obtenues par photolithogravure chimique. La principale originalité de ce modèle tient à l'introduction de tenseurs de dissolution pour exprimer la surface représentative de la lenteur de dissolution. La connaissance de l'équation de la lenteur de dissolution permet de calculer les trajectoires des différents éléments constituant la surface de départ puis de reconstituer par simulation la forme dissoute. Les simulations démontrent que les formes limites des cristaux dissous sont corrélées aux extrema de la lenteur de dissolution. La détermination de la surface de la lenteur se faisant à partir de mesures expérimetales, nous nous sommes efforcés de montrer toutes les difficultés attachées à cette analyse.

  12. Iron dissolution kinetics of mineral dust at low pH during simulated atmospheric processing

    NASA Astrophysics Data System (ADS)

    Shi, Z.; Bonneville, S.; Krom, M. D.; Carslaw, K. S.; Jickells, T. D.; Baker, A. R.; Benning, L. G.

    2010-11-01

    We investigated the iron (Fe) dissolution kinetics of African (Tibesti) and Asian (Beijing) dust samples at acidic pH with the aim of reproducing the low pH conditions in atmospheric aerosols. The Beijing dust and three size fractions of the Tibesti dust (<20 μm: PM20; <10 μm: PM10; and <2.5 μm: PM2.5) were dissolved at pH 1, 2 and/or 3 for up to 1000 h. In the first 10 min, all dust samples underwent an extremely fast Fe solubilisation. Subsequently, the Fe dissolution proceeded at a much slower rate before reaching a stable dissolution plateau. The time-dependant Fe dissolution datasets were best described by a model comprising three acid-extractable Fe pools each dissolving according to first-order kinetics. The dissolution rate constant k of each pool was independent of the source (Saharan or Asian) and the size (PM20, PM10 or PM2.5) of the dust but highly dependent on pH. The "fast" Fe pool had a k (25 h-1 at pH=1) of a similar magnitude to "dry" ferrihydrite nanoparticles and/or poorly crystalline Fe(III) oxyhydroxide, while the "intermediate" and "slow" Fe pools had k values respectively 50-60 times and 3000-4000 times smaller than the "fast" pool. The "slow" Fe pool was likely to consist of both crystalline Fe oxide phases (i.e., goethite and/or hematite) and Fe contained in the clay minerals. The initial mass of the "fast", "intermediate" and "slow" Fe pools represented respectively about 0.5-2%, 1-3% and 15-40% of the total Fe in the dust samples. Furthermore, we showed that in systems with low dust/liquid ratios, Fe can be dissolved from all three phases, whereas at high dust/liquid ratios (e.g., in aerosols), sufficient Fe is solubilised from the "fast" phase to dominate the Fe dissolved and to suppress the dissolution of Fe from the other Fe pools. These data demonstrated that dust/liquid ratio and pH are fundamental parameters controlling Fe dissolution kinetics in the dust. In order to reduce errors in atmospheric and climate models, these fundamental controlling factors need to be included.

  13. Iron dissolution kinetics of mineral dust at low pH during simulated atmospheric processing

    NASA Astrophysics Data System (ADS)

    Shi, Z.; Bonneville, S.; Krom, M. D.; Carslaw, K. S.; Jickells, T. D.; Baker, A. R.; Benning, L. G.

    2011-02-01

    We investigated the iron (Fe) dissolution kinetics of African (Tibesti) and Asian (Beijing) dust samples at acidic pH with the aim of reproducing the low pH conditions in atmospheric aerosols. The Beijing dust and three size fractions of the Tibesti dust (<20 μm: PM20; <10 μm: PM10; and <2.5 μm: PM2.5) were dissolved at pH 1, 2 and/or 3 for up to 1000 h. In the first 10 min, all dust samples underwent an extremely fast Fe solubilisation. Subsequently, the Fe dissolution proceeded at a much slower rate before reaching a stable dissolution plateau. The time-dependant Fe dissolution datasets were best described by a model comprising three acid-extractable Fe pools each dissolving according to first-order kinetics. The dissolution rate constant k (h-1) of each pool was independent of the source (Saharan or Asian) and the size (PM20, PM10 or PM2.5) of the dust but highly dependent on pH. The "fast" Fe pool had a k (25 h-1 at pH = 1) of a similar magnitude to "dry" ferrihydrite nanoparticles and/or poorly crystalline Fe(III) oxyhydroxide, while the "intermediate" and "slow" Fe pools had k values respectively 50-60 times and 3000-4000 times smaller than the "fast" pool. The "slow" Fe pool was likely to consist of both crystalline Fe oxide phases (i.e., goethite and/or hematite) and Fe contained in the clay minerals. The initial mass of the "fast", "intermediate" and "slow" Fe pools represented respectively about 0.5-2%, 1-3% and 15-40% of the total Fe in the dust samples. Furthermore, we showed that in systems with low dust/liquid ratios, Fe can be dissolved from all three pools, whereas at high dust/liquid ratios (e.g., in aerosols), sufficient Fe may be solubilised from the "fast" phase to dominate the Fe dissolved and to suppress the dissolution of Fe from the other Fe pools. These data demonstrated that dust/liquid ratio and pH are fundamental parameters controlling Fe dissolution kinetics in the dust. In order to reduce errors in atmospheric and climate models, these fundamental controlling factors need to be included.

  14. In Vitro Dissolution Tests of Plutonium and Americium Containing Contamination Originating From ZPPR Fuel Plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    William F. Bauer; Brian K. Schuetz; Gary M. Huestis

    2012-09-01

    Assessing the extent of internal dose is of concern whenever workers are exposed to airborne radionuclides or other contaminants. Internal dose determinations depend upon a reasonable estimate of the expected biological half-life of the contaminants in the respiratory tract. One issue with refractory elements is determining the dissolution rate of the element. Actinides such as plutonium (Pu) and Americium (Am) tend to be very refractory and can have biological half-lives of tens of years. In the event of an exposure, the dissolution rates of the radionuclides of interest needs to be assessed in order to assign the proper internal dosemore » estimates. During the November 2011 incident at the Idaho National Laboratory (INL) involving a ZPPR fuel plate, air filters in a constant air monitor (CAM) and a giraffe filter apparatus captured airborne particulate matter. These filters were used in dissolution rate experiments to determine the apparent dissolution half-life of Pu and Am in simulated biological fluids. This report describes these experiments and the results. The dissolution rates were found to follow a three term exponential decay equation. Differences were noted depending upon the nature of the biological fluid simulant. Overall, greater than 95% of the Pu and 93% of the Am were in a very slow dissolving component with dissolution half-lives of over 10 years.« less

  15. Dissolution behaviour of 238U, 234U and 230Th deposited on filters from personal dosemeters.

    PubMed

    Becková, Vera; Malátová, Irena

    2008-01-01

    Kinetics of dissolution of (238)U, (234)U and (230)Th dust deposited on filters from personal alpha dosemeters was studied by means of a 26-d in vitro dissolution test with a serum ultrafiltrate simulant. Dosemeters had been used by miners at the uranium mine 'Dolní Rozínka' at Rozná, Czech Republic. The sampling flow-rate as declared by the producer is 4 l h(-1) and the sampling period is typically 1 month. Studied filters contained 125 +/- 6 mBq (238)U in equilibrium with (234)U and (230)Th; no (232)Th series nuclides were found. Half-time of rapid dissolution of 1.4 d for (238)U and (234)U and slow dissolution half-times of 173 and 116 d were found for (238)U and (234)U, respectively. No detectable dissolution of (230)Th was found.

  16. A study of gas solubilities and transport properties in fuel cell electrolytes

    NASA Technical Reports Server (NTRS)

    Walker, R. D. J.

    1972-01-01

    An analysis of the rate of heat generation on the dissolution of sparingly soluble gas in electrolytes was made, and it leads to the conclusion that the temperature changes to be expected are much too small to be measured with precision owing to the slowness of the gas dissolution. It appears that more accurate gas solubility measurements are the only real hope of improved precision in heats of solution and other thermodynamic properties.

  17. Speeding Up the Drug Review Process: Results Encouraging -- But Progress Slow.

    DTIC Science & Technology

    1981-11-23

    the Division of Biopharma - ceutics, which reviews studies of such things as the drug’s rate of dissolution in the blood. These divisions’ data...BIOPHARMACEUTICAL REVIEWS CONTINUE TO BE DELAYED Efforts to speed up the reviews of the Division of Biopharma - ceutics, which reviews such things as the rate of

  18. Modifying Surface Chemistry of Metal Oxides for Boosting Dissolution Kinetics in Water by Liquid Cell Electron Microscopy.

    PubMed

    Lu, Yue; Geng, Jiguo; Wang, Kuan; Zhang, Wei; Ding, Wenqiang; Zhang, Zhenhua; Xie, Shaohua; Dai, Hongxing; Chen, Fu-Rong; Sui, Manling

    2017-08-22

    Dissolution of metal oxides is fundamentally important for understanding mineral evolution and micromachining oxide functional materials. In general, dissolution of metal oxides is a slow and inefficient chemical reaction. Here, by introducing oxygen deficiencies to modify the surface chemistry of oxides, we can boost the dissolution kinetics of metal oxides in water, as in situ demonstrated in a liquid environmental transmission electron microscope (LETEM). The dissolution rate constant significantly increases by 16-19 orders of magnitude, equivalent to a reduction of 0.97-1.11 eV in activation energy, as compared with the normal dissolution in acid. It is evidenced from the high-resolution TEM imaging, electron energy loss spectra, and first-principle calculations where the dissolution route of metal oxides is dynamically changed by local interoperability between altered water chemistry and surface oxygen deficiencies via electron radiolysis. This discovery inspires the development of a highly efficient electron lithography method for metal oxide films in ecofriendly water, which offers an advanced technique for nanodevice fabrication.

  19. Topical Lime Application for the Management of Munitions Constituents Following Blow-in-Place Operations

    DTIC Science & Technology

    2010-06-01

    disposable glass pipettes with a small piece of glass wool at the bottom. On top of the glass wool was placed 0.5 g of Florisil, and 0.5 g of neutral...particles have a relatively slow dissolution rate (Lynch et al. 2003). Sufficient hydrated lime to effect complete destruction of the RDX particle...K. Hatfield, and J. J. Delfino. 2003. An exploratory approach to modeling explosive compound persistence and flux using dissolution kinetics

  20. Dissolution of spherical cap CO2 bubbles attached to flat surfaces in air-saturated water

    NASA Astrophysics Data System (ADS)

    Peñas, Pablo; Parrales, Miguel A.; Rodriguez-Rodriguez, Javier

    2014-11-01

    Bubbles attached to flat surfaces immersed in quiescent liquid environments often display a spherical cap (SC) shape. Their dissolution is a phenomenon commonly observed experimentally. Modelling these bubbles as fully spherical may lead to an inaccurate estimate of the bubble dissolution rate. We develop a theoretical model for the diffusion-driven dissolution or growth of such multi-component SC gas bubbles under constant pressure and temperature conditions. Provided the contact angle of the bubble with the surface is large, the concentration gradients in the liquid may be approximated as spherically symmetric. The area available for mass transfer depends on the instantaneous bubble contact angle, whose dynamics is computed from the adhesion hysteresis model [Hong et al., Langmuir, vol. 27, 6890-6896 (2011)]. Numerical simulations and experimental measurements on the dissolution of SC CO2 bubbles immersed in air-saturated water support the validity of our model. We verify that contact line pinning slows down the dissolution rate, and the fact that any bubble immersed in a saturated gas-liquid solution eventually attains a final equilibrium size. Funded by the Spanish Ministry of Economy and Competitiveness through Grant DPI2011-28356-C03-0.

  1. In vitro dissolution of uranium oxide by baboon alveolar macrophages.

    PubMed Central

    Poncy, J L; Metivier, H; Dhilly, M; Verry, M; Masse, R

    1992-01-01

    In vitro cellular dissolution tests for insoluble forms of uranium oxide are technically difficult with conventional methodology using adherent alveolar macrophages. The limited number of cells per flask and the slow dissolution rate in a large volume of nutritive medium are obvious restricting factors. Macrophages in suspension cannot be substituted because they represent different and poorly reproducible functional subtypes with regard to activation and enzyme secretion. Preliminary results on the dissolution of uranium oxide using immobilized alveolar macrophages are promising because large numbers of highly functional macrophages can be cultured in a limited volume. Cells were obtained by bronchoalveolar lavages performed on baboons (Papio papio) and then immobilized after the phagocytosis of uranium octoxide (U3O8) particles in alginate beads linked with Ca2+. The dissolution rate expressed as percentage of initial uranium content in cells was 0.039 +/- 0.016%/day for particles with a count median geometric diameter of 3.84 microns(sigma g = 1.84). A 2-fold increase in the dissolution rate was observed when the same number of particles was immobilized without macrophages. These results, obtained in vitro, suggest that the U3O8 preparation investigated should be assigned to inhalation class Y as recommended by the International Commission on Radiological Protection. Future experiments are intended to clarify this preliminary work and to examine the dissolution characteristics of other particles such as uranium dioxide. It is recommended that the dissolution rate should be measured over an interval of 3 weeks, which is compatible with the survival time of immobilized cells in culture and may reveal transformation states occurring with aging of the particles. PMID:1396447

  2. Potential Application of Silica Mineral from Dieng Mountain in Agriculture Sector to Control the Release Rate of Fertilizer Elements

    NASA Astrophysics Data System (ADS)

    Solihin; Mursito, Anggoro Tri; Dida, Eki N.; Erlangga, Bagus D.; Widodo

    2017-07-01

    Silica mineral, which comes along with geothermal fluid in Dieng, is a product of erosion, decomposition and dissolution of silicon oxide based mineral, which is followed by precipitation to form silica mineral. This silica cell structure is non crystalline, and it contains 85,60 % silicon oxide, 6.49 volatile elements, and also other oxide elements. Among the direct potential application of this silica is as raw material in slow release fertilizer. Silica in compacted slow release fertilizer is able control the release rate of fertilizer elements. Two type of slow release fertilizer has been made by using silica as the matrix in these slow release fertilizer. The first type is the mixing of ordinary solid fertilizer with Dieng silica, whereas the second one is the mixing of disposal leach water with Dieng silica. The release test shows that both of these modified fertilizers have slow release fertilizer characteristic. The release rate of fertilizer elements (magnesium, potassium, ammonium, and phosphate) can be significantly reduced. The addition of kaolin in the first type of slow release fertilizer makes the release rate of fertilizer elements can be more slowed down. Meanwhile in the second type of slow release fertilizer, the release rate is determined by ratio of silica/hydrogel. The lowest release rate is achieved by sample that has highest ratio of silica/hydrogel.

  3. Effects of alteration product precipitation on glass dissolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strachan, Denis M.; Neeway, James J.

    2014-06-01

    Understanding the mechanisms that control the durability of nuclear waste glass is paramount if reliable models are to be constructed so that the glass dissolution rate in a given geological repository can be calculated. Presently, it is agreed that (boro)silicate glasses dissolve in water at a rate dependent on the solution concentration of orthosilicic acid (H 4SiO 4) with higher [H 4SiO 4] leading to lower dissolution rates. Once the reaction has slowed as a result of the buildup of H 4SiO 4, another increase in the rate has been observed that corresponds to the precipitation of certain silica-bearing alterationmore » products. However, it has also been observed that the concentration of silica-bearing solution species does not significantly decrease, indicating saturation, while other glass tracer elements concentrations continue to increase, indicating that the glass is still dissolving. In this study, we have used the Geochemist’s Workbench code to investigate the relationship between glass dissolution rates and the precipitation rate of a representative zeolitic silica-bearing alteration product, analcime [Na(AlSi 2O 6)∙H 2O]. To simplify the calculations, we suppressed all alteration products except analcime, gibbsite (Al(OH) 3), and amorphous silica. The pseudo-equilibrium-constant matrix for amorphous silica was substituted for the glass pseudo-equilibrium-constant matrix because it has been shown that silicate glasses act as a silica-only solid with respect to kinetic considerations. In this article, we present the results of our calculations of the glass dissolution rate at different values for the analcime precipitation rate constant and the effects of varying the glass dissolution rate constant at a constant analcime precipitation rate constant. From the simulations we conclude, firstly, that the rate of glass dissolution is dependent on the kinetics of formation of the zeolitic phase. Therefore, the kinetics of secondary phase formation is an important parameter that should be taken into account in future glass dissolution modeling efforts. Secondly, the results indicate that, in the absence of a gel layer, the glass dissolution rate controls the rate of analcime precipitation in the long term. Finally, the meaning of these results pertinent to long-term glass durability is discussed.« less

  4. Combinatorial localized dissolution analysis: Application to acid-induced dissolution of dental enamel and the effect of surface treatments.

    PubMed

    Parker, Alexander S; Al Botros, Rehab; Kinnear, Sophie L; Snowden, Michael E; McKelvey, Kim; Ashcroft, Alexander T; Carvell, Mel; Joiner, Andrew; Peruffo, Massimo; Philpotts, Carol; Unwin, Patrick R

    2016-08-15

    A combination of scanning electrochemical cell microscopy (SECCM) and atomic force microscopy (AFM) is used to quantitatively study the acid-induced dissolution of dental enamel. A micron-scale liquid meniscus formed at the end of a dual barrelled pipette, which constitutes the SECCM probe, is brought into contact with the enamel surface for a defined period. Dissolution occurs at the interface of the meniscus and the enamel surface, under conditions of well-defined mass transport, creating etch pits that are then analysed via AFM. This technique is applied to bovine dental enamel, and the effect of various treatments of the enamel surface on acid dissolution (1mM HNO3) is studied. The treatments investigated are zinc ions, fluoride ions and the two combined. A finite element method (FEM) simulation of SECCM mass transport and interfacial reactivity, allows the intrinsic rate constant for acid-induced dissolution to be quantitatively determined. The dissolution of enamel, in terms of Ca(2+) flux ( [Formula: see text] ), is first order with respect to the interfacial proton concentration and given by the following rate law: [Formula: see text] , with k0=0.099±0.008cms(-1). Treating the enamel with either fluoride or zinc ions slows the dissolution rate, although in this model system the partly protective barrier only extends around 10-20nm into the enamel surface, so that after a period of a few seconds dissolution of modified surfaces tends towards that of native enamel. A combination of both treatments exhibits the greatest protection to the enamel surface, but the effect is again transient. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Scaling theory in a model of corrosion and passivation.

    PubMed

    Aarão Reis, F D A; Stafiej, Janusz; Badiali, J-P

    2006-09-07

    We study a model for corrosion and passivation of a metallic surface after small damage of its protective layer using scaling arguments and simulation. We focus on the transition between an initial regime of slow corrosion rate (pit nucleation) to a regime of rapid corrosion (propagation of the pit), which takes place at the so-called incubation time. The model is defined in a lattice in which the states of the sites represent the possible states of the metal (bulk, reactive, and passive) and the solution (neutral, acidic, or basic). Simple probabilistic rules describe passivation of the metal surface, dissolution of the passive layer, which is enhanced in acidic media, and spatially separated electrochemical reactions, which may create pH inhomogeneities in the solution. On the basis of a suitable matching of characteristic times of creation and annihilation of pH inhomogeneities in the solution, our scaling theory estimates the average radius of the dissolved region at the incubation time as a function of the model parameters. Among the main consequences, that radius decreases with the rate of spatially separated reactions and the rate of dissolution in acidic media, and it increases with the diffusion coefficient of H(+) and OH(-) ions in solution. The average incubation time can be written as the sum of a series of characteristic times for the slow dissolution in neutral media, until significant pH inhomogeneities are observed in the dissolved cavity. Despite having a more complex dependence on the model parameters, it is shown that the average incubation time linearly increases with the rate of dissolution in neutral media, under the reasonable assumption that this is the slowest rate of the process. Our theoretical predictions are expected to apply in realistic ranges of values of the model parameters. They are confirmed by numerical simulation in two-dimensional lattices, and the expected extension of the theory to three dimensions is discussed.

  6. Evaluation of solubility in simulated lung fluid of metals present in the slag from a metallurgical industry to produce metallic zinc.

    PubMed

    Lima, Rosilda M G; Carneiro, Luana G; Afonso, Júlio C; Cunha, Kenya M D

    2013-01-01

    The objective of this study was to determine the solubility parameters (rapid and slow dissolution rates, rapid and slow dissolution fractions) for nickel, cadmium, zinc and manganese compounds present in a pile of slag accumulated under exposure to weathering. This slag was generated by a metallurgical industry that produced zinc and zinc alloys from hemimorphite (Zn(4)(OH)(2)Si(2)O(7).H(2)O) and willemite (Zn(2)SiO(4)) minerals. A static dissolution test in vitro was used to determine the solubility parameters and Gamble's solution was used as the simulated lung fluid (SLF), on a time basis ranging from 10 min to 1 year. The metal concentrations in the slag samples and in the SLF were determined using Particle Induced X-rays Emission (PIXE). There are significant differences in terms of solubility parameters among the metals. The results indicated that the zinc, nickel, cadmium and manganese compounds present in the slag were moderately soluble in the SLF. The rapid dissolution fractions of these metals are associated with their sulfates. In conclusion, this study confirms the harmful effects on the neighboring population of the airborne particles containing these metals that came from the slag.

  7. Aggregation, sedimentation, dissolution and bioavailability of ...

    EPA Pesticide Factsheets

    To understand their fate and transport in estuarine systems, the aggregation, sedimentation, and dissolution of CdSe quantum dots (QDs) in seawater were investigated. Hydrodynamic size increased from 40 to 60 nm to >1 mm within 1 h in seawater, and the aggregates were highly polydispersed. Their sedimentation rates in seawater were measured to be 4–10 mm/day. Humic acid (HA), further increased their size and polydispersity, and slowed sedimentation. Light increased their dissolution and release of dissolved Cd. The ZnS shell also slowed release of Cd ions. With sufficient light, HA increased the dissolution of QDs, while with low light, HA alone did not change their dissolution. The benthic zone in estuarine systems is the most probable long-term destination of QDs due to aggregation and sedimentation. The bioavailability of was evaluated using the mysid Americamysis bahia. The 7-day LC50s of particulate and dissolved QDs were 290 and 23 μg (total Cd)/L, respectively. For mysids, the acute toxicity appears to be from Cd ions; however, research on the effects of QDs should be conducted with other organisms where QDs may be lodged in critical tissues such as gills or filtering apparatus and Cd ions may be released and delivered directly to those tissues. Because of their increasing use and value to society, cadmium-based quantum dots (QDs) will inevitably find their way into marine systems. In an effort to understand the fate and transport of CdSe QDs in estuar

  8. Biogenic hydroxyapatite (Apatite II™) dissolution kinetics and metal removal from acid mine drainage.

    PubMed

    Oliva, J; Cama, J; Cortina, J L; Ayora, C; De Pablo, J

    2012-04-30

    Apatite II™ is a biogenic hydroxyapatite (expressed as Ca(5)(PO(4))OH) derived from fish bone. Using grains of Apatite II™ with a fraction size between 250 and 500 μm, batch and flow-through experiments were carried out to (1) determine the solubility constant for the dissolution reaction Ca(5)(PO(4))(3)(OH) ⇔ 5Ca(2+) + 3PO(4)(3-) + OH(-), (2) obtain steady-state dissolution rates over the pH range between 2.22 and 7.14, and (3) study the Apatite II™'s mechanisms to remove Pb(2+), Zn(2+), Mn(2+), and Cu(2+) from metal polluted water as it dissolves. The logK(S) value obtained was -50.8±0.82 at 25 °C. Far-from-equilibrium fish-bone hydroxyapatite dissolution rates decrease by increasing pH. Assuming that the dissolution reaction is controlled by fast adsorption of a proton on a specific surface site that dominates through the pH range studied, probably ≡PO(-), followed by a slow hydrolysis step, the dissolution rate dependence is expressed in mol m(-2) s(-1) as where Rate(25 °C) = -8.9 × 10(-10) × [9.96 × 10(5) × a(H+)]/[1 + 9.96 × 10(5) × a(H+)] where a(H+) is the proton activity in solution. Removal of Pb(2+), Zn(2+), Mn(2+) and Cu(2+) was by formation of phosphate-metal compounds on the Apatite II™ substrate, whereas removal of Cd(2+) was by surface adsorption. Increase in pH enhanced the removal of aqueous heavy metals. Using the kinetic parameters obtained (e.g., dissolution rate and pH-rate dependence law), reactive transport simulations reproduced the experimental variation of pH and concentrations of Ca, P and toxic divalent metal in a column experiment filled with Apatite II™ that was designed to simulate the Apatite II™-metal polluted water interaction. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Formulation and evaluation of a montelukast sodium orally disintegrating tablet with a similar dissolution profile as the marketed product.

    PubMed

    Chen, Yong; Feng, Tingting; Li, Yong; Du, Bin; Weng, Weiyu

    2017-03-01

    A major challenge of orally disintegrating tablet (ODT) development is predicting its bioequivalence to its corresponding marketed product. Therefore, comparing ODT dissolution profiles to those of the corresponding marketed product is very important. The objective of this study was to develop a 5.2-mg montelukast sodium (MS) ODT with a similar dissolution profile to that of the marketed chewable tablet. Dissolution profiles were examined in different media to screen each formulation. We found that MS dissolution from ODTs in acidic medium heavily depended on manufacturing methods. All MS ODTs prepared using direct compression rapidly disintegrated in acidic medium. However, dispersed MS powders aggregated into sticky masses, resulting in slow dissolution. In contrast, MS ODTs prepared using wet granulation had much faster dissolution rates in acidic medium with no obvious aggregation. Additionally, the optimized formulation, prepared using wet granulation, displayed similar dissolution profiles to the marketed reference in all four types of media examined (f 2  >   50). The in vitro disintegration time of the optimized ODT was 9.5 ± 2.4 s, which meets FDA requirements. In conclusion, the wet granulation preparation method of MS ODTs resulted in a product with equivalent dissolution profiles as those of the marketed product.

  10. [Dissolution behavior of Fuzi Lizhong pill based on simultaneous determination of two components in Glycyrrhizae Radix et Rhizoma].

    PubMed

    Jiang, Mao-Yuan; Zhang, Zhen; Shi, Jin-Feng; Zhang, Jin-Ming; Fu, Chao-Mei; Lin, Xia; Liu, Yu-Mei

    2018-03-01

    To preliminarily investigate the dissolution behavior of Fuzi Lizhong pill, provide the basis for its quality control and lay foundation for in vivo dissolution behavior by determining the dissolution rate of liquiritin and glycyrrhizic acid. High-performance liquid chromatography (HPLC) method for simultaneous content determination of the two active ingredients of liquiritin and glycyrrhizic acid in Fuzi Lizhong pill was established; The dissolution amount of these two active ingredients in fifteen batches of Fuzi Lizhong pill from five manufacturers was obtained at different time points, and then the cumulative dissolution rate was calculated and cumulative dissolution curve was drawn. The similarity of cumulative dissolution curve of different batches was evaluated based on the same factory, and the similarity of cumulative dissolution curve of different factories was evaluated based on the same active ingredients. The dissolution model of Fuzi Lizhong pill based on two kinds of active ingredients was established by fitting with the dissolution data. The best dissolution medium was 0.25% sodium lauryl sulfate. The dissolution behavior of liquiritin and glycyrrhizic acid in Fuzi Lizhong pill was basically the same and sustained release in 48 h. Three batches of the factories (factory 2, factory 3, factory 4 and factory 5) appeared to be similar in dissolution behavior, indicating similarity in dissolution behavior in most factories. Two of the three batches from factory 1 appeared to be not similar in dissolution behavior of liquiritin and glycyrrhizic acid. The dissolution data of the effective ingredients from different factories were same in fitting, and Weibull model was the best model in these batches. Fuzi Lizhong pill in 15 batches from 5 factories showed sustained release in 48 h, proving obviously slow releasing characteristics "pill is lenitive and keeps a long-time efficacy". The generally good dissolution behavior also suggested that quality of different batches from most factories was stable. The dissolution behavior of liquiritin and glycyrrhizic acid in different factories was different, suggesting that the source of medicinal materials and preparation technology parameters in five factories were different. Copyright© by the Chinese Pharmaceutical Association.

  11. Characterisation and dissolution of depleted uranium aerosols produced during impacts of kinetic energy penetrators against a tank.

    PubMed

    Chazel, V; Gerasimo, P; Dabouis, V; Laroche, P; Paquet, F

    2003-01-01

    Aerosols produced during impacts of depleted uranium (DU) penetrators against the glacis (sloping armour) and the turret of a tank were sampled. The concentration and size distribution were determined. Activity median aerodynamic diameters were 1 microm (geometric standard deviation, sigma(g) = 3.7) and 2 microm (sigma(g) = 2.5), respectively, for glacis and turret. The mean air concentration was 120 Bq m(-3), i.e. 8.5 mg m(-3) of DU. Filters analysed by scanning electron microscopy (SEM) and X ray diffraction showed two types of particles (fine particles and large molten particles) composed mainly of a mixture of uranium and aluminium. The uranium oxides were mostly U3O8, UO2.25 and probably UO3.01 and a mixed compound of U and Al. The kinetics of dissolution in three media (HCO3-, HCl and Gamble's solution) were determined using in-vitro tests. The slow dissolution rates were respectively slow, and intermediate between slow and moderate, and the rapid dissolution fractions were mostly intermediate between moderate and fast. According to the in-vitro results for Gamble's solution, and based on a hypothetical single acute inhalation of 90 Bq, effective doses integrated up to 1 y after incorporation were 0.54 and 0.56 mSv, respectively, for aerosols from glacis and turret. In comparison, the ICRP limits are 20 mSv y(-1) for workers and 1 mSv y(-1) for members of the public. A kidney concentration of approximately 0.1 microg U g(-1) was predicted and should not, in this case, lead to kidney damage.

  12. Stress Corrosion Cracking Behavior of Interstitial Free Steel Via Slow Strain Rate Technique

    NASA Astrophysics Data System (ADS)

    Murkute, Pratik; Ramkumar, J.; Mondal, K.

    2016-07-01

    An interstitial free steel is subjected to slow strain rate tests to investigate the stress corrosion cracking (SCC) behavior at strain rates ranging from 10-4 to 10-6s-1 in air and 3.5 wt.% NaCl solution. The ratios of time to failure, failure strain, and ultimate tensile stress at different strain rates in air to that in corrosive were considered as SCC susceptibility. Serrated stress-strain curve observed at lowest strain rate is explained by the Portevin-Le Chatelier effect. Maximum susceptibility to SCC at lowest strain rate is attributed to the soluble γ-FeOOH in the rust analyzed by Fourier Transformed Infrared spectroscopy. Mechanism for SCC relates to the anodic dissolution forming the groove, where hydrogen embrittlement can set in and finally fracture happens due to triaxiality.

  13. Influence of zeolite precipitation on borosilicate glass alteration under hyperalkaline conditions

    NASA Astrophysics Data System (ADS)

    Mercado-Depierre, S.; Fournier, M.; Gin, S.; Angeli, F.

    2017-08-01

    This study enables a better understanding of how nucleation-growth of zeolites affects glass dissolution kinetics in hyperalkaline solutions characteristic of cement waters. A 20-oxide borosilicate glass, an inactive surrogate of a typical intermediate level waste glass, was altered in static mode at 50 °C in a hyperalkaline solution rich in Na+, K+ and Ca2+ and at an initial pH50°C of 12.6. Experiments were performed at four glass-surface-area-to-solution-volume (S/V) ratios to investigate various reaction progresses. Two types of glass alteration kinetics were obtained: (i) at low S/V, a sharp alteration resumption occurred after a rate drop regime, (ii) at high S/V, a high dissolution rate was maintained throughout the test duration with a slight progressive slow-down. In all the experiments, zeolites precipitated but the time taken to form stable zeolite nuclei varied dramatically depending on the S/V. Resulting changes in pH affected zeolite composition, morphology, solubility and growth rate. A change in a critical parameter such as S/V affected all the processes controlling glass dissolution.

  14. Phagosomal pH and glass fiber dissolution in cultured nasal epithelial cells and alveolar macrophages: a preliminary study.

    PubMed Central

    Johnson, N F

    1994-01-01

    The dissolution rate of glass fibers has been shown to be pH sensitive using in vitro lung fluid simulant models. The current study investigated whether there is a difference in phagosomal pH (ppH) between rat alveolar macrophages (AM) and rat nasal epithelial cells (RNEC) and whether such a difference would influence the dissolution of glass fibers. The ppH was measured in cultured AM and RNEC using flow cytometric, fluorescence-emission rationing techniques with fluorescein-labeled, amorphous silica particles. Glass fiber dissolution was determined in AM and RNEC cultured for 3 weeks with fast dissolving glass fibers (GF-A) or slow dissolving ones (GF-B). The mean diameters of GF-A were 2.7 microns and of GF-B, 2.6 microns, the average length of both fibers was approximately 22 to 25 microns. Dissolution was monitored by measuring the length and diameter of intracellular fibers and estimating the volume, assuming a cylindrical morphology. The ppH of AM was 5.2 to 5.8, and the ppH of RNEC was 7.0 to 7.5. The GF-A dissolved more slowly in RNEC than in AM, and no dissolution was evident in either cell type with GF-B. The volume loss with GF-A after a 3-week culture with AM was 66% compared to 45% for cultured RNEC. These results are different from those obtained using in vitro lung fluid-simulant models where dissolution is faster at higher pH. This difference suggests that dissolution rates of glass fibers in AM should not be applied to the dissolution of fibers in epithelial cells. Images Figure 1. a Figure 1. b Figure 2. a Figure 2. b Figure 3. a Figure 3. b PMID:7882965

  15. Dynamic Pore-scale Reservoir-condition Imaging of Reaction in Carbonates Using Synchrotron Fast Tomography

    PubMed Central

    Menke, Hannah P.; Andrew, Matthew G.; Vila-Comamala, Joan; Rau, Christoph; Blunt, Martin J.; Bijeljic, Branko

    2017-01-01

    Underground storage permanence is a major concern for carbon capture and storage. Pumping CO2 into carbonate reservoirs has the potential to dissolve geologic seals and allow CO2 to escape. However, the dissolution processes at reservoir conditions are poorly understood. Thus, time-resolved experiments are needed to observe and predict the nature and rate of dissolution at the pore scale. Synchrotron fast tomography is a method of taking high-resolution time-resolved images of complex pore structures much more quickly than traditional µ-CT. The Diamond Lightsource Pink Beam was used to dynamically image dissolution of limestone in the presence of CO2-saturated brine at reservoir conditions. 100 scans were taken at a 6.1 µm resolution over a period of 2 hours. The images were segmented and the porosity and permeability were measured using image analysis and network extraction. Porosity increased uniformly along the length of the sample; however, the rate of increase of both porosity and permeability slowed at later times. PMID:28287529

  16. Dynamic Pore-scale Reservoir-condition Imaging of Reaction in Carbonates Using Synchrotron Fast Tomography.

    PubMed

    Menke, Hannah P; Andrew, Matthew G; Vila-Comamala, Joan; Rau, Christoph; Blunt, Martin J; Bijeljic, Branko

    2017-02-21

    Underground storage permanence is a major concern for carbon capture and storage. Pumping CO2 into carbonate reservoirs has the potential to dissolve geologic seals and allow CO2 to escape. However, the dissolution processes at reservoir conditions are poorly understood. Thus, time-resolved experiments are needed to observe and predict the nature and rate of dissolution at the pore scale. Synchrotron fast tomography is a method of taking high-resolution time-resolved images of complex pore structures much more quickly than traditional µ-CT. The Diamond Lightsource Pink Beam was used to dynamically image dissolution of limestone in the presence of CO2-saturated brine at reservoir conditions. 100 scans were taken at a 6.1 µm resolution over a period of 2 hours. The images were segmented and the porosity and permeability were measured using image analysis and network extraction. Porosity increased uniformly along the length of the sample; however, the rate of increase of both porosity and permeability slowed at later times.

  17. Dissolution of Monocrystalline Silicon Nanomembranes and Their Use as Encapsulation Layers and Electrical Interfaces in Water-Soluble Electronics.

    PubMed

    Lee, Yoon Kyeung; Yu, Ki Jun; Song, Enming; Barati Farimani, Amir; Vitale, Flavia; Xie, Zhaoqian; Yoon, Younghee; Kim, Yerim; Richardson, Andrew; Luan, Haiwen; Wu, Yixin; Xie, Xu; Lucas, Timothy H; Crawford, Kaitlyn; Mei, Yongfeng; Feng, Xue; Huang, Yonggang; Litt, Brian; Aluru, Narayana R; Yin, Lan; Rogers, John A

    2017-12-26

    The chemistry that governs the dissolution of device-grade, monocrystalline silicon nanomembranes into benign end products by hydrolysis serves as the foundation for fully eco/biodegradable classes of high-performance electronics. This paper examines these processes in aqueous solutions with chemical compositions relevant to groundwater and biofluids. The results show that the presence of Si(OH) 4 and proteins in these solutions can slow the rates of dissolution and that ion-specific effects associated with Ca 2+ can significantly increase these rates. This information allows for effective use of silicon nanomembranes not only as active layers in eco/biodegradable electronics but also as water barriers capable of providing perfect encapsulation until their disappearance by dissolution. The time scales for this encapsulation can be controlled by introduction of dopants into the Si and by addition of oxide layers on the exposed surfaces.The former possibility also allows the doped silicon to serve as an electrical interface for measuring biopotentials, as demonstrated in fully bioresorbable platforms for in vivo neural recordings. This collection of findings is important for further engineering development of water-soluble classes of silicon electronics.

  18. Evaluating bioequivalence of meloxicam tablets: is in-vitro dissolution test overdiscriminating?

    PubMed

    Jin, Chan; Zhao, Chenyao; Shen, Dachao; Dong, Wenxiang; Liu, Hongzhuo; He, Zhonggui

    2018-02-01

    The aim of the study was to assess the impact of the differences in dissolution profiles of meloxicam tablets on the in-vivo bioavailability parameters after oral administration. Compare in-vitro dissolution testing in the recommended media to evaluate in-vivo bioequivalence outcomes for the Biopharmaceutics Classification System Class II weak acidic drugs. Nine Beagle dogs received a single oral administration of each formulation (7.5 mg) in a three-way crossover design. The dissolution of meloxicam from both test products showed marked differences with that from the reference tablet in pH 1.0, 4.5 and 6.8 media at 50 or 75 rpm. Both formulations exhibiting slow or fast dissolution were then compared with the reference product for in-vivo bioequivalence study. Both products were bioequivalent with the reference tablet in either extent or rate of oral absorption. It indicated that the dissolution profiles which discriminated between the formulations in vitro did not accurately predict the in-vivo bioequivalence outcomes. Comparative dissolution profiles using similarity factor (f 2 ) in the recommended media should be relaxed to fulfil the requirements for the development, scale-up and postapproval changes to immediate release oral solid dosage forms of meloxicam. © 2017 Royal Pharmaceutical Society.

  19. Solution behavior of PVP-VA and HPMC-AS-based amorphous solid dispersions and their bioavailability implications.

    PubMed

    Qian, Feng; Wang, Jennifer; Hartley, Ruiling; Tao, Jing; Haddadin, Raja; Mathias, Neil; Hussain, Munir

    2012-10-01

    To identify the mechanism behind the unexpected bio-performance of two amorphous solid dispersions: BMS-A/PVP-VA and BMS-A/HPMC-AS. Solubility of crystalline BMS-A in PVP-VA and HPMC-AS was measured by DSC. Drug-polymer interaction parameters were obtained by Flory-Huggins model fitting. Drug dissolution kinetics of spray-dried dispersions were studied under sink and non-sink conditions. BMS-A supersaturation was studied in the presence of pre-dissolved PVP-VA and HPMC-AS. Potency and crystallinity of undissolved solid dispersions were determined by HPLC and DSC. Polymer dissolution kinetics were obtained by mass balance calculation. Bioavailability of solid dispersions was assessed in dogs. In solid state, both polymers are miscible with BMS-A, while PVP-VA solublizes the drug better. BMS-A dissolves similarly from both solid dispersions in vitro regardless of dissolution method, while the HPMC-AS dispersion performed much better in vivo. At the same concentration, HPMC-AS is more effective in prolonging BMS-A supersaturation; this effect was negated by the slow dissolution rate of HPMC-AS. Further study revealed that fast PVP-VA dissolution resulted in elevated drug loading in undissolved dispersions and facilitated drug recrystallization before complete release. In contrast, the hydrophobicity and slower HPMC-AS dissolution prevented BMS-A recrystallization within the HPMC-AS matrix for >24 h. The lower bioavailability of PVP-VA dispersion was attributed to BMS-A recrystallization within the undissolved dispersion, due to hydrophilicity and fast PVP-VA dissolution rate. Polymer selection for solid dispersion development has significant impact on in vivo performance besides physical stability.

  20. A Quality by Design approach to investigate tablet dissolution shift upon accelerated stability by multivariate methods.

    PubMed

    Huang, Jun; Goolcharran, Chimanlall; Ghosh, Krishnendu

    2011-05-01

    This paper presents the use of experimental design, optimization and multivariate techniques to investigate root-cause of tablet dissolution shift (slow-down) upon stability and develop control strategies for a drug product during formulation and process development. The effectiveness and usefulness of these methodologies were demonstrated through two application examples. In both applications, dissolution slow-down was observed during a 4-week accelerated stability test under 51°C/75%RH storage condition. In Application I, an experimental design was carried out to evaluate the interactions and effects of the design factors on critical quality attribute (CQA) of dissolution upon stability. The design space was studied by design of experiment (DOE) and multivariate analysis to ensure desired dissolution profile and minimal dissolution shift upon stability. Multivariate techniques, such as multi-way principal component analysis (MPCA) of the entire dissolution profiles upon stability, were performed to reveal batch relationships and to evaluate the impact of design factors on dissolution. In Application II, an experiment was conducted to study the impact of varying tablet breaking force on dissolution upon stability utilizing MPCA. It was demonstrated that the use of multivariate methods, defined as Quality by Design (QbD) principles and tools in ICH-Q8 guidance, provides an effective means to achieve a greater understanding of tablet dissolution upon stability. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Reaction mechanism for the aqueous-phase mineral carbonation of heat-activated serpentine at low temperatures and pressures in flue gas conditions.

    PubMed

    Pasquier, Louis-César; Mercier, Guy; Blais, Jean-François; Cecchi, Emmanuelle; Kentish, Sandra

    2014-05-06

    Mineral carbonation is known as one of the safest ways to sequester CO2. Nevertheless, the slow kinetics and low carbonation rates constitute a major barrier for any possible industrial application. To date, no studies have focused on reacting serpentinite with a relatively low partial pressure of CO2 (pCO2) close to flue gas conditions. In this work, finely ground and heat-treated serpentinite [Mg3Si2O5(OH)4] extracted from mining residues was reacted with a 18.2 vol % CO2 gas stream at moderate global pressures to investigate the effect on CO2 solubility and Mg leaching. Serpentinite dissolution rates were also measured to define the rate-limiting step. Successive batches of gas were contacted with the same serpentinite to identify surface-limiting factors using scanning electron microscopy (SEM) analysis. Investigation of the serpentinite carbonation reaction mechanisms under conditions close to a direct flue gas treatment showed that increased dissolution rates could be achieved relative to prior work, with an average Mg dissolution rate of 3.55 × 10(-11) mol cm(-2) s(-1). This study provides another perspective of the feasibility of applying a mineral carbonation process to reduce industrial greenhouse gas (GHG) emissions from large emission sources.

  2. Chemical weathering in a tropical watershed, Luquillo Mountains, Puerto Rico III: Quartz dissolution rates

    USGS Publications Warehouse

    Schulz, M.S.; White, A.F.

    1999-01-01

    The paucity of weathering rates for quartz in the natural environment stems both from the slow rate at which quartz dissolves and the difficulty in differentiating solute Si contributed by quartz from that derived from other silicate minerals. This study, a first effort in quantifying natural rates of quartz dissolution, takes advantage of extremely rapid tropical weathering, simple regolith mineralogy, and detailed information on hydrologic and chemical transport. Quartz abundances and grain sizes are relatively constant with depth in a thick saprolite. Limited quartz dissolution is indicated by solution rounding of primary angularity and by the formation of etch pits. A low correlation of surface area (0.14 and 0.42 m2 g-1) with grain size indicates that internal microfractures and pitting are the principal contributors to total surface area. Pore water silica concentration increases linearly with depth. On a molar basis, between one and three quarters of pore water silica is derived from quartz with the remainder contributed from biotite weathering. Average solute Si remains thermodynamically undersaturated with respect to recently revised estimates of quartz solubility (17-81 ??M). Etch pitting is more abundant on grains in the upper saprolite and is associated with pore waters lower in dissolved silica. Rate constants describing quartz dissolution increase with decreasing depth (from 10-14.5-10-15.1 mol m-2 s-1), which correlate with both greater thermodynamic undersaturation and increasing etch pit densities. Unlike for many aluminosilicates, the calculated natural weathering rates of quartz fall slightly below the rate constants previously reported for experimental studies (10-12.4-10-14.2 mol m-2 s-1). This agreement reflects the structural simplicity of quartz, dilute solutes, and near-hydrologic saturation.

  3. Moisture-Induced Amorphous Phase Separation of Amorphous Solid Dispersions: Molecular Mechanism, Microstructure, and Its Impact on Dissolution Performance.

    PubMed

    Chen, Huijun; Pui, Yipshu; Liu, Chengyu; Chen, Zhen; Su, Ching-Chiang; Hageman, Michael; Hussain, Munir; Haskell, Roy; Stefanski, Kevin; Foster, Kimberly; Gudmundsson, Olafur; Qian, Feng

    2018-01-01

    Amorphous phase separation (APS) is commonly observed in amorphous solid dispersions (ASD) when exposed to moisture. The objective of this study was to investigate: (1) the phase behavior of amorphous solid dispersions composed of a poorly water-soluble drug with extremely low crystallization propensity, BMS-817399, and PVP, following exposure to different relative humidity (RH), and (2) the impact of phase separation on the intrinsic dissolution rate of amorphous solid dispersion. Drug-polymer interaction was confirmed in ASDs at different drug loading using infrared (IR) spectroscopy and water vapor sorption analysis. It was found that the drug-polymer interaction could persist at low RH (≤75% RH) but was disrupted after exposure to high RH, with the advent of phase separation. Surface morphology and composition of 40/60 ASD at micro-/nano-scale before and after exposure to 95% RH were also compared. It was found that hydrophobic drug enriched on the surface of ASD after APS. However, for the 40/60 ASD system, the intrinsic dissolution rate of amorphous drug was hardly affected by the phase behavior of ASD, which may be partially attributed to the low crystallization tendency of amorphous BMS-817399 and enriched drug amount on the surface of ASD. Intrinsic dissolution rate of PVP decreased resulting from APS, leading to a lower concentration in the dissolution medium, but supersaturation maintenance was not anticipated to be altered after phase separation due to the limited ability of PVP to inhibit drug precipitation and prolong the supersaturation of drug in solution. This study indicated that for compounds with low crystallization propensity and high hydrophobicity, the risk of moisture-induced APS is high but such phase separation may not have profound impact on the drug dissolution performance of ASDs. Therefore, application of ASD technology on slow crystallizers could incur low risks not only in physical stability but also in dissolution performance. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  4. Effects of ranitidine (antacid), food, and formulation on the pharmacokinetics of fostamatinib: results from five phase I clinical studies.

    PubMed

    Flanagan, Talia; Martin, Paul; Gillen, Michael; Mathews, David; Lisbon, Eleanor; Kruusmägi, Martin

    2017-02-01

    Fostamatinib is an orally dosed phosphate prodrug that is cleaved by intestinal alkaline phosphatase to the active metabolite R406. Clinical studies were performed to assess the effect of food and ranitidine on exposure, to support in vitro-in vivo relationships (IVIVR) understanding and formulation transitions and to investigate absolute oral bioavailability. A series of in vitro dissolution and clinical pharmacokinetic studies were performed to support the design and introduction of a new formulation, understand the impact of changes in in vitro dissolution on in vivo performance for two fostamatinib formulations, to characterize the effects of food and ranitidine on exposure, and determine the absolute oral bioavailability. The in vivo performance of fostamatinib was generally insensitive to changes in in vitro dissolution performance, although marked slowing of the dissolution rate did impact exposures. Food and ranitidine had minor effects on R406 exposure that were not considered clinically relevant. The absolute oral bioavailability of fostamatinib was 54.6 %. The absolute oral bioavailability of fostamatinib was ~55 %. Food and ranitidine had minor effects on R406 exposure. An in vitro dissolution versus clinical performance relationship was determined that supported formulation transitions.

  5. Numerical modeling of coupled variably saturated fluid flow and reactive transport with fast and slow chemical reactions

    NASA Astrophysics Data System (ADS)

    Yeh, Gour-Tsyh (George); Siegel, Malcolm D.; Li, Ming-Hsu

    2001-02-01

    The couplings among chemical reaction rates, advective and diffusive transport in fractured media or soils, and changes in hydraulic properties due to precipitation and dissolution within fractures and in rock matrix are important for both nuclear waste disposal and remediation of contaminated sites. This paper describes the development and application of LEHGC2.0, a mechanistically based numerical model for simulation of coupled fluid flow and reactive chemical transport, including both fast and slow reactions in variably saturated media. Theoretical bases and numerical implementations are summarized, and two example problems are demonstrated. The first example deals with the effect of precipitation/dissolution on fluid flow and matrix diffusion in a two-dimensional fractured media. Because of the precipitation and decreased diffusion of solute from the fracture into the matrix, retardation in the fractured medium is not as large as the case wherein interactions between chemical reactions and transport are not considered. The second example focuses on a complicated but realistic advective-dispersive-reactive transport problem. This example exemplifies the need for innovative numerical algorithms to solve problems involving stiff geochemical reactions.

  6. Determination of the Dissolution Slowness Surface by Study of Etched Shapes: II. Comparison of 2D Experimental and Theoretical Etching Shapes

    NASA Astrophysics Data System (ADS)

    Leblois, T.; Tellier, C. R.; Messaoudi, T.

    1997-03-01

    The anisotropic etching behavior of quartz crystal in concentrated ammonium bifluoride solution is studied and analyzed in the framework of a tensorial model. This model allows to simulate bi- or three-dimensional etching shapes from the equation for the representative surface of the dissolution slowness. In this paper, we present experimental results such as surface profile and initially circular cross-sectional profiles of differently singly- or doubly-rotated cuts. The polar diagrams of the dissolution slowness vector in several planes are deduced from experimental data. The comparison between predicted surface and cross-sectional profiles and experimental results is detailed and shows a good agreement. In particular, several examples give evidence that the final etched shapes are correlated to the extrema of the dissolution slowness. However, in several cases, experimental shapes cannot be simply correlated to the presence of extrema. Simulation gives effectively evidence for an important role played by more progressive changes in the curvature of the slowness surface. Consequently, analysis of data merits to be treated carefully. Nous nous proposons d'étudier et d'analyser à l'aide du modèle tensoriel de la dissolution l'attaque chimique anisotrope du cristal de quartz dans une solution concentrée de bifluorure d'ammonium. Ce modèle permet de simuler des formes usinées à deux ou trois dimensions à partir de l'équation de la surface représentative de la lenteur de dissolution du cristal de quartz. Dans cet article, nous présentons des résultats expérimentaux concernant des profils de surface et des sections initialement cylindriques de coupes à simple et double rotation. Les diagrammes polaires du vecteur lenteur de dissolution dans différents plans sont déduits de données expérimentales. La comparaison entre les profils de surface et de section théoriques et les résultats expérimentaux est détaillée et montre un bon accord. En particulier plusieurs exemples montrent que la forme finale est corrélée à la présence d'extrema de la lenteur de dissolution. Cependant, la corrélation entre résultats expérimentaux et théoriques n'est pas toujours simple et mérite une analyse soignée. Pour conclure, le modèle 3D est appliqué pour prévoir la forme usinée d'un trou initialement circulaire dans une coupe tournée autour de l'axe Y. Le résultat théorique est comparé avec la forme usinée expérimentale et montre un parfait accord.

  7. Kinetics of dissolution of sapphire in melts in the CaO-Al2O3-SiO2 system

    NASA Astrophysics Data System (ADS)

    Shaw, Cliff S. J.; Klausen, Kim B.; Mao, Huahai

    2018-05-01

    The dissolution rate of sapphire in melts in the CAS system of varying silica activity, viscosity and degree of alumina saturation has been determined at 1600 °C and 1.5 GPa. After an initiation period of up to 1800 s, dissolution is controlled by diffusion of cations through the boundary layer adjacent to the dissolving sapphire. The dissolution rate decreases with increasing silica activity, viscosity and molar Al2O3/CaO. The calculated diffusion matrix for each solvent melt shows that CAS 1 and 9 which have molar Al2O3/CaO of 0.33 and 0.6 and dissolution rate constants of 0.65 × 10-6 and 0.59 × 10-6 m/s0.5 have similar directions and magnitudes of diffusive coupling: DCaO-Al2O3 and DAl2O3-CaO are both negative are approximately equal. The solvent with the fastest dissolution rate: CAS 4, which has a rate constant of 1.5 × 10-6 m/s0.5 and Al2O3/CaO of 0.31 has positive DCaO-Al2O3 and negative DAl2O3-CaO and the absolute values vary by a factor of 4. Although many studies show that aluminium is added to the melts via the reaction: Si4+ =Al3+ + 0.5Ca2+ the compositional profiles show that this reaction is not the only one involved in accommodating the aluminium added during sapphire dissolution. Rather, aluminium is incorporated as both tetrahedrally coordinated Al charge balanced by Ca and as aluminium not charge balanced by Ca (termed Alxs). This reaction: AlIV -Ca =Alxs +CaNBO where CaNBO is a non-bridging oxygen associated with calcium, may involve the formation of aluminium triclusters. The shape of the compositional profiles and oxide-oxide composition paths is controlled by the aluminium addition reaction. When Alxs exceeds 2%, CaO diffusion becomes increasingly anomalous and since the bond strength of Alxs correlates with CaO/CaO + Al2O3, the presence of more than 2% Alxs leads to significantly slower dissolution than when Alxs is absent or at low concentration. Thus, dissolution is controlled by diffusion of cations through the boundary layer, but this diffusion is itself controlled by the structural modifications required by the addition of new components to the melt. Comparison of quartz dissolution rates in similar melts shows that dissolution is much faster for quartz than for sapphire and that dissolution rates show the same correlation with silica activity and viscosity. We suggest that diffusive fluxes are related to changes in melt structure and the nature of the reaction that incorporates the added component. For the slow eigendirection, SiO2 addition occurs by a single reaction whereas Al2O3 addition requires a more complex two part reaction in which Al is accommodated by charge balance with Ca until Al is in excess of that which can be charge balanced. The Alxs incorporation reaction, is slower than the Si incorporation reaction which inhibits sapphire dissolution relative to quartz in melts of the same composition.

  8. The impact of antibacterial handsoap constituents on the dynamics of triclosan dissolution from dry sand.

    PubMed

    Koehler, Daniel A; Strevett, Keith A; Papelis, Charalambos; Kibbey, Tohren C G

    2017-11-01

    Triclosan has been widely used as an antibacterial agent in consumer and industrial products, and large quantities continue to be discharged to natural waters annually. The focus of this work was on studying the dynamics of triclosan dissolution following evaporative drying. Warm weather can cause the water in intermittent streams or the unsaturated zone to evaporate, causing nonvolatile compounds to form solid precipitates. Because dissolution of precipitates is a relatively slow process, the dynamics of dissolution following evaporation may play an important role in controlling the release of contaminants to the environment. The specific purpose of the work was to explore the effects of surfactant co-contaminants from an industrial antibiotic handsoap on the dissolution dynamics of triclosan. The work used a fiber optic-based optical cell to conduct stirred-batch dissolution experiments for sands coated with different mass loadings of triclosan. Results show that the presence of surfactants from the hand soap not only increase the apparent equilibrium solubility, but also increase the rate of approach to equilibrium. A model describing the dissolution process was developed, and was found to be consistent with experimental data. Results of the work suggest that even small solubility enhancement by surfactant co-contaminants may have a significant impact on dissolution dynamics. Because waters containing significant quantities of triclosan are also among those most likely to contain surfactant co-contaminants, it is likely that the release of triclosan to the environment following evaporation may be faster in many cases than would be predicted from experiments based on pure triclosan. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. In Vivo Predictive Dissolution: Comparing the Effect of Bicarbonate and Phosphate Buffer on the Dissolution of Weak Acids and Weak Bases.

    PubMed

    Krieg, Brian J; Taghavi, Seyed Mohammad; Amidon, Gordon L; Amidon, Gregory E

    2015-09-01

    Bicarbonate is the main buffer in the small intestine and it is well known that buffer properties such as pKa can affect the dissolution rate of ionizable drugs. However, bicarbonate buffer is complicated to work with experimentally. Finding a suitable substitute for bicarbonate buffer may provide a way to perform more physiologically relevant dissolution tests. The dissolution of weak acid and weak base drugs was conducted in bicarbonate and phosphate buffer using rotating disk dissolution methodology. Experimental results were compared with the predicted results using the film model approach of (Mooney K, Mintun M, Himmelstein K, Stella V. 1981. J Pharm Sci 70(1):22-32) based on equilibrium assumptions as well as a model accounting for the slow hydration reaction, CO2 + H2 O → H2 CO3 . Assuming carbonic acid is irreversible in the dehydration direction: CO2 + H2 O ← H2 CO3 , the transport analysis can accurately predict rotating disk dissolution of weak acid and weak base drugs in bicarbonate buffer. The predictions show that matching the dissolution of weak acid and weak base drugs in phosphate and bicarbonate buffer is possible. The phosphate buffer concentration necessary to match physiologically relevant bicarbonate buffer [e.g., 10.5 mM (HCO3 (-) ), pH = 6.5] is typically in the range of 1-25 mM and is very dependent upon drug solubility and pKa . © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  10. Atypical effects of incorporated surfactants on stability and dissolution properties of amorphous polymeric dispersions.

    PubMed

    Al-Obaidi, Hisham; Lawrence, M Jayne; Buckton, Graham

    2016-11-01

    To understand the impact of ionic and non-ionic surfactants on the dissolution and stability properties of amorphous polymeric dispersions using griseofulvin (GF) as a model for poorly soluble drugs. Solid dispersions of the poorly water-soluble drug, griseofulvin (GF) and the polymers, poly(vinylpyrrolidone) (PVP) and poly(2-hydroxypropyl methacrylate) (PHPMA), have been prepared by spray drying and bead milling and the effect of the ionic and non-ionic surfactants, namely sodium dodecyl sulphate (SDS) and Tween-80, on the physico-chemical properties of the solid dispersions studied. The X-ray powder diffraction data and hot-stage microscopy showed a fast re-crystallisation of GF. While dynamic vapour sorption (DVS) measurements indicated an increased water uptake, slow dissolution rates were observed for the solid dispersions incorporating surfactants. The order by which surfactants free dispersions were prepared seemed critical as indicated by DVS and thermal analysis. Dispersions prepared by milling with SDS showed significantly better stability than spray-dried dispersions (drug remained amorphous for more than 6 months) as well as improved dissolution profile. We suggest that surfactants can hinder the dissolution by promoting aggregation of polymeric chains, however that effect depends mainly on how the particles were prepared. © 2016 Royal Pharmaceutical Society.

  11. Two-phase convective CO 2 dissolution in saline aquifers

    DOE PAGES

    Martinez, Mario J.; Hesse, Marc A.

    2016-01-30

    Geologic carbon storage in deep saline aquifers is a promising technology for reducing anthropogenic emissions into the atmosphere. Dissolution of injected CO 2 into resident brines is one of the primary trapping mechanisms generally considered necessary to provide long-term storage security. Given that diffusion of CO 2 in brine is woefully slow, convective dissolution, driven by a small increase in brine density with CO 2 saturation, is considered to be the primary mechanism of dissolution trapping. Previous studies of convective dissolution have typically only considered the convective process in the single-phase region below the capillary transition zone and have eithermore » ignored the overlying two-phase region where dissolution actually takes place or replaced it with a virtual region with reduced or enhanced constant permeability. Our objective is to improve estimates of the long-term dissolution flux of CO 2 into brine by including the capillary transition zone in two-phase model simulations. In the fully two-phase model, there is a capillary transition zone above the brine-saturated region over which the brine saturation decreases with increasing elevation. Our two-phase simulations show that the dissolution flux obtained by assuming a brine-saturated, single-phase porous region with a closed upper boundary is recovered in the limit of vanishing entry pressure and capillary transition zone. For typical finite entry pressures and capillary transition zone, however, convection currents penetrate into the two-phase region. As a result, this removes the mass transfer limitation of the diffusive boundary layer and enhances the convective dissolution flux of CO 2 more than 3 times above the rate assuming single-phase conditions.« less

  12. Simultaneous heterotrophic and sulfur-oxidizing autotrophic denitrification process for drinking water treatment: control of sulfate production.

    PubMed

    Sahinkaya, Erkan; Dursun, Nesrin; Kilic, Adem; Demirel, Sevgi; Uyanik, Sinan; Cinar, Ozer

    2011-12-15

    A long-term performance of a packed-bed bioreactor containing sulfur and limestone was evaluated for the denitrification of drinking water. Autotrophic denitrification rate was limited by the slow dissolution rate of sulfur and limestone. Dissolution of limestone for alkalinity supplementation increased hardness due to release of Ca(2+). Sulfate production is the main disadvantage of the sulfur autotrophic denitrification process. The effluent sulfate concentration was reduced to values below drinking water guidelines by stimulating the simultaneous heterotrophic and autotrophic denitrification with methanol supplementation. Complete removal of 75 mg/L NO(3)-N with effluent sulfate concentration of around 225 mg/L was achieved when methanol was supplemented at methanol/NO(3)-N ratio of 1.67 (mg/mg), which was much lower than the theoretical value of 2.47 for heterotrophic denitrification. Batch studies showed that sulfur-based autotrophic NO(2)-N reduction rate was around three times lower than the reduction rate of NO(3)-N, which led to NO(2)-N accumulation at high loadings. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Model of heterogeneous material dissolution in simulated biological fluid

    NASA Astrophysics Data System (ADS)

    Knyazeva, A. G.; Gutmanas, E. Y.

    2015-11-01

    In orthopedic research, increasing attention is being paid to bioresorbable/biodegradable implants as an alternative to permanent metallic bone healing devices. Biodegradable metal based implants possessing high strength and ductility potentially can be used in load bearing sites. Biodegradable Mg and Fe are ductile and Fe possess high strength, but Mg degrades too fast and Fe degrades too slow, Ag is a noble metal and should cause galvanic corrosion of the more active metallic iron - thus, corrosion of Fe can be increased. Nanostructuring should results in higher strength and can result in higher rate of dissolution/degradation from grain boundaries. In this work, a simple dissolution model of heterogeneous three phase nanocomposite material is considered - two phases being metal Fe and Ag and the third - nanopores. Analytical solution for the model is presented. Calculations demonstrate that the changes in the relative amount of each phase depend on mass exchange and diffusion coefficients. Theoretical results agree with preliminary experimental results.

  14. The long-term acceleration of waste glass corrosion: A preliminary review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kielpinski, A.L.

    1995-07-01

    Whereas a prior conception of glass dissolution assumed a relatively rapid initial dissolution which then slowed to a smaller, fairly constant longer-term rate, some recent work suggests that these two stages are followed by a third phase of dissolution, in which the dissolution rate is accelerated with respect to what had previously been thought of as the final long-term rate. The goals of the present study are to compile experimental data which may have a bearing on this phenomena, and to provide an initial assessment of these data. The Savannah River Technology Center (SRTC) is contracted to develop glass formulationmore » models for vitrification of Hanford low-level waste (LLW), in support of the Hanford Tank Waste Remediation System Technology Development Program. The phenomenon of an increase in corrosion rate, following a period characterized by a low corrosion rate, has been observed by a number of researchers on a number of waste glass compositions. Despite inherent ambiguities arising from SA/V (glass surface area to solution volume ratio) and other effects, valid comparisons can be made in which accelerated corrosion was observed in one test, but not in another. Some glass compositions do not appear to attain a plateau region; it may be that the observation of continued, non-negligible corrosion in these glasses represents a passage from the initial rate to the accelerated rate. The long-term corrosion is a function of the interaction between the glass and its environment, including the leaching solution and the surrounding materials. Reaction path modeling and stability field considerations have been used with some success to predict the changes in corrosion rate over time, due to these interactions. The accelerated corrosion phenomenon highlights the need for such integrated corrosion modeling and the scenario-specific nature of a particular glass composition`s durability.« less

  15. Influence of acidic and alkaline waste solution properties on uranium migration in subsurface sediments.

    PubMed

    Szecsody, Jim E; Truex, Mike J; Qafoku, Nikolla P; Wellman, Dawn M; Resch, Tom; Zhong, Lirong

    2013-08-01

    This study shows that acidic and alkaline wastes co-disposed with uranium into subsurface sediments have significant impact on changes in uranium retardation, concentration, and mass during downward migration. For uranium co-disposal with acidic wastes, significant rapid (i.e., hours) carbonate and slow (i.e., 100 s of hours) clay dissolution resulted, releasing significant sediment-associated uranium, but the extent of uranium release and mobility change was controlled by the acid mass added relative to the sediment proton adsorption capacity. Mineral dissolution in acidic solutions (pH2) resulted in a rapid (<10 h) increase in aqueous carbonate (with Ca(2+), Mg(2+)) and phosphate and a slow (100 s of hours) increase in silica, Al(3+), and K(+), likely from 2:1 clay dissolution. Infiltration of uranium with a strong acid resulted in significant shallow uranium mineral dissolution and deeper uranium precipitation (likely as phosphates and carbonates) with downward uranium migration of three times greater mass at a faster velocity relative to uranium infiltration in pH neutral groundwater. In contrast, mineral dissolution in an alkaline environment (pH13) resulted in a rapid (<10h) increase in carbonate, followed by a slow (10 s to 100 s of hours) increase in silica concentration, likely from montmorillonite, muscovite, and kaolinite dissolution. Infiltration of uranium with a strong base resulted in not only uranium-silicate precipitation (presumed Na-boltwoodite) but also desorption of natural uranium on the sediment due to the high ionic strength solution, or 60% greater mass with greater retardation compared with groundwater. Overall, these results show that acidic or alkaline co-contaminant disposal with uranium can result in complex depth- and time-dependent changes in uranium dissolution/precipitation reactions and uranium sorption, which alter the uranium migration mass, concentration, and velocity. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Silicate and carbonate mineral weathering in soil profiles developed on Pleistocene glacial drift (Michigan, USA): Mass balances based on soil water geochemistry

    NASA Astrophysics Data System (ADS)

    Jin, Lixin; Williams, Erika L.; Szramek, Kathryn J.; Walter, Lynn M.; Hamilton, Stephen K.

    2008-02-01

    Geochemistry of soil, soil water, and soil gas was characterized in representative soil profiles of three Michigan watersheds. Because of differences in source regions, parent materials in the Upper Peninsula of Michigan (the Tahquamenon watershed) contain only silicates, while those in the Lower Peninsula (the Cheboygan and the Huron watersheds) have significant mixtures of silicate and carbonate minerals. These differences in soil mineralogy and climate conditions permit us to examine controls on carbonate and silicate mineral weathering rates and to better define the importance of silicate versus carbonate dissolution in the early stage of soil-water cation acquisition. Soil waters of the Tahquamenon watershed are the most dilute; solutes reflect amphibole and plagioclase dissolution along with significant contributions from atmospheric precipitation sources. Soil waters in the Cheboygan and the Huron watersheds begin their evolution as relatively dilute solutions dominated by silicate weathering in shallow carbonate-free soil horizons. Here, silicate dissolution is rapid and reaction rates dominantly are controlled by mineral abundances. In the deeper soil horizons, silicate dissolution slows down and soil-water chemistry is dominated by calcite and dolomite weathering, where solutions reach equilibrium with carbonate minerals within the soil profile. Thus, carbonate weathering intensities are dominantly controlled by annual precipitation, temperature and soil pCO 2. Results of a conceptual model support these field observations, implying that dolomite and calcite are dissolving at a similar rate, and further dissolution of more soluble dolomite after calcite equilibrium produces higher dissolved inorganic carbon concentrations and a Mg 2+/Ca 2+ ratio of 0.4. Mass balance calculations show that overall, silicate minerals and atmospheric inputs generally contribute <10% of Ca 2+ and Mg 2+ in natural waters. Dolomite dissolution appears to be a major process, rivaling calcite dissolution as a control on divalent cation and inorganic carbon contents of soil waters. Furthermore, the fraction of Mg 2+ derived from silicate mineral weathering is much smaller than most of the values previously estimated from riverine chemistry.

  17. Solid dispersion of acetaminophen and poly(ethylene oxide) prepared by hot-melt mixing.

    PubMed

    Yang, Min; Wang, Peng; Huang, Chien-Yueh; Ku, M Sherry; Liu, Huiju; Gogos, Costas

    2010-08-16

    In this study, a model drug, acetaminophen (APAP), was melt mixed with poly(ethylene oxide) (PEO) using a Brabender mixer. APAP was found to recrystallize upon cooling to room temperature for all the drug loadings investigated. Higher drug loading leads to faster recrystallization rate. However, the morphology of the recrystallized drug crystals is identical in samples with different drug loadings and does not change with the storage time. To adjust the drug's dissolution rate, nanoclay Cloisite 15A and 30B were added into the binary mixture. The presence of either of the nanoclay dramatically accelerates the drug's recrystallization rate and slows down the drug's releasing rate. The drop of the releasing rate is mainly due to the decrease of wettability, as supported by the contact angle data. Data analysis of the dissolution results suggests that the addition of nanoclays changes the drug's release mechanism from erosion dominant to diffusion dominant. This study suggests that nanoclays may be utilized to tailor the drug's releasing rate and to improve the dosage form's stability by dramatically shortening the lengthy recrystallization process. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  18. Structural characterization and dissolution profile of mycophenolic acid cocrystals.

    PubMed

    Zeng, Qing-Zhu; Ouyang, Jian; Zhang, Shuo; Zhang, Lei

    2017-05-01

    Three novel cocrystals of mycophenolic acid (MPA) with isonicotinamide (MPA-ISO), minoxidil (MPA-MIN) and 2,2'-dipyridylamine (MPA-DPA) as coformers have been prepared successfully by both slow evaporation and liquid-assisted grinding. The structures of these cocrystals show that all the three coformers form hydrogen bonds with the carboxylic acid group of MPA. The cocrystal MPA-ISO possesses remarkably improved solubility and dissolution rate, while two other cocrystals exhibit the opposite characteristics. The solids in the slurry with pH6.8 phosphate buffer and cocrystals remain as the incipient cocrystal after 24h. However, evidence of slight polymerization was shown in the slurry of pH6.8 phosphate buffer with MPA and MPA-ISO cocrystal. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Aggregation, sedimentation, dissolution and bioavailability of ...

    EPA Pesticide Factsheets

    Due to increasing use in flat screen applications, solar cells, ink–jet printing, and medical devices, cadmium-based quantum dots (QDs) are among the fastest growing classes of engineered nanomaterial. These wide-ranging consumer product applications and end of use disposal issues assure that QDs will eventually enter the marine environment. In an effort to understand the fate and transport of CdSe QDs in estuarine systems, the aggregation, sedimentation, dissolution, and bioavailability of CdSe QDs in seawater was investigated. The size of CdSe QDs increased from 40-60 nm to >1 mm within one hour once introduced to seawater, and the diffusion-limited aggregation led to highly polydispersed aggregates with loose structures. As a result, the sedimentation rate of CdSe QD aggregates in seawater was measured to be 4-10 mm/day, which was slow considering their relatively large size. Humic acid (HA), as a model natural organic matter, further increased the size and polydispersity of CdSe QDs, and slowed their sedimentation accordingly. Given the effect of light on CdSe QDs, natural sunlight and light filters were employed to simulate the photic conditions at different water depths in an estuarine system. It was observed that light played a vital role in promoting the dissolution of CdSe QDs and the release of dissolved Cd. The ZnS shell surrounding the CdSe core also significantly hindered the degradation of CdSe QDs into their ionic components. With sufficient

  20. Dissolution of Si in Molten Al with Gas Injection

    NASA Astrophysics Data System (ADS)

    Seyed Ahmadi, Mehran

    Silicon is an essential component of many aluminum alloys, as it imparts a range of desirable characteristics. However, there are considerable practical difficulties in dissolving solid Si in molten Al, because the dissolution process is slow, resulting in material and energy losses. It is thus essential to examine Si dissolution in molten Al, to identify means of accelerating the process. This thesis presents an experimental study of the effect of Si purity, bath temperature, fluid flow conditions, and gas stirring on the dissolution of Si in molten Al, plus the results of physical and numerical modeling of the flow to corroborate the experimental results. The dissolution experiments were conducted in a revolving liquid metal tank to generate a bulk velocity, and gas was introduced into the melt using top lance injection. Cylindrical Si specimens were immersed into molten Al for fixed durations, and upon removal the dissolved Si was measured. The shape and trajectory of injected bubbles were examined by means of auxiliary water experiments and video recordings of the molten Al free surface. The gas-agitated liquid was simulated using the commercial software FLOW-3D. The simulation results provide insights into bubble dynamics and offer estimates of the fluctuating velocities within the Al bath. The experimental results indicate that the dissolution rate of Si increases in tandem with the melt temperature and bulk velocity. A higher bath temperature increases the solubility of Si at the solid/liquid interface, resulting in a greater driving force for mass transfer, and a higher liquid velocity decreases the resistance to mass transfer via a thinner mass boundary layer. Impurities (with lower diffusion coefficients) in the form of inclusions obstruct the dissolution of the Si main matrix. Finally, dissolution rate enhancement was observed by gas agitation. It is postulated that the bubble-induced fluctuating velocities disturb the mass boundary layer, which increases the mass transfer rate. Correlations derived for mass transfer from solids in liquids under various operating conditions were applied to the Al--Si system. A new correlation for combined natural and forced convection mass transfer from vertical cylinders in cross flow is presented, and a modification is proposed to take into account free stream turbulence in a correlation for forced convection mass transfer from vertical cylinders in cross flow.

  1. Rock-weathering rates as functions of time

    USGS Publications Warehouse

    Colman, Steven M.

    1981-01-01

    The scarcity of documented numerical relations between rock weathering and time has led to a common assumption that rates of weathering are linear. This assumption has been strengthened by studies that have calculated long-term average rates. However, little theoretical or empirical evidence exists to support linear rates for most chemical-weathering processes, with the exception of congruent dissolution processes. The few previous studies of rock-weathering rates that contain quantitative documentation of the relation between chemical weathering and time suggest that the rates of most weathering processes decrease with time. Recent studies of weathering rinds on basaltic and andesitic stones in glacial deposits in the western United States also clearly demonstrate that rock-weathering processes slow with time. Some weathering processes appear to conform to exponential functions of time, such as the square-root time function for hydration of volcanic glass, which conforms to the theoretical predictions of diffusion kinetics. However, weathering of mineralogically heterogeneous rocks involves complex physical and chemical processes that generally can be expressed only empirically, commonly by way of logarithmic time functions. Incongruent dissolution and other weathering processes produce residues, which are commonly used as measures of weathering. These residues appear to slow movement of water to unaltered material and impede chemical transport away from it. If weathering residues impede weathering processes then rates of weathering and rates of residue production are inversely proportional to some function of the residue thickness. This results in simple mathematical analogs for weathering that imply nonlinear time functions. The rate of weathering becomes constant only when an equilibrium thickness of the residue is reached. Because weathering residues are relatively stable chemically, and because physical removal of residues below the ground surface is slight, many weathering features require considerable time to reach constant rates of change. For weathering rinds on volcanic stones in the western United States, this time is at least 0.5 my. ?? 1981.

  2. Muscovite dissolution kinetics as a function of pH at elevated temperature

    DOE PAGES

    Lammers, Kristin; Smith, Megan M.; Carroll, Susan A.

    2017-06-07

    We report that mineral reactivity can play an important role in fracture-controlled fluid networks where maintaining or increasing permeability is a goal, such as enhanced geothermal systems. In these systems, dissolution generates new void space, removes cement and physically transports less reactive mineral grains, while secondary precipitation acts to narrow or seal off fluid pathways. Sheet silicate mineral reactivity is likely to affect permeability evolution at the elevated temperatures of geothermal reservoirs because of the high reactive surface area and prevalence of these minerals in hydrothermal zones. To better describe the reactivity of one common sheet silicate, muscovite, we conducted kinetic dissolution experiments using flow-through reactors at temperatures of 100–280 °C and a pH range of 2–9. Surface area-normalized muscovite dissolution rates ranged from 0.17–155 · 10 - 11 mol m - 2 s - 1 over this temperature range, but showed little variation with pH above 150 °C. Aluminum was released to solution nonstoichiometrically with respect to dissolved silica, most likely resulting from secondary precipitation of an aluminum oxy-hydroxide identified as boehmite (γ-AlO(OH)( s)) by X-ray diffraction in reaction products from experiments conducted at pH ≤ 6. Surface area-normalized muscovite dissolution rates, Rate mus (mol m - 2 s - 1), can be described from 25 to 280 °C with the following kinetic rate equation: Rate mus = ([3∙10 -3∙e -44 /R∙T∙amore » $$0.8\\atop{H+}$$] + [9∙10 -6∙e- 45/R∙T] + [5∙10 -1∙ e-61/R∙T ∙a$$0.6\\atop{OH-}$$] ∙ (1-e -ΔGr/RT) where the rate and pre-exponential factors are in mol m - 2 s - 1; the activation energies, E, are in kJ mol - 1; a H+ and a OH- represent the activities of H + and OH -, respectively; R (kJ mol - 1 K - 1) is the gas constant; T is the temperature in Kelvins; and ΔG r (kJ mol - 1) is a measure of how close the aqueous solution is to muscovite equilibrium. The rate equation is constrained by our new data literature rates and has been evaluated against previous formulations with varying dependence on reaction affinity. Although 150 °C muscovite rates from Oelkers et al. (2008) show a systematic dependence on reaction affinity, incorporating this dependence did not accurately reproduce the higher-temperature rates. In conclusion, we recommend the rate equation shown above, with an affinity term that slows reaction rates only when solutions are close to equilibrium, for simulating the dissolution of muscovite under geothermal conditions.« less

  3. Muscovite dissolution kinetics as a function of pH at elevated temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lammers, Kristin; Smith, Megan M.; Carroll, Susan A.

    We report that mineral reactivity can play an important role in fracture-controlled fluid networks where maintaining or increasing permeability is a goal, such as enhanced geothermal systems. In these systems, dissolution generates new void space, removes cement and physically transports less reactive mineral grains, while secondary precipitation acts to narrow or seal off fluid pathways. Sheet silicate mineral reactivity is likely to affect permeability evolution at the elevated temperatures of geothermal reservoirs because of the high reactive surface area and prevalence of these minerals in hydrothermal zones. To better describe the reactivity of one common sheet silicate, muscovite, we conducted kinetic dissolution experiments using flow-through reactors at temperatures of 100–280 °C and a pH range of 2–9. Surface area-normalized muscovite dissolution rates ranged from 0.17–155 · 10 - 11 mol m - 2 s - 1 over this temperature range, but showed little variation with pH above 150 °C. Aluminum was released to solution nonstoichiometrically with respect to dissolved silica, most likely resulting from secondary precipitation of an aluminum oxy-hydroxide identified as boehmite (γ-AlO(OH)( s)) by X-ray diffraction in reaction products from experiments conducted at pH ≤ 6. Surface area-normalized muscovite dissolution rates, Rate mus (mol m - 2 s - 1), can be described from 25 to 280 °C with the following kinetic rate equation: Rate mus = ([3∙10 -3∙e -44 /R∙T∙amore » $$0.8\\atop{H+}$$] + [9∙10 -6∙e- 45/R∙T] + [5∙10 -1∙ e-61/R∙T ∙a$$0.6\\atop{OH-}$$] ∙ (1-e -ΔGr/RT) where the rate and pre-exponential factors are in mol m - 2 s - 1; the activation energies, E, are in kJ mol - 1; a H+ and a OH- represent the activities of H + and OH -, respectively; R (kJ mol - 1 K - 1) is the gas constant; T is the temperature in Kelvins; and ΔG r (kJ mol - 1) is a measure of how close the aqueous solution is to muscovite equilibrium. The rate equation is constrained by our new data literature rates and has been evaluated against previous formulations with varying dependence on reaction affinity. Although 150 °C muscovite rates from Oelkers et al. (2008) show a systematic dependence on reaction affinity, incorporating this dependence did not accurately reproduce the higher-temperature rates. In conclusion, we recommend the rate equation shown above, with an affinity term that slows reaction rates only when solutions are close to equilibrium, for simulating the dissolution of muscovite under geothermal conditions.« less

  4. Reactivity of Nanoscale Zero-Valent Iron in Unbuffered Systems: Effect of pH and Fe(II) Dissolution.

    PubMed

    Bae, Sungjun; Hanna, Khalil

    2015-09-01

    While most published studies used buffers to maintain the pH, there is limited knowledge regarding the reactivity of nanoscale zerovalent iron (NZVI) in poorly buffered pH systems to date. In this work, the effect of pH and Fe(II) dissolution on the reactivity of NZVI was investigated during the reduction of 4-nitrophenol (4-NP) in unbuffered pH systems. The reduction rate increased exponentially with respect to the NZVI concentration, and the ratio of dissolved Fe(II)/initial NZVI was related proportionally to the initial pH values, suggesting that lower pH (6-7) with low NZVI loading may slow the 4-NP reduction through acceleration of the dissolution of NZVI particles. Additional experiments using buffered pH systems confirmed that high pH values (8-9) can preserve the NZVI particles against dissolution, thereby enhancing the reduction kinetics of 4-NP. Furthermore, reduction tests using ferrous ion in suspensions of magnetite and maghemite showed that surface-bound Fe(II) on oxide coatings can play an important role in enhancing 4-NP reduction by NZVI at pH 8. These unexpected results highlight the importance of pH and Fe(II) dissolution when NZVI technology is applied to poorly buffered systems, particularly at a low amount of NZVI (i.e., <0.075 g/L).

  5. Preparation and characterization of poly(lactic acid) nanoparticles for sustained release of pyridostigmine bromide.

    PubMed

    Tan, Q Y; Xu, M L; Wu, J Y; Yin, H F; Zhang, J Q

    2012-04-01

    A novel pyridostigmine bromide poly (lactic acid) nanoparticles (PBPNPs) was prepared to obtain sustained release characteristics of PB. A central composite design approach was employed for process optimization. The in vitro release studies were carried out by dialysis method and conducted using four different dissolution media. Similar factor method was investigated for dissolution profile comparison. Multiple linear regression analysis for process optimization revealed that the optimal PBPNPs were obtained where the values of the amount of PB (X1, mg), PLA concentration (X2, % w:v), and PVA concentration (X3, % w:v) were 49.20 mg, 3.31% and 3.41%, respectively. The average particle size and zeta potential of PBPNPs with the optimized formulation were 722.9 +/- 4.3 nm, and -25.12 +/- 1.2 mV, respectively. PBPNPs provided an initial burst of drug release followed by a very slow release over an extended period of time (72 h). Compared with free PB, PBPNPs had a significantly lower release rate of PB in vitro. The in vitro release profile of the PBPNPs could be described by Weibull models, regardless of type of dissolution medium. Statistical significance of similarity between every two dissolution profiles of PBPNPs in different dissolution media was found, and the difference between the curves of PBPNPs and pure PB was statistically significant.

  6. Rates of zinc and trace metal release from dissolving sphalerite at pH 2.0-4.0

    USGS Publications Warehouse

    Stanton, M.R.; Gemery-Hill, P. A.; Shanks, Wayne C.; Taylor, C.D.

    2008-01-01

    High-Fe and low-Fe sphalerite samples were reacted under controlled pH conditions to determine nonoxidative rates of release of Zn and trace metals from the solid-phase. The release (solubilization) of trace metals from dissolving sphalerite to the aqueous phase can be characterized by a kinetic distribution coefficient, (Dtr), which is defined as [(Rtr/X(tr)Sph)/(RZn/X(Zn) Sph)], where R is the trace metal or Zn release rate, and X is the mole fraction of the trace metal or Zn in sphalerite. This coefficient describes the relationship of the sphalerite dissolution rate to the trace metal mole fraction in the solid and its aqueous concentration. The distribution was used to determine some controls on metal release during the dissolution of sphalerite. Departures from the ideal Dtr of 1.0 suggest that some trace metals may be released via different pathways or that other processes (e.g., adsorption, solubility of trace minerals such as galena) affect the observed concentration of metals. Nonoxidative sphalerite dissolution (mediated by H+) is characterized by a "fast" stage in the first 24-30 h, followed by a "slow" stage for the remainder of the reaction. Over the pH range 2.0-4.0, and for similar extent of reaction (reaction time), sphalerite composition, and surface area, the rates of release of Zn, Fe, Cd, Cu, Mn and Pb from sphalerite generally increase with lower pH. Zinc and Fe exhibit the fastest rates of release, Mn and Pb have intermediate rates of release, and Cd and Cu show the slowest rates of release. The largest variations in metal release rates occur at pH 2.0. At pH 3.0 and 4.0, release rates show less variation and appear less dependent on the metal abundance in the solid. For the same extent of reaction (100 h), rates of Zn release range from 1.53 ?? 10-11 to 5.72 ?? 10-10 mol/m2/s; for Fe, the range is from 4.59 ?? 10-13 to 1.99 ?? 10-10 mol/m2/s. Trace metal release rates are generally 1-5 orders of magnitude slower than the Zn or Fe rates. Results indicate that the distributions of Fe and Cd are directly related to the rate of sphalerite dissolution throughout the reaction at pH 3.0 and 4.0 because these two elements substitute readily into sphalerite. These two metals are likely to be more amenable to usage in predictive acid dissolution models because of this behavior. The Pb distribution shows no strong relation to sphalerite dissolution and appears to be controlled by pH-dependent solubility, most likely related to trace amounts of galena. The distribution of Cu is similar to that of Fe but is the most-dependent of all metals on its mole fraction ratio (Zn:Cu) in sphalerite. The Mn distributions suggest an increase in the rate of Mn release relative to sphalerite dissolution occurs in low Mn samples as pH increases. The Mn distribution in high Mn samples is nearly independent of pH and sphalerite dissolution at pH 2.0 but shows a dependence on these two parameters at higher pH (3.0-4.0).

  7. Salt dissolution sinkhole at the Weeks Island, Louisiana, Strategic Petroleum Reserve storage site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neal, J.T.; Myers, R.E.

    1994-12-31

    A sinkhole was first observed in May 1992 over the outer edge of the two-tiered former salt mine that was converted for oil storage by the US Strategic Petroleum Reserve (SPR). Results of diagnostic studies which included geophysical, geochemical, drilling, and hydrological methods suggest a direct connection exists between the surface collapse area and the underground mine. The connection was confirmed by correlative measurements of sediment slump rates, piezometric surface deflection, and brine influx rates into the mine. The dissolution of salt below the sinkhole that initiated the leak into the mine was likely caused by several confluent geologic processes,more » and exacerbated by mining-induced stresses that created fractures which severed as hydrologic flowpaths. Modeling studies of mine stresses show that years of tensional stresses may be required before cracking begins to occur, but once begun can continue to develop, and relieve the stress in that specific regime. The crack regime creates the avenue for incursion of groundwater, very slowly initially, but gradually enlarging as undersaturated groundwater dissolves salt on the sides of the crack. Mitigative measures include increasing the mine pressurization, slowing the dissolution by injecting brine into the sinkhole throat, and permeation grouting in hydrologic flowpaths.« less

  8. Decreased Dissolution of ZnO by Iron Doping Yields Nanoparticles with Reduced Toxicity in the Rodent Lung and Zebrafish Embryos

    PubMed Central

    Xia, Tian; Zhao, Yan; Sager, Tina; George, Saji; Pokhrel, Suman; Li, Ning; Schoenfeld, David; Meng, Huan; Lin, Sijie; Wang, Xiang; Wang, Meiying; Ji, Zhaoxia; Zink, Jeffrey I.; Mädler, Lutz; Castranova, Vincent; Lin, Shuo; Nel, Andre E.

    2014-01-01

    We have recently shown that the dissolution of ZnO nanoparticles and Zn2+ shedding leads to a series of sub-lethal and lethal toxicological responses at cellular level that can be alleviated by iron-doping. Iron-doping changes the particle matrix and slows the rate of particle dissolution. To determine whether iron doping of ZnO also leads to lesser toxic effects in vivo, toxicity studies were performed in rodent and zebrafish models. First, we synthesized a fresh batch of ZnO nanoparticles doped with 1–10 wt % of Fe. These particles were extensively characterized to confirm their doping status, reduced rate of dissolution in an exposure medium and reduced toxicity in a cellular screen. Subsequent studies compared the effects of undoped to doped particles in the rat lung, mouse lung and the zebrafish embryo. The zebrafish studies looked at embryo hatching and mortality rates as well as the generation of morphological defects, while the endpoints in the rodent lung included an assessment of inflammatory cell infiltrates, LDH release and cytokine levels in the bronchoalveolar lavage fluid. Iron doping, similar to the effect of the metal chelator, DTPA, interfered in the inhibitory effects of Zn2+ on zebrafish hatching. In the oropharyngeal aspiration model in the mouse, iron doping was associated with decreased polymorphonuclear cell counts and IL-6 mRNA production. Doped particles also elicited decreased heme oxygenase 1 expression in the murine lung. In the intratracheal instillation studies in the rat, Fe-doping was associated with decreased polymorphonuclear cell counts, LDH and albumin levels. All considered, the above data show that Fe-doping is a possible safe design strategy for preventing ZnO toxicity in animals and the environment. PMID:21250651

  9. Reactive transport under stress: Permeability evolution in deformable porous media

    NASA Astrophysics Data System (ADS)

    Roded, R.; Paredes, X.; Holtzman, R.

    2018-07-01

    We study reactive transport in a stressed porous media, where dissolution of the solid matrix causes two simultaneous, competing effects: pore enlargement due to chemical deformation, and pore compaction due to mechanical weakening. We use a novel, mechanistic pore-scale model to simulate flooding of a sample under fixed confining stress. Our simulations show that increasing the stress inhibits the permeability enhancement, increasing the injected volume required to reach a certain permeability, in agreement with recent experiments. We explain this behavior by stress concentration downstream, in the less dissolved (hence stiffer) outlet region. As this region is also less conductive, even its small compaction has a strong bottleneck effect that curbs the permeability. Our results also elucidate that the impact of stress depends on the dissolution regime. Under wormholing conditions (slow injection, i.e. high Damkohler number, Da), the development of a sharp dissolution front and high porosity contrast accentuates the bottleneck effect. This reduces transport heterogeneity, promoting wormhole competition. Once the outlet starts eroding, the extreme focusing of transport and hence dissolution-characteristic of wormholing-becomes dominant, diminishing the bottleneck effect and hence the impact of stress at breakthrough. In contrast, at high flow rates (low Da), incomplete reaction upstream allows some of the reactant to traverse the sample, causing a more uniform dissolution. The continuous dissolution and its partial counteraction by compaction at the outlet provides a steady, gradual increase in the effect of stress. Consequently, the impact of stress is more pronounced at high Da during early stages (low permeability), and at low Da close breakthrough. Our work promotes understanding of the interplay between dissolution and compaction and its effect on the hydromechanical property evolution, with important implications for processes ranging from diagenesis and weathering of rocks, to well stimulation and carbon sequestration.

  10. A multiphase interfacial model for the dissolution of spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Jerden, James L.; Frey, Kurt; Ebert, William

    2015-07-01

    The Fuel Matrix Dissolution Model (FMDM) is an electrochemical reaction/diffusion model for the dissolution of spent uranium oxide fuel. The model was developed to provide radionuclide source terms for use in performance assessment calculations for various types of geologic repositories. It is based on mixed potential theory and consists of a two-phase fuel surface made up of UO2 and a noble metal bearing fission product phase in contact with groundwater. The corrosion potential at the surface of the dissolving fuel is calculated by balancing cathodic and anodic reactions occurring at the solution interfaces with UO2 and NMP surfaces. Dissolved oxygen and hydrogen peroxide generated by radiolysis of the groundwater are the major oxidizing agents that promote fuel dissolution. Several reactions occurring on noble metal alloy surfaces are electrically coupled to the UO2 and can catalyze or inhibit oxidative dissolution of the fuel. The most important of these is the oxidation of hydrogen, which counteracts the effects of oxidants (primarily H2O2 and O2). Inclusion of this reaction greatly decreases the oxidation of U(IV) and slows fuel dissolution significantly. In addition to radiolytic hydrogen, large quantities of hydrogen can be produced by the anoxic corrosion of steel structures within and near the fuel waste package. The model accurately predicts key experimental trends seen in literature data, the most important being the dramatic depression of the fuel dissolution rate by the presence of dissolved hydrogen at even relatively low concentrations (e.g., less than 1 mM). This hydrogen effect counteracts oxidation reactions and can limit fuel degradation to chemical dissolution, which results in radionuclide source term values that are four or five orders of magnitude lower than when oxidative dissolution processes are operative. This paper presents the scientific basis of the model, the approach for modeling used fuel in a disposal system, and preliminary calculations to demonstrate the application and value of the model.

  11. Pore-scale supercritical CO 2 dissolution and mass transfer under drainage conditions

    DOE PAGES

    Chang, Chun; Zhou, Quanlin; Oostrom, Mart; ...

    2016-12-05

    Recently, both core- and pore-scale imbibition experiments have shown non-equilibrium dissolution of supercritical CO 2 (scCO 2) and a prolonged depletion of residual scCO 2. In this paper, pore-scale scCO 2 dissolution and mass transfer under drainage conditions were investigated using a two-dimensional heterogeneous micromodel and a novel fluorescent water dye with a sensitive pH range between 3.7 and 6.5. Drainage experiments were conducted at 9 MPa and 40 °C by injecting scCO 2 into the sandstone-analogue pore network initially saturated by water without dissolved CO 2 (dsCO 2). During the experiments, time-lapse images of dye intensity, reflecting water pH,more » were obtained. These images show non-uniform pH in individual pores and pore clusters, with average pH levels gradually decreasing with time. Further analysis on selected pores and pore clusters shows that (1) rate-limited mass transfer prevails with slowly decreasing pH over time when the scCO 2-water interface area is low with respect to the volume of water-filled pores and pore clusters, (2) fast scCO 2 dissolution and phase equilibrium occurs when scCO 2 bubbles invade into water-filled pores, significantly enhancing the area-to-volume ratio, and (3) a transition from rate-limited to diffusion-limited mass transfer occurs in a single pore when a medium area-to-volume ratio is prevalent. The analysis also shows that two fundamental processes – scCO 2 dissolution at phase interfaces and diffusion of dsCO 2 at the pore scale (10–100 µm) observed after scCO 2 bubble invasion into water-filled pores without pore throat constraints – are relatively fast. The overall slow dissolution of scCO 2 in the millimeter-scale micromodel can be attributed to the small area-to-volume ratios that represent pore-throat configurations and characteristics of phase interfaces. Finally, this finding is applicable for the behavior of dissolution at pore, core, and field scales when water-filled pores and pore clusters of varying size are surrounded by scCO 2 at narrow pore throats.« less

  12. Pore-scale supercritical CO 2 dissolution and mass transfer under drainage conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Chun; Zhou, Quanlin; Oostrom, Mart

    Recently, both core- and pore-scale imbibition experiments have shown non-equilibrium dissolution of supercritical CO 2 (scCO 2) and a prolonged depletion of residual scCO 2. In this paper, pore-scale scCO 2 dissolution and mass transfer under drainage conditions were investigated using a two-dimensional heterogeneous micromodel and a novel fluorescent water dye with a sensitive pH range between 3.7 and 6.5. Drainage experiments were conducted at 9 MPa and 40 °C by injecting scCO 2 into the sandstone-analogue pore network initially saturated by water without dissolved CO 2 (dsCO 2). During the experiments, time-lapse images of dye intensity, reflecting water pH,more » were obtained. These images show non-uniform pH in individual pores and pore clusters, with average pH levels gradually decreasing with time. Further analysis on selected pores and pore clusters shows that (1) rate-limited mass transfer prevails with slowly decreasing pH over time when the scCO 2-water interface area is low with respect to the volume of water-filled pores and pore clusters, (2) fast scCO 2 dissolution and phase equilibrium occurs when scCO 2 bubbles invade into water-filled pores, significantly enhancing the area-to-volume ratio, and (3) a transition from rate-limited to diffusion-limited mass transfer occurs in a single pore when a medium area-to-volume ratio is prevalent. The analysis also shows that two fundamental processes – scCO 2 dissolution at phase interfaces and diffusion of dsCO 2 at the pore scale (10–100 µm) observed after scCO 2 bubble invasion into water-filled pores without pore throat constraints – are relatively fast. The overall slow dissolution of scCO 2 in the millimeter-scale micromodel can be attributed to the small area-to-volume ratios that represent pore-throat configurations and characteristics of phase interfaces. Finally, this finding is applicable for the behavior of dissolution at pore, core, and field scales when water-filled pores and pore clusters of varying size are surrounded by scCO 2 at narrow pore throats.« less

  13. Pore-scale supercritical CO 2 dissolution and mass transfer under drainage conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Chun; Zhou, Quanlin; Oostrom, Mart

    Abstract: Recently, both core- and pore-scale imbibition experiments have shown non-equilibrium dissolution of supercritical CO 2 (scCO 2) and a prolonged depletion of residual scCO 2. In this study, pore-scale scCO 2 dissolution and mass transfer under drainage conditions were investigated using a two-dimensional heterogeneous micromodel and a novel fluorescent water dye with a sensitive pH range between 3.7 and 6.5. Drainage experiments were conducted at 9 MPa and 40 °C by injecting scCO 2 into the sandstone-analogue pore network initially saturated by water without dissolved CO 2 (dsCO 2). During the experiments, time-lapse images of dye intensity, reflecting watermore » pH, were obtained. These images show non-uniform pH in individual pores and pore clusters, with average pH levels gradually decreasing with time. Further analysis on selected pores and pore clusters shows that (1) rate-limited mass transfer prevails with slowly decreasing pH over time when the scCO 2-water interface area is low with respect to the volume of water-filled pores and pore clusters, (2) fast scCO 2 dissolution and phase equilibrium occurs when scCO 2 bubbles invade into water-filled pores, significantly enhancing the area-to-volume ratio, and (3) a transition from rate-limited to diffusion-limited mass transfer occurs in a single pore when a medium area-to-volume ratio is prevalent. The analysis also shows that two fundamental processes – scCO 2 dissolution at phase interfaces and diffusion of dsCO 2 at the pore scale (10-100 µm) observed after scCO 2 bubble invasion into water-filled pores without pore throat constraints – are relatively fast. The overall slow dissolution of scCO 2 in the millimeter-scale micromodel can be attributed to the small area-to-volume ratios that represent pore-throat configurations and characteristics of phase interfaces. This finding is applicable for the behavior of dissolution at pore, core, and field scales when water-filled pores and pore clusters of varying size are surrounded by scCO 2 at narrow pore throats.« less

  14. Laboratory Scale Experiments and Numerical Modeling of Cosolvent flushing of NAPL Mixtures in Saturated Porous Media

    NASA Astrophysics Data System (ADS)

    Agaoglu, B.; Scheytt, T. J.; Copty, N. K.

    2011-12-01

    This study examines the mechanistic processes governing multiphase flow of a water-cosolvent-NAPL system in saturated porous media. Laboratory batch and column flushing experiments were conducted to determine the equilibrium properties of pure NAPL and synthetically prepared NAPL mixtures as well as NAPL recovery mechanisms for different water-ethanol contents. The effect of contact time was investigated by considering different steady and intermittent flow velocities. A modified version of multiphase flow simulator (UTCHEM) was used to compare the multiphase model simulations with the column experiment results. The effect of employing different grid geometries (1D, 2D, 3D), heterogeneity and different initial NAPL saturation configurations were also examined in the model. It is shown that the change in velocity affects the mass transfer rate between phases as well as the ultimate NAPL recovery percentage. The experiments with slow flow rate flushing of pure NAPL and the 3D UTCHEM simulations gave similar effluent concentrations and NAPL cumulative recoveries. The results were less consistent for fast non-equilibrium flow conditions. The dissolution process from the NAPL mixture into the water-ethanol flushing solutions was found to be more complex than dissolution expressions incorporated in the numerical model. The dissolution rate of individual organic compounds (namely Toluene and Benzene) from a mixture NAPL into the ethanol-water flushing solution is found not to correlate with their equilibrium solubility values.The implications of this controlled experimental and modeling study on field cosolvent remediation applications are discussed.

  15. Real-Time X-ray Imaging Reveals Interfacial Growth, Suppression, and Dissolution of Zinc Dendrites Dependent on Anions of Ionic Liquid Additives for Rechargeable Battery Applications.

    PubMed

    Song, Yuexian; Hu, Jiugang; Tang, Jia; Gu, Wanmiao; He, Lili; Ji, Xiaobo

    2016-11-23

    The dynamic interfacial growth, suppression, and dissolution of zinc dendrites have been studied with the imidazolium ionic liquids (ILs) as additives on the basis of in situ synchrotron radiation X-ray imaging. The phase contrast difference of real-time images indicates that zinc dendrites are preferentially developed on the substrate surface in the ammoniacal electrolytes. After adding imidazolium ILs, both nucleation overpotential and polarization extent increase in the order of additive-free < EMI-Cl < EMI-PF 6 < EMI-TFSA < EMI-DCA. The real-time X-ray images show that the EMI-Cl can suppress zinc dendrites, but result in the formation of the loose deposits. The EMI-PF 6 and EMI-TFSA additives can smooth the deposit morphology through suppressing the initiation and growth of dendritic zinc. The addition of EMI-DCA increases the number of dendrite initiation sites, whereas it decreases the growth rate of dendrites. Furthermore, the dissolution behaviors of zinc deposits are compared. The zinc dendrites show a slow dissolution process in the additive-free electrolyte, whereas zinc deposits are easily detached from the substrate in the presence of EMI-Cl, EMI-PF 6 , or EMI-TFSA due to the formation of the loose structure. Hence, the dependence of zinc dendrites on anions of imidazolium IL additives during both electrodeposition and dissolution processes has been elucidated. These results could provide the valuable information in perfecting the performance of zinc-based rechargeable batteries.

  16. Genesis and shape of natural solution cavities within salt deposits

    NASA Astrophysics Data System (ADS)

    Gechter, Daniel; Huggenberger, Peter; Ackerer, Philippe; Waber, H. Niklaus

    2008-11-01

    Since the genesis and shape of natural deep-seated cavities within a salt body are insufficiently understood, the current study tries to shed some light on this topic. To this end, freshwater was pumped slowly through a horizontal borehole in rock salt cores. Owing to fast halite dissolution kinetics, high solubility, and slow inflow rate, halite dissolution took place only in the inflow of the rock salt cylinder. The shape of the created cavities is an approximately symmetrical half cone with a horizontal base facing upward. A conceptual model is presented that is inspired by the experimental results and based on theoretical hydraulic-geochemical considerations, as well as on field observations. It proposes that triangular prism or conically shaped cavities develop within salt under confined conditions, where aggressive water flows upward along a fracture/conduit from an insoluble aquifer into the soluble stratum. Such cavity enlargements may cause land subsidence and structure collapse.

  17. Effect of Hydrogen Charging on the Stress Corrosion Behavior of 2205 Duplex Stainless Steel Under 3.5 wt.% NaCl Thin Electrolyte Layer

    NASA Astrophysics Data System (ADS)

    Zhao, Tianliang; Liu, Zhiyong; Hu, Shanshan; Du, Cuiwei; Li, Xiaogang

    2017-05-01

    The effect of hydrogen charging on the stress corrosion cracking (SCC) behavior of 2205 duplex stainless steel (DSS) under 3.5 wt.% NaCl thin electrolyte layer was investigated on precharged samples through hydrogen determination, electrochemical measurement, and slow strain rate tensile test. Results show that hydrogen charging weakens the passive film without inducing any obvious trace of localized anodic dissolution. Therefore, hydrogen charging increases the SCC susceptibility of 2205 DSS mainly through mechanism of hydrogen embrittlement rather than mechanism of localized anodic dissolution. 2205 DSS shows a more susceptibility to hydrogen under the TEL when hydrogen charging current density (HCCD) is between 20 and 50 mA cm-2. The increasing trend is remarkable when hydrogen charging current density increases from 20 to 50 mA cm-2 and fades after 50 mA cm-2.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moeschner, Goeril; Lothenbach, Barbara; Figi, Renato

    Citric acid can be used to retard the hydration of cement. Experiments were carried out to investigate the influence of citric acid on the composition of solid and liquid phases during cement hydration. Analyses of the solid phases showed that dissolution of alite and aluminate slowed down while analyses of the pore solution showed that citric acid was removed almost completely from the pore solution within the first hours of hydration. The complexation of the ions by citrate was weak, which could also be confirmed by thermodynamic calculations. Only 2% of the dissolved Ca and 0.001% of the dissolved Kmore » formed complexes with citrate during the first hours. Thus, citric acid retards cement hydration not by complex formation, but by slowing down the dissolution of the clinker grains. Thermodynamic calculations did not indicate precipitation of a crystalline citrate species. Thus, it is suggested that citrate sorbed onto the clinker surface and formed a protective layer around the clinker grains retarding their dissolution.« less

  19. In vitro study comparing the ability of mono-octanoin and mono-octanoin plus methyl tert-butyl ether to dissolve biliary stones.

    PubMed

    Tritapepe, R; Cesana, B

    1996-01-01

    This in vitro study compared the gallstone dissolution rates of mono-octanoin, mono-octanoin plus 10% distilled water, and mono-octanoin plus methyl tert-butyl ether 2:1. Sixteen stones were treated with each solvent at a slow perfusion rate of 3-4 ml/h and a rapid perfusion rate of 2.5 ml/30 min with 20-sec instillation/aspiration cycles, both with and without bile. The stones were weighed before, and 3, 6, 12 and 24 hrs after the start of treatment: the solvent was changed every 30 min. After 24 hrs of instillation/aspiration without bile, the mono-octanoin/methyl tert-butyl ether mixture reduced the weight of the stones by 93%, mono-octanoin plus water by 63%, and mono-octanoin alone by 52%; with bile, the figures were, respectively, 86%, 42% and 40%. The mono-octanoin/methyl tert-butyl ether mixture thus took approximately half the time needed by the other two preparations to dissolve the stones to the same extent, a finding which may be relevant for the clinical dissolution of bile duct stones.

  20. Comparison of PAH Biodegradation and Desorption Kinetics During Bioremediation of Aged Petroleum Hydrocarbon Contaminated Soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huesemann, Michael H.; Hausmann, Tom S.; Fortman, Timothy J.

    It is commonly assumed that mass-transfer limitations are the cause for slow and incomplete biodegradation of PAHs in aged soils. In order to test this hypothesis, the biodegradation rate and the abiotic release rate were measured and compared for selected PAHs in three different soils. It was found that PAH biodegradation was not mass-transfer limited during slurry bioremediation of an aged loamy soil. By contrast, PAH biodegradation rates were much larger than abiotic release rates in kaolinite clay indicating that sorbed-phase PAHs can apparently be biodegraded directly from mineral surfaces without prior desorption or dissolution into the aqueous phase. Amore » comparison of PAH biodegradation rates and abiotic release rates at termination of the slurry bioremediation treatment revealed that abiotic release rates are much larger than the respective biodegradation rates. In addition, it was found that the number of hydrocarbon degraders decreased by four orders of magnitude during the bioremediation treatment. It can therefore be concluded that the slow and incomplete biodegradation of PAHs is not caused by mass-transfer limitations but rather by microbial factors. Consequently, the residual PAHs that remain after extensive bioremediation treatment are still bioavailable and for that reason could pose a greater risk to environmental receptors than previously thought.« less

  1. A novel determination of calcite dissolution kinetics in seawater

    NASA Astrophysics Data System (ADS)

    Subhas, Adam V.; Rollins, Nick E.; Berelson, William M.; Dong, Sijia; Erez, Jonathan; Adkins, Jess F.

    2015-12-01

    We present a novel determination of the dissolution kinetics of inorganic calcite in seawater. We dissolved 13 C -labeled calcite in unlabeled seawater, and traced the evolving δ13 C composition of the fluid over time to establish dissolution rates. This method provides sensitive determinations of dissolution rate, which we couple with tight constraints on both seawater saturation state and surface area of the dissolving minerals. We have determined dissolution rates for two different abiotic calcite materials and three different grain sizes. Near-equilibrium dissolution rates are highly nonlinear, and are well normalized by geometric surface area, giving an empirical dissolution rate dependence on saturation state (Ω) of: This result substantiates the non-linear response of calcite dissolution to undersaturation. The bulk dissolution rate constant calculated here is in excellent agreement with those determined in far from equilibrium and dilute solution experiments. Plots of dissolution versus undersaturation indicates the presence of at least two dissolution mechanisms, implying a criticality in the calcite-seawater system. Finally, our new rate determination has implications for modeling of pelagic and seafloor dissolution. Nonlinear dissolution kinetics in a simple 1-D lysocline model indicate a possible transition from kinetic to diffusive control with increasing water depth, and also confirm the importance of respiration-driven dissolution in setting the shape of the calcite lysocline.

  2. Evaluation of various dissolution media for predicting in vivo performance of class I and II drugs.

    PubMed

    Galia, E; Nicolaides, E; Hörter, D; Löbenberg, R; Reppas, C; Dressman, J B

    1998-05-01

    In this paper we seek to verify the differences in dissolution behavior between class I and class II drugs and to evaluate the suitability of two new physiologically based media, of Simulated Gastric Fluid (SGF) and of milk for their ability to forecast trends in the in vivo performance of class II compounds and their formulations. Dissolution behavior of two class I drugs, i.e. acetaminophen and metoprolol, and of three class II drugs, i.e. danazol, mefenamic acid and ketoconazole, was studied with USP Apparatus 2 in water, SGF, milk, Simulated Intestinal Fluid without pancreatin (SIFsp) and in two media simulating the small intestinal contents in the fed (FeSSIF) and fasted (FaSSIF) states, respectively. Class I powders dissolved rapidly in all media tested. Acetaminophen dissolution in milk was slow from one tablet formulation, in all other cases dissolution was more than 85% complete in 15 minutes. The dissolution rate of metoprolol was shown to be dependent on formulation and manufacturing method, and one of the three tablet formulations did not meet compendial specifications (80%/30 minutes). Dissolution behavior of class II drugs was greatly affected by choice of medium. Dissolution from a capsule formulation of danazol proved to be dependent on the concentration of solubilizing agents, with a the 30-fold increase in percentage dissolved within 90 minutes upon changing from aqueous media without surfactants to FaSSIF. Use of FeSSIF or milk as the dissolution medium resulted in an even greater increase in percentage dissolved, 100 and 180-fold respectively. Dissolution of the weak acid mefenamic acid from a capsule formulation is dependent on both pH and bile salt concentration, which leads to an offset between increased bile salt concentration and lower pH in the fed state compared to the fasted state medium. The weak base ketoconazole showed complete dissolution from a tablet formulation in Simulated Gastric Fluid without pepsin (SGFsp) within 30 minutes, 70% dissolution in 2 hours under fed state simulated upper jejunal conditions but only 6% dissolution in 2 hours under fasted state conditions. As predicted, dissolution of class II drugs proved to be in general much more dependent on the medium than class I drugs. With the array of compendial and physiological media available, it should be possible to design a suitable set of tests to predict the in vivo dissolution of both class I and II drugs from immediate release formulations.

  3. Dissolution Flowsheet for High Flux Isotope Reactor Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, W. E.; Rudisill, T. S.; O'Rourke, P. E.

    2016-09-27

    As part of the Spent Nuclear Fuel (SNF) processing campaign, H-Canyon is planning to begin dissolving High Flux Isotope Reactor (HFIR) fuel in late FY17 or early FY18. Each HFIR fuel core contains inner and outer fuel elements which were fabricated from uranium oxide (U 3O 8) dispersed in a continuous Al phase using traditional powder metallurgy techniques. Fuels fabricated in this manner, like other SNF’s processed in H-Canyon, dissolve by the same general mechanisms with similar gas generation rates and the production of H 2. The HFIR fuel cores will be dissolved and the recovered U will be down-blendedmore » into low-enriched U. HFIR fuel was previously processed in H-Canyon using a unique insert in both the 6.1D and 6.4D dissolvers. Multiple cores will be charged to the same dissolver solution maximizing the concentration of dissolved Al. The objective of this study was to identify flowsheet conditions through literature review and laboratory experimentation to safely and efficiently dissolve the HFIR fuel in H-Canyon. Laboratory-scale experiments were performed to evaluate the dissolution of HFIR fuel using both Al 1100 and Al 6061 T6 alloy coupons. The Al 1100 alloy was considered a representative surrogate which provided an upper bound on the generation of flammable (i.e., H 2) gas during the dissolution process. The dissolution of the Al 6061 T6 alloy proceeded at a slower rate than the Al 1100 alloy, and was used to verify that the target Al concentration in solution could be achieved for the selected Hg concentration. Mass spectrometry and Raman spectroscopy were used to provide continuous monitoring of the concentration of H 2 and other permanent gases in the dissolution offgas, allowing the development of H 2 generation rate profiles. The H 2 generation rates were subsequently used to evaluate if a full HFIR core could be dissolved in an H-Canyon dissolver without exceeding 60% of the calculated lower flammability limit (LFL) for H 2 at a given Hg concentration. Complete dissolution of the Al 1100 and Al 6061 T6 alloys up to a final Al concentration of 2 M was obtained using a 7 M HNO 3 solution containing a 0.002 M Hg catalyst. However, following the dissolutions, solids were observed in the solution. The solids were amorphous, but likely originated from the Si present in the alloys. No crystalline materials, such as Al(NO 3) 3 were observed. During the course of the dissolution experiments, it was determined that delaying the addition of Hg once the HNO 3 solution reached the boiling point can reduce the total offgas and H 2 generation rates. The delay in starting the Hg addition is not necessary for HFIR fuel dissolution, but could be useful in other research reactor dissolution campaigns. The potential to generate flammable concentrations of H 2 in the offgas during a HFIR fuel dissolution was evaluated using the experimental data. The predicted H 2 concentration in the dissolver offgas stream was compared with 60% of the calculated H 2 LFL at 200 °C using several prototypical experiments. The calculations showed that a full HFIR core can be dissolved using nominally 0.002 M Hg to catalyze the dissolution. The margin between the predicted H 2 concentration and the calculated LFL was greater when the solution was allowed to boil for 45 min prior to initiating the Hg addition. When the Hg was increased to 0.004 M, the predicted H 2 concentration exceeded the calculated LFL early in the dissolution. The dissolution experiments also demonstrated that additional Hg (beyond the initial 0.002 M) could be added as the Al concentration increases. The ability to add more Hg during a HFIR fuel dissolution could be beneficial if slow dissolution rates are observed at high Al concentrations. Experimental data were used to demonstrate that the predicted H 2 concentration in a dissolver was below 60% of the calculated LFL at 200 °C when 0.004 M Hg was used to catalyze the dissolution if the Al concentration is conservatively greater than 0.5 M. Data also show that the Hg concentration during a HFIR fuel dissolution can be increased from 0.002 to 0.008 M at an Al concentration of 1.3 M.« less

  4. Nystatin and lidocaine pastilles for the local treatment of oral mucositis.

    PubMed

    Silva, Filipa Cosme; Marto, Joana M; Salgado, Ana; Machado, Paula; Silva, Alexandra N; Almeida, António J

    2017-03-01

    Oral mucositis (OM) is a common adverse reaction to radiotherapy and chemotherapy in oncology. Its treatment requires oral formulations that enhance therapy compliance, improve administration and ensure drug effectiveness. Solid dosage forms that act by slow dissolution, such as pastilles, are an effective alternative to mouthwashes, for their versatility, ease of administration and extended residence time in the oral cavity. The present work describes the development and stability studies of an innovative formulation of nystatin and lidocaine pastilles for the treatment of oral mucositis. Full pharmaceutical quality testing was carried out, including disintegration and dissolution testing, texture profile analysis, grittiness and an antifungal activity testing. A soft pastille formulation containing 0.25% lidocaine and 78,000 IU nystatin was obtained, presenting suitable pharmaceutical characteristics, as a disintegration time of 17 ± 2 min, dissolution rate and microbiological and physicochemical for 30 days when stored at 2-8 °C under light protection. Palatability was also evaluated, being well accepted by a panel of 38 healthy volunteers. This formulation allows an accurate drug dosing by the prescriber, while enabling the patients to control the retention time of the drugs in the oral cavity and consequently manage their pain treatment.

  5. The gating effect by thousands of bubble-propelled micromotors in macroscale channels

    NASA Astrophysics Data System (ADS)

    Teo, Wei Zhe; Wang, Hong; Pumera, Martin

    2015-07-01

    Increasing interest in the utilization of self-propelled micro-/nanomotors for environmental remediation requires the examination of their efficiency at the macroscale level. As such, we investigated the effect of micro-/nanomotors' propulsion and bubbling on the rate of sodium hydroxide dissolution and the subsequent dispersion of OH- ions across more than 30 cm, so as to understand how these factors might affect the dispersion of remediation agents in real systems which might require these agents to travel long distances to reach the pollutants. Experimental results showed that the presence of large numbers of active bubble-propelled tubular bimetallic Cu/Pt micromotors (4.5 × 104) induced a gating effect on the dissolution and dispersion process, slowing down the change in pH of the solution considerably. The retardation was found to be dependent on the number of active micromotors present in the range of 1.5 × 104 to 4.5 × 104 micromotors. At lower numbers (0.75 × 104), however, propelling micromotors did speed up the dissolution and dispersion process. The understanding of the combined effects of large number of micro-/nanomotors' motion and bubbling on its macroscale mixing behavior is of significant importance for future applications of these devices.

  6. Origin, diagnostics, and mitigation of a salt dissolution sinkhole at the US Strategic Petroleum Reserve storage site, Weeks Island, Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neal, J.T.; Myers, R.E.

    1995-01-27

    A sinkhole was first observed in May 1992 over the edge of the two-level former salt mine that was converted for oil storage by the US Strategic Petroleum Reserve (SPR). Diagnostic studies that included geophysical, geochemical, drilling, and hydrological methods suggest a direct connection exists between the surface collapse area and the underground mine as shown by correlative measurements of sediment slump rates and brine influx into the mine. The dissolution of salt below the sinkhole that initiated the leak into the mine was likely caused by several confluent geologic processes, and exacerbated by mining-induced stresses that created fractures whichmore » served as hydrologic flowpaths. Modeling studies of mine stresses show that years may be required before tensional cracking begins to occur, but once begun can continue to develop, and relieve the stress in that specific regime. The crack regime creates the avenue for incursion of groundwater, very slowly initially, but gradually enlarging as undersaturated groundwater dissolves salt on the sides of the crack. Mitigation measures include increasing the mine pressurization, slowing the dissolution by injecting brine into the sinkhole throat, and freeze grouting to restrict hydrologic flowpaths.« less

  7. Mass Transfer Limited Enhanced Bioremediation at Dnapl Source Zones: a Numerical Study

    NASA Astrophysics Data System (ADS)

    Kokkinaki, A.; Sleep, B. E.

    2011-12-01

    The success of enhanced bioremediation of dense non-aqueous phase liquids (DNAPLs) relies on accelerating contaminant mass transfer from the organic to the aqueous phase, thus enhancing the depletion of DNAPL source zones compared to natural dissolution. This is achieved by promoting biological activity that reduces the contaminant's aqueous phase concentration. Although laboratory studies have demonstrated that high reaction rates are attainable by specialized microbial cultures in DNAPL source zones, field applications of the technology report lower reaction rates and prolonged remediation times. One possible explanation for this phenomenon is that the reaction rates are limited by the rate at which the contaminant partitions from the DNAPL to the aqueous phase. In such cases, slow mass transfer to the aqueous phase reduces the bioavailability of the contaminant and consequently decreases the potential source zone depletion enhancement. In this work, the effect of rate limited mass transfer on bio-enhanced dissolution of DNAPL chlorinated ethenes is investigated through a numerical study. A multi-phase, multi-component groundwater transport model is employed to simulate DNAPL mass depletion for a range of source zone scenarios. Rate limited mass transfer is modeled by a linear driving force model, employing a thermodynamic approach for the calculation of the DNAPL - water interfacial area. Metabolic reductive dechlorination is modeled by Monod kinetics, considering microbial growth and self-inhibition. The model was utilized to identify conditions in which mass transfer, rather than reaction, is the limiting process, as indicated by the bioavailability number. In such cases, reaction is slower than expected, and further increase in the reaction rate does not enhance mass depletion. Mass transfer rate limitations were shown to affect both dechlorination and microbial growth kinetics. The complex dynamics between mass transfer, DNAPL transport and distribution, and dechlorination kinetics were reflected in a transient, spatially heterogeneous bioavailability number and dissolution enhancement. In agreement with the literature, source zone architecture largely determined the impact of mass transfer on potential dissolution enhancement, with bioavailability decreasing the most at high ganglia to pool ratios. The results of this study suggest that if mass transfer rate limitations are not considered in designing bioremediation applications at DNAPL source zones, the enhancement of DNAPL depletion and the overall effectiveness of enhanced bioremediation may be significantly overestimated.

  8. Effect of sodium lauryl sulfate in dissolution media on dissolution of hard gelatin capsule shells.

    PubMed

    Zhao, Fang; Malayev, Vyacheslav; Rao, Venkatramana; Hussain, Munir

    2004-01-01

    Sodium lauryl sulfate (SLS) is a commonly used surfactant in dissolution media for poorly water soluble drugs. However, it has occasionally been observed that SLS negatively impacts the dissolution of drug products formulated in gelatin capsules. This study investigated the effect of SLS on the dissolution of hard gelatin capsule shells. The USP paddle method was used with online UV monitoring at 214 nm (peptide bond). Empty size #0 capsule shells were held to the bottom of the dissolution vessel by magnetic three-prong sinkers. SLS significantly slowed down the dissolution of gelatin shells at pH < 5. Visually, the gelatin shells transformed into some less-soluble precipitate under these conditions. This precipitate was found to contain a higher sulfur content than the gelatin control sample by elemental analysis, indicating that SLS is part of the precipitate. Additionally, the slowdown of capsule shell dissolution was shown to be dependent on the SLS concentration and the ionic strength of the media. SLS interacts with gelatin to form a less-soluble precipitate at pH < 5. The use of SLS in dissolution media at acidic pH should be carefully evaluated for gelatin capsule products.

  9. Non-Boussinesq Dissolution-Driven Convection in Porous Media

    NASA Astrophysics Data System (ADS)

    Amooie, M. A.; Soltanian, M. R.; Moortgat, J.

    2017-12-01

    Geological carbon dioxide (CO2) sequestration in deep saline aquifers has been increasingly recognized as a feasible technology to stabilize the atmospheric carbon concentrations and subsequently mitigate the global warming. Solubility trapping is one of the most effective storage mechanisms, which is associated initially with diffusion-driven slow dissolution of gaseous CO2 into the aqueous phase, followed by density-driven convective mixing of CO2 throughout the aquifer. The convection includes both diffusion and fast advective transport of the dissolved CO2. We study the fluid dynamics of CO2 convection in the underlying single aqueous-phase region. Two modeling approaches are employed to define the system: (i) a constant-concentration condition for CO2 in aqueous phase at the top boundary, and (ii) a sufficiently low, constant injection-rate for CO2 from top boundary. The latter allows for thermodynamically consistent evolution of the CO2 composition and the aqueous phase density against the rate at which the dissolved CO2 convects. Here we accurately model the full nonlinear phase behavior of brine-CO2 mixture in a confined domain altered by dissolution and compressibility, while relaxing the common Boussinesq approximation. We discover new flow regimes and present quantitative scaling relations for global characters of spreading, mixing, and dissolution flux in two- and three-dimensional media for the both model types. We then revisit the universal Sherwood-Rayleigh scaling that is under debate for porous media convective flows. Our findings confirm the sublinear scaling for the constant-concentration case, while reconciling the classical linear scaling for the constant-injection model problem. The results provide a detailed perspective into how the available modeling strategies affect the prediction ability for the total amount of CO2 dissolved in the long term within saline aquifers of different permeabilities.

  10. Century-long acidification reveals possible consequences of coral reef sediment dissolution

    NASA Astrophysics Data System (ADS)

    Fink, A.; Hassenrueck, C.; Guilini, K.; Lichtschlag, A.; Borisov, S.; Fabricius, K.; de Beer, D.

    2016-02-01

    Coarse permeable carbonate sediments play a key role as biocatalytical filters in element cycling on coral reefs, but are subjected to increased dissolution due to ocean acidification (OA). We investigated coral reef sediment properties and remineralization rates along a pH gradient in an area of volcanic CO2 seeping within a fringing coral reef (Papua New Guinea). In coarse carbonate-rich sediments of the reference site (water column pHT = 8.1) in-situ microprofiles showed a buffered porewater pH of 7.7 to 7.9. In contrast, sites with diffuse CO2 seeping (water column pHT 8.0 to 7.7) experienced porewater pH of less than 6 to 7. At the seep sites, the sediments were almost free of carbonates and were dominated by silicates. We found that this resulted in reduced grain sizes leading to decreased permeability and oxygen penetration into the sediment. Areal oxygen consumption and sulfate reduction rates declined at the seep sites. The pattern in oxygen consumption could be explained by oxygen limitation due to lower permeability. However, sulfate reduction was never limited by electron acceptor, indicating that the seep site sediments were limited in electron donors. In line with lower process rates, abundances of microorganisms and meiofauna declined at the seep sites. Our findings suggest that an enhanced dissolution of carbonate sediments due to OA could impact their biocatalytical filtration function. This could slow down the intense element cycling in coral reefs and other coastal carbonate environments, with consequences for ecosystem productivity and functioning.

  11. An in vitro analysis of disintegration times of different formulations of olanzapine orodispersible tablet: a preliminary report.

    PubMed

    Hobbs, David; Karagianis, Jamie; Treuer, Tamas; Raskin, Joel

    2013-12-01

    Orodispersible tablets (ODTs) are tablet or wafer forms of medication that disintegrate in the mouth, aided only by saliva. ODTs rely on different fast dissolve/disintegration manufacturing technologies. Disintegration time differences for several olanzapine ODT forms were investigated. Risperdal M-Tab(®) was included as a non-olanzapine ODT comparator. Eleven olanzapine ODT examples and orodispersible risperidone strengths were evaluated in vitro for formulation composition, manufacturing method, disintegration and dissolution characteristics, and formulation differences in comparison with freeze dried Zydis(®) ODT. Automated dissolution test equipment captured ODT dissolution rates by measuring real-time release of active ingredient. A high-speed video camera was used to capture tablet disintegration times in warm simulated saliva. The main outcome measure was the disintegration and dissolution characteristics of the ODT formulations. The ODT manufacturing method was associated with time to disintegrate; the fastest were freeze dried tablets, followed by soft compressed tablets and then hard/dense tablets. Olanzapine Zydis(®) was the only ODT that completely disintegrated in less than 4 s for all strengths (5, 10, 15, and 20 mg), followed by 5-mg Prolanz FAST(®) (12 s) and then risperidone ODT 4 mg (40 s). Reasons for slow dissolution of the olanzapine generics may include low product potency, excipient binding, excipient solubility, active ingredient particle size and incomplete disintegration. Differences in the formulation and manufacturing process of olanzapine ODTs appear to have a strong influence on the disintegration time of the active compound; differences that may potentially impact their use in clinical practice.

  12. Boussinesq approximation of the Cahn-Hilliard-Navier-Stokes equations.

    PubMed

    Vorobev, Anatoliy

    2010-11-01

    We use the Cahn-Hilliard approach to model the slow dissolution dynamics of binary mixtures. An important peculiarity of the Cahn-Hilliard-Navier-Stokes equations is the necessity to use the full continuity equation even for a binary mixture of two incompressible liquids due to dependence of mixture density on concentration. The quasicompressibility of the governing equations brings a short time-scale (quasiacoustic) process that may not affect the slow dynamics but may significantly complicate the numerical treatment. Using the multiple-scale method we separate the physical processes occurring on different time scales and, ultimately, derive the equations with the filtered-out quasiacoustics. The derived equations represent the Boussinesq approximation of the Cahn-Hilliard-Navier-Stokes equations. This approximation can be further employed as a universal theoretical model for an analysis of slow thermodynamic and hydrodynamic evolution of the multiphase systems with strongly evolving and diffusing interfacial boundaries, i.e., for the processes involving dissolution/nucleation, evaporation/condensation, solidification/melting, polymerization, etc.

  13. Hydration of dicalcium silicate and diffusion through neo-formed calcium-silicate-hydrates at weathered surfaces control the long-term leaching behaviour of basic oxygen furnace (BOF) steelmaking slag.

    PubMed

    Stewart, Douglas I; Bray, Andrew W; Udoma, Gideon; Hobson, Andrew J; Mayes, William M; Rogerson, Mike; Burke, Ian T

    2018-04-01

    Alkalinity generation and toxic trace metal (such as vanadium) leaching from basic oxygen furnace (BOF) steel slag particles must be properly understood and managed by pre-conditioning if beneficial reuse of slag is to be maximised. Water leaching under aerated conditions was investigated using fresh BOF slag at three different particle sizes (0.5-1.0, 2-5 and 10 × 10 × 20 mm blocks) and a 6-month pre-weathered block. There were several distinct leaching stages observed over time associated with different phases controlling the solution chemistry: (1) free-lime (CaO) dissolution (days 0-2); (2) dicalcium silicate (Ca 2 SiO 4 ) dissolution (days 2-14) and (3) Ca-Si-H and CaCO 3 formation and subsequent dissolution (days 14-73). Experiments with the smallest size fraction resulted in the highest Ca, Si and V concentrations, highlighting the role of surface area in controlling initial leaching. After ~2 weeks, the solution Ca/Si ratio (0.7-0.9) evolved to equal those found within a Ca-Si-H phase that replaced dicalcium silicate and free-lime phases in a 30- to 150-μm altered surface region. V release was a two-stage process; initially, V was released by dicalcium silicate dissolution, but V also isomorphically substituted for Si into the neo-formed Ca-Si-H in the alteration zone. Therefore, on longer timescales, the release of V to solution was primarily controlled by considerably slower Ca-Si-H dissolution rates, which decreased the rate of V release by an order of magnitude. Overall, the results indicate that the BOF slag leaching mechanism evolves from a situation initially dominated by rapid hydration and dissolution of primary dicalcium silicate/free-lime phases, to a slow diffusion limited process controlled by the solubility of secondary Ca-Si-H and CaCO 3 phases that replace and cover more reactive primary slag phases at particle surfaces.

  14. Estimation of dissolution rate from in vivo studies of synthetic vitreous fibers.

    PubMed

    Eastes, W; Potter, R M; Hadley, J G

    2000-11-01

    Although the dissolution rate of a fiber was originally defined by a measurement of dissolution in simulated lung fluid in vitro, it is feasible to determine it from animal studies as well. The dissolution rate constant for a fiber may be extracted from the decrease in long fiber diameter observed in certain intratracheal instillation experiments or from the observed long fiber retention in short-term biopersistence studies. These in vivo dissolution rates agree well with those measured in vitro for the same fibers. For those special types of fibers, the high-alumina rock wool fibers that could not be measured in vitro, the method provides a way of obtaining a chemical dissolution rate constant from an animal study. The inverse of the in vivo dissolution rate, the fiber dissolution time, correlates well with the weighted half life of long fibers in a biopersistence study, and the in vivo dissolution rate may be estimated accurately from this weighted half-life.

  15. Salt-enhanced chemical weathering of building materials and bacterial mineralization of calcium carbonate as a treatment

    NASA Astrophysics Data System (ADS)

    Schiro, M.; Ruiz-Agudo, E.; Jroundi, F.; Gonzalez-Muñoz, M. T.; Rodriguez-Navarro, C.

    2012-04-01

    Salt weathering is an important mechanism contributing to the degradation and loss of stone building materials. In addition to the physical weathering resulting from crystallization pressure, the presence of salts in solution greatly enhances the chemical weathering potential of pore waters. Flow through experiments quantify the dissolution rates of calcite and quartz grains (63-125 micrometer diameter) when subjected to 1.0 ionic strength solutions of MgSO4, MgCl, Na2SO4 or NaCl. Results indicate that the identity of the cation is the primary control over the dissolution rate of both calcite and quartz substrates, with salt-enhanced dissolution occurring most rapidly in Mg2+ bearing solutions. It has been observed that weathering rates of rocks in nature, as well as building stones, are slowed down by naturally occurring or artificially produced patinas. These tend to be bacterially produced, durable mineralized coatings that lend some degree of protection to the underlying stone surface [1]. Our research shows that bacterially produced carbonate coatings can be quite effective at reducing chemical weathering of stone by soluble salts. The calcite-producing-bacteria used in this study were isolated from stone monuments in Granada, Spain [2] and cultivated in an organic-rich culture medium on a variety of artificial and natural substrates (including limestone, marble, sandstone, quartz, calcite single crystals, glass cover-slips, and sintered porous glass). Scanning electron microscopy (FESEM) was used to image bacterial calcite growth and biofilm formation. In-situ atomic force microscopy (AFM) enabled calculation of dissolution rates of untreated and bacterially treated surfaces. 2D-XRD showed the mineralogy and crystallographic orientation of bacterial calcium carbonate. Results indicate that bacterially produced calcite crystals form a coherent, mechanically resistant surface layer in perfect crystallographic continuity with the calcite substrate (self-epitaxy). These calcite biominerals are more resistant to chemical weathering by salt-enhanced dissolution, apparently due to the incorporation of organics (bacterial exopolymeric substances, EPS). Conversely, on silicate substrates, non-oriented vaterite forms, leading to limited protection. These preliminary results indicate that bacterial treatments have a significant potential to protect the stone built cultural heritage. [1] De Muynck et al. (2010) Ecol. Eng. 36, 118-136. [2] Jimenez-Lopez et al. (2007) Chemosphere 68, 1929-1936.

  16. Comparison on Response and Dissolution Rates Between Ursodeoxycholic Acid Alone or in Combination With Chenodeoxycholic Acid for Gallstone Dissolution According to Stone Density on CT Scan: Strobe Compliant Observation Study.

    PubMed

    Lee, Jae Min; Hyun, Jong Jin; Choi, In Young; Yeom, Suk Keu; Kim, Seung Young; Jung, Sung Woo; Jung, Young Kul; Koo, Ja Seol; Yim, Hyung Joon; Lee, Hong Sik; Lee, Sang Woo; Kim, Chang Duck

    2015-12-01

    Medical dissolution of gallstone is usually performed on radiolucent gallstones in a functioning gallbladder. However, absence of visible gallstone on plain abdominal x-ray does not always preclude calcification. This study aims to compare the response and dissolution rates between ursodeoxycholic acid (UDCA) alone or in combination with chenodeoxycholic acid (CDCA) according to stone density on computed tomography (CT) scan. A total of 126 patients underwent dissolution therapy with either UDCA alone or combination of CDCA and UDCA (CNU) from December 2010 to March 2014 at Korea University Ansan Hospital. In the end, 81 patients (CNU group = 44, UDCA group = 37) completed dissolution therapy for 6 months. Dissolution rate (percentage reduction in the gallstone volume) and response to therapy (complete dissolution or partial dissolution defined as reduction in stone volume of >50%) were compared between the 2 groups. Dissolution and response rates of sludge was also compared between the 2 groups. The overall response rate was 50.6% (CNU group 43.2% vs UDCA group 59.5%, P = 0.14), and the overall dissolution rate was 48.34% (CNU group 41.5% vs UDCA group 56.5%, P = 0.13). When analyzed according to stone density, response rate was 33.3%, 87.1%, 30.0%, and 6.2% for hypodense, isodense, hyperdense, and calcified stones, respectively. Response rate (85.7% vs 88.2%, P = 0.83) and dissolution rate (81.01% vs 85.38%, P = 0.17) of isodense stones were similar between CNU and UDCA group. When only sludge was considered, the overall response rate was 87.5% (CNU group 71.4% vs UDCA group 94.1%, P = 0.19), and the overall dissolution rate was 85.42% (CNU group 67.9% vs UDCA group 92.7%, P = 0.23). Patients with isodense gallstones and sludge showed much better response to dissolution therapy with CNU and UDCA showing comparable efficacy. Therefore, CT scan should be performed before medication therapy if stone dissolution is intended.

  17. Behavior of CO2/water flow in porous media for CO2 geological storage.

    PubMed

    Jiang, Lanlan; Yu, Minghao; Liu, Yu; Yang, Mingjun; Zhang, Yi; Xue, Ziqiu; Suekane, Tetsuya; Song, Yongchen

    2017-04-01

    A clear understanding of two-phase fluid flow properties in porous media is of importance to CO 2 geological storage. The study visually measured the immiscible and miscible displacement of water by CO 2 using MRI (magnetic resonance imaging), and investigated the factor influencing the displacement process in porous media which were filled with quartz glass beads. For immiscible displacement at slow flow rates, the MR signal intensity of images increased because of CO 2 dissolution; before the dissolution phenomenon became inconspicuous at flow rate of 0.8mLmin -1 . For miscible displacement, the MR signal intensity decreased gradually independent of flow rates, because supercritical CO 2 and water became miscible in the beginning of CO 2 injection. CO 2 channeling or fingering phenomena were more obviously observed with lower permeable porous media. Capillary force decreases with increasing particle size, which would increase permeability and allow CO 2 and water to invade into small pore spaces more easily. The study also showed CO 2 flow patterns were dominated by dimensionless capillary number, changing from capillary finger to stable flow. The relative permeability curve was calculated using Brooks-Corey model, while the results showed the relative permeability of CO 2 slightly decreases with the increase of capillary number. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Dissolution rate enhancement of gliclazide by ordered mixing.

    PubMed

    Saharan, Vikas A; Choudhury, Pratim K

    2011-09-01

    The poorly water soluble antidiabetic drug gliclazide was selected to study the effect of excipients on dissolution rate enhancement. Ordered mixtures of micronized gliclazide with lactose, mannitol, sorbitol, maltitol and sodium chloride were prepared by manual shaking of glass vials containing the drug and excipient(s). Different water soluble excipients, addition of surfactant and superdisintegrant, drug concentration and carrier particle size influenced the dissolution rate of the drug. Dissolution rate studies of the prepared ordered mixtures revealed an increase in drug dissolution with all water soluble excipients. The order of dissolution rate improvement for gliclazide was mannitol > lactose > maltitol > sorbitol > sodium chloride. Composite granules of the particle size range 355-710 μm were superior in increasing the drug dissolution rate from ordered mixtures. Reducing the carrier particle size decreased the dissolution rate of the drug as well as the increase in drug concentration. Kinetic modeling of drug release data fitted best the Hixson-Crowell model, which indicates that all the ordered mixture formulations followed the cube root law fairly well.

  19. A model for trace metal sorption processes at the calcite surface: Adsorption of Cd2+ and subsequent solid solution formation

    USGS Publications Warehouse

    Davis, J.A.; Fuller, C.C.; Cook, A.D.

    1987-01-01

    The rate of Cd2+ sorption by calcite was determined as a function of pH and Mg2+ in aqueous solutions saturated with respect to calcite but undersaturated with respect to CdCO3. The sorption is characterized by two reaction steps, with the first reaching completion within 24 hours. The second step proceeded at a slow and nearly constant rate for at least 7 days. The rate of calcite recrystallization was also studied, using a Ca2+ isotopic exchange technique. Both the recrystallization rate of calcite and the rate of slow Cd2+ sorption decrease with increasing pH or with increasing Mg2+. The recrystallization rate could be predicted from the number of moles of Ca present in the hydrated surface layer. A model is presented which is consistent with the rates of Cd2+ sorption and Ca2+ isotopic exchange. In the model, the first step in Cd2+ sorption involves a fast adsorption reaction that is followed by diffusion of Cd2+ into a surface layer of hydrated CaCO3 that overlies crystalline calcite. Desorption of Cd2+ from the hydrated layer is slow. The second step is solid solution formation in new crystalline material, which grows from the disordered mixture of Cd and Ca carbonate in the hydrated surface layer. Calculated distribution coefficients for solid solutions formed at the surface are slightly greater than the ratio of equilibrium constants for dissolution of calcite and CdCO3, which is the value that would be expected for an ideal solid solution in equilibrium with the aqueous solution. ?? 1987.

  20. Does the dose-solubility ratio affect the mean dissolution time of drugs?

    PubMed

    Lánský, P; Weiss, M

    1999-09-01

    To present a new model for describing drug dissolution. On the basis of the new model to characterize the dissolution profile by the distribution function of the random dissolution time of a drug molecule, which generalizes the classical first order model. Instead of assuming a constant fractional dissolution rate, as in the classical model, it is considered that the fractional dissolution rate is a decreasing function of the dissolved amount controlled by the dose-solubility ratio. The differential equation derived from this assumption is solved and the distribution measures (half-dissolution time, mean dissolution time, relative dispersion of the dissolution time, dissolution time density, and fractional dissolution rate) are calculated. Finally, instead of monotonically decreasing the fractional dissolution rate, a generalization resulting in zero dissolution rate at time origin is introduced. The behavior of the model is divided into two regions defined by q, the ratio of the dose to the solubility level: q < 1 (complete dissolution of the dose, dissolution time) and q > 1 (saturation of the solution, saturation time). The singular case q = 1 is also treated and in this situation the mean as well as the relative dispersion of the dissolution time increase to infinity. The model was successfully fitted to data (1). This empirical model is descriptive without detailed physical reasoning behind its derivation. According to the model, the mean dissolution time is affected by the dose-solubility ratio. Although this prediction appears to be in accordance with preliminary application, further validation based on more suitable experimental data is required.

  1. Development and characterization of different black raspberry confection matrices designed for delivery of phytochemicals.

    PubMed

    Gu, Junnan; Ahn-Jarvis, Jennifer H; Vodovotz, Yael

    2015-03-01

    Three forms of confections containing black raspberries (BRB) powder were developed to provide controlled release of phytochemicals for oral disease prevention. Our objective was to investigate the impact of varying confection matrices on the release rate of BRB phytochemicals. Confections were developed and prepared. Textural properties of confections were analyzed, compared and correlated with the release rate of phytochemicals from BRB confections with in vitro dissolution test. In the results, BRB content reached 22% in hard candy and pectin-based confections and 40% in starch-based confections, respectively. Pectin- and starch-based confections retained >93% of its original anthocyanins after processing while hard candy had 59%. Starch confections showed higher G' in rheological analysis and higher hardness but lower cohesiveness and springiness in textural profile analysis than pectin confections (P < 0.05). The confection types showed different microstructure with scanning electronic microscopy (SEM). Corresponding to their physicochemical properties, confections showed fast (hard candy), intermediate (pectin confections), and slow (starch confections) release rates with a final releasing time of 90, 150, and 540 min in dissolution studies. Three confections were rated between neither like nor dislike to like slightly (n = 60). Pectin confections had the highest overall acceptance (like slightly) and 62% of subjects rated this type of confection as the most liked ones. These results indicate that delivery matrix could modulate the phytochemical release rate from BRB confection and also influence sensory preference. © 2015 Institute of Food Technologists®

  2. Effect of oxalate on the dissolution rates of oligoclase and tremolite (journal version)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mast, M.A.; Drever, J.I.

    1987-01-01

    The effect of oxalate, a strong chelator for Al and other cations, on the dissolution rates of oligoclase feldspar and tremolite amphibole was investigated in a flow-through reactor at 22 deg C. Oxalate at concentrations of 0.5 and 1 mM has essentially no effect on the dissolution rate of tremolite, nor on the steady-state rate of release of Si from oligoclase. The fact that oxalate has no effect on dissolution rate suggests that detachment of Si rather than Al or Mg is the rate-limiting step. At pH 4 and 9, oxalate has no effect on the steady-state rate of releasemore » of Al, and dissolution is congruent. At pH 5 and 7, oligoclase dissolution is congruent in the presence of oxalate, but in the absence of oxalate Al is preferentially retained in the solid relative to Si. The rate of dissolution of tremolite is independent of pH over the pH range 2-5, and decreases at higher pH. The rate of dissolution of oligoclase was independent of pH over the pH range 4-9. Since the dissolution rate of these minerals is independent of pH and organic ligand concentration, the effect of acid deposition from the atmosphere on the rate of supply of cations from weathering of granitic rocks should be minor.« less

  3. The effect of a new formaldehyde-free binder on the dissolution rate of glass wool fibre in physiological saline solution.

    PubMed

    Potter, Russell M; Olang, Nassreen

    2013-04-12

    The in-vitro dissolution rate of fibres is a good predictor of the in-vivo behavior and potential health effects of inhaled fibres. This study examines the effect of a new formaldehyde-free carbohydrate-polycarboxylic acid binder on the in-vitro dissolution rate of biosoluble glass fibres. Dissolution rate measurements in pH 7.4 physiological saline solution show that the presence of the binder on wool insulation glass fibres has no effect on their dissolution. There is no measurable difference between the dissolution rates of continuous draw fibres before and after binder was applied by dipping. Nor is there a measurable difference between the dissolution rates of a production glass wool sample with binder and that same sample after removal of the binder by low-temperature ashing. Morphological examination shows that swelling of the binder in the solution is at least partially responsible for the development of open channels around the glass-binder interface early in the dissolution. These channels allow fluid to reach the entire glass surface under the binder coating. There is no evidence of any delay in the dissolution rate as a result of the binder coating.

  4. The effect of a new formaldehyde-free binder on the dissolution rate of glass wool fibre in physiological saline solution

    PubMed Central

    2013-01-01

    The in-vitro dissolution rate of fibres is a good predictor of the in-vivo behavior and potential health effects of inhaled fibres. This study examines the effect of a new formaldehyde-free carbohydrate-polycarboxylic acid binder on the in-vitro dissolution rate of biosoluble glass fibres. Dissolution rate measurements in pH 7.4 physiological saline solution show that the presence of the binder on wool insulation glass fibres has no effect on their dissolution. There is no measurable difference between the dissolution rates of continuous draw fibres before and after binder was applied by dipping. Nor is there a measurable difference between the dissolution rates of a production glass wool sample with binder and that same sample after removal of the binder by low-temperature ashing. Morphological examination shows that swelling of the binder in the solution is at least partially responsible for the development of open channels around the glass-binder interface early in the dissolution. These channels allow fluid to reach the entire glass surface under the binder coating. There is no evidence of any delay in the dissolution rate as a result of the binder coating. PMID:23587247

  5. Modeling the growth and interaction of stylolite networks, using the discrete element method for pressure solution

    NASA Astrophysics Data System (ADS)

    Makedonska, N.; Sparks, D. W.; Aharonov, E.

    2012-12-01

    Pressure solution (also termed chemical compaction) is considered the most important ductile deformation mechanism operating in the Earth's upper crust. This mechanism is a major player in a variety of geological processes, including evolution of sedimentary basins, hydrocarbon reservoirs, aquifers, earthquake recurrence cycles, and fault healing. Pressure solution in massive rocks often localizes into solution seams or stylolites. Field observations of stylolites often show elastic/brittle interactions in regions between pressure solution features, including and shear fractures, veins and pull-apart features. To understand these interactions, we use a grain-scale model based on the Discrete Element Method that allows granular dissolution at stressed contacts between grains. The new model captures both the slow chemical compaction process and the more abrupt brittle fracturing and sliding between grains. We simulate a sample of rock as a collection of particles, each representing either a grain or a unit of rock, bonded to each other with breakable cement. We apply external stresses to this sample, and calculate elastic and frictional interactions between the grains. Dissolution is modeled by an irreversible penetration of contacting grains into each other at a rate that depends on the contact stress and an adjustable rate constant. Experiments have shown that dissolution rates at grain contacts are greatly enhanced when there is a mineralogical contrast. Therefore, we dissolution rate constant can be increased to account for an amount of impurities (e.g. clay in a quartz or calcite sandstone) that can accumulate on dissolving contacts. This approach allows large compaction and shear strains within the rock, while allowing examination of local grain-scale heterogeneity. For example, we will describe the effect of pressure solution on the distribution of contact forces magnitudes and orientations. Contact forces in elastic granular packings are inherently heteregeneous, but stress-dependent dissolution tends to equalize them. We apply our model to the simulation of stylolite networks, particularly the interaction of stylolite tips. The stress concentrations from these tips are transmitted through the intervening rock, which can cause elastic strain, brittle damage and frictional sliding. Our model shows that grain rearrangement and compaction rate depend on the surface friction coefficient of grains. Simulation results show the development of shear zones between stylolites, and a high porosity process zone at the tips of stylolites. These features, which have been observed in field studies, are modeled and predicted for the first time. This modeling tool holds a promise to provide many new insights regarding the coupling between pressure solution and brittle deformation, i.e. between mechanical and chemical compaction.

  6. Dissolution of cinnabar (HgS) in the presence of natural organic matter

    USGS Publications Warehouse

    Waples, J.S.; Nagy, K.L.; Aiken, G.R.; Ryan, J.N.

    2005-01-01

    Cinnabar (HgS) dissolution rates were measured in the presence of 12 different natural dissolved organic matter (DOM) isolates including humic, fulvic, and hydrophobic acid fractions. Initial dissolution rates varied by 1.3 orders of magnitude, from 2.31 ?? 10-13 to 7.16 ?? 10-12 mol Hg (mg C)-1 m-2 s-1. Rates correlate positively with three DOM characteristics: specific ultraviolet absorbance (R2 = 0.88), aromaticity (R2 = 0.80), and molecular weight (R2 = 0.76). Three experimental observations demonstrate that dissolution was controlled by the interaction of DOM with the cinnabar surface: (1) linear rates of Hg release with time, (2) significantly reduced rates when DOM was physically separated from the surface by dialysis membranes, and (3) rates that approached constant values at a specific ratio of DOM concentration to cinnabar surface area, suggesting a maximum surface coverage by dissolution-reactive DOM. Dissolution rates for the hydrophobic acid fractions correlate negatively with sorbed DOM concentrations, indicating the presence of a DOM component that reduced the surface area of cinnabar that can be dissolved. When two hydrophobic acid isolates that enhanced dissolution to different extents were mixed equally, a 20% reduction in rate occurred compared to the rate with the more dissolution-enhancing isolate alone. Rates in the presence of the more dissolution-enhancing isolate were reduced by as much as 60% when cinnabar was prereacted with the isolate that enhanced dissolution to a lesser extent. The data, taken together, imply that the property of DOM that enhances cinnabar dissolution is distinct from the property that causes it to sorb irreversibly to the cinnabar surface. Copyright ?? 2005 Elsevier Ltd.

  7. Pore scale study of multiphase multicomponent reactive transport during CO 2 dissolution trapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Li; Wang, Mengyi; Kang, Qinjun

    Solubility trapping is crucial for permanent CO 2 sequestration in deep saline aquifers. For the first time, a pore-scale numerical method is developed to investigate coupled scCO 2-water two-phase flow, multicomponent (CO 2(aq), H +, HCO 3 –, CO 3 2 – and OH –) mass transport, heterogeneous interfacial dissolution reaction, and homogeneous dissociation reactions. Pore-scale details of evolutions of multiphase distributions and concentration fields are presented and discussed. Time evolutions of several variables including averaged CO 2(aq) concentration, scCO 2 saturation, and pH value are analyzed. Specific interfacial length, an important variable which cannot be determined but is requiredmore » by continuum models, is investigated in detail. Mass transport coefficient or efficient dissolution rate is also evaluated. The pore-scale results show strong non-equilibrium characteristics during solubility trapping due to non-uniform distributions of multiphase as well as slow mass transport process. Complicated coupling mechanisms between multiphase flow, mass transport and chemical reactions are also revealed. Lastly, effects of wettability are also studied. The pore-scale studies provide deep understanding of non-linear non-equilibrium multiple physicochemical processes during CO 2 solubility trapping processes, and also allow to quantitatively predict some important empirical relationships, such as saturation-interfacial surface area, for continuum models.« less

  8. Simultaneous formation and micronization of pharmaceutical cocrystals by rapid expansion of supercritical solutions (RESS).

    PubMed

    Müllers, Katrin C; Paisana, Maria; Wahl, Martin A

    2015-02-01

    We investigated the RESS process as a means of simultaneous micronization and cocrystallization of a model drug with poor aqueous solubility. 1:1 cocrystals of ibuprofen (IBU) and nicotinamide (NA) were produced with a pilot scale unit for RESS processing.IBU and NA were dissolved in scCO2 at 30 MPa and 50°C. After 24 h, the supercritical solution was expanded at a medium CO2 flow rate of 3.8 kg/h during 60 min into an expansion vessel kept at ambient conditions. Cocrystals were identified with DSC, XRD and confocal Raman microscopy (CRM) and further characterized by SEM, specific surface area, wetting ability, solubility and dissolution testing. Judging by DSC, XRD and CRM, cocrystals with high purity could be produced with the RESS technique. Micronization via RESS was successful, since the specific surface area of RESS cocrystals was increased almost tenfold in comparison to cocrystals produced by slow solvent evaporation. Due to the additional micronization, the mean dissolution time of IBU from RESS cocrystals was decreased. RESS cocrystallization offers the advantage of combining micronization and cocrystallization in a single production step. For drugs with dissolution-limited bioavailability, RESS cocrystallization may therefore be a superior approach in comparison to established cocrystallization techniques.

  9. Pore scale study of multiphase multicomponent reactive transport during CO 2 dissolution trapping

    DOE PAGES

    Chen, Li; Wang, Mengyi; Kang, Qinjun; ...

    2018-04-26

    Solubility trapping is crucial for permanent CO 2 sequestration in deep saline aquifers. For the first time, a pore-scale numerical method is developed to investigate coupled scCO 2-water two-phase flow, multicomponent (CO 2(aq), H +, HCO 3 –, CO 3 2 – and OH –) mass transport, heterogeneous interfacial dissolution reaction, and homogeneous dissociation reactions. Pore-scale details of evolutions of multiphase distributions and concentration fields are presented and discussed. Time evolutions of several variables including averaged CO 2(aq) concentration, scCO 2 saturation, and pH value are analyzed. Specific interfacial length, an important variable which cannot be determined but is requiredmore » by continuum models, is investigated in detail. Mass transport coefficient or efficient dissolution rate is also evaluated. The pore-scale results show strong non-equilibrium characteristics during solubility trapping due to non-uniform distributions of multiphase as well as slow mass transport process. Complicated coupling mechanisms between multiphase flow, mass transport and chemical reactions are also revealed. Lastly, effects of wettability are also studied. The pore-scale studies provide deep understanding of non-linear non-equilibrium multiple physicochemical processes during CO 2 solubility trapping processes, and also allow to quantitatively predict some important empirical relationships, such as saturation-interfacial surface area, for continuum models.« less

  10. Pore scale study of multiphase multicomponent reactive transport during CO2 dissolution trapping

    NASA Astrophysics Data System (ADS)

    Chen, Li; Wang, Mengyi; Kang, Qinjun; Tao, Wenquan

    2018-06-01

    Solubility trapping is crucial for permanent CO2 sequestration in deep saline aquifers. For the first time, a pore-scale numerical method is developed to investigate coupled scCO2-water two-phase flow, multicomponent (CO2(aq), H+, HCO3-, CO32- and OH-) mass transport, heterogeneous interfacial dissolution reaction, and homogeneous dissociation reactions. Pore-scale details of evolutions of multiphase distributions and concentration fields are presented and discussed. Time evolutions of several variables including averaged CO2(aq) concentration, scCO2 saturation, and pH value are analyzed. Specific interfacial length, an important variable which cannot be determined but is required by continuum models, is investigated in detail. Mass transport coefficient or efficient dissolution rate is also evaluated. The pore-scale results show strong non-equilibrium characteristics during solubility trapping due to non-uniform distributions of multiphase as well as slow mass transport process. Complicated coupling mechanisms between multiphase flow, mass transport and chemical reactions are also revealed. Finally, effects of wettability are also studied. The pore-scale studies provide deep understanding of non-linear non-equilibrium multiple physicochemical processes during CO2 solubility trapping processes, and also allow to quantitatively predict some important empirical relationships, such as saturation-interfacial surface area, for continuum models.

  11. Controlled electrophoretic deposition of HAp/β-TCP composite coatings on piranha treated 316L SS for enhanced mechanical and biological properties

    NASA Astrophysics Data System (ADS)

    Prem Ananth, K.; Nathanael, A. Joseph; Jose, Sujin P.; Oh, Tae Hwan; Mangalaraj, D.; Ballamurugan, A. M.

    2015-10-01

    Hydroxyapatite (HAp) and β-tricalcium phosphate (β-TCP) bioactive materials have been used as individual coatings on steel implants employed in the fields of orthopedics and dentistry due to their excellent properties, which foster effective healing of the repair site. However, slow dissolution of HAp and fairly little fast dissolution of β-TCP present a major obstacle for such applications and this leads to the focus on the investigation of a mixture of HAp and β-TCP composite that forms biphasic calcium phosphate (BCP). The BCP coatings were achieved by thickness controlled electrophoretic deposition on piranha treated 316L SS. This method is well controlled and the anticipated dissolution rate could be attained with faster formation of new bone at the implant site, when compared to the individual HAp or β-TCP coating. The structural, functional, morphological and elemental composition of the coatings were characterized by using various analytical techniques. The BCP coating has been shown to have a role in obstructing the corrosion to a greater extent when in contact with SBF solution. The BCP coating also shows excellent in vitro and mechanical properties and osteoblasts cellular tests revealed that the coating was more effective in improving biocompatibility. This makes it an ideal candidate material for hard tissue replacement.

  12. Comparison of three preservation techniques for slowing dissolution of calcareous nannofossils in organic rich sediments

    USGS Publications Warehouse

    Seefelt, Ellen L.; Self-Trail, Jean; Schultz, Arthur P.

    2015-01-01

    In an attempt to halt or reduce dissolution of calcareous nannofossils in organic and/or pyrite-rich sediments, three different methods of short-term storage preservation were tested for efficacy: vacuum packing, argon gas replacement, and buffered water. Abundance counts of calcareous nannofossil assemblages over a six month period showed that none of the three preservation methods were consistently effective in reducing assemblage loss due to dissolution. In most cases, the control slides made at the drill site had more abundant calcareous nannofossil assemblages than those slides made from sediments stored via vacuum packing, argon gas replacement, or buffered water. Thin section and XRD analyses showed that in most cases, <1% pyrite was needed to drive the oxidation-reduction reaction that resulted in dissolution, even in carbonate-rich sediments.

  13. Dissolution profile of dolomite in chloric acid solution: The effect of chloric acid concentration and pulp density

    NASA Astrophysics Data System (ADS)

    Solihin, Indriani, Mubarok, M. Zaki

    2018-05-01

    Dolomite is one of carbonate minerals that contain magnesium. Magnesium is important element used in many aspects of life such as cofactor of many enzymes in human body, nutrient for plants, and raw material in automotive industry. Dolomite can be processed through low temperature process to obtain magnesium and calcium oxide that is needed in important applications such as base material for making drugs, raw material in the synthesize slow release fertilizer, materials for fire retardant, component for catalyst, etc. One of the important step of this low temperature process is dissolution of dolomite. Optimizing the dissolution process determines the % extraction of magnesium and calcium oxide from dolomite. The dissolution of dolomite from Gresik, East Java Provence Indonesia, in chloric acid solution has been conducted. Chloric acid concentration and pulp density are the variables that were observed. The dissolution of magnesium and calcium from Gresik dolomite was found to be very fast. The stable stage of dissolution can be reached for 5-10 seconds. The % extraction is mainly determined by the molar ratio of chloric acid / dolomite. At molar ratio of chloric acid / dolomite equal or above stoichiometric of dolomite dissolution, % extraction of magnesium is almost 100 %.

  14. Low temperature dissolution flowsheet for Pu metal

    DOE PAGES

    Daniel, Jr., William E.; Almond, Philip M.; Rudisill, Tracy S.

    2017-06-30

    The Savannah River National Laboratory was requested to develop a Pu metal dissolution flowsheet at two reduced temperature ranges for implementation in the Savannah River Site H-Canyon facility. The dissolution and H 2 generation rates during Pu metal dissolution were investigated using a dissolving solution at ambient temperature (20–30°C) and for an intermediate temperature of 50–60°C. The Pu metal dissolution rate measured at 57°C was approximately 20 times slower than at boiling (112–116°C). As a result, the dissolution rate at ambient temperature (24°C) was approximately 80 times slower than the dissolution rate at boiling. Hydrogen concentrations were less than detectablemore » (<0.1 vol%).« less

  15. The Dissolution of an Interfween Miscible Liquids

    NASA Technical Reports Server (NTRS)

    Vlad, D.H.; Maher, J.V.

    1999-01-01

    The disappearance of the surface tension of the interface of a binary mixture, measured using the dynamic surface light scattering technique, is slower for a binary mixture of higher density contrast. A comparison with a naive diffusion model, expected to provide a lower limit for the speed of dissolution in the absence of gravity shows that the interfacial surface tension disappears much slower than even by diffusion with the effect becoming much more pronounced when density contrast between the liquid phases is increased. Thus, the factor most likely to be responsible for this anomalously slow dissolution is gravity. A mechanism could be based on the competition between diffusive relaxation and sedimentation at the dissolving interface.

  16. Electrochemical de-alloying in two dimensions: role of the local atomic environment

    NASA Astrophysics Data System (ADS)

    Damian, A.; Maroun, F.; Allongue, P.

    2016-07-01

    We investigate by in situ scanning tunnelling microscopy (STM) the potential dependence of the electrochemical dealloying of NiPd monoatomic layers electrodeposited on Au(111). The dealloying process is achieved by Ni selective dissolution and was studied as a function of NiPd composition: for an alloy with a Ni content >=70%, quasi-complete Ni dissolution is achieved at a potential of -0.9 VMSE whereas for a Ni content <70%, Ni dissolution at the same potential drastically slows down after the removal of small amounts of Ni. The alloy morphology at this ``passivation state'' is characterized by the presence of holes in the alloy monolayer with evidence for the Pd enrichment at the hole edges. These findings are confirmed by Monte Carlo simulations. Further Ni dissolution at passivation was achieved by applying more positive potentials which depend on the alloy composition. These results allowed us to determine the correlation between the Ni dissolution onset potential and the local Pd content.

  17. Mechanism of Urea Crystal Dissolution in Water from Molecular Dynamics Simulation.

    PubMed

    Anand, Abhinav; Patey, G N

    2018-01-25

    Molecular dynamics simulations are used to determine the mechanism of urea crystal dissolution in water under sink conditions. Crystals of cubic and tablet shapes are considered, and results are reported for four commonly used water models. The dissolution rates for different water models can differ considerably, but the overall dissolution mechanism remains the same. Urea dissolution occurs in three stages: a relatively fast initial stage, a slower intermediate stage, and a final stage. We show that the long intermediate stage is well described by classical rate laws, which assume that the dissolution rate is proportional to the active surface area. By carrying out simulations at different temperatures, we show that urea dissolution is an activated process, with an activation energy of ∼32 kJ mol -1 . Our simulations give no indication of a significant diffusion layer, and we conclude that the detachment of molecules from the crystal is the rate-determining step for dissolution. The results we report for urea are consistent with earlier observations for the dissolution of NaCl crystals. This suggests that the three-stage mechanism and classical rate laws might apply to the dissolution of other ionic and molecular crystals.

  18. Calcite Dissolution Kinetics

    NASA Astrophysics Data System (ADS)

    Berelson, W.; Subhas, A.; Dong, S.; Naviaux, J.; Adkins, J. F.

    2016-12-01

    A geological buffer for high atmospheric CO2 concentrations is neutralization via reaction with CaCO3. We have been studying the dissolution kinetics of carbonate minerals using labeled 13C calcite and Picarro-based measurements of 13C enrichments in solution DIC. This methodology has greatly facilitated our investigation of dissolution kinetics as a function of water carbonate chemistry, temperature and pressure. One can adjust the saturation state Omega by changing the ion activity product (e.g. adjusting carbonate ion concentration), or by changing the solubility product (e.g. adjusting temperature or pressure). The canonical formulation of dissolution rate vs. omega has been refined (Subhas et al. 2015) and shows distinct non-linear behavior near equilibrium and rates in sea water of 1-3 e-6 g/cm2day at omega = 0.8. Carbonic anhydrase (CA), an enzyme that catalyzes the hydration of dissolved CO2 to carbonic acid, was shown (in concentrations <=0.04 g/L) to enhance the dissolution rate at low degrees of undersaturation by >500x. This result points to the importance of carbonic acid in enhancing dissolution at low degrees of undersaturation. CA activity and abundance in nature must be considered regarding the role it plays in catalyzing dissolution. We also have been investigating the role of temperature on dissolution kinetics. An increase of 16C yields an order of magnitude increase in dissolution rate. Temperature (and P) also change Omega critical, the saturation state where dissolution rates change substantially. Increasing pressure (achieved in a pressure reaction chamber we built) also shifts Omega critical closer to equilibrium and small pressure increases have large impact on dissolution kinetics. Dissolution rates are enhanced by an order of magnitude for a change in pressure of 1500 psi relative to the dissolution rate achieved by water chemistry effects alone for an omega of 0.8. We've shown that the thermodynamic determination of saturation state does not adequately describe the kinetics of dissolution. The interplay of mineral composition and surface area, solution carbonate chemistry, temperature and pressure are factors the impact carbonate dissolution rates in natural settings. We suggest that these parameters be considered in CO2 mitigation strategies.

  19. Effect of oxalate on the dissolution rates of oligoclase and tremolite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mast, M.A.; Drever, J.I.

    1987-09-01

    The effect of oxalate, a strong chelator for Al and other cations, on the dissolution rates of oligoclase feldspar and tremolite amphibole was investigated in a flow-through reactor at 22/sup 0/C. Oxalate at concentrations of 0.5 and 1 mM has essentially no effect on the dissolution rate of tremolite, nor on the steady-state rate of release of Si from oligoclase. The fact that oxalate has no effect on dissolution rate suggests that detachment of Si rather than Al or Mg is the rate-limiting step. At pH 4 and 9, oxalate has no effect on the steady-state rate of release ofmore » Al, and dissolution is congruent. At pH 5 and 7, oligoclase dissolution is congruent in the presence of oxalate, but in the absence of oxalate Al is preferentially retained in the solid relative to Si. Large transient spikes of Al or Si are observed when oxalate is added to or removed from the system. The cause of the spikes is unknown; the authors suggest adsorption feldspar surfaces away from sites of active dissolution as a possibility. The rate of dissolution of tremolite is independent of pH over the pH range 2-5, and decreases at higher pH. The rate of dissolution of oligoclase in these experiments was independent of pH over the pH range 4-9. Since the dissolution rate of these minerals is independent of pH and organic ligand concentration, the effect of acid deposition from the atmosphere on the rate of supply of cations from weathering of granitic rocks should be minor.« less

  20. Sensitivity of mineral dissolution rates to physical weathering : A modeling approach

    NASA Astrophysics Data System (ADS)

    Opolot, Emmanuel; Finke, Peter

    2015-04-01

    There is continued interest on accurate estimation of natural weathering rates owing to their importance in soil formation, nutrient cycling, estimation of acidification in soils, rivers and lakes, and in understanding the role of silicate weathering in carbon sequestration. At the same time a challenge does exist to reconcile discrepancies between laboratory-determined weathering rates and natural weathering rates. Studies have consistently reported laboratory rates to be in orders of magnitude faster than the natural weathering rates (White, 2009). These discrepancies have mainly been attributed to (i) changes in fluid composition (ii) changes in primary mineral surfaces (reactive sites) and (iii) the formation of secondary phases; that could slow natural weathering rates. It is indeed difficult to measure the interactive effect of the intrinsic factors (e.g. mineral composition, surface area) and extrinsic factors (e.g. solution composition, climate, bioturbation) occurring at the natural setting, in the laboratory experiments. A modeling approach could be useful in this case. A number of geochemical models (e.g. PHREEQC, EQ3/EQ6) already exist and are capable of estimating mineral dissolution / precipitation rates as a function of time and mineral mass. However most of these approaches assume a constant surface area in a given volume of water (White, 2009). This assumption may become invalid especially at long time scales. One of the widely used weathering models is the PROFILE model (Sverdrup and Warfvinge, 1993). The PROFILE model takes into account the mineral composition, solution composition and surface area in determining dissolution / precipitation rates. However there is less coupling with other processes (e.g. physical weathering, clay migration, bioturbation) which could directly or indirectly influence dissolution / precipitation rates. We propose in this study a coupling between chemical weathering mechanism (defined as a function of reactive area, solution composition, temperature, mineral composition) and the physical weathering module in the SoilGen model which calculates the evolution of particle size (used for surface area calculation) as influenced by temperature gradients. The solution composition in the SoilGen model is also influenced by other processes such as atmospheric inputs, organic matter decomposition, cation exchange, secondary mineral formation and leaching. We then apply this coupled mechanism on a case study involving 3 loess soil profiles to analyze the sensitivity of mineral weathering rates to physical weathering. Initial results show some sensitivity but not that dramatic. The less sensitivity was attributed to dominance of resistant primary minerals (> 70% quartz). Scenarios with different sets of mineralogy will be tested and sensitivity results in terms of silicate mineral dissolution rates and CO2-consumption will be presented in the conference. References Sverdrup H and Warfvinge P., 1993. Calculating field weathering rates using a mechanistic geochemical model PROFILE. Applied Geochemistry, 8:273-283. White, A.F., 2009. Natural weathering rates of silicate minerals. In: Drever, J.I. (Ed.), Surface and Ground Water, Weathering and Soils. In: Holland, H.D., Turekian, K.K. (Eds.), Treatise on Geochemistry. vol. 5. Elsevier-Pergamon, Oxford, pp. 133-168.

  1. Functional assessment of four types of disintegrants and their effect on the spironolactone release properties.

    PubMed

    Rojas, John; Guisao, Santiago; Ruge, Vanesa

    2012-12-01

    Spironolactone is a drug derived from sterols that exhibits an incomplete oral absorption due to its low water solubility and slow dissolution rate. In this study, formulations of spironolactone with four disintegrants named as croscarmellose sodium, crospovidone, sodium starch glycolate and microcrystalline cellulose II (MCCII) were conducted. The effect of those disintegrants on the tensile strength, disintegration time and dissolution rate of spironolactone-based compacts was evaluated using a factorial design with three categorical factors (filler, lubricant, and disintegrant). The swelling values, water uptake and water sorption studies of these disintegrants all suggested that MCCII compacts disintegrate by a wicking mechanism similar to that of crospovidone, whereas a swelling mechanism was dominant for sodium starch glycolate and croscarmellose sodium. The disintegration time of MCCII and sodium starch glycolate remained unchanged with magnesium stearate. However, this lubricant delayed the disintegration time of crospovidone and croscarmellose sodium. MCCII presented the fastest disintegration time independent of the medium and lubricant employed. The water sorption ratio and swelling values determined sodium starch glycolate followed by croscarmellose sodium as the largest swelling materials, whereas crospovidone and MCCII where the least swelling disintegrants. The swelling property of sodium starch glycolate and croscarmellose sodium was strongly affected by the medium pH. The disintegration time of spironolactone compacts was faster when starch was used as a filler due to the formation of soft compacts. In this case, the type of filler employed rather than the disintegrant had a major effect on the disintegration and dissolution times of spironolactone.

  2. Acoustic activation of water-in-oil microemulsions for controlled salt dissolution.

    PubMed

    Baxamusa, Salmaan; Ehrmann, Paul; Ong, Jemi

    2018-06-18

    The dynamic nature of the oil-water interface allows for sequestration of material within the dispersed domains of a microemulsion. Microstructural changes should therefore change the dissolution rate of a solid surface in a microemulsion. We hypothesize that microstructural changes due to formulation and cavitation in an acoustic field will enable control over solid dissolution rates. Water-in-oil microemulsions were formulated using cyclohexane, water, Triton X-100, and hexanol. The microstructure and solvation properties of Winsor Type IV formulations were characterized. Dissolution rates of KH 2 PO 4 (KDP), were measured. A kinetic analysis isolated the effect of the microstructure, and rate enhancements due to cavitation effects on the microstructure were characterized by measuring dissolution rates in an ultrasonic field. Dispersed aqueous domains of 2-6 nm radius dissolve a solid block of KDP at 0-10 nm/min. Dissolution rate is governed not by the domain-surface collision frequency but rather by a dissolution probability per domain-surface encounter. Higher probabilities are correlated with larger domains. Rapid and reversible dissolution rate increases of up to 270× were observed under ultrasonic conditions, with <20% of the increase due to bulk heating effects. The rest is attributed to cavitation-induced changes to the domain microstructure, providing a simple method for remotely activating and de-activating dissolution. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Nanosizing of drugs: Effect on dissolution rate

    PubMed Central

    Dizaj, S. Maleki; Vazifehasl, Zh.; Salatin, S.; Adibkia, Kh.; Javadzadeh, Y.

    2015-01-01

    The solubility, bioavailability and dissolution rate of drugs are important parameters for achieving in vivo efficiency. The bioavailability of orally administered drugs depends on their ability to be absorbed via gastrointestinal tract. For drugs belonging to Class II of pharmaceutical classification, the absorption process is limited by drug dissolution rate in gastrointestinal media. Therefore, enhancement of the dissolution rate of these drugs will present improved bioavailability. So far several techniques such as physical and chemical modifications, changing in crystal habits, solid dispersion, complexation, solubilization and liquisolid method have been used to enhance the dissolution rate of poorly water soluble drugs. It seems that improvement of the solubility properties ofpoorly water soluble drugscan translate to an increase in their bioavailability. Nowadays nanotechnology offers various approaches in the area of dissolution enhancement of low aqueous soluble drugs. Nanosizing of drugs in the form of nanoparticles, nanocrystals or nanosuspensions not requiring expensive facilities and equipment or complicated processes may be applied as simple methods to increase the dissolution rate of poorly water soluble drugs. In this article, we attempted to review the effects of nanosizing on improving the dissolution rate of poorly aqueous soluble drugs. According to the reviewed literature, by reduction of drug particle size into nanometer size the total effective surface area is increased and thereby dissolution rate would be enhanced. Additionally, reduction of particle size leads to reduction of the diffusion layer thickness surrounding the drug particles resulting in the increment of the concentration gradient. Each of these process leads to improved bioavailability. PMID:26487886

  4. Simultaneous in vitro and in vivo evaluation of both trimethoprim and sulfamethoxazole from certain dosage forms.

    PubMed

    Meshali, M; El-Sabbagh, H; Ghanem, A; Foda, A

    1983-06-01

    The dissolution rates of trimethoprim (T), and sulphamethoxazole (S), from different brands of tablets and suspensions were studied at pH = 1.1 and 7.2. The bioavailabilities of both drugs in humans were studied by the urine excretion method. The dissolution rates were dependent on the pH of the dissolution medium, the solubilities of the drugs at the pH involved, the dosage form and the brand studied. While the dissolution rates of T from all brands studied were consistent with their pH-dependent solubility, those of S were not. The dissolution rates of S from suspensions were found to be equal at pH = 7.2, but different at pH = 1.1. A correlation existed between the dissolution rate of T at pH = 1.1 from tablets and the excretion rate in humans. With S, however, no such correlation was observed at either pH.

  5. High temperature dissolution of chromium substituted nickel ferrite in nitrilotriacetic acid medium

    NASA Astrophysics Data System (ADS)

    Sathyaseelan, V. S.; Chandramohan, P.; Velmurugan, S.

    2016-12-01

    High temperature (HT) dissolution of chromium substituted nickel ferrite was carried out with relevance to the decontamination of nuclear reactors by way of chemical dissolution of contaminated corrosion product oxides present on stainless steel coolant circuit surfaces. Chromium substituted nickel ferrites of composition, NiFe(2-x)CrxO4 (x ≤ 1), was synthetically prepared and characterized. HT dissolution of these oxides was carried out in nitrilotriacetic acid medium at 160 °C. Dissolution was remarkably increased at 160 °C when compared to at 85 °C in a reducing decontamination formulation. Complete dissolution could be achieved for the oxides with chromium content 0 and 0.2. Increasing the chromium content brought about a marked reduction in the dissolution rate. About 40 fold decrease in rate of dissolution was observed when chromium was increased from 0 to 1. The rate of dissolution was not very significantly reduced in the presence of N2H4. Dissolution of oxide was found to be stoichiometric.

  6. Feldspar dissolution rates in the Topopah Spring Tuff, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Bryan, C.R.; Helean, K.B.; Marshall, B.D.; Brady, P.V.

    2009-01-01

    Two different field-based methods are used here to calculate feldspar dissolution rates in the Topopah Spring Tuff, the host rock for the proposed nuclear waste repository at Yucca Mountain, Nevada. The center of the tuff is a high silica rhyolite, consisting largely of alkali feldspar (???60 wt%) and quartz polymorphs (???35 wt%) that formed by devitrification of rhyolitic glass as the tuff cooled. First, the abundance of secondary aluminosilicates is used to estimate the cumulative amount of feldspar dissolution over the history of the tuff, and an ambient dissolution rate is calculated by using the estimated thermal history. Second, the feldspar dissolution rate is calculated by using measured Sr isotope compositions for the pore water and rock. Pore waters display systematic changes in Sr isotopic composition with depth that are caused by feldspar dissolution. The range in dissolution rates determined from secondary mineral abundances varies from 10-16 to 10-17 mol s-1 kg tuff-1 with the largest uncertainty being the effect of the early thermal history of the tuff. Dissolution rates based on pore water Sr isotopic data were calculated by treating percolation flux parametrically, and vary from 10-15 to 10-16 mol s-1 kg tuff-1 for percolation fluxes of 15 mm a-1 and 1 mm a-1, respectively. Reconciling the rates from the two methods requires that percolation fluxes at the sampled locations be a few mm a-1 or less. The calculated feldspar dissolution rates are low relative to other measured field-based feldspar dissolution rates, possibly due to the age (12.8 Ma) of the unsaturated system at Yucca Mountain; because oxidizing and organic-poor conditions limit biological activity; and/or because elevated silica concentrations in the pore waters (???50 mg L-1) may inhibit feldspar dissolution. ?? 2009 Elsevier Ltd. All rights reserved.

  7. Effect of adsorbed metals ions on the transport of Zn- and Ni-EDTA complexes in a sand and gravel aquifer

    USGS Publications Warehouse

    Kent, D.B.; Davis, J.A.; Anderson, L.C.D.; Rea, B.A.; Coston, J.A.

    2002-01-01

    Adsorption, complexation, and dissolution reactions strongly influenced the transport of metal ions complexed with ethylenediaminetetraacetic acid (EDTA) in a predominantly quartz-sand aquifer during two tracer tests conducted under mildly reducing conditions at pH 5.8 to 6.1. In tracer test M89, EDTA complexes of zinc (Zn) and nickel (Ni), along with excess free EDTA, were injected such that the lower portion of the tracer cloud traveled through a region with adsorbed manganese (Mn) and the upper portion of the tracer cloud traveled through a region with adsorbed Zn. In tracer test S89, Ni- and Zn-EDTA complexes, along with excess EDTA complexed with calcium (Ca), were injected into a region with adsorbed Mn. The only discernable chemical reaction between Ni-EDTA and the sediments was a small degree of reversible adsorption leading to minor retardation. In the absence of adsorbed Zn, the injected Zn was displaced from EDTA complexes by iron(III) [Fe(III)] dissolved from the sediments. Displacement of Zn by Fe(III) on EDTA became increasingly thermodynamically favorable with decreasing total EDTA concentration. The reaction was slow compared to the time-scale of transport. Free EDTA rapidly dissolved aluminum (Al) from the sediments, which was subsequently displaced slowly by Fe. In the portion of tracer cloud M89 that traveled through the region contaminated with adsorbed Zn, little displacement of Zn complexed with EDTA was observed, and Al was rapidly displaced from EDTA by Zn desorbed from the sediments, in agreement with equilibrium calculations. In tracer test S89, desorption of Mn dominated over the more thermodynamically favorable dissolution of Al oxyhydroxides. Comparison with results from M89 suggests that dissolution of Al oxyhydroxides in coatings on these sediment grains by Ca-EDTA was rate-limited whereas that by free EDTA reached equilibrium on the time-scale of transport. Rates of desorption are much faster than rates of dissolution of Fe oxyhydroxides from sediment-grain surfaces and, therefore, adsorbed metal ions can strongly influence the speciation of ligands like EDTA in soils and sediments, especially over small temporal and spatial scales. Copyright ?? 2002 Elsevier Science Ltd.

  8. Calcite dissolution rate spectra measured by in situ digital holographic microscopy.

    PubMed

    Brand, Alexander S; Feng, Pan; Bullard, Jeffrey W

    2017-09-01

    Digital holographic microscopy in reflection mode is used to track in situ , real-time nanoscale topography evolution of cleaved (104) calcite surfaces exposed to flowing or static deionized water. The method captures full-field holograms of the surface at frame rates of up to 12.5 s -1 . Numerical reconstruction provides 3D surface topography with vertical resolution of a few nanometers and enables measurement of time-dependent local dissolution fluxes. A statistical distribution, or spectrum, of dissolution rates is generated by sampling multiple area domains on multiple crystals. The data show, as has been demonstrated by Fischer et al. (2012), that dissolution is most fully described by a rate spectrum, although the modal dissolution rate agrees well with published mean dissolution rates ( e.g. , 0.1 µmol m -2 s -1 to 0.3 µmol m -2 s -1 ). Rhombohedral etch pits and other morphological features resulting from rapid local dissolution appear at different times and are heterogeneously distributed across the surface and through the depth. This makes the distribution in rates measured on a single crystal dependent both on the sample observation field size and on time, even at nominally constant undersaturation. Statistical analysis of the inherent noise in the DHM measurements indicates that the technique is robust and that it likely can be applied to quantify and interpret rate spectra for the dissolution or growth of other minerals.

  9. Calcite dissolution rate spectra measured by in situ digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Brand, Alexander S.; Feng, Pan; Bullard, Jeffrey W.

    2017-09-01

    Digital holographic microscopy in reflection mode is used to track in situ, real-time nanoscale topography evolution of cleaved (104) calcite surfaces exposed to flowing or static deionized water. The method captures full-field holograms of the surface at frame rates of up to 12.5 s-1. Numerical reconstruction provides 3D surface topography with vertical resolution of a few nanometers and enables measurement of time-dependent local dissolution fluxes. A statistical distribution, or spectrum, of dissolution rates is generated by sampling multiple area domains on multiple crystals. The data show, as has been demonstrated by Fischer et al. (2012), that dissolution is most fully described by a rate spectrum, although the modal dissolution rate agrees well with published mean dissolution rates (e.g., 0.1 μmol m-2 s-1 to 0.3 μmol m-2 s-1). Rhombohedral etch pits and other morphological features resulting from rapid local dissolution appear at different times and are heterogeneously distributed across the surface and through the depth. This makes the distribution in rates measured on a single crystal dependent both on the sample observation field size and on time, even at nominally constant undersaturation. Statistical analysis of the inherent noise in the DHM measurements indicates that the technique is robust and that it likely can be applied to quantify and interpret rate spectra for the dissolution or growth of other minerals.

  10. Freshwater biodissolution rates of limestone in the temperate climate of the Dinaric karst in Slovenia

    NASA Astrophysics Data System (ADS)

    Mulec, J.; Prelovšek, M.

    2015-01-01

    Dissolution rates in two freshwater karst systems were determined by using tablets of dense micrite-biopelmicrite Cretaceous limestone. Submerged limestone tablets in riverbeds were subjected to a natural gradient from complete darkness to direct sunlight. Higher light rates significantly (p < 0.05) increased the epilithic biomass of phototrophs and the overall dissolution rates, which were highest at the Unica spring (- 49.2 μm a- 1), but the exact portion of light-dependent dissolution remains elusive. In the karst river Unica, with its big fluctuations in environmental parameters (e.g., discharge), light rates can be used in estimating the dissolution rates enhanced by phototrophs. Natural biofilms in aquatic systems have important implications for landform evolution, and the impact on limestone dissolution rates is comparable with rates of debris falling from steep slopes.

  11. Difference in the Dissolution Behaviors of Tablets Containing Polyvinylpolypyrrolidone (PVPP) Depending on Pharmaceutical Formulation After Storage Under High Temperature and Humid Conditions.

    PubMed

    Takekuma, Yoh; Ishizaka, Haruka; Sumi, Masato; Sato, Yuki; Sugawara, Mitsuru

    Storage under high temperature and humid conditions has been reported to decrease the dissolution rate for some kinds of tablets containing polyvinylpolypyrrolidone (PVPP) as a disintegrant. The aim of this study was to elucidate the properties of pharmaceutical formulations with PVPP that cause a decrease in the dissolution rate after storage under high temperature and humid conditions by using model tablets with a simple composition. Model tablets, which consisted of rosuvastatin calcium or 5 simple structure compounds, salicylic acid, 2-aminodiphenylmethane, 2-aminobiphenyl, 2-(p-tolyl)benzoic acid or 4.4'-biphenol as principal agents, cellulose, lactose hydrate, PVPP and magnesium stearate as additives, were made by direct compression. The model tables were wrapped in paraffin papers and stored for 2 weeks at 40°C/75% relative humidity (RH). Dissolution tests were carried out by the paddle method in the Japanese Pharmacopoeia 16th edition. Model tablets with a simple composition were able to reproduce a decreased dissolution rate after storage at 40°C/75% RH. These tablets showed significantly decreased water absorption activities after storage. In the case of tablets without lactose hydrate by replacing with cellulose, a decreased dissolution rate was not observed. Carboxyl and amino groups in the structure of the principal agent were not directly involved in the decreased dissolution. 2-Benzylaniline tablets showed a remarkably decreased dissolution rate and 2-aminobiphenyl and 2-(p-tolyl)benzoic acid tablets showed slightly decreased dissolution rates, though 4,4'-biphenol tablets did not show a decrease dissolution rate. We demonstrated that additives and structure of the principal agent were involved in the decreased in dissolution rate for tablets with PVPP. The results suggested that one of the reasons for a decreased dissolution rate was the inclusion of lactose hydrate in tablets. The results also indicated that compounds as principal agents with low affinity for PVPP may be easily affected by airborne water under high temperature and humid conditions. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  12. Characterising microbial reduction of arsenate sorbed to ferrihydrite and its concurrence with iron reduction.

    PubMed

    Huang, Jen-How

    2018-03-01

    A series of model anoxic incubations were performed to understand the concurrence between arsenate and ferrihydrite reduction by Shewanella putrefaciens strain CN-32 at different concentrations of arsenate, ferrihydrite and lactate, and with given ΔG rxn for arsenate and ferrihydrite reduction in non-growth conditions. The reduction kinetics of arsenate sorbed to ferrihydrite is predominately controlled by the availability of dissolved arsenate, which is measured by the integral of dissolved arsenate concentrations against incubation time and shown to correlate with the first order rate constants. High lactate concentrations slightly slowed down the rate of arsenate reduction due to the competition with arsenate for microbial contact. Under all experimental conditions, simultaneous arsenate and ferrihydrite reduction occurred following addition of S. putrefaciens inoculums and suggested no apparent competition between these two enzymatic reductions. Ferrous ions released from iron reduction might retard microbial arsenate reduction at high arsenate and ferrihydrite concentrations due to formation of ferrous arsenate. At high arsenate to ferrihydrite ratios, reductive dissolution of ferrihydrite shifted arsenate from sorption to dissolution and hence accelerated arsenate reduction. The interaction between microbial arsenate and ferrihydrite reduction did not correlate with ΔG rxn , but instead was governed by other factors such as geochemical and microbial parameters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Mixing order of glidant and lubricant – Influence on powder and tablet properties

    PubMed Central

    Pingali, Kalyana; Mendez, Rafael; Lewis, Daniel; Michniak-Kohn, Bozena; Cuitino, Alberto; Muzzio, Fernando

    2014-01-01

    The main objective of the present work was to study the effect of mixing order of Cab-O-Sil (CS) and magnesium stearate (MgSt) and microlayers during mixing on blend and tablet properties. A first set of pharmaceutical blend containing Avicel PH200, Pharmatose and micronized acetaminophen was prepared with three mixing orders (mixing order-1: CS added first; mixing order-2: MgSt added first; mixing order-3: CS and MgSt added together). All the blends were subjected to a shear rate of 80 rpm and strain of 40, 160 and 640 revolutions in a controlled shear environment resulting in nine different blends. A second set of nine blends was prepared by replacing Avicel PH200 with Avicel PH102. A total of eighteen blends thus prepared were tested for powder hydrophobicity, powder flow, tablet weight, tablet hardness and tablet dissolution. Results indicated that powder hydrophobicity increased significantly for mixing order-1. Intermediate hydrophobic behavior was found for mixing order-3. Additionally, mixing order 1 resulted in improved powder flow properties, low weight variability, higher average tablet weight and slow drug release rates. Dissolution profiles obtained were found to be strongly dependent not only on the mixing order of flowing agents, but also on the strain and the resulting hydrophobicity. PMID:21356286

  14. Quartz dissolution. I - Negative crystal experiments and a rate law. II - Theory of rough and smooth surfaces

    NASA Technical Reports Server (NTRS)

    Gratz, Andrew J.; Bird, Peter

    1993-01-01

    The range of the measured quartz dissolution rates, as a function of temperature and pOH, extent of saturation, and ionic strength, is extended to cover a wider range of solution chemistries, using the negative crystal methodology of Gratz et al. (1990) to measure the dissolution rate. A simple rate law describing the quartz dissolution kinetics above the point of zero charge of quartz is derived for ionic strengths above 0.003 m. Measurements were performed on some defective crystals, and the mathematics of step motion was developed for quartz dissolution and was compared with rough-face behavior using two different models.

  15. The use of ordered mixtures for improving the dissolution rate of low solubility compounds.

    PubMed

    Nyström, C; Westerberg, M

    1986-03-01

    The dissolution rate of micronized griseofulvin has been investigated, both for the agglomerated raw material and the material formulated as an ordered mixture, by means of the USP XX paddle method. During the experiments, which were performed at sink condition and constant temperature, the effects of adding a surfactant and of agitation were tested. The ordered mixture with sodium chloride gave a fast dissolution rate, practically independent of the test parameters. Micronized griseofulvin alone gave dissolution profiles that were improved by adding polysorbate 80 and by increased agitation, but the dissolution rates obtained were much lower than those for the ordered mixture. It was concluded that the rate limiting step in the dissolution of griseofulvin as the raw material is the penetration of the dissolution medium into the agglomerates. With an ordered mixture, these agglomerates were deaggregated during the mixing process, producing a system in which the entire external surface area of the primary particles was exposed to the dissolution medium. This conclusion was supported by calculation of the contact surface areas taking part in the dissolution process for the systems tested. The procedure developed in this study could be applied to preformulation work where a cohesive, low solubility drug of hydrophobic nature is to be formulated.

  16. The effect of fuel chemistry on UO2 dissolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casella, Amanda; Hanson, Brady; Miller, William

    2016-08-01

    The dissolution rate of both unirradiated UO2 and used nuclear fuel has been studied by numerous countries as part of the performance assessment of proposed geologic repositories. In the scenario of waste package failure and groundwater infiltration into the fuel, the effects of variables such as temperature, dissolved oxygen, and water and fuel chemistry on the dissolution rates of the fuel are necessary to provide a quantitative estimate of the potential release over geologic time frames. The primary objective of this research was to determine the influence these parameters have on the dissolution rate of unirradiated UO2 under repository conditionsmore » and compare them to the rates predicted by current dissolution models. Both unirradiated UO2 and UO2 doped with varying concentrations of Gd2O3, to simulate used fuel composition after long time periods where radiolysis has minor contributions to dissolution, were examined. In general, a rise in temperature increased the dissolution rate of UO2 and had a larger effect on pure UO2 than on those doped with Gd2O3. Oxygen dependence was observed in the UO2 samples with no dopant and increased as the temperature rose; in the doped fuels less dependence was observed. The addition of gadolinia into the UO2 matrix showed a significant decrease in the dissolution rate. The matrix stabilization effect resulting from the dopant proved even more beneficial in lowering the dissolution rate at higher temperatures and dissolved O2 concentrations in the leachate where the rates would typically be elevated.« less

  17. Revisiting the electrochemical impedance spectroscopy of magnesium with online inductively coupled plasma atomic emission spectroscopy.

    PubMed

    Shkirskiy, Viacheslav; King, Andrew D; Gharbi, Oumaïma; Volovitch, Polina; Scully, John R; Ogle, Kevin; Birbilis, Nick

    2015-02-23

    The electrochemical impedance of reactive metals such as magnesium is often complicated by an obvious inductive loop with decreasing frequency of the AC polarising signal. The characterisation and ensuing explanation of this phenomenon has been lacking in the literature to date, being either ignored or speculated. Herein, we couple electrochemical impedance spectroscopy (EIS) with online atomic emission spectroelectrochemistry (AESEC) to simultaneously measure Mg-ion concentration and electrochemical impedance spectra during Mg corrosion, in real time. It is revealed that Mg dissolution occurs via Mg(2+) , and that corrosion is activated, as measured by AC frequencies less than approximately 1 Hz approaching DC conditions. The result of this is a higher rate of Mg(2+) dissolution, as the voltage excitation becomes slow enough to enable all Mg(2+) -enabling processes to adjust in real time. The manifestation of this in EIS data is an inductive loop. The rationalisation of such EIS behaviour, as it relates to Mg, is revealed for the first time by using concurrent AESEC. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Critical material attributes (CMAs) of strip films loaded with poorly water-soluble drug nanoparticles: III. Impact of drug nanoparticle loading.

    PubMed

    Krull, Scott M; Moreno, Jacqueline; Li, Meng; Bilgili, Ecevit; Davé, Rajesh N

    2017-05-15

    Polymer strip films have emerged as a robust platform for poorly water-soluble drug delivery. However, the common conception is that films cannot exceed low drug loadings, mainly due to poor drug stability, slow release, and film brittleness. This study explores the ability to achieve high loadings of poorly water-soluble drug nanoparticles in strip films while retaining good mechanical properties and enhanced dissolution rate. Aqueous suspensions containing up to 30wt% griseofulvin nanoparticles were prepared via wet stirred media milling and incorporated into hydroxypropyl methylcellulose (HPMC) films. Griseofulvin loading in films was adjusted to be between 9 and 49wt% in HPMC-E15 films and 30 and 73wt% in HPMC-E4M films by varying the mixing ratio of HPMC solution-to-griseofulvin suspension. All films exhibited good content uniformity and nanoparticle redispersibility up to 50wt% griseofulvin, while E4M films above 50wt% griseofulvin had slightly worse content uniformity and poor nanoparticle redispersibility. Increasing drug loading in films generally required more time to achieve 100% release during dissolution, although polymer-drug clusters dispersed from E4M films above 50wt% griseofulvin, resulting in similar dissolution profiles. While all films exhibited good tensile strength, a significant decrease in percent elongation was observed above 40-50wt% GF, resulting in brittle films. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Dissolution of minerals with rough surfaces

    NASA Astrophysics Data System (ADS)

    de Assis, Thiago A.; Aarão Reis, Fábio D. A.

    2018-05-01

    We study dissolution of minerals with initial rough surfaces using kinetic Monte Carlo simulations and a scaling approach. We consider a simple cubic lattice structure, a thermally activated rate of detachment of a molecule (site), and rough surface configurations produced by fractional Brownian motion algorithm. First we revisit the problem of dissolution of initial flat surfaces, in which the dissolution rate rF reaches an approximately constant value at short times and is controlled by detachment of step edge sites. For initial rough surfaces, the dissolution rate r at short times is much larger than rF ; after dissolution of some hundreds of molecular layers, r decreases by some orders of magnitude across several time decades. Meanwhile, the surface evolves through configurations of decreasing energy, beginning with dissolution of isolated sites, then formation of terraces with disordered boundaries, their growth, and final smoothing. A crossover time to a smooth configuration is defined when r = 1.5rF ; the surface retreat at the crossover is approximately 3 times the initial roughness and is temperature-independent, while the crossover time is proportional to the initial roughness and is controlled by step-edge site detachment. The initial dissolution process is described by the so-called rough rates, which are measured for fixed ratios between the surface retreat and the initial roughness. The temperature dependence of the rough rates indicates control by kink site detachment; in general, it suggests that rough rates are controlled by the weakest microscopic bonds during the nucleation and formation of the lowest energy configurations of the crystalline surface. Our results are related to recent laboratory studies which show enhanced dissolution in polished calcite surfaces. In the application to calcite dissolution in alkaline environment, the minimal values of recently measured dissolution rate spectra give rF ∼10-9 mol/(m2 s), and the calculated rate laws of our model give rough rates in the range 10-6 -10-5 mol/(m2 s). This estimate is consistent with the range of calcite dissolution rates obtained in a recent work after treatment of literature data, which suggests the universal control of kink site dissolution in short term laboratory works. The weak effects of lattice size on our results also suggest that smoothing of mineral grain surfaces across geological times may be a microscopic explanation for the difference of chemical weathering rate of silicate minerals in laboratory and in the environment.

  20. Dissolution patterns of biocompatible glasses in 2-amino-2-hydroxymethyl-propane-1,3-diol (Tris) buffer.

    PubMed

    Fagerlund, S; Hupa, L; Hupa, M

    2013-02-01

    A continuous flow measurement system with sensitive on-line ion analysis has been applied to study the initial dissolution behaviour of biocompatible glasses in Tris. Altogether 16 glasses with widely varying compositions were studied. The measurement system allowed for quantitative determination of the time-dependent rates of dissolution of sodium, potassium, calcium, magnesium, silicon and phosphorus during the first 10-15 min in contact with Tris solution. The dissolution rates of the different ions showed significant glass to glass variations, but all glasses studied showed one of four distinct dissolution patterns. The ion dissolution rates after an exposure of 1000 s, expressed as the normalized surface-specific mass loss rates, were compared with the in vitro and in vivo reactivity of the glasses as predicted by models in the literature. The results showed a clear correlation between the dissolution rates of the glasses in Tris and their reactivity as measured by other different methods. Consequently, the measured short-term dissolution patterns could be used to determine which glasses are suitable as bioactive, biodegradable, or inert biomaterials for medical devices. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Dissolution of quartz in aqueous basic solution, 106-236 C - Surface kinetics of 'perfect' crystallographic faces

    NASA Technical Reports Server (NTRS)

    Gratz, Andrew J.; Bird, Peter; Quiro, Glenn B.

    1990-01-01

    A highly accurate method, called the negative crystal method, for determining the rate of dissolution on specific crystallographic faces of crystals was developed, in which the dissolution rates of nominally perfect crystal faces are obtained by measuring the size of individual negative crystals during a sequence of dissolution steps. The method was applied to determine the apparent activation energy and rate constants for the dissolution of quartz in 0.01 M KOH solutions at temperatures from 106 to 236 C. Also investigated were the effects of hydroxyl activity and ionic strength. The apparent activation energies for the dissolution of the prism and of the rhomb were determined.

  2. A reaction limited in vivo dissolution model for the study of drug absorption: Towards a new paradigm for the biopharmaceutic classification of drugs.

    PubMed

    Macheras, Panos; Iliadis, Athanassios; Melagraki, Georgia

    2018-05-30

    The aim of this work is to develop a gastrointestinal (GI) drug absorption model based on a reaction limited model of dissolution and consider its impact on the biopharmaceutic classification of drugs. Estimates for the fraction of dose absorbed as a function of dose, solubility, reaction/dissolution rate constant and the stoichiometry of drug-GI fluids reaction/dissolution were derived by numerical solution of the model equations. The undissolved drug dose and the reaction/dissolution rate constant drive the dissolution rate and determine the extent of absorption when high-constant drug permeability throughout the gastrointestinal tract is assumed. Dose is an important element of drug-GI fluids reaction/dissolution while solubility exclusively acts as an upper limit for drug concentrations in the lumen. The 3D plots of fraction of dose absorbed as a function of dose and reaction/dissolution rate constant for highly soluble and low soluble drugs for different "stoichiometries" (0.7, 1.0, 2.0) of the drug-reaction/dissolution with the GI fluids revealed that high extent of absorption was found assuming high drug- reaction/dissolution rate constant and high drug solubility. The model equations were used to simulate in vivo supersaturation and precipitation phenomena. The model developed provides the theoretical basis for the interpretation of the extent of drug's absorption on the basis of the parameters associated with the drug-GI fluids reaction/dissolution. A new paradigm emerges for the biopharmaceutic classification of drugs, namely, a model independent biopharmaceutic classification scheme of four drug categories based on either the fulfillment or not of the current dissolution criteria and the high or low % drug metabolism. Copyright © 2018. Published by Elsevier B.V.

  3. Montmorillonite dissolution kinetics: Experimental and reactive transport modeling interpretation

    NASA Astrophysics Data System (ADS)

    Cappelli, Chiara; Yokoyama, Shingo; Cama, Jordi; Huertas, F. Javier

    2018-04-01

    The dissolution kinetics of K-montmorillonite was studied at 25 °C, acidic pH (2-4) and 0.01 M ionic strength by means of well-mixed flow-through experiments. The variations of Si, Al and Mg over time resulted in high releases of Si and Mg and Al deficit, which yielded long periods of incongruent dissolution before reaching stoichiometric steady state. This behavior was caused by simultaneous dissolution of nanoparticles and cation exchange between the interlayer K and released Ca, Mg and Al and H. Since Si was only involved in the dissolution reaction, it was used to calculate steady-state dissolution rates, RSi, over a wide solution saturation state (ΔGr ranged from -5 to -40 kcal mol-1). The effects of pH and the degree of undersaturation (ΔGr) on the K-montmorillonite dissolution rate were determined using RSi. Employing dissolution rates farthest from equilibrium, the catalytic pH effect on the K-montmorillonite dissolution rate was expressed as Rdiss = k·aH0.56±0.05 whereas using all dissolution rates, the ΔGr effect was expressed as a non-linear f(ΔGr) function Rdiss = k · [1 - exp(-3.8 × 10-4 · (|ΔGr|/RT)2.13)] The functionality of this expression is similar to the equations reported for dissolution of Na-montmorillonite at pH 3 and 50 °C (Metz, 2001) and Na-K-Ca-montmorillonite at pH 9 and 80 °C (Cama et al., 2000; Marty et al., 2011), which lends support to the use of a single f(ΔGr) term to calculate the rate over the pH range 0-14. Thus, we propose a rate law that also accounts for the effect of pOH and temperature by using the pOH-rate dependence and the apparent activation energy proposed by Rozalén et al. (2008) and Amram and Ganor (2005), respectively, and normalizing the dissolution rate constant with the edge surface area of the K-montmorillonite. 1D reactive transport simulations of the experimental data were performed using the Crunchflow code (Steefel et al., 2015) to quantitatively interpret the evolution of the released cations and to elucidate the stoichiometry of the reaction. After the implementation of (i) the obtained f(ΔGr) term in the K-montmorillonte dissolution rate law, (ii) a fraction of highly reactive particles and surfaces and (iii) the cation exchange reactions between the interlayer K+ and the released Al3+, Mg2+, Ca2+ and H+, the simulations agreed with the experimental concentrations at the outlet. This match indicates that fast dissolution of fine particles and highly reactive sites and exchange between the interlayer K and dissolved structural cations (Al and Mg) and protons are responsible for the temporary incongruency of the K-montmorillonite dissolution reaction. As long as dissolution of the bulk sample predominates, the reaction is stoichiometric.

  4. First-order dissolution rate law and the role of surface layers in glass performance assessment

    NASA Astrophysics Data System (ADS)

    Grambow, B.; Müller, R.

    2001-09-01

    The first-order dissolution rate law is used for nuclear waste glass performance predictions since 1984. A first discussion of the role of saturation effects was initiated at the MRS conference that year. In paper (1) it was stated that "For glass dissolution A* (the reaction affinity) cannot become zero since saturation only involves the reacting surface while soluble elements still might be extracted from the glass" [B. Grambow, J. Mater. Res. Soc. Symp. Proc. 44 (1985) 15]. Saturation of silica at the surface and condensation of surface silanol groups was considered as being responsible for the slow down of reaction rates by as much as a factor of 1000. Precipitation of Si containing secondary phases such as quartz was invoked as a mechanism for keeping final dissolution affinities higher than zero. Another (2) paper [A.B. Barkatt, P.B. Macedo, B.C. Gibson, C.J. Montrose, J. Mater. Res. Soc. Symp. Proc. 44 (1985) 3] stated that "… under repository conditions the extent of glass dissolution will be moderate due to saturation with respect to certain major elements (in particular, Si, Al and Ca). Consequently, the concentration levels of the more soluble glass constituents in the aqueous medium are expected to fall appreciable below their solubility limit." The formation of dense surface layers was considered responsible for explaining the saturation effect. The mathematical model assumed stop of reaction in closed systems, once solubility limits were achieved. For more than 15 years the question of the correctness of one or the other concept has seldom been posed and has not yet been resolved. The need of repository performance assessment for validated rate laws demands a solution, particularly since the consequences of the two concepts and research requirements for the long-term glass behavior are quite different. In concept (1) the stability of the `equilibrium surface region' is not relevant because, by definition, this region is stable chemically and after a potential mechanical destruction it will be reformed instantaneously. The same is true for radiation damage. The dissolution of silica from the surface in this concept is considered as rate limiting for the release of soluble elements from the glass. After surface stabilization by local solid/solution equilibrium the release of soluble radionuclides continues with lower rates, but this is considered as resulting from parallel leaching mechanism. In fact, the deconvolutions of the overall leach mechanism into individual parallel and sequential rate limiting steps (not necessarily elementary reactions) is fundamental to this concept. In concept (2) surface stability as well as surface morphology are fundamental. A fracture in the protective surface would increase glass corrosion. The protective effect is based on the low diffusivities of radionuclides and other glass constituents in this layer. However, a true relation between layer thickness and rates is seldom observed. Diffusion coefficients are considered to vary with time as well as with the surface area to solution volume S/ V ratio. Sometimes, extremely low diffusivities in extremely thin layers are invoked to explain experimental data. The two concepts are not so different from each other and one is tempted to think of a problem of semantics. In fact, there are two alternative ways by which the protective layer concept can be coupled to the saturation concept: (a) the layer may be formed by solubility effects as proposed in [loc.cit] and/or (b) the layer plays the role of a silica diffusion barrier limiting glass dissolution rates according to the first-order rate law at the interface between the pristine glass and the surface layer. However, the mathematical models based on these conceptual models yield quite different long-term predictions, even though the models may equally well fit a given set of experimental data. The models are also different with respect to the number of interrelated parameters. In the case of a model based on a surface layer slowing down glass network dissolution, the numerical value of the diffusion coefficient of silica, the layer thickness and the saturation concentration of dissolved silica are interrelated. Often, none of the parameters are measured directly. As a consequence this leads to not-sufficiently constrained models with poor predictive capacity. Recent research has indicated that there might be problems with the applicability of the first-order rate law [C. Jegou, thesis, University of Montpellier II, 1998]. Fresh glass or pre-altered glass samples were put in solutions over-saturated with silica. A decrease in reaction rates by as much as a factor of 10 was observed, but the rates remained much higher than predicted from a first-order rate law. It was argued that none of the kinetic models based on the notions of `chemical affinity' and `deviation from an equilibrium' is adapted to describe the kinetics of glass corrosion. In contrast, the formation of a surface gel and condensation of silanol groups are considered responsible for the decrease in reaction rates. The present communication argues against this view. Based on recent results of Monte Carlo calculations [M. Aertsens, Mater. Res. Soc. Symp. Proc. 556 (1999) 409] it is shown that some time of surface restructuration is necessary before saturation effects become fully effective in controlling long-term release of soluble glass constituents. The formation of a gel layer is not opposed to an affinity based kinetic concept, but it is in contrast a manifestation of this concept. It is the belief of the authors that much of the confusion related to the first-order rate law results from the fact that glass network dissolution is not considered as only one of a series of reaction mechanism and that glass network hydration and alkali ion exchange were ignored as parallel leaching mechanism. Our experimental results show that glass network hydration and ion exchange are important in short-term laboratory tests and in certain cases (closed system) also in the long term.

  5. In situ nanoscale observations of gypsum dissolution by digital holographic microscopy.

    PubMed

    Feng, Pan; Brand, Alexander S; Chen, Lei; Bullard, Jeffrey W

    2017-06-01

    Recent topography measurements of gypsum dissolution have not reported the absolute dissolution rates, but instead focus on the rates of formation and growth of etch pits. In this study, the in situ absolute retreat rates of gypsum (010) cleavage surfaces at etch pits, at cleavage steps, and at apparently defect-free portions of the surface are measured in flowing water by reflection digital holographic microscopy. Observations made on randomly sampled fields of view on seven different cleavage surfaces reveal a range of local dissolution rates, the local rate being determined by the topographical features at which material is removed. Four characteristic types of topographical activity are observed: 1) smooth regions, free of etch pits or other noticeable defects, where dissolution rates are relatively low; 2) shallow, wide etch pits bounded by faceted walls which grow gradually at rates somewhat greater than in smooth regions; 3) narrow, deep etch pits which form and grow throughout the observation period at rates that exceed those at the shallow etch pits; and 4) relatively few, submicrometer cleavage steps which move in a wave-like manner and yield local dissolution fluxes that are about five times greater than at etch pits. Molar dissolution rates at all topographical features except submicrometer steps can be aggregated into a continuous, mildly bimodal distribution with a mean of 3.0 µmolm -2 s -1 and a standard deviation of 0.7 µmolm -2 s -1 .

  6. Automated potentiometric procedure for studying dissolution kinetics acidic drugs under sink conditions.

    PubMed

    Underwood, F L; Cadwallader, D E

    1978-08-01

    An automated potentiometric procedure was used for studying in vitro dissolution kinetics of acidic drugs. Theoretical considerations indicated that the pH-stat method could be used to establish approximate sink conditions or, possibly, a perfect sink. Data obtained from dissolution studies using the pH-stat method were compared with data obtained from known sink and nonsink conditions. These comparisons indicated that the pH-stat method can be used to establish a sink condition for dissolution studies. The effective diffusion layer thicknesses for benzoic and salicylic acids dissolving in water were determined, and a theoretical dissolution rate was calculated utilizing these values. The close agreement between the experimental dissolution rates obtained under pH-stat conditions and theoretical dissolution rates indicated that perfect sink conditions were established under the experimental conditions used.

  7. Biogenic sedimentation in the equatorial Pacific: Carbon cycling and paleoproduction, 12-24 Ma

    NASA Astrophysics Data System (ADS)

    Piela, Christine; Lyle, Mitchell; Marcantonio, Franco; Baldauf, Jack; Olivarez Lyle, Annette

    2012-06-01

    The equatorial Pacific is an important part of the global carbon cycle and has been affected by climate change through the Cenozoic (65 Ma to present). We present a Miocene (12-24 Ma) biogenic sediment record from Deep Sea Drilling Project (DSDP) Site 574 and show that a CaCO3 minimum at 17 Ma was caused by elevated CaCO3 dissolution. When Pacific Plate motion carried Site 574 under the equator at about 16.2 Ma, there is a minor increase in biogenic deposition associated with passing under the equatorial upwelling zone. The burial rates of the primary productivity proxies biogenic silica (bio-SiO2) and biogenic barium (bio-Ba) increase, but biogenic CaCO3 decreases. The carbonate minimum is at ˜17 Ma coincident with the beginning of the Miocene climate optimum; the transient lasts from 18 to 15 Ma. Bio-SiO2 and bio-Ba are positively correlated and increase as the equator was approached. Corg is poorly preserved, and is strongly affected by changing carbonate burial. Terrestrial 232Th deposition, a proxy for aeolian dust, increases only after the Site 574 equator crossing. Since surface production of bio-SiO2, bio-Ba, and CaCO3 correlate in the modern equatorial Pacific, the decreased CaCO3 burial rate during the Site 574 equator crossing is driven by elevated CaCO3 dissolution, representing elevated ocean carbon storage and elevated atmospheric CO2. The length of the 17 Ma CaCO3 dissolution transient requires interaction with a `slow' part of the carbon cycle, perhaps elevated mantle degassing associated with the early stages of Columbia River Basalt emplacement.

  8. Dissolution Rates and Mineral Lifetimes of Phosphate Containing Minerals and Implications for Mars

    NASA Astrophysics Data System (ADS)

    Adcock, C. T.; Hausrath, E.

    2011-12-01

    The objectives of NASA's Mars Exploration Program include exploring the planet's habitability and the possibility of past, present, or future life. This includes investigating "possible supplies of bioessential elements" [1]. Phosphate is one such bioessential element for life as we understand it. Phosphate is also abundant on Mars [2], and the phosphate rich minerals chlorapatite, fluorapatite, and merrillite have been observed in Martian meteorites [3]. Surface rock analyses from the MER Spirit also show the loss of a phosphate rich mineral from the rocks Wishstone and Watchtower at Gusev Crater [4,5], implying mineral dissolution. Dissolution rates of phosphate containing minerals are therefore important for characterizing phosphate mobility and bioavailability on Mars. Previous studies have measured dissolution rates of fluorapatite [6-8]. However, chlorapatite and merrillite (a non-terrestrial mineral similar to whitlockite) are more common phosphate minerals found in Martian meteorites [3], and few dissolution data exist for these minerals. We have begun batch dissolution experiments on chlorapatite, synthesized using methods of [9], and whitlockite, synthesized using a method modified from [10]. Additionally, we are dissolving Durango fluorapatite to compare to dissolution rates in literature, and natural Palermo whitlockite to compare to dissolution rates of our synthesized whitlockite. Batch dissolution experiments were performed after [8], using a 0.01 molar KNO3 solution with 0.1500g-0.3000g mineral powders and starting solution volumes of 180ml in LDPE reaction vessels. HNO3 or KOH were used to adjust initial pH as required. Dissolution rates are calculated from the rate of change of elemental concentration in solution as a function of time, and normalized to the mineral surface area as measured by BET. Resulting rates will be used to calculate mineral lifetimes for the different phosphate minerals under potential Mars-like aqueous conditions, and in future reactive transport modeling.

  9. Molecular-level elucidation of saccharin-assisted rapid dissolution and high supersaturation level of drug from Eudragit® E solid dispersion.

    PubMed

    Ueda, Keisuke; Kanaya, Harunobu; Higashi, Kenjirou; Yamamoto, Keiji; Moribe, Kunikazu

    2018-03-01

    In this work, the effect of saccharin (SAC) addition on the dissolution and supersaturation level of phenytoin (PHT)/Eudragit® E (EUD-E) solid dispersion (SD) at neutral pH was examined. The PHT/EUD-E SD showed a much slower dissolution of PHT compared to the PHT/EUD-E/SAC SD. EUD-E formed a gel layer after the dispersion of the PHT/EUD-E SD into an aqueous medium, resulting in a slow dissolution of PHT. Pre-dissolving SAC in the aqueous medium significantly improved the dissolution of the PHT/EUD-E SD. Solid-state 13 C NMR measurements showed an ionic interaction between the tertiary amino group of EUD-E and the amide group of SAC in the EUD-E gel layer. Consequently, the ionized EUD-E could easily dissolve from the gel layer, promoting PHT dissolution. Solution-state 1 H NMR measurements revealed the presence of ionic interactions between SAC and the amino group of EUD-E in the PHT/EUD-E/SAC solution. In contrast, interactions between PHT and the hydrophobic group of EUD-E strongly inhibited the crystallization of the former from its supersaturated solution. The PHT supersaturated solution was formed from the PHT/EUD-E/SAC SD by the fast dissolution of PHT and the strong crystallization inhibition effect of EUD-E after aqueous dissolution. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Contact Angle Measurements: an Alternative Approach Towards Understanding the Mechanism of Increased Drug Dissolution from Ethylcellulose Tablets Containing Surfactant and Exploring the Relationship Between Their Contact Angles and Dissolution Behaviors.

    PubMed

    Liu, Tiaotiao; Hao, Jingqiang; Yang, Baixue; Hu, Beibei; Cui, Zhixiang; Li, Sanming

    2018-05-01

    The addition of surfactant in tablet was a well-defined approach to improve drug dissolution rate. While the selected surfactant played a vital role in improving the wettability of tablet by medium, it was equally important to improve the dissolution rate by permeation effect due to production of pores or the reduced inter-particle adhesion. Furthermore, understanding the mechanism of dissolution rate increased was significant. In this work, contact angle measurement was taken up as an alternative approach for understanding the dissolution rate enhancement for tablet containing surfactant. Ethylcellulose, as a substrate, was used to prepare tablet. Four surfactants, sodium dodecyl sulfate (SDS), sodium dodecylbenzenesulfonate (SDBS), dodecyltrimethylammonium bromide (DTAB), and sodium lauryl sulfonate (SLS), were used. Berberine hydrochloride, metformin hydrochloride, and rutin were selected as model drugs. The contact angle of tablet in the absence and presence of surfactant was measured to explore the mechanism. The dissolution test was investigated to verify the mechanism and to establish a correlation with the contact angle. The result showed that the mechanism was the penetration effect rather than the wetting effect. The dissolution increased with a reduction in the contact angle. DTAB was found to obtain the highest level of dissolution enhancement and the lowest contact angle, while SDS, SDBS, and SLS were found to be the less effective in both dissolution enhancement and contact angle decrease. Therefore, contact angle was a good indicator for dissolution behavior besides exploring the mechanism of increased dissolution, which shows great potential in formula screening.

  11. Impact of dissolution and carbonate precipitation on carbon storage in basalt

    NASA Astrophysics Data System (ADS)

    Wells, R. K.; Xiong, W.; Tadeoye, J.; Menefee, A.; Ellis, B. R.; Skemer, P. A.; Giammar, D.

    2016-12-01

    The spatial evolution of silicate mineral dissolution, carbonate precipitation, and the transport of fluids influence the viability of carbon storage in basalt reservoirs. Dissolution of natural basalt and subsequent carbonate precipitation in systems with different transport processes operating were characterized using static and flow-through (5 mL/hr) experiments at 50, 100, and 150 °C, and 100 bar CO2. Intact samples and cores with milled pathways that simulate fractures were tested. Spatial and mineralogical patterns in dissolution and precipitation were analyzed using optical and electron microscopy, microCT scanning, and surface roughness data. Precipitates and fluid chemistry were analyzed using Raman spectroscopy, SEM-EDS, and ICP-MS. Analysis of the bulk solution and surface topography suggests dissolution of olivine and pyroxene grains begins within hours of the start of the experiments. In flow-through experiments, total effluent cation concentrations reach a peak concentration within a few hours then drop towards a steady state within a few days. In static experiments, the initial rate of cation release is faster than it is after several weeks. In both cases Ca2+, Mg2+, and Fe2+ are the dominant cations in solution in the initial stages of reaction. Lower concentrations of Na2+, K+, and Al3+, and the preservation of feldspar and matrix grains after several weeks of reaction indicate the slow reactivity of these minerals. As the reaction progresses, the surface roughness increases steadily with cavities developing at the sites of olivine and pyroxene grains. Post-reaction analysis of basalt samples reacted at static conditions with milled pathways reveals that both siderite and amorphous silica precipitated within diffusion-limited zones as early as 4-6 weeks. Siderite abundance varies with distance along the pathway with the highest concentration of carbonates 1-2 cm below the fracture opening. Siderite precipitates are large enough to fill fracture opening 100 μm wide within 4-6 weeks.

  12. Calorimetric Investigation of Thermal Stability of 304H Cu (Fe-17.7Cr-9.3Ni-2.95Cu-0.91Mn-0.58Nb-0.24Si-0.1C-0.12N-Wt Pct) Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Tripathy, Haraprasanna; Subramanian, Raju; Hajra, Raj Narayan; Rai, Arun Kumar; Rengachari, Mythili; Saibaba, Saroja; Jayakumar, Tammana

    2016-12-01

    The sequence of phase instabilities that take place in a Fe-17.7Cr-9.3Ni-0.58Nb-2.95Cu-0.12N (wt pct) austenitic stainless steel (304H Cu grade) as a function of temperature has been investigated using dynamic calorimetry. The results obtained from this investigation are supplemented by Thermocalc-based equilibrium and Scheil-Gulliver nonequilibrium solidification simulation. The following phase transformation sequence is found upon slow cooling from liquid: L → L + γ → L + γ + MX → γ + MX + δ → γ +MX + M23C6 → γ + MX + M23C6 + Cu. Under slow cooling, the solidification follows austenite + ferrite (AF) mode, which is in accordance with Thermocalc prediction and Scheil-Gulliver simulation. However, higher cooling rates result in skeletal δ-ferrite formation, due to increased segregation tendency of Nb and Cr to segregate to interdendritic liquid. The solidification mode is found to depend on combined Nb + Cu content. Experimental estimates of enthalpy change associated with melting and secondary phase precipitation are also obtained. In addition a semi-quantitative study on the dissolution kinetics of M23C6 type carbides has also been investigated. The standard solution treatment at 1413 K (1140 °C) is found to be adequate to dissolve both Cu and M23C6 into γ-austenite; but the complete dissolution of MX type carbonitrides occurs near the melting region.

  13. Effects of natural organic matter properties on the dissolution kinetics of zinc oxide nanoparticles

    USGS Publications Warehouse

    Jiang, Chuanjia; Aiken, George R.; Hsu-Kim, Heileen

    2015-01-01

    The dissolution of zinc oxide (ZnO) nanoparticles (NPs) is a key step of controlling their environmental fate, bioavailability, and toxicity. Rates of dissolution often depend upon factors such as interactions of NPs with natural organic matter (NOM). We examined the effects of 16 different NOM isolates on the dissolution kinetics of ZnO NPs in buffered potassium chloride solution using anodic stripping voltammetry to directly measure dissolved zinc concentrations. The observed dissolution rate constants (kobs) and dissolved zinc concentrations at equilibrium increased linearly with NOM concentration (from 0 to 40 mg C L–1) for Suwannee River humic and fulvic acids and Pony Lake fulvic acid. When dissolution rates were compared for the 16 NOM isolates, kobs was positively correlated with certain properties of NOM, including specific ultraviolet absorbance (SUVA), aromatic and carbonyl carbon contents, and molecular weight. Dissolution rate constants were negatively correlated to hydrogen/carbon ratio and aliphatic carbon content. The observed correlations indicate that aromatic carbon content is a key factor in determining the rate of NOM-promoted dissolution of ZnO NPs. The findings of this study facilitate a better understanding of the fate of ZnO NPs in organic-rich aquatic environments and highlight SUVA as a facile and useful indicator of NOM interactions with metal-based nanoparticles.

  14. [Key physical parameters of hawthorn leaf granules by stepwise regression analysis method].

    PubMed

    Jiang, Qie-Ying; Zeng, Rong-Gui; Li, Zhe; Luo, Juan; Zhao, Guo-Wei; Lv, Dan; Liao, Zheng-Gen

    2017-05-01

    The purpose of this study was to investigate the effect of key physical properties of hawthorn leaf granule on its dissolution behavior. Hawthorn leaves extract was utilized as a model drug. The extract was mixed with microcrystalline cellulose or starch with the same ratio by using different methods. Appropriate amount of lubricant and disintegrating agent was added into part of the mixed powder, and then the granules were prepared by using extrusion granulation and high shear granulation. The granules dissolution behavior was evaluated by using equilibrium dissolution quantity and dissolution rate constant of the hypericin as the indicators. Then the effect of physical properties on dissolution behavior was analyzed through the stepwise regression analysis method. The equilibrium dissolution quantity of hypericin and adsorption heat constant in hawthorn leaves were positively correlated with the monolayer adsorption capacity and negatively correlated with the moisture absorption rate constant. The dissolution rate constants were decreased with the increase of Hausner rate, monolayer adsorption capacity and adsorption heat constant, and were increased with the increase of Carr index and specific surface area. Adsorption heat constant, monolayer adsorption capacity, moisture absorption rate constant, Carr index and specific surface area were the key physical properties of hawthorn leaf granule to affect its dissolution behavior. Copyright© by the Chinese Pharmaceutical Association.

  15. Synergistic effect of reductive and ligand-promoted dissolution of goethite.

    PubMed

    Wang, Zimeng; Schenkeveld, Walter D C; Kraemer, Stephan M; Giammar, Daniel E

    2015-06-16

    Ligand-promoted dissolution and reductive dissolution of iron (hydr)oxide minerals control the bioavailability of iron in many environmental systems and have been recognized as biological iron acquisition strategies. This study investigated the potential synergism between ligands (desferrioxamine B (DFOB) or N,N'-Di(2-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid (HBED)) and a reductant (ascorbate) in goethite dissolution. Batch experiments were performed at pH 6 with ligand or reductant alone and in combination, and under both oxic and anoxic conditions. Goethite dissolution in the presence of reductant or ligand alone followed classic surface-controlled dissolution kinetics. Ascorbate alone does not promote goethite dissolution under oxic conditions due to rapid reoxidation of Fe(II). The rate coefficients for goethite dissolution by ligands are closely correlated with the stability constants of the aqueous Fe(III)-ligand complexes. A synergistic effect of DFOB and ascorbate on the rate of goethite dissolution was observed (total rates greater than the sum of the individual rates), and this effect was most pronounced under oxic conditions. For HBED, macroscopically the synergistic effect was hidden due to the inhibitory effect of ascorbate on HBED adsorption. After accounting for the concentrations of adsorbed ascorbate and HBED, a synergistic effect could still be identified. The potential synergism between ligand and reductant for iron (hydr)oxide dissolution may have important implications for iron bioavailability in soil environments.

  16. Dissolution of Fe(III) (hydr) oxides by metal-EDTA complexes

    NASA Astrophysics Data System (ADS)

    Ngwack, Bernd; Sigg, Laura

    1997-03-01

    The dissolution of Fe(III)(hydr)oxides (goethite and hydrous ferric oxide) by metal-EDTA complexes occurs by ligand-promoted dissolution. The process is initiated by the adsorption of metal-EDTA complexes to the surface and is followed by the dissociation of the complex at the surface and the release of Fe(III)EDTA into solution. The dissolution rate is decreased to a great extent if EDTA is complexed by metals in comparison to the uncomplexed EDTA. The rate decreases in the order EDTA CaEDTA ≫ PbEDTA > ZnEDTA > CuEDTA > Co(II)EDTA > NiEDTA. Two different rate-limiting steps determine the dissolution process: (1) detachment of Fe(III) from the oxide-structure and (2) dissociation of the metal-EDTA complexes. In the case of goethite, step 1 is slower than step 2 and the dissolution rates by various metals are similar. In the case of hydrous ferric oxide, step 2 is rate-limiting and the effect of the complexed metal is very pronounced.

  17. An upscaled rate law for magnesite dissolution in heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Wen, Hang; Li, Li

    2017-08-01

    Spatial heterogeneity in natural subsurface systems governs water fluxes and residence time in reactive zones and therefore determines effective rates of mineral dissolution. Extensive studies have documented mineral dissolution rates in natural systems, although a general rate law has remain elusive. Here we fill this gap by answering two questions: (1) how and to what extent does spatial heterogeneity affect water residence time and effectively-dissolving surface area? (2) what is the upscaled rate law that quantifies effective dissolution rates in natural, heterogeneous media? With data constraints from experimental work, 240 Monte-Carlo numerical experiments of magnesite dissolution within quartz matrix were run with spatial distributions characterized by a range of permeability variance σ2lnκ (0.5-6.0) and correlation length (2-50 cm). Although the total surface area and global residence time (τa) are the same in all experiments, the water fluxes through reactive magnesite zones varies between 0.7 and 72.8% of the total water fluxes. Highly heterogeneous media with large σ2lnκ and long λ divert water mostly into non-reactive preferential flow paths, therefore bypassing and minimizing flow in low permeability magnesite zones. As a result, the water residence time in magnesite zones (i.e., reactive residence time τa,r) is long and magnesite dissolution quickly reaches local equilibrium, which leads to small effective surface area and low dissolution rates. Magnesite dissolution rates in heterogeneous media vary from 2.7 to 100% of the rates in the equivalent homogeneous media, with effectively-dissolving surface area varying from 0.18 to 6.83 m2 (out of 51.71 m2 total magnesite surface area). Based on 240 numerical experiments and 45 column experiments, a general upscaled rate law in heterogeneous media, RMgCO3,ht =kAe,hm(1 - exp(-τa/τa,r))α, was derived to quantify effective dissolution rates. The dissolution rates in heterogeneous media are a function of the rate constants k being those measured under well-mixed conditions, effective surface area in equivalent homogeneous media Ae,hm, and the heterogeneity factor (1 - exp(-τa/τa,r))α. The heterogeneity factor quantify heterogeneity effects and depends on the relative magnitude of global residence time (τa) and reactive residence time (τa,r), as well as the shape factor α(= 5 σlnκ2) of the gamma distribution for reactive residence times. Exponential forms of rate laws have been used at the micro-scale describing direct interactions among water and mineral surface, and at the catchment scale describing weathering rates and concentration-discharge relationships. These observations highlight the key role of mineral-water contact time in determining dissolution rates at different scales. This work also emphasizes the importance of critical interfaces between reactive and non-reactive zones as determined by the details of spatial patterns and effective surface area as a scaling factor that quantifies dissolution rates in heterogeneous media across scales.

  18. Estimating the time for dissolution of spent fuel exposed to unlimited water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leider, H.R.; Nguyen, S.N.; Stout, R.B.

    1991-12-01

    The release of radionuclides from spent fuel cannot be precisely predicted at this point because a satisfactory dissolution model based on specific chemical processes is not yet available. However, preliminary results on the dissolution rate of UO{sub 2} and spent fuel as a function of temperature and water composition have recently been reported. This information, together with data on fragment size distribution of spent fuel, are used to estimate the dissolution response of spent fuel in excess flowing water within the framework of a simple model. In this model, the reaction/dissolution front advances linearly with time and geometry is preserved.more » This also estimates the dissolution rate of the bulk of the fission products and higher actinides, which are uniformly distributed in the UO{sub 2} matrix and are presumed to dissolve congruently. We have used a fuel fragment distribution actually observed to calculate the time for total dissolution of spent fuel. A worst-case estimate was also made using the initial (maximum) rate of dissolution to predict the total dissolution time. The time for total dissolution of centimeter size particles is estimated to be 5.5 {times} 10{sup 4} years at 25{degrees}C.« less

  19. Increased physical stability and improved dissolution properties of itraconazole, a class II drug, by solid dispersions that combine fast- and slow-dissolving polymers.

    PubMed

    Six, Karel; Verreck, Geert; Peeters, Jef; Brewster, Marcus; Van Den Mooter, Guy

    2004-01-01

    Solid dispersions were prepared of itraconazole-Eudragit E100, itraconazole-PVPVA64, and itraconazole-Eudragit E100/PVPVA64 using a corotating twin-screw hot-stage extruder. Modulated temperature differential scanning calorimetry (MTDSC) was used to evaluate the miscibility of the extrudates, and dissolution experiments were performed in simulated gastric fluid without pepsin (SGF(sp)). Itraconazole and Eudragit E100 are miscible up to 13% w/w drug loading. From that concentration on, phase separation is observed. Pharmaceutical performance of this dispersion was satisfactory because 80% of the drug dissolved after 30 min. Extrudates of itraconazole and PVPVA64 were completely miscible but the pharmaceutical performance was low, with 45% of drug dissolved after 3 h. Combination of both polymers in different ratios, with a fixed drug loading of 40% w/w, was evaluated. MTDSC results clearly indicated a two-phase system consisting of itraconazole-Eudragit E100 and itraconazole-PVPVA64 phases. In these extrudates, no free crystalline or glassy clusters of itraconazole were observed; all itraconazole was mixed with one of both polymers. The pharmaceutical performance was tested in SGF(sp) for different polymer ratios, and Eudragit E100/PVPVA64 ratios of 50/50 and 60/40 showed significant increases in dissolution rate and level. Polymer ratios of 70/30 and 80/20, on the other hand, had a release of 85% after 30 min. Precipitation of the drug was never observed. The combination of the two polymers provides a solid dispersion with good dissolution properties and improved physical stability compared with the binary solid dispersions of itraconazole. Copyright 2004 Wiley-Liss, Inc.

  20. Investigation of the Dissolution Profile of Gliclazide Modified-Release Tablets Using Different Apparatuses and Dissolution Conditions.

    PubMed

    Skripnik, K K S; Riekes, M K; Pezzini, B R; Cardoso, S G; Stulzer, H K

    2017-07-01

    In the absence of an official dissolution method for modified-release tablets of gliclazide, dissolution parameters, such as apparatuses (1, 2, and 3), rotation speeds, pH, and composition of the dissolution medium were investigated. The results show that although the drug presents a pH-mediated solubility (pH 7.0 > 6.8 > 6.4 > 6.0 > 5.5 > 4.5), the in vitro release of the studied tablets was not dependent on this parameter, despite of the apparatus tested. On the other hand, the rotation speed demonstrated a greater influence (100 rpm >50 rpm). Using similar hydrodynamic conditions, the three different apparatuses were compared in pH 6.8 and provided the following trend: apparatus 1 at 100 rpm >2 at 50 rpm ≈3 at 10 dpm. As a complete, but slow release is expected from modified-release formulations, apparatus 2, in phosphate buffer pH 6.8 and 100 rpm, were selected as the optimized dissolution method. In comparison to apparatus 1 under the same conditions, the paddle avoids the stickiness of formulation excipients at the mesh of the basket, which could prejudice the release of gliclazide. Results obtained with biorelevant medium through the developed dissolution method were similar to the buffer solution pH 6.8. The application of the optimized method as a quality control test between two different brands of gliclazide modified-release tablets showed that both dissolution profiles were considered similar by the similarity factor (f2 = 51.8). The investigation of these dissolution profiles indicated a dissolution kinetic following first-order model.

  1. In Situ Observation of Dissolution of Oxide Inclusions in Steelmaking Slags

    NASA Astrophysics Data System (ADS)

    Sharma, Mukesh; Mu, Wangzhong; Dogan, Neslihan

    2018-05-01

    Better understanding of removal of non-metallic inclusions is of importance in the steelmaking process to control the cleanliness of steel. In this study, the dissolution rate of Al2O3 and Al2TiO5 inclusions in a liquid CaO-SiO2-Al2O3 slag was measured using high-temperature confocal scanning laser microscopy (HT-CSLM) at 1550°C. The dissolution rate of inclusions is expressed as a function of the rate of decrease of the radius of solid particles with time. It is found that Al2O3 inclusions have a slower dissolution rate than that of Al2TiO5 inclusions at 1550°C. The rate-limiting steps are investigated in terms of a shrinking core model. It is shown that the rate-limiting step for dissolution of both inclusion types is mass transfer in the slag at 1550°C.

  2. Dissolution enhancement of gliclazide using pH change approach in presence of twelve stabilizers with various physico-chemical properties.

    PubMed

    Talari, Roya; Varshosaz, Jaleh; Mostafavi, Seyed Abolfazl; Nokhodchi, Ali

    2009-01-01

    The micronization using milling process to enhance dissolution rate is extremely inefficient due to a high energy input, and disruptions in the crystal lattice which can cause physical or chemical instability. Therefore, the aim of the present study is to use in situ micronization process through pH change method to produce micron-size gliclazide particles for fast dissolution hence better bioavailability. Gliclazide was recrystallized in presence of 12 different stabilizers and the effects of each stabilizer on micromeritic behaviors, morphology of microcrystals, dissolution rate and solid state of recrystallized drug particles were investigated. The results showed that recrystallized samples showed faster dissolution rate than untreated gliclazide particles and the fastest dissolution rate was observed for the samples recrystallized in presence of PEG 1500. Some of the recrystallized drug samples in presence of stabilizers dissolved 100% within the first 5 min showing at least 10 times greater dissolution rate than the dissolution rate of untreated gliclazide powders. Micromeritic studies showed that in situ micronization technique via pH change method is able to produce smaller particle size with a high surface area. The results also showed that the type of stabilizer had significant impact on morphology of recrystallized drug particles. The untreated gliclazide is rod or rectangular shape, whereas the crystals produced in presence of stabilizers, depending on the type of stabilizer, were very fine particles with irregular, cubic, rectangular, granular and spherical/modular shape. The results showed that crystallization of gliclazide in presence of stabilizers reduced the crystallinity of the samples as confirmed by XRPD and DSC results. In situ micronization of gliclazide through pH change method can successfully be used to produce micron-sized drug particles to enhance dissolution rate.

  3. Kinetic dissolution of carbonates and Mn oxides in acidic water: Measurement of in situ field rates and reactive transport modeling

    USGS Publications Warehouse

    Brown, J.G.; Glynn, P.D.

    2003-01-01

    The kinetics of carbonate and Mn oxide dissolution under acidic conditions were examined through the in situ exposure of pure phase samples to acidic ground water in Pinal Creek Basin, Arizona. The average long-term calculated in situ dissolution rates for calcite and dolomite were 1.65??10-7 and 3.64??10-10 mmol/(cm2 s), respectively, which were about 3 orders of magnitude slower than rates derived in laboratory experiments by other investigators. Application of both in situ and lab-derived calcite and dolomite dissolution rates to equilibrium reactive transport simulations of a column experiment did not improve the fit to measured outflow chemistry: at the spatial and temporal scales of the column experiment, the use of an equilibrium model adequately simulated carbonate dissolution in the column. Pyrolusite (MnO2) exposed to acidic ground water for 595 days increased slightly in weight despite thermodynamic conditions that favored dissolution. This result might be related to a recent finding by another investigator that the reductive dissolution of pyrolusite is accompanied by the precipitation of a mixed Mn-Fe oxide species. In PHREEQC reactive transport simulations, the incorporation of Mn kinetics improved the fit between observed and simulated behavior at the column and field scales, although the column-fitted rate for Mn-oxide dissolution was about 4 orders of magnitude greater than the field-fitted rate. Remaining differences between observed and simulated contaminant transport trends at the Pinal Creek site were likely related to factors other than the Mn oxide dissolution rate, such as the concentration of Fe oxide surface sites available for adsorption, the effects of competition among dissolved species for available surface sites, or reactions not included in the model.

  4. General solution for diffusion-controlled dissolution of spherical particles. 1. Theory.

    PubMed

    Wang, J; Flanagan, D R

    1999-07-01

    Three classical particle dissolution rate expressions are commonly used to interpret particle dissolution rate phenomena. Our analysis shows that an assumption used in the derivation of the traditional cube-root law may not be accurate under all conditions for diffusion-controlled particle dissolution. Mathematical analysis shows that the three classical particle dissolution rate expressions are approximate solutions to a general diffusion layer model. The cube-root law is most appropriate when particle size is much larger than the diffusion layer thickness, the two-thirds-root expression applies when the particle size is much smaller than the diffusion layer thickness. The square-root expression is intermediate between these two models. A general solution to the diffusion layer model for monodispersed spherical particles dissolution was derived for sink and nonsink conditions. Constant diffusion layer thickness was assumed in the derivation. Simulated dissolution data showed that the ratio between particle size and diffusion layer thickness (a0/h) is an important factor in controlling the shape of particle dissolution profiles. A new semiempirical general particle dissolution equation is also discussed which encompasses the three classical particle dissolution expressions. The success of the general equation in explaining limitations of traditional particle dissolution expressions demonstrates the usefulness of the general diffusion layer model.

  5. Morphological evolution of dissolving feldspar particles with anisotropic surface kinetics and implications for dissolution rate normalization and grain size dependence: A kinetic modeling study

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Lüttge, Andreas

    2009-11-01

    With previous two-dimensional (2D) simulations based on surface-specific feldspar dissolution succeeding in relating the macroscopic feldspar kinetics to the molecular-scale surface reactions of Si and Al atoms ( Zhang and Lüttge, 2008, 2009), we extended our modeling effort to three-dimensional (3D) feldspar particle dissolution simulations. Bearing on the same theoretical basis, the 3D feldspar particle dissolution simulations have verified the anisotropic surface kinetics observed in the 2D surface-specific simulations. The combined effect of saturation state, pH, and temperature on the surface kinetics anisotropy has been subsequently evaluated, found offering diverse options for morphological evolution of dissolving feldspar nanoparticles with varying grain sizes and starting shapes. Among the three primary faces on the simulated feldspar surface, the (1 0 0) face has the biggest dissolution rate across an extensively wide saturation state range and thus acquires a higher percentage of the surface area upon dissolution. The slowest dissolution occurs to either (0 0 1) or (0 1 0) faces depending on the bond energies of Si-(O)-Si ( ΦSi-O-Si/ kT) and Al-(O)-Si ( ΦAl-O-Si/ kT). When the ratio of ΦSi-O-Si/ kT to ΦAl-O-Si/ kT changes from 6:3 to 7:5, the dissolution rates of three primary faces change from the trend of (1 0 0) > (0 1 0) > (0 0 1) to the trend of (1 0 0) > (0 0 1) > (0 1 0). The rate difference between faces becomes more distinct and accordingly edge rounding becomes more significant. Feldspar nanoparticles also experience an increasing degree of edge rounding from far-from-equilibrium to close-to-equilibrium. Furthermore, we assessed the connection between the continuous morphological modification and the variation in the bulk dissolution rate during the dissolution of a single feldspar particle. Different normalization treatments equivalent to the commonly used mass, cube assumption, sphere assumption, geometric surface area, and reactive surface area normalizations have been used to normalize the bulk dissolution rate. For each of the treatments, time consistence and grain size dependence of the normalized dissolution rate have been evaluated and the results revealed significant dependences on the magnitude of surface kinetic anisotropy under differing environmental conditions. In general, the normalized dissolution rates are strongly dependent on grain size. Time-consistent normalization treatment varies with the investigated condition. The modeling results suggest that the sphere-, cube-, and BET-normalized dissolution rates are appropriate under the far-from-equilibrium conditions at low pH where these normalizations are time-consistent and are slightly dependent on grain size.

  6. Olivine dissolution from Indian dunite in saline water.

    PubMed

    Agrawal, Amit Kumar; Mehra, Anurag

    2016-11-01

    The rate and mechanism of olivine dissolution was studied using naturally weathered dunite FO 98.21 (Mg 1.884 Fe 0.391 SiO 4 ) from an Indian source, that also contains serpentine mineral lizardite. A series of batch dissolution experiments were carried out to check the influence of temperature (30-75 ∘ C), initial dunite concentration (0.5 and 20 g/L), and salinity (0-35 g/L NaCl) under fixed head space CO 2 pressure (P[Formula: see text] = 1 barg) on dunite dissolution. Dissolved Mg, Si, and Fe concentrations were determined by inductive coupled plasma atomic emission spectroscopy. End-product solids were characterized by scanning electron microscopy and X-ray diffraction. Initially, rates of dissolution of Si and Mg were observed to be in stoichiometric proportion. After 8 h, the dissolution rate was observed to decline. At the end of the experiment (504 h), an amorphous silica-rich layer was observed over the dunite surface. This results in decay of the dissolution rate. The operating conditions (i.e., salinity, temperature, and mineral loading) affect the dissolution kinetics in a very complex manner because of which the observed experimental trends do not exhibit a direct trend.

  7. Dissolution of Uranium Oxides Under Alkaline Oxidizing Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Steven C.; Peper, Shane M.; Douglas, Matthew

    2009-11-01

    Bench scale experiments were conducted to determine the dissolution characteristics of uranium oxide powders (UO2, U3O8, and UO3) in aqueous peroxide-carbonate solutions. Experimental parameters included H2O2 concentration, carbonate counter cation (NH4+, Na+, K+, and Rb+), and pH. Results indicate the dissolution rate of UO2 in 1 M (NH4)2CO3 increases linearly with peroxide concentration ranging from 0.05 – 2 M. The three uranium oxide powders exhibited different dissolution patterns however, UO3 exhibited prompt complete dissolution. Carbonate counter cation affected the dissolution kinetics. There is minimal impact of solution pH, over the range 8.8 to 10.6, on initial dissolution rate.

  8. Characterising microbial reduction of arsenate sorbed to ferrihydrite and its concurrence with iron reduction and the consequent impact on arsenic mobilisation

    NASA Astrophysics Data System (ADS)

    Huang, Jen-How

    2014-05-01

    Mobilisation of solid phase arsenic under reducing conditions involves a combination of microbial arsenate and iron reduction and is affected by secondary reactions of released products. A series of model anoxic incubations were performed to understand the concurrence between arsenate and ferrihydrite reduction by Shewanella putrefaciens strain CN-32 at different concentrations of arsenate, ferrihydrite and lactate, and with given ΔGrxn for arsenate and ferrihydrite reduction in non-growth conditions at pH 7. The reduction kinetics of arsenate sorbed to ferrihydrite is predominately controlled by the availability of dissolved arsenate, which is measured by the integral of dissolved arsenate concentrations against incubation time and shown to correlate with the first order rate constants. Thus, the mobilisation of adsorbed As(V) can be regarded as the rate determining step of microbial reduction of As(V) sorbed to ferrihydrite. High lactate concentrations slightly slowed down the rate of arsenate reduction due to the competition with arsenate for microbial contact. Under all experimental conditions, simultaneous arsenate and ferrihydrite reduction occurred following addition of S. putrefaciens inoculums and suggested no apparent competition between these two enzymatic reductions. Ferrous ions released from iron reduction might retard microbial arsenate reduction at high arsenate and ferrihydrite concentrations due to formation of ferrous arsenate. At high arsenate to ferrihydrite ratios, reductive dissolution of ferrihydrite shifted arsenate from sorption to dissolution and hence accelerated arsenate reduction. Reductive dissolution of ferrihydrite may cause additional releases of adsorbed As(V) into solution, which is especially effective at high As(V) to ferrihydrite ratios. In comparison, formation of Fe(II) secondary minerals during microbial Fe(III) reduction were responsible for trapping solution As(V) in the systems with high ferrihydrite but low As(V) concentrations. In summary, the interaction between microbial arsenate and ferrihydrite reduction did not correlate with ΔGrxn, but instead was governed by geochemical and microbial parameters, which may substantially influence the mobility of arsenic.

  9. Facile fabrication of core-in-shell particles by the slow removal of the core and its use in the encapsulation of metal nanoparticles.

    PubMed

    Choi, Won San; Koo, Hye Young; Kim, Dong-Yu

    2008-05-06

    Core-in-shell particles with controllable core size have been fabricated from core-shell particles by means of the controlled core-dissolution method. These cores in inorganic shells were employed as scaffolds for the synthesis of metal nanoparticles. After dissolution of the cores, metal nanoparticles embedded in cores were encapsulated into the interior of shell, without any damage or change. This article describes a very simple method for deriving core-in-shell particles with controllable core size and encapsulation of nanoparticles into the interior of shell.

  10. Effect of chemical composition of man-made vitreous fibers on the rate of dissolution in vitro at different pHs.

    PubMed

    Christensen, V R; Jensen, S L; Guldberg, M; Kamstrup, O

    1994-10-01

    Measurements of rates of dissolution of typical insulation wool fibers (glasswool and basalt based stonewool) and an experimental fiber were made using a flow-through equipment. The liquids used were a modified Gamble's solution, adjusted to pH 4.8 and 7.7 +/- 0.2, respectively. The dissolution of SiO2 and CaO was determined over periods of up to three months. The rate of dissolution of stonewool fibers was lower than that of glasswool fibers at pH 7.7, whereas the opposite was true at pH 4.8. The stonewool fibers dissolve congruently, but glasswool fibers tend to dissolve with leaching. The rates of dissolution of fibers of different compositions, including insulation wool (glasswool, basalt-based stonewool, slagwool) and experimental fibers were screened using a stationary set-up. Both the chemical composition and pH influenced the rates of dissolution. At pH 7.7 alumina was a determining component and at pH 4.8 the content of SiO2 and CaO was determinant. One experimental fiber with a high content of alumina was an exception having a fairly high rate of dissolution both at pH 4.8 and 7.7.

  11. Effect of chemical composition of man-made vitreous fibers on the rate of dissolution in vitro at different pHs.

    PubMed Central

    Christensen, V R; Jensen, S L; Guldberg, M; Kamstrup, O

    1994-01-01

    Measurements of rates of dissolution of typical insulation wool fibers (glasswool and basalt based stonewool) and an experimental fiber were made using a flow-through equipment. The liquids used were a modified Gamble's solution, adjusted to pH 4.8 and 7.7 +/- 0.2, respectively. The dissolution of SiO2 and CaO was determined over periods of up to three months. The rate of dissolution of stonewool fibers was lower than that of glasswool fibers at pH 7.7, whereas the opposite was true at pH 4.8. The stonewool fibers dissolve congruently, but glasswool fibers tend to dissolve with leaching. The rates of dissolution of fibers of different compositions, including insulation wool (glasswool, basalt-based stonewool, slagwool) and experimental fibers were screened using a stationary set-up. Both the chemical composition and pH influenced the rates of dissolution. At pH 7.7 alumina was a determining component and at pH 4.8 the content of SiO2 and CaO was determinant. One experimental fiber with a high content of alumina was an exception having a fairly high rate of dissolution both at pH 4.8 and 7.7. PMID:7882962

  12. Preparation, characterization and in vivo evaluation of amorphous atorvastatin calcium nanoparticles using supercritical antisolvent (SAS) process.

    PubMed

    Kim, Min-Soo; Jin, Shun-Ji; Kim, Jeong-Soo; Park, Hee Jun; Song, Ha-Seung; Neubert, Reinhard H H; Hwang, Sung-Joo

    2008-06-01

    In this work, amorphous atorvastatin calcium nanoparticles were successfully prepared using the supercritical antisolvent (SAS) process. The effect of process variables on particle size and distribution of atorvastatin calcium during particle formation was investigated. Solid state characterization, solubility, intrinsic dissolution, powder dissolution studies and pharmacokinetic study in rats were performed. Spherical particles with mean particle size ranging between 152 and 863 nm were obtained by varying process parameters such as precipitation vessel pressure and temperature, drug solution concentration and feed rate ratio of CO2/drug solution. XRD, TGA, FT-IR, FT-Raman, NMR and HPLC analysis indicated that atorvastatin calcium existed as anhydrous amorphous form and no degradation occurred after SAS process. When compared with crystalline form (unprocessed drug), amorphous atorvastatin calcium nanoparticles were of better performance in solubility and intrinsic dissolution rate, resulting in higher solubility and faster dissolution rate. In addition, intrinsic dissolution rate showed a good correlation with the solubility. The dissolution rates of amorphous atorvastatin calcium nanoparticles were highly increased in comparison with unprocessed drug by the enhancement of intrinsic dissolution rate and the reduction of particle size resulting in an increased specific surface area. The absorption of atorvastatin calcium after oral administration of amorphous atorvastatin calcium nanoparticles to rats was markedly increased.

  13. The differences between the branded and generic medicines using solid dosage forms: In-vitro dissolution testing

    PubMed Central

    Al Ameri, Mubarak Nasser; Nayuni, Nanda; Anil Kumar, K.G.; Perrett, David; Tucker, Arthur; Johnston, Atholl

    2011-01-01

    Introduction Dissolution is the amount of substance that goes into solution per unit time under standardised conditions of liquid/solid interface, solvent composition and temperature. Dissolution is one of the most important tools to predict the in-vivo bioavailability and in some cases to determine bioequivalence and assure interchangeability. Aim To compare the differences in dissolution behaviour of solid dosage forms between innovators (reference products) and their generic counterparts (tested products). Methods Four replicates for each batch of 37 tested medicines was carried out using A PT-DT70 dissolution tester from Pharma Test. A total of 13 branded medicines and 24 generic counterparts were obtained locally and internationally to detect any differences in their dissolution behaviour. They were tested according to the British Pharmacopeia, European Pharmacopeia and the US Pharmacopeia with the rate of dissolution determined by ultra-violet Spectrophotometery. Results Most tested medicines complied with the pharmacopoeial specifications and achieved 85% dissolution in 60 min. However, some generic medicines showed significant differences in dissolution rate at 60 and 120 min. Many generic medicines showed a slower dissolution rate than their branded counterparts such as the generic forms of omeprazole 20 mg. Some showed an incomplete dissolution such as the generic form of nifedipine 10 mg. Other generics showed faster dissolution rate than their branded counterpart such as the generic forms of meloxicam 15 mg. Moreover, some generics from different batches of the same manufacturer showed significant differences in their dissolution rate such as the generic forms of meloxicam 7.5 mg. Nevertheless, some generic medicines violated the EMA and the FDA guidelines for industry when they failed to achieve 85% dissolution at 60 min, such as the generic form of diclofenac sodium 50 mg. Conclusion Most medicines in this study complied with the pharmacopeial limits. However, some generics dissolved differently than their branded counterparts. This can clearly question the interchangeability between the branded and its generic counterpart or even among generics. PMID:25755988

  14. Microstructural effects in drug release by solid and cellular polymeric dosage forms: A comparative study.

    PubMed

    Blaesi, Aron H; Saka, Nannaji

    2017-11-01

    In recent studies, we have introduced melt-processed polymeric cellular dosage forms to achieve both immediate drug release and predictable manufacture. Dosage forms ranging from minimally-porous solids to highly porous, open-cell and thin-walled structures were prepared, and the drug release characteristics investigated as the volume fraction of cells and the excipient molecular weight were varied. In the present study, both minimally-porous solid and cellular dosage forms consisting of various weight fractions of Acetaminophen drug and polyethylene glycol (PEG) excipient are prepared and analyzed. Microstructures of the solid forms and the cell walls range from single-phase solid solutions of the excipient and a small amount of drug molecules to two-phase composites of the excipient and tightly packed drug particles. Results of dissolution experiments show that the minimally-porous solid forms disintegrate and release drug by slow surface erosion. The erosion rate decreases as the drug weight fraction is increased. By contrast, the open-cell structures disintegrate rapidly by viscous exfoliation, and the disintegration time is independent of drug weight fraction. Drug release models suggest that the solid forms erode by convective mass transfer of the faster-eroding excipient if the drug volume fraction is small. At larger drug volume fractions, however, the slower-eroding drug particles hinder access of the free-flowing fluid to the excipient, thus slowing down erosion of the composite. Conversely, the disintegration rate of the cellular forms is limited by diffusion of the dissolution fluid into the excipient phase of the thin cell walls. Because the wall thickness is of the order of the drug particle size, and the particles are enveloped by the excipient during melt-processing, the drug particles cannot hinder diffusion through the excipient across the walls. Thus the disintegration time of the cellular forms is mostly unaffected by the volume fraction of drug in the walls. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The effect of iron content and dissolved O2 on dissolution rates of clinopyroxene at pH 5.8 and 25°C: Preliminary results

    USGS Publications Warehouse

    Hoch, A.R.; Reddy, M.M.; Drever, J.I.

    1996-01-01

    Dissolution experiments using augite (Mg0.87Ca0.85Fe0.19Na0.09Al0.03Si2O6) and diopside (Mg0.91Ca0.93Fe0.07Na0.03Al0.03Si2O6) were conducted in flow-through reactors (5-ml/h flow rate). A pH of 5.8 was maintained by bubbling pure CO2 through a solution of 0.01 M KHCO3 at 25°C. Two experiments were run for each pyroxene type. In one experiment dissolved O2 concentration in reactors was 0.6 (±0.1) ppm and in the second dissolved O2 was 1.5 (±0.1) ppm. After 60 days, augite dissolution rates (based on Si release) were approximately three times greater in the 1.5 ppm. dissolved O2 experiments than in the sealed experiments. In contrast, diopside dissolution rates were independent of dissolved O2 concentrations. Preliminary results from the augite experiments suggest that dissolution rate is directly related to oxidation of iron. This effect was not observed in experiments performed on iron-poor diopside. Additionally, dissolution rates of diopside were much slower than those of augite, again suggesting a relationship between Fe content, Fe oxidation and dissolution rates.

  16. Does the stepwave model predict mica dissolution kinetics?

    NASA Astrophysics Data System (ADS)

    Kurganskaya, Inna; Arvidson, Rolf S.; Fischer, Cornelius; Luttge, Andreas

    2012-11-01

    The micas are a unique class of minerals because of their layered structure. A frequent question arising in mica dissolution studies is whether this layered structure radically changes the dissolution mechanism. We address this question here, using data from VSI and AFM experiments involving muscovite to evaluate crystallographic controls on mica dissolution. These data provide insight into the dissolution process, and reveal important links to patterns of dissolution observed in framework minerals. Under our experimental conditions (pH 9.4, 155 °C), the minimal global rate of normal surface retreat observed in VSI data was 1.42 × 10-10 mol/m2/s (σ = 27%) while the local rate observed at deep etch pits reached 416 × 10-10 mol/m2/s (σ = 49%). Complementary AFM data clearly show crystallographic control of mica dissolution, both in terms of step advance and the geometric influence of interlayer rotation (stacking periodicity). These observations indicate that basal/edge surface area ratios are highly variable and change continuously over the course of reaction, thus obviating their utility as characteristic parameters defining mica reactivity. Instead, these observations of overall dissolution rate and the influence of screw dislocations illustrate the link between atomic step movement and overall dissolution rate defined by surface retreat normal to the mica surface. Considered in light of similar observations available elsewhere in the literature, these relationships provide support for application of the stepwave model to mica dissolution kinetics. This approach provides a basic mechanistic link between the dissolution kinetics of phyllosilicates, framework silicates, and related minerals, and suggests a resolution to the general problem of mica reactivity.

  17. Comparison of Dissolution Similarity Assessment Methods for Products with Large Variations: f2 Statistics and Model-Independent Multivariate Confidence Region Procedure for Dissolution Profiles of Multiple Oral Products.

    PubMed

    Yoshida, Hiroyuki; Shibata, Hiroko; Izutsu, Ken-Ichi; Goda, Yukihiro

    2017-01-01

    The current Japanese Ministry of Health Labour and Welfare (MHLW)'s Guideline for Bioequivalence Studies of Generic Products uses averaged dissolution rates for the assessment of dissolution similarity between test and reference formulations. This study clarifies how the application of model-independent multivariate confidence region procedure (Method B), described in the European Medical Agency and U.S. Food and Drug Administration guidelines, affects similarity outcomes obtained empirically from dissolution profiles with large variations in individual dissolution rates. Sixty-one datasets of dissolution profiles for immediate release, oral generic, and corresponding innovator products that showed large variation in individual dissolution rates in generic products were assessed on their similarity by using the f 2 statistics defined in the MHLW guidelines (MHLW f 2 method) and two different Method B procedures, including a bootstrap method applied with f 2 statistics (BS method) and a multivariate analysis method using the Mahalanobis distance (MV method). The MHLW f 2 and BS methods provided similar dissolution similarities between reference and generic products. Although a small difference in the similarity assessment may be due to the decrease in the lower confidence interval for expected f 2 values derived from the large variation in individual dissolution rates, the MV method provided results different from those obtained through MHLW f 2 and BS methods. Analysis of actual dissolution data for products with large individual variations would provide valuable information towards an enhanced understanding of these methods and their possible incorporation in the MHLW guidelines.

  18. Improving the API dissolution rate during pharmaceutical hot-melt extrusion I: Effect of the API particle size, and the co-rotating, twin-screw extruder screw configuration on the API dissolution rate.

    PubMed

    Li, Meng; Gogos, Costas G; Ioannidis, Nicolas

    2015-01-15

    The dissolution rate of the active pharmaceutical ingredients in pharmaceutical hot-melt extrusion is the most critical elementary step during the extrusion of amorphous solid solutions - total dissolution has to be achieved within the short residence time in the extruder. Dissolution and dissolution rates are affected by process, material and equipment variables. In this work, we examine the effect of one of the material variables and one of the equipment variables, namely, the API particle size and extruder screw configuration on the API dissolution rate, in a co-rotating, twin-screw extruder. By rapidly removing the extruder screws from the barrel after achieving a steady state, we collected samples along the length of the extruder screws that were characterized by polarized optical microscopy (POM) and differential scanning calorimetry (DSC) to determine the amount of undissolved API. Analyses of samples indicate that reduction of particle size of the API and appropriate selection of screw design can markedly improve the dissolution rate of the API during extrusion. In addition, angle of repose measurements and light microscopy images show that the reduction of particle size of the API can improve the flowability of the physical mixture feed and the adhesiveness between its components, respectively, through dry coating of the polymer particles by the API particles. Copyright © 2014. Published by Elsevier B.V.

  19. In vitro dynamic solubility test: influence of various parameters.

    PubMed Central

    Thélohan, S; de Meringo, A

    1994-01-01

    This article discusses the dissolution of mineral fibers in simulated physiological fluids (SPF), and the parameters that affect the solubility measurement in a dynamic test where an SPF runs through a cell containing fibers (Scholze and Conradt test). Solutions simulate either the extracellular fluid (pH 7.6) or the intracellular fluid (pH 4.5). The fibers have various chemical compositions and are either continuously drawn or processed as wool. The fiber solubility is determined by the amount of SiO2 (and occasionally other ions) released in the solution. Results are stated as percentage of the initial silica content released or as dissolution rate v in nm/day. The reproducibility of the test is higher with the less soluble fibers (10% solubility), than with highly soluble fibers (20% solubility). The influence of test parameters, including SPF, test duration, and surface area/volume (SA/V), has been studied. The pH and the inorganic buffer salts have a major influence: industrial glasswool composition is soluble at pH 7.6 but not at pH 4.5. The opposite is true for rock- (basalt) wool composition. For slightly soluble fibers, the dissolution rate v remains constant with time, whereas for highly soluble fibers, the dissolution rate decreases rapidly. The dissolution rates believed to occur are v1, initial dissolution rate, and v2, dissolution rate of the residual fibers. The SA of fibers varies with the mass of the fibers tested, or with the fiber diameter at equal mass. Volume, V, is the chosen flow rate. An increase in the SA/V ratio leads to a decrease in the dissolution rate.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7882964

  20. In vitro dynamic solubility test: influence of various parameters.

    PubMed

    Thélohan, S; de Meringo, A

    1994-10-01

    This article discusses the dissolution of mineral fibers in simulated physiological fluids (SPF), and the parameters that affect the solubility measurement in a dynamic test where an SPF runs through a cell containing fibers (Scholze and Conradt test). Solutions simulate either the extracellular fluid (pH 7.6) or the intracellular fluid (pH 4.5). The fibers have various chemical compositions and are either continuously drawn or processed as wool. The fiber solubility is determined by the amount of SiO2 (and occasionally other ions) released in the solution. Results are stated as percentage of the initial silica content released or as dissolution rate v in nm/day. The reproducibility of the test is higher with the less soluble fibers (10% solubility), than with highly soluble fibers (20% solubility). The influence of test parameters, including SPF, test duration, and surface area/volume (SA/V), has been studied. The pH and the inorganic buffer salts have a major influence: industrial glasswool composition is soluble at pH 7.6 but not at pH 4.5. The opposite is true for rock- (basalt) wool composition. For slightly soluble fibers, the dissolution rate v remains constant with time, whereas for highly soluble fibers, the dissolution rate decreases rapidly. The dissolution rates believed to occur are v1, initial dissolution rate, and v2, dissolution rate of the residual fibers. The SA of fibers varies with the mass of the fibers tested, or with the fiber diameter at equal mass. Volume, V, is the chosen flow rate. An increase in the SA/V ratio leads to a decrease in the dissolution rate.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Dissolution Rates of Biogenic Carbonate Sediments from the Bermuda Platform

    NASA Astrophysics Data System (ADS)

    Finlay, A. J.; Andersson, A. J.

    2016-02-01

    The contribution of biogenic carbonate sediment dissolution rates to overall net reef accretion/erosion (under both present and future oceanic pCO2 levels) has been strikingly neglected, despite experimental results indicating that sediment dissolution might be more sensitive to ocean acidification (OA) than calcification. Dissolution of carbonate sediments could impact net reef accretion rates as well as the formation and preservation of valuable marine and terrestrial ecosystems. Bulk sediment dissolution rates of samples from the Bermuda carbonate platform were measured in natural seawater at pCO2 values ranging from approximately 3500 μatm to 9000 μatm. This range of pCO2 levels incorporates values currently observed in porewaters on the Bermuda carbonate platform as well as a potential future increase in porewater pCO2 levels due to OA. Sediment samples from two different stations on the reef platform were analyzed for grain size and mineralogy. Dissolution rates of sediments in the dominant grain size fraction of the platform (500-1000 μm) from both stations ranged between 16.25 and 47.19 (± 0.27 to 0.79) μmoles g-1 hr-1 and are comparable to rates previously obtained from laboratory experiments on other natural carbonate sediments. At a pCO2 of 3500 μatm, rates from both samples were similar, despite their differing mineralogy. However, at pCO2 levels above 3500 μatm, the sediment sample with a greater weight percent of Mg-calcite had slightly higher dissolution rates. Despite many laboratory studies on biogenic carbonate dissolution, a significant disparity still exists between laboratory measurements and field observations. Performing additional controlled, laboratory experiments on natural sediment may help to elucidate the reasons for this disparity.

  2. CALCIUM CARBONATE DISSOLUTION RATE IN LIMESTONE CONTACTORS

    EPA Science Inventory

    The rate of carbonate mineral dissolution from limestone was studied using a rotating disk apparatus and samples of limestone of varied composition. The purpose of this study was to determine the effect of limestone composition on the kinetics of carbonate mineral dissolution. Th...

  3. A three-dimensional kinematic model for the dissolution of crystals

    NASA Astrophysics Data System (ADS)

    Tellier, C. R.

    1989-06-01

    The two-dimensional kinematic theory developed by Frank is extended into three dimensions. It is shown that the theoretical equations for the propagation vector associated with the displacement of a moving surface element can be directly derived from the polar equation of the slowness surface.

  4. Kinetics of Inorganic Calcite Dissolution in Seawater under Pressure

    NASA Astrophysics Data System (ADS)

    Dong, S.; Subhas, A.; Rollins, N.; Berelson, W.; Adkins, J. F.

    2016-02-01

    While understanding calcium carbonate dissolution is vital in constructing global carbon cycles and predicting the effect of seawater acidification as a result of increasing atmospheric CO2, there is still a major debate over the basic formulation of a dissolution rate law. The kinetics of calcium carbonate dissolution are typically described by the equation: Rate=k(1-Ω)n, while Ω=[Ca2+][CO32-]/Ksp. In this study, 13C-labeled calcite is dissolved in unlabeled seawater and the evolving d13C composition of the fluid is traced over time to establish dissolution rate. Instead of changing ion concentration to obtain varying Ω (as in our previous study; Subhas et al. 2015), we changed Ksp by conducting experiments under different pressures (described in theory as ∂lnKsp/∂P=-ΔV/RT, where ΔV is partial molal volume). This involved the construction of a pressure vessel that could hold our sample bag and provide aliquots while remaining pressurized. Pressure experiments were conducted between 0-2000PSI. Results support the conclusion in our previous study that near-equilibrium dissolution rates are highly nonlinear, but give a disparate relationship between undersaturation and dissolution rate if Ω is calculated assuming the specific ΔV embedded in CO2SYS. A revised ΔV from -37cm3 to -65cm3 would make the dissolution formulation equation agree, but clearly appears unreasonable. Our results are explained by a pressure effect on carbonate dissolution kinetics over and above the influence of pressure on Ω. If this is a phenomenon that occurs in nature, then we would predict that dissolution should be occurring shallower in the water column (as sometimes observed) than indicated by standard Ω calculations.

  5. Modelling and shadowgraph imaging of cocrystal dissolution and assessment of in vitro antimicrobial activity for sulfadimidine/4-aminosalicylic acid cocrystals.

    PubMed

    Serrano, Dolores R; Persoons, Tim; D'Arcy, Deirdre M; Galiana, Carolina; Dea-Ayuela, Maria Auxiliadora; Healy, Anne Marie

    2016-06-30

    The aim of this work was to evaluate the influence of crystal habit on the dissolution and in vitro antibacterial and anitiprotozoal activity of sulfadimidine:4-aminosalicylic acid cocrystals. Cocrystals were produced via milling or solvent mediated processes. In vitro dissolution was carried out in the flow-through apparatus, with shadowgraph imaging and mechanistic mathematical models used to observe and simulate particle dissolution. In vitro activity was tested using agar diffusion assays. Cocrystallisation via milling produced small polyhedral crystals with antimicrobial activity significantly higher than sulfadimidine alone, consistent with a fast dissolution rate which was matched only by cocrystals which were milled following solvent evaporation. Cocrystallisation by solvent evaporation (ethanol, acetone) or spray drying produced flattened, plate-like or quasi-spherical cocrystals, respectively, with more hydrophobic surfaces and greater tendency to form aggregates in aqueous media, limiting both the dissolution rate and in vitro activity. Deviation from predicted dissolution profiles was attributable to aggregation behaviour, supported by observations from shadowgraph imaging. Aggregation behaviour during dissolution of cocrystals with different habits affected the dissolution rate, consistent with in vitro activity. Combining mechanistic models with shadowgraph imaging is a valuable approach for dissolution process analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Dissolution enhancement of tadalafil by liquisolid technique.

    PubMed

    Lu, Mei; Xing, Haonan; Yang, Tianzhi; Yu, Jiankun; Yang, Zhen; Sun, Yanping; Ding, Pingtian

    2017-02-01

    This study aimed to enhance the dissolution of tadalafil, a poorly water-soluble drug by applying liquisolid technique. The effects of two critical formulation variables, namely drug concentration (17.5% and 35%, w/w) and excipients ratio (10, 15 and 20) on dissolution rates were investigated. Pre-compression tests, including particle size distribution, flowability determination, Fourier transform infrared (FT-IR), differential scanning calorimetry (DSC), X-ray diffractometry (XRD) and scanning electron microscopy (SEM), were carried out to investigate the mechanism of dissolution enhancement. Tadalafil liquisolid tablets were prepared and their quality control tests, dissolution study, contact angle measurement, Raman mapping, and storage stability test were performed. The results suggested that all the liquisolid tablets exhibited significantly higher dissolution rates than the conventional tablets and pure tadalafil. FT-IR spectrum reflected no drug-excipient interactions. DSC and XRD studies indicated reduction in crystallinity of tadalafil, which was further confirmed by SEM and Raman mapping outcomes. The contact angle measurement demonstrated obvious increase in wetting property. Taken together, the reduction of particle size and crystallinity, and the improvement of wettability were the main mechanisms for the enhanced dissolution rate. No significant changes were observed in drug crystallinity and dissolution behavior after storage based on XRD, SEM and dissolution results.

  7. (W7860)Monte Carlo Simulations of the Dissolution of Borosilicate and Aluminoborosilicate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerisit, Sebastien; Pierce, Eric M

    2011-01-01

    The aim of this study was to provide atomic-level insights into the dissolution behavior of borosilicate and aluminoborosilicate glasses in dilute aqueous solutions. In the first part of this work, the effects of different structural features, such as the presence of non-bridging oxygens (NBO) or the formation of boroxol rings, on glass dissolution were evaluated separately and led to the following conclusions. (1) The dependence of the dissolution rate on the amount of NBO was found to be linear at all Si/B ratios and the accelerating effect of NBO was shown to increase with increasing Si/B ratio. (2) The formationmore » of boroxol rings and of clusters of boroxol rings resulted in an increase of the dissolution rate at all Si/B ratios and, again, the extent of the rate increase was strongly dependent on the Si/B ratio. (3) For aluminosilicate glasses, the implementation of the aluminum avoidance rule was found to increase the rate of dissolution relative to that obtained for a random distribution. In the second part of this work, the dissolution of the NeB glasses studied by Pierce et al. [Pierce E. M., Reed L. R., Shaw W. J., McGrail B. P., Icenhower J. P., Windisch C. F., Cordova E. A. and Broady J. (2010) Experimental determination of the effect of the ratio of B/Al on glass dissolution along the nepheline (NaAlSiO4) - Malinkoite (NaBSiO4) join. Geochim. Cosmochim. Acta 74, 2634-2654] was modeled in dilute aqueous solutions. Pierce et al. concluded from their study that either the rupture of the Al-O bonds or that of the Si O bonds was the rate-limiting step controlling the dissolution of the NeB glasses. The simulations refined this conclusion and showed that, at low B/Al ratios, the rupture of both Al O Si and Si O Si linkages contributed to the dissolution rate whereas, at high B/Al ratios, the dissolution rate was independent of the rupture of Al-O-Si linkages and was controlled by S1 sites (silicon sites at the glass-water interface with one connection to nearest-neighbor sites) and dissolution via detachment of clusters.« less

  8. Dynamic leaching studies of 48 MWd/kgU UO2 commercial spent nuclear fuel under oxic conditions

    NASA Astrophysics Data System (ADS)

    Serrano-Purroy, D.; Casas, I.; González-Robles, E.; Glatz, J. P.; Wegen, D. H.; Clarens, F.; Giménez, J.; de Pablo, J.; Martínez-Esparza, A.

    2013-03-01

    The leaching of a high-burn-up spent nuclear fuel (48 MWd/KgU) has been studied in a carbonate-containing solution and under oxic conditions using a Continuously Stirred Tank Flow-Through Reactor (CSTR). Two samples of the fuel, one prepared from the centre of the pellet (labelled CORE) and another one from the fuel pellet periphery, enriched with the so-called High Burn-Up Structure (HBS, labelled OUT) have been used.For uranium and actinides, the results showed that U, Np, Am and Cm gave very similar normalized dissolution rates, while Pu showed slower dissolution rates for both samples. In addition, dissolution rates were consistently two to four times lower for OUT sample compared to CORE sample.Considering the fission products release the main results are that Y, Tc, La and Nd dissolved very similar to uranium; while Cs, Sr, Mo and Rb have up to 10 times higher dissolution rates. Rh, Ru and Zr seemed to have lower dissolution rates than uranium. The lowest dissolution rates were found for OUT sample.Three different contributions were detected on uranium release, modelled and attributed to oxidation layer, fines and matrix release.

  9. Evaluation of correlation between dissolution rates of loxoprofen tablets and their surface morphology observed by scanning electron microscope and atomic force microscope.

    PubMed

    Yoshikawa, Shinichi; Murata, Ryo; Shida, Shigenari; Uwai, Koji; Suzuki, Tsuneyoshi; Katsumata, Shunji; Takeshita, Mitsuhiro

    2010-01-01

    We observed the surface morphological structures of 60 mg tablets of Loxonin, Loxot, and Lobu using scanning electron microscope (SEM) and atomic force microscope (AFM) to evaluate the dissolution rates. We found a significant difference among the initial dissolution rates of the three kinds of loxoprofen sodium tablets. Petal forms of different sizes were commonly observed on the surface of the Loxonin and Loxot tablets in which loxoprofen sodium was confirmed by measuring the energy-dispersible X-ray (EDX) spectrum of NaKalpha using SEM. However, a petal form was not observed on the surface of the Lobu tablet, indicating differences among the drug production processes. Surface area and particle size of the principal ingredient in tablets are important factors for dissolution rate. The mean size of the smallest fine particles constituting each tablet was also determined with AFM. There was a correlation between the initial dissolution rate and the mean size of the smallest particles in each tablet. Visualizing tablet surface morphology using SEM and AFM provides information on the drug production processes and initial dissolution rate, and is associated with the time course of pharmacological activities after tablet administration.

  10. Estimating rock and slag wool fiber dissolution rate from composition.

    PubMed

    Eastes, W; Potter, R M; Hadley, J G

    2000-12-01

    A method was tested for calculating the dissolution rate constant in the lung for a wide variety of synthetic vitreous silicate fibers from the oxide composition in weight percent. It is based upon expressing the logarithm of the dissolution rate as a linear function of the composition and using a different set of coefficients for different types of fibers. The method was applied to 29 fiber compositions including rock and slag fibers as well as refractory ceramic and special-purpose, thin E-glass fibers and borosilicate glass fibers for which in vivo measurements have been carried out. These fibers had dissolution rates that ranged over a factor of about 400, and the calculated dissolution rates agreed with the in vivo values typically within a factor of 4. The method presented here is similar to one developed previously for borosilicate glass fibers that was accurate to a factor of 1.25. The present coefficients work over a much broader range of composition than the borosilicate ones but with less accuracy. The dissolution rate constant of a fiber may be used to estimate whether disease would occur in animal inhalation or intraperitoneal injection studies of that fiber.

  11. Elevated CO2 affects shell dissolution rate but not calcification rate in a marine snail.

    PubMed

    Nienhuis, Sarah; Palmer, A Richard; Harley, Christopher D G

    2010-08-22

    As CO(2) levels increase in the atmosphere, so too do they in the sea. Although direct effects of moderately elevated CO(2) in sea water may be of little consequence, indirect effects may be profound. For example, lowered pH and calcium carbonate saturation states may influence both deposition and dissolution rates of mineralized skeletons in many marine organisms. The relative impact of elevated CO(2) on deposition and dissolution rates are not known for many large-bodied organisms. We therefore tested the effects of increased CO(2) levels--those forecast to occur in roughly 100 and 200 years--on both shell deposition rate and shell dissolution rate in a rocky intertidal snail, Nucella lamellosa. Shell weight gain per day in live snails decreased linearly with increasing CO(2) levels. However, this trend was paralleled by shell weight loss per day in empty shells, suggesting that these declines in shell weight gain observed in live snails were due to increased dissolution of existing shell material, rather than reduced production of new shell material. Ocean acidification may therefore have a greater effect on shell dissolution than on shell deposition, at least in temperate marine molluscs.

  12. Differential rates of feldspar weathering in granitic regoliths

    USGS Publications Warehouse

    White, A.F.; Bullen, T.D.; Schulz, M.S.; Blum, A.E.; Huntington, T.G.; Peters, N.E.

    2001-01-01

    Differential rates of plagioclase and K-feldspar weathering commonly observed in bedrock and soil environments are examined in terms of chemical kinetic and solubility controls and hydrologic permeability. For the Panola regolith, in the Georgia Piedmont Province of southeastern United States, petrographic observations, coupled with elemental balances and 87Sr/86Sr ratios, indicate that plagioclase is being converted to kaolinite at depths > 6 m in the granitic bedrock. K-feldspar remains pristine in the bedrock but subsequently weathers to kaolinite at the overlying saprolite. In contrast, both plagioclase and K-feldspar remain stable in granitic bedrocks elsewhere in Piedmont Province, such as Davis Run, Virginia, where feldspars weather concurrently in an overlying thick saprolite sequence. Kinetic rate constants, mineral surface areas, and secondary hydraulic conductivities are fitted to feldspar losses with depth in the Panola and Davis Run regoliths using a time-depth computer spreadsheet model. The primary hydraulic conductivities, describing the rates of meteoric water penetration into the pristine granites, are assumed to be equal to the propagation rates of weathering fronts, which, based on cosmogenic isotope dating, are 7 m/106 yr for the Panola regolith and 4 m/106 yr for the Davis Run regolith. Best fits in the calculations indicate that the kinetic rate constants for plagioclase in both regoliths are factors of two to three times faster than K-feldspar, which is in agreement with experimental findings. However, the range for plagioclase and K-feldspar rates (kr = 1.5 x 10-17 to 2.8 x 10-16 mol m-2 s-1) is three to four orders of magnitude lower than for that for experimental feldspar dissolution rates and are among the slowest yet recorded for natural feldspar weathering. Such slow rates are attributed to the relatively old geomorphic ages of the Panola and Davis Run regoliths, implying that mineral surface reactivity decreases significantly with time. Differential feldspar weathering in the low-permeability Panola bedrock environment is more dependent on relative feldspar solubilities than on differences in kinetic reaction rates. Such weathering is very sensitive to primary and secondary hydraulic conductivities (qp and qs), which control both the fluid volumes passing through the regolith and the thermodynamic saturation of the feldspars. Bedrock permeability is primarily intragranular and is created by internal weathering of networks of interconnected plagioclase phenocrysts. Saprolite permeability is principally intergranular and is the result of dissolution of silicate phases during isovolumetric weathering. A secondary to primary hydraulic conductivity ratio of qs/qp = 150 in the Panola bedrock results in kinetically controlled plagioclase dissolution but thermodynamically inhibited K-feldspar reaction. This result is in accord with calculated chemical saturation states for groundwater sampled in the Panola Granite. In contrast, greater secondary conductivities in the Davis Run saprolite, qs/qp = 800, produces both kinetically controlled plagioclase and K-feldspar dissolution. Faster plagioclase reaction, leading to bedrock weathering in the Panola Granite but not at Davis Run, is attributed to a higher anorthite component of the plagioclase and a wetter and warmer climate. In addition, the Panola Granite has an abnormally high content of disseminated calcite, the dissolution of which precedes the plagioclase weathering front, thus creating additional secondary permeability. Copyright ?? 2001 Elsevier Science Ltd.

  13. Crushed tablets: does the administration of food vehicles and thickened fluids to aid medication swallowing alter drug release?

    PubMed

    Manrique, Yady J; Lee, Danielle J; Islam, Faiza; Nissen, Lisa M; Cichero, Julie A Y; Stokes, Jason R; Steadman, Kathryn J

    2014-01-01

    To evaluate the influence of co-administered vehicles on in vitro dissolution in simulated gastric fluid of crushed immediate release tablets as an indicator for potential drug bioavailability compromise. Release and dissolution of crushed amlodipine, atenolol, carbamazepine and warfarin tablets were tested with six foods and drinks that are frequently used in the clinical setting as mixers for crushed medications (water, orange juice, honey, yoghurt, strawberry jam and water thickened with Easythick powder) in comparison to whole tablets. Five commercial thickening agents (Easythick Advanced, Janbak F, Karicare, Nutilis, Viscaid) at three thickness levels were tested for their effect on the dissolution of crushed atenolol tablets. Atenolol dissolution was unaffected by mixing crushed tablets with thin fluids or food mixers in comparison to whole tablets or crushed tablets in water, but amlodipine was delayed by mixing with jam. Mixing crushed warfarin and carbamazepine tablets with honey, jam or yoghurt caused them to resemble the slow dissolution of whole tablets rather than the faster dissolution of crushed tablets in water or orange juice. Crushing and mixing any of the four medications with thickened water caused a significant delay in dissolution. When tested with atenolol, all types of thickening agents at the greatest thickness significantly restricted dissolution, and products that are primarily based on xanthan gum also delayed dissolution at the intermediate thickness level. Dissolution testing, while simplistic, is a widely used and accepted method for comparing drug release from different formulations as an indicator for in vivo bioavailability. Thickened fluids have the potential to retard drug dissolution when used at the thickest levels. These findings highlight potential clinical implications of the addition of these agents to medications for the purpose of dose delivery and indicate that further investigation of thickened fluids and their potential to influence therapeutic outcomes is warranted.

  14. Dissolution behavior of MgO based inert matrix fuel for the transmutation of minor actinides

    NASA Astrophysics Data System (ADS)

    Mühr-Ebert, E. L.; Lichte, E.; Bukaemskiy, A.; Finkeldei, S.; Klinkenberg, M.; Brandt, F.; Bosbach, D.; Modolo, G.

    2018-07-01

    This study explores the dissolution properties of magnesia-based inert matrix nuclear fuel (IMF) containing transuranium elements (TRU). Pure MgO pellets as well as MgO pellets containing CeO2, as surrogate for TRU oxides, and are considered as model systems for genuine magnesia based inert matrix fuel were fabricated. The aim of this study is to identify conditions at which the matrix material can be selectively dissolved during the head-end reprocessing step, allowing a separation of MgO from the actinides, whereas the actinides remain undissolved. The dissolution behavior was studied in macroscopic batch experiments as a function of nitric acid concentration, dissolution medium volume, temperature, stirring velocity, and pellet density (85, 90, 96, and 99%TD). To mimic pellets with various burn-ups the density of the here fabricated pellets was varied. MgO is soluble even under mild conditions (RT, 2.5 mol/L HNO3). The dissolution rates of MgO at different acid concentrations are rather similar, whereas the dissolution rate is strongly dependent on the temperature. Via a microscopic approach, a model was developed to describe the evolution of the pellet surface area during dissolution and determine a surface normalized dissolution rate. Moreover, dissolution rates of the inert matrix fuel containing CeO2 were determined as a function of the acid concentration and temperature. During the dissolution of MgO/CeO2 pellets the MgO dissolves completely, while CeO2 (>99%) remains undissolved. This study intends to provide a profound understanding of the chemical performance of magnesia based IMF containing fissile material. The feasibility of the dissolution of magnesia based IMF with nitric acid is discussed.

  15. Residual waste from Hanford tanks 241-C-203 and 241-C-204. 1. Solids characterization.

    PubMed

    Krupka, Kenneth M; Schaef, Herbert T; Arey, Bruce W; Heald, Steve M; Deutsch, William I; Lindberg, Michael J; Cantrell, Kirk J

    2006-06-15

    Bulk X-ray diffraction (XRD), synchrotron X-ray microdiffraction (microXRD), and scanning electron microscopy/ energy-dispersive X-ray spectroscopy (SEM/EDS) were used to characterize solids in residual sludge from single-shell underground waste tanks C-203 and C-204 at the U.S. Department of Energy's Hanford Site in southeastern Washington state. Cejkaite [Na4(UO2)(CO3)3] was the dominant crystalline phase in the C-203 and C-204 sludges. This is one of the few occurrences of cejkaite reported in the literature and may be the first documented occurrence of this phase in radioactive wastes from DOE sites. Characterization of residual solids from water leach and selective extraction tests indicates that cejkaite has a high solubility and a rapid rate of dissolution in water at ambient temperature and that these sludges may also contain poorly crystalline Na2U207 [or clarkeite Na[(UO2)O(OH)](H2O)0-1] as well as nitratine (soda niter, NaNO3), goethite [alpha-FeO(OH)], and maghemite (gamma-Fe2O3). Results of the SEM/EDS analyses indicate that the C-204 sludge also contains a solid that lacks crystalline form and is composed of Na, Al, P, O, and possibly C. Other identified solids include Fe oxides that often also contain Cr and Ni and occur as individual particles, coatings on particles, and botryoidal aggregates; a porous-looking material (or an aggregate of submicrometer particles) that typically contain Al, Cr, Fe, Na, Ni, Si, U, P, O, and C; Si oxide (probably quartz); and Na-Al silicate(s). The latter two solids probably represent minerals from the Hanford sediment, which were introduced into the tank during prior sampling campaigns or other tank operation activities. The surfaces of some Fe-oxide particles in residual solids from the water leach and selective extraction tests appear to have preferential dissolution cavities. If these Fe oxides contain contaminants of concern, then the release of these contaminants into infiltrating water would be limited by the dissolution rates of these Fe oxides, which in general have lowto very low solubilities and slow dissolution rates at near neutral to basic pH values under oxic conditions.

  16. Rates and mechanisms of uranyl oxyhydroxide mineral dissolution

    NASA Astrophysics Data System (ADS)

    Reinoso-Maset, Estela; Steefel, Carl I.; Um, Wooyong; Chorover, Jon; O'Day, Peggy A.

    2017-06-01

    Uranyl oxyhydroxide minerals are important weathering products in uranium-contaminated surface and subsurface environments that regulate dissolved uranium (U) concentrations. However, dissolution rates for this class of minerals and associated dissolution mechanisms have not been previously reported for circumneutral pH conditions, particularly for the case of flow through porous media. In this work, the dissolution rates of K- and Na-compreignacite (K2(UO2)6O4(OH)6·8H2O and Na2(UO2)6O4(OH)6·8H2O, respectively) were measured using flow-through columns reacted with two simulated background porewater (BPW) solutions of low and high dissolved carbonate concentration (ca. 0.2 and 2.8 mmol L-1). Column materials were characterized before and after reaction with electron microscopy, bulk chemistry, and EXAFS to identify structural and chemical changes during dissolution and to obtain insight into molecular-scale processes. The reactive transport code CrunchFlow was used to calculate overall dissolution rates while accounting for fluid transport and changes in mineral volume and reactive surface area, and results were compared to steady-state dissolution rate calculations. In low carbonate BPW systems, interlayer K and Na were initially leached from both minerals, and in Na-compreignacite, K and minor divalent cations from the input solution were incorporated into the mineral structure. Results of characterization analyses suggested that after reaction both K- and Na-compreignacite resembled a disordered K-compreignacite with altered surfaces. A 10-fold increase in dissolved carbonate concentration and corresponding increase in pH (from 6.65 to 8.40) resulted in a net removal of 58-87% of total U mass from the columns, compared to <1% net loss in low carbonate BPW systems. Steady-state release of dissolved U was not observed with high carbonate solutions and post-reaction characterizations indicated a lack of development of leached or altered surfaces. Dissolution rates (normalized to specific surface area) were 2.5-3 orders-of-magnitude faster in high versus low carbonate BPW systems, with Na-compreignacite dissolving more rapidly than K-compreignacite under both BPW conditions, possibly due to greater ion exchange (1.57 · 10-10 vs. 1.28 · 10-13 mol m-2 s-1 [log R = -9.81 and -12.89] and 5.79 · 10-10 vs. 3.71 · 10-13 mol m-2 s-1 [log R = -9.24 and -12.43] for K- and Na-compreignacite, respectively). Experimental and spectroscopic results suggest that the dissolution rate is controlled by bond breaking of a uranyl group and detachment from polyhedral layers of the mineral structure. With higher dissolved carbonate concentrations, this rate-determining step is accelerated by the formation of Ca-uranyl carbonate complexes (dominant species under these conditions), which resulted in an increase of the dissolution rates. Optimization of both dissolution rate and mineral volume fraction in the reactive transport model to account for U mass removal during dissolution more accurately reproduced effluent data in high carbonate systems, and resulted in faster overall rates compared with a steady-state dissolution assumption. This study highlights the importance of coupling reaction and transport processes during the quantification of mineral dissolution rates to accurately predict the fate of contaminants such as U in porous geomedia.

  17. Rates and mechanisms of uranyl oxyhydroxide mineral dissolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinoso-Maset, Estela; Steefel, Carl I.; Um, Wooyong

    Uranyl oxyhydroxide minerals are important weathering products in uranium-contaminated surface and subsurface environments that regulate dissolved uranium concentrations. However, dissolution rates for this class of minerals and associated dissolution mechanisms have not been previously reported for circumneutral pH conditions, particularly for the case of flow through porous media. In this paper, the dissolution rates of K- and Na-compreignacite (K 2(UO 2) 6O 4(OH) 6·8H 2O and Na 2(UO 2) 6O 4(OH) 6·8H 2O respectively) were measured using flow-through columns reacted with two simulated background porewater (BPW) solutions of low and high dissolved total carbonate content (ca. 0.2 and 2.8 mmolmore » L -1). Column materials were characterized before and after reaction with electron microscopy, bulk chemistry, and EXAFS to identify structural and chemical changes during dissolution and to obtain insight into molecular-scale processes. The reactive transport code CrunchFlow was used to calculate overall dissolution rates while accounting for fluid transport and changes in mineral volume and reactive surface area and results were compared to steady-state dissolution rate calculations. In low carbonate BPW systems, interlayer K and Na were initially leached from both minerals, and in Na-compreignacite, K and minor divalent cations from the input solution were incorporated into the mineral structure. Results of characterization analyses suggested that after reaction both K- and Na-compreignacite resembled a disordered K-compreignacite with altered surfaces. A 10-fold increase in dissolved carbonate concentration and corresponding increase in pH (from 6.65 to 8.40) resulted in a net removal of 58-87% of total uranium mass from the columns, compared to <1% net loss in low carbonate BPW systems. Steady-state release of dissolved uranium was not observed with high carbonate solutions and post-reaction characterizations indicated a lack of development of leached or altered surfaces. Dissolution rates (normalized to specific surface area) were about 2.5-3 orders-of-magnitude faster in high versus low carbonate BPW systems, with Na-compreignacite dissolving more rapidly than K-compreignacite under both BPW conditions, possibly due to greater ion exchange (1.57·10 -10 vs. 1.28·10 -13 mol m -2 s -1 [log R = -9.81 and -12.89] and 5.79·10 -10 vs. 3.71·10 -13 mol m -2 s -1 [log R = -9.24 and -12.43] for K- and Na-compreignacite respectively). Experimental and spectroscopic results suggest that the dissolution rate is controlled by bond breaking of a uranyl group and detachment from polyhedral layers of the mineral structure. With higher dissolved carbonate concentrations, this rate-determining step is accelerated by the formation of Ca-uranyl carbonate complexes (dominant species under these conditions), which resulted in an increase of the dissolution rates. Optimization of both dissolution rate and mineral volume fraction in the reactive transport model to account for uranium mass removal during dissolution more accurately reproduced effluent data in high carbonate systems, and resulted in faster overall rates compared with a steady-state dissolution assumption. Finally, this study highlights the importance of coupling reaction and transport processes during the quantification of mineral dissolution rates to accurately predict the fate of contaminants such as uranium in porous geomedia.« less

  18. Rates and mechanisms of uranyl oxyhydroxide mineral dissolution

    DOE PAGES

    Reinoso-Maset, Estela; Steefel, Carl I.; Um, Wooyong; ...

    2017-06-01

    Uranyl oxyhydroxide minerals are important weathering products in uranium-contaminated surface and subsurface environments that regulate dissolved uranium concentrations. However, dissolution rates for this class of minerals and associated dissolution mechanisms have not been previously reported for circumneutral pH conditions, particularly for the case of flow through porous media. In this paper, the dissolution rates of K- and Na-compreignacite (K 2(UO 2) 6O 4(OH) 6·8H 2O and Na 2(UO 2) 6O 4(OH) 6·8H 2O respectively) were measured using flow-through columns reacted with two simulated background porewater (BPW) solutions of low and high dissolved total carbonate content (ca. 0.2 and 2.8 mmolmore » L -1). Column materials were characterized before and after reaction with electron microscopy, bulk chemistry, and EXAFS to identify structural and chemical changes during dissolution and to obtain insight into molecular-scale processes. The reactive transport code CrunchFlow was used to calculate overall dissolution rates while accounting for fluid transport and changes in mineral volume and reactive surface area and results were compared to steady-state dissolution rate calculations. In low carbonate BPW systems, interlayer K and Na were initially leached from both minerals, and in Na-compreignacite, K and minor divalent cations from the input solution were incorporated into the mineral structure. Results of characterization analyses suggested that after reaction both K- and Na-compreignacite resembled a disordered K-compreignacite with altered surfaces. A 10-fold increase in dissolved carbonate concentration and corresponding increase in pH (from 6.65 to 8.40) resulted in a net removal of 58-87% of total uranium mass from the columns, compared to <1% net loss in low carbonate BPW systems. Steady-state release of dissolved uranium was not observed with high carbonate solutions and post-reaction characterizations indicated a lack of development of leached or altered surfaces. Dissolution rates (normalized to specific surface area) were about 2.5-3 orders-of-magnitude faster in high versus low carbonate BPW systems, with Na-compreignacite dissolving more rapidly than K-compreignacite under both BPW conditions, possibly due to greater ion exchange (1.57·10 -10 vs. 1.28·10 -13 mol m -2 s -1 [log R = -9.81 and -12.89] and 5.79·10 -10 vs. 3.71·10 -13 mol m -2 s -1 [log R = -9.24 and -12.43] for K- and Na-compreignacite respectively). Experimental and spectroscopic results suggest that the dissolution rate is controlled by bond breaking of a uranyl group and detachment from polyhedral layers of the mineral structure. With higher dissolved carbonate concentrations, this rate-determining step is accelerated by the formation of Ca-uranyl carbonate complexes (dominant species under these conditions), which resulted in an increase of the dissolution rates. Optimization of both dissolution rate and mineral volume fraction in the reactive transport model to account for uranium mass removal during dissolution more accurately reproduced effluent data in high carbonate systems, and resulted in faster overall rates compared with a steady-state dissolution assumption. Finally, this study highlights the importance of coupling reaction and transport processes during the quantification of mineral dissolution rates to accurately predict the fate of contaminants such as uranium in porous geomedia.« less

  19. Addition of Sodium Bicarbonate to Irrigation Solution May Assist in Dissolution of Uric Acid Fragments During Ureteroscopy.

    PubMed

    Paonessa, Jessica E; Williams, James C; Lingeman, James E

    2018-04-01

    We hypothesized that adding sodium bicarbonate (bicarb) to normal saline (NS) irrigation during ureteroscopy in patients with uric acid (UA) nephrolithiasis may assist in dissolving small stone fragments produced during laser lithotripsy. In vitro testing was performed to determine whether dissolution of UA fragments could be accomplished within 1 hour. In total 100% UA renal calculi were fragmented, filtered, and separated by size. Fragment sizes were <0.5 mm and 0.5 to 1 mm. Similar amounts of stone material were agitated in solution at room temperature. Four solutions were tested (NS, NS +1 ampule bicarb/L, NS +2, NS +3). Both groups were filtered to remove solutions after fixed periods. Filtered specimens were dried and weighed. Fragment dissolution rates were calculated as percent removed per hour. Additional testing was performed to determine whether increasing the temperature of solution affected dissolution rates. For fragments <0.5 mm, adding 2 or 3 bicarb ampules/L NS produced a dissolution rate averaging 91% ± 29% per hour. This rate averaged 226% faster than NS alone. With fragments 0.5 to 1 mm, addition of 2 or 3 bicarb ampules/L NS yielded a dissolution rate averaging 22% ± 7% per hour, which was nearly five times higher than NS alone. There was a trend for an increase in mean dissolution rate with higher temperature but this increase was not significant (p = 0.30). The addition of bicarbonate to NS more than doubles the dissolution rate of UA stone fragments and fragments less than 0.5 mm can be completely dissolved within 1 hour. Addition of bicarb to NS irrigation is a simple and inexpensive approach that may assist in the dissolution of UA fragments produced during ureteroscopic laser lithotripsy. Further studies are needed to determine whether a clinical benefit exists.

  20. Kinetics and mechanism of natural fluorapatite dissolution at 25 °C and pH from 3 to 12

    NASA Astrophysics Data System (ADS)

    Chaïrat, Claire; Schott, Jacques; Oelkers, Eric H.; Lartigue, Jean-Eric; Harouiya, Najatte

    2007-12-01

    The dissolution rates of natural fluorapatite (FAP), Ca 10(PO 4) 6F 2, were measured at 25 °C in mixed-flow reactors as a function of pH from 3.0 to 11.7, and aqueous calcium, phosphorus, and fluoride concentration. After an initial preferential Ca and/or F release, stoichiometric Ca, P, and F release was observed. Measured FAP dissolution rates decrease with increasing pH at 3 ⩽ pH ⩽ 7, FAP dissolution rates are pH independent at 7 ⩽ pH ⩽ 10, and FAP dissolution rates again decrease with increasing pH at pH ⩾ 10. Measured FAP dissolution rates are independent of aqueous Ca, P, and F concentration at pH ≈ 3 and pH ≈ 10. Apatite dissolution appears to be initiated by the relatively rapid removal from the near surface of F and the Ca located in the M1 sites, via proton for Ca exchange reactions. Dissolution rates are controlled by the destruction of this F and Ca depleted surface layer. The destruction of this layer is facilitated by the adsorption/penetration of protons into the surface at acidic conditions, and by surface hydration at neutral and basic conditions. Taking into account these two parallel mechanisms, measured fluorapatite forward dissolution rates can be accurately described using r+(molms)=6.61×10-6{aK}/{1+aK+aCa4aF1.4aOH0.6aH6K}+3.69×10-8[tbnd CaOH2+] where ai refers to the activity of the ith aqueous species, [tbnd CaOH2+] denotes the concentration of hydrated calcium sites at the surface of the leached layer (mol m -2), and Kex and Kads stand for the apparent stability constants of the Ca 2+/H + exchange and adsorption/penetration reactions, respectively.

  1. Coherent anti-Stokes Raman Scattering (CARS) Microscopy Visualizes Pharmaceutical Tablets During Dissolution

    PubMed Central

    Fussell, Andrew L.; Kleinebudde, Peter; Herek, Jennifer; Strachan, Clare J.; Offerhaus, Herman L.

    2014-01-01

    Traditional pharmaceutical dissolution tests determine the amount of drug dissolved over time by measuring drug content in the dissolution medium. This method provides little direct information about what is happening on the surface of the dissolving tablet. As the tablet surface composition and structure can change during dissolution, it is essential to monitor it during dissolution testing. In this work coherent anti-Stokes Raman scattering microscopy is used to image the surface of tablets during dissolution while UV absorption spectroscopy is simultaneously providing inline analysis of dissolved drug concentration for tablets containing a 50% mixture of theophylline anhydrate and ethyl cellulose. The measurements showed that in situ CARS microscopy is capable of imaging selectively theophylline in the presence of ethyl cellulose. Additionally, the theophylline anhydrate converted to theophylline monohydrate during dissolution, with needle-shaped crystals growing on the tablet surface during dissolution. The conversion of theophylline anhydrate to monohydrate, combined with reduced exposure of the drug to the flowing dissolution medium resulted in decreased dissolution rates. Our results show that in situ CARS microscopy combined with inline UV absorption spectroscopy is capable of monitoring pharmaceutical tablet dissolution and correlating surface changes with changes in dissolution rate. PMID:25045833

  2. Convective dissolution of carbon dioxide in saline aquifers

    NASA Astrophysics Data System (ADS)

    Neufeld, Jerome A.; Hesse, Marc A.; Riaz, Amir; Hallworth, Mark A.; Tchelepi, Hamdi A.; Huppert, Herbert E.

    2010-11-01

    Geological carbon dioxide (CO2) storage is a means of reducing anthropogenic emissions. Dissolution of CO2 into the brine, resulting in stable stratification, increases storage security. The dissolution rate is determined by convection in the brine driven by the increase of brine density with CO2 saturation. We present a new analogue fluid system that reproduces the convective behaviour of CO2-enriched brine. Laboratory experiments and high-resolution numerical simulations show that the convective flux scales with the Rayleigh number to the 4/5 power, in contrast with a classical linear relationship. A scaling argument for the convective flux incorporating lateral diffusion from downwelling plumes explains this nonlinear relationship for the convective flux, provides a physical picture of high Rayleigh number convection in a porous medium, and predicts the CO2 dissolution rates in CO2 accumulations. These estimates of the dissolution rate show that convective dissolution can play an important role in enhancing storage security.

  3. Effect of Low-Temperature Environment on Stress Corrosion Cracking Behavior of X80 Pipeline Steel in Simulated Alkaline Soil Solution

    NASA Astrophysics Data System (ADS)

    Xie, Fei; Wang, Dan; Wu, Ming; Yu, Chengxiang; Sun, Dongxu; Yang, Xu; Xu, Changhao

    2018-04-01

    The stress corrosion cracking (SCC) of X80 pipeline steel in simulated alkaline soil solution under different temperatures was investigated by slow-strain-rate testing, scanning electron microscopy and energy-dispersive spectroscopy. Results showed that the fracture was transgranular and brittle at 273 K to 278 K (0 °C to 5 °C), and the metal surface was dissolved by a large number of chloride ions. Furthermore, hydrogen embrittlement was caused by the hydrogen atom extended to the high-stress region. The fracture process was controlled by hydrogen-induced cracking, and SCC was highly sensitive at this stage. At 288 K to 298 K (15 °C to 25 °C), the fracture morphology was attributed to the mixed mode of ductile and brittle fractures, the fracture process was controlled by the mechanism of hydrogen-induced cracking and anodic dissolution, and the susceptibility to SCC decreased. When the temperature reached 308 K to 318 K (35 °C to 45 °C), the fracture was mainly intergranular and ductile, the fracture process was controlled by anodic dissolution, and SCC sensitivity was the smallest in this temperature range.

  4. The Dissolution Behavior of Borosilicate Glasses in Far-From Equilibrium Conditions

    DOE PAGES

    Neeway, James J.; Rieke, Peter C.; Parruzot, Benjamin P.; ...

    2018-02-10

    An area of agreement in the waste glass corrosion community is that, at far-from-equilibrium conditions, the dissolution of borosilicate glasses used to immobilize nuclear waste is known to be a function of both temperature and pH. The aim of this work is to study the effects of temperature and pH on the dissolution rate of three model nuclear waste glasses (SON68, ISG, AFCI). The dissolution rate data are then used to parameterize a kinetic rate model based on Transition State Theory that has been developed to model glass corrosion behavior in dilute conditions. To do this, experiments were conducted atmore » temperatures of 23, 40, 70, and 90 °C and pH(22 °C) values of 9, 10, 11, and 12 with the single-pass flow-through (SPFT) test method. Both the absolute dissolution rates and the rate model parameters are compared with previous results. Rate model parameters for the three glasses studied here are nearly equivalent within error and in relative agreement with previous studies though quantifiable differences exist. The glass dissolution rates were analyzed with a linear multivariate regression (LMR) and a nonlinear multivariate regression performed with the use of the Glass Corrosion Modeling Tool (GCMT), with which a robust uncertainty analysis is performed. This robust analysis highlights the high degree of correlation of various parameters in the kinetic rate model. As more data are obtained on borosilicate glasses with varying compositions, a mathematical description of the effect of glass composition on the rate parameter values should be possible. This would allow for the possibility of calculating the forward dissolution rate of glass based solely on composition. In addition, the method of determination of parameter uncertainty and correlation provides a framework for other rate models that describe the dissolution rates of other amorphous and crystalline materials in a wide range of chemical conditions. As a result, the higher level of uncertainty analysis would provide a basis for comparison of different rate models and allow for a better means of quantifiably comparing the various models.« less

  5. The dissolution behavior of borosilicate glasses in far-from equilibrium conditions

    NASA Astrophysics Data System (ADS)

    Neeway, James J.; Rieke, Peter C.; Parruzot, Benjamin P.; Ryan, Joseph V.; Asmussen, R. Matthew

    2018-04-01

    An area of agreement in the waste glass corrosion community is that, at far-from-equilibrium conditions, the dissolution of borosilicate glasses used to immobilize nuclear waste is known to be a function of both temperature and pH. The aim of this work is to study the effects of temperature and pH on the dissolution rate of three model nuclear waste glasses (SON68, ISG, AFCI). The dissolution rate data are then used to parameterize a kinetic rate model based on Transition State Theory that has been developed to model glass corrosion behavior in dilute conditions. To do this, experiments were conducted at temperatures of 23, 40, 70, and 90 °C and pH (22 °C) values of 9, 10, 11, and 12 with the single-pass flow-through (SPFT) test method. Both the absolute dissolution rates and the rate model parameters are compared with previous results. Rate model parameters for the three glasses studied here are nearly equivalent within error and in relative agreement with previous studies though quantifiable differences exist. The glass dissolution rates were analyzed with a linear multivariate regression (LMR) and a nonlinear multivariate regression performed with the use of the Glass Corrosion Modeling Tool (GCMT), with which a robust uncertainty analysis is performed. This robust analysis highlights the high degree of correlation of various parameters in the kinetic rate model. As more data are obtained on borosilicate glasses with varying compositions, a mathematical description of the effect of glass composition on the rate parameter values should be possible. This would allow for the possibility of calculating the forward dissolution rate of glass based solely on composition. In addition, the method of determination of parameter uncertainty and correlation provides a framework for other rate models that describe the dissolution rates of other amorphous and crystalline materials in a wide range of chemical conditions. The higher level of uncertainty analysis would provide a basis for comparison of different rate models and allow for a better means of quantifiably comparing the various models.

  6. The Dissolution Behavior of Borosilicate Glasses in Far-From Equilibrium Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neeway, James J.; Rieke, Peter C.; Parruzot, Benjamin P.

    An area of agreement in the waste glass corrosion community is that, at far-from-equilibrium conditions, the dissolution of borosilicate glasses used to immobilize nuclear waste is known to be a function of both temperature and pH. The aim of this work is to study the effects of temperature and pH on the dissolution rate of three model nuclear waste glasses (SON68, ISG, AFCI). The dissolution rate data are then used to parameterize a kinetic rate model based on Transition State Theory that has been developed to model glass corrosion behavior in dilute conditions. To do this, experiments were conducted atmore » temperatures of 23, 40, 70, and 90 °C and pH(22 °C) values of 9, 10, 11, and 12 with the single-pass flow-through (SPFT) test method. Both the absolute dissolution rates and the rate model parameters are compared with previous results. Rate model parameters for the three glasses studied here are nearly equivalent within error and in relative agreement with previous studies though quantifiable differences exist. The glass dissolution rates were analyzed with a linear multivariate regression (LMR) and a nonlinear multivariate regression performed with the use of the Glass Corrosion Modeling Tool (GCMT), with which a robust uncertainty analysis is performed. This robust analysis highlights the high degree of correlation of various parameters in the kinetic rate model. As more data are obtained on borosilicate glasses with varying compositions, a mathematical description of the effect of glass composition on the rate parameter values should be possible. This would allow for the possibility of calculating the forward dissolution rate of glass based solely on composition. In addition, the method of determination of parameter uncertainty and correlation provides a framework for other rate models that describe the dissolution rates of other amorphous and crystalline materials in a wide range of chemical conditions. As a result, the higher level of uncertainty analysis would provide a basis for comparison of different rate models and allow for a better means of quantifiably comparing the various models.« less

  7. Effects of acid deposition on dissolution of carbonate stone during summer storms in the Adirondack Mountains, New York, 1987-89

    USGS Publications Warehouse

    Schuster, Paul F.; Reddy, Michael M.; Sherwood, S.I.

    1994-01-01

    This study is part of a long-term research program designed to identify and quantify acid rain damage to carbonate stone. Acidic deposition accelerates the dissolution of carbonate-stone monuments and building materials. Sequential sampling of runoff from carbonate-stone (marble) and glass (reference) microcatchments in the Adirondack Mountains in New York State provided a detailed record of the episodic fluctuations in rain rate and runoff chemistry during individual summer storms. Rain rate and chemical concentrations from carbonate-stone and glass runoff fluctuated three to tenfold during storms. Net calcium-ion concentrations from the carbonatestone runoff, a measure of stone dissolution, typically fluctuated twofold during these storms. High net sulfate and net calcium concentrations in the first effective runoff at the start of a storm indicated that atmospheric pollutants deposited on the stone surface during dry periods formed calcium sulfate minerals, an important process in carbonate stone dissolution. Dissolution of the carbonate stone generally increased up to twofold during coincident episodes of low rain rate (less than 5 millimeters per hour) and decreased rainfall (glass runoff) pH (less than 4.0); episodes of high rain rate (cloudbursts) were coincident with a rapid increase in rainfall pH and also a rapid decrease in the dissolution of carbonate-stone. During a storm, it seems the most important factors causing increased dissolution of carbonate stone are coincident periods of low rain rate and decreased rainfall pH. Dissolution of the carbonate stone decreased slightly as the rain rate exceeded about 5 millimeters per hour, probably in response to rapidly increasing rainfall pH during episodes of high rain rate and shorter contact time between the runoff and the stone surface. High runoff rates resulting from cloudbursts remove calcium sulfate minerals formed during dry periods prior to storms and also remove dissolution products formed in large measure by chemical weathering as a result of episodes of low rain rate and decreased rainfall pH during a storm.

  8. Diurnal variation in rates of calcification and carbonate sediment dissolution in Florida Bay

    USGS Publications Warehouse

    Yates, K.K.; Halley, R.B.

    2006-01-01

    Water quality and circulation in Florida Bay (a shallow, subtropical estuary in south Florida) are highly dependent upon the development and evolution of carbonate mud banks distributed throughout the Bay. Predicting the effect of natural and anthropogenic perturbations on carbonate sedimentation requires an understanding of annual, seasonal, and daily variations in the biogenic and inorganic processes affecting carbonate sediment precipitation and dissolution. In this study, net calcification rates were measured over diurnal cycles on 27 d during summer and winter from 1999 to 2003 on mud banks and four representative substrate types located within basins between mud banks. Substrate types that were measured in basins include seagrass beds of sparse and intermediate density Thalassia sp., mud bottom, and hard bottom communities. Changes in total alkalinity were used as a proxy for calcification and dissolution. On 22 d (81%), diurnal variation in rates of net calcification was observed. The highest rates of net carbonate sediment production (or lowest rates of net dissolution) generally occurred during daylight hours and ranged from 2.900 to -0.410 g CaCO3 m-2 d-1. The lowest rates of carbonate sediment production (or net sediment dissolution) occurred at night and ranged from 0.210 to -1.900 g CaCO3 m -2 night-1. During typical diurnal cycles, dissolution during the night consumed an average of 29% of sediment produced during the day on banks and 68% of sediment produced during the day in basins. Net sediment dissolution also occurred during daylight, but only when there was total cloud cover, high turbidity, or hypersalinity. Diurnal variation in calcification and dissolution in surface waters and surface sediments of Florida Bay is linked to cycling of carbon dioxide through photosynthesis and respiration. Estimation of long-term sediment accumulation rates from diurnal rates of carbonate sediment production measured in this study indicates an overall average accumulation rate for Florida Bay of 8.7 cm 1000 yr-1 and suggests that sediment dissolution plays a more important role than sediment transport in loss of sediment from Florida Bay. ?? 2006 Estuarine Research Federation.

  9. Comparing the mechanism of water condensation and evaporation in glassy aerosol.

    PubMed

    Bones, David L; Reid, Jonathan P; Lienhard, Daniel M; Krieger, Ulrich K

    2012-07-17

    Atmospheric models generally assume that aerosol particles are in equilibrium with the surrounding gas phase. However, recent observations that secondary organic aerosols can exist in a glassy state have highlighted the need to more fully understand the kinetic limitations that may control water partitioning in ambient particles. Here, we explore the influence of slow water diffusion in the condensed aerosol phase on the rates of both condensation and evaporation, demonstrating that significant inhibition in mass transfer occurs for ultraviscous aerosol, not just for glassy aerosol. Using coarse mode (3-4 um radius) ternary sucrose/sodium chloride/aqueous droplets as a proxy for multicomponent ambient aerosol, we demonstrate that the timescale for particle equilibration correlates with bulk viscosity and can be ≫10(3) s. Extrapolation of these timescales to particle sizes in the accumulation mode (e.g., approximately 100 nm) by applying the Stokes-Einstein equation suggests that the kinetic limitations imposed on mass transfer of water by slow bulk phase diffusion must be more fully investigated for atmospheric aerosol. Measurements have been made on particles covering a range in dynamic viscosity from < 0.1 to > 10(13) Pa s. We also retrieve the radial inhomogeneities apparent in particle composition during condensation and evaporation and contrast the dynamics of slow dissolution of a viscous core into a labile shell during condensation with the slow percolation of water during evaporation through a more homogeneous viscous particle bulk.

  10. Feasibility of Using Gluconolactone, Trehalose and Hydroxy-Propyl Gamma Cyclodextrin to Enhance Bendroflumethiazide Dissolution Using Lyophilisation and Physical Mixing Techniques.

    PubMed

    Saleh, Ashraf; McGarry, Kenneth; Chaw, Cheng Shu; Elkordy, Amal Ali

    2018-02-01

    Hydrophobic drugs are facing a major challenge in dissolution rate enhancement and solubility in aqueous solutions; therefore, a variety of methods have been used to improve dissolution rate and/or solubility of bendroflumethiazide as a model hydrophobic drug. In this study, two main methods (physical mixing and lyophilisation) were used with gluconolactone, hydroxyl propyl γ-ccyclodextrin, and trehalose to explore this challenge. Bendroflumethiazide, practically insoluble in water, was mixed with one of the three excipients gluconolactone, hydroxyl propyl γ-cyclodextrin, and trehalose in three different ratios 1:1, 1:2, 1:5. To the best of our knowledge, the dissolution of the drug has not been previously enhanced by using either these methods or any of the used excipients. Samples containing drug and each of the excipients were characterized via dissolution testing, Fourier Transform infra-red spectroscopy, differential scanning calorimetry, and scanning electron microscopy. The used methods showed a significant enhancement in dug dissolution rate; physical mixing significantly, p < 0.05, increased the percentage of the drug released with time; for example, bendroflumethiazide dissolution in distilled water was improved from less than 20% to 99.79% within 90 min for physically mixed drug-cyclodextrin 1:5. The lyophilisation process was enhanced and the drug dissolution rate and the highest drug dissolution was achieved for (drug-gluconolactone 1:1) with 98.98% drug release within 90 min. the physical mixing and freeze drying processes significantly increased the percentage of drug release with time.

  11. Jarosite dissolution rates in perchlorate brine

    NASA Astrophysics Data System (ADS)

    Legett, Carey; Pritchett, Brittany N.; Elwood Madden, Andrew S.; Phillips-Lander, Charity M.; Elwood Madden, Megan E.

    2018-02-01

    Perchlorate salts and the ferric sulfate mineral jarosite have been detected at multiple locations on Mars by both landed instruments and orbiting spectrometers. Many perchlorate brines have eutectic temperatures <250 K, and may exist as metastable or stable liquids for extended time periods, even under current Mars surface conditions. Therefore, jarosite-bearing rocks and sediments may have been altered by perchlorate brines. Here we measured jarosite dissolution rates in 2 M sodium perchlorate brine as well as dilute water at 298 K to determine the effects of perchlorate anions on jarosite dissolution rates and potential reaction products. We developed a simple method for determining aqueous iron concentrations in high salinity perchlorate solutions using ultraviolet-visible spectrophotometry that eliminates the risk of rapid oxidation reactions during analyses. Jarosite dissolution rates in 2 M perchlorate brine determined by iron release rate (2.87 × 10-12 ±0.85 × 10-12 mol m-2 s-1) were slightly slower than the jarosite dissolution rate measured in ultrapure (18.2 MΩ cm-1) water (5.06 × 10-12 mol m-2 s-1) using identical methods. No additional secondary phases were observed in XRD analyses of the reaction products. The observed decrease in dissolution rate may be due to lower activity of water (ɑH2O = 0.9) in the 2 M NaClO4 brine compared with ultrapure water (ɑH2O = 1). This suggests that the perchlorate anion does not facilitate iron release, unlike chloride anions which accelerated Fe release rates in previously reported jarosite and hematite dissolution experiments. Since dissolution rates are slower in perchlorate-rich solutions, jarosite is expected to persist longer in perchlorate brines than in dilute waters or chloride-rich brines. Therefore, if perchlorate brines dominate aqueous fluids on the surface of Mars, jarosite may remain preserved over extended periods of time, despite active aqueous processes.

  12. The influence of co-formers on the dissolution rates of co-amorphous sulfamerazine/excipient systems.

    PubMed

    Gniado, Katarzyna; Löbmann, Korbinian; Rades, Thomas; Erxleben, Andrea

    2016-05-17

    A comprehensive study on the dissolution properties of three co-amorphous sulfamerazine/excipient systems, namely sulfamerazine/deoxycholic acid, sulfamerazine/citric acid and sulfamerazine/sodium taurocholate (SMZ/DA, SMZ/CA and SMZ/NaTC; 1:1 molar ratio), is reported. While all three co-formers stabilize the amorphous state during storage, only co-amorphization with NaTC provides a dissolution advantage over crystalline SMZ and the reasons for this were analyzed. In the case of SMZ/DA extensive gelation of DA protects the amorphous phase from crystallization upon contact with buffer, but at the same time prevents the release of SMZ into solution. Disk dissolution studies showed an improved dissolution behavior of SMZ/CA compared to crystalline SMZ. However, enhanced dissolution properties were not seen in powder dissolution testing due to poor dispersibility. Co-amorphization of SMZ and NaTC resulted in a significant increase in dissolution rate, both in powder and disk dissolution studies. Copyright © 2016. Published by Elsevier B.V.

  13. Catalysis and chemical mechanisms of calcite dissolution in seawater.

    PubMed

    Subhas, Adam V; Adkins, Jess F; Rollins, Nick E; Naviaux, John; Erez, Jonathan; Berelson, William M

    2017-07-18

    Near-equilibrium calcite dissolution in seawater contributes significantly to the regulation of atmospheric [Formula: see text] on 1,000-y timescales. Despite many studies on far-from-equilibrium dissolution, little is known about the detailed mechanisms responsible for calcite dissolution in seawater. In this paper, we dissolve 13 C-labeled calcites in natural seawater. We show that the time-evolving enrichment of [Formula: see text] in solution is a direct measure of both dissolution and precipitation reactions across a large range of saturation states. Secondary Ion Mass Spectrometer profiles into the 13 C-labeled solids confirm the presence of precipitated material even in undersaturated conditions. The close balance of precipitation and dissolution near equilibrium can alter the chemical composition of calcite deeper than one monolayer into the crystal. This balance of dissolution-precipitation shifts significantly toward a dissolution-dominated mechanism below about [Formula: see text] Finally, we show that the enzyme carbonic anhydrase (CA) increases the dissolution rate across all saturation states, and the effect is most pronounced close to equilibrium. This finding suggests that the rate of hydration of [Formula: see text] is a rate-limiting step for calcite dissolution in seawater. We then interpret our dissolution data in a framework that incorporates both solution chemistry and geometric constraints on the calcite solid. Near equilibrium, this framework demonstrates a lowered free energy barrier at the solid-solution interface in the presence of CA. This framework also indicates a significant change in dissolution mechanism at [Formula: see text], which we interpret as the onset of homogeneous etch pit nucleation.

  14. Rate of production, dissolution and accumulation of biogenic solids in the ocean

    NASA Technical Reports Server (NTRS)

    Arrhenius, G.

    1988-01-01

    The equatorial current system, by its response to global circulation changes, provides a unique recording mechanism for long range climatic oscillations. A permanent record of the changes in rate of upwelling and organic production is generated in the equatorial deep sea sediments, particularly by such biogenic components which are unaffected by secondary dissolution. In order to determine the rates of accumulation of various sedimentary components, a reliable differential measurement of age of the strata must be obtained. Various approaches to this problem are reviewed, and sources of error discussed. Secondary dissolution of calcium carbonate introduces a substantial and variable difference between the dissolution-modified, and hence a priori unknown, rate of deposition on one hand and the rate of accumulation, derivable from the observed concentration, on the other. The cause and magnitude of these variations are of importance, particularly since some current dating schemes are based on assumed constancy in the rate of accumulation of this and, in some cases, also all other sedimentary components. The concepts used in rate evaluation are discussed with emphasis on the difference between the state of dissolution, an observable property of the sediment, and the rate of dissolution, a parameter that requires deduction of the carbonate fraction dissolved, and of the time differential. As a most likely cause of the enhanced state of dissolution of the interglacial carbonate sediments is proposed the lowered rates of biogenic production and deposition, which cause longer exposure of the carbonate microfossils to corrosion in the bioturbated surface layer of the sediment. Historical perspective is included in the discussion in view of the dedication of the Symposium to Hans Pettersson, the leader of the Swedish Deep Sea Expedition 1947-1948, an undertaking that opened a new era in deep sea research and planetary dynamics.

  15. Evaluation and selection of bio-relevant dissolution media for a poorly water-soluble new chemical entity.

    PubMed

    Tang, L; Khan, S U; Muhammad, N A

    2001-11-01

    The purpose of this work is to develop a bio-relevant dissolution method for formulation screening in order to select an enhanced bioavailable formulation for a poorly water-soluble drug. The methods used included a modified rotating disk apparatus for measuring intrinsic dissolution rate of the new chemical entity (NCE) and the USP dissolution method II for evaluating dissolution profiles of the drug in three different dosage forms. The in vitro dissolution results were compared with the in vivo bioavailability for selecting a bio-relevant medium. The results showed that the solubility of the NCE was proportional to the concentration of sodium lauryl sulfate (SLS) in the media. The apparent intrinsic dissolution rate of the NCE was linear to the rotational speed of the disk, which indicated that the dissolution of the drug is a diffusion-controlled mechanism. The apparent intrinsic dissolution rate was also linear to the surfactant concentration in the media, which was interpreted using the Noyes and Whitney Empirical Theory. Three formulations were studied in three different SLS media using the bulk drug as a reference. The dissolution results were compared with the corresponding bioavailability results in dogs. In the 1% SLS--sink conditions--the drug release from all the formulations was complete and the dissolution results were discriminative for the difference in particle size of the drug in the formulations. However, the data showed poor IVIV correlation. In the 0.5% SLS medium--non-sink conditions--the dissolution results showed the same rank order among the tested formulations as the bioavailability. The best IVIV correlation was obtained from the dissolution in 0.25% SLS medium, an over-saturated condition. The conclusions are: a surfactant medium increases the apparent intrinsic dissolution rate of the NCE linearly due to an increase in solubility. A low concentration of surfactant in the medium (0.25%) is more bio-relevant than higher concentrations of surfactant in the media for the poorly water-soluble drug. Creating sink conditions (based on bulk drug solubilities) by using a high concentration of a surfactant in the dissolution medium may not be a proper approach in developing a bio-relevant dissolution method for a poorly water-soluble drug.

  16. Kinetics and mechanism of hydroxyapatite crystal dissolution in weak acid buffers using the rotating disk method.

    PubMed

    Wu, M S; Higuchi, W I; Fox, J L; Friedman, M

    1976-01-01

    The model given in this report and the rotating disk method provide a useful combination in the study of dental enamel and hydroxyapatite dissolution kinetics. The present approach is a significant improvement over earlier studies, and both the ionic activity product that governs the dissolution reaction and the apparent surface dissolution reaction rate constant may be simultaneously obtained. Thus, these investigations have established the baseline for the dissolution rate studies under sink conditions. Concurrent studies, under conditions where the acidic buffer mediums are partially saturated with respect to hydroxyapatite have shown another dissolution site for hydroxyapatite that operates at a higher ionic activity product but has a much smaller apparent surface reaction rate constant. This has raised the question of whether the presence of this second site may interfere with the proper theoretical analysis of the experimental results obtained under sink conditions. A preliminary analysis of the two-site model has shown that the dissolution kinetics of hydroxyapatite under sink conditions is almost completely governed by the sink condition site (KHAP = 10(-124.5), k' = 174) established in this report. The difference between the predicted dissolution rate for the one-site model and the two-site model are generally of the order of 4 to 5% where the experiments are conducted under sink conditions and over the range of variables covered in the present study.

  17. A Review: Pharmaceutical and Pharmacokinetic Aspect of Nanocrystalline Suspensions.

    PubMed

    Shah, Dhaval A; Murdande, Sharad B; Dave, Rutesh H

    2016-01-01

    Nanocrystals have emerged as a potential formulation strategy to eliminate the bioavailability-related problems by enhancing the initial dissolution rate and moderately super-saturating the thermodynamic solubility. This review contains an in-depth knowledge of, the processing method for formulation, an accurate quantitative assessment of the solubility and dissolution rates and their correlation to observe pharmacokinetic data. Poor aqueous solubility is considered the major hurdle in the development of pharmaceutical compounds. Because of a lack of understanding with regard to the change in the thermodynamic and kinetic properties (i.e., solubility and dissolution rate) upon nanosizing, we critically reviewed the literatures for solubility determination to understand the significance and accuracy of the implemented analytical method. In the latter part, we reviewed reports that have quantitatively studied the effect of the particle size and the surface area change on the initial dissolution rate enhancement using alternative approaches besides the sink condition dissolution. The lack of an apparent relationship between the dissolution rate enhancement and the observed bioavailability are discussed by reviewing the reported in vivo data on animal models along with the particle size and food effect. The review will provide comprehensive information to the pharmaceutical scientist in the area of nanoparticulate drug delivery.

  18. Interface dissolution control of the 14C profile in marine sediment

    USGS Publications Warehouse

    Keir, R.S.; Michel, R.L.

    1993-01-01

    The process of carbonate dissolution at the sediment-water interface has two possible endmember boundary conditions. Either the carbonate particles dissolve mostly before they are incorporated into the sediment by bioturbation (interface dissolution), or the vertical mixing is rapid relative to their extermination rate (homogeneous dissolution). In this study, a detailed radiocarbon profile was determined in deep equatorial Pacific sediment that receives a high rate of carbonate supply. In addition, a box model of sediment mixing was used to simulate radiocarbon, carbonate content and excess thorium profiles that result from either boundary process following a dissolution increase. Results from homogeneous dissolution imply a strong, very recent erosional event, while interface dissolution suggests that moderately increased dissolution began about 10,000 years ago. In order to achieve the observed mixed layer radiocarbon age, increased homogeneous dissolution would concentrate a greater amount of clay and 230Th than is observed, while for interface dissolution the predicted concentrations are too small. These results together with small discontinuities beneath the mixed layer in 230Th profiles suggest a two-stage increase in interface dissolution in the deep Pacific, the first occurring near the beginning of the Holocene and the second more recently, roughly 5000 years ago. ?? 1993.

  19. Evaluation of melt granulation and ultrasonic spray congealing as techniques to enhance the dissolution of praziquantel.

    PubMed

    Passerini, Nadia; Albertini, Beatrice; Perissutti, Beatrice; Rodriguez, Lorenzo

    2006-08-02

    Praziquantel (PZQ), an anthelminthic drug widely used in developing countries, is classified in Class II in the Biopharmaceutics Classification Systems; this means that PZQ has very low water solubility and high permeability, thus the dissolution is the absorption rate-limiting factor. The aim of this work was to evaluate the suitability of melt granulation and ultrasonic spray congealing as techniques for enhancing the dissolution rate of PZQ. Granules in high shear mixer were prepared by melt granulation, using polyethylene glycol 4000 or poloxamer 188 as meltable binders and alpha-lactose monohydrate as a filler. Quite regularly shaped granules having main size fraction in the range 200-500 microm were obtained using both formulations; however, only poloxamer 188 granules demonstrated a significant (P=0.05) increase of the PZQ dissolution rate compared to pure drug. To evaluate the potential of ultrasonic spray congealing, Gelucire 50/13 microparticles having different drug to carrier ratios (5, 10, 20 and 30%, w/w) were then prepared. The results showed that all the microparticles had a significant higher dissolution rate (P=0.05) respect to pure PZQ. The increase of the PZQ content considerably decreased the dissolution rate of the drug: 5 and 10% PZQ loaded systems evidenced dissolution significantly enhanced compared to 20 and 30% PZQ microparticles. The microparticle's characterisation, performed by Differential Scanning Calorimetry, Hot Stage Microscopy, X-ray powder diffraction and FT-Infrared analysis, evidenced the absence of both modifications of the solid state of PZQ and of significant interactions between the drug and the carrier. In conclusion, melt granulation and ultrasonic spray congealing could be proposed as solvent free, rapid and low expensive manufacturing methods to increase the in vitro dissolution rate of PZQ.

  20. Improvement of the dissolution rate of artemisinin by means of supercritical fluid technology and solid dispersions.

    PubMed

    Van Nijlen, T; Brennan, K; Van den Mooter, G; Blaton, N; Kinget, R; Augustijns, P

    2003-03-26

    The purpose of this study was to enhance the dissolution rate of artemisinin in order to improve the intestinal absorption characteristics. The effect of: (1) micronisation and (2) formation of solid dispersions with PVPK25 was assessed in an in vitro dissolution system [dissolution medium: water (90%), ethanol (10%) and sodium lauryl sulphate (0.1%)]. Coulter counter analysis was used to measure particle size. X-ray diffraction and DSC were used to analyse the physical state of the powders. Micronisation by means of a jet mill and supercritical fluid technology resulted in a significant decrease in particle size as compared to untreated artemisinin. All powders appeared to be crystalline. The dissolution rate of the micronised forms improved in comparison to the untreated form, but showed no difference in comparison to mechanically ground artemisinin. Solid dispersions of artemisinin with PVPK25 as a carrier were prepared by the solvent method. Both X-ray diffraction and DSC showed that the amorphous state was reached when the amount of PVPK25 was increased to 67%. The dissolution rate of solid dispersions with at least 67% of PVPK25 was significantly improved in comparison to untreated and mechanically ground artemisinin. Modulation of the dissolution rate of artemisinin was obtained by both particle size reduction and formation of solid dispersions. The effect of particle size reduction on the dissolution rate was limited. Solid dispersions could be prepared by using a relatively small amount of PVPK25. The formation of solid dispersions with PVPK25 as a carrier appears to be a promising method to improve the intestinal absorption characteristics of artemisinin. Copyright 2003 Elsevier Science B.V.

  1. Effect of the size of nanoparticles on their dissolution within metal-glass nanocomposites under sustained irradiation

    NASA Astrophysics Data System (ADS)

    Vu, T. H. Y.; Ramjauny, Y.; Rizza, G.; Hayoun, M.

    2016-01-01

    We investigate the dissolution law of metallic nanoparticles (NPs) under sustained irradiation. The system is composed of isolated spherical gold NPs (4-100 nm) embedded in an amorphous silica host matrix. Samples are irradiated at room temperature in the nuclear stopping power regime with 4 MeV Au ions for fluences up to 8 × 1016 cm-2. Experimentally, the dependence of the dissolution kinetics on the irradiation fluence is linear for large NPs (45-100 nm) and exponential for small NPs (4-25 nm). A lattice-based kinetic Monte Carlo (KMC) code, which includes atomic diffusion and ballistic displacement events, is used to simulate the dynamical competition between irradiation effects and thermal healing. The KMC simulations allow for a qualitative description of the NP dissolution in two main stages, in good agreement with the experiment. Moreover, the perfect correlation obtained between the evolution of the simulated flux of ejected atoms and the dissolution rate in two stages implies that there exists an effect of the size of NPs on their dissolution and a critical size for the transition between the two stages. The Frost-Russell model providing an analytical solution for the dissolution rate, accounts well for the first dissolution stage but fails in reproducing the data for the second stage. An improved model obtained by including a size-dependent recoil generation rate permits fully describing the dissolution for any NP size. This proves, in particular, that the size effect on the generation rate is the principal reason for the existence of two regimes. Finally, our results also demonstrate that it is justified to use a unidirectional approximation to describe the dissolution of the NP under irradiation, because the solute concentration is particularly low in metal-glass nanocomposites.

  2. Kinetics of dissolution of UO2 in nitric acid solutions: A multiparametric study of the non-catalysed reaction

    NASA Astrophysics Data System (ADS)

    Cordara, T.; Szenknect, S.; Claparede, L.; Podor, R.; Mesbah, A.; Lavalette, C.; Dacheux, N.

    2017-12-01

    UO2 pellets were prepared by densification of oxides obtained from the conversion of the oxalate precursor. Then characterized in order to perform a multiparametric study of the dissolution in nitric acid medium. In this frame, for each sample, the densification rate, the grain size and the specific surface area of the prepared pellets were determined prior to the final dissolution experiments. By varying the concentration of the nitric acid solution and temperature, three different and successive steps were identified during the dissolution. Under the less aggressive conditions considered, a first transient step corresponding to the dissolution of the most reactive phases was observed at the solid/solution interface. Then, for all the tested conditions, a steady state step was established during which the normalised dissolution rate was found to be constant. It was followed by a third step characterized by a strong and continuous increase of the normalised dissolution rate. The duration of the steady state, also called "induction period", was found to vary drastically as a function of the HNO3 concentration and temperature. However, independently of the conditions, this steady state step stopped at almost similar dissolved material weight loss and dissolved uranium concentration. During the induction period, no important evolution of the topology of the solid/liquid interface was evidenced authorizing the use of the starting reactive specific surface area to evaluate the normalised dissolution rates thus the chemical durability of the sintered pellets. From the multiparametric study of UO2 dissolution proposed, oxidation of U(IV) to U(VI) by nitrate ions at the solid/liquid interface constitutes the limiting step in the overall dissolution mechanism associated to this induction period.

  3. Dissolution of Uranium(IV) Oxide in Solutions of Ammonium Carbonate and Hydrogen Peroxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Steven C.; Peper, Shane M.; Douglas, Matthew

    2009-09-12

    Understanding the dissolution characteristics of uranium oxides is of fundamental scientific interest. Bench scale experiments were conducted to determine the optimal dissolution parameters of uranium(IV) oxide (UO2) powder in solutions of ammonium carbonate [(NH4)2CO3] and hydrogen peroxide (H2O2). Experimental parameters included variable peroxide and carbonate concentrations, and temperature. Results indicate the dissolution rate of UO2 in 1 M (NH4)2CO3 increases linearly with peroxide concentration ranging from 0.05 – 2 M (1:1 to 40:1 mol ratio H2O2:U), with no apparent maximum rate reached under the limited conditions used in our study. Temperature ranging studies show the dissolution rate of UO2 inmore » 1 M (NH4)2CO3 and 0.1 M H2O2 (2:1 mol ratio H2O2:U) increases linearly from 15 °C to 60 °C, again with no apparent maximum rate reached. Dissolution of UO2 in solutions with constant [H2O2] and [(NH4)2CO3] ranging from 0.5 to 2 M showed no difference in rate; however dissolution was significantly reduced in 0.05 M (NH4)2CO3 solution. The results of this study demonstrate the influence of [H2O2], [(NH4)2CO3], and temperature on the dissolution of UO2 in peroxide-containing (NH4)2CO3 solutions. Future studies are planned to elucidate the solution and solid state complexes in these systems.« less

  4. Disintegration rate and properties of active pharmaceutical ingredient particles as determined from the dissolution time profile of a pharmaceutical formulation: an inverse problem.

    PubMed

    Horkovics-Kovats, Stefan

    2014-02-01

    Dissolution profile of a finished dosage form (FDF) contains hidden information regarding the disintegration of the form and the particle properties of the active pharmaceutical ingredient. Here, an extraction of this information from the dissolution profile without limitation to sink conditions is provided. In the article, mathematical relationships between the continuously measured dissolution profile of an FDF containing uniform or heterogeneous particles and its disintegration rate are developed. Further, the determinability of the disintegration kinetics and particle properties released from an FDF using the derived recurrent procedure was analyzed. On the basis of the theoretical data sets, it was demonstrated that the introduced analysis of dissolution profiles correctly identifies the disintegration rate of FDF containing multiple particle types. Furthermore, for known disintegration rates, the intrinsic lifetime of particles (time needed for total particle dissolution in infinite volume) released from the FDF and their relative amount can be determined. The extractable information from FDF dissolution time profiles can be utilized in designing of the formulation process, resulting in improved understanding of FDF properties, contributing thus to the implementation of quality by design in the FDF development. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  5. Catalysis and chemical mechanisms of calcite dissolution in seawater

    PubMed Central

    Adkins, Jess F.; Rollins, Nick E.; Naviaux, John; Erez, Jonathan; Berelson, William M.

    2017-01-01

    Near-equilibrium calcite dissolution in seawater contributes significantly to the regulation of atmospheric CO2 on 1,000-y timescales. Despite many studies on far-from-equilibrium dissolution, little is known about the detailed mechanisms responsible for calcite dissolution in seawater. In this paper, we dissolve 13C-labeled calcites in natural seawater. We show that the time-evolving enrichment of 𝜹13C in solution is a direct measure of both dissolution and precipitation reactions across a large range of saturation states. Secondary Ion Mass Spectrometer profiles into the 13C-labeled solids confirm the presence of precipitated material even in undersaturated conditions. The close balance of precipitation and dissolution near equilibrium can alter the chemical composition of calcite deeper than one monolayer into the crystal. This balance of dissolution–precipitation shifts significantly toward a dissolution-dominated mechanism below about Ω= 0.7. Finally, we show that the enzyme carbonic anhydrase (CA) increases the dissolution rate across all saturation states, and the effect is most pronounced close to equilibrium. This finding suggests that the rate of hydration of CO2 is a rate-limiting step for calcite dissolution in seawater. We then interpret our dissolution data in a framework that incorporates both solution chemistry and geometric constraints on the calcite solid. Near equilibrium, this framework demonstrates a lowered free energy barrier at the solid–solution interface in the presence of CA. This framework also indicates a significant change in dissolution mechanism at Ω= 0.7, which we interpret as the onset of homogeneous etch pit nucleation. PMID:28720698

  6. Spontaneous Water Oxidation at Hematite (α-Fe2O3) Crystal Faces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatman, Shawn ME; Zarzycki, Piotr P.; Rosso, Kevin M.

    2015-01-28

    Hematite (α-Fe2O3) persists as a promising candidate for photoelectrochemical water splitting but a slow oxygen evolution reaction (OER) at its surfaces remains a limitation. Here we extend a series of studies that examine pH-dependent surface potentials and electron transfer properties of effectively perfect low-index crystal faces of hematite in contact with simple electrolyte. Zero resistance amperometry was performed in a two electrode configuration to quantify spontaneous dark current between hematite crystal face pairs (001)/(012), (001)/(113), and (012)/(113) at pH 3. Exponentially decaying currents initially of up to 200 nA were reported between faces over four minute experiments. Fourth order ZRAmore » kinetics indicated rate limitation by the OER for current that flows between (001)/(012) and (001)/(113) face pairs, with the (012) and (113) faces serving as the anodes when paired with (001). The cathodic partner reaction is reductive dissolution of the (001) face, converting surface Fe3+ to solubilized aqueous Fe2+, at a rate maintained by the OER at the anode. In contrast, OER rate limitation does not manifest for the (012)/(113) pair. The uniqueness of the (001) face is established in terms of a faster intrinsic ability to accept the protons required for the reductive dissolution reaction. OER rate limitation inversely may thus arise from sluggish kinetics of hematite surfaces to dispense with the protons that accompany the four-electron OER. The results are explained in terms of semi-quantitative energy band diagrams. The finding may be useful as a consideration for tailoring the design of polycrystalline hematite photoanodes that present multiple terminations to the interface with electrolyte.« less

  7. 21 CFR 320.1 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., where applicable, content uniformity, disintegration times, and/or dissolution rates. (d) Pharmaceutical..., disintegration times and/or dissolution rates. (e) Bioequivalence means the absence of a significant difference...

  8. Secondary calcification and dissolution respond differently to future ocean conditions

    NASA Astrophysics Data System (ADS)

    Silbiger, N. J.; Donahue, M. J.

    2015-01-01

    Climate change threatens both the accretion and erosion processes that sustain coral reefs. Secondary calcification, bioerosion, and reef dissolution are integral to the structural complexity and long-term persistence of coral reefs, yet these processes have received less research attention than reef accretion by corals. In this study, we use climate scenarios from RCP 8.5 to examine the combined effects of rising ocean acidity and sea surface temperature (SST) on both secondary calcification and dissolution rates of a natural coral rubble community using a flow-through aquarium system. We found that secondary reef calcification and dissolution responded differently to the combined effect of pCO2 and temperature. Calcification had a non-linear response to the combined effect of pCO2 and temperature: the highest calcification rate occurred slightly above ambient conditions and the lowest calcification rate was in the highest temperature-pCO2 condition. In contrast, dissolution increased linearly with temperature-pCO2 . The rubble community switched from net calcification to net dissolution at +271 μatm pCO2 and 0.75 °C above ambient conditions, suggesting that rubble reefs may shift from net calcification to net dissolution before the end of the century. Our results indicate that (i) dissolution may be more sensitive to climate change than calcification and (ii) that calcification and dissolution have different functional responses to climate stressors; this highlights the need to study the effects of climate stressors on both calcification and dissolution to predict future changes in coral reefs.

  9. Secondary calcification and dissolution respond differently to future ocean conditions

    NASA Astrophysics Data System (ADS)

    Silbiger, N. J.; Donahue, M. J.

    2014-09-01

    Climate change threatens both the accretion and erosion processes that sustain coral reefs. Secondary calcification, bioerosion, and reef dissolution are integral to the structural complexity and long-term persistence of coral reefs, yet these processes have received less research attention than reef accretion by corals. In this study, we use climate scenarios from RCP8.5 to examine the combined effects of rising ocean acidity and SST on both secondary calcification and dissolution rates of a natural coral rubble community using a flow-through aquarium system. We found that secondary reef calcification and dissolution responded differently to the combined effect of pCO2 and temperature. Calcification had a non-linear response to the combined effect of pCO2-temperature: the highest calcification rate occurred slightly above ambient conditions and the lowest calcification rate was in the highest pCO2-temperature condition. In contrast, dissolution increased linearly with pCO2-temperature. The rubble community switched from net calcification to net dissolution at +272 μatm pCO2 and 0.84 °C above ambient conditions, suggesting that rubble reefs may shift from net calcification to net dissolution before the end of the century. Our results indicate that dissolution may be more sensitive to climate change than calcification, and that calcification and dissolution have different functional responses to climate stressors, highlighting the need to study the effects of climate stressors on both calcification and dissolution to predict future changes in coral reefs.

  10. Low temperature dissolution flowsheet for plutonium metal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, W. E.; Almond, P. M.; Rudisill, T. S.

    2016-05-01

    The H-Canyon flowsheet used to dissolve Pu metal for PuO 2 production utilizes boiling HNO 3. SRNL was requested to develop a complementary dissolution flowsheet at two reduced temperature ranges. The dissolution and H 2 generation rates of Pu metal were investigated using a dissolving solution at ambient temperature (20-30 °C) and for an intermediate temperature of 50-60 °C. Additionally, the testing included an investigation of the dissolution rates and characterization of the off-gas generated from the ambient temperature dissolution of carbon steel cans and the nylon bags that contain the Pu metal when charged to the dissolver.

  11. Dinitrogen Fixation Within and Adjacent to Oxygen Deficient Waters of the Eastern Tropical South Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Widner, B.; Mulholland, M. R.; Bernhardt, P. W.; Chang, B. X.; Jayakumar, A.

    2016-02-01

    Recent work suggests that planktonic diazotrophs are geographically more widely distributed than previously thought including relatively warm (14-23oC) aphotic oxygenated pelagic waters and in aphotic waters within oxygen deficient zones. Because the volume of aphotic water in the ocean is large and may increase in the future, if dinitrogen (N2) fixation is widely occurring at sub-euphotic depths, this could result in a dramatic upward revision of global nitrogen (N) inputs via this process. N2 fixation rates were measured during a cruise in the Eastern Tropical South Pacific using stable isotope tracer techniques that account for slow gas dissolution. Results are compared with light, nutrient, and oxygen gradients (and necessarily temperature gradients). In addition, rates of N2 fixation made in vertical profiles within and above oxygen deficient waters are compared with those measured in vertical profiles adjacent to oxygen deficient waters. Results suggest that while rates of N2 fixation were measurable in deeper anoxic waters, volumetric N2 fixation rates were higher in surface waters.

  12. DISSOLUTION OF PLUTONIUM METAL IN 8-10 M NITRIC ACID

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudisill, T. S.; Pierce, R. A.

    2012-07-02

    The H-Canyon facility will be used to dissolve Pu metal for subsequent purification and conversion to plutonium dioxide (PuO{sub 2}) using Phase II of HB-Line. To support the new mission, the development of a Pu metal dissolution flowsheet which utilizes concentrated (8-10 M) nitric acid (HNO{sub 3}) solutions containing potassium fluoride (KF) is required. Dissolution of Pu metal in concentrated HNO{sub 3} is desired to eliminate the need to adjust the solution acidity prior to purification by anion exchange. The preferred flowsheet would use 8-10 M HNO{sub 3}, 0.015-0.07 M KF, and 0.5-1.0 g/L Gd to dissolve the Pu upmore » to 6.75 g/L. An alternate flowsheet would use 8-10 M HNO{sub 3}, 0.05-0.2 M KF, and 1-2 g/L B to dissolve the Pu. The targeted average Pu metal dissolution rate is 20 mg/min-cm{sup 2}, which is sufficient to dissolve a “standard” 2250-g Pu metal button in 24 h. Plutonium metal dissolution rate measurements showed that if Gd is used as the nuclear poison, the optimum dissolution conditions occur in 10 M HNO{sub 3}, 0.04-0.05 M KF, and 0.5-1.0 g/L Gd at 112 to 116 °C (boiling). These conditions will result in an estimated Pu metal dissolution rate of ~11-15 mg/min-cm{sup 2} and will result in dissolution times of 36-48 h for standard buttons. The recommended minimum and maximum KF concentrations are 0.03 M and 0.07 M, respectively. The data also indicate that lower KF concentrations would yield dissolution rates for B comparable to those observed with Gd at the same HNO{sub 3} concentration and dissolution temperature. To confirm that the optimal conditions identified by the dissolution rate measurements can be used to dissolve Pu metal up to 6.75 g/L in the presence of representative concentrations of Fe and Gd or B, a series of experiments was performed to demonstrate the flowsheets. In three of the five experiments, the offgas generation rate during the dissolution was measured and samples were analyzed for hydrogen gas (H{sub 2}). The use of 10 M HNO{sub 3} containing 0.03-0.05 M KF, 0.5-1.0 g/L Gd, and 1.9 g/L Fe resulted in complete dissolution of the metal in 2.0-3.5 h. When B was used as the neutron poison, 10 M HNO{sub 3} solutions containing 0.05-0.1 M KF, 1.9 g/L Fe, and 1 g/L B resulted in complete dissolution of the metal in 0.75-2.0 h. Dissolution rates estimated using data from the flowsheet demonstrations agreed reasonably well with the measured rates; although, a discrepancy was observed in the Gd system. The presence of 1 g/L Gd or B in the dissolving solution had about the same effect on the dissolution rate. The predominant Pu valence in the dissolving solution was Pu(IV). The concentration of Pu(VI) was evaluated by UV-visible spectroscopy and was estimated to be significantly less than 1 wt %. The offgas generation rates and H{sub 2} concentrations measured in the offgas from experiments performed using 10 M HNO{sub 3} containing 0.05 M KF, 1.9 g/L Fe and either 1 g/L Gd or B were approximately the same. These data support the conclusion that the presence of either 1 g/L Gd or B had the same general effect on the dissolution rate. The calculated offgas generation during the dissolutions was 0.6 mol offgas/mol of Pu. The H{sub 2} concentration measured in the offgas from the dissolution using Gd as the neutron poison was approximately 0.5 vol %. In the B system, the H{sub 2} ranged from nominally 0.8 to 1 vol % which is about the same as measured in the Gd system within the uncertainty of the analysis. The offgas generation rate for the dissolution performed using 10 M HNO{sub 3} containing 0.03 M KF, 0.5 g/L Gd, and 1.9 g/L Fe was approximately a factor of two less than produced in the other dissolutions; however, the concentration of H{sub 2} measured in the offgas was higher. The adjusted concentration ranged from 2.7 to 8.8 vol % as the dissolution proceeded. Higher concentrations of H{sub 2} occur when the Pu dissolution proceeds by a metal/acid reaction rather than nitrate oxidation. The higher H{sub 2} concentration could be attributed to the reduced activity of the fluoride due to complexation with Pu as the dissolution progressed. Dissolution of Pu metal at 20 °C in 10 M HNO{sub 3} containing 0.05 M KF showed that the Pu metal dissolves slowly without any visible gas generation. As the Pu metal dissolves, it forms a more-dense Pu-bearing solution which sank to the bottom of the dissolution vessel. The dissolved Pu did not form a boundary layer around the sample and failed to distribute homogeneously due to minimal (thermally-induced) mixing. This indicates that in the H-Canyon dissolver insert, the Pu will diffuse out of the insert into the bulk dissolver solution where it will disperse. At 35 °C, the Pu metal dissolved without visible gas generation. However, due to thermal currents caused by maintaining the solution at 35 °C, the dissolved Pu distributed evenly throughout the dissolver solution. It did not form a boundary layer around the sample.« less

  13. Tissue dissolution by a novel multisonic ultracleaning system and sodium hypochlorite.

    PubMed

    Haapasalo, Markus; Wang, Zhejun; Shen, Ya; Curtis, Allison; Patel, Payal; Khakpour, Mehrzad

    2014-08-01

    This study aimed to evaluate the effectiveness of a novel Multisonic Ultracleaning System (Sonendo Inc, Laguna Hills, CA) in tissue dissolution in comparison with conventional irrigation devices. Pieces of bovine muscle tissue (68 ± 2 mg) were placed in 0.7-mL test tubes (height: 23.60 mm, inner diameter: 6.00 mm, outer diameter: 7.75 mm) and exposed to 5 minutes of irrigation by different devices. Endodontic devices included the Multisonic Ultracleaning System, the Piezon Master 700 (EMS, Dallas, TX) ultrasonic system with agitation, the EndoVac negative-pressure irrigation system (SybronEndo, Orange, CA), and a conventional positive-pressure 27-G irrigation needle at a flow rate of 10 mL/min. The systems were tested with 0.5%, 3%, and 6% sodium hypochlorite (NaOCl) at room temperature (21°C) as well as 40°C. Irrigation with sterile water was used as a control. The mass of tissue specimens was measured and recorded before and after the use of each device, and if the specimen was completely dissolved visually within 5 minutes, the dissolution time was recorded. The rate of tissue dissolution (%/s) was then calculated. The Multisonic Ultracleaning System had the fastest rate of tissue dissolution (P < .05), at 1.0% ± 0.1% per second using 0.5% NaOCl, 2.3% ± 0.9% per second using 3% NaOCl, and 2.9% ± 0.7% per second using 6% NaOCl. This tissue dissolution rate was more than 8 times greater than the second fastest device tested (P < .01), the Piezon Master 700 ultrasonic system, which resulted in a tissue dissolution rate of 0.328% ± 0.002% per second using 6% NaOCl at 40°C. For all irrigation devices tested, the rate of tissue dissolution increased with a higher concentration and temperature of the NaOCl solution. The novel Multisonic Ultracleaning System achieved a significantly faster tissue dissolution rate when compared with the other systems examined in vitro. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  14. Dissolution of covalent adaptable network polymers in organic solvent

    NASA Astrophysics Data System (ADS)

    Yu, Kai; Yang, Hua; Dao, Binh H.; Shi, Qian; Yakacki, Christopher M.

    2017-12-01

    It was recently reported that thermosetting polymers can be fully dissolved in a proper organic solvent utilizing a bond-exchange reaction (BER), where small molecules diffuse into the polymer, break the long polymer chains into short segments, and eventually dissolve the network when sufficient solvent is provided. The solvent-assisted dissolution approach was applied to fully recycle thermosets and their fiber composites. This paper presents the first multi-scale modeling framework to predict the dissolution kinetics and mechanics of thermosets in organic solvent. The model connects the micro-scale network dynamics with macro-scale material properties: in the micro-scale, a model is developed based on the kinetics of BERs to describe the cleavage rate of polymer chains and evolution of chain segment length during the dissolution. The micro-scale model is then fed into a continuum-level model with considerations of the transportation of solvent molecules and chain segments in the system. The model shows good prediction on conversion rate of functional groups, degradation of network mechanical properties, and dissolution rate of thermosets during the dissolution. It identifies the underlying kinetic factors governing the dissolution process, and reveals the influence of different material and processing variables on the dissolution process, such as time, temperature, catalyst concentration, and chain length between cross-links.

  15. High temperature dissolution of oxides in complexing media

    NASA Astrophysics Data System (ADS)

    Sathyaseelan, Valil S.; Rufus, Appadurai L.; Subramanian, Hariharan; Bhaskarapillai, Anupkumar; Wilson, Shiny; Narasimhan, Sevilimedu V.; Velmurugan, Sankaralingam

    2011-12-01

    Dissolution of transition metal oxides such as magnetite (Fe 3O 4), mixed ferrites (NiFe 2O 4, ZnFe 2O 4, MgFe 2O 4), bonaccordite (Ni 2FeBO 5) and chromium oxide (Cr 2O 3) in organic complexing media was attempted at higher temperatures (80-180 °C). On increasing the temperature from 80 to 180 °C, the dissolution rate of magnetite in nitrilo triacetic acid (NTA) medium increased six folds. The trend obtained for the dissolution of other oxides was ZnFe 2O 4 > NiFe 2O 4 > MgFe 2O 4 > Cr 2O 3, which followed the same trend as the lability of their metal-oxo bonds. Other complexing agents such as ethylene diamine tetra acetic acid (EDTA), pyridine dicarboxylic acid (PDCA), citric acid and reducing agents viz., oxalic acid and ascorbic acid were also evaluated for their oxide dissolution efficiency at 160 °C. EDTA showed maximum dissolution rate of 21.4 μm/h for magnetite. Addition of oxalic acid/ascorbic acid to complexing media (NTA/EDTA) showed identical effect on the dissolution of magnetite. Addition of hydrazine, another reducing agent, to NTA decreased the rate of dissolution of magnetite by 50%.

  16. A novel particle engineering technology to enhance dissolution of poorly water soluble drugs: spray-freezing into liquid.

    PubMed

    Rogers, True L; Nelsen, Andrew C; Hu, Jiahui; Brown, Judith N; Sarkari, Marazban; Young, Timothy J; Johnston, Keith P; Williams, Robert O

    2002-11-01

    A novel cryogenic spray-freezing into liquid (SFL) process was developed to produce microparticulate powders consisting of an active pharmaceutical ingredient (API) molecularly embedded within a pharmaceutical excipient matrix. In the SFL process, a feed solution containing the API was atomized beneath the surface of a cryogenic liquid such that the liquid-liquid impingement between the feed and cryogenic liquids resulted in intense atomization into microdroplets, which were frozen instantaneously into microparticles. The SFL micronized powder was obtained following lyophilization of the frozen microparticles. The objective of this study was to develop a particle engineering technology to produce micronized powders of the hydrophobic drug, danazol, complexed with hydroxypropyl-beta-cyclodextrin (HPbetaCD) and to compare these SFL micronized powders to inclusion complex powders produced from other techniques, such as co-grinding of dry powder mixtures and lyophilization of bulk solutions. Danazol and HPbetaCD were dissolved in a water/tetrahydrofuran cosolvent mixture prior to SFL processing or slow freezing. Identical quantities of the API and HPbetaCD used in the solutions were co-ground in a mortar and pestle and blended to produce a co-ground physical mixture for comparison. The powder samples were characterized by differential scanning calorimetry (DSC), powder X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR), scanning electron microscopy, surface area analysis, and dissolution testing. The results provided by DSC, XRD, and FTIR suggested the formation of inclusion complexes by both slow-freezing and SFL. However, the specific surface area was significantly higher for the latter. Dissolution results suggested that equilibration of the danazol/HPbetaCD solution prior to SFL processing was required to produce the most soluble conformation of the resulting inclusion complex following SFL. SFL micronized powders exhibited better dissolution profiles than the slowly frozen aggregate powder. Results indicated that micronized SFL inclusion complex powders dissolved faster in aqueous dissolution media than inclusion complexes formed by conventional techniques due to higher surface areas and stabilized inclusion complexes obtained by ultra-rapid freezing.

  17. From Nm-Scale Measurements Of Mineral Dissolution Rate To Overall Dissolution Rate Laws: A Case Study Based On Diopside

    NASA Astrophysics Data System (ADS)

    Daval, D.; Saldi, G.; Hellmann, R.; Knauss, K.

    2011-12-01

    While we expect conventional reactive transport simulations to provide reliable estimations of the evolution of fluid-rock interactions over time scales of centuries and even more, recent experimental studies showed that they could hardly be satisfactorily used on simplified systems (e.g. batch carbonation experiments on single minerals), on time scales of weeks [1]. Among the reasons for such inconsistencies is the nature of the rate laws used in the geochemical codes, which heavily relies on our description of the fundamental mechanisms involved during water(-CO2)-mineral reactions. Silicate dissolution constitutes a key step of GCS processes. Whereas the dissolution rate of silicate minerals has been extensively studied at far-from-equilibrium conditions, extrapolating such rates over a broad range of solution composition relevant for GCS has proven challenging. Regarding diopside, recent studies [2, 3] suggested that below 125 °C, an unexpected drop of the rate occurred for Gibbs free energies of reaction (ΔGr) as low as -76 kJ.mol-1, with severe consequences on our ability to predict the rate of complex processes such as carbonation reactions [3]. The mechanism responsible for such a drop remains unclear and therefore needs to be deciphered. An examination of our previous data [3] led us to envisage that two different, non-exclusive aspects were worth investigating: (i) the possible passivating ability of interfacial, nm-thick Si-rich layers developed on weathered silicate surface, and (ii) the stop of etch pits formation on crystal surface, each mechanism being found to be responsible for drops of olivine [1] and albite [4] dissolution rates, respectively. Our ongoing experiments aim at better constraining these two mechanisms, and determining in turn whether one of them could explain the above-mentioned drop of diopside dissolution rate. Classical flow-through experiments with controlled SiO2(aq) concentrations are combined with both ex situ AFM and VSI measurements and in situ monitoring of the topography of the dissolving surface of diopside in a hydrothermal AFM flow-cell (e.g. [5]). By investigating the dissolution of several cleavages, we will show how these latter techniques represent a powerful tool for studying the anisotropy of diopside dissolution, and determining which face ultimately controls its dissolution rate. An attempt to link these observations to macroscopic determination of diopside dissolution rates as a function of fluid composition will be discussed. [1] Daval et al. (2011) Chem. Geol., 284, 193-209. [2] Dixit & Carroll (2007) Geochem. T, 8, 1-14. [3] Daval et al. (2010) Geochim. Cosmochim. Ac., 74, 2615-2633. [4] Arvidson & Luttge (2010) Chem. Geol., 269, 79-88. [5] Saldi et al. (2009) Geochim. Cosmochim. Ac., 73, 5646-5657.

  18. Non-destructive prediction of enteric coating layer thickness and drug dissolution rate by near-infrared spectroscopy and X-ray computed tomography.

    PubMed

    Ariyasu, Aoi; Hattori, Yusuke; Otsuka, Makoto

    2017-06-15

    The coating layer thickness of enteric-coated tablets is a key factor that determines the drug dissolution rate from the tablet. Near-infrared spectroscopy (NIRS) enables non-destructive and quick measurement of the coating layer thickness, and thus allows the investigation of the relation between enteric coating layer thickness and drug dissolution rate. Two marketed products of aspirin enteric-coated tablets were used in this study, and the correlation between the predicted coating layer thickness and the obtained drug dissolution rate was investigated. Our results showed correlation for one product; the drug dissolution rate decreased with the increase in enteric coating layer thickness, whereas, there was no correlation for the other product. Additional examination of the distribution of coating layer thickness by X-ray computed tomography (CT) showed homogenous distribution of coating layer thickness for the former product, whereas the latter product exhibited heterogeneous distribution within the tablet, as well as inconsistent trend in the thickness distribution between the tablets. It was suggested that this heterogeneity and inconsistent trend in layer thickness distribution contributed to the absence of correlation between the layer thickness of the face and side regions of the tablets, which resulted in the loss of correlation between the coating layer thickness and drug dissolution rate. Therefore, the predictability of drug dissolution rate from enteric-coated tablets depended on the homogeneity of the coating layer thickness. In addition, the importance of micro analysis, X-ray CT in this study, was suggested even if the macro analysis, NIRS in this study, are finally applied for the measurement. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cassingham, N.; Corkhill, C. L.; Backhouse, D. J.

    The first comprehensive assessment of the dissolution kinetics of simulant Magnox–THORP blended UK high-level waste glass, obtained by performing a range of single-pass flow-through experiments, is reported here. Inherent forward rates of glass dissolution were determined over a temperature range of 23 to 70°C and an alkaline pH range of 8.0 to 12.0. Linear regression techniques were applied to the TST kinetic rate law to obtain fundamental parameters necessary to model the dissolution kinetics of UK high-level waste glass (the activation energy (Ea), pH power law coefficient (η) and the intrinsic rate constant (k0)), which is of importance to themore » post-closure safety case for the geological disposal of vitreous products. The activation energies based on B release ranged from 55 ± 3 to 83 ± 9 kJ mol–1, indicating that Magnox–THORP blend glass dissolution has a surface-controlled mechanism, similar to that of other high- level waste simulant glass compositions such as the French SON68 and LAW in the US. Forward dissolution rates, based on Si, B and Na release, suggested that the dissolution mechanism under dilute conditions, and pH and temperature ranges of this study, was not sensitive to composition as defined by HLW-incorporation rate.« less

  20. Antisolvent crystallization of a cardiotonic drug in ionic liquids: Effect of mixing on the crystal properties

    NASA Astrophysics Data System (ADS)

    de Azevedo Jacqueline, Resende; Fabienne, Espitalier; Jean-Jacques, Letourneau; Inês, Ré Maria

    2017-08-01

    LASSBio-294 (3,4-methylenedioxybenzoyl-2-thienylhydrazon) is a poorly soluble drug which has been proposed to have major advantages over other cardiotonic drugs. Poorly water soluble drugs present limited bioavailability due to their low solubility and dissolution rate. An antisolvent crystallization processing can improve the dissolution rate by decreasing the crystals particle size. However, LASSBio-294 is also poorly soluble in organic solvents and this operation is limited. In order to open new perspectives to improve dissolution rate, this work has investigated LASSBio-294 in terms of its antisolvent crystallization in 1-ethyl-3-methylimidazolium methyl phosphonate [emim][CH3O(H)PO2] as solvent and water as antisolvent. Two modes of mixing are tested in stirred vessel with different pre-mixers (Roughton or T-mixers) in order to investigate the mixing effect on the crystal properties (crystalline structure, particle size distribution, residual solvent and in vitro dissolution rate). Smaller drug particles with unchanged crystalline structure were obtained. Despite the decrease of the elementary particles size, the recrystallized particles did not achieve a better dissolution profile. However, this study was able to highlight a certain number of findings such as the impact of the hydrodynamic conditions on the crystals formation and the presence of a gel phase limiting the dissolution rate.

  1. Characterization of Thin Film Dissolution in Water with in Situ Monitoring of Film Thickness Using Reflectometry.

    PubMed

    Yersak, Alexander S; Lewis, Ryan J; Tran, Jenny; Lee, Yung C

    2016-07-13

    Reflectometry was implemented as an in situ thickness measurement technique for rapid characterization of the dissolution dynamics of thin film protective barriers in elevated water temperatures above 100 °C. Using this technique, multiple types of coatings were simultaneously evaluated in days rather than years. This technique enabled the uninterrupted characterization of dissolution rates for different coating deposition temperatures, postdeposition annealing conditions, and locations on the coating surfaces. Atomic layer deposition (ALD) SiO2 and wet thermally grown SiO2 (wtg-SiO2) thin films were demonstrated to be dissolution-predictable barriers for the protection of metals such as copper. A ∼49% reduction in dissolution rate was achieved for ALD SiO2 films by increasing the deposition temperatures from 150 to 300 °C. ALD SiO2 deposited at 300 °C and followed by annealing in an inert N2 environment at 1065 °C resulted in a further ∼51% reduction in dissolution rate compared with the nonannealed sample. ALD SiO2 dissolution rates were thus lowered to values of wtg-SiO2 in water by the combination of increasing the deposition temperature and postdeposition annealing. Thin metal films, such as copper, without a SiO2 barrier corroded at an expected ∼1-2 nm/day rate when immersed in room temperature water. This measurement technique can be applied to any optically transparent coating.

  2. Dissolution of Biogenic and Synthetic UO2 under Varied Reducing Conditions

    PubMed Central

    ULRICH, KAI – UWE; SINGH, ABHAS; SCHOFIELD, ELEANOR J.; BARGAR, JOHN R.; VEERAMANI, HARISH; SHARP, JONATHAN O.; LATMANI, RIZLAN BERNIER -; GIAMMAR, DANIEL E.

    2008-01-01

    The chemical stability of biogenic UO2, a nanoparticulate product of environmental bioremediation, may be impacted by the particles’ surface free energy, structural defects, and compositional variability in analogy to abiotic UO2+x (0 ≤ x ≤ 0.25). This study quantifies and compares intrinsic solubility and dissolution rate constants of biogenic nano-UO2 and synthetic bulk UO2.00, taking molecular-scale structure into account. Rates were determined under anoxic conditions as a function of pH and dissolved inorganic carbon in continuous-flow experiments. The dissolution rates of biogenic and synthetic UO2 solids were lowest at near neutral pH and increased with decreasing pH. Similar surface area-normalized rates of biogenic and synthetic UO2 suggest comparable reactive surface site densities. This finding is consistent with the identified structural homology of biogenic UO2 and stoichiometric UO2.00. Compared to carbonate-free anoxic conditions, dissolved inorganic carbon accelerated the dissolution rate of biogenic UO2 by 3 orders of magnitude. This phenomenon suggests continuous surface oxidation of U(IV) to U(VI), with detachment of U(VI) as the rate-determining step in dissolution. Although reducing conditions were maintained throughout the experiments, the UO2 surface can be oxidized by water and radiogenic oxidants. Even in anoxic aquifers, UO2 dissolution may be controlled by surface U(VI) rather than U(IV) phases. PMID:18754482

  3. Improving the dissolution rate of poorly water soluble drug by solid dispersion and solid solution: pros and cons.

    PubMed

    Chokshi, Rina J; Zia, Hossein; Sandhu, Harpreet K; Shah, Navnit H; Malick, Waseem A

    2007-01-01

    The solid dispersions with poloxamer 188 (P188) and solid solutions with polyvinylpyrrolidone K30 (PVPK30) were evaluated and compared in an effort to improve aqueous solubility and bioavailability of a model hydrophobic drug. All preparations were characterized by differential scanning calorimetry, powder X-ray diffraction, intrinsic dissolution rates, and contact angle measurements. Accelerated stability studies also were conducted to determine the effects of aging on the stability of various formulations. The selected solid dispersion and solid solution formulations were further evaluated in beagle dogs for in vivo testing. Solid dispersions were characterized to show that the drug retains its crystallinity and forms a two-phase system. Solid solutions were characterized to be an amorphous monophasic system with transition of crystalline drug to amorphous state. The evaluation of the intrinsic dissolution rates of various preparations indicated that the solid solutions have higher initial dissolution rates compared with solid dispersions. However, after storage at accelerated conditions, the dissolution rates of solid solutions were lower due to partial reversion to crystalline form. The drug in solid dispersion showed better bioavailability in comparison to solid solution. Therefore, considering physical stability and in vivo study results, the solid dispersion was the most suitable choice to improve dissolution rates and hence the bioavailability of the poorly water soluble drug.

  4. Dissolution kinetics as a function of the Gibbs free energy of reaction: An experimental study based on albite feldspar

    NASA Astrophysics Data System (ADS)

    Hellmann, Roland; Tisserand, Delphine

    2006-01-01

    Here we report on an experimental investigation of the relation between the dissolution rate of albite feldspar and the Gibbs free energy of reaction, Δ Gr. The experiments were carried out in a continuously stirred flow-through reactor at 150 °C and pH (150 °C) 9.2. The dissolution rates R are based on steady-state Si and Al concentrations and sample mass loss. The overall relation between Δ Gr and R was determined over a free energy range of -150 < Δ Gr < -15.6 kJ mol -1. The data define a continuous and highly non-linear, sigmoidal relation between R and Δ Gr that is characterized by three distinct free energy regions. The region furthest from equilibrium, delimited by -150 < Δ Gr < -70 kJ mol -1, represents an extensive dissolution rate plateau with an average rate R¯=1.0×10-8molm-2s-1. In this free energy range the rates of dissolution are constant and independent of Δ Gr, as well as [Si] and [Al]. The free energy range delimited by -70 ⩽ Δ Gr ⩽ -25 kJ mol -1, referred to as the 'transition equilibrium' region, is characterized by a sharp decrease in dissolution rates with increasing Δ Gr, indicating a very strong inverse dependence of the rates on free energy. Dissolution nearest equilibrium, defined by Δ Gr > -25 kJ mol -1, represents the 'near equilibrium' region where the rates decrease as chemical equilibrium is approached, but with a much weaker dependence on Δ Gr. The lowest rate measured in this study, R = 6.2 × 10 -11 mol m -2 s -1 at Δ Gr = -16.3 kJ mol -1, is more than two orders of magnitude slower than the plateau rate. The data have been fitted to a rate equation (adapted from Burch et al. [Burch, T. E., Nagy, K. L., Lasaga, A. C., 1993. Free energy dependence of albite dissolution kinetics at 80 °C and pH 8.8. Chem. Geol.105, 137-162]) that represents the sum of two parallel reactions R=k1[1-exp(-ng)]+k2[1-exp(-g)], where k1 and k2 are rate constants that have been determined by regression, with values 1.02 × 10 -8 and 1.80 × 10 -10 mol m -2 s -1, g ≡ |Δ Gr|/R T is a dimensionless number, and n, m1, and m2 are adjustable fitted parameters ( n = 7.98 × 10 -5, m1 = 3.81 and m2 = 1.17). Based on measurements of the temporal evolution of RSi and RAl for each experiment, steady-state dissolution rates appear to be congruent at all Δ Gr. In contrast, non-steady-state dissolution is incongruent, and is related to Δ Gr. Scanning electron microscopy (SEM) images of post-reaction grain surfaces indicate that dissolution close to equilibrium (Δ Gr > -25 kJ mol -1) resulted in the precipitation of a secondary crystalline phase, but there are no indications that this altered the measured R-Δ Gr relation.

  5. Inverse modeling of BTEX dissolution and biodegradation at the Bemidji, MN crude-oil spill site

    USGS Publications Warehouse

    Essaid, H.I.; Cozzarelli, I.M.; Eganhouse, R.P.; Herkelrath, W.N.; Bekins, B.A.; Delin, G.N.

    2003-01-01

    The U.S. Geological Survey (USGS) solute transport and biodegradation code BIOMOC was used in conjunction with the USGS universal inverse modeling code UCODE to quantify field-scale hydrocarbon dissolution and biodegradation at the USGS Toxic Substances Hydrology Program crude-oil spill research site located near Bemidji, MN. This inverse modeling effort used the extensive historical data compiled at the Bemidji site from 1986 to 1997 and incorporated a multicomponent transport and biodegradation model. Inverse modeling was successful when coupled transport and degradation processes were incorporated into the model and a single dissolution rate coefficient was used for all BTEX components. Assuming a stationary oil body, we simulated benzene, toluene, ethylbenzene, m,p-xylene, and o-xylene (BTEX) concentrations in the oil and ground water, respectively, as well as dissolved oxygen. Dissolution from the oil phase and aerobic and anaerobic degradation processes were represented. The parameters estimated were the recharge rate, hydraulic conductivity, dissolution rate coefficient, individual first-order BTEX anaerobic degradation rates, and transverse dispersivity. Results were similar for simulations obtained using several alternative conceptual models of the hydrologic system and biodegradation processes. The dissolved BTEX concentration data were not sufficient to discriminate between these conceptual models. The calibrated simulations reproduced the general large-scale evolution of the plume, but did not reproduce the observed small-scale spatial and temporal variability in concentrations. The estimated anaerobic biodegradation rates for toluene and o-xylene were greater than the dissolution rate coefficient. However, the estimated anaerobic biodegradation rates for benzene, ethylbenzene, and m,p-xylene were less than the dissolution rate coefficient. The calibrated model was used to determine the BTEX mass balance in the oil body and groundwater plume. Dissolution from the oil body was greatest for compounds with large effective solubilities (benzene) and with large degradation rates (toluene and o-xylene). Anaerobic degradation removed 77% of the BTEX that dissolved into the water phase and aerobic degradation removed 17%. Although goodness-of-fit measures for the alternative conceptual models were not significantly different, predictions made with the models were quite variable. ?? 2003 Elsevier Science B.V. All rights reserved.

  6. Control of Drug Dissolution Rate from Film Dosage Forms Containing Valsartan.

    PubMed

    Murata, Yoshifumi; Kofuji, Kyoko; Maida, Chieko

    2016-01-01

    Film dosage forms (FDs) containing valsartan (VST), a popular antihypertensive drug, were prepared using a casting method with sodium alginate and other polysaccharides as the film base. Drug dissolution profiles of the FDs were investigated in limited medium. The FDs were 170-200 μm thick and were easy to handle. All FDs immediately swelled and disintegrated in the medium. About 23% of the VST incorporated into the FD prepared with 1.5% sodium alginate dissolved at 5 min. The initial dissolution rate of VST increased upon the addition of chitosan to the film base; this effect was not observed in the case of chitin. On the other hand, the rate apparently decreased upon modification with alginic acid. In addition, the solubility of VST in the dissolution medium was changed by the addition of chitosan or alginic acid. FDs prepared with polysaccharides are useful for simplifying the administration of drugs to patients, and the drug dissolution rate from FDs can be controlled by modification.

  7. Corrosion Behavior of Carbon Steel Coated with Octadecylamine in the Secondary Circuit of a Pressurized Water Reactor

    NASA Astrophysics Data System (ADS)

    Jäppinen, Essi; Ikäläinen, Tiina; Järvimäki, Sari; Saario, Timo; Sipilä, Konsta; Bojinov, Martin

    2017-12-01

    Corrosion and particle deposition in the secondary circuits of pressurized water reactors can be mitigated by alternative water chemistries featuring film-forming amines. In the present work, the corrosion of carbon steel in secondary side water with or without octadecylamine (ODA) is studied by in situ electrochemical impedance spectroscopy, combined with weight loss/gain measurements, scanning electron microscopy and glow-discharge optical emission spectroscopy. The impedance spectra are interpreted using the mixed-conduction model to extract kinetic parameters of oxide growth and metal dissolution through it. From the experimental results, it can be concluded that ODA addition reduces the corrosion rate of both fresh and pre-oxidized carbon steel in secondary circuit significantly by slowing down both interfacial reactions and transport through the oxide layer.

  8. Revisiting classical silicate dissolution rate laws under hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    Pollet-Villard, Marion; Daval, Damien; Saldi, Giuseppe; Knauss, Kevin; Wild, Bastien; Fritz, Bertrand

    2015-04-01

    In the context of geothermal energy, the relative intensities of primary mineral leaching and secondary mineral precipitation can affect porosity and permeability of the reservoir, thereby influencing its hydraulic performance and the efficiency of the geothermal power station. That is why the prediction of reaction kinetics of fluid/rock interactions represents a critical issue in this context. Moreover, in several geothermal systems such as the one of Soultz-sous-Forêts (Alsace, France), the circulation of aqueous fluids induces only modest modifications of their chemical composition. Therefore, fluid-rock interactions take place at close-to-equilibrium conditions, where the rate-affinity relations are poorly known and intensively debated [1]. To describe more precisely the dissolution processes, our strategy consists in investigating the dissolution of the main cleavages of K-spar minerals (one of the prevalent primary minerals in the reservoir of Soultz-sous-Forêts geothermal system) over a wide range of Gibbs free energy (ΔG) conditions. The aims are to decipher the impact of crystallographic orientation and microstructural surface modifications on the dissolution kinetics and to propose a relation between K-spar dissolution rate and ΔG. Our experimental work relies on a coupled approach which combines classical experiments of K-spar dissolution monitored by aqueous chemical analyses (ICP-AES) and innovative techniques of nm- to μm-scale characterization of solid surface (SEM, AFM, VSI) [2]. Our results confirm that K-spar dissolution is an anisotropic process: we measure a tenfold factor between the slowest and the fastest-dissolving surfaces. Moreover, the formation of etch pits on surfaces during their alteration has been evidenced on all of the different faces that have been studied. This complex evolution of the surface topography casts doubt of the relevance of a surface model based on shrinking particles and represents a possible cause of an apparent modification of silicate dissolution rate over time. In addition, we evidenced that the relation between K-spar dissolution rate and ΔG depends on the crystallographic orientation of the altered surface, and differs from the transition state theory currently implemented into geochemical codes. Importantly, this theoretical curve overestimates the dissolution rates measured in close-to-equilibrium conditions. Taken together, the new findings show promise as a means for improving the accuracy of geochemical simulations. [1] Schott, J., Pokrovsky, O. S., and Oelkers, E. H., 2009. The Link Between Mineral Dissolution/Precipitation Kinetics and Solution Chemistry. Rev Mineral Geochem 70, 207-258. [2] Daval, D., Hellmann, R., Saldi, G. D., Wirth, R., and Knauss, K. G., 2013. Linking nm-scale measurements of the anisotropy of silicate surface reactivity to macroscopic dissolution rate laws: New insights based on diopside. Geochim Cosmochim Acta 107, 121-134.

  9. Calorimetric Studies of Precipitation and Dissolution Kinetics in Aluminum Alloys 2219 and 7075

    NASA Astrophysics Data System (ADS)

    Papazian, John M.

    1982-05-01

    Differential scanning calorimetry (DSC) was used to study the kinetics of precipitation and dissolution of metastable and stable phases in aluminum alloys 2219 and 7075. A comparison of DSC scans obtained at heating rates of 1, 5, 10, and 20 K per minute showed that, during a DSC scan, the rates of precipitation of θ' and θ in 2219 and η' and η in 7075 were limited by their reaction kinetics. Likewise, the rates of dissolution of GP zones, θ' and η', were found to be dominated by kinetics. In contrast, the dissolution of θ and η was dominated by the thermodynamic equilibrium between these phases and the matrix. Analysis of the kinetically dominated reaction peaks and their dependence on heating rate and particle size showed that the GP zone dissolution reaction could best be described by a three-dimensional volume diffusion limited rate expression with an activation energy equal to that for diffusion. The rate of formation of θ' was best described by an Avrami expression with n = 1.1, indicating that nucleation was not the rate controlling step. A pronounced dependence of the θ' formation rate on prior plastic deformation was observed and ascribed to the influence of the matrix dislocation density on diffusivity.

  10. Dissolution of coccolithophorid calcite by microzooplankton and copepod grazing

    NASA Astrophysics Data System (ADS)

    Antia, A. N.; Suffrian, K.; Holste, L.; Müller, M. N.; Nejstgaard, J. C.; Simonelli, P.; Carotenuto, Y.; Putzeys, S.

    2008-01-01

    Independent of the ongoing acidification of surface seawater, the majority of the calcium carbonate produced in the pelagial is dissolved by natural processes above the lysocline. We investigate to what extent grazing and passage of coccolithophorids through the guts of copepods and the food vacuoles of microzooplankton contribute to calcite dissolution. In laboratory experiments where the coccolithophorid Emiliania huxleyi was fed to the rotifer Brachionus plicatilis, the heterotrophic flagellate Oxyrrhis marina and the copepod Acartia tonsa, calcite dissolution rates of 45-55%, 37-53% and 5-22% of ingested calcite were found. We ascribe higher loss rates in microzooplankton food vacuoles as compared to copepod guts to the strongly acidic digestion and the individual packaging of algal cells. In further experiments, specific rates of calcification and calcite dissolution were also measured in natural populations during the PeECE III mesocosm study under differing ambient pCO2 concentrations. Microzooplankton grazing accounted for between 27 and 70% of the dynamic calcite stock being lost per day, with no measurable effect of CO2 treatment. These measured calcite dissolution rates indicate that dissolution of calcite in the guts of microzooplankton and copepods can account for the calcite losses calculated for the global ocean using budget and model estimates.

  11. Liquigroud technique: a new concept for enhancing dissolution rate of glibenclamide by combination of liquisolid and co-grinding technologies.

    PubMed

    Azharshekoufeh, Leila; Shokri, Javad; Barzegar-Jalali, Mohammad; Javadzadeh, Yousef

    2017-01-01

    Introduction: The potential of combining liquisolid and co-grinding technologies (liquiground technique) was investigated to improve the dissolution rate of a water-insoluble agent (glibenclamide) with formulation-dependent bioavailability. Methods: To this end, different formulations of liquisolid tablets with a wide variety of non-volatile solvents contained varied ratios of drug: solvent and dissimilar carriers were prepared, and then their release profiles were evaluated. Furthermore, the effect of size reduction by ball milling on the dissolution behavior of glibenclamide from liquisolid tablets was investigated. Any interaction between the drug and the excipient or crystallinity changes during formulation procedure was also examined using X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Results: The present study revealed that classic liquisolid technique did not significantly affect the drug dissolution profile as compared to the conventional tablets. Size reduction obtained by co-grinding of liquid medication was more effective than the implementation of liquisolid technique in enhancing the dissolution rate of glibenclamide. The XRD and DSC data displayed no formation of complex or any crystallinity changes in both formulations. Conclusion: An enhanced dissolution rate of glibenclamide is achievable through the combination of liquisolid and co-grinding technologies.

  12. Long-term flow-through column experiments and their relevance to natural granitoid weathering rates

    USGS Publications Warehouse

    White, Arthur F.; Schulz, Marjorie S.; Lawrence, Corey R.; Vivit, Davison V.; Stonestrom, David A.

    2017-01-01

    Four pairs of fresh and partly-weathered granitoids, obtained from well-characterized watersheds—Merced River, CA, USA; Panola, GA, USA; Loch Vale, CO, USA, and Rio Icacos, Puerto Rico—were reacted in columns under ambient laboratory conditions for 13.8 yrs, the longest running experimental weathering study to date. Low total column mass losses (<1 wt. %), correlated with the absence of pitting or surface roughening of primary silicate grains. BET surface area (SBET) increased, primarily due to Fe-oxyhydroxide precipitation. Surface areas returned to within factors of 2 to 3 of their original values after dithionite extraction. Miscible displacement experiments indicated homogeneous plug flow with negligible immobile water, commonly cited for column experiments. Fresh granitoid effluent solute concentrations initially declined rapidly, followed by much slower decreases over the next decade. Weathered granitoid effluent concentrations increased modestly over the same time period, indicating losses of natural Fe-oxide and/or clay coatings and the increased exposure of primary mineral surfaces. Corresponding (fresh and weathered) elemental effluent concentrations trended toward convergence during the last decade of reaction. NETPATH/PHREEQC code simulations indicated non-stoichiometric dissolution involving Ca release from disseminated calcite and excess K release from interlayer biotite. Effluent 87Sr/85Sr ratios reflected a progressive weathering sequence beginning and ending with 87Sr/85Sr values of plagioclase with an additional calcite input and a radiogenic biotite excursion proportional to the granitoid ages.Effluents became thermodynamically saturated with goethite and gibbsite, slightly under-saturated with kaolinite and strongly under-saturated with plagioclase, consistent with kinetically-limited weathering in which solutes such as Na varied with column flow rates. Effluent Na concentrations showed no clear trend with time during the last decade of reaction (fresh granitoids) or increased slowly with time (weathered granitoids). Analysis of cumulative Na release indicated that plagioclase dissolution achieved steady state in 3 of the 4 fresh granitoids during the last decade of reaction. Surface-area normalized plagioclase dissolution rates exhibited a narrow range (0.95 to 1.26 10-13 moles m-2 s-1), in spite of significant stoichiometric differences (An0.21 to An0.50). Rates were an order of magnitude slower than previously reported in shorter duration experiments but generally 2 to 3 orders of magnitude faster than corresponding natural analogs. CrunchFlow simulations indicated that more than a hundredfold decrease in column flow rates would be required to produce near-saturation reaction affinities that would start to slow plagioclase weathering to real-world levels. Extending simulations to approximate long term weathering in naturally weathered profiles required additional decreases in the intrinsic plagioclase dissolution and kaolinite precipitation rates and relatively large decreases in the fluid flow rate, implying that exposure to reactive mineral surfaces is significantly limited in the natural environment compared to column experiments.

  13. Long-term flow-through column experiments and their relevance to natural granitoid weathering rates

    NASA Astrophysics Data System (ADS)

    White, Art F.; Schulz, Marjorie S.; Lawrence, Corey R.; Vivit, Davison V.; Stonestrom, David A.

    2017-04-01

    Four pairs of fresh and partly-weathered granitoids, obtained from well-characterized watersheds-Merced River, CA, USA; Panola, GA, USA; Loch Vale, CO, USA, and Rio Icacos, Puerto Rico-were reacted in columns under ambient laboratory conditions for 13.8 yrs, the longest running experimental weathering study to date. Low total column mass losses (<1 wt.%), correlated with the absence of pitting or surface roughening of primary silicate grains. BET surface area (SBET) increased, primarily due to Fe-oxyhydroxide precipitation. Surface areas returned to within factors of 2-3 of their original values after dithionite extraction. Miscible displacement experiments indicated homogeneous plug flow with negligible immobile water, commonly cited for column experiments. Fresh granitoid effluent solute concentrations initially declined rapidly, followed by much slower decreases over the next decade. Weathered granitoid effluent concentrations increased modestly over the same time period, indicating losses of natural Fe-oxide and/or clay coatings and the increased exposure of primary mineral surfaces. Corresponding (fresh and weathered) elemental effluent concentrations trended toward convergence during the last decade of reaction. NETPATH/PHREEQC code simulations indicated non-stoichiometric dissolution involving Ca release from disseminated calcite and excess K release from interlayer biotite. Effluent 87Sr/85Sr ratios reflected a progressive weathering sequence beginning and ending with 87Sr/85Sr values of plagioclase with an additional calcite input and a radiogenic biotite excursion proportional to the granitoid ages. Effluents became thermodynamically saturated with goethite and gibbsite, slightly under-saturated with kaolinite and strongly under-saturated with plagioclase, consistent with kinetically-limited weathering in which solutes such as Na varied with column flow rates. Effluent Na concentrations showed no clear trend with time during the last decade of reaction (fresh granitoids) or increased slowly with time (weathered granitoids). Analysis of cumulative Na release indicated that plagioclase dissolution achieved steady state in 3 of the 4 fresh granitoids during the last decade of reaction. Surface-area normalized plagioclase dissolution rates exhibited a narrow range (0.95-1.26 10-13 moles m-2 s-1), in spite of significant stoichiometric differences (An0.21 to An0.50). Rates were an order of magnitude slower than previously reported in shorter duration experiments but generally 2-3 orders of magnitude faster than corresponding natural analogs. CrunchFlow simulations indicated that more than a hundredfold decrease in column flow rates would be required to produce near-saturation reaction affinities that would start to slow plagioclase weathering to real-world levels. Extending simulations to approximate long term weathering in naturally weathered profiles required additional decreases in the intrinsic plagioclase dissolution and kaolinite precipitation rates and relatively large decreases in the fluid flow rate, implying that exposure to reactive mineral surfaces is significantly limited in the natural environment compared to column experiments.

  14. Dissolution enhancement of Deflazacort using hollow crystals prepared by antisolvent crystallization process.

    PubMed

    Paulino, A S; Rauber, G; Campos, C E M; Maurício, M H P; de Avillez, R R; Capobianco, G; Cardoso, S G; Cuffini, S L

    2013-05-13

    Deflazacort (DFZ), a derivate of prednisolone, is a poorly soluble drug which has been proposed to have major advantages over other corticosteroids. Poorly soluble drugs present limited bioavailability due to their low solubility and dissolution rate and several strategies have been developed in order to find ways to improve them. In general, pharmaceutical laboratories use a micronized process to reduce the particle size in order to increase the dissolution of the drugs. However, this process causes changes such as polymorphic transitions, particle agglomeration and a reduction in fluidity and wettability. These solid-state properties affect the dissolution behavior and stability performance of drugs. Crystallization techniques are widely used in the pharmaceutical industry and antisolvent crystallization has been used to obtain ultrafine particles. In this study, DFZ was investigated in terms of its antisolvent crystallization in different solvents and under various preparation conditions (methanol/water ratio, stirring and evaporation rate, etc.), in order to compare the physicochemical properties between crystallized samples and raw materials available on the Brazilian market with and without micronization. Crystalline structure, morphology, and particle size, and their correlation with the Intrinsic Dissolution Rate (IDR) and dissolution profile as relevant biopharmaceutical properties were studied. Crystallization conditions were achieved which provided crystalline samples of hollow-shaped crystals with internal channels, which increased the dissolution rate of DFZ. The antisolvent crystallization process allowed the formation of hollow crystals, which demonstrated a better dissolution profile than the raw material (crystalline and micronized), making this a promising technique as a crystallization strategy for improving the dissolution and thus the bioavailability of poorly soluble drugs. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Comparison and analysis of theoretical models for diffusion-controlled dissolution.

    PubMed

    Wang, Yanxing; Abrahamsson, Bertil; Lindfors, Lennart; Brasseur, James G

    2012-05-07

    Dissolution models require, at their core, an accurate diffusion model. The accuracy of the model for diffusion-dominated dissolution is particularly important with the trend toward micro- and nanoscale drug particles. Often such models are based on the concept of a "diffusion layer." Here a framework is developed for diffusion-dominated dissolution models, and we discuss the inadequacy of classical models that are based on an unphysical constant diffusion layer thickness assumption, or do not correctly modify dissolution rate due to "confinement effects": (1) the increase in bulk concentration from confinement of the dissolution process, (2) the modification of the flux model (the Sherwood number) by confinement. We derive the exact mathematical solution for a spherical particle in a confined fluid with impermeable boundaries. Using this solution, we analyze the accuracy of a time-dependent "infinite domain model" (IDM) and "quasi steady-state model" (QSM), both formally derived for infinite domains but which can be applied in approximate fashion to confined dissolution with proper adjustment of a concentration parameter. We show that dissolution rate is sensitive to the degree of confinement or, equivalently, to the total concentration C(tot). The most practical model, the QSM, is shown to be very accurate for most applications and, consequently, can be used with confidence in design-level dissolution models so long as confinement is accurately treated. The QSM predicts the ratio of diffusion layer thickness to particle radius (the Sherwood number) as a constant plus a correction that depends on the degree of confinement. The QSM also predicts that the time required for complete saturation or dissolution in diffusion-controlled dissolution experiments is singular (i.e., infinite) when total concentration equals the solubility. Using the QSM, we show that measured differences in dissolution rate in a diffusion-controlled dissolution experiment are a result of differences in the degree of confinement on the increase in bulk concentration independent of container geometry and polydisperse vs single particle dissolution. We conclude that the constant diffusion-layer thickness assumption is incorrect in principle and should be replaced by the QSM with accurate treatment of confinement in models of diffusion-controlled dissolution.

  16. Dissolution Dominating Calcification Process in Polar Pteropods Close to the Point of Aragonite Undersaturation

    PubMed Central

    Bednaršek, Nina; Tarling, Geraint A.; Bakker, Dorothee C. E.; Fielding, Sophie; Feely, Richard A.

    2014-01-01

    Thecosome pteropods are abundant upper-ocean zooplankton that build aragonite shells. Ocean acidification results in the lowering of aragonite saturation levels in the surface layers, and several incubation studies have shown that rates of calcification in these organisms decrease as a result. This study provides a weight-specific net calcification rate function for thecosome pteropods that includes both rates of dissolution and calcification over a range of plausible future aragonite saturation states (Ωar). We measured gross dissolution in the pteropod Limacina helicina antarctica in the Scotia Sea (Southern Ocean) by incubating living specimens across a range of aragonite saturation states for a maximum of 14 days. Specimens started dissolving almost immediately upon exposure to undersaturated conditions (Ωar∼0.8), losing 1.4% of shell mass per day. The observed rate of gross dissolution was different from that predicted by rate law kinetics of aragonite dissolution, in being higher at Ωar levels slightly above 1 and lower at Ωar levels of between 1 and 0.8. This indicates that shell mass is affected by even transitional levels of saturation, but there is, nevertheless, some partial means of protection for shells when in undersaturated conditions. A function for gross dissolution against Ωar derived from the present observations was compared to a function for gross calcification derived by a different study, and showed that dissolution became the dominating process even at Ωar levels close to 1, with net shell growth ceasing at an Ωar of 1.03. Gross dissolution increasingly dominated net change in shell mass as saturation levels decreased below 1. As well as influencing their viability, such dissolution of pteropod shells in the surface layers will result in slower sinking velocities and decreased carbon and carbonate fluxes to the deep ocean. PMID:25285916

  17. Dissolution dominating calcification process in polar pteropods close to the point of aragonite undersaturation.

    PubMed

    Bednaršek, Nina; Tarling, Geraint A; Bakker, Dorothee C E; Fielding, Sophie; Feely, Richard A

    2014-01-01

    Thecosome pteropods are abundant upper-ocean zooplankton that build aragonite shells. Ocean acidification results in the lowering of aragonite saturation levels in the surface layers, and several incubation studies have shown that rates of calcification in these organisms decrease as a result. This study provides a weight-specific net calcification rate function for thecosome pteropods that includes both rates of dissolution and calcification over a range of plausible future aragonite saturation states (Ω(ar)). We measured gross dissolution in the pteropod Limacina helicina antarctica in the Scotia Sea (Southern Ocean) by incubating living specimens across a range of aragonite saturation states for a maximum of 14 days. Specimens started dissolving almost immediately upon exposure to undersaturated conditions (Ω(ar) ∼ 0.8), losing 1.4% of shell mass per day. The observed rate of gross dissolution was different from that predicted by rate law kinetics of aragonite dissolution, in being higher at Ω(ar) levels slightly above 1 and lower at Ω(ar) levels of between 1 and 0.8. This indicates that shell mass is affected by even transitional levels of saturation, but there is, nevertheless, some partial means of protection for shells when in undersaturated conditions. A function for gross dissolution against Ω(ar) derived from the present observations was compared to a function for gross calcification derived by a different study, and showed that dissolution became the dominating process even at Ω(ar) levels close to 1, with net shell growth ceasing at an Ω(ar) of 1.03. Gross dissolution increasingly dominated net change in shell mass as saturation levels decreased below 1. As well as influencing their viability, such dissolution of pteropod shells in the surface layers will result in slower sinking velocities and decreased carbon and carbonate fluxes to the deep ocean.

  18. Channelled tablets: An innovative approach to accelerating drug release from 3D printed tablets.

    PubMed

    Sadia, Muzna; Arafat, Basel; Ahmed, Waqar; Forbes, Robert T; Alhnan, Mohamed A

    2018-01-10

    Conventional immediate release dosage forms involve compressing the powder with a disintegrating agent that enables rapid disintegration and dissolution upon oral ingestion. Among 3D printing technologies, the fused deposition modelling (FDM) 3D printing technique has a considerable potential for patient-specific dosage forms. However, the use of FDM 3D printing in tablet manufacturing requires a large portion of polymer, which slows down drug release through erosion and diffusion mechanisms. In this study, we demonstrate for the first time the use of a novel design approach of caplets with perforated channels to accelerate drug release from 3D printed tablets. This strategy has been implemented using a caplet design with perforating channels of increasing width (0.2, 0.4, 0.6, 0.8 or 1.0mm) and variable length, and alignment (parallel or at right angle to tablet long axis). Hydrochlorothiazide (BCS class IV drug) was chosen as the model drug as enhanced dissolution rate is vital to guarantee oral bioavailability. The inclusion of channels exhibited an increase in the surface area/volume ratio, however, the release pattern was also influenced by the width and the length of the channel. A channel width was ≥0.6mm deemed critical to meet the USP criteria of immediate release products. Shorter multiple channels (8.6mm) were more efficient at accelerating drug release than longer channels (18.2mm) despite having comparable surface area/mass ratio. This behaviour may be linked to the reduced flow resistance within the channels and the faster fragmentation during dissolution of these tablets. In conclusion, the width and length of the channel should be carefully considered in addition to surface area/mass when optimizing drug release from 3D printed designs. The incorporation of short channels can be adopted in the designs of dosage forms, implants or stents to enhance the release rate of eluting drug from polymer-rich structures. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Controlled precipitation for enhanced dissolution rate of flurbiprofen: development of rapidly disintegrating tablets.

    PubMed

    Essa, Ebtessam A; Elmarakby, Amira O; Donia, Ahmed M A; El Maghraby, Gamal M

    2017-09-01

    The aim of this work was to investigate the potential of controlled precipitation of flurbiprofen on solid surface, in the presence or absence of hydrophilic polymers, as a tool for enhanced dissolution rate of the drug. The work was extended to develop rapidly disintegrated tablets. This strategy provides simple technique for dissolution enhancement of slowly dissolving drugs with high scaling up potential. Aerosil was dispersed in ethanolic solution of flurbiprofen in the presence and absence of hydrophilic polymers. Acidified water was added as antisolvent to produce controlled precipitation. The resultant particles were centrifuged and dried at ambient temperature before monitoring the dissolution pattern. The particles were also subjected to FTIR spectroscopic, X-ray diffraction and thermal analyses. The FTIR spectroscopy excluded any interaction between flurbiprofen and excipients. The thermal analysis reflected possible change in the crystalline structure and or crystal size of the drug after controlled precipitation in the presence of hydrophilic polymers. This was further confirmed by X-ray diffraction. The modulation in the crystalline structure and size was associated with a significant enhancement in the dissolution rate of flurbiprofen. Optimum formulations were successfully formulated as rapidly disintegrating tablet with subsequent fast dissolution. Precipitation on a large solid surface area is a promising strategy for enhanced dissolution rate with the presence of hydrophilic polymers during precipitation process improving the efficiency.

  20. Dissolution Rates and Reaction Products of Olivine Interaction with Ammonia-Rich Fluid

    NASA Astrophysics Data System (ADS)

    Zandanel, A. E.; Truche, L.; Hellmann, R.; Tobie, G.; Marrocchi, Y.

    2018-05-01

    Olivine dissolution rates and reaction products in NH3-rich fluids are determined from experiments simulating H2O-rock interaction on Enceladus. Kinetic rates are calculated from flow through experiments and reaction products from static experiments.

  1. Paradise Lost: Uncertainties in melting and melt extraction processes beneath oceanic spreading ridges

    NASA Astrophysics Data System (ADS)

    Kelemen, P. B.

    2014-12-01

    In many ways, decompression melting and focused melt transport beneath oceanic spreading ridges is the best understood igneous process on Earth. However, there are remaining - increasing - uncertainties in interpreting residual mantle peridotites. Indicators of degree of melting in residual peridotite are questionable. Yb concentration and spinel Cr# are affected by (a) small scale variations in reactive melt transport, (b) variable extents of melt extraction, and (c) "impregnation", i.e. partial crystallization of cooling melt in pore space. Roughly 75% of abyssal peridotites have undergone major element refertilization. Many may have undergone several melting events. The following three statements are inconsistent: (1) Peridotite melt productivity beyond cpx exhaustion is > 0.1%/GPa. (2) Crustal thickness is independent of spreading rate at rates > 2 cm/yr full rate (excluding ultra-slow spreading ridges). (3) Thermal models predict, and observations confirm, thick thermal boundary layers beneath slow spreading ridges. If (a) melt productivity is << 0.1%/GPa beyond cpx-out, and (b) cpx-out occurs > 15 km below the seafloor beneath most ridges, then the independence of crustal thickness with spreading rate can be understood. Most sampled peridotites from ridges melted beyond cpx-out. Cpx in these rocks formed via impregnation and/or exsolution during cooling. Most peridotites beneath ridges may undergo cpx exhaustion during decompression melting. This would entail an upward modification of potential temperature estimates. Alternatively, perhaps oceanic crustal thickness does vary with spreading rate but this is masked by complicated tectonics and serpentinization at slow-spreading ridges. Dissolution channels (dunites) are predicted to coalesce downstream, but numerical models of these have not shown why > 95% of oceanic crust forms in a zone < 5 km wide. There may be permeability barriers guiding deeper melt toward the ridge, but field studies have not identified them. Permeable "shear bands" may guide melt to the ridge, but their nature in open systems at natural grain size and strain rates is uncertain. 2D and 3D focused solid upwelling due to melt buoyancy deep in the melting region, where pyroxenes are abundant and permeability is low, may warrant renewed attention.

  2. Photochemical Tissue Bonding for Military Medical Applications Practical Low Cost Low Damage Blood Vessel Repair: Albumin Stent Bonded With 19xx nm Laser

    DTIC Science & Technology

    2011-02-24

    shape. At higher concentrations, the albumin would not flow through the extruder. Quarter 4 We used our temperature-controlled extruder to create...albumin stents with an outside diameter from 2 mm and various inner lumen diameters. Dissolution studies in flowing blood indicated that the stents 3...at the same rate. Determined that gamma sterilization procedure does not affect dissolution. Determined that flow rate affects the dissolution rate

  3. Structure-solubility relationships in fluoride-containing phosphate based bioactive glasses

    NASA Astrophysics Data System (ADS)

    Shaharyar, Yaqoot

    The dissolution of fluoride-containing bioactive glasses critically affects their biomedical applications. Most commercial fluoride-releasing bioactive glasses have been designed in the soda-lime-silica system. However, their relatively slow chemical dissolution and the adverse effect of fluoride on their bioactivity are stimulating the study of novel biodegradable materials with higher bioactivity, such as biodegradable phosphate-based bioactive glasses, which can be a viable alternative for applications where a fast release of active ions is sought. In order to design new biomaterials with controlled degradability and high bioactivity, it is essential to understand the connection between chemical composition, molecular structure, and solubility in physiological fluids.Accordingly, in this work we have combined the strengths of various experimental techniques with Molecular Dynamics (MD) simulations, to elucidate the impact of fluoride ions on the structure and chemical dissolution of bioactive phosphate glasses in the system: 10Na2O - (45-x) CaO - 45P2O5 - xCaF2, where x varies between 0 -- 10 mol.%. NMR and MD data reveal that the medium-range atomic-scale structure of thse glasses is dominated by Q2 phosphate units followed by Q1 units, and the MD simulations further show that fluoride tends to associate with network modifier cations to form alkali/alkaline-earth rich ionic aggregates. On a macroscopic scale, we find that incorporating fluoride in phosphate glasses does not affect the rate of apatite formation on the glass surface in simulated body fluid (SBF). However, fluoride has a marked favorable impact on the glass dissolution in deionized water. Similarly, fluoride incorporation in the glasses results in significant weight gain due to adsorption of water (in the form of OH ions). These macroscopic trends are discussed on the basis of the F effect on the atomistic structure of the glasses, such as the F-induced phosphate network re-polymerization, in a first attempt to establish composition-structure-property relationships for these biomaterials.

  4. Dissolution of cemented fractures in gas bearing shales in the context of CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, Kamil; Szymczak, Piotr

    2016-04-01

    Carbon dioxide has a stronger binding than methane to the organic matter contained in the matrix of shale rocks [1]. Thus, the injection of CO2 into shale formation may enhance the production rate and total amount of produced methane, and simultaneously permanently store pumped CO2. Carbon dioxide can be injected during the initial fracking stage as CO2 based hydraulic fracturing, and/or later, as a part of enhanced gas recovery (EGR) [2]. Economic and environmental benefits makes CO2 sequestration in shales potentially very for industrial-scale operation [3]. However, the effective process requires large area of fracture-matrix interface, where CO2 and CH4 can be exchanged. Usually natural fractures, existing in shale formation, are preferentially reactivated during hydraulic fracturing, thus they considerably contribute to the flow paths in the resulting fracture system [4]. Unfortunately, very often these natural fractures are sealed by calcite [5]. Consequently the layer of calcite coating surfaces impedes exchange of gases, both CO2 and CH4, between shale matrix and fracture. In this communication we address the question whether carbonic acid, formed when CO2 is mixed with brine, is able to effectively dissolve a calcite layer present in the natural fractures. We investigate numerically fluid flow and dissolution of calcite coating in natural shale fractures, with CO2-brine mixture as a reactive fluid. Moreover, we discuss the differences between slow dissolution (driven by carbonic acid) and fast dissolution (driven by stronger hydrochloric acid) of calcite layer. We compare an impact of the flow rate and geometry of the fracture on the parameters of practical importance: available surface area, morphology of dissolution front, time scale of the dissolution, and the penetration length. We investigate whether the dissolution is sufficiently non-uniform to retain the fracture permeability, even in the absence of the proppant. The sizes of analysed fractures varying from 0.2 x 0.2 m2 up to 4 x 4 m2, together with discussion of a further upscaling, make the study relevant to the industrial applications. While the results of this study should be applicable to different shale formations throughout the world, we discuss them in the context of preparation to gas-production from Pomeranian shale basin, located in the northern Poland. [1] Mosher, K., He, J., Liu, Y., Rupp, E., & Wilcox, J. Molecular simulation of methane adsorption in micro-and mesoporous carbons with applications to coal and gas shale systems. International Journal of Coal Geology, 109, 36-44 (2013) [2] Grieser, W. V., Wheaton, W. E., Magness, W. D., Blauch, M. E., & Loghry, R, "Surface Reactive Fluid's Effect on Shale." Proceedings of the Production and Operations Symposium, 31 March-3 April 2007, Oklahoma City (SPE-106815-MS) [3] Tao, Z. and Clarens, A., Estimating the carbon sequestration capacity of shale formations using methane production rates, Environmental Science and Technology, 47, 11318-11325 (2013). [4] Zhang, X., Jeffrey, R. G., & Thiercelin, M. (2009). Mechanics of fluid-driven fracture growth in naturally fractured reservoirs with simple network geometries. Journal of Geophysical Research: Solid Earth, 114, B12406 (2009) [5] Gale, J.F., Laubach, S.E., Olson, J.E., Eichhubl, P., Fall, A. Natural fractures in shale: A review and new observations. AAPG Bulletin 98(11):2165-2216 (2014)

  5. Dissolution Kinetics of Spheroidal-Shaped Precipitates in Age-Hardenable Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Anjabin, Nozar; Salehi, Majid Seyed

    2018-05-01

    As a first attempt, a mathematical model is proposed to predict the dissolution kinetics of non-spherical secondary phase precipitates during solution heat treatment of age-hardenable aluminum alloys. The model uses general spheroidal geometry to describe the dissolution process of the alloys containing needle/disc-shaped particles with different size distributions in a finite matrix. It is found that as the aspect ratio deviates from unity, the dissolution rate is accelerated. Also, the dissolution rate of the particles in the alloy containing the particle size distribution is lower than that of mono-sized particles system. The modeling results for dissolution of θ' precipitates in an Al-Cu alloy are compared with experiments, and a good agreement was found between the modeling and the experimental results. The proposed model can be applied to different isothermal and non-isothermal annealing conditions.

  6. Accurate rates of the complex mechanisms for growth and dissolu-tion of minerals using a combination of rare event theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stack, Andrew G; Raiten, Paolo; Gale, Julian D.

    2012-01-01

    Mineral growth and dissolution are often treated as occurring via a single, reversible process that governs the rate of reaction. We show that multiple, distinct intermediate states can occur during both growth and dissolution. Specifically, we have used metadynamics, a method to efficiently explore the free energy landscape of a system, coupled to umbrella sampling and reactive flux calculations, to examine the mechanism and rates of attachment and detachment of a barium ion onto a stepped, barite (BaSO4) surface. The activation energies calculated for the rate limiting reactions, which are different for attachment and detachment, precisely match those measured experimentallymore » during both growth and dissolution. These results can potentially explain anomalous, non-steady state mineral reaction rates observed experimentally, and will enable the design of more efficient growth inhibitors and facilitate an understanding of the effect of impurities.« less

  7. Chemical structure influence on NAPL mixture nonideality evolution, rate-limited dissolution, and contaminant mass flux.

    PubMed

    Padgett, Mark C; Tick, Geoffrey R; Carroll, Kenneth C; Burke, William R

    2017-03-01

    The influence of chemical structure on NAPL mixture nonideality evolution, rate-limited dissolution, and contaminant mass flux was examined. The variability of measured and UNIFAC modeled NAPL activity coefficients as a function of mole fraction was compared for two NAPL mixtures containing structurally-different contaminants of concern including toluene (TOL) or trichloroethene (TCE) within a hexadecane (HEXDEC) matrix. The results showed that dissolution from the NAPL mixtures transitioned from ideality for mole fractions >0.05 to nonideality as mole fractions decreased. In particular, the TCE generally exhibited more ideal dissolution behavior except at lower mole fractions, and may indicate greater structural/polarity similarity between the two compounds. Raoult's Law and UNIFAC generally under-predicted the batch experiment results for TOL:HEXDEC mixtures especially for mole fractions ≤0.05. The dissolution rate coefficients were similar for both TOL and TCE over all mole fractions tested. Mass flux reduction (MFR) analysis showed that more efficient removal behavior occurred for TOL and TCE with larger mole fractions compared to the lower initial mole fraction mixtures (i.e. <0.2). However, compared to TOL, TCE generally exhibited more efficient removal behavior over all mole fractions tested and may have been the result of structural and molecular property differences between the compounds. Activity coefficient variability as a function of mole fraction was quantified through regression analysis and incorporated into dissolution modeling analyses for the dynamic flushing experiments. TOL elution concentrations were modeled (predicted) reasonable well using ideal and equilibrium assumptions, but the TCE elution concentrations could not be predicted using the ideal model. Rather, the dissolution modeling demonstrated that TCE elution was better described by the nonideal model whereby NAPL-phase activity coefficient varied as a function of COC mole fraction. For dynamic column flushing experiments, dissolution rate kinetics can vary significantly with changes in NAPL volume and surface area. However, under conditions whereby NAPL volume and area are not significantly altered during dissolution, mixture nonideality effects may have a greater relative control on dissolution (elution) and MFR behavior compared to kinetic rate limitations. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Chemical structure influence on NAPL mixture nonideality evolution, rate-limited dissolution, and contaminant mass flux

    NASA Astrophysics Data System (ADS)

    Padgett, Mark C.; Tick, Geoffrey R.; Carroll, Kenneth C.; Burke, William R.

    2017-03-01

    The influence of chemical structure on NAPL mixture nonideality evolution, rate-limited dissolution, and contaminant mass flux was examined. The variability of measured and UNIFAC modeled NAPL activity coefficients as a function of mole fraction was compared for two NAPL mixtures containing structurally-different contaminants of concern including toluene (TOL) or trichloroethene (TCE) within a hexadecane (HEXDEC) matrix. The results showed that dissolution from the NAPL mixtures transitioned from ideality for mole fractions > 0.05 to nonideality as mole fractions decreased. In particular, the TCE generally exhibited more ideal dissolution behavior except at lower mole fractions, and may indicate greater structural/polarity similarity between the two compounds. Raoult's Law and UNIFAC generally under-predicted the batch experiment results for TOL:HEXDEC mixtures especially for mole fractions ≤ 0.05. The dissolution rate coefficients were similar for both TOL and TCE over all mole fractions tested. Mass flux reduction (MFR) analysis showed that more efficient removal behavior occurred for TOL and TCE with larger mole fractions compared to the lower initial mole fraction mixtures (i.e. < 0.2). However, compared to TOL, TCE generally exhibited more efficient removal behavior over all mole fractions tested and may have been the result of structural and molecular property differences between the compounds. Activity coefficient variability as a function of mole fraction was quantified through regression analysis and incorporated into dissolution modeling analyses for the dynamic flushing experiments. TOL elution concentrations were modeled (predicted) reasonable well using ideal and equilibrium assumptions, but the TCE elution concentrations could not be predicted using the ideal model. Rather, the dissolution modeling demonstrated that TCE elution was better described by the nonideal model whereby NAPL-phase activity coefficient varied as a function of COC mole fraction. For dynamic column flushing experiments, dissolution rate kinetics can vary significantly with changes in NAPL volume and surface area. However, under conditions whereby NAPL volume and area are not significantly altered during dissolution, mixture nonideality effects may have a greater relative control on dissolution (elution) and MFR behavior compared to kinetic rate limitations.

  9. DISSOLUTION OF PLUTONIUM METAL IN 8-10 M NITRIC ACID

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudisill, T.; Pierce, R.

    2012-02-21

    The H-Canyon facility will be used to dissolve Pu metal for subsequent purification and conversion to plutonium dioxide (PuO{sub 2}) using Phase II of HB-Line. To support the new mission, the development of a Pu metal dissolution flowsheet which utilizes concentrated (8-10 M) nitric acid (HNO{sub 3}) solutions containing potassium fluoride (KF) is required. Dissolution of Pu metal in concentrated HNO{sub 3} is desired to eliminate the need to adjust the solution acidity prior to purification by anion exchange. The preferred flowsheet would use 8-10 M HNO{sub 3}, 0.015-0.07 M KF, and 0.5-1.0 g/L Gd to dissolve the Pu upmore » to 6.75 g/L. An alternate flowsheet would use 8-10 M HNO{sub 3}, 0.1-0.2 M KF, and 1-2 g/L B to dissolve the Pu. The targeted average Pu metal dissolution rate is 20 mg/min-cm{sup 2}, which is sufficient to dissolve a 'standard' 2250-g Pu metal button in 24 h. Plutonium metal dissolution rate measurements showed that if Gd is used as the nuclear poison, the optimum dissolution conditions occur in 10 M HNO{sub 3}, 0.04-0.05 M KF, and 0.5-1.0 g/L Gd at 112 to 116 C (boiling). These conditions will result in an estimated Pu metal dissolution rate of {approx}11-15 mg/min-cm{sup 2} and will result in dissolution times of 36-48 h for standard buttons. The recommended minimum and maximum KF concentrations are 0.03 M and 0.07 M, respectively. The maximum KF concentration is dictated by a potential room-temperature Pu-Gd-F precipitation issue at low Pu concentrations. The purpose of the experimental work described in this report was two-fold. Initially a series of screening experiments was performed to measure the dissolution rate of Pu metal as functions of the HNO{sub 3}, KF, and Gd or B concentrations. The objective of the screening tests was to propose optimized conditions for subsequent flowsheet demonstration tests. Based on the rate measurements, this study found that optimal dissolution conditions in solutions containing 0.5-1.0 g/L Gd occurred in 8-10 M HNO{sub 3} with 0.04-0.05 M KF at 112 to 116 C (boiling). The testing also showed that solutions containing 8-10 M HNO{sub 3}, 0.1-0.2 M KF, and 1-2 g/L B achieved acceptable dissolution rates in the same temperature range. To confirm that conditions identified by the dissolution rate measurements for solutions containing Gd or B can be used to dissolve Pu metal up to 6.75 g/L in the presence of Fe, demonstration experiments were performed using concentrations in the optimal ranges. In two of the demonstration experiments using Gd and in one experiment using B, the offgas generation during the dissolution was measured and samples were analyzed for H{sub 2}. The experimental methods used to perform the dissolution rate measurements and flowsheet demonstrations and a discussion of the results are presented.« less

  10. Contribution of atom-probe tomography to a better understanding of glass alteration mechanisms: Application to a nuclear glass specimen altered 25 years in a granitic environment

    DOE PAGES

    Gin, Stephane; Ryan, Joseph V.; Schreiber, Daniel K.; ...

    2013-04-08

    Here, we report and discuss results of atom probe tomography (APT) and energy-filtered transmission electron microscopy (EFTEM) applied to a borosilicate glass sample of nuclear interest altered for nearly 26 years at 90°C in a confined granitic medium in order to better understand the rate-limiting mechanisms under conditions representative of a deep geological repository for vitrified radioactive waste. The APT technique allows the 3D reconstruction of the elemental distribution at the reactive interphase with sub-nanometer precision. Profiles of the B distribution at pristine glass/hydrated glass interface obtained by different techniques are compared to show the challenge of accurate measurements ofmore » diffusion profiles at this buried interface on the nanometer length scale. Our results show that 1) Alkali from the glass and hydrogen from the solution exhibit anti-correlated 15 ± 3 nm wide gradients located between the pristine glass and the hydrated glass layer, 2) boron exhibits an unexpectedly sharp profile located just at the outside of the alkali/H interdiffusion layer; this sharp profile is more consistent with a dissolution front than a diffusion-controlled release of boron. The resulting apparent diffusion coefficients derived from the Li and H profiles are D Li = 1.5 × 10 -22 m 2.s -1 and D H = 6.8 × 10 -23 m 2.s -1. These values are around two orders of magnitude lower than those observed at the very beginning of the alteration process, which suggests that interdiffusion is slowed at high reaction progress by local conditions that could be related to the porous structure of the interphase. As a result, the accessibility of water to the pristine glass could be the rate-limiting step in these conditions. More generally, these findings strongly support the importance of interdiffusion coupled with hydrolysis reactions of the silicate network on the long-term dissolution rate, contrary to what has been suggested by recent interfacial dissolution-precipitation models for silicate minerals.« less

  11. Long-term product consistency test of simulated 90-19/Nd HLW glass

    NASA Astrophysics Data System (ADS)

    Gan, X. Y.; Zhang, Z. T.; Yuan, W. Y.; Wang, L.; Bai, Y.; Ma, H.

    2011-01-01

    Chemical durability of 90-19/Nd glass, a simulated high-level waste (HLW) glass in contact with the groundwater was investigated with a long-term product consistency test (PCT). Generally, it is difficult to observe the long term property of HLW glass due to the slow corrosion rate in a mild condition. In order to overcome this problem, increased contacting surface ( S/ V = 6000 m -1) and elevated temperature (150 °C) were employed to accelerate the glass corrosion evolution. The micro-morphological characteristics of the glass surface and the secondary minerals formed after the glass alteration were analyzed by SEM-EDS and XRD, and concentrations of elements in the leaching solution were determined by ICP-AES. In our experiments, two types of minerals, which have great impact on glass dissolution, were found to form on 90-19/Nd HLW glass surface when it was subjected to a long-term leaching in the groundwater. One is Mg-Fe-rich phyllosilicates with honeycomb structure; the other is aluminosilicates (zeolites). Mg and Fe in the leaching solution participated in the formation of phyllosilicates. The main components of phyllosilicates in alteration products of 90-19/Nd HLW glass are nontronite (Na 0.3Fe 2Si 4O 10(OH) 2·4H 2O) and montmorillonite (Ca 0.2(Al,Mg) 2Si 4O 10(OH) 2·4H 2O), and those of aluminosilicates are mordenite ((Na 2,K 2,Ca)Al 2Si 10O 24·7H 2O)) and clinoptilolite ((Na,K,Ca) 5Al 6Si 30O 72·18H 2O). Minerals like Ca(Mg)SO 4 and CaCO 3 with low solubility limits are prone to form precipitant on the glass surface. Appearance of the phyllosilicates and aluminosilicates result in the dissolution rate of 90-19/Nd HLW glass resumed, which is increased by several times over the stable rate. As further dissolution of the glass, both B and Na in the glass were found to leach out in borax form.

  12. Experimental Constraints on Fluid-Rock Reactions during Incipient Serpentinization of Harzburgite

    NASA Astrophysics Data System (ADS)

    Klein, F.; Grozeva, N. G.; Seewald, J.; McCollom, T. M.; Humphris, S. E.; Moskowitz, B. M.; Berquo, T. S.; Kahl, W. A.

    2014-12-01

    The exposure of mantle peridotite to water at crustal levels leads to a cascade of interconnected dissolution-precipitation and reduction-oxidation reactions - a process referred to as serpentinization. These reactions have major implications for microbial life through the provision of hydrogen (H2). To simulate incipient serpentinization and the release of H2 under well-constrained conditions, we reacted uncrushed harzburgite with chemically modified seawater at 300°C and 35 MPa for ca. 1.5 years (13441 hours), monitored changes in fluid chemistry over time, and examined the secondary mineralogy at the termination of the experiment. Approximately 4 mol % of the protolith underwent alteration forming serpentine, accessory magnetite, chlorite, and traces of calcite and heazlewoodite. Alteration textures bear remarkable similarities to those found in partially serpentinized abyssal peridotites. Neither brucite nor talc precipitated during the experiment. Given that the starting material contained ~3.8 times more olivine than orthopyroxene on a molar basis, mass balance requires that dissolution of orthopyroxene was significantly faster than dissolution of olivine. However, the H2 release rate was not uniform, slowing from ~2 nmol H2(aq) gperidotite-1 s-1 at the beginning of the experiment to ~0.2 nmol H2(aq) gperidotite-1 s-1 at its termination. Serpentinization consumed water but did not release significant amounts of dissolved species (other than H2) suggesting that incipient hydration reactions involved a volume increase of ~40%. The reduced access of water to olivine surfaces due to filling of fractures and coating of primary minerals with alteration products led to decreased rates of serpentinization and H2 release. While this concept might seem at odds with completely serpentinized seafloor peridotites, reaction-driven fracturing offers an intriguing solution to the seemingly self-limiting nature of serpentinization. Indeed, the reacted sample revealed a number of textural features diagnostic of incipient reaction-driven fracturing. Reaction-driven and tectonic fracturing must have far reaching impacts on the release rate of H2 in peridotite-hosted hydrothermal systems and therefore represent key mechanisms in regulating the supply of reduced gases to microbial ecosystems.

  13. Use of glancing angle X-ray powder diffractometry to depth-profile phase transformations during dissolution of indomethacin and theophylline tablets.

    PubMed

    Debnath, Smita; Predecki, Paul; Suryanarayanan, Raj

    2004-01-01

    The purpose of this study was (i) to develop glancing angle x-ray powder diffractometry (XRD) as a method for profiling phase transformations as a function of tablet depth; and (ii) to apply this technique to (a) study indomethacin crystallization during dissolution of partially amorphous indomethacin tablets and to (b) profile anhydrate --> hydrate transformations during dissolution of theophylline tablets. The intrinsic dissolution rates of indomethacin and theophylline were determined after different pharmaceutical processing steps. Phase transformations during dissolution were evaluated by various techniques. Transformation in the bulk and on the tablet surface was characterized by conventional XRD and scanning electron microscopy, respectively. Glancing angle XRD enabled us to profile these transformations as a function of depth from the tablet surface. Pharmaceutical processing resulted in a decrease in crystallinity of both indomethacin and theophylline. When placed in contact with the dissolution medium, while indomethacin recrystallized, theophylline anhydrate rapidly converted to theophylline monohydrate. Due to intimate contact with the dissolution medium, drug transformation occurred to a greater extent at or near the tablet surface. Glancing angle XRD enabled us to depth profile the extent of phase transformations as a function of the distance from the tablet surface. The processed sample (both indomethacin and theophylline) transformed more rapidly than did the corresponding unprocessed drug. Several challenges associated with the glancing angle technique, that is, the effects of sorbed water, phase transformations during the experimental timescale, and the influence of phase transformation on penetration depth, were addressed. Increased solubility, and consequently dissolution rate, is one of the potential advantages of metastable phases. This advantage is negated if, during dissolution, the metastable to stable transformation rate > dissolution rate. Glancing angle XRD enabled us to quantify and thereby profile phase transformations as a function of compact depth. The technique has potential utility in monitoring surface reactions, both chemical decomposition and physical transformations, in pharmaceutical systems.

  14. Effect of the size of nanoparticles on their dissolution within metal-glass nanocomposites under sustained irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vu, T. H. Y., E-mail: thi-hai-yen.vu@polytechnique.edu; Ramjauny, Y.; Rizza, G.

    2016-01-21

    We investigate the dissolution law of metallic nanoparticles (NPs) under sustained irradiation. The system is composed of isolated spherical gold NPs (4–100 nm) embedded in an amorphous silica host matrix. Samples are irradiated at room temperature in the nuclear stopping power regime with 4 MeV Au ions for fluences up to 8 × 10{sup 16 }cm{sup −2}. Experimentally, the dependence of the dissolution kinetics on the irradiation fluence is linear for large NPs (45–100 nm) and exponential for small NPs (4–25 nm). A lattice-based kinetic Monte Carlo (KMC) code, which includes atomic diffusion and ballistic displacement events, is used to simulate the dynamical competition between irradiation effectsmore » and thermal healing. The KMC simulations allow for a qualitative description of the NP dissolution in two main stages, in good agreement with the experiment. Moreover, the perfect correlation obtained between the evolution of the simulated flux of ejected atoms and the dissolution rate in two stages implies that there exists an effect of the size of NPs on their dissolution and a critical size for the transition between the two stages. The Frost-Russell model providing an analytical solution for the dissolution rate, accounts well for the first dissolution stage but fails in reproducing the data for the second stage. An improved model obtained by including a size-dependent recoil generation rate permits fully describing the dissolution for any NP size. This proves, in particular, that the size effect on the generation rate is the principal reason for the existence of two regimes. Finally, our results also demonstrate that it is justified to use a unidirectional approximation to describe the dissolution of the NP under irradiation, because the solute concentration is particularly low in metal-glass nanocomposites.« less

  15. Pore-scale supercritical CO2 dissolution and mass transfer under imbibition conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Chun; Zhou, Quanlin; Kneafsey, Timothy J.

    2016-06-01

    In modeling of geological carbon storage, dissolution of supercritical CO2 (scCO2) is often assumed to be instantaneous with equilibrium phase partitioning. In contrast, recent core-scale imbibition experiments have shown a prolonged depletion of residual scCO2 by dissolution, implying a non-equilibrium mechanism. In this study, eight pore-scale scCO2 dissolution experiments in a 2D heterogeneous, sandstone-analogue micromodel were conducted at supercritical conditions (9 MPa and 40 °C). The micromodel was first saturated with deionized (DI) water and drained by injecting scCO2 to establish a stable scCO2 saturation. DI water was then injected at constant flow rates after scCO2 drainage was completed. Highmore » resolution time-lapse images of scCO2 and water distributions were obtained during imbibition and dissolution, aided by a scCO2-soluble fluorescent dye introduced with scCO2 during drainage. These images were used to estimate scCO2 saturations and scCO2 depletion rates. Experimental results show that (1) a time-independent, varying number of water-flow channels are created during imbibition and later dominant dissolution by the random nature of water flow at the micromodel inlet, and (2) a time-dependent number of water-flow channels are created by coupled imbibition and dissolution following completion of dominant imbibition. The number of water-flow paths, constant or transient in nature, greatly affects the overall depletion rate of scCO2 by dissolution. The average mass fraction of dissolved CO2 (dsCO2) in water effluent varies from 0.38% to 2.72% of CO2 solubility, indicating non-equilibrium scCO2 dissolution in the millimeter-scale pore network. In general, the transient depletion rate decreases as trapped, discontinuous scCO2 bubbles and clusters within water-flow paths dissolve, then remains low with dissolution of large bypassed scCO2 clusters at their interfaces with longitudinal water flow, and finally increases with coupled transverse water flow and enhanced dissolution of large scCO2 clusters. The three stages of scCO2 depletion, common to experiments with time-independent water-flow paths, are revealed by zoom-in image analysis of individual scCO2 bubbles and clusters. The measured relative permeability of water, affected by scCO2 dissolution and bi-modal permeability, shows a non-monotonic dependence on saturation. The results for experiments with different injection rates imply that the non-equilibrium nature of scCO2 dissolution becomes less important when water flow is relatively low and the time scale for dissolution is large, and more pronounced when heterogeneity is strong.« less

  16. Kinetics of gibbsite dissolution under low ionic strength conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganor, J.; Mogollon, J.L.; Lasaga, A.C.

    1999-06-01

    Experiments measuring synthetic gibbsite dissolution rates were carried out using both a stirred-flow-through reactor and a column reactor at 25 C, and pH range of 2.5--4.1. All experiments were conducted under far from equilibrium conditions ({Delta}G < {minus}1.1 kcal/mole). The experiments were performed with perchloric acid under relatively low (and variable) ionic strength conditions. An excellent agreement was found between the results of the well-mixed flow-through experiments and those of the (nonmixed) column experiments. This agreement shows that the gibbsite dissolution rate is independent of the stirring rate and therefore supports the conclusion of Bloom and Erich (1987) that gibbsitemore » dissolution reaction is surface controlled and not diffusion controlled. The Brunauer-Emmett-Teller (BET) surface area of the gibbsite increased during the flow-through experiments, while in the column experiments no significant change in surface area was observed. The significant differences in the BET surface area between the column experiments and the flow-through experiments, and the excellent agreement between the rates obtained by both methods, enable the authors to justify the substitution of the BET surface area for the reactive surface area. The dissolution rate of gibbsite varied as a function of the perchloric acid concentration. The authors interpret the gibbsite dissolution rate as a result of a combined effect of proton catalysis and perchlorate inhibition. Following the theoretical study of Ganor and Lasaga (1998) they propose specific reaction mechanisms for the gibbsite dissolution in the presence of perchloric acid. The mathematical predictions of two of these reaction mechanisms adequately describe the experimental data.« less

  17. 42 CFR 412.331 - Determining hospital-specific rates in cases of hospital merger, consolidation, or dissolution.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... hospital merger, consolidation, or dissolution. 412.331 Section 412.331 Public Health CENTERS FOR MEDICARE... cases of hospital merger, consolidation, or dissolution. (a) New hospital merger or consolidation. If... dissolution. If a hospital separates into two or more hospitals that are subject to capital payments under...

  18. 42 CFR 412.331 - Determining hospital-specific rates in cases of hospital merger, consolidation, or dissolution.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... hospital merger, consolidation, or dissolution. 412.331 Section 412.331 Public Health CENTERS FOR MEDICARE... cases of hospital merger, consolidation, or dissolution. (a) New hospital merger or consolidation. If... dissolution. If a hospital separates into two or more hospitals that are subject to capital payments under...

  19. 42 CFR 412.331 - Determining hospital-specific rates in cases of hospital merger, consolidation, or dissolution.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... hospital merger, consolidation, or dissolution. 412.331 Section 412.331 Public Health CENTERS FOR MEDICARE... cases of hospital merger, consolidation, or dissolution. (a) New hospital merger or consolidation. If... dissolution. If a hospital separates into two or more hospitals that are subject to capital payments under...

  20. 42 CFR 412.331 - Determining hospital-specific rates in cases of hospital merger, consolidation, or dissolution.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... hospital merger, consolidation, or dissolution. 412.331 Section 412.331 Public Health CENTERS FOR MEDICARE... cases of hospital merger, consolidation, or dissolution. (a) New hospital merger or consolidation. If... dissolution. If a hospital separates into two or more hospitals that are subject to capital payments under...

  1. Glass fiber dissolution in simulated lung fluid and measures needed to improve consistency and correspondence to in vivo dissolution.

    PubMed Central

    Mattson, S M

    1994-01-01

    The dissolution of a range of glass fibers including commercial glass and mineral wools has been studied using a modification of Gamble's solution in a flow system at pH 7.4 and 37 degrees C. Dissolution has been followed by weight loss, effluent analysis, and morphology change of fibers and bulk glass. Flow per glass surface area can strongly affect both dissolution rate and morphology due to the effect of the dissolution process on the fluid. Effluent pH is shown to be a guide for choice of optimum flow/area conditions. These conditions provide measurable concentrations of dissolved glass in the effluent while maintaining their concentrations below the point at which they significantly affect the dissolution process. SiO2 and Al2O3 vary widely in the extent to which they are involved in the leaching process, which removes alkalis, alkaline earths, and B2O3. This makes analysis of a single component in the effluent unsuitable as a means of comparing the dissolution rates of a wide range of compositions. PMID:7882963

  2. Ferrihydrite dissolution by pyridine-2,6-bis(monothiocarboxylic acid) and hydrolysis products

    NASA Astrophysics Data System (ADS)

    Dhungana, Suraj; Anthony, Charles R.; Hersman, Larry E.

    2007-12-01

    Pyridine-2,6-bis(monothiocarboxylate) (pdtc), a metabolic product of microorganisms, including Pseudomonas putida and Pseudomonas stutzeri was investigated for its ability of dissolve Fe(III)(hydr)oxides at pH 7.5. Concentration dependent dissolution of ferrihydrite under anaerobic environment showed saturation of the dissolution rate at the higher concentration of pdtc. The surface controlled ferrihydrite dissolution rate was determined to be 1.2 × 10 -6 mol m -2 h -1. Anaerobic dissolution of ferrihydrite by pyridine-2,6-dicarboxylic acid or dipicolinic acid (dpa), a hydrolysis product of pdtc, was investigated to study the mechanism(s) involved in the pdtc facilitated ferrihydrite dissolution. These studies suggest that pdtc dissolved ferrihydrite using a reduction step, where dpa chelates the Fe reduced by a second hydrolysis product, H 2S. Dpa facilitated dissolution of ferrihydrite showed very small increase in the Fe dissolution when the concentration of external reductant, ascorbate, was doubled, suggesting the surface dynamics being dominated by the interactions between dpa and ferrihydrite. Greater than stoichiometric amounts of Fe were mobilized during dpa dissolution of ferrihydrite assisted by ascorbate and cysteine. This is attributed to the catalytic dissolution of Fe(III)(hydr)oxides by the in situ generated Fe(II) in the presence of a complex former, dpa.

  3. Theoretical and Numerical Investigation of the Cavity Evolution in Gypsum Rock

    NASA Astrophysics Data System (ADS)

    Li, Wei; Einstein, Herbert H.

    2017-11-01

    When water flows through a preexisting cylindrical tube in gypsum rock, the nonuniform dissolution alters the tube into an enlarged tapered tube. A 2-D analytical model is developed to study the transport-controlled dissolution in an enlarged tapered tube, with explicit consideration of the tapered geometry and induced radial flow. The analytical model shows that the Graetz solution can be extended to model dissolution in the tapered tube. An alternative form of the governing equations is proposed to take advantage of the invariant quantities in the Graetz solution to facilitate modeling cavity evolution in gypsum rock. A 2-D finite volume model was developed to validate the extended Graetz solution. The time evolution of the transport-controlled and the reaction-controlled dissolution models for a single tube with time-invariant flow rate are compared. This comparison shows that for time-invariant flow rate, the reaction-controlled dissolution model produces a positive feedback between the tube enlargement and dissolution, while the transport-controlled dissolution does not.

  4. Experimental study of brucite dissolution and precipitation in aqueous solutions: surface speciation and chemical affinity control

    NASA Astrophysics Data System (ADS)

    Pokrovsky, Oleg S.; Schott, Jacques

    2004-01-01

    Dissolution and precipitation rates of brucite (Mg(OH) 2) were measured at 25°C in a mixed-flow reactor as a function of pH (2.5 to 12), ionic strength (10 -4 to 3 M), saturation index (-12 < log Ω < 0.4) and aqueous magnesium concentrations (10 -6 to 5·10 -4 M). Brucite surface charge and isoelectric point (pH IEP) were determined by surface titrations in a limited residence time reactor and electrophoretic measurements, respectively. The pH of zero charge and pH IEP were close to 11. A two-pK, one site surface speciation model which assumes a constant capacitance of the electric double layer (5 F/m 2) and lack of dependence on ionic strength predicts the dominance of >MgOH 2+ species at pH < 8 and their progressive replacement by >MgOH° and >MgO - as pH increases to 10-12. Rates are proportional to the square of >MgOH 2+ surface concentration at pH from 2.5 to 12. In accord with surface speciation predictions, dissolution rates do not depend on ionic strength at pH 6.5 to 11. Brucite dissolution and precipitation rates at close to equilibrium conditions obeyed TST-derived rate laws. At constant saturation indices, brucite precipitation rates were proportional to the square of >MgOH 2+ concentration. The following rate equation, consistent with transition state theory, describes brucite dissolution and precipitation kinetics over a wide range of solution composition and chemical affinity: R=k Mg+ · {>MgOH 2+} 2 · (1-Ω 2) where kMg+ is the dissolution rate constant, {> i} is surface species concentration (mol/m 2), and Ω is the solution saturation index with respect to brucite. Measurements of nonsteady state brucite dissolution rates, in response to cycling the pH from 12 to 2 (pH-jump experiments), indicate the important role of surface hydroxylation — that leads to the formation of Mg oxo or -hydroxo complexes — in the formation of dissolution-active sites. Replacement of water molecules by these oxygen donor complexes in the Mg coordination sphere has a labilizing effect on the dynamics of the remaining water molecules and thus increases reaction rates.

  5. Porosity Gradient Development Around Karst Features due to Tidal Pumping in Eastern Yucatan Peninsula

    NASA Astrophysics Data System (ADS)

    Maqueda, A.; Renard, P.

    2016-12-01

    Water exchange between karst features and the porous matrix around them has been observed in karst aquifers by previous research. The exchange is driven by hydraulic head gradients caused by stormwater runoff or sea tides and may cause mineral dissolution. The authors of this work proposed a conceptual model of porosity development under tidal variations of hydraulic head is proposed. Simulations of reactive transport and porosity evolution were conducted to explore the porosity gradient development around a karst feature. Simulations account for petrophysical properties of porous media and groundwater geochemical characteristics. Data used in simulations corresponds to an eogenetic karst aquifer found on the eastern coast of Yucatan Peninsula in Mexico. Simulations include both analytical and numerical solutions of porosity increase caused by mineral dissolution. The estimated rate of porosity development and associated wall retreat (3-30 cm/100 yr) are large enough to develop karst cavities on time periods relevant to karst formation in the study area (10K yr). The analytical solution could be used to assess porosity increase in rock samples and can be also applied to model slow reactions in porous media under flow driven by sinusoidal hydraulic boundary conditions. The results show a possible alternative mechanism of karst cavity development in a high conductive limestone rock matrix aquifer.

  6. Interlaboratory studies on in vitro test methods for estimating in vivo resorption of calcium phosphate ceramics.

    PubMed

    Ito, Atsuo; Sogo, Yu; Yamazaki, Atsushi; Aizawa, Mamoru; Osaka, Akiyoshi; Hayakawa, Satoshi; Kikuchi, Masanori; Yamashita, Kimihiro; Tanaka, Yumi; Tadokoro, Mika; de Sena, Lídia Ágata; Buchanan, Fraser; Ohgushi, Hajime; Bohner, Marc

    2015-10-01

    A potential standard method for measuring the relative dissolution rate to estimate the resorbability of calcium-phosphate-based ceramics is proposed. Tricalcium phosphate (TCP), magnesium-substituted TCP (MgTCP) and zinc-substituted TCP (ZnTCP) were dissolved in a buffer solution free of calcium and phosphate ions at pH 4.0, 5.5 or 7.3 at nine research centers. Relative values of the initial dissolution rate (relative dissolution rates) were in good agreement among the centers. The relative dissolution rate coincided with the relative volume of resorption pits of ZnTCP in vitro. The relative dissolution rate coincided with the relative resorbed volume in vivo in the case of comparison between microporous MgTCPs with different Mg contents and similar porosity. However, the relative dissolution rate was in poor agreement with the relative resorbed volume in vivo in the case of comparison between microporous TCP and MgTCP due to the superimposition of the Mg-mediated decrease in TCP solubility on the Mg-mediated increase in the amount of resorption. An unambiguous conclusion could not be made as to whether the relative dissolution rate is predictive of the relative resorbed volume in vivo in the case of comparison between TCPs with different porosity. The relative dissolution rate may be useful for predicting the relative amount of resorption for calcium-phosphate-based ceramics having different solubility under the condition that the differences in the materials compared have little impact on the resorption process such as the number and activity of resorbing cells. The evaluation and subsequent optimization of the resorbability of calcium phosphate are crucial in the use of resorbable calcium phosphates. Although the resorbability of calcium phosphates has usually been evaluated in vivo, establishment of a standard in vitro method that can predict in vivo resorption is beneficial for accelerating development and commercialization of new resorbable calcium phosphate materials as well as reducing use of animals. However, there are only a few studies to propose such an in vitro method within which direct comparison was carried out between in vitro and in vivo resorption. We propose here an in vitro method based on measuring dissolution rate. The efficacy and limitations of the method were evaluated by international round-robin tests as well as comparison with in vivo resorption studies for future standardization. This study was carried out as one of Versailles Projects on Advanced Materials and Standards (VAMAS). Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Correlation of dissolution and disintegration results for an immediate-release tablet.

    PubMed

    Nickerson, Beverly; Kong, Angela; Gerst, Paul; Kao, Shangming

    2018-02-20

    The drug release rate of a rapidly dissolving immediate-release tablet formulation with a highly soluble drug is proposed to be controlled by the disintegration rate of the tablet. Disintegration and dissolution test methods used to evaluate the tablets were shown to discriminate manufacturing process differences and compositionally variant tablets. In addition, a correlation was established between disintegration and dissolution. In accordance with ICH Q6A, this work demonstrates that disintegration in lieu of dissolution is suitable as the drug product quality control method for evaluating this drug product. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Impact of the organic coating on nanoparticles stability and reactivity

    NASA Astrophysics Data System (ADS)

    Gelabert, A.; Sivry, Y.; Ould Boualy, L.; Roselyne, F.; Juillot, F.; Menguy, N.; Benedetti, M. F.

    2010-12-01

    The strong increase in the use of engineered nanoparticles (NPs) during the last decade may ultimately result in their release in environmental settings, as predicted for different types of NPs by Gottshalk et al.. Most of these NPs incorporate functionalized coatings to gain industrial benefits, which in turn may play a critical rule for the whole NPs reactivity. Thus, along with stability studies focusing on the fate of NPs in natural systems, an accurate understanding of the coating impacts on the NPs behaviour and reactivity is highly required. This study aims to estimate the impact of three different coatings on the NPs dissolution rates in natural water (Seine river water), and their sorption properties onto a model mineral substrate. In this work, ZnO NPs have been coated, either with triethoxycaprylylsilane (hydrophobic), methacryloxypropyltrimethoxysilane (hydrophilic), or aminopropyltriethoxusilane (cationic). The dissolution rates were determined using two protocols: the Donnan Membrane Technique to measure the remaining free metal concentration in solution, and a 1 kDa ultrafiltration procedure to access both the free metal and small organic complexes part. For all three coating types, a fast dissolution step is reached in less than one day, followed by a slow precipitation of new mineral phases to finally reach a steady state. No major differences in the dissolution rates and profiles have been observed. Sorption studies on synthetic microsized goethite have been conducted at pH 7.5. The sorption ratio has been estimated as a function of initial NPs concentrations (from 10-7 M to 10-3 M), and follows a Langmuir shape for the hydrophobic and hydrophilic coatings at concentrations lower than 2.10-4 M. Interestingly, those two NPs exhibit high sorption capacities (10 times higher) compared to free Zn2+ sorption. On the other hand, at those concentrations, the cationic coating only induces a weak sorption without any defined trend. Moreover, for the hydrophobic-coated NPs at higher concentrations, the isotherm sorption shape shifts from a Langmuir type to a linear increase, thus indicating an important change in the sorption mechanism. To explain these differences in sorption as a function of the coating properties, the NPs aggregation state has been investigated for all three suspensions, and this parameter appears to be one of the major controls for the coated NPs sorbing properties. These physico-chemical aspects of manufactured NPs behaviour in natural systems constitute an essential step with great implications for ecotoxicological studies. Gottshalk F., Sonderer T., Scholz R.W., and Nowack B., Environmental Science and Technology, 2009, 43, 9216-9222

  9. Bulk Dissolution Rates of Cadmium and Bismuth Tellurides As a Function of pH, Temperature and Dissolved Oxygen.

    PubMed

    Biver, Marc; Filella, Montserrat

    2016-05-03

    The toxicity of Cd being well established and that of Te suspected, the bulk, surface-normalized steady-state dissolution rates of two industrially important binary tellurides-polycrystalline cadmium and bismuth tellurides- were studied over the pH range 3-11, at various temperatures (25-70 °C) and dissolved oxygen concentrations (0-100% O2 in the gas phase). The behavior of both tellurides is strikingly different. The dissolution rates of CdTe monotonically decreased with increasing pH, the trend becoming more pronounced with increasing temperature. Activation energies were of the order of magnitude associated with surface controlled processes; they decreased with decreasing acidity. At pH 7, the CdTe dissolution rate increased linearly with dissolved oxygen. In anoxic solution, CdTe dissolved at a finite rate. In contrast, the dissolution rate of Bi2Te3 passed through a minimum at pH 5.3. The activation energy had a maximum in the rate minimum at pH 5.3 and fell below the threshold for diffusion control at pH 11. No oxygen dependence was detected. Bi2Te3 dissolves much more slowly than CdTe; from one to more than 3.5 orders of magnitude in the Bi2Te3 rate minimum. Both will readily dissolve under long-term landfill deposition conditions but comparatively slowly.

  10. Chemical Dissolution of Simulant FCA Cladding and Plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, G.; Pierce, R.; O'Rourke, P.

    The Savannah River Site (SRS) has received some fast critical assembly (FCA) fuel from the Japan Atomic Energy Agency (JAEA) for disposition. Among the JAEA FCA fuel are approximately 7090 rectangular Stainless Steel clad fuel elements. Each element has an internal Pu-10.6Al alloy metal wafer. The thickness of each element is either 1/16 inch or 1/32 inch. The dimensions of each element ranges from 2 inches x 1 inch to 2 inches x 4 inches. This report discusses the potential chemical dissolution of the FCA clad material or stainless steel. This technology uses nitric acid-potassium fluoride (HNO 3-KF) flowsheets ofmore » H-Canyon to dissolve the FCA elements from a rack of materials. Historically, dissolution flowsheets have aimed to maximize Pu dissolution rates while minimizing stainless steel dissolution (corrosion) rates. Because the FCA cladding is made of stainless steel, this work sought to accelerate stainless steel dissolution.« less

  11. The Use of Artificial Neural Network for Prediction of Dissolution Kinetics

    PubMed Central

    Elçiçek, H.; Akdoğan, E.; Karagöz, S.

    2014-01-01

    Colemanite is a preferred boron mineral in industry, such as boric acid production, fabrication of heat resistant glass, and cleaning agents. Dissolution of the mineral is one of the most important processes for these industries. In this study, dissolution of colemanite was examined in water saturated with carbon dioxide solutions. Also, prediction of dissolution rate was determined using artificial neural networks (ANNs) which are based on the multilayered perceptron. Reaction temperature, total pressure, stirring speed, solid/liquid ratio, particle size, and reaction time were selected as input parameters to predict the dissolution rate. Experimental dataset was used to train multilayer perceptron (MLP) networks to allow for prediction of dissolution kinetics. Developing ANNs has provided highly accurate predictions in comparison with an obtained mathematical model used through regression method. We conclude that ANNs may be a preferred alternative approach instead of conventional statistical methods for prediction of boron minerals. PMID:25028674

  12. The Kinetics of Dissolution Revisited

    NASA Astrophysics Data System (ADS)

    Antonel, Paula S.; Hoijemberg, Pablo A.; Maiante, Leandro M.; Lagorio, M. Gabriela

    2003-09-01

    An experiment analyzing the kinetics of dissolution of a solid with cylindrical geometry in water is presented. The dissolution process is followed by measuring the solid mass and its size parameters (thickness and diameter) as a function of time. It is verified that the dissolution rate follows the Nernst model. Data treatment is compared with the dissolution of a spherical solid previously described. Kinetics, diffusion concepts, and polynomial fitting of experimental data are combined in this simple experiment.

  13. Dissolution Rate Enhancement of Repaglinide Using Dietary Fiber as a Promising Carrier.

    PubMed

    Chatap, Vivekanand K; Patil, Savita D

    2016-01-01

    In present investigation, an innovative attempt has been made to enhance the solubility and dissolution rate of Repaglinide (RPGD) using hydrothermally treated water insoluble dietary bamboo fibers (HVBF) as potential nutraceutical used in the treatment of diabetes mellitus. RPGD was selected as a model drug due to its low aqueous solubility and dissolution rate. Characterization of HVBF demonstrated the outstanding features like high surface area, maximum drug loading and increase dissolution rate and making HVBF as an excellent drug carrier. RHVBF (Repaglinide loaded HVBF) tablets were prepared using direct compression method. Pre and post-compression parameters for blend and tablets were studied and found within acceptable limits. RHVBF and tablet showed significantly improved dissolution rate, when compared with pure crystalline RPGD, physical mixture, RVBF and commercial marketed tablet. This fact was further supported by FT-IR, DSC, XRPD and FESEM studies followed by in-vitro drug release profile. Stability studies showed no changes after exposing to accelerated conditions for a period of 3 months with respect to physical characteristics and in-vitro drug release studies. In a nut shell, it can be concluded that HVBF is a novel, smart and promising carrier for poorly water soluble drugs, when administered orally.

  14. Dissolution and Precipitation Behaviour during Continuous Heating of Al–Mg–Si Alloys in a Wide Range of Heating Rates

    PubMed Central

    Osten, Julia; Milkereit, Benjamin; Schick, Christoph; Kessler, Olaf

    2015-01-01

    In the present study, the dissolution and precipitation behaviour of four different aluminium alloys (EN AW-6005A, EN AW-6082, EN AW-6016, and EN AW-6181) in four different initial heat treatment conditions (T4, T6, overaged, and soft annealed) was investigated during heating in a wide dynamic range. Differential scanning calorimetry (DSC) was used to record heating curves between 20 and 600 °C. Heating rates were studied from 0.01 K/s to 5 K/s. We paid particular attention to control baseline stability, generating flat baselines and allowing accurate quantitative evaluation of the resulting DSC curves. As the heating rate increases, the individual dissolution and precipitation reactions shift to higher temperatures. The reactions during heating are significantly superimposed and partially run simultaneously. In addition, precipitation and dissolution reactions are increasingly suppressed as the heating rate increases, whereby exothermic precipitation reactions are suppressed earlier than endothermic dissolution reactions. Integrating the heating curves allowed the enthalpy levels of the different initial microstructural conditions to be quantified. Referring to time–temperature–austenitisation diagrams for steels, continuous heating dissolution diagrams for aluminium alloys were constructed to summarise the results in graphical form. These diagrams may support process optimisation in heat treatment shops.

  15. Kinetics of carbonate mineral dissolution in CO2-acidified brines at storage reservoir conditions.

    PubMed

    Peng, Cheng; Anabaraonye, Benaiah U; Crawshaw, John P; Maitland, Geoffrey C; Trusler, J P Martin

    2016-10-20

    We report experimental measurements of the dissolution rate of several carbonate minerals in CO 2 -saturated water or brine at temperatures between 323 K and 373 K and at pressures up to 15 MPa. The dissolution kinetics of pure calcite were studied in CO 2 -saturated NaCl brines with molalities of up to 5 mol kg -1 . The results of these experiments were found to depend only weakly on the brine molality and to conform reasonably well with a kinetic model involving two parallel first-order reactions: one involving reactions with protons and the other involving reaction with carbonic acid. The dissolution rates of dolomite and magnesite were studied in both aqueous HCl solution and in CO 2 -saturated water. For these minerals, the dissolution rates could be explained by a simpler kinetic model involving only direct reaction between protons and the mineral surface. Finally, the rates of dissolution of two carbonate-reservoir analogue minerals (Ketton limestone and North-Sea chalk) in CO 2 -saturated water were found to follow the same kinetics as found for pure calcite. Vertical scanning interferometry was used to study the surface morphology of unreacted and reacted samples. The results of the present study may find application in reactive-flow simulations of CO 2 -injection into carbonate-mineral saline aquifers.

  16. Monte Carlo Simulations of the Dissolution of Borosilicate and Aluminoborosilicate Glasses in Dilute Aqueous Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerisit, Sebastien N.; Pierce, Eric M.

    The aim of this study was to provide atomic-level insights into the dissolution behavior of borosilicate and aluminoborosilicate glasses to complement and help interpret previous experimental work on the NeB glass series studied by Pierce et al. [Pierce E. M., Reed L. R., Shaw W. J., McGrail B. P., Icenhower J. P., Windisch C. F., Cordova E. A. and Broady J. (2010) Experimental determination of the effect of the ratio of B/Al on glass dissolution along the nepheline (NaAlSiO4) - Malinkoite (NaBSiO4) join. Geochim. Cosmochim. Acta 74, 2634-2654]. The composition of these glasses was 50 mol% SiO2 - 25 mol%more » Na2O - (25-x) mol% Al2O3 - x mol% B2O3, with x varying from 0 to 20 mol%. In the first part of this work, the different structural features of these glasses (e.g., presence of non-bridging oxygens, partition of boron between trigonal and tetrahedral bonding environments, and formation of boroxol rings), identified in the study of Pierce et al., were implemented in the Monte Carlo program. Their effects on the dissolution of borosilicate and aluminosilicate glasses were then evaluated individually and led to the following conclusions. (1) The dependence of the dissolution rate on the amount of non-bridging oxygens was found to be linear at all Si/B ratios and the accelerating effect of non-bridging oxygens was shown to increase with increasing Si/B ratio. (2) The formation of boroxol rings and of clusters of boroxol rings resulted in an increase of the dissolution rate at all Si/B ratios and, again, the extent of the rate increase was strongly dependent on the Si/B ratio. (3) For aluminosilicate glasses, the implementation of the aluminum avoidance rule was found to increase the rate of dissolution relative to that obtained for a random distribution. In the second part of this work, Monte Carlo simulations were performed to model the dissolution of the NeB glasses in dilute conditions. One of the conclusions that emerged from the study of Pierce et al. was that either the rupture of the Al-O bonds or that of the Si-O bonds was the rate-limiting step controlling the dissolution of the NeB glasses. The Monte Carlo simulations carried out in this work enabled us to refine this conclusion. Indeed, the simulations showed that, at low B/Al ratios, the rupture of both Al-O-Si and Si-O-Si linkages contributed to the dissolution rate whereas, at high B/Al ratios, the dissolution rate was independent of the rupture of Al-O-Si linkages and was controlled by S1 sites (silicon sites at the glass-water interface with one bond to nearest-neighbor sites) and dissolution via detachment of clusters.« less

  17. Electrochemical way of molybdenum extraction from the Bimetallic systems of Mo-W

    NASA Astrophysics Data System (ADS)

    Kudreeva, L. K.; Nauryzbaev, M. K.; Kurbatov, A. P.; Kamysbaev, D. H.; Adilbekova, A. O.; Mukataeva, Z. S.

    2015-12-01

    Electrochemical dissolution of molybdenum and tungsten was investigated in water- dimethylsulfoxide (DMSO) media at different concentrations of lithium chloride and magnesium perchlorate. The terms of efficient extraction of molybdenum from bimetallic systems of Mo-W have been determined. The polarization curves of the electrooxidation of molybdenum in the solution of 0.25 M LiCl in the DMSO at the different rates of rotations and the scan rate equal to 50 mV/s were obtained. In the presence of the addition of water at the potential of 0.1-0.75 V the small area of polarizability occurs, then with increasing potentials above 1.5 V there is a sharp increase of the oxidation current. Comparison of the current values of anodic dissolution of molybdenum and tungsten showed that the rate of anodic dissolution of molybdenum significantly exceeds the rate of anodic dissolution of tungsten. In the case of molybdenum, the dissolution process is limited by diffusion, in the case of tungsten - by the passive film formation on the electrode surface.

  18. Theoretical Analysis of Drug Dissolution: I. Solubility and Intrinsic Dissolution Rate.

    PubMed

    Shekunov, Boris; Montgomery, Eda Ross

    2016-09-01

    The first-principles approach presented in this work combines surface kinetics and convective diffusion modeling applied to compounds with pH-dependent solubility and in different dissolution media. This analysis is based on experimental data available for approximately 100 compounds of pharmaceutical interest. Overall, there is a linear relationship between the drug solubility and intrinsic dissolution rate expressed through the total kinetic coefficient of dissolution and dimensionless numbers defining the mass transfer regime. The contribution of surface kinetics appears to be significant constituting on average ∼20% resistance to the dissolution flux in the compendial rotating disk apparatus at 100 rpm. The surface kinetics contribution becomes more dominant under conditions of fast laminar or turbulent flows or in cases when the surface kinetic coefficient may decrease as a function of solution composition or pH. Limitations of the well-known convective diffusion equation for rotating disk by Levich are examined using direct computational modeling with simultaneous dissociation and acid-base reactions in which intrinsic dissolution rate is strongly dependent on pH profile and solution ionic strength. It is shown that concept of diffusion boundary layer does not strictly apply for reacting/interacting species and that thin-film diffusion models cannot be used quantitatively in general case. Copyright © 2016. Published by Elsevier Inc.

  19. A Model for Dissolution of Lime in Steelmaking Slags

    NASA Astrophysics Data System (ADS)

    Sarkar, Rahul; Roy, Ushasi; Ghosh, Dinabandhu

    2016-08-01

    In a previous study by Sarkar et al. (Metall. Mater. Trans. B 46B:961 2015), a dynamic model of the LD steelmaking was developed. The prediction of the previous model (Sarkar et al. in Metall. Mater. Trans. B 46B:961 2015) for the bath (metal) composition matched well with the plant data (Cicutti et al. in Proceedings of 6th International Conference on Molten Slags, Fluxes and Salts, Stockholm City, 2000). However, with respect to the slag composition, the prediction was not satisfactory. The current study aims to improve upon the previous model Sarkar et al. (Metall. Mater. Trans. B 46B:961 2015) by incorporating a lime dissolution submodel into the earlier one. From the industrial point of view, the understanding of the lime dissolution kinetics is important to meet the ever-increasing demand of producing low-P steel at a low basicity. In the current study, three-step kinetics for the lime dissolution is hypothesized on the assumption that a solid layer of 2CaO·SiO2 should form around the unreacted core of the lime. From the available experimental data, it seems improbable that the observed kinetics should be controlled singly by any one kinetic step. Accordingly, a general, mixed control model has been proposed to calculate the dissolution rate of the lime under varying slag compositions and temperatures. First, the rate equation for each of the three rate-controlling steps has been derived, for three different lime geometries. Next, the rate equation for the mixed control kinetics has been derived and solved to find the dissolution rate. The model predictions have been validated by means of the experimental data available in the literature. In addition, the effects of the process conditions on the dissolution rate have been studied, and compared with the experimental results wherever possible. Incorporation of this submodel into the earlier global model (Sarkar et al. in Metall. Mater. Trans. B 46B:961 2015) enables the prediction of the lime dissolution rate in the dynamic system of LD steelmaking. In addition, with the inclusion of this submodel, significant improvement in the prediction of the slag composition during the main blow period has been observed.

  20. The effects of ion identity and ionic strength on the dissolution rate of a gibbsitic bauxite

    NASA Astrophysics Data System (ADS)

    Mogollón, José Luis; Pérez-Diaz, Alberto; Lo Monaco, Salvador

    2000-03-01

    The influence of cation and anion identity and concentration, on the far from equilibrium dissolution rate of gibbsite, was studied at 298°K. Input solutions, with initial pH = 3.5 and variable salt type and concentration, were flowed at different rates, through columns packed with a unconsolidated gibbsitic bauxite from Los Pijigüaos-Venezuela ore deposit. It was observed cations Na +, K +, Mg 2+ and Ca2+ have no influence on the far from equilibrium dissolution rate. Anions have two different effects: concentration increases of monovalent anions (Cl -, NO 3- and ClO 4-) causes a decrease in the rate, as a function of [anion] (-0.11 ± 0.01); and increases of sulfate concentration causes an increase in the rate as a function of [SO 4=] (0.4 ± 0.1). According to our calculations, these two effects have a remarkable influence upon the lifetime of gibbsite under weathering conditions. Based on Transition State Theory, it is proposed the experimental observations are due to an electrostatic effect on the activated complex (AC ♯) of the gibbsite dissolution reaction. For this AC ♯ the product of the charge of the involved chemical entities is negative. When SO 4= participates in the AC ♯ the product of the charges switches to positive and therefore, the electrostatic interaction increase the dissolution rate. The dissolution rates are independent of the solution saturation degree below ΔGr = - 0.74 kcal/mol. It is inferred that the critical ΔGr is a constant of the solid, not affected by the solution characteristics, e.g., pH, ionic strength, cation and anion identities.

  1. Dissolution of a Tetrachloroethene (PCE) pool in an Anaerobic Sand Tank Aquifer System: Bioenhancement, Ecology, and Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Klemm, Sara; Becker, Jennifer; Seagren, Eric

    2017-04-01

    Dehalorespiring bacteria that reductively dechlorinate and grow on chlorinated ethenes in the aqueous phase can also achieve treatment of dense nonaqueous phase liquid (DNAPL) contaminants in the subsurface via bioenhanced dissolution, i.e., enhanced mass transfer from the DNAPL to the aqueous phase. Theoretical and experimental analyses predict that a number of interrelated physicochemical processes (e.g., advection and dispersion) and biological factors (e.g., biokinetics and competition) may influence the degree of bioenhancement. This research focused on understanding the interrelated roles that hydrodynamics and ecological interactions among dehalorespiring populations play in determining the distribution of dehalorespiring populations and the impact on bioenhanced dissolution and detoxification. The hypotheses driving this research are that: (1) ecological interactions between different dehalorespiring strains can significantly impact the dissolution rate bioenhancement and extent of dechlorination; and (2) hydrodynamics near the DNAPL pool will affect the outcome of ecological interactions and the potential for bioenhancement and detoxification. These hypotheses were evaluated via a multi-objective modeling and experimental framework focused on quantifying the impact of microbial interactions and hydrodynamics on the dissolution rate bioenhancement and plume detoxification using a model co-culture of Desulfuromonas michiganensis BB1 and Dehalococcoides mccartyi 195. The experiments were performed in a saturated intermediate-scale flow cell (1.2 m), with flow parallel to a tetrachloroethene (PCE) pool. Bioenhancement of PCE dissolution by the two dehalorespirers was evaluated using a steady-state mass balance, and initially resulted in a two- to three-fold increase in the dissolution rate, with cis-dichloroethene (cDCE) as the primary dechlorination product. Quantitative analysis of microbial population distribution and abundance using a 16S rRNA gene-based qPCR approach indicated that Dsm. michiganensis BB1 was the dominant population in the effluent. This was expected based on our previous work characterizing the PCE utilization kinetics of the two populations, and suggests that Dsm. michiganensis BB1 was the dominant population in the aquifer system and controlled PCE dissolution and its bioenhancement. This conclusion is consistent with our numerical modeling predictions for the same conditions, which suggested Dhc. mccartyi 195 had little effect on dissolution and dehalorespiration, but aided detoxification by growing on the cDCE produced by Dsm. michiganensis BB1. Subsequently, the PCE dissolution enhancement increased to six- to seven-fold relative to the abiotic dissolution rate. Quantitative analysis of population distribution and abundance in the porous media and nonreactive tracer studies suggested that microbial growth-induced bioclogging, coupled with inhibition of microbial activity near the DNAPL, resulted in increased flow immediately adjacent to the DNAPL-aqueous interface. The increased flow rate past the DNAPL could explain the observed increase in the PCE dissolution rate and is consistent with our numerical modeling of the system. The research described here is part of a larger project working to improve the fundamental understanding of the impact of hydrodynamics and ecological interactions on DNAPL dissolution rate bioenhancement and plume detoxification. These biotic data build on the baseline abiotic experiments reported in another abstract submitted to Session HS8.1.6.

  2. INFLUENCE OF TYPE AND NEUTRALISATION CAPACITY OF ANTACIDS ON DISSOLUTION RATE OF CIPROFLOXACIN AND MOXIFLOXACIN FROM TABLETS

    PubMed Central

    Uzunović, Alija; Vranić, Edina

    2009-01-01

    Dissolution rate of two fluoroquinolone antibiotics (ciprofloxacin and moxifloxacin) was analysed in presence/absence of three antacid formulations. Disintegration time and neutralisation capacity of antacid tablets were also checked. Variation in disintegration time indicated the importance of this parameter, and allowed evaluation of the influence of postponed antacid-fluoroquinolone contact. The results obtained in this study showed decreased dissolution rate of fluoroquinolone antibiotics from tablets in simultaneous presence of antacids, regardless of their type and neutralisation capacity. PMID:19284403

  3. Gender and the Stability of Same-Sex and Different-Sex Relationships Among Young Adults.

    PubMed

    Joyner, Kara; Manning, Wendy; Bogle, Ryan

    2017-12-01

    Most research on the stability of adult relationships has focused on coresidential (cohabiting or married) unions and estimates rates of dissolution for the period of coresidence. Studies examining how the stability of coresidential unions differs by sex composition have typically found that same-sex female couples have higher rates of dissolution than same-sex male couples and different-sex couples. We argue that the more elevated rates of dissolution for same-sex female couples are a by-product of the focus on coresidential unions. We use data from the National Longitudinal Study of Adolescent to Adult Health to compare rates of dissolution based on the total duration of romantic and sexual relationships for same-sex male couples, same-sex female couples, and different-sex couples. Results from hazard models that track the stability of young adult relationships from the time they are formed demonstrate that male couples have substantially higher dissolution rates than female couples and different-sex couples. Results based on models restricted to the period of coresidence corroborate the counterintuitive finding from earlier studies that female couples have the highest rates of dissolving coresidential unions. This study underlines the importance of comparisons between these couple types for a better understanding of the role that institutions and gender play in the stability of contemporary relationships.

  4. Reprint of: Effects of solution degassing on solubility, crystal growth and dissolution-Case study: Salicylic acid in methanol

    NASA Astrophysics Data System (ADS)

    Seidel, J.; Ulrich, J.

    2017-07-01

    The influence of dissolved gases on the crystallization parameter solubility, MZW, growth and dissolution rates was investigated experimentally using degassed and non-degassed (air-saturated) solutions. The results of this study show that degassing has no effect on the solubility curve of the used model substance salicylic acid (SA) in methanol (MeOH). This reveals in the assumption that a thermodynamic effect of dissolved gases can be excluded. Growth rates were measured by means of a desupersaturation method and the results indicate that the growth rates of SA are not affected by degassing. The results of the dissolution rate measurements reveal a distinct decrease in dissolution rates for non-degassed solutions compared to degassed solutions, especially, at low temperature (10 °C). To explain this phenomenon the gas solubility, represented by oxygen, in MeOH in dependence on the SA concentration was estimated by means of Hansen Solubility Parameters (HSP) [1]. It was found that the oxygen solubility decreases with increasing SA content which explains the inhibition of crystal dissolution in non-degassed solution compared to degassed solution. Moreover, this kind of 'drowing-out' mechanism would not appear in growth rate measurements, where indeed no effect of degassing could be observed.

  5. Effects of solution degassing on solubility, crystal growth and dissolution-Case study: Salicylic acid in methanol

    NASA Astrophysics Data System (ADS)

    Seidel, J.; Ulrich, J.

    2017-02-01

    The influence of dissolved gases on the crystallization parameter solubility, MZW, growth and dissolution rates was investigated experimentally using degassed and non-degassed (air-saturated) solutions. The results of this study show that degassing has no effect on the solubility curve of the used model substance salicylic acid (SA) in methanol (MeOH). This reveals in the assumption that a thermodynamic effect of dissolved gases can be excluded. Growth rates were measured by means of a desupersaturation method and the results indicate that the growth rates of SA are not affected by degassing. The results of the dissolution rate measurements reveal a distinct decrease in dissolution rates for non-degassed solutions compared to degassed solutions, especially, at low temperature (10 °C). To explain this phenomenon the gas solubility, represented by oxygen, in MeOH in dependence on the SA concentration was estimated by means of Hansen Solubility Parameters (HSP) [1]. It was found that the oxygen solubility decreases with increasing SA content which explains the inhibition of crystal dissolution in non-degassed solution compared to degassed solution. Moreover, this kind of 'drowing-out' mechanism would not appear in growth rate measurements, where indeed no effect of degassing could be observed.

  6. Effects of early sea-floor processes on the taphonomy of temperate shelf skeletal carbonate deposits

    NASA Astrophysics Data System (ADS)

    Smith, Abigail M.; Nelson, Campbell S.

    2003-10-01

    Cool-water shelf carbonates differ from tropical carbonates in their sources, modes, and rates of deposition, geochemistry, and diagenesis. Inorganic precipitation, marine cementation, and sediment accumulation rates are absent or slow in cool waters, so that temperate carbonates remain longer at or near the sea bed. Early sea-floor processes, occurring between biogenic calcification and ultimate deposition, thus take on an important role, and there is the potential for considerable taphonomic loss of skeletal information into the fossilised record of cool-water carbonate deposits. The physical breakdown processes of dissociation, breakage, and abrasion are mediated mainly by hydraulic regime, and are always destructive. Impact damage reduces the size of grains, removes structure and therefore information, and ultimately may transform skeletal material into anonymous particles. Abrasion is highly selective amongst and within taxa, their skeletal form and structure strongly influencing resistance to mechanical breakdown. Dissolution and precipitation are the end-members of a two-way chemical equilibrium operating in sea water. In cool waters, inorganic precipitation is rare. There is conflicting opinion about the importance of diagenetic dissolution of carbonate skeletons on the temperate sea floor, but test maceration and early loss of aragonite in particular are reported. Dissolution may relate to undersaturated acidic pore waters generated locally by a combination of microbial metabolisation of organic matter, strong bioturbation, and oxidation of solid phase sulphides immediately beneath the sea floor in otherwise very slowly accumulating skeletal deposits. Laboratory experiments demonstrate that surface-to-volume ratio and skeletal mineralogy are both important in determining skeletal resistance to dissolution. Biological processes on the sea floor include encrustation and bioerosion. Encrustation, a constructive process, may be periodic or seasonal, and can be reversed. It produces both information and material. Bioerosion, in contrast, is destructive and permanent. In temperate areas bioerosion may destroy even very large shells during their long residence at the sea floor, on the order of hundreds to thousands of years. Overall, processes on the temperate sea floor may combine to destroy more carbonate than they produce, and the preservation potential of temperate shelf carbonate into the rock record may be significantly affected. Where preservation does occur in such a destructive regime, the effects of early sea-floor processes will be key determinants of the deposit, resulting in a "taphofacies" characteristic of temperate shelf carbonate sediments.

  7. Kinetics of scheelite dissolution in groundwater: defining the release rate of tungsten contamination from a natural source

    NASA Astrophysics Data System (ADS)

    Montgomery, S. D.; Mckibben, M. A.

    2011-12-01

    Tungsten, an emerging contaminant, has no EPA standard for its permissible levels in drinking water. At sites in California, Nevada, and Arizona there may be a correlation between elevated levels of tungsten in drinking water and clusters of childhood acute lymphocytic leukemia (ALL). Developing a better understanding of how tungsten is released from rocks into surface and groundwaters is therefore of growing environmental interest. Knowledge of tungstate ore mineral weathering processes, particularly the rates of dissolution of scheelite (CaWO4) in groundwater, could improve models of how tungsten is released and transported in natural waters. Our research is focusing on experimental determination of the rates and products of tungstate mineral dissolution in synthetic groundwater, as a function of temperature, pH and mineral surface area. The initial rate method is being used to develop rate laws. Batch reactor experiments are conducted within constant temperature circulation baths over a pH range of 2-9. Cleaned scheelite powder with grain diameters of 106-150um is placed between two screens in a sample platform and then placed inside a two liter Teflon vessel filled with synthetic groundwater. Ports on the vessel allow sample extraction, temperature and pH measurement, gas inflow, and water circulation. Aliquots of solution are taken periodically for product analysis by ICP -MS. Changes in mineral surface characteristics are monitored using SEM and EDS methods. Results so far reveal that the dissolution of scheelite is incongruent at both neutral and low pH. Solid tungstic acid forms on scheelite mineral surfaces under acidic conditions, implying that this phase controls the dissolution rate in acidic environments. The influence of dissolved CO2 and resultant calcium carbonate precipitation on the dissolution of scheelite at higher pH is also being investigated. The rate law being developed for scheelite dissolution will be useful in reactive-transport computer codes designed to model tungsten contamination in a variety of surface and groundwater settings.

  8. Comparative study of the biodegradability of porous silicon films in simulated body fluid.

    PubMed

    Peckham, J; Andrews, G T

    2015-01-01

    The biodegradability of oxidized microporous, mesoporous and macroporous silicon films in a simulated body fluid with ion concentrations similar to those found in human blood plasma were studied using gravimetry. Film dissolution rates were determined by periodically weighing the samples after removal from the fluid. The dissolution rates for microporous silicon were found to be higher than those for mesoporous silicon of comparable porosity. The dissolution rate of macroporous silicon was much lower than that for either microporous or mesoporous silicon. This is attributed to the fact that its specific surface area is much lower than that of microporous and mesoporous silicon. Using an equation adapted from [Surf. Sci. Lett. 306 (1994), L550-L554], the dissolution rate of porous silicon in simulated body fluid can be estimated if the film thickness and specific surface area are known.

  9. Potential Dependence of Pt and Co Dissolution from Platinum-Cobalt Alloy PEFC Catalysts Using Time-Resolved Measurements

    DOE PAGES

    Ahluwalia, Rajesh K.; Papadias, Dionissios D.; Kariuki, Nancy N.; ...

    2018-02-09

    An electrochemical flow cell system with catalyst-ionomer ink deposited on glassy carbon is used to investigate the aqueous stability of commercial PtCo alloys under cyclic potentials. An on-line inductively coupled plasma-mass spectrometer, capable of real-time measurements, is used to resolve the anodic and cathodic dissolution of Pt and Co during square-wave and triangle-wave potential cycles. We observe Co dissolution at all potentials, distinct peaks in anodic and cathodic Pt dissolution rates above 0.9 V, and potential-dependent Pt and Co dissolution rates. The amount of Pt that dissolves cathodically is smaller than the amount that dissolves anodically if the upper potentialmore » limit (UPL) is lower than 0.9 V. At the highest UPL investigated, 1.0 V, the cathodic dissolution greatly exceeds the anodic dissolution. A non-ideal solid solution model indicates that the anodic dissolution can be associated with the electrochemical oxidation of Pt and PtOH to Pt 2+, and the cathodic dissolution to electrochemical reduction of a higher Pt oxide, PtO x (x > 1), to Pt 2+. Pt also dissolves oxidatively during the cathodic scans but in smaller amounts than due to the reductive dissolution of PtO x. The relative amounts Pt dissolving oxidatively as Pt and PtOH depend on the potential cycle and UPL.« less

  10. Potential Dependence of Pt and Co Dissolution from Platinum-Cobalt Alloy PEFC Catalysts Using Time-Resolved Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahluwalia, Rajesh K.; Papadias, Dionissios D.; Kariuki, Nancy N.

    An electrochemical flow cell system with catalyst-ionomer ink deposited on glassy carbon is used to investigate the aqueous stability of commercial PtCo alloys under cyclic potentials. An on-line inductively coupled plasma-mass spectrometer, capable of real-time measurements, is used to resolve the anodic and cathodic dissolution of Pt and Co during square-wave and triangle-wave potential cycles. We observe Co dissolution at all potentials, distinct peaks in anodic and cathodic Pt dissolution rates above 0.9 V, and potential-dependent Pt and Co dissolution rates. The amount of Pt that dissolves cathodically is smaller than the amount that dissolves anodically if the upper potentialmore » limit (UPL) is lower than 0.9 V. At the highest UPL investigated, 1.0 V, the cathodic dissolution greatly exceeds the anodic dissolution. A non-ideal solid solution model indicates that the anodic dissolution can be associated with the electrochemical oxidation of Pt and PtOH to Pt 2+, and the cathodic dissolution to electrochemical reduction of a higher Pt oxide, PtO x (x > 1), to Pt 2+. Pt also dissolves oxidatively during the cathodic scans but in smaller amounts than due to the reductive dissolution of PtO x. The relative amounts Pt dissolving oxidatively as Pt and PtOH depend on the potential cycle and UPL.« less

  11. Impacts of seawater saturation state (ΩA = 0.4-4.6) and temperature (10, 25 °C) on the dissolution kinetics of whole-shell biogenic carbonates

    NASA Astrophysics Data System (ADS)

    Ries, Justin B.; Ghazaleh, Maite N.; Connolly, Brian; Westfield, Isaac; Castillo, Karl D.

    2016-11-01

    Anthropogenic increase of atmospheric pCO2 since the Industrial Revolution has caused seawater pH to decrease and seawater temperatures to increase-trends that are expected to continue into the foreseeable future. Myriad experimental studies have investigated the impacts of ocean acidification and warming on marine calcifiers' ability to build protective shells and skeletons. No studies, however, have investigated the combined impacts of ocean acidification and warming on the whole-shell dissolution kinetics of biogenic carbonates. Here, we present the results of experiments designed to investigate the effects of seawater saturation state (ΩA = 0.4-4.6) and temperature (10, 25 °C) on gross rates of whole-shell dissolution for ten species of benthic marine calcifiers: the oyster Crassostrea virginica, the ivory barnacle Balanus eburneus, the blue mussel Mytilus edulis, the conch Strombus alatus, the tropical coral Siderastrea siderea, the temperate coral Oculina arbuscula, the hard clam Mercenaria mercenaria, the soft clam Mya arenaria, the branching bryozoan Schizoporella errata, and the coralline red alga Neogoniolithon sp. These experiments confirm that dissolution rates of whole-shell biogenic carbonates decrease with calcium carbonate (CaCO3) saturation state, increase with temperature, and vary predictably with respect to the relative solubility of the calcifiers' polymorph mineralogy [high-Mg calcite (mol% Mg > 4) ≥ aragonite > low-Mg calcite (mol% Mg < 4)], consistent with prior studies on sedimentary and inorganic carbonates. Furthermore, the severity of the temperature effects on gross dissolution rates also varied with respect to carbonate polymorph solubility, with warming (10-25 °C) exerting the greatest effect on biogenic high-Mg calcite, an intermediate effect on biogenic aragonite, and the least effect on biogenic low-Mg calcite. These results indicate that both ocean acidification and warming will lead to increased dissolution of biogenic carbonates in future oceans, with shells/skeletons composed of the more soluble polymorphs of CaCO3 being the most vulnerable to these stressors. The effects of saturation state and temperature on gross shell dissolution rate were modeled with an exponential asymptotic function (y =B0 -B2 ·e B1 Ω) that appeals to the general Arrhenius-derived rate equation for mineral dissolution [ r = (C ·e -Ea / RT) (1 - Ω)n]. Although the dissolution curves for the investigated biogenic CaCO3 exhibited exponential asymptotic trends similar to those of inorganic CaCO3, the observation that gross dissolution of whole-shell biogenic CaCO3 occurred (albeit at lower rates) even in treatments that were oversaturated (Ω > 1) with respect to both aragonite and calcite reveals fundamental differences between the dissolution kinetics of whole-shell biogenic CaCO3 and inorganic CaCO3. Thus, applying stoichiometric solubility products derived for inorganic CaCO3 to model gross dissolution of biogenic carbonates may substantially underestimate the impacts of ocean acidification on net calcification (gross calcification minus gross dissolution) of systems ranging in scale from individual organisms to entire ecosystems (e.g., net ecosystem calcification). Finally, these experiments permit rough estimation of the impact of CO2-induced ocean acidification on the gross calcification rates of various marine calcifiers, calculated as the difference between net calcification rates derived empirically in prior studies and gross dissolution rates derived from the present study. Organisms' gross calcification responses to acidification were generally less severe than their net calcification response patterns, with aragonite mollusks (bivalves, gastropods) exhibiting the most negative gross calcification response to acidification, and photosynthesizing organisms, including corals and coralline red algae, exhibiting relative resilience.

  12. Haste Makes Waste: The Interplay Between Dissolution and Precipitation of Supersaturating Formulations.

    PubMed

    Sun, Dajun D; Lee, Ping I

    2015-11-01

    Contrary to the early philosophy of supersaturating formulation design for oral solid dosage forms, current evidence shows that an exceedingly high rate of supersaturation generation could result in a suboptimal in vitro dissolution profile and subsequently could reduce the in vivo oral bioavailability of amorphous solid dispersions. In this commentary, we outline recent research efforts on the specific effects of the rate and extent of supersaturation generation on the overall kinetic solubility profiles of supersaturating formulations. Additional insights into an appropriate definition of sink versus nonsink dissolution conditions and the solubility advantage of amorphous pharmaceuticals are also highlighted. The interplay between dissolution and precipitation kinetics should be carefully considered in designing a suitable supersaturating formulation to best improve the dissolution behavior and oral bioavailability of poorly water-soluble drugs.

  13. An empirical model for dissolution profile and its application to floating dosage forms.

    PubMed

    Weiss, Michael; Kriangkrai, Worawut; Sungthongjeen, Srisagul

    2014-06-02

    A sum of two inverse Gaussian functions is proposed as a highly flexible empirical model for fitting of in vitro dissolution profiles. The model was applied to quantitatively describe theophylline release from effervescent multi-layer coated floating tablets containing different amounts of the anti-tacking agents talc or glyceryl monostearate. Model parameters were estimated by nonlinear regression (mixed-effects modeling). The estimated parameters were used to determine the mean dissolution time, as well as to reconstruct the time course of release rate for each formulation, whereby the fractional release rate can serve as a diagnostic tool for classification of dissolution processes. The approach allows quantification of dissolution behavior and could provide additional insights into the underlying processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. On the influence of carbonate in mineral dissolution: I. The thermodynamics and kinetics of hematite dissolution in bicarbonate solutions at T = 25° C

    NASA Astrophysics Data System (ADS)

    Bruno, Jordi; Stumm, Werner; Wersin, Paul; Brandberg, Frederick

    1992-03-01

    We have studied the thermodynamics and kinetics of hematite dissolution in bicarbonate solutions under constant pCO 2. The solubility of hematite is increased in the presence of bicarbonate. We have established that the complexes responsible for this increase are FeOHCO 3 (aq) and Fe(CO 3) 2-. The stability constants of these complexes at the infinite dilution standard state are log β 11 = -3.83 ± 0.21 and log β 2 = 7.40 ± 0.11 , respectively (all errors are given at 2σ confidence level through this work). The rate of dissolution of hematite is enhanced in bicarbonate solutions. This rate of dissolution can be expressed as R diss = k 1[HCO 3-] 0.23 (mol m -2h -1), with k 1 = 1.42 10 -7h -1. The combination of the study of the surface complexation and kinetics of dissolution of hematite in bicarbonate solutions indicate that the dissolution of hematite is surface controlled and bicarbonate promoted. The rate of dissolution follows the expression R diss = k HCO 3-FeOH - HCO 3-}, where k HCO 3- = 1.1 10 -3 h -1. The implications of these findings in the oxic cycle of iron in natural waters are discussed, most importantly in order to explain the high-Fe(III) concentrations measured in groundwaters from the Poços de Caldas complex in Brazil.

  15. Can crystal engineering be as beneficial as micronisation and overcome its pitfalls?: A case study with cilostazol.

    PubMed

    Sai Gouthami, Kodukula; Kumar, Dinesh; Thipparaboina, Rajesh; Chavan, Rahul B; Shastri, Nalini R

    2015-08-01

    Improvement in dissolution of the drugs having poor solubility is a challenge in pharmaceutical industry. Micronization is one technique, employed for dissolution enhancement of cilostazol, a BCS class II drug. However, the obtained micronized drug possesses poor flowability. The aim of this study was to improve the dissolution rate and flow properties of cilostazol by crystal engineering, using habit modification method and compare with micronized cilostazol bulk drug. Simulation studies were performed to predict the effect of solvents on cilostazol crystal habit. Cilostazol crystals with different habits were prepared by solvent:anti-solvent crystallization technique. SEM, FTIR, DSC, TGA and PXRD were used for solid state characterization. The results revealed that cilostazol re-crystallized from methanol-hexane system were hexagonal and ethanol-hexane system gave rods. Cilostazol engineered habits showed increased dissolution rate than unprocessed drug but similar dissolution rate when compared to micronized cilostazol. Micronized cilostazol showed a dissolution efficiency of 75.58% where as cilostazol recrystallized from methanol-hexane and ethanol-hexane systems resulted in a dissolution efficiency of 72.63% and 68.63%, respectively. In addition, crystal engineering resulted in improved flow properties of re-crystallized habits when compared to micronized form of the drug. In conclusion, crystal engineering by habit modification show potential for dissolution enhancement with an added advantage of improved flow properties over micronization technique, for poorly soluble drugs like cilostazol. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Hydrogeomorphic and ecological control on carbonate dissolution in a patterned landscape in South Florida

    NASA Astrophysics Data System (ADS)

    Dong, X.; Heffernan, J. B.; Murray, A. B.; Cohen, M. J.; Martin, J. B.

    2016-12-01

    The evolution of the critical zone both shapes and reflects hydrologic, geochemical, and ecological processes. These interactions are poorly understood in karst landscapes with highly soluble bedrock. In this study, we used the regular-dispersed wetland basins of Big Cypress National Preserve in Florida as a focal case to model the hydrologic, geochemical, and biological mechanisms that affect soil development in karst landscapes. We addressed two questions: (1) What is the minimum timescale for wetland basin development, and (2) do changes in soil depth feed back on dissolution processes and if so by what mechanism? We developed an atmosphere-water-soil model with coupled water-solute transport, incorporating major ion equilibria and kinetic non-equilibrium chemistry, and biogenic acid production via roots distributed through the soil horizon. Under current Florida climate, weathering to a depth of 2 m (a typical depth of wetland basins) would take 4000 6000 yrs, suggesting that landscape pattern could have origins as recent as the most recent stabilization of sea level. Our model further illustrates that interactions between ecological and hydrologic processes influence the rate and depth-dependence of weathering. Absent inundation, dissolution rate decreased exponentially with distance from the bedrock to groundwater table. Inundation generally increased bedrock dissolution, but surface water chemistry and residence time produced complex and non-linear effects on dissolution rate. Biogenic acidity accelerated the dissolution rate by 50 and 1,000 times in inundated and exposed soils. Phase portrait analysis indicated that exponential decreases in bedrock dissolution rate with soil depth could produce stable basin depths. Negative feedback between hydro-period and total basin volume could stabilize the basin radius, but the lesser strength of this mechanism may explain the coalescence of wetland basins observed in some parts of the Big Cypress Landscape.

  17. The preparation and evaluation of salt forms of linogliride with reduced solubilities as candidates for extended release.

    PubMed

    Chrzanowski, Frank A; Ahmad, Kaleem

    2017-03-01

    Salts of linogliride with reduced solubilities were prepared and evaluated as potential candidates for extended-release oral dosage forms. A once-daily dose of 300-800 mg was intended. Seven acids were selected: p-acetamidobenzoic, benzoic, p-hydroxybenzoic, 3-hydroxy-2-naphthoic, 1-napsylic, pamoic, and p-toluenesulfonic acids but only four salts were able to be prepared in suitable quantities for evaluation: linogliride pamoate, p-hydroxybenzoate, 3-hydroxy-2-naphthoate, and 1-napsylate. The pH-solubility profiles of the four new salts, free base, and fumarate salt were compared over the pH 1.43-8.3 range and the intrinsic dissolution rates of the four new salts and the free base were determined at pH 1.43, 4.4, and 7.5. The range of the pH-solubility profile and intrinsic dissolution rates of the p-hydroxybenzoate salt were less than the free base and fumarate and higher than the other three new salts. The pH-solubilities and intrinsic dissolution rates of the 1-napsylate salt were pH-independent. The solubilities and intrinsic dissolution rates of the pamoate and 3-hydroxy-2-naphthoate were higher at pH 1.4-3.4 than at higher pH. At pH 4.4 and higher, the solubilities were essentially the same, in the 1-2 mg/mL range. The intrinsic dissolution rates were also very low and not very different. Dissolution studies with capsules containing 800 mg doses of the pamoate, 1-napsylate, free base, and fumarate performed in a dissolution medium of pH beginning at 2.2 and ending at 6.8 demonstrated that the pamoate and 1-napsylate salt forms dissolved slower and could be useful as extended-release forms.

  18. Improved oral bioavailability of probucol by dry media-milling.

    PubMed

    Li, Jia; Yang, Yan; Zhao, Meihui; Xu, Hui; Ma, Junyuan; Wang, Shaoning

    2017-09-01

    The polymer/probucol co-milled mixtures were prepared to improve drug dissolution rate and oral bioavailability. Probucol, a BCS II drug, was co-milled together with Copovidone (Kollidon VA64, VA64), Soluplus, or MCC using the dry media-milling process with planetary ball-milling equipment. The properties of the milled mixtures including morphology, crystal form, vitro drug dissolution and in vivo oral bioavailability in rats were evaluated. Probucol existed as an amorphous in the matrix of the co-milled mixtures containing VA64, which helped to enhance drug dissolution. The ternary mixture composed of VA64, RH40, and probucol showed increased dissolution rates in both sink and non-sink conditions. It also had a higher oral bioavailability compared to the reference formulation. Dry-media milling of binary or ternary mixtures composed of drug, polymer and surfactant possibly have wide applications to improve dissolution rate and oral bioavailability of water-insoluble drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. In situ dissolution analysis of pharmaceutical dosage forms using coherent anti-Stokes Raman scattering (CARS) microscopy

    NASA Astrophysics Data System (ADS)

    Fussell, A. L.; Garbacik, E. T.; Löbmann, K.; Offerhaus, H. L.; Kleinebudde, P.; Strachan, C. J.

    2014-02-01

    A custom-built intrinsic flow-through dissolution setup was developed and incorporated into a home-built CARS microscope consisting of a synchronously pumped optical parametric oscillator (OPO) and an inverted microscope with a 20X/0.5NA objective. CARS dissolution images (512×512 pixels) were collected every 1.12s for the duration of the dissolution experiment. Hyperspectral CARS images were obtained pre- and postdissolution by rapidly imaging while sweeping the wavelength of the OPO in discrete steps so that each frame in the data stack corresponds to a vibrational frequency. An image-processing routine projects this hyperspectral data into a single image wherein each compound appears with a unique color. Dissolution was conducted using theophylline and cimetidine-naproxen co-amorphous mixture. After 15 minutes of theophylline dissolution, hyperspectral imaging showed a conversion of theophylline anhydrate to the monohydrate, confirmed by a peak shift in the CARS spectra. CARS dissolution images showed that monohydrate crystal growth began immediately and reached a maximum with complete surface coverage at about 300s. This result correlated with the UV dissolution data where surface crystal growth on theophylline compacts resulted in a rapidly reducing dissolution rate during the first 300s. Co-amorphous cimetidinenaproxen didn't appear to crystallize during dissolution. We observed solid-state conversions on the compact's surface in situ during dissolution. Hyperspectral CARS imaging allowed visual discrimination between the solid-state forms on the compact's surface. In the case of theophylline we were able to correlate the solid-state change with a change in dissolution rate.

  20. Silicon Isotopes doping experiments to measure quartz dissolution and precipitation rates at equilibrium and test the principle of detailed balance

    NASA Astrophysics Data System (ADS)

    Zhu, C.; Rimstidt, J. D.; Liu, Z.; Yuan, H.

    2016-12-01

    The principle of detailed balance (PDB) has been a cornerstone for irreversible thermodynamics and chemical kinetics for a long time, and its wide application in geochemistry has mostly been implicit and without experimental testing of its applicability. Nevertheless, many extrapolations based on PDB without experimental validation have far reaching impacts on society's mega environmental enterprises. Here we report an isotope doping method that independently measures simultaneous dissolution and precipitation rates and can test this principle. The technique reacts a solution enriched in a rare isotope of an element with a solid having natural isotopic abundances (Beck et al., 1992; Gaillardet, 2008; Gruber et al., 2013). Dissolution and precipitation rates are found from the changing isotopic ratios. Our quartz experiment doped with 29Si showed that the equilibrium dissolution rate remains unchanged at all degrees of undersaturation. We recommend this approach to test the validity of using the detailed balance relationship in rate equations for other substances.

  1. Electrochemical Dissolution of Tungsten Carbide in NaCl-KCl-Na2WO4 Molten Salt

    NASA Astrophysics Data System (ADS)

    Zhang, Liwen; Nie, Zuoren; Xi, Xiaoli; Ma, Liwen; Xiao, Xiangjun; Li, Ming

    2018-02-01

    Tungsten carbide was utilized as anode to extract tungsten in a NaCl-KCl-Na2WO4 molten salt, and the electrochemical dissolution was investigated. Although the molten salt electrochemical method is a short process method of tungsten extraction from tungsten carbide in one step, the dissolution efficiency and current efficiency are quite low. In order to improve the dissolution rate and current efficiency, the sodium tungstate was added as the active substance. The dissolution rate, the anode current efficiency, and the cathode current efficiency were calculated with different contents of sodium tungstate addition. The anodes prior to and following the reaction, as well as the product, were analyzed through X-ray diffraction, scanning electron microscopy, and energy dispersive spectrometry. The results demonstrated that the sodium tungstate could improve the dissolution rate and the current efficiency, due to the addition of sodium tungstate decreasing the charge transfer resistance in the electrolysis system. Due to the fact that the addition of sodium tungstate could remove the carbon during electrolysis, pure tungsten powders with 100 nm diameter were obtained when the content of sodium tungstate was 1.0 pct.

  2. Improved Dissolution and Oral Bioavailability of Celecoxib by a Dry Elixir System.

    PubMed

    Cho, Kwan Hyung; Jee, Jun-Pil; Yang, Da A; Kim, Sung Tae; Kang, Dongjin; Kim, Dae-Young; Sim, Taeyong; Park, Sang Yeob; Kim, Kyeongsoon; Jang, Dong-Jin

    2018-02-01

    The purpose of this study was to develop and evaluate a dry elixir (DE) system for enhancing the dissolution rate and oral bioavailability of celecoxib. DE system has been used for improving solubility, oral bioavailability of poorly water-soluble drugs. The encapsulated drugs or solubilized drugs in the matrix are rapidly dissolved due to the co-solvent effect, resting in both an enhanced dissolution and bioavailability. DEs containing celecoxib were prepared by spray-drying method and characterized by morphology, drug/ethanol content, drug crystallinity, dissolution rate and oral bioavailability. The ethanol content and drug content in DE system could be easily altered by controlling the spraydrying conditions. The dissolution profile of celecoxib from DE proved to be much higher than that of celecoxib powder due to the nano-structured matrix, amorphous state and encapsulated ethanol. The bioavailability of celecoxib from DEs was compared with celecoxib powder alone and commercial product (Celebrex®) in rats. In particular, blood concentrations of celecoxib form DE formulation were much greater than those of native celecoxib and market product. The data demonstrate that the DE system could provide an useful solid dosage form to enhance the solubility, dissolution rate and oral bioavailability of celecoxib.

  3. Elevated Colonization of Microborers at a Volcanically Acidified Coral Reef

    PubMed Central

    Enochs, Ian C.; Manzello, Derek P.; Tribollet, Aline; Valentino, Lauren; Kolodziej, Graham; Donham, Emily M.; Fitchett, Mark D.; Carlton, Renee; Price, Nichole N.

    2016-01-01

    Experiments have demonstrated that ocean acidification (OA) conditions projected to occur by the end of the century will slow the calcification of numerous coral species and accelerate the biological erosion of reef habitats (bioerosion). Microborers, which bore holes less than 100 μm diameter, are one of the most pervasive agents of bioerosion and are present throughout all calcium carbonate substrates within the reef environment. The response of diverse reef functional groups to OA is known from real-world ecosystems, but to date our understanding of the relationship between ocean pH and carbonate dissolution by microborers is limited to controlled laboratory experiments. Here we examine the settlement of microborers to pure mineral calcium carbonate substrates (calcite) along a natural pH gradient at a volcanically acidified reef at Maug, Commonwealth of the Northern Mariana Islands (CNMI). Colonization of pioneer microborers was higher in the lower pH waters near the vent field. Depth of microborer penetration was highly variable both among and within sites (4.2–195.5 μm) over the short duration of the study (3 mo.) and no clear relationship to increasing CO2 was observed. Calculated rates of biogenic dissolution, however, were highest at the two sites closer to the vent and were not significantly different from each other. These data represent the first evidence of OA-enhancement of microboring flora colonization in newly available substrates and provide further evidence that microborers, especially bioeroding chlorophytes, respond positively to low pH. The accelerated breakdown and dissolution of reef framework structures with OA will likely lead to declines in structural complexity and integrity, as well as possible loss of essential habitat. PMID:27467570

  4. Elevated Colonization of Microborers at a Volcanically Acidified Coral Reef.

    PubMed

    Enochs, Ian C; Manzello, Derek P; Tribollet, Aline; Valentino, Lauren; Kolodziej, Graham; Donham, Emily M; Fitchett, Mark D; Carlton, Renee; Price, Nichole N

    2016-01-01

    Experiments have demonstrated that ocean acidification (OA) conditions projected to occur by the end of the century will slow the calcification of numerous coral species and accelerate the biological erosion of reef habitats (bioerosion). Microborers, which bore holes less than 100 μm diameter, are one of the most pervasive agents of bioerosion and are present throughout all calcium carbonate substrates within the reef environment. The response of diverse reef functional groups to OA is known from real-world ecosystems, but to date our understanding of the relationship between ocean pH and carbonate dissolution by microborers is limited to controlled laboratory experiments. Here we examine the settlement of microborers to pure mineral calcium carbonate substrates (calcite) along a natural pH gradient at a volcanically acidified reef at Maug, Commonwealth of the Northern Mariana Islands (CNMI). Colonization of pioneer microborers was higher in the lower pH waters near the vent field. Depth of microborer penetration was highly variable both among and within sites (4.2-195.5 μm) over the short duration of the study (3 mo.) and no clear relationship to increasing CO2 was observed. Calculated rates of biogenic dissolution, however, were highest at the two sites closer to the vent and were not significantly different from each other. These data represent the first evidence of OA-enhancement of microboring flora colonization in newly available substrates and provide further evidence that microborers, especially bioeroding chlorophytes, respond positively to low pH. The accelerated breakdown and dissolution of reef framework structures with OA will likely lead to declines in structural complexity and integrity, as well as possible loss of essential habitat.

  5. CO32- concentration and pCO2 thresholds for calcification and dissolution on the Molokai reef flat, Hawaii

    USGS Publications Warehouse

    Yates, K.K.; Halley, R.B.

    2006-01-01

    The severity of the impact of elevated atmospheric pCO2 to coral reef ecosystems depends, in part, on how sea-water pCO2 affects the balance between calcification and dissolution of carbonate sediments. Presently, there are insufficient published data that relate concentrations of pCO 2 and CO32- to in situ rates of reef calcification in natural settings to accurately predict the impact of elevated atmospheric pCO2 on calcification and dissolution processes. Rates of net calcification and dissolution, CO32- concentrations, and pCO2 were measured, in situ, on patch reefs, bare sand, and coral rubble on the Molokai reef flat in Hawaii. Rates of calcification ranged from 0.03 to 2.30 mmol CaCO3 m-2 h-1 and dissolution ranged from -0.05 to -3.3 mmol CaCO3 m-2 h-1. Calcification and dissolution varied diurnally with net calcification primarily occurring during the day and net dissolution occurring at night. These data were used to calculate threshold values for pCO2 and CO32- at which rates of calcification and dissolution are equivalent. Results indicate that calcification and dissolution are linearly correlated with both CO32- and pCO2. Threshold pCO2 and CO32- values for individual substrate types showed considerable variation. The average pCO2 threshold value for all substrate types was 654??195 ??atm and ranged from 467 to 1003 ??atm. The average CO32- threshold value was 152??24 ??mol kg-1, ranging from 113 to 184 ??mol kg-1. Ambient seawater measurements of pCO2 and CO32- indicate that CO32- and pCO2 threshold values for all substrate types were both exceeded, simultaneously, 13% of the time at present day atmospheric pCO2 concentrations. It is predicted that atmospheric pCO2 will exceed the average pCO2 threshold value for calcification and dissolution on the Molokai reef flat by the year 2100.

  6. Optimization of Dissolution Compartments in a Biorelevant Dissolution Apparatus Golem v2, Supported by Multivariate Analysis.

    PubMed

    Stupák, Ivan; Pavloková, Sylvie; Vysloužil, Jakub; Dohnal, Jiří; Čulen, Martin

    2017-11-23

    Biorelevant dissolution instruments represent an important tool for pharmaceutical research and development. These instruments are designed to simulate the dissolution of drug formulations in conditions most closely mimicking the gastrointestinal tract. In this work, we focused on the optimization of dissolution compartments/vessels for an updated version of the biorelevant dissolution apparatus-Golem v2. We designed eight compartments of uniform size but different inner geometry. The dissolution performance of the compartments was tested using immediate release caffeine tablets and evaluated by standard statistical methods and principal component analysis. Based on two phases of dissolution testing (using 250 and 100 mL of dissolution medium), we selected two compartment types yielding the highest measurement reproducibility. We also confirmed a statistically ssignificant effect of agitation rate and dissolution volume on the extent of drug dissolved and measurement reproducibility.

  7. Microfluidics experiments of dissolution in a fracture. Influence of Damköhler and Péclet numbers, and of the geometry on the dissolution pattern

    NASA Astrophysics Data System (ADS)

    Osselin, Florian; Budek, Agnieszka; Cybulski, Olgierd; Szymczak, Piotr

    2015-04-01

    Dissolution of natural rocks is an ever present phenomenon in nature. The shaping of natural landscapes by the dissolution of limestone gives for example birth to exceptional features like karsts. Currently dissolution is also at the heart of key research topics as Carbon Capture and Storage or Enhanced Oil Recovery. The basics principles of dissolution are well-known, however, the sheer amount of different patterns arising from these mechanisms and the strong dependency on parameters such as pore network, chemical composition and flow rate, make it particularly difficult to study theoretically and experimentally. In this study we present a microfluidic experiment simulating the behavior of a dissolving fluid in a fracture. The experiments consist of a chip of gyspum inserted between two polycarbonate plates and subjected to a constant flow rate of pure water. The point in using microfluidics is that it allows a complete control on the experimental parameters such as geometry and chemical composition of the porous medium, flow rate, fracture aperture, roughness of the fracture walls, and an in situ observation of the geometry evolution which is impossible with 3D natural rocks. Thanks to our experiments we have been able to cover the whole range of dissolution patterns, from wormholing or DLA fingering to homogeneous dissolution, by changing Péclet and Damköhler numbers. Moreover, we have been able to tweak the geometry of our artificial fracture, inserting finger seeds or non-dissolvable obstacles. The comparison of the experimental patterns with the numerical dissolution code dissol (Szymczak and Ladd 2011) has then shown a very good correlation of the patterns, giving confidence in both experiments and modeling.

  8. HIV status awareness, partnership dissolution and HIV transmission in generalized epidemics.

    PubMed

    Reniers, Georges; Armbruster, Benjamin

    2012-01-01

    HIV status aware couples with at least one HIV positive partner are characterized by high separation and divorce rates. This phenomenon is often described as a corollary of couples HIV Testing and Counseling (HTC) that ought to be minimized. In this contribution, we demonstrate the implications of partnership dissolution in serodiscordant couples for the propagation of HIV. We develop a compartmental model to study epidemic outcomes of elevated partnership dissolution rates in serodiscordant couples and parameterize it with estimates from population-based data (Rakai, Uganda). Via its effect on partnership dissolution, every percentage point increase in HIV status awareness reduces HIV incidence in monogamous populations by 0.27 percent for women and 0.63 percent for men. These effects are even larger when the assumption of monogamy can be relaxed, but are moderated by other behavior changes (e.g., increased condom use) in HIV status aware serodiscordant partnerships. When these behavior changes are taken into account, each percentage point increase in HIV status awareness reduces HIV incidence by 0.13 and 0.32 percent for women and men, respectively (assuming monogamy). The partnership dissolution effect exists because it decreases the fraction of serodiscordant couples in the population and prolongs the time that individuals spend outside partnerships. Our model predicts that elevated partnership dissolution rates in HIV status aware serodiscordant couples reduce the spread of HIV. As a consequence, the full impact of couples HTC for HIV prevention is probably larger than recognized to date. Particularly high partnership dissolution rates in female positive serodiscordant couples contribute to the gender imbalance in HIV infections.

  9. Enhancement of Loperamide Dissolution Rate by Liquisolid Compact Technique.

    PubMed

    Venkateswarlu, Kambham; Preethi, Jami Komala; Chandrasekhar, Kothapalli Bonnoth

    2016-09-01

    Purpose: The aim of present study was to improve the dissolution rate of poorly soluble drug Loperamide (LPM) by liquisolid compact technique. Methods: Liquisolid compacts of LPM were prepared using Propylene glycol (PG) as a solvent, Avicel pH 102 as carrier, Aerosil as coating material and Sodium Starch Glycolate (SSG) as superdisintegrant. Interactions between the drug and excipients were examined by Fourier Transform Infrared (FTIR) spectroscopy. The dissolution studies for LPM liquisolid formulation, marketed product and pure drug were carried out in pH 1.2 HCl buffer as dissolution media. Results: Results confirmed the absence of chemical interactions between the drug and excipients. From the solubility studies, it was observed the LPM was highly soluble in PG thereby it was selected as a solvent. The dissolution efficiency of LPM at 15 min was increased from 9.99 % for pure drug and 54.57% for marketed product to 86.81% for the tablets prepared by liquisolid compact technique. Stability studies showed no significant change in percent cumulative drug release, hardness, disintegration time, friability and drug content for 3 months. Conclusion: Formulation F2 showed significant increase in dissolution rate compared to the marketed product at pH 1.2 where LPM is largely absorbed. Around 90% of the drug was released from F2 in 30 min compared to the marketed product and it might be due to the increased wetting and surface area of the particles. Hence, the liquisolid compact technique appears to be a promising approach for improving the dissolution rate of poorly soluble drug.

  10. Improving Dissolution Rate of Carbamazepine-Glutaric Acid Cocrystal Through Solubilization by Excess Coformer.

    PubMed

    Yamashita, Hiroyuki; Sun, Changquan Calvin

    2017-12-29

    The use of soluble cocrystals is a promising strategy for delivering poorly soluble drugs. However, precipitation of poorly soluble crystal form during dissolution hinders the successful tablet development of cocrystals. This work was aimed to understand the mechanisms for improving dissolution performance of a soluble cocrystals by using excess coformer. A highly soluble carbamazepine (CBZ) cocrystal with- glutaric acid (GLA) was studied. Impact of excess GLA on solubility and intrinsic dissolution rate (IDR) was assessed. Viscosity of GLA solutions was also measured. Solid form of powders and pellets was examined using powder X-ray diffractometry. IDRs of cocrystal and GLA mixtures in different ratios were measured to identify a suitable formulation for maintaining high dissolution rate of CBZ-GLA in an aqueous environment. IDR of CBZ-GLA in a pH 1.2 HCl solution was improved when GLA was present in the solution. Precipitation of CBZ·2H 2 O was eliminated when GLA concentration was ≥100 mg/mL. The improved IDR was accompanied by higher solubility of CBZ in GLA solution and increased solution viscosity. The trend in IDR profile matched well with the solubility profile normalized by solution viscosity. Mixture of cocrystal and GLA led to improved IDR in simulated intestinal fluid. The excess GLA increased the aqueous solubility of CBZ·2H 2 O and, thereby, reduced the propensity to precipitation of CBZ·2H 2 O during dissolution by lowering the degree of supersaturation. This strategy allowed development of a CBZ-GLA formulation with a significantly enhanced dissolution rate than CBZ-GLA.

  11. A mechanistic understanding of plagioclase dissolution based on Al occupancy and T-O bond length: from geologic carbon sequestration to ambient conditions.

    PubMed

    Yang, Yi; Min, Yujia; Jun, Young-Shin

    2013-11-14

    A quantitative description of how the bulk properties of aluminosilicates affect their dissolution kinetics is important in helping people understand the regulation of atmospheric CO2 concentration by silicate weathering and predict the fate and transport of geologically sequestered CO2 through brine-rock interactions. In this study, we employed a structure model based on the C1 space group to illustrate how differences in crystallographic properties of aluminosilicates, such as T-O (Tetrahedral site-Oxygen) bond length and Al/Si ordering, can result in quantifiable variations in mineral dissolution rates. The dissolution rates of plagioclases were measured under representative geologic carbon sequestration (GCS) conditions (90 °C, 100 atm of CO2, 1.0 M NaCl, and pH ∼ 3.1), and used to validate the model. We found that the logarithm of the characteristic time of the breakdown of Al-O-Si linkages in plagioclases follows a good linear relation with the mineral's aluminum content (nAl). The Si release rates of plagioclases can be calculated based on an assumption of dissolution congruency or on the regularity of Al/Si distribution in the constituent tetrahedra of the mineral. We further extended the application of our approach to scenarios where dissolution incongruency arises because of different linkage reactivities in the solid matrix, and compared the model predictions with published data. The application of our results enables a significant reduction of experimental work for determining the dissolution rates of structurally related aluminosilicates, given a reaction environment.

  12. Arsenic release and speciation during the oxidative dissolution of arsenopyrite by O2 in the absence and presence of EDTA.

    PubMed

    Wang, Shaofeng; Jiao, BeiBei; Zhang, Mingmei; Zhang, Guoqing; Wang, Xin; Jia, Yongfeng

    2018-03-15

    The oxidative decomposition of arsenopyrite is an important source of As in surface environment. This study investigated the oxidative dissolution of arsenopyrite by O 2 and aqueous arsenic transformation at different pHs, dissolved oxygen (DO) contents, and temperatures in the absence and presence of EDTA. The oxidative dissolution was greatly inhibited at neutral and alkaline pH in the absence of EDTA. However, in the presence of EDTA, the oxidative dissolution rate increased linearly from pH 4 to 7. The highest dissolution rate was 3-4 times higher than that at pH 4 and 1-2 orders of magnitude higher than that at pH 7 in the absence of EDTA. This is possibly due to the lack of Fe oxyhydroxides on the surface of arsenopyrite. In the pH range of 7-10, the oxidative dissolution rate decreased linearly, possibly due to the formation of goethite and/or hematite coating. The oxidation of released arsenite (As III ) to arsenate (As V ) took place simultaneously during the oxidative dissolution of arsenopyrite in the presence of dissolved Fe without EDTA, while no obvious aqueous As III oxidation was observed in the presence of EDTA, indicating that aqueous Fe species play an important role in As III oxidation. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Xylitol as a potential co-crystal co-former for enhancing dissolution rate of felodipine: preparation and evaluation of sublingual tablets.

    PubMed

    Arafa, Mona F; El-Gizawy, Sanaa A; Osman, Mohamed A; El Maghraby, Gamal M

    2018-06-01

    Dissolution enhancement is a promising strategy for improving drug bioavailability. Co-crystallization of drugs with inert material can help in this direction. The benefit will become even greater if the inert material can form co-crystal while maintaining its main function as excipient. Accordingly, the objective of the current study was to investigate xylitol as a potential co-crystal co-former for felodipine with the goal of preparing felodipine sublingual tablets. Co-crystallization was achieved by wet co-grinding of the crystals deposited from methanolic solutions containing felodipine with increasing molar ratios of xylitol (1:1, 1:2 and 1:3). The developed co-crystals were characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) before monitoring drug dissolution. These results reflected the development of new crystalline species depending on the relative proportions of felodipine and xylitol with complete co-crystallization of felodipine being achieved in the presence of double its molar concentration of xylitol. This co-crystal formulation was compressed into sublingual tablet with ultrashort disintegration time with subsequent fast dissolution. Co-crystal formation was associated with enhanced dissolution with the optimum formulation producing the fastest dissolution rate. In conclusion, xylitol can be considered as a co-crystal co-former for enhanced dissolution rate of drugs.

  14. Assessing hydrodynamic effects on jarosite dissolution rates, reaction products, and preservation on Mars

    NASA Astrophysics Data System (ADS)

    Dixon, Emily M.; Elwood Madden, Andrew S.; Hausrath, Elisabeth M.; Elwood Madden, Megan E.

    2015-04-01

    Jarosite flow-through dissolution experiments were conducted in ultrapure water (UPW), pH 2 sulfuric acid, and saturated NaCl and CaCl2 brines at 295-298 K to investigate how hydrologic variables may affect jarosite preservation and reaction products on Mars. K+-based dissolution rates in flowing UPW did not vary significantly with flow rate, indicating that mineral surface reactions control dissolution rates over the range of flow rates investigated. In all of the solutions tested, hydrologic variables do not significantly affect extent of jarosite alteration; therefore, jarosite is equally likely to be preserved in flowing or stagnant waters on Mars. However, increasing flow rate did affect the mineralogy and accumulation of secondary reaction products. Iron release rates in dilute solutions increased as the flow rate increased, likely due to nanoscale iron (hydr)oxide transport in flowing water. Anhydrite formed in CaCl2 brine flow-through experiments despite low temperatures, while metastable gypsum and bassanite were observed in batch experiments. Therefore, observations of the hydration state of calcium sulfate minerals on Mars may provide clues to unravel past salinity and hydrologic conditions as well as temperatures and vapor pressures.

  15. Dynamics of altered surface layer formation on dissolving silicates

    NASA Astrophysics Data System (ADS)

    Daval, Damien; Bernard, Sylvain; Rémusat, Laurent; Wild, Bastien; Guyot, François; Micha, Jean Sébastien; Rieutord, François; Magnin, Valérie; Fernandez-Martinez, Alejandro

    2017-07-01

    The extrapolation of mineral dissolution kinetics experiments to geological timescales has frequently been challenged by the observation that mineral dissolution rates decrease with time. In the present study, we report a detailed investigation of the early stages of wollastonite dissolution kinetics, linking time-resolved measurements of wollastonite dissolution rate as a function of crystallographic orientation to the evolution of physicochemical properties (i.e., diffusivity, density, and thickness) of amorphous silica-rich layers (ASSLs) that developed on each surface. Batch dissolution experiments conducted at room temperature and at far-from-equilibrium conditions revealed that the initial (i.e., ASSL-free) dissolution rate of wollastonite (R(hkl)) based on Ca release observe the following trend: R(010) ≈R(100) >R(101) >R(001) . A gradual decrease of the dissolution rate of some faces by up to one order of magnitude resulted in a modification of this trend after two days: R(010) ≫R(100) ⩾R(101) ≈R(001) . In parallel, the diffusivity of ASSLs developed on each face was estimated based on the measurement of the concentration profile of a conservative tracer (methylene blue) across the ASSL using nanoSIMS. The apparent diffusion coefficients of methylene blue as a function of the crystallographic orientation (Dapp(hkl)) observe the following trend: Dapp(010) ⩾Dapp(100) >Dapp(101) ≫Dapp(001) , and decreases as a function of time for the (1 0 0) and (1 0 1) faces. Finally, the density of ASSL was estimated based on the modeling of X-ray reflectivity patterns acquired as a function of time. The density of ASSLs developed on the (0 1 0) faces remains low and constant, whereas it increases for the ASSLs developed on the (0 0 1) faces. On the whole, our results suggest that the impact of the formation of ASSLs on the wollastonite dissolution rate is anisotropic: while some crystal faces are weakly affected by the formation of non-passivating ASSLs (e.g., the (0 1 0) face), the dissolution of other faces is hampered by passivating ASSLs within a few hours. The observed passivation is suggested to originate from the progressive densification of the ASSL, which limits the transport of reactive species from and to the dissolving wollastonite surface, as evidenced by the estimated diffusivity of the ASSLs. Because the apparent face-specific diffusivity of the ASSLs is correlated with the face-specific initial (i.e., ASSL-free) dissolution rate of wollastonite, we propose that the extent of ASSL densification (and the resulting impact on ion transport) is (at least partly) controlled by the absolute mineral dissolution rate. Overall, this study argues that the formation and microstructural evolution of ASSLs are likely candidates for mineral ageing, highlighting the need for determining the parameters controlling the spontaneous changes of ASSL diffusivity as a function of the reaction progress.

  16. Illite Dissolution Rates and Equation (100 to 280 dec C)

    DOE Data Explorer

    Carroll, Susan

    2014-10-17

    The objective of this suite of experiments was to develop a useful kinetic dissolution expression for illite applicable over an expanded range of solution pH and temperature conditions representative of subsurface conditions in natural and/or engineered geothermal reservoirs. Using our new data, the resulting rate equation is dependent on both pH and temperature and utilizes two specific dissolution mechanisms (a “neutral” and a “basic” mechanism). The form of this rate equation should be easily incorporated into most existing reactive transport codes for to predict rock-water interactions in EGS shear zones.

  17. An interferometric study of the dissolution kinetics of anorthite: The role of reactive surface area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luettge, A.; Bolton, E.W.; Lasaga, A.C.

    1999-07-01

    An optical interferometry system has been used to study the dynamics of the dissolution of anorthite (010) cleavage surfaces. With this technique, it is possible to measure directly the surface retreat of alumino-silicates as a function of time and thereby the dissolution rate using a new application of interferometry. The dissolution experiments are carried out in a flow-through cell system with a near endmember anorthite (An{sub 98}) from Miyake-Jima, Tokyo, Japan, Perchloric acid solutions (pH 3) were used at a constant temperature of 25 C. After having measured the topography of the original pristine anorthite surface, measurements of the surfacemore » normal retreat were taken after 48,84,120, and 168 hrs of run duration at 15 different regions on the surface. An internal-reference technique allows absolute measurements of the changes in surface height for the very first time. From these measurements, an average bulk rate for dissolution of the (010) anorthite surface is calculated to be 5.7 x 10{sup {minus}13} [moles/cm{sub 2}/sec]. Finally, their directly determined bulk rate for the (010) face is compared with the bulk rates calculated from the rate law obtained from powder experiments and using the BET or total surface area.« less

  18. Multicomponent amorphous nanofibers electrospun from hot aqueous solutions of a poorly soluble drug.

    PubMed

    Yu, Deng-Guang; Gao, Li-Dong; White, Kenneth; Branford-White, Christopher; Lu, Wei-Yue; Zhu, Li-Min

    2010-11-01

    To design and fabricate multicomponent amorphous electrospun nanofibers for synergistically improving the dissolution rate and permeation profiles of poorly water-soluble drugs. Nanofibers were designed to be composed of a poorly water soluble drug, helicid, a hydrophilic polymer polyvinylpyrrolidone as filament-forming matrix, sodium dodecyl sulfate as transmembrane enhancer and mannitol as taste masking agent, and were prepared from hot aqueous co-dissolving solutions of them. An elevated temperature electrospinning process was developed to fabricate the composite nanofibers, which were characterized using FESEM, DSC, XRD, ATR-FTIR, in vitro dissolution and permeation tests. The composite nanofibers were homogeneous with smooth surfaces and uniform structure, and the components were combined together in an amorphous state because of the favorable interactions such as hydrogen bonding, electrostatic interaction and hydrophobic interactions among them. In vitro dissolution and permeation tests demonstrated that the composite nanofibers had a dissolution rate over 26-fold faster than that of crude helicid particles and a 10-fold higher permeation rate across sublingual mucosa. A new type of amorphous material in the form of nanofibers was prepared from hot aqueous solutions of multiple ingredients using an electrospinning process. The amorphous nanofibers were able to improve the dissolution rate and permeation rate of helicid.

  19. DNAPL remediation with in situ chemical oxidation using potassium permanganate - Part I. Mineralogy of Mn oxide and its dissolution in organic acids

    NASA Astrophysics Data System (ADS)

    Li, X. David; Schwartz, Franklin W.

    2004-01-01

    Previous studies on in situ chemical oxidation of trichloroethylene (TCE) with potassium permanganate indicated that the solid reaction product, Mn oxide, could reduce the permeability of the porous medium and impact the success of dense non-aqueous phase liquid (DNAPL) removal. In order to address the issue of permeability reduction caused by precipitation, this study investigated the mineralogy of Mn oxides and the possibilities of removing the solid precipitates by dissolution. The solid reaction product from the oxidation of TCE by permanganate is semi-amorphous potassium-rich birnessite, which has a layered mineral structure with an interlayer spacing of 7.3 Å. The chemical formula is K 0.854Mn 1.786O 4·1.55H 2O. It has a relatively small specific surface area at 23.6±0.82 m 2/g. Its point of zero charge (pzc) was measured as 3.7±0.4. This birnessite is a relatively active species and could participate in various reactions with existing organic and inorganic matter. The dissolution kinetics of Mn oxide was evaluated in batch experiments using solutions of citric acid, oxalic acid, and ethylenediaminetetraacetic acid (EDTA). Initial dissolution rates were determined to be 0.126 mM/m 2/h for citric acid, 1.35 mM/m 2/h for oxalic acid, and 5.176 mM/m 2/h for EDTA. These rates compare with 0.0025 mM/m 2/h for nitric acid at pH=2. Organic acids dissolve Mn oxide quickly. Reaction rates increase with acid concentration, as tested with citric acid. The dissolution mechanism likely involves proton and ligand-promoted dissolution and reductive dissolution. Citric and oxalic acid can induce ligand-promoted dissolution, while EDTA can induce ligand-promoted and reductive dissolutions. At low pH, proton-promoted dissolution seems to occur with all the acids tested, but this process is not dominant. Reductive dissolution appears to be the most effective process in dissolving the solid, followed by ligand-promoted dissolution. These experiments indicate the significant potential in using these organic acids to remove precipitates formed during the oxidation reaction.

  20. Dissolution enhancement of chlorzoxazone using cogrinding technique

    PubMed Central

    Raval, Mihir K.; Patel, Jaydeep M.; Parikh, Rajesh K.; Sheth, Navin R.

    2015-01-01

    Purpose: The aim of the present work was to improve rate of dissolution and processing parameters of BCS class II drug, chlorzoxazone using cogrinding technique in the presence of different excipients as a carrier. Materials and Methods: The drug was coground with various carriers like polyethylene glycol (PEG 4000), hydroxypropyl methylcellulose (HPMC) E50LV, polyvinylpyrrolidone (PVP)K30, Kaolin and Neusilin US2 using ball mill, where only PEG 4000 improved dissolution rate of drug by bringing amorphization in 1:3 ratio. The coground mixture after 3 and 6 h was evaluated for various analytical, physicochemical and mechanical parameters. Results: The analysis showed conversion of Chlorzoxazone from its crystalline to amorphization form upon grinding with PEG 4000. Coground mixture as well as its directly compressed tablet showed 2.5-fold increment in the dissolution rate compared with pure drug. Directly compressible tablets prepared from pure drug required a large quantity of microcrystalline cellulose (MCC) during compression. The coground mixture and formulation was found stable in nature even after storage (40°C/75% relative humidity). Conclusions: Cogrinding can be successfully utilized to improve the rate of dissolution of poorly water soluble drugs and hence bioavailability. PMID:26682195

  1. The mechanisms of drug release from solid dispersions in water-soluble polymers.

    PubMed

    Craig, Duncan Q M

    2002-01-14

    Solid dispersions in water-soluble carriers have attracted considerable interest as a means of improving the dissolution rate, and hence possibly bioavailability, of a range of hydrophobic drugs. However, despite the publication of numerous original papers and reviews on the subject, the mechanisms underpinning the observed improvements in dissolution rate are not yet understood. In this review the current consensus with regard to the solid-state structure and dissolution properties of solid dispersions is critically assessed. In particular the theories of carrier- and drug-controlled dissolution are highlighted. A model is proposed whereby the release behaviour from the dispersions may be understood in terms of the dissolution or otherwise of the drug into the concentrated aqueous polymer layer adjacent to the solid surface, including a derivation of an expression to describe the release of intact particles from the dispersions. The implications of a deeper understanding of the dissolution mechanisms are discussed, with particular emphasis on optimising the choice of carrier and manufacturing method and the prediction of stability problems.

  2. Role of Solvents in Improvement of Dissolution Rate of Drugs: Crystal Habit and Crystal Agglomeration

    PubMed Central

    Maghsoodi, Maryam

    2015-01-01

    Crystallization is often used for manufacturing drug substances. Advances of crystallization have achieved control over drug identity and purity, but control over the physical form remains poor. This review discusses the influence of solvents used in crystallization process on crystal habit and agglomeration of crystals with potential implication for dissolution. According to literature it has been known that habit modification of crystals by use of proper solvents may enhance the dissolution properties by changing the size, number and the nature of crystal faces exposed to the dissolution medium. Also, the faster dissolution rate of drug from the agglomerates of crystals compared with the single crystals may be related to porous structure of the agglomerates and consequently their better wettability. It is concluded from this review that in-depth understanding of role of the solvents in crystallization process can be applied to engineering of crystal habit or crystal agglomeration, and predictably dissolution improvement in poorly soluble drugs. PMID:25789214

  3. Dolomite dissolution rates and possible Holocene dedolomitization of water-bearing units in the Edwards aquifer, south-central Texas

    USGS Publications Warehouse

    Deike, R.G.

    1990-01-01

    Rates of dolomite dissolution can be used to test the concept, based on geomorphologic evidence, that a major part of the Edwards aquifer could have formed within the Holocene, a timeframe of approximately 10,000 years. During formation of the aquifer in the Edwards limestone (Cretaceous, Albian) of the Balcones fault zone, dolomite dissolution and porosity development were synchronous and the result of mixing-zone dedolomitization. Initiation of the mixing zone in the early Holocene (???11,000 years before present) is suggested by the maximum age of formation of major discharge sites that allowed the influx of meteoric water into brine-filled, dolomitic preaquifer units. Dedolomitization, the dissolution of dolomite and net precipitation of calcite, has left aquifer units that are calcitic, and 40 vol.% interconnected pore space. The mass of dolomite missing is obtained by comparison of stratigraphically equivalent altered and unaltered units. One dissolution rate (1.76 ?? 10-4 mmol dolomite kgH2O-1yr-1) is determined from this mass, 104yr reaction time, and a log-linear function describing the increase in mass discharge (three orders of magnitude) during aquifer formation. The second estimated dissolution rate is obtained from the mass transfer of dolomite to solution calculated from the increase in magnesium in pore fluids selected from the modern aquifer to represent a typical flowpath during aquifer formation. A reaction time of 104yr for this mass transfer yields a rate of 0.56 ?? 10-4 mmol dolomite kgH2O-1yr-1. Both of these rates are comparable to modern rates of dolomite dissolution (0.3 to 4.5 ?? 10-4 mmol dolomite kgH2O-1yr-1) calculated from measured reaction times in the Tertiary Floridan aquifer system in Florida and the Madison aquifer in the Mississippian Madison Limestone of the Northern Great Plains. Similarity of these rates to the estimated paleo-rates of dolomite dissolution supports a 104 yr reaction timeframe. The Holocene reaction time also can be compared to a series of reaction times calculated by assuming that the mass of dolomite missing from the Edwards was removed at rates observed in the Floridan and Madison aquifers. These reaction times (for complete removal of dolomite) range from 2700 to 58,500 yr and span the Pleistocene-Holocene boundary. Finally, an estimated dolomite reaction rate during dedolomitization of the Edwards aquifer based on surface area of exposed dolomite [mmol cm-2s-1 (millimoles per square centimeter per second)] may be approximated from reaction times. This rate is directly a function of the mass of dolomite removed and the surface area exposed per pore volume passing through the rock. The surface area is available from the observed dolomite rhomb size in unaltered rock. The rate of pore fluid movement is obtained from the averaged annual discharge. Rates during formation of the Edwards aquifer calculated from all reaction times range from 10-13 to 10-14 mmol dolomite cm-2s-1. These rates are faster than rates (10-18 mmol cm-2s-1), measured in the pure laboratory system, CaMg(CO3)2CO2H2O, but slower than rates determined in an alpine stream study (10-10 to 10-11 mmol cm-2s-1) where cold glacial melt water flows over dolostone. Dolomite dissolution rates from both the Edwards and other aquifers support the concept that a major part of the Edwards aquifer could have formed within the Holocene. ?? 1990.

  4. Assimilation by lunar mare basalts: Melting of crustal material and dissolution of anorthite

    NASA Astrophysics Data System (ADS)

    Finnila, A. B.; Hess, P. C.; Rutherford, M. J.

    1994-07-01

    We discuss techniques for calculating the amount of crustal assimilation possible in lunar magma chambers and dikes based on thermal energy balances, kinetic rates, and simple fluid mechanical constraints. Assuming parent magmas of picritic compositions, we demonstrate the limits on the capacity of such magmas to melt and dissolve wall rock of anorthitic, troctolitic, noritic, and KREEP (quartz monzodiorite) compositions. Significant melting of the plagioclase-rich crustal lithologies requires turbulent convection in the assimilating magma and an efficient method of mixing in the relatively buoyant and viscous new melt. Even when this occurs, the major element chemistry of the picritic magmas will change by less than 1-2 wt %. Diffusion coefficients measured for Al2O3 from an iron-free basalt and an orange glass composition are 10-12 sq m/s at 1340 C and 10-11 sq m/s at 1390 C. These rates are too slow to allow dissolution of plagioclase to significantly affect magma compositions. Picritic magmas can melt significant quantities of KREEP, which suggests that their trace element chemistry may still be affected by assimilation processes; however, mixing viscous melts of KREEP composition with the fluid picritic magmas could be prohibitively difficult. We conclude that only a small part of the total major element chemical variation in the mare basalt and volcanic glass collection is due to assimilation/fractional crystallization processes near the lunar surface. Instead, most of the chemical variation in the lunar basalts and volcanic glasses must result from assimilation at deeper levels or from having distinct source regions in a heterogeneous lunar mantle.

  5. Acid volatile sulfides oxidation and metals (Mn, Zn) release upon sediment resuspension: laboratory experiment and model development.

    PubMed

    Hong, Yong Seok; Kinney, Kerry A; Reible, Danny D

    2011-03-01

    Sediment from the Anacostia River (Washington, DC, USA) was suspended in aerobic artificial river water for 14 d to investigate the dynamics of dissolved metals release and related parameters including pH, acid volatile sulfides (AVS), and dissolved/solid phase Fe(2+). To better understand and predict the underlying processes, a mathematical model is developed considering oxidation of reduced species, dissolution of minerals, pH changes, and pH-dependent metals' sorption to sediment. Oxidation rate constants of elemental sulfur and zinc sulfide, and a dissolution rate constant of carbonate minerals, were adjusted to fit observations. The proposed model and parameters were then applied, without further calibration, to literature-reported experimental observations of resuspension in an acid sulfate soil collected in a coastal flood plain. The model provided a good description of the dynamics of AVS, Fe(2+), S(0)((s)), pH, dissolved carbonates concentrations, and the release of Ca((aq)), Mg((aq)), and Zn((aq)) in both sediments. Accurate predictions of Mn((aq)) release required adjustment of sorption partitioning coefficient, presumably due to the presence of Mn scavenging by phases not accounted for in the model. The oxidation of AVS (and the resulting release of sulfide-bound metals) was consistent with a two-step process, a relatively rapid AVS oxidation to elemental sulfur (S(0)((s))) and a slow oxidation of S(0)((s)) to SO(4)(2-)((aq)), with an associated decrease in pH from neutral to acidic conditions. This acidification was the dominant factor for the release of metals into the aqueous phase. Copyright © 2010 SETAC.

  6. Assimilation by lunar mare basalts: Melting of crustal material and dissolution of anorthite

    NASA Technical Reports Server (NTRS)

    Finnila, A. B.; Hess, P. C.; Rutherford, M. J.

    1994-01-01

    We discuss techniques for calculating the amount of crustal assimilation possible in lunar magma chambers and dikes based on thermal energy balances, kinetic rates, and simple fluid mechanical constraints. Assuming parent magmas of picritic compositions, we demonstrate the limits on the capacity of such magmas to melt and dissolve wall rock of anorthitic, troctolitic, noritic, and KREEP (quartz monzodiorite) compositions. Significant melting of the plagioclase-rich crustal lithologies requires turbulent convection in the assimilating magma and an efficient method of mixing in the relatively buoyant and viscous new melt. Even when this occurs, the major element chemistry of the picritic magmas will change by less than 1-2 wt %. Diffusion coefficients measured for Al2O3 from an iron-free basalt and an orange glass composition are 10(exp -12) sq m/s at 1340 C and 10(exp -11) sq m/s at 1390 C. These rates are too slow to allow dissolution of plagioclase to significantly affect magma compositions. Picritic magmas can melt significant quantities of KREEP, which suggests that their trace element chemistry may still be affected by assimilation processes; however, mixing viscous melts of KREEP composition with the fluid picritic magmas could be prohibitively difficult. We conclude that only a small part of the total major element chemical variation in the mare basalt and volcanic glass collection is due to assimilation/fractional crystallization processes near the lunar surface. Instead, most of the chemical variation in the lunar basalts and volcanic glasses must result from assimilation at deeper levels or from having distinct source regions in a heterogeneous lunar mantle.

  7. A New Superalloy Enabling Heavy Duty Gas Turbine Wheels for Improved Combined Cycle Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Detor, Andrew; DiDomizio, Richard; McAllister, Don

    The drive to increase combined cycle turbine efficiency from 62% to 65% for the next-generation advanced cycle requires a new heavy duty gas turbine wheel material capable of operating at 1200°F and above. Current wheel materials are limited by the stability of their major strengthening phase (gamma double prime), which coarsens at temperatures approaching 1200°F, resulting in a substantial reduction in strength. More advanced gamma prime superalloys, such as those used in jet engine turbine disks, are also not suitable due to size constraints; the gamma prime phase overages during the slow cooling rates inherent in processing thick-section turbine wheels.more » The current program addresses this need by screening two new alloy design concepts. The first concept exploits a gamma prime/gamma double prime coprecipitation reaction. Through manipulation of alloy chemistry, coprecipitation is controlled such that gamma double prime is used only to slow the growth of gamma prime during slow cooling, preventing over-aging, and allowing for subsequent heat treatment to maximize strength. In parallel, phase field modeling provides fundamental understanding of the coprecipitation reaction. The second concept uses oxide dispersion strengthening to improve on two existing alloys that exhibit excellent hold time fatigue crack growth resistance, but have insufficient strength to be considered for gas turbine wheels. Mechanical milling forces the dissolution of starting oxide powders into a metal matrix allowing for solid state precipitation of new, nanometer scale oxides that are effective at dispersion strengthening.« less

  8. Insight into Flufenamic Acid Cocrystal Dissolution in the Presence of a Polymer in Solution: from Single Crystal to Powder Dissolution.

    PubMed

    Guo, Minshan; Wang, Ke; Qiao, Ning; Fábián, László; Sadiq, Ghazala; Li, Mingzhong

    2017-12-04

    Effects of three polymers, polyethylene glycol (PEG), polyvinylpyrrolidone (PVP), and copolymer of vinylpyrrolidone/vinyl acetate (PVP-VA), on the dissolution behavior of the cocrystals of flufenamic acid with theophylline (FFA-TP CO) and nicotinamide (FFA-NIC CO) were investigated at multiple length scales. At the molecular level, the interactions of crystal surfaces with a polymer were analyzed by observing etching pattern changes using atomic force microscopy. At the macroscopic scale, dissolution rates of particular faces of a single crystal were determined by measurement of the physical retreat velocities of the faces using optical light microscopy. In the bulk experiments, the FFA concentration in a dissolution medium in the absence or presence of a polymer was measured under both sink and nonsink conditions. It has been found that the dissolution mechanisms of FFA-TP CO are controlled by the defect sites of the crystal surface and by precipitation of the parent drug FFA as individual crystals in the bulk fluid. In contrast, the dissolution mechanisms of FFA-NIC CO are controlled by surface layer removal and by a surface precipitation mechanism, where the parent drug FFA precipitates directly onto the surface of the dissolving cocrystals. Through controlling the dissolution environment by predissolving a polymer, PVP or PVP-VA, which can interact with the crystal surface to alter its dissolution properties, improved solubility, and dissolution rates of FFA-TP CO and FFA-NIC CO have been demonstrated.

  9. Quality-by-design case study: investigation of the role of poloxamer in immediate-release tablets by experimental design and multivariate data analysis.

    PubMed

    Kaul, Goldi; Huang, Jun; Chatlapalli, Ramarao; Ghosh, Krishnendu; Nagi, Arwinder

    2011-12-01

    The role of poloxamer 188, water and binder addition rate, on retarding dissolution in immediate-release tablets of a model drug from BCS class II was investigated by means of multivariate data analysis (MVDA) combined with design of experiments (DOE). While the DOE analysis yielded important clues into the cause-and-effect relationship between the responses and design factors, multivariate data analysis of the 40+ variables provided additional information on slowdown in tablet dissolution. A steep dependence of both tablet dissolution and disintegration on the poloxamer and less so on other design variables was observed. Poloxamer was found to increase dissolution rates in granules as expected of surfactants in general but retard dissolution in tablets. The unexpected effect of poloxamer in tablets was accompanied by an increase in tablet-disintegration-time-mediated slowdown of tablet dissolution and by a surrogate binding effect of poloxamer at higher concentrations. It was additionally realized through MVDA that poloxamer in tablets either acts as a binder by itself or promotes binder action of the binder povidone resulting in increased intragranular cohesion. Additionally, poloxamer was found to mediate tablet dissolution on stability as well. In contrast to tablet dissolution at release (time zero), poloxamer appeared to increase tablet dissolution in a concentration-dependent manner on accelerated open-dish stability. Substituting polysorbate 80 as an alternate surfactant in place of poloxamer in the formulation was found to stabilize tablet dissolution.

  10. A Novel Approach to Experimental Studies of Mineral Dissolution Kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Zhu

    2006-08-31

    Currently, DOE is conducting pilot CO{sub 2} injection tests to evaluate the concept of geological sequestration. One strategy that potentially enhances CO{sub 2} solubility and reduces the risk of CO{sub 2} leak back to the surface is dissolution of indigenous minerals in the geological formation and precipitation of secondary carbonate phases, which increases the brine pH and immobilizes CO{sub 2}. Clearly, the rates at which these dissolution and precipitation reactions occur directly determine the efficiency of this strategy. However, one of the fundamental problems in modern geochemistry is the persistent two to five orders of magnitude discrepancy between laboratory measuredmore » and field derived feldspar dissolution rates. To date, there is no real guidance as to how to predict silicate reaction rates for use in quantitative models. Current models for assessment of geological carbon sequestration have generally opted to use laboratory rates, in spite of the dearth of such data for compositionally complex systems, and the persistent disconnect between laboratory and field applications. Therefore, a firm scientific basis for predicting silicate reaction kinetics in CO2 injected geological formations is urgently needed to assure the reliability of the geochemical models used for the assessments of carbon sequestration strategies. The funded experimental and theoretical study attempts to resolve this outstanding scientific issue by novel experimental design and theoretical interpretation to measure silicate dissolution rates and iron carbonate precipitation rates at conditions pertinent to geological carbon sequestration. In the second year of the project, we completed CO{sub 2}-Navajo sandstone interaction batch and flow-through experiments and a Navajo sandstone dissolution experiment without the presence of CO{sub 2} at 200 C and 250-300 bars, and initiated dawsonite dissolution and solubility experiments. We also performed additional 5-day experiments at the same conditions as alkali-feldspar dissolution experiments with and without the presence of CO{sub 2} performed in the first year to check the validation of the experiments and analysis. The changes of solution chemistry as dissolution experiments progressed were monitored with on-line sampling of the aqueous phase at the constant temperature and pressure. These data allow calculating overall apparent mineral (feldspars and sandstones) dissolution rates and secondary mineral precipitation rates as a function of saturation states. State-of-the-art atomic resolution transmission electron microscopy (TEM), scanning electron microscopy (SEM), and electron microprobe was used to characterize the products and reactants. Reaction-path geochemical modeling was used to interpret the experimental results of alkali-feldspar dissolution experiments without the presence of CO{sub 2}. Two manuscripts are near completion. Also during the second year, our education goal of graduate student training has been advanced. A Ph. D. student at Indiana University is progressing well in the degree program and has taken geochemical modeling, SEM, and TEM courses, which will facilitate research in the third year. A Ph. D. student at University of Minnesota had graduated. With the success of training of graduate students and excellent experimental data in the second year, we anticipate a more fruitful year in the third year.« less

  11. Investigation of Oral Preparation That Is Expected to Improve Medication Administration: Preparation and Evaluation of Oral Gelling Tablet Using Sodium Alginate.

    PubMed

    Ito, Ikumi; Ito, Akihiko; Unezaki, Sakae

    2017-01-01

    We investigated the preparation of a gelling tablet that swells and forms a gel upon absorbing water, and hence would be easy for patients to swallow. We prepared naked tablets and compressed coated tablets by the direct tableting or wet granule-compression methods, using the commonly prescribed drug acetaminophen (AA) and sodium alginate (AG) as a thickening agent. The tablets quickly absorbed water, had favorable gelling properties, low adhesiveness, appropriate drug dissolution profile, and at the same time, were easy to swallow. In the case of naked tablets, water absorption increased upon granulation, but gelling of AG interfere when AA and AG were present together. There was no change in the adhesiveness, and more than 30 min were required to achieve a 25% dissolution ratio. Compressed coated tablets that were made with AA in the inner layer and granulated AG in the outer layer showed improved dissolution behavior, it was about 90% dissolution ratio in 30 min, owing to the water absorption property of AG, and decreased adhesiveness. In this case, there was a difference in the outer layer thickness. As the outer layer amount increased, dissolution slowed, but it did not depend on the compression pressure. Our gelling tablet can be prepared by using AA (main drug) in the inner layer and an appropriate thickness of granulated AG in the outer layer of compressed coated tablets.

  12. Dissolution Kinetics of Meta-Torbernite under Circum-neutral to Alkaline Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wellman, Dawn M.; McNamara, Bruce K.; Bacon, Diana H.

    2009-12-21

    Autunite group minerals have been identified in contaminated sediments as the long-term controlling phase of uranium. Meta-torbernite, has been identified in subsurface environments which were subjected to co-contaminant disposal practices from past nuclear weapons and fuel operations. Under these conditions the mobility of uranium in subsurface pore waters is limited by the rate of meta-torbernite dissolution; however, there are no known investigations which report the dissolution behavior of meta-torbernite. The purpose of this investigation was to conduct a series of single-pass flow-through (SPFT) tests to 1) quantify the effect of temperature (23 - 90oC) and pH (6 -10) on meta-torbernitemore » dissolution, 2) compare the dissolution of meta-torbernite to other autunite-group minerals, and 3) evaluate the effect of aqueous phosphate on the dissolution kinetics of meta-torbernite. Results presented here illustrate meta-torbernite dissolution rates increase by ~100X over the pH interval of 6 to 10 (eta = 0.59 ± 0.07), irrespective of temperature. The power law coefficient for meta-torbernite, eta = 0.59 ± 0.07, is greater than that quantified for Ca-meta-autunite, eta = 0.42 ± 0.12. This suggests the stability of meta-torbernite is greater than that of meta-autunite, which is reflected in the predicted stability constants. The rate equation for the dissolution of meta-torbernite as a function of aqueous phosphate concentration is log rdissol (mol m-2 sec-1) = -4.7 x 10-13 + 4.1 x 10-10 [PO43-].« less

  13. Disposal of Industrial and Domestic Wastes: Land and Sea Alternatives.

    DTIC Science & Technology

    1984-01-01

    square kilometers. The rough classification of physical, chemical , and biological processes into near field versus far field and short term versus...contaminants by sedimentation is slowed. Chemical Precipitation and Dissolution During the few minutes of the initial dilution of a buoyant plume ...model. Time and space scales of physical, chemical , and biological processes often provide natural divisions in such modeling. Near -field and far-field

  14. Bio resorbability of the modified hydroxyapatite in Tris-HCL buffer

    NASA Astrophysics Data System (ADS)

    Golovanova, O. A.; Izmailov, R. R.; Ghyngazov, S. A.

    2016-02-01

    The solubility of carbonated hydroxyapatite powders and granulated carbonated hydroxyapatite produced from the synovial biofluid model solution has been studied. The kinetic characteristics of dissolution were determined. It was found that the solubility of carbonated hydroxyapatite is higher as compared to that of hydroxyapatite. The impact of the organic matrix on the rate of sample dissolution was revealed. For HA-gelatin composites, as the gelatin concentration grows, the dissolution rate becomes greater, and a sample of 6.0 g / L concentration has higher resorbability. The results of the research can be used to study the kinetics of dissolution and the biocompatibility of ceramic materials for medicine, namely for reconstructive surgery, dentistry, and development of drug delivery systems.

  15. Effects of ocean acidification on the dissolution rates of reef-coral skeletons.

    PubMed

    van Woesik, Robert; van Woesik, Kelly; van Woesik, Liana; van Woesik, Sandra

    2013-01-01

    Ocean acidification threatens the foundation of tropical coral reefs. This study investigated three aspects of ocean acidification: (i) the rates at which perforate and imperforate coral-colony skeletons passively dissolve when pH is 7.8, which is predicted to occur globally by 2100, (ii) the rates of passive dissolution of corals with respect to coral-colony surface areas, and (iii) the comparative rates of a vertical reef-growth model, incorporating passive dissolution rates, and predicted sea-level rise. By 2100, when the ocean pH is expected to be 7.8, perforate Montipora coral skeletons will lose on average 15 kg CaCO3 m(-2) y(-1), which is approximately -10.5 mm of vertical reduction of reef framework per year. This rate of passive dissolution is higher than the average rate of reef growth over the last several millennia and suggests that reefs composed of perforate Montipora coral skeletons will have trouble keeping up with sea-level rise under ocean acidification. Reefs composed of primarily imperforate coral skeletons will not likely dissolve as rapidly, but our model shows they will also have trouble keeping up with sea-level rise by 2050.

  16. [Evaluation of Dissolution Profiles of Famotidine from Over-the-counter Drugs].

    PubMed

    Saito, Yuji; Adachi, Naoki; Kato, Miki; Nadai, Masayuki

    2018-03-27

      In recent years, self-medication has started to receive more attention in Japan owing to increasing medical costs and health awareness among people. One of the main roles of pharmacists in self-medication is to provide appropriate information regarding over-the-counter (OTC) drugs. However, pharmacists promoting the proper use of OTC drugs have little information on their formulation properties. In this study, we performed dissolution tests on both OTC drugs and ethical drug (ED) containing famotidine, and evaluated the differences in their dissolution profiles. Marked differences in dissolution profiles of OTC drugs were observed in test solutions at pH 1.2, 4.0, and 6.8 and in water. To evaluate the differences quantitatively, we calculated the lag time and dissolution rate constant from the dissolution profiles. Significant differences in lag times and dissolution rate constants between some OTC drugs and ED were observed. We also used similarity factor (f2), to quantify the similarity between dissolution profiles of OTC drugs and ED. f2 values less than 42 were observed in some OTC drugs, suggesting that these differences might influence absorption in vivo resulting in differences in their onset time and efficacy. The findings of this study will provide useful information for the promotion of proper use of OTC drugs.

  17. The influence of pH on biotite dissolution and alteration kinetics at low temperature

    USGS Publications Warehouse

    Acker, James G.; Bricker, O.P.

    1992-01-01

    Biotite dissolution rates in acidic solutions were determined in fluidized-bed reactors and flowthrough columns. Biotite dissolution rates increased inversely as a linear function of pH in the pH range 3-7, where the rate order n = -0.34. Biotite dissolved incongruently over this pH range, with preferential release of magnesium and iron from the octahedral layer. Release of tetrahedral silicon was much greater at pH 3 than at higher pH. Iron release was significantly enhanced by low pH conditions. Solution compositions from a continuous exposure flow-through column of biotite indicated biotite dissolves incongruently at pH 4, consistent with alteration to a vermiculite-type product. Solution compositions from a second intermittent-flow column exhibited elevated cation release rates upon the initiation of each exposure to solution. The presence of strong oxidizing agents, the mineral surface area, and sample preparation methodology also influenced the dissolution or alteration kinetics of biotite. ?? 1992.

  18. Solid dispersions, part II: new strategies in manufacturing methods for dissolution rate enhancement of poorly water-soluble drugs.

    PubMed

    Bikiaris, Dimitrios N

    2011-12-01

    The absorption of poorly water-soluble drugs, when presented in the crystalline state to the gastrointestinal tract, is typically dissolution rate-limited, and according to BCS these drugs belong mainly to class II. Both dissolution kinetics and solubility are particle size dependent. Nowadays, various techniques are available to the pharmaceutical industry for dissolution rate enhancement of such drugs. Among such techniques, nanosuspensions and drug formulation in solid dispersions are those with the highest interest. This review discusses strategies undertaken over the last 10 years, which have been applied for the dissolution enhancement of poorly water-soluble drugs; such processes include melt mixing, electrospinning, microwave irradiation and the use of inorganic nanoparticles. Many problems in this field still need to be solved, mainly the use of toxic solvents, and for this reason the use of innovative new procedures and materials will increase over the coming years. Melt mixing remains extremely promising for the preparation of SDs and will probably become the most used method in the future for the preparation of solid drug dispersions.

  19. The dissolution of calcite in CO2-saturated solutions at 25°C and 1 atmosphere total pressure

    USGS Publications Warehouse

    Plummer, Niel; Wigley, T.M.L.

    1976-01-01

    The dissolution of Iceland spar in CO2-saturated solutions at 25°C and 1 atm total pressure has been followed by measurement of pH as a function of time. Surface concentrations of reactant and product species have been calculated from bulk fluid data using mass transport theory and a model that accounts for homogeneous reactions in the bulk fluid. The surface concentrations are found to be close to bulk solution values. This indicates that calcite dissolution under the experimental conditions is controlled by the kinetics of surface reaction. The rate of calcite dissolution follows an empirical second order relation with respect to calcium and hydrogen ion from near the initial condition (pH 3.91) to approximately pH 5.9. Beyond pH 5.9 the rate of surface reaction is greatly reduced and higher reaction orders are observed. Calculations show that the rate of calcite dissolution in natural environments may be influenced by both transport and surface-reaction processes. In the absence of inhibition, relatively short times should be sufficient to establish equilibrium.

  20. Effects of coformers on phase transformation and release profiles of carbamazepine cocrystals in hydroxypropyl methylcellulose based matrix tablets.

    PubMed

    Qiu, Shi; Li, Mingzhong

    2015-02-01

    The aim of this study was to investigate the effects of coformers on phase transformation and release profiles of carbamazepine (CBZ) cocrystals in hydroxypropyl methylcellulose (HPMC) based matrix tablets. It has been found that selection of different coformers of saccharin (SAC) and cinnamic acid (CIN) can affect the stability of CBZ cocrystals in solution, resulting in significant differences in the apparent solubility of CBZ. The dissolution advantage of CBZ-SAC cocrystals can only be shown for a short period during dissolution because of the fast conversion to its dihydrate form (DH). HPMC can partially inhibit the crystallisation of CBZ DH during dissolution of CBZ-SAC cocrystal. However, the increased viscosity of HPMC dissolution medium reduced the dissolution rate of CBZ-SAC cocrystals. Therefore the CBZ-SAC cocrystal formulation did not show any significant advantage in CBZ release rate. In contrast the improved CBZ dissolution rate of CBZ-CIN cocrystal can be realised in both solution and formulation due to its high stability. In conclusion, exploring and understanding the mechanisms of the phase transformation of pharmaceutical cocrystals in aqueous medium for selection of lead cocrystals is the key for success of product development. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Differing disintegration and dissolution rates, pharmacokinetic profiles and gastrointestinal tolerability of over the counter ibuprofen formulations.

    PubMed

    Bjarnason, Ingvar; Sancak, Ozgur; Crossley, Anne; Penrose, Andrew; Lanas, Angel

    2018-02-01

    Formulations of over the counter (OTC) NSAIDs differ substantially, but information is lacking on whether this alters their gastrointestinal profiles. To assess disintegration and dissolution rates and pharmacokinetics of four preparations of OTC ibuprofen and relate these with spontaneously reported gastrointestinal adverse events. Disintegration and dissolution rates of ibuprofen tablets as (a) acid, (b) sodium salt, (c) lysine salt, and (d) as a liquid gelatine capsule were assessed. Pharmacokinetic data gastrointestinal and spontaneously reported adverse events arising from global sales were obtained from files from Reckitt Benckiser. Disintegration at low pH was progressively shorter for the preparations from a-to-d with formation of correspondingly smaller ibuprofen crystals, while dissolution was consistently poor. Dissolution at a neutral pH was least rapid for the liquid gelatine capsule. Pharmacokinetic data showed a shorter t max and a higher C max for preparations b-d as compared with ibuprofen acid. Spontaneously reported abdominal symptoms were rare with the liquid gelatine preparation. The formulations of OTC ibuprofen differ in their disintegration and dissolution properties, pharmacokinetic profiles and apparent gastrointestinal tolerability. Spontaneously reported abdominal symptoms were five times lower with the liquid gelatine capsule as compared with ibuprofen acid despite a 30% increase in C max . © 2017 Royal Pharmaceutical Society.

  2. Oxidative dissolution of silver nanoparticles: A new theoretical approach.

    PubMed

    Adamczyk, Zbigniew; Oćwieja, Magdalena; Mrowiec, Halina; Walas, Stanisław; Lupa, Dawid

    2016-05-01

    A general model of an oxidative dissolution of silver particle suspensions was developed that rigorously considers the bulk and surface solute transport. A two-step surface reaction scheme was proposed that comprises the formation of the silver oxide phase by direct oxidation and the acidic dissolution of this phase leading to silver ion release. By considering this, a complete set of equations is formulated describing oxygen and silver ion transport to and from particles' surfaces. These equations are solved in some limiting cases of nanoparticle dissolution in dilute suspensions. The obtained kinetic equations were used for the interpretation of experimental data pertinent to the dissolution kinetics of citrate-stabilized silver nanoparticles. In these kinetic measurements the role of pH and bulk suspension concentration was quantitatively evaluated by using the atomic absorption spectrometry (AAS). It was shown that the theoretical model adequately reflects the main features of the experimental results, especially the significant increase in the dissolution rate for lower pH. Also the presence of two kinetic regimes was quantitatively explained in terms of the decrease in the coverage of the fast dissolving oxide layer. The overall silver dissolution rate constants characterizing these two regimes were determined. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Effect of Food Thickener on Dissolution and Laxative Activity of Magnesium Oxide Tablets in Mice.

    PubMed

    Tomita, Takashi; Goto, Hidekazu; Yoshimura, Yuya; Kato, Kazushige; Yoshida, Tadashi; Tanaka, Katsuya; Sumiya, Kenji; Kohda, Yukinao

    2016-01-01

    The present study examined the dissolution of magnesium oxide (MgO) from MgO tablets placed in a food thickening agent (food thickener) and its effects on laxative activity. We prepared mixtures of MgO tablets suspended in an aqueous suspension and food thickeners in order to evaluate the dissolution of MgO. The results of the dissolution tests revealed that agar-based food thickeners did not affect the MgO dissolution. In contrast, some xanthan gum-based food-thickener products show dissolution rates with certain mixtures containing disintegrated MgO tablets suspended in a food thickener that decrease over time. However, other xanthan gum-based food-thickener products show dissolution rates that decrease immediately after mixing, regardless of the time they were allowed to stand. In order to investigate the laxative activity of MgO, we orally administered a mixture of MgO suspension and food thickener to mice and observed their bowel movements. The animal experiments showed that when agar-based food thickeners were used, the laxative activity of MgO was not affected, but it decreased when xanthan gum-based food thickeners were used.

  4. The dissolution of quartz in dilute aqueous solutions of organic acids at 25°C

    USGS Publications Warehouse

    Bennett, P.C.; Melcer, M.E.; Siegel, D.I.; Hassett, J.P.

    1988-01-01

    The dissolution of quartz in dilute aqueous solutions of organic acids at 25° and standard pressure was investigated by the batch dissolution method. The bulk dissolution rate of quartz in 20 mmole/Kg citrate solutions at pH 7 was 8 to 10 times faster than that in pure water. After 1750 hours the concentration of dissolved silica in the citrate solution was 167 μmole/Kg compared to 50 μmole/Kg in water and a 20 mmole/Kg solution of acetate at pH 7. Solutions of salicylic, oxalic, and humic acids also accelerated the dissolution of quartz in aqueous solution at pH 7. The rate of dissolution in organic acids decreased sharply with decreasing pH.The possibility of a silica-organic acid complex was investigated using UV-difference spectroscopy. Results suggest that dissolved silica is complexed by citrate, oxalate and pyruvate at pH 7 by an electron-donor acceptor complex, whereas no complexation occurs between silica and acetate, lactate, malonate, or succinate. Three models are proposed for the solution and surface complexation of silica by organic acid anions which result in the accelerated dissolution and increased solubility of quartz in organic rich water.

  5. Carboxylate-containing chelating agent interactions with amorphous chromium hydroxide: Adsorption and dissolution

    NASA Astrophysics Data System (ADS)

    Carbonaro, Richard F.; Gray, Benjamin N.; Whitehead, Charles F.; Stone, Alan T.

    2008-07-01

    Anthropogenic chelating agents and biological chelating agents produced by indigenous organisms may dissolve Cr III (hydr)oxides in soils and sediments. The resulting dissolved Cr III-chelating agent complexes are more readily transported through porous media, thereby spreading contamination. With this work, we examine chelating agent-assisted dissolution of amorphous chromium hydroxide (ACH) by the (amino)carboxylate chelating agents iminodiacetic acid (IDA), nitrilotriacetic acid (NTA), tricarballylic acid (TCA), citric acid (CIT), ethylenediaminetetraacetic acid (EDTA), trans-1,2-cyclohexanediaminetetraacetic acid (CDTA), and trimethylenediaminetetraacetic acid (TMDTA). The extent of chelating agent adsorption onto ACH increased quickly over the first few hours, and then increased more gradually until a constant extent was attained. The extent of chelating agent adsorption versus pH followed "ligand-like" behavior. All chelating agents with the exception of TCA and IDA effectively dissolved significant amounts of ACH within 10 days from pH 4.0 to 9.4. IDA dissolved ACH below pH 6.5 and above pH 7.5. Rates of ACH dissolution normalized to the extent of chelating agent adsorption were pH dependent. IDA, NTA, CIT, and CDTA exhibited an increase in normalized dissolution rate with decreasing pH. EDTA and TMDTA exhibited a maximum in normalized dissolution rate near pH 8.5. Use of acetic acid as a pH buffer in experiments decreased the extent of chelating agent adsorption for IDA, NTA, and CIT but increased normalized rates of chelating agent-assisted dissolution for all chelating agents except EDTA. The results from this study provide the necessary information to calculate the extents and time scales of ACH dissolution in the presence of (amino)carboxylate chelating agents.

  6. Behavior of S.A.P. in the Mercury Catalyzed Nitric Acid Dissolution; COMPORTAMENTO DEL S.A.P. ALL'ATTACCO DI SOLUZIONI DI ACIDO NITRICO E NITRATO MERCURICO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beone, G.

    1963-10-01

    Plates of S.A.P. (sintered Aluminum Powder) were dissolved under different conditions in a nitric acid solution containing mercuric nitrate as a catalyst. These experiments nim at establishing a head-end dissolution process for S.A.P. cladded uranium oxide fuels. The results of preliminary dissolution experiments on simulated fuel rods are also described. The behavior of S.A.P. in the mercury catalyzed nitric acid dissolutions differs strongly from the behavior of aluminum: reaction rates are very low for S.A.P. and the dissolution time borders on being unacceptable in an industrial process. Settling rates of suspended alumina are however favorable. A tentative head end flowsheetmore » lay out for PRO second core fuel elements is included. (auth)« less

  7. Predicting the dissolution kinetics of silicate glasses using machine learning

    NASA Astrophysics Data System (ADS)

    Anoop Krishnan, N. M.; Mangalathu, Sujith; Smedskjaer, Morten M.; Tandia, Adama; Burton, Henry; Bauchy, Mathieu

    2018-05-01

    Predicting the dissolution rates of silicate glasses in aqueous conditions is a complex task as the underlying mechanism(s) remain poorly understood and the dissolution kinetics can depend on a large number of intrinsic and extrinsic factors. Here, we assess the potential of data-driven models based on machine learning to predict the dissolution rates of various aluminosilicate glasses exposed to a wide range of solution pH values, from acidic to caustic conditions. Four classes of machine learning methods are investigated, namely, linear regression, support vector machine regression, random forest, and artificial neural network. We observe that, although linear methods all fail to describe the dissolution kinetics, the artificial neural network approach offers excellent predictions, thanks to its inherent ability to handle non-linear data. Overall, we suggest that a more extensive use of machine learning approaches could significantly accelerate the design of novel glasses with tailored properties.

  8. Enhancement of dissolution rate of poorly-soluble active ingredients by supercritical fluid processes. Part I: Micronization of neat particles.

    PubMed

    Perrut, M; Jung, J; Leboeuf, F

    2005-01-06

    In this first of two articles, we discuss some issues surrounding the dissolution rate enhancement of poorly-soluble active ingredients micronized into nano-particles using several supercritical fluid particle design processes including rapid expansion of supercritical solutions (RESS), supercritical anti-solvent (SAS) and particles from gas-saturated solutions/suspensions (PGSS). Experimental results confirm that dissolution rates do not only depend on the surface area and particle size of the processed powder, but are greatly affected by other physico-chemical characteristics such as crystal morphology and wettability that may reduce the benefit of micronization.

  9. Can accurate kinetic laws be created to describe chemical weathering?

    NASA Astrophysics Data System (ADS)

    Schott, Jacques; Oelkers, Eric H.; Bénézeth, Pascale; Goddéris, Yves; François, Louis

    2012-11-01

    Knowledge of the mechanisms and rates of mineral dissolution and growth, especially close to equilibrium, is essential for describing the temporal and spatial evolution of natural processes like weathering and its impact on CO2 budget and climate. The Surface Complexation approach (SC) combined with Transition State Theory (TST) provides an efficient framework for describing mineral dissolution over wide ranges of solution composition, chemical affinity, and temperature. There has been a large debate for several years, however, about the comparative merits of SC/TS versus classical growth theories for describing mineral dissolution and growth at near-to-equilibrium conditions. This study considers recent results obtained in our laboratory on oxides, hydroxides, silicates, and carbonates on near-equilibrium dissolution and growth via the combination of complementary microscopic and macroscopic techniques including hydrothermal atomic force microscopy, hydrogen-electrode concentration cell, mixed flow and batch reactors. Results show that the dissolution and precipitation of hydroxides, kaolinite, and hydromagnesite powders of relatively high BET surface area closely follow SC/TST rate laws with a linear dependence of both dissolution and growth rates on fluid saturation state (Ω) even at very close to equilibrium conditions (|ΔG| < 500 J/mol). This occurs because sufficient reactive sites (e.g. at kink, steps, and edges) are available at the exposed faces for dissolution and/or growth, allowing reactions to proceed via the direct and reversible detachment/attachment of reactants at the surface. In contrast, for magnesite and quartz, which have low surface areas, fewer active sites are available for growth and dissolution. Such minerals exhibit rates dependencies on Ω at near equilibrium conditions ranging from linear to highly non-linear functions of Ω, depending on the treatment of the crystals before the reaction. It follows that the form of the f(ΔG) function describing the growth and dissolution of minerals with low surface areas depends on the availability of reactive sites at the exposed faces and thus on the history of the mineral-fluid interaction and the hydrodynamic conditions under which the crystals are reacted. It is advocated that the crystal surface roughness could serve as a proxy of the density of reactive sites. The consequences of the different rate laws on the quantification of loess weathering along the Mississippi valley for the next one hundred years are examined.

  10. Fe-Containing Allophane and Hisingerite Dissolution and Implications for Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Ralston, S. J.; Hausrath, E. M.; Tschauner, O.; Rampe, E. B.; Clark-Hogancamp, J. V.; Christoffersen, R.

    2017-01-01

    The mass-normalized dissolution rates measured in this study demonstrate that hisingerite and Fe-substituted allophane dissolve rapidly, much faster than crystalline phyllosilicates such as nontronite and kaolinite that have similar compositions. In addition, hisingerite dissolves more rapidly than allophane. Future work will focus on measuring dissolution rates at other pH values, so that dissolution rate laws for allophane and hisingerite can be derived. Results will be used to interpret data from Gale Crater. These initial experiments suggest that, if the liquid water present in Gale Crater was highly acidic, it was likely present for only a short time, allowing some amorphous soil-material similar to allophane to persist. Further experiments will enable us to constrain the timescales over which liquid water was present in Gale Crater and provide insight into its pH. This information is essential to assessing the potential habitability of ancient Mars.

  11. Experimental investigation of the dissolution of fractures. From early stage instability to phase diagram

    NASA Astrophysics Data System (ADS)

    Osselin, Florian; Budek, Agnieszka; Cybulski, Olgierd; Kondratiuk, Pawel; Garstecki, Piotr; Szymczak, Piotr

    2016-04-01

    Dissolution of natural rocks is a fundamental geological process and a key part of landscape formation and weathering processes. Moreover, in current hot topics like Carbon Capture and Storage or Enhanced Oil Recovery, mastering dissolution of the host rock is fundamental for the efficiency and the security of the operation. The basic principles of dissolution are well-known and the theory of the reactive infiltration instability has been extensively studied. However, the experimental aspect has proved very challenging because of the strong dependence of the outcome with pore network, chemical composition, flow rate... In this study we are trying to tackle this issue by using a very simple and efficient device consisting of a chip of pure gypsum inserted between two polycarbonate plates and subjected to a constant flow rate of pure water. Thanks to this device, we are able to control all parameters such as flow rate, fracture aperture, roughness of the walls... but also to observe in situ the progression of the dissolution thanks to the transparency of the polycarbonate which is impossible with 3D rocks. We have been using this experimental set-up to explore and investigate all aspects of the dissolution in a fracture, such as initial instability and phase diagram of different dissolution patterns, and to compare it with theory and simulations, yielding very good agreement and interesting feedbacks on the coupling between flow and chemistry in geological media

  12. Reactive multiphase flow at the pore-scale: the melting of a crystalline framework during the injection of buoyant hot volatiles

    NASA Astrophysics Data System (ADS)

    Andrea, P.; Huber, C.; Bachmann, O.; Chopard, B.

    2010-12-01

    Multiphase reactive flows occur naturally in various environments in the shallow subsurface, e.g. CO2 injections in saturated reservoirs, exsolved methane flux in shallow sediments and H20-CO2 volatiles in magmatic systems. Because of their multiphase nature together with the nonlinear feedbacks between reactions (dissolution/melting or precipitation) and the flow field at the pore-scale, the study of these dynamical processes remains a great challenge. In this study we focus on the injection of buoyant hot volatiles exsolved from a magmatic intrusion underplating a crystal-rich magma (porous medium). We use some simple theoretical models and a pore-scale multiphase reactive lattice Boltzmann model to investigate how the heat carried by the volatile phase affects the evolution of the porous medium spatially and temporally. We find that when the reaction rate is relatively slow and when the injection rate of volatiles is large (high injection Capillary number), the dissolution of the porous medium can be described by a local Peclet number (ratio of advective to diffusive flux of heat/reactant in the main gas channel). When the injection rate of volatile is reduced, or when the reaction rate is large, the dynamics transition to more complex regimes, where subvertical gas channels are no longer stable and can break into disconnected gas slugs. For the case of the injection of hot volatiles in crystal-rich magmatic systems, we find that the excess enthalpy advected by buoyant volatiles penetrates the porous medium over distances ~r Pe, where r is the average radius of the volatile channel (~pore size). The transport of heat by buoyant gases through a crystal mush is therefore in most cases limited to distances < meters. Our results also suggest that buoyant volatiles can carry chemical species (Li,F, Cl) far into a mush as their corresponding local Peclet number is several orders of magnitude greater than that for heat, owing to their low diffusion coefficients.

  13. Modeling NAPL dissolution from pendular rings in idealized porous media

    EPA Science Inventory

    The rate of NAPL dissolution often governs the clean-up time for subsurface hazardous waste sites. Most formulations for estimating this rate are empirical and assume that the NAPL is the non-wetting fluid. However, field evidence suggests that some waste sites might be organic...

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newell, J; Miller, D; Stone, M

    The Savannah River National Laboratory (SRNL) was tasked to provide an assessment of the downstream impacts to the Defense Waste Processing Facility (DWPF) of decisions regarding the implementation of Al-dissolution to support sludge mass reduction and processing. Based on future sludge batch compositional projections from the Liquid Waste Organization's (LWO) sludge batch plan, assessments have been made with respect to the ability to maintain comparable projected operating windows for sludges with and without Al-dissolution. As part of that previous assessment, candidate frits were identified to provide insight into melt rate for average sludge batches representing with and without Al-dissolution flowsheets.more » Initial melt rate studies using the melt rate furnace (MRF) were performed using five frits each for Cluster 2 and Cluster 4 compositions representing average without and with Al-dissolution. It was determined, however, that the REDOX endpoint (Fe{sup 2+}/{Sigma}Fe for the glass) for Clusters 2 and 4 resulted in an overly oxidized feed which negatively affected the initial melt rate tests. After the sludge was adjusted to a more reduced state, additional testing was performed with frits that contained both high and low concentrations of sodium and boron oxides. These frits were selected strictly based on the ability to ascertain compositional trends in melt rate and did not necessarily apply to any acceptability criteria for DWPF processing. The melt rate data are in general agreement with historical trends observed at SRNL and during processing of SB3 (Sludge Batch 3)and SB4 in DWPF. When MAR acceptability criteria were applied, Frit 510 was seen to have the highest melt rate at 0.67 in/hr for Cluster 2 (without Al-dissolution), which is compositionally similar to SB4. For Cluster 4 (with Al-dissolution), which is compositionally similar to SB3, Frit 418 had the highest melt rate at 0.63 in/hr. Based on this data, there appears to be a slight advantage of the Frit 510 based system without Al-dissolution relative to the Frit 418 based system with Al-dissolution. Though the without aluminum dissolution scenario suggests a slightly higher melt rate with frit 510, several points must be taken into consideration: (1) The MRF does not have the ability to assess liquid feeds and, thus, rheology impacts. Instead, the MRF is a 'static' test bed in which a mass of dried melter feed (SRAT product plus frit) is placed in an 'isothermal' furnace for a period of time to assess melt rate. These conditions, although historically effective in terms of identifying candidate frits for specific sludge batches and mapping out melt rate versus waste loading trends, do not allow for assessments of the potential impact of feed rheology on melt rate. That is, if the rheological properties of the slurried melter feed resulted in the mounding of the feed in the melter (i.e., the melter feed was thick and did not flow across the cold cap), melt rate and/or melter operations (i.e., surges) could be negatively impacted. This could affect one or both flowsheets. (2) Waste throughput factors were not determined for Frit 510 and Frit 418 over multiple waste loadings. In order to provide insight into the mission life versus canister count question, one needs to define the maximum waste throughput for both flowsheets. Due to funding limitations, the melt rate testing only evaluated melt rate at a fixed waste loading. (3) DWPF will be processing SB5 through their facility in mid-November 2008. Insight into the over arching questions of melt rate, waste throughput, and mission life can be obtained directly from the facility. It is recommended that processing of SB5 through the facility be monitored closely and that data be used as input into the decision making process on whether to implement Al-dissolution for future sludge batches.« less

  15. Carbide Precipitation in 2.25 Cr-1 Mo Bainitic Steel: Effect of Heating and Isothermal Tempering Conditions

    NASA Astrophysics Data System (ADS)

    Dépinoy, Sylvain; Toffolon-Masclet, Caroline; Urvoy, Stéphane; Roubaud, Justine; Marini, Bernard; Roch, François; Kozeschnik, Ernst; Gourgues-Lorenzon, Anne-Françoise

    2017-05-01

    The effect of the tempering heat treatment, including heating prior to the isothermal step, on carbide precipitation has been determined in a 2.25 Cr-1 Mo bainitic steel for thick-walled applications. The carbides were identified using their amount of metallic elements, morphology, nucleation sites, and diffraction patterns. The evolution of carbide phase fraction, morphology, and composition was investigated using transmission electron microscopy, X-ray diffraction, as well as thermodynamic calculations. Upon heating, retained austenite into the as-quenched material decomposes into ferrite and cementite. M7C3 carbides then nucleate at the interface between the cementite and the matrix, triggering the dissolution of cementite. M2C carbides precipitate separately within the bainitic laths during slow heating. M23C6 carbides precipitate at the interfaces (lath boundaries or prior austenite grain boundaries) and grow by attracting nearby chromium atoms, which results in the dissolution of M7C3 and, depending on the temperature, coarsening, or dissolution of M2C carbides, respectively.

  16. Influence of pH and temperature on alunite dissolution rates and products

    NASA Astrophysics Data System (ADS)

    Acero, Patricia; Hudson-Edwards, Karen

    2015-04-01

    Aluminium is one of the main elements in most mining-affected environments, where it may influence the mobility of other elements and play a key role on pH buffering. Moreover, high concentrations of Al can have severe effects on ecosystems and humans; Al intake, for example, has been implicated in neurological pathologies (e.g., Alzheimer's disease; Flaten, 2001). The behaviour of Al in mining-affected environments is commonly determined, at least partially, by the dissolution of Al sulphate minerals and particularly by the dissolution of alunite (KAl3(SO4)2(OH)6), which is one of the most important and ubiquitous Al sulphates in mining-affected environments (Nordstrom, 2011). The presence of alunite has been described in other acid sulphate environments, including some soils (Prietzel & Hirsch, 1998) and on the surface of Mars (Swayze et al., 2008). Despite the important role of alunite, its dissolution rates and products, and their controlling factors under conditions similar to those found in these environments, remain largely unknown. In this work, batch dissolution experiments have been carried out in order to shed light on the rates, products and controlling factors of alunite dissolution under different pH conditions (between 3 and 8) and temperatures (between 279 and 313K) similar to those encountered in natural systems. The obtained initial dissolution rates using synthetic alunite, based on the evolution of K concentrations, are between 10-9.7 and 10-10.9 mol-m-2-s-1, with the lowest rates obtained at around pH 4.8, and increases in the rates recorded with both increases and decreases in pH. Increases of temperature in the studied range also cause increases in the dissolution rates. The dissolution of alunite dissolution is incongruent, as has been reported for jarosite (isostructural with alunite) by Welch et al. (2008). Compared with the stoichiometric ratio in the bulk alunite (Al/K=3), K tends to be released to the solution preferentially over Al, leading to dissolved Al/K ratios between 0.5 and 2.5. This depletion of Al in the solution is especially clear for the experiments at pH 4.5-4.8 and 8 and it is consistent with the results of elemental quantifications of the same proportions in the reacted alunite surfaces using X-ray Photoelectron Spectroscopy (XPS). REFERENCES Flaten, T.P. (2001): Aluminium as a risk factor in Alzheimzer's disease, with emphasis on drinking water. Brain Research Bulletin 55: 187-196. Nordstrom, D.K. (2011): Hydrogeochemical processes governing the origin, transport and fate of major and trace elements from mine wastes and mineralized rock to surface waters. Applied Geochemistry 26: 1777-1791. Prietzel, J., & Hirsch, C. (1998). Extractability and dissolution kinetics of pure and soil-added synthesized aluminium hydroxy sulphate minerals. European journal of soil science, 49(4), 669-681. Swayze, G.A., Ehlmann, B.L., Milliken, R.E., Poulet, F., Wray, J.J., Rye, R.O., Clark, R.N., Desborough, G.A., Crowley, J.K., Gondet, B., Mustard, J.F., Seelos, K.D. and Murchie, S.L., 2008. Discovery of the Acid-Sulfate Mineral Alunite in Terra Sirenum, Mars, Using MRO CRISM: Possible Evidence for Acid-Saline Lacustrine Deposits?, American Geophysical Union, Fall Meeting 2008, abstract #P44A-04. Welch, S. A., Kirste, D., Christy, A. G., Beavis, F. R., & Beavis, S. G. (2008): Jarosite dissolution II'Reaction kinetics, stoichiometry and acid flux. Chemical Geology, 254(1), 73-86.

  17. Interactions between a poorly soluble cationic drug and sodium dodecyl sulfate in dissolution medium and their impact on in vitro dissolution behavior.

    PubMed

    Huang, Zongyun; Parikh, Shuchi; Fish, William P

    2018-01-15

    In the pharmaceutical industry, in vitro dissolution testing ofsolid oral dosage forms is a very important tool for drug development and quality control. However, ion-pairing interaction between the ionic drugand surfactants in dissolution medium often occurs, resulting in inconsistent and incomplete drug release. The aim of this study is toevaluate the effects ofsodium dodecyl sulfate (SDS) mediated medium onthe dissolution behaviors of a poorly soluble cationic drug (Drug B). The study was carried out by measuring solubility of Drug B substance and dissolution rate of Drug B product in media containing SDS.Desolubilization of Drug B substance was observed at pH 4.5 in the presence of SDS at concentrations below critical micelle concentration (CMC) which is attributed to the formation of an insoluble di-dodecyl sulfate salt between SDS and Drug B. This ion-pairing effect is less significant with increasing medium pH where Drug B is less ionized and CMC of SDS is lower. In medium at pH 4.5, dissolution of Drug B product was found incomplete with SDS concentration below CMC due to the desolubilization of Drug B substance. In media with SDS level above CMC, the dissolution rate is rather slower with higher inter-vessel variations compared to that obtained in pH 4.5 medium without SDS. The dissolution results demonstrate that the presence of SDS in medium generates unexpected irregular dissolution profiles for Drug B which are attributed to incompatible dissolution medium for this particular drug. Therefore, non-ionic surfactant was selected for Drug B product dissolution method and ion-pairing effect in SDS mediated medium should be evaluated when developing a dissolution method for any poorly soluble cationic drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Kinetics of brucite dissolution at 25°C in the presence of organic and inorganic ligands and divalent metals

    NASA Astrophysics Data System (ADS)

    Pokrovsky, Oleg S.; Schott, Jacques; Castillo, Alain

    2005-02-01

    Brucite (Mg(OH) 2) dissolution rate was measured at 25°C in a mixed-flow reactor at various pH (5 to 11) and ionic strengths (0.01 to 0.03 M) as a function of the concentration of 15 organic and 5 inorganic ligands and 8 divalent metals. At neutral and weakly alkaline pH, the dissolution is promoted by the addition of the following ligands ranked by decreasing effectiveness: EDTA ≥ H 2PO 4- > catechol ≥ HCO 3- > ascorbate > citrate > oxalate > acetate ˜ lactate and it is inhibited by boric acid. At pH >10.5, it decreases in the presence of PO 43-, CO 32-, F -, oxine, salicylate, lactate, acetate, 4-hydroxybenzoate, SO 42- and B(OH) 4- with orthophosphate and borate being the strongest and the weakest inhibitor, respectively. Xylose (up to 0.1 M), glycine (up to 0.05 M), formate (up to 0.3 M) and fulvic and humic acids (up to 40 mg/L DOC) have no effect on brucite dissolution kinetics. Fluorine inhibits dissolution both in neutral and alkaline solutions. From F sorption experiments in batch and flow-through reactors and the analysis of reacted surfaces using X-ray Photoelectron Spectroscopy (XPS), it is shown that fluorine adsorption is followed by its incorporation in brucite lattice likely via isomorphic substitution with OH. The effect of eight divalent metals (Sr, Ba, Ca, Pb, Mn, Fe, Co and Ni) studied at pH 4.9 and 0.01 M concentration revealed brucite dissolution rates to be correlated with the water molecule exchange rates in the first hydration sphere of the corresponding cation. The effect of investigated ligands on brucite dissolution rate can be modelled within the framework of the surface coordination approach taking into account the adsorption of ligands on dissolution-active sites and the molecular structure of the surface complexes they form. The higher the value of the ligand sorption constant, the stronger will be its catalyzing or inhibiting effect. As for Fe and Al oxides, bi- or multidentate mononuclear surface complexes, that labilize Mg-O bonds and water coordination to Mg atoms at the surface, enhance brucite dissolution whereas bi- or polynuclear surface complexes tend to inhibit dissolution by bridging two or more metal centers and extending the cross-linking at the solid surface. Overall, results of this study demonstrate that very high concentrations of organic ligands (0.01-0.1 M) are necessary to enhance or inhibit brucite dissolution. As a result, the effect of extracellular organic products on the weathering rate of Mg-bearing minerals is expected to be weak.

  19. A study on the dissolution rates of K-Cr(VI)-jarosites: kinetic analysis and implications.

    PubMed

    Reyes, Iván A; Mireles, Ister; Patiño, Francisco; Pandiyan, Thangarasu; Flores, Mizraim U; Palacios, Elia G; Gutiérrez, Emmanuel J; Reyes, Martín

    2016-01-01

    The presence of natural and industrial jarosite type-compounds in the environment could have important implications in the mobility of potentially toxic elements such as lead, mercury, arsenic, chromium, among others. Understanding the dissolution reactions of jarosite-type compounds is notably important for an environmental assessment (for water and soil), since some of these elements could either return to the environment or work as temporary deposits of these species, thus would reduce their immediate environmental impact. This work reports the effects of temperature, pH, particle diameter and Cr(VI) content on the initial dissolution rates of K-Cr(VI)-jarosites (KFe3[(SO4)2 - X(CrO4)X](OH)6). Temperature (T) was the variable with the strongest effect, followed by pH in acid/alkaline medium (H3O(+)/OH(-)). It was found that the substitution of CrO4 (2-)in Y-site and the substitution of H3O(+) in M-site do not modify the dissolution rates. The model that describes the dissolution process is the unreacted core kinetic model, with the chemical reaction on the unreacted core surface. The dissolution in acid medium was congruent, while in alkaline media was incongruent. In both reaction media, there is a release of K(+), SO4 (2-) and CrO4 (2-) from the KFe3[(SO4)2 - X(CrO4)X](OH)6 structure, although the latter is rapidly absorbed by the solid residues of Fe(OH)3 in alkaline medium dissolutions. The dissolution of KFe3[(SO4)2 - X(CrO4)X](OH)6 exhibited good stability in a wide range of pH and T conditions corresponding to the calculated parameters of reaction order n, activation energy E A and dissolution rate constants for each kinetic stages of induction and progressive conversion. The kinetic analysis related to the reaction orders and calculated activation energies confirmed that extreme pH and T conditions are necessary to obtain considerably high dissolution rates. Extreme pH conditions (acidic or alkaline) cause the preferential release of K(+), SO4 (2-) and CrO4 (2-) from the KFe3[(SO4)2 - X(CrO4)X](OH)6 structure, although CrO4 (2-) is quickly adsorbed by Fe(OH)3 solid residues. The precipitation of phases such as KFe3[(SO4)2 - X(CrO4)X](OH)6, and the absorption of Cr(VI) after dissolution can play an important role as retention mechanisms of Cr(VI) in nature.

  20. Hot Melt Extrudates Formulated Using Design Space: One Simple Process for Both Palatability and Dissolution Rate Improvement.

    PubMed

    Malaquias, Lorena F B; Schulte, Heidi L; Chaker, Juliano A; Karan, Kapish; Durig, Thomas; Marreto, Ricardo N; Gratieri, Tais; Gelfuso, Guilherme M; Cunha-Filho, Marcilio

    2018-01-01

    This work aimed at obtaining an optimized itraconazole (ITZ) solid oral formulation in terms of palatability and dissolution rate by combining different polymers using hot melt extrusion (HME), according to a simplex centroid mixture design. For this, the polymers Plasdone ® (poly(1-vinylpyrrolidone-co-vinyl acetate) [PVP/VA]), Klucel ® ELF (2-hydroxypropyl ether cellulose [HPC]), and Soluplus ® (SOL, polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol) were processed using a laboratory HME equipment operating without recirculation at constant temperature. Samples were characterized by physicochemical assays, as well as dissolution rate and palatability using an e-tongue. All materials became homogeneous and dense after HME processing. Thermal and structural analyses demonstrated drug amorphization, whereas IR spectroscopy evidenced drug stability and drug-excipient interactions in HME systems. Extrudates presented a significant increase in dissolution rate compared to ITZ raw material, mainly with formulations containing PVP/VA and HPC. A pronounced improvement in taste masking was also identified for HME systems, especially in those containing higher amounts of SOL and HPC. Data showed polymers act synergistically favoring formulation functional properties. Predicted best formulation should contain ITZ 25.0%, SOL 33.2%, HPC 28.9%, and PVP/VA 12.9% (w/w). Optimized response considering dissolution rate and palatability reinforces the benefit of polymer combinations. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  1. In-life pteropod shell dissolution as an indicator of past ocean carbonate saturation

    NASA Astrophysics Data System (ADS)

    Wall-Palmer, Deborah; Smart, Christopher W.; Hart, Malcolm B.

    2013-12-01

    Recent concern over the effects of ocean acidification upon calcifying organisms has highlighted the aragonitic shelled thecosomatous pteropods as being at a high risk. Both in-situ and laboratory studies have shown that an increased dissolved CO2 concentration, leading to decreased water pH and low carbonate concentration, causes reduced calcification rates and enhanced dissolution in the shells of living pteropods. In fossil records unaffected by post-depositional dissolution, this in-life shell dissolution can be detected. Here we present the first evidence of variations of in-life pteropod shell dissolution due to variations in surface water carbonate concentration during the Late Pleistocene by analysing the surface layer of pteropod shells in marine sediment cores from the Caribbean Sea and Indian Ocean. In-life shell dissolution was determined by applying the Limacina Dissolution Index (LDX) to the sub-tropical pteropod Limacina inflata. Average shell size information shows that high in-life dissolution is accompanied by smaller shell sizes in L. inflata, which may indicate a reduction in calcification rate. Comparison of the LDX profile to Late Pleistocene Vostok atmospheric CO2 concentrations, shows that in-life pteropod dissolution is closely associated to variations in past ocean carbonate saturation. This study confirms the findings of laboratory studies, showing enhanced shell dissolution and reduced calcification in living pteropods when surface ocean carbonate concentrations were lower. Results also demonstrate that oceanic pH levels that were less acidic and changing less rapidly than those predicted for the 21st Century, negatively affected pteropods during the Late Pleistocene.

  2. Dissolution kinetics and biodurability of tremolite particles in mimicked lung fluids: Effect of citrate and oxalate

    NASA Astrophysics Data System (ADS)

    Rozalen, Marisa; Ramos, M. Elena; Huertas, F. Javier; Fiore, Saverio; Gervilla, Fernando

    2013-11-01

    The effect of citrate and oxalate on tremolite dissolution rate was measured at 37 °C in non-stirred flow-through reactors, using modified Gamble's solutions at pH 4 (macrophages), 7.4 (interstitial fluids) and 5.5 (intermediate check point) containing 0, 0.15, 1.5 and 15 mmol L-1 of citrate or oxalate. The dissolution rates calculated from Si concentration in the output solutions without organic ligands depend on pH, decreasing when the pH increases from -13.00 (pH 4) to -13.35 (pH 7.4) mol g-1 s-1 and following a proton-promoted mechanism. The presence of both ligands enhances dissolution rates at every pH, increasing this effect when the ligand concentration increases. Citrate produces a stronger effect as a catalyst than oxalate, mainly at more acidic pHs and enhances dissolution rates until 20 times for solutions with 15 mmol L-1 citrate. However, at pH 7.4 the effect is lighter and oxalate solutions (15 mmol L-1) only enhances dissolution rates eight times respect to free organic ligand solutions. Dissolution is promoted by the attack to protons and organic ligands to the tremolite surface. Magnesium speciation in oxalate and citrate solutions shows that Mg citrate complexes are more effective than oxalate ones during the alteration of tremolite in magrophages, but this tendency is the opposite for interstitial fluids, being oxalate magnesium complexes stronger. The biodurability estimations show that the destruction of the fibers is faster in acidic conditions (macrophages) than in the neutral solutions (interstitial fluid). At pH 4, both ligands oxalate and citrate reduce the residence time of the fibers with respect to that calculated in absence of ligands. Nevertheless, at pH 7.4 the presence of ligands does not reduce significantly the lifetime of the fibers.

  3. Oxidative dissolution of biogenic uraninite in groundwater at Old Rifle, CO

    USGS Publications Warehouse

    Campbell, Kate M.; Veeramani, Harish; Ulrich, Kai-Uwe; Blue, Lisa Y.; Giammar, Dianiel E.; Bernier-Latmani, Rizlan; Stubbs, Joanne E.; Suvorova, Elena; Yabusaki, Steve; Lezama-Pacheco, Juan S.; Mehta, Apurva; Long, Philip E.; Bargar, John R.

    2011-01-01

    Reductive bioremediation is currently being explored as a possible strategy for uranium-contaminated aquifers such as the Old Rifle site (Colorado). The stability of U(IV) phases under oxidizing conditions is key to the performance of this procedure. An in situ method was developed to study oxidative dissolution of biogenic uraninite (UO2), a desirable U(VI) bioreduction product, in the Old Rifle, CO, aquifer under different variable oxygen conditions. Overall uranium loss rates were 50–100 times slower than laboratory rates. After accounting for molecular diffusion through the sample holders, a reactive transport model using laboratory dissolution rates was able to predict overall uranium loss. The presence of biomass further retarded diffusion and oxidation rates. These results confirm the importance of diffusion in controlling in-aquifer U(IV) oxidation rates. Upon retrieval, uraninite was found to be free of U(VI), indicating dissolution occurred via oxidation and removal of surface atoms. Interaction of groundwater solutes such as Ca2+ or silicate with uraninite surfaces also may retard in-aquifer U loss rates. These results indicate that the prolonged stability of U(IV) species in aquifers is strongly influenced by permeability, the presence of bacterial cells and cell exudates, and groundwater geochemistry.

  4. Improving primary treatment of urban wastewater with lime-induced coagulation.

    PubMed

    Marani, Dario; Ramadori, Roberto; Braguglia, Camilla Maria

    2004-01-01

    The enhancement of primary treatment efficiency through the coagulation process may yield several advantages, including lower aeration energy in the subsequent biological unit and higher recovery of biogas from sludge digestion. In this work sewage coagulation with lime was studied at pilot plant level, using degritted sewage from the city of Rome. The work aimed at optimising the operating conditions (coagulant dosage or treatment pH, and mixing conditions in the coagulation and flocculation tanks), in order to maximise the efficiency of suspended Chemical Oxygen Demand (COD) removal and to minimise sludge production. Lime dosage optimisation resulted in an optimal treatment pH of 9. Lime addition up to pH 9 may increase COD removal rate in the primary treatment from typical 30-35% of plain sedimentation up to 55-70%. Within the velocity gradients experimented in this work (314-795 s(-1) for the coagulation tank and 13-46 s(-1) for the flocculation tank), mixing conditions did not significantly affect the lime-enhanced process, which seems to be controlled by slow lime dissolution. Sludge produced in the lime-enhanced process settled and compacted easily, inducing an average 36% decrease in sludge volume with respect to plain settling. However excess sludge was produced, which was not accounted for by the amount of suspended solids removed. This is probably due to incomplete dissolution of lime, which may be partially incorporated in the sludge.

  5. Activity–stability relationship in the surface electrochemistry of the oxygen evolution reaction

    DOE PAGES

    Chang, Seo Hyoung; Connell, Justin G.; Danilovic, Nemanja; ...

    2014-07-25

    Understanding the functional links between the stability and reactivity of oxide materials during the oxygen evolution reaction (OER) is one key to enabling a vibrant hydrogen economy capable of competing with fossil fuel-based technologies. In this work, by focusing on the surface chemistry of monometallic Ru oxide in acidic and alkaline environments, we found that the kinetics of the OER are almost entirely controlled by the stability of the Ru surface atoms. The same activity–stability relationship was found for more complex, polycrystalline and single-crystalline SrRuO 3 thin films in alkaline solutions. We propose that the electrochemical transformation of either watermore » (acidic solutions) or hydroxyl ions (alkaline solutions) to di-oxygen molecules takes place at defect sites that are inherently present on every electrode surface. During the OER, surface defects are also created by the corrosion of the Ru ions. The dissolution is triggered by the potential-dependent change in the valence state ( n) of Ru: from stable but inactive Ru 4+ to unstable but active Ru n>4+. We conclude that if the oxide is stable then it is completely inactive for the OER. As a result, a practical consequence is that the best materials for the OER should balance stability and activity in such a way that the dissolution rate of the oxide is neither too fast nor too slow.« less

  6. Evaluating the reliability of equilibrium dissolution assumption from residual gasoline in contact with water saturated sands

    NASA Astrophysics Data System (ADS)

    Lekmine, Greg; Sookhak Lari, Kaveh; Johnston, Colin D.; Bastow, Trevor P.; Rayner, John L.; Davis, Greg B.

    2017-01-01

    Understanding dissolution dynamics of hazardous compounds from complex gasoline mixtures is a key to long-term predictions of groundwater risks. The aim of this study was to investigate if the local equilibrium assumption for BTEX and TMBs (trimethylbenzenes) dissolution was valid under variable saturation in two dimensional flow conditions and evaluate the impact of local heterogeneities when equilibrium is verified at the scale of investigation. An initial residual gasoline saturation was established over the upper two-thirds of a water saturated sand pack. A constant horizontal pore velocity was maintained and water samples were recovered across 38 sampling ports over 141 days. Inside the residual NAPL zone, BTEX and TMBs dissolution curves were in agreement with the TMVOC model based on the local equilibrium assumption. Results compared to previous numerical studies suggest the presence of small scale dissolution fingering created perpendicular to the horizontal dissolution front, mainly triggered by heterogeneities in the medium structure and the local NAPL residual saturation. In the transition zone, TMVOC was able to represent a range of behaviours exhibited by the data, confirming equilibrium or near-equilibrium dissolution at the scale of investigation. The model locally showed discrepancies with the most soluble compounds, i.e. benzene and toluene, due to local heterogeneities exhibiting that at lower scale flow bypassing and channelling may have occurred. In these conditions mass transfer rates were still high enough to fall under the equilibrium assumption in TMVOC at the scale of investigation. Comparisons with other models involving upscaled mass transfer rates demonstrated that such approximations with TMVOC could lead to overestimate BTEX dissolution rates and underestimate the total remediation time.

  7. Evaluating the reliability of equilibrium dissolution assumption from residual gasoline in contact with water saturated sands.

    PubMed

    Lekmine, Greg; Sookhak Lari, Kaveh; Johnston, Colin D; Bastow, Trevor P; Rayner, John L; Davis, Greg B

    2017-01-01

    Understanding dissolution dynamics of hazardous compounds from complex gasoline mixtures is a key to long-term predictions of groundwater risks. The aim of this study was to investigate if the local equilibrium assumption for BTEX and TMBs (trimethylbenzenes) dissolution was valid under variable saturation in two dimensional flow conditions and evaluate the impact of local heterogeneities when equilibrium is verified at the scale of investigation. An initial residual gasoline saturation was established over the upper two-thirds of a water saturated sand pack. A constant horizontal pore velocity was maintained and water samples were recovered across 38 sampling ports over 141days. Inside the residual NAPL zone, BTEX and TMBs dissolution curves were in agreement with the TMVOC model based on the local equilibrium assumption. Results compared to previous numerical studies suggest the presence of small scale dissolution fingering created perpendicular to the horizontal dissolution front, mainly triggered by heterogeneities in the medium structure and the local NAPL residual saturation. In the transition zone, TMVOC was able to represent a range of behaviours exhibited by the data, confirming equilibrium or near-equilibrium dissolution at the scale of investigation. The model locally showed discrepancies with the most soluble compounds, i.e. benzene and toluene, due to local heterogeneities exhibiting that at lower scale flow bypassing and channelling may have occurred. In these conditions mass transfer rates were still high enough to fall under the equilibrium assumption in TMVOC at the scale of investigation. Comparisons with other models involving upscaled mass transfer rates demonstrated that such approximations with TMVOC could lead to overestimate BTEX dissolution rates and underestimate the total remediation time. Copyright © 2016. Published by Elsevier B.V.

  8. Accelerated Leach Testing of GLASS (ALTGLASS): I. Informatics approach to high level waste glass gel formation and aging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, Carol M.; Trivelpiece, Cory L.; Crawford, Charles L.

    Glass corrosion data from the ALTGLASS™ database were used to determine if gel compositions, which evolve as glass systems corrode, are correlated with the generation of zeolites and subsequent increase in the glass dissolution rate at long times. The gel compositions were estimated based on the difference between the elemental glass starting compositions and the measured elemental leachate concentrations from the long-term product consistency tests (ASTM C1285) at various stages of dissolution, ie, reaction progress. A well-characterized subset of high level waste glasses from the database was selected: these glasses had been leached for 15-20 years at reaction progresses upmore » to ~80%. The gel composition data, at various reaction progresses, were subjected to a step-wise regression, which demonstrated that hydrogel compositions with Si*/Al* ratios of <1.0 did not generate zeolites and maintained low dissolution rates for the duration of the experiments. Glasses that formed hydrogel compositions with Si^*/Al^* ratios ≥1, generated zeolites accompanied by a resumption in the glass dissolution rate. Finally, the role of the gel Si/Al ratio, and the interactions with the leachate, provides the fundamental understanding needed to predict if and when the glass dissolution rate will increase due to zeolitization.« less

  9. Accelerated Leach Testing of GLASS (ALTGLASS): I. Informatics approach to high level waste glass gel formation and aging

    DOE PAGES

    Jantzen, Carol M.; Trivelpiece, Cory L.; Crawford, Charles L.; ...

    2017-02-18

    Glass corrosion data from the ALTGLASS™ database were used to determine if gel compositions, which evolve as glass systems corrode, are correlated with the generation of zeolites and subsequent increase in the glass dissolution rate at long times. The gel compositions were estimated based on the difference between the elemental glass starting compositions and the measured elemental leachate concentrations from the long-term product consistency tests (ASTM C1285) at various stages of dissolution, ie, reaction progress. A well-characterized subset of high level waste glasses from the database was selected: these glasses had been leached for 15-20 years at reaction progresses upmore » to ~80%. The gel composition data, at various reaction progresses, were subjected to a step-wise regression, which demonstrated that hydrogel compositions with Si*/Al* ratios of <1.0 did not generate zeolites and maintained low dissolution rates for the duration of the experiments. Glasses that formed hydrogel compositions with Si^*/Al^* ratios ≥1, generated zeolites accompanied by a resumption in the glass dissolution rate. Finally, the role of the gel Si/Al ratio, and the interactions with the leachate, provides the fundamental understanding needed to predict if and when the glass dissolution rate will increase due to zeolitization.« less

  10. Accelerated dissolution testing for controlled release microspheres using the flow-through dissolution apparatus.

    PubMed

    Collier, Jarrod W; Thakare, Mohan; Garner, Solomon T; Israel, Bridg'ette; Ahmed, Hisham; Granade, Saundra; Strong, Deborah L; Price, James C; Capomacchia, A C

    2009-01-01

    Theophylline controlled release capsules (THEO-24 CR) were used as a model system to evaluate accelerated dissolution tests for process and quality control and formulation development of controlled release formulations. Dissolution test acceleration was provided by increasing temperature, pH, flow rate, or adding surfactant. Electron microscope studies on the theophylline microspheres subsequent to each experiment showed that at pH values of 6.6 and 7.6 the microspheres remained intact, but at pH 8.6 they showed deterioration. As temperature was increased from 37-57 degrees C, no change in microsphere integrity was noted. Increased flow rate also showed no detrimental effect on integrity. The effect of increased temperature was determined to be the statistically significant variable.

  11. Energy dispersive-EXAFS of Pd nucleation at a liquid/liquid interface

    NASA Astrophysics Data System (ADS)

    Chang, S.-Y.; Booth, S. G.; Uehara, A.; Mosselmans, J. F. W.; Cibin, G.; Pham, V.-T.; Nataf, L.; Dryfe, R. A. W.; Schroeder, S. L. M.

    2016-05-01

    Energy dispersive extended X-ray absorption fine structure (EDE) has been applied to Pd nanoparticle nucleation at a liquid/liquid interface under control over the interfacial potential and thereby the driving force for nucleation. Preliminary analysis focusing on Pd K edge-step height determination shows that under supersaturated conditions the concentration of Pd near the interface fluctuate over a period of several hours, likely due to the continuous formation and dissolution of sub-critical nuclei. Open circuit potential measurements conducted ex-situ in a liquid/liquid electrochemical cell support this view, showing that the fluctuations in Pd concentration are also visible as variations in potential across the liquid/liquid interface. By decreasing the interfacial potential through inclusion of a common ion (tetraethylammonium, TEA+) the Pd nanoparticle growth rate could be slowed down, resulting in a smooth nucleation process. Eventually, when the TEA+ ions reached an equilibrium potential, Pd nucleation and particle growth were inhibited.

  12. A geochemical transport model for redox-controlled movement of mineral fronts in groundwater flow systems: A case of nitrate removal by oxidation of pyrite

    USGS Publications Warehouse

    Engesgaard, Peter; Kipp, Kenneth L.

    1992-01-01

    A one-dimensional prototype geochemical transport model was developed in order to handle simultaneous precipitation-dissolution and oxidation-reduction reactions governed by chemical equilibria. Total aqueous component concentrations are the primary dependent variables, and a sequential iterative approach is used for the calculation. The model was verified by analytical and numerical comparisons and is able to simulate sharp mineral fronts. At a site in Denmark, denitrification has been observed by oxidation of pyrite. Simulation of nitrate movement at this site showed a redox front movement rate of 0.58 m yr−1, which agreed with calculations of others. It appears that the sequential iterative approach is the most practical for extension to multidimensional simulation and for handling large numbers of components and reactions. However, slow convergence may limit the size of redox systems that can be handled.

  13. ASR prevention — Effect of aluminum and lithium ions on the reaction products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leemann, Andreas, E-mail: andreas.leemann@empa.ch; Bernard, Laetitia; Alahrache, Salaheddine

    2015-10-15

    In spite of the recent progress in the understanding of the mechanisms enabling aluminum-containing SCM like metakaolin and added LiNO{sub 3} to limit the extent of ASR in mortar and concrete, some gaps still remain. They concern mainly the effect of aluminum-containing SCM on the formed ASR products and the influence of aggregate characteristics on the effectiveness of LiNO{sub 3}. In this study, a model system, concrete and mortar were investigated by pore solution analysis, TGA, XRD, NMR, SEM combined with EDX and ToF-SIMS to address these questions. The amount of aluminum present in the pore solution of concrete andmore » mortar is only able to slow down SiO{sub 2} dissolution but not to alter morphology, structure and composition of the reaction products. LiNO{sub 3} can suppress ASR by forming dense products protecting reactive minerals from further reaction. But its effectiveness is decreasing with increasing specific surface area of the reactive minerals in aggregates. - Highlights: • Aluminum of SCM slows down SiO{sub 2} dissolution. • Aluminum of SCM does not alter morphology and structure of ASR product. • ASR suppressing effect of LiNO{sub 3} depends on specific surface area of the aggregates.« less

  14. Dissolution rates of pure methane hydrate and carbon-dioxide hydrate in undersaturated seawater at 1000-m depth

    USGS Publications Warehouse

    Rehder, G.; Kirby, S.H.; Durham, W.B.; Stern, L.A.; Peltzer, E.T.; Pinkston, J.; Brewer, P.G.

    2004-01-01

    To help constrain models involving the chemical stability and lifetime of gas clathrate hydrates exposed at the seafloor, dissolution rates of pure methane and carbon-dioxide hydrates were measured directly on the seafloor within the nominal pressure-temperature (P/T) range of the gas hydrate stability zone. Other natural boundary conditions included variable flow velocity and undersaturation of seawater with respect to the hydrate-forming species. Four cylindrical test specimens of pure, polycrystalline CH4 and CO2 hydrate were grown and fully compacted in the laboratory, then transferred by pressure vessel to the seafloor (1028 m depth), exposed to the deep ocean environment, and monitored for 27 hours using time-lapse and HDTV cameras. Video analysis showed diameter reductions at rates between 0.94 and 1.20 ??m/s and between 9.0 and 10.6 ?? 10-2 ??m/s for the CO2 and CH4 hydrates, respectively, corresponding to dissolution rates of 4.15 ?? 0.5 mmol CO2/m2s and 0.37 ?? 0.03 mmol CH4/m2s. The ratio of the dissolution rates fits a diffusive boundary layer model that incorporates relative gas solubilities appropriate to the field site, which implies that the kinetics of the dissolution of both hydrates is diffusion-controlled. The observed dissolution of several mm (CH4) or tens of mm (CO2) of hydrate from the sample surfaces per day has major implications for estimating the longevity of natural gas hydrate outcrops as well as for the possible roles of CO2 hydrates in marine carbon sequestration strategies. ?? 2003 Elsevier Ltd.

  15. Efficacy of Magnesium Trihydrate of Ursodeoxycholic Acid and Chenodeoxycholic Acid for Gallstone Dissolution: A Prospective Multicenter Trial.

    PubMed

    Hyun, Jong Jin; Lee, Hong Sik; Kim, Chang Duck; Dong, Seok Ho; Lee, Seung-Ok; Ryu, Ji Kon; Lee, Don Haeng; Jeong, Seok; Kim, Tae Nyeun; Lee, Jin; Koh, Dong Hee; Park, Eun Taek; Lee, In-Seok; Yoo, Byung Moo; Kim, Jin Hong

    2015-07-01

    Cholecystectomy is necessary for the treatment of symptomatic or complicated gallbladder (GB) stones, but oral litholysis with bile acids is an attractive alternative therapeutic option for asymptomatic or mildly symptomatic patients. This study was conducted to evaluate the efficacy of magnesium trihydrate of ursodeoxycholic acid (UDCA) and chenodeoxycholic acid (CDCA) on gallstone dissolution and to investigate improvements in gallstone-related symptoms. A prospective, multicenter, phase 4 clinical study to determine the efficacy of orally administered magnesium trihydrate of UDCA and CDCA was performed from January 2011 to June 2013. The inclusion criteria were GB stone diameter ≤15 mm, GB ejection fraction ≥50%, radiolucency on plain X-ray, and asymptomatic/mildly symptomatic patients. The patients were prescribed one capsule of magnesium trihydrate of UDCA and CDCA at breakfast and two capsules at bedtime for 6 months. The dissolution rate, response rate, and change in symptom score were evaluated. A total of 237 subjects were enrolled, and 195 subjects completed the treatment. The dissolution rate was 45.1% and the response rate was 47.2% (92/195) after 6 months of administration of magnesium trihydrate of UDCA and CDCA. Only the stone diameter was significantly associated with the response rate. Both the symptom score and the number of patients with symptoms significantly decreased regardless of stone dissolution. Adverse events necessitating discontinuation of the drug, surgery, or endoscopic management occurred in 2.5% (6/237) of patients. Magnesium trihydrate of UDCA and CDCA is a well-tolerated bile acid that showed similar efficacy for gallstone dissolution and improvement of gallstone-related symptoms as that shown in previous studies.

  16. Factors Affecting the Dissolution of Indomethacin Solid Dispersions.

    PubMed

    Zhang, Wei; Zhang, Chen-Ning; He, Yue; Duan, Ban-Yan; Yang, Guang-Yi; Ma, Wei-Dong; Zhang, Yong-Hong

    2017-11-01

    The aim of this study was to investigate the influence of factors such as carrier type, drug/carrier ratio, binary carriers, and preparation method on the dissolution of an insoluble drug, indomethacin (IM), under supersaturation conditions. Using a solvent evaporation (SE) method, poloxamer 188 and PVP K30 showed better dissolution among the selected carriers. Furthermore, as the ratio of carriers increased (drug/carrier ratio from 1:0.5 to 1:2), the dissolution rate increased especially in almost two times poloxamer 188 solid dispersions (SDs), while the reverse results were observed for PVP K30 SDs. For the binary carrier SD, a lower dissolution was found. Under hot melt extrusion (HME), the dissolution of poloxamer 188 SD and PVP K30 SD was 0.83- and 0.94-folds lower than that using SE, respectively, while the binary carrier SD showed the best dissolution. For poloxamer 188 SDs, the drug's crystal form changed when using SE, while no crystal form change was observed using HME. IM was amorphous in PVP K30 SDs prepared by both methods. For binary carrier systems, amorphous and crystalline drugs coexisted in SD using SE, and negligible amorphous IM was in SD using HME. This study indicated that a higher amorphous proportion in SD did not correlate with higher dissolution rate, and other factors, such as carrier type, particle size, and density, were also critical.

  17. Solid-state characterization and dissolution properties of meloxicam-moringa coagulant-PVP ternary solid dispersions.

    PubMed

    Noolkar, Suhail B; Jadhav, Namdeo R; Bhende, Santosh A; Killedar, Suresh G

    2013-06-01

    The effect of ternary solid dispersions of poor water-soluble NSAID meloxicam with moringa coagulant (obtained by salt extraction of moringa seeds) and polyvinylpyrrolidone on the in vitro dissolution properties has been investigated. Binary (meloxicam-moringa and meloxicam-polyvinylpyrrolidone (PVP)) and ternary (meloxicam-moringa-PVP) systems were prepared by physical kneading and ball milling and characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffractometry. The in vitro dissolution behavior of meloxicam from the different products was evaluated by means of United States Pharmacopeia type II dissolution apparatus. The results of solid-state studies indicated the presence of strong interactions between meloxicam, moringa, and PVP which were of totally amorphous nature. All ternary combinations were significantly more effective than the corresponding binary systems in improving the dissolution rate of meloxicam. The best performance in this respect was given by the ternary combination employing meloxicam-moringa-PVP ratio of [1:(3:1)] prepared by ball milling, with about six times increase in percent dissolution rate, whereas meloxicam-moringa (1:3) and meloxicam-PVP (1:4) prepared by ball milling improved dissolution of meloxicam by almost 3- and 2.5-folds, respectively. The achieved excellent dissolution enhancement of meloxicam in the ternary systems was attributed to the combined effects of impartation of hydrophilic characteristic by PVP, as well as to the synergistic interaction between moringa and PVP.

  18. Chemical and Biological Catalytic Enhancement of Weathering of Silicate Minerals and industrial wastes as a Novel Carbon Capture and Storage Technology

    NASA Astrophysics Data System (ADS)

    Park, A. H. A.

    2014-12-01

    Increasing concentration of CO2 in the atmosphere is attributed to rising consumption of fossil fuels around the world. The development of solutions to reduce CO2 emissions to the atmosphere is one of the most urgent needs of today's society. One of the most stable and long-term solutions for storing CO2 is via carbon mineralization, where minerals containing metal oxides of Ca or Mg are reacted with CO2 to produce thermodynamically stable Ca- and Mg-carbonates that are insoluble in water. Carbon mineralization can be carried out in-situ or ex-situ. In the case of in-situ mineralization, the degree of carbonation is thought to be limited by both mineral dissolution and carbonate precipitation reaction kinetics, and must be well understood to predict the ultimate fate of CO2 within geological reservoirs. While the kinetics of in-situ mineral trapping via carbonation is naturally slow, it can be enhanced at high temperature and high partial pressure of CO2. The addition of weak organic acids produced from food waste has also been shown to enhance mineral weathering kinetics. In the case of the ex-situ carbon mineralization, the role of these ligand-bearing organic acids can be further amplified for silicate mineral dissolution. Unfortunately, high mineral dissolution rates often lead to the formation of a silica-rich passivation layer on the surface of silicate minerals. Thus, the use of novel solvent mixture that allows chemically catalyzed removal of this passivation layer during enhanced Mg-leaching surface reaction has been proposed and demonstrated. Furthermore, an engineered biological catalyst, carbonic anhydrase, has been developed and evaluated to accelerate the hydration of CO2, which is another potentially rate-limiting step of the carbonation reaction. The development of these novel catalytic reaction schemes has significantly improved the overall efficiency and sustainability of in-situ and ex-situ mineral carbonation technologies and allowed direct capture and storage of CO2 from mixture gas streams eliminating the energy-intensive solvent regeneration and CO2 compression steps.

  19. Dynamic Pore-Scale Imaging of Reactive Transport in Heterogeneous Carbonates at Reservoir Conditions Across Multiple Dissolution Regimes

    NASA Astrophysics Data System (ADS)

    Menke, H. P.; Bijeljic, B.; Andrew, M. G.; Blunt, M. J.

    2014-12-01

    Sequestering carbon in deep geologic formations is one way of reducing anthropogenic CO2 emissions. When supercritical CO2 mixes with brine in a reservoir, the acid generated has the potential to dissolve the surrounding pore structure. However, the magnitude and type of dissolution are condition dependent. Understanding how small changes in the pore structure, chemistry, and flow properties affect dissolution is paramount for successful predictive modelling. Both 'Pink Beam' synchrotron radiation and a Micro-CT lab source are used in dynamic X-ray microtomography to investigate the pore structure changes during supercritical CO2 injection in carbonate rocks of varying heterogeneity at high temperatures and pressures and various flow-rates. Three carbonate rock types were studied, one with a homogeneous pore structure and two heterogeneous carbonates. All samples are practically pure calcium carbonate, but have widely varying rock structures. Flow-rate was varied in three successive experiments by over an order of magnitude whlie keeping all other experimental conditions constant. A 4-mm carbonate core was injected with CO2-saturated brine at 10 MPa and 50oC. Tomographic images were taken at 30-second to 20-minute time-resolutions during a 2 to 4-hour injection period. A pore network was extracted using a topological analysis of the pore space and pore-scale flow modelling was performed directly on the binarized images with connected pathways and used to track the altering velocity distributions. Significant differences in dissolution type and magnitude were found for each rock type and flowrate. At the highest flow-rates, the homogeneous carbonate was seen to have predominately uniform dissolution with minor dissolution rate differences between the pores and pore throats. Alternatively, the heterogeneous carbonates which formed wormholes at high flow rates. At low flow rates the homogeneous rock developed wormholes, while the heterogeneous samples showed evidence of compact dissolution. This study serves as a unique benchmark for pore-scale reactive transport modelling directly on the binarized Micro-CT images. Dynamic pore-scale imaging methods offer advantages in helping explain the dominant processes at the pore scale so that they may be up-scaled for accurate model prediction.

  20. The effect of electrolytes on dolomite dissolution: nanoscale observations using in situ Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Urosevic, Maja; Ruiz-Agudo, Encarnacion; Putnis, Christine V.; Cardell, Carolina; Rodriguez-Navarro, Carlos; Putnis, Andrew

    2010-05-01

    Dissolution of carbonate minerals is one of the main chemical reactions occurring at shallow levels in the crust of the Earth and has a paramount importance for a wide range of geological and biological processes. Calcite (CaCO3), and to a lesser extent dolomite (CaMg(CO3)2), are the major carbonate minerals in sedimentary rocks and building stone materials. The dissolution of calcite has been thoroughly investigated over a range of conditions and solution compositions. In contrast, dolomite dissolution studies have been traditionally hampered by its low reaction rates compared to calcite and its poorly constrained relationship between cation ordering and reactivity (Morse and Arvidson, 2002). Yet important questions like the so-called 'dolomite problem' (e.g. Higgins and Hu, 2005) remain unresolved and more experimental work is needed in order to understand the role of other dissolved species, such as soluble salts, on the kinetics and mechanism of dolomite dissolution and precipitation. We have explored the effect of different electrolytes on the dissolution rate of dolomite by using in situ Atomic Force Microcopy (AFM). Experiments were carried out by passing alkali halide, nitrate and sulfate salt solutions (NaCl, KCl, LiCl, NaI, NaNO3 and Na2SO4) with different ionic strengths (IS = 10-3, 10-2 and 10-1) over dolomite {1014} cleavage surfaces. We show that all electrolytes tested enhance dolomite dissolution. Moreover, the morphology and density of etch pits are controlled by the presence of different ions in solution. The etch pit spreading rate and dolomite dissolution rate depend on both (1) the nature of the electrolyte and (2) the ionic strength. This is in agreement with recent experimental studies on calcite dissolution (Ruiz-Agudo et al., 2010). This study highlights the role of electrolytes in dolomite dissolution and points to a common behavior for carbonate minerals. Our results suggest that soluble salts may play a critical role in the weathering of carbonate rocks, both in the natural environment, as well as in stone buildings and statuary, where the amount of solutes in pore waters is significant and can vary depending on evaporation and condensation phenomena. References Higgins, S.R.; Hu, X. Self-limiting growth on dolomite: Experimental observations with in situ atomic force microscopy. Geochimica et Cosmochimica Acta, 2005, 69 (8), 2085-2094. Morse, J.W.; Arvidson, R.S. The dissolution kinetics of major sedimentary carbonate minerals. Earth-Science Reviews, 2002, 58, 51-84. Ruiz-Agudo, E.; Kowacz, M.; Putnis, C.V.; Putnis, A. The role of background electrolytes on the kinetics and mechanism of calcite dissolution. Geochimica et Cosmochimica Acta, 2010, 74, 1256-1267.

  1. Dynamic Scaling of Colloidal Gel Formation at Intermediate Concentrations

    DOE PAGES

    Zhang, Qingteng; Bahadur, Divya; Dufresne, Eric M.; ...

    2017-10-25

    Here, we have examined the formation and dissolution of gels composed of intermediate volume-fraction nanoparticles with temperature-dependent short-range attractions using small-angle x-ray scatter- ing (SAXS), x-ray photon correlation spectroscopy (XPCS), and rheology to obtain nanoscale and macroscale sensitivity to structure and dynamics. Gel formation after temperature quenches to the vicinity of the rheologically-determined gel temperature, T gel, was characterized via the slow-down of dynamics and changes in microstructure observed in the intensity autocorrelation functions and structure factor, respectively, as a function of quench depth (ΔT = T quench - T gel), wave vector, and formation time (t f). We findmore » similar patterns in the slow-down of dynamics that maps the wave-vector-dependent dynamics at a particular ΔT and t f to that at other ΔTs and t fs via an effective scaling temperature, Ts. A single Ts applies to a broad range of ΔT and tf but does depend on the particle size. The rate of formation implied by the scaling is a far stronger function of ΔT than that of the attraction strength between colloids. Finally, we interpret this strong temperature de- pendence in terms of changes in cooperative bonding required to form stable, energetically favored, local structures.« less

  2. Dynamic Scaling of Colloidal Gel Formation at Intermediate Concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qingteng; Bahadur, Divya; Dufresne, Eric M.

    Here, we have examined the formation and dissolution of gels composed of intermediate volume-fraction nanoparticles with temperature-dependent short-range attractions using small-angle x-ray scatter- ing (SAXS), x-ray photon correlation spectroscopy (XPCS), and rheology to obtain nanoscale and macroscale sensitivity to structure and dynamics. Gel formation after temperature quenches to the vicinity of the rheologically-determined gel temperature, T gel, was characterized via the slow-down of dynamics and changes in microstructure observed in the intensity autocorrelation functions and structure factor, respectively, as a function of quench depth (ΔT = T quench - T gel), wave vector, and formation time (t f). We findmore » similar patterns in the slow-down of dynamics that maps the wave-vector-dependent dynamics at a particular ΔT and t f to that at other ΔTs and t fs via an effective scaling temperature, Ts. A single Ts applies to a broad range of ΔT and tf but does depend on the particle size. The rate of formation implied by the scaling is a far stronger function of ΔT than that of the attraction strength between colloids. Finally, we interpret this strong temperature de- pendence in terms of changes in cooperative bonding required to form stable, energetically favored, local structures.« less

  3. Glass dissolution as a function of pH and its implications for understanding mechanisms and future experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strachan, Denis

    For years, we have been using a certain form of the glass dissolution rate equation. In this article, I examine the assumptions that have been made and suggest that the rate equation may be more complex than originally thought. Suggestions of experiments that are needed to correct or validate the exisiting form of the rate equation are made.

  4. Dissolution of cerium(IV)-lanthanide(III) oxides: Comparative effect of chemical composition, temperature, and acidity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horlait, D.; Clavier, N.; Szenknect, S.

    2012-03-15

    The dissolution of Ce{sub 1-x}Ln{sub x}O{sub 2-x/2} solid solutions was undertaken in various acid media in order to evaluate the effects of several physicochemical parameters such as chemical composition, temperature, and acidity on the reaction kinetics. The normalized dissolution rates (R{sub L,0}) were found to be strongly modified by the trivalent lanthanide incorporation rate, due to the presence of oxygen vacancies decreasing the samples cohesion. Conversely, the nature of the trivalent cation considered only weakly impacted the R{sub L,0} values. The dependence of the normalized dissolution rates on the temperature then appeared to be of the same order of magnitudemore » than that of chemical composition. Moreover, it allowed determining the corresponding activation energy (E{sub A} ≅ 60-85 kJ.mol{sup -1}) which accounts for a dissolution driven by surface-controlled reactions. A similar conclusion was made regarding the acidity of the solution: the partial order related to (H{sub 3}O{sup +}) reaching about 0.7. Finally, the prevailing effect of the incorporation of aliovalent cations in the fluorite-type CeO{sub 2} matrix on the dissolution kinetics precluded the observation of slight effects such as those linked to the complexing agents or to the crystal structure of the samples. (authors)« less

  5. Computational hydrodynamic comparison of a mini vessel and a USP 2 dissolution testing system to predict the dynamic operating conditions for similarity of dissolution performance.

    PubMed

    Wang, Bing; Bredael, Gerard; Armenante, Piero M

    2018-03-25

    The hydrodynamic characteristics of a mini vessel and a USP 2 dissolution testing system were obtained and compared to predict the tablet-liquid mass transfer coefficient from velocity distributions near the tablet and establish the dynamic operating conditions under which dissolution in mini vessels could be conducted to generate concentration profiles similar to those in the USP 2. Velocity profiles were obtained experimentally using Particle Image Velocimetry (PIV). Computational Fluid Dynamics (CFD) was used to predict the velocity distribution and strain rate around a model tablet. A CFD-based mass transfer model was also developed. When plotted against strain rate, the predicted tablet-liquid mass transfer coefficient was found to be independent of the system where it was obtained, implying that a tablet would dissolve at the same rate in both systems provided that the concentration gradient between the tablet surface and the bulk is the same, the tablet surface area per unit liquid volume is identical, and the two systems are operated at the appropriate agitation speeds specified in this work. The results of this work will help dissolution scientists operate mini vessels so as to predict the dissolution profiles in the USP 2, especially during the early stages of drug development. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Influence of drug load on dissolution behavior of tablets containing a poorly water-soluble drug: estimation of the percolation threshold.

    PubMed

    Wenzel, Tim; Stillhart, Cordula; Kleinebudde, Peter; Szepes, Anikó

    2017-08-01

    Drug load plays an important role in the development of solid dosage forms, since it can significantly influence both processability and final product properties. The percolation threshold of the active pharmaceutical ingredient (API) corresponds to a critical concentration, above which an abrupt change in drug product characteristics can occur. The objective of this study was to identify the percolation threshold of a poorly water-soluble drug with regard to the dissolution behavior from immediate release tablets. The influence of the API particle size on the percolation threshold was also studied. Formulations with increasing drug loads were manufactured via roll compaction using constant process parameters and subsequent tableting. Drug dissolution was investigated in biorelevant medium. The percolation threshold was estimated via a model dependent and a model independent method based on the dissolution data. The intragranular concentration of mefenamic acid had a significant effect on granules and tablet characteristics, such as particle size distribution, compactibility and tablet disintegration. Increasing the intragranular drug concentration of the tablets resulted in lower dissolution rates. A percolation threshold of approximately 20% v/v could be determined for both particle sizes of the API above which an abrupt decrease of the dissolution rate occurred. However, the increasing drug load had a more pronounced effect on dissolution rate of tablets containing the micronized API, which can be attributed to the high agglomeration tendency of micronized substances during manufacturing steps, such as roll compaction and tableting. Both methods that were applied for the estimation of percolation threshold provided comparable values.

  7. Dissolution process analysis using model-free Noyes-Whitney integral equation.

    PubMed

    Hattori, Yusuke; Haruna, Yoshimasa; Otsuka, Makoto

    2013-02-01

    Drug dissolution process of solid dosages is theoretically described by Noyes-Whitney-Nernst equation. However, the analysis of the process is demonstrated assuming some models. Normally, the model-dependent methods are idealized and require some limitations. In this study, Noyes-Whitney integral equation was proposed and applied to represent the drug dissolution profiles of a solid formulation via the non-linear least squares (NLLS) method. The integral equation is a model-free formula involving the dissolution rate constant as a parameter. In the present study, several solid formulations were prepared via changing the blending time of magnesium stearate (MgSt) with theophylline monohydrate, α-lactose monohydrate, and crystalline cellulose. The formula could excellently represent the dissolution profile, and thereby the rate constant and specific surface area could be obtained by NLLS method. Since the long time blending coated the particle surface with MgSt, it was found that the water permeation was disturbed by its layer dissociating into disintegrant particles. In the end, the solid formulations were not disintegrated; however, the specific surface area gradually increased during the process of dissolution. The X-ray CT observation supported this result and demonstrated that the rough surface was dominant as compared to dissolution, and thus, specific surface area of the solid formulation gradually increased. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. In Situ Observation of Calcium Aluminate Inclusions Dissolution into Steelmaking Slag

    NASA Astrophysics Data System (ADS)

    Miao, Keyan; Haas, Alyssa; Sharma, Mukesh; Mu, Wangzhong; Dogan, Neslihan

    2018-06-01

    The dissolution rate of calcium aluminate inclusions in CaO-SiO2-Al2O3 slags has been studied using confocal scanning laser microscopy (CSLM) at elevated temperatures: 1773 K, 1823 K, and 1873 K (1500 °C, 1550 °C, and 1600 °C). The inclusion particles used in this experimental work were produced in our laboratory and their production technique is explained in detail. Even though the particles had irregular shapes, there was no rotation observed. Further, the total dissolution time decreased with increasing temperature and decreasing SiO2 content in the slag. The rate limiting steps are discussed in terms of shrinking core models and diffusion into a stagnant fluid model. It is shown that the rate limiting step for dissolution is mass transfer in the slag at 1823 K and 1873 K (1550 °C and 1600 °C). Further investigations are required to determine the dissolution mechanism at 1773 K (1500 °C). The calculated diffusion coefficients were inversely proportional to the slag viscosity and the obtained values for the systems studied ranged between 5.64 × 10-12 and 5.8 × 10-10 m2/s.

  9. Pharmaceutical Cocrystal of Piroxicam: Design, Formulation and Evaluation

    PubMed Central

    Panzade, Prabhakar; Shendarkar, Giridhar; Shaikh, Sarfaraj; Balmukund Rathi, Pavan

    2017-01-01

    Purpose: Cocrystallisation of drug with coformers is a promising approach to alter the solid sate properties of drug substances like solubility and dissolution. The objective of the present work was to prepare, formulate and evaluate the piroxicam cocrystal by screening various coformers. Methods: Cocrystals of piroxicam were prepared by dry grinding method. The melting point and solubility of crystalline phase was determined. The potential cocrystal was characterized by DSC, IR, XRPD. Other pharmaceutical properties like solubility and dissolution rate were also evaluated. Orodispersible tablets of piroxicam cocrystal were formulated, optimized and evaluated using 32 factorial design. Results: Cocrystals of piroxicam-sodium acetate revealed the variation in melting points and solubility. The cocrystals were obtained in 1:1 ratio with sodium acetate. The analysis of Infrared explicitly indicated the shifting of characteristic bands of piroxicam. The X-Ray Powder Diffraction pattern denoted the crystallinity of cocrystals and noteworthy difference in 2θ value of intense peaks. Differential scanning calorimetry spectra of cocrystals indicated altered endotherms corresponding to melting point. The pH solubility profile of piroxicam showed sigmoidal curve, which authenticated the pKa-dependent solubility. Piroxicam cocrystals also exhibited a similar pH-solubility profile. The cocrystals exhibited faster dissolution rate owing to cocrystallization as evident from 30% increase in the extent of dissolution. The orodispersible tablets of piroxicam cocrystals were successfully prepared by direct compression method using crosscarmelose sodium as superdisintegrant with improved disintegration time (30 sec) and dissolution rate. Conclusion: The piroxicam cocrystal with modified properties was prepared with sodium acetate and formulated as orodispersible tablets having faster disintegration and greater dissolution rate. PMID:29071222

  10. Pharmaceutical Cocrystal of Piroxicam: Design, Formulation and Evaluation.

    PubMed

    Panzade, Prabhakar; Shendarkar, Giridhar; Shaikh, Sarfaraj; Balmukund Rathi, Pavan

    2017-09-01

    Purpose: Cocrystallisation of drug with coformers is a promising approach to alter the solid sate properties of drug substances like solubility and dissolution. The objective of the present work was to prepare, formulate and evaluate the piroxicam cocrystal by screening various coformers. Methods: Cocrystals of piroxicam were prepared by dry grinding method. The melting point and solubility of crystalline phase was determined. The potential cocrystal was characterized by DSC, IR, XRPD. Other pharmaceutical properties like solubility and dissolution rate were also evaluated. Orodispersible tablets of piroxicam cocrystal were formulated, optimized and evaluated using 3 2 factorial design. Results: Cocrystals of piroxicam-sodium acetate revealed the variation in melting points and solubility. The cocrystals were obtained in 1:1 ratio with sodium acetate. The analysis of Infrared explicitly indicated the shifting of characteristic bands of piroxicam. The X-Ray Powder Diffraction pattern denoted the crystallinity of cocrystals and noteworthy difference in 2θ value of intense peaks. Differential scanning calorimetry spectra of cocrystals indicated altered endotherms corresponding to melting point. The pH solubility profile of piroxicam showed sigmoidal curve, which authenticated the pKa-dependent solubility. Piroxicam cocrystals also exhibited a similar pH-solubility profile. The cocrystals exhibited faster dissolution rate owing to cocrystallization as evident from 30% increase in the extent of dissolution. The orodispersible tablets of piroxicam cocrystals were successfully prepared by direct compression method using crosscarmelose sodium as superdisintegrant with improved disintegration time (30 sec) and dissolution rate. Conclusion: The piroxicam cocrystal with modified properties was prepared with sodium acetate and formulated as orodispersible tablets having faster disintegration and greater dissolution rate.

  11. Working Late: Do Workplace Sex Ratios Affect Partnership Formation and Dissolution?

    ERIC Educational Resources Information Center

    Svarer, Michael

    2007-01-01

    In this paper, I analyze the association between workplace sex ratios and partnership formation and dissolution. I find that the risk of dissolution increases with the fraction of coworkers of the opposite sex at both the female and male workplace. On the other hand, workplace sex ratios are not important for the overall transition rate from…

  12. The improved dissolution performance of a post processing treated spray-dried crystalline solid dispersion of poorly soluble drugs.

    PubMed

    Chan, Siok-Yee; Toh, Seok-Ming; Khan, Nasir Hayat; Chung, Yin-Ying; Cheah, Xin-Zi

    2016-11-01

    Solution-mediated transformation has been cited as one of the main problems that deteriorate dissolution performances of solid dispersion (SD). This is mainly attributed by the recrystallization tendency of poorly soluble drug. Eventually, it will lead to extensive agglomeration which is a key process in reducing the dissolution performance of SD and offsets the true benefit of SD system. Here, a post-processing treatment is suggested in order to reduce the recrystallization tendency and hence bring forth the dissolution advantage of SD system. The current study investigates the effect of a post processing treatment on dissolution performance of SD in comparison to their performances upon production. Two poorly soluble drugs were spray dried into SD using polyvinyl alcohol (PVA) as hydrophilic carrier. The obtained samples were post processing treated by exposure to high humidity, i.e. 75% RH at room temperature. The physical properties and release rate of the SD system were characterized upon production and after the post-processing treatment. XRPD, Infrared and DSC results showed partial crystallinity of the fresh SD systems. Crystallinity of these products was further increased after the post-processing treatment at 75% RH. This may be attributed to the high moisture absorption of the SD system that promotes recrystallization process of the drug. However, dissolution efficiencies of the post-treated systems were higher and more consistent than the fresh SD. The unexpected dissolution trend was further supported by the results intrinsic dissolution and solubility studies. An increase of crystallinity in a post humidity treated SD did not exert detrimental effect to their dissolution profiles. A more stabilized system with a preferable enhanced dissolution rate was obtained by exposing the SD to a post processing humidity treatment.

  13. Mathematical modeling of drug dissolution.

    PubMed

    Siepmann, J; Siepmann, F

    2013-08-30

    The dissolution of a drug administered in the solid state is a pre-requisite for efficient subsequent transport within the human body. This is because only dissolved drug molecules/ions/atoms are able to diffuse, e.g. through living tissue. Thus, generally major barriers, including the mucosa of the gastro intestinal tract, can only be crossed after dissolution. Consequently, the process of dissolution is of fundamental importance for the bioavailability and, hence, therapeutic efficacy of various pharmaco-treatments. Poor aqueous solubility and/or very low dissolution rates potentially lead to insufficient availability at the site of action and, hence, failure of the treatment in vivo, despite a potentially ideal chemical structure of the drug to interact with its target site. Different physical phenomena are involved in the process of drug dissolution in an aqueous body fluid, namely the wetting of the particle's surface, breakdown of solid state bonds, solvation, diffusion through the liquid unstirred boundary layer surrounding the particle as well as convection in the surrounding bulk fluid. Appropriate mathematical equations can be used to quantify these mass transport steps, and more or less complex theories can be developed to describe the resulting drug dissolution kinetics. This article gives an overview on the current state of the art of modeling drug dissolution and points out the assumptions the different theories are based on. Various practical examples are given in order to illustrate the benefits of such models. This review is not restricted to mathematical theories considering drugs exhibiting poor aqueous solubility and/or low dissolution rates, but also addresses models quantifying drug release from controlled release dosage forms, in which the process of drug dissolution plays a major role. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Conflict Resolution in Marriage: Toward a Theory of Spousal Strategies and Marital Dissolution Rates.

    ERIC Educational Resources Information Center

    Chafetz, Janet Saltzman

    1980-01-01

    There are four strategies spouses may attempt to employ in cases of conflict: authority, control, influence, and manipulation. Rates of marital dissolution are a function of the relative equality between spouses in terms of the types of conflict-resolution strategies they are able to employ. (Author)

  15. Effects of NaCl, pH, and Potential on the Static Creep Behavior of AA1100

    NASA Astrophysics Data System (ADS)

    Wan, Quanhe; Quesnel, David J.

    2013-03-01

    The creep rates of AA1100 are measured during exposure to a variety of aggressive environments. NaCl solutions of various concentrations have no influence on the steady-state creep behavior, producing creep rates comparable to those measured in lab air at room temperature. However, after an initial incubation period of steady strain rate, a dramatic increase of strain rate is observed on exposure to HCl solutions and NaOH solutions, as well as during cathodic polarization of specimens in NaCl solutions. Creep strain produces a continuous deformation and elongation of the sample surface that is comparable to slow strain rates at crack tips thought to control the kinetics of crack growth during stress corrosion cracking (SCC). In this experiment, we separate the strain and surface deformation from the complex geometry of the crack tip to better understand the processes at work. Based on this concept, two possible explanations for the environmental influences on creep strain rates are discussed relating to the anodic dissolution of the free surface and hydrogen influences on deformation mechanisms. Consistencies of pH dependence between corrosion creep and SCC at low pH prove a creep-involved SCC mechanism, while the discrepancies between corrosion creep behavior and previous SCC results at high pH indicate a rate-limit step change in the crack propagation of the SCC process.

  16. Solubilization, Solution Equilibria, and Biodegradation of PAH's under Thermophilic Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viamajala, S.; Peyton, B. M.; Richards, L. A.

    Biodegradation rates of PAHs are typically low at mesophilic conditions and it is believed that the kinetics of degradation is controlled by PAH solubility and mass transfer rates. Solubility tests were performed on phenanthrene, fluorene and fluoranthene at 20 C, 40 C and 60 C and, as expected, a significant increase in the equilibrium solubility concentration and of the rate of dissolution of these polycyclic aromatic hydrocarbons (PAHs) was observed with increasing temperature. A first-order model was used to describe the PAH dissolution kinetics and the thermodynamic property changes associated with the dissolution process (enthalpy, entropy and Gibb's free energymore » of solution) were evaluated. Further, other relevant thermodynamic properties for these PAHs, including the activity coefficients at infinite dilution, Henry's law constants and octanol-water partition coefficients, were calculated in the temperature range 20-60 C. In parallel with the dissolution studies, three thermophilic Geobacilli were isolated from compost that grew on phenanthrene at 60 C and degraded the PAH more rapidly than other reported mesophiles. Our results show that while solubilization rates of PAHs are significantly enhanced at elevated temperatures, the biodegradation of PAHs under thermophilic conditions is likely mass transfer limited due to enhanced degradation rates.« less

  17. Prediction of cavity growth by solution of salt around boreholes. (Report No. IITRI-C--6313-14)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snow, R.H. Chang, D.S.

    1975-06-30

    A mathematical model is developed to simulate the process of salt dissolution in a salt formation. The calibration of this model using Detroit Mine data is done systematically by the method of nonlinear regression. The brine concentrations calculated from the regression fit the measured data from Detroit Mine experiment within 10 percent. Because the Detroit data includes periods when the inlet flow is shut off, the agreement with Detroit data indicates that the model adequately represents natural convection effects to predict the cavity growth at very slow feed rates. The prediction has been done to calculate the cavity growth atmore » feed rate of one gal/h and one gal/day over a period of 10,000 y. Result shows that the cavity growth is a wide-flaring type and that the significant growth of the cavity only occurs at top layer. The prediction involves a very great extrapolation of time from the Detroit data, but it will be valid if the mechanism of solution does not change.« less

  18. Preparation and in vitro/in vivo Evaluation of Lacidipine by Adsorption onto Fumed Silica Using Supercritical Carbon Dioxide.

    PubMed

    Geng, Yajie; Fu, Qiang; Guo, Bei; Li, Yun; Zhang, Xiangrong; Wang, Xianglin; Zhang, Tianhong

    2016-01-01

    The aim of this study was to design a silica-supported solid dispersion of lacidipine (LCDP) to enhance the dissolution rate and oral absorption using supercritical CO2 (scCO2) as a solvent. The formulation was characterized using differential scanning calorimetry, powder X-ray diffraction, scanning electron microscopy and fourier transformed infrared spectroscopy. In the dissolution test, LCDP-scCO2 formulation showed a significantly enhanced dissolution compared with LCDPsilica physical mixture and a faster dissolution rate than Lacipil® under different dissolution conditions. In an in vivo test, the area under concentration-time curve and Cmax of LCDP-scCO2 formulation was 9.23 and 23.78 fold greater than LCDP-silica physical mixture (1:15, w/w), respectively, whereas the corresponding values were 1.92 and 2.80 fold greater than Lacipil®, respectively. Our results showed that the solid dispersion prepared by supercritical fluids technology is a feasible method to enhance the oral bioavailability of LCDP.

  19. Oxidative dissolution of pyrite surfaces by hexavalent chromium: Surface site saturation and surface renewal

    NASA Astrophysics Data System (ADS)

    Graham, Andrew M.; Bouwer, Edward J.

    2012-04-01

    In-situ reduction of toxic Cr(VI) to nontoxic Cr(III) represents an important natural attenuation process for Cr(VI)-impacted environments. This study investigates the stoichiometry and kinetics of Cr(VI) reduction by pyrite, a reduced iron-sulfur mineral ubiquitous in recent estuarine and marine sediments. Pyrite suspensions at surface loadings of 0.28-2.10 m2/L (typical of estuarine or marine sediments) were capable of completely reducing 7-120 μM Cr(VI) on the timescale of minutes to days, with the time to reaction completion decreasing with increasing pyrite loading, decreasing initial Cr(VI) concentration, and decreasing suspension pH. Analysis of metal species (Cr and Fe) and sulfur species in solution and at the mineral surface indicated that Cr(VI) oxidatively dissolved the pyrite surface, releasing ferrous iron and sulfate into solution as the reaction progressed. Surface disulfide groups were postulated as the Cr(VI)-reactive surface entity. Net production or consumption of aqueous Fe(II) was shown to depend upon the relative rates of proton-promoted Fe(II) release, Fe(II) release due to oxidative dissolution of pyrite in the presence of Cr(VI), and Fe(II) consumption due to homogeneous reaction with Cr(VI). Kinetics of Cr(VI) reduction by pyrite displayed a biphasic pattern, and the time to reaction completion increased dramatically with increasing initial Cr(VI) concentration. Rapid Cr(VI) removal occurred early in the reaction progress, attributable to Cr(VI) loss under an adsorption-limited regime. Slow, approximately zero-order, Cr(VI) removal occurred over the bulk of the time courses, and corresponded to Cr(VI) removal under surface site saturation conditions. Stoichiometric Cr(VI) reduction was able to proceed under surface site limited conditions owing to regeneration of reactive surface sites following desorption/dissolution of oxidized surface products, as demonstrated in repeat Cr(VI)-spiking experiments. The role of surface passivation was evaluated by comparing rates of Cr(VI) reduction in the presence and absence of the Cr(III)-complexing agent citrate. While citrate addition significantly enhanced Cr(III) solubility, rates of Cr(VI) reduction were only marginally accelerated, suggesting that Cr(OH)3(s) coatings did not completely block access of Cr(VI) to reactive surface sites on pyrite. Given the rapid rates of Cr(VI) reduction with pyrite under pH and surface coverage conditions typical of natural environments, we propose that Cr(VI) reduction by pyrite be considered in fate and transport models for Cr in contaminated sediments.

  20. Assimilation by Lunar Mare Basalts: Melting of Crustal Material and Dissolution of Anorthite

    NASA Technical Reports Server (NTRS)

    Finnila, A. B.; Hess, P. C.; Rutherford, M. J.

    1994-01-01

    We discuss techniques for calculating the amount of crustal assimilation possible in lunar magma chambers and dikes based on thermal energy balances, kinetic rates, and simple fluid mechanical constraints. Assuming parent magmas of picritic compositions, we demonstrate the limits on the capacity of such magmas to melt and dissolve wall rock of anorthitic, troctolitic, noritic, and KREEP (quartz monzodiorite) compositions. Significant melting of the plagioclase-rich crustal lithologies requires turbulent convection in the assimilating magma and an efficient method of mixing in the relatively buoyant and viscous new melt. Even when this occurs, the major element chemistry of the picritic magmas will change by less than 1-2 wt %. Diffusion coefficients measured for Al2O3 from an iron-free basalt and an orange glass composition are 10(exp -12) m(exp 2) s(exp -1) at 1340 C and 10(exp -11) m(exp 2) s(exp -1) at 1390 C. These rates are too slow to allow dissolution of plagioclase to significantly affect magma compositions. Picritic magmas can melt significant quantities of KREEP, which suggests that their trace element chemistry may still be affected by assimilation processes; however, mixing viscous melts of KREEP composition with the fluid picritic magmas could be prohibitively difficult. We conclude that only a small part of the total major element chemical variation in the mare basalt and volcanic glass collection is due to assimilation/fractional crystallization processes near the lunar surface. Instead, most of the chemical variation in the lunar basalts and volcanic glasses must result from assimilation at deeper levels or from having distinct source regions in a heterogeneous lunar mantle.

  1. Comparative Dynamics of Retrograde Actin Flow and Focal Adhesions: Formation of Nascent Adhesions Triggers Transition from Fast to Slow Flow

    PubMed Central

    Alexandrova, Antonina Y.; Arnold, Katya; Schaub, Sébastien; Vasiliev, Jury M.; Meister, Jean-Jacques; Bershadsky, Alexander D.; Verkhovsky, Alexander B.

    2008-01-01

    Dynamic actin network at the leading edge of the cell is linked to the extracellular matrix through focal adhesions (FAs), and at the same time it undergoes retrograde flow with different dynamics in two distinct zones: the lamellipodium (peripheral zone of fast flow), and the lamellum (zone of slow flow located between the lamellipodium and the cell body). Cell migration involves expansion of both the lamellipodium and the lamellum, as well as formation of new FAs, but it is largely unknown how the position of the boundary between the two flow zones is defined, and how FAs and actin flow mutually influence each other. We investigated dynamic relationship between focal adhesions and the boundary between the two flow zones in spreading cells. Nascent FAs first appeared in the lamellipodium. Within seconds after the formation of new FAs, the rate of actin flow decreased locally, and the lamellipodium/lamellum boundary advanced towards the new FAs. Blocking fast actin flow with cytochalasin D resulted in rapid dissolution of nascent FAs. In the absence of FAs (spreading on poly-L-lysine-coated surfaces) retrograde flow was uniform and the velocity transition was not observed. We conclude that formation of FAs depends on actin dynamics, and in its turn, affects the dynamics of actin flow by triggering transition from fast to slow flow. Extension of the cell edge thus proceeds through a cycle of lamellipodium protrusion, formation of new FAs, advance of the lamellum, and protrusion of the lamellipodium from the new base. PMID:18800171

  2. Hot-melt extrusion microencapsulation of quercetin for taste-masking.

    PubMed

    Khor, Chia Miang; Ng, Wai Kiong; Kanaujia, Parijat; Chan, Kok Ping; Dong, Yuancai

    2017-02-01

    Besides its poor dissolution rate, the bitterness of quercetin also poses a challenge for further development. Using carnauba wax, shellac or zein as the shell-forming excipient, this work aimed to microencapsulate quercetin by hot-melt extrusion for taste-masking. In comparison with non-encapsulated quercetin, the microencapsulated powders exhibited significantly reduced dissolution in the simulated salivary pH 6.8 medium indicative of their potentially good taste-masking efficiency in the order of zein > carnauba wax > shellac. In vitro bitterness analysis by electronic tongue confirmed the good taste-masking efficiency of the microencapsulated powders. In vitro digestion results showed that carnauba wax and shellac-microencapsulated powders presented comparable dissolution rate with the pure quercetin in pH 1.0 (gastric) and 6.8 (intestine) medium; while zein-microencapsulated powders exhibited a remarkably slower dissolution rate. Crystallinity of quercetin was slightly reduced after microencapsulation while its chemical structure remained unchanged. Hot-melt extrusion microencapsulation could thus be an attractive technique to produce taste-masked bioactive powders.

  3. An analysis of variable dissolution rates of sacrificial zinc anodes: a case study of the Hamble estuary, UK.

    PubMed

    Rees, Aldous B; Gallagher, Anthony; Comber, Sean; Wright, Laurence A

    2017-09-01

    Sacrificial anodes are intrinsic to the protection of boats and marine structures by preventing the corrosion of metals higher up the galvanic scale through their preferential breakdown. The dissolution of anodes directly inputs component metals into local receiving waters, with variable rates of dissolution evident in coastal and estuarine environments. With recent changes to the Environmental Quality Standard (EQS), the load for zinc in estuaries such as the Hamble, UK, which has a large amount of recreational craft, now exceeds the zinc standard of 7.9 μg/l. A survey of boat owners determined corrosion rates and estimated zinc loading at between 6.95 and 7.11 t/year. The research confirms the variable anode corrosion within the Hamble and highlighted a lack of awareness of anode technology among boat owners. Monitoring and investigation discounted metal structures and subterranean power cables as being responsible for these variations but instead linked accelerated dissolution to marina power supplies and estuarine salinity variations.

  4. Investigating the Dissolution Performance of Amorphous Solid Dispersions Using Magnetic Resonance Imaging and Proton NMR.

    PubMed

    Tres, Francesco; Coombes, Steven R; Phillips, Andrew R; Hughes, Leslie P; Wren, Stephen A C; Aylott, Jonathan W; Burley, Jonathan C

    2015-09-10

    We have investigated the dissolution performance of amorphous solid dispersions of poorly water-soluble bicalutamide in a Kollidon VA64 polymeric matrix as a function of the drug loading (5% vs. 30% bicalutamide). A combined suite of state-of-the-art analytical techniques were employed to obtain a clear picture of the drug release, including an integrated magnetic resonance imaging UV-Vis flow cell system and 1H-NMR. Off-line 1H-NMR was used for the first time to simultaneously measure the dissolution profiles and rates of both the drug and the polymer from a solid dispersion. MRI and 1H-NMR data showed that the 5% drug loading compact erodes linearly, and that bicalutamide and Kollidon VA64 are released at approximately the same rate from the molecular dispersion. For the 30% extrudate, data indicated a slower water ingress into the compact which corresponds to a slower dissolution rate of both bicalutamide and Kollidon VA64.

  5. Effect of the microstructure of Ti-5Mo on the anodic dissolution in H/sub 2/SO/sub 4/

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Y.J.; Oriani, R.A.

    1987-04-01

    The effect of microstructure of the Ti-5Mo alloy on its anodic dissolution rate in sulfuric acid solution at various temperatures has been investigated. TiMo alloys exhibit a region of increased dissolution rate in the vicinity of +0.20 V (saturated calomel electrode (SCE)) in 10% H/sub 2/SO/sub 4/, the same potential region in which pure Mo exhibits a large anodic dissolution rate. Aging of Ti-5Mo at 350 C was found to lead to the formation of ..omega.. phase. Heat treatment caused larger passive currents in 10% H/sub 2/SO/sub 4/, but the critical passivation potentials and corrosion potentials were not significantly affected.more » Molybdenum was enriched in the oxide formed on aged Ti-5Mo at +0.23 V (SCE), in comparison with the Mo concentration found in the oxide on as-received Ti-5Mo.« less

  6. Attenuation of Glass Dissolution in the Presence of Natural Additives

    NASA Technical Reports Server (NTRS)

    Sang, Jing C.; Barkatt, Aaron; OKeefe, John A.

    1993-01-01

    The study described here explored the dissolution kinetics of glasses in aqueous environments in systems which included a variety of natural crystalline solids in addition to the glass itself and the aqueous phase. The results demonstrated the possibility of a dramatic decrease in the rate of dissolution of silicate glass in the presence of certain varieties of olivine-based materials. This decrease in dissolution rate was shown to be due to the fact that these additives consist mostly of Mg-based material but also contain minor amounts of Al and Ca. The combined presence of Mg with these minor species affected the corrosion rate of the glass as a whole, including its most soluble components such as boron. The study has potentially important implications to the durability of glasses exposed to natural environments. The results may be relevant to the use of active backfill materials in burial sites for nuclear waste glasses as well as to better understanding of the environmental degradation of natural and ancient glasses.

  7. Improvement of the dissolution rate of poorly soluble drugs by solid crystal suspensions.

    PubMed

    Thommes, Markus; Ely, David R; Carvajal, M Teresa; Pinal, Rodolfo

    2011-06-06

    We present a novel extrusion based approach where the dissolution rate of poorly soluble drugs (griseofulvin, phenytoin and spironolactone) is significantly accelerated. The drug and highly soluble mannitol are coprocessed in a hot melt extrusion operation. The obtained product is an intimate mixture of the crystalline drug and crystalline excipient, with up to 50% (w/w) drug load. The in vitro drug release from the obtained solid crystalline suspensions is over 2 orders of magnitude faster than that of the pure drug. Since the resulting product is crystalline, the accelerated dissolution rate does not bear the physical stability concerns inherent to amorphous formulations. This approach is useful in situations where the drug is not a good glass former or in cases where it is difficult to stabilize the amorphous drug. Being thermodynamically stable, the dissolution profile and the solid state properties of the product are maintained after storage at 40 °C, 75% RH for at least 90 days.

  8. Enhanced dissolution and oral bioavailability of valsartan solid dispersions prepared by a freeze-drying technique using hydrophilic polymers.

    PubMed

    Xu, Wei-Juan; Xie, Hong-Juan; Cao, Qing-Ri; Shi, Li-Li; Cao, Yue; Zhu, Xiao-Yin; Cui, Jing-Hao

    2016-01-01

    This study aimed to improve the dissolution rate and oral bioavailability of valsartan (VAL), a poorly soluble drug using solid dispersions (SDs). The SDs were prepared by a freeze-drying technique with polyethylene glycol 6000 (PEG6000) and hydroxypropylmethylcellulose (HPMC 100KV) as hydrophilic polymers, sodium hydroxide (NaOH) as an alkalizer, and poloxamer 188 as a surfactant without using any organic solvents. In vitro dissolution rate and physicochemical properties of the SDs were characterized using the USP paddle method, differential scanning calorimetry (DSC), X-ray diffractometry (XRD) and Fourier transform-infrared (FT-IR) spectroscopy, respectively. In addition, the oral bioavailability of SDs in rats was evaluated by using VAL (pure drug) as a reference. The dissolution rates of the SDs were significantly improved at pH 1.2 and pH 6.8 compared to those of the pure drug. The results from DSC, XRD showed that VAL was molecularly dispersed in the SDs as an amorphous form. The FT-IR results suggested that intermolecular hydrogen bonding had formed between VAL and its carriers. The SDs exhibited significantly higher values of AUC 0-24 h and Cmax in comparison with the pure drug. In conclusion, hydrophilic polymer-based SDs prepared by a freeze-drying technique can be a promising method to enhance dissolution rate and oral bioavailability of VAL.

  9. Method for growth of crystals by pressure reduction of supercritical or subcritical solution

    NASA Technical Reports Server (NTRS)

    Shlichta, P. J. (Inventor)

    1985-01-01

    Crystals of high morphological quality are grown by dissolution of a substance to be grown into the crystal in a suitable solvent under high pressure, and by subsequent slow, time-controlled reduction of the pressure of the resulting solution. During the reduction of the pressure interchange of heat between the solution and the environment is minimized by performing the pressure reduction either under isothermal or adiabatic conditions.

  10. Seabed measurements of modern corrosion rates on the Florida escarpment

    USGS Publications Warehouse

    Paull, C.K.; Commeau, R.F.; Curray, Joseph R.; Neumann, A.C.

    1991-01-01

    A mooring containing diverse carbonate and anhydrite substrates was exposed to bottom waters for 9 months at the base of the Florida Escarpment to determine the influence of dissolution on the development of this continental margin. Weight loss was measured on all samples. Etching, pitting, and loss of the original framework components were observed on substrates with known characteristics. Extrapolations of modern dissolution rates predict only about 1.6 meters of corrosion per million years. However, more rapid anhydrite dissolution, up to 1 km per million years, would cause exposed anhydrite beds to undercut and destabilize intercalated limestones. 

  11. Glass composition and solution speciation effects on stage III dissolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trivelpiece, Cory L.; Rice, Jarret A.; Pantano, Carlo G.

    To understand and mitigate the onset of Stage III corrosion of multicomponent oxides waste glasses. Stage III refers to a resumption of the high initial rate of glass dissolution in some glass samples that have otherwise exhibited dissolution at the much lower residual rate for a long time (Stage II). Although the onset of Stage III is known to occur concurrently with the precipitation of particular alteration products, the root cause of the transition is still unknown. Certain glass compositions (notably AFCI) and high pH environmental conditions are also associated with this observed transition.

  12. Utilization of supercritical carbon dioxide for complex formation of ibuprofen and methyl-beta-cyclodextrin.

    PubMed

    Charoenchaitrakool, M; Dehghani, F; Foster, N R

    2002-06-04

    The dissolution rate of a drug into the biological environment can be enhanced by forming complexes with cyclodextrins and their derivatives. In this study, ibuprofen-methyl-beta-cyclodextrin complexes were prepared successfully by passing ibuprofen-laden CO(2) through a methyl-beta-cyclodextrin packed bed. The maximum drug loading obtained in this work was 10.8 wt.%, which was comparable to that of a 1:1 complex (13.6 wt.% of ibuprofen). The complex exhibited instantaneous dissolution profiles in water solution. The enhanced dissolution rate was attributed to the amorphous character and improved wettability of the product.

  13. Dissolution kinetics of a lunar glass simulant at 25 degrees C: the effect of pH and organic acids

    NASA Technical Reports Server (NTRS)

    Eick, M. J.; Grossl, P. R.; Golden, D. C.; Sparks, D. L.; Ming, D. W.

    1996-01-01

    The dissolution kinetics of a simulated lunar glass were examined at pH 3, 5, and 7. Additionally, the pH 7 experiments were conducted in the presence of citric and oxalic acid at concentrations of 2 and 20 mM. The organic acids were buffered at pH 7 to examine the effect of each molecule in their dissociated form. At pH 3, 5, and 7, the dissolution of the synthetic lunar glass was observed to proceed via a two-stage process. The first stage involved the parabolic release of Ca, Mg, Al, and Fe, and the linear release of Si. Dissolution was incongruent, creating a leached layer rich in Si and Ti which was verified by transmission electron microscopy (TEM). During the second stage the release of Ca, Mg, Al, and Fe was linear. A coupled diffusion/surface dissolution model was proposed for dissolution of the simulated lunar glass at pH 3, 5, and 7. During the first stage the initial release of mobile cations (i.e., Ca, Mg, Al, Fe) was limited by diffusion through the surface leached layer of the glass (parabolic release), while Si release was controlled by the hydrolysis of the Si-O-Al bonds at the glass surface (linear release). As dissolution continued, the mobile cations diffused from greater depths within the glass surface. A steady-state was then reached where the diffusion rate across the increased path lengths equalled the Si release rate from the surface. In the presence of the organic acids, the dissolution of the synthetic lunar glass proceeded by a one stage process. The release of Ca, Mg, Al, and Fe followed a parabolic relationship, while the release of Si was linear. The relative reactivity of the organic acids used in the experiments was citrate > oxalate. A thinner leached layer rich in Si/Ti, as compared to the pH experiments, was observed using TEM. Rate data suggest that the chemisorption of the organic anion to the surface silanol groups was responsible for enhanced dissolution in the presence of the organic acids. It is proposed that the increased rate of Si release is responsible for the one stage parabolic release of mobile cations and the relatively thin leached layer compared to experiments at pH 3 and 5.

  14. In vitro solubility, dissolution and permeability studies combined with semi-mechanistic modeling to investigate the intestinal absorption of desvenlafaxine from an immediate- and extended release formulation.

    PubMed

    Franek, F; Jarlfors, A; Larsen, F; Holm, P; Steffansen, B

    2015-09-18

    Desvenlafaxine is a biopharmaceutics classification system (BCS) class 1 (high solubility, high permeability) and biopharmaceutical drug disposition classification system (BDDCS) class 3, (high solubility, poor metabolism; implying low permeability) compound. Thus the rate-limiting step for desvenlafaxine absorption (i.e. intestinal dissolution or permeation) is not fully clarified. The aim of this study was to investigate whether dissolution and/or intestinal permeability rate-limit desvenlafaxine absorption from an immediate-release formulation (IRF) and Pristiq(®), an extended release formulation (ERF). Semi-mechanistic models of desvenlafaxine were built (using SimCyp(®)) by combining in vitro data on dissolution and permeation (mechanistic part of model) with clinical data (obtained from literature) on distribution and clearance (non-mechanistic part of model). The model predictions of desvenlafaxine pharmacokinetics after IRF and ERF administration were compared with published clinical data from 14 trials. Desvenlafaxine in vivo dissolution from the IRF and ERF was predicted from in vitro solubility studies and biorelevant dissolution studies (using the USP3 dissolution apparatus), respectively. Desvenlafaxine apparent permeability (Papp) at varying apical pH was investigated using the Caco-2 cell line and extrapolated to effective intestinal permeability (Peff) in human duodenum, jejunum, ileum and colon. Desvenlafaxine pKa-values and octanol-water partition coefficients (Do:w) were determined experimentally. Due to predicted rapid dissolution after IRF administration, desvenlafaxine was predicted to be available for permeation in the duodenum. Desvenlafaxine Do:w and Papp increased approximately 13-fold when increasing apical pH from 5.5 to 7.4. Desvenlafaxine Peff thus increased with pH down the small intestine. Consequently, desvenlafaxine absorption from an IRF appears rate-limited by low Peff in the upper small intestine, which "delays" the predicted time to the maximal plasma concentration (tmax), consistent with clinical data. Conversely, desvenlafaxine absorption from the ERF appears rate-limited by dissolution due to the formulation, which tends to negate the influence of pH-dependent permeability on absorption. We suggest that desvenlafaxine Peff is mainly driven by transcellular diffusion of the unionized form. In the case of desvenlafaxine, poor metabolism does not imply low intestinal permeability, as indicated by the BDDCS, merely low duodenal/jejunal permeability. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Controlled evaluation of silver nanoparticle dissolution using atomic force microscopy.

    PubMed

    Kent, Ronald D; Vikesland, Peter J

    2012-07-03

    Incorporation of silver nanoparticles (AgNPs) into an increasing number of consumer products has led to concern over the potential ecological impacts of their unintended release to the environment. Dissolution is an important environmental transformation that affects the form and concentration of AgNPs in natural waters; however, studies on AgNP dissolution kinetics are complicated by nanoparticle aggregation. Herein, nanosphere lithography (NSL) was used to fabricate uniform arrays of AgNPs immobilized on glass substrates. Nanoparticle immobilization enabled controlled evaluation of AgNP dissolution in an air-saturated phosphate buffer (pH 7.0, 25 °C) under variable NaCl concentrations in the absence of aggregation. Atomic force microscopy (AFM) was used to monitor changes in particle morphology and dissolution. Over the first day of exposure to ≥10 mM NaCl, the in-plane AgNP shape changed from triangular to circular, the sidewalls steepened, the in-plane radius decreased by 5-11 nm, and the height increased by 6-12 nm. Subsequently, particle height and in-plane radius decreased at a constant rate over a 2-week period. Dissolution rates varied linearly from 0.4 to 2.2 nm/d over the 10-550 mM NaCl concentration range tested. NaCl-catalyzed dissolution of AgNPs may play an important role in AgNP fate in saline waters and biological media. This study demonstrates the utility of NSL and AFM for the direct investigation of unaggregated AgNP dissolution.

  16. Dissolution of solid dosage form. II. Equations for the dissolution of nondisintegrating tablet under the sink condition.

    PubMed

    Yonezawa, Y; Shirakura, K; Otsuka, A; Sunada, H

    1991-03-01

    An equation for dissolution from the whole surface of a nondisintegrating single component tablet under the sink condition was derived. Also, equations for several dissolution manners of the tablet under the sink condition were derived in the postulation of the dominant dissolution rate constant which determines the dissolution manner. The applicability or validity of these equations were examined by the dissolution measurements with nondisintegrating single component tablets. About one-tenth the amount of the amount needed to saturate the solution was used to prepare a tablet, and dissolution measurements were carried out with the tablet whose flat or side surface was masked with an adhesive tape in accordance with the conditions for derivation of equations. Among the derived equations, dissolution from the whole surface of a tablet was expressed by a form similar to the cube root law equation for particles. Hence, a single component tablet compressed by the use of a suitable amount was thought to behave like a single crystal. Also, equations derived for several dissolution manners were thought to be applicable for the dissolution of a nonspherical particle and crystal concerning the crystal's habit and its dissolution property, and the extended applicability was examined by converting the crystal into a simplified or idealized form, i.e., rectangle or plate.

  17. Effect of Cr2O3 Pickup on Dissolution of Lime in Converter Slag

    NASA Astrophysics Data System (ADS)

    Yan, Wei; Chen, Weiqing; Zhao, Xiaobo; Yang, Yindong; McLean, Alex

    2017-09-01

    Application of low-nickel laterite ore containing chromium as charging material for ironmaking can reduce raw material costs, but result in an increase of chromium content in the hot metal and hence, Cr2O3 content in the steelmaking slag, which subsequently causes many problems related to lime dissolution for the steelmaking operation. In this work, a rotating cylinder method was employed to study the effect of Cr2O3 on lime dissolution in steelmaking slag. The lime dissolution mechanism, rate control step and affecting factors, including slag basicity, FeOx and B2O3 content, and the formation of phases at reacted layer, were discussed. It was found that mass transfer was the rate control step in slag phase, increase of Cr2O3 and slag basicity delayed lime dissolution due to the formation of high-melting temperature phases of FeO · Cr2O3 spinel and 2CaO · SiO2 at the slag/lime reacted interface. Addition of B2O3 promoted lime dissolution and suppressed formation of FeO · Cr2O3 spinel.

  18. Piroxicam cocrystals with phenolic coformers: preparation, characterization, and dissolution properties.

    PubMed

    Emami, Shahram; Adibkia, Khosro; Barzegar-Jalali, Mohammad; Siahi-Shadbad, Mohammadreza

    2018-04-04

    This study explores the preparation and investigation of dissolution properties of piroxicam cocrystals. Differential scanning calorimetry (DSC) was used to determine the capability of resorcinol (RES), methylparaben (MPB), and vanillin (VAN) to form cocrystals with piroxicam (PRX). Generation of cocrystals was attempted by liquid assisted grinding and slurry methods. Cocrystals were characterized by thermal methods, powder X-ray diffraction, and Fourier-transform infrared spectroscopy. Apparent solubility, intrinsic dissolution rate (IDR), and powder dissolution profile of cocrystals were compared with anhydrous piroxicam, piroxicam monohydrate (PRXMH), and previously reported piroxicam-succinic acid cocrystal. Contact angles and particle sizes of the studied solids were also measured. Based on the DSC screening results, we prepared and characterized PRX-RES and PRX-MPB cocrystals. Interestingly, the cocrystals not only failed to improve apparent solubility and IDR of PRX but also showed lower values than PRX that were attributed to induction of phase transformation of PRX to PRXMH. In contrary, cocrystals performed better than PRX in powder dissolution studies. The higher dissolution rates of cocrystals were explained by improved wettability and reduced sizes. This study has highlighted the complexity of solid state properties of cocrystals and has provided new evidence for the in-solution stability issues of cocrystals.

  19. Online monitoring of thermo-cycles and its correlation with microstructure in laser cladding of nickel based super alloy

    NASA Astrophysics Data System (ADS)

    Muvvala, Gopinath; Patra Karmakar, Debapriya; Nath, Ashish Kumar

    2017-01-01

    Laser cladding, basically a weld deposition technique, is finding applications in many areas including surface coatings, refurbishment of worn out components and generation of functionally graded components owing to its various advantages over conventional methods like TIG, PTA etc. One of the essential requirements to adopt this technique in industrial manufacturing is to fulfil the increasing demand on product quality which could be controlled through online process monitoring and correlating the signals with the mechanical and metallurgical properties. Rapid thermo-cycle i.e. the fast heating and cooling rates involved in this process affect above properties of the deposited layer to a great extent. Therefore, the current study aims to monitor the thermo-cycles online, understand its variation with process parameters and its effect on different quality aspects of the clad layer, like microstructure, elemental segregations and mechanical properties. The effect of process parameters on clad track geometry is also studied which helps in their judicious selection to deposit a predefined thickness of coating. In this study Inconel 718, a nickel based super alloy is used as a clad material and AISI 304 austenitic steel as a substrate material. The thermo-cycles during the cladding process were recorded using a single spot monochromatic pyrometer. The heating and cooling rates were estimated from the recorded thermo-cycles and its effects on microstructures were characterised using SEM and XRD analyses. Slow thermo-cycles resulted in severe elemental segregations favouring Laves phase formation and increased γ matrix size which is found to be detrimental to the mechanical properties. Slow cooling also resulted in termination of epitaxial growth, forming equiaxed grains near the surface, which is not preferred for single crystal growth. Heat treatment is carried out and the effect of slow cooling and the increased γ matrix size on dissolution of segregated elements in metal matrix is studied.

  20. Variations in Divorce Rates by Community Size: A Test of the Social Integration Explanation.

    ERIC Educational Resources Information Center

    Shelton, Beth Anne

    1987-01-01

    Found a strong correlation between residential mobility rate and a measure of marital dissolution. Concluded that community size and marital dissolution correlated positively because of higher levels of residential mobility in large cities and urban areas than in small cities and rural areas. Found high residential mobility both an indicator and a…

  1. CaCO3 dissolution by holothurians (sea cucumber): a case study from One Tree Reef, Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Schneider, K.; Silverman, J.; Kravitz, B.; Woolsey, E.; Eriksson, H.; Schneider-Mor, A.; Barbosa, S.; Rivlin, T.; Byrne, M.; Caldeira, K.

    2012-12-01

    Holothurians (sea cucumbers) are among the largest and most important deposit feeder in coral reefs. They play a role in nutrient and CaCO3 cycling within the reef structure. As a result of their digestive process they secrete alkalinity due to CaCO3 dissolution and organic matter degradation forming CO2 and ammonium. In a survey at station DK13 on One Three Reef we found that the population density of holothurians was > 1 individual m-2. The dominant sea cucumber species Holothuria leucospilota was collected from DK13. The increase in alkalinity due to CaCO3 dissolution in aquaria incubations was measured to be 47±7 μmol kg-1 in average per individual. Combining this dissolution rate with the sea cucumbers concentrations at DK13 suggest that they may account for a dissolution rate of 34.9±17.8 mmol m-2 day-1, which is equivalent to about half of night time community dissolution measured in DK13. This indicates that in reefs where the sea cucumber population is healthy and protected from fishing they can be locally important in the CaCO3 cycle. Preliminary result suggests that the CaCO3 dissolution rates are not affected by the chemistry of the sea water they are incubated in. Measurements of the empty digestive track volume of two sea cucumbers H. atra and Stichopus herrmanni were 36 ± 4 ml and 151 ± 14 ml, respectively. Based on these measurements it is estimated that these species process 19 ± 2kg and 80 ± 7kg CaCO3 sand yr-1 per individual, respectively. The annual dissolution rates of H. atra and S. herrmanni are 6.5±1.9g and 9.6±1.4g, respectively, suggest that 0.05±0.02% and 0.1±0.02% of the CaCO3 processed through their gut annually is dissolved. During the incubations the CaCO3 dissolution was 0.07±0.01%, 0.04±0.01% and 0.21±0.05% of the fecal casts for H. atra, H. leucospilota and S. herrmanni, respectively. Our result that the primary parameter determining the CaCO3 dissolution by sea cucumber is the amount of carbonate send in their gut. This suggests that sea cucumber dissolution in the future is not expected to change due to ocean acidification, but as calcification diminishes the proportion of CaCO3 dissolved by Holothurians (in protected reefs) in the coral reefs may increase.

  2. Dissolution corrosion of 316L austenitic stainless steels in contact with static liquid lead-bismuth eutectic (LBE) at 500 °C

    NASA Astrophysics Data System (ADS)

    Lambrinou, Konstantina; Charalampopoulou, Evangelia; Van der Donck, Tom; Delville, Rémi; Schryvers, Dominique

    2017-07-01

    This work addresses the dissolution corrosion behaviour of 316L austenitic stainless steels. For this purpose, solution-annealed and cold-deformed 316L steels were simultaneously exposed to oxygen-poor (<10-8 mass%) static liquid lead-bismuth eutectic (LBE) for 253-3282 h at 500 °C. Corrosion was consistently more severe for the cold-drawn steels than the solution-annealed steel, indicating the importance of the steel thermomechanical state. The thickness of the dissolution-affected zone was non-uniform, and sites of locally-enhanced dissolution were occasionally observed. The progress of LBE dissolution attack was promoted by the interplay of certain steel microstructural features (grain boundaries, deformation twin laths, precipitates) with the dissolution corrosion process. The identified dissolution mechanisms were selective leaching leading to steel ferritization, and non-selective leaching; the latter was mainly observed in the solution-annealed steel. The maximum corrosion rate decreased with exposure time and was found to be inversely proportional to the depth of dissolution attack.

  3. Surface properties, solubility and dissolution kinetics of bamboo phytoliths

    NASA Astrophysics Data System (ADS)

    Fraysse, Fabrice; Pokrovsky, Oleg S.; Schott, Jacques; Meunier, Jean-Dominique

    2006-04-01

    Although phytoliths, constituted mainly by micrometric opal, exhibit an important control on silicon cycle in superficial continental environments, their thermodynamic properties and reactivity in aqueous solution are still poorly known. In this work, we determined the solubility and dissolution rates of bamboo phytoliths collected in the Réunion Island and characterized their surface properties via electrophoretic measurements and potentiometric titrations in a wide range of pH. The solubility product of "soil" phytoliths ( pKsp0=2.74 at 25 °C) is equal to that of vitreous silica and is 17 times higher than that of quartz. Similarly, the enthalpy of phytoliths dissolution reaction (ΔHr25-80°C=10.85kJ/mol) is close to that of amorphous silica but is significantly lower than the enthalpy of quartz dissolution. Electrophoretic measurements yield isoelectric point pH IEP = 1.2 ± 0.1 and 2.5 ± 0.2 for "soil" (native) and "heated" (450 °C heating to remove organic matter) phytoliths, respectively. Surface acid-base titrations allowed generation of a 2-p K surface complexation model. Phytoliths dissolution rates, measured in mixed-flow reactors at far from equilibrium conditions at 2 ⩽ pH ⩽ 12, were found to be intermediate between those of quartz and vitreous silica. The dissolution rate dependence on pH was modeled within the concept of surface coordination theory using the equation: R=k1·{>SiOH2+}n+k2·{>SiOH0}+k3·{>SiO-}m, where {> i} stands for the concentration of the surface species present at the SiO 2-H 2O interface, ki are the rate constants of the three parallel reactions and n and m represent the order of the proton- and hydroxy-promoted reactions, respectively. It follows from the results of this study that phytoliths dissolution rates exhibit a minimum at pH ˜ 3. This can explain their good preservation in the acidic soil horizons of Réunion Island. In terms of silicon biogeochemical cycle, phytoliths represent a large buffering reservoir, which can play an important role in the regulation of silica fluxes in terrestrial aquatic environments.

  4. Influence of sodium lauryl sulfate and tween 80 on carbamazepine-nicotinamide cocrystal solubility and dissolution behaviour.

    PubMed

    Li, Mingzhong; Qiao, Ning; Wang, Ke

    2013-10-11

    The influence of the surfactants of sodium lauryl sulfate (SLS) and Tween 80 on carbamazepine-nicotinamide (CBZ-NIC) cocrystal solubility and dissolution behaviour has been studied in this work. The solubility of the CBZ-NIC cocrystal was determined by measuring the eutectic concentrations of the drug and the coformer. Evolution of the intrinsic dissolution rate (IDR) of the CBZ-NIC cocrystal was monitored by the UV imaging dissolution system during dissolution. Experimental results indicated that SLS and Tween 80 had little influence upon the solubility of the CBZ-NIC cocrystal but they had totally opposite effects on the IDR of the CBZ-NIC cocrystal during dissolution. SLS significantly increased the IDR of the CBZ-NIC cocrystal while Tween 80 decreased its IDR.

  5. Influence of Sodium Lauryl Sulfate and Tween 80 on Carbamazepine–Nicotinamide Cocrystal Solubility and Dissolution Behaviour

    PubMed Central

    Li, Mingzhong; Qiao, Ning; Wang, Ke

    2013-01-01

    The influence of the surfactants of sodium lauryl sulfate (SLS) and Tween 80 on carbamazepine–nicotinamide (CBZ–NIC) cocrystal solubility and dissolution behaviour has been studied in this work. The solubility of the CBZ–NIC cocrystal was determined by measuring the eutectic concentrations of the drug and the coformer. Evolution of the intrinsic dissolution rate (IDR) of the CBZ–NIC cocrystal was monitored by the UV imaging dissolution system during dissolution. Experimental results indicated that SLS and Tween 80 had little influence upon the solubility of the CBZ–NIC cocrystal but they had totally opposite effects on the IDR of the CBZ–NIC cocrystal during dissolution. SLS significantly increased the IDR of the CBZ–NIC cocrystal while Tween 80 decreased its IDR. PMID:24300560

  6. A kinetic rate model for crystalline basalt dissolution at temperature and pressure conditions relevant for geologic CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Pollyea, R.; Rimstidt, J. D.

    2016-12-01

    Geologic carbon sequestration in terrestrial basalt reservoirs is predicated on permanent CO2 trapping through CO2-water-rock dissolution reactions followed by carbonate precipitation. Bench-scale experiments have shown these reaction paths to be rapid, occurring on a timescale 100 - 102 years. Moreover, recent results from the CarbFix basalt sequestration pilot project in Iceland demonstrate >95% CO2 isolation two years after a small-scale injection. In order to assess the viability of basalt sequestration worldwide (e.g., Deccan Traps, Columbia Plateau, etc.), flexible simulation tools are required that distill the dissolution reactions into a user-friendly format that is readily transmissible to existing reactive transport numerical simulators. In the present research, we combine experimental results extant in the literature for Icelandic basalt to develop kinetic rate models describing the pH-dependent dissolution of (1) basaltic glass and (2) an aggregate mineral assemblage for crystalline basalt comprising olivine, pyroxene, and plagioclase phases. In order to utilize these kinetic rate models with numerical simulation, a thermodynamic solubility model for each phase is developed for use with the reactive transport simulation code, TOUGHREACT. We use reactive transport simulation in a simple 1-D reactor to compare dissolution of the aggregate crystalline basalt phase with the traditional formulation comprising individual mineral phases for the crystalline basalt. Simulation results are in general agreement, illustrating the efficacy of this simplified approach for modeling basalt dissolution at temperature and pressure conditions typical of geologic CO2 reservoirs. Moreover, this approach may be of value to investigators seeking dissolution models for crystalline basalt in other mafic provinces.

  7. Self-inhibition can limit biologically enhanced TCE dissolution from a TCE DNAPL.

    PubMed

    Haest, P J; Springael, D; Seuntjens, P; Smolders, E

    2012-11-01

    Biodegradation of trichloroethene (TCE) near a Dense Non Aqueous Phase Liquid (DNAPL) can enhance the dissolution rate of the DNAPL by increasing the concentration gradient at the DNAPL-water interface. Two-dimensional flow-through sand boxes containing a TCE DNAPL and inoculated with a TCE dechlorinating consortium were set up to measure this bio-enhanced dissolution under anaerobic conditions. The total mass of TCE and daughter products in the effluent of the biotic boxes was 3-6 fold larger than in the effluent of the abiotic box. However, the mass of daughter products only accounted for 19-55% of the total mass of chlorinated compounds in the effluent, suggesting that bio-enhanced dissolution factors were maximally 1.3-2.2. The enhanced dissolution most likely primarily resulted from variable DNAPL distribution rather than biodegradation. Specific dechlorination rates previously determined in a stirred liquid medium were used in a reactive transport model to identify the rate limiting factors. The model adequately simulated the overall TCE degradation when predicted resident microbial numbers approached observed values and indicated an enhancement factor for TCE dissolution of 1.01. The model shows that dechlorination of TCE in the 2D box was limited due to the short residence time and the self-inhibition of the TCE degradation. A parameter sensitivity analysis predicts that the bio-enhanced dissolution factor for this TCE source zone can only exceed a value of 2 if the TCE self-inhibition is drastically reduced (when a TCE tolerant dehalogenating community is present) or if the DNAPL is located in a low-permeable layer with a small Darcy velocity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Dual pH durability studies of man-made vitreous fiber (MMVF).

    PubMed Central

    Bauer, J F; Law, B D; Hesterberg, T W

    1994-01-01

    Dissolution of fibers in the deep lung may involve both extracellular and intracellular mechanisms. This process was modeled in vitro for each environment using an experimental flow-through system to characterize both total dissolution and specific chemical changes for three representative MMVF's: a glasswool, a slagwool, and a refractory ceramic fiber (RCF). Synthetic physiological fluids at pH 4 and at pH 7.6 were used to simulate macrophage intraphagolysosomal, and extracellular environments, respectively. Actual commercial fiber, sized to rat-respirable dimension, having an average fiber diameter of 1 micron and an average length between 15 and 25 microns, was used in the experiments. Fiber dissolution was monitored through change in chemistry of the fluid collected after percolation at a constant rate through a thin bed of sample. There are great differences in total fiber dissolution rates for the different fibers. Slagwool and RCF dissolve more rapidly at pH 4 than at pH 7.6, while the reverse is true for glasswool. Dissolution is sometimes accompanied by a noticeable change in fiber morphology or dimension, and sometimes by no change. There is strong dependency on pH, which affects not only total fiber dissolution, but also the leaching of specific chemical components. This effect is different for each type of fiber, indicating that specific fiber chemistry largely controls whether a fiber dissolves or leaches more rapidly under acidic or neutral conditions. Both total dissolution rates and calculated fiber composition changes are valuable guides to interpreting in vivo behavior of man-made vitreous fibers, and demonstrate the usefulness of in vitro acellular experiments in understanding overall fiber persistence. Images Figure 3. A Figure 3. B Figure 4. A Figure 4. B Figure 4. C PMID:7882957

  9. Scaling of Convective Mixing in Porous Media

    NASA Astrophysics Data System (ADS)

    Hidalgo, Juan J.; Fe, Jaime; Cueto-Felgueroso, Luis; Juanes, Ruben

    2012-12-01

    Convective mixing in porous media is triggered by a Rayleigh-Bénard-type hydrodynamic instability as a result of an unstable density stratification of fluids. While convective mixing has been studied extensively, the fundamental behavior of the dissolution flux and its dependence on the system parameters are not yet well understood. Here, we show that the dissolution flux and the rate of fluid mixing are determined by the mean scalar dissipation rate. We use this theoretical result to provide computational evidence that the classical model of convective mixing in porous media exhibits, in the regime of high Rayleigh number, a dissolution flux that is constant and independent of the Rayleigh number. Our findings support the universal character of convective mixing and point to the need for alternative explanations for nonlinear scalings of the dissolution flux with the Rayleigh number, recently observed experimentally.

  10. Downstream processing of a ternary amorphous solid dispersion: The impacts of spray drying and hot melt extrusion on powder flow, compression and dissolution.

    PubMed

    Davis, Mark T; Potter, Catherine B; Walker, Gavin M

    2018-06-10

    Downstream processing aspects of a stable form of amorphous itraconazole exhibiting enhanced dissolution properties were studied. Preparation of this ternary amorphous solid dispersion by either spray drying or hot melt extrusion led to significantly different powder processing properties. Particle size and morphology was analysed using scanning electron microscopy. Flow, compression, blending and dissolution were studied using rheometry, compaction simulation and a dissolution kit. The spray dried material exhibited poorer flow and reduced sensitivity to aeration relative to the milled extrudate. Good agreement was observed between differing forms of flow measurement, such as Flow Function, Relative flow function, Flow rate index, Aeration rate, the Hausner ratio and the Carr index. The stability index indicated that both powders were stable with respect to agglomeration, de-agglomeration and attrition. Tablet ability and compressibility studies showed that spray dried material could be compressed into stronger compacts than extruded material. Blending of the powders with low moisture, freely-flowing excipients was shown to influence both flow and compression. Porosity studies revealed that blending could influence the mechanism of densification in extrudate and blended extrudate formulations. Following blending, the powders were compressed into four 500 mg tablets, each containing a 100 mg dose of amorphous itraconazole. Dissolution studies revealed that the spray dried material released drug faster and more completely and that blending excipients could further influence the dissolution rate. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Effect of Microenvironmental pH Modulation on the Dissolution Rate and Oral Absorption of the Salt of a Weak Acid - Case Study of GDC-0810.

    PubMed

    Hou, Hao Helen; Jia, Wei; Liu, Lichuan; Cheeti, Sravanthi; Li, Jane; Nauka, Ewa; Nagapudi, Karthik

    2018-01-29

    The purpose of this work is to investigate the effect of microenvironmental pH modulation on the in vitro dissolution rate and oral absorption of GDC-0810, an oral anti-cancer drug, in human. The pH-solubility profile of GDC-0810 free acid and pH max of its N-Methyl-D-glucamine (NMG) salt were determined. Precipitation studies were conducted for GDC-0810 NMG salt at different pH values. GDC-0810 200-mg dose NMG salt tablet formulations containing different levels of sodium bicarbonate as the pH modifier were tested for dissolution under the dual pH-dilution scheme. Three tablet formulations were evaluated in human as a part of a relative bioavailability study. A 200-mg dose of GDC-0810 was administered QD with low fat food. Intrinsic solubility of GDC-0810 free acid was found to be extremely low. The pH max of the NMG salt suggested a strong tendency for form conversion to the free acid under GI conditions. In vitro dissolution profiles showed that the dissolution rate and extent of GDC-0810 increased with increasing the level of sodium bicarbonate in the formulation. The human PK data showed a similar trend for the geometric mean of C max and AUC 0-t for formulations containing 5%, 10%, and 15% sodium bicarbonate, but the difference is not statistically significant. Incorporation of a basic pH modifier, sodium bicarbonate, in GDC-0810 NMG salt tablet formulations enhanced in vitro dissolution rate of GDC-0810 via microenvironmental pH modulation. The human PK data showed no statistically significant difference in drug exposure from tablets containing 5%, 10%, and 15% sodium bicarbonate.

  12. Simulation of pyrite oxidation in fresh mine tailings under near-neutral conditions.

    PubMed

    Alakangas, Lena; Lundberg, Angela; Nason, Peter

    2012-08-01

    Sulphidic residual products from ore processing may produce acid rock drainage, when exposed to oxygen and water. Predictions of the magnitude of ARD and sulphide oxidation rates are of great importance in mine planning because they can be used to minimize or eliminate ARD and the associated economic and environmental costs. To address the lack of field data of sulphide oxidation rate in fresh sulphide-rich tailings under near-neutral conditions, determination and simulation of the rate was performed in pilot-scale at Kristineberg, northern Sweden. The quality of the drainage water was monitored, along with oxygen and carbon dioxide concentrations. The chemical composition of the solid tailings was also determined. The field data were compared to predictions from simulations of pyrite oxidation using a 1-D numerical model. The simulations' estimates of the amount of Fe and S released over a seven year period (52 kg and 178 kg, respectively) were in reasonably good agreement with those obtained by analysing the tailings (34 kg and 155 kg, respectively). The discrepancy is probably due to the formation of secondary precipitates such as iron hydroxides and gypsum; which are not accounted for in the model. The observed mass transport of Fe and S (0.05 and 1.0 kg per year, respectively) was much lower than expected on the basis of the simulations and the core data. Neutralization reactions involving carbonates in the tailings result in a near-neutral pH at all depths except at the oxidation front (pH < 5), indicating that the dissolution of carbonates was too slow for the acid to be neutralized, which instead neutralized deeper down in the tailings. This was also indicated by the reduced abundance of solid Ca at greater depths and the high levels of carbon dioxide both of which are consistent with the dissolution of carbonates. It could be concluded that the near-neutral pH in the tailings has no decreasing effect on the rate of sulphide oxidation, but does reduce the concentrations of dissolved elements in the drainage water due to the formation of secondary minerals. This means that sulphide oxidation rates may be underestimated if determined from drainage alone.

  13. Dissolution of nontronite in chloride brines and implications for the aqueous history of Mars

    NASA Astrophysics Data System (ADS)

    Steiner, M. H.; Hausrath, E. M.; Elwood Madden, M. E.; Tschauner, O.; Ehlmann, B. L.; Olsen, A. A.; Gainey, S. R.; Smith, J. S.

    2016-12-01

    Increasing evidence suggests the presence of recent liquid water, including brines, on Mars. Brines have therefore likely impacted clay minerals such as the Fe-rich mineral nontronite found in martian ancient terrains. To interpret these interactions, we conducted batch experiments to measure the apparent dissolution rate constant of nontronite at 25.0 °C at activities of water (aH2O) of 1.00 (0.01 M CaCl2 or NaCl), 0.75 (saturated NaCl or 3.00 mol kg-1 CaCl2), and 0.50 (5.00 mol kg-1 CaCl2). Experiments at aH2O = 1.00 (0.01 M CaCl2) were also conducted at 4.0 °C, 25.0 °C, and 45.0 °C to measure an apparent activation energy for the dissolution of nontronite. Apparent dissolution rate constants at 25.0 °C in CaCl2-containing solutions decrease with decreasing activity of water as follows: 1.18 × 10-12 ± 9 × 10-14 mol mineral m-2 s-1 (aH2O = 1.00) > 2.36 × 10-13 ± 3.1 × 10-14 mol mineral m-2 s-1 (aH2O = 0.75) > 2.05 × 10-14 ± 2.9 × 10-15 mol mineral m-2 s-1 (aH2O = 0.50). Similar results were observed at 25.0 °C in NaCl-containing solutions: 1.89 × 10-12 ± 1 × 10-13 mol mineral m-2 s-1 (aH2O = 1.00) > 1.98 × 10-13 ± 2.3 × 10-14 mol mineral m-2 s-1 (aH2O = 0.75). This decrease in apparent dissolution rate constants with decreasing activity of water follows a relationship of the form: log kdiss = 3.70 ± 0.20 × aH2O - 15.49, where kdiss is the apparent dissolution rate constant, and aH2O is the activity of water. The slope of this relationship (3.70 ± 0.20) is within uncertainty of that of other minerals where the relationship between dissolution rates and activity of water has been tested, including forsteritic olivine (log R = 3.27 ± 0.91 × aH2O - 11.00) (Olsen et al., 2015) and jarosite (log R = 3.85 ± 0.43 × aH2O - 12.84) (Dixon et al., 2015), where R is the mineral dissolution rate. This result allows prediction of mineral dissolution as a function of activity of water and suggests that with decreasing activity of water, mineral dissolution will decrease due to the role of water as a ligand in the reaction. Apparent dissolution rate constants in the dilute NaCl solution (1.89 × 10-12 ± 1 × 10-13 mol mineral m-2 s-1) are slightly greater than those in the dilute CaCl2 solutions (1.18 × 10-12 ± 9 × 10-14 mol mineral m-2 s-1). We attribute this effect to the exchange of Na with Ca in the nontronite interlayer. An apparent activation energy of 54.6 ± 1.0 kJ/mol was calculated from apparent dissolution rate constants in dilute CaCl2-containing solutions at temperatures of 4.0 °C, 25.0 °C, and 45.0 °C: 2.33 × 10-13 ± 1.3 × 10-14 mol mineral m-2 s-1 (4.0 °C), 1.18 × 10-12 ± 9 × 10-14 mol mineral m-2 s-1 (25.0 °C), and 4.98 × 10-12 ± 3.8 × 10-13 mol mineral m-2 s-1 (45.0 °C). The greatly decreased dissolution of nontronite in brines and at low temperatures suggests that any martian nontronite found to be perceptibly weathered may have experienced very long periods of water-rock interaction with brines at the low temperatures prevalent on Mars, with important implications for the paleoclimate and long-term potential habitability of Mars.

  14. A probabilistic assessment of calcium carbonate export and dissolution in the modern ocean

    NASA Astrophysics Data System (ADS)

    Battaglia, Gianna; Steinacher, Marco; Joos, Fortunat

    2016-05-01

    The marine cycle of calcium carbonate (CaCO3) is an important element of the carbon cycle and co-governs the distribution of carbon and alkalinity within the ocean. However, CaCO3 export fluxes and mechanisms governing CaCO3 dissolution are highly uncertain. We present an observationally constrained, probabilistic assessment of the global and regional CaCO3 budgets. Parameters governing pelagic CaCO3 export fluxes and dissolution rates are sampled using a Monte Carlo scheme to construct a 1000-member ensemble with the Bern3D ocean model. Ensemble results are constrained by comparing simulated and observation-based fields of excess dissolved calcium carbonate (TA*). The minerals calcite and aragonite are modelled explicitly and ocean-sediment fluxes are considered. For local dissolution rates, either a strong or a weak dependency on CaCO3 saturation is assumed. In addition, there is the option to have saturation-independent dissolution above the saturation horizon. The median (and 68 % confidence interval) of the constrained model ensemble for global biogenic CaCO3 export is 0.90 (0.72-1.05) Gt C yr-1, that is within the lower half of previously published estimates (0.4-1.8 Gt C yr-1). The spatial pattern of CaCO3 export is broadly consistent with earlier assessments. Export is large in the Southern Ocean, the tropical Indo-Pacific, the northern Pacific and relatively small in the Atlantic. The constrained results are robust across a range of diapycnal mixing coefficients and, thus, ocean circulation strengths. Modelled ocean circulation and transport timescales for the different set-ups were further evaluated with CFC11 and radiocarbon observations. Parameters and mechanisms governing dissolution are hardly constrained by either the TA* data or the current compilation of CaCO3 flux measurements such that model realisations with and without saturation-dependent dissolution achieve skill. We suggest applying saturation-independent dissolution rates in Earth system models to minimise computational costs.

  15. Toward an In Vivo Dissolution Methodology: A Comparison of Phosphate and Bicarbonate Buffers

    PubMed Central

    Sheng, Jennifer J.; McNamara, Daniel P.; Amidon, Gordon L.

    2011-01-01

    Purpose To evaluate the difference between the pharmaceutical phosphate buffers and the gastrointestinal bicarbonates in dissolution of ketoprofen and indomethacin, to illustrate the dependence of buffer differential on biopharmaceutical properties of BCS II weak acids, and to recommend phosphate buffers equivalent to bicarbonates. Methods The intrinsic dissolution rates of, ketoprofen and indomethacin, were experimentally measured using rotating disk method at 37°C in USP SIF/FaSSIF and various concentrations of bicarbonates. Theoretical models including an improved reaction plane model and a film model were applied to estimate the surrogate phosphate buffers equivalent to the bicarbonates. Results Experimental results show that the intrinsic dissolution rates of ketoprofen and indomethacin, in USP and FaSSIF phosphate buffers are 1.5–3.0 times of that in the 15 mM bicarbonates. Theoretical analysis demonstrates that the buffer differential is largely dependent on the drug pKa and secondly on solubility, and weakly dependent on the drug diffusivity. Further, in accordance with the drug pKa, solubility and diffusivity, simple phosphate surrogate was proposed to match an average bicarbonate value (15 mM) of the upper gastrointestinal region. Specifically, phosphate buffers of 13–15 mM and 3–4 mM were recommended for ketoprofen and indomethacin, respectively. For both ketoprofen and indomethacin, the intrinsic dissolution using the phosphate surrogate buffers closely approximated the 15 mM bicarbonate buffer. Conclusions This work demonstrates the substantial difference between pharmaceutical phosphates and physiological bicarbonates in determining the drug intrinsic dissolution rates of BCS II weak acids, such as ketoprofen and indomethacin. Surrogate phosphates were recommended in order to closely reflect the in vivo dissolution of ketoprofen and indomethacin in gastrointestinal bicarbonates, which has significant implications for defining buffer systems for BCS II weak acids in developing in vitro bioequivalence dissolution methodology. PMID:19183104

  16. Investigation and simulation of dissolution with concurrent degradation under healthy and hypoalbuminaemic simulated parenteral conditions- case example Amphotericin B.

    PubMed

    Díaz de León-Ortega, Ricardo; D'Arcy, Deirdre M; Bolhuis, A; Fotaki, N

    2018-06-01

    Guidance on dissolution testing for parenteral formulations is limited and not often related in vivo performance. Critically ill patients represent a target cohort, frequently hypoalbuminaemic, to whom certain parenteral formulations are administered. Amphotericin B (AmB) is a poorly soluble, highly protein-bound drug, available as lipid-based formulations and used in critical illness. The aim of this study was to develop media representing hypoalbuminaemic and healthy plasma, and to understand and simulate the dissolution profile of AmB in biorelevant media. Dissolution media were prepared with bovine serum albumin (BSA) in Krebs-Ringer buffer, and tested in a flow through cell apparatus and a bottle/stirrer setup. Drug activity was tested against Candida albicans. BSA concentration was positively associated with solubility, degradation rate and maximum amount dissolved and negatively associated with dissolution rate constant and antifungal activity. In the bottle/stirrer setup, a biexponential model successfully described simultaneous dissolution and degradation and increased in agitation reduced the discriminatory ability of the test. The hydrodynamics provided by the flow-through cell apparatus was not adequate to dissolve the drug. Establishing discriminating test methods with albumin present in the dissolution media, representing the target population, supports future development of biorelevant and clinically relevant tests for parenteral formulations. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Phosphorous availability influences the dissolution of apatite by soil fungi

    NASA Astrophysics Data System (ADS)

    Rosling, A.; Suttle, K. B.; Johansson, E.; van Hees, P. W.; Banfield, J. F.

    2007-12-01

    We conducted mineral dissolution experiments using fungi isolated from a grassland soil in northern California to determine the response of fungi to different levels of phosphorus availability and to identify pathways of apatite dissolution by fungal exudates. Fluorapatite dissolution experiments were performed either with fungi present or under abiotic conditions using cell-free liquid media conditioned by fungal growth at different phosphorus and calcium availabilities. Among biogeochemically active soil fungal isolates apatite dissolution was either active in response to phosphorus limiting growth conditions or passive as a result of mycelial growth. Zygomycete isolates in the order of Mucorales acidify their growth media substrate in the presence of phosphorus, mainly through production of oxalic acid. Cell-free exudates induced fluorapatite dissolution at a rate of 10 -0.9 ± 0.14 and 10 -1.2 ± 0.22 mmol P/m2/s. The Ascomycete isolate, in the family Trichocomaceae, induced fluorapatite dissolution at a rate of 10 - 1.1 ± 0.05 mmol P/m2/s by lowering the pH of the media under phosphorus-limited conditions, without producing significant amounts of low molecular weight organic acids (LMWOAs). Oxalate strongly etches fluorapatite along channels parallel to [001], forming needle like features, while exudates from Trichocomaceae induced surface rounding. We conclude that while LMWOAs are well-studied weathering agents these does not appear to be produced by fungi in response to phosphorus limiting growth conditions.

  18. The Influence of Drug Physical State on the Dissolution Enhancement of Solid Dispersions Prepared Via Hot-Melt Extrusion: A Case Study Using Olanzapine

    PubMed Central

    Pina, Maria Fátima; Zhao, Min; Pinto, João F; Sousa, João J; Craig, Duncan Q M

    2014-01-01

    In this study, we examine the relationship between the physical structure and dissolution behavior of olanzapine (OLZ) prepared via hot-melt extrusion in three polymers [polyvinylpyrrolidone (PVP) K30, polyvinylpyrrolidone-co-vinyl acetate (PVPVA) 6:4, and Soluplus® (SLP)]. In particular, we examine whether full amorphicity is necessary to achieve a favorable dissolution profile. Drug–polymer miscibility was estimated using melting point depression and Hansen solubility parameters. Solid dispersions were characterized using differential scanning calorimetry, X-ray powder diffraction, and scanning electron microscopy. All the polymers were found to be miscible with OLZ in a decreasing order of PVP>PVPVA>SLP. At a lower extrusion temperature (160°C), PVP generated fully amorphous dispersions with OLZ, whereas the formulations with PVPVA and SLP contained 14%–16% crystalline OLZ. Increasing the extrusion temperature to 180°C allowed the preparation of fully amorphous systems with PVPVA and SLP. Despite these differences, the dissolution rates of these preparations were comparable, with PVP showing a lower release rate despite being fully amorphous. These findings suggested that, at least in the particular case of OLZ, the absence of crystalline material may not be critical to the dissolution performance. We suggest alternative key factors determining dissolution, particularly the dissolution behavior of the polymers themselves. PMID:24765654

  19. Sucralose as co-crystal co-former for hydrochlorothiazide: development of oral disintegrating tablets.

    PubMed

    Arafa, Mona F; El-Gizawy, Sanaa A; Osman, Mohamed A; El Maghraby, Gamal M

    2016-08-01

    Development of oral disintegrating tablets requires enhancement of drug dissolution and selection of sweetener. Co-crystallization of drugs with inert co-former is an emerging technique for enhancing dissolution rate. The benefit of this technique will become even greater if one of the sweeteners can act as co-crystal co-former to enhance dissolution and mask the taste. Accordingly, the objective of this work was to investigate the efficacy of sucralose as a potential co-crystal co-former for enhancing the dissolution rate of hydrochlorothiazide. This was extended to prepare oral disintegrating tablets. Co-crystallization was achieved after dissolving hydrochlorothiazide with increasing molar ratios of sucralose in the least amount of acetone. The co-crystallization products were characterized using Fourier transform infrared spectroscopy, differential thermal analysis and powder X-ray diffraction. These measurements indicated that co-crystallization process started at a drug sucralose molar ratio of 1:1 and completed at 1:2. The developed co-crystals exhibited faster drug dissolution compared with the control, with co-crystal containing the drug with sucralose at 1:2 molar ratio being optimum. The later was used to prepare fast disintegrating tablets. These tablets had acceptable physical characteristics and showed fast disintegration with subsequent rapid dissolution. The study introduced sucralose as co-crystal co-former for enhanced dissolution and masking the taste.

  20. Initial dissolution kinetics of cocrystal of carbamazepine with nicotinamide.

    PubMed

    Hattori, Yusuke; Sato, Maiko; Otsuka, Makoto

    2015-11-01

    Objectives of this study are investigating the initial dissolution kinetics of the cocrystal of carbamazepine (CBZ) with nicotinamide (NIC) and understanding its initial dissolution process. Cocrystal solids of CBZ with NIC were prepared by co-milling and solvent evaporation methods. The formation of cocrystal solid was verified via X-ray diffraction measurement. Dissolution tests of the solids were performed using an original flow cell and ultraviolet-visible spectroscopic detector. The spectra monitored in situ were analyzed to determine the dissolved compounds separately using the classical least squares regression method. The initial dissolution profiles were interpreted using simultaneous model of dissolution and phase changes. In the initial dissolution, CBZ in the cocrystal structure dissolved in water and it was suggested that CBZ reached a metastable intermediate state simultaneously with dissolution. The cocrystal solid prepared by solvent evaporation provided a higher rate constant of the phase change than that prepared by co-milling. Our results thus support the use of evaporation as the method of choice to produce ordered cocrystal structures. We suggest that CBZ forms dihydrate during the dissolution process; however, during the initial phase of dissolution, CBZ changes to a metastable intermediate phase. © 2015 Royal Pharmaceutical Society.

  1. Swelling and erosion properties of hydroxypropylmethylcellulose (Hypromellose) matrices--influence of agitation rate and dissolution medium composition.

    PubMed

    Kavanagh, Nicole; Corrigan, Owen I

    2004-07-26

    The effect of dissolution medium variables, such as medium composition, ionic strength and agitation rate, on the swelling and erosion of Hypromellose (hydroxypropylmethylcellulose, HPMC) matrices of different molecular weights was examined. Swelling and erosion of HPMC polymers was determined by measuring the wet and subsequent dry weights of matrices. It was possible to describe the rate of dissolution medium uptake in terms of a square root relationship and the erosion of the polymer in terms of the cube root law. The extent of swelling increased with increasing molecular weight, and decreased with increasing agitation rate. The erosion rate was seen to increase with decrease in polymer molecular weight, with a decrease in ionic strength and with increasing agitation rate. The sensitivity of polymer erosion to the degree of agitation may influence the ability of these polymers to give reproducible, agitation-independent release, compared to more rigid non-eroding matrix materials, in the complex hydrodynamic environment of the gastrointestinal tract.

  2. To evaluate the change in release from solid dispersion using sodium lauryl sulfate and model drug sulfathiazole.

    PubMed

    Dave, Rutesh H; Patel, Hardikkumar H; Donahue, Edward; Patel, Ashwinkumar D

    2013-10-01

    The solubility of drugs remains one of the most challenging aspects of formulation development. There are numerous ways to improve the solubility of drugs amongst which the most promising strategy is solid dispersion. Different ratios of sulfathiazole: PVP-K29/32: sodium lauryl sulfate (SLS) were prepared (1:1:0.1, 1:1:0.5, 1:1:1) and various methods were employed to characterize the prepared solid dispersions, namely modulated differential scanning calorimeter, X-ray powder diffraction, Fourier Transformed Infrared Spectroscopy and dissolution studies. Lack of crystallinity was observed in internal and external systems suggesting a loss of crystallinity, whereas the physical mixtures showed a characteristic peak of sulfathiazole. In vitro dissolution results clearly showed that the incorporation of a relatively small amount of surfactants (5, 20 or 33% w/w) into a solid dispersion can improve its dissolution rates compared to binary solid dispersion (SD) alone and pure sulfathiazole. In all ratios solid dispersion internal shows a higher dissolution rate compared to a physical mixture and solid dispersion external which suggests that the way that the surfactant is incorporated into the solid dispersion plays an important role in changing the solubility of a drug. The solubilization mechanism is mainly responsible for this higher dissolution rate when we incorporate the SLS in SD.

  3. Dissolution enhancement of a model poorly water-soluble drug, atorvastatin, with ordered mesoporous silica: comparison of MSF with SBA-15 as drug carriers.

    PubMed

    Maleki, Aziz; Hamidi, Mehrdad

    2016-01-01

    The purpose of this study was to develop mesoporous silica materials incorporated with poorly water-soluble drug atorvastatin calcium (AC) in order to improve drug dissolution, and intended to be orally administrated. A comparison between 2D-hexagonal silica nanostructured SBA-15 and mesocellular siliceous foam (MSF) with continuous 3D pore system on drug release rate was investigated. AC-loaded mesoporous silicas were characterized thorough N2 adsorption-desorption analysis, Fourier transform infrared (FT-IR) spectroscopy, powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC) and dynamic light scattering (DLS). Results demonstrated a successful incorporation of AC into the silica-based hosts. The results taken from the drug release tests were also analyzed using different parameters, namely similarity factor (f2), difference factor (f1), dissolution efficiency (DE%), mean dissolution rate (MDR) and dissolution time (tm%). It confirmed a significant enhancement in the release profile of atorvastatin calcium with SBA-15, and MSF as drug carrier. Moreover, in comparison with SBA-15, MSF showed faster release rate of AC in enzyme-free simulated gastric fluid (pH 1.2). We believed that our findings can help the use of mesoporous silica materials in improving bioavailability of poorly water-soluble drugs.

  4. Dissolution-modulating mechanism of pH modifiers in solid dispersion containing weakly acidic or basic drugs with poor water solubility.

    PubMed

    Tran, Phuong Ha-Lien; Tran, Thao Truong-Dinh; Lee, Kyoung-Ho; Kim, Dong-Jin; Lee, Beom-Jin

    2010-05-01

    Although the solid dispersion method has been known to increase the dissolution rate of poorly water-soluble drugs by dispersing them in hydrophilic carriers, one obstacle of the solid dispersion method is its limited solubilization capacity, especially for pH-dependent soluble drugs. pH-modified solid dispersion, in which pH modifiers are incorporated, may be a useful method for increasing the dissolution rate of weakly acidic or basic drugs. Sufficient research, including the most recent reports, was undertaken in this review. How could the inclusion of the pH the pH modifiers in the solid dispersion system change drug structural behaviors, molecular interactions, microenvironmental pH, and/or release rate of pH modifiers, relating with the enhanced dissolution of weakly acidic or weakly basic drugs with poor water solubility? These questions have been investigated to determine the dissolution-modulating mechanism of pH modifiers in solid dispersion containing weakly acidic or basic drugs. It is believed that step-by-step mechanistic approaches could provide the ultimate solution for solubilizing several poorly water-soluble drugs with pH-dependent solubility from a solid dispersion system, as well as provide ideas for developing future dosage systems.

  5. Relative contributions of copper oxide nanoparticles and dissolved copper to Cu uptake kinetics of Gulf killifish (Fundulus grandis) embryos

    USGS Publications Warehouse

    Jiang, Chuanjia; Castellon, Benjamin T.; Matson, Cole W.; Aiken, George R.; Hsu-Kim, Heileen

    2017-01-01

    The toxicity of soluble metal-based nanomaterials may be due to the uptake of metals in both dissolved and nanoparticulate forms, but the relative contributions of these different forms to overall metal uptake rates under environmental conditions are not quantitatively defined. Here, we investigated the linkage between the dissolution rates of copper(II) oxide (CuO) nanoparticles (NPs) and their bioavailability to Gulf killifish (Fundulus grandis) embryos, with the aim of quantitatively delineating the relative contributions of nanoparticulate and dissolved species for Cu uptake. Gulf killifish embryos were exposed to dissolved Cu and CuO NP mixtures comprising a range of pH values (6.3–7.5) and three types of natural organic matter (NOM) isolates at various concentrations (0.1–10 mg-C L–1), resulting in a wide range of CuO NP dissolution rates that subsequently influenced Cu uptake. First-order dissolution rate constants of CuO NPs increased with increasing NOM concentration and for NOM isolates with higher aromaticity, as indicated by specific ultraviolet absorbance (SUVA), while Cu uptake rate constants of both dissolved Cu and CuO NP decreased with NOM concentration and aromaticity. As a result, the relative contribution of dissolved Cu and nanoparticulate CuO species for the overall Cu uptake rate was insensitive to NOM type or concentration but largely determined by the percentage of CuO that dissolved. These findings highlight SUVA and aromaticity as key NOM properties affecting the dissolution kinetics and bioavailability of soluble metal-based nanomaterials in organic-rich waters. These properties could be used in the incorporation of dissolution kinetics into predictive models for environmental risks of nanomaterials.

  6. Sulfur Embedded in a Mesoporous Carbon Nanotube Network as a Binder-Free Electrode for High-Performance Lithium-Sulfur Batteries.

    PubMed

    Sun, Li; Wang, Datao; Luo, Yufeng; Wang, Ke; Kong, Weibang; Wu, Yang; Zhang, Lina; Jiang, Kaili; Li, Qunqing; Zhang, Yihe; Wang, Jiaping; Fan, Shoushan

    2016-01-26

    Sulfur-porous carbon nanotube (S-PCNT) composites are proposed as cathode materials for advanced lithium-sulfur (Li-S) batteries. Abundant mesopores are introduced to superaligned carbon nanotubes (SACNTs) through controlled oxidation in air to obtain porous carbon nanotubes (PCNTs). Compared to original SACNTs, improved dispersive behavior, enhanced conductivity, and higher mechanical strength are demonstrated in PCNTs. Meanwhile, high flexibility and sufficient intertube interaction are preserved in PCNTs to support binder-free and flexible electrodes. Additionally, several attractive features, including high surface area and abundant adsorption points on tubes, are introduced, which allow high sulfur loading, provide dual protection to sulfur cathode materials, and consequently alleviate the capacity fade especially during slow charge/discharge processes. When used as cathodes for Li-S batteries, a high sulfur loading of 60 wt % is achieved, with excellent reversible capacities of 866 and 526 mAh g(-1) based on the weights of sulfur and electrode, respectively, after 100 cycles at a slow charge/discharge rate of 0.1C, revealing efficient suppression of polysulfide dissolution. Even with a high sulfur loading of 70 wt %, the S-PCNT composite maintains capacities of 760 and 528 mAh g(-1) based on the weights of sulfur and electrode, respectively, after 100 cycles at 0.1C, outperforming the current state-of-the-art sulfur cathodes. Improved high-rate capability is also delivered by the S-PCNT composites, revealing their potentials as high-performance carbon-sulfur composite cathodes for Li-S batteries.

  7. Influence of calcium on microbial reduction of solid phase uranium(VI).

    PubMed

    Liu, Chongxuan; Jeon, Byong-Hun; Zachara, John M; Wang, Zheming

    2007-08-15

    The effect of calcium on the dissolution and microbial reduction of a representative solid phase uranyl [U(VI)], sodium boltwoodite (NaUO(2)SiO(3)OH . 1.5H(2)O), was investigated to evaluate the rate-limiting step of microbial reduction of the solid phase U(VI). Microbial reduction experiments were performed in a culture of a dissimilatory metal-reducing bacterium (DMRB), Shewanella oneidensis strain MR-1, in a bicarbonate medium with lactate as electron donor at pH 6.8 buffered with PIPES. Calcium increased the rate of Na-boltwoodite dissolution and U(VI) bioavailability by increasing its solubility through the formation of a ternary aqueous calcium-uranyl-carbonate species. The ternary species, however, decreased the rates of microbial reduction of aqueous U(VI). Laser-induced fluorescence spectroscopy (LIFS) and transmission electron microscopy (TEM) collectively revealed that microbial reduction of solid phase U(VI) was a sequentially coupled process of Na-boltwoodite dissolution, U(VI) aqueous speciation, and microbial reduction of dissolved U(VI) to U(IV) that accumulated on bacterial surfaces/periplasm. Under studied experimental conditions, the overall rate of microbial reduction of solid phase U(VI) was limited by U(VI) dissolution reactions in solutions without calcium and limited by microbial reduction in solutions with calcium. Generally, the overall rate of microbial reduction of solid phase U(VI) was determined by the coupling of solid phase U(VI) dissolution, U(VI) aqueous speciation, and microbial reduction of dissolved U(VI) that were all affected by calcium. (c) 2007 Wiley Periodicals, Inc.

  8. Incinerator ash dissolution model for the system: Plutonium, nitric acid and hydrofluoric acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, E V

    1988-06-01

    This research accomplished two goals. The first was to develop a computer program to simulate a cascade dissolver system. This program would be used to predict the bulk rate of dissolution in incinerator ash. The other goal was to verify the model in a single-stage dissolver system using Dy/sub 2/O/sub 3/. PuO/sub 2/ (and all of the species in the incinerator ash) was assumed to exist as spherical particles. A model was used to calculate the bulk rate of plutonium oxide dissolution using fluoride as a catalyst. Once the bulk rate of PuO/sub 2/ dissolution and the dissolution rate ofmore » all soluble species were calculated, mass and energy balances were written. A computer program simulating the cascade dissolver system was then developed. Tests were conducted on a single-stage dissolver. A simulated incinerator ash mixture was made and added to the dissolver. CaF/sub 2/ was added to the mixture as a catalyst. A 9M HNO/sub 3/ solution was pumped into the dissolver system. Samples of the dissolver effluent were analyzed for dissolved and F concentrations. The computer program proved satisfactory in predicting the F concentrations in the dissolver effluent. The experimental sparge air flow rate was predicted to within 5.5%. The experimental percentage of solids dissolved (51.34%) compared favorably to the percentage of incinerator ash dissolved (47%) in previous work. No general conclusions on model verification could be reached. 56 refs., 11 figs., 24 tabs.« less

  9. Atomic force microscopy of atomic-scale ledges and etch pits formed during dissolution of quartz

    NASA Technical Reports Server (NTRS)

    Gratz, A. J.; Manne, S.; Hansma, P. K.

    1991-01-01

    The processes involved in the dissolution and growth of crystals are closely related. Atomic force microscopy (AFM) of faceted pits (called negative crystals) formed during quartz dissolution reveals subtle details of these underlying physical mechanisms for silicates. In imaging these surfaces, the AFM detected ledges less than 1 nm high that were spaced 10 to 90 nm apart. A dislocation pit, invisible to optical and scanning electron microscopy measurements and serving as a ledge source, was also imaged. These observations confirm the applicability of ledge-motion models to dissolution and growth of silicates; coupled with measurements of dissolution rate on facets, these methods provide a powerful tool for probing mineral surface kinetics.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neeway, James J.; Rieke, Peter C.; Parruzot, Benjamin P.

    In far-from-equilibrium conditions, the dissolution of borosilicate glasses used to immobilize nuclear waste is known to be a function of both temperature and pH. The aim of this paper is to study effects of these variables on three model waste glasses (SON68, ISG, AFCI). To do this, experiments were conducted at temperatures of 23, 40, 70, and 90 °C and pH(RT) values of 9, 10, 11, and 12 with the single-pass flow-through (SPFT) test method. The results from these tests were then used to parameterize a kinetic rate model based on transition state theory. Both the absolute dissolution rates andmore » the rate model parameters are compared with previous results. Discrepancies in the absolute dissolution rates as compared to those obtained using other test methods are discussed. Rate model parameters for the three glasses studied here are nearly equivalent within error and in relative agreement with previous studies. The results were analyzed with a linear multivariate regression (LMR) and a nonlinear multivariate regression performed with the use of the Glass Corrosion Modeling Tool (GCMT), which is capable of providing a robust uncertainty analysis. This robust analysis highlights the high degree of correlation of various parameters in the kinetic rate model. As more data are obtained on borosilicate glasses with varying compositions, the effect of glass composition on the rate parameter values could possibly be obtained. This would allow for the possibility of predicting the forward dissolution rate of glass based solely on composition« less

  11. An experimental and modeling study of grain-scale uranium desorption from field-contaminated sediments and the potential influence of microporosity on mass-transfer

    NASA Astrophysics Data System (ADS)

    Stoliker, D.; Liu, C.; Kent, D. B.; Zachara, J. M.

    2012-12-01

    The aquifer below the 300-Area of the Hanford site (Richland, WA, USA) is plagued by a persistent plume of dissolved uranium (U(VI)) in excess of the Environmental Protection Agency drinking water maximum contamination level even after the removal of highly contaminated sediments. The aquifer sediments in the seasonally saturated lower vadose zone act as both a source and sink for uranium during stage changes in the nearby Columbia River. Diffusion limitation of uranium mass-transfer within these sediments has been cited as a potential cause of the plume's persistence. Equilibrium U(VI) sorption is a strong function of variable chemical conditions, especially carbonate, hydrogen, and uranyl ion activities. Field-contaminated sediments from the site require up to 1,000 hours to reach equilibrium in static batch reactors. Increases in U(VI) concentrations over longer time-scales result from changes in chemical conditions, which drive reactions with sediments that favor U(VI) desorption. Grain-scale U(VI) sorption/desorption rates are slow, likely owing to diffusion of U(VI) and other solutes through intra-granular pore domains. In order to improve understanding of the impact of intra-granular diffusion and chemical reactions controlling grain-scale U(VI) release, experiments were conducted on individual particle size fractions of a <8 mm composite of field-contaminated, lower vadose zone sediments. For each size fraction, equilibrium U(VI) sorption/desorption in static batch reactors was well-described by surface complexation models over a range of chemical conditions applicable to the field site. Desorption rates from individual size fractions in flow-through batch reactors, examined under a single set of constant chemical conditions with multiple stop-flow events, were similar for all size fractions <2 mm. Kinetic U(VI) desorption in flow-through batch reactors was modeled using a multi-rate surface complexation approach, where sorption/desorption rates were assumed to be proportional to the displacement from equilibrium and multiple diffusion domains were described with a two-parameter lognormal distribution of mass-transfer rate coefficients. Parameters describing mass transfer were the same for all size fractions <2 mm but differed for the largest (2-8 mm) size fraction. The evolution of pH, along with dissolved cation and carbonate concentrations, was modeled using equilibrium cation exchange, rate-limited calcite dissolution, aerobic respiration, and silica dissolution. Desorption and chemical reaction models calibrated with individual size fractions predicted U(VI) and chemical composition as a function of time for the bulk sediment sample. Volumes of pores less than 2.4 nm, quantified using nitrogen adsorption-desorption isotherms, were the same for all size fractions < 2 mm, nearly double that of the 2-8 mm size fraction. Similarity in the observed pore volumes and multi-rate mass-transfer parameters across all size fractions <2 mm suggest the importance of pores in this size class in controlling slow grain-scale U(VI) desorption rates. Models like these provide a means for testing the influence of grain-scale mass-transfer on the persistence of U(VI) plume at the site.

  12. Effect of Phosphate, Fluoride, and Nitrate on Gibbsite Dissolution Rate and Solubility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herting, Daniel L.

    2014-01-29

    Laboratory tests have been completed with simulated tank waste samples to investigate the effects of phosphate, fluoride, and nitrate on the dissolution rate and equilibrium solubility of gibbsite in sodium hydroxide solution at 22 and 40{degrees}C. Results are compared to relevant literature data and to computer model predictions. The presence of sodium nitrate (3 M) caused a reduction in the rate of gibbsite dissolution in NaOH, but a modest increase in the equilibrium solubility of aluminum. The increase in solubility was not as large, though, as the increase predicted by the computer model. The presence of phosphate, either as sodiummore » phosphate or sodium fluoride phosphate, had a negligible effect on the rate of gibbsite dissolution, but caused a slight increase in aluminum solubility. The magnitude of the increased solubility, relative to the increase caused by sodium nitrate, suggests that the increase is due to ionic strength (or water activity) effects, rather than being associated with the specific ion involved. The computer model predicted that phosphate would cause a slight decrease in aluminum solubility, suggesting some Al-PO4 interaction. No evidence was found of such an interaction.« less

  13. Karst-on-a-chip: microfluidic studies of dissolution of a gypsum fracture

    NASA Astrophysics Data System (ADS)

    Szymczak, Piotr; Dutka, Filip; Osselin, Florian

    2017-04-01

    Dissolution of fractured and porous media introduces a positive feedback between fluid transport and chemical reactions at mineral surfaces leading to self-focusing of the flow in pronounced wormhole-like channels [1,2]. We study the flow-induced dissolution in a simple microfluidic setup, with a gypsum block inserted in between two polycarbonate plates, which is the simplest model of a fracture [3]. This gives us a unique opportunity to observe the evolution of the dissolution patterns in-situ and in real-time. By changing the flow rate and the aperture of the fracture we can scan a relatively wide range of Peclet and Damkohler numbers, characterizing the relative magnitude of advection, diffusion and reaction in the system. Additionally, as the aperture is increased, a transition is observed between the fractal and regular dissolution patterns. For small gaps, the patterns are ramified fractals. For larger gaps, the dissolution fingers are found to have regular forms of two different kinds: either linear (for high flow rates) or parabolic (for lower flow rates). The experiments are supplemented with numerical simulations and analytical modeling which allow for a better understanding of evolving flow patterns. In particular, we find the shapes and propagation velocities of dominant fingers for different widths of the system, flow rates and reaction rates. Finally, we comment on the link between the experimentally observed patterns and the natural karst systems - both cave conduits and epikarst solution pipes. [1] Hoefner, M. L. and Fogler, H. S. Pore evolution and channel formation during flow and reaction in porous media. AIChE J. 34, 45-54, 1988 [2] P. Szymczak, A. J. C. Ladd, Wormhole formation in dissolving fractures, J. Geophys. Res., 114, B06203, 2009 [3] F. Osselin, P. Kondratiuk, A Budek, O. Cybulski, P. Garstecki, P. Szymczak Microfluidic observation of the onset of reactive infiltration instability in an analog fracture, Geophys. Res. Lett., 43, 6907-6915, 2016

  14. Multiscale Computational Modeling of the Nanostructure of Solid Dispersions of Hydroxypropyl Methylcellulose Acetate Succinate (HPMCAS) and Phenytoin.

    PubMed

    Huang, Wenjun; Mandal, Taraknath; Larson, Ronald G

    2017-10-02

    We recently developed coarse-grained (CG) force fields for hydroxypropyl methylcellulose acetate succinate (HPMCAS) polymers and the model drug molecule phenytoin, and a continuum transport model to study the polymer-drug nanostructures presented during a dissolution test after solvation of solid dispersion particles. We model the polymer-drug interactions that contribute to suppression of drug aggregation, release, and crystal growth during the dissolution process, and we take these as indicators of polymer effectiveness. We find that the size and the intermolecular interaction strength of the functional group and the drug loading concentration are the major factors that impact the effectiveness of the polymeric excipient. The hydroxypropyl acetyl group is the most effective functional group, followed by the acetyl group, while the deprotonated succinyl group is the least effective functional group, except that the deprotonated succinyl group at the 6-position is very effective in slowing down the phenytoin crystal growth. Our simulation results thus suggest HPMCAS with higher acetyl and lower succinyl content is more effective in promoting phenytoin solubility in dissolution media, and polymers become less effective when drug loading becomes high (i.e., 50% of the mass of the polymer/drug solid dispersion), agreeing with previous experimental studies. In addition, our transport model indicates that the drug release time from a solid dispersion particle of 2 μm diameter is less than 10 min, correlating well with the experimental time scale for a typical dissolution profile to reach maximum peak concentration. Our modeling effort, therefore, provides new avenues to understand the dissolution behavior of complex HPMCAS-phenytoin solid dispersions and offers a new design tool to optimize the formulation. Moreover, the systematic and robust approach used in our computational models can be extended to other polymeric excipients and drug candidates.

  15. Chlorite, Biotite, Illite, Muscovite, and Feldspar Dissolution Kinetics at Variable pH and Temperatures up to 280 C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroll, S.; Smith, M.; Lammers, K.

    2016-10-05

    Summary Sheet silicates and clays are ubiquitous in geothermal environments. Their dissolution is of interest because this process contributes to scaling reactions along fluid pathways and alteration of fracture surfaces, which could affect reservoir permeability. In order to better predict the geochemical impacts on long-term performance of engineered geothermal systems, we have measured chlorite, biotite, illite, and muscovite dissolution and developed generalized kinetic rate laws that are applicable over an expanded range of solution pH and temperature for each mineral. This report summarizes the rate equations for layered silicates where data were lacking for geothermal systems.

  16. Solubility and cation exchange in phosphate rock and saturated clinoptilolite mixtures

    NASA Technical Reports Server (NTRS)

    Allen, E. R.; Hossner, L. R.; Ming, D. W.; Henninger, D. L.

    1993-01-01

    Mixtures of zeolite and phosphate rock (PR) have the potential to provide slow-release fertilization of plants in synthetic soils by dissolution and ion-exchange reactions. This study was conducted to examine solubility and cation-exchange relationships in mixtures of PR and NH4- and K-saturated clinoptilolite (Cp). Batch-equilibration experiments were designed to investigate the effect of PR source, the proportion of exchangeable K and NH4, and the Cp to PR ratio on solution N, P, K, and Ca concentrations. The dissolution and cation-exchange reactions that occurred after mixing NH4- and K-saturated Cp with PR increased the solubility of the PR and simultaneously released NH4 and K into solution. The more reactive North Carolina (NC) PR rendered higher solution concentrations of NH4 and K when mixed with Cp than did Tennessee (TN) PR. Solution P concentrations for the Cp-NC PR mixture and the Cp-TN PR mixture were similar. Solution concentrations of N, P, K, and Ca and the ratios of these nutrients in solution varied predictably with the type of PR, the Cp/PR ratio, and the proportions of exchangeable K and NH4 on the Cp. Our research indicated that slow-release fertilization using Cp/PR media may provide adequate levels of N, P, and K to support plant growth. Solution Ca concentrations were lower than optimum for plant growth.

  17. Mesoscale Polymer Dissolution Probed by Raman Spectroscopy and Molecular Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Tsun-Mei; Xantheas, Sotiris S.; Vasdekis, Andreas E.

    2016-10-13

    The diffusion of various solvents into a polystyrene (PS) matrix was probed experimentally by monitoring the temporal profiles of the Raman spectra and theoretically from molecular dynamics (MD) simulations of the binary system. The simulation results assist in providing a fundamental, molecular level connection between the mixing/dissolution processes and the difference = solvent – PS in the values of the Hildebrand parameter () between the two components of the binary systems: solvents having similar values of with PS (small ) exhibit fast diffusion into the polymer matrix, whereas the diffusion slows down considerably when the ’s are different (large ).more » To this end, the Hildebrand parameter was identified as a useful descriptor that governs the process of mixing in polymer – solvent binary systems. The experiments also provide insight into further refinements of the models specific to non-Fickian diffusion phenomena that need to be used in the simulations.« less

  18. Structure and reactivity of oxalate surface complexes on lepidocrocite derived from infrared spectroscopy, DFT-calculations, adsorption, dissolution and photochemical experiments

    NASA Astrophysics Data System (ADS)

    Borowski, Susan C.; Biswakarma, Jagannath; Kang, Kyounglim; Schenkeveld, Walter D. C.; Hering, Janet G.; Kubicki, James D.; Kraemer, Stephan M.; Hug, Stephan J.

    2018-04-01

    Oxalate, together with other ligands, plays an important role in the dissolution of iron(hdyr)oxides and the bio-availability of iron. The formation and properties of oxalate surface complexes on lepidocrocite were studied with a combination of infrared spectroscopy (IR), density functional theory (DFT) calculations, dissolution, and photochemical experiments. IR spectra measured as a function of time, concentration, and pH (50-200 μM oxalate, pH 3-7) showed that several surface complexes are formed at different rates and in different proportions. Measured spectra could be separated into three contributions described by Gaussian line shapes, with frequencies that agreed well with the theoretical frequencies of three different surface complexes: an outer-sphere complex (OS), an inner-sphere monodentate mononuclear complex (MM), and a bidentate mononuclear complex (BM) involving one O atom from each carboxylate group. At pH 6, OS was formed at the highest rate. The contribution of BM increased with decreasing pH. In dissolution experiments, lepidocrocite was dissolved at rates proportional to the surface concentration of BM, rather than to the total adsorbed concentration. Under UV-light (365 nm), BM was photolyzed at a higher rate than MM and OS. Although the comparison of measured spectra with calculated frequencies cannot exclude additional possible structures, the combined results allowed the assignment of three main structures with different reactivities consistent with experiments. The results illustrate the importance of the surface speciation of adsorbed ligands in dissolution and photochemical reactions.

  19. Evaluation of SLS: APG mixed surfactant systems as carrier for solid dispersion.

    PubMed

    Patel, Ashok R; Joshi, Vishal Y

    2008-01-01

    The present investigation aims at studying the effect of mixed surfactant system of sodium lauryl sulphate (SLS) and alkyl polyglucosides (C(10)APG, C(12)APG and C(12/14)APG) on dissolution rate enhancement of poorly water soluble drug. Aceclofenac--a non-steroidal anti-inflammatory agent was used as a model drug as it has limited water solubility. The influence of the surfactant concentration in various blends on dissolution rate of Solid Dispersion (SD), prepared using solution method with ethanol as the solvent was studied and the advantage of mixed surfactant systems over the individual surfactants was illustrated by differences in the in-vitro dissolution profiles of SD. Physico chemical evaluation (critical micellar concentration, zeta potential and beta-parameter calculations) was carried out to study the mixed surfactant systems. Solid mixtures were characterized by Infrared spectroscopy (FT-IR); X-ray diffraction studies (XRD) and scanning electron microscopy (SEM). It was seen that the dissolution rate of aceclofenac from SD increased with the increase in the APG proportion relative to SLS with the optimum ratio of 0.2 SLS:0.8 APG showing the best effect in all cases. Results obtained from physico-chemical evaluation (the decrease in the value of critical micelle concentration and higher negative value of beta-parameters) suggested the existence of synergism between surfactants blends. The observed results in the dissolution rate enhancement could be attributed to the drug--surfactant interactions as evident from FT-IR, SEM and XRD results.

  20. Effect of CO2 Solubility on Dissolution Rates of Minerals in Porous Media Imbibed with Brine: Actual Efficiency of CO2 Sequestration

    NASA Astrophysics Data System (ADS)

    Alizadeh Nomeli, M.; Riaz, A.

    2016-12-01

    A new model is developed for geochemical reactions to access dissolution rate of minerals in saline aquifers with respect to saturated concentration of dissolved CO2 as a function of parameters that are dynamically available during computer program execution such as pressure, temperature, and salinity. A general Arrhenius-type equation, with an explicit dependence on the pH of brine, is employed to determine the rates of mineral dissolution. The amount of dissolved CO2 is determined with the help of an accurate PVTx model for the temperature range of 50-100C and pressures up to 600 bar relevant to the geologic sequestration of CO2. We show how activity coefficients for a given salinity condition alters solubility, pH, and reaction rates. We further evaluate the significance of the pre-exponential factor and the reaction order associated with the modified Arrhenius equation to determine the sensitivity of the reaction rates as a function to the pH of the system. It is found that the model can reasonably reproduce experimental data with new parameters that we obtain from sensitivity studies. Using the new rate equation, we investigate geochemically induced alterations of fracture geometry due to mineral dissolution. Finally, we use our model to evaluate the effects of temperature, pressure, and salinity on the actual efficiency of CO2 storage.

  1. Mechanistic understanding of the link between Sodium Starch Glycolate properties and the performance of tablets made by wet granulation.

    PubMed

    Wren, S A C; Alhusban, F; Barry, A R; Hughes, L P

    2017-08-30

    The impact of varying Sodium Starch Glycolate (SSG) grade and wet granulation intensity on the mechanism of disintegration and dissolution of mannitol-based Immediate Release (IR) placebo tablets was investigated. MRI and 1 H NMR provided mechanistic insight, and revealed a four-fold range in both tablet disintegration and dissolution rates. MRI was used to quantify the rates of change in tablet volumes and the data fitted to a hydration/erosion model. Reduced levels of cross-linking change SSG from a swelling to a gelling matrix. The tablet hydration and dissolution rates are related to the viscosity at the tablet-solution interface, with high viscosities limiting mass transport. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Reaction rates and prediction of thermal instability during aluminum alloy 6061 dissolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McFarlane, J.; DePaoli, D. W.; Mattus, C. H.

    Here, chemical kinetics of dissolution of aluminum alloy 6061 was investigated for the processing of Pu-238 for deep space missions. The rate of dissolution was measured by the heat release and appeared to be controlled by the rate of release of Al(OH) 4 – from the metal surface. Rates of reaction were measured from 273 to 365 K, giving an activation energy of 72 ± 13 kJ•(mol Al) –1 and a pre-exponential factor of 5 ± 3 × 10 9 dm 3mol –1min –1. Minor alloying elements did not appear to affect the reaction kinetics. The average heat of dissolutionmore » was –360 ± 70 kJ•(mol NaAlO 2) –1. When extrapolated to an infinitely dilute solution of aluminum, kJ•(mol NaAlO 2) –1.« less

  3. Reaction rates and prediction of thermal instability during aluminum alloy 6061 dissolution

    DOE PAGES

    McFarlane, J.; DePaoli, D. W.; Mattus, C. H.

    2017-11-10

    Here, chemical kinetics of dissolution of aluminum alloy 6061 was investigated for the processing of Pu-238 for deep space missions. The rate of dissolution was measured by the heat release and appeared to be controlled by the rate of release of Al(OH) 4 – from the metal surface. Rates of reaction were measured from 273 to 365 K, giving an activation energy of 72 ± 13 kJ•(mol Al) –1 and a pre-exponential factor of 5 ± 3 × 10 9 dm 3mol –1min –1. Minor alloying elements did not appear to affect the reaction kinetics. The average heat of dissolutionmore » was –360 ± 70 kJ•(mol NaAlO 2) –1. When extrapolated to an infinitely dilute solution of aluminum, kJ•(mol NaAlO 2) –1.« less

  4. Carbonate mineral dissolution kinetics in high pressure experiments

    NASA Astrophysics Data System (ADS)

    Dethlefsen, F.; Dörr, C.; Schäfer, D.; Ebert, M.

    2012-04-01

    The potential CO2 reservoirs in the North German Basin are overlain by a series of Mesozoic barrier rocks and aquifers and finally mostly by Tertiary and Quaternary close-to-surface aquifers. The unexpected rise of stored CO2 from its reservoir into close-to-surface aquifer systems, perhaps through a broken well casing, may pose a threat to groundwater quality because of the acidifying effect of CO2 dissolution in water. The consequences may be further worsening of the groundwater quality due to the mobilization of heavy metals. Buffer mechanisms counteracting the acidification are for instance the dissolution of carbonates. Carbonate dissolution kinetics is comparably fast and carbonates can be abundant in close-to-surface aquifers. The disadvantages of batch experiments compared to column experiments in order to determine rate constants are well known and have for instance been described by v. GRINSVEN and RIEMSDIJK (1992). Therefore, we have designed, developed, tested, and used a high-pressure laboratory column system to simulate aquifer conditions in a flow through setup within the CO2-MoPa project. The calcite dissolution kinetics was determined for CO2-pressures of 6, 10, and 50 bars. The results were evaluated by using the PHREEQC code with a 1-D reactive transport model, applying a LASAGA (1984) -type kinetic dissolution equation (PALANDRI and KHARAKA, 2004; eq. 7). While PALANDRI and KHARAKA (2004) gave calcite dissolution rate constants originating from batch experiments of log kacid = -0.3 and log kneutral = -5.81, the data of the column experiment were best fitted using log kacid = -2.3 and log kneutral = -7.81, so that the rate constants fitted using the lab experiment applying 50 bars pCO2 were approximately 100 times lower than according to the literature data. Rate constants of experiments performed at less CO2 pressure (pCO2 = 6 bars: log kacid = -1.78; log kneutral = -7.29) were only 30 times lower than literature data. These discrepancies in the reaction kinetics should be acknowledged when using reactive transport models, especially when modeling kinetically controlled pH-buffering processes between a CO2 leakage an a receptor like a ground water well. Currently, further experiments for the determination of the dolomite dissolution kinetics are being performed. Here, the knowledge of the dissolution rate constants can be even more important compared to the (still) fast calcite dissolution. This study is being funded by the German Federal Ministry of Education and Research (BMBF), EnBW Energie Baden-Württemberg AG, E.ON Energie AG, E.ON Gas Storage AG, RWE Dea AG, Vattenfall Europe Technology Research GmbH, Wintershall Holding AG and Stadtwerke Kiel AG as part of the CO2-MoPa joint project in the framework of the Special Program GEOTECHNOLOGIEN. Literature Lasaga, A. C., 1984. Chemical Kinetics of Water-Rock Interactions. Journal of Geophysical Research 89, 4009-4025. Palandri, J. L. and Kharaka, Y. K., 2004. A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. USGS, Menlo Park, CA, USA. v. Grinsven, J. J. M. and Riemsdijk, W. H., 1992. Evaluation of batch and column techniques to measure weathering rates in soils. Geoderma 52, 41-57.

  5. Formulation and optimization of spray-dried amlodipine solid dispersion for enhanced oral absorption.

    PubMed

    Jang, Dong-Jin; Sim, Taeyong; Oh, Euichaul

    2013-07-01

    To enhance the oral absorption of photosensitive amlodipine free base, which exhibits a slow dissolution rate and low permeability characteristics, an amorphous solid dispersion system was formulated and characterized. The solid dispersion was prepared by dispersing the amlodipine free base in excess dextrin (1:10 by weight) using a spray-drying technique in the presence of a minimum amount (0.9% w/w) of SLS as an absorption enhancer. The dextrin-based solid dispersion of amlodipine (Amlo-SD) was evaluated in term of formulation, characterization and in vivo absorption study, as well as the spray-drying process was also optimized. The Amlo-SD particles were spherical with a smooth surface and an average particle size of 12.9 μm. Amlodipine was dispersed in an amorphous state and its content remained uniform in the Amlo-SD. The physicochemical stability of the Amlo-SD was maintained at room temperature for 6 months and the photostability was considerably improved. The dissolution of the Amlo-SD was much faster than that of amlodipine at pH 1.2 and 6.8. Amlo-SD produced significantly higher plasma concentrations of amlodipine in rats than amlodipine alone. Amlo-SD with and without SLS provided 2.8- and 2.0-fold increase in AUC, respectively: the difference seems to be attributed to a permeability enhancement effect by SLS. The Amlo-SD with SLS system is a potential formulation option for amlodipine.

  6. Formulation and in vitro evaluation of sustained release matrix tablets using cross-linked natural gum.

    PubMed

    Jamil, Qurratul Ain; Masood, Muhammad Irfan; Jamil, Muhammad Nauman; Masood, Imran; Iqbal, Shahid Muhammad

    2017-03-01

    Polysaccharide gums because of their biocompatibility, biodegradability and non-immunogenic properties are considered as the best choice for preparing sustained release tablets as compared to their synthetic counterpart. The cross linking of natural gums in matrix tablets increase the sustained release property of matrix tablets. Isoniazid is a first line therapy of tuberculosis, belongs to BCS I with half-life of 3-4 hours. These characteristics make isoniazid a good candidate for sustained release dosage form. Karaya gum crossed linked with trisodium tri metaphosphate was used as release rate retardant for preparing isoniazid cross-linked matrix tablet. Total 8 sustained release formulations were prepared. Both granules and tablets were evaluated under in vitro condition against different parameters. Dissolution studies were performed with all eight formulations for 12 hours using USP apparatus I. Four formulations designated as F1, F2, F3, F4 have drug and karaya gum while other four formulations F5, F6, F7, F8 have drug and crossed linked polymer in ratios of 1:1, 1:2, 1:3 and 1:4 respectively. Dissolution data was analyzed by using different kinetic models. Best fit model for most efficient formulation was zero order while release mechanism was super case I. Formulation 8 showed sufficiently slow release kinetics and about 83% of drug was released in 10 hours, indicating that cross-linked karaya gum proved efficient in preparing sustained release tablets.

  7. Thin film modeling of crystal dissolution and growth in confinement.

    PubMed

    Gagliardi, Luca; Pierre-Louis, Olivier

    2018-01-01

    We present a continuum model describing dissolution and growth of a crystal contact confined against a substrate. Diffusion and hydrodynamics in the liquid film separating the crystal and the substrate are modeled within the lubrication approximation. The model also accounts for the disjoining pressure and surface tension. Within this framework, we obtain evolution equations which govern the nonequilibrium dynamics of the crystal interface. Based on this model, we explore the problem of dissolution under an external load, known as pressure solution. We find that in steady state, diverging (power-law) crystal-surface repulsions lead to flat contacts with a monotonic increase of the dissolution rate as a function of the load. Forces induced by viscous dissipation then surpass those due to disjoining pressure at large enough loads. In contrast, finite repulsions (exponential) lead to sharp pointy contacts with a dissolution rate independent of the load and the liquid viscosity. Ultimately, in steady state, the crystal never touches the substrate when pressed against it. This result is independent from the nature of the crystal-surface interaction due to the combined effects of viscosity and surface tension.

  8. Thin film modeling of crystal dissolution and growth in confinement

    NASA Astrophysics Data System (ADS)

    Gagliardi, Luca; Pierre-Louis, Olivier

    2018-01-01

    We present a continuum model describing dissolution and growth of a crystal contact confined against a substrate. Diffusion and hydrodynamics in the liquid film separating the crystal and the substrate are modeled within the lubrication approximation. The model also accounts for the disjoining pressure and surface tension. Within this framework, we obtain evolution equations which govern the nonequilibrium dynamics of the crystal interface. Based on this model, we explore the problem of dissolution under an external load, known as pressure solution. We find that in steady state, diverging (power-law) crystal-surface repulsions lead to flat contacts with a monotonic increase of the dissolution rate as a function of the load. Forces induced by viscous dissipation then surpass those due to disjoining pressure at large enough loads. In contrast, finite repulsions (exponential) lead to sharp pointy contacts with a dissolution rate independent of the load and the liquid viscosity. Ultimately, in steady state, the crystal never touches the substrate when pressed against it. This result is independent from the nature of the crystal-surface interaction due to the combined effects of viscosity and surface tension.

  9. Fenofibrate Nanocrystals Embedded in Oral Strip-Films for Bioavailability Enhancement

    PubMed Central

    Barvaliya, Manish; Zhang, Lu; Anovadiya, Ashish; Brahmbhatt, Harshad; Paul, Parimal; Tripathi, Chandrabhanu

    2018-01-01

    The aim of the present study was to make a fenofibrate (FNB) nanocrystal (NC) by wet media milling, characterizations and formulates into oral strip-films (OSFs). Mechanical properties, redispersion study, and solid-state characterizations results suggested that reduction of drug crystal size at nanoscale and incorporation into OSFs does not affect the solid-state properties of the drug. In vitro dissolution kinetics showed enhanced dissolution rate was easily manipulated by changing the thickness of the OSF. In situ UV-imaging was used to monitor drug dissolution qualitatively and quantitatively in real time. Results confirm that the intrinsic dissolution rates and surface drug concentration measured with this device were in agreement with the USP-IV dissolution profiles. In vivo pharmacokinetics in rabbits showed a significant difference in the pharmacokinetics parameter (1.4 fold increase bioavailability) of FNB NC-loaded OSFs as compared to the marketed formulation “Tricor” and as-received (pristine) drug. This approach of drug nanocrystallization and incorporation into OSFs may have significant applications in cost-effective tools for bioavailability enhancement of FNB. PMID:29438297

  10. Dissolution characteristics of sericite in chalcopyrite bioleaching and its effect on copper extraction

    NASA Astrophysics Data System (ADS)

    Dong, Ying-bo; Li, Hao; Lin, Hai; Zhang, Yuan

    2017-04-01

    The effects of sericite particle size, rotation speed, and leaching temperature on sericite dissolution and copper extraction in a chalcopyrite bioleaching system were examined. Finer particles, appropriate temperature and rotation speed for Acidithiobacillus ferrooxidans resulted in a higher Al3+ dissolution concentration. The Al3+ dissolution concentration reached its highest concentration of 38.66 mg/L after 48-d leaching when the sericite particle size, temperature, and rotation speed were -43 μm, 30°C, and 160 r/min, respectively. Meanwhile, the sericite particle size, rotation speed, and temperature can affect copper extraction. The copper extraction rate is higher when the sericite particle size is finer. An appropriately high temperature is favorable for copper leaching. The dissolution of sericite fitted the shrinking core model, 1-(2/3) α-(1- α)2/3 = k 1 t, which indicates that internal diffusion is the decision step controlling the overall reaction rate in the leaching process. Scanning electron microscopy analysis showed small precipitates covered on the surface of sericite after leaching, which increased the diffusion resistance of the leaching solution and dissolved ions.

  11. Phase Behavior of Ritonavir Amorphous Solid Dispersions during Hydration and Dissolution.

    PubMed

    Purohit, Hitesh S; Taylor, Lynne S

    2017-12-01

    The aim of this research was to study the interplay of solid and solution state phase transformations during the dissolution of ritonavir (RTV) amorphous solid dispersions (ASDs). RTV ASDs with polyvinylpyrrolidone (PVP), polyvinylpyrrolidone vinyl acetate (PVPVA) and hydroxypropyl methylcellulose acetate succinate (HPMCAS) were prepared at 10-50% drug loading by solvent evaporation. The miscibility of RTV ASDs was studied before and after exposure to 97% relative humidity (RH). Non-sink dissolution studies were performed on fresh and moisture-exposed ASDs. RTV and polymer release were monitored using ultraviolet-visible spectroscopy. Techniques including fluorescence spectroscopy, confocal imaging, scanning electron microscopy (SEM), atomic force microscopy (AFM), differential scanning calorimetry (DSC) and nanoparticle tracking analysis (NTA) were utilized to monitor solid and the solution state phase transformations. All RTV-PVP and RTV-PVPVA ASDs underwent moisture-induced amorphous-amorphous phase separation (AAPS) on high RH storage whereas RTV-HPMCAS ASDs remained miscible. Non-sink dissolution of PVP- and PVPVA-based ASDs at low drug loadings led to rapid RTV and polymer release resulting in concentrations in excess of amorphous solubility, liquid-liquid phase separation (LLPS) and amorphous nanodroplet formation. High drug loading PVP- and PVPVA-based ASDs did not exhibit LLPS upon dissolution as a consequence of extensive AAPS in the hydrated ASD matrix. All RTV-HPMCAS ASDs led to LLPS upon dissolution. RTV ASD dissolution is governed by a competition between the dissolution rate and the rate of phase separation in the hydrated ASD matrix. LLPS was observed for ASDs where the drug release was polymer controlled and only ASDs that remained miscible during the initial phase of dissolution led to LLPS. Techniques such as fluorescence spectroscopy, confocal imaging and SEM were useful in understanding the phase behavior of ASDs upon hydration and dissolution and were helpful in elucidating the mechanism of generation of amorphous nanodroplets.

  12. Porous aerosil loading probucol using supercritical carbon dioxide: preparation, in vitro and in vivo characteristics.

    PubMed

    Chu, Chunxia; Liu, Muhua; Wang, Dongmei; Guan, Jibin; Cai, Cuifang; Sun, Yuanpeng; Zhang, Tianhong

    2014-06-01

    The aim of this study was to enhance the dissolution rate and oral bioavailability of probucol. Probucol was adsorbed onto aerosils via supercritical carbon dioxide (ScCO2) and the physicochemistry properties of probucol-aerosil powder were evaluated by differential scanning calorimetry, X-ray diffraction, infrared spectroscopy and scanning electron microscopy. Tablets of the probucol-aerosil powder were prepared by direct compression method. In the dissolution test, the probucol-aerosil tablets showed a significant enhanced dissolution rate compared with commercial tablets. Bioavailability study was carried out in beagle dogs. Probucol-aerosil tablets exhibited higher AUC and Cmax than commercial tablets. The improved dissolution and bioavailability of probucol-aerosil tablets were attributed to the amorphous state and good dispersion of probucol. It is a feasible method to enhance the oral bioavailability by adsorbing probucol onto aerosils via ScCO2.

  13. Influence of Coformer Stoichiometric Ratio on Pharmaceutical Cocrystal Dissolution: Three Cocrystals of Carbamazepine/4-Aminobenzoic Acid.

    PubMed

    Li, Zi; Matzger, Adam J

    2016-03-07

    Cocrystallization is a technique to optimize solid forms that shows great potential to improve the solubility of active pharmaceutical ingredients (APIs). In some systems, an API can form cocrystals in multiple stoichiometries with the same coformer. However, it remains unclear how coformer stoichiometry influences solubility. This paper investigates the pharmaceutical:coformer pair carbamazepine (CBZ)/p-aminobenzoic acid (PABA); both CBZ/PABA 1:1 and 2:1 cocrystals are known, and a novel 4:1 CBZ/PABA cocrystal is reported here. The 4:1 cocrystal is structurally characterized, and phase stability data suggest that it is a thermodynamically unstable form. Dissolution experiments show that there is no correlation between the cocrystal stoichiometry and dissolution rate in this system. On the other hand, with the relatively weak intermolecular interactions, metastable forms can be beneficial to dissolution rate, which suggests that more effort should be devoted to cocrystal production with kinetic growth methods.

  14. Role of fiber dissolution in biological activity in rats.

    PubMed

    Eastes, W; Hadley, J G

    1994-12-01

    This report deals with the role of dissolution in removing long fibers from the lung and with a mathematical model that predicts chronic effects in rats following inhalation or intraperitoneal (i.p.) injection of fibers. Results of intratracheal instillation studies and inhalation studies in rats demonstrate clearly that long vitreous fibers dissolve in vivo at about the same rate measured in vitro in fluid designed to stimulate the extracellular lung fluid. For the glass, rock, and slag wool fibers tested, dissolution removed most of the fibers longer than 20 microns inhaled into the rats' lungs within 6 months after both short-term (5 days) and long-term (1 to 2 years) exposures. A mathematical model was developed that is based on fiber dissolution and allows one to predict the development of chronic lung diseases in rats. The model predicted the incidence of fibrosis and lung tumors in a series of recent inhalation studies and tumors following ip injection to within about the error of the experiments. The model suggests that all fibers, regardless of their dissolution rate in lung fluid, can produce tumors after ip injection because the dose can be unlimited by this route. After inhalation, in contrast, dissolution of many types of long vitreous fibers occurs rapidly, and disease does not ensue for these fibers.

  15. Increasing dissolution of trospium chloride by co-crystallization with urea

    NASA Astrophysics Data System (ADS)

    Skořepová, Eliška; Hušák, Michal; Čejka, Jan; Zámostný, Petr; Kratochvíl, Bohumil

    2014-08-01

    The search for various solid forms of an active pharmaceutical ingredient (API) is an important step in drug development. Our aim was to prepare co-crystals of trospium chloride, an anticholinergic drug used for the treatment of incontinence, and to investigate if they have advantageous properties for drug formulation. Phase identification was done by powder X-ray diffraction and single-crystal X-ray diffraction. The chemical composition was verified by solution NMR and the dissolution rate of the prepared phases was studied by IDR (intrinsic dissolution rate). For further analysis of phase stability and transitions, combined thermal analysis and temperature-resolved X-ray powder diffraction were used. Urea was selected as a co-crystallization partner. Trospium chloride urea (1:1) co-crystal was prepared by a solvent evaporation. From single-crystal data, the co-crystal structure was solved in a space group P21/c and compared to previously published structures of trospium chloride. Intrinsic dissolution rate revealed that the co-crystal dissolves 32% faster than pure API. However, its low thermal and pressure stability makes it a challenging choice for the final drug formulation.

  16. Characterization and evaluation of miconazole salts and cocrystals for improved physicochemical properties.

    PubMed

    Tsutsumi, Shunichirou; Iida, Motoo; Tada, Norio; Kojima, Takashi; Ikeda, Yukihiro; Moriwaki, Toshiya; Higashi, Kenjirou; Moribe, Kunikazu; Yamamoto, Keiji

    2011-12-15

    Miconazole salts and cocrystals were studied to improve the physicochemical properties of miconazole. Maleate, hemifumarate, and hemisuccinate were prepared and characterized by powder X-ray diffractometry, differential scanning calorimetry, and single crystal X-ray diffractometry. The intrinsic dissolution rate and stability of each miconazole crystal form were compared to those of freebase and nitrate to evaluate the optimal crystal form. Crystal structure analysis indicated that maleate was a salt formed by proton transfer from the acid to the imidazole group of miconazole. Hemifumarate and hemisuccinate were determined to be cocrystals formed by hydrogen bonding between the acids and the base in their crystal lattices. Intrinsic dissolution tests showed that the formation of salts and cocrystals improved the dissolution rate of miconazole. Stability tests of preliminary formulations prepared with each crystal form indicated that maleate and hemifumarate were unstable at 80°C and generated a specific degraded product, i.e., a Michael adduct, between miconazole and the acids. Hemisuccinate had a superior intrinsic dissolution rate and stability, and is thus considered a promising crystal form of miconazole. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Suitability of Palestine salt dome, Anderson Co. , Texas for disposal of high-level radioactive waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patchick, P.F.

    1980-01-01

    The suitability of Palestine salt dome, in Anderson County, Texas, is in serious doubt for a repository to isolate high-level nuclear waste because of abandoned salt brining operations. The random geographic and spatial occurrence of 15 collapse sinks over the dome may prevent safe construction of the necessary surface installations for a repository. The dissolution of salt between the caprock and dome, from at least 15 brine wells up to 500 feet deep, may permit increased rates of salt dissolution long into future geologic time. The subsurface dissolution is occurring at a rate difficult, if not impossible, to assess ormore » to calculate. It cannot be shown that this dissolution rate is insignificant to the integrity of a future repository or to ancillary features. The most recent significant collapse was 36 feet in diameter and took place in 1972. The other collapses ranged from 27 to 105 feet in diameter and from 1.5 to more than 15 feet in depth. ONWI recommends that this dome be removed from consideration as a candidate site.« less

  18. Chlorite, Biotite, Illite, Muscovite and Feldspar Dissolution Kinetics at Variable pH and Temperatures up to 280 deg C

    DOE Data Explorer

    Carroll, Susan; Smith, Megan M.; Lammers, Kristin

    2017-02-24

    Chemical reactions pose an important but poorly understood threat to EGS long-term success because of their impact on fracture permeability. This report summarizes the dissolution rate equations for layered silicates where data were lacking for geothermal systems. Here we report updated rate laws for chlorite (Carroll and Smith 2013), biotite (Carroll and Smith, 2015), illite (Carroll and Smith, 2014), and for muscovite. Also included is a spreadsheet with rate data and rate equations for use in reactive transport simulators.

  19. Deep water dissolution in Marine Isotope Stage 3 from the northern South China Sea

    NASA Astrophysics Data System (ADS)

    Huang, B.

    2015-12-01

    The production, transport, deposition, and dissolution of carbonate profoundly implicate the global carbon cycle affect the inventory and distribution of dissolved organic carbon (DIC) and alkalinity (ALK), which drive atmospheric CO2 change on glacial-interglacial timescale. the process may provide significant clues for improved understanding of the mechanisms that control the global climate system. In this study, we calculate and analyze the foraminiferal dissolution index (FDX) and the fragmentation ratios of planktonic foraminifera over 60-25 ka based on samples from 17924 and ODP 1144 in the northeastern South China Sea (SCS) to reconstruct the deep water carbonate dissolution during Marine Isotope Stage 3 (MIS 3). Result shows that the dissolution of carbonate increases gradually at 17924 but keeps stable at ODP 1144. The changes of FDX coincidence with that of fragmentation ratios at 17924 and ODP 1144 suggest both indexes can be used as reliable dissolving proxies of planktonic foraminifera. Comparing FDX and fragmentation ratios at both sites, we find the FDX and fragmentation ratios at 17924 are higher than those at 1144, indicating that carbonate dissolution is intenser in 17924 core during MIS 3. The increasing total percentage of both N. dutertrei and G. bulloides during MIS 3 reveals the rising primary productivity that may lead to deep water [CO32-] decrease. The slow down of thermohaline circulation may increase deep water residence time and accelerate carbonate dissolution. In addition, the covering of ice caps, iron supply and increased surface-water stratification also contribute to atmosphere CO2 depletion and [CO32-] decrease in deep water. In the meanwhile, regression result from colder temperature increases the input of ALK and DIC to the deep ocean and deepens the carbonate saturation depth, which makes the deep water [CO32-] rise. In ODP Site 1144, the decrease in [CO32-] caused by more CO2 restored in deep water is equal to the increase in [CO32-] because of regression, so dissolution keeps steady. However, [CO32-] is probably more strongly controlled by regression, the decrease in [CO32-] result from more CO2 restored in deep water overwhelms the increase in [CO32-] due to regression at 17924, so more carbonate dissolved from MIS 3 to the Last Glacial Maximum (LGM).

  20. Limestone weathering rates accelerated by micron-scale grain detachment

    NASA Astrophysics Data System (ADS)

    Emmanuel, S.; Levenson, Y.

    2014-12-01

    The weathering rates of carbonate rocks is often thought to be controlled by chemical dissolution, although some studies have suggested that mechanical erosion could also play an important role. Quantifying the rates of the different processes has proved challenging due to the high degree of variability encountered in both field and lab settings. To determine the rates and mechanisms controlling long-term limestone weathering, we analyse a lidar scan of the Western Wall, a Roman period edifice located in Jerusalem. Weathering rates in fine-grained micritic limestone blocks are up to 2 orders of magnitude higher than the average rates estimated for coarse-grained limestone blocks at the same site. In addition, in experiments that use atomic force microscopy to image dissolving micritic limestone, we show that these higher reaction rates could be due to rapid dissolution along micron-scale grain boundaries, followed by mechanical detachment of tiny particles from the surface. Our analysis indicates that micron-scale grain detachment, rather than pure chemical dissolution, could be the dominant erosional mode for fine-grained rocks in many carbonate terrains.

Top