Distortion management in slow-light pulse delay.
Stenner, Michael D; Neifeld, Mark A; Zhu, Zhaoming; Dawes, Andrew M C; Gauthier, Daniel J
2005-12-12
We describe a methodology to maximize slow-light pulse delay subject to a constraint on the allowable pulse distortion. We show that optimizing over a larger number of physical variables can increase the distortion-constrained delay. We demonstrate these concepts by comparing the optimum slow-light pulse delay achievable using a single Lorentzian gain line with that achievable using a pair of closely-spaced gain lines. We predict that distortion management using a gain doublet can provide approximately a factor of 2 increase in slow-light pulse delay as compared with the optimum single-line delay. Experimental results employing Brillouin gain in optical fiber confirm our theoretical predictions.
NASA Astrophysics Data System (ADS)
Elshahat, Sayed; Khan, Karim; Yadav, Ashish; Bibbò, Luigi; Ouyang, Zhengbiao
2018-07-01
We proposed a strategy with successive cavities as energy reservoirs of electromagnetic energy and light-speed reducers introduced in the first and second rows of rods on the walls of an intrinsic photonic crystal waveguide (PCW) for slow-light transmission in the PCW concerning applications for optical communication, optical computation and optical signal processing. Subsequently, plane-wave expansion method (PWE) is used for studying slow-light properties and finite-difference time-domain (FDTD) method to demonstrate the slow-light propagating property of our proposed structure. We obtained group index as exceedingly large as 6123 with normalized delay bandwidth product (NDBP) as high as 0.48. We designed a facile but more generalized structure that may provide a vital theoretical basis for further enhancing the storage capacity properties of slow light with wideband and high NDBP.
Tuning the group delay of optical wave packets in liquid-crystal light valves
NASA Astrophysics Data System (ADS)
Bortolozzo, U.; Residori, S.; Huignard, J. P.
2009-05-01
By performing two-wave mixing experiments in a liquid-crystal light valve, optical pulses are slowed down to group velocities as slow as a few tenths of mm/s, corresponding to a very large group index. We present experiments and model of the slow-light process occurring in the liquid-crystal light valve, showing that this is characterized by multiple-beam diffraction in the Raman-Nath regime. Depending on the initial frequency detuning between pump and signal, the different output order beams are distinguished by different group delays. The group delay can be tuned by changing the main parameters of the experiment: the detuning between the pump and the input wave packet, the strength of the nonlinearity, and the intensity of the pump beam.
Slowing light down by low magnetic fields: pulse delay by transient spectral hole-burning in ruby.
Riesen, Hans; Rebane, Aleksander K; Szabo, Alex; Carceller, Ivana
2012-08-13
We report on the observation of slow light induced by transient spectral hole-burning in a solid, that is based on excited-state population storage. Experiments were conducted in the R1-line (2E←4A2 transition) of a 2.3 mm thick pink ruby (Al2O3:Cr(III) 130 ppm). Importantly, the pulse delay can be controlled by the application of a low external magnetic field B||c≤9 mT and delays of up to 11 ns with minimal pulse distortion are observed for ~55 ns Gaussian pulses. The delay corresponds to a group velocity value of ~c/1400. The experiment is very well modelled by linear spectral filter theory and the results indicate the possibility of using transient hole-burning based slow light experiments as a spectroscopic technique.
Fast and slow light generated by surface plasmon wave and gold grating coupling effects
NASA Astrophysics Data System (ADS)
Amiri, Iraj S.; Ariannejad, M. M.; Tajdidzadeh, M.; Sorger, Volker J.; Ling, Xi; Yupapin, P.
2018-06-01
We present here the results of a simulation of the effect of gold and graphene coatings on silicon micro-ring resonators. We studied the effect of different radii of graphene on the time delay, from which one an interesting aspect of light pulse behaviors, such as fast light, was numerically investigated. The obtained results indicate that the time delay can be varied, which is in good agreement with theoretical predictions. Fast and slow light pulse trains can be obtained by modifying the throughput port, which forms the gold grating length. The temporal gaps between the fast and slow light in the used graphene and gold are 140 and 168 fs, respectively, which can be tuned by varying the radius or grating length. The obtained results show that such a device may be useful in applications requiring fast and slow light pulse train pairs, such as optical switching, sensors, communications, and security applications.
Fast and slow light generated by surface plasmon wave and gold grating coupling effects
NASA Astrophysics Data System (ADS)
Amiri, Iraj S.; Ariannejad, M. M.; Tajdidzadeh, M.; Sorger, Volker J.; Ling, Xi; Yupapin, P.
2018-01-01
We present here the results of a simulation of the effect of gold and graphene coatings on silicon micro-ring resonators. We studied the effect of different radii of graphene on the time delay, from which one an interesting aspect of light pulse behaviors, such as fast light, was numerically investigated. The obtained results indicate that the time delay can be varied, which is in good agreement with theoretical predictions. Fast and slow light pulse trains can be obtained by modifying the throughput port, which forms the gold grating length. The temporal gaps between the fast and slow light in the used graphene and gold are 140 and 168 fs, respectively, which can be tuned by varying the radius or grating length. The obtained results show that such a device may be useful in applications requiring fast and slow light pulse train pairs, such as optical switching, sensors, communications, and security applications.
Improved slow-light performance of 10 Gb/s NRZ, PSBT and DPSK signals in fiber broadband SBS.
Yi, Lilin; Jaouen, Yves; Hu, Weisheng; Su, Yikai; Bigo, Sébastien
2007-12-10
We have demonstrated error-free operations of slow-light via stimulated Brillouin scattering (SBS) in optical fiber for 10-Gb/s signals with different modulation formats, including non-return-to-zero (NRZ), phase-shaped binary transmission (PSBT) and differential phase-shiftkeying (DPSK). The SBS gain bandwidth is broadened by using current noise modulation of the pump laser diode. The gain shape is simply controlled by the noise density function. Super-Gaussian noise modulation of the Brillouin pump allows a flat-top and sharp-edge SBS gain spectrum, which can reduce slow-light induced distortion in case of 10-Gb/s NRZ signal. The corresponding maximal delay-time with error-free operation is 35 ps. Then we propose the PSBT format to minimize distortions resulting from SBS filtering effect and dispersion accompanied with slow light because of its high spectral efficiency and strong dispersion tolerance. The sensitivity of the 10-Gb/s PSBT signal is 5.2 dB better than the NRZ case with a same 35-ps delay. The maximal delay of 51 ps with error-free operation has been achieved. Futhermore, the DPSK format is directly demodulated through a Gaussian-shaped SBS gain, which is achieved using Gaussian-noise modulation of the Brillouin pump. The maximal error-free time delay after demodulation of a 10-Gb/s DPSK signal is as high as 81.5 ps, which is the best demonstrated result for 10-Gb/s slow-light.
Study of SBS slow light based on nano-material doped fiber
NASA Astrophysics Data System (ADS)
Zhang, Ying; Lang, Pei-Lin; Zhang, Ru
2009-03-01
A novel optical fiber doped with nano material InP is manufactured by the modified chemical vapor deposition (MCVD). The slow light based on stimulated Brillouin scattering (SBS) in the optical fiber is studied. The results show that a time delay of ˜738 ps is obtained when the input Stokes pulse is 900 ps(FWHM) and the SBS gain is ˜15. It shows that a considerable time delay and an amplification of the input light can be achieved by this novel optical fiber.
Chin, Sanghoon; Thévenaz, Luc; Sancho, Juan; Sales, Salvador; Capmany, José; Berger, Perrine; Bourderionnet, Jérôme; Dolfi, Daniel
2010-10-11
We experimentally demonstrate a novel technique to process broadband microwave signals, using all-optically tunable true time delay in optical fibers. The configuration to achieve true time delay basically consists of two main stages: photonic RF phase shifter and slow light, based on stimulated Brillouin scattering in fibers. Dispersion properties of fibers are controlled, separately at optical carrier frequency and in the vicinity of microwave signal bandwidth. This way time delay induced within the signal bandwidth can be manipulated to correctly act as true time delay with a proper phase compensation introduced to the optical carrier. We completely analyzed the generated true time delay as a promising solution to feed phased array antenna for radar systems and to develop dynamically reconfigurable microwave photonic filters.
Comparison of delay enhancement mechanisms for SBS-based slow light systems.
Schneider, Thomas; Henker, Ronny; Lauterbach, Kai-Uwe; Junker, Markus
2007-07-23
We compare two simple mechanisms for the enhancement of the time delay in slow light systems. Both are based on the superposition of the Brillouin gain with additional loss. As we will show in theory and experiment if two losses are placed at the wings of a SBS gain, contrary to other methods, the loss power increases the time delay. This leads to higher delay times at lower optical powers and to an increase of the zero gain delay of more than 50%. With this method we achieved a time delay of more than 120ns for pulses with a temporal width of 30ns. To the best of our knowledge, this is the highest time delay in just one fiber spool. Beside the enhancement of the time delay the method could have the potential to decrease the pulse distortions for high bit rate signals.
Slow-light, band-edge waveguides for tunable time delays.
Povinelli, M; Johnson, Steven; Joannopoulos, J
2005-09-05
We propose the use of slow-light, band-edge waveguides for compact, integrated, tunable optical time delays. We show that slow group velocities at the photonic band edge give rise to large changes in time delay for small changes in refractive index, thereby shrinking device size. Figures of merit are introduced to quantify the sensitivity, as well as the accompanying signal degradation due to dispersion. It is shown that exact calculations of the figures of merit for a realistic, three-dimensional grating structure are well predicted by a simple quadratic-band model, simplifying device design. We present adiabatic taper designs that attain <0.1% reflection in short lengths of 10 to 20 times the grating period. We show further that cascading two gratings compensates for signal dispersion and gives rise to a constant tunable time delay across bandwidths greater than 100GHz. Given typical loss values for silicon-on-insulator waveguides, we estimate that gratings can be designed to exhibit tunable delays in the picosecond range using current fabrication technology.
NASA Astrophysics Data System (ADS)
Qiu, Wei; Liu, Jianjun; Wang, Yuda; Yang, Yujing; Gao, Yuan; Lv, Pin; Jiang, Qiuli
2018-01-01
In this article a general theory of the coherent population oscillation effect in an erbium-doped fiber at room temperature is presented. We use dual pumping light waves with a simplified two-level system. Thus the time delay equations can be calculated from rate equations and the transmission equation. Using numerical simulation, in the case of dual-frequency pump light waves (1480 nm and 980 nm) with two directions, we analyze the influence of the pump power ratio on the group speed of light propagation. In addition, we compare slow light propagation with a single-pumping light and slow light propagation with a dual-pumping light at room temperature. The discussion shows that a larger time delay of slow light propagation can be obtained with a dual-frequency pumping laser. Compared to previous research methods, a dual-frequency laser pumped fiber with two directions is more controllable. Moreover, we conclude that the group velocity of light can be varied by changing the pump ratio.
Magnetic-field-dependent slow light in strontium atom-cavity system
NASA Astrophysics Data System (ADS)
Liu, Zeng-Xing; Wang, Bao; Kong, Cui; Xiong, Hao; Wu, Ying
2018-03-01
Realizing and controlling a long-lived slow light is of fundamental importance in physics and may find applications in quantum router and quantum information processing. In this work, we propose a feasible scheme to realize the slow light in a strontium atom-cavity system, in which the value of group delay can be continuously adjusted within a range of different Zeeman splittings and vacuum Rabi frequencies by varying the applied static magnetic field and the atom number instead of a strong coherent field. In our scheme, the major limitations of the slow-light structure, namely, dispersion and loss, can be effectively resolved, and so our scheme may help to achieve the practical application of slow light relevant to the optical communication network.
NASA Astrophysics Data System (ADS)
Qiu, Wei; Yang, Yujing; Gao, Yuan; Liu, Jianjun; Lv, Pin; Jiang, Qiuli
2018-04-01
Slow light is demonstrated in the cascade structure of an erbium-doped fiber with two forward propagation pumps. The results of the numerical simulation of the time delay and the optimum modulation frequency complement each other. The time delay and the optimum modulation frequency depend on the pump ratio G (G = {{P}1480}:{{P}980} ). The discussion results of this paper show that a larger time delay of slow light propagation can be obtained in the cascade structure of Er3+-doped optical fibers with dual-frequency laser pumping. Compared to previous research methods, the dual-frequency laser-pumped cascade structure of an Er3+-doped optical fiber is more controllable. Based on our discussion the pump ratio G should be selected in order to obtain a more appropriate time delay and the slowdown of group velocity.
Rajan, Rajitha Papukutty; Riesen, Hans; Rebane, Aleksander
2013-11-15
Slow light based on transient spectral hole-burning is reported for emerald, Be(3)Al(2)Si(6)O(18):Cr(3+). Experiments were conducted in π polarization on the R(1)(± 3/2) line (E2 ← A(2)4) at 2.2 K in zero field and low magnetic fields B||c. The hole width was strongly dependent on B||c, and this allowed us to smoothly tune the pulse delay from 40 to 154 ns between zero field and B||c = 15.2 mT. The latter corresponds to a group velocity of 16 km/s. Slow light in conjunction with a linear filter theory can be used as a powerful and accurate technique in time-resolved spectroscopy, e.g., to determine spectral hole-widths as a function of time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asano, M.; Ikuta, R.; Imoto, N.
We report controllable manipulation of slow and fast light in a whispering-gallery-mode microtoroid resonator fabricated from Erbium (Er{sup 3+}) doped silica. We observe continuous transition of the coupling between the fiber-taper waveguide and the microresonator from undercoupling to critical coupling and then to overcoupling regimes by increasing the pump power even though the spatial distance between the resonator and the waveguide was kept fixed. This, in turn, enables switching from fast to slow light and vice versa just by increasing the optical gain. An enhancement of delay of two-fold over the passive silica resonator (no optical gain) was observed inmore » the slow light regime. Moreover, we show dynamic pulse splitting and its control in slow/fast light systems using optical gain.« less
Optimal pulse design for communication-oriented slow-light pulse detection.
Stenner, Michael D; Neifeld, Mark A
2008-01-21
We present techniques for designing pulses for linear slow-light delay systems which are optimal in the sense that they maximize the signal-to-noise ratio (SNR) and signal-to-noise-plus-interference ratio (SNIR) of the detected pulse energy. Given a communication model in which input pulses are created in a finite temporal window and output pulse energy in measured in a temporally-offset output window, the SNIR-optimal pulses achieve typical improvements of 10 dB compared to traditional pulse shapes for a given output window offset. Alternatively, for fixed SNR or SNIR, window offset (detection delay) can be increased by 0.3 times the window width. This approach also invites a communication-based model for delay and signal fidelity.
Slow light effect with high group index and wideband by saddle-like mode in PC-CROW
NASA Astrophysics Data System (ADS)
Wan, Yong; Jiang, Li-Jun; Xu, Sheng; Li, Meng-Xue; Liu, Meng-Nan; Jiang, Cheng-Yi; Yuan, Feng
2018-04-01
Slow light with high group index and wideband is achieved in photonic crystal coupled-resonator optical waveguides (PC-CROWs). According to the eye-shaped scatterers and various microcavities, saddle-like curves between the normalized frequency f and wave number k can be obtained by adjusting the parameters of the scatterers, parameters of the coupling microcavities, and positions of the scatterers. Slow light with decent flat band and group index can then be achieved by optimizing the parameters. Simulations prove that the maximal value of the group index is > 104, and the normalized delay bandwidth product within a new varying range of n g > 102 or n g > 103 can be a new and effective criterion of evaluation for the slow light in PC-CROWs.
Theoretical investigation and optimization of fiber grating based slow light
NASA Astrophysics Data System (ADS)
Wang, Qi; Wang, Peng; Du, Chao; Li, Jin; Hu, Haifeng; Zhao, Yong
2017-07-01
On the edge of bandgap in a fiber grating, narrow peaks of high transimittivity exist at frequencies where light interferes constructively in the forward direction. In the vicinity of these transmittivity peaks, light reflects back and forth numerous times across the periodic structure and experiences a large group delay. In order to generate the extremely slow light in fiber grating for applications, in this research, the common sense of formation mechanism of slow light in fiber grating was introduced. The means of producing and operating fiber grating was studied to support structural slow light with a group index that can be in principle as high as several thousand. The simulations proceeded by transfer matrix method in the paper were presented to elucidate how the fiber grating parameters effect group refractive index. The main parameters that need to be optimized include grating length, refractive index contrast, grating period, loss coefficient, chirp and apodization functions, those can influence fiber grating characteristics.
Slow and fast light via SBS in optical fibers for short pulses and broadband pump
NASA Astrophysics Data System (ADS)
Kalosha, V. P.; Chen, Liang; Bao, Xiaoyi
2006-12-01
Slow-light effect via stimulated Brillouin scattering (SBS) in single-mode optical fibers was considered for short probe pulses of nanosecond duration relevant to Gb/s data streams. Unlike recent estimations of delay versus pump based on steady-state small-signal approximation we have used numerical solution of three-wave equations describing SBS for a realistic fiber length. Both regimes of small signal and pump depletion (gain saturation) were considered. The physical origin of Stokes pulse distortion is revealed which is related to excitation of long-living acoustic field behind the pulse and prevents effective delay control by pump power increase at cw pumping. We have shown different slope of the gain-dependent delay for different pulse durations. Spectrally broadened pumping by multiple cw components, frequency-modulated pump and pulse train were studied for short pulses which allow to obtain large delay and suppress pulse distortion. In the pump-depletion regime of pumping by pulse train, both pulse delay and distortion decrease with increasing pump, and the pulse achieves advancement.
Tunable electromagnetically induced transparency in integrated silicon photonics circuit.
Li, Ang; Bogaerts, Wim
2017-12-11
We comprehensively simulate and experimentally demonstrate a novel approach to generate tunable electromagnetically induced transparency (EIT) in a fully integrated silicon photonics circuit. It can also generate tunable fast and slow light. The circuit is a single ring resonator with two integrated tunable reflectors inside, which form an embedded Fabry-Perot (FP) cavity inside the ring cavity. The mode of the FP cavity can be controlled by tuning the reflections using integrated thermo-optic tuners. Under correct tuning conditions, the interaction of the FP mode and the ring resonance mode will generate a Fano resonance and an EIT response. The extinction ratio and bandwidth of the EIT can be tuned by controlling the reflectors. Measured group delay proves that both fast light and slow light can be generated under different tuning conditions. A maximum group delay of 1100 ps is observed because of EIT. Pulse advance around 1200 ps is also demonstrated.
Slow light generation in single-mode rectangular core photonic crystal fiber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadav, Sandeep; Saini, Than Singh; Kumar, Ajeet, E-mail: ajeetdph@gmail.com
2016-05-06
In this paper, we have designed and analyzed a rectangular core photonic crystal fiber (PCF) in Tellurite material. For the designed photonics crystal fiber, we have calculated the values of confinement loss and effective mode area for different values of air filling fraction (d/Λ). For single mode operation of the designed photonic crystal fiber, we have taken d/Λ= 0.4 for the further calculation of stimulated Brillouin scattering based time delay. A maximum time delay of 158 ns has been achieved for input pump power of 39 mW. We feel the detailed theoretical investigations and simulations carried out in the study have themore » potential impact on the design and development of slow light-based photonic devices.« less
NASA Astrophysics Data System (ADS)
Qiu, Wei; Liu, Jianjun; Wang, Yuda; Yang, Yujing; Gao, Yuan; Lv, Pin; Jiang, Qiuli
2018-04-01
In this paper, a general theory of coherent population oscillation effect in an Er3+ -doped fiber under the dual-frequency pumping laser with counter-propagation and co-propagation at room temperature is presented. Using the numerical simulation, in case of dual frequency light waves (1480 nm and 980 nm) with co-propagation and counter-propagation, we analyze the effect of the pump optical power ratio (M) on the group speed of light. The group velocity of light can be varied with the change of M. We research the time delay and fractional delay in an Er3+-doped fiber under the dual-frequency pumping laser with counter-propagation and co-propagation. Compared to the methods of the single pumping, the larger time delay can be got by using the technique of dual-frequency laser pumped fiber with co-propagation and counter-propagation.
Moderie, Christophe; Van der Maren, Solenne; Dumont, Marie
2017-06-01
To assess factors that might contribute to a delayed sleep schedule in young adults with sub-clinical features of delayed sleep phase disorder. Two groups of 14 young adults (eight women) were compared: one group complaining of a delayed sleep schedule and a control group with an earlier bedtime and no complaint. For one week, each subject maintained a target bedtime reflecting their habitual sleep schedule. Subjects were then admitted to the laboratory for the assessment of circadian phase (dim light melatonin onset), subjective sleepiness, and non-visual light sensitivity. All measures were timed relative to each participant's target bedtime. Non-visual light sensitivity was evaluated using subjective sleepiness and salivary melatonin during 1.5-h exposure to blue light, starting one hour after target bedtime. Compared to control subjects, delayed subjects had a later circadian phase and a slower increase of subjective sleepiness in the late evening. There was no group difference in non-visual sensitivity to blue light, but we found a positive correlation between melatonin suppression and circadian phase within the delayed group. Our results suggest that a late circadian phase, a slow build-up of sleep need, and an increased circadian sensitivity to blue light contribute to the complaint of a delayed sleep schedule. These findings provide targets for strategies aiming to decreasing the severity of a sleep delay and the negative consequences on daytime functioning and health. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kaba, M.; Zhou, F. C.; Lim, A.; Decoster, D.; Huignard, J.-P.; Tonda, S.; Dolfi, D.; Chazelas, J.
2007-11-01
The applications of microwave optoelectronics are extremely large since they extend from the Radio-over-Fibre to the Homeland security and defence systems. Then, the improved maturity of the optoelectronic components operating up to 40GHz permit to consider new optical processing functions (filtering, beamforming, ...) which can operate over very wideband microwave analogue signals. Specific performances are required which imply optical delay lines able to exhibit large Time-Bandwidth product values. It is proposed to evaluate slow light approach through highly dispersive structures based on either uniform or chirped Bragg Gratings. Therefore, we highlight the impact of the major parameters of such structures: index modulation depth, grating length, grating period, chirp coefficient and demonstrate the high potentiality of Bragg Grating for Large RF signals bandwidth processing under slow-light propagation.
Delay-tunable gap-soliton-based slow-light system
NASA Astrophysics Data System (ADS)
Mok, Joe T.; de Sterke, C. Martijn; Eggleton, Benjamin J.
2006-12-01
We numerically and analytically evaluate the delay of solitons propagating slowly, and without broadening, in an apodized Bragg grating. Simulations indicate that a 100 mm Bragg grating with Δn = 10-3 can delay sub-nanosecond pulses by nearly 20 pulse widths without any change in the output pulse width. Delay tunability is achieved by simultaneously adjusting the launch power and detuning. A simple analytic model is developed to describe the monotonic dependence of delay on Δn and compared with simulations. As the intensity may be greatly enhanced due to a reduced velocity, a procedure for improving the delay while avoiding material damage is outlined.
Experimental simulation of ranging action using Si photonic crystal modulator and optical antenna
NASA Astrophysics Data System (ADS)
Furukado, Yuya; Abe, Hiroshi; Hinakura, Yosuke; Baba, Toshihiko
2018-02-01
Time of flight LiDARs are used for auto-driving of vehicles, while FMCW LiDARs potentially achieve a higher sensitivity. In this study, we fabricated and tested each component of a FMCW LiDAR based on Si photonics and experimentally simulated the ranging action. Here, we drove a Si photonic crystal slow light modulator with linearly frequency-chirped signal in the frequency band of 500-1000 MHz and a repetition frequency of 100 kHz, to generate FM-signal light from a narrow-linewidth laser source. Next, we branched the signal light into two paths. One was inserted into a fiber delay line of 20-320 m and its output was irradiated to a photonic crystal slow beam steering device acting as an optical antenna via the free-space transmission. When the irradiation angle was optimized so that the antenna gain took maximum for a set laser wavelength, light was efficiently coupled into the antenna. We mixed the light output from the antenna with reference light of the other path with no delay, and detected it by balanced photodiodes. We observed a beat signal whose frequency well agreed with the theoretical value predicted from the length of the delay line. Thus, we succeeded in the experimental simulation of the FMCW LiDAR. We also observed a spectral sequence around the beat spectrum, in which the inter-frequency spacing equals the repetition frequency and corresponds to a range resolution of 30 cm which will be improved by expanding the modulation bandwidth.
Leeuw, T; Pette, D
1996-01-01
Skeletal muscle fibers are versatile entities, capable of changing their phenotype in response to altered functional demands. In the present study, fast-to-slow fiber type transitions were induced in rabbit tibialis anterior (fA) muscles by chronic low-frequency stimulation (CLFS). The time course of changes in relative protein concentrations of fast and slow myosin light chain (MLC) isoforms and changes in their relative synthesis rates by in vivo labeling with [35S]methionine were followed during stimulation periods of up to 60 days. Generally, relative synthesis rates and protein concentrations changed in parallel; i.e., fast isoforms decreased and slow isoforms increased. MLC3f, however, which turns over at a higher rate than the other light chains, exhibited a conspicuous discrepancy between a markedly reduced relative synthesis but only a moderate decrease in protein amount during the initial 2 weeks of CLFS. Apparently, MLC3f is regulated independent of MLC1f, with protein degradation playing an important role in its regulation. The exchange of fast MLC isoforms with their slow counterparts seemed to correspond to the ultimate fast-to-slow (MHCIIa-->MHCI) transition at the MHC level. However, due to an earlier onset of the fast-to-slow transition of the regulatory light chain and the delayed fast-to-slow exchange of the alkali light chains, a spectrum of hybrid isomyosins composed of fast and slow light and heavy chains must have existed transiently in transforming fibers. Such hybrid isomyosins appeared to be restricted to MHCIIa- and MHCI-based combinations. In conclusion, fiber type specific programs that normally coordinate the expression of myofibrillar protein isoforms seem to be maintained during fiber type transitions. Possible differences in post-transcriptional regulation may result in the transient accumulation of atypical combinations of fast and slow MLC and MHC isoforms, giving rise to the appearance of hybrid fibers under the conditions of forced fiber type conversion.
Tyszka-Zawadzka, Anna; Janaszek, Bartosz; Szczepański, Paweł
2017-04-03
The tunability of slow light in graphene-based hyperbolic metamaterial waveguide operating in SCLU telecom bands is investigated. For the first time it has been shown that proper design of a GHMM structure forming waveguide layer and the geometry of the waveguide itself allows stopped light to be obtained in an almost freely selected range of wavelengths within SCLU bands. In particular, the possibility of controlling light propagation in GHMM waveguides by external biasing has been presented. The change of external electric field enables the stop light of the selected wavelength as well as the control of a number of modes, which can be stopped, cut off or supported. Proposed GHMM waveguides could offer great opportunities in the field of integrated photonics that are compatible with CMOS technology, especially since such structures can be utilized as photonic memory cells, tunable optical buffers, delays, optical modulators etc.
Time delay generation at high frequency using SOA based slow and fast light.
Berger, Perrine; Bourderionnet, Jérôme; Bretenaker, Fabien; Dolfi, Daniel; Alouini, Mehdi
2011-10-24
We show how Up-converted Coherent Population Oscillations (UpCPO) enable to get rid of the intrinsic limitation of the carrier lifetime, leading to the generation of time delays at any high frequencies in a single SOA device. The linear dependence of the RF phase shift with respect to the RF frequency is theoretically predicted and experimentally evidenced at 16 and 35 GHz. © 2011 Optical Society of America
Superluminal and negative delay times in isotropic-anisotropic one-dimensional photonic crystal
NASA Astrophysics Data System (ADS)
Ouchani, N.; El Moussaouy, A.; Aynaou, H.; El Hassouani, Y.; El Boudouti, E. H.; Djafari-Rouhani, B.
2017-11-01
In this work, we investigate the possibility of superluminal and negative delay times for electromagnetic wave propagation in a linear and passive periodic structure consisting of alternating isotropic and anisotropic media. This phenomenon is due to the birefringence of the anisotropic layers of the structure. By adjusting the orientations of these layers, the delay times of transmitted waves can be controlled from subluminality to superluminality and vice versa. Numerical results indicate that the apparent superluminal propagation of light occurs inside the photonic band-gaps when the principal axes of the anisotropic layers are parallel or perpendicular to the fixed axes. For other orientations of these layers, tunneling and superluminal regimes appear inside the photonic bandgaps and in the allowed bands for frequencies close to the transmission minima. The effect of the number of unit cells of the photonic crystal structure on the propagation of light with superluminal and negative delay times is also investigated. We show that the structure exhibits the Hartman effect in which the tunneling delay time of the electromagnetic wave through the photonic band-gap of the structure converges asymptotically to a finite value with increasing the number of layers. The Green's function approach has been used to derive the transmission and reflection coefficients, the density of states, and the delay times of electromagnetic waves propagating through the structure. The control of the magnitude and the sign of the delay time of light propagation represent a key point in slow and fast light technologies. The proposed structure in this study represents a new system for controlling the delay times of wave propagation without a need of active or non-linear media as well as lossy or asymmetric periodic structures.
Coupled resonator optical waveguide sensors: sensitivity and the role of slow light
NASA Astrophysics Data System (ADS)
Terrel, Matthew A.; Digonnet, Michel J. F.; Fan, Shanhui
2009-05-01
We compare the sensitivity of two configurations of coupled resonator optical waveguide (CROW) gyroscopes proposed by others to conventional optical gyroscopes. In both cases, we demonstrate that for equal device footprint and loss, neither of these CROW gyroscopes configurations is more sensitive than its conventional counterpart. In all cases, loss ultimately limits the maximum rotation sensitivity. The fact that light travels more slowly (i.e., with a greater group delay) in a CROW than in a fiber therefore has no effect on sensitivity. The only benefit slow light does have is that it reduces the device length requirement, or equivalently it increases the sensitivity per unit length. However, we show that this improvement is quantitatively the same as in an RFOG. These conclusions are not limited to these two CROW configurations or to rotation sensing, but applicable to any measurand that modifies the phase of the signal(s) traveling in the resonators.
Energy transport velocity in bidispersed magnetic colloids.
Bhatt, Hem; Patel, Rajesh; Mehta, R V
2012-07-01
Study of energy transport velocity of light is an effective background for slow, fast, and diffuse light and exhibits the photonic property of the material. We report a theoretical analysis of magnetic field dependent resonant behavior in forward-backward anisotropy factor, light diffusion constant, and energy transport velocity for bidispersed magnetic colloids. A bidispersed magnetic colloid is composed of micrometer size magnetic spheres dispersed in a magnetic nanofluid consisting of magnetic nanoparticles in a nonmagnetic liquid carrier. Magnetic Mie resonances and reduction in energy transport velocity accounts for the possible delay (longer dwell time) by field dependent resonant light transport. This resonant behavior of light in bidispersed magnetic colloids suggests a novel magnetophotonic material.
Integrable microwave filter based on a photonic crystal delay line.
Sancho, Juan; Bourderionnet, Jerome; Lloret, Juan; Combrié, Sylvain; Gasulla, Ivana; Xavier, Stephane; Sales, Salvador; Colman, Pierre; Lehoucq, Gaelle; Dolfi, Daniel; Capmany, José; De Rossi, Alfredo
2012-01-01
The availability of a tunable delay line with a chip-size footprint is a crucial step towards the full implementation of integrated microwave photonic signal processors. Achieving a large and tunable group delay on a millimetre-sized chip is not trivial. Slow light concepts are an appropriate solution, if propagation losses are kept acceptable. Here we use a low-loss 1.5 mm-long photonic crystal waveguide to demonstrate both notch and band-pass microwave filters that can be tuned over the 0-50-GHz spectral band. The waveguide is capable of generating a controllable delay with limited signal attenuation (total insertion loss below 10 dB when the delay is below 70 ps) and degradation. Owing to the very small footprint of the delay line, a fully integrated device is feasible, also featuring more complex and elaborate filter functions.
Skeldon, Anne C; Phillips, Andrew J K; Dijk, Derk-Jan
2017-03-27
Why do we go to sleep late and struggle to wake up on time? Historically, light-dark cycles were dictated by the solar day, but now humans can extend light exposure by switching on artificial lights. We use a mathematical model incorporating effects of light, circadian rhythmicity and sleep homeostasis to provide a quantitative theoretical framework to understand effects of modern patterns of light consumption on the human circadian system. The model shows that without artificial light humans wakeup at dawn. Artificial light delays circadian rhythmicity and preferred sleep timing and compromises synchronisation to the solar day when wake-times are not enforced. When wake-times are enforced by social constraints, such as work or school, artificial light induces a mismatch between sleep timing and circadian rhythmicity ('social jet-lag'). The model implies that developmental changes in sleep homeostasis and circadian amplitude make adolescents particularly sensitive to effects of light consumption. The model predicts that ameliorating social jet-lag is more effectively achieved by reducing evening light consumption than by delaying social constraints, particularly in individuals with slow circadian clocks or when imposed wake-times occur after sunrise. These theory-informed predictions may aid design of interventions to prevent and treat circadian rhythm-sleep disorders and social jet-lag.
Focusing Light Beams To Improve Atomic-Vapor Optical Buffers
NASA Technical Reports Server (NTRS)
Strekalov, Dmitry; Matsko, Andrey; Savchenkov, Anatoliy
2010-01-01
Specially designed focusing of light beams has been proposed as a means of improving the performances of optical buffers based on cells containing hot atomic vapors (e.g., rubidium vapor). There is also a companion proposal to improve performance by use of incoherent optical pumping under suitable conditions. Regarding the proposal to use focusing: The utility of atomic-vapor optical buffers as optical storage and processing devices has been severely limited by nonuniform spatial distributions of intensity in optical beams, arising from absorption of the beams as they propagate in atomic-vapor cells. Such nonuniformity makes it impossible to optimize the physical conditions throughout a cell, thereby making it impossible to optimize the performance of the cell as an optical buffer. In practical terms simplified for the sake of brevity, "to optimize" as used here means to design the cell so as to maximize the group delay of an optical pulse while keeping the absorption and distortion of the pulse reasonably small. Regarding the proposal to use incoherent optical pumping: For reasons too complex to describe here, residual absorption of light is one of the main impediments to achievement of desirably long group delays in hot atomic vapors. The present proposal is directed toward suppressing residual absorption of light. The idea of improving the performance of slow-light optical buffers by use of incoherent pumping overlaps somewhat with the basic idea of Raman-based slow-light systems. However, prior studies of those systems did not quantitatively answer the question of whether the performance of an atomic vapor or other medium that exhibits electromagnetically induced transparency (EIT) with Raman gain is superior to that of a medium that exhibits EIT without Raman gain.
Slow light in saturable absorbers: Progress in the resolution of a controversy
NASA Astrophysics Data System (ADS)
Macke, Bruno; Razdobreev, Igor; Ségard, Bernard
2017-06-01
There are two opposing models in the analysis of the slow transmission of light pulses through saturable absorbers. The canonical incoherent bleaching model simply explains the slow transmission by combined effects of saturation and of noninstantaneous response of the medium resulting in absorption of the front part of the incident pulse larger than that of its rear. The second model, referred to as the coherent-population-oscillations (CPO) model, considers light beams whose intensity is slightly pulse modulated and attributes the time delay of the transmitted pulse to a reduction of the group velocity. We point out some inconsistencies in the CPO model and show that the two models lie in reality on the same hypotheses, the equations derived in the duly rectified CPO model being local expressions of the integral equations obtained in the incoherent bleaching model. When intense pulses without background are used, the CPO model, based on linearized equations, breaks down. The incoherent bleaching model then predicts that the transmitted light should vanish when the intensity of the incident light is strictly zero. This point is confirmed by the experiments that we have performed on ruby with square-wave incident pulses and we show that the whole shape of the observed pulses agrees with that derived analytically by means of the incoherent bleaching model. We also determine in this model the corresponding evolution of the fluorescence light, which seems to have been evidenced in other experiments.
NASA Astrophysics Data System (ADS)
Bravo, Mikel; Angulo-Vinuesa, Xabier; Martin-Lopez, Sonia; Lopez-Amo, Manuel; Gonzalez-Herraez, Miguel
2013-05-01
High-Q resonators have been widely used for sensing purposes. High Q factors normally lead to sharp spectral peaks which accordingly provide a strong sensitivity in spectral interrogation methods. In this work we employ a low-Q ring resonator to develop a high sensitivity sub-micrometric resolution displacement sensor. We use the slow-light effects occurring close to the critical coupling regime to achieve high sensitivity in the device. By tuning the losses in the cavity close to the critical coupling, extremely high group delay variations can be achieved, which in turn introduce strong enhancements of the absorption of the structure. We first validate the concept using an Optical Vector Analyzer (OVA) and then we propose a simple functional scheme for achieving a low-cost interrogation of this kind of sensors.
O'Donnell, Sharon; McKee, Gabrielle; Mooney, Mary; O'Brien, Frances; Moser, Debra K
2014-04-01
Patient decision delay is the main reason why many patients fail to receive timely medical intervention for symptoms of acute coronary syndrome (ACS). This study examines the validity of slow-onset and fast-onset ACS presentations and their influence on ACS prehospital delay times. A fast-onset ACS presentation is characterized by sudden, continuous, and severe chest pain, and slow-onset ACS pertains to all other ACS presentations. Baseline data pertaining to medical profiles, prehospital delay times, and ACS symptoms were recorded for all ACS patients who participated in a large multisite randomized control trial (RCT) in Dublin, Ireland. Patients were interviewed 2-4 days after their ACS event, and data were gathered using the ACS Response to Symptom Index. Only baseline data from the RCT, N = 893 patients, were analyzed. A total of 65% (n = 577) of patients experienced slow-onset ACS presentation, whereas 35% (n = 316) experienced fast-onset ACS. Patients who experienced slow-onset ACS were significantly more likely to have longer prehospital delays than patients with fast-onset ACS (3.5 h vs. 2.0 h, respectively, t = -5.63, df 890, p < 0.001). A multivariate analysis of delay revealed that, in the presence of other known delay factors, the only independent predictors of delay were slow-onset and fast-onset ACS (β = -.096, p < 0.002) and other factors associated with patient behavior. Slow-onset ACS and fast-onset ACS presentations are associated with distinct behavioral patterns that significantly influence prehospital time frames. As such, slow-onset ACS and fast-onset ACS are legitimate ACS presentation phenomena that should be seriously considered when examining the factors associated with prehospital delay. Copyright © 2014 Elsevier Inc. All rights reserved.
Hybrid optical and electronic laser locking using slow light due to spectral holes
NASA Astrophysics Data System (ADS)
Tay, Jian Wei; Farr, Warrick G.; Ledingham, Patrick M.; Korystov, Dmitry; Longdell, Jevon J.
2013-06-01
We report on a narrow linewidth laser diode system that is stabilized using both optical and electronic feedback to a spectral hole in cryogenic Tm:YAG. The large group delay of the spectral hole leads to a laser with very low phase noise. The laser has proved useful for quantum optics and sensing applications involving cryogenic rare-earth-ion dopants.
Skeldon, Anne C.; Phillips, Andrew J. K.; Dijk, Derk-Jan
2017-01-01
Why do we go to sleep late and struggle to wake up on time? Historically, light-dark cycles were dictated by the solar day, but now humans can extend light exposure by switching on artificial lights. We use a mathematical model incorporating effects of light, circadian rhythmicity and sleep homeostasis to provide a quantitative theoretical framework to understand effects of modern patterns of light consumption on the human circadian system. The model shows that without artificial light humans wakeup at dawn. Artificial light delays circadian rhythmicity and preferred sleep timing and compromises synchronisation to the solar day when wake-times are not enforced. When wake-times are enforced by social constraints, such as work or school, artificial light induces a mismatch between sleep timing and circadian rhythmicity (‘social jet-lag’). The model implies that developmental changes in sleep homeostasis and circadian amplitude make adolescents particularly sensitive to effects of light consumption. The model predicts that ameliorating social jet-lag is more effectively achieved by reducing evening light consumption than by delaying social constraints, particularly in individuals with slow circadian clocks or when imposed wake-times occur after sunrise. These theory-informed predictions may aid design of interventions to prevent and treat circadian rhythm-sleep disorders and social jet-lag. PMID:28345624
NASA Astrophysics Data System (ADS)
Chen, De-Chao; Li, Hong-Ju; Xia, Sheng-Xuan; Qin, Meng; Zhai, Xiang; Wang, Ling-Ling
2017-08-01
A tunable electromagnetically-induced-transparency-like (EIT-like) device is proposed numerically and theoretically in the mid-infrared region, which is composed of periodically patterned ring and disk graphene. Distinguished from the commonly used three-level system, the hybridization of the plasmon mode is applied to describing and explaining the EIT-like phenomenon in the proposed systems. What is more, further researches have revealed that the spectral position of the transparency window can be tuned not only by geometrically changing the couple distance in graphene nanostructures, but also by dynamically altering the radius of the graphene nanodisk and the chemical potential of the graphene. At the transparency window, there exist large optical delays, which can slow down the speed of light in vacuum. This work may pave the way to the development of applications including tunable sensors, slow-light devices, and optical switches.
Fabrication And Characterization Of Photonic Crystal Slow Light Waveguides And Cavities
Reardon, Christopher Paul; Rey, Isabella H.; Welna, Karl; O'Faolain, Liam; Krauss, Thomas F.
2012-01-01
Slow light has been one of the hot topics in the photonics community in the past decade, generating great interest both from a fundamental point of view and for its considerable potential for practical applications. Slow light photonic crystal waveguides, in particular, have played a major part and have been successfully employed for delaying optical signals1-4 and the enhancement of both linear5-7 and nonlinear devices.8-11 Photonic crystal cavities achieve similar effects to that of slow light waveguides, but over a reduced band-width. These cavities offer high Q-factor/volume ratio, for the realization of optically12 and electrically13 pumped ultra-low threshold lasers and the enhancement of nonlinear effects.14-16 Furthermore, passive filters17 and modulators18-19 have been demonstrated, exhibiting ultra-narrow line-width, high free-spectral range and record values of low energy consumption. To attain these exciting results, a robust repeatable fabrication protocol must be developed. In this paper we take an in-depth look at our fabrication protocol which employs electron-beam lithography for the definition of photonic crystal patterns and uses wet and dry etching techniques. Our optimised fabrication recipe results in photonic crystals that do not suffer from vertical asymmetry and exhibit very good edge-wall roughness. We discuss the results of varying the etching parameters and the detrimental effects that they can have on a device, leading to a diagnostic route that can be taken to identify and eliminate similar issues. The key to evaluating slow light waveguides is the passive characterization of transmission and group index spectra. Various methods have been reported, most notably resolving the Fabry-Perot fringes of the transmission spectrum20-21 and interferometric techniques.22-25 Here, we describe a direct, broadband measurement technique combining spectral interferometry with Fourier transform analysis.26 Our method stands out for its simplicity and power, as we can characterise a bare photonic crystal with access waveguides, without need for on-chip interference components, and the setup only consists of a Mach-Zehnder interferometer, with no need for moving parts and delay scans. When characterising photonic crystal cavities, techniques involving internal sources21 or external waveguides directly coupled to the cavity27 impact on the performance of the cavity itself, thereby distorting the measurement. Here, we describe a novel and non-intrusive technique that makes use of a cross-polarised probe beam and is known as resonant scattering (RS), where the probe is coupled out-of plane into the cavity through an objective. The technique was first demonstrated by McCutcheon et al.28 and further developed by Galli et al.29 PMID:23222804
Tunable Optical Delay in Doppler-Broadened Cesium Vapor
2010-12-01
family v Acknowledgements I would like to express my sincere appreciation to my advisor Professor Glen Perram, for his guidance and support through the...including Eric Guild, Michael Cox, and Paul Stanczak. In the laboratory no experiment is complete without technical issues– I would like to thank laboratory...especially Greg Pitz and Cliff Sulham. I greatly appreciate Professor John Howell from the University of Rochester for his discussions on slow light in al
Generating A Strobed Laser Light Sheet
NASA Technical Reports Server (NTRS)
Leighty, Bradley D.; Franke, John M.; Rhodes, David B.; Jones, Stephen B.
1994-01-01
An optoelectronic system generating synchronous, strobed sheet of laser light developed for use in making visible flow of air about model helicopter rotor. Used in wind-tunnel tests to determine actual locations of vortices for comparison with locations predicted by mathematical models to validate models. Each blade tip produces vortex. By establishing successive vortex locations, researcher determines trajectory of vortex pattern. Light-sheet strobe circuits provide selection of blade positions, strobe-pulse durations, and multiple pulses per revolution for rotors having two to nine blades. To make flow visible, vaporizing propylene glycol injected upstream of model. System also provides calibrated trigger delay of strobe pulses, adjustable strobe-pulse durations, selectable number of blades, and slip-sync mode to make flow visible as though in slow motion.
Birefringence imaging in biological tissue using polarization sensitive optical coherent tomography
De Boer, Johannes F.; Milner, Thomas E.; Nelson, J. Stuart
2001-01-01
Employing a low coherence Michelson interferometer, two dimensional images of optical birefringence in turbid samples as a function of depth are measured. Polarization sensitive detection of the signal formed by interference of backscattered light from the sample and a mirror or reference plane in the reference arm which defines a reference optical path length, give the optical phase delay between light propagating along the fast and slow axes of the birefringence sample. Images showing the change in birefringence in response to irradiation of the sample are produced as an example of the detection apparatus and methodology. The technique allow rapid, noncontact investigation of tissue or sample diagnostic imaging for various medical or materials procedures.
Effects of evening bright light exposure on melatonin, body temperature and sleep.
Bunnell; Treiber; Phillips; Berger
1992-03-01
Five male subjects were exposed to a single 2-h period of bright (2500 lux) or dim (<100 lux) light prior to sleep on two consecutive nights. The two conditions were repeated the following week in opposite order. Bright light significantly suppressed salivary melatonin and raised rectal temperature 0.3 degrees C (which remained elevated during the first 1.5 h of sleep), without affecting tympanic temperature. Bright light also increased REM latency, NREM period length, EEG spectral power in low frequency, 0.75-8 Hz and sigma, 12-14 Hz (sleep spindle) bandwidths during the first hour of sleep, and power of all frequency bands (0.5-32 Hz) within the first NREMP. Potentiation of EEG slow wave activity (0.5-4.0 Hz) by bright light persisted through the end of the second NREMP. The enhanced low-frequency power and delayed REM sleep after bright light exposure could represent a circadian phase-shift and/or the effect of an elevated rectal temperature, possibly mediated by the suppression of melatonin.
SN Refsdal: Photometry and Time Delay Measurements of the First Einstein Cross Supernova
NASA Astrophysics Data System (ADS)
Rodney, S. A.; Strolger, L.-G.; Kelly, P. L.; Bradač, M.; Brammer, G.; Filippenko, A. V.; Foley, R. J.; Graur, O.; Hjorth, J.; Jha, S. W.; McCully, C.; Molino, A.; Riess, A. G.; Schmidt, K. B.; Selsing, J.; Sharon, K.; Treu, T.; Weiner, B. J.; Zitrin, A.
2016-03-01
We present the first year of Hubble Space Telescope imaging of the unique supernova (SN) “Refsdal,” a gravitationally lensed SN at z = 1.488 ± 0.001 with multiple images behind the galaxy cluster MACS J1149.6+2223. The first four observed images of SN Refsdal (images S1-S4) exhibited a slow rise (over ˜150 days) to reach a broad peak brightness around 2015 April 20. Using a set of light curve templates constructed from SN 1987A-like peculiar Type II SNe, we measure time delays for the four images relative to S1 of 4 ± 4 (for S2), 2 ± 5 (S3), and 24 ± 7 days (S4). The measured magnification ratios relative to S1 are 1.15 ± 0.05 (S2), 1.01 ± 0.04 (S3), and 0.34 ± 0.02 (S4). None of the template light curves fully captures the photometric behavior of SN Refsdal, so we also derive complementary measurements for these parameters using polynomials to represent the intrinsic light curve shape. These more flexible fits deliver fully consistent time delays of 7 ± 2 (S2), 0.6 ± 3 (S3), and 27 ± 8 days (S4). The lensing magnification ratios are similarly consistent, measured as 1.17 ± 0.02 (S2), 1.00 ± 0.01 (S3), and 0.38 ± 0.02 (S4). We compare these measurements against published predictions from lens models, and find that the majority of model predictions are in very good agreement with our measurements. Finally, we discuss avenues for future improvement of time delay measurements—both for SN Refsdal and for other strongly lensed SNe yet to come.
NASA Astrophysics Data System (ADS)
Yahiaoui, Riad; Manjappa, Manukumara; Srivastava, Yogesh Kumar; Singh, Ranjan
2017-07-01
Electromagnetically induced transparency (EIT) arises from coupling between the bright and dark mode resonances that typically involve subwavelength structures with broken symmetry, which results in an extremely sharp transparency band. Here, we demonstrate a tunable broadband EIT effect in a symmetry preserved metamaterial structure at the terahertz frequencies. Alongside, we also envisage a photo-active EIT effect in a hybrid metal-semiconductor metamaterial, where the transparency window can be dynamically switched by shining near-infrared light beam. A robust coupled oscillator model explains the coupling mechanism in the proposed design, which shows a good agreement with the observed results on tunable broadband transparency effect. Such active, switchable, and broadband metadevices could have applications in delay bandwidth management, terahertz filtering, and slow light effects.
NASA Astrophysics Data System (ADS)
Premraj, D.; Suresh, K.; Palanivel, J.; Thamilmaran, K.
2017-09-01
A periodically forced series LCR circuit with Chua's diode as a nonlinear element exhibits slow passage through Hopf bifurcation. This slow passage leads to a delay in the Hopf bifurcation. The delay in this bifurcation is a unique quantity and it can be predicted using various numerical analysis. We find that when an additional periodic force is added to the system, the delay in bifurcation becomes chaotic which leads to an unpredictability in bifurcation delay. Further, we study the bifurcation of the periodic delay to chaotic delay in the slow passage effect through strange nonchaotic delay. We also report the occurrence of strange nonchaotic dynamics while varying the parameter of the additional force included in the system. We observe that the system exhibits a hitherto unknown dynamical transition to a strange nonchaotic attractor. With the help of Lyapunov exponent, we explain the new transition to strange nonchaotic attractor and its mechanism is studied by making use of rational approximation theory. The birth of SNA has also been confirmed numerically, using Poincaré maps, phase sensitivity exponent, the distribution of finite-time Lyapunov exponents and singular continuous spectrum analysis.
Enhancing the sensitivity of slow light MZI biosensors through multi-hole defects
NASA Astrophysics Data System (ADS)
Qin, Kun; Zhao, Yiliang; Hu, Shuren; Weiss, Sharon M.
2018-02-01
We demonstrate enhanced detection sensitivity of a slow light Mach-Zehnder interferometer (MZI) sensor by incorporating multi-hole defects (MHDs). Slow light MZI biosensors with a one-dimensional photonic crystal in one arm have been previously shown to improve the performance of traditional MZI sensors based on the increased lightmatter interaction that takes place in the photonic crystal region of the structure. Introducing MHDs in the photonic crystal region increases the available surface area for molecular attachment and further increases the enhanced lightmatter interaction capability of slow light MZIs. The MHDs allow analyte to interact with a greater fraction of the guided wave in the MZI. For a slow light MHD MZI sensor with a 16 μm long sensing arm, a bulk sensitivity of 151,000 rad/RIU-cm is demonstrated experimentally, which is approximately two-fold higher than our previously reported slow light MZI sensors and thirteen-fold higher than traditional MZI biosensors with millimeter length sensing regions. For the label-free detection of nucleic acids, the slow light MZI with MHDs also exhibits a two-fold sensitivity improvement in experiment compared to the slow light MZI without MHDs. Because the detection sensitivity of slow light MHD MZIs scales with the length of the sensing arm, the tradeoff between detection limit and device size can be appropriately mitigated for different applications. All experimental results presented in this work are in good agreement with finite difference-time domain-calculations. Overall, the slow light MZI biosensors with MHDs are a promising platform for highly sensitive and multiplexed lab-on-chip systems.
Slow-onset myocardial infarction and its influence on help-seeking behaviors.
O'Donnell, Sharon; Moser, Debra K
2012-01-01
Patient decision delay continues to be a major factor of delay along the pathway of care for patients with myocardial infarction (MI). Although potentially modifiable, efforts to reduce these delays through educational and media interventions have been relatively unsuccessful. This failure has been due, in part, to the lack of understanding about the complex sociopsychological and clinical dimensions associated with the phenomenon of help-seeking behavior. The aims of this study were to (1) perform an in-depth analysis of patients' MI symptom experiences and (2) describe their help-seeking behavior in response to these symptom experiences. In-depth interviews were used to examine the symptom experiences and help-seeking behavior of men and women with MI. Participants (n = 42) were interviewed 2 to 4 days after their admission to 1 of 2 hospitals in Dublin, Ireland. Two new discrete MI categories emerged from the findings-slow-onset MI and fast-onset MI. Slow-onset MI is characterized by the gradual onset of mild symptoms, whereas fast-onset MI describes the sudden onset of severe chest pain. Most participants (n = 27) experienced slow-onset MI but expected the symptom presentation associated with fast-onset MI. The mismatch of expected and experienced symptoms for participants with slow-onset MI led to the mislabeling of symptoms to a noncardiac cause and protracted help-seeking delays. Participants with fast-onset MI (n = 15) quickly attributed their symptoms to a cardiac cause, which expedited appropriate help-seeking behaviors. Definitions of MI and the educational information provided to the public need to be reviewed. Slow-onset MI and fast-onset MI provide plausible definition alternatives and, possibly, a more authentic version of real MI events than what is currently used. They also provide a unique "delay" perspective, which may inform future educational initiatives targeted at decision delay reduction.
Growth - slow (child 0 - 5 years); Weight gain - slow (child 0 - 5 years); Slow rate of growth; Retarded growth and development; ... A child should have regular, well-baby check-ups with a health care provider. These checkups are usually scheduled ...
Gasulla, Ivana; Sancho, Juan; Capmany, José; Lloret, Juan; Sales, Salvador
2010-12-06
We theoretically and experimentally evaluate the propagation, generation and amplification of signal, harmonic and intermodulation distortion terms inside a Semiconductor Optical Amplifier (SOA) under Coherent Population Oscillation (CPO) regime. For that purpose, we present a general optical field model, valid for any arbitrarily-spaced radiofrequency tones, which is necessary to correctly describe the operation of CPO based slow light Microwave Photonic phase shifters which comprise an electrooptic modulator and a SOA followed by an optical filter and supplements another recently published for true time delay operation based on the propagation of optical intensities. The phase shifter performance has been evaluated in terms of the nonlinear distortion up to 3rd order, for a modulating signal constituted of two tones, in function of the electrooptic modulator input RF power and the SOA input optical power, obtaining a very good agreement between theoretical and experimental results. A complete theoretical spectral analysis is also presented which shows that under small signal operation conditions, the 3rd order intermodulation products at 2Ω1 + Ω2 and 2Ω2 + Ω1 experience a power dip/phase transition characteristic of the fundamental tones phase shifting operation.
Atomic clouds as spectrally selective and tunable delay lines for single photons from quantum dots
NASA Astrophysics Data System (ADS)
Wildmann, Johannes S.; Trotta, Rinaldo; Martín-Sánchez, Javier; Zallo, Eugenio; O'Steen, Mark; Schmidt, Oliver G.; Rastelli, Armando
2015-12-01
We demonstrate a compact, spectrally selective, and tunable delay line for single photons emitted by quantum dots. This is achieved by fine-tuning the wavelength of the optical transitions of such "artificial atoms" into a spectral window in which a cloud of natural atoms behaves as a slow-light medium. By employing the ground-state fine-structure-split exciton confined in an InGaAs/GaAs quantum dot as a source of single photons at different frequencies and the hyperfine-structure-split D1 transition of Cs-vapors as a tunable delay medium, we achieve a differential delay of up 2.4 ns on a 7.5-cm-long path for photons that are only 60 μ eV (14.5 GHz) apart. To quantitatively explain the experimental data, we develop a theoretical model that accounts for both the inhomogeneous broadening of the quantum-dot emission lines and the Doppler broadening of the atomic lines. The concept we proposed here may be used to implement time-reordering operations aimed at erasing the "which-path" information that deteriorates entangled-photon emission from excitons with finite fine-structure splitting.
Photoperiod Modulates Fast Delayed Rectifier Potassium Currents in the Mammalian Circadian Clock.
Farajnia, Sahar; Meijer, Johanna H; Michel, Stephan
2016-10-01
One feature of the mammalian circadian clock, situated in the suprachiasmatic nucleus (SCN), is its ability to measure day length and thereby contribute to the seasonal adaptation of physiology and behavior. The timing signal from the SCN, namely the 24 hr pattern of electrical activity, is adjusted according to the photoperiod being broader in long days and narrower in short days. Vasoactive intestinal peptide and gamma-aminobutyric acid play a crucial role in intercellular communication within the SCN and contribute to the seasonal changes in phase distribution. However, little is known about the underlying ionic mechanisms of synchronization. The present study was aimed to identify cellular mechanisms involved in seasonal encoding by the SCN. Mice were adapted to long-day (light-dark 16:8) and short-day (light-dark 8:16) photoperiods and membrane properties as well as K + currents activity of SCN neurons were measured using patch-clamp recordings in acute slices. Remarkably, we found evidence for a photoperiodic effect on the fast delayed rectifier K + current, that is, the circadian modulation of this ion channel's activation reversed in long days resulting in 50% higher peak values during the night compared with the unaltered day values. Consistent with fast delayed rectifier enhancement, duration of action potentials during the night was shortened and afterhyperpolarization potentials increased in amplitude and duration. The slow delayed rectifier, transient K + currents, and membrane excitability were not affected by photoperiod. We conclude that photoperiod can change intrinsic ion channel properties of the SCN neurons, which may influence cellular communication and contribute to photoperiodic phase adjustment. © The Author(s) 2016.
RESPIRATION AND INTENSITY DEPENDENCE OF PHOTOSYNTHESIS IN CHLORELLA
Brackett, Frederick S.; Olson, Rodney A.; Crickard, Robert G.
1953-01-01
1. Respiration changes as a result of illumination. 2. In the absence of glucose or other supply of substrate, respiration decays in the dark showing at least two types—a fast decay in a few minutes and a slow decay lasting hours. 3. Respiratory response to illumination is delayed. 4. Intermittent illumination (in the absence of glucose, etc.) produces a periodic variation in respiration with a delay or phase lag. 5. Periodic variation of respiration may produce a higher average value in the dark than in the light due to the lag and depending upon the period of intermittent illumination. 6. Based upon average respiration values our data confirm the Kok effect. 7. Interpolated values of respiration, however, result in photosynthetic rates which are linearly dependent upon intensity of illumination. 8. Thus the quantum efficiency is found to be independent of intensity, over the wide range of intensities investigated. PMID:13035068
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, M.H.; Grierson, I.; Unger, W.G.
1990-01-01
We studied the effect of topical dexamethasone (1%) and preoperative beta irradiation on a model of glaucoma fistulizing surgery in the rabbit. Intraocular pressure and gross facility of aqueous outflow following surgery were not influenced by either treatment, although blebs persisted longer in the irradiated eyes. Steroids reduced clinically observable inflammation as well as the number of inflammatory cells identifiable by microscopy. Fibroblast production temporarily slowed, and ultrastructural examination demonstrated lipid-filled vacuoles and dilated mitochondria in these eyes. Also, the scar was thinner at 24 days. Beta irradiation delayed wound healing and the scar was thinner in the early postoperativemore » stages, but the light microscopic appearance of the scar was unaltered at 59 days. Inflammation was more pronounced initially, with abundant fibrin in the wound. Recovery of the conjunctival epithelium was delayed. The delay in fibroblast recruitment and wound contraction, the thinner scar tissue, and the increased survival of the bleb are all factors that suggest that beta irradiation may be a useful adjunct to glaucoma surgery.« less
SN REFSDAL: PHOTOMETRY AND TIME DELAY MEASUREMENTS OF THE FIRST EINSTEIN CROSS SUPERNOVA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodney, S. A.; Strolger, L.-G.; Brammer, G.
2016-03-20
We present the first year of Hubble Space Telescope imaging of the unique supernova (SN) “Refsdal,” a gravitationally lensed SN at z = 1.488 ± 0.001 with multiple images behind the galaxy cluster MACS J1149.6+2223. The first four observed images of SN Refsdal (images S1–S4) exhibited a slow rise (over ∼150 days) to reach a broad peak brightness around 2015 April 20. Using a set of light curve templates constructed from SN 1987A-like peculiar Type II SNe, we measure time delays for the four images relative to S1 of 4 ± 4 (for S2), 2 ± 5 (S3), and 24 ± 7 days (S4). The measured magnification ratios relative tomore » S1 are 1.15 ± 0.05 (S2), 1.01 ± 0.04 (S3), and 0.34 ± 0.02 (S4). None of the template light curves fully captures the photometric behavior of SN Refsdal, so we also derive complementary measurements for these parameters using polynomials to represent the intrinsic light curve shape. These more flexible fits deliver fully consistent time delays of 7 ± 2 (S2), 0.6 ± 3 (S3), and 27 ± 8 days (S4). The lensing magnification ratios are similarly consistent, measured as 1.17 ± 0.02 (S2), 1.00 ± 0.01 (S3), and 0.38 ± 0.02 (S4). We compare these measurements against published predictions from lens models, and find that the majority of model predictions are in very good agreement with our measurements. Finally, we discuss avenues for future improvement of time delay measurements—both for SN Refsdal and for other strongly lensed SNe yet to come.« less
Experimental demonstration of spinor slow light
NASA Astrophysics Data System (ADS)
Lee, Meng-Jung; Ruseckas, Julius; Lee, Chin-Yuan; Kudriašov, Viačeslav; Chang, Kao-Fang; Cho, Hung-Wen; JuzeliÅ«nas, Gediminas; Yu, Ite A.
2016-03-01
Over the last decade there has been a continuing interest in slow and stored light based on the electromagnetically induced transparency (EIT) effect, because of their potential applications in quantum information manipulation. However, previous experimental works all dealt with the single-component slow light which cannot be employed as a qubit. In this work, we report the first experimental demonstration of two-component or spinor slow light (SSL) using a double tripod (DT) atom-light coupling scheme. The oscillations between the two components, similar to the Rabi oscillation of a two-level system or a qubit, were observed. Single-photon SSL can be considered as two-color qubits. We experimentally demonstrated a possible application of the DT scheme as quantum memory and quantum rotator for the two-color qubits. This work opens up a new direction in the slow light research.
Direct slow-light excitation in photonic crystal waveguides forming ultra-compact splitters.
Zhang, Min; Groothoff, Nathaniel; Krüger, Asger Christian; Shi, Peixing; Kristensen, Martin
2011-04-11
Based on a series of 1x2 beam splitters, novel direct excitation of slow-light from input- to output-region in photonic crystal waveguides is investigated theoretically and experimentally. The study shows that the slow-light excitation provides over 50 nm bandwidth for TE-polarized light splitting between two output ports, and co-exists together with self-imaging leading to ~20 nm extra bandwidth. The intensity of the direct excitation is qualitatively explained by the overlap integral of the magnetic fields between the ground input- and excited output-modes. The direct excitation of slow light is practically lossless compared with transmission in a W1 photonic crystal waveguides, which broadens the application-field for slow-light and further minimizes the size of a 1x2 splitter. © 2011 Optical Society of America
Fang, Yun-Tuan; Ni, Zhi-Yao; Zhu, Na; Zhou, Jun
2016-01-13
We propose a new mechanism to achieve light localization and slow light. Through the study on the coupling of two magnetic surface modes, we find a special convex band that takes on a negative refraction effect. The negative refraction results in an energy flow concellation effect from two degenerated modes on the convex band. The energy flow concellation effect leads to forming of the self-trapped and slow light bands. In the self-trapped band light is localized around the source without reflection wall in the waveguide direction, whereas in the slow light band, light becomes the standing-waves and moving standing-waves at the center and the two sides of the waveguide, respectively.
Abdolhosseini, Saeed; Kohandani, Reza; Kaatuzian, Hassan
2017-09-10
This paper represents the influences of temperature and hydrostatic pressure variations on GaAs/AlGaAs multiple quantum well slow light systems based on coherence population oscillations. An analytical model in non-integer dimension space is used to study the considerable effects of these parameters on optical properties of the slow light apparatus. Exciton oscillator strength and fractional dimension constants have special roles on the analytical model in fractional dimension. Hence, the impacts of hydrostatic pressure and temperature on exciton oscillator strength and fractional dimension quantity are investigated theoretically in this paper. Based on the achieved results, temperature and hydrostatic pressure play key roles on optical parameters of the slow light systems, such as the slow down factor and central energy of the device. It is found that the slope and value of the refractive index real part change with alterations of temperature and hydrostatic pressure in the range of 5-40 deg of Kelvin and 1 bar to 2 kbar, respectively. Thus, the peak value of the slow down factor can be adjusted by altering these parameters. Moreover, the central energy of the device shifts when the hydrostatic pressure is applied to the slow light device or temperature is varied. In comparison with previous reported experimental results, our simulations follow them successfully. It is shown that the maximum value of the slow down factor is estimated close to 5.5×10 4 with a fine adjustment of temperature and hydrostatic pressure. Meanwhile, the central energy shift of the slow light device rises up to 27 meV, which provides an appropriate basis for different optical devices in which multiple quantum well slow light is one of their essential subsections. This multiple quantum well slow light device has potential applications for use as a tunable optical buffer and pressure/temperature sensors.
The contribution of cationic conductances to the potential of rod photoreceptors.
Moriondo, Andrea; Rispoli, Giorgio
2010-05-01
The contribution of cationic conductances in shaping the rod photovoltage was studied in light adapted cells recorded under whole-cell voltage- or current-clamp conditions. Depolarising current steps (of size comparable to the light-regulated current) produced monotonic responses when the prepulse holding potential (V (h)) was -40 mV (i.e. corresponding to the membrane potential in the dark). At V (h) = -60 mV (simulating the steady-state response to an intense background of light) current injections <35 pA (mimicking a light decrement) produced instead an initial depolarisation that declined to a plateau, and voltage transiently overshot V (h) at the stimulus offset. Current steps >40 pA produced a steady depolarisation to approximately -16 mV at both V (h). The difference between the responses at the two V (h) was primarily generated by the slow delayed-rectifier-like K(+) current (I (Kx)), which therefore strongly affects both the photoresponse rising and falling phase. The steady voltage observed at both V (h) in response to large current injections was instead generated by Ca-activated K(+) channels (I (KCa)), as previously found. Both I (Kx) and I (KCa) oppose the cation influx, occurring at the light stimulus offset through the cGMP-gated channels and the voltage-activated Ca(2+) channels (I (Ca)). This avoids that the cation influx could erratically depolarise the rod past its normal resting value, thus allowing a reliable dim stimuli detection, without slowing down the photovoltage recovery kinetics. The latter kinetics was instead accelerated by the hyperpolarisation-activated, non-selective current (I (h)) and I (Ca). Blockade of all K(+) currents with external TEA unmasked a I (Ca)-dependent regenerative behaviour.
Tunable plasmon-induced transparency based on graphene nanoring coupling with graphene nanostrips
NASA Astrophysics Data System (ADS)
Liao, Chang-Long; Fu, Guang-Lai; Xia, Sheng-Xuan; Li, Hong-Ju; Zhai, Xiang; Wang, Ling-Ling
2018-02-01
We numerically and theoretically demonstrate a plasmon-induced transparency (PIT) at the mid-infrared region with finite-difference time-domain method. The system consists of an optically bright dipole mode and a dark quadrupole mode, which are supported by the graphene nanoring and graphene nanostrips, respectively. The coupling between the two modes introduces transparency window and large group delays. The pronounced PIT resonance can be easily modified by adjusting the geometric parameters and the Fermi level of graphene nanostructure. Our results suggest that the demonstrated PIT effect may be applicated in the slow-light device, active plasmonic switching, and optical sensing.
Van der Maren, Solenne; Moderie, Christophe; Duclos, Catherine; Paquet, Jean; Daneault, Véronique; Dumont, Marie
2018-04-01
A number of factors can contribute to a delayed sleep schedule. An important factor could be a daily profile of light exposure favoring a later circadian phase. This study aimed to compare light exposure between 14 young adults complaining of a delayed sleep schedule and 14 matched controls and to identify possible associations between habitual light exposure and circadian phase. Exposure to white and blue light was recorded with ambulatory monitors for 7 consecutive days. Participants also noted their daily use of light-emitting devices before bedtime. Endogenous circadian phase was estimated with the dim light melatonin onset (DLMO) in the laboratory. The amplitude of the light-dark cycle to which the subjects were exposed was smaller in delayed than in control subjects, and smaller amplitude was associated with a later DLMO. Smaller amplitude was due to both decreased exposure in the daytime and increased exposure at night. Total exposure to blue light, but not to white light, was lower in delayed subjects, possibly due to lower exposure to blue-rich outdoor light. Lower daily exposure to blue light was associated with a later DLMO. Timing of relative increases and decreases of light exposure in relation to endogenous circadian phase was also compared between the 2 groups. In delayed subjects, there was a relatively higher exposure to white and blue light 2 h after DLMO, a circadian time with maximal phase-delaying effect. Delayed participants also had higher exposure to light 8 to 10 h after DLMO, which occurred mostly during their sleep episode but may have some phase-advancing effects. Self-reported use of light-emitting devices before bedtime was higher in delayed than in control subjects and was associated with a later DLMO. This study suggests that individuals complaining of a delayed sleep schedule engage in light-related behaviors favoring a later circadian phase and a later bedtime.
An artificial light-harvesting array constructed from multiple Bodipy dyes.
Ziessel, Raymond; Ulrich, Gilles; Haefele, Alexandre; Harriman, Anthony
2013-07-31
An artificial light-harvesting array, comprising 21 discrete chromophores arranged in a rational manner, has been synthesized and characterized fully. The design strategy follows a convergent approach that leads to a molecular-scale funnel, having an effective chromophore concentration of 0.6 M condensed into ca. 55 nm(3), able to direct the excitation energy to a focal point. A cascade of electronic energy-transfer steps occurs from the rim to the focal point, with the rate slowing down as the exciton moves toward its ultimate target. Situated midway along each branch of the V-shaped array, two chromophoric relays differ only slightly in terms of their excitation energies, and this situation facilitates reverse energy transfer. Thus, the excitation energy becomes spread around the array, a situation reminiscent of a giant holding pattern for the photon that can sample many different chromophores before being trapped by the terminal acceptor. At high photon flux under conditions of relatively slow off-load to a device, such as a solar cell, electronic energy transfer encounters one or more barriers that hinder forward progress of the exciton and thereby delays arrival of the second photon. Preliminary studies have addressed the ability of the array to function as a sensitizer for amorphous silicon solar cells.
Price, D; Tyler, L K; Neto Henriques, R; Campbell, K L; Williams, N; Treder, M S; Taylor, J R; Henson, R N A
2017-06-09
Slowing is a common feature of ageing, yet a direct relationship between neural slowing and brain atrophy is yet to be established in healthy humans. We combine magnetoencephalographic (MEG) measures of neural processing speed with magnetic resonance imaging (MRI) measures of white and grey matter in a large population-derived cohort to investigate the relationship between age-related structural differences and visual evoked field (VEF) and auditory evoked field (AEF) delay across two different tasks. Here we use a novel technique to show that VEFs exhibit a constant delay, whereas AEFs exhibit delay that accumulates over time. White-matter (WM) microstructure in the optic radiation partially mediates visual delay, suggesting increased transmission time, whereas grey matter (GM) in auditory cortex partially mediates auditory delay, suggesting less efficient local processing. Our results demonstrate that age has dissociable effects on neural processing speed, and that these effects relate to different types of brain atrophy.
French, S J; Read, N W
1994-01-01
To determine whether the satiating effects of fiber are due to delaying gastric emptying or slowing absorption of meals, 3% guar gum was added to high- and low-fat soups and gastric emptying rate, hunger, and satiety were measured in eight male volunteers. Guar gum delayed the emptying of the low-fat soup but the small delays in the return of hunger and decline of fullness were significantly correlated with the gastric emptying, suggesting mediation by gastric mechanoreceptors. The high-fat soup also emptied more slowly but this had no effect on the return of hunger or the decline in fullness. The delays in the return of hunger and decline of fullness were far greater when guar gum was added to the fatty soup; these delays were not correlated with the small additional delay in gastric emptying. This is more compatible with slowed absorption and prolonged contact of nutrients with intestinal chemoreceptors.
Price, D.; Tyler, L. K.; Neto Henriques, R.; Campbell, K. L.; Williams, N.; Treder, M.S.; Taylor, J. R.; Brayne, Carol; Bullmore, Edward T.; Calder, Andrew C.; Cusack, Rhodri; Dalgleish, Tim; Duncan, John; Matthews, Fiona E.; Marslen-Wilson, William D.; Rowe, James B.; Shafto, Meredith A.; Cheung, Teresa; Davis, Simon; Geerligs, Linda; Kievit, Rogier; McCarrey, Anna; Mustafa, Abdur; Samu, David; Tsvetanov, Kamen A.; van Belle, Janna; Bates, Lauren; Emery, Tina; Erzinglioglu, Sharon; Gadie, Andrew; Gerbase, Sofia; Georgieva, Stanimira; Hanley, Claire; Parkin, Beth; Troy, David; Auer, Tibor; Correia, Marta; Gao, Lu; Green, Emma; Allen, Jodie; Amery, Gillian; Amunts, Liana; Barcroft, Anne; Castle, Amanda; Dias, Cheryl; Dowrick, Jonathan; Fair, Melissa; Fisher, Hayley; Goulding, Anna; Grewal, Adarsh; Hale, Geoff; Hilton, Andrew; Johnson, Frances; Johnston, Patricia; Kavanagh-Williamson, Thea; Kwasniewska, Magdalena; McMinn, Alison; Norman, Kim; Penrose, Jessica; Roby, Fiona; Rowland, Diane; Sargeant, John; Squire, Maggie; Stevens, Beth; Stoddart, Aldabra; Stone, Cheryl; Thompson, Tracy; Yazlik, Ozlem; Barnes, Dan; Dixon, Marie; Hillman, Jaya; Mitchell, Joanne; Villis, Laura; Henson, R. N. A.
2017-01-01
Slowing is a common feature of ageing, yet a direct relationship between neural slowing and brain atrophy is yet to be established in healthy humans. We combine magnetoencephalographic (MEG) measures of neural processing speed with magnetic resonance imaging (MRI) measures of white and grey matter in a large population-derived cohort to investigate the relationship between age-related structural differences and visual evoked field (VEF) and auditory evoked field (AEF) delay across two different tasks. Here we use a novel technique to show that VEFs exhibit a constant delay, whereas AEFs exhibit delay that accumulates over time. White-matter (WM) microstructure in the optic radiation partially mediates visual delay, suggesting increased transmission time, whereas grey matter (GM) in auditory cortex partially mediates auditory delay, suggesting less efficient local processing. Our results demonstrate that age has dissociable effects on neural processing speed, and that these effects relate to different types of brain atrophy. PMID:28598417
Active Enhancement of Slow Light Based on Plasmon-Induced Transparency with Gain Materials.
Zhang, Zhaojian; Yang, Junbo; He, Xin; Han, Yunxin; Zhang, Jingjing; Huang, Jie; Chen, Dingbo; Xu, Siyu
2018-06-03
As a plasmonic analogue of electromagnetically induced transparency (EIT), plasmon-induced transparency (PIT) has drawn more attention due to its potential of realizing on-chip sensing, slow light and nonlinear effect enhancement. However, the performance of a plasmonic system is always limited by the metal ohmic loss. Here, we numerically report a PIT system with gain materials based on plasmonic metal-insulator-metal waveguide. The corresponding phenomenon can be theoretically analyzed by coupled mode theory (CMT). After filling gain material into a disk cavity, the system intrinsic loss can be compensated by external pump beam, and the PIT can be greatly fueled to achieve a dramatic enhancement of slow light performance. Finally, a double-channel enhanced slow light is introduced by adding a second gain disk cavity. This work paves way for a potential new high-performance slow light device, which can have significant applications for high-compact plasmonic circuits and optical communication.
NASA Astrophysics Data System (ADS)
Luo, Cong; Li, Xiangyang; Huang, Guangtan
2017-08-01
Oil-water discrimination is of great significance in the design and adjustment of development projects in oil fields. For fractured reservoirs, based on anisotropic S-wave splitting information, it becomes possible to effectively solve such problems which are difficult to deal with in traditional longitudinal wave exploration, due to the similar bulk modulus and density of these two fluids. In this paper, by analyzing the anisotropic character of the Chapman model (2009 Geophysics 74 97-103), the velocity and reflection coefficient differences between the fast and slow S-wave caused by fluid substitution have been verified. Then, through a wave field response analysis of the theoretical model, we found that water saturation causes a longer time delay, a larger time delay gradient and a lower amplitude difference between the fast and slow S-wave, while the oil case corresponds to a lower time delay, a lower gradient and a higher amplitude difference. Therefore, a new class attribute has been proposed regarding the amplitude energy of the fast and slow shear wave, used for oil-water distinction. This new attribute, as well as that of the time delay gradient, were both applied to the 3D3C seismic data of carbonate fractured reservoirs in the Luojia area of the Shengli oil field in China. The results show that the predictions of the energy attributes are more consistent with the well information than the time delay gradient attribute, hence demonstrating the great advantages and potential of this new attribute in oil-water recognition.
A packet-based dual-rate PID control strategy for a slow-rate sensing Networked Control System.
Cuenca, A; Alcaina, J; Salt, J; Casanova, V; Pizá, R
2018-05-01
This paper introduces a packet-based dual-rate control strategy to face time-varying network-induced delays, packet dropouts and packet disorder in a Networked Control System. Slow-rate sensing enables to achieve energy saving and to avoid packet disorder. Fast-rate actuation makes reaching the desired control performance possible. The dual-rate PID controller is split into two parts: a slow-rate PI controller located at the remote side (with no permanent communication to the plant) and a fast-rate PD controller located at the local side. The remote side also includes a prediction stage in order to generate the packet of future, estimated slow-rate control actions. These actions are sent to the local side and converted to fast-rate ones to be used when a packet does not arrive at this side due to the network-induced delay or due to occurring dropouts. The proposed control solution is able to approximately reach the nominal (no-delay, no-dropout) performance despite the existence of time-varying delays and packet dropouts. Control system stability is ensured in terms of probabilistic Linear Matrix Inequalities (LMIs). Via real-time control for a Cartesian robot, results clearly reveal the superiority of the control solution compared to a previous proposal by authors. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Plasmonic slow light waveguide with hyperbolic metamaterials claddings
NASA Astrophysics Data System (ADS)
Liang, Shuhai; Jiang, Chuhao; Yang, Zhiqiang; Li, Dacheng; Zhang, Wending; Mei, Ting; Zhang, Dawei
2018-06-01
Plasmonic waveguides with an insulator core sandwiched between hyperbolic metamaterials (HMMs) claddings, i.e. HIH waveguide, are investigated for achieving wide slow-light band with adjustable working wavelength. The transfer matrix method and the finite-difference-time-domain simulation are employed to study waveguide dispersion characteristics and pulse propagation. By selecting proper silver filling ratios for HMMs, the hetero-HIH waveguide presents a slow-light band with a zero group velocity dispersion wavelength of 1.55 μm and is capable of buffering pulses with pulse width as short as ∼20 fs. This type of waveguides might be applicable for ultrafast slow-light application.
Slow-light enhanced subwavelength plasmonic waveguide refractive index sensors.
Huang, Yin; Min, Changjun; Dastmalchi, Pouya; Veronis, Georgios
2015-06-01
We introduce slow-light enhanced subwavelength scale refractive index sensors which consist of a plasmonic metal-dielectric-metal (MDM) waveguide based slow-light system sandwiched between two conventional MDM waveguides. We first consider a MDM waveguide with small width structrue for comparison, and then consider two MDM waveguide based slow light systems: a MDM waveguide side-coupled to arrays of stub resonators system and a MDM waveguide side-coupled to arrays of double-stub resonators system. We find that, as the group velocity decreases, the sensitivity of the effective index of the waveguide mode to variations of the refractive index of the fluid filling the sensors as well as the sensitivities of the reflection and transmission coefficients of the waveguide mode increase. The sensing characteristics of the slow-light waveguide based sensor structures are systematically analyzed. We show that the slow-light enhanced sensors lead to not only 3.9 and 3.5 times enhancements in the refractive index sensitivity, and therefore in the minimum detectable refractive index change, but also to 2 and 3 times reductions in the required sensing length, respectively, compared to a sensor using a MDM waveguide with small width structure.
Cross Modulation of Two Laser Beams at the Individual-Photon Level
2014-09-12
medium, such that the photons travel as slow-light polaritons [15,25,26], whose atomic excitation component can block the transmission of another light...through the ensemble, traveling in the medium as slow-light polaritons , a superposition of a photon and a collective atomic excitation to the state...unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 slow-light polariton , the polariton’s atomic component in state jci reduces
de Bruyn, John R.; Goiko, Maria; Mozaffari, Maryam; Bator, Daniel; Dauphinee, Ron L.; Liao, Yinyin; Flemming, Roberta L.; Bramble, Michael S.; Hunter, Graeme K.; Goldberg, Harvey A.
2013-01-01
We study the effect of isoforms of osteopontin (OPN) on the nucleation and growth of crystals from a supersaturated solution of calcium and phosphate ions. Dynamic light scattering is used to monitor the size of the precipitating particles and to provide information about their concentration. At the ion concentrations studied, immediate precipitation was observed in control experiments with no osteopontin in the solution, and the size of the precipitating particles increased steadily with time. The precipitate was identified as hydroxyapatite by X-ray diffraction. Addition of native osteopontin (nOPN) extracted from rat bone caused a delay in the onset of precipitation and reduced the number of particles that formed, but the few particles that did form grew to a larger size than in the absence of the protein. Recombinant osteopontin (rOPN), which lacks phosphorylation, caused no delay in initial calcium phosphate precipitation but severely slowed crystal growth, suggesting that rOPN inhibits growth but not nucleation. rOPN treated with protein kinase CK2 to phosphorylate the molecule (p-rOPN) produced an effect similar to that of nOPN, but at higher protein concentrations and to a lesser extent. These results suggest that phosphorylations are critical to OPN’s ability to inhibit nucleation, whereas the growth of the hydroxyapatite crystals is effectively controlled by the highly acidic OPN polypeptide. This work also demonstrates that dynamic light scattering can be a powerful tool for delineating the mechanism of protein modulation of mineral formation. PMID:23457612
Single-photon imager based on a superconducting nanowire delay line
NASA Astrophysics Data System (ADS)
Zhao, Qing-Yuan; Zhu, Di; Calandri, Niccolò; Dane, Andrew E.; McCaughan, Adam N.; Bellei, Francesco; Wang, Hao-Zhu; Santavicca, Daniel F.; Berggren, Karl K.
2017-03-01
Detecting spatial and temporal information of individual photons is critical to applications in spectroscopy, communication, biological imaging, astronomical observation and quantum-information processing. Here we demonstrate a scalable single-photon imager using a single continuous superconducting nanowire that is not only a single-photon detector but also functions as an efficient microwave delay line. In this context, photon-detection pulses are guided in the nanowire and enable the readout of the position and time of photon-absorption events from the arrival times of the detection pulses at the nanowire's two ends. Experimentally, we slowed down the velocity of pulse propagation to ∼2% of the speed of light in free space. In a 19.7 mm long nanowire that meandered across an area of 286 × 193 μm2, we were able to resolve ∼590 effective pixels with a temporal resolution of 50 ps (full width at half maximum). The nanowire imager presents a scalable approach for high-resolution photon imaging in space and time.
Mitigating fringing in discrete frequency infrared imaging using time-delayed integration
Ran, Shihao; Berisha, Sebastian; Mankar, Rupali; Shih, Wei-Chuan; Mayerich, David
2018-01-01
Infrared (IR) spectroscopic microscopes provide the potential for label-free quantitative molecular imaging of biological samples, which can be used to aid in histology, forensics, and pharmaceutical analysis. Most IR imaging systems use broadband illumination combined with a spectrometer to separate the signal into spectral components. This technique is currently too slow for many biomedical applications such as clinical diagnosis, primarily due to the availability of bright mid-infrared sources and sensitive MCT detectors. There has been a recent push to increase throughput using coherent light sources, such as synchrotron radiation and quantum cascade lasers. While these sources provide a significant increase in intensity, the coherence introduces fringing artifacts in the final image. We demonstrate that applying time-delayed integration in one dimension can dramatically reduce fringing artifacts with minimal alterations to the standard infrared imaging pipeline. The proposed technique also offers the potential for less expensive focal plane array detectors, since linear arrays can be more readily incorporated into the proposed framework. PMID:29552416
Chou, Chun-Hsiao; Gong, Chi-Li; Chao, Chia-Chia; Lin, Chia-Huei; Kwan, Chiu-Yin; Hsieh, Ching-Liang; Leung, Yuk-Man
2009-05-22
Rhynchophylline (1), a neuroprotective agent isolated from the traditional Chinese medicinal herb Uncaria rhynchophylla, was shown to affect voltage-gated K(+) (Kv) channel slow inactivation in mouse neuroblastoma N2A cells. Extracellular 1 (30 microM) accelerated the slow decay of Kv currents and shifted the steady-state inactivation curve to the left. Intracellular dialysis of 1 did not accelerate the slow current decay, suggesting that this compound acts extracellularly. In addition, the percent blockage of Kv currents by this substance was independent of the degree of depolarization and the intracellular K(+) concentration. Therefore, 1 did not appear to directly block the outer channel pore, with the results obtained suggesting that it drastically accelerated Kv channel slow inactivation. Interestingly, 1 also shifted the activation curve to the left. This alkaloid also strongly accelerated slow inactivation and caused a left shift of the activation curve of Kv1.2 channels heterologously expressed in HEK293 cells. Thus, this compound functionally turned delayed rectifiers into A-type K(+) channels.
Walenski, Matthew; Swinney, David
2009-01-01
The central question underlying this study revolves around how children process co-reference relationships—such as those evidenced by pronouns (him) and reflexives (himself)—and how a slowed rate of speech input may critically affect this process. Previous studies of child language processing have demonstrated that typical language developing (TLD) children as young as 4 years of age process co-reference relations in a manner similar to adults on-line. In contrast, off-line measures of pronoun comprehension suggest a developmental delay for pronouns (relative to reflexives). The present study examines dependency relations in TLD children (ages 5–13) and investigates how a slowed rate of speech input affects the unconscious (on-line) and conscious (off-line) parsing of these constructions. For the on-line investigations (using a cross-modal picture priming paradigm), results indicate that at a normal rate of speech TLD children demonstrate adult-like syntactic reflexes. At a slowed rate of speech the typical language developing children displayed a breakdown in automatic syntactic parsing (again, similar to the pattern seen in unimpaired adults). As demonstrated in the literature, our off-line investigations (sentence/picture matching task) revealed that these children performed much better on reflexives than on pronouns at a regular speech rate. However, at the slow speech rate, performance on pronouns was substantially improved, whereas performance on reflexives was not different than at the regular speech rate. We interpret these results in light of a distinction between fast automatic processes (relied upon for on-line processing in real time) and conscious reflective processes (relied upon for off-line processing), such that slowed speech input disrupts the former, yet improves the latter. PMID:19343495
Light Scattering and Absorption Studies of Sickle Cell Hemoglobin
NASA Astrophysics Data System (ADS)
Kim-Shapiro, Daniel
1997-11-01
The use of physical techniques has been very important in understanding the pathophysiology of sickle cell disease. In particular, light scattering and absorption studies have been used to measure the kinetics of sickle cell hemoglobin polymerization and depolymerization (melting). The theory of sickle cell polymerization that has been derived and tested by these methods has not only led to an increased understanding of the pathophysiology of the disease but has also led to improved treatment strategies. Sickle cell disease effects about 1 out of 600 people of African descent born in the United States. The disease is caused by a mutant form of hemoglobin (the oxygen transporting molecule in the blood), hemoglobin S (HbS), which differs from normal adult hemoglobin by the substitution of a single amino acid for another. The polymerization of HbS, which occurs under conditions of low oxygen pressure, causes distortion and increased rigidity of the sickle red blood cell that leads to blockage of the capillaries and a host of resulting complications. The disease is associated with tissue damage, severe painful crises and a high degree of mortality. Light scattering studies of purified HbS and whole cells (conducted by F.A. Ferrone, J. Hofrichter, W.A. Eaton, and their associates) have been used to determine the mechanism of HbS polymerization. Polymerization will generally not occur when the hemoglobin is in an oxygen-rich environment. The question is, when HbS is rapidly deoxygenated (as it is when going from the lungs to the tissues) what is the kinetics of polymerization? Photolysis methods were used to rapidly deoxygenate HbS and light scattering was used as a function of time to measure the kinetics of polymerization. Polarized light scattering may be a more effective way to measure polymer content than total intensity light scattering. It was found that no polymerization occurs during a period of time called the delay time and subsequent polymerization occurs exponentially. The length of this delay time depends on the concentration of deoxy-HbS. The kinetics of polymerization was described by a novel double nucleation mechanism. These light scattering studies led to the understanding that many cells could travel through oxygen deficient tissue without sickling due to the delay time in polymerization. Some treatment strategies involve prolonging the delay time. Less work has been done in trying to understand polymer melting. Such investigations are important in order to determine whether polymers that reach the lungs melt before they enter the oxygen deficient tissues. I have initially addressed this problem by exploring the kinetics of oxygen binding to the polymers. These studies were conducted using time-resolved linear dichroism following laser photolysis. Preliminary studies in my laboratory indicate that polymer melting is slow enough to be an important consideration in understanding sickle cell disease. One of the most common therapies for sickle cell disease that is currently used involves administering the drug, hydroxyurea. The mechanism by which this drug benefits patients is not fully understood. One of its mechanisms (as determined by light scattering and absorption studies) involves increasing the delay time for polymerization.
Bell, C; Paterson, D H; Kowalchuk, J M; Padilla, J; Cunningham, D A
2001-09-01
We compared estimates for the phase 2 time constant (tau) of oxygen uptake (VO2) during moderate- and heavy-intensity exercise, and the slow component of VO2 during heavy-intensity exercise using previously published exponential models. Estimates for tau and the slow component were different (P < 0.05) among models. For moderate-intensity exercise, a two-component exponential model, or a mono-exponential model fitted from 20 s to 3 min were best. For heavy-intensity exercise, a three-component model fitted throughout the entire 6 min bout of exercise, or a two-component model fitted from 20 s were best. When the time delays for the two- and three-component models were equal the best statistical fit was obtained; however, this model produced an inappropriately low DeltaVO2/DeltaWR (WR, work rate) for the projected phase 2 steady state, and the estimate of phase 2 tau was shortened compared with other models. The slow component was quantified as the difference between VO2 at end-exercise (6 min) and at 3 min (DeltaVO2 (6-3 min)); 259 ml x min(-1)), and also using the phase 3 amplitude terms (truncated to end-exercise) from exponential fits (409-833 ml x min(-1)). Onset of the slow component was identified by the phase 3 time delay parameter as being of delayed onset approximately 2 min (vs. arbitrary 3 min). Using this delay DeltaVO2 (6-2 min) was approximately 400 ml x min(-1). Use of valid consistent methods to estimate tau and the slow component in exercise are needed to advance physiological understanding.
Croaker, G D H; Pearce, R; Li, J; Nahon, I; Javaid, A; Kecskes, Z
2007-12-01
We hypothesise that constipated children would be more likely to come from a socially deprived background. We also hypothesise that a percentage of children with resistant constipation would have a congenital gut motility problem that might be recognised at birth, and that some of these would have slow transit constipation that could be recognised on nuclear transit study. One hundred and forty children with a constipation related diagnosis were seen in the last 4 years, and were reviewed as a retrospective audit. Twenty-six children who were felt likely to have a congenital cause for their constipation were offered nuclear colon transit study to search for slow transit constipation. One hundred and forty children from the constipation clinic were reviewed. There were 67 females (47.9%) and 73 males (52.1%), a sex ratio near equality. The mean age at presentation was 5.38 years. Forty-one percent were formally discharged, 36% were lost to follow up, and 23% are still being seen. There was a highly significant tendency for these children to have delayed passage of meconium, as compared normal newborns (P < 0.001). Twenty-six children were considered for possible transit study, and 14 were performed. Four of these were normal, seven showed hold up in the recto-sigmoid, and three showed more proximal slow transit. Two of these probably have non ISTC diagnoses. Social class seems similar to the general population on the criterion employed. Delayed passage of meconium in this group was significantly more frequent than in the general population, but only one of the group seems likely to have truly idiopathic slow transit constipation, and he did not have delayed passage of meconium. There is no evidence for an effect of social class in this population. Idiopathic slow transit constipation itself is rare.
Slow light Mach-Zehnder interferometer as label-free biosensor with scalable sensitivity
Qin, Kun; Hu, Shuren; Retterer, Scott T.; ...
2016-02-05
Our design, fabrication, and characterization of a label-free Mach–Zehnder interferometer (MZI) optical biosensor that incorporates a highly dispersive one-dimensional (1D) photonic crystal in one arm are presented. The sensitivity of this slow light MZI-based sensor scales with the length of the slow light photonic crystal region. The numerically simulated sensitivity of a MZI sensor with a 16 μm long slow light region is 115,000 rad/RIU-cm, which is sevenfold higher than traditional MZI biosensors with millimeter-length sensing regions. Moreover, the experimental bulk refractive index detection sensitivity of 84,000 rad/RIU-cm is realized and nucleic acid detection is also demonstrated.
Differentiation of original and regenerated skeletal muscle fibres in mdx dystrophic muscles.
Earnshaw, John C; Kyprianou, Phillip; Krishan, Kewal; Dhoot, Gurtej K
2002-07-01
The differentiation of both original muscle fibres and the regenerated muscle fibres following necrosis in mdx muscles was investigated using immunoblotting and immunocytochemical procedures. Before the onset of necrosis, postnatal skeletal muscles in mdx mouse differentiated well with only a slight delay in differentiation indicated by the level of developmental isoforms of troponin T. Prior to the onset of apparent myopathic change, both fast and slow skeletal muscle fibre types in mdx leg muscles also differentiated well when investigated by analysis of specific myosin heavy chain expression pattern. While the original muscle fibres in mdx leg muscles developed well, the differentiation of regenerated myotubes into both slow and distinct fast muscle fibre types, however, was markedly delayed or inhibited as indicated by several clusters of homogeneously staining fibres even at 14 weeks of age. The number of slow myosin heavy chain-positive myotubes amongst the regenerated muscle clusters was quite small even in soleus. This study thus established that while muscle fibres initially develop normally with only a slight delay in the differentiation process, the differentiation of regenerated myotubes in mdx muscles is markedly compromised and consequently delayed.
Figueiro, Mariana G; Rea, Mark S
2010-01-01
Circadian timing affects sleep onset. Delayed sleep onset can reduce sleep duration in adolescents required to awake early for a fixed school schedule. The absence of short-wavelength ("blue") morning light, which helps entrain the circadian system, can hypothetically delay sleep onset and decrease sleep duration in adolescents. The goal of this study was to investigate whether removal of short-wavelength light during the morning hours delayed the onset of melatonin in young adults. Dim light melatonin onset (DLMO) was measured in eleven 8th-grade students before and after wearing orange glasses, which removed short-wavelength light, for a five-day school week. DLMO was significantly delayed (30 minutes) after the five-day intervention, demonstrating that short-wavelength light exposure during the day can be important for advancing circadian rhythms in students. Lack of short-wavelength light in the morning has been shown to delay the circadian clock in controlled laboratory conditions. The results presented here are the first to show, outside laboratory conditions, that removal of short-wavelength light in the morning hours can delay DLMO in 8th-grade students. These field data, consistent with results from controlled laboratory studies, are directly relevant to lighting practice in schools.
Kucharewicz, Weronika; Distelfeld, Assaf; Bilger, Wolfgang; Müller, Maren; Munné-Bosch, Sergi; Hensel, Götz
2017-01-01
Abstract WHIRLY1 in barley was isolated as a potential regulator of the senescence-associated gene HvS40. In order to investigate whether the plastid–nucleus-located DNA/RNA-binding protein WHIRLY1 plays a role in regulation of leaf senescence, primary foliage leaves from transgenic barley plants with an RNAi-mediated knockdown of the WHIRLY1 gene were characterized by typical senescence parameters, namely pigment contents, function and composition of the photosynthetic apparatus, as well as expression of selected genes known to be either down- or up-regulated during leaf senescence. When the plants were grown at low light intensity, senescence progression was similar between wild-type and RNAi-W1 plants. Likewise, dark-induced senescence of detached leaves was not affected by reduction of WHIRLY1. When plants were grown at high light intensity, however, senescence was induced prematurely in wild-type plants but was delayed in RNAi-W1 plants. This result suggests that WHIRLY1 plays a role in light sensing and/or stress communication between chloroplasts and the nucleus. PMID:28338757
Ergodic properties of spiking neuronal networks with delayed interactions
NASA Astrophysics Data System (ADS)
Palmigiano, Agostina; Wolf, Fred
The dynamical stability of neuronal networks, and the possibility of chaotic dynamics in the brain pose profound questions to the mechanisms underlying perception. Here we advance on the tractability of large neuronal networks of exactly solvable neuronal models with delayed pulse-coupled interactions. Pulse coupled delayed systems with an infinite dimensional phase space can be studied in equivalent systems of fixed and finite degrees of freedom by introducing a delayer variable for each neuron. A Jacobian of the equivalent system can be analytically obtained, and numerically evaluated. We find that depending on the action potential onset rapidness and the level of heterogeneities, the asynchronous irregular regime characteristic of balanced state networks loses stability with increasing delays to either a slow synchronous irregular or a fast synchronous irregular state. In networks of neurons with slow action potential onset, the transition to collective oscillations leads to an increase of the exponential rate of divergence of nearby trajectories and of the entropy production rate of the chaotic dynamics. The attractor dimension, instead of increasing linearly with increasing delay as reported in many other studies, decreases until eventually the network reaches full synchrony
Canton, Jillian L; Smith, Mark R; Choi, Ho-Sun; Eastman, Charmane I
2009-07-17
Light exposure in the late evening and nighttime and a delay of the sleep/dark episode can phase delay the circadian clock. This study assessed the size of the phase delay produced by a single light pulse combined with a moderate delay of the sleep/dark episode for one day. Because iris color or race has been reported to influence light-induced melatonin suppression, and we have recently reported racial differences in free-running circadian period and circadian phase shifting in response to light pulses, we also tested for differences in the magnitude of the phase delay in subjects with blue and brown irises. Subjects (blue-eyed n = 7; brown eyed n = 6) maintained a regular sleep schedule for 1 week before coming to the laboratory for a baseline phase assessment, during which saliva was collected every 30 minutes to determine the time of the dim light melatonin onset (DLMO). Immediately following the baseline phase assessment, which ended 2 hours after baseline bedtime, subjects received a 2-hour bright light pulse (~4,000 lux). An 8-hour sleep episode followed the light pulse (i.e. was delayed 4 hours from baseline). A final phase assessment was conducted the subsequent night to determine the phase shift of the DLMO from the baseline to final phase assessment.Phase delays of the DLMO were compared in subjects with blue and brown irises. Iris color was also quantified from photographs using the three dimensions of red-green-blue color axes, as well as a lightness scale. These variables were correlated with phase shift of the DLMO, with the hypothesis that subjects with lighter irises would have larger phase delays. The average phase delay of the DLMO was -1.3 +/- 0.6 h, with a maximum delay of ~2 hours, and was similar for subjects with blue and brown irises. There were no significant correlations between any of the iris color variables and the magnitude of the phase delay. A single 2-hour bright light pulse combined with a moderate delay of the sleep/dark episode delayed the circadian clock an average of ~1.5 hours. There was no evidence that iris color influenced the magnitude of the phase shift. Future studies are needed to replicate our findings that iris color does not impact the magnitude of light-induced circadian phase shifts, and that the previously reported differences may be due to race.
Slowing down light using a dendritic cell cluster metasurface waveguide
Fang, Z. H.; Chen, H.; Yang, F. S.; Luo, C. R.; Zhao, X. P.
2016-01-01
Slowing down or even stopping light is the first task to realising optical information transmission and storage. Theoretical studies have revealed that metamaterials can slow down or even stop light; however, the difficulty of preparing metamaterials that operate in visible light hinders progress in the research of slowing or stopping light. Metasurfaces provide a new opportunity to make progress in such research. In this paper, we propose a dendritic cell cluster metasurface consisting of dendritic structures. The simulation results show that dendritic structure can realise abnormal reflection and refraction effects. Single- and double-layer dendritic metasurfaces that respond in visible light were prepared by electrochemical deposition. Abnormal Goos-Hänchen (GH) shifts were experimentally obtained. The rainbow trapping effect was observed in a waveguide constructed using the dendritic metasurface sample. The incident white light was separated into seven colours ranging from blue to red light. The measured transmission energy in the waveguide showed that the energy escaping from the waveguide was zero at the resonant frequency of the sample under a certain amount of incident light. The proposed metasurface has a simple preparation process, functions in visible light, and can be readily extended to the infrared band and communication wavelengths. PMID:27886279
Quick Vegas: Improving Performance of TCP Vegas for High Bandwidth-Delay Product Networks
NASA Astrophysics Data System (ADS)
Chan, Yi-Cheng; Lin, Chia-Liang; Ho, Cheng-Yuan
An important issue in designing a TCP congestion control algorithm is that it should allow the protocol to quickly adjust the end-to-end communication rate to the bandwidth on the bottleneck link. However, the TCP congestion control may function poorly in high bandwidth-delay product networks because of its slow response with large congestion windows. In this paper, we propose an enhanced version of TCP Vegas called Quick Vegas, in which we present an efficient congestion window control algorithm for a TCP source. Our algorithm improves the slow-start and congestion avoidance techniques of original Vegas. Simulation results show that Quick Vegas significantly improves the performance of connections as well as remaining fair when the bandwidth-delay product increases.
Development of the Casparian strip is delayed by blue light in pea stems.
Karahara, Ichirou; Takaya, Eliko; Fujibayashi, Shigetaka; Inoue, Hiroshi; Weller, James L; Reid, James B; Sugai, Michizo
2011-11-01
To understand the regulatory mechanisms involved in tissue development by light, the kinetics of regulation of Casparian strip (CS) development in garden pea stems was studied. We found that short-term irradiation with white light delayed the development of the CS and used this delay to assess the quantitative effect of light on CS development. We examined the effect of the duration and fluence rates of white light treatment on CS development and observed a significant relationship between fluence and the delay in CS development indicating that the Bunsen-Roscoe law of reciprocity holds for this response. The effect of white light irradiation was not inhibited in the presence of a photosynthetic inhibitor, DCMU, or a carotenoid biosynthesis inhibitor, Norflurazon, indicating that the delay in CS development by light is a photomorphogenetic response rather than a subsidiary effect mediated by photosynthetic activity. An action spectrum for the response displayed a major peak in the blue-light region, suggesting a dominant role for blue-light receptors. A minor peak in the red-light region also suggested the possible involvement of phytochromes. Although phytochromes are known to contribute to blue-light responses, phytochrome-deficient mutants showed a normal delay of CS development in response to blue light, indicating that the response is not mediated by phytochrome and suggesting a role for one or more specific blue-light receptors.
Low-loss adiabatically-tapered high-contrast gratings for slow-wave modulators on SOI
NASA Astrophysics Data System (ADS)
Sciancalepore, Corrado; Hassan, Karim; Ferrotti, Thomas; Harduin, Julie; Duprez, Hélène; Menezo, Sylvie; Ben Bakir, Badhise
2015-02-01
In this communication, we report about the design, fabrication, and testing of Silicon-based photonic integrated circuits (Si-PICs) including low-loss flat-band slow-light high-contrast-gratings (HCGs) waveguides at 1.31 μm. The light slowdown is achieved in 300-nm-thick silicon-on-insulator (SOI) rib waveguides by patterning adiabatically-tapered highcontrast gratings, capable of providing slow-light propagation with extremely low optical losses, back-scattering, and Fabry-Pérot noise. In detail, the one-dimensional (1-D) grating architecture is capable to provide band-edge group indices ng ~ 25, characterized by overall propagation losses equivalent to those of the index-like propagation regime (~ 1-2 dB/cm). Such photonic band-edge slow-light regime at low propagation losses is made possible by the adiabatic apodization of such 1-D HCGs, thus resulting in a win-win approach where light slow-down regime is reached without additional optical losses penalty. As well as that, a tailored apodization optimized via genetic algorithms allows the flattening of slow-light regime over the wavelength window of interest, therefore suiting well needs for group index stability for modulation purposes and non-linear effects generation. In conclusion, such architectures provide key features suitable for power-efficient high-speed modulators in silicon as well as an extremely low-loss building block for non-linear optics (NLO) which is now available in the Si photonics toolbox.
Challet, E; Turek, F W; Laute, M; Van Reeth, O
2001-08-03
The circadian pacemaker in the suprachiasmatic nuclei is primarily synchronized to the daily light-dark cycle. The phase-shifting and synchronizing effects of light can be modulated by non-photic factors, such as behavioral, metabolic or serotonergic cues. The present experiments examine the effects of sleep deprivation on the response of the circadian pacemaker to light and test the possible involvement of serotonergic and/or metabolic cues in mediating the effects of sleep deprivation. Photic phase-shifting of the locomotor activity rhythm was analyzed in mice transferred from a light-dark cycle to constant darkness, and sleep-deprived for 8 h from Zeitgeber Time 6 to Zeitgeber Time 14. Phase-delays in response to a 10-min light pulse at Zeitgeber Time 14 were reduced by 30% in sleep-deprived mice compared to control mice, while sleep deprivation without light exposure induced no significant phase-shifts. Stimulation of serotonin neurotransmission by fluoxetine (10 mg/kg), a serotonin reuptake inhibitor that decreases light-induced phase-delays in non-deprived mice, did not further reduce light-induced phase-delays in sleep-deprived mice. Impairment of serotonin neurotransmission with p-chloroamphetamine (three injections of 10 mg/kg), which did not increase light-induced phase-delays in non-deprived mice significantly, partially normalized light-induced phase-delays in sleep-deprived mice. Injections of glucose increased light-induced phase-delays in control and sleep-deprived mice. Chemical damage of the ventromedial hypothalamus by gold-thioglucose (600 mg/kg) prevented the reduction of light-induced phase-delays in sleep-deprived mice, without altering phase-delays in control mice. Taken together, the present results indicate that sleep deprivation can reduce the light-induced phase-shifts of the mouse suprachiasmatic pacemaker, due to serotonergic and metabolic changes associated with the loss of sleep.
NASA Astrophysics Data System (ADS)
Liu, Ronggang; Liu, Tong; Wang, Yingying; Li, Yujie; Gai, Bingzheng
2017-11-01
We propose an effective method to achieve extremely slow light by using both the mechanism of electromagnetically induced transparency (EIT) and the localization of a coupled cavity waveguide (CCW). Based on quantum mechanics theory and the dispersion relation of a CCW, we derive a group-velocity formula that reveals both the effects of the EIT and CCW. Results show that ultralow light velocity at the order of several meters per second or even static light, could be obtained feasibly. In comparison with the EIT mechanism in a background of vacuum, this proposed method is more effective and realistic to achieve extremely slow light. And it exhibits potential values in the field of light storage.
Short nights reduce light-induced circadian phase delays in humans.
Burgess, Helen J; Eastman, Charmane I
2006-01-01
Short sleep episodes are common in modern society. We recently demonstrated that short nights reduce phase advances to light. Here we show that short nights also reduce phase delays to light. Two weeks of 6-hour sleep episodes in the dark (short nights) and 2 weeks of long 9-hour sleep episodes (long nights) in counterbalanced order, separated by 7 days. Following each series of nights, there was a dim-light phase assessment to assess baseline phase. Three days later, subjects were exposed to a phase-delaying light stimulus for 2 days, followed by a final phase assessment. Subjects slept at home in dark bedrooms but came to the laboratory for the phase assessments and light stimulus. Seven young healthy subjects. The 3.5-hour light stimulus was four 30-minute pulses of bright light (-5000 lux) separated by 30-minute intervals of room light. The stimulus began 2.5 hours after each subject's dim-light melatonin onset, followed by a 6- or 9-hour sleep episode. On the second night, the bright light and sleep episode began 1 hour later. The dim-light melatonin onset and dimlight melatonin offset phase delayed 1.4 and 0.7 hours less in the short nights, respectively (both p < or = .015). These results indicate for the first time that short nights can reduce circadian phase delays, that long nights can increase phase delays to light, or both. People who curtail their sleep may inadvertently reduce their circadian responsiveness to evening light.
2013-01-01
Gany, Investigation of Slow-Propagation Tung- sten Delay Mixtures, Propellants Explos. Pyrotech. 1997, 22, 207–211. [3] Tungsten Delay Composition ...apex. This delay ele- ment then ignites an expulsion charge, which ejects and ig- nites the smoke or illumination payload. The current delay composition ...used in HHS consists of 32.0% tungsten, 56.3% barium chromate, 11.4% potassium perchlorate, and 0.3% VAAR. (All composition percentages in this
Direct imaging of slow, stored and stationary EIT polaritons
NASA Astrophysics Data System (ADS)
Campbell, Geoff T.; Cho, Young-Wook; Su, Jian; Everett, Jesse; Robins, Nicholas; Lam, Ping Koy; Buchler, Ben
2017-09-01
Stationary and slow light effects are of great interest for quantum information applications. Using laser-cooled Rb87 atoms, we performed side imaging of our atomic ensemble under slow and stationary light conditions, which allows direct comparison with numerical models. The polaritons were generated using electromagnetically induced transparency (EIT), with stationary light generated using counter-propagating control fields. By controlling the power ratio of the two control fields, we show fine control of the group velocity of the stationary light. We also compare the dynamics of stationary light using monochromatic and bichromatic control fields. Our results show negligible difference between the two situations, in contrast to previous work in EIT-based systems.
Expanding the Bandwidth of Slow and Fast Pulse Propagation in Coupled Micro-resonators
NASA Technical Reports Server (NTRS)
Smith, David D.; Chang, Hongrok
2007-01-01
Coupled resonators exhibit coherence effects which can be exploited for the delay or advancement of pulses with minimal distortion. The bandwidth and normalized pulse delay are simultaneously enhanced by proper choice of the inter-resonator couplings.
Winter-injury following horticultural treatments to overcome juvenility in citrus seedlings
USDA-ARS?s Scientific Manuscript database
Citrus seedling juvenility delays new hybrid evaluation, slows cultivar release, and slows introgression of new traits. A horticultural program reported to overcome citrus juvenility was tested at the Whitmore Citrus Research Foundation farm (Lake County), using replicated Hirado Buntan x Clementine...
Minimizing the Delay at Traffic Lights
ERIC Educational Resources Information Center
Van Hecke, Tanja
2009-01-01
Vehicles holding at traffic lights is a typical queuing problem. At crossings the vehicles experience delay in both directions. Longer periods with green lights in one direction are disadvantageous for the vehicles coming from the other direction. The total delay for getting through the traffic point is what counts. This article presents an…
Saxvig, Ingvild W; Wilhelmsen-Langeland, Ane; Pallesen, Ståle; Vedaa, Oystein; Nordhus, Inger H; Sørensen, Eli; Bjorvatn, Bjørn
2013-08-01
Delayed sleep phase disorder is characterized by a delay in the timing of the major sleep period relative to conventional norms. The sleep period itself has traditionally been described as normal. Nevertheless, it is possible that sleep regulatory mechanism disturbances associated with the disorder may affect sleep duration and/or architecture. Polysomnographic data that may shed light on the issue are scarce. Hence, the aim of this study was to examine polysomnographic measures of sleep in adolescents and young adults with delayed sleep phase disorder, and to compare findings to that of healthy controls. A second aim was to estimate dim light melatonin onset as a marker of circadian rhythm and to investigate the phase angle relationship (time interval) between dim light melatonin onset and the sleep period. Data from 54 adolescents and young adults were analysed, 35 diagnosed with delayed sleep phase disorder and 19 healthy controls. Results show delayed timing of sleep in participants with delayed sleep phase disorder, but once sleep was initiated no group differences in sleep parameters were observed. Dim light melatonin onset was delayed in participants with delayed sleep phase disorder, but no difference in phase angle was observed between the groups. In conclusion, both sleep and dim light melatonin onset were delayed in participants with delayed sleep phase disorder. The sleep period appeared to occur at the same circadian phase in both groups, and once sleep was initiated no differences in sleep parameters were observed. © 2013 European Sleep Research Society.
On the Generation and Use of TCP Acknowledgments
NASA Technical Reports Server (NTRS)
Allman, Mark
1998-01-01
This paper presents a simulation study of various TCP acknowledgment generation and utilization techniques. We investigate the standard version of TCP and the two standard acknowledgment strategies employed by receivers: those that acknowledge each incoming segment and those that implement delayed acknowledgments. We show the delayed acknowledgment mechanism hurts TCP performance, especially during slow start. Next we examine three alternate mechanisms for generating and using acknowledgments designed to mitigate the negative impact of delayed acknowledgments. The first method is to generate delayed ACKs only when the sender is not using the slow start algorithm. The second mechanism, called byte counting, allows TCP senders to increase the amount of data being injected into the network based on the amount of data acknowledged rather than on the number of acknowledgments received. The last mechanism is a limited form of byte counting. Each of these mechanisms is evaluated in a simulated network with no competing traffic, as well as a dynamic environment with a varying amount of competing traffic. We study the costs and benefits of the alternate mechanisms when compared to the standard algorithm with delayed ACKs.
Effects of deoxynivalenol on content of chloroplast pigments in barley leaf tissues.
Bushnell, W R; Perkins-Veazie, P; Russo, V M; Collins, J; Seeland, T M
2010-01-01
To understand further the role of deoxynivalenol (DON) in development of Fusarium head blight (FHB), we investigated effects of the toxin on uninfected barley tissues. Leaf segments, 1 to 1.2 cm long, partially stripped of epidermis were floated with exposed mesophyll in contact with DON solutions. In initial experiments with the leaf segments incubated in light, DON at 30 to 90 ppm turned portions of stripped tissues white after 48 to 96 h. The bleaching effect was greatly enhanced by addition of 1 to 10 mM Ca(2+), so that DON at 10 to 30 ppm turned virtually all stripped tissues white within 48 h. Content of chlorophylls a and b and of total carotenoid pigment was reduced. Loss of electrolytes and uptake of Evans blue indicated that DON had a toxic effect, damaging plasmalemmas in treated tissues before chloroplasts began to lose pigment. When incubated in the dark, leaf segments also lost electrolytes, indicating DON was toxic although the tissues remained green. Thus, loss of chlorophyll in light was due to photobleaching and was a secondary effect of DON, not required for toxicity. In contrast to bleaching effects, some DON treatments that were not toxic kept tissues green without bleaching or other signs of injury, indicating senescence was delayed compared with slow yellowing of untreated leaf segments. Cycloheximide, which like DON, inhibits protein synthesis, also bleached some tissues and delayed senescence of others. Thus, the effects of DON probably relate to its ability to inhibit protein synthesis. With respect to FHB, the results suggest DON may have multiple roles in host cells of infected head tissues, including delayed senescence in early stages of infection and contributing to bleaching and death of cells in later stages.
Ferguson, Eamonn; Maltby, John; Bibby, Peter A; Lawrence, Claire
2014-01-01
Evolutionary accounts have difficulty explaining why people cooperate with anonymous strangers they will never meet. Recently models, focusing on emotional processing, have been proposed as a potential explanation, with attention focusing on a dual systems approach based on system 1 (fast, intuitive, automatic, effortless, and emotional) and system 2 (slow, reflective, effortful, proactive and unemotional). Evidence shows that when cooperation is salient, people are fast (system 1) to cooperate, but with longer delays (system 2) they show greed. This is interpreted within the framework of the social heuristic hypothesis (SHH), whereby people overgeneralize potentially advantageous intuitively learnt and internalization social norms to 'atypical' situations. We extend this to explore intuitive reactions to unfairness by integrating the SHH with the 'fast to forgive, slow to anger' (FFSA) heuristic. This suggests that it is advantageous to be prosocial when facing uncertainty. We propose that whether or not someone intuitively shows prosociality (cooperation) or retaliation is moderated by the degree (certainty) of unfairness. People should intuitively cooperate when facing mild levels of unfairness (fast to forgive) but when given longer to decide about another's mild level of unfairness should retaliate (slow to anger). However, when facing severe levels of unfairness, the intuitive response is always retaliation. We test this using a series of one-shot ultimatum games and manipulate level of offer unfairness (50:50 60:40, 70:30, 80:20, 90:10) and enforced time delays prior to responding (1s, 2s, 8s, 15s). We also measure decision times to make responses after the time delays. The results show that when facing mildly unfair offers (60:40) people are fast (intuitive) to cooperate but with longer delays reject these mildly unfair offers: 'fast to forgive, and slow to retaliate'. However, for severely unfair offers (90:10) the intuitive and fast response is to always reject.
Ferguson, Eamonn; Maltby, John; Bibby, Peter A.; Lawrence, Claire
2014-01-01
Evolutionary accounts have difficulty explaining why people cooperate with anonymous strangers they will never meet. Recently models, focusing on emotional processing, have been proposed as a potential explanation, with attention focusing on a dual systems approach based on system 1 (fast, intuitive, automatic, effortless, and emotional) and system 2 (slow, reflective, effortful, proactive and unemotional). Evidence shows that when cooperation is salient, people are fast (system 1) to cooperate, but with longer delays (system 2) they show greed. This is interpreted within the framework of the social heuristic hypothesis (SHH), whereby people overgeneralize potentially advantageous intuitively learnt and internalization social norms to ‘atypical’ situations. We extend this to explore intuitive reactions to unfairness by integrating the SHH with the ‘fast to forgive, slow to anger’ (FFSA) heuristic. This suggests that it is advantageous to be prosocial when facing uncertainty. We propose that whether or not someone intuitively shows prosociality (cooperation) or retaliation is moderated by the degree (certainty) of unfairness. People should intuitively cooperate when facing mild levels of unfairness (fast to forgive) but when given longer to decide about another's mild level of unfairness should retaliate (slow to anger). However, when facing severe levels of unfairness, the intuitive response is always retaliation. We test this using a series of one-shot ultimatum games and manipulate level of offer unfairness (50:50 60:40, 70:30, 80:20, 90:10) and enforced time delays prior to responding (1s, 2s, 8s, 15s). We also measure decision times to make responses after the time delays. The results show that when facing mildly unfair offers (60:40) people are fast (intuitive) to cooperate but with longer delays reject these mildly unfair offers: ‘fast to forgive, and slow to retaliate’. However, for severely unfair offers (90:10) the intuitive and fast response is to always reject. PMID:24820479
Enhanced photoresponsivity in graphene-silicon slow-light photonic crystal waveguides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Hao, E-mail: zhoufirst@scu.edu.cn, E-mail: tg2342@columbia.edu, E-mail: cheewei.wong@ucla.edu; Optical Nanostructures Laboratory, Columbia University, New York, New York 10027; Gu, Tingyi, E-mail: zhoufirst@scu.edu.cn, E-mail: tg2342@columbia.edu, E-mail: cheewei.wong@ucla.edu
2016-03-14
We demonstrate the enhanced fast photoresponsivity in graphene hybrid structures by combining the ultrafast dynamics of graphene with improved light-matter interactions in slow-light photonic crystal waveguides. With a 200 μm interaction length, a 0.8 mA/W photoresponsivity is achieved in a graphene-silicon Schottky-like photodetector, with an operating bandwidth in excess of 5 GHz and wavelength range at least from 1480 nm to 1580 nm. Fourfold enhancement of the photocurrent is observed in the slow light region, compared to the wavelength far from the photonic crystal bandedge, for a chip-scale broadband fast photodetector.
Slow and stored light by photo-isomerization induced transparency in dye doped chiral nematics.
Wei, D; Bortolozzo, U; Huignard, J P; Residori, S
2013-08-26
Decelerating and stopping light is fundamental for optical processing, high performance sensor technologies and digital signal treatment, many of these applications relying on the ability of controlling the amplitude and phase of coherent light pulses. In this context, slow-light has been achieved by various methods, as coupling light into resonant media, Brillouin scattering in optical fibers, beam coupling in photorefractive and liquid crystal media or engineered dispersion in photonic crystals. Here, we present a different mechanism for slowing and storing light, which is based on photo-isomerization induced transparency of azo-dye molecules hosted in a chiral liquid crystal structure. Sharp spectral features of the medium absorption/dispersion, and the long population lifetime of the dye metastable state, enable the storage of light pulses with a significant retrieval after times much longer than the medium response time.
Slow-light-enhanced upconversion for photovoltaic applications in one-dimensional photonic crystals.
Johnson, Craig M; Reece, Peter J; Conibeer, Gavin J
2011-10-15
We present an approach to realizing enhanced upconversion efficiency in erbium (Er)-doped photonic crystals. Slow-light-mode pumping of the first Er excited state transition can result in enhanced emission from higher-energy levels that may lead to finite subbandgap external quantum efficiency in crystalline silicon solar cells. Using a straightforward electromagnetic model, we calculate potential field enhancements of more than 18× within he slow-light mode of a one-dimensional photonic crystal and discuss design trade-offs and considerations for photovoltaics.
Monat, Christelle; Grillet, Christian; Corcoran, Bill; Moss, David J; Eggleton, Benjamin J; White, Thomas P; Krauss, Thomas F
2010-03-29
Using Fourier optics, we retrieve the wavevector dependence of the third-harmonic (green) light generated in a slow light silicon photonic crystal waveguide. We show that quasi-phase matching between the third-harmonic signal and the fundamental mode is provided in this geometry by coupling to the continuum of radiation modes above the light line. This process sustains third-harmonic generation with a relatively high efficiency and a substantial bandwidth limited only by the slow light window of the fundamental mode. The results give us insights into the physics of this nonlinear process in the presence of strong absorption and dispersion at visible wavelengths where bandstructure calculations are problematic. Since the characteristics (e.g. angular pattern) of the third-harmonic light primarily depend on the fundamental mode dispersion, they could be readily engineered.
Faria-e-Silva, Andre; Boaro, Leticia; Braga, Roberto; Piva, Evandro; Arias, Vanessa; Martins, Luis
2011-01-01
This study evaluated the effect of light activation (absence, immediate, or delayed) on conversion kinetics and polymerization stress of three commercial dual-cured resin cements (Enforce, RelyX ARC, and Panavia F). Degree of conversion (DC) was monitored for 30 minutes using real-time near–Fourier transform infrared spectroscopy. The cement was mixed, placed on the spectrometer sample holder, and light activated either immediately or after five minutes (delayed light activation). When no light activation was performed, the materials were protected from light exposure (control). DC was evaluated at five and 30 minutes postmixture. Maximum rates of polymerization (Rp(max)) were obtained from the first derivative of the DC vs time curve. Polymerization stress was monitored for 30 minutes in 1-mm-thick specimens inserted between two cylinders attached to a universal testing machine. Data were submitted to analysis of variance/Tukey tests (α=0.05). Immediate light activation promoted the highest DC at five minutes. At 30 minutes, only RelyX ARC did not present a significant difference in DC between activation modes. Enforce and Panavia F presented higher Rp(max) for immediate and delayed light-activation, respectively. RelyX ARC showed similar Rp(max) for all activation modes. The absence of light activation resulted in the lowest stress followed by delayed light activation, while immediate light activation led to the highest values. RelyX ARC showed higher stress than Enforce, while the stress of Panavia F was similar to that of the others. Delayed light activation reduced the polymerization stress of the resin cements tested without jeopardizing DC.
Andruchov, Oleg; Galler, Stefan
2008-03-01
This study contributes to understand the physiological role of slow myosin light chain isoforms in fast-twitch type IIA fibres of skeletal muscle. These isoforms are often attached to the myosin necks of rat type IIA fibres, whereby the slow alkali myosin light chain isoform MLC1s is much more frequent and abundant than the slow regulatory myosin light chain isoform MLC2s. In the present study, single-skinned rat type IIA fibres were maximally Ca(2+) activated and subjected to stepwise stretches for causing a perturbation of myosin head pulling cycles. From the time course of the resulting force transients, myosin head kinetics was deduced. Fibres containing MLC1s exhibited slower kinetics independently of the presence or absence of MLC2s. At the maximal MLC1s concentration of about 75%, the slowing was about 40%. The slowing effect of MLC1s is possibly due to differences in the myosin heavy chain binding sites of the fast and slow alkali MLC isoforms, which changes the rigidity of the myosin neck. Compared with the impact of myosin heavy chain isoforms in various fast-twitch fibre types, the influence of MLC1s on myosin head kinetics of type IIA fibres is much smaller. In conclusion, the physiological role of fast and slow MLC isoforms in type IIA fibres is a fine-tuning of the myosin head kinetics.
Li, Xiujian; Liao, Jiali; Nie, Yongming; Marko, Matthew; Jia, Hui; Liu, Ju; Wang, Xiaochun; Wong, Chee Wei
2015-04-20
We demonstrate the temporal and spectral evolution of picosecond soliton in the slow light silicon photonic crystal waveguides (PhCWs) by sum frequency generation cross-correlation frequency resolved optical grating (SFG-XFROG) and nonlinear Schrödinger equation (NLSE) modeling. The reference pulses for the SFG-XFROG measurements are unambiguously pre-characterized by the second harmonic generation frequency resolved optical gating (SHG-FROG) assisted with the combination of NLSE simulations and optical spectrum analyzer (OSA) measurements. Regardless of the inevitable nonlinear two photon absorption, high order soliton compressions have been observed remarkably owing to the slow light enhanced nonlinear effects in the silicon PhCWs. Both the measurements and the further numerical analyses of the pulse dynamics indicate that, the free carrier dispersion (FCD) enhanced by the slow light effects is mainly responsible for the compression, the acceleration, and the spectral blue shift of the soliton.
Kucharewicz, Weronika; Distelfeld, Assaf; Bilger, Wolfgang; Müller, Maren; Munné-Bosch, Sergi; Hensel, Götz; Krupinska, Karin
2017-02-01
WHIRLY1 in barley was isolated as a potential regulator of the senescence-associated gene HvS40. In order to investigate whether the plastid-nucleus-located DNA/RNA-binding protein WHIRLY1 plays a role in regulation of leaf senescence, primary foliage leaves from transgenic barley plants with an RNAi-mediated knockdown of the WHIRLY1 gene were characterized by typical senescence parameters, namely pigment contents, function and composition of the photosynthetic apparatus, as well as expression of selected genes known to be either down- or up-regulated during leaf senescence. When the plants were grown at low light intensity, senescence progression was similar between wild-type and RNAi-W1 plants. Likewise, dark-induced senescence of detached leaves was not affected by reduction of WHIRLY1. When plants were grown at high light intensity, however, senescence was induced prematurely in wild-type plants but was delayed in RNAi-W1 plants. This result suggests that WHIRLY1 plays a role in light sensing and/or stress communication between chloroplasts and the nucleus. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Loft, Shayne; Doyle, Katie L.; Naar-King, Sylvie; Outlaw, Angulique Y.; Nichols, Sharon L.; Weber, Erica; Blackstone, Kaitlin; Woods, Steven Paul
2014-01-01
Event-based prospective memory (PM) tasks require individuals to remember to perform an action when they encounter a specific cue in the environment, and have clear relevance for daily functioning for individuals with HIV. In many everyday tasks, the individual must not only maintain the intent to perform the PM task, but the PM task response also competes with the alternative and more habitual task response. The current study examined whether event-based PM can be improved by slowing down the pace of the task environment. Fifty-seven young adults living with HIV performed an ongoing lexical decision task while simultaneously performing a PM task of monitoring for a specific word (which was focal to the ongoing task of making lexical decisions) or syllable contained in a word (which was nonfocal). Participants were instructed to refrain from making task responses until after a tone was presented, which occurred at varying onsets (0–1600ms) after each stimulus appeared. Improvements in focal and non-focal PM accuracy were observed with response delays of 600ms. Furthermore, the difference in PM accuracy between the low demand focal PM task and the resource demanding non-focal PM task was reduced by half across increasingly longer delays, falling from 31% at 0ms delay to only 14% at 1600ms delay. The degree of ongoing task response slowing for the PM conditions, relative to a control condition that did not have a PM task and made lexical decisions only, also decreased with increased delay. Overall, the evidence indicates that delaying the task responses of younger HIV-infected adults increased the probability that the PM relevant features of task stimuli were adequately assessed prior to the ongoing task response, and by implication that younger HIV infected adults can more adequately achieve PM goals when the pace of the task environment is slowed down. PMID:25116075
ASASSN-16dt and ASASSN-16hg: Promising candidate period bouncers
NASA Astrophysics Data System (ADS)
Kimura, Mariko; Isogai, Keisuke; Kato, Taichi; Taguchi, Kenta; Wakamatsu, Yasuyuki; Hambsch, Franz-Josef; Monard, Berto; Myers, Gordon; Dvorak, Shawn; Starr, Peter; Brincat, Stephen M.; de Miguel, Enrique; Ulowetz, Joseph; Itoh, Hiroshi; Stone, Geoff; Nogami, Daisaku
2018-06-01
We present optical photometry of superoutbursts that occurred in 2016 of two WZ Sge-type dwarf novae (DNe), ASASSN-16dt and ASASSN-16hg. Their light curves showed a dip in brightness between the first plateau stage with no ordinary superhumps (or early superhumps) and the second plateau stage with ordinary superhumps. We find that the dip is produced by the slow evolution of the 3 : 1 resonance tidal instability and that it would likely be observed in low mass-ratio objects. An estimated mass ratio (q ≡ M2/M1) from the period of developing (stage A) superhumps [0.06420(3) d] was 0.036(2) in ASASSN-16dt. Additionally, its superoutburst has many properties similar to those in other low-q WZ Sge-type DNe: long-lasting stage-A superhumps, small superhump amplitudes, long delay of ordinary-superhump appearances, and a slow decline rate in the plateau stage with superhumps. Its very small mass ratio and observational characteristics suggest that this system is one of the best candidates for a period bouncer—a binary accounting for the missing population of post-period minimum cataclysmic variables. Although it is not clearly verified due to the lack of detection of stage-A superhumps, ASASSN-16hg might be a possible candidate for period bouncers on the basis of the morphology of its light curves and the small superhump amplitudes. Many outburst properties of period bouncer candidates would originate from the small tidal effects of their secondary stars.
ASASSN-16dt and ASASSN-16hg: Promising candidate period bouncers
NASA Astrophysics Data System (ADS)
Kimura, Mariko; Isogai, Keisuke; Kato, Taichi; Taguchi, Kenta; Wakamatsu, Yasuyuki; Hambsch, Franz-Josef; Monard, Berto; Myers, Gordon; Dvorak, Shawn; Starr, Peter; Brincat, Stephen M.; de Miguel, Enrique; Ulowetz, Joseph; Itoh, Hiroshi; Stone, Geoff; Nogami, Daisaku
2018-04-01
We present optical photometry of superoutbursts that occurred in 2016 of two WZ Sge-type dwarf novae (DNe), ASASSN-16dt and ASASSN-16hg. Their light curves showed a dip in brightness between the first plateau stage with no ordinary superhumps (or early superhumps) and the second plateau stage with ordinary superhumps. We find that the dip is produced by the slow evolution of the 3 : 1 resonance tidal instability and that it would likely be observed in low mass-ratio objects. An estimated mass ratio (q ≡ M2/M1) from the period of developing (stage A) superhumps [0.06420(3) d] was 0.036(2) in ASASSN-16dt. Additionally, its superoutburst has many properties similar to those in other low-q WZ Sge-type DNe: long-lasting stage-A superhumps, small superhump amplitudes, long delay of ordinary-superhump appearances, and a slow decline rate in the plateau stage with superhumps. Its very small mass ratio and observational characteristics suggest that this system is one of the best candidates for a period bouncer—a binary accounting for the missing population of post-period minimum cataclysmic variables. Although it is not clearly verified due to the lack of detection of stage-A superhumps, ASASSN-16hg might be a possible candidate for period bouncers on the basis of the morphology of its light curves and the small superhump amplitudes. Many outburst properties of period bouncer candidates would originate from the small tidal effects of their secondary stars.
Jha, Pawan Kumar; Bouâouda, Hanan; Gourmelen, Sylviane; Dumont, Stephanie; Fuchs, Fanny; Goumon, Yannick; Bourgin, Patrice; Kalsbeek, Andries; Challet, Etienne
2017-04-19
Circadian rhythms in nocturnal and diurnal mammals are primarily synchronized to local time by the light/dark cycle. However, nonphotic factors, such as behavioral arousal and metabolic cues, can also phase shift the master clock in the suprachiasmatic nuclei (SCNs) and/or reduce the synchronizing effects of light in nocturnal rodents. In diurnal rodents, the role of arousal or insufficient sleep in these functions is still poorly understood. In the present study, diurnal Sudanian grass rats, Arvicanthis ansorgei , were aroused at night by sleep deprivation (gentle handling) or caffeine treatment that both prevented sleep. Phase shifts of locomotor activity were analyzed in grass rats transferred from a light/dark cycle to constant darkness and aroused in early night or late night. Early night, but not late night, sleep deprivation induced a significant phase shift. Caffeine on its own induced no phase shifts. Both sleep deprivation and caffeine treatment potentiated light-induced phase delays and phase advances in response to a 30 min light pulse, respectively. Sleep deprivation in early night, but not late night, potentiated light-induced c-Fos expression in the ventral SCN. Caffeine treatment in midnight triggered c-Fos expression in dorsal SCN. Both sleep deprivation and caffeine treatment potentiated light-induced c-Fos expression in calbindin-containing cells of the ventral SCN in early and late night. These findings indicate that, in contrast to nocturnal rodents, behavioral arousal induced either by sleep deprivation or caffeine during the sleeping period potentiates light resetting of the master circadian clock in diurnal rodents, and activation of calbindin-containing suprachiasmatic cells may be involved in this effect. SIGNIFICANCE STATEMENT Arousing stimuli have the ability to regulate circadian rhythms in mammals. Behavioral arousal in the sleeping period phase shifts the master clock in the suprachiasmatic nuclei and/or slows down the photic entrainment in nocturnal animals. How these stimuli act in diurnal species remains to be established. Our study in a diurnal rodent, the Grass rat, indicates that sleep deprivation in the early rest period induces phase delays of circadian locomotor activity rhythm. Contrary to nocturnal rodents, both sleep deprivation and caffeine-induced arousal potentiate the photic entrainment in a diurnal rodent. Such enhanced light-induced circadian responses could be relevant for developing chronotherapeutic strategies. Copyright © 2017 the authors 0270-6474/17/374343-16$15.00/0.
Quercetin as natural stabilizing agent for bio-polymer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morici, Elisabetta; Arrigo, Rossella; Dintcheva, Nadka Tzankova
The introduction of antioxidants in polymers is the main way to prevent or delay the degradation process. In particular natural antioxidants receive attention in the food industry also because of their presumed safety. In this work bio-polymers, i.e. a commercial starch-based polymer (Mater-Bi®) and a bio-polyester (PLA), and a bio-polyether (PEO) were additivated with quercetin, a natural flavonoid antioxidants, in order to formulate bio-based films for ecosustainable packaging and outdoor applications. The photo-oxidation behavior of unstabilized and quercetin stabilized films was analyzed and compared with the behavior of films additivated with a commercial synthetic light stabilizer. The quercetin is ablemore » to slow down the photo-degradation rate of all bio-polymeric films investigated in similar way to the synthetic stabilizer.« less
Quercetin as natural stabilizing agent for bio-polymer
NASA Astrophysics Data System (ADS)
Morici, Elisabetta; Arrigo, Rossella; Dintcheva, Nadka Tzankova
2014-05-01
The introduction of antioxidants in polymers is the main way to prevent or delay the degradation process. In particular natural antioxidants receive attention in the food industry also because of their presumed safety. In this work bio-polymers, i.e. a commercial starch-based polymer (Mater-Bi®) and a bio-polyester (PLA), and a bio-polyether (PEO) were additivated with quercetin, a natural flavonoid antioxidants, in order to formulate bio-based films for ecosustainable packaging and outdoor applications. The photo-oxidation behavior of unstabilized and quercetin stabilized films was analyzed and compared with the behavior of films additivated with a commercial synthetic light stabilizer. The quercetin is able to slow down the photo-degradation rate of all bio-polymeric films investigated in similar way to the synthetic stabilizer.
Update on the slow delayed rectifier potassium current (I(Ks)): role in modulating cardiac function.
Liu, Zhenzhen; Du, Lupei; Li, Minyong
2012-01-01
The slow delayed rectifier current (I(Ks)) is the slow component of cardiac delayed rectifier current and is critical for the late phase repolarization of cardiac action potential. This current is also an important target for Sympathetic Nervous System (SNS) to regulate the cardiac electivity to accommodate to heart rate alterations in response to exercise or emotional stress and can be up-regulated by β- adrenergic or other signal molecules. I(Ks) channel is originated by the co-assembly of pore-forming KCNQ1 α-subunit and accessory KCNE1 β-subunit. Mutations in any subunit can bring about severe long QT syndrome (LQT-1, LQT-5) as characterized by deliquium, seizures and sudden death. This review summarizes the normal physiological functions and molecular basis of I(Ks) channels, as well as illustrates up-to-date development on its blockers and activators. Therefore, the current extensive survey should generate fundamental understanding of the role of I(Ks) channel in modulating cardiac function and donate some instructions to the progression of I(Ks) blockers and activators as potential antiarrhythmic agents or pharmacological tools to determine the physiological and pathological function of I(Ks).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, Kun; Hu, Shuren; Retterer, Scott T.
Our design, fabrication, and characterization of a label-free Mach–Zehnder interferometer (MZI) optical biosensor that incorporates a highly dispersive one-dimensional (1D) photonic crystal in one arm are presented. The sensitivity of this slow light MZI-based sensor scales with the length of the slow light photonic crystal region. The numerically simulated sensitivity of a MZI sensor with a 16 μm long slow light region is 115,000 rad/RIU-cm, which is sevenfold higher than traditional MZI biosensors with millimeter-length sensing regions. Moreover, the experimental bulk refractive index detection sensitivity of 84,000 rad/RIU-cm is realized and nucleic acid detection is also demonstrated.
A Slowed Cell Cycle Stabilizes the Budding Yeast Genome.
Vinton, Peter J; Weinert, Ted
2017-06-01
During cell division, aberrant DNA structures are detected by regulators called checkpoints that slow division to allow error correction. In addition to checkpoint-induced delay, it is widely assumed, though rarely shown, that merely slowing the cell cycle might allow more time for error detection and correction, thus resulting in a more stable genome. Fidelity by a slowed cell cycle might be independent of checkpoints. Here we tested the hypothesis that a slowed cell cycle stabilizes the genome, independent of checkpoints, in the budding yeast Saccharomyces cerevisiae We were led to this hypothesis when we identified a gene ( ERV14 , an ER cargo membrane protein) that when mutated, unexpectedly stabilized the genome, as measured by three different chromosome assays. After extensive studies of pathways rendered dysfunctional in erv14 mutant cells, we are led to the inference that no particular pathway is involved in stabilization, but rather the slowed cell cycle induced by erv14 stabilized the genome. We then demonstrated that, in genetic mutations and chemical treatments unrelated to ERV14 , a slowed cell cycle indeed correlates with a more stable genome, even in checkpoint-proficient cells. Data suggest a delay in G2/M may commonly stabilize the genome. We conclude that chromosome errors are more rarely made or are more readily corrected when the cell cycle is slowed (even ∼15 min longer in an ∼100-min cell cycle). And, some chromosome errors may not signal checkpoint-mediated responses, or do not sufficiently signal to allow correction, and their correction benefits from this "time checkpoint." Copyright © 2017 by the Genetics Society of America.
Crash testing difference-smoothing algorithm on a large sample of simulated light curves from TDC1
NASA Astrophysics Data System (ADS)
Rathna Kumar, S.
2017-09-01
In this work, we propose refinements to the difference-smoothing algorithm for the measurement of time delay from the light curves of the images of a gravitationally lensed quasar. The refinements mainly consist of a more pragmatic approach to choose the smoothing time-scale free parameter, generation of more realistic synthetic light curves for the estimation of time delay uncertainty and using a plot of normalized χ2 computed over a wide range of trial time delay values to assess the reliability of a measured time delay and also for identifying instances of catastrophic failure. We rigorously tested the difference-smoothing algorithm on a large sample of more than thousand pairs of simulated light curves having known true time delays between them from the two most difficult 'rungs' - rung3 and rung4 - of the first edition of Strong Lens Time Delay Challenge (TDC1) and found an inherent tendency of the algorithm to measure the magnitude of time delay to be higher than the true value of time delay. However, we find that this systematic bias is eliminated by applying a correction to each measured time delay according to the magnitude and sign of the systematic error inferred by applying the time delay estimator on synthetic light curves simulating the measured time delay. Following these refinements, the TDC performance metrics for the difference-smoothing algorithm are found to be competitive with those of the best performing submissions of TDC1 for both the tested 'rungs'. The MATLAB codes used in this work and the detailed results are made publicly available.
USDA-ARS?s Scientific Manuscript database
Slow canopy wilting in soybean has been identified as a potentially beneficial trait for ameliorating drought effects on yield. Previous research identified QTLs for slow wilting from two different bi-parental populations and this information was combined with data from three other populations to id...
Watanabe, K; Deboer, T; Meijer, J H
2001-12-01
The suprachiasmatic nuclei of the hypothalamus contain the major circadian pacemaker in mammals, driving circadian rhythms in behavioral and physiological functions. This circadian pacemaker's responsiveness to light allows synchronization to the light-dark cycle. Phase shifting by light often involves several transient cycles in which the behavioral activity rhythm gradually shifts to its steady-state position. In this article, the authors investigate in Syrian hamsters whether a phase-advancing light pulse results in immediate shifts of the PRC at the next circadian cycle. In a first series of experiments, the authors aimed a light pulse at CT 19 to induce a phase advance. It appeared that the steady-state phase advances were highly correlated with activity onset in the first and second transient cycle. This enabled them to make a reliable estimate of the steady-state phase shift induced by a phase-advancing light pulse on the basis of activity onset in the first transient cycle. In the next series of experiments, they presented a light pulse at CT 19, which was followed by a second light pulse aimed at the delay zone of the PRC on the next circadian cycle. The immediate and steady-state phase delays induced by the second light pulse were compared with data from a third experiment in which animals received a phase-delaying light pulse only. The authors observed that the waveform of the phase-delay part of the PRC (CT 12-16) obtained in Experiment 2 was virtually identical to the phase-delay part of the PRC for a single light pulse (obtained in Experiment 3). This finding allowed for a quantitative assessment of the data. The analysis indicates that the delay part of the PRC-between CT 12 and CT 16-is rapidly reset following a light pulse at CT 19. These findings complement earlier findings in the hamster showing that after a light pulse at CT 19, the phase-advancing part of the PRC is immediately shifted. Together, the data indicate that the basis for phase advancing involves rapid resetting of both advance and delay components of the PRC.
Almeida, Sintia; Legembre, Patrick; Edmond, Valérie; Azevedo, Vasco; Miyoshi, Anderson; Even, Sergine; Taieb, Frédéric; Arlot-Bonnemains, Yannick; Le Loir, Yves; Berkova, Nadia
2013-01-01
Staphylococcus aureus is a highly versatile, opportunistic pathogen and the etiological agent of a wide range of infections in humans and warm-blooded animals. The epithelial surface is its principal site of colonization and infection. In this work, we investigated the cytopathic effect of S. aureus strains from human and animal origins and their ability to affect the host cell cycle in human HeLa and bovine MAC-T epithelial cell lines. S. aureus invasion slowed down cell proliferation and induced a cytopathic effect, resulting in the enlargement of host cells. A dramatic decrease in the number of mitotic cells was observed in the infected cultures. Flow cytometry analysis revealed an S. aureus-induced delay in the G2/M phase transition in synchronous HeLa cells. This delay required the presence of live S. aureus since the addition of the heat-killed bacteria did not alter the cell cycle. The results of Western blot experiments showed that the G2/M transition delay was associated with the accumulation of inactive cyclin-dependent kinase Cdk1, a key inducer of mitosis entry, and with the accumulation of unphosphorylated histone H3, which was correlated with a reduction of the mitotic cell number. Analysis of S. aureus proliferation in asynchronous, G1- and G2-phase-enriched HeLa cells showed that the G2 phase was preferential for bacterial infective efficiency, suggesting that the G2 phase delay may be used by S. aureus for propagation within the host. Taken together, our results divulge the potential of S. aureus in the subversion of key cellular processes such as cell cycle progression, and shed light on the biological significance of S. aureus-induced host cell cycle alteration. PMID:23717407
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Xuenan; Zhang Yundong; Tian He
We propose to employ the storage of light in a dynamically tuned add-drop resonator to realize an optical gyroscope of ultrahigh sensitivity and compact size. Taking the impact of the linewidth of incident light on the sensitivity into account, we investigate the effect of rotation on the propagation of a partially coherent light field in this dynamically tuned slow-light structure. It is demonstrated that the fundamental trade-off between the rotation-detection sensitivity and the linewidth will be overcome and the sensitivity-linewidth product will be enhanced by two orders of magnitude in comparison to that of the corresponding static slow-light structure. Furthermore,more » the optical gyroscope employing the storage of light in the dynamically tuned add-drop resonator can acquire ultrahigh sensitivity by extremely short fiber length without a high-performance laser source of narrow linewidth and a complex laser frequency stabilization system. Thus the proposal in this paper provides a promising and feasible scheme to realize highly sensitive and compact integrated optical gyroscopes by slow-light structures.« less
Gannon, Robert L; Millan, Mark J
2011-01-01
Glutamate released from retinal ganglion cells conveys information about the daily light:dark cycle to master circadian pacemaker neurons within the suprachiasmatic nucleus that then synchronize internal circadian rhythms with the external day-length. Glutamate activation of ionotropic glutamate receptors in the suprachiasmatic nucleus is well established, but the function of the metabotropic glutamate receptors that are also located in this nucleus is not known. Therefore, in this study we evaluated agonists and antagonists acting at orthosteric or allosteric sites for mGluR5 and mGluR2/3 metabotropic glutamate receptors for their ability to modulate light-induced phase advances and delays of hamster circadian activity rhythms. mGluR5 allosteric antagonists fenobam, MPEP and MTEP, each 10 mg/kg, potentiated light-induced phase advances of hamster circadian activity rhythms, while the mGluR5 agonists CHPG, (S)-3,5-DHPG or positive allosteric modulator CDPPB had no effect. Neither mGluR5 agonists nor antagonists had any effect on light-induced phase delays of activity rhythms. The competitive mGluR2/3 antagonist LY341495, 10 mg/kg, also potentiated light-induced phase advances, but inhibited light-induced phase delays. The mGluR2/3 agonists LY354740 and LY404039 were without effect on phase advances while a third agonist LY379268, 10 mg/kg, inhibited both light-induced advances and delays. Finally, mGluR2/3 agonists LY379268 and LY404039 also inhibited light-induced phase delays of activity rhythms. These results suggest that during light-induced phase advances, mGluR2/3 and mGluR5 receptors act to negatively modulate the effects of light on the circadian pacemaker or its output(s). mGluR5 receptors do not appear to be involved during light-induced phase delays. In contrast, the role for mGluR2/3 receptors during phase delays is more complicated as both agonists and antagonists inhibit light-induced phase delays. Dysfunctions in human circadian rhythms have been implicated in some forms of depression, and metabotropic glutamate receptor ligands, which are also being evaluated for antidepressant activity, are shown here to be capable of modifying light-induced phase shifts of circadian activity rhythms. Copyright © 2010 Elsevier Ltd. All rights reserved.
The ionic selectivity and calcium dependence of the light-sensitive pathway in toad rods.
Hodgkin, A L; McNaughton, P A; Nunn, B J
1985-01-01
A new method is described for determining the effects of rapid changes in ionic concentration on the light-sensitive currents of rod outer segments. Replacing Na with another monovalent cation caused a rapid change in current followed by an exponential decline of time constant 0.5-2 s. From the magnitude of the initial rapid change in current we conclude that Li, Na, and K and Rb ions pass readily through the light-sensitive channel in the presence of 1 mM-Ca, whereas Cs crosses with difficulty and choline, tetramethylammonium and tetraethylammonium not at all. The effect of reducing Ca in the external medium indicates that the residual inward current recorded for a few seconds when Na is replaced by an impermeant ion is carried largely by Ca ions. With 1 microM-Ca in the external medium the relative ability of monovalent cations to carry light-sensitive current is Li:Na:K:Rb:Cs = 1.4:1:0.8:0.6:0.15. The same order applied in the physiological region but the values are less certain. Large transient inward currents are seen if external Ca is raised form 1 microM to 5 mM or more; these currents which are maximal in an isotonic Ca solution are presumably carried by Ca. The effect of monovalent cations on the number of open light-sensitive channels was tested by adding the cation to a solution containing 55 mM-Na. Na ions open light-sensitive channels with a delay, probably by promoting Na-Ca exchange; K and Rb close channels by inhibiting exchange; Li and Cs seem inert in the exchange mechanism. The rate at which inward current declines in low [Na]o or high [Ca]o is accelerated by weak background lights and slowed by 3-isobutyl-1-methylxanthine (IBMX), which inhibits the hydrolysis of cGMP. On returning to Ringer solution after a period in low [Na]o the current recovers with a delay of about 1 s which decreases as the Ca concentration of the low [Na]o medium is reduced. We conclude that intracellular Ca has a strong effect on the number of open light-sensitive channels. None the less, several observations are inconsistent with channel closure being dependent simply on combination with internal Ca. PMID:2580087
NASA Tech Briefs, January 2004
NASA Technical Reports Server (NTRS)
2004-01-01
Topics covered include: Multisensor Instrument for Real-Time Biological Monitoring; Sensor for Monitoring Nanodevice-Fabrication Plasmas; Backed Bending Actuator; Compact Optoelectronic Compass; Micro Sun Sensor for Spacecraft; Passive IFF: Autonomous Nonintrusive Rapid Identification of Friendly Assets; Finned-Ladder Slow-Wave Circuit for a TWT; Directional Radio-Frequency Identification Tag Reader; Integrated Solar-Energy-Harvesting and -Storage Device; Event-Driven Random-Access-Windowing CCD Imaging System; Stroboscope Controller for Imaging Helicopter Rotors; Software for Checking State-charts; Program Predicts Broadband Noise from a Turbofan Engine; Protocol for a Delay-Tolerant Data-Communication Network; Software Implements a Space-Mission File-Transfer Protocol; Making Carbon-Nanotube Arrays Using Block Copolymers: Part 2; Modular Rake of Pitot Probes; Preloading To Accelerate Slow-Crack-Growth Testing; Miniature Blimps for Surveillance and Collection of Samples; Hybrid Automotive Engine Using Ethanol-Burning Miller Cycle; Fabricating Blazed Diffraction Gratings by X-Ray Lithography; Freeze-Tolerant Condensers; The StarLight Space Interferometer; Champagne Heat Pump; Controllable Sonar Lenses and Prisms Based on ERFs; Measuring Gravitation Using Polarization Spectroscopy; Serial-Turbo-Trellis-Coded Modulation with Rate-1 Inner Code; Enhanced Software for Scheduling Space-Shuttle Processing; Bayesian-Augmented Identification of Stars in a Narrow View; Spacecraft Orbits for Earth/Mars-Lander Radio Relay; and Self-Inflatable/Self-Rigidizable Reflectarray Antenna.
NASA Astrophysics Data System (ADS)
Wang, Fengwen; Jensen, Jakob S.; Sigmund, Ole
2012-10-01
Photonic crystal waveguides are optimized for modal confinement and loss related to slow light with high group index. A detailed comparison between optimized circular-hole based waveguides and optimized waveguides with free topology is performed. Design robustness with respect to manufacturing imperfections is enforced by considering different design realizations generated from under-, standard- and over-etching processes in the optimization procedure. A constraint ensures a certain modal confinement, and loss related to slow light with high group index is indirectly treated by penalizing field energy located in air regions. It is demonstrated that slow light with a group index up to ng = 278 can be achieved by topology optimized waveguides with promising modal confinement and restricted group-velocity-dispersion. All the topology optimized waveguides achieve a normalized group-index bandwidth of 0.48 or above. The comparisons between circular-hole based designs and topology optimized designs illustrate that the former can be efficient for dispersion engineering but that larger improvements are possible if irregular geometries are allowed.
Academic Procrastinators, Strategic Delayers and Something Betwixt and Between: An Interview Study
ERIC Educational Resources Information Center
Lindblom-Ylänne, Sari; Saariaho, Emmi; Inkinen, Mikko; Haarala-Muhonen, Anne; Hailikari, Telle
2015-01-01
The study explored university undergraduates' dilatory behaviour, more precisely, procrastination and strategic delaying. Using qualitative interview data, we applied a theory-driven and person-oriented approach to test the theoretical model of Klingsieck (2013). The sample consisted of 28 Bachelor students whose study pace had been slow during…
Effect of colectomy on gastric emptying in idiopathic slow-transit constipation.
Hemingway, D M; Finlay, I G
2000-09-01
Gastric emptying is delayed in patients with idiopathic slow-transit constipation (ISTC). Gastric emptying was measured before and after colectomy and ileorectal anastomosis in patients with ISTC to determine whether the abnormality persists after operation. Twelve patients undergoing colectomy for severe ISTC had solid-phase gastric emptying measured after an overnight fast. All 12 had an uncomplicated subtotal colectomy and ileorectal anastomosis; 11 had an excellent functional outcome. In ten of these patients gastric emptying was repeated within 3 months of operation. Seven patients (including the remaining two) had the study performed at 1 year. All 12 patients had severely delayed gastric emptying before operation. Gastric emptying remained delayed in the ten patients who underwent an early postoperative gastric emptying study. Six of seven patients assessed at 1 year had improved gastric emptying, of whom four had returned to normal. Functional outcome did not relate to gastric emptying. Patients with ISTC have delayed gastric emptying. In some patients this returns to normal after colectomy, but is persistent in others. This may have implications for our understanding of ISTC.
Slow light enhanced gas sensing in photonic crystals
NASA Astrophysics Data System (ADS)
Kraeh, Christian; Martinez-Hurtado, J. L.; Popescu, Alexandru; Hedler, Harry; Finley, Jonathan J.
2018-02-01
Infrared spectroscopy allows for highly selective and highly sensitive detection of gas species and concentrations. Conventional gas spectrometers are generally large and unsuitable for on-chip applications. Long absorption path lengths are usually required and impose a challenge for miniaturization. In this work, a gas spectrometer is developed consisting of a microtube photonic crystal structure. This structure of millimetric form factors minimizes the required absorption path length due to slow light effects. The microtube photonic crystal allows for strong transmission in the mid-infrared and, due to its large void space fraction, a strong interaction between light and gas molecules. As a result, enhanced absorption of light increases the gas sensitivity of the device. Slow light enhanced gas absorption by a factor of 5.8 in is experimentally demonstrated at 5400 nm. We anticipate small form factor gas sensors on silicon to be a starting point for on-chip gas sensing architectures.
Circadian polymorphisms in night owls, in bipolars, and in non-24-hour sleep cycles.
Kripke, Daniel F; Klimecki, Walter T; Nievergelt, Caroline M; Rex, Katharine M; Murray, Sarah S; Shekhtman, Tatyana; Tranah, Gregory J; Loving, Richard T; Lee, Heon-Jeong; Rhee, Min Kyu; Shadan, Farhad F; Poceta, J Steven; Jamil, Shazia M; Kline, Lawrence E; Kelsoe, John R
2014-10-01
People called night owls habitually have late bedtimes and late times of arising, sometimes suffering a heritable circadian disturbance called delayed sleep phase syndrome (DSPS). Those with DSPS, those with more severe progressively-late non-24-hour sleep-wake cycles, and those with bipolar disorder may share genetic tendencies for slowed or delayed circadian cycles. We searched for polymorphisms associated with DSPS in a case-control study of DSPS research participants and a separate study of Sleep Center patients undergoing polysomnography. In 45 participants, we resequenced portions of 15 circadian genes to identify unknown polymorphisms that might be associated with DSPS, non-24-hour rhythms, or bipolar comorbidities. We then genotyped single nucleotide polymorphisms (SNPs) in both larger samples, using Illumina Golden Gate assays. Associations of SNPs with the DSPS phenotype and with the morningness-eveningness parametric phenotype were computed for both samples, then combined for meta-analyses. Delayed sleep and "eveningness" were inversely associated with loci in circadian genes NFIL3 (rs2482705) and RORC (rs3828057). A group of haplotypes overlapping BHLHE40 was associated with non-24-hour sleep-wake cycles, and less robustly, with delayed sleep and bipolar disorder (e.g., rs34883305, rs34870629, rs74439275, and rs3750275 were associated with n=37, p=4.58E-09, Bonferroni p=2.95E-06). Bright light and melatonin can palliate circadian disorders, and genetics may clarify the underlying circadian photoperiodic mechanisms. After further replication and identification of the causal polymorphisms, these findings may point to future treatments for DSPS, non-24-hour rhythms, and possibly bipolar disorder or depression.
Marquez, Bicky A; Larger, Laurent; Brunner, Daniel; Chembo, Yanne K; Jacquot, Maxime
2016-12-01
We report on experimental and theoretical analysis of the complex dynamics generated by a nonlinear time-delayed electro-optic bandpass oscillator. We investigate the interaction between the slow- and fast-scale dynamics of autonomous oscillations in the breather regime. We analyze in detail the coupling between the fast-scale behavior associated to a characteristic low-pass Ikeda behavior and the slow-scale dynamics associated to a Liénard limit-cycle. Finally, we show that when projected onto a two-dimensional phase space, the attractors corresponding to periodic and chaotic breathers display a spiral-like pattern, which strongly depends on the shape of the nonlinear function.
Arns, Martijn; Kenemans, J Leon
2014-07-01
In this review article an overview of the history and current status of neurofeedback for the treatment of ADHD and insomnia is provided. Recent insights suggest a central role of circadian phase delay, resulting in sleep onset insomnia (SOI) in a sub-group of ADHD patients. Chronobiological treatments, such as melatonin and early morning bright light, affect the suprachiasmatic nucleus. This nucleus has been shown to project to the noradrenergic locus coeruleus (LC) thereby explaining the vigilance stabilizing effects of such treatments in ADHD. It is hypothesized that both Sensori-Motor Rhythm (SMR) and Slow-Cortical Potential (SCP) neurofeedback impact on the sleep spindle circuitry resulting in increased sleep spindle density, normalization of SOI and thereby affect the noradrenergic LC, resulting in vigilance stabilization. After SOI is normalized, improvements on ADHD symptoms will occur with a delayed onset of effect. Therefore, clinical trials investigating new treatments in ADHD should include assessments at follow-up as their primary endpoint rather than assessments at outtake. Furthermore, an implication requiring further study is that neurofeedback could be stopped when SOI is normalized, which might result in fewer sessions. Copyright © 2012 Elsevier Ltd. All rights reserved.
Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials.
Xu, Quan; Su, Xiaoqiang; Ouyang, Chunmei; Xu, Ningning; Cao, Wei; Zhang, Yuping; Li, Quan; Hu, Cong; Gu, Jianqiang; Tian, Zhen; Azad, Abul K; Han, Jiaguang; Zhang, Weili
2016-10-01
Recently reported active metamaterial analogues of electromagnetically induced transparency (EIT) are promising in developing novel optical components, such as active slow light devices. However, most of the previous works have focused on manipulating the EIT resonance strength at a fixed characteristic frequency and, therefore, realized on-to-off switching responses. To further extend the functionalities of the EIT effect, here we present a frequency tunable EIT analogue in the terahertz regime by integrating photoactive silicon into the metamaterial unit cell. A tuning range from 0.82 to 0.74 THz for the EIT resonance frequency is experimentally observed by optical pump-terahertz probe measurements, allowing a frequency tunable group delay of the terahertz pulses. This straightforward approach delivers frequency agility of the EIT resonance and may enable novel ultrafast tunable devices for integrated plasmonic circuits.
Photonuclear Contributions to SNS Pulse Shapes
DOE Office of Scientific and Technical Information (OSTI.GOV)
McClanahan, Tucker C.; Iverson, Erik B.; Gallmeier, Franz X.
Short-pulsed sources like the Spallation Neutron Source (SNS) and ISIS produce bursts of neutron pulses at rates of 10-60 Hz, with sub-microsecond proton pulses impacting on high-Z target materials. Moderators are grouped around the target to receive the fast neutrons generated from spallation reactions to moderate them effciently to thermal and sub-thermal energies and to feed narrow neutron pulses to neutron scattering instruments. The scattering instruments use the neutrons as a probe for material investigations, and make use of time-of-flight (TOF) methods for resolving the neutron energy. The energy resolution of scattering instruments depends on the narrow time-structure of themore » neutron pulses, while neutrons in the long tail of the emission time distributions can degrade the instrument performance and add undesired background to measurements. The SNS neutronics team is investigating a possible source term impacting the background at short-pulsed spallation sources. The ISIS TS2 project claims to have significantly reduced neutron scattering instrument background levels by the elimination or reduction of iron shielding in the target-moderator-reflector assembly. An alternative hypothesis, also proposed by ISIS, suggests that this apparent reduction arises from moving beamline shielding away from the neutron guide channels, reducing albedo down the beamlines. In both hypotheses, the background neutrons in question are believed to be generated by photonuclear reactions. If the background neutrons are indeed generated via photonuclear channels, then they are generated in a time-dependent fashion, since most of the high-energy photons capable of inducing photonuclear production are gone within a few microseconds following the proton pulse. To evaluate this e ect, we have enabled photonuclear reactions in a series of studies for the SNS first target station (FTS) taking advantage of its Monte Carlo model. Using a mixture of ENDF/B VII.0 and TENDL-2014 photonuclear cross sections available and the CEM03 physics model within MCNPX 2.6.0 in the simulation, we are able to estimate the impact of photoneutron production on both overall neutron production and delayed neutron production. We find that a significant number of photon-induced neutrons are produced a few milliseconds after the proton pulse, following prompt gamma emission through the capture of neutrons in the slowing-down and thermalization processes. We name these "slowing-down delayed neutrons" to distinguish them from either "activation-delayed neutrons" or "beta-delayed neutrons." The beta-delayed and activation-delayed neutrons were not part of this study, and will be addressed elsewhere. While these other delayed neutron channels result in the time-independent (constant) production of fast neutrons outside of the prompt pulse, the slowing-down delayed neutrons also a ect the shape of the pulses. Although numerically insignificant in most cases, we describe a set of scenarios related to T0-chopper operation in which the slowing-down delayed neutrons may be important.« less
Cheng, Kenneth C.; Pratt, Jay; Maki, Brian E.
2013-01-01
A recent study involving young adults showed that rapid perturbation-evoked reach-to-grasp balance-recovery reactions can be guided successfully with visuospatial-information (VSI) retained in memory despite: 1) a reduction in endpoint accuracy due to recall-delay (time between visual occlusion and perturbation-onset, PO) and 2) slowing of the reaction when performing a concurrent cognitive task during the recall-delay interval. The present study aimed to determine whether this capacity is compromised by effects of aging. Ten healthy older adults were tested with the previous protocol and compared with the previously-tested young adults. Reactions to recover balance by grasping a small handhold were evoked by unpredictable antero-posterior platform-translation (barriers deterred stepping reactions), while using liquid-crystal goggles to occlude vision post-PO and for varying recall-delay times (0-10s) prior to PO (the handhold was moved unpredictably to one of four locations 2s prior to vision-occlusion). Subjects also performed a spatial- or non-spatial-memory cognitive task during the delay-time in a subset of trials. Results showed that older adults had slower reactions than the young across all experimental conditions. Both age groups showed similar reduction in medio-lateral end-point accuracy when recall-delay was longest (10s), but differed in the effect of recall delay on vertical hand elevation. For both age groups, engaging in either the non-spatial or spatial-memory task had similar (slowing) effects on the arm reactions; however, the older adults also showed a dual-task interference effect (poorer cognitive-task performance) that was specific to the spatial-memory task. This provides new evidence that spatial working memory plays a role in the control of perturbation-evoked balance-recovery reactions. The delays in completing the reaction that occurred when performing either cognitive task suggest that such dual-task situations in daily life could increase risk of falling in seniors, particularly when combined with the general age-related slowing that was observed across all experimental conditions. PMID:24223942
ERIC Educational Resources Information Center
Boets, Bart; Verhoeven, Judith; Wouters, Jan; Steyaert, Jean
2015-01-01
We investigated low-level auditory spectral and temporal processing in adolescents with autism spectrum disorder (ASD) and early language delay compared to matched typically developing controls. Auditory measures were designed to target right versus left auditory cortex processing (i.e. frequency discrimination and slow amplitude modulation (AM)…
Kopp, Franziska; Lindenberger, Ulman
2011-07-01
Joint attention develops during the first year of life but little is known about its effects on long-term memory. We investigated whether joint attention modulates long-term memory in 9-month-old infants. Infants were familiarized with visually presented objects in either of two conditions that differed in the degree of joint attention (high versus low). EEG indicators in response to old and novel objects were probed directly after the familiarization phase (immediate recognition), and following a 1-week delay (delayed recognition). In immediate recognition, the amplitude of positive slow-wave activity was modulated by joint attention. In the delayed recognition, the amplitude of the Pb component differentiated between high and low joint attention. In addition, the positive slow-wave amplitude during immediate and delayed recognition correlated with the frequency of infants' looks to the experimenter during familiarization. Under both high- and low-joint-attention conditions, the processing of unfamiliar objects was associated with an enhanced Nc component. Our results show that the degree of joint attention modulates EEG during immediate and delayed recognition. We conclude that joint attention affects long-term memory processing in 9-month-old infants by enhancing the relevance of attended items. © 2010 Blackwell Publishing Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Enriquez, Miriam M.; Zhang, Cheng; Tan, Howe-Siang, E-mail: howesiang@ntu.edu.sg
2015-06-07
The pathways and dynamics of excitation energy transfer between the chlorophyll (Chl) domains in solubilized trimeric and aggregated light-harvesting complex II (LHCII) are examined using two-dimensional electronic spectroscopy (2DES). The LHCII trimers and aggregates exhibit the unquenched and quenched excitonic states of Chl a, respectively. 2DES allows direct correlation of excitation and emission energies of coupled states over population time delays, hence enabling mapping of the energy flow between Chls. By the excitation of the entire Chl b Q{sub y} band, energy transfer from Chl b to Chl a states is monitored in the LHCII trimers and aggregates. Global analysismore » of the two-dimensional (2D) spectra reveals that energy transfer from Chl b to Chl a occurs on fast and slow time scales of 240–270 fs and 2.8 ps for both forms of LHCII. 2D decay-associated spectra resulting from the global analysis identify the correlation between Chl states involved in the energy transfer and decay at a given lifetime. The contribution of singlet–singlet annihilation on the kinetics of Chl energy transfer and decay is also modelled and discussed. The results show a marked change in the energy transfer kinetics in the time range of a few picoseconds. Owing to slow energy equilibration processes, long-lived intermediate Chl a states are present in solubilized trimers, while in aggregates, the population decay of these excited states is significantly accelerated, suggesting that, overall, the energy transfer within the LHCII complexes is faster in the aggregated state.« less
ERIC Educational Resources Information Center
Arend, Anna M.; Zimmer, Hubert D.
2011-01-01
In the lateralized change detection task, two item arrays are presented, one on each side of the display. Participants have to remember the items in the relevant hemifield and ignore the items in the irrelevant hemifield. A difference wave between contralateral and ipsilateral slow potentials with respect to the relevant items, the contralateral…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-16
... from entering or remaining in the safety zone unless authorized by the Captain of the Port or a... published. In addition, given the dangers involved with a large slow moving dry dock maneuvering close to... with a large slow moving dry dock maneuvering close to the shore, delaying the effective date of this...
Matsuda, Nobuyuki; Kato, Takumi; Harada, Ken-Ichi; Takesue, Hiroki; Kuramochi, Eiichi; Taniyama, Hideaki; Notomi, Masaya
2011-10-10
We demonstrate highly enhanced optical nonlinearity in a coupled-resonator optical waveguide (CROW) in a four-wave mixing experiment. Using a CROW consisting of 200 coupled resonators based on width-modulated photonic crystal nanocavities in a line defect, we obtained an effective nonlinear constant exceeding 10,000 /W/m, thanks to slow light propagation combined with a strong spatial confinement of light achieved by the wavelength-sized cavities.
The race between infection and immunity - how do pathogens set the pace?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ribiero, Ruy M
2009-01-01
Infection is often referred to as a race between pathogen and immune response. This metaphor suggests that slower growing pathogens should be more easily controlled. However, a growing body ofevidence shows that many chronic infections are caused by failure to control slow growing pathogens. The slow growth of pathogens appears to directly affect the kinetics of the immune response. Compared with the response to fast growing pathogens, the T cell response to slow pathogens is delayed in its initiation, lymphocyte expansion is slow and the response often fails to clear the pathogen, leading to chronic infection. Understanding the 'rules ofthemore » race' for slow growing pathogens has important implications for vaccine design and immune control of many chronic infections.« less
Slowing of Bessel light beam group velocity
NASA Astrophysics Data System (ADS)
Alfano, Robert R.; Nolan, Daniel A.
2016-02-01
Bessel light beams experience diffraction-limited propagation. A different basic spatial property of a Bessel beam is reported and investigated. It is shown a Bessel beam is a natural waveguide causing its group velocity can be subluminal (slower than the speed of light) when the optical frequency ω approaches a critical frequency ωc. A free space dispersion relation for a Bessel beam, the dependence of its wave number on its angular frequency, is developed from which the Bessel beam's subluminal group velocity is derived. It is shown under reasonable laboratory conditions that a Bessel light beam has associated parameters that allow slowing near a critical frequency. The application of Bessel beams with 1 μm spot size to slow down 100 ps to 200 ps over 1 cm length for a natural optical buffer in free space is presented.
Different patterns of modality dominance across development.
Barnhart, Wesley R; Rivera, Samuel; Robinson, Christopher W
2018-01-01
The present study sought to better understand how children, young adults, and older adults attend and respond to multisensory information. In Experiment 1, young adults were presented with two spoken words, two pictures, or two word-picture pairings and they had to determine if the two stimuli/pairings were exactly the same or different. Pairing the words and pictures together slowed down visual but not auditory response times and delayed the latency of first fixations, both of which are consistent with a proposed mechanism underlying auditory dominance. Experiment 2 examined the development of modality dominance in children, young adults, and older adults. Cross-modal presentation attenuated visual accuracy and slowed down visual response times in children, whereas older adults showed the opposite pattern, with cross-modal presentation attenuating auditory accuracy and slowing down auditory response times. Cross-modal presentation also delayed first fixations in children and young adults. Mechanisms underlying modality dominance and multisensory processing are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Differential pulse amplitude modulation for multiple-input single-output OWVLC
NASA Astrophysics Data System (ADS)
Yang, S. H.; Kwon, D. H.; Kim, S. J.; Son, Y. H.; Han, S. K.
2015-01-01
White light-emitting diodes (LEDs) are widely used for lighting due to their energy efficiency, eco-friendly, and small size than previously light sources such as incandescent, fluorescent bulbs and so on. Optical wireless visible light communication (OWVLC) based on LED merges lighting and communications in applications such as indoor lighting, traffic signals, vehicles, and underwater communications because LED can be easily modulated. However, physical bandwidth of LED is limited about several MHz by slow time constant of the phosphor and characteristics of device. Therefore, using the simplest modulation format which is non-return-zero on-off-keying (NRZ-OOK), the data rate reaches only to dozens Mbit/s. Thus, to improve the transmission capacity, optical filtering and pre-, post-equalizer are adapted. Also, high-speed wireless connectivity is implemented using spectrally efficient modulation methods: orthogonal frequency division multiplexing (OFDM) or discrete multi-tone (DMT). However, these modulation methods need additional digital signal processing such as FFT and IFFT, thus complexity of transmitter and receiver is increasing. To reduce the complexity of transmitter and receiver, we proposed a novel modulation scheme which is named differential pulse amplitude modulation. The proposed modulation scheme transmits different NRZ-OOK signals with same amplitude and unit time delay using each LED chip, respectively. The `N' parallel signals from LEDs are overlapped and directly detected at optical receiver. Received signal is demodulated by power difference between unit time slots. The proposed scheme can overcome the bandwidth limitation of LEDs and data rate can be improved according to number of LEDs without complex digital signal processing.
High frequency modulation circuits based on photoconductive wide bandgap switches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sampayan, Stephen
Methods, systems, and devices for high voltage and/or high frequency modulation. In one aspect, an optoelectronic modulation system includes an array of two or more photoconductive switch units each including a wide bandgap photoconductive material coupled between a first electrode and a second electrode, a light source optically coupled to the WBGP material of each photoconductive switch unit via a light path, in which the light path splits into multiple light paths to optically interface with each WBGP material, such that a time delay of emitted light exists along each subsequent split light path, and in which the WBGP materialmore » conducts an electrical signal when a light signal is transmitted to the WBGP material, and an output to transmit the electrical signal conducted by each photoconductive switch unit. The time delay of the photons emitted through the light path is substantially equivalent to the time delay of the electrical signal.« less
Delay of constant light-induced persistent vaginal estrus by 24-hour time cues in rats.
Weber, A L; Adler, N T
1979-04-20
The normal ovarian cycle of female rats is typically replaced by persistent estrus when these animals are housed under constant light. Evidence presented here shows that the maintenance of periodicity in the environment can at least delay (if not prevent) the photic induction of persistent vaginal estrus. Female rats in constant light were exposed to vaginal smearing at random times or at the same time every day. In another experiment, female rats were exposed to either constant bright light, constant dim light, or a 24-hour photic cycle of bright and dim light. The onset of persistent vaginal estrus was delayed in rats exposed to 24-hour time cues even though the light intensities were the same as or greater than those for the aperiodic control groups. The results suggest that the absence of 24-hour time cues in constant light contributes to the induction of persistent estrus.
Deng, Yuqiang; Yang, Weijian; Zhou, Chun; Wang, Xi; Tao, Jun; Kong, Weipeng; Zhang, Zhigang
2008-12-01
We propose and demonstrate an analysis method to directly extract the group delay rather than the phase from the white-light spectral interferogram. By the joint time-frequency analysis technique, group delay is directly read from the ridge of wavelet transform, and group-delay dispersion is easily obtained by additional differentiation. The technique shows reasonable potential for the characterization of ultra-broadband chirped mirrors.
Two Effects of Electrical Fields on Chloroplasts 1
Arnold, William A.; Azzi, Jim R.
1977-01-01
An electrical field across a suspension of Chenopodium chloroplasts stimulates the emission of delayed light during the time the field is on. This stimulation can be used to calculate the distance over which the electron moves in the untrapping process that gives the delayed light. An electrical field applied at the time of illumination gives a polarization to the suspension of chloroplasts that lasts for some seconds. This polarization is a new way to study delayed light and fluorescence from chloroplasts. Images PMID:16660112
... causing an irregular or slow heart rhythm) Delayed growth and development ( failure to thrive in infancy) Heart failure Infective endocarditis (bacterial infection of the heart) Pulmonary hypertension (high blood ...
NASA Astrophysics Data System (ADS)
Chang, Shu-Wei; Chang-Hasnain, Connie J.; Wang, Hailin
2005-03-01
The electromagnetically induced transparency from spin coherence has been proposed in [001] quantum wells recently. [1] The spin coherence is a potential candidate to demonstrate semiconductor-based slow light at room temperature. However, the spin coherence time is not long enough to demonstrate a significant slowdown factor in [001] quantum wells. Further, the required transition of light-hole excitons lies in the absorption of heavy-hole continuum states. The extra dephasing and absorption from these continuum states are drawbacks for slow light. Here, we propose to use [110] strained quantum wells instead of [001] quantum wells. The long spin relaxation time in [110] quantum wells at room temperature, and thus more robust spin coherence, [2] as well as the strain-induced separation [3, 4] of the light-hole exciton transition from the heavy-hole continuum absorption can help to slow down light in quantum wells. [1] T. Li, H. Wang, N. H. Kwong, and R. Binder, Opt. Express 11, 3298 (2003). [2] Y. Ohno, R. Terauchi, T. Adachi, F. Matsukura, and H. Ohno, Phys. Rev. Lett. 83, 4196 (1999). [3] C. Y. P. Chao and S. L. Chuang, Phys. Rev. B 46, 4110 (1992). [4] C. Jagannath, E. S. Koteles, J. Lee, Y. J. Chen, B. S. Elman, and J. Y. Chi, Phys. Rev. B 34, 7027 (1986).
Stimulus-driven and knowledge-driven processes in attention to warbles
NASA Astrophysics Data System (ADS)
Dowling, W. Jay; Tillmann, Barbara
2003-10-01
Listeners identified warbles differing in amplitude-modulation rate (3-10 Hz). And measured RT while listeners maintained above 90% correct responses. After a practice session listeners identified target warbles following stimulus-driven or knowledge-driven cues. The stimulus-driven cue was a 250-ms ``beep'' at the target pitch (valid) or another pitch (invalid); the knowledge-driven cue was a midrange ``melody'' pointing to the target pitch (always valid). A 500-ms target warble followed the cue after delays of 0-500 ms (250-750 ms SOA). The listener pressed a key to indicate ``slow'' or ``fast.'' RTs were shortest at the briefest delay. In contrast to results from a memory task, RTs here were much shorter, and we found no evidence for IOR or attentional blink. Listeners began generating responses while the target was still sounding. Invalid ``beeps'' slowed responses at the briefest (but not the longer) delays; adding a valid ``beep'' to the valid ``melody'' did not speed responses.
Capacity of Heterogeneous Mobile Wireless Networks with D-Delay Transmission Strategy.
Wu, Feng; Zhu, Jiang; Xi, Zhipeng; Gao, Kai
2016-03-25
This paper investigates the capacity problem of heterogeneous wireless networks in mobility scenarios. A heterogeneous network model which consists of n normal nodes and m helping nodes is proposed. Moreover, we propose a D-delay transmission strategy to ensure that every packet can be delivered to its destination nodes with limited delay. Different from most existing network schemes, our network model has a novel two-tier architecture. The existence of helping nodes greatly improves the network capacity. Four types of mobile networks are studied in this paper: i.i.d. fast mobility model and slow mobility model in two-dimensional space, i.i.d. fast mobility model and slow mobility model in three-dimensional space. Using the virtual channel model, we present an intuitive analysis of the capacity of two-dimensional mobile networks and three-dimensional mobile networks, respectively. Given a delay constraint D, we derive the asymptotic expressions for the capacity of the four types of mobile networks. Furthermore, the impact of D and m to the capacity of the whole network is analyzed. Our findings provide great guidance for the future design of the next generation of networks.
Bugg, George J; Siddiqui, Farah; Thornton, Jim G
2013-06-23
Slow progress in the first stage of spontaneous labour is associated with an increased caesarean section rate and fetal and maternal morbidity. Oxytocin has long been advocated as a treatment for slow progress in labour but it is unclear to what extent it improves the outcomes for that labour and whether it actually reduces the caesarean section rate or maternal and fetal morbidity. This review will address the use of oxytocin and whether it improves the outcomes for women who are progressing slowly in labour compared to situations where it is not used or where its administration is delayed. To determine if the use of oxytocin for the treatment of slow progress in the first stage of spontaneous labour is associated with a reduction in the incidence of caesarean sections, or maternal and fetal morbidity compared to situations where it is not used or where its administration is delayed. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (23 February 2013) and bibliographies of relevant papers. Randomised controlled trials which compared oxytocin with either placebo, no treatment or delayed oxytocin in the active stage of spontaneous labour in low-risk women at term. Two authors independently assessed studies for inclusion, assessed risk of bias and extracted data. We sought additional information from trial authors. We included eight studies in the review involving a total of 1338 low-risk women in the first stage of spontaneous labour at term. Two comparisons were made; 1) the use of oxytocin versus placebo or no treatment (three trials); 2) the early use of oxytocin versus its delayed use (five trials). There were no significant differences in the rates of caesarean section or instrumental vaginal delivery in either comparison. Early use of oxytocin resulted in an increase in uterine hyperstimulation associated with fetal heart changes. However, the early use of oxytocin versus its delayed use resulted in no significant differences in a range of neonatal and maternal outcomes. Use of early oxytocin resulted in a statistically significant reduction in the mean duration in labour of approximately two hours but did not increase the normal delivery rate. There was significant heterogeneity for this analysis and we carried out a random-effects meta-analysis; however, all of the trials are strongly in the same direction so it is reasonable to conclude that this is the true effect. We also performed a random-effects meta-analysis for the four other analyses which showed substantial heterogeneity in the review. For women making slow progress in spontaneous labour, treatment with oxytocin as compared with no treatment or delayed oxytocin treatment did not result in any discernable difference in the number of caesarean sections performed. In addition there were no detectable adverse effects for mother or baby. The use of oxytocin was associated with a reduction in the time to delivery of approximately two hours which might be important to some women. However, if the primary goal of this treatment is to reduce caesarean section rates, then doctors and midwives may have to look for alternative options.
Slow Inactivation in Shaker K Channels Is Delayed by Intracellular Tetraethylammonium
González-Pérez, Vivian; Neely, Alan; Tapia, Christian; González-Gutiérrez, Giovanni; Contreras, Gustavo; Orio, Patricio; Lagos, Verónica; Rojas, Guillermo; Estévez, Tania; Stack, Katherine; Naranjo, David
2008-01-01
After removal of the fast N-type inactivation gate, voltage-sensitive Shaker (Shaker IR) K channels are still able to inactivate, albeit slowly, upon sustained depolarization. The classical mechanism proposed for the slow inactivation observed in cell-free membrane patches—the so called C inactivation—is a constriction of the external mouth of the channel pore that prevents K+ ion conduction. This constriction is antagonized by the external application of the pore blocker tetraethylammonium (TEA). In contrast to C inactivation, here we show that, when recorded in whole Xenopus oocytes, slow inactivation kinetics in Shaker IR K channels is poorly dependent on external TEA but severely delayed by internal TEA. Based on the antagonism with internally or externally added TEA, we used a two-pulse protocol to show that half of the channels inactivate by way of a gate sensitive to internal TEA. Such gate had a recovery time course in the tens of milliseconds range when the interpulse voltage was −90 mV, whereas C-inactivated channels took several seconds to recover. Internal TEA also reduced gating charge conversion associated to slow inactivation, suggesting that the closing of the internal TEA-sensitive inactivation gate could be associated with a significant amount of charge exchange of this type. We interpreted our data assuming that binding of internal TEA antagonized with U-type inactivation (Klemic, K.G., G.E. Kirsch, and S.W. Jones. 2001. Biophys. J. 81:814–826). Our results are consistent with a direct steric interference of internal TEA with an internally located slow inactivation gate as a “foot in the door” mechanism, implying a significant functional overlap between the gate of the internal TEA-sensitive slow inactivation and the primary activation gate. But, because U-type inactivation is reduced by channel opening, trapping the channel in the open conformation by TEA would also yield to an allosteric delay of slow inactivation. These results provide a framework to explain why constitutively C-inactivated channels exhibit gating charge conversion, and why mutations at the internal exit of the pore, such as those associated to episodic ataxia type I in hKv1.1, cause severe changes in inactivation kinetics. PMID:19029372
Figueiro, Mariana G.
2016-01-01
Background Light is most effective at changing the timing of the circadian clock when applied close to the core body temperature minimum. The present study investigated, in a home setting, if individually tailored light treatment using flashing blue light delivered through closed eyelids during the early part of the sleep period delayed circadian phase and sleep in a population of healthy older adults and in those suffering from early awakening insomnia. Methods Twenty-eight participants (9 early awakening insomniacs) completed an 8-week, within-subjects study. Twice, participants collected data during two baseline weeks and one intervention week. During the intervention week, participants wore a flashing blue (active) or a flashing red (control) light mask during sleep. Light was expected to delay circadian phase. Saliva samples for dim light melatonin onset (DLMO) were collected at the end of each baseline and intervention week. Wrist actigraphy and Daysimeter, a calibrated light and activity meter, data were collected during the entire study. Results Compared to baseline, flashing blue light, but not flashing red light, significantly (p<0.05) delayed DLMO. The mean ± standard deviation phase shift (minutes) was 0:06 ± 0:30 for the flashing red light and 0:34 ± 0:30 for the flashing blue light. Compared to Day 1, sleep start times were significantly delayed (by approximately 46 minutes) at Day 7 after the flashing blue light. The light intervention did not affect sleep efficiency. Conclusions The present study demonstrated the feasibility of using light through closed eyelids during sleep for promoting circadian alignment and sleep health. PMID:26985450
NASA Astrophysics Data System (ADS)
Potter, William J.
2018-01-01
Blazar jets are renowned for their rapid violent variability and multiwavelength flares, however, the physical processes responsible for these flares are not well understood. In this paper, we develop a time-dependent inhomogeneous fluid jet emission model for blazars. We model optically thick radio flares for the first time and show that they are delayed with respect to the prompt optically thin emission by ∼months to decades, with a lag that increases with the jet power and observed wavelength. This lag is caused by a combination of the travel time of the flaring plasma to the optically thin radio emitting sections of the jet and the slow rise time of the radio flare. We predict two types of flares: symmetric flares - with the same rise and decay time, which occur for flares whose duration is shorter than both the radiative lifetime and the geometric path-length delay time-scale; extended flares - whose luminosity tracks the power of particle acceleration in the flare, which occur for flares with a duration longer than both the radiative lifetime and geometric delay. Our model naturally produces orphan X-ray and γ-ray flares. These are caused by flares that are only observable above the quiescent jet emission in a narrow band of frequencies. Our model is able to successfully fit to the observed multiwavelength flaring spectra and light curves of PKS1502+106 across all wavelengths, using a transient flaring front located within the broad-line region.
NASA Astrophysics Data System (ADS)
Kozikowski, Raymond T.; Sorg, Brian S.
2012-03-01
Chemotherapy is a standard treatment for metastatic cancer. However drug toxicity limits the dosage that can safely be used, thus reducing treatment efficacy. Drug carrier particles, like liposomes, can help reduce toxicity by shielding normal tissue from drug and selectively depositing drug in tumors. Over years of development, liposomes have been optimized to avoid uptake by the Reticuloendothelial System (RES) as well as effectively retain their drug content during circulation. As a result, liposomes release drug passively, by slow leakage, but this uncontrolled drug release can limit treatment efficacy as it can be difficult to achieve therapeutic concentrations of drug at tumor sites even with tumor-specific accumulation of the carriers. Lipid membranes can be photochemically lysed by both Type I (photosensitizer-substrate) and Type II (photosensitizer-oxygen) reactions. It has been demonstrated in red blood cells (RBCs) in vitro that these photolysis reactions can occur in two distinct steps: a light-initiated reaction followed by a thermally-initiated reaction. These separable activation steps allow for the delay of photohemolysis in a controlled manner using the irradiation energy, temperature and photosensitizer concentration. In this work we have translated this technique from RBCs to liposomal nanoparticles. To that end, we present in vitro data demonstrating this delayed bolus release from liposomes, as well as the ability to control the timing of this event. Further, we demonstrate for the first time the improved delivery of bioavailable cargo selectively to target sites in vivo.
Wait for It: Post-supernova Winds Driven by Delayed Radioactive Decays
NASA Astrophysics Data System (ADS)
Shen, Ken J.; Schwab, Josiah
2017-01-01
In most astrophysical situations, the radioactive decay of {}56{Ni} to {}56{Co} occurs via electron capture with a fixed half-life of 6.1 days. However, this decay rate is significantly slowed when the nuclei are fully ionized because K-shell electrons are unavailable for capture. In this paper, we explore the effect of these delayed decays on white dwarfs (WDs) that may survive Type Ia and Type Iax supernovae (SNe Ia and SNe Iax). The energy released by the delayed radioactive decays of {}56{Ni} and {}56{Co} drives a persistent wind from the surviving WD’s surface that contributes to the late-time appearance of these SNe after emission from the bulk of the SN ejecta has faded. We use the stellar evolution code MESA to calculate the hydrodynamic evolution and resulting light curves of these winds. Our post-SN Ia models conflict with late-time observations of SN 2011fe, but uncertainties in our initial conditions prevent us from ruling out the existence of surviving WD donors. Much better agreement with observations is achieved with our models of post-SN Iax bound remnants, providing evidence that these explosions are due to deflagrations in accreting WDs that fail to completely unbind the WDs. Future radiative transfer calculations and wind models utilizing simulations of explosions for more accurate initial conditions will extend our study of radioactively powered winds from post-SN surviving WDs and enable their use as powerful discriminants among the various SN Ia and SN Iax progenitor scenarios.
Sy, Jolene R.; Vollmer, Timothy R.
2012-01-01
We evaluated the discrimination acquisition of individuals with developmental disabilities under immediate and delayed reinforcement. In Experiment 1, discrimination between two alternatives was examined when reinforcement was immediate or delayed by 20 s, 30 s, or 40 s. In Experiment 2, discrimination between 2 alternatives was compared across an immediate reinforcement condition and a delayed reinforcement condition in which subjects could respond during the delay. In Experiment 3, discrimination among 4 alternatives was compared across immediate and delayed reinforcement. In Experiment 4, discrimination between 2 alternatives was examined when reinforcement was immediate and 0-s or 30-s intertrial intervals (ITI) were programmed. For most subjects, discrimination acquisition occurred under immediate reinforcement. However, for some subjects, introducing delays slowed or prevented discrimination acquisition under some conditions. Results from Experiment 4 suggest that longer ITIs cannot account for the lack of discrimination under delayed reinforcement. PMID:23322925
Break-before-make CMOS inverter for power-efficient delay implementation.
Puhan, Janez; Raič, Dušan; Tuma, Tadej; Bűrmen, Árpád
2014-01-01
A modified static CMOS inverter with two inputs and two outputs is proposed to reduce short-circuit current in order to increment delay and reduce power overhead where slow operation is required. The circuit is based on bidirectional delay element connected in series with the PMOS and NMOS switching transistors. It provides differences in the dynamic response so that the direct-path current in the next stage is reduced. The switching transistors are never ON at the same time. Characteristics of various delay element implementations are presented and verified by circuit simulations. Global optimization procedure is used to obtain the most power-efficient transistor sizing. The performance of the modified CMOS inverter chain is compared to standard implementation for various delays. The energy (charge) per delay is reduced up to 40%. The use of the proposed delay element is demonstrated by implementing a low-power delay line and a leading-edge detector cell.
Break-before-Make CMOS Inverter for Power-Efficient Delay Implementation
Raič, Dušan
2014-01-01
A modified static CMOS inverter with two inputs and two outputs is proposed to reduce short-circuit current in order to increment delay and reduce power overhead where slow operation is required. The circuit is based on bidirectional delay element connected in series with the PMOS and NMOS switching transistors. It provides differences in the dynamic response so that the direct-path current in the next stage is reduced. The switching transistors are never ON at the same time. Characteristics of various delay element implementations are presented and verified by circuit simulations. Global optimization procedure is used to obtain the most power-efficient transistor sizing. The performance of the modified CMOS inverter chain is compared to standard implementation for various delays. The energy (charge) per delay is reduced up to 40%. The use of the proposed delay element is demonstrated by implementing a low-power delay line and a leading-edge detector cell. PMID:25538951
Long-lived efficient delayed fluorescence organic light-emitting diodes using n-type hosts.
Cui, Lin-Song; Ruan, Shi-Bin; Bencheikh, Fatima; Nagata, Ryo; Zhang, Lei; Inada, Ko; Nakanotani, Hajime; Liao, Liang-Sheng; Adachi, Chihaya
2017-12-21
Organic light-emitting diodes have become a mainstream display technology because of their desirable features. Third-generation electroluminescent devices that emit light through a mechanism called thermally activated delayed fluorescence are currently garnering much attention. However, unsatisfactory device stability is still an unresolved issue in this field. Here we demonstrate that electron-transporting n-type hosts, which typically include an acceptor moiety in their chemical structure, have the intrinsic ability to balance the charge fluxes and broaden the recombination zone in delayed fluorescence organic electroluminescent devices, while at the same time preventing the formation of high-energy excitons. The n-type hosts lengthen the lifetimes of green and blue delayed fluorescence devices by > 30 and 1000 times, respectively. Our results indicate that n-type hosts are suitable to realize stable delayed fluorescence organic electroluminescent devices.
Time delay in atomic photoionization with circularly polarized light
NASA Astrophysics Data System (ADS)
Ivanov, I. A.; Kheifets, A. S.
2013-03-01
We study time delay in atomic photoionization by circularly polarized light. By considering the Li atom in an excited 2p state, we demonstrate a strong time-delay asymmetry between the photoemission of the target electrons that are co- and counter-rotating with the electromagnetic field in the polarization plane. In addition, we observe the time-delay sensitivity to the polar angle of the photoelectron emission in the polarization plane. This modulation depends on the shape and duration of the electromagnetic pulse.
Organization of Anti-Phase Synchronization Pattern in Neural Networks: What are the Key Factors?
Li, Dong; Zhou, Changsong
2011-01-01
Anti-phase oscillation has been widely observed in cortical neural network. Elucidating the mechanism underlying the organization of anti-phase pattern is of significance for better understanding more complicated pattern formations in brain networks. In dynamical systems theory, the organization of anti-phase oscillation pattern has usually been considered to relate to time delay in coupling. This is consistent to conduction delays in real neural networks in the brain due to finite propagation velocity of action potentials. However, other structural factors in cortical neural network, such as modular organization (connection density) and the coupling types (excitatory or inhibitory), could also play an important role. In this work, we investigate the anti-phase oscillation pattern organized on a two-module network of either neuronal cell model or neural mass model, and analyze the impact of the conduction delay times, the connection densities, and coupling types. Our results show that delay times and coupling types can play key roles in this organization. The connection densities may have an influence on the stability if an anti-phase pattern exists due to the other factors. Furthermore, we show that anti-phase synchronization of slow oscillations can be achieved with small delay times if there is interaction between slow and fast oscillations. These results are significant for further understanding more realistic spatiotemporal dynamics of cortico-cortical communications. PMID:22232576
Comparison study on disturbance estimation techniques in precise slow motion control
NASA Astrophysics Data System (ADS)
Fan, S.; Nagamune, R.; Altintas, Y.; Fan, D.; Zhang, Z.
2010-08-01
Precise low speed motion control is important for the industrial applications of both micro-milling machine tool feed drives and electro-optical tracking servo systems. It calls for precise position and instantaneous velocity measurement and disturbance, which involves direct drive motor force ripple, guide way friction and cutting force etc., estimation. This paper presents a comparison study on dynamic response and noise rejection performance of three existing disturbance estimation techniques, including the time-delayed estimators, the state augmented Kalman Filters and the conventional disturbance observers. The design technique essentials of these three disturbance estimators are introduced. For designing time-delayed estimators, it is proposed to substitute Kalman Filter for Luenberger state observer to improve noise suppression performance. The results show that the noise rejection performances of the state augmented Kalman Filters and the time-delayed estimators are much better than the conventional disturbance observers. These two estimators can give not only the estimation of the disturbance but also the low noise level estimations of position and instantaneous velocity. The bandwidth of the state augmented Kalman Filters is wider than the time-delayed estimators. In addition, the state augmented Kalman Filters can give unbiased estimations of the slow varying disturbance and the instantaneous velocity, while the time-delayed estimators can not. The simulation and experiment conducted on X axis of a 2.5-axis prototype micro milling machine are provided.
Mechanics of the Delayed Fracture of Viscoelastic Bodies with Cracks: Theory and Experiment (Review)
NASA Astrophysics Data System (ADS)
Kaminsky, A. A.
2014-09-01
Theoretical and experimental studies on the deformation and delayed fracture of viscoelastic bodies due to slow subcritical crack growth are reviewed. The focus of this review is on studies of subcritical growth of cracks with well-developed fracture process zones, the conditions that lead to their critical development, and all stages of slow crack growth from initiation to the onset of catastrophic growth. Models, criteria, and methods used to study the delayed fracture of viscoelastic bodies with through and internal cracks are analyzed. Experimental studies of the fracture process zones in polymers using physical and mechanical methods as well as theoretical studies of these zones using fracture mesomechanics models that take into account the structural and rheological features of polymers are reviewed. Particular attention is given to crack growth in anisotropic media, the effect of the aging of viscoelastic materials on their delayed fracture, safe external loads that do not cause cracks to propagate, the mechanism of multiple-flaw fracture of viscoelastic bodies with several cracks and, especially, processes causing cracks to coalesce into a main crack, which may result in a break of the body. Methods and results of solving two- and three-dimensional problems of the mechanics of delayed fracture of aging and non-aging viscoelastic bodies with cracks under constant and variable external loads, wedging, and biaxial loads are given
SLOW $pi$$sup +$-MESON CAPTURE BY LIGHT NUCLEI IN THE CORRELATIONAL NUCLEAR MODEL (in Russian)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shklyarevskii, G.M.
Absorption of slow pi /sup +/-mesons by light nuclei in the pi /sup +/ + A yields A' + 2p reaction is considered. It is shown that an investigation of the proton spectra permits one to study small range pair correlation between nuclear nucleons. Conditions in which the corresponding experiments should be carried out are indicated. (auth)
NASA Astrophysics Data System (ADS)
Shu, Chang; Chen, Qing-Guo; Mei, Jin-Shuo; Yin, Jing-Hua
2018-03-01
In this paper, we numerically demonstrated a dynamically tunable implementation of electromagnetically induced transparency (EIT) response with two coupling graphene-nanostrips in terahertz region. Compared to the metal-based structures or separated graphene structures, the Fermi energies of proposed two coupling graphene-nanostrips can be independently tuned by changing bias voltage between the metallic pads and substrate, the EIT window which appears from the near-field coupling between two resonators can be dynamically tuned without reoptimizing and refabricating the structures. As a result, the EIT window has a significant tunable capacity which can realize a higher frequency modulation depth and control the amplitude of transmission peak at a fixed frequency; moreover, the group delay of transmission peak at a fixed frequency with the amplitude of over 0.95 could be dynamically tuned. These results would exhibit potential applications in modulators and tunable slow light devices.
Method and apparatus for measuring the intensity and phase of an ultrashort light pulse
Kane, Daniel J.; Trebino, Rick P.
1998-01-01
The pulse shape I(t) and phase evolution x(t) of ultrashort light pulses are obtained using an instantaneously responding nonlinear optical medium to form a signal pulse. A light pulse, such a laser pulse, is split into a gate pulse and a probe pulse, where the gate pulse is delayed relative to the probe pulse. The gate pulse and the probe pulse are combined within an instantaneously responding optical medium to form a signal pulse functionally related to a temporal slice of the gate pulse corresponding to the time delay of the probe pulse. The signal pulse is then input to a wavelength-selective device to output pulse field information comprising intensity vs. frequency for a first value of the time delay. The time delay is varied over a range of values effective to yield an intensity plot of signal intensity vs. wavelength and delay. In one embodiment, the beams are overlapped at an angle so that a selected range of delay times is within the intersection to produce a simultaneous output over the time delays of interest.
Acousto-Optic Adaptive Processing (AOAP).
1983-12-01
2.03 mm 136 mm 41.6 mm Dense Flint Glass .58 1.06 48.6 21.7 LiNbO3 .65 2.24 250 46 1011 1 -: PbMoO4 .207 1.25 84.3 25.3 .- Slow Shear TeO2 .0586...mm 41.6 m Dense Flint Glass 5.9 1.06 3.2 21.7 LiNbO3 6.6 2.24 16.3 46 PbMoO4 2.1 1.25 5.5 25.6 TeO2 ’" ’" (slow,•...: Shear) 0.59 0.21 0.15 4.32 It is...was observed. 3.1.3 Delay Line The delay line used for the initial experiment is an Isomet Type 1201 AO modulator. This is a glass unit operat- ing at
A late wake time phase delays the human dim light melatonin rhythm.
Burgess, Helen J; Eastman, Charmane I
2006-03-13
Short sleep/dark durations, due to late bedtimes or early wake times or both, are common in modern society. We have previously shown that a series of days with a late bedtime phase delays the human dim light melatonin rhythm, as compared to a series of days with an early bedtime, despite a fixed wake time. Here we compared the effect of an early versus late wake time with a fixed bedtime on the human dim light melatonin rhythm. Fourteen healthy subjects experienced 2 weeks of short 6h nights with an early wake time fixed at their habitual weekday wake time and 2 weeks of long 9 h nights with a wake time that occurred 3h later than the early wake time, in counterbalanced order. We found that after 2 weeks with the late wake time, the dim light melatonin onset delayed by 2.4 h and the dim light melatonin offset delayed by 2.6 h (both p < 0.001), as compared to after 2 weeks with the early wake time. These results highlight the substantial influence that wake time, likely via the associated morning light exposure, has on the timing of the human circadian clock. Furthermore, the results suggest that when people truncate their sleep by waking early their circadian clocks phase advance and when people wake late their circadian clocks phase delay.
Follow-up study of children with cerebral coordination disturbance (CCD, Vojta).
Imamura, S; Sakuma, K; Takahashi, T
1983-01-01
713 children (from newborn to 12-month-old) with delayed motor development were carefully examined and classified into normal, very light cerebral coordination disturbance (CCD, Vojta), light CCD, moderate CCD, severe CCD, suspected cerebral palsy (CP) and other diseases at their first visit, and were followed up carefully. Finally, 89.0% of very light CCD, 71.4% of light CCD, 56.0% of moderate CCD and 30.0% of severe CCD developed into normal. 59.5% of moderate CCD and 45.5% of severe CCD among children who were given Vojta's physiotherapy developed into normal. The classification of cases with delayed motor development into very light, light, moderate and severe CCD based on the extent of abnormality in their postural reflexes is useful and well correlated with their prognosis. Treatment by Vojta's method seems to be efficient and helpful for young children with delayed motor development.
Grønli, Janne; Byrkjedal, Ida Kristiansen; Bjorvatn, Bjørn; Nødtvedt, Øystein; Hamre, Børge; Pallesen, Ståle
2016-05-01
To objectively and subjectively compare whether reading a story for 30 min from an iPad or from a book in bed prior to sleep will differentially affect sleep. Sixteen students (12 females, mean age 25.1 ± 2.9 years) underwent ambulatory (sleeping in their own beds at home) polysomnographic (PSG) recordings in a counterbalanced crossover design consisting of three PSG nights (one adaptation night, two test nights) and two different reading materials: read from an iPad or from a book. Illumination was measured during reading and Karolinska Sleepiness Scale was completed prior to turning the light off. Sleep diaries were kept to assess subjective sleep parameters from day to day. Illumination was higher in the iPad condition compared to the book condition (58.3 ± 6.9 vs 26.7 ± 8.0 lux, p <0.001). Reading a story from an iPad decreased subjective sleepiness, delayed the EEG dynamics of slow wave activity by approximately 30 min, and reduced slow wave activity after sleep onset compared to reading from a book. No parameters of sleep state timing and sleep onset latency differed between the two reading conditions. Although there was no direct effect on time spent in different sleep states and self-reported sleep onset latency, the use of an iPad which emits blue enriched light impinges acutely on sleepiness and EEG characteristics of sleep pressure. Hence, the use of commercially available tablets may have consequences in terms of alertness, circadian physiology, and sleep. Published by Elsevier B.V.
Evening daylight may cause adolescents to sleep less in spring than in winter
Figueiro, Mariana G.; Rea, Mark S.
2012-01-01
Sleep restriction commonly experienced by adolescents can stem from greater sleep pressure by the homeostatic processes and from phase delays of the circadian system. With regard to the latter potential cause, we hypothesized that because there is more natural evening light during the spring than winter, a sample of adolescent students would be more phase delayed in spring than in winter, would have later sleep onset times and, because of fixed school schedules, would have shorter sleep durations. Sixteen eighth-grade subjects were recruited for the study. We collected sleep logs and saliva samples to determine their dim light melatonin onset (DLMO), a well-established circadian marker. Actual circadian light exposures experienced by a subset of twelve subjects over the course of seven days in winter and in spring using a personal, head-worn, circadian light measurement device are also reported here. Results showed that this sample of adolescents was exposed to significantly more circadian light in spring than in winter, especially in the evening hours when light exposure would likely delay circadian phase. Consistent with the light data, DLMO and sleep onset times were significantly more delayed, and sleep durations were significantly shorter in spring than in winter. The present ecological study of light, circadian phase, and self-reported sleep suggests that greater access to evening daylight in the spring may lead to sleep restriction in adolescents while attending school. Therefore, lighting schemes that reduce evening light in the spring may encourage longer sleep times in adolescents. PMID:20653452
Intricate Plasma-Scattered Images and Spectra of Focused Femtosecond Laser Pulses
Ooi, C. H. Raymond; Talib, Md. Ridzuan
2016-01-01
We report on some interesting phenomena in the focusing and scattering of femtosecond laser pulses in free space that provide insights on intense laser plasma interactions. The scattered image in the far field is analyzed and the connection with the observed structure of the plasma at the focus is discussed. We explain the physical mechanisms behind the changes in the colorful and intricate image formed by scattering from the plasma for different compressions, as well as orientations of plano-convex lens. The laser power does not show significant effect on the images. The pulse repetition rate above 500 Hz can affect the image through slow dynamics The spectrum of each color in the image shows oscillatory peaks due to interference of delayed pulse that correlate with the plasma length. Spectral lines of atomic species are identified and new peaks are observed through the white light emitted by the plasma spot. We find that an Ar gas jet can brighten the white light of the plasma spot and produce high resolution spectral peaks. The intricate image is found to be extremely sensitive and this is useful for applications in sensing microscale objects. PMID:27571644
Involvement of Spindles in Memory Consolidation Is Slow Wave Sleep-Specific
ERIC Educational Resources Information Center
Cox, Roy; Hofman, Winni F.; Talamini, Lucia M.
2012-01-01
Both sleep spindles and slow oscillations have been implicated in sleep-dependent memory consolidation. Whereas spindles occur during both light and deep sleep, slow oscillations are restricted to deep sleep, raising the possibility of greater consolidation-related spindle involvement during deep sleep. We assessed declarative memory retention…
An efficient hybrid method for stochastic reaction-diffusion biochemical systems with delay
NASA Astrophysics Data System (ADS)
Sayyidmousavi, Alireza; Ilie, Silvana
2017-12-01
Many chemical reactions, such as gene transcription and translation in living cells, need a certain time to finish once they are initiated. Simulating stochastic models of reaction-diffusion systems with delay can be computationally expensive. In the present paper, a novel hybrid algorithm is proposed to accelerate the stochastic simulation of delayed reaction-diffusion systems. The delayed reactions may be of consuming or non-consuming delay type. The algorithm is designed for moderately stiff systems in which the events can be partitioned into slow and fast subsets according to their propensities. The proposed algorithm is applied to three benchmark problems and the results are compared with those of the delayed Inhomogeneous Stochastic Simulation Algorithm. The numerical results show that the new hybrid algorithm achieves considerable speed-up in the run time and very good accuracy.
Inducing jet-lag in older people: directional asymmetry
NASA Technical Reports Server (NTRS)
Monk, T. H.; Buysse, D. J.; Carrier, J.; Kupfer, D. J.
2000-01-01
Twenty healthy elderly subjects (12 female, 8 male; mean age 81 years, range 67-87 years) each experienced a 15-day time isolation protocol in which they lived individually in a special laboratory apartment in which sleep and circadian rhythm measures could be taken. There were two experiments: one (6 females, 4 males) involved a 6-h phase advance of the sleep/wake cycle, and the other (6 females, 4 males) a 6-h phase delay. Each started with 5 baseline days, immediately followed by the phase shift. The subject was then held to the phase shifted routine for the remainder of the study. Rectal temperatures were recorded minute-by-minute throughout the entire experiment and each night of sleep was recorded using polysomnography. A directional asymmetry in phase-shift effects was apparent, with significantly more sleep disruption and circadian rhythm amplitude disruption after the phase advance than after the phase delay. Sleep disruption was reflected in reduced time spent asleep, and in changed REM latency, which increased in the phase advance direction but decreased in the phase delay direction. Although the phase advance led to a significant increase in wakefulness in the first half of the night, the phase delay did not lead to an equivalent increase in wakefulness during the second half of the night. Examination of both raw and 'demasked' circadian rectal temperature rhythms confirmed that phase adjustment was slow in both directions, but was less slow (and more monotonic) after the phase delay than after the phase advance. Subjective alertness suffered more disruption after the phase advance than after the phase delay.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhury, Debajyoti; Ghoshal, Debashis; Sen, Anjan Ananda, E-mail: debajyoti.choudhury@gmail.com, E-mail: dghoshal@mail.jnu.ac.in, E-mail: anjan.ctp@jmi.ac.in
2012-02-01
The introduction of a delay in the Friedmann equation of cosmological evolution is shown to result in the very early universe undergoing the necessary accelerated expansion in the usual radiation (or matter) dominated phase. Occurring even without a violation of the strong energy condition, this expansion slows down naturally to go over to the decelerated phase, namely the standard Hubble expansion. This may obviate the need for a scalar field driven inflationary epoch.
Myosin content of individual human muscle fibers isolated by laser capture microdissection.
Stuart, Charles A; Stone, William L; Howell, Mary E A; Brannon, Marianne F; Hall, H Kenton; Gibson, Andrew L; Stone, Michael H
2016-03-01
Muscle fiber composition correlates with insulin resistance, and exercise training can increase slow-twitch (type I) fibers and, thereby, mitigate diabetes risk. Human skeletal muscle is made up of three distinct fiber types, but muscle contains many more isoforms of myosin heavy and light chains, which are coded by 15 and 11 different genes, respectively. Laser capture microdissection techniques allow assessment of mRNA and protein content in individual fibers. We found that specific human fiber types contain different mixtures of myosin heavy and light chains. Fast-twitch (type IIx) fibers consistently contained myosin heavy chains 1, 2, and 4 and myosin light chain 1. Type I fibers always contained myosin heavy chains 6 and 7 (MYH6 and MYH7) and myosin light chain 3 (MYL3), whereas MYH6, MYH7, and MYL3 were nearly absent from type IIx fibers. In contrast to cardiomyocytes, where MYH6 (also known as α-myosin heavy chain) is seen solely in fast-twitch cells, only slow-twitch fibers of skeletal muscle contained MYH6. Classical fast myosin heavy chains (MHC1, MHC2, and MHC4) were present in variable proportions in all fiber types, but significant MYH6 and MYH7 expression indicated slow-twitch phenotype, and the absence of these two isoforms determined a fast-twitch phenotype. The mixed myosin heavy and light chain content of type IIa fibers was consistent with its role as a transition between fast and slow phenotypes. These new observations suggest that the presence or absence of MYH6 and MYH7 proteins dictates the slow- or fast-twitch phenotype in skeletal muscle. Copyright © 2016 the American Physiological Society.
Myosin content of individual human muscle fibers isolated by laser capture microdissection
Stone, William L.; Howell, Mary E. A.; Brannon, Marianne F.; Hall, H. Kenton; Gibson, Andrew L.; Stone, Michael H.
2015-01-01
Muscle fiber composition correlates with insulin resistance, and exercise training can increase slow-twitch (type I) fibers and, thereby, mitigate diabetes risk. Human skeletal muscle is made up of three distinct fiber types, but muscle contains many more isoforms of myosin heavy and light chains, which are coded by 15 and 11 different genes, respectively. Laser capture microdissection techniques allow assessment of mRNA and protein content in individual fibers. We found that specific human fiber types contain different mixtures of myosin heavy and light chains. Fast-twitch (type IIx) fibers consistently contained myosin heavy chains 1, 2, and 4 and myosin light chain 1. Type I fibers always contained myosin heavy chains 6 and 7 (MYH6 and MYH7) and myosin light chain 3 (MYL3), whereas MYH6, MYH7, and MYL3 were nearly absent from type IIx fibers. In contrast to cardiomyocytes, where MYH6 (also known as α-myosin heavy chain) is seen solely in fast-twitch cells, only slow-twitch fibers of skeletal muscle contained MYH6. Classical fast myosin heavy chains (MHC1, MHC2, and MHC4) were present in variable proportions in all fiber types, but significant MYH6 and MYH7 expression indicated slow-twitch phenotype, and the absence of these two isoforms determined a fast-twitch phenotype. The mixed myosin heavy and light chain content of type IIa fibers was consistent with its role as a transition between fast and slow phenotypes. These new observations suggest that the presence or absence of MYH6 and MYH7 proteins dictates the slow- or fast-twitch phenotype in skeletal muscle. PMID:26676053
Adult fast myosin pattern and Ca2+-induced slow myosin pattern in primary skeletal muscle culture
Kubis, Hans-Peter; Haller, Ernst-August; Wetzel, Petra; Gros, Gerolf
1997-01-01
A primary muscle cell culture derived from newborn rabbit muscle and growing on microcarriers in suspension was established. When cultured for several weeks, the myotubes in this model develop the completely adult pattern of fast myosin light and heavy chains. When Ca2+ ionophore is added to the culture medium on day 11, raising intracellular [Ca2+] about 10-fold, the myotubes develop to exhibit properties of an adult slow muscle by day 30, expressing slow myosin light as well as heavy chains, elevated citrate synthase, and reduced lactate dehydrogenase. The remarkable plasticity of these myotubes becomes apparent, when 8 days after withdrawal of the ionophore a marked slow-to-fast transition, as judged from the expression of isomyosins and metabolic enzymes, occurs. PMID:9108130
Broadband slow light in one-dimensional logically combined photonic crystals.
Alagappan, G; Png, C E
2015-01-28
Here, we demonstrate the broadband slow light effects in a new family of one dimensional photonic crystals, which are obtained by logically combining two photonic crystals of slightly different periods. The logical combination slowly destroys the original translational symmetries of the individual photonic crystals. Consequently, the Bloch modes of the individual photonic crystals with different wavevectors couple with each other, creating a vast number of slow modes. Specifically, we describe a photonic crystal architecture that results from a logical "OR" mixture of two one dimensional photonic crystals with a periods ratio of r = R/(R - 1), where R > 2 is an integer. Such a logically combined architecture, exhibits a broad region of frequencies in which a dense number of slow modes with varnishing group velocities, appear naturally as Bloch modes.
Aging and Age-Related Diseases of the Ocular Lens and Vitreous Body
Petrash, J. Mark
2013-01-01
Reduced quality of life and financial burden due to visual impairment and blindness begin to increase dramatically when individuals reach the age of 40. The major causes of age-related vision loss can be traced to changes to the structure and function of the lens, one of the tissues responsible for focusing light on the retina. Age-related nuclear cataracts, which are caused by aggregation and condensation of proteins, diminish vision because they impede the transmission and focusing of light on the retina. In addition to the slow-developing age-related form, cataracts often develop rapidly as a complication of ocular surgery, such as following vitrectomy or as a consequence of vitreous gel degeneration. Posterior capsular opacification, which can develop following cataract removal, is caused by proliferation and inappropriate accumulation of lens epithelial cells on the surfaces of intraocular lenses and the posterior lens capsule. Presbyopia is a loss of accommodative amplitude and reduced ability to shift focus from far to near objects. Onset of presbyopia is associated with an increase in lens hardness and reduced ability of the lens to change shape in response to ciliary muscle contraction. Avenues of promising research that seek to delay or prevent these causes of low vision are discussed in light of our current understanding of disease pathogenesis and some challenges that must be met to achieve success. PMID:24335070
Applications of high-dimensional photonic entaglement
NASA Astrophysics Data System (ADS)
Broadbent, Curtis J.
This thesis presents the results of four experiments related to applications of higher dimensional photonic entanglement. (1) We use energy-time entangled biphotons from spontaneous parametric down-conversion (SPDC) to implement a large-alphabet quantum key distribution (QKD) system which securely transmits up to 10 bits of the random key per photon. An advantage over binary alphabet QKD is demonstrated for quantum channels with a single-photon transmission-rate ceiling. The security of the QKD system is based on the measurable reduction of entanglement in the presence of eavesdropping. (2) We demonstrate the preservation of energy-time entanglement in a tunable slow-light medium. The fine-structure resonances of a hot Rubidium vapor are used to slow one photon from an energy-time entangled biphoton generated with non-degenerate SPDC. The slow-light medium is placed in one arm of a Franson interferometer. The observed Franson fringes witness the presence of entanglement and quantify a delay of 1.3 biphoton correlation lengths. (3) We utilize holograms to discriminate between two spatially-coherent single-photon images. Heralded single photons are created with degenerate SPDC and sent through one of two transmission masks to make single-photon images with no spatial overlap. The single-photon images are sent through a previously prepared holographic filter. The filter discriminates the single-photon images with an average confidence level of 95%. (4) We employ polarization entangled biphotons generated from non-collinear SPDC to violate a generalized Leggett-Garg inequality with non-local weak measurements. The weak measurement is implemented with Fresnel reflection of a microscope coverslip on one member of the entangled biphoton. Projective measurement with computer-controlled polarizers on the entangled state after the weak measurement yields a joint probability with three degrees of freedom. Contextual values are then used to determine statistical averages of measurement operations from the joint probability. Correlations between the measured averages are shown to violate the upper bound of three distinct two-object Leggett-Garg inequalities derived from assumptions of macro-realism. A relationship between the violation of two-object Leggett-Garg inequalities and strange non-local weak values is derived and experimentally demonstrated.
Microlensing makes lensed quasar time delays significantly time variable
NASA Astrophysics Data System (ADS)
Tie, S. S.; Kochanek, C. S.
2018-01-01
The time delays of gravitationally lensed quasars are generally believed to be unique numbers whose measurement is limited only by the quality of the light curves and the models for the contaminating contribution of gravitational microlensing to the light curves. This belief is incorrect - gravitational microlensing also produces changes in the actual time delays on the ∼day(s) light-crossing time-scale of the emission region. This is due to a combination of the inclination of the disc relative to the line of sight and the differential magnification of the temperature fluctuations producing the variability. We demonstrate this both mathematically and with direct calculations using microlensing magnification patterns. Measuring these delay fluctuations can provide a physical scale for microlensing observations, removing the need for priors on either the microlens masses or the component velocities. That time delays in lensed quasars are themselves time variable likely explains why repeated delay measurements of individual lensed quasars appear to vary by more than their estimated uncertainties. This effect is also a new important systematic problem for attempts to use time delays in lensed quasars for cosmology or to detect substructures (satellites) in lens galaxies.
Light inhibits spore germination through phytochrome in Aspergillus nidulans.
Röhrig, Julian; Kastner, Christian; Fischer, Reinhard
2013-05-01
Aspergillus nidulans responds to light in several aspects. The balance between sexual and asexual development as well as the amount of secondary metabolites produced is controlled by light. Here, we show that germination is largely delayed by blue (450 nm), red (700 nm), and far-red light (740 nm). The largest effect was observed with far-red light. Whereas 60 % of the conidia produced a germ tube after 20 h in the dark, less than 5 % of the conidia germinated under far-red light conditions. Because swelling of conidia was not affected, light appears to act at the stage of germ-tube formation. In the absence of nutrients, far-red light even inhibited swelling of conidia, whereas in the dark, conidia did swell and germinated after prolonged incubation. The blue-light signaling components, LreA (WC-1) and LreB (WC-2), and also the cryptochrome/photolyase CryA were not required for germination inhibition. However, in the phytochrome mutant, ∆fphA, the germination delay was released, but germination was delayed in the dark in comparison to wild type. This suggests a novel function of phytochrome as far-red light sensor and as activator of polarized growth in the dark.
Scintigraphic measurement of regional gut transit in idiopathic constipation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stivland, T.; Camilleri, M.; Vassallo, M.
1991-07-01
In this study, total gut transit and regional colonic transit in patients with idiopathic constipation were measured scintigraphically. Eight patients with severe constipation were studied, none of whom had evidence of abnormal function of the pelvic floor. 99mTc-radiolabeled Amberlite resin particles with a mixed meal were used to assess gastric emptying and small bowel transit; similar particles labeled with 111In were ingested in a coated capsule that dispersed in the ileocecal region. These were used to quantify colonic transit. Five healthy volunteers were also studied. Two patients showed delayed gastric emptying and two had slow small bowel transit. Seven ofmore » the eight patients had slow colonic transit. In five, delay affected the whole colon (pancolonic inertia); in two, transit in the ascending and transverse colon was normal, but solids moved through the left colon slowly. Mean colonic transit was also measured using radiopaque markers; this technique identified the patients with slow transit, as shown by measurements of overall colonic transit by simultaneous scintigraphy. However, estimated transit through the ascending and transverse colons was considerably shorter by the radiopaque marker technique. In conclusion, idiopathic constipation is characterized by either exaggerated reservoir functions of the ascending and transverse colons and/or impairment of propulsive function in the descending colon. Particle size may influence the result of regional colonic transit tests. Transit delays in other parts of the gut suggest that, in some patients, the condition may be a more generalized motor dysfunction.« less
Evaluation of Swift Start TCP in Long-Delay Environment
NASA Technical Reports Server (NTRS)
Lawas-Grodek, Frances J.; Tran, Diepchi T.
2004-01-01
This report presents the test results of the Swift Start algorithm in single-flow and multiple-flow testbeds under the effects of high propagation delays, various slow bottlenecks, and small queue sizes. Although this algorithm estimates capacity and implements packet pacing, the findings were that in a heavily congested link, the Swift Start algorithm will not be applicable. The reason is that the bottleneck estimation is falsely influenced by timeouts induced by retransmissions and the expiration of delayed acknowledgment (ACK) timers, thus causing the modified Swift Start code to fall back to regular transmission control protocol (TCP).
Nesterenko, T V; Tikhomirov, A A; Shikhov, V N
2012-01-01
The effect of exciting light intensity and leaves age on characteristics of slow stage of chlorophyll fluorescence induction (CFI) of radish leaves has been investigated. Light dependence of the relationship of maximum fluorescence intensity in the peak P and the stationary fluorescence level (F(P)/F(S)) and also light dependence of temporal characteristics of CFI (T0.5 - half decrease of chlorophyll fluorescence intensity during slow stage of fluorescence induction and tmin - summarized CFI characteristics derived by calculating via integral proportional to variable part of illuminated in the result of chlorophyll fluorescence energy during slow stage of CFI) have been studied. Plants were grown in controlled conditions of light culture at 100 Wt/m2 of photosynthetic active radiation (PAR). It has been shown that variability of the characteristics under study, associated with the effect of leaves age, significantly decreases at exciting light intensity equal to 40 Wt/m2 of PAR and more. The lowest effect of leaves age on the value of fluorescence characteristics for T0.5 and tmin and also for F(P)/F(S) ratio was observed at the intensity of exciting fluorescence light of 60 Wt/m2 of PAR. In the researched range of light intensities the temporal characteristics of T0.5 and tmin for uneven-aged radish leaves appeared to be by an order less responsive to the intensity changes of exciting fluorescence light as compared with F(P)/F(S) ratio.
Evening daylight may cause adolescents to sleep less in spring than in winter.
Figueiro, Mariana G; Rea, Mark S
2010-07-01
Sleep restriction commonly experienced by adolescents can stem from a slower increase in sleep pressure by the homeostatic processes and from phase delays of the circadian system. With regard to the latter potential cause, the authors hypothesized that because there is more natural evening light during the spring than winter, a sample of adolescent students would be more phase delayed in spring than in winter, would have later sleep onset times, and because of fixed school schedules would have shorter sleep durations. Sixteen eighth-grade subjects were recruited for the study. The authors collected sleep logs and saliva samples to determine their dim light melatonin onset (DLMO), a well-established circadian marker. Actual circadian light exposures experienced by a subset of 12 subjects over the course of 7 days in winter and in spring using a personal, head-worn, circadian light measurement device are also reported here. Results showed that this sample of adolescents was exposed to significantly more circadian light in spring than in winter, especially during the evening hours when light exposure would likely delay circadian phase. Consistent with the light data, DLMO and sleep onset times were significantly more delayed, and sleep durations were significantly shorter in spring than in winter. The present ecological study of light, circadian phase, and self-reported sleep suggests that greater access to evening daylight in the spring may lead to sleep restriction in adolescents while attending school. Therefore, lighting schemes that reduce evening light in the spring may encourage longer sleep times in adolescents.
Saatkamp, Arne; Affre, Laurence; Dutoit, Thierry; Poschlod, Peter
2011-01-01
Background and Aims Seed persistence in the soil under field conditions is an important issue for the maintenance of local plant populations and the restoration of plant communities, increasingly so in the light of rapidly changing land use and climate change. Whereas processes important for dispersal in space are well known, knowledge of processes governing dispersal in time is still limited. Data for morphological seed traits such as size have given contradictory results for prediction of soil seed persistence or cover only a few species. There have been few experimental studies on the role of germination traits in determining soil seed persistence, while none has studied their predictive value consistently across species. Delayed germination, as well as light requirements for germination, have been suggested to contribute to the formation of persistent seed banks. Moreover, diurnally fluctuating temperatures can influence the timing of germination and are therefore linked to seed bank persistence. Methods The role of germination speed measured by T50 (days to germination of 50 % of all germinated seeds), light requirement and reaction to diurnally fluctuating temperatures in determining seed persistence in the soil was evaluated using an experimental comparative data set of 25 annual cereal weed species. Key Results It is shown that light requirements and slow germination are important features to maintain seeds ungerminated just after entering the soil, and hence influence survival of seeds in the soil. However, the detection of low diurnally fluctuating temperatures enhances soil seed bank persistence by limiting germination. Our data further suggest that the effect of diurnally fluctuating temperatures, as measured on seeds after dispersal and dry storage, is increasingly important to prevent fatal germination after longer burial periods. Conclusions These results underline the functional role of delayed germination and light for survival of seeds in the soil and hence their importance for shaping the first part of the seed decay curve. Our analyses highlight the detection of diurnally fluctuating temperatures as a third mechanism to achieve higher soil seed persistence after burial which interacts strongly with season. We therefore advocate focusing future research on mechanisms that favour soil seed persistence after longer burial times and moving from studies of morphological features to exploration of germination traits such as reaction to diurnally fluctuating temperatures. PMID:21224268
Automatic toilet seat lowering apparatus
Guerty, Harold G.
1994-09-06
A toilet seat lowering apparatus includes a housing defining an internal cavity for receiving water from the water supply line to the toilet holding tank. A descent delay assembly of the apparatus can include a stationary dam member and a rotating dam member for dividing the internal cavity into an inlet chamber and an outlet chamber and controlling the intake and evacuation of water in a delayed fashion. A descent initiator is activated when the internal cavity is filled with pressurized water and automatically begins the lowering of the toilet seat from its upright position, which lowering is also controlled by the descent delay assembly. In an alternative embodiment, the descent initiator and the descent delay assembly can be combined in a piston linked to the rotating dam member and provided with a water channel for creating a resisting pressure to the advancing piston and thereby slowing the associated descent of the toilet seat. A toilet seat lowering apparatus includes a housing defining an internal cavity for receiving water from the water supply line to the toilet holding tank. A descent delay assembly of the apparatus can include a stationary dam member and a rotating dam member for dividing the internal cavity into an inlet chamber and an outlet chamber and controlling the intake and evacuation of water in a delayed fashion. A descent initiator is activated when the internal cavity is filled with pressurized water and automatically begins the lowering of the toilet seat from its upright position, which lowering is also controlled by the descent delay assembly. In an alternative embodiment, the descent initiator and the descent delay assembly can be combined in a piston linked to the rotating dam member and provided with a water channel for creating a resisting pressure to the advancing piston and thereby slowing the associated descent of the toilet seat.
How decoherence affects the probability of slow-roll eternal inflation
NASA Astrophysics Data System (ADS)
Boddy, Kimberly K.; Carroll, Sean M.; Pollack, Jason
2017-07-01
Slow-roll inflation can become eternal if the quantum variance of the inflaton field around its slowly rolling classical trajectory is converted into a distribution of classical spacetimes inflating at different rates, and if the variance is large enough compared to the rate of classical rolling that the probability of an increased rate of expansion is sufficiently high. Both of these criteria depend sensitively on whether and how perturbation modes of the inflaton interact and decohere. Decoherence is inevitable as a result of gravitationally sourced interactions whose strength are proportional to the slow-roll parameters. However, the weakness of these interactions means that decoherence is typically delayed until several Hubble times after modes grow beyond the Hubble scale. We present perturbative evidence that decoherence of long-wavelength inflaton modes indeed leads to an ensemble of classical spacetimes with differing cosmological evolutions. We introduce the notion of per-branch observables—expectation values with respect to the different decohered branches of the wave function—and show that the evolution of modes on individual branches varies from branch to branch. Thus, single-field slow-roll inflation fulfills the quantum-mechanical criteria required for the validity of the standard picture of eternal inflation. For a given potential, the delayed decoherence can lead to slight quantitative adjustments to the regime in which the inflaton undergoes eternal inflation.
Generation of wideband chaos with suppressed time-delay signature by delayed self-interference.
Wang, Anbang; Yang, Yibiao; Wang, Bingjie; Zhang, Beibei; Li, Lei; Wang, Yuncai
2013-04-08
We demonstrate experimentally and numerically a method using the incoherent delayed self-interference (DSI) of chaotic light from a semiconductor laser with optical feedback to generate wideband chaotic signal. The results show that, the DSI can eliminate the domination of laser relaxation oscillation existing in the chaotic laser light and therefore flatten and widen the power spectrum. Furthermore, the DSI depresses the time-delay signature induced by external cavity modes and improves the symmetry of probability distribution by more than one magnitude. We also experimentally show that this DSI signal is beneficial to the random number generation.
NASA Astrophysics Data System (ADS)
Ziauddin; Rahman, Mujeeb ur; Ahmad, Iftikhar; Qamar, Sajid
2017-10-01
The transmission characteristics of probe light field is investigated theoretically in a compound system of two coupled resonators. The proposed system consisted of two high-Q Fabry-Perot resonators in which one of the resonators is optomechanical. Optomechanically induced transparency (OMIT), having relatively large window, is noticed via strong coupling between the two resonators. We investigate tunable switching from single to double OMIT by increasing amplitude of the pump field. We notice that, control of slow and fast light can be obtained via the coupling strength between the two resonators.
Moore, Brian C J; Füllgrabe, Christian; Stone, Michael A
2011-01-01
To determine preferred parameters of multichannel compression using individually fitted simulated hearing aids and a method of paired comparisons. Fourteen participants with mild to moderate hearing loss listened via a simulated five-channel compression hearing aid fitted using the CAMEQ2-HF method to pairs of speech sounds (a male talker and a female talker) and musical sounds (a percussion instrument, orchestral classical music, and a jazz trio) presented sequentially and indicated which sound of the pair was preferred and by how much. The sounds in each pair were derived from the same token and differed along a single dimension in the type of processing applied. For the speech sounds, participants judged either pleasantness or clarity; in the latter case, the speech was presented in noise at a 2-dB signal-to-noise ratio. For musical sounds, they judged pleasantness. The parameters explored were time delay of the audio signal relative to the gain control signal (the alignment delay), compression speed (attack and release times), bandwidth (5, 7.5, or 10 kHz), and gain at high frequencies relative to that prescribed by CAMEQ2-HF. Pleasantness increased with increasing alignment delay only for the percussive musical sound. Clarity was not affected by alignment delay. There was a trend for pleasantness to decrease slightly with increasing bandwidth, but this was significant only for female speech with fast compression. Judged clarity was significantly higher for the 7.5- and 10-kHz bandwidths than for the 5-kHz bandwidth for both slow and fast compression and for both talker genders. Compression speed had little effect on pleasantness for 50- or 65-dB SPL input levels, but slow compression was generally judged as slightly more pleasant than fast compression for an 80-dB SPL input level. Clarity was higher for slow than for fast compression for input levels of 80 and 65 dB SPL but not for a level of 50 dB SPL. Preferences for pleasantness were approximately equal with CAMEQ2-HF gains and with gains slightly reduced at high frequencies and were lower when gains were slightly increased at high frequencies. Speech clarity was not affected by changing the gain at high frequencies. Effects of alignment delay were small except for the percussive sound. A wider bandwidth was slightly preferred for speech clarity. Speech clarity was slightly greater with slow compression, especially at high levels. Preferred high-frequency gains were close to or a little below those prescribed by CAMEQ2-HF.
H0 from ten well-measured time delay lenses
NASA Astrophysics Data System (ADS)
Rathna Kumar, S.; Stalin, C. S.; Prabhu, T. P.
2015-08-01
In this work, we present a homogeneous curve-shifting analysis using the difference-smoothing technique of the publicly available light curves of 24 gravitationally lensed quasars, for which time delays have been reported in the literature. The uncertainty of each measured time delay was estimated using realistic simulated light curves. The recipe for generating such simulated light curves with known time delays in a plausible range around the measured time delay is introduced here. We identified 14 gravitationally lensed quasars that have light curves of sufficiently good quality to enable the measurement of at least one time delay between the images, adjacent to each other in terms of arrival-time order, to a precision of better than 20% (including systematic errors). We modeled the mass distribution of ten of those systems that have known lens redshifts, accurate astrometric data, and sufficiently simple mass distribution, using the publicly available PixeLens code to infer a value of H0 of 68.1 ± 5.9 km s-1 Mpc-1 (1σ uncertainty, 8.7% precision) for a spatially flat universe having Ωm = 0.3 and ΩΛ = 0.7. We note here that the lens modeling approach followed in this work is a relatively simple one and does not account for subtle systematics such as those resulting from line-of-sight effects and hence our H0 estimate should be considered as indicative.
Sleep during an Antarctic summer expedition: new light on "polar insomnia".
Pattyn, Nathalie; Mairesse, Olivier; Cortoos, Aisha; Marcoen, Nele; Neyt, Xavier; Meeusen, Romain
2017-04-01
Sleep complaints are consistently cited as the most prominent health and well-being problem in Arctic and Antarctic expeditions, without clear evidence to identify the causal mechanisms. The present investigation aimed at studying sleep and determining circadian regulation and mood during a 4-mo Antarctic summer expedition. All data collection was performed during the continuous illumination of the Antarctic summer. After an habituation night and acclimatization to the environment (3 wk), ambulatory polysomnography (PSG) was performed in 21 healthy male subjects, free of medication. An 18-h profile (saliva sampling every 2 h) of cortisol and melatonin was assessed. Mood, sleepiness, and subjective sleep quality were assessed, and the psychomotor vigilance task was administered. PSG showed, in addition to high sleep fragmentation, a major decrease in slow-wave sleep (SWS) and an increase in stage R sleep. Furthermore, the ultradian rhythmicity of sleep was altered, with SWS occurring mainly at the end of the night and stage R sleep at the beginning. Cortisol secretion profiles were normal; melatonin secretion, however, showed a severe phase delay. There were no mood alterations according to the Profile of Mood States scores, but the psychomotor vigilance test showed an impaired vigilance performance. These results confirm previous reports on "polar insomnia", the decrease in SWS, and present novel insight, the disturbed ultradian sleep structure. A hypothesis is formulated linking the prolonged SWS latency to the phase delay in melatonin. NEW & NOTEWORTHY The present paper presents a rare body of work on sleep and sleep wake regulation in the extreme environment of an Antarctic expedition, documenting the effects of constant illumination on sleep, mood, and chronobiology. For applied research, these results suggest the potential efficiency of melatonin supplementation in similar deployments. For fundamental research, these results warrant further investigation of the potential link between melatonin secretion and the onset of slow-wave sleep. Copyright © 2017 the American Physiological Society.
Lee, Byoung-Chul; Hoff, Wouter D.
2008-01-01
Photoactive yellow protein (PYP), a blue-light photoreceptor for Ectothiorhodospira halophila, has provided a unique system for studying protein folding that is coupled with a photocycle. Upon receptor activation by blue light, PYP proceeds through a photocycle that includes a partially folded signaling state. The last-step photocycle is a thermal recovery reaction from the signaling state to the native state. Bi-exponential kinetics had been observed for the last-step photocycle; however, the slow phase of the bi-exponential kinetics has not been extensively studied. Here we analyzed both fast and slow phases of the last-step photocycle in PYP. From the analysis of the denaturant dependence of the fast and slow phases, we found that the last-step photocycle proceeds through parallel channels of the folding pathway. The burial of the solvent-accessible area was responsible for the transition state of the fast phase, while structural rearrangement from the compact state to the native state was responsible for the transition state of the slow phase. The photocycle of PYP was linked to the thermodynamic cycle that includes both unfolding and refolding of the fast- and slow-phase intermediates. In order to test the hypothesis of proline-limited folding for the slow phase, we constructed two proline mutants: P54A and P68A. We found that only a single phase of the last-step photocycle was observed in P54A. This suggests that there is a low energy barrier between trans to cis conformation in P54 in the light-induced state of PYP, and the resulting cis conformation of P54 generates a slow-phase kinetic trap during the photocycle-coupled folding pathway of PYP. PMID:18794212
Dynamic Light Scattering Study of Pig Vitreous Body
NASA Astrophysics Data System (ADS)
Matsuura, Toyoaki; Idota, Naokazu; Hara, Yoshiaki; Annaka, Masahiko
The phase behaviors and dynamical properties of pig vitreous body were studied by macroscopic observation of swelling behavior and dynamic light scattering under various conditions. From the observations of the dynamics of light scattered by the pig vitreous body under physiological condition, intensity autocorrelation functions that revealed two diffusion coefficients, D fast and D slow were obtained. We developed the theory for describing the density fluctuation of the entities in the vitreous gel system with sodium hyaluronate filled in the meshes of collagen fiber network. The dynamics of collagen and sodium hyaluronate explains two relaxation modes of the fluctuation. The diffusion coefficient of collagen obtained from D fast and D slow is very close to that in aqueous solution, which suggests the vitreous body is in the swollen state. Divergent behavior in the measured total scattered light intensities and diffusion coefficients upon varying the concentration of salt (NaCl and CaCl2) was observed. Namely, a slowing down of the dynamic modes accompanied by increased “static” scattered intensities was observed. This is indicative of the occurrence of a phase transition upon salt concentration.
Karatekin, C; Asarnow, R F
1998-10-01
This study tested the hypotheses that visual search impairments in schizophrenia are due to a delay in initiation of search or a slow rate of serial search. We determined the specificity of these impairments by comparing children with schizophrenia to children with attention-deficit hyperactivity disorder (ADHD) and age-matched normal children. The hypotheses were tested within the framework of feature integration theory by administering children tasks tapping parallel and serial search. Search rate was estimated from the slope of the search functions, and duration of the initial stages of search from time to make the first saccade on each trial. As expected, manual response times were elevated in both clinical groups. Contrary to expectation, ADHD, but not schizophrenic, children were delayed in initiation of serial search. Finally, both groups showed a clear dissociation between intact parallel search rates and slowed serial search rates.
Beyond the faster-is-slower effect
NASA Astrophysics Data System (ADS)
Sticco, I. M.; Cornes, F. E.; Frank, G. A.; Dorso, C. O.
2017-11-01
The "faster-is-slower" effect arises when crowded people push each other to escape through an exit during an emergency situation. As individuals push harder, a statistical slowing down in the evacuation time can be achieved. The slowing down is caused by the presence of small groups of pedestrians (say, a small human cluster) that temporarily block the way out when trying to leave the room. The pressure on the pedestrians belonging to this blocking cluster increases for increasing anxiety levels and/or a larger number of individuals trying to leave the room through the same door. Our investigation shows, however, that very high pressures alter the dynamics in the blocking cluster and, thus, change the statistics of the time delays along the escaping process. A reduction in the long lasting delays can be acknowledged, while the overall evacuation performance improves. We present results on this phenomenon taking place beyond the faster-is-slower regime.
Liu, Xiao-Ke; Chen, Zhan; Zheng, Cai-Jun; Liu, Chuan-Lin; Lee, Chun-Sing; Li, Fan; Ou, Xue-Mei; Zhang, Xiao-Hong
2015-04-08
High-efficiency, thermally activated delayed-fluorescence organic light-emitting diodes based on exciplex emitters are demonstrated. The best device, based on a TAPC:DPTPCz emitter, shows a high external quantum efficiency of 15.4%. Strategies for predicting and designing efficient exciplex emitters are also provided. This approach allow prediction and design of efficient exciplex emitters for achieving high-efficiency organic light-emitting diodes, for future use in displays and lighting applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Laura M. Blackburn; Donna S. Leonard; Patrick C. Tobin
2011-01-01
The Slow the Spread Program operates along the expanding population front of the gypsy moth, from Minnesota to North Carolina. The primary objective of the program is to eliminate newly-founded colonies that form ahead of the leading edge to reduce the gypsy moth's rate of spread and delay the costs associated with infestation and outbreaks. Although the majority...
Ikeda-like chaos on a dynamically filtered supercontinuum light source
NASA Astrophysics Data System (ADS)
Chembo, Yanne K.; Jacquot, Maxime; Dudley, John M.; Larger, Laurent
2016-08-01
We demonstrate temporal chaos in a color-selection mechanism from the visible spectrum of a supercontinuum light source. The color-selection mechanism is governed by an acousto-optoelectronic nonlinear delayed-feedback scheme modeled by an Ikeda-like equation. Initially motivated by the design of a broad audience live demonstrator in the framework of the International Year of Light 2015, the setup also provides a different experimental tool to investigate the dynamical complexity of delayed-feedback dynamics. Deterministic hyperchaos is analyzed here from the experimental time series. A projection method identifies the delay parameter, for which the chaotic strange attractor originally evolving in an infinite-dimensional phase space can be revealed in a two-dimensional subspace.
Timing considerations of Helmet Mounted Display performance
NASA Technical Reports Server (NTRS)
Tharp, Gregory; Liu, Andrew; French, Lloyd; Lai, Steve; Stark, Lawrence
1992-01-01
The Helmet Mounted Display (HMD) system developed in our lab should be a useful teleoperator systems display if it increases operator performance of the desired task; it can, however, introduce degradation in performance due to display update rate constraints and communication delays. Display update rates are slowed by communication bandwidth and/or computational power limitations. We used simulated 3D tracking and pick-and-place tasks to characterize performance levels for a range of update rates. Initial experiments with 3D tracking indicate that performance levels plateau at an update rate between 10 and 20 Hz. We have found that using the HMD with delay decreases performance as delay increases.
Delayed embryonic development in the Indian short-nosed fruit bat, Cynopterus sphinx.
Meenakumari, Karukayil J; Krishna, Amitabh
2005-01-01
The unusual feature of the breeding cycle of Cynopterus sphinx at Varanasi is the significant variation in gestation length of the two successive pregnancies of the year. The aim of this study was to investigate whether the prolongation of the first pregnancy in C. sphinx is due to delayed embryonic development. The first (winter) pregnancy commences in late October and lasts until late March and has a gestation period of about 150 days. The second (summer) pregnancy commences in April and lasts until the end of July or early August with a gestation period of about 125 days. Changes in the size and weight of uterine cornua during the two successive pregnancies suggest retarded embryonic growth during November and December. Histological analysis during the period of retarded embryonic development in November and December showed a slow gastrulation process. The process of amniogenesis was particularly slow. When the embryos attained the early primitive streak stage, their developmental rate suddenly increased considerably. During the summer pregnancy, on the other hand, the process of gastrulation was much faster and proceeded quickly. A comparison of the pattern of embryonic development for 4 consecutive years consistently showed retarded or delayed embryonic development during November and December. The time of parturition and post-partum oestrus showed only a limited variation from 1 year to another. This suggests that delayed embryonic development in C. sphinx may function to synchronize parturition among females. The period of delayed embryonic development in this species clearly coincides with the period of fat deposition. The significance of this correlation warrants further investigation.
Rapid identification of slow healing wounds
Jung, Kenneth; Covington, Scott; Sen, Chandan K.; Januszyk, Michael; Kirsner, Robert S.; Gurtner, Geoffrey C.; Shah, Nigam H.
2016-01-01
Chronic nonhealing wounds have a prevalence of 2% in the United States, and cost an estimated $50 billion annually. Accurate stratification of wounds for risk of slow healing may help guide treatment and referral decisions. We have applied modern machine learning methods and feature engineering to develop a predictive model for delayed wound healing that uses information collected during routine care in outpatient wound care centers. Patient and wound data was collected at 68 outpatient wound care centers operated by Healogics Inc. in 26 states between 2009 and 2013. The dataset included basic demographic information on 59,953 patients, as well as both quantitative and categorical information on 180,696 wounds. Wounds were split into training and test sets by randomly assigning patients to training and test sets. Wounds were considered delayed with respect to healing time if they took more than 15 weeks to heal after presentation at a wound care center. Eleven percent of wounds in this dataset met this criterion. Prognostic models were developed on training data available in the first week of care to predict delayed healing wounds. A held out subset of the training set was used for model selection, and the final model was evaluated on the test set to evaluate discriminative power and calibration. The model achieved an area under the curve of 0.842 (95% confidence interval 0.834–0.847) for the delayed healing outcome and a Brier reliability score of 0.00018. Early, accurate prediction of delayed healing wounds can improve patient care by allowing clinicians to increase the aggressiveness of intervention in patients most at risk. PMID:26606167
Ehgoetz Martens, Kaylena A; Ellard, Colin G; Almeida, Quincy J
2015-03-01
Although dopaminergic replacement therapy is believed to improve sensory processing in PD, while delayed perceptual speed is thought to be caused by a predominantly cholinergic deficit, it is unclear whether sensory-perceptual deficits are a result of corrupt sensory processing, or a delay in updating perceived feedback during movement. The current study aimed to examine these two hypotheses by manipulating visual flow speed and dopaminergic medication to examine which influenced distance estimation in PD. Fourteen PD and sixteen HC participants were instructed to estimate the distance of a remembered target by walking to the position the target formerly occupied. This task was completed in virtual reality in order to manipulate the visual flow (VF) speed in real time. Three conditions were carried out: (1) BASELINE: VF speed was equal to participants' real-time movement speed; (2) SLOW: VF speed was reduced by 50 %; (2) FAST: VF speed was increased by 30 %. Individuals with PD performed the experiment in their ON and OFF state. PD demonstrated significantly greater judgement error during BASELINE and FAST conditions compared to HC, although PD did not improve their judgement error during the SLOW condition. Additionally, PD had greater variable error during baseline compared to HC; however, during the SLOW conditions, PD had significantly less variable error compared to baseline and similar variable error to HC participants. Overall, dopaminergic medication did not significantly influence judgement error. Therefore, these results suggest that corrupt processing of sensory information is the main contributor to sensory-perceptual deficits during movement in PD rather than delayed updating of sensory feedback.
Ultrasonic inspection of studs (bolts) using dynamic predictive deconvolution and wave shaping.
Suh, D M; Kim, W W; Chung, J G
1999-01-01
Bolt degradation has become a major issue in the nuclear industry since the 1980's. If small cracks in stud bolts are not detected early enough, they grow rapidly and cause catastrophic disasters. Their detection, despite its importance, is known to be a very difficult problem due to the complicated structures of the stud bolts. This paper presents a method of detecting and sizing a small crack in the root between two adjacent crests in threads. The key idea is from the fact that the mode-converted Rayleigh wave travels slowly down the face of the crack and turns from the intersection of the crack and the root of thread to the transducer. Thus, when a crack exists, a small delayed pulse due to the Rayleigh wave is detected between large regularly spaced pulses from the thread. The delay time is the same as the propagation delay time of the slow Rayleigh wave and is proportional to the site of the crack. To efficiently detect the slow Rayleigh wave, three methods based on digital signal processing are proposed: wave shaping, dynamic predictive deconvolution, and dynamic predictive deconvolution combined with wave shaping.
Qubit transfer between photons at telecom and visible wavelengths in a slow-light atomic medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gogyan, A.
We propose a method that enables efficient conversion of the quantum information frequency between different regions of a spectrum of light based on recently demonstrated strong parametric coupling between two narrow-band single-photon pulses propagating in a slow-light atomic medium [N. Sisakyan and Yu. Malakyan, Phys. Rev. A, 75, 063831 (2007)]. We show that an input qubit at telecom wavelength is transformed into another at a visible domain in a lossless and shape-conserving manner while keeping the initial quantum coherence and entanglement. These transformations can be realized with a quantum efficiency close to its maximum value.
Controlled patterns of daytime light exposure improve circadian adjustment in simulated night work.
Dumont, Marie; Blais, Hélène; Roy, Joanie; Paquet, Jean
2009-10-01
Circadian misalignment between the endogenous circadian signal and the imposed rest-activity cycle is one of the main sources of sleep and health troubles in night shift workers. Timed bright light exposure during night work can reduce circadian misalignment in night workers, but this approach is limited by difficulties in incorporating bright light treatment into most workplaces. Controlled light and dark exposure during the daytime also has a significant impact on circadian phase and could be easier to implement in real-life situations. The authors previously described distinctive light exposure patterns in night nurses with and without circadian adaptation. In the present study, the main features of these patterns were used to design daytime light exposure profiles. Profiles were then tested in a laboratory simulation of night work to evaluate their efficacy in reducing circadian misalignment in night workers. The simulation included 2 day shifts followed by 4 consecutive night shifts (2400-0800 h). Healthy subjects (15 men and 23 women; 20-35 years old) were divided into 3 groups to test 3 daytime light exposure profiles designed to produce respectively a phase delay (delay group, n=12), a phase advance (advance group, n=13), or an unchanged circadian phase (stable group, n=13). In all 3 groups, light intensity was set at 50 lux during the nights of simulated night work. Salivary dim light melatonin onset (DLMO) showed a significant phase advance of 2.3 h (+/-1.3 h) in the advance group and a significant phase delay of 4.1 h (+/-1.3 h) in the delay group. The stable group showed a smaller but significant phase delay of 1.7 h (+/-1.6 h). Urinary 6-sulfatoxymelatonin (aMT6s) acrophases were highly correlated to salivary DLMOs. Urinary aMT6s acrophases were used to track daily phase shifts. They showed that phase shifts occurred rapidly and differed between the 3 groups by the 3rd night of simulated night work. These results show that significant phase shifts can be achieved in night workers by controlling daytime light exposure, with no nighttime intervention.
NASA Astrophysics Data System (ADS)
Hamedi, H. R.; Ruseckas, J.; Juzeliūnas, G.
2017-09-01
We consider propagation of a probe pulse in an atomic medium characterized by a combined tripod and Lambda (Λ) atom-light coupling scheme. The scheme involves three atomic ground states coupled to two excited states by five light fields. It is demonstrated that dark states can be formed for such an atom-light coupling. This is essential for formation of the electromagnetically induced transparency (EIT) and slow light. In the limiting cases the scheme reduces to conventional Λ- or N-type atom-light couplings providing the EIT or absorption, respectively. Thus, the atomic system can experience a transition from the EIT to the absorption by changing the amplitudes or phases of control lasers. Subsequently the scheme is employed to analyze the nonlinear pulse propagation using the coupled Maxwell-Bloch equations. It is shown that a generation of stable slow light optical solitons is possible in such a five-level combined tripod and Λ atomic system.
LIGHT EXPOSURE AMONG ADOLESCENTS WITH DELAYED SLEEP PHASE DISORDER: A PROSPECTIVE COHORT STUDY
Auger, R. Robert; Burgess, Helen J.; Dierkhising, Ross A.; Sharma, Ruchi G.; Slocumb, Nancy L.
2012-01-01
Our study objective was to compare light exposure and sleep parameters between adolescents with delayed sleep phase disorder (n=16, 15.3 ± 1.8 years) and unaffected controls (n=22, 13.7 ± 2.4 years) using a prospective cohort design. Participants wore wrist actigraphs with photosensors for 14 days. Mean hourly lux levels from 20:00-05:00 h and 05:00-14:00 h were examined, in addition to the 9-hour intervals prior to sleep onset and after sleep offset. Sleep parameters were compared separately, and were also included as covariates within models that analyzed associations with specified light intervals. Additional covariates included group and school night status. Adolescent subjects with delayed sleep phase disorder received more evening (p<0.02, 22:00-02:00 h) and less morning light (p<0.05, 08:00-09:00 h and 10:00-12:00 h) than controls, but had less pre-sleep exposure with adjustments for the time of sleep onset (p<0.03, fifth-seventh hours prior to onset hour). No differences were identified with respect to the sleep offset interval. Increased total sleep time and later sleep offset times were associated with decreased evening (p<0.001 and p=0.02, respectively) and morning (p=0.01 and p<0.001, respectively) exposure, and later sleep onset times were associated with increased evening exposure (p<0.001). Increased total sleep time also correlated with increased exposure during the 9 hours before sleep-onset (p=0.01), and a later sleep onset time corresponded with decreased exposure during the same interval (p<0.001). Outcomes persisted regardless of school night status. In conclusion, light exposure interpretation requires adjustments for sleep timing among adolescents with delayed sleep phase disorder. Pre- and post-sleep exposure do not appear to contribute directly to phase delays. Sensitivity to morning light may be reduced among adolescents with delayed sleep phase disorder. PMID:22080736
Unequal-Arm Interferometry and Ranging in Space
NASA Technical Reports Server (NTRS)
Tinto, Massimo
2005-01-01
Space-borne interferometric gravitational wave detectors, sensitive in the low-frequency (millihertz) band, will fly in the next decade. In these detectors the spacecraft-to-spacecraft light-traveltimes will necessarily be unequal, time-varying, and (due to aberration) have different time delays on up- and down-links. By using knowledge of the inter-spacecraft light-travel-times and their time evolution it is possible to cancel in post-processing the otherwise dominant laser phase noise and obtain a variety of interferometric data combinations sensitive to gravitational radiation. This technique, which has been named Time-Delay Interferometry (TDI), can be implemented with constellations of three or more formation-flying spacecraft that coherently track each other. As an example application we consider the Laser Interferometer Space Antenna (LISA) mission and show that TDI combinations can be synthesized by properly time-shifting and linearly combining the phase measurements performed on board the three spacecraft. Since TDI exactly suppresses the laser noises when the delays coincide with the light-travel-times, we then show that TDI can also be used for estimating the time-delays needed for its implementation. This is done by performing a post-processing non-linear minimization procedure, which provides an effective, powerful, and simple way for making measurements of the inter-spacecraft light-travel-times. This processing technique, named Time-Delay Interferometric Ranging (TDIR), is highly accurate in estimating the time-delays and allows TDI to be successfully implemented without the need of a dedicated ranging subsystem.
Inadequate Antioxidative Responses in Kidneys of Brain-Dead Rats.
Hoeksma, Dane; Rebolledo, Rolando A; Hottenrott, Maximilia; Bodar, Yves S; Wiersema-Buist, Janneke J; Van Goor, Harry; Leuvenink, Henri G D
2017-04-01
Brain death (BD)-related lipid peroxidation, measured as serum malondialdehyde (MDA) levels, correlates with delayed graft function in renal transplant recipients. How BD affects lipid peroxidation is not known. The extent of BD-induced organ damage is influenced by the speed at which intracranial pressure increases. To determine possible underlying causes of lipid peroxidation, we investigated the renal redox balance by assessing oxidative and antioxidative processes in kidneys of brain-dead rats after fast and slow BD induction. Brain death was induced in 64 ventilated male Fisher rats by inflating a 4.0F Fogarty catheter in the epidural space. Fast and slow inductions were achieved by an inflation speed of 0.45 and 0.015 mL/min, respectively, until BD confirmation. Healthy non-brain-dead rats served as reference values. Brain-dead rats were monitored for 0.5, 1, 2, or 4 hours, after which organs and blood were collected. Increased MDA levels became evident at 2 hours of slow BD induction at which increased superoxide levels, decreased glutathione peroxidase (GPx) activity, decreased glutathione levels, increased inducible nitric oxide synthase and heme-oxygenase 1 expression, and increased plasma creatinine levels were evident. At 4 hours after slow BD induction, superoxide, MDA, and plasma creatinine levels increased further, whereas GPx activity remained decreased. Increased MDA and plasma creatinine levels also became evident after 4 hours fast BD induction. Brain death leads to increased superoxide production, decreased GPx activity, decreased glutathione levels, increased inducible nitric oxide synthase and heme-oxygenase 1 expression, and increased MDA and plasma creatinine levels. These effects were more pronounced after slow BD induction. Modulation of these processes could lead to decreased incidence of delayed graft function.
Multi-time resolution analysis of speech: evidence from psychophysics
Chait, Maria; Greenberg, Steven; Arai, Takayuki; Simon, Jonathan Z.; Poeppel, David
2015-01-01
How speech signals are analyzed and represented remains a foundational challenge both for cognitive science and neuroscience. A growing body of research, employing various behavioral and neurobiological experimental techniques, now points to the perceptual relevance of both phoneme-sized (10–40 Hz modulation frequency) and syllable-sized (2–10 Hz modulation frequency) units in speech processing. However, it is not clear how information associated with such different time scales interacts in a manner relevant for speech perception. We report behavioral experiments on speech intelligibility employing a stimulus that allows us to investigate how distinct temporal modulations in speech are treated separately and whether they are combined. We created sentences in which the slow (~4 Hz; Slow) and rapid (~33 Hz; Shigh) modulations—corresponding to ~250 and ~30 ms, the average duration of syllables and certain phonetic properties, respectively—were selectively extracted. Although Slow and Shigh have low intelligibility when presented separately, dichotic presentation of Shigh with Slow results in supra-additive performance, suggesting a synergistic relationship between low- and high-modulation frequencies. A second experiment desynchronized presentation of the Slow and Shigh signals. Desynchronizing signals relative to one another had no impact on intelligibility when delays were less than ~45 ms. Longer delays resulted in a steep intelligibility decline, providing further evidence of integration or binding of information within restricted temporal windows. Our data suggest that human speech perception uses multi-time resolution processing. Signals are concurrently analyzed on at least two separate time scales, the intermediate representations of these analyses are integrated, and the resulting bound percept has significant consequences for speech intelligibility—a view compatible with recent insights from neuroscience implicating multi-timescale auditory processing. PMID:26136650
Clinical and psychoeducational profile of children with borderline intellectual functioning.
Karande, Sunil; Kanchan, Sandeep; Kulkarni, Madhuri
2008-08-01
To document the clinical profile and academic history of children with borderline intellectual functioning ("slow learners"); and to assess parental knowledge and attitudes regarding this condition. From November 2004 to April 2005, 55 children (35 boys, 20 girls) were diagnosed as slow learners based on current level of academic functioning and global IQ scores (71-84) done by the WISC test. Detailed clinical and academic history; and physical and neurological examination findings were noted. The parents were counseled about the diagnosis and the option of special education. The mean age of slow learners was 11.9 years (+/-SD 2.3, range 8-17). Eighteen (32.7%) children had a significant perinatal history, 15 (27.3%) had delayed walking, 17 (30.9%) had delayed talking, 17 (30.9%) had microcephaly, 34 (61.8%) had presence of soft neurologic signs, and 10 (18.2%) were on complementary and alternative medication therapy. There were no differentiating features between the two gender groups. Their chief academic problems were difficulty in writing (92.7%), overall poor performance in all subjects (89.1%), and difficulty in mathematics (76.4%). Forty-six (83.6%) children had failed in examinations, 34 (61.8%) had experienced grade retention, and 32 (58.2%) had behavior problems. Most parents (83.3%) were reluctant to consider the option of special education. Slow learners struggle to cope up with the academic demands of the regular classroom. They need to be identified at an early age and their parents counseled to understand their academic abilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Wei; Warrick, Erika R.; Neumark, Daniel M.
Using attosecond transient absorption, the dipole response of an argon atom in the vacuum ultraviolet (VUV) region is studied when an external electromagnetic field is present. An isolated attosecond VUV pulse populates Rydberg states lying 15 eV above the argon ground state. A synchronized few-cycle near infrared (NIR) pulse modifies the oscillating dipoles of argon impulsively, leading to alterations in the VUV absorption spectra. As the NIR pulse is delayed with respect to the VUV pulse, multiple features in the absorption profile emerge simultaneously including line broadening, sideband structure, sub-cycle fast modulations, and 5-10 fs slow modulations. These features indicatemore » the coexistence of two general processes of the light-matter interaction: the energy shift of individual atomic levels and coherent population transfer between atomic eigenstates, revealing coherent superpositions. Finally, an intuitive formula is derived to treat both effects in a unifying framework, allowing one to identify and quantify the two processes in a single absorption spectrogram.« less
NASA Astrophysics Data System (ADS)
Cao, Wei; Warrick, Erika R.; Neumark, Daniel M.; Leone, Stephen R.
2016-01-01
Using attosecond transient absorption, the dipole response of an argon atom in the vacuum ultraviolet (VUV) region is studied when an external electromagnetic field is present. An isolated attosecond VUV pulse populates Rydberg states lying 15 eV above the argon ground state. A synchronized few-cycle near infrared (NIR) pulse modifies the oscillating dipoles of argon impulsively, leading to alterations in the VUV absorption spectra. As the NIR pulse is delayed with respect to the VUV pulse, multiple features in the absorption profile emerge simultaneously including line broadening, sideband structure, sub-cycle fast modulations, and 5-10 fs slow modulations. These features indicate the coexistence of two general processes of the light-matter interaction: the energy shift of individual atomic levels and coherent population transfer between atomic eigenstates, revealing coherent superpositions. An intuitive formula is derived to treat both effects in a unifying framework, allowing one to identify and quantify the two processes in a single absorption spectrogram.
Cao, Wei; Warrick, Erika R.; Neumark, Daniel M.; ...
2016-01-18
Using attosecond transient absorption, the dipole response of an argon atom in the vacuum ultraviolet (VUV) region is studied when an external electromagnetic field is present. An isolated attosecond VUV pulse populates Rydberg states lying 15 eV above the argon ground state. A synchronized few-cycle near infrared (NIR) pulse modifies the oscillating dipoles of argon impulsively, leading to alterations in the VUV absorption spectra. As the NIR pulse is delayed with respect to the VUV pulse, multiple features in the absorption profile emerge simultaneously including line broadening, sideband structure, sub-cycle fast modulations, and 5-10 fs slow modulations. These features indicatemore » the coexistence of two general processes of the light-matter interaction: the energy shift of individual atomic levels and coherent population transfer between atomic eigenstates, revealing coherent superpositions. Finally, an intuitive formula is derived to treat both effects in a unifying framework, allowing one to identify and quantify the two processes in a single absorption spectrogram.« less
NASA Astrophysics Data System (ADS)
He, Xunjun; Yao, Yuan; Yang, Xingyu; Lu, Guangjun; Yang, Wenlong; Yang, Yuqiang; Wu, Fengmin; Yu, Zhigang; Jiang, Jiuxing
2018-03-01
By patterning two graphene resonators on a SiO2/Si substrate, a dynamically controlled electromagnetically induced transparency (EIT) in the terahertz graphene metamaterial was numerically studied through tuning the structural parameter and Fermi energy of graphene. The calculated surface current distributions demonstrate that the distinct EIT window in the graphene metamaterial results from the near-field coupling of two graphene resonators. Moreover, the EIT window can be actively controlled by tuning Fermi energy combined states of two resonators. When the Fermi energy combined state of two resonators changes from (0.21 and 0.16 eV) to (0.4 and 0.11 eV), the amplitude modulation depth of the EIT peak is 97.8% at 0.45 THz, and the corresponding enhanced factor of group delay with 6 times is obtained. This study offers an alternative tuning method to existing optical, thermal, and relative distance tuning, delivering a promising potential for designing active and miniaturized THz devices.
Lax ligament syndrome in children associated with blue sclera and bat ears.
Howard, F M
1990-01-01
The child that is slow to walk causes concern. When cerebral palsy, mental retardation and muscular dystrophy have been excluded, what remains? Thirty five children (19 boys and 16 girls) with hypermobile joints, blue sclera and bat ears (the 'lax ligament syndrome') were referred by general practitioners to a general paediatric outpatient clinic over two years. Three were referred in the first three months of life because of clicking hips; 14 children aged one to two years, had delayed milestones of motor development and exhibited bottom shuffling; 10 children aged four to five years presented with 'growing pains' or 'funny gait' and eight older children had multiple minor complaints. The lax ligament syndrome is a comparatively common mild collagenopathy. It may well come to light on routine surveillance in general practice. It is dominantly inherited and improves with time; management is therefore expectant and symptomatic. A firm and reassuring diagnosis can be given which saves both anxiety and investigations. Images Figure 1. PMID:2117944
Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip.
Wang, Jian; Shen, Hao; Fan, Li; Wu, Rui; Niu, Ben; Varghese, Leo T; Xuan, Yi; Leaird, Daniel E; Wang, Xi; Gan, Fuwan; Weiner, Andrew M; Qi, Minghao
2015-01-12
Photonic methods of radio-frequency waveform generation and processing can provide performance advantages and flexibility over electronic methods due to the ultrawide bandwidth offered by the optical carriers. However, bulk optics implementations suffer from the lack of integration and slow reconfiguration speed. Here we propose an architecture of integrated photonic radio-frequency generation and processing and implement it on a silicon chip fabricated in a semiconductor manufacturing foundry. Our device can generate programmable radio-frequency bursts or continuous waveforms with only the light source, electrical drives/controls and detectors being off-chip. It modulates an individual pulse in a radio-frequency burst within 4 ns, achieving a reconfiguration speed three orders of magnitude faster than thermal tuning. The on-chip optical delay elements offer an integrated approach to accurately manipulating individual radio-frequency waveform features without constraints set by the speed and timing jitter of electronics, and should find applications ranging from high-speed wireless to defence electronics.
Huntington’s Disease: The Past, Present, and Future Search for Disease Modifiers
Clabough, Erin B.D.
2013-01-01
Huntington’s disease (HD) is an autosomal dominant genetic disorder that specifically causes neurodegeneration of striatal neurons, resulting in a triad of symptoms that includes emotional, cognitive, and motor disturbances. The HD mutation causes a polyglutamine repeat expansion within the N-terminal of the huntingtin (Htt) protein. This expansion causes aggregate formation within the cytosol and nucleus due to the presence of misfolded mutant Htt, as well as altered interactions with Htt’s multiple binding partners, and changes in post-translational Htt modifications. The present review charts efforts toward a therapy that delays age of onset or slows symptom progression in patients affected by HD, as there is currently no effective treatment. Although silencing Htt expression appears promising as a disease modifying treatment, it should be attempted with caution in light of Htt’s essential roles in neural maintenance and development. Other therapeutic targets include those that boost aggregate dissolution, target excitotoxicity and metabolic issues, and supplement growth factors. PMID:23766742
Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip
Wang, Jian; Shen, Hao; Fan, Li; Wu, Rui; Niu, Ben; Varghese, Leo T.; Xuan, Yi; Leaird, Daniel E.; Wang, Xi; Gan, Fuwan; Weiner, Andrew M.; Qi, Minghao
2015-01-01
Photonic methods of radio-frequency waveform generation and processing can provide performance advantages and flexibility over electronic methods due to the ultrawide bandwidth offered by the optical carriers. However, bulk optics implementations suffer from the lack of integration and slow reconfiguration speed. Here we propose an architecture of integrated photonic radio-frequency generation and processing and implement it on a silicon chip fabricated in a semiconductor manufacturing foundry. Our device can generate programmable radio-frequency bursts or continuous waveforms with only the light source, electrical drives/controls and detectors being off-chip. It modulates an individual pulse in a radio-frequency burst within 4 ns, achieving a reconfiguration speed three orders of magnitude faster than thermal tuning. The on-chip optical delay elements offer an integrated approach to accurately manipulating individual radio-frequency waveform features without constraints set by the speed and timing jitter of electronics, and should find applications ranging from high-speed wireless to defence electronics. PMID:25581847
The RhoGEF Net1 Is Required for Normal Mammary Gland Development
Zuo, Yan; Berdeaux, Rebecca
2014-01-01
Neuroepithelial transforming gene 1 (Net1) is a RhoA subfamily-specific guanine nucleotide exchange factor that is overexpressed in human breast cancer and is required for breast cancer cell migration and invasion. However, the role of Net1 in normal mammary gland development or function has never been assessed. To understand the role of Net1 in the mammary gland, we have created a conditional Net1 knockout mouse model. Whole-body deletion of Net1 results in delayed mammary gland development during puberty characterized by slowed of ductal extension and reduced ductal branching. Epithelial cells within the developing ducts show reduced proliferation that is accompanied by diminished estrogen receptor-α expression and activity. Net1-deficient mammary glands also exhibit reduced phosphorylation of regulatory subunits of myosin light chain and myosin light-chain phosphatase, indicating that RhoA-dependent actomyosin contraction is compromised. Net1 deficiency also leads to disorganization of myoepithelial and ductal epithelial cells and increased periductal collagen deposition. Mammary epithelial cell transplantation experiments indicate that reduced ductal branching and disorganization are cell autonomous. These data identify for the first time a role for NET1 in vivo and indicate that NET1 expression is essential for the proliferation and differentiation of mammary epithelial cells in the developing mammary gland. PMID:25321414
Sollars, Patricia J; Weiser, Michael J; Kudwa, Andrea E; Bramley, Jayne R; Ogilvie, Malcolm D; Spencer, Robert L; Handa, Robert J; Pickard, Gary E
2014-01-01
The suprachiasmatic nucleus (SCN) is a circadian oscillator entrained to the day/night cycle via input from the retina. Serotonin (5-HT) afferents to the SCN modulate retinal signals via activation of 5-HT1B receptors, decreasing responsiveness to light. Consequently, 5-HT1B receptor knockout (KO) mice entrain to the day/night cycle with delayed activity onsets. Since circulating corticosterone levels exhibit a robust daily rhythm peaking around activity onset, we asked whether delayed entrainment of activity onsets affects rhythmic corticosterone secretion. Wheel-running activity and plasma corticosterone were monitored in mice housed under several different lighting regimens. Both duration of the light:dark cycle (T cycle) and the duration of light within that cycle was altered. 5-HT1B KO mice that entrained to a 9.5L:13.5D (short day in a T = 23 h) cycle with activity onsets delayed more than 4 h after light offset exhibited a corticosterone rhythm in phase with activity rhythms but reduced 50% in amplitude compared to animals that initiated daily activity <4 h after light offset. Wild type mice in 8L:14D (short day in a T = 22 h) conditions with highly delayed activity onsets also exhibited a 50% reduction in peak plasma corticosterone levels. Exogenous adrenocorticotropin (ACTH) stimulation in animals exhibiting highly delayed entrainment suggested that the endogenous rhythm of adrenal responsiveness to ACTH remained aligned with SCN-driven behavioral activity. Circadian clock gene expression in the adrenal cortex of these same animals suggested that the adrenal circadian clock was also aligned with SCN-driven behavior. Under T cycles <24 h, altered circadian entrainment to short day (winter-like) conditions, manifest as long delays in activity onset after light offset, severely reduces the amplitude of the diurnal rhythm of plasma corticosterone. Such a pronounced reduction in the glucocorticoid rhythm may alter rhythmic gene expression in the central nervous system and in peripheral organs contributing to an array of potential pathophysiologies.
Zheng, Minxue; Fukuyama, Kaoru; Sanga-Ngoie, Kazadi
2013-12-31
Spatial variation and temporal changes in ground subsidence over the Nobi Plain, Central Japan, are assessed using GIS techniques and ground level measurements data taken over this area since the 1970s. Notwithstanding the general slowing trend observed in ground subsidence over the plains, we have detected ground rise at some locations, more likely due to the ground expansion because of recovering groundwater levels and the tilting of the Nobi land mass. The problem of non-availability of upper-air meteorological information, especially the 3-dimensional water vapor distribution, during the JERS-1 observational period (1992-1998) was solved by applying the AWC (analog weather charts) method onto the high-precision GPV-MSM (Grid Point Value of Meso-Scale Model) water-vapor data to find the latter's matching meteorological data. From the selected JERS-1 interferometry pair and the matching GPV-MSM meteorological data, the atmospheric path delay generated by water vapor inhomogeneity was then quantitatively evaluated. A highly uniform spatial distribution of the atmospheric delay, with a maximum deviation of approximately 38 mm in its horizontal distribution was found over the Plain. This confirms the effectiveness of using GPV-MSM data for SAR differential interferometric analysis, and sheds thus some new light on the possibility of improving InSAR analysis results for land subsidence applications.
Zheng, Minxue; Fukuyama, Kaoru; Sanga-Ngoie, Kazadi
2014-01-01
Spatial variation and temporal changes in ground subsidence over the Nobi Plain, Central Japan, are assessed using GIS techniques and ground level measurements data taken over this area since the 1970s. Notwithstanding the general slowing trend observed in ground subsidence over the plains, we have detected ground rise at some locations, more likely due to the ground expansion because of recovering groundwater levels and the tilting of the Nobi land mass. The problem of non-availability of upper-air meteorological information, especially the 3-dimensional water vapor distribution, during the JERS-1 observational period (1992–1998) was solved by applying the AWC (analog weather charts) method onto the high-precision GPV-MSM (Grid Point Value of Meso-Scale Model) water-vapor data to find the latter's matching meteorological data. From the selected JERS-1 interferometry pair and the matching GPV-MSM meteorological data, the atmospheric path delay generated by water vapor inhomogeneity was then quantitatively evaluated. A highly uniform spatial distribution of the atmospheric delay, with a maximum deviation of approximately 38 mm in its horizontal distribution was found over the Plain. This confirms the effectiveness of using GPV-MSM data for SAR differential interferometric analysis, and sheds thus some new light on the possibility of improving InSAR analysis results for land subsidence applications. PMID:24385028
Tunable phonon-induced transparency in bilayer graphene nanoribbons.
Yan, Hugen; Low, Tony; Guinea, Francisco; Xia, Fengnian; Avouris, Phaedon
2014-08-13
In the phenomenon of plasmon-induced transparency, which is a classical analogue of electromagnetically induced transparency (EIT) in atomic gases, the coherent interference between two plasmon modes results in an optical transparency window in a broad absorption spectrum. With the requirement of contrasting lifetimes, typically one of the plasmon modes involved is a dark mode that has limited coupling to the electromagnetic radiation and possesses relatively longer lifetime. Plasmon-induced transparency not only leads to light transmission at otherwise opaque frequency regions but also results in the slowing of light group velocity and enhanced optical nonlinearity. In this article, we report an analogous behavior, denoted as phonon-induced transparency (PIT), in AB-stacked bilayer graphene nanoribbons. Here, light absorption due to the plasmon excitation is suppressed in a narrow window due to the coupling with the infrared active Γ-point optical phonon, whose function here is similar to that of the dark plasmon mode in the plasmon-induced transparency. We further show that PIT in bilayer graphene is actively tunable by electrostatic gating and estimate a maximum slow light factor of around 500 at the phonon frequency of 1580 cm(-1), based on the measured spectra. Our demonstration opens an avenue for the exploration of few-photon nonlinear optics and slow light in this novel two-dimensional material.
A novel RPE65 inhibitor CU239 suppresses visual cycle and prevents retinal degeneration.
Shin, Younghwa; Moiseyev, Gennadiy; Petrukhin, Konstantin; Cioffi, Christopher L; Muthuraman, Parthasarathy; Takahashi, Yusuke; Ma, Jian-Xing
2018-07-01
The retinoid visual cycle is an ocular retinoid metabolism specifically dedicated to support vertebrate vision. The visual cycle serves not only to generate light-sensitive visual chromophore 11-cis-retinal, but also to clear toxic byproducts of normal visual cycle (i.e. all-trans-retinal and its condensation products) from the retina, ensuring both the visual function and the retinal health. Unfortunately, various conditions including genetic predisposition, environment and aging may attribute to a functional decline of the all-trans-retinal clearance. To combat all-trans-retinal mediated retinal degeneration, we sought to slow down the retinoid influx from the RPE by inhibiting the visual cycle with a small molecule. The present study describes identification of CU239, a novel non-retinoid inhibitor of RPE65, a key enzyme in the visual cycle. Our data demonstrated that CU239 selectively inhibited isomerase activity of RPE65, with IC 50 of 6 μM. Further, our results indicated that CU239 inhibited RPE65 via competition with its substrate all-trans-retinyl ester. Mice with systemic injection of CU239 exhibited delayed chromophore regeneration after light bleach, and conferred a partial protection of the retina against injury from high intensity light. Taken together, CU239 is a potent visual cycle modulator and may have a therapeutic potential for retinal degeneration. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.
Photonic Crystals from Order to Disorder: Perturbative Methods in Nanophotonics
Johnson, Steven G. [MIT, Cambridge, Massachusetts, United States
2017-12-09
Photonic crystals are periodic dielectric structures in which light can behave much differently than in a homogeneous medium. This talk gives an overview of some of the interesting properties and applications of these media, from switching in subwavelength microcavities to slow-light devices, to guiding light in air. However, some of the most interesting and challenging problems occur when the periodicity is disturbed, either by design or by inevitable fabrication imperfections. The talk focuses especially on small perturbations that have important effects, from slow-light tapers to surface roughness disorder, and will show that many classic perturbative approaches must be rethought for high-contrast nanophotonics. The combination of strong periodicity with large field discontinuities at interfaces causes standard methods to fail, but succumbs to new generalizations, while some problems remain open.
New Targeted Treatment May Slow Disease in Patients with Advanced GIST
A new oral drug, regorafenib (Stivarga®), may delay the progression of advanced gastrointestinal stromal tumors (GIST) that are resistant to treatment, according to results from an international clinical trial published November 22, 2012, in The Lancet.
Yan, Siqi; Zhu, Xiaolong; Frandsen, Lars Hagedorn; Xiao, Sanshui; Mortensen, N. Asger; Dong, Jianji; Ding, Yunhong
2017-01-01
Slow light has been widely utilized to obtain enhanced nonlinearities, enhanced spontaneous emissions and increased phase shifts owing to its ability to promote light–matter interactions. By incorporating a graphene on a slow-light silicon photonic crystal waveguide, here we experimentally demonstrate an energy-efficient graphene microheater with a tuning efficiency of 1.07 nmmW−1 and power consumption per free spectral range of 3.99 mW. The rise and decay times (10–90%) are only 750 and 525 ns, which, to the best of our knowledge, are the fastest reported response times for microheaters in silicon photonics. The corresponding figure of merit of the device is 2.543 nW s, one order of magnitude better than results reported in previous studies. The influence of the length and shape of the graphene heater to the tuning efficiency is further investigated, providing valuable guidelines for enhancing the tuning efficiency of the graphene microheater. PMID:28181531
Dark goggles and bright light improve circadian rhythm adaptation to night-shift work.
Eastman, C I; Stewart, K T; Mahoney, M P; Liu, L; Fogg, L F
1994-09-01
We compared the contributions of bright light during the night shift and dark goggles during daylight for phase shifting the circadian rhythm of temperature to realign with a 12-hour shift of sleep. After 10 baseline days there were 8 night-work/day-sleep days. Temperature was continuously recorded from 50 subjects. There were four groups in a 2 x 2 design: light (bright, dim), goggles (yes, no). Subjects were exposed to bright light (about 5,000 lux) for 6 hours on the first 2 night shifts. Dim light was < 500 lux. Both bright light and goggles were significant factors for producing circadian rhythm phase shifts. The combination of bright light plus goggles was the most effective, whereas the combination of dim light and no goggles was the least effective. The temperature rhythm either phase advanced or phase delayed when it aligned with daytime sleep. However, when subjects did not have goggles only phase advances occurred. Goggles were necessary for producing phase delays. The most likely explanation is that daylight during the travel-home window after a night shift inhibits phase-delay shifts, and goggles can prevent this inhibition. Larger temperature-rhythm phase shifts were associated with better subjective daytime sleep, less subjective fatigue and better mood.
The slow light and dark oscillation of the clinical electro-oculogram.
Constable, Paul A; Ngo, David
2018-05-20
The standing potential of the eye exhibits a slow damped oscillation under light and dark conditions that continues for at least 80 minutes. However, our understanding of the relationship between the slow dark and light oscillation has not been previously studied. The aim of this study was to explore through regression analysis a model of these oscillations in order to establish if they may have the same underlying cellular generators. Healthy participants undertook recordings of the standing potential using the electro-oculogram for 100 minutes. To explore the light oscillation, participants (n = 8) were dilated and performed an extended electro-oculogram protocol consisting of 15 minutes dark adaptation and 85 minutes of white light adaptation at 100 cd/m 2 . For the dark oscillation, participants (n = 11) undertook the electro-oculogram for 100 minutes in complete darkness. Both sessions began with pre-adaptation to 30 cd/m 2 of white light for five minutes. Non-parametric statistics were used to evaluate all data. Ratios of the dark and light oscillations showed a significantly greater dampening of the dark oscillation compared to the light oscillation (p < 0.000). Regression analysis using a five-factor damped sine function revealed significant differences in the parameters governing the dampening (p = 0.005) and period (p = 0.009) of the functions (R 2 > 0.874). There were no significant differences in the dark trough amplitude. The results support a different underlying physiological mechanism for the light and dark oscillation of the clinical electro-oculogram. Future work will need to establish how the dark oscillation and dark trough of the clinical electro-oculogram arise. © 2018 Optometry Australia.
Induction of slow oscillations by rhythmic acoustic stimulation.
Ngo, Hong-Viet V; Claussen, Jens C; Born, Jan; Mölle, Matthias
2013-02-01
Slow oscillations are electrical potential oscillations with a spectral peak frequency of ∼0.8 Hz, and hallmark the electroencephalogram during slow-wave sleep. Recent studies have indicated a causal contribution of slow oscillations to the consolidation of memories during slow-wave sleep, raising the question to what extent such oscillations can be induced by external stimulation. Here, we examined whether slow oscillations can be effectively induced by rhythmic acoustic stimulation. Human subjects were examined in three conditions: (i) with tones presented at a rate of 0.8 Hz ('0.8-Hz stimulation'); (ii) with tones presented at a random sequence ('random stimulation'); and (iii) with no tones presented in a control condition ('sham'). Stimulation started during wakefulness before sleep and continued for the first ∼90 min of sleep. Compared with the other two conditions, 0.8-Hz stimulation significantly delayed sleep onset. However, once sleep was established, 0.8-Hz stimulation significantly increased and entrained endogenous slow oscillation activity. Sleep after the 90-min period of stimulation did not differ between the conditions. Our data show that rhythmic acoustic stimulation can be used to effectively enhance slow oscillation activity. However, the effect depends on the brain state, requiring the presence of stable non-rapid eye movement sleep. © 2012 European Sleep Research Society.
NASA Astrophysics Data System (ADS)
Kapur, Pawan
The miniaturization paradigm for silicon integrated circuits has resulted in a tremendous cost and performance advantage. Aggressive shrinking of devices provides faster transistors and a greater functionality for circuit design. However, scaling induced smaller wire cross-sections coupled with longer lengths owing to larger chip areas, result in a steady deterioration of interconnects. This degradation in interconnect trends threatens to slow down the rapid growth along Moore's law. This work predicts that the situation is worse than anticipated. It shows that in the light of technology and reliability constraints, scaling induced increase in electron surface scattering, fractional cross section area occupied by the highly resistive barrier, and realistic interconnect operation temperature will lead to a significant rise in effective resistivity of modern copper based interconnects. We start by discussing various technology factors affecting copper resistivity. We, next, develop simulation tools to model these effects. Using these tools, we quantify the increase in realistic copper resistivity as a function of future technology nodes, under various technology assumptions. Subsequently, we evaluate the impact of these technology effects on delay and power dissipation of global signaling interconnects. Modern long on-chip wires use repeaters, which dramatically improves their delay and bandwidth. We quantify the repeated wire delays and power dissipation using realistic resistance trends at future nodes. With the motivation of reducing power, we formalize a methodology, which trades power with delay very efficiently for repeated wires. Using this method, we find that although the repeater power comes down, the total power dissipation due to wires is still found to be very large at future nodes. Finally, we explore optical interconnects as a possible substitute, for specific interconnect applications. We model an optical receiver and waveguides. Using this we assess future optical system performance. Finally, we compare the delay and power of future metal interconnects with that of optical interconnects for global signaling application. We also compare the power dissipation of the two approaches for an upper level clock distribution application. We find that for long on-chip communication links, optical interconnects have lower latencies than future metal interconnects at comparable levels of power dissipation.
Arendt, Andreas; Baz, El-Sayed; Stengl, Monika
2017-04-01
The circadian pacemaker of the Madeira cockroach, Rhyparobia (Leucophaea) maderae, is located in the accessory medulla (AME). Ipsi- and contralateral histaminergic compound eyes are required for photic entrainment. Light pulses delay locomotor activity rhythm during the early night and advance it during the late night. Thus, different neuronal pathways might relay either light-dependent delays or advances to the clock. Injections of neuroactive substances combined with running-wheel assays suggested that GABA, pigment-dispersing factor, myoinhibitory peptides (MIPs), and orcokinins (ORCs) were part of both entrainment pathways, whereas allatotropin (AT) only delayed locomotor rhythms at the early night. To characterize photic entrainment further, histamine and corazonin were injected. Histamine injections resulted in light-like phase delays and advances, indicating that the neurotransmitter of the compound eyes participates in both entrainment pathways. Because injections of corazonin only advanced during the late subjective night, it was hypothesized that corazonin is only part of the advance pathway. Multiple-label immunocytochemistry in combination with neurobiotin backfills demonstrated that a single cell expressed corazonin in the optic lobes that belonged to the group of medial AME interneurons. It colocalized GABA and MIP but not AT or ORC immunoreactivity. Corazonin-immunoreactive (-ir) terminals overlapped with projections of putatively light-sensitive interneurons from the ipsi- and contralateral compound eye. Thus, we hypothesize that the corazonin-ir medial neuron integrates ipsi- and contralateral light information as part of the phase-advancing light entrainment pathway to the circadian clock. J. Comp. Neurol. 525:1250-1272, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Light Stops at Exceptional Points
NASA Astrophysics Data System (ADS)
Goldzak, Tamar; Mailybaev, Alexei A.; Moiseyev, Nimrod
2018-01-01
Almost twenty years ago, light was slowed down to less than 10-7 of its vacuum speed in a cloud of ultracold atoms of sodium. Upon a sudden turn-off of the coupling laser, a slow light pulse can be imprinted on cold atoms such that it can be read out and converted into a photon again. In this process, the light is stopped by absorbing it and storing its shape within the atomic ensemble. Alternatively, the light can be stopped at the band edge in photonic-crystal waveguides, where the group speed vanishes. Here, we extend the phenomenon of stopped light to the new field of parity-time (P T ) symmetric systems. We show that zero group speed in P T symmetric optical waveguides can be achieved if the system is prepared at an exceptional point, where two optical modes coalesce. This effect can be tuned for optical pulses in a wide range of frequencies and bandwidths, as we demonstrate in a system of coupled waveguides with gain and loss.
Circadian Phase-Shifting Effects of Bright Light, Exercise, and Bright Light + Exercise.
Youngstedt, Shawn D; Kline, Christopher E; Elliott, Jeffrey A; Zielinski, Mark R; Devlin, Tina M; Moore, Teresa A
2016-02-26
Limited research has compared the circadian phase-shifting effects of bright light and exercise and additive effects of these stimuli. The aim of this study was to compare the phase-delaying effects of late night bright light, late night exercise, and late evening bright light followed by early morning exercise. In a within-subjects, counterbalanced design, 6 young adults completed each of three 2.5-day protocols. Participants followed a 3-h ultra-short sleep-wake cycle, involving wakefulness in dim light for 2h, followed by attempted sleep in darkness for 1 h, repeated throughout each protocol. On night 2 of each protocol, participants received either (1) bright light alone (5,000 lux) from 2210-2340 h, (2) treadmill exercise alone from 2210-2340 h, or (3) bright light (2210-2340 h) followed by exercise from 0410-0540 h. Urine was collected every 90 min. Shifts in the 6-sulphatoxymelatonin (aMT6s) cosine acrophase from baseline to post-treatment were compared between treatments. Analyses revealed a significant additive phase-delaying effect of bright light + exercise (80.8 ± 11.6 [SD] min) compared with exercise alone (47.3 ± 21.6 min), and a similar phase delay following bright light alone (56.6 ± 15.2 min) and exercise alone administered for the same duration and at the same time of night. Thus, the data suggest that late night bright light followed by early morning exercise can have an additive circadian phase-shifting effect.
NASA Technical Reports Server (NTRS)
Romanofsky, Robert R.
2006-01-01
We have developed relatively broadband K- and Ka-band phase shifters using synthetic (slow-wave) transmission lines employing coupled microstripline "varactors". The tunable coupled microstripline circuits are based on laser ablated BaSrTiO films on lanthanum aluminate substrates. A model and design criteria for these novel circuits will be presented, along with measured performance including anomalous phase delay characteristics. The critical role of phase shifter loss and transient response in reflectarray antennas will be emphasized.
Schutten, Dan; Stokes, Kirk A; Arnell, Karen M
2017-01-01
Media multitasking, the concurrent use of multiple media forms, has been shown to be related to greater self-reported impulsivity and less self-control. These measures are both hallmarks of the need for immediate gratification which has been associated with fast, intuitive 'system-1' decision making, as opposed to more deliberate and effortful 'system-2' decision making. In Study 1, we used the Cognitive Reflection Task (CRT) to examine whether individuals who engage heavily in media multitasking differ from those who are light media multitaskers in their degree of system-1 versus system-2 thinking. In Study 2 we examined whether heavy and light media multitaskers differ in delay of gratification, using the delay discounting measure which estimates the preference for smaller immediate rewards, relative to larger delayed rewards in a hypothetical monetary choice task. We found that heavy media multitaskers were more likely than light media multitaskers to endorse intuitive, but wrong, decisions on the CRT indicating a greater reliance on 'system-1' thinking. Heavy media multitaskers were also willing to settle for less money immediately relative to light media multitaskers who were more willing to wait for the larger delayed reward. These results suggest that heavy media multitaskers have a reactive decision-making style that promotes current desires (money, ease of processing) at the expense of accuracy and future rewards. These findings highlight the potential for heavy media multitaskers to be at risk for problematic behaviors associated with delay discounting - behaviors such as substance abuse, overeating, problematic gambling, and poor financial management.
Applying behavioral insights to delay school start times.
Kohl Malone, Susan; Ziporyn, Terra; Buttenheim, Alison M
2017-12-01
Healthy People 2020 established a national objective to increase the proportion of 9th-to-12th-grade students reporting sufficient sleep. A salient approach for achieving this objective is to delay middle and high school start times. Despite decades of research supporting the benefits of delayed school start times on adolescent sleep, health, and well-being, progress has been slow. Accelerating progress will require new approaches incorporating strategies that influence how school policy decisions are made. In this commentary, we introduce four strategies that influence decision-making processes and demonstrate how they can be applied to efforts aimed at changing school start time policies. Copyright © 2017 National Sleep Foundation. All rights reserved.
How to induce multiple delays in coupled chaotic oscillators?
NASA Astrophysics Data System (ADS)
Bhowmick, Sourav K.; Ghosh, Dibakar; Roy, Prodyot K.; Kurths, Jürgen; Dana, Syamal K.
2013-12-01
Lag synchronization is a basic phenomenon in mismatched coupled systems, delay coupled systems, and time-delayed systems. It is characterized by a lag configuration that identifies a unique time shift between all pairs of similar state variables of the coupled systems. In this report, an attempt is made how to induce multiple lag configurations in coupled systems when different pairs of state variables attain different time shift. A design of coupling is presented to realize this multiple lag synchronization. Numerical illustration is given using examples of the Rössler system and the slow-fast Hindmarsh-Rose neuron model. The multiple lag scenario is physically realized in an electronic circuit of two Sprott systems.
MacDonald, A; Baxter, J N; Bessent, R G; Gray, H W; Finlay, I G
1997-08-01
Idiopathic slow transit constipation (ISTC) is considered to be a heterogeneous condition in which patients have varying sites and degrees of delayed gastrointestinal transit. The majority of patients have pancolonic disease, and colectomy with ileocolorectal anastomosis has been the mainstay of surgical treatment. Severe constipation following traumatic childbirth is now being recognized and this subgroup of patients may have delayed transit confined to the rectosigmoid colon. In theory, proximal transit in these patients should be normal. Gastric emptying was studied in patients with constipation following childbirth or ISTC and in controls. After an overnight fast, both patients and controls received breakfast, which consisted of cornflakes, sugar and milk. The liquid marker 111In-labelled di-ethylene tri-amine penta-acetic acid (DTPA) was added to the milk. A solid marker, 99mTc-labelled colloid, was impregnated on to paper and sealed with cellulose. The t1/2 for gastric emptying was calculated. Liquid phase emptying was normal in both constipation following childbirth and ISTC. Solid phase emptying was delayed significantly in ISTC compared with that in patients with constipation following childbirth and controls. In addition, half the patients with ISTC had delayed transit through the small bowel and proximal colon. Small bowel and colonic transit were normal in patients with constipation following childbirth. Patients with constipation following childbirth represent a distinct subgroup with normal proximal gastrointestinal function. Gastric emptying studies may be helpful in selecting patients for surgical management of severe constipation.
Hoh, Joseph F Y; Li, Zhao-Bo; Qin, Han; Hsu, Michael K H; Rossmanith, Gunther H
2007-01-01
Mechanical properties of the jaw-closing muscles of the cat are poorly understood. These muscles are known to differ in myosin and fibre type compositions from limb muscles. This work aims to correlate mechanical properties of single fibres in cat jaw and limb muscles with their myosin subunit compositions. The stiffness minimum frequency, f(min), which reflects isometric cross-bridge kinetics, was measured in Ca(2+)-activated glycerinated fast and slow fibres from cat jaw and limb muscles for temperatures ranging between 15 and 30 degrees C by mechanical perturbation analysis. At 15 degrees C, f(min) was 0.5 Hz for limb-slow fibres, 4-6 Hz for jaw-slow fibres, and 10-13 Hz for limb-fast and jaw-fast fibres. The activation energy for f(min) obtained from the slope of the Arrhenius plot for limb-slow fibres was 30-40% higher than values for the other three types of fibres. SDS-PAGE and western blotting using highly specific antibodies verified that limb-fast fibres contained IIA or IIX myosin heavy chain (MyHC). Jaw-fast fibres expressed masticatory MyHC while both jaw-fast and jaw-slow fibres expressed masticatory myosin light chains (MLCs). The nucleotide sequences of the 3' ends of the slow MyHC cDNAs isolated from cat masseter and soleus cDNA libraries showed identical coding and 3'-untranslated regions, suggesting that jaw-slow and limb-slow fibres express the same slow MyHC gene. We conclude that the isometric cross-bridge cycling kinetics of jaw-fast and limb-fast fibres detected by f(min) are indistinguishable in spite of differences in MyHC and light chain compositions. However, jaw-slow fibres, in which the same slow MyHCs are found in combination with MLCs of the jaw type, show enhanced cross-bridge cycling kinetics and reduced activation energy for cross-bridge detachment.
NASA Technical Reports Server (NTRS)
Hoflich, Peter; Khokhlov, A.; Wheeler, C.
1995-01-01
We computed optical and infrared light curves of the pulsating class of delayed detonation models for Type Ia supernovae (SNe Ia). It is demonstrated that observations of the IR light curves can be used to identify subluminous SNe Ia by testing whether secondary maxima occur in the IR. Our pulsating delayed detonation models are in agreement with current observations both for subluminous and normal bright SN Ia, namely SN1991bg, SN1992bo, and SN1992bc. Observations of molecular bands provide a test to distinguish whether strongly subluminous supernovae are a consequence of the pulsating mechanism occurring in a high-mass white dwarf (WD) or, alternatively, are formed by the helium detonation in a low-mass WD as was suggested by Woosley. In the latter case, no carbon is left after the explosion of low-mass WDs whereas a log of C/O-rich material is present in pulsating delayed detonation models.
Brébion, Gildas; David, Anthony S; Bressan, Rodrigo A; Pilowsky, Lyn S
2007-01-01
The role of various types of slowing of processing speed, as well as the role of depressed mood, on each stage of verbal memory functioning in patients diagnosed with schizophrenia was investigated. Mixed lists of high- and low-frequency words were presented, and immediate and delayed free recall and recognition were required. Two levels of encoding were studied by contrasting the relatively automatic encoding of the high-frequency words and the more effortful encoding of the low-frequency words. Storage was studied by contrasting immediate and delayed recall. Retrieval was studied by contrasting free recall and recognition. Three tests of motor and cognitive processing speed were administered as well. Regression analyses involving the three processing speed measures revealed that cognitive speed was the only predictor of the recall and recognition of the low-frequency words. Furthermore, slowing in cognitive speed accounted for the deficit in recall and recognition of the low-frequency words relative to a healthy control group. Depressed mood was significantly associated with recognition of the low-frequency words. Neither processing speed nor depressed mood was associated with storage efficiency. It is concluded that both cognitive speed slowing and depressed mood impact on effortful encoding processes.
Rapid identification of slow healing wounds.
Jung, Kenneth; Covington, Scott; Sen, Chandan K; Januszyk, Michael; Kirsner, Robert S; Gurtner, Geoffrey C; Shah, Nigam H
2016-01-01
Chronic nonhealing wounds have a prevalence of 2% in the United States, and cost an estimated $50 billion annually. Accurate stratification of wounds for risk of slow healing may help guide treatment and referral decisions. We have applied modern machine learning methods and feature engineering to develop a predictive model for delayed wound healing that uses information collected during routine care in outpatient wound care centers. Patient and wound data was collected at 68 outpatient wound care centers operated by Healogics Inc. in 26 states between 2009 and 2013. The dataset included basic demographic information on 59,953 patients, as well as both quantitative and categorical information on 180,696 wounds. Wounds were split into training and test sets by randomly assigning patients to training and test sets. Wounds were considered delayed with respect to healing time if they took more than 15 weeks to heal after presentation at a wound care center. Eleven percent of wounds in this dataset met this criterion. Prognostic models were developed on training data available in the first week of care to predict delayed healing wounds. A held out subset of the training set was used for model selection, and the final model was evaluated on the test set to evaluate discriminative power and calibration. The model achieved an area under the curve of 0.842 (95% confidence interval 0.834-0.847) for the delayed healing outcome and a Brier reliability score of 0.00018. Early, accurate prediction of delayed healing wounds can improve patient care by allowing clinicians to increase the aggressiveness of intervention in patients most at risk. © 2015 by the Wound Healing Society.
Cosio, F G; Palacios, J; Vidal, J M; Cocina, E G; Gómez-Sánchez, M A; Tamargo, L
1983-01-01
Extrastimulus-induced intraatrial conduction delays were measured in 12 patients with documented episodes of atrial fibrillation (AF) by recording atrial electrograms at the high right atrium, His bundle region, and coronary sinus. Seventeen patients with and without heart disease, but without atrial arrhythmias served as the control group. During baseline-paced atrial rhythms, a conduction delay zone could be delineated, near the atrial effective refractory period, during which all extrastimuli produced conduction delays. When compared at the same paced cycle lengths (500 to 650 ms), the patients with AF had shorter atrial effective refractory periods (mean +/- standard deviation 206 +/- 24.1 versus 233 +/- 28.2 in control patients, p less than 0.02), wider conduction delay zones (79 +/- 21.7 ms versus 52 +/- 21 in control patients, p less than 0.01), and longer conduction delays both to the His bundle region (64 +/- 18.3 ms versus 35 +/- 21.7 in control patients, p less than 0.005) and the coronary sinus (76 +/- 18.9 ms versus 35 +/- 16.1 in control patients, p less than 0.001). Repetitive atrial responses were recorded in 6 patients with AF and in 9 control subjects. Sinus nodal function abnormalities were detected in 6 of the patients with fibrillation. Patients with AF had a higher tendency than control subjects to develop slow intraatrial conduction, as well as shorter effective refractory periods. Since both features would favor reentry, they may be the electrophysiologic manifestations of the abnormalities making these patients prone to atrial reentrant arrhythmias. Repetitive atrial responses were of no predictive value. Sinus nodal dysfunction was frequently found, but was not essential for the occurrence of AF.
Line sensing device for ultrafast laser acoustic inspection using adaptive optics
Hale, Thomas C.; Moore, David S.
2003-11-04
Apparatus and method for inspecting thin film specimens along a line. A laser emits pulses of light that are split into first, second, third and fourth portions. A delay is introduced into the first portion of pulses and the first portion of pulses is directed onto a thin film specimen along a line. The third portion of pulses is directed onto the thin film specimen along the line. A delay is introduced into the fourth portion of pulses and the delayed fourth portion of pulses are directed to a photorefractive crystal. Pulses of light reflected from the thin film specimen are directed to the photorefractive crystal. Light from the photorefractive crystal is collected and transmitted to a linear photodiode array allowing inspection of the thin film specimens along a line.
2014-01-01
Background The aim of this study is to compare the microleakage of Class II dental composite resin restorations which have been cured by three different LED (light emitting diode) light curing modes compared to control samples cured by QTH (quartz tungsten halogen) light curing units (LCUs), to determine the most effective light curing unit and mode of curing. Results In this experimental study, class II cavities were prepared on 100 sound human premolars which have been extracted for orthodontic treatment. The teeth were randomly divided into four groups; three experimental and one control group of 25 teeth each. Experimental groups were cured by either conventional, pulse-delay, or ramped curing modes of LED. The control group was cured for 20 seconds by QTH. The restorations were thermocycled (1000 times, between 5 and 55°C, for 5 seconds dwell time), dyed, sectioned mesio-distally and viewed under stereo-microscope (40×) magnification. Teeth were then scored on a 0 to 4 scale based on the amount of microleakage. The data were analyzed by Chi-square test. No significant difference was demonstrated between the different LCUs (light curing units), or modes of curing, at the enamel side (p > 0.05). At the dentin side, all modes of LED curing could significantly reduce microleakage (p < 0.05). The results suggest that slow start curing improves marginal integrity and seal. High intense curing endangers those aims. Conclusions Comparison between the three LED mode cured composite resin restorations and QTH curing showed LED curing in all modes is more effective than QTH for reducing microleakage. Both LED and QTH almost completely eliminate the microleakage on the enamel side, however none of them absolutely eliminated microleakage on the dentin side. PMID:24990296
Microwave Oscillators Based on Nonlinear WGM Resonators
NASA Technical Reports Server (NTRS)
Maleki, Lute; Matsko, Andrey; Savchenkov, Anatoliy; Strekalov, Dmitry
2006-01-01
Optical oscillators that exploit resonantly enhanced four-wave mixing in nonlinear whispering-gallery-mode (WGM) resonators are under investigation for potential utility as low-power, ultra-miniature sources of stable, spectrally pure microwave signals. There are numerous potential uses for such oscillators in radar systems, communication systems, and scientific instrumentation. The resonator in an oscillator of this type is made of a crystalline material that exhibits cubic Kerr nonlinearity, which supports the four-photon parametric process also known as four-wave mixing. The oscillator can be characterized as all-optical in the sense that the entire process of generation of the microwave signal takes place within the WGM resonator. The resonantly enhanced four-wave mixing yields coherent, phase-modulated optical signals at frequencies governed by the resonator structure. The frequency of the phase-modulation signal, which is in the microwave range, equals the difference between the frequencies of the optical signals; hence, this frequency is also governed by the resonator structure. Hence, further, the microwave signal is stable and can be used as a reference signal. The figure schematically depicts the apparatus used in a proof-of-principle experiment. Linearly polarized pump light was generated by an yttrium aluminum garnet laser at a wavelength of 1.32 microns. By use of a 90:10 fiber-optic splitter and optical fibers, some of the laser light was sent into a delay line and some was transmitted to one face of glass coupling prism, that, in turn, coupled the laser light into a crystalline CaF2 WGM disk resonator that had a resonance quality factor (Q) of 6x10(exp 9). The output light of the resonator was collected via another face of the coupling prism and a single-mode optical fiber, which transmitted the light to a 50:50 fiber-optic splitter. One output of this splitter was sent to a slow photodiode to obtain a DC signal for locking the laser to a particular resonator mode. The other output of this splitter was combined with the delayed laser signal in another 50:50 fiber-optic splitter used as a combiner. The output.of the combiner was fed to a fast photodiode that demodulated light and generated microwave signal. In this optical configuration, the resonator was incorporated into one arm of a Mach-Zehnder interferometer, which was necessary for the following reasons: It was found that when the output of the resonator was sent directly to a fast photodiode, the output of the photodiode did not include a measurable microwave signal. However, when the resonator was placed in an arm of the interferometer and the delay in the other arm was set at the correct value, the microwave signal appeared. Such behavior is distinctly characteristic of phase-modulated light. The phase-modulation signal had a frequency of about 8 GHz, corresponding to the free spectral range of the resonator. The spectral width of this microwave signal was less than 200 Hz. The threshold pump power for generating the microwave signal was about 1 mW. It would be possible to reduce the threshold power by several orders of magnitude if resonators could be made from crystalline materials in dimensions comparable to those of micro-resonators heretofore made from fused silica.
NASA Astrophysics Data System (ADS)
Gibbons, Steven J.; Näsholm, S. P.; Ruigrok, E.; Kværna, T.
2018-04-01
Seismic arrays enhance signal detection and parameter estimation by exploiting the time-delays between arriving signals on sensors at nearby locations. Parameter estimates can suffer due to both signal incoherence, with diminished waveform similarity between sensors, and aberration, with time-delays between coherent waveforms poorly represented by the wave-front model. Sensor-to-sensor correlation approaches to parameter estimation have an advantage over direct beamforming approaches in that individual sensor-pairs can be omitted without necessarily omitting entirely the data from each of the sensors involved. Specifically, we can omit correlations between sensors for which signal coherence in an optimal frequency band is anticipated to be poor or for which anomalous time-delays are anticipated. In practice, this usually means omitting correlations between more distant sensors. We present examples from International Monitoring System seismic arrays with poor parameter estimates resulting when classical f-k analysis is performed over the full array aperture. We demonstrate improved estimates and slowness grid displays using correlation beamforming restricted to correlations between sufficiently closely spaced sensors. This limited sensor-pair correlation (LSPC) approach has lower slowness resolution than would ideally be obtained by considering all sensor-pairs. However, this ideal estimate may be unattainable due to incoherence and/or aberration and the LSPC estimate can often exploit all channels, with the associated noise-suppression, while mitigating the complications arising from correlations between very distant sensors. The greatest need for the method is for short-period signals on large aperture arrays although we also demonstrate significant improvement for secondary regional phases on a small aperture array. LSPC can also provide a robust and flexible approach to parameter estimation on three-component seismic arrays.
Sklar, Lindsay R; Almutawa, Fahad; Lim, Henry W; Hamzavi, Iltefat
2013-01-01
The effects of ultraviolet radiation, visible light, and infrared radiation on cutaneous erythema, immediate pigment darkening, persistent pigment darkening, and delayed tanning are affected by a variety of factors. Some of these factors include the depth of cutaneous penetration of the specific wavelength, the individual skin type, and the absorption spectra of the different chromophores in the skin. UVB is an effective spectrum to induce erythema, which is followed by delayed tanning. UVA induces immediate pigment darkening, persistent pigment darkening, and delayed tanning. At high doses, UVA (primarily UVA2) can also induce erythema in individuals with skin types I-II. Visible light has been shown to induce erythema and a tanning response in dark skin, but not in fair skinned individuals. Infrared radiation produces erythema, which is probably a thermal effect. In this article we reviewed the available literature on the effects of ultraviolet radiation, visible light, and infrared radiation on the skin in regards to erythema and pigmentation. Much remains to be learned on the cutaneous effects of visible light and infrared radiation.
Cavity electromagnetically induced transparency with Rydberg atoms
NASA Astrophysics Data System (ADS)
Bakar Ali, Abu; Ziauddin
2018-02-01
Cavity electromagnetically induced transparency (EIT) is revisited via the input probe field intensity. A strongly interacting Rydberg atomic medium ensemble is considered in a cavity, where atoms behave as superatoms (SAs) under the dipole blockade mechanism. Each atom in the strongly interacting Rydberg atomic medium (87 Rb) follows a three-level cascade atomic configuration. A strong control and weak probe field are employed in the cavity with the ensemble of Rydberg atoms. The features of the reflected and transmitted probe light are studied under the influence of the input probe field intensity. A transparency peak (cavity EIT) is revealed at a resonance condition for small values of input probe field intensity. The manipulation of the cavity EIT is reported by tuning the strength of the input probe field intensity. Further, the phase and group delay of the transmitted and reflected probe light are studied. It is found that group delay and phase in the reflected light are negative, while for the transmitted light they are positive. The magnitude control of group delay in the transmitted and reflected light is investigated via the input probe field intensity.
Impact of delayed information in sub-second complex systems
NASA Astrophysics Data System (ADS)
Manrique, Pedro D.; Zheng, Minzhang; Johnson Restrepo, D. Dylan; Hui, Pak Ming; Johnson, Neil F.
What happens when you slow down the delivery of information in large-scale complex systems that operate faster than the blink of an eye? This question just adopted immediate commercial, legal and political importance following U.S. regulators' decision to allow an intentional 350 microsecond delay to be added in the ultrafast network of financial exchanges. However there is still no scientific understanding available to policymakers of the potential system-wide impact of such delays. Here we take a first step in addressing this question using a minimal model of a population of competing, heterogeneous, adaptive agents which has previously been shown to produce similar statistical features to real markets. We find that while certain extreme system-level behaviors can be prevented by such delays, the duration of others is increased. This leads to a highly non-trivial relationship between delays and system-wide instabilities which warrants deeper empirical investigation. The generic nature of our model suggests there should be a fairly wide class of complex systems where such delay-driven extreme behaviors can arise, e.g. sub-second delays in brain function possibly impacting individuals' behavior, and sub-second delays in navigational systems potentially impacting the safety of driverless vehicles.
Meenakumari, Karukayil J; Banerjee, Arnab; Krishna, Amitabh
2009-01-01
The primary aim of this study was to determine the possible cause of slow or delayed embryonic development in Cynopterus sphinx by investigating morphological and steroidogenic changes in the corpus luteum (CL) and circulating hormone concentrations during two pregnancies of a year. This species showed delayed post-implantational embryonic development during gastrulation of the first pregnancy. Morphological features of the CL showed normal luteinization during both pregnancies. The CL did not change significantly in luteal cell size during the delay period of the first pregnancy as compared with the second pregnancy. The circulating progesterone and 17beta-estradiol concentrations were significantly lower during the period of delayed embryonic development as compared with the same stage of embryonic development during the second pregnancy. We also showed a marked decline in the activity of 3beta-hydroxysteroid dehydrogenase, P450 side chain cleavage enzyme, and steroidogenic acute regulatory peptide in the CL during the delay period. This may cause low circulating progesterone and estradiol synthesis and consequently delay embryonic development. What causes the decrease in steroidogenic factors in the CL during the period of delayed development in C. sphinx is under investigation.
Spectrometer employing optical fiber time delays for frequency resolution
Schuss, Jack J.; Johnson, Larry C.
1979-01-01
This invention provides different length glass fibers for providing a broad range of optical time delays for short incident chromatic light pulses for the selective spatial and frequency analysis of the light with a single light detector. To this end, the frequencies of the incident light are orientated and matched with the different length fibers by dispersing the separate frequencies in space according to the respective fiber locations and lengths at the input terminal of the glass fibers. This makes the different length fibers useful in the field of plasma physics. To this end the short light pulses can be scattered by a plasma and then passed through the fibers for analyzing and diagnosing the plasma while it varies rapidly with time.
Gannon, Joan; Doran, Philip; Kirwan, Anne; Ohlendieck, Kay
2009-11-01
The age-dependent decline in skeletal muscle mass and function is believed to be due to a multi-factorial pathology and represents a major factor that blocks healthy aging by increasing physical disability, frailty and loss of independence in the elderly. This study has focused on the comparative proteomic analysis of contractile elements and revealed that the most striking age-related changes seem to occur in the protein family representing myosin light chains (MLCs). Comparative screening of total muscle extracts suggests a fast-to-slow transition in the aged MLC population. The mass spectrometric analysis of the myofibril-enriched fraction identified the MLC2 isoform of the slow-type MLC as the contractile protein with the most drastically changed expression during aging. Immunoblotting confirmed an increased abundance of slow MLC2, concomitant with a switch in fast versus slow myosin heavy chains. Staining of two-dimensional gels of crude extracts with the phospho-specific fluorescent dye ProQ-Diamond identified the increased MLC2 spot as a muscle protein with a drastically enhanced phosphorylation level in aged fibres. Comparative immunofluorescence microscopy, using antibodies to fast and slow myosin isoforms, confirmed a fast-to-slow transformation process during muscle aging. Interestingly, the dramatic increase in slow MLC2 expression was restricted to individual senescent fibres. These findings agree with the idea that aged skeletal muscles undergo a shift to more aerobic-oxidative metabolism in a slower-twitching fibre population and suggest the slow MLC2 isoform as a potential biomarker for fibre type shifting in sarcopenia of old age.
Sollars, Patricia J.; Weiser, Michael J.; Kudwa, Andrea E.; Bramley, Jayne R.; Ogilvie, Malcolm D.; Spencer, Robert L.; Handa, Robert J.; Pickard, Gary E.
2014-01-01
The suprachiasmatic nucleus (SCN) is a circadian oscillator entrained to the day/night cycle via input from the retina. Serotonin (5-HT) afferents to the SCN modulate retinal signals via activation of 5-HT1B receptors, decreasing responsiveness to light. Consequently, 5-HT1B receptor knockout (KO) mice entrain to the day/night cycle with delayed activity onsets. Since circulating corticosterone levels exhibit a robust daily rhythm peaking around activity onset, we asked whether delayed entrainment of activity onsets affects rhythmic corticosterone secretion. Wheel-running activity and plasma corticosterone were monitored in mice housed under several different lighting regimens. Both duration of the light∶dark cycle (T cycle) and the duration of light within that cycle was altered. 5-HT1B KO mice that entrained to a 9.5L:13.5D (short day in a T = 23 h) cycle with activity onsets delayed more than 4 h after light offset exhibited a corticosterone rhythm in phase with activity rhythms but reduced 50% in amplitude compared to animals that initiated daily activity <4 h after light offset. Wild type mice in 8L:14D (short day in a T = 22 h) conditions with highly delayed activity onsets also exhibited a 50% reduction in peak plasma corticosterone levels. Exogenous adrenocorticotropin (ACTH) stimulation in animals exhibiting highly delayed entrainment suggested that the endogenous rhythm of adrenal responsiveness to ACTH remained aligned with SCN-driven behavioral activity. Circadian clock gene expression in the adrenal cortex of these same animals suggested that the adrenal circadian clock was also aligned with SCN-driven behavior. Under T cycles <24 h, altered circadian entrainment to short day (winter-like) conditions, manifest as long delays in activity onset after light offset, severely reduces the amplitude of the diurnal rhythm of plasma corticosterone. Such a pronounced reduction in the glucocorticoid rhythm may alter rhythmic gene expression in the central nervous system and in peripheral organs contributing to an array of potential pathophysiologies. PMID:25365210
Optimal Control for Aperiodic Dual-Rate Systems With Time-Varying Delays
Salt, Julián; Guinaldo, María; Chacón, Jesús
2018-01-01
In this work, we consider a dual-rate scenario with slow input and fast output. Our objective is the maximization of the decay rate of the system through the suitable choice of the n-input signals between two measures (periodic sampling) and their times of application. The optimization algorithm is extended for time-varying delays in order to make possible its implementation in networked control systems. We provide experimental results in an air levitation system to verify the validity of the algorithm in a real plant. PMID:29747441
Lee, Sang Mok; Kim, Mee Kum; Lee, Jae Lim; Wee, Won Ryang; Lee, Jin Hak
2008-03-01
To report 2 cases of Comamonas acidovorans keratitis in immunocompromised cornea. A complete review of the medical records of the two cases of Comamonas acidovorans keratitis. We found some similarities in clinical courses of two cases. Both of them showed development of keratitis during the management with corticosteroids, delayed onset, slow response to antibiotics, and relatively less affected corneal epithelium. Comamonas acidovorans is known as a less virulent organism. However it can cause an indolent infection that responds slowly even to adequate antibiotics therapy in immunocompromised corneas.
Optimal Control for Aperiodic Dual-Rate Systems With Time-Varying Delays.
Aranda-Escolástico, Ernesto; Salt, Julián; Guinaldo, María; Chacón, Jesús; Dormido, Sebastián
2018-05-09
In this work, we consider a dual-rate scenario with slow input and fast output. Our objective is the maximization of the decay rate of the system through the suitable choice of the n -input signals between two measures (periodic sampling) and their times of application. The optimization algorithm is extended for time-varying delays in order to make possible its implementation in networked control systems. We provide experimental results in an air levitation system to verify the validity of the algorithm in a real plant.
General Relativistic Theory of the VLBI Time Delay in the Gravitational Field of Moving Bodies
NASA Technical Reports Server (NTRS)
Kopeikin, Sergei
2003-01-01
The general relativistic theory of the gravitational VLBI experiment conducted on September 8, 2002 by Fomalont and Kopeikin is explained. Equations of radio waves (light) propagating from the quasar to the observer are integrated in the time-dependent gravitational field of the solar system by making use of either retarded or advanced solutions of the Einstein field equations. This mathematical technique separates explicitly the effects associated with the propagation of gravity from those associated with light in the integral expression for the relativistic VLBI time delay of light. We prove that the relativistic correction to the Shapiro time delay, discovered by Kopeikin (ApJ, 556, L1, 2001), changes sign if one retains direction of the light propagation but replaces the retarded for the advanced solution of the Einstein equations. Hence, this correction is associated with the propagation of gravity. The VLBI observation measured its speed, and that the retarded solution is the correct one.
NASA Astrophysics Data System (ADS)
Kim, Dae-Hyeon; D'Aléo, Anthony; Chen, Xian-Kai; Sandanayaka, Atula D. S.; Yao, Dandan; Zhao, Li; Komino, Takeshi; Zaborova, Elena; Canard, Gabriel; Tsuchiya, Youichi; Choi, Eunyoung; Wu, Jeong Weon; Fages, Frédéric; Brédas, Jean-Luc; Ribierre, Jean-Charles; Adachi, Chihaya
2018-02-01
Near-infrared organic light-emitting diodes and semiconductor lasers could benefit a variety of applications including night-vision displays, sensors and information-secured displays. Organic dyes can generate electroluminescence efficiently at visible wavelengths, but organic light-emitting diodes are still underperforming in the near-infrared region. Here, we report thermally activated delayed fluorescent organic light-emitting diodes that operate at near-infrared wavelengths with a maximum external quantum efficiency of nearly 10% using a boron difluoride curcuminoid derivative. As well as an effective upconversion from triplet to singlet excited states due to the non-adiabatic coupling effect, this donor-acceptor-donor compound also exhibits efficient amplified spontaneous emission. By controlling the polarity of the active medium, the maximum emission wavelength of the electroluminescence spectrum can be tuned from 700 to 780 nm. This study represents an important advance in near-infrared organic light-emitting diodes and the design of alternative molecular architectures for photonic applications based on thermally activated delayed fluorescence.
Circadian Phase-Shifting Effects of Bright Light, Exercise, and Bright Light + Exercise
Kline, Christopher E.; Elliott, Jeffrey A.; Zielinski, Mark R.; Devlin, Tina M.; Moore, Teresa A.
2016-01-01
Limited research has compared the circadian phase-shifting effects of bright light and exercise and additive effects of these stimuli. The aim of this study was to compare the phase-delaying effects of late night bright light, late night exercise, and late evening bright light followed by early morning exercise. In a within-subjects, counterbalanced design, 6 young adults completed each of three 2.5-day protocols. Participants followed a 3-h ultra-short sleep-wake cycle, involving wakefulness in dim light for 2h, followed by attempted sleep in darkness for 1 h, repeated throughout each protocol. On night 2 of each protocol, participants received either (1) bright light alone (5,000 lux) from 2210–2340 h, (2) treadmill exercise alone from 2210–2340 h, or (3) bright light (2210–2340 h) followed by exercise from 0410–0540 h. Urine was collected every 90 min. Shifts in the 6-sulphatoxymelatonin (aMT6s) cosine acrophase from baseline to post-treatment were compared between treatments. Analyses revealed a significant additive phase-delaying effect of bright light + exercise (80.8 ± 11.6 [SD] min) compared with exercise alone (47.3 ± 21.6 min), and a similar phase delay following bright light alone (56.6 ± 15.2 min) and exercise alone administered for the same duration and at the same time of night. Thus, the data suggest that late night bright light followed by early morning exercise can have an additive circadian phase-shifting effect. PMID:27103935
Quantum Control of Light and Matter: From the Macroscopic to the Nano Scale
2016-02-02
navigation, and hybrid bio -graphene devices, incorporating enzymes positioned on graphene, for light-driven bio -fuel production with controlled...enzymatic rates. 15. SUBJECT TERMS Light-matter interactions; Quantum control; Slow light; Bose-Einstein condensates; Nano-science; Hybrid bio -nano...precise navigation. They also include hybrid bio -graphene devices incorporating enzymes positioned on graphene for dynamic control of enzymatic
Relationship between platelet-to-lymphocyte ratio and coronary slow flow.
Oylumlu, Muhammed; Doğan, Adnan; Oylumlu, Mustafa; Yıldız, Abdülkadir; Yüksel, Murat; Kayan, Fethullah; Kilit, Celal; Amasyalı, Basri
2015-05-01
The coronary slow flow phenomenon (CSFP), which is characterized by delayed distal vessel opacification in the absence of significant epicardial coronary disease, is an angiographic finding. The aim of this study is to investigate the association between platelet-to-lymphocyte ratio (PLR) and coronary blood flow rate. This is a retrospective observational study. It was based on two medical centers. A total of 197 patients undergoing coronary angiography were included in the study, 95 of whom were patients with coronary slow flow without stenosis in coronary angiography and 102 of whom had normal coronary arteries and normal flow. The PLR was higher in the coronary slow flow group compared with the control groups (p=0.001). In the correlation analysis, PLR showed a significant correlation with left anterior descending (LAD) artery thrombolysis in myocardial infarction (TIMI) frame count. After multiple logistic regression, high levels of PLR were independently associated with coronary slow flow, together with hemoglobin. PLR was higher in patients with CSFP, and we also showed that PLR was significantly and independently associated with CSFP.
Gamma-Ray Burst Prompt Emission Light Curves and Power Density Spectra in the ICMART Model
NASA Astrophysics Data System (ADS)
Zhang, Bo; Zhang, Bing
2014-02-01
In this paper, we simulate the prompt emission light curves of gamma-ray bursts (GRBs) within the framework of the Internal-Collision-induced MAgnetic Reconnection and Turbulence (ICMART) model. This model applies to GRBs with a moderately high magnetization parameter σ in the emission region. We show that this model can produce highly variable light curves with both fast and slow components. The rapid variability is caused by many locally Doppler-boosted mini-emitters due to turbulent magnetic reconnection in a moderately high σ flow. The runaway growth and subsequent depletion of these mini-emitters as a function of time define a broad slow component for each ICMART event. A GRB light curve is usually composed of multiple ICMART events that are fundamentally driven by the erratic GRB central engine activity. Allowing variations of the model parameters, one is able to reproduce a variety of light curves and the power density spectra as observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boubendir, Yassine; Mendez, Vicenc; Rotstein, Horacio G.
2010-09-15
We study the evolution of fronts in a bistable equation with time-delayed global feedback in the fast reaction and slow diffusion regime. This equation generalizes the Hodgkin-Grafstein and Allen-Cahn equations. We derive a nonlinear equation governing the motion of fronts, which includes a term with delay. In the one-dimensional case this equation is linear. We study the motion of one- and two-dimensional fronts, finding a much richer dynamics than for the previously studied cases (without time-delayed global feedback). We explain the mechanism by which localized fronts created by inhibitory global coupling loose stability in a Hopf bifurcation as the delaymore » time increases. We show that for certain delay times, the prevailing phase is different from that corresponding to the system in the absence of global coupling. Numerical simulations of the partial differential equation are in agreement with the analytical predictions.« less
Propagation of light through small clouds of cold interacting atoms
NASA Astrophysics Data System (ADS)
Jennewein, S.; Sortais, Y. R. P.; Greffet, J.-J.; Browaeys, A.
2016-11-01
We demonstrate experimentally that a dense cloud of cold atoms with a size comparable to the wavelength of light can induce large group delays on a laser pulse when the laser is tightly focused on it and is close to an atomic resonance. Delays as large as -10 ns are observed, corresponding to "superluminal" propagation with negative group velocities as low as -300 m /s . Strikingly, this large delay is associated with a moderate extinction owing to the very small size of the dense cloud. It implies that a large phase shift is imprinted on the continuous laser beam. Our system may thus be useful for applications to quantum technologies, such as variable delay line for individual photons or phase imprint between two beams at the single-photon level.
Polariton excitation in epsilon-near-zero slabs: Transient trapping of slow light
NASA Astrophysics Data System (ADS)
Ciattoni, Alessandro; Marini, Andrea; Rizza, Carlo; Scalora, Michael; Biancalana, Fabio
2013-05-01
We numerically investigate the propagation of a spatially localized and quasimonochromatic electromagnetic pulse through a slab with a Lorentz dielectric response in the epsilon-near-zero regime, where the real part of the permittivity vanishes at the pulse carrier frequency. We show that the pulse is able to excite a set of virtual polariton modes supported by the slab, with the excitation undergoing a generally slow damping due to absorption and radiation leakage. Our numerical and analytical approaches indicate that in its transient dynamics the electromagnetic field displays the very same enhancement of the field component perpendicular to the slab, as in the monochromatic regime. The transient trapping is inherently accompanied by a significantly reduced group velocity ensuing from the small dielectric permittivity, thus providing an alternative platform for achieving control and manipulation of slow light.
QUANTUM CONTROL OF LIGHT: From Slow Light and FAST CARS to Nuclear γ-ray Spectroscopy
NASA Astrophysics Data System (ADS)
Scully, Marlan
2007-06-01
In recent work we have demonstrated strong coherent backward wave oscillation using forward propagating fields only. This surprising result is achieved by applying laser fields to an ultra-dispersive medium with proper chosen detunings to excite a molecular vibrational coherence that corresponds to a backward propagating wave [PRL, 97, 113001 (2006)]. The physics then has much in common with propagation of ultra-slow light. Applications of coherent scattering and remote sensing to the detection of bio and chemical pathogens (e.g., anthrax) via Coherent Anti-Raman Scattering together with Femtosecond Adaptive Spectroscopic Techniques (FAST CARS [Opt. Comm., 244, 423 (2005)]) will be discussed. Furthermore, the interplay between quantum optics (Dicke super and sub-radiant states) and nuclear physics (forward scattering of γ radiation) provides interesting problems and insights into the quantum control of scattered light [PRL, 96, 010501 (2005)].
Energy management - The delayed flap approach
NASA Technical Reports Server (NTRS)
Bull, J. S.
1976-01-01
Flight test evaluation of a Delayed Flap approach procedure intended to provide reductions in noise and fuel consumption is underway using the NASA CV-990 test aircraft. Approach is initiated at a high airspeed (240 kt) and in a drag configuration that allows for low thrust. The aircraft is flown along the conventional ILS glide slope. A Fast/Slow message display signals the pilot when to extend approach flaps, landing gear, and land flaps. Implementation of the procedure in commercial service may require the addition of a DME navigation aid co-located with the ILS glide slope transmitter. The Delayed Flap approach saves 250 lb of fuel over the Reduced Flap approach, with a 95 EPNdB noise contour only 43% as large.
Analysis of Muon Induced Neutrons in Detecting High Z Nuclear Materials
2015-03-01
mass distributions, delayed fission probabilities, and prompt to delayed fission ratios [16]. 10 2.3 Muon Catalyzed Fusion Fusion occurs when two light ...proton number; A is the atomic mass; ⇢ is the material density; = v/c where v is the velocity of the particle and c is the speed of light ; is the...8217) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 81 % Combine all neutron events time stamps into one vector %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% timeindex of
Pigeons' Memory for Number of Events: Effects of Intertrial Interval and Delay Interval Illumination
ERIC Educational Resources Information Center
Hope, Chris; Santi, Angelo
2004-01-01
In Experiment 1, pigeons were trained at a 0-s baseline delay to discriminate sequences of light flashes (illumination of the feeder) that varied in number but not time (2f/4s and 8f/4s). During training, the intertrial interval was illuminated by the houselight for Group Light, but it was dark for Group Dark. Testing conducted with dark delay…
NASA Astrophysics Data System (ADS)
Pan, Zeyu; Subbaraman, Harish; Zhang, Cheng; Li, Qiaochu; Xu, Xiaochuan; Chen, Xiangning; Zhang, Xingyu; Zou, Yi; Panday, Ashwin; Guo, L. Jay; Chen, Ray T.
2016-02-01
Phased-array antenna (PAA) technology plays a significant role in modern day radar and communication networks. Truetime- delay (TTD) enabled beam steering networks provide several advantages over their electronic counterparts, including squint-free beam steering, low RF loss, immunity to electromagnetic interference (EMI), and large bandwidth control of PAAs. Chip-scale and integrated TTD modules promise a miniaturized, light-weight system; however, the modules are still rigid and they require complex packaging solutions. Moreover, the total achievable time delay is still restricted by the wafer size. In this work, we propose a light-weight and large-area, true-time-delay beamforming network that can be fabricated on light-weight and flexible/rigid surfaces utilizing low-cost "printing" techniques. In order to prove the feasibility of the approach, a 2-bit thermo-optic polymer TTD network is developed using a combination of imprinting and ink-jet printing. RF beam steering of a 1×4 X-band PAA up to 60° is demonstrated. The development of such active components on large area, light-weight, and low-cost substrates promises significant improvement in size, weight, and power (SWaP) requirements over the state-of-the-art.
Jenkins, Lawrence C.; Mulhall, John P.
2016-01-01
Delayed orgasm/anorgasmia defined as the persistent or recurrent difficulty, delay in, or absence of attaining orgasm after sufficient sexual stimulation, which causes personal distress. Delayed orgasm and anorgasmia are associated with significant sexual dissatisfaction. A focused medical history can shed light on the potential etiologies; which include: medications, penile sensation loss, endocrinopathies, penile hyperstimulation and psychological etiologies, amongst others. Unfortunately, there are no excellent pharmacotherapies for delayed orgasm/anorgasmia, and treatment revolves largely around addressing potential causative factors and psychotherapy. PMID:26439762
Wang, B; Armstrong, J S; Reyes, M; Kulikowicz, E; Lee, J-H; Spicer, D; Bhalala, U; Yang, Z-J; Koehler, R C; Martin, L J; Lee, J K
2016-03-01
Therapeutic hypothermia is widely used to treat neonatal hypoxic ischemic (HI) brain injuries. However, potentially deleterious effects of delaying the induction of hypothermia and of rewarming on white matter injury remain unclear. We used a piglet model of HI to assess the effects of delayed hypothermia and rewarming on white matter apoptosis. Piglets underwent HI injury or sham surgery followed by normothermic or hypothermic recovery at 2h. Hypothermic groups were divided into those with no rewarming, slow rewarming at 0.5°C/h, or rapid rewarming at 4°C/h. Apoptotic cells in the subcortical white matter of the motor gyrus, corpus callosum, lateral olfactory tract, and internal capsule at 29h were identified morphologically and counted by hematoxylin & eosin staining. Cell death was verified by terminal deoxynucleotidyl transferase (TdT) dUTP nick end labeling (TUNEL) assay. White matter neurons were also counted, and apoptotic cells were immunophenotyped with the oligodendrocyte marker 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase). Hypothermia, slow rewarming, and rapid rewarming increased apoptosis in the subcortical white matter relative to normothermia (p<0.05). The number of white matter neurons was not lower in groups with more apoptosis after hypothermia or rapid rewarming, indicating that the apoptosis occurred among glial cells. Hypothermic piglets had more apoptosis in the lateral olfactory tract than those that were rewarmed (p<0.05). The promotion of apoptosis by hypothermia and rewarming in these regions was independent of HI. In the corpus callosum, HI piglets had more apoptosis than shams after normothermia, slow rewarming, and rapid rewarming (p<0.05). Many apoptotic cells were myelinating oligodendrocytes identified by CNPase positivity. Our results indicate that delaying the induction of hypothermia and rewarming are associated with white matter apoptosis in a piglet model of HI; in some regions these temperature effects are independent of HI. Vulnerable cells include myelinating oligodendrocytes. This study identifies a deleterious effect of therapeutic hypothermia in the developing brain. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montes Ponce De Leon, J.; Sanchez Del Rio, C.
1956-01-01
In this paper the identification of the isomeric state of Zn/sup 67/ by a new method is described. The isotopes Zn/sup 68/ and Zn/sup 67/ being both stable, the capture of slow neutrons by Zn/sup 68/ leads sometimes to the formation of the isomeric state of Zn/sup 67/; the state is identified by its half life, measured by delayed coincidences between the capture and the isomeric gamma rays. (auth)
Correlates of spreading depolarization in human scalp electroencephalography
Drenckhahn, Christoph; Winkler, Maren K. L.; Major, Sebastian; Scheel, Michael; Kang, Eun-Jeung; Pinczolits, Alexandra; Grozea, Cristian; Hartings, Jed A.; Woitzik, Johannes
2012-01-01
It has been known for decades that suppression of spontaneous scalp electroencephalographic activity occurs during ischaemia. Trend analysis for such suppression was found useful for intraoperative monitoring during carotid endarterectomy, or as a screening tool to detect delayed cerebral ischaemia after aneurismal subarachnoid haemorrhage. Nevertheless, pathogenesis of such suppression of activity has remained unclear. In five patients with aneurismal subarachnoid haemorrhage and four patients with decompressive hemicraniectomy after malignant hemispheric stroke due to middle cerebral artery occlusion, we here performed simultaneously full-band direct and alternating current electroencephalography at the scalp and direct and alternating current electrocorticography at the cortical surface. After subarachnoid haemorrhage, 275 slow potential changes, identifying spreading depolarizations, were recorded electrocorticographically over 694 h. Visual inspection of time-compressed scalp electroencephalography identified 193 (70.2%) slow potential changes [amplitude: −272 (−174, −375) µV (median quartiles), duration: 5.4 (4.0, 7.1) min, electrocorticography–electroencephalography delay: 1.8 (0.8, 3.5) min]. Intervals between successive spreading depolarizations were significantly shorter for depolarizations with electroencephalographically identified slow potential change [33.0 (27.0, 76.5) versus 53.0 (28.0, 130.5) min, P = 0.009]. Electroencephalography was thus more likely to display slow potential changes of clustered than isolated spreading depolarizations. In contrast to electrocorticography, no spread of electroencephalographic slow potential changes was seen, presumably due to superposition of volume-conducted electroencephalographic signals from widespread cortical generators. In two of five patients with subarachnoid haemorrhage, serial magnetic resonance imaging revealed large delayed infarcts at the recording site, while electrocorticography showed clusters of spreading depolarizations with persistent depression of spontaneous activity. Alternating current electroencephalography similarly displayed persistent depression of spontaneous activity, and direct current electroencephalography slow potential changes riding on a shallow negative ultraslow potential. Isolated spreading depolarizations with depression of both spontaneous electrocorticographic and electroencephalographic activity displayed significantly longer intervals between successive spreading depolarizations than isolated depolarizations with only depression of electrocorticographic activity [44.0 (28.0, 132.0) min, n = 96, versus 30.0 (26.5, 51.5) min, n = 109, P = 0.001]. This suggests fusion of electroencephalographic depression periods at high depolarization frequency. No propagation of electroencephalographic depression was seen between scalp electrodes. Durations/magnitudes of isolated electroencephalographic and corresponding electrocorticographic depression periods correlated significantly. Fewer spreading depolarizations were recorded in patients with malignant hemispheric stroke but characteristics were similar to those after subarachnoid haemorrhage. In conclusion, spreading depolarizations and depressions of spontaneous activity display correlates in time-compressed human scalp direct and alternating current electroencephalography that may serve for their non-invasive detection. PMID:22366798
A Nonlinear Model for Transient Responses from Light-Adapted Wolf Spider Eyes
DeVoe, Robert D.
1967-01-01
A quantitative model is proposed to test the hypothesis that the dynamics of nonlinearities in retinal action potentials from light-adapted wolf spider eyes may be due to delayed asymmetries in responses of the visual cells. For purposes of calculation, these delayed asymmetries are generated in an analogue by a time-variant resistance. It is first shown that for small incremental stimuli, the linear behavior of such a resistance describes peaking and low frequency phase lead in frequency responses of the eye to sinusoidal modulations of background illumination. It also describes the overshoots in linear step responses. It is next shown that the analogue accounts for nonlinear transient and short term DC responses to large positive and negative step stimuli and for the variations in these responses with changes in degree of light adaptation. Finally, a physiological model is proposed in which the delayed asymmetries in response are attributed to delayed rectification by the visual cell membrane. In this model, cascaded chemical reactions may serve to transduce visual stimuli into membrane resistance changes. PMID:6056011
Human responses to bright light of different durations.
Chang, Anne-Marie; Santhi, Nayantara; St Hilaire, Melissa; Gronfier, Claude; Bradstreet, Dayna S; Duffy, Jeanne F; Lockley, Steven W; Kronauer, Richard E; Czeisler, Charles A
2012-07-01
Light exposure in the early night induces phase delays of the circadian rhythm in melatonin in humans. Previous studies have investigated the effect of timing, intensity, wavelength, history and pattern of light stimuli on the human circadian timing system. We present results from a study of the duration–response relationship to phase-delaying bright light. Thirty-nine young healthy participants (16 female; 22.18±3.62 years) completed a 9-day inpatient study. Following three baseline days, participants underwent an initial circadian phase assessment procedure in dim light (<3 lux), and were then randomized for exposure to a bright light pulse (∼10,000 lux) of 0.2 h, 1.0 h, 2.5 h or 4.0 h duration during a 4.5 h controlled-posture episode centred in a 16 h wake episode. After another 8 h sleep episode, participants completed a second circadian phase assessment. Phase shifts were calculated from the difference in the clock time of the dim light melatonin onset (DLMO) between the initial and final phase assessments. Exposure to varying durations of bright light reset the circadian pacemaker in a dose-dependent, non-linear manner. Per minute of exposure, the 0.2 h duration was over 5 times more effective at phase delaying the circadian pacemaker (1.07±0.36 h) as compared with the 4.0 h duration (2.65±0.24 h). Acute melatonin suppression and subjective sleepiness also had a dose-dependent response to light exposure duration. These results provide strong evidence for a non-linear resetting response of the human circadian pacemaker to light duration.
Light scattering in gas mixtures - Evidence of fast and slow sound modes
NASA Astrophysics Data System (ADS)
Clouter, M. J.; Luo, H.; Kiefte, H.; Zollweg, J. A.
1990-02-01
Campa and Cohen (1989) have predicted that dilute, binary mixtures of gases with disparate masses should exhibit a (fast) sound mode whose velocity is considerably greater than expected on the basis of conventional hydrodynamic theory, and which should be observable via light-scattering experiments. Effects that are consistent with this prediction were observed in the Brillouin spectra of the H2 + Ar system, but were not detected for the case of CH4 + SF6. Results for the SF6 + H2 mixture demonstrate the existence of an analogous slow-mode contribution to the spectrum.
Shear wave splitting and crustal anisotropy at the Mid-Atlantic Ridge, 35°N
NASA Astrophysics Data System (ADS)
Barclay, Andrew H.; Toomey, Douglas R.
2003-08-01
Shear wave splitting observed in microearthquake data at the axis of the Mid-Atlantic Ridge near 35°N has a fast polarization direction that is parallel to the trend of the axial valley. The time delays between fast and slow S wave arrivals range from 35 to 180 ms, with an average of 90 ms, and show no relationship with ray path length, source-to-receiver azimuth, or receiver location. The anisotropy is attributed to a shallow distribution of vertical, fluid-filled cracks, aligned parallel to the trend of the axial valley. Joint modeling of the shear wave anisotropy and coincident P wave anisotropy results, using recent theoretical models for the elasticity of a porous medium with aligned cracks, suggests that the crack distribution that causes the observed P wave anisotropy can account for at most 10 ms of the shear wave delay. Most of the shear wave delay thus likely accrues within the shallowmost 500 m (seismic layer 2A), and the percent S wave anisotropy within this highly fissured layer is 8-30%. Isolated, fluid-filled cracks at 500 m to 3 km depth that are too thin or too shallow to be detected by the P wave experiment may also contribute to the shear wave delays. The joint analysis of P and S wave anisotropy is an important approach for constraining the crack distributions in the upper oceanic crust and is especially suited for seismically active hydrothermal systems at slow and intermediate spreading mid-ocean ridges.
Acute ethanol does not always affect delay discounting in rats selected to prefer or avoid ethanol.
Wilhelm, Clare J; Mitchell, Suzanne H
2012-01-01
The purpose of this study was to determine whether animals predisposed to prefer alcohol possess an altered acute response to alcohol on a delay discounting task relative to animals predisposed to avoid alcohol. We used rats selected to prefer or avoid alcohol to assess whether genotype moderates changes in delay discounting induced by acute ethanol exposure. Selectively bred rat lines of Sardinian alcohol-preferring (sP; n = 8) and non-preferring (sNP; n = 8) rats, and alko alcohol (AA, n = 8) and alko non-alcohol (ANA, n = 8) rats were trained in an adjusting amount task to assess delay discounting. There were no significant effects of line on baseline discounting; however, both lines of alcohol-preferring rats exhibit slowed reaction times. Acute ethanol (0, 0.25, 0.5 g/kg) treatment also had no effect on delay discounting in any of the selectively bred rat lines. Our data indicate that in these lines of animals, alcohol preference or avoidance has no impact on delay discounting following acute ethanol exposure. It is possible that other genetic models or lines may be differentially affected by alcohol and exhibit qualitatively and quantitatively different responses in delay discounting tasks.
NASA Astrophysics Data System (ADS)
van Eerten, Hendrik; Zhang, Weiqun; MacFadyen, Andrew
2010-10-01
Starting as highly relativistic collimated jets, gamma-ray burst outflows gradually slow down and become nonrelativistic spherical blast waves. Although detailed analytical solutions describing the afterglow emission received by an on-axis observer during both the early and late phases of the outflow evolution exist, a calculation of the received flux during the intermediate phase and for an off-axis observer requires either a more simplified analytical model or direct numerical simulations of the outflow dynamics. In this paper, we present light curves for off-axis observers covering the long-term evolution of the blast wave, calculated from a high-resolution two-dimensional relativistic hydrodynamics simulation using a synchrotron radiation model. We compare our results to earlier analytical work and calculate the consequence of the observer angle with respect to the jet axis both for the detection of orphan afterglows and for jet break fits to the observational data. We confirm earlier results in the literature finding that only a very small number of local type Ibc supernovae can harbor an orphan afterglow. For off-axis observers, the observable jet break can be delayed up to several weeks, potentially leading to overestimation of the beaming-corrected total energy. In addition we find that, when using our off-axis light curves to create synthetic Swift X-ray data, jet breaks are likely to remain hidden in the data.
Frey, Daniela; Billinger, Michael; Meier, Pascal; Beslac, Olgica; Grossenbacher, Raphael; Hänni, Beat; Hess, Otto M
2008-12-01
Vascular healing of intracoronary stents has been shown to be delayed in drug-eluting stents (DES) due to the cytotoxic compounds on the stent surface that prevent stent ingrowth and endothelialization. The lack of endothelialization explains the occurrence of late and very late stent thrombosis in DES. In 11 house swines (body weight 38-45 kg), 3 stents were implanted randomly into the 3 large epicardial coronary arteries, namely a bare-metal stent (BMS), a sirolimus-eluting stent with slow-release (SES) and a SES with extended-release (SESXR). Stent length was 18 mm, and stent diameter 3 mm. All stents were of identical design. Animals were followed for 3 (n = 3), 7 (n = 4) and 14 (n = 4) days, respectively. One animal died before implantation due to hyperthermia. On the day of explantation, the animals were euthanized and endothelialization was tested by scanning electron microscopy after drying and sputtering the samples. Endothelial coverage was determined semiquantitatively by 2 observers. Endothelialization was more rapid with BMS and SESXR than SES at 3 and 14 days. At 7 days there were no significant differences between the 2 SES. Endothelialization of intracoronary stents is faster with BMS and SESXR at 3 days than with SES. These differences persist at 14 days, suggesting delayed vascular healing with the slow-release SES.
Bright-light mask treatment of delayed sleep phase syndrome.
Cole, Roger J; Smith, Julian S; Alcalá, Yvonne C; Elliott, Jeffrey A; Kripke, Daniel F
2002-02-01
We treated delayed sleep phase syndrome (DSPS) with an illuminated mask that provides light through closed eyelids during sleep. Volunteers received either bright white light (2,700 lux, n = 28) or dim red light placebo (0.1 lux, n = 26) for 26 days at home. Mask lights were turned on (< 0.01 lux) 4 h before arising, ramped up for 1 h, and remained on at full brightness until arising. Volunteers also attempted to systematically advance sleep time, avoid naps, and avoid evening bright light. The light mask was well tolerated and produced little sleep disturbance. The acrophase of urinary 6-sulphatoxymelatonin (6-SMT) excretion advanced significantly from baseline in the bright group (p < 0.0006) and not in the dim group, but final phases were not significantly earlier in the bright group (ANCOVA ns). Bright treatment did produce significantly earlier phases, however, among volunteers whose baseline 6-SMT acrophase was later than the median of 0602 h (bright shift: 0732-0554 h, p < 0.0009; dim shift: 0746-0717 h, ns; ANCOVA p = 0.03). In this subgroup, sleep onset advanced significantly only with bright but not dim treatment (sleep onset shift: bright 0306-0145 h, p < 0.0002; dim 0229-0211 h, ns; ANCOVA p < .05). Despite equal expectations at baseline, participants rated bright treatment as more effective than dim treatment (p < 0.04). We conclude that bright-light mask treatment advances circadian phase and provides clinical benefit in DSPS individuals whose initial circadian delay is relatively severe.
Metal-free organic sensitizers for use in water-splitting dye-sensitized photoelectrochemical cells
Swierk, John R.; Méndez-Hernández, Dalvin D.; McCool, Nicholas S.; Liddell, Paul; Terazono, Yuichi; Pahk, Ian; Tomlin, John J.; Oster, Nolan V.; Moore, Thomas A.; Moore, Ana L.; Gust, Devens; Mallouk, Thomas E.
2015-01-01
Solar fuel generation requires the efficient capture and conversion of visible light. In both natural and artificial systems, molecular sensitizers can be tuned to capture, convert, and transfer visible light energy. We demonstrate that a series of metal-free porphyrins can drive photoelectrochemical water splitting under broadband and red light (λ > 590 nm) illumination in a dye-sensitized TiO2 solar cell. We report the synthesis, spectral, and electrochemical properties of the sensitizers. Despite slow recombination of photoinjected electrons with oxidized porphyrins, photocurrents are low because of low injection yields and slow electron self-exchange between oxidized porphyrins. The free-base porphyrins are stable under conditions of water photoelectrolysis and in some cases photovoltages in excess of 1 V are observed. PMID:25583488
Harrison, Thomas R.
1989-08-22
A proximity fuze system includes an optical ranging apparatus, a detonation circuit controlled by the optical ranging apparatus, and an explosive charge detonated by the detonation cirtcuit. The optical ranging apparatus includes a pulsed laser light source for generating target ranging light pulses and optical reference light pulses. A single lens directs ranging pulses to a target and collects reflected light from the target. An optical fiber bundle is used for delaying the optical reference pulses to correspond to a predetermined distance from the target. The optical ranging apparatus includes circuitry for providing a first signal depending upon the light pulses reflected from the target, a second signal depending upon the light pulses from the optical delay fiber bundle, and an output signal when the first and second signals coincide with each other. The output signal occurs when the distance from the target is equal to the predetermined distance form the target. Additional circuitry distinguishes pulses reflected from the target from background solar radiation.
Horton, P; Black, M T
1981-03-12
Addition of ATP to chloroplasts causes a reversible 25-30% decrease in chlorophyll fluorescence. This quenching is light-dependent, uncoupler insensitive but inhibited by DCMU and electron acceptors and has a half-time of 3 minutes. Electron donors to Photosystem I can not overcome the inhibitory effect of DCMU, suggesting that light activation depends on the reduced state of plastoquinone. Fluorescence emission spectra recorded at -196 degrees C indicate that ATP treatment increases the amount of excitation energy transferred to Photosystem I. Examination of fluorescence induction curves indicate that ATP treatment decreases both the initial (F0) and variable (Fv) fluorescence such that the ratio of Fv to the maximum (Fm) yield is unchanged. The initial sigmoidal phase of induction is slowed down by ATP treatment and is quenched 3-fold more than the exponential slow phase, the rate of which is unchanged. A plot of Fv against area above the induction curve was identical plus or minus ATP. Thus ATP treatment can alter quantal distribution between Photosystems II and I without altering Photosystem II-Photosystem II interaction. The effect of ATP strongly resembles in its properties the phosphorylation of the light-harvesting complex by a light activated, ATP-dependent protein kinase found in chloroplast membranes and could be the basis of physiological mechanisms which contribute to slow fluorescence quenching in vivo and regulate excitation energy distribution between Photosystem I and II. It is suggested that the sensor for this regulation is the redox state of plastoquinone.
Light-Cone Effect of Radiation Fields in Cosmological Radiative Transfer Simulations
NASA Astrophysics Data System (ADS)
Ahn, Kyungjin
2015-02-01
We present a novel method to implement time-delayed propagation of radiation fields in cosmo-logical radiative transfer simulations. Time-delayed propagation of radiation fields requires construction of retarded-time fields by tracking the location and lifetime of radiation sources along the corresponding light-cones. Cosmological radiative transfer simulations have, until now, ignored this "light-cone effect" or implemented ray-tracing methods that are computationally demanding. We show that radiative trans-fer calculation of the time-delayed fields can be easily achieved in numerical simulations when periodic boundary conditions are used, by calculating the time-discretized retarded-time Green's function using the Fast Fourier Transform (FFT) method and convolving it with the source distribution. We also present a direct application of this method to the long-range radiation field of Lyman-Werner band photons, which is important in the high-redshift astrophysics with first stars.
Rizvydeen, Muneer; Fogg, Louis F.; Keshavarzian, Ali
2016-01-01
Central circadian timing influences mental and physical health. Research in nocturnal rodents has demonstrated that when alcohol is consumed, it reaches the central hypothalamic circadian pacemaker (suprachiasmatic nuclei) and can directly alter circadian phase shifts to light. In two separate studies, we examined, for the first time, the effects of a single dose of alcohol on circadian phase advances and phase delays to light in humans. Two 23-day within-subjects placebo-controlled counterbalanced design studies were conducted. Both studies consisted of 6 days of fixed baseline sleep to stabilize circadian timing, a 2-day laboratory session, a 6-day break, and a repeat of 6 days of fixed sleep and a 2-day laboratory session. In the phase advance study (n = 10 light drinkers, 24–45 yr), the laboratory sessions consisted of a baseline dim light phase assessment, sleep episode, alcohol (0.6 g/kg) or placebo, 2-h morning bright light pulse, and final phase assessment. In the phase-delay study (n = 14 light drinkers, 22–44 yr), the laboratory sessions consisted of a baseline phase assessment, alcohol (0.8 g/kg) or placebo, 2-h late night bright light pulse, sleep episode, and final phase assessment. In both studies, alcohol either increased or decreased the observed phase shifts to light (interaction P ≥ 0.46), but the effect of alcohol vs. placebo on phase shifts to light was always on average smaller than 30 min. Thus, no meaningful effects of a single dose of alcohol vs. placebo on circadian phase shifts to light in humans were observed. PMID:26936778
Burgess, Helen J; Rizvydeen, Muneer; Fogg, Louis F; Keshavarzian, Ali
2016-04-15
Central circadian timing influences mental and physical health. Research in nocturnal rodents has demonstrated that when alcohol is consumed, it reaches the central hypothalamic circadian pacemaker (suprachiasmatic nuclei) and can directly alter circadian phase shifts to light. In two separate studies, we examined, for the first time, the effects of a single dose of alcohol on circadian phase advances and phase delays to light in humans. Two 23-day within-subjects placebo-controlled counterbalanced design studies were conducted. Both studies consisted of 6 days of fixed baseline sleep to stabilize circadian timing, a 2-day laboratory session, a 6-day break, and a repeat of 6 days of fixed sleep and a 2-day laboratory session. In the phase advance study (n= 10 light drinkers, 24-45 yr), the laboratory sessions consisted of a baseline dim light phase assessment, sleep episode, alcohol (0.6 g/kg) or placebo, 2-h morning bright light pulse, and final phase assessment. In the phase-delay study (n= 14 light drinkers, 22-44 yr), the laboratory sessions consisted of a baseline phase assessment, alcohol (0.8 g/kg) or placebo, 2-h late night bright light pulse, sleep episode, and final phase assessment. In both studies, alcohol either increased or decreased the observed phase shifts to light (interaction P≥ 0.46), but the effect of alcohol vs. placebo on phase shifts to light was always on average smaller than 30 min. Thus, no meaningful effects of a single dose of alcohol vs. placebo on circadian phase shifts to light in humans were observed. Copyright © 2016 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Sahay, Peeyush; Almabadi, Huda M.; Pradhan, Prabhakar
Real delay time (τr) provides a measure of the time spent by photons inside an optical system. The measurement of τr is conducted in terms of energy (E) derivative of the Wigner phase delay (φ) , as τr = dϕ / dE dϕ / cdk k and c represents wavenumber and the speed of light, respectively. The characterization of τr requires interferometric system to measure φ of the light waves scattering from the medium [ R =√{ r} exp (- iϕ) ]. We investigated the possibility of extracting the τr information from the intensity measurement of the backscattered waves. The study was performed on a 1D model of weak disordered optical system and short sample length by numerically evaluating the backscattered light intensity. An imaginary delay time (τi) , defined as τi = dθ / cdk , where θ represents an `imaginary phase', was obtained upon expressing the backscattered intensity as RR* =| R | 2 = r = exp (- θ) . The result shows a strong correlation between r and φ with τr and τi exhibiting similar statistical distribution but with a shift. The magnitude and variation of the mean and std values of τr, and the std values of τi with sample lengths are nearly the same, which indicates about one parameter theory of delay time. This work potentially paves way for extracting phase information from the intensity distribution without using interferometric systems.
Dewan, Karuna; Benloucif, Susan; Reid, Kathryn; Wolfe, Lisa F.; Zee, Phyllis C.
2011-01-01
Study Objectives: To evaluate the effect of increasing the intensity and/or duration of exposure on light-induced changes in the timing of the circadian clock of humans. Design: Multifactorial randomized controlled trial, between and within subject design Setting: General Clinical Research Center (GCRC) of an academic medical center Participants: 56 healthy young subjects (20-40 years of age) Interventions: Research subjects were admitted for 2 independent stays of 4 nights/3 days for treatment with bright or dim-light (randomized order) at a time known to induce phase delays in circadian timing. The intensity and duration of the bright light were determined by random assignment to one of 9 treatment conditions (duration of 1, 2, or 3 hours at 2000, 4000, or 8000 lux). Measurements and Results: Treatment-induced changes in the dim light melatonin onset (DLMO) and dim light melatonin offset (DLMOff) were measured from blood samples collected every 20-30 min throughout baseline and post-treatment nights. Comparison by multi-factor analysis of variance (ANOVA) of light-induced changes in the time of the circadian melatonin rhythm for the 9 conditions revealed that changing the duration of the light exposure from 1 to 3 h increased the magnitude of light-induced delays. In contrast, increasing from moderate (2,000 lux) to high (8,000 lux) intensity light did not alter the magnitude of phase delays of the circadian melatonin rhythm. Conclusions: Results from the present study suggest that for phototherapy of circadian rhythm sleep disorders in humans, a longer period of moderate intensity light may be more effective than a shorter exposure period of high intensity light. Citation: Dewan K; Benloucif S; Reid K; Wolfe LF; Zee PC. Light-induced changes of the circadian clock of humans: increasing duration is more effective than increasing light intensity. SLEEP 2011;34(5):593-599. PMID:21532952
Assessing Visual Delays using Pupil Oscillations
NASA Technical Reports Server (NTRS)
Mulligan, Jeffrey B.
2012-01-01
Stark (1962) demonstrated vigorous pupil oscillations by illuminating the retina with a beam of light focussed to a small spot near the edge of the pupil. Small constrictions of the pupil then are sufficient to completely block the beam, amplifying the normal relationship between pupil area and retinal illuminance. In addition to this simple and elegant method, Stark also investigated more complex feedback systems using an electronic "clamping box" which provided arbitrary gain and phase delay between a measurement of pupil area and an electronically controlled light source. We have replicated Stark's results using a video-based pupillometer to control the luminance of a display monitor. Pupil oscillations were induced by imposing a linear relationship between pupil area and display luminance, with a variable delay. Slopes of the period-vs-delay function for 3 subjects are close to the predicted value of 2 (1.96-2.39), and the implied delays range from 254 to 376 508 to 652 milliseconds. Our setup allows us to extend Stark's work by investigating a broader class of stimuli.
Special Relativity in Week One: 2) All Clocks Run Slow
ERIC Educational Resources Information Center
Huggins, Elisha
2011-01-01
In our initial article on teaching special relativity in the first week of an introductory physics course, we used the principle of relativity and Maxwell's theory of light to derive Einstein's second postulate (that the speed of light is the same to all observers). In this paper we study thought experiments involving a light pulse clock moving…
A slow neutron polarimeter for the measurement of parity-odd neutron rotary power.
Snow, W M; Anderson, E; Barrón-Palos, L; Bass, C D; Bass, T D; Crawford, B E; Crawford, C; Dawkins, J M; Esposito, D; Fry, J; Gardiner, H; Gan, K; Haddock, C; Heckel, B R; Holley, A T; Horton, J C; Huffer, C; Lieffers, J; Luo, D; Maldonado-Velázquez, M; Markoff, D M; Micherdzinska, A M; Mumm, H P; Nico, J S; Sarsour, M; Santra, S; Sharapov, E I; Swanson, H E; Walbridge, S B; Zhumabekova, V
2015-05-01
We present the design, description, calibration procedure, and an analysis of systematic effects for an apparatus designed to measure the rotation of the plane of polarization of a transversely polarized slow neutron beam as it passes through unpolarized matter. This device is the neutron optical equivalent of a crossed polarizer/analyzer pair familiar from light optics. This apparatus has been used to search for parity violation in the interaction of polarized slow neutrons in matter. Given the brightness of existing slow neutron sources, this apparatus is capable of measuring a neutron rotary power of dϕ/dz = 1 × 10(-7) rad/m.
An efficient and cost-effective microchannel plate detector for slow neutron radiography
NASA Astrophysics Data System (ADS)
Wiggins, B. B.; Vadas, J.; Bancroft, D.; deSouza, Z. O.; Huston, J.; Hudan, S.; Baxter, D. V.; deSouza, R. T.
2018-05-01
A novel approach for efficiently imaging objects with slow neutrons in two dimensions is realized. Neutron sensitivity is achieved by use of a boron doped microchannel plate (MCP). The resulting electron avalanche is further amplified with a Z-stack MCP before being sensed by two orthogonally oriented wire planes. Coupling of the wire planes to delay lines efficiently encodes the position information as a time difference. To determine the position resolution, slow neutrons were used to illuminate a Cd-mask placed directly in front of the detector. Peaks in the resulting spectrum exhibited an average peak width of 329 μm FWHM, corresponding to an average intrinsic resolution of 216 μm. The center region of the detector exhibits a significantly better spatial resolution with an intrinsic resolution of <100 μm observed.
Lee, Sang Mok; Lee, Jae Lim; Wee, Won Ryang; Lee, Jin Hak
2008-01-01
Purpose To report 2 cases of Comamonas Acidovorans keratitis in immunocompromised cornea. Methods A complete review of the medical records of the two cases of Comamonas acidovorans keratitis. Results We found some similarities in clinical courses of two cases. Both of them showed development of keratitis during the management with corticosteroids, delayed onset, slow response to antibiotics, and relatively less affected corneal epithelium. Conclusions Comamonas Acidovorans is known as a less virulent organism. However it can cause an indolent infection that responds slowly even to adequate antibiotics therapy in immunocompromised corneas. PMID:18323706
Sleep patterns in Amazon rubber tappers with and without electric light at home.
Moreno, C R C; Vasconcelos, S; Marqueze, E C; Lowden, A; Middleton, B; Fischer, F M; Louzada, F M; Skene, D J
2015-09-11
Today's modern society is exposed to artificial electric lighting in addition to the natural light-dark cycle. Studies assessing the impact of electric light exposure on sleep and its relation to work hours are rare due to the ubiquitous presence of electricity. Here we report a unique study conducted in two phases in a homogenous group of rubber tappers living and working in a remote area of the Amazon forest, comparing those living without electric light (n = 243 in first phase; n = 25 in second phase) to those with electric light at home (n = 97 in first phase; n = 17 in second phase). Questionnaire data (Phase 1) revealed that rubber tappers with availability of electric light had significantly shorter sleep on work days (30 min/day less) than those without electric light. Analysis of the data from the Phase 2 sample showed a significant delay in the timing of melatonin onset in workers with electric light compared to those without electric light (p < 0.01). Electric lighting delayed sleep onset and reduced sleep duration during the work week and appears to interfere with alignment of the circadian timing system to the natural light/dark cycle.
Yang, Ping; Wang, Min; Jin, Zhenlan; Li, Ling
2015-01-01
The ability to focus on task-relevant information, while suppressing distraction, is critical for human cognition and behavior. Using a delayed-match-to-sample (DMS) task, we investigated the effects of emotional face distractors (positive, negative, and neutral faces) on early and late phases of visual short-term memory (VSTM) maintenance intervals, using low and high VSTM loads. Behavioral results showed decreased accuracy and delayed reaction times (RTs) for high vs. low VSTM load. Event-related potentials (ERPs) showed enhanced frontal N1 and occipital P1 amplitudes for negative faces vs. neutral or positive faces, implying rapid attentional alerting effects and early perceptual processing of negative distractors. However, high VSTM load appeared to inhibit face processing in general, showing decreased N1 amplitudes and delayed P1 latencies. An inverse correlation between the N1 activation difference (high-load minus low-load) and RT costs (high-load minus low-load) was found at left frontal areas when viewing negative distractors, suggesting that the greater the inhibition the lower the RT cost for negative faces. Emotional interference effect was not found in the late VSTM-related parietal P300, frontal positive slow wave (PSW) and occipital negative slow wave (NSW) components. In general, our findings suggest that the VSTM load modulates the early attention and perception of emotional distractors. PMID:26388763
Delay in breast cancer: implications for stage at diagnosis and survival.
Caplan, Lee
2014-01-01
Breast cancer continues to be a disease with tremendous public health significance. Primary prevention of breast cancer is still not available, so efforts to promote early detection continue to be the major focus in fighting breast cancer. Since early detection is associated with decreased mortality, one would think that it is important to minimize delays in detection and diagnosis. There are two major types of delay. Patient delay is delay in seeking medical attention after self-discovering a potential breast cancer symptom. System delay is delay within the health care system in getting appointments, scheduling diagnostic tests, receiving a definitive diagnosis, and initiating therapy. Earlier studies of the consequences of delay on prognosis tended to show that increased delay is associated with more advanced stage cancers at diagnosis, thus resulting in poorer chances for survival. More recent studies have had mixed results, with some studies showing increased survival with longer delays. One hypothesis is that diagnostic difficulties could perhaps account for this survival paradox. A rapidly growing lump may suggest cancer to both doctors and patients, while a slow growing lump or other symptoms could be less obvious to them. If this is the case, then the shorter delays would be seen with the more aggressive tumors for which the prognosis is worse leading to reduced survival. It seems logical that a tumor that is more advanced at diagnosis would lead to shorter survival but the several counter-intuitive studies in this review show that it is dangerous to make assumptions.
NASA Astrophysics Data System (ADS)
Jin, Gui; Huang, Xiaoyi
2018-02-01
We propose and demonstrate a metal-dielectric-metal(MDM) waveguide side coupled with two stubs to realize plasmon induced transparency (PIT) effect. The dispersion relation of the structure has been plotted by solving the dispersion equation of MDM three layer structure, the transmission spectrum is investigated by coupled mode theory (CMT) and Finite Element Method (FEM) simulation, the CMT results can. The surface plasmon device can also be used as a EIT-like filter with a variable full width of half-maximum (FWHM) and highest transmission over 88%. The maximum group index ng is 42 with a group velocity of 0.023ܿ and transmission of 48%, The normalized delay-bandwidth product (NDBP) can be modulated through changing the gap width of resonators and waveguide bus, the highest is 0.641 at gap width 10 nm, and lowest is 0.246 at 30 nm. The dispersion of group velocity (GVD) changes drastically at narrow gap width and becomes more and more flat at broader gap width, this opens up an avenue for designing optical buffers, switches and modulators.
Tuning the Sensitivity of an Optical Cavity with Slow and Fast Light
NASA Technical Reports Server (NTRS)
Smith, David D.; Myneni, Krishna; Chang, H.; Toftul, A.; Schambeau, C.; Odutola, J. A.; Diels, J. C.
2012-01-01
We have measured mode pushing by the dispersion of a rubidium vapor in a Fabry-Perot cavity and have shown that the scale factor and sensitivity of a passive cavity can be strongly enhanced by the presence of such an anomalous dispersion medium. The enhancement is the result of the atom-cavity coupling, which provides a positive feedback to the cavity response. The cavity sensitivity can also be controlled and tuned through a pole by a second, optical pumping, beam applied transverse to the cavity. Alternatively, the sensitivity can be controlled by the introduction of a second counter-propagating input beam that interferes with the first beam, coherently increasing the cavity absorptance. We show that the pole in the sensitivity occurs when the sum of the effective group index and an additional cavity delay factor that accounts for mode reshaping goes to zero, and is an example of an exceptional point, commonly associated with coupled non-Hermitian Hamiltonian systems. Additionally we show that a normal dispersion feature can decrease the cavity scale factor and can be generated through velocity selective optical pumping
Detonation Characteristics of Some Dusts and Liquid-Dust Suspensions
1983-07-01
instrumentation which includes pressure switches, pressure transducers, a photodiode, and streak photography. The pressure switch , which is a mechanical on/ off...camera through a lens. The Xenon light is triggered by the pressure switch located upstream of the window section. A time delay device is used in...conjunction with the pressure switch and the light source power supply. When the pressure switch is swept by the shock wave, a signal is sent to the delay unit
ERIC Educational Resources Information Center
Koffarnus, Mikhail N.; Jarmolowicz, David P.; Mueller, E. Terry; Bickel, Warren K.
2013-01-01
Excessively devaluing delayed reinforcers co-occurs with a wide variety of clinical conditions such as drug dependence, obesity, and excessive gambling. If excessive delay discounting is a trans-disease process that underlies the choice behavior leading to these and other negative health conditions, efforts to change an individual's discount rate…
Hamer, Elisa G; Vermeulen, R Jeroen; Dijkstra, Linze J; Hielkema, Tjitske; Kos, Claire; Bos, Arend F; Hadders-Algra, Mijna
2016-12-01
Having observed slow pupillary light responses (PLRs) in infants at high risk of cerebral palsy, we retrospectively evaluated whether these were associated with specific brain lesions or unfavourable outcomes. We carried out neurological examinations on 30 infants at very high risk of cerebral palsy five times until the corrected age of 21 months, classifying each PLR assessment as normal or slow. The predominant reaction during development was determined for each infant. Neonatal brain scans were classified based on the type of brain lesion. Developmental outcome was evaluated at 21 months of corrected age with a neurological examination, the Bayley Scales of Infant Development Second Edition and the Infant Motor Profile. Of the 30 infants, 16 developed cerebral palsy. Predominantly slow PLRs were observed in eight infants and were associated with periventricular leukomalacia (p = 0.007), cerebral palsy (p = 0.039), bilateral cerebral palsy (p = 0.001), poorer quality of motor behaviour (p < 0.0005) and poorer cognitive outcome (p = 0.045). This explorative study suggested that predominantly slow PLR in infants at high risk of cerebral palsy were associated with periventricular leukomalacia and poorer developmental outcome. Slow PLR might be an expression of white matter damage, resulting in dysfunction of the complex cortico-subcortical circuitries. ©2016 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.
Speeding Up the Drug Review Process: Results Encouraging -- But Progress Slow.
1981-11-23
the Division of Biopharma - ceutics, which reviews studies of such things as the drug’s rate of dissolution in the blood. These divisions’ data...BIOPHARMACEUTICAL REVIEWS CONTINUE TO BE DELAYED Efforts to speed up the reviews of the Division of Biopharma - ceutics, which reviews such things as the rate of
Antagonistic effects of pemoline to colchicine and caffeine.
Röper, W
1975-10-15
Pemoline, the constituent of Tradon, is able to slow down the decrease of the mitotic index caused by 0.1% caffeine in roots of Vicia faba, and mitotic aberrations are reduced. With 0.005% colchicine and 3 x 10(-4) g/ml pemoline, no metaphase-accumulation can be observed, and anaphase-disorder is delayed.
Early Boost and Slow Consolidation in Motor Skill Learning
ERIC Educational Resources Information Center
Hotermans, Christophe; Peigneux, Philippe; de Noordhout, Alain Maertens; Moonen, Gustave; Maquet, Pierre
2006-01-01
Motor skill learning is a dynamic process that continues covertly after training has ended and eventually leads to delayed increments in performance. Current theories suggest that this off-line improvement takes time and appears only after several hours. Here we show an early transient and short-lived boost in performance, emerging as early as…
NASA Astrophysics Data System (ADS)
Charlemagne, S.; Ture Savadkoohi, A.; Lamarque, C.-H.
2018-07-01
The continuous approximation is used in this work to describe the dynamics of a nonlinear chain of light oscillators coupled to a linear main system. A general methodology is applied to an example where the chain has local nonlinear restoring forces. The slow invariant manifold is detected at fast time scale. At slow time scale, equilibrium and singular points are sought around this manifold in order to predict periodic regimes and strongly modulated responses of the system. Analytical predictions are in good accordance with numerical results and represent a potent tool for designing nonlinear chains for passive control purposes.
NASA Astrophysics Data System (ADS)
Mansouri-Birjandi, Mohammad Ali; Janfaza, Morteza; Tavousi, Alireza
2017-11-01
In this paper, a photonic crystal slab waveguide (PhCSW) for slow light applications is presented. To obtain widest possible flat-bands of slow light regions—regions with large group index ( n g), and very low group velocity dispersion (GVD)—two core parameters of PhCSW structure are investigated. The design procedure is based on vertical shifting of the first row of the air holes adjacent to the waveguide center and concurrent selective optofluidic infiltration of the second row. The criteria of < n_g > ± 10% variations is used for ease of definition and comparison of flat-band regions. By applying various geometry optimizations for the first row, our results suggest that a waveguide core of W 1.09 would provide a reasonable wide flat-band. Furthermore, infiltration of optofluidics in the second row alongside with geometry adjustments of the first row result in flexible control of 10 < n g < 32 and provide flat-band regions with large bandwidth (10 nm < Δ λ < 21.5 nm). Also, negligible GVD as low as β 2 = 10-24 (s2/m) is achieved. Numerical simulations are calculated by means of the three-dimensional plane wave expansion method.
Graphene-based active slow surface plasmon polaritons
Lu, Hua; Zeng, Chao; Zhang, Qiming; Liu, Xueming; Hossain, Md Muntasir; Reineck, Philipp; Gu, Min
2015-01-01
Finding new ways to control and slow down the group velocity of light in media remains a major challenge in the field of optics. For the design of plasmonic slow light structures, graphene represents an attractive alternative to metals due to its strong field confinement, comparably low ohmic loss and versatile tunability. Here we propose a novel nanostructure consisting of a monolayer graphene on a silicon based graded grating structure. An external gate voltage is applied to graphene and silicon, which are separated by a spacer layer of silica. Theoretical and numerical results demonstrate that the structure exhibits an ultra-high slowdown factor above 450 for the propagation of surface plasmon polaritons (SPPs) excited in graphene, which also enables the spatially resolved trapping of light. Slowdown and trapping occur in the mid-infrared wavelength region within a bandwidth of ~2.1 μm and on a length scale less than 1/6 of the operating wavelength. The slowdown factor can be precisely tuned simply by adjusting the external gate voltage, offering a dynamic pathway for the release of trapped SPPs at room temperature. The presented results will enable the development of highly tunable optoelectronic devices such as plasmonic switches and buffers. PMID:25676462
Nutrient sensing pathways as therapeutic targets for healthy ageing.
Aiello, Anna; Accardi, Giulia; Candore, Giuseppina; Gambino, Caterina Maria; Mirisola, Mario; Taormina, Giusi; Virruso, Claudia; Caruso, Calogero
2017-04-01
In the present paper, the authors have discussed anti-aging strategies which aim to slow the aging process and to delay the onset of age-related diseases, focusing on nutrient sensing pathways (NSPs) as therapeutic targets. Indeed, several studies have already demonstrated that both in animal models and humans, dietary interventions might have a positive impact on the aging process through the modulation of these pathways. Areas covered: Achieving healthy aging is the main challenge of the twenty-first century because lifespan is increasing, but not in tandem with good health. The authors have illustrated different approaches that can act on NSPs, modulating the rate of the aging process. Expert opinion: Humanity's lasting dream is to reverse or, at least, postpone aging. In recent years, increasing attention has been devoted to anti-aging therapies. The subject is very popular among the general public, whose imagination runs wild with all the possible tools to delay aging and to gain immortality. Some approaches discussed in the present review should be able to substantially slow down the aging process, extending our productive, youthful lives, without frailty.
Bedoukian, Matthew A.; Rodriguez, Sarah M.; Cohen, Matthew B.; Duncan Smith, Stuart V.; Park, Jennifer
2009-01-01
Gene expression in Drosophila melanogaster changes significantly throughout life and some of these changes can be delayed by lowering ambient temperature and also by dietary restriction. These two interventions are known to slow the rate of aging as well as the accumulation of damage. It is unknown, however, whether gene expression changes that occur during development and early adult life make an animal more vulnerable to death. Here we develop a method capable of measuring the rate of programmed genetic changes during young adult life in Drosophila melanogaster and show that these changes can be delayed or accelerated in a manner that is predictive of longevity. We show that temperature shifts and dietary restriction, which slow the rate of aging in Drosophila melanogaster, extend the window of neuronal susceptibility to GRIM over-expression in a way that scales to lifespan. We propose that this susceptibility can be used to test compounds and genetic manipulations that alter the onset of senescence by changing the programmed timing of gene expression that correlates and may be causal to aging. PMID:19428445
NASA Technical Reports Server (NTRS)
Soo, Han Lee
1991-01-01
Researchers developed a robust control law for slow motions for the accurate trajectory control of a flexible robot. The control law does not need larger velocity gains than position gains, which some researchers need to ensure the stability of a rigid robot. Initial experimentation for the Small Articulated Manipulator (SAM) shows that control laws that use smaller velocity gains are more robust to signal noise than the control laws that use larger velocity gains. Researchers analyzed the stability of the composite control law, the robust control for the slow motion, and the strain rate feedback for the fast control. The stability analysis was done by using a quadratic Liapunov function. Researchers found that the flexible motion of links could be controlled by relating the input force to the flexible signals which are sensed at the near tip of each link. The signals are contaminated by the time delayed input force. However, the effect of the time delayed input force can be reduced by giving a certain configuration to the SAM.
Ching, Tsui-Ting; Chiang, Wei-Chung; Chen, Ching-Shih; Hsu, Ao-Lin
2011-01-01
Summary One goal of aging research is to develop interventions that combat age-related illnesses and slow aging. Although numerous mutations have been shown to achieve this in various model organisms, only a handful of chemicals have been identified to slow aging. Here we report that celecoxib, a non-steroidal anti-inflammatory drug (NSAID) widely used to treat pain and inflammation, extends C. elegans lifespan and delays the age-associated physiological changes, such as motor activity declines. Celecoxib also delays the progression of age-related proteotoxicity as well as tumor growth in C. elegans. Celecoxib was originally developed as a potent COX-2 inhibitor. However, the result from a structural-activity analysis demonstrated that the anti-aging effect of celecoxib might be independent of its COX-2 inhibitory activity, as analogs of celecoxib that lack cyclooxygenase-2 (COX-2) inhibitory activity produces a similar effect on lifespan. Furthermore, we found that celecoxib acts directly on 3’-phosphoinositide-dependent kinase-1 (PDK-1), a component of the insulin/IGF-1 signaling (IIS) cascade to increase lifespan. PMID:21348927
Holmlid, Leif
2009-01-01
Clouds of the condensed excited Rydberg matter (RM) exist in the atmospheres of comets and planetary bodies (most easily observed at Mercury and the Moon), where they surround the entire bodies. Vast such clouds are recently proposed to exist in the upper atmosphere of Earth (giving rise to the enormous features called noctilucent clouds, polar mesospheric clouds, and polar mesospheric summer radar echoes). It has been shown in experiments with RM that linearly polarized visible light scattered from an RM layer is transformed to circularly polarized light with a probability of approximately 50%. The circular Rydberg electrons in the magnetic field in the RM may be chiral scatterers. The magnetic and anisotropic RM medium acts as a circular polarizer probably by delaying one of the perpendicular components of the light wave. The delay process involved is called Rabi-flopping and gives delays of the order of femtoseconds. This strong effect thus gives intense circularly polarized visible and UV light within RM clouds. Amino acids and other chiral molecules will experience a strong interaction with this light field in the upper atmospheres of planets. The interaction will vary with the stereogenic conformation of the molecules and in all probability promote the survival of one enantiomer. Here, this strong effect is proposed to be the origin of homochirality. The formation of amino acids in the RM clouds is probably facilitated by the catalytic effect of RM.
NASA Astrophysics Data System (ADS)
Holmlid, Leif
2009-08-01
Clouds of the condensed excited Rydberg matter (RM) exist in the atmospheres of comets and planetary bodies (most easily observed at Mercury and the Moon), where they surround the entire bodies. Vast such clouds are recently proposed to exist in the upper atmosphere of Earth (giving rise to the enormous features called noctilucent clouds, polar mesospheric clouds, and polar mesospheric summer radar echoes). It has been shown in experiments with RM that linearly polarized visible light scattered from an RM layer is transformed to circularly polarized light with a probability of approximately 50%. The circular Rydberg electrons in the magnetic field in the RM may be chiral scatterers. The magnetic and anisotropic RM medium acts as a circular polarizer probably by delaying one of the perpendicular components of the light wave. The delay process involved is called Rabi-flopping and gives delays of the order of femtoseconds. This strong effect thus gives intense circularly polarized visible and UV light within RM clouds. Amino acids and other chiral molecules will experience a strong interaction with this light field in the upper atmospheres of planets. The interaction will vary with the stereogenic conformation of the molecules and in all probability promote the survival of one enantiomer. Here, this strong effect is proposed to be the origin of homochirality. The formation of amino acids in the RM clouds is probably facilitated by the catalytic effect of RM.
NASA Astrophysics Data System (ADS)
Qiu, Denggao; Xu, Shihong; Song, Changbin; Chi, Liang; Li, Xian; Sun, Guoxiang; Liu, Baoliang; Liu, Ying
2015-01-01
Artificial lighting regimes have been successfully used to inhibit sexual maturity of Atlantic salmon in confinement. However, when these operations are applied in commercial recirculating aquaculture systems (RAS) using standard lighting technology, sexual maturation is not suppressed. In this study, an L9 (33) orthogonal design was used to determine the effects of three factors (spectral composition, photoperiod, and light intensity) on the gonadal development of Atlantic salmon in RAS. We demonstrated that the photoperiod at the tested levels had a much greater effect on the gonadosomatic index and female Fulton condition factor than spectral composition and light intensity. The photoperiod had a significant effect on the secretion of sex steroids and melatonin ( P<0.05), and a short photoperiod delayed sex steroid and melatonin level increases. The three test factors had no significant effects on the survival rate, specific growth rate, relative weight gain, and male Fulton condition factor ( P>0.05). The optimum lighting levels in female and male Atlantic salmon were LD 8:16, 455 nm (or 625 nm), 8.60 W/m2; and LD 8:16, 8.60 W/m2, 455 nm respectively. These conditions not only delayed gonadal development, but also had no negative effects on Atlantic salmon growth in RAS. These results demonstrate that a combination of spectral composition, photoperiod and light intensity is effective at delaying the gonadal development of both male and female salmon in RAS.
NASA Technical Reports Server (NTRS)
Hoflich, P.; Khokhlov, A. M.; Wheeler, J. C.
1995-01-01
We compute optical and infrared light curves of the pulsating class of delayed detonation models for Type Ia supernovae (SN Ia's) using an elaborate treatment of the Local Thermodynamic Equilbrium (LTE) radiation transport, equation of state and ionization balance, expansion opacity including the cooling by CO, Co(+), and SiO, and a Monte Carlo gamma-ray deposition scheme. The models have an amount of Ni-56 in the range from approximately or equal to 0.1 solar mass up to 0.7 solar mass depending on the density at which the transition from a deflagration to a detonation occurs. Models with a large nickel production give light curves comparable to those of typical Type Ia supernovae. Subluminous supernovae can be explained by models with a low nickel production. Multiband light curves are presented in comparison with the normally bright event SN 1992bc and the subluminous events Sn 1991bg and SN 1992bo to establish the principle that the delayed detonation paradigm in Chandrasekhar mass models may give a common explosion mechanism accounting for both normal and subluminous SN Ia's. Secondary IR-maxima are formed in the models of normal SN Ia's as a photospheric effect if the photospheric radius continues to increase well after maximum light. Secondary maxima appear later and stronger in models with moderate expansion velocities and with radioactive material closer to the surface. Model light curves for subluminous SN Ia's tend to show only one 'late' IR-maximum. In some delayed detonation models shell-like envelopes form, which consist of unburned carbon and oxygen. The formation of molecules in these envelopes is addressed. If the model retains a C/O-envelope and is subluminous, strong vibration bands of CO may appear, typically several weeks past maximum light. CO should be very weak or absent in normal Sn Ia's.
Metal-free organic sensitizers for use in water-splitting dye-sensitized photoelectrochemical cells
Swierk, John R.; Méndez-Hernández, Dalvin D.; McCool, Nicholas S.; ...
2015-01-12
Solar fuel generation requires the efficient capture and conversion of visible light. In both natural and artificial systems, molecular sensitizers can be tuned to capture, convert, and transfer visible light energy. We demonstrate that a series of metal-free porphyrins can drive photoelectrochemical water splitting under broadband and red light (λ > 590 nm) illumination in a dye-sensitized TiO 2 solar cell. Here, we report the synthesis, spectral, and electrochemical properties of the sensitizers. Despite slow recombination of photoinjected electrons with oxidized porphyrins, photocurrents are low because of low injection yields and slow electron self-exchange between oxidized porphyrins. As a result,more » the free-base porphyrins are stable under conditions of water photoelectrolysis and in some cases photovoltages in excess of 1 V are observed.« less
Spatio-temporal dynamics of action-effect associations in oculomotor control.
Riechelmann, Eva; Pieczykolan, Aleksandra; Horstmann, Gernot; Herwig, Arvid; Huestegge, Lynn
2017-10-01
While there is ample evidence that actions are guided by anticipating their effects (ideomotor control) in the manual domain, much less is known about the underlying characteristics and dynamics of effect-based oculomotor control. Here, we address three open issues. 1) Is action-effect anticipation in oculomotor control reflected in corresponding spatial saccade characteristics in inanimate environments? 2) Does the previously reported dependency of action latency on the temporal effect delay (action-effect interval) also occur in the oculomotor domain? 3) Which temporal effect delay is optimally suited to develop strong action-effect associations over time in the oculomotor domain? Participants executed left or right free-choice saccades to peripheral traffic lights, causing an (immediate or delayed) action-contingent light switch in the upper vs. lower part of the traffic light. Results indicated that saccades were spatially shifted toward the location of the upcoming change, indicating anticipation of the effect (location). Saccade latency was affected by effect delay, suggesting that corresponding time information is integrated into event representations. Finally, delayed (vs. immediate) effects were more effective in strengthening action-effect associations over the course of the experiment, likely due to greater saliency of perceptual changes occurring during target fixation as opposed to changes during saccades (saccadic suppression). Overall, basic principles underlying ideomotor control appear to generalize to the oculomotor domain. Copyright © 2017 Elsevier B.V. All rights reserved.
Devenyi, Ryan A; Ortega, Francis A; Groenendaal, Willemijn; Krogh-Madsen, Trine; Christini, David J; Sobie, Eric A
2017-04-01
Arrhythmias result from disruptions to cardiac electrical activity, although the factors that control cellular action potentials are incompletely understood. We combined mathematical modelling with experiments in heart cells from guinea pigs to determine how cellular electrical activity is regulated. A mismatch between modelling predictions and the experimental results allowed us to construct an improved, more predictive mathematical model. The balance between two particular potassium currents dictates how heart cells respond to perturbations and their susceptibility to arrhythmias. Imbalances of ionic currents can destabilize the cardiac action potential and potentially trigger lethal cardiac arrhythmias. In the present study, we combined mathematical modelling with information-rich dynamic clamp experiments to determine the regulation of action potential morphology in guinea pig ventricular myocytes. Parameter sensitivity analysis was used to predict how changes in ionic currents alter action potential duration, and these were tested experimentally using dynamic clamp, a technique that allows for multiple perturbations to be tested in each cell. Surprisingly, we found that a leading mathematical model, developed with traditional approaches, systematically underestimated experimental responses to dynamic clamp perturbations. We then re-parameterized the model using a genetic algorithm, which allowed us to estimate ionic current levels in each of the cells studied. This unbiased model adjustment consistently predicted an increase in the rapid delayed rectifier K + current and a drastic decrease in the slow delayed rectifier K + current, and this prediction was validated experimentally. Subsequent simulations with the adjusted model generated the clinically relevant prediction that the slow delayed rectifier is better able to stabilize the action potential and suppress pro-arrhythmic events than the rapid delayed rectifier. In summary, iterative coupling of simulations and experiments enabled novel insight into how the balance between cardiac K + currents influences ventricular arrhythmia susceptibility. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Bertels, Julie; Kolinsky, Régine
2016-09-01
Although the influence of the emotional content of stimuli on attention has been considered as occurring within trial, recent studies revealed that the presentation of such stimuli would also involve a slow component. The aim of the present study was to investigate fast and slow effects of negative (Exp. 1) and taboo (Exp. 2) spoken words. For this purpose, we used an auditory variant of the emotional Stroop paradigm in which each emotional word was followed by a sequence of neutral words. Replicating results from our previous study, we observed slow but no fast effects of negative and taboo words, which we interpreted as reflecting difficulties to disengage attention from their emotional dimension. Interestingly, while the presentation of a negative word only delayed the processing of the immediately subsequent neutral word, slow effects of taboo words were long-lasting. Nevertheless, such attentional effects were only observed when the emotional words were presented in the first block of trials, suggesting that once participants develop strategies to perform the task, attention-grabbing effects of emotional words disappear. Hence, far from being automatic, the occurrence of these effects would depend on participants' attentional set.
Security-enhanced chaos communication with time-delay signature suppression and phase encryption.
Xue, Chenpeng; Jiang, Ning; Lv, Yunxin; Wang, Chao; Li, Guilan; Lin, Shuqing; Qiu, Kun
2016-08-15
A security-enhanced chaos communication scheme with time delay signature (TDS) suppression and phase-encrypted feedback light is proposed, in virtue of dual-loop feedback with independent high-speed phase modulation. We numerically investigate the property of TDS suppression in the intensity and phase space and quantitatively discuss security of the proposed system by calculating the bit error rate of eavesdroppers who try to crack the system by directly filtering the detected signal or by using a similar semiconductor laser to synchronize the link signal and extract the data. The results show that TDS embedded in the chaotic carrier can be well suppressed by properly setting the modulation frequency, which can keep the time delay a secret from the eavesdropper. Moreover, because the feedback light is encrypted, without the accurate time delay and key, the eavesdropper cannot reconstruct the symmetric operation conditions and decode the correct data.
Delayed orgasm and anorgasmia.
Jenkins, Lawrence C; Mulhall, John P
2015-11-01
Delayed orgasm/anorgasmia defined as the persistent or recurrent difficulty, delay in, or absence of attaining orgasm after sufficient sexual stimulation, which causes personal distress. Delayed orgasm and anorgasmia are associated with significant sexual dissatisfaction. A focused medical history can shed light on the potential etiologies, which include medications, penile sensation loss, endocrinopathies, penile hyperstimulation, and psychological etiologies. Unfortunately, there are no excellent pharmacotherapies for delayed orgasm/anorgasmia, and treatment revolves largely around addressing potential causative factors and psychotherapy. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Wargelius, Anna; Fjelldal, Per Gunnar; Nordgarden, Ulla; Hansen, Tom
2009-03-01
In order to study the effects of photoperiod on fish bone, Atlantic salmon (Salmo salar L.) were exposed to two light regimes (natural and continuous light) from January until June. During the experimental period, several parameters related to the inorganic (minerals) and organic (osteoid) phases were measured. Changes in the organic phase were related to mechanical strength (yield-load) and the expression of the genes sonic hedgehog (shh) and collagen type I alpha 2 (col I). Co-variation between yield-load and the expression of both shh and col I were detected in both groups. It was also shown that fish on the continuous light regime had delayed activation of osteoid incorporation. Mineralization properties were measured with stiffness, mineral incorporation per day and expression of alkaline phosphatase (alp) and matrix Gla protein (mgp). Stiffness, mineral incorporation and gene expression followed the same trend in both light groups in late spring, whereas an increase in the expression of mgp and alp was detected in April, followed by significantly higher stiffness at last sampling in both light groups. These results indicate that constant light affects mineralization and delays osteoid incorporation in Atlantic salmon during the spring. However, in this experiment light treatment did not promote the development of vertebral deformities. Our results also suggest that shh can be used as a marker of osteoblast proliferation and col I a marker of osteoid incorporation, and that both alp and mgp expression could be associated with a rapid increase in mineralization in Atlantic salmon vertebrae.
Study on a multi-delay spectral interferometry for stellar radial velocity measurement
NASA Astrophysics Data System (ADS)
Zhang, Kai; Jiang, Haijiao; Tang, Jin; Ji, Hangxin; Zhu, Yongtian; Wang, Liang
2014-08-01
High accuracy radial velocity measurement isn't only one of the most important methods for detecting earth-like Exoplanets, but also one of the main developing fields of astronomical observation technologies in future. Externally dispersed interferometry (EDI) generates a kind of particular interference spectrum through combining a fixed-delay interferometer with a medium-resolution spectrograph. It effectively enhances radial velocity measuring accuracy by several times. Another further study on multi-delay interferometry was gradually developed after observation success with only a fixed-delay, and its relative instrumentation makes more impressive performance in near Infrared band. Multi-delay is capable of giving wider coverage from low to high frequency in Fourier field so that gives a higher accuracy in radial velocity measurement. To study on this new technology and verify its feasibility at Guo Shoujing telescope (LAMOST), an experimental instrumentation with single fixed-delay named MESSI has been built and tested at our lab. Another experimental study on multi-delay spectral interferometry given here is being done as well. Basically, this multi-delay experimental system is designed in according to the similar instrument named TEDI at Palomar observatory and the preliminary test result of MESSI. Due to existence of LAMOST spectrograph at lab, a multi-delay interferometer design actually dominates our work. It's generally composed of three parts, respectively science optics, phase-stabilizing optics and delay-calibrating optics. To switch different fixed delays smoothly during observation, the delay-calibrating optics is possibly useful to get high repeatability during switching motion through polychromatic interferometry. Although this metrology is based on white light interferometry in theory, it's different that integrates all of interference signals independently obtained by different monochromatic light in order to avoid dispersion error caused by broad band in big optical path difference (OPD).
Migratory behavior of adult sea lamprey and cumulative passage performance through four fishways
Castro-Santos, Theodore R.; Shi, Xiaotao; Haro, Alexander
2017-01-01
This article describes a study of PIT-tagged sea lamprey (Petromyzon marinus) ascending four fishways comprising three designs at two dams on the Connecticut River, USA. Migration between dams was rapid (median migration rate = 23 km·day−1). Movement through the fishways was much slower, however (median = 0.02–0.33 km·day−1). Overall delay at dams was substantial (median = 13.6–14.6 days); many fish failed to pass (percent passage ranged from 29% to 55%, depending on fishway), and repeated passage attempts compounded delay for both passers and failers. Cox regression revealed that fishway entry rates were influenced by flow, temperature, and diel cycle, with most lampreys entering at night and at elevated flows, but with no apparent effect of sex or length. Overall delay was influenced by slow movement through the fishways, but repeated failures were the primary factor determining delay. These data suggest that although some lamprey were able to pass fishways, they did so with difficulty, and delays incurred as they attempted to pass may act to limit their distribution within their native range.
Gong, Zhaoyuan; Walls, Jamie D
2018-02-01
Delayed-acquisition, which is a common technique for improving spectral resolution in Fourier transform based spectroscopies, typically relies upon differences in T 2 relaxation rates that are often due to underlying differences in dynamics and/or complexities of the spin systems being studied. After an acquisition delay, the broad signals from fast T 2 -relaxing species are more suppressed relative to the sharp signals from slow T 2 -relaxing species. In this paper, an alternative source of differential "dephasing" under delayed-acquisition is demonstrated that is based solely upon the mathematical properties of the line shape and is independent of the underlying spin dynamics and/or complexity. Signals associated with frequencies where the line shape either changes sharply and/or is non-differentiable at some finite order dephase at a much slower rate than those signals associated with frequencies where the line shape is smooth. Experiments employing delayed-acquisition to study interfaces in biphasic samples, to measure spatially-dependent longitudinal relaxation, and to highlight sharp features in NMR spectra are presented. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Gong, Zhaoyuan; Walls, Jamie D.
2018-02-01
Delayed-acquisition, which is a common technique for improving spectral resolution in Fourier transform based spectroscopies, typically relies upon differences in T2 relaxation rates that are often due to underlying differences in dynamics and/or complexities of the spin systems being studied. After an acquisition delay, the broad signals from fast T2 -relaxing species are more suppressed relative to the sharp signals from slow T2 -relaxing species. In this paper, an alternative source of differential "dephasing" under delayed-acquisition is demonstrated that is based solely upon the mathematical properties of the line shape and is independent of the underlying spin dynamics and/or complexity. Signals associated with frequencies where the line shape either changes sharply and/or is non-differentiable at some finite order dephase at a much slower rate than those signals associated with frequencies where the line shape is smooth. Experiments employing delayed-acquisition to study interfaces in biphasic samples, to measure spatially-dependent longitudinal relaxation, and to highlight sharp features in NMR spectra are presented.
Assessment of progressively delayed prompts on guided skill learning in rats.
Reid, Alliston K; Futch, Sara E; Ball, Katherine M; Knight, Aubrey G; Tucker, Martha
2017-03-01
We examined the controlling factors that allow a prompted skill to become autonomous in a discrete-trials implementation of Touchette's (1971) progressively delayed prompting procedure, but our subjects were rats rather than children with disabilities. Our prompted skill was a left-right lever-press sequence guided by two panel lights. We manipulated (a) the effectiveness of the guiding lights prompt and (b) the presence or absence of a progressively delayed prompt in four groups of rats. The less effective prompt yielded greater autonomy than the more effective prompt. The ability of the progressively delayed prompt procedure to produce behavioral autonomy depended upon characteristics of the obtained delay (trial duration) rather than on the pending prompt. Sequence accuracy was reliably higher in unprompted trials than in prompted trials, and this difference was maintained in the 2 groups that received no prompts but yielded equivalent trial durations. Overall sequence accuracy decreased systematically as trial duration increased. Shorter trials and their greater accuracy were correlated with higher overall reinforcement rates for faster responding. Waiting for delayed prompts (even if no actual prompt was provided) was associated with lower overall reinforcement rate by decreasing accuracy and by lengthening trials. These findings extend results from previous studies regarding the controlling factors in delayed prompting procedures applied to children with disabilities.
Zhan, Lijuan; Hu, Jinqiang; Ai, Zhilu; Pang, Lingyun; Li, Yu; Zhu, Meiyun
2013-01-01
Minimally processed romaine lettuce (MPRL) leaves were stored in light condition (2500lux) or darkness at 4°C for 7d. Light exposure significantly delayed the degradation of chlorophyll and decrease of glucose, reducing sugar, and sucrose content, and thus preserved more total soluble solid (TSS) content at the end of storage in comparison with darkness. While, it did not influenced starch content that progressively decreased over time. The l-ascorbic acid (AA) accumulated in light-stored leaves, but deteriorated in dark-stored leaves during storage. The dehydroascorbic acid (DHA) increased in all leaves stored in both light and dark condition, of which light condition resulted in less DHA than darkness. In addition, the fresh weight loss and dry matter significantly increased and these increases were accelerated by light exposure. Conclusively, light exposure in applied intensity effectively alleviated MPRL quality deterioration by delaying the decreases of pigments, soluble sugar, TSS content and accumulating AA. Copyright © 2012 Elsevier Ltd. All rights reserved.
Liu, Xiao-Ke; Chen, Zhan; Qing, Jian; Zhang, Wen-Jun; Wu, Bo; Tam, Hoi Lam; Zhu, Furong; Zhang, Xiao-Hong; Lee, Chun-Sing
2015-11-25
A high-performance hybrid white organic light-emitting device (WOLED) is demonstrated based on an efficient novel thermally activated delayed fluorescence (TADF) blue exciplex system. This device shows a low turn-on voltage of 2.5 V and maximum forward-viewing external quantum efficiency of 25.5%, which opens a new avenue for achieving high-performance hybrid WOLEDs with simple structures. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Experimental Control of a Fast Chaotic Time-Delay Opto-Electronic Device
2003-01-01
chaotic sources such as the erbium-doped Þber laser. The basic idea is to use the message as a driving signal for the chaotic system. The message...47 x 3.10 Block diagram of feedback loop. Light from the interferometer is con- verted into an electrical signal by the photodiode (PD). All...a time delay of τD. Finally, the electrical signal is converted back into light by the laser diode (LD). . . . . . . . . . . . . . . . . 48 3.11 Setup
Apparatus and process for active pulse intensity control of laser beam
Wilcox, Russell B.
1992-01-01
An optically controlled laser pulse energy control apparatus and process is disclosed wherein variations in the energy of a portion of the laser beam are used to vary the resistance of a photodetector such as a photoresistor through which a control voltage is fed to a light intensity controlling device through which a second portion of the laser beam passes. Light attenuation means are provided to vary the intensity of the laser light used to control the resistance of the photodetector. An optical delay path is provided through which the second portion of the beam travels before reaching the light intensity controlling device. The control voltage is supplied by a variable power supply. The apparatus may be tuned to properly attenuate the laser beam passing through the intensity controlling device by adjusting the power supply, the optical delay path, or the light attenuating means.
Moderate Cortical Cooling Eliminates Thalamocortical Silent States during Slow Oscillation.
Sheroziya, Maxim; Timofeev, Igor
2015-09-23
Reduction in temperature depolarizes neurons by a partial closure of potassium channels but decreases the vesicle release probability within synapses. Compared with cooling, neuromodulators produce qualitatively similar effects on intrinsic neuronal properties and synapses in the cortex. We used this similarity of neuronal action in ketamine-xylazine-anesthetized mice and non-anesthetized mice to manipulate the thalamocortical activity. We recorded cortical electroencephalogram/local field potential (LFP) activity and intracellular activities from the somatosensory thalamus in control conditions, during cortical cooling and on rewarming. In the deeply anesthetized mice, moderate cortical cooling was characterized by reversible disruption of the thalamocortical slow-wave pattern rhythmicity and the appearance of fast LFP spikes, with frequencies ranging from 6 to 9 Hz. These LFP spikes were correlated with the rhythmic IPSP activities recorded within the thalamic ventral posterior medial neurons and with depolarizing events in the posterior nucleus neurons. Similar cooling of the cortex during light anesthesia rapidly and reversibly eliminated thalamocortical silent states and evoked thalamocortical persistent activity; conversely, mild heating increased thalamocortical slow-wave rhythmicity. In the non-anesthetized head-restrained mice, cooling also prevented the generation of thalamocortical silent states. We conclude that moderate cortical cooling might be used to manipulate slow-wave network activity and induce neuromodulator-independent transition to activated states. Significance statement: In this study, we demonstrate that moderate local cortical cooling of lightly anesthetized or naturally sleeping mice disrupts thalamocortical slow oscillation and induces the activated local field potential pattern. Mild heating has the opposite effect; it increases the rhythmicity of thalamocortical slow oscillation. Our results demonstrate that slow oscillation can be influenced by manipulations to the properties of cortical neurons without changes in neuromodulation. Copyright © 2015 the authors 0270-6474/15/3513006-14$15.00/0.
Andruchov, Oleg; Andruchova, Olena; Wang, Yishu; Galler, Stefan
2006-02-15
Cross-bridge kinetics underlying stretch-induced force transients was studied in fibres with different myosin light chain (MLC) isoforms from skeletal muscles of rabbit and rat. The force transients were induced by stepwise stretches (< 0.3% of fibre length) applied on maximally Ca2+-activated skinned fibres. Fast fibre types IIB, IID (or IIX) and IIA and the slow fibre type I containing the myosin heavy chain isoforms MHC-IIb, MHC-IId (or MHC-IIx), MHC-IIa and MHC-I, respectively, were investigated. The MLC isoform content varied within fibre types. Fast fibre types contained the fast regulatory MLC isoform MLC2f and different proportions of the fast alkali MLC isoforms MLC1f and MLC3f. Type I fibres contained the slow regulatory MLC isoform MLC2s and the slow alkali MLC isoform MLC1s. Slow MLC isoforms were also present in several type IIA fibres. The kinetics of force transients differed by a factor of about 30 between fibre types (order from fastest to slowest kinetics: IIB > IID > IIA > I). The kinetics of the force transients was not dependent on the relative content of MLC1f and MLC3f. Type IIA fibres containing fast and slow MLC isoforms were about 1.2 times slower than type IIA fibres containing only fast MLC isoforms. We conclude that while the cross-bridge kinetics is mainly determined by the MHC isoforms present, it is affected by fast and slow MLC isoforms but not by the relative content of MLC1f and MLC3f. Thus, the physiological role of fast and slow MLC isoforms in type IIA fibres is a fine-tuning of the cross-bridge kinetics.
Circadian phase resetting in older people by ocular bright light exposure.
Klerman, E B; Duffy, J F; Dijk, D J; Czeisler, C A
2001-01-01
Aging is associated with frequent complaints about earlier bedtimes and waketimes. These changes in sleep timing are associated with an earlier timing of multiple endogenous rhythms, including core body temperature (CBT) and plasma melatonin, driven by the circadian pacemaker. One possible cause of the age-related shift of endogenous circadian rhythms and the timing of sleep relative to clock time is a change in the phase-shifting capacity of the circadian pacemaker in response to the environmental light-dark cycle, the principal synchronizer of the human circadian system. We studied the response of the circadian system of 24 older men and women and 23 young men to scheduled exposure to ocular bright light stimuli. Light stimuli were 5 hours in duration, administered for 3 consecutive days at an illuminance of approximately 10,000 lux. Light stimuli were scheduled 1.5 or 3.5 hours after the CBT nadir to induce shifts of endogenous circadian pacemaker to an earlier hour (phase advances) or were scheduled 1.5 hours before the CBT nadir to induce shifts to a later hour (phase delays). The rhythms of CBT and plasma melatonin assessed under constant conditions served as markers of circadian phase. Bright light stimuli elicited robust responses of the circadian timing system in older people; both phase advances and phase delays were induced. The magnitude of the phase delays did not differ significantly between older and younger individuals, but the phase advances were significantly attenuated in older people. The attenuated response to light stimuli that induce phase advances does not explain the advanced phase of the circadian pacemaker in older people. The maintained responsiveness of the circadian pacemaker to light implies that scheduled bright light exposure can be used to treat circadian phase disturbances in older people.
Electronic Combat Hardware-in-the-Loop Testing in an Open Air Environment
1994-09-01
APQ- 126 (F-111) Gun Dish Squat Eye ANAWG-9 (F-14) Grill Pan Straight Flush I-Hawk Hawk Screech Sun Visor Head Light Tall King High Fix Team Work High...the required delay to the IF, the SPCs contain a Teledyne Microwave Bulk Acoustic Wave (BAW) delay line as well as a Coherent Variable Delay Unit
Petchey, Louisa K; Risebro, Catherine A; Vieira, Joaquim M; Roberts, Tom; Bryson, John B; Greensmith, Linda; Lythgoe, Mark F; Riley, Paul R
2014-07-01
Correct regulation of troponin and myosin contractile protein gene isoforms is a critical determinant of cardiac and skeletal striated muscle development and function, with misexpression frequently associated with impaired contractility or disease. Here we reveal a novel requirement for Prospero-related homeobox factor 1 (Prox1) during mouse heart development in the direct transcriptional repression of the fast-twitch skeletal muscle genes troponin T3, troponin I2, and myosin light chain 1. A proportion of cardiac-specific Prox1 knockout mice survive beyond birth with hearts characterized by marked overexpression of fast-twitch genes and postnatal development of a fatal dilated cardiomyopathy. Through conditional knockout of Prox1 from skeletal muscle, we demonstrate a conserved requirement for Prox1 in the repression of troponin T3, troponin I2, and myosin light chain 1 between cardiac and slow-twitch skeletal muscle and establish Prox1 ablation as sufficient to cause a switch from a slow- to fast-twitch muscle phenotype. Our study identifies conserved roles for Prox1 between cardiac and skeletal muscle, specifically implicated in slow-twitch fiber-type specification, function, and cardiomyopathic disease.
Petchey, Louisa K.; Risebro, Catherine A.; Vieira, Joaquim M.; Roberts, Tom; Bryson, John B.; Greensmith, Linda; Lythgoe, Mark F.; Riley, Paul R.
2014-01-01
Correct regulation of troponin and myosin contractile protein gene isoforms is a critical determinant of cardiac and skeletal striated muscle development and function, with misexpression frequently associated with impaired contractility or disease. Here we reveal a novel requirement for Prospero-related homeobox factor 1 (Prox1) during mouse heart development in the direct transcriptional repression of the fast-twitch skeletal muscle genes troponin T3, troponin I2, and myosin light chain 1. A proportion of cardiac-specific Prox1 knockout mice survive beyond birth with hearts characterized by marked overexpression of fast-twitch genes and postnatal development of a fatal dilated cardiomyopathy. Through conditional knockout of Prox1 from skeletal muscle, we demonstrate a conserved requirement for Prox1 in the repression of troponin T3, troponin I2, and myosin light chain 1 between cardiac and slow-twitch skeletal muscle and establish Prox1 ablation as sufficient to cause a switch from a slow- to fast-twitch muscle phenotype. Our study identifies conserved roles for Prox1 between cardiac and skeletal muscle, specifically implicated in slow-twitch fiber-type specification, function, and cardiomyopathic disease. PMID:24938781
Slow waves in microchannel metal waveguides and application to particle acceleration
NASA Astrophysics Data System (ADS)
Steinhauer, L. C.; Kimura, W. D.
2003-06-01
Conventional metal-wall waveguides support waveguide modes with phase velocities exceeding the speed of light. However, for infrared frequencies and guide dimensions of a fraction of a millimeter, one of the waveguide modes can have a phase velocity equal to or less than the speed of light. Such a metal microchannel then acts as a slow-wave structure. Furthermore, if it is a transverse magnetic mode, the electric field has a component along the direction of propagation. Therefore, a strong exchange of energy can occur between a beam of charged particles and this slow-waveguide mode. Moreover, the energy exchange can be sustained over a distance limited only by the natural damping of the wave. This makes the microchannel metal waveguide an attractive possibility for high-gradient electron laser acceleration because the wave can be directly energized by a long-wavelength laser. Indeed the frequency of CO2 lasers lies at a fortuitous wavelength that produces a strong laser-particle interaction in a channel of reasonable macroscopic size (e.g., ˜0.6 mm). The dispersion properties including phase velocity and damping for the slow wave are developed. The performance and other issues related to laser accelerator applications are discussed.
Harrison, T.R.
1987-07-10
A proximity fuze system includes an optical ranging apparatus, a detonation circuit controlled by the optical ranging apparatus, and an explosive charge detonated by the detonation circuit. The optical ranging apparatus includes a pulsed laser light source for generating target ranging light pulses and optical reference light pulses. A single lens directs ranging pulses to a target and collects reflected light from the target. An optical fiber bundle is used for delaying the optical reference pulses to correspond to a predetermined distance from the target. The optical ranging apparatus includes circuitry for providing a first signal depending upon the light pulses reflected from the target, a second signal depending upon the light pulses from the optical delay fiber bundle, and an output signal when the first and second signals coincide with each other. The output signal occurs when the distance from the target is equal to the predetermined distance from the target. Additional circuitry distinguishes pulses reflected from the target from background solar radiation. 3 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, T.R.
1989-08-22
A proximity fuze system is described. It includes an optical ranging apparatus, a detonation circuit controlled by the optical ranging apparatus, and an explosive charge detonated by the detonation circuit. The optical ranging apparatus includes a pulsed laser light source for generating target ranging light pulses and optical reference light pulses. A single lens directs ranging pulses to a target and collects reflected light from the target. An optical fiber bundle is used for delaying the optical reference pulses to correspond to a predetermined distance from the target. The optical ranging apparatus includes circuitry for providing a first signal dependingmore » upon the light pulses reflected from the target, a second signal depending upon the light pulses from the optical delay fiber bundle, and an output signal when the first and second signals coincide with each other. The output signal occurs when the distance from the target is equal to the predetermined distance from the target. Additional circuitry distinguishes pulses reflected from the target from background solar radiation.« less
Quake clamps down on slow slip
NASA Astrophysics Data System (ADS)
Wallace, Laura M.; Bartlow, Noel; Hamling, Ian; Fry, Bill
2014-12-01
Using continuous GPS (cGPS) data from the Hikurangi subduction zone in New Zealand, we show for the first time that stress changes induced by a local earthquake can arrest an ongoing slow slip event (SSE). The cGPS data show that the slip rate in the northern portion of the 2013/2014 Kapiti SSE decreased abruptly following a nearby intraslab earthquake. We suggest that deceleration of the Kapiti SSE in early 2014 occurred due to a tenfold increase in the normal stress relative to shear stress in the SSE source, induced by the nearby Mw 6.3 earthquake, consistent with expectations of rate and state friction. Our observation of an abrupt halting/slowing of the SSE in response to stress changes imposed by a local earthquake has implications for the strength of fault zones hosting SSEs and supports the premise that static stress changes are an important ingredient in triggering (or delaying) fault slip.
Optical nonclassicality test based on third-order intensity correlations
NASA Astrophysics Data System (ADS)
Rigovacca, L.; Kolthammer, W. S.; Di Franco, C.; Kim, M. S.
2018-03-01
We develop a nonclassicality criterion for the interference of three delayed, but otherwise identical, light fields in a three-mode Bell interferometer. We do so by comparing the prediction of quantum mechanics with those of a classical framework in which independent sources emit electric fields with random phases. In particular, we evaluate third-order correlations among output intensities as a function of the delays, and show how the presence of a correlation revival for small delays cannot be explained by the classical model of light. The observation of a revival is thus a nonclassicality signature, which can be achieved only by sources with a photon-number statistics that is highly sub-Poissonian. Our analysis provides strong evidence for the nonclassicality of the experiment discussed by Menssen et al. [Phys. Rev. Lett. 118, 153603 (2017), 10.1103/PhysRevLett.118.153603], and shows how a collective "triad" phase affects the interference of any three or more light fields, irrespective of their quantum or classical character.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baron, E.; Hoeflich, P.; Krisciunas, K.
We present a study of the peculiar Type Ia supernova 2001ay (SN 2001ay). The defining features of its peculiarity are high velocity, broad lines, and a fast rising light curve, combined with the slowest known rate of decline. It is one magnitude dimmer than would be predicted from its observed {Delta}m{sub 15}, and shows broad spectral features. We base our analysis on detailed calculations for the explosion, light curves, and spectra. We demonstrate that consistency is key for both validating the models and probing the underlying physics. We show that this SN can be understood within the physics underlying themore » {Delta}m{sub 15} relation, and in the framework of pulsating delayed detonation models originating from a Chandrasekhar mass, M{sub Ch}, white dwarf, but with a progenitor core composed of 80% carbon. We suggest a possible scenario for stellar evolution which leads to such a progenitor. We show that the unusual light curve decline can be understood with the same physics as has been used to understand the {Delta}m{sub 15} relation for normal SNe Ia. The decline relation can be explained by a combination of the temperature dependence of the opacity and excess or deficit of the peak luminosity, {alpha}, measured relative to the instantaneous rate of radiative decay energy generation. What differentiates SN 2001ay from normal SNe Ia is a higher explosion energy which leads to a shift of the {sup 56}Ni distribution toward higher velocity and {alpha} < 1. This result is responsible for the fast rise and slow decline. We define a class of SN 2001ay-like SNe Ia, which will show an anti-Phillips relation.« less
Effect of visible light treatments on postharvest senescence of broccoli (Brassica oleracea L.).
Büchert, Agustin M; Gómez Lobato, Maria E; Villarreal, Natalia M; Civello, Pedro M; Martínez, Gustavo A
2011-01-30
Broccoli (Brassica oleracea L.) is a rapidly perishable vegetable crop. Several postharvest treatments have been applied in order to delay de-greening. Since light has been shown to have an effect on pigment accumulation during development and darkness is known to induce senescence, the effect of continuous and periodic exposure to low-intensity white light at 22 °C on postharvest senescence of broccoli heads was assayed. Exposure to a constant dose of 12 micromol m(-2) s(-1) was selected as the most suitable treatment and was employed for subsequent experiments. During the course of the treatments, hue and L* values as well as chlorophyll content and visual observation of florets indicated an evident delay in yellowing in treated samples compared with controls. No statistically significant differences in total protein content were found, but soluble protein content was higher in treated samples. Total and reducing sugar as well as starch levels decreased during postharvest senescence, with lower values in control samples. The results of this study indicate that storage under continuous low-intensity light is an efficient and low-cost treatment that delays postharvest senescence while maintaining the quality of harvested broccoli florets. 2010 Society of Chemical Industry.
Slow Mapping: Color Word Learning as a Gradual Inductive Process
ERIC Educational Resources Information Center
Wagner, Katie; Dobkins, Karen; Barner, David
2013-01-01
Most current accounts of color word acquisition propose that the delay between children's first production of color words and adult-like understanding is due to problems abstracting color as a domain of meaning. Here we present evidence against this hypothesis, and show that, from the time children produce color words in a labeling task they use…
Modeling of the Modulation by Buffers of Ca2+ Release through Clusters of IP3 Receptors
Zeller, S.; Rüdiger, S.; Engel, H.; Sneyd, J.; Warnecke, G.; Parker, I.; Falcke, M.
2009-01-01
Abstract Intracellular Ca2+ release is a versatile second messenger system. It is modeled here by reaction-diffusion equations for the free Ca2+ and Ca2+ buffers, with spatially discrete clusters of stochastic IP3 receptor channels (IP3Rs) controlling the release of Ca2+ from the endoplasmic reticulum. IP3Rs are activated by a small rise of the cytosolic Ca2+ concentration and inhibited by large concentrations. Buffering of cytosolic Ca2+ shapes global Ca2+ transients. Here we use a model to investigate the effect of buffers with slow and fast reaction rates on single release spikes. We find that, depending on their diffusion coefficient, fast buffers can either decouple clusters or delay inhibition. Slow buffers have little effect on Ca2+ release, but affect the time course of the signals from the fluorescent Ca2+ indicator mainly by competing for Ca2+. At low [IP3], fast buffers suppress fluorescence signals, slow buffers increase the contrast between bulk signals and signals at open clusters, and large concentrations of buffers, either fast or slow, decouple clusters. PMID:19686646
A contemporary view of atrioventricular nodal physiology.
Markowitz, Steven M; Lerman, Bruce B
2018-06-16
In delaying transmission of the cardiac impulse from the atria to the ventricles, the atrioventricular (AV) node serves a critical function in augmenting ventricular filling during diastole and limiting the ventricular response during atrial tachyarrhythmias. The complex structure of the nodal region, however, also provides the substrate for reentrant rhythms. Recent discoveries have elucidated the cellular basis and anatomical determinants of slow conduction in the node. Based on analysis of gap junction proteins, distinct structural components of the AV node have been defined, including the compact node, right and left inferior nodal extensions, the lower nodal bundle, and transitional tissue. Emerging evidence supports the role of the inferior nodal extensions in mediating slow pathway conduction. The most common form of reentry involving the node, slow-fast AV nodal reentrant tachycardia (AVNRT), utilizes the inferior nodal extensions for anterograde slow pathway conduction; the structures responsible for retrograde fast pathway activation in the superior septum are less well defined and likely heterogeneous. Atypical forms of AVNRT arise from circuits that activate at least one of the inferior extensions in the retrograde direction.
Cui, N; Mckillop, L E; Fisher, S P; Oliver, P L; Vyazovskiy, V V
2014-01-01
The dynamics of cortical activity across the 24-h day and at vigilance state transitions is regulated by an interaction between global subcortical neuromodulatory influences and local shifts in network synchrony and excitability. To address the role of long-term and immediate preceding history in local and global cortical dynamics, we investigated cortical EEG recorded from both frontal and occipital regions during an undisturbed 24-h recording in mice. As expected, at the beginning of the light period, under physiologically increased sleep pressure, EEG slow waves were more frequent and had higher amplitude and slopes, compared to the rest of the light period. Within discrete NREM sleep episodes, the incidence, amplitude and slopes of individual slow waves increased progressively after episode onset in both derivations by approximately 10-30%. Interestingly, at the beginning of NREM sleep episodes slow waves in the frontal and occipital derivations frequently occurred in isolation, as quantified by longer latencies between consecutive slow waves in the two regions. Notably, slow waves during the initial period of NREM sleep following REM sleep episodes were significantly less frequent, lower in amplitude and exhibited shallower slopes, compared to those that occurred in NREM episodes after prolonged waking. Moreover, the latencies between consecutive frontal and occipital NREM slow waves were substantially longer when they occurred directly after REM sleep compared to following consolidated wakefulness. Overall these data reveal a complex picture, where both time of day and preceding state contribute to the characteristics and dynamics of slow waves within NREM sleep. These findings suggest that NREM sleep initiates in a more "local" fashion when it occurs following REM sleep episodes as opposed to sustained waking bouts. While the mechanisms and functional significance of such a re-setting of brain state after individual REM sleep episodes remains to be investigated, we suggest that it may be an essential feature of physiological sleep regulation.
Optomechanically-induced transparency in parity-time-symmetric microresonators
Jing, H.; Özdemir, Şahin K.; Geng, Z.; Zhang, Jing; Lü, Xin-You; Peng, Bo; Yang, Lan; Nori, Franco
2015-01-01
Optomechanically-induced transparency (OMIT) and the associated slowing of light provide the basis for storing photons in nanoscale devices. Here we study OMIT in parity-time (PT)-symmetric microresonators with a tunable gain-to-loss ratio. This system features a sideband-reversed, non-amplifying transparency , i.e., an inverted-OMIT. When the gain-to-loss ratio is varied, the system exhibits a transition from a PT-symmetric phase to a broken-PT-symmetric phase. This PT-phase transition results in the reversal of the pump and gain dependence of the transmission rates. Moreover, we show that by tuning the pump power at a fixed gain-to-loss ratio, or the gain-to-loss ratio at a fixed pump power, one can switch from slow to fast light and vice versa. These findings provide new tools for controlling light propagation using nanofabricated phononic devices. PMID:26169253
Polarization-independent electromagnetically induced transparency-like metasurface
NASA Astrophysics Data System (ADS)
Jia, Xiuli; Wang, Xiaoou
2018-01-01
A classical electromagnetically induced transparency-like (EIT-like) metasurface is numerically simulated. This metasurface is composed of two identical and orthogonal double-end semitoroidals (DESTs) metal resonators. Under the excitation of the normal incidence waves, each of the two DESTs structure exhibits electromagnetic dipole responses at different frequencies, which leads to the polarization-independent EIT-like effect. The features of the EIT-like effect are qualitatively analyzed based on the surface current and magnetic field distribution. In addition, the large index is extracted to verify the slow-light property within the transmission window. The EIT-like metasurface structure with the above-mentioned characteristics may have potential applications in some areas, such as sensing, slow light, and filtering devices.
In vitro culture thawed human ovarian tissue: NIV versus slow freezing method.
Xiao, Zhun; Wang, Yan; Li, Ling-Ling; Li, Shang-wei
2013-01-01
The aim of this study was to determine if the needle immersed vitrification method (NIV) can improve the growth potential of thawed ovarian tissue in vitro culture. Human ovarian cortical tissues were cryopreserved using NIV and slow freezing method. After 14 days of culture, the preservation outcomes of NIV and slow freezing groups were analyzed histologically using light microscope and apoptosis was assessed by TUNEL assay. The result showed that the percentage of morphologically abnormal primordial follicles was lower in NIV group than in slow freezing group (P < 0.05). The incidence of TUNEL-positive primordial follicles was lower in NIV group than in slow freezing group (P < 0.05). The study showed that cryopreservation of human ovarian tissue with NIV was effective in improving the growth potential of frozen-thawed ovarian tissue in vitro culture.
GERLUMPH Data Release 2: 2.5 Billion Simulated Microlensing Light Curves
NASA Astrophysics Data System (ADS)
Vernardos, G.; Fluke, C. J.; Bate, N. F.; Croton, D.; Vohl, D.
2015-04-01
In the upcoming synoptic all-sky survey era of astronomy, thousands of new multiply imaged quasars are expected to be discovered and monitored regularly. Light curves from the images of gravitationally lensed quasars are further affected by superimposed variability due to microlensing. In order to disentangle the microlensing from the intrinsic variability of the light curves, the time delays between the multiple images have to be accurately measured. The resulting microlensing light curves can then be analyzed to reveal information about the background source, such as the size of the quasar accretion disk. In this paper we present the most extensive and coherent collection of simulated microlensing light curves; we have generated \\gt 2.5 billion light curves using the GERLUMPH high resolution microlensing magnification maps. Our simulations can be used to train algorithms to measure lensed quasar time delays, plan future monitoring campaigns, and study light curve properties throughout parameter space. Our data are openly available to the community and are complemented by online eResearch tools, located at http://gerlumph.swin.edu.au.
Frank, David W; Evans, Jennifer A; Gorman, Michael R
2010-04-01
Bright light has been established as the most ubiquitous environmental cue that entrains circadian timing systems under natural conditions. Light equivalent in intensity to moonlight (<1 lux), however, also strongly modulates circadian function in a number of entrainment paradigms. For example, compared to completely dark nights, dim nighttime illumination accelerated re-entrainment of hamster activity rhythms to 4-hour phase advances and delays of an otherwise standard laboratory photocycle. The purpose of this study was to determine if a sensitive period existed in the night during which dim illumination had a robust influence on speed of re-entrainment. Male Siberian hamsters were either exposed to dim light throughout the night, for half of the night, or not at all. Compared to dark nights, dim illumination throughout the entire night decreased by 29% the time for the midpoint of the active phase to re-entrain to a 4-hour phase advance and by 26% for a 4-hour delay. Acceleration of advances and delays were also achieved with 5 hours of dim light per night, but effects depended on whether dim light was present in the first half, second half, or first and last quarters of the night. Both during phase shifting and steady-state entrainment, partially lit nights also produced strong positive and negative masking effects, as well as entrainment aftereffects in constant darkness. Thus, even in the presence of a strong zeitgeber, light that might be encountered under a natural nighttime sky potently modulates the circadian timing system of hamsters.
Block copolymer micelles with a dual-stimuli-responsive core for fast or slow degradation.
Han, Dehui; Tong, Xia; Zhao, Yue
2012-02-07
We report the design and demonstration of a dual-stimuli-responsive block copolymer (BCP) micelle with increased complexity and control. We have synthesized and studied a new amphiphilic ABA-type triblock copolymer whose hydrophobic middle block contains two types of stimuli-sensitive functionalities regularly and repeatedly positioned in the main chain. Using a two-step click chemistry approach, disulfide and o-nitrobenzyle methyl ester groups are inserted into the main chain, which react to reducing agents and light, respectively. With the end blocks being poly(ethylene oxide), micelles formed by this BCP possess a core that can be disintegrated either rapidly via photocleavage of o-nitrobenzyl methyl esters or slowly through cleavage of disulfide groups by a reducing agent in the micellar solution. This feature makes possible either burst release of an encapsulated hydrophobic species from disintegrated micelles by UV light, or slow release by the action of a reducing agent, or release with combined fast-slow rate profiles using the two stimuli.
Inhibition of non-NMDA ionotropic glutamate receptors delays the retinal degeneration in rd10 mouse.
Xiang, Zongqin; Bao, Yiqin; Zhang, Jia; Liu, Chao; Xu, Di; Liu, Feng; Chen, Hui; He, Liumin; Ramakrishna, Seeram; Zhang, Zaijun; Vardi, Noga; Xu, Ying
2018-06-22
Retinitis pigmentosa (RP) is a hereditary blinding disease characterized by neurodegeneration of photoreceptors. Retinal ganglion cells (RGCs) in animal models of RP exhibit an abnormally high spontaneous activity that interferes with signal processing. Blocking AMPA/Kainate receptors by bath application of CNQX decreases the spontaneous firing, suggesting that inhibiting these receptors in vivo may help maintain the function of inner retinal neurons in rd10 mice experiencing photoreceptor degeneration. To test this, rd10 mice were i.p. injected with CNQX or GYKI 52466 (an AMPA receptor antagonist) for 1-2 weeks, and examined for their retinal morphology (by immunocytochemistry), function (by MEA recordings) and visual behaviors (using a black/white box). Our data show that iGluRs were up-regulated in the inner plexiform layer (IPL) of rd10 retinas. Application of CNQX at low doses both in vitro and in vivo, attenuated the abnormal spontaneous spiking in RGCs, and increased the light-evoked response of ON RGCs, whereas GYKI 52466 had little effect. CNQX application also improved the behavioral performance. Interestingly, in vivo administration of CNQX delayed photoreceptor degeneration, evidenced by the increased cell number and restored structure. CNQX also improved the structure of bipolar cells. Together, we demonstrated that during photoreceptor degeneration, blockade of the non-NMDA iGluRs decelerates the progression of RGCs dysfunction, possibly by dual mechanisms including slowing photoreceptor degeneration and modulating signal processing within the IPL. Accordingly, this strategy may effectively extend the time window for treating RP. Copyright © 2018. Published by Elsevier Ltd.
Characterization of ictal slow waves in epileptic spasms.
Honda, Ryoko; Saito, Yoshiaki; Okumura, Akihisa; Abe, Shinpei; Saito, Takashi; Nakagawa, Eiji; Sugai, Kenji; Sasaki, Masayuki
2015-12-01
We characterized the clinico-neurophysiological features of epileptic spasms, particularly focusing on high-voltage slow waves during ictal EEG. We studied 22 patients with epileptic spasms recorded during digital video-scalp EEG, including five individuals who still had persistent spasms after callosotomy. We analysed the duration, amplitude, latency to onset of electromyographic bursts, and distribution of the highest positive and negative peaks of slow waves in 352 spasms. High-voltage positive slow waves preceded the identifiable muscle contractions of spasms. The mean duration of these positive waves was 569±228 m, and the mean latency to electromyographic onset was 182±127 m. These parameters varied markedly even within a patient. The highest peak of the positive component was distributed in variable regions, which was not consistent with the location of lesions on MRI. The peak of the negative component following the positivity was distributed in the neighbouring or opposite areas of the positive peak distribution. No changes were evident in the pre- or post-surgical distributions of the positive peak, or in the interhemispheric delay between both hemispheres, in individuals with callosotomy. Our data imply that ictal positive slow waves are the most common EEG changes during spasms associated with a massive motor component. Plausible explanations for these widespread positive slow waves include the notion that EEG changes possibly reflect involvement of both cortical and subcortical structures.
Constantino, Jason; Hu, Yuxuan; Lardo, Albert C.
2013-01-01
In addition to the left bundle branch block type of electrical activation, there are further remodeling aspects associated with dyssynchronous heart failure (HF) that affect the electromechanical behavior of the heart. Among the most important are altered ventricular structure (both geometry and fiber/sheet orientation), abnormal Ca2+ handling, slowed conduction, and reduced wall stiffness. In dyssynchronous HF, the electromechanical delay (EMD), the time interval between local myocyte depolarization and myofiber shortening onset, is prolonged. However, the contributions of the four major HF remodeling aspects in extending EMD in the dyssynchronous failing heart remain unknown. The goal of this study was to determine the individual and combined contributions of HF-induced remodeling aspects to EMD prolongation. We used MRI-based models of dyssynchronous nonfailing and HF canine electromechanics and constructed additional models in which varying combinations of the four remodeling aspects were represented. A left bundle branch block electrical activation sequence was simulated in all models. The simulation results revealed that deranged Ca2+ handling is the primary culprit in extending EMD in dyssynchronous HF, with the other aspects of remodeling contributing insignificantly. Mechanistically, we found that abnormal Ca2+ handling in dyssynchronous HF slows myofiber shortening velocity at the early-activated septum and depresses both myofiber shortening and stretch rate at the late-activated lateral wall. These changes in myofiber dynamics delay the onset of myofiber shortening, thus giving rise to prolonged EMD in dyssynchronous HF. PMID:23934857
Hoppe, U C; Marbán, E; Johns, D C
2001-04-24
The long QT syndrome (LQTS) is a heritable disorder that predisposes to sudden cardiac death. LQTS is caused by mutations in ion channel genes including HERG and KCNE1, but the precise mechanisms remain unclear. To clarify this situation we injected adenoviral vectors expressing wild-type or LQT mutants of HERG and KCNE1 into guinea pig myocardium. End points at 48-72 h included electrophysiology in isolated myocytes and electrocardiography in vivo. HERG increased the rapid component, I(Kr), of the delayed rectifier current, thereby accelerating repolarization, increasing refractoriness, and diminishing beat-to-beat action potential variability. Conversely, HERG-G628S suppressed I(Kr) without significantly delaying repolarization. Nevertheless, HERG-G628S abbreviated refractoriness and increased beat-to-beat variability, leading to early afterdepolarizations (EADs). KCNE1 increased the slow component of the delayed rectifier, I(Ks), without clear phenotypic sequelae. In contrast, KCNE1-D76N suppressed I(Ks) and markedly slowed repolarization, leading to frequent EADs and electrocardiographic QT prolongation. Thus, the two genes predispose to sudden death by distinct mechanisms: the KCNE1 mutant flagrantly undermines cardiac repolarization, and HERG-G628S subtly facilitates the genesis and propagation of premature beats. Our ability to produce electrocardiographic long QT in vivo with a clinical KCNE1 mutation demonstrates the utility of somatic gene transfer in creating genotype-specific disease models.
Delayed Light Activation Improves Color Stability of Dual-Cured Resin Cements.
Furuse, Adilson Y; Santana, Lino Oliveira Carvalho; Rizzante, Fabio Antonio Piola; Ishikiriama, Sérgio Kiyoshi; Bombonatti, Juliana Fraga; Correr, Gisele Maria; Gonzaga, Carla Castiglia
2018-06-01
To evaluate the color change caused by post-irradiation conversion (ΔE 24h and ΔE 8 days ) and artificial aging (ΔE AGING ) of resin cements light activated through ceramics of different opacities immediately and 6 minutes after manipulating the material. Resin cement disks (Allcem and LuxaCore) were light activated through ceramics (without ceramic, e.max HT, LT, and MO) immediately and 6 minutes after the manipulation (n = 10). Spectrophotometry was used to evaluate ΔE 24h and ΔE 8 days after 37˚C-dry-dark-storage for 24 hours and 8 days, and ΔE AGING after 60˚C-water-storage for 24 hours. Data were analyzed with three-way ANOVA and Tukey's HSD (α = 0.05). Regarding the post-irradiation color change, significant differences were found between the cements (p < 0.0001), light activation protocols (p = 0.037), and ceramics (p < 0.001). The immediate activation (16.2 ± 0.1) showed lower ΔE values than the delayed activation (16.5 ± 0.1). Ceramics influenced the ΔE values as follows: MO (14.0 ± 1.2) < LT (14.9 ± 1.2) ≈ HT (15.4 ± 1.2) < control (21.2 ± 1.2). Regarding ΔE AGING , significant differences were found between cements (p < 0.001), light activation (p = 0.006), and ceramics (p < 0.001). The delayed activation (8.4 ± 0.1) showed lower values than the immediate activation (8.9 ± 0.1). Ceramic spacers influenced ΔE AGING as follows: control (5.6 ± 0.2) < MO (6.6 ± 0.2) < HT (11.0 ± 0.2) ≈ LT (11.5 ± 0.2). The delayed light activation resulted in increased color stability, while the ceramic interposition resulted in lower color stability. © 2016 by the American College of Prosthodontists.
NASA Astrophysics Data System (ADS)
Kemiche, Malik; Lhuillier, Jérémy; Callard, Ségolène; Monat, Christelle
2018-01-01
We exploit slow light (high ng) modes in planar photonic crystals in order to design a compact cavity, which provides an attractive path towards the miniaturization of near-infrared integrated fast pulsed lasers. By applying dispersion engineering techniques, we can design structures with a low dispersion, as needed by mode-locking operation. Our basic InP SiO2 heterostructure is robust and well suited to integrated laser applications. We show that an optimized 30 μm long cavity design yields 9 frequency-equidistant modes with a FSR of 178 GHz within a 11.5 nm bandwidth, which could potentially sustain the generation of optical pulses shorter than 700 fs. In addition, the numerically calculated quality factors of these modes are all above 10,000, making them suitable for reaching laser operation. Thanks to the use of a high group index (28), this cavity design is almost one order of magnitude shorter than standard rib-waveguide based mode-locked lasers. The use of slow light modes in planar photonic crystal based cavities thus relaxes the usual constraints that tightly link the device size and the quality (peak power, repetition rate) of the pulsed laser signal.
Transient photocurrent responses in amorphous Zn-Sn-O thin films
NASA Astrophysics Data System (ADS)
Kim, Ju-Yeon; Oh, Sang-A.; Yu, Kyeong Min; Bae, Byung Seong; Yun, Eui-Jung
2015-04-01
In this study we characterized the transient photocurrent responses in solution-processed amorphous zinc-tin-oxide (a-ZTO) thin films measured under light illumination with a wavelength of 400 nm at different temperatures. By using the temperature-dependent photoconductivities of a-ZTO thin films, we extracted the activation energies (E ac ) of photo-excitation and dark relaxation through an extended stretched exponential analysis (SEA). The SEA was found to describe well the dark relaxation characteristics as well as the photo-excitation processes. The SEA also indicates that the dark relaxation process reveals a dispersive transient photoconductivity with a broader distribution of the E ac while the photo-excitation process shows non-dispersive characteristics. Samples exposed by light at temperatures less than 373 K possess the fast processes of photo-excitation and dark relaxation. This suggests that a fast process, for example, a generation/recombination of charged carriers related to a band-to-band transition and/or shallow/deep oxygen-vacancy (V o ) sub-gap donor states, is dominant in the case of light illumination at low temperatures of less than 373 K. The SEA indicates, however, that a much slower process due mainly to the delay of the onset of ionization/neutralization of the deep V o states by multiple-trapping is dominant for samples under light illumination at a high temperature of 373 K. Based on the experimental results, for the dark relaxation process, we conclude that the process transitions from a fast recombination of electrons through band-to-band transitions and/or shallow/deep V o donor states to a slow neutralization of the ionized V o states occurs due to enhanced carrier multiple-trapping by relatively deep V o trap states when the temperature becomes greater than 363 K. An energy band diagram of a-ZTO thin films was proposed in terms of the temperature and the E ac distribution to explain these observed results.
Bernát, Gábor; Steinbach, Gábor; Kaňa, Radek; Govindjee; Misra, Amarendra N; Prašil, Ondřej
2018-05-01
The slow kinetic phases of the chlorophyll a fluorescence transient (induction) are valuable tools in studying dynamic regulation of light harvesting, light energy distribution between photosystems, and heat dissipation in photosynthetic organisms. However, the origin of these phases are not yet fully understood. This is especially true in the case of prokaryotic oxygenic photoautotrophs, the cyanobacteria. To understand the origin of the slowest (tens of minutes) kinetic phase, the M-T fluorescence decline, in the context of light acclimation of these globally important microorganisms, we have compared spectrally resolved fluorescence induction data from the wild type Synechocystis sp. PCC 6803 cells, using orange (λ = 593 nm) actinic light, with those of mutants, ΔapcD and ΔOCP, that are unable to perform either state transition or fluorescence quenching by orange carotenoid protein (OCP), respectively. Our results suggest a multiple origin of the M-T decline and reveal a complex interplay of various known regulatory processes in maintaining the redox homeostasis of a cyanobacterial cell. In addition, they lead us to suggest that a new type of regulatory process, operating on the timescale of minutes to hours, is involved in dissipating excess light energy in cyanobacteria.
Probing electron delays in above-threshold ionization
Zipp, Lucas J.; Natan, Adi; Bucksbaum, Philip H.
2014-11-21
Recent experiments have revealed attosecond delays in the emission of electrons from atoms ionized by extreme UV light, offering a glimpse into the ultrafast nature of light-induced electron dynamics. In this work, we extend these measurements to the strong-field above-threshold ionization (ATI) regime, by measuring delays in the photoemission of electrons from argon in the presence of an intense laser field. We probe the ATI process with a weak coherent reference, at half the laser frequency. The interfering ionization signal reveals the relative spectral phase of adjacent ATI channels, with an equivalent resolution of a few attoseconds. These relative delaysmore » depend on the strong field, and approach zero at higher intensity. Our phase measurements of ATI electrons show how strong fields alter ionization dynamics in atoms.« less
Delay of behavioral estrus in hamsters and phenobarbital.
Alleva, J J
1989-01-01
The onset of behavioral estrus was used as a phase marker of the hamster timing system in SLD 16:8 (dark 20:00-04:00). TZ was injected between 11:00 of cycle day 3 and noon of cycle day 4 when onset of estrus was determined. At no time did injection of TZ cause a phase advance in SLD 16:8. Small delays of estrus resulted from 11:00-16:00 injections but marked delays began with the 17:00 injection. Phenobarbital was injected between noon and 19:30 on cycle day 3. Injections between noon and 16:00 had no effect but all later injections beginning at 17:00 delayed estrus, the 17:30 injection causing the greatest delay. Diazepam also markedly delayed estrus when tested at 17:30. These results with three drugs support results with light pulses that 18:00 in SLD 16:8 marks the same phase of the 24-h hamster timing system as the onset of wheel running does in DD, LL, and WLD. These findings with three GABA potentiators extend to SLD previous evidence based on the onset of wheel running in DD, LL and WLD that GABA may be involved in hamster timekeeping and its responses to light and drugs.
Henry, Molly J; Obleser, Jonas
2013-01-01
Natural auditory stimuli are characterized by slow fluctuations in amplitude and frequency. However, the degree to which the neural responses to slow amplitude modulation (AM) and frequency modulation (FM) are capable of conveying independent time-varying information, particularly with respect to speech communication, is unclear. In the current electroencephalography (EEG) study, participants listened to amplitude- and frequency-modulated narrow-band noises with a 3-Hz modulation rate, and the resulting neural responses were compared. Spectral analyses revealed similar spectral amplitude peaks for AM and FM at the stimulation frequency (3 Hz), but amplitude at the second harmonic frequency (6 Hz) was much higher for FM than for AM. Moreover, the phase delay of neural responses with respect to the full-band stimulus envelope was shorter for FM than for AM. Finally, the critical analysis involved classification of single trials as being in response to either AM or FM based on either phase or amplitude information. Time-varying phase, but not amplitude, was sufficient to accurately classify AM and FM stimuli based on single-trial neural responses. Taken together, the current results support the dissociable nature of cortical signatures of slow AM and FM. These cortical signatures potentially provide an efficient means to dissect simultaneously communicated slow temporal and spectral information in acoustic communication signals.
Henry, Molly J.; Obleser, Jonas
2013-01-01
Natural auditory stimuli are characterized by slow fluctuations in amplitude and frequency. However, the degree to which the neural responses to slow amplitude modulation (AM) and frequency modulation (FM) are capable of conveying independent time-varying information, particularly with respect to speech communication, is unclear. In the current electroencephalography (EEG) study, participants listened to amplitude- and frequency-modulated narrow-band noises with a 3-Hz modulation rate, and the resulting neural responses were compared. Spectral analyses revealed similar spectral amplitude peaks for AM and FM at the stimulation frequency (3 Hz), but amplitude at the second harmonic frequency (6 Hz) was much higher for FM than for AM. Moreover, the phase delay of neural responses with respect to the full-band stimulus envelope was shorter for FM than for AM. Finally, the critical analysis involved classification of single trials as being in response to either AM or FM based on either phase or amplitude information. Time-varying phase, but not amplitude, was sufficient to accurately classify AM and FM stimuli based on single-trial neural responses. Taken together, the current results support the dissociable nature of cortical signatures of slow AM and FM. These cortical signatures potentially provide an efficient means to dissect simultaneously communicated slow temporal and spectral information in acoustic communication signals. PMID:24205309
NASA Astrophysics Data System (ADS)
Wang, Kang-Kang; Zong, De-Cai; Wang, Ya-Jun; Li, Sheng-Hong
2016-05-01
In this paper, the transition between the stable state of a big density and the extinction state and stochastic resonance (SR) for a time-delayed metapopulation system disturbed by colored cross-correlated noises are investigated. By applying the fast descent method, the small time-delay approximation and McNamara and Wiesenfeld's SR theory, we investigate the impacts of time-delay, the multiplicative, additive noises and colored cross-correlated noise on the SNR and the shift between the two states of the system. Numerical results show that the multiplicative, additive noises and time-delay can all speed up the transition from the stable state to the extinction state, while the correlation noise and its correlation time can slow down the extinction process of the population system. With respect to SNR, the multiplicative noise always weakens the SR effect, while noise correlation time plays a dual role in motivating the SR phenomenon. Meanwhile, time-delay mainly plays a negative role in stimulating the SR phenomenon. Conversely, it could motivate the SR effect to increase the strength of the cross-correlation noise in the SNR-β plot, while the increase of additive noise intensity will firstly excite SR, and then suppress the SR effect.
Quantum Optical Transistor and Other Devices Based on Nanostructures
NASA Astrophysics Data System (ADS)
Li, Jin-Jin; Zhu, Ka-Di
Laser and strong coupling can coexist in a single quantum dot (QD) coupled to nanostructures. This provides an important clue toward the realization of quantum optical devices, such as quantum optical transistor, slow light device, fast light device, or light storage device. In contrast to conventional electronic transistor, a quantum optical transistor uses photons as signal carriers rather than electrons, which has a faster and more powerful transfer efficiency. Under the radiation of a strong pump laser, a signal laser can be amplified or attenuated via passing through a single quantum dot coupled to a photonic crystal (PC) nanocavity system. Such a switching and amplifying behavior can really implement the quantum optical transistor. By simply turning on or off the input pump laser, the amplified or attenuated signal laser can be obtained immediately. Based on this transistor, we further propose a method to measure the vacuum Rabi splitting of exciton in all-optical domain. Besides, we study the light propagation in a coupled QD and nanomechanical resonator (NR) system. We demonstrate that it is possible to achieve the slow light, fast light, and quantum memory for light on demand, which is based on the mechanically induced coherent population oscillation (MICPO) and exciton polaritons. These QD devices offer a route toward the use of all-optical technique to investigate the coupled QD systems and will make contributions to quantum internets and quantum computers.
Locomotor activity rhythms in dogs vary with age and cognitive status.
Siwak, Christina T; Tapp, P Dwight; Zicker, Steven C; Murphey, Heather L; Muggenburg, Bruce A; Head, Elizabeth; Cotman, Carl W; Milgram, Norton W
2003-08-01
Beagle dogs exhibited diurnal patterns of locomotor activity that varied as a function of age, cognitive status, and housing environment. Aged dogs housed in an indoor facility showed a delayed onset of activity following lights on and displayed shorter bouts of activity, with more rest periods during the day, compared with young dogs. Cognitively impaired aged dogs were more active and showed a delayed peak of activity compared with unimpaired aged dogs. Housing in continuous light did not disrupt activity rhythms. The effect of age was less prominent in dogs housed in an indoor/outdoor facility. This suggests that bright sunlight and natural light-dark transitions are better able to consolidate and synchronize the activity rhythms of the dogs.
Delayed development in Fischer's pygmy fruit bat, Haplonycteris fischeri, in the Philippines.
Heideman, P D
1989-03-01
A long delay in post-implantation embryonic development was detected in Fischer's pygmy fruit bats (palaeotropical fruit bats of the suborder Megachiroptera), the first time such a delay has been demonstrated outside the bat suborder Microchiroptera. Samples of bats were obtained from the Philippines over 5 years, and reproductive tracts were preserved and examined using standard histological techniques. Most parous female pygmy bats were impregnated in June, within a few weeks of parturition, and the embryos underwent superficial implantation at the anterior end of the uterus contralateral to the previously gravid uterus. Shortly thereafter, the rate of embryonic growth slowed tremendously for up to 8 months. During the period of delay, the mean length of the embryoblast increased only from 280 microns to 520 microns. In March of the following year, the developmental rate increased, and the embryos completed development in the next 3 months. The 8-month delay gives these bats a gestation period of 11.5 months, the longest known in bats. Most nulliparous females become pregnant at an age of 3-5 months, and their embryos entered a similar delay that terminated in March or April, after 2-6 months of delay. Males showed signs of fertility throughout the entire year, but testis volume was highest during May, June and July, at about the time when most females become receptive.
50 CFR 600.504 - Facilitation of enforcement.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., 2182 kHz (SSB) radiotelephone, message block from an aircraft, flashing light or flag signals from the... “You should proceed at slow speed, a boat is coming to you”. (iii) “SQ3”, meaning “You should stop or... aircraft, flashing light signal, flaghoist, or loudhailer constitutes a violation of this subpart. (3) The...
NASA Astrophysics Data System (ADS)
Zhang, Jinyan; Kumeda, Minoru; Shimizu, Tatsuo
1995-10-01
We report on the thermal annealing of light-induced neutral dangling bonds (DB's) created by strong band-gap illumination at 77 K and room temperature (RT) in amorphous silicon-nitrogen alloys ( a-Si1- xN x:H). We find that the light-induced DB's are annealed out with distinct distributions of annealing activation energies (E A's). The distribution for the light-induced DB's created in the fast process (FDB's) and the one for those created in the slow process (SDB's) are separated unambiguously: E A for FDB's is in the range from 0 to 0.7 eV, in which two separated peaks (centered at about 0.09 and 0.4 eV) are embodied, and E A for SDB's is in the range from 0.6 to 1.4 eV, centered at about 1 eV, in a-Si0.5N0.5:H. Moreover, the results demonstrate that the distributions of E A for FDB's and SDB's depend on illumination temperature and illumination time.
Group consensus control for networked multi-agent systems with communication delays.
An, Bao-Ran; Liu, Guo-Ping; Tan, Chong
2018-05-01
This paper investigates group consensus problems in networked multi-agent systems (NMAS) with communication delays. Based on the sed state prediction scheme, the group consensus control protocol is designed to compensate the communication delay actively. In light of algebraic graph theories and matrix theories, necessary and(or) sufficient conditions of group consensus with respect to a given admissible control set are obtained for the NMAS with communication delays under mild assumptions. Finally, simulations are performed to demonstrate the effectiveness of the theoretical results. Copyright © 2018 ISA. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, T.R.
1987-07-10
A proximity fuze system includes an optical ranging apparatus, a detonation circuit controlled by the optical ranging apparatus, and an explosive charge detonated by the detonation circuit. The optical ranging apparatus includes a pulsed laser light source for generating target ranging light pulses and optical reference light pulses. A single lens directs ranging pulses to a target and collects reflected light from the target. An optical fiber bundle is used for delaying the optical reference pulses to correspond to a predetermined distance from the target. The optical ranging apparatus includes circuitry for providing a first signal depending upon the lightmore » pulses reflected from the target, a second signal depending upon the light pulses from the optical delay fiber bundle, and an output signal when the first and second signals coincide with each other. The output signal occurs when the distance from the target is equal to the predetermined distance from the target. Additional circuitry distinguishes pulses reflected from the target from background solar radiation. 3 figs.« less
ERIC Educational Resources Information Center
Hudson, Sophie; Levickis, Penny; Down, Kate; Nicholls, Ruth; Wake, Melissa
2015-01-01
Background: Maternal responsiveness has been shown to predict child language outcomes in clinical samples of children with language delay and non-representative samples of typically developing children. An effective and timely measure of maternal responsiveness for use at the population level has not yet been established. Aims: To determine…
Theory of time-dependent rupture in the Earth
NASA Technical Reports Server (NTRS)
Das, S.; Scholz, C. H.
1980-01-01
Fracture mechanics is used to develop a theory of earthquake mechanism which includes the phenomenon of subcritical crack growth. The following phenomena are predicted: slow earthquakes, multiple events, delayed multiple events (doublets), postseismic rupture growth and afterslip, foreshocks, and aftershocks. The theory predicts a nucleation stage prior to an earthquake, and suggests a physical mechanism by which one earthquake may 'trigger' another.
ERIC Educational Resources Information Center
Oberman, Lindsay M.; Winkielman, Piotr; Ramachandran, Vilayanur S.
2009-01-01
Spontaneous mimicry, including that of emotional facial expressions, is important for socio-emotional skills such as empathy and communication. Those skills are often impacted in autism spectrum disorders (ASD). Successful mimicry requires not only the activation of the response, but also its appropriate speed. Yet, previous studies examined ASD…
USDA-ARS?s Scientific Manuscript database
Low water potentials in xylem can result in damaging levels of cavitation, yet little is understood about which hydraulic traits have most influence in delaying the onset of hydraulic dysfunction during periods of drought. We examined three traits contributing to longer desiccation times in excised ...
The 2010 slow slip event and secular motion at Kilauea, Hawai`i inferred from TerraSAR-X InSAR data
Chen, Jingyi; Zebker, Howard A.; Segall, Paul; Miklius, Asta
2014-01-01
We present here an Small BAseline Subset (SBAS) algorithm to extract both transient and secular ground deformations on the order of millimeters in the presence of tropospheric noise on the order of centimeters, when the transient is of short duration and known time, and the background deformation is smooth in time. We applied this algorithm to study the 2010 slow slip event as well as the secular motion of Kīlauea's south flank using 49 TerraSAR-X images. We also estimate the tropospheric delay variation relative to a given reference pixel using an InSAR SBAS approach. We compare the InSAR SBAS solution for both ground deformation and tropospheric delays with existing GPS measurements and confirm that the ground deformation signal andtropospheric noise in InSAR data are successfully separated. We observe that the coastal region on the south side of the Hilina Pali moves at a higher background rate than the region north side of the Pali. We also conclude that the 2010 SSE displacement is mainly horizontal and the maximum magnitude of the 2010 SSE vertical component is less than 5 mm.
Disfluency effects on lexical selection.
Medimorec, Srdan; Young, Torin P; Risko, Evan F
2017-01-01
Recent research has suggested that introducing a disfluency in the context of written composition (i.e., typing with one hand) can increase lexical sophistication. In the current study, we provide a strong test between two accounts of this phenomenon, one that attributes it to the delay caused by the disfluency and one that attributes it to the disruption of typical finger-to-letter mappings caused by the disfluency. To test between these accounts, we slowed down participants' typewriting by introducing a small delay between keystrokes while individuals wrote essays. Critically, this manipulation did not disrupt typical finger-to-letter mappings. Consistent with the delay-based account, our results demonstrate that the essays written in this less fluent condition were more lexically diverse and used less frequent words. Implications for the temporal dynamics of lexical selection in complex cognitive tasks are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
Feedback Control of Resistive Wall Modes in Slowly Rotating DIII-D Plasmas
NASA Astrophysics Data System (ADS)
Okabayashi, M.; Chance, M. S.; Takahashi, H.; Garofalo, A. M.; Reimerdes, H.; in, Y.; Chu, M. S.; Jackson, G. L.; La Haye, R. J.; Strait, E. J.
2006-10-01
In slowly rotating plasmas on DIII-D, the requirement of RWM control feedback have been identified, using a MHD code along with measured power supply characteristics. It was found that a small time delay is essential for achieving high beta if no rotation stabilization exists. The overall system delay or the band pass time constant should be in the range of 0.4 of the RWM growth time. Recently the control system was upgraded using twelve linear audio amplifiers and a faster digital control system, reducing the time-delay from 600 to 100 μs. The advantage has been clearly observed when the RWMs excited by ELMs were effectively controlled by feedback even if the rotation transiently slowed nearly to zero. This study provides insight on stability in the low- rotation plasmasw with balanced NBI in DIII-D and also in ITER.
Raftopoulos, Harry; Boccia, Ralph; Cooper, William; O'Boyle, Erin; Gralla, Richard J
2015-09-01
APF530 is a novel sustained-release formulation of granisetron. In a Phase III trial, APF530 500 mg was noninferior to palonosetron 0.25 mg in preventing acute chemotherapy-induced nausea and vomiting (CINV) after moderately (MEC) or highly emetogenic chemotherapy (HEC) and delayed CINV after MEC, but not superior in preventing delayed CINV after HEC. Emetogenicity was classified by Hesketh criteria; this reanalysis uses newer American Society of Clinical Oncology criteria. Complete responses (no emesis or rescue medication) after cycle one were reanalyzed after reclassification of MEC and HEC by American Society of Clinical Oncology criteria. APF530 maintained noninferiority to palonosetron. Single-dose APF530 is a promising alternative to palonosetron for preventing acute and delayed CINV after MEC or HEC. The Clinicaltrials.gov identifier for this study is NCT00343460.
CAN LARGE TIME DELAYS OBSERVED IN LIGHT CURVES OF CORONAL LOOPS BE EXPLAINED IN IMPULSIVE HEATING?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lionello, Roberto; Linker, Jon A.; Mikić, Zoran
The light curves of solar coronal loops often peak first in channels associated with higher temperatures and then in those associated with lower temperatures. The delay times between the different narrowband EUV channels have been measured for many individual loops and recently for every pixel of an active region observation. The time delays between channels for an active region exhibit a wide range of values. The maximum time delay in each channel pair can be quite large, i.e., >5000 s. These large time delays make-up 3%–26% (depending on the channel pair) of the pixels where a trustworthy, positive time delaymore » is measured. It has been suggested that these time delays can be explained by simple impulsive heating, i.e., a short burst of energy that heats the plasma to a high temperature, after which the plasma is allowed to cool through radiation and conduction back to its original state. In this paper, we investigate whether the largest observed time delays can be explained by this hypothesis by simulating a series of coronal loops with different heating rates, loop lengths, abundances, and geometries to determine the range of expected time delays between a set of four EUV channels. We find that impulsive heating cannot address the largest time delays observed in two of the channel pairs and that the majority of the large time delays can only be explained by long, expanding loops with photospheric abundances. Additional observations may rule out these simulations as an explanation for the long time delays. We suggest that either the time delays found in this manner may not be representative of real loop evolution, or that the impulsive heating and cooling scenario may be too simple to explain the observations, and other potential heating scenarios must be explored.« less
Singer Responses to Sound Fields with a Simulated Reflection
NASA Astrophysics Data System (ADS)
NOSON, D.; SATO, S.; SAKAI, H.; ANDO, Y.
2000-04-01
While numerous recent studies have reported results concerning improvements to stage acoustics for orchestral performers, the preferred acoustical conditions on performing stages for singers has received limited attention in the past 20 years. A series of acoustical modifications have been proposed for a Seattle church to improve the acoustics for both the listeners and the performing choir. An on-site preliminary study was made to determine what acoustical changes might be important to singers. During solo fast-tempo singing and duet singing, singer preference increased with simulated short-delay reflections. The results suggest a potential for new reflectors to produce noticeable improvement in the choir acoustics. Subsequently, a solo singer study was conducted to establish preferred range of time delays for a single-simulated reflection. When singing faster-tempo music, the consensus of preference is statistically significant and the preferred delay averages 20 ms, while with a slow-tempo piece, the singers were not consistent in their judgment of preference and a strong individual variability predominated in the pair-comparison tests. The results point the way for an examination of a wider range of time delays and music motifs to acquire a clearer picture of consensus and individual preference for time-delayed reflections.
Space beam combiner for long-baseline interferometry
NASA Astrophysics Data System (ADS)
Lin, Yao; Bartos, Randall D.; Korechoff, Robert P.; Shaklan, Stuart B.
1999-04-01
An experimental beam combiner (BC) is being developed to support the space interferometry program at the JPL. The beam combine forms the part of an interferometer where star light collected by the sidestats or telescopes is brought together to produce white light fringes, and to provide wavefront tilt information via guiding spots and beam walk information via shear spots. The assembly and alignment of the BC has been completed. The characterization test were performed under laboratory conditions with an artificial star and optical delay line. Part of each input beam was used to perform star tracking. The white light interference fringes were obtained over the selected wavelength range from 450 nm to 850 nm. A least-square fit process was used to analyze the fringe initial phase, fringe visibilities and shift errors of the optical path difference in the delay line using the dispersed white-light fringes at different OPD positions.
Chahal, Manjit; Celler, George K; Jaluria, Yogesh; Jiang, Wei
2012-02-13
Employing a semi-analytic approach, we study the influence of key structural and optical parameters on the thermo-optic characteristics of photonic crystal waveguide (PCW) structures on a silicon-on-insulator (SOI) platform. The power consumption and spatial temperature profile of such structures are given as explicit functions of various structural, thermal and optical parameters, offering physical insight not available in finite-element simulations. Agreement with finite-element simulations and experiments is demonstrated. Thermal enhancement of the air-bridge structure is analyzed. The practical limit of thermo-optic switching power in slow light PCWs is discussed, and the scaling with key parameters is analyzed. Optical switching with sub-milliwatt power is shown viable.
Hinakura, Yosuke; Terada, Yosuke; Arai, Hiroyuki; Baba, Toshihiko
2018-04-30
We demonstrate a Si photonic crystal waveguide Mach-Zehnder modulator that incorporates meander-line electrodes to compensate for the phase mismatch between slow light and RF signals. We first employed commonized ground electrodes in the modulator to suppress undesired fluctuations in the electro-optic (EO) response due to coupled slot-line modes of RF signals. Then, we theoretically and experimentally investigated the effect of the phase mismatch on the EO response. We confirmed that meander-line electrodes improve the EO response, particularly in the absence of internal reflection of the RF signals. The cut-off frequency of this device can reach 27 GHz, which allows high-speed modulation up to 50 Gbps.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumeige, Yannick
We theoretically analyze the second-harmonic generation process in a sequence of unidirectionnaly coupled doubly resonant whispering gallery mode semiconductor resonators. By using a convenient design, it is possible to coherently sum the second-harmonic fields generated inside each resonator. We show that resonator coupling allows the bandwidth of the phase-matching curve to be increased with respect to single-resonator configurations simultaneously taking advantage of the resonant feature of the resonators. This quasi-phase-matching technique could be applied to obtain small-footprint nonlinear devices with large bandwidth and limited nonlinear losses. The results are discussed in the framework of the slow-light-effect enhancement of second-order opticalmore » nonlinearities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chauvin, N.; Fiore, A.; Nedel, P.
2009-07-15
We demonstrate the coupling of a single InAs/InP quantum, emitting around 1.55 {mu}m, to a slow-light mode in a two-dimensional photonic crystal on Bragg reflector. These surface addressable 2.5D photonic crystal band-edge modes present the advantages of a vertical emission and the mode area and localization may be controlled, leading to a less critical spatial alignment with the emitter. An increase in the spontaneous emission rate by a factor of 1.5-2 is measured at low temperature and is compared to the Purcell factor predicted by three-dimensional time-domain electromagnetic simulations.
Age-related slowing of response selection and production in a visual choice reaction time task
Woods, David L.; Wyma, John M.; Yund, E. William; Herron, Timothy J.; Reed, Bruce
2015-01-01
Aging is associated with delayed processing in choice reaction time (CRT) tasks, but the processing stages most impacted by aging have not been clearly identified. Here, we analyzed CRT latencies in a computerized serial visual feature-conjunction task. Participants responded to a target letter (probability 40%) by pressing one mouse button, and responded to distractor letters differing either in color, shape, or both features from the target (probabilities 20% each) by pressing the other mouse button. Stimuli were presented randomly to the left and right visual fields and stimulus onset asynchronies (SOAs) were adaptively reduced following correct responses using a staircase procedure. In Experiment 1, we tested 1466 participants who ranged in age from 18 to 65 years. CRT latencies increased significantly with age (r = 0.47, 2.80 ms/year). Central processing time (CPT), isolated by subtracting simple reaction times (SRT) (obtained in a companion experiment performed on the same day) from CRT latencies, accounted for more than 80% of age-related CRT slowing, with most of the remaining increase in latency due to slowed motor responses. Participants were faster and more accurate when the stimulus location was spatially compatible with the mouse button used for responding, and this effect increased slightly with age. Participants took longer to respond to distractors with target color or shape than to distractors with no target features. However, the additional time needed to discriminate the more target-like distractors did not increase with age. In Experiment 2, we replicated the findings of Experiment 1 in a second population of 178 participants (ages 18–82 years). CRT latencies did not differ significantly in the two experiments, and similar effects of age, distractor similarity, and stimulus-response spatial compatibility were found. The results suggest that the age-related slowing in visual CRT latencies is largely due to delays in response selection and production. PMID:25954175
Gasperini, Filippo; Brizzolara, Daniela; Cristofani, Paola; Casalini, Claudia; Chilosi, Anna Maria
2014-01-01
Children with Developmental Dyslexia (DD) are impaired in Rapid Automatized Naming (RAN) tasks, where subjects are asked to name arrays of high frequency items as quickly as possible. However the reasons why RAN speed discriminates DD from typical readers are not yet fully understood. Our study was aimed to identify some of the cognitive mechanisms underlying RAN-reading relationship by comparing one group of 32 children with DD with an age-matched control group of typical readers on a naming and a visual recognition task both using a discrete-trial methodology, in addition to a serial RAN task, all using the same stimuli (digits and colors). Results showed a significant slowness of DD children in both serial and discrete-trial naming (DN) tasks regardless of type of stimulus, but no difference between the two groups on the discrete-trial recognition task. Significant differences between DD and control participants in the RAN task disappeared when performance in the DN task was partialled out by covariance analysis for colors, but not for digits. The same pattern held in a subgroup of DD subjects with a history of early language delay (LD). By contrast, in a subsample of DD children without LD the RAN deficit was specific for digits and disappeared after slowness in DN was partialled out. Slowness in DN was more evident for LD than for noLD DD children. Overall, our results confirm previous evidence indicating a name-retrieval deficit as a cognitive impairment underlying RAN slowness in DD children. This deficit seems to be more marked in DD children with previous LD. Moreover, additional cognitive deficits specifically associated with serial RAN tasks have to be taken into account when explaining deficient RAN speed of these latter children. We suggest that partially different cognitive dysfunctions underpin superficially similar RAN impairments in different subgroups of DD subjects. PMID:25237301
Gannon, Robert L; Millan, Mark J
2012-11-01
Entrainment of circadian rhythms to the light-dark cycle is essential for restorative sleep, and abnormal sleep timing is implicated in central nervous system (CNS) disorders like depression, schizophrenia, and Alzheimer's disease. Many transmitters, including acetylcholine, that exerts its actions via muscarinic receptors modulate the suprachiasmatic nucleus, the master pacemaker. Since positive allosteric modulators of muscarinic M(4) receptors are candidates for treatment of mood and cognitive deficits of CNS disorders, it is important to evaluate their circadian actions. The effects of intraperitoneally applied muscarinic agents on circadian wheel-running rhythms were measured employing hamsters, a model organism for studying activity rhythms. Systemic administration of the muscarinic receptor agonist oxotremorine (0.01-0.04 mg/kg) inhibited light-induced phase delays and advances of hamster circadian wheel-running rhythms. The M₄ positive allosteric modulator, LY2033298 (10-40 mg/kg), had no effect on light-induced phase shifts when administered alone, yet significantly enhanced (at 20 mg/kg) the inhibitory influence of oxotremorine on light-induced phase delays. In addition, the muscarinic receptor antagonist, scopolamine, which was without effect on light-induced phase shifts when administered alone (0.001-0.1 mg/kg), antagonized (at 0.1 mg/kg) the inhibitory effect of oxotremorine and LY2033298 on light-induced phase delays. These results are the first to demonstrate that systemically applied muscarinic receptor agonists modulate circadian activity rhythms, and they also reveal a specific role for M₄ receptors. It will be of importance to evaluate circadian actions of psychotropic drugs acting via M₄ receptors, since they may display beneficial properties under pathological conditions.
NASA Technical Reports Server (NTRS)
Eppler, D. B.
2012-01-01
Desert Research and Technology Studies (Desert RATS) is a multi-year series of hardware and operations tests carried out annually in the high desert of Arizona in the San Francisco Volcanic Field. Conducted since 1997, these activities are designed to exercise planetary surface hardware and operations in conditions where multi-day tests are achievable. Desert RATS 2011 Science Operations Test simulated the management of crewed science operations at targets that were beyond the light delay time experienced during Low-Earth Orbit (LEO) and lunar surface missions, such as a mission to a Near-Earth Object (NEO) or the martian surface. Operations at targets at these distances are likely to be the norm as humans move out of the Earth-Moon system. Operating at these distances places significant challenges on mission operations, as the imposed light-delay time makes normal, two-way conversations extremely inefficient. Consequently, the operations approach for space missions that has been exercised during the first half-century of human space operations is no longer viable, and new approaches must be devised.
Prism-coupled light emission from tunnel junctions
NASA Technical Reports Server (NTRS)
Ushioda, S.; Rutledge, J. E.; Pierce, R. M.
1985-01-01
Completely p-polarized light emission has been observed from smooth Al-AlO(x)-Au tunnel junctions placed on a prism coupler. The angle and polarization dependence demonstrate unambiguously that the emitted light is radiated by the fast-mode surface plasmon polariton. The emission spectra suggest that the dominant process for the excitation of the fast mode is through conversion of the slow mode to the fast mode mediated by residual roughness on the junction surface.
Interventions to Slow Aging in Humans: Are We Ready?
Longo, Valter D; Antebi, Adam; Bartke, Andrzej; Barzilai, Nir; Brown-Borg, Holly M; Caruso, Calogero; Curiel, Tyler J; de Cabo, Rafael; Franceschi, Claudio; Gems, David; Ingram, Donald K; Johnson, Thomas E; Kennedy, Brian K; Kenyon, Cynthia; Klein, Samuel; Kopchick, John J; Lepperdinger, Guenter; Madeo, Frank; Mirisola, Mario G; Mitchell, James R; Passarino, Giuseppe; Rudolph, Karl L; Sedivy, John M; Shadel, Gerald S; Sinclair, David A; Spindler, Stephen R; Suh, Yousin; Vijg, Jan; Vinciguerra, Manlio; Fontana, Luigi
2015-01-01
The workshop entitled ‘Interventions to Slow Aging in Humans: Are We Ready?’ was held in Erice, Italy, on October 8–13, 2013, to bring together leading experts in the biology and genetics of aging and obtain a consensus related to the discovery and development of safe interventions to slow aging and increase healthy lifespan in humans. There was consensus that there is sufficient evidence that aging interventions will delay and prevent disease onset for many chronic conditions of adult and old age. Essential pathways have been identified, and behavioral, dietary, and pharmacologic approaches have emerged. Although many gene targets and drugs were discussed and there was not complete consensus about all interventions, the participants selected a subset of the most promising strategies that could be tested in humans for their effects on healthspan. These were: (i) dietary interventions mimicking chronic dietary restriction (periodic fasting mimicking diets, protein restriction, etc.); (ii) drugs that inhibit the growth hormone/IGF-I axis; (iii) drugs that inhibit the mTOR–S6K pathway; or (iv) drugs that activate AMPK or specific sirtuins. These choices were based in part on consistent evidence for the pro-longevity effects and ability of these interventions to prevent or delay multiple age-related diseases and improve healthspan in simple model organisms and rodents and their potential to be safe and effective in extending human healthspan. The authors of this manuscript were speakers and discussants invited to the workshop. The following summary highlights the major points addressed and the conclusions of the meeting. PMID:25902704
Reduced Sodium Current in the Lateral Ventricular Wall Induces Inferolateral J-Waves.
Meijborg, Veronique M F; Potse, Mark; Conrath, Chantal E; Belterman, Charly N W; De Bakker, Jacques M T; Coronel, Ruben
2016-01-01
J-waves in inferolateral leads are associated with a higher risk for idiopathic ventricular fibrillation. We aimed to test potential mechanisms (depolarization or repolarization dependent) responsible for inferolateral J-waves. We hypothesized that inferolateral J-waves can be caused by regional delayed activation of myocardium that is activated late during normal conditions. Computer simulations were performed to evaluate how J-point elevation is influenced by reducing sodium current conductivity (GNa), increasing transient outward current conductivity (Gto), or cellular uncoupling in three predefined ventricular regions (lateral, anterior, or septal). Two pig hearts were Langendorff-perfused with selective perfusion with a sodium channel blocker of lateral or anterior/septal regions. Volume-conducted pseudo-electrocardiograms (ECG) were recorded to detect the presence of J-waves. Epicardial unipolar electrograms were simultaneously recorded to obtain activation times (AT). Simulation data showed that conduction slowing, caused by reduced sodium current, in lateral, but not in other regions induced inferolateral J-waves. An increase in transient outward potassium current or cellular uncoupling in the lateral zone elicited slight J-point elevations which did not meet J-wave criteria. Additional conduction slowing in the entire heart attenuated J-waves and J-point elevations on the ECG, because of masking by the QRS. Experimental data confirmed that conduction slowing attributed to sodium channel blockade in the left lateral but not in the anterior/septal ventricular region induced inferolateral J-waves. J-waves coincided with the delayed activation. Reduced sodium current in the left lateral ventricular myocardium can cause inferolateral J-waves on the ECG.
Pelletier, Allen L; Rojas-Roldan, Ledy; Coffin, Janis
2016-08-01
Vision loss affects 37 million Americans older than 50 years and one in four who are older than 80 years. The U.S. Preventive Services Task Force concludes that current evidence is insufficient to assess the balance of benefits and harms of screening for impaired visual acuity in adults older than 65 years. However, family physicians play a critical role in identifying persons who are at risk of vision loss, counseling patients, and referring patients for disease-specific treatment. The conditions that cause most cases of vision loss in older patients are age-related macular degeneration, glaucoma, ocular complications of diabetes mellitus, and age-related cataracts. Vitamin supplements can delay the progression of age-related macular degeneration. Intravitreal injection of a vascular endothelial growth factor inhibitor can preserve vision in the neovascular form of macular degeneration. Medicated eye drops reduce intraocular pressure and can delay the progression of vision loss in patients with glaucoma, but adherence to treatment is poor. Laser trabeculoplasty also lowers intraocular pressure and preserves vision in patients with primary open-angle glaucoma, but long-term studies are needed to identify who is most likely to benefit from surgery. Tight glycemic control in adults with diabetes slows the progression of diabetic retinopathy, but must be balanced against the risks of hypoglycemia and death in older adults. Fenofibrate also slows progression of diabetic retinopathy. Panretinal photocoagulation is the mainstay of treatment for diabetic retinopathy, whereas vascular endothelial growth factor inhibitors slow vision loss resulting from diabetic macular edema. Preoperative testing before cataract surgery does not improve outcomes and is not recommended.
Fu, Yi-Cheng; Zhang, Yu; Tian, Liu-Yang; Li, Nan; Chen, Xi; Cai, Zhong-Qi; Zhu, Chao; Li, Yang
2016-05-01
Allocryptopine (ALL) is an effective alkaloid of Corydalis decumbens (Thunb.) Pers. Papaveraceae and has proved to be anti-arrhythmic. The purpose of our study is to investigate the effects of ALL on transmural repolarizing ionic ingredients of outward potassium current (I to) and slow delayed rectifier potassium current (I Ks). The monophasic action potential (MAP) technique was used to record the MAP duration of the epicardium (Epi), myocardium (M) and endocardium (Endo) of the rabbit heart and the whole cell patch clamp was used to record I to and I Ks in cardiomyocytes of Epi, M and Endo layers that were isolated from rabbit ventricles. The effects of ALL on MAP of Epi, M and Endo layers were disequilibrium. ALL could effectively reduce the transmural dispersion of repolarization (TDR) in rabbit transmural ventricular wall. ALL decreased the current densities of I to and I Ks in a voltage and concentration dependent way and narrowed the repolarizing differences among three layers. The analysis of gating kinetics showed ALL accelerated the channel activation of I to in M layers and partly inhibit the channel openings of I to in Epi, M and Endo cells. On the other hand, ALL mainly slowed channel deactivation of I Ks channel in Epi and Endo layers without affecting its activation. Our study gives partially explanation about the mechanisms of transmural inhibition of I to and I Ks channels by ALL in rabbit myocardium. These findings provide novel perspective regarding the anti-arrhythmogenesis application of ALL in clinical settings.
Tonn, Christopher R; Grundfast, Kenneth M
2014-03-01
Otolaryngologists are asked to evaluate children who a parent, physician, or someone else believes is slow in developing speech. Therefore, an otolaryngologist should be familiar with milestones for normal speech development, the causes of delay in speech development, and the best ways to help assure that children develop the ability to speak in a normal way. To provide information for otolaryngologists that is helpful in the evaluation and management of children perceived to be delayed in developing speech. Data were obtained via literature searches, online databases, textbooks, and the most recent national guidelines on topics including speech delay and language delay and the underlying disorders that can cause delay in developing speech. Emphasis was placed on epidemiology, pathophysiology, most common presentation, and treatment strategies. Most of the sources referenced were published within the past 5 years. Our article is a summary of major causes of speech delay based on reliable sources as listed herein. Speech delay can be the manifestation of a spectrum of disorders affecting the language comprehension and/or speech production pathways, ranging from disorders involving global developmental limitations to motor dysfunction to hearing loss. Determining the cause of a child's delay in speech production is a time-sensitive issue because a child loses valuable opportunities in intellectual development if his or her communication defect is not addressed and ameliorated with treatment. Knowing several key items about each disorder can help otolaryngologists direct families to the correct health care provider to maximize the child's learning potential and intellectual growth curve.
A rare presentation of craniopharyngioma: delayed puberty
İnci, Mehmet Fatih; Özkan, Fuat; Bozkurt, Selim; Demir, Caner Feyzi
2012-01-01
Craniopharyngiomas are the most frequently encountered suprasellar tumours in children. Owing to the slow growth rate of these tumours, they are often quite large before becoming symptomatic. They are more common among children and older adults (55–74 years). Depending upon the direction of growth and tumour size, craniopharyngiomas can affect the hypothalamus, pituitary stalk, optic nerves and chiasm and carotid arteries. Compression of these neural and vascular structures frequently precipitates endocrine disorders, visual loss and an increased intracranial pressure. Hypopituitarism leading to a delayed puberty is a rare presentation of craniopharyngioma. The diagnosis of craniopharyngioma is usually made with the classic radiological imaging features based on CT and MRI. PMID:23195827
EIT And SXT Observations of a Quiet-Region Filament Ejection: First Eruption, Then Reconnection
NASA Technical Reports Server (NTRS)
Sterling, Alphonse C.; Moore, Ronald L.; Thompson, Barbara J.
2001-01-01
We observe a slow-onset quiet-region filament eruption with the Extreme Ultraviolet Imaging Telescope (EIT) on the Solar Heliospheric Observatory (SOHO) and the Soft X-ray Telescope (SXT) on Yohkoh. This event occurred on 1999 April 18 and was likely the origin of a coronal mass ejection detected by SOHO at 08:30 UT on that day. In the EIT observation, one-half of the filament shows two stages of evolution: stage 1 is a slow, roughly constant upward movement at approximately 1 km/s lasting approximately 0.5 hr, and stage 2 is a rapid upward eruption at approximately 16 km/s occurring just before the filament disappears into interplanetary space. The other half of the filament shows little motion along the line of sight during the time of stage 1 but erupts along with the rest of the filament during stage 2. There is no obvious emission from the filament in the SXT observation until stage 2; at that time, an arcade of EUV and soft X-ray loops forms first at the central location of the filament and then expands outward along the length of the filament channel. A plot of EUV intensity versus time of the central portion of the filament (where the postflare loops initially form) shows a flat profile during stage 1 and a rapid upturn after the start of stage 2. This light curve is delayed from what would be expected if 'tether-cutting' reconnection in the core of the erupting region were responsible for the initiation of the eruption. Rather, these observations suggest that a loss of stability of the magnetic field holding the filament initiates the eruption, with reconnection in the core region occurring only as a by-product.
NASA Astrophysics Data System (ADS)
Sluse, D.; Tewes, M.
2014-11-01
The advent of large area photometric surveys has raised a great deal of interest in the possibility of using broadband photometric data, instead of spectra, to measure the size of the broad line region of active galactic nuclei. We describe here a new method that uses time-delay lensed quasars where one or several images are affected by microlensing due to stars in the lensing galaxy. Because microlensing decreases (or increases) the flux of the continuum compared to the broad line region, it changes the contrast between these two emission components. We show that this effect can be used to effectively disentangle the intrinsic variability of those two regions, offering the opportunity to perform reverberation mapping based on single-band photometric data. Based on simulated light curves generated using a damped random walk model of quasar variability, we show that measurement of the size of the broad line region can be achieved using this method, provided one spectrum has been obtained independently during the monitoring. This method is complementary to photometric reverberation mapping and could also be extended to multi-band data. Because the effect described above produces a variability pattern in difference light curves between pairs of lensed images that is correlated with the time-lagged continuum variability, it can potentially produce systematic errors in measurement of time delays between pairs of lensed images. Simple simulations indicate that time-delay measurement techniques that use a sufficiently flexible model for the extrinsic variability are not affected by this effect and produce accurate time delays.
Zallocchi, Marisa; Wang, Wei-Min; Delimont, Duane; Cosgrove, Dominic
2011-01-01
Purpose. Usher syndrome is characterized by congenital deafness associated with retinitis pigmentosa (RP). Mutations in the myosin VIIa gene (MYO7A) cause a common and severe subtype of Usher syndrome (USH1B). Shaker1 mice have mutant MYO7A. They are deaf and have vestibular dysfunction but do not develop photoreceptor degeneration. The goal of this study was to investigate abnormalities of photoreceptors in shaker1 mice. Methods. Immunocytochemistry and hydroethidine-based detection of intracellular superoxide production were used. Photoreceptor cell densities under various conditions of light/dark exposures were evaluated. Results. In shaker1 mice, the rod transducin translocation is delayed because of a shift of its light activation threshold to a higher level. Even moderate light exposure can induce oxidative damage and significant rod degeneration in shaker1 mice. Shaker1 mice reared under a moderate light/dark cycle develop severe retinal degeneration in less than 6 months. Conclusions. These findings show that, contrary to earlier studies, shaker1 mice possess a robust retinal phenotype that may link to defective rod protein translocation. Importantly, USH1B animal models are likely vulnerable to light-induced photoreceptor damage, even under moderate light. PMID:21447681
Time-Delay Interferometry for Space-based Gravitational Wave Searches
NASA Technical Reports Server (NTRS)
Armstrong, J.; Estabrook, F.; Tinto, M.
1999-01-01
Ground-based, equal-arm-length laser interferometers are being built to measure high-frequency astrophysical graviatational waves. Because of the arm-length equality, laser light experiences the same delay in each arm and thus phase or frequency noise from the laser itself precisely cancels at the photodetector.
The Effects of Glucose-Lowering Therapies on Diabetic Kidney Disease
Agrawal, V.; Giri, C.; Solomon, R. J.
2015-01-01
Chronic hyperglycemia and its associated metabolic products are key factors responsible for the development and progression of diabetic chronic kidney disease (CKD). Endocrinologists are tasked with detection and management of early CKD before patients need referral to a nephrologist for advanced CKD or dialysis evaluation. Primary care physicians are increasingly becoming aware of the importance of managing hyperglycemia to prevent or delay progression of CKD. Glycemic control is an integral part of preventing or slowing the advancement of CKD in patients with diabetes; however, not all glucose-lowering agents are suitable for this patient population. The availability of the latest information on treatment options may enable physicians to thwart advancement of serious renal complication in patients suffering from diabetes. This review presents clinical data that shed light on the risk/benefit profiles of three relatively new antidiabetes drug classes, the dipeptidyl peptidase-4 inhibitors, glucagon-like peptide-1 analogs, and sodium glucose co-transporter 2 inhibitors, particularly for patients with diabetic CKD, and summarizes the effects of these therapies on renal outcomes and glycemic control for endocrinologists and primary care physicians. Current recommendations for screening and diagnosis of CKD in patients with diabetes are also discussed. PMID:25824237
Phase-resolved pulse propagation through metallic photonic crystal slabs: plasmonic slow light
NASA Astrophysics Data System (ADS)
Schönhardt, Anja; Nau, Dietmar; Bauer, Christina; Christ, André; Gräbeldinger, Hedi; Giessen, Harald
2017-03-01
We characterized the electromagnetic field of ultra-short laser pulses after propagation through metallic photonic crystal structures featuring photonic and plasmonic resonances. The complete pulse information, i.e. the envelope and phase of the electromagnetic field, was measured using the technique of cross-correlation frequency resolved optical gating. In good agreement, measurements and scattering matrix simulations show a dispersive behaviour of the spectral phase at the position of the resonances. Asymmetric Fano-type resonances go along with asymmetric phase characteristics. Furthermore, the spectral phase is used to calculate the dispersion of the sample and possible applications in dispersion compensation are investigated. Group refractive indices of 700 and 70 and group delay dispersion values of 90 000 fs2 and 5000 fs2 are achieved in transverse electric and transverse magnetic polarization, respectively. The behaviour of extinction and spectral phase can be understood from an intuitive model using the complex transmission amplitude. An associated depiction in the complex plane is a useful approach in this context. This method promises to be valuable also in photonic crystal and filter design, for example, with regards to the symmetrization of the resonances. This article is part of the themed issue 'New horizons for nanophotonics'.
Obál, F; Payne, L; Kapás, L; Opp, M; Krueger, J M
1991-08-23
To study the possible involvement of hypothalamic growth hormone-releasing factor (GRF) in sleep regulation, a competitive GRF-antagonist, the peptide (N-Ac-Tyr1,D-Arg2)-GRF(1-29)-NH2, was intracerebroventricularly injected into rats (0.003, 0.3, and 14 nmol), and the EEG and brain temperature were recorded for 12 h during the light cycle of the day. Growth hormone (GH) concentrations were determined from plasma samples taken at 20-min intervals for 3 h after 14 nmol GRF-antagonist. The onset of non-rapid eye movement sleep (NREMS) was delayed in response to 0.3 and 14 nmol GRF-antagonist, the duration of NREMS was decreased for one or more hours and after 14 nmol EEG slow wave amplitudes were decreased during NREMS in postinjection hour 1. The high dose of GRF-antagonist also suppressed REMS for 4 h, inhibited GH secretion, and elicited a slight biphasic variation in brain temperature. These findings, together with previous observations indicating a sleep-promoting effect for GRF, support the hypothesis that hypothalamic GRF is involved in sleep regulation and might be responsible for the correlation between NREMS and GH secretion reported in various species.
Kujala, Teija; Leminen, Miika
2017-12-01
In specific language impairment (SLI), there is a delay in the child's oral language skills when compared with nonverbal cognitive abilities. The problems typically relate to phonological and morphological processing and word learning. This article reviews studies which have used mismatch negativity (MMN) in investigating low-level neural auditory dysfunctions in this disorder. With MMN, it is possible to tap the accuracy of neural sound discrimination and sensory memory functions. These studies have found smaller response amplitudes and longer latencies for speech and non-speech sound changes in children with SLI than in typically developing children, suggesting impaired and slow auditory discrimination in SLI. Furthermore, they suggest shortened sensory memory duration and vulnerability of the sensory memory to masking effects. Importantly, some studies reported associations between MMN parameters and language test measures. In addition, it was found that language intervention can influence the abnormal MMN in children with SLI, enhancing its amplitude. These results suggest that the MMN can shed light on the neural basis of various auditory and memory impairments in SLI, which are likely to influence speech perception. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Matsushima, U.; Graf, W.; Zabler, S.; Manke, I.; Dawson, M.; Choinka, G.; Hilger, A.; Herppich, W. B.
2013-01-01
Synchrotron X-ray computer microtomography was used to analyze the microstructure of rose peduncles. Samples from three rose cultivars, differing in anatomy, were scanned to study the relation between tissue structure and peduncles mechanical strength. Additionally, chlorophyll fluorescence imaging and conventional light microscopy was applied to quantify possible irradiation-induced damage to plant physiology and tissue structure. The spatial resolution of synchrotron X-ray computer microtomography was sufficiently high to investigate the complex tissues of intact rose peduncles without the necessity of any preparation. However, synchrotron X-radiation induces two different types of damage on irradiated tissues. First, within a few hours after first X-ray exposure, there is a direct physical destruction of cell walls. In addition, a slow and delayed destruction of chlorophyll and, consequently, of photosynthetic activity occurred within hours/ days after the exposure. The results indicate that synchrotron X-ray computer microtomography is well suited for three-dimensional visualization of the microstructure of rose peduncles. However, in its current technique, synchrotron X-ray computer microtomography is not really non-destructive but induce tissue damage. Hence, this technique needs further optimization before it can be applied for time-series investigations of living plant materials
NASA Astrophysics Data System (ADS)
Yoshikawa, Akira; Fujimoto, Yutaka; Yamaji, Akihiro; Kurosawa, Shunsuke; Pejchal, Jan; Sugiyama, Makoto; Wakahara, Shingo; Futami, Yoshisuke; Yokota, Yuui; Kamada, Kei; Yubuta, Kunio; Shishido, Toetsu; Nikl, Martin
2013-09-01
Multicomponent garnet Ce:Gd3(Ga,Al)5O12 (Ce:GAGG) single crystals show very high light yield with reasonably fast scintillation response. Therefore, they can be promising scintillators for gamma-ray detection. However, in the decay curve a very slow component does exist. Therefore, it is necessary to optimize further the crystal growth technology of Ce:GAGG. In this study, Ce:GAGG single crystals were grown by the floating zone (FZ) method under atmospheres of various compositions such as Ar 100%, Ar 80% + O2 20%, Ar 60% + O2 40% and O2 100%. Radioluminescence spectra are dominated by the band at about 540 nm due to Ce3+ 5d1-4f transition. The Ce:GAGG single crystal grown under Ar atmosphere shows an intense slower decay component. It can be related to the processes of the delayed radiative recombination and thermally induced ionization of 5d1 level of Ce3+ center possibly further affected by oxygen vacancies. This slower decay process is significantly suppressed in the samples grown under the O2 containing atmosphere.
Effects of acute ethanol administration on nocturnal pineal serotonin N-acetyltransferase activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Creighton, J.A.; Rudeen, P.K.
The effect of acute ethanol administration on pineal serotonin N-acetyltransferase (NAT) activity, norepinephrine and indoleamine content was examined in male rats. When ethanol was administered in two equal doses (2 g/kg body weight) over a 4 hour period during the light phase, the nocturnal rise in NAT activity was delayed by seven hours. The nocturnal pineal norepinephrine content was not altered by ethanol except for a delay in the reduction of NE with the onset of the following light phase. Although ethanol treatment led to a significant reduction in nocturnal levels of pineal serotonin content, there was no significant effectmore » upon pineal content of 5-hydroxyindoleacetic acid (5-HIAA). The data indicate that ethanol delays the onset of the rise of nocturnal pineal NAT activity.« less
Manipulation of peripheral neural feedback loops alters human corticomuscular coherence
Riddle, C Nicholas; Baker, Stuart N
2005-01-01
Sensorimotor EEG shows ∼20 Hz coherence with contralateral EMG. This could involve efferent and/or afferent components of the sensorimotor loop. We investigated the pathways responsible for coherence genesis by manipulating nervous conduction delays using cooling. Coherence between left sensorimotor EEG and right EMG from three hand and two forearm muscles was assessed in healthy subjects during the hold phase of a precision grip task. The right arm was then cooled to 10°C for ∼90 min, increasing peripheral motor conduction time (PMCT) by ∼35% (assessed by F-wave latency). EEG and EMG recordings were repeated, and coherence recalculated. Control recordings revealed a heterogeneous subject population. In 6/15 subjects (Group A), the corticomuscular coherence phase increased linearly with frequency, as expected if oscillations were propagated along efferent pathways from cortex to muscle. The mean corticomuscular conduction delay for intrinsic hand muscles calculated from the phase–frequency regression slope was 10.4 ms; this is smaller than the delay expected for conduction over fast corticospinal pathways. In 8/15 subjects (Group B), the phase showed no dependence with frequency. One subject showed both Group A and Group B patterns over different frequency ranges. Following cooling, averaged corticomuscular coherence was decreased in Group A subjects, but unchanged for Group B, even though both groups showed comparable slowing of nervous conduction. The delay calculated from the slope of the phase–frequency regression was increased following cooling. However, the size of this increase was around twice the rise in PMCT measured using the F-wave (regression slope 2.33, 95% confidence limits 1.30–3.36). Both afferent and efferent peripheral nerves will be slowed by similar amounts following cooling. The change in delay calculated from the coherence phase therefore better matches the rise in total sensorimotor feedback loop time caused by cooling, rather than just the change in the efferent limb. A model of corticomuscular coherence which assumes that only efferent pathways contribute cannot be reconciled to these results. The data rather suggest that afferent feedback pathways may also play a role in the genesis of corticomuscular coherence. PMID:15919711
Signal coding in cockroach photoreceptors is tuned to dim environments.
Heimonen, K; Immonen, E-V; Frolov, R V; Salmela, I; Juusola, M; Vähäsöyrinki, M; Weckström, M
2012-11-01
In dim light, scarcity of photons typically leads to poor vision. Nonetheless, many animals show visually guided behavior with dim environments. We investigated the signaling properties of photoreceptors of the dark active cockroach (Periplaneta americana) using intracellular and whole-cell patch-clamp recordings to determine whether they show selective functional adaptations to dark. Expectedly, dark-adapted photoreceptors generated large and slow responses to single photons. However, when light adapted, responses of both phototransduction and the nontransductive membrane to white noise (WN)-modulated stimuli remained slow with corner frequencies ~20 Hz. This promotes temporal integration of light inputs and maintains high sensitivity of vision. Adaptive changes in dynamics were limited to dim conditions. Characteristically, both step and frequency responses stayed effectively unchanged for intensities >1,000 photons/s/photoreceptor. A signal-to-noise ratio (SNR) of the light responses was transiently higher at frequencies <5 Hz for ~5 s after light onset but deteriorated to a lower value upon longer stimulation. Naturalistic light stimuli, as opposed to WN, evoked markedly larger responses with higher SNRs at low frequencies. This allowed realistic estimates of information transfer rates, which saturated at ~100 bits/s at low-light intensities. We found, therefore, selective adaptations beneficial for vision in dim environments in cockroach photoreceptors: large amplitude of single-photon responses, constant high level of temporal integration of light inputs, saturation of response properties at low intensities, and only transiently efficient encoding of light contrasts. The results also suggest that the sources of the large functional variability among different photoreceptors reside mostly in phototransduction processes and not in the properties of the nontransductive membrane.
The effect of modifying response and performance feedback parameters on the CNV in humans
NASA Technical Reports Server (NTRS)
Otto, D. A.; Leifer, L. J.
1972-01-01
The effect on the CNV of sustained and delayed motor response with the dominant and nondominant hand in the presence and absence of visual performance feedback, was studied in 15 male adults. Monopolar scalp recordings were obtained at Fz, Cz, Pz, and bilaterally over the motor hand area. Results indicated that the magnitude of the CNV was greater in the delayed than sustained response task, greater in the presence than absence of feedback, and greater over the motor hand area contralateral to movement. Frontal CNV habituated in the sustained, but not the delayed response task, suggested that frontal negative variations in the former case signify an orienting response to novelty or uncertainty. The absence of habituation in the delay condition was interpreted in terms of the motor inhibitory function of frontal association cortex. Performance feedback appeared to enhance CNV indirectly by increasing the motivation of subjects. A multiprocess conception of CNV was proposed in which vortex-negative slow potentials reflect a multiplicity of psychophysiological processes occurring at a variety of cortical and subcortical locations in the brain preparatory to a motor or mental action.
NASA Technical Reports Server (NTRS)
Zeitzer, J. M.; Dijk, D. J.; Kronauer, R.; Brown, E.; Czeisler, C.
2000-01-01
Ocular exposure to early morning room light can significantly advance the timing of the human circadian pacemaker. The resetting response to such light has a non-linear relationship to illuminance. The dose-response relationship of the human circadian pacemaker to late evening light of dim to moderate intensity has not been well established. Twenty-three healthy young male and female volunteers took part in a 9 day protocol in which a single experimental light exposure6.5 h in duration was given in the early biological night. The effects of the light exposure on the endogenous circadian phase of the melatonin rhythm and the acute effects of the light exposure on plasma melatonin concentration were calculated. We demonstrate that humans are highly responsive to the phase-delaying effects of light during the early biological night and that both the phase resetting response to light and the acute suppressive effects of light on plasma melatonin follow a logistic dose-response curve, as do many circadian responses to light in mammals. Contrary to expectations, we found that half of the maximal phase-delaying response achieved in response to a single episode of evening bright light ( approximately 9000 lux (lx)) can be obtained with just over 1 % of this light (dim room light of approximately 100 lx). The same held true for the acute suppressive effects of light on plasma melatonin concentrations. This indicates that even small changes in ordinary light exposure during the late evening hours can significantly affect both plasma melatonin concentrations and the entrained phase of the human circadian pacemaker.
New Kronig-Penney Equation Emphasizing the Band Edge Conditions
ERIC Educational Resources Information Center
Szmulowicz, Frank
2008-01-01
The Kronig-Penney problem is a textbook example for discussing band dispersions and band gap formation in periodic layered media. For example, in photonic crystals, the behaviour of bands next to the band edges is important for further discussions of such effects as inhibited light emission, slow light and negative index of refraction. However,…
Abrosimova, A N; Rakov, D V; Siniak, Iu E
2009-01-01
Action of "light" water with reduced quantities of heavy stable hydrogen and 18O ions on incidence and progress of lenticular opacity was studied in gamma-irradiated mice (60Co, 1.0 Gy). The animals were subjected to electroophthalmoscopy regularly till end of life time. The observation showed that chronic intake of "light" water safeguarded the irradiated mice against lenticular opacity. The experimental data indicate that "light" water strengthens the general body resistance as well as slows down aging of mammals.
Fast and slow light property improvement in erbium-doped amplifier
NASA Astrophysics Data System (ADS)
Peng, P. C.; Wu, F. K.; Kao, W. C.; Chen, J.; Lin, C. T.; Chi, S.
2013-01-01
This work experimentally demonstrates improvement of the fast light property in erbium-doped amplifiers at room temperature. The difference between the signal power and the pump power associated with bending loss is used to control the signal power at the different positions of the erbium-doped fiber (EDF) to improve the fast light property. Periodic bending of the EDF increases the time advance of the probe signal by over 288%. Additionally, this concept also could improve the fast light property using coherent population oscillations in semiconductor optical amplifiers.
Delayed sleep phase disorder: clinical perspective with a focus on light therapy
Figueiro, Mariana G
2016-01-01
Delayed sleep phase disorder (DSPD) is common among adolescents and further increases their susceptibility to chronic sleep restriction and associated detrimental outcomes, including increased risk of depression, drug and alcohol use, behavioral problems, and poor scholastic performance. DSPD is characterized by sleep onset that occurs significantly later than desired bedtimes and societal norms. Individuals with DSPD exhibit long sleep latencies when attempting to sleep at conventional bedtimes. Circadian sleep disorders such as DSPD can occur when there is misalignment between sleep timing and societal norms. This review discusses studies using light therapy to advance the timing of sleep in adolescents and college students, in particular on those suffering from DSPD. A discussion on how to increase effectiveness of light therapy in the field will also be provided. PMID:27110143
NASA Astrophysics Data System (ADS)
Csonti, K.; Hanyecz, V.; Mészáros, G.; Kovács, A. P.
2017-06-01
In this work we have measured the group-delay dispersion of an empty Michelson interferometer for s- and p-polarized light beams applying two different non-polarizing beam splitter cubes. The interference pattern appearing at the output of the interferometer was resolved with two different spectrometers. It was found that the group-delay dispersion of the empty interferometer depended on the polarization directions in case of both beam splitter cubes. The results were checked by inserting a glass plate in the sample arm of the interferometer and similar difference was obtained for the two polarization directions. These results show that to reach high precision, linearly polarized white light beam should be used and the residual dispersion of the empty interferometer should be measured at both polarization directions.
Mirshafieyan, Seyed Sadreddin; Luk, Ting S.; Guo, Junpeng
2016-03-04
Here, we demonstrated perfect light absorption in optical nanocavities made of ultra-thin percolation aluminum and silicon films deposited on an aluminum surface. The total layer thickness of the aluminum and silicon films is one order of magnitude less than perfect absorption wavelength in the visible spectral range. The ratio of silicon cavity layer thickness to perfect absorption wavelength decreases as wavelength decreases due to the increased phase delays at silicon-aluminum boundaries at shorter wavelengths. It is explained that perfect light absorption is due to critical coupling of incident wave to the fundamental Fabry-Perot resonance mode of the structure where themore » round trip phase delay is zero. Simulations were performed and the results agree well with the measurement results.« less
Design and implementation of a simple acousto optic dual control circuit
NASA Astrophysics Data System (ADS)
Li, Biqing; Li, Zhao
2017-04-01
This page proposed a simple light control circuit which designed by using power supply circuit, sonic circuits, electric circuit and delay circuit four parts. The main chip for CD4011, have inside of the four and to complete the sonic or circuit, electric, delay logic circuit. During the day, no matter how much a pedestrian voice, is ever shine light bulb. Dark night, circuit in a body to make the microphone as long as testing noise, and will automatically be bright for pedestrians lighting, several minutes after the automatic and put out, effective energy saving. Applicable scope and the working principle of the circuit principle diagram and given device parameters selection, power saving effect is obvious, at the same time greatly reduce the maintenance quantity, saving money, use effect is good.
A Pilot Study on the Effects of Slow Paced Breathing on Current Food Craving.
Meule, Adrian; Kübler, Andrea
2017-03-01
Heart rate variability biofeedback (HRV-BF) involves slow paced breathing (approximately six breaths per minute), thereby maximizing low-frequent heart rate oscillations and baroreflex gain. Mounting evidence suggests that HRV-BF promotes symptom reductions in a variety of physical and mental disorders. It may also positively affect eating behavior by reducing food cravings. The aim of the current study was to investigate if slow paced breathing can be useful for attenuating momentary food craving. Female students performed paced breathing either at six breaths per minute (n = 32) or at nine breaths per minute (n = 33) while watching their favorite food on the computer screen. Current food craving decreased during a first resting period, increased during paced breathing, and decreased during a second resting period in both conditions. Although current hunger increased in both conditions during paced breathing as well, it remained elevated after the second resting period in the nine breaths condition only. Thus, breathing rate did not influence specific food craving, but slow paced breathing appeared to have a delayed influence on state hunger. Future avenues are suggested for the study of HRV-BF in the context of eating behavior.
Alkozei, Anna; Smith, Ryan; Dailey, Natalie S; Bajaj, Sahil; Killgore, William D S
2017-01-01
Acute exposure to light within the blue wavelengths has been shown to enhance alertness and vigilance, and lead to improved speed on reaction time tasks, possibly due to activation of the noradrenergic system. It remains unclear, however, whether the effects of blue light extend beyond simple alertness processes to also enhance other aspects of cognition, such as memory performance. The aim of this study was to investigate the effects of a thirty minute pulse of blue light versus placebo (amber light) exposure in healthy normally rested individuals in the morning during verbal memory consolidation (i.e., 1.5 hours after memory acquisition) using an abbreviated version of the California Verbal Learning Test (CVLT-II). At delayed recall, individuals who received blue light (n = 12) during the consolidation period showed significantly better long-delay verbal recall than individuals who received amber light exposure (n = 18), while controlling for the effects of general intelligence, depressive symptoms and habitual wake time. These findings extend previous work demonstrating the effect of blue light on brain activation and alertness to further demonstrate its effectiveness at facilitating better memory consolidation and subsequent retention of verbal material. Although preliminary, these findings point to a potential application of blue wavelength light to optimize memory performance in healthy populations. It remains to be determined whether blue light exposure may also enhance performance in clinical populations with memory deficits.
Hippocampal-prefrontal theta-gamma coupling during performance of a spatial working memory task.
Tamura, Makoto; Spellman, Timothy J; Rosen, Andrew M; Gogos, Joseph A; Gordon, Joshua A
2017-12-19
Cross-frequency coupling supports the organization of brain rhythms and is present during a range of cognitive functions. However, little is known about whether and how long-range cross-frequency coupling across distant brain regions subserves working memory. Here we report that theta-slow gamma coupling between the hippocampus and medial prefrontal cortex (mPFC) is augmented in a genetic mouse model of cognitive dysfunction. This increased cross-frequency coupling is observed specifically when the mice successfully perform a spatial working memory task. In wild-type mice, increasing task difficulty by introducing a long delay or by optogenetically interfering with encoding, also increases theta-gamma coupling during correct trials. Finally, epochs of high hippocampal theta-prefrontal slow gamma coupling are associated with increased synchronization of neurons within the mPFC. These findings suggest that enhancement of theta-slow gamma coupling reflects a compensatory mechanism to maintain spatial working memory performance in the setting of increased difficulty.
[Myoclonus epilepsy with ragged-red fibers: a case report and literature review].
Zhao, Man-man; Zhang, Yao; Bao, Xin-hua
2015-12-18
To demonstrate the clinical manifestation, diagnosis and treatment of myoclonus epilepsy with ragged-red-fibers (MERRF), a case of MERRF was presented with review of the literature. A 4-year-7-month-old girl was diagnosed with MERRF. She had tremor, fatigue and developmental delay for more than 2 years. Laboratory tests showed that the serum and urine lactic acid and pyruvic acid increased significantly. Electroencephalogram showed diffuse and focal spike slow wave and slow wave in right central and parietal regions. Electromyogram showed neurological damage. Gene mutational analysis showed mtDNA 8344 A>G mutation. The mutational rate was 78%. Mitochondrial disease MERRF syndrome was diagnosed. Cocktails therapy with vitamins B1, B6, B12, L-carnitine, and coenzyme Q10 was administrated to the patient. MERRF is a rare disease. The diagnosis can be made by gene mutational analysis. Cocktail therapy may slow down the deterioration of the disease. Gene therapy is still experimental.
NASA Astrophysics Data System (ADS)
Zhong, L.; Lee, M. H.; Lee, B.; Yang, S.
2016-12-01
Delivery of nutrient to and establish a slow release carbon source in the vadose zone and capillary fringe zone is essential for setting up of a long-lasting bioremediation of contaminations in those zones. Conventional solution-based injection and infiltration approaches are facing challenges to achieve the delivery and remedial goals. Aqueous silica suspensions undergo a delayed gelation process under favorite geochemical conditions. The delay in gelation provides a time window for the injection of the suspension into the subsurface; and the gelation of the amendment-silica suspension enables the amendment-laden gel to stay in the target zone and slowly release the constituents for contaminant remediation. This approach can potentially be applied to deliver bio-nutrients to the vadose zone and capillary fringe zone for enhanced bioremediation and achieve remedial goals. This research was conducted to demonstrate delayed gelation of colloidal silica suspensions when carbon sources were added and to prove the gelation occurs in sediments under vadose conditions. Sodium lactate, vegetable oil, ethanol, and molasses were tested as the examples of carbon source (or nutrient) amendments. The rheological properties of the silica suspensions during the gelation were characterized. The influence of silica, salinity, nutrient concentrations, and the type of nutrients was studied. The kinetics of nutrient release from silica-nutrient gel was quantified using molasses as the example, and the influence of suspension gelation time was evaluated. The injection behavior of the suspensions was investigated by monitoring their viscosity changes and the injection pressures when the suspensions were delivered into sediment columns.
Higuchi, Shigekazu; Lee, Sang-il; Kozaki, Tomoaki; Harada, Tetsuo; Tanaka, Ikuo
2016-01-01
Light is the strongest synchronizer of human circadian rhythms, and exposure to residential light at night reportedly causes a delay of circadian rhythms. The present study was conducted to investigate the association between color temperature of light at home and circadian phase of salivary melatonin in adults and children. Twenty healthy children (mean age: 9.7 year) and 17 of their parents (mean age: 41.9 years) participated in the experiment. Circadian phase assessments were made with dim light melatonin onset (DLMO). There were large individual variations in DLMO both in adults and children. The average DLMO in adults and in children were 21:50 ± 1:12 and 20:55 ± 0:44, respectively. The average illuminance and color temperature of light at eye level were 139.6 ± 82.7 lx and 3862.0 ± 965.6 K, respectively. There were significant correlations between color temperature of light and DLMO in adults (r = 0.735, p < 0.01) and children (r = 0.479, p < 0.05), although no significant correlations were found between illuminance level and DLMO. The results suggest that high color temperature light at home might be a cause of the delay of circadian phase in adults and children.
Perry, Gad; Bertoluci, Jaime; Bury, R. Bruce; Hansen, Robert W.; Jehle, Robert; Measey, John; Moon, Brad R.; Muths, Erin L.; Zuffi, Marco A.L.
2011-01-01
Peer review is the best available mechanism for assessing and improving the quality of scientific work. As herpetology broadens its disciplinary and geographic boundaries, high-quality external review is ever more essential. We are writing this editorial jointly because the review process has become increasingly difficult. The resulting delays slow publication times, negatively affect performance reviews, tenure, promotions, and grant proposal success. It harms authors, agencies, and institutions (Ware 2011).
ERIC Educational Resources Information Center
Milshtein, Amy
2003-01-01
Foreign students and visiting scholars are facing delays as, in the wake of the September 11th attacks, new requirements for visa interviews for every applicant are slowing down the process. Many students and visiting scholars are at risk of missing the start of the school year. Some school groups are petitioning the U.S. State Department for…
Role of local network oscillations in resting-state functional connectivity.
Cabral, Joana; Hugues, Etienne; Sporns, Olaf; Deco, Gustavo
2011-07-01
Spatio-temporally organized low-frequency fluctuations (<0.1 Hz), observed in BOLD fMRI signal during rest, suggest the existence of underlying network dynamics that emerge spontaneously from intrinsic brain processes. Furthermore, significant correlations between distinct anatomical regions-or functional connectivity (FC)-have led to the identification of several widely distributed resting-state networks (RSNs). This slow dynamics seems to be highly structured by anatomical connectivity but the mechanism behind it and its relationship with neural activity, particularly in the gamma frequency range, remains largely unknown. Indeed, direct measurements of neuronal activity have revealed similar large-scale correlations, particularly in slow power fluctuations of local field potential gamma frequency range oscillations. To address these questions, we investigated neural dynamics in a large-scale model of the human brain's neural activity. A key ingredient of the model was a structural brain network defined by empirically derived long-range brain connectivity together with the corresponding conduction delays. A neural population, assumed to spontaneously oscillate in the gamma frequency range, was placed at each network node. When these oscillatory units are integrated in the network, they behave as weakly coupled oscillators. The time-delayed interaction between nodes is described by the Kuramoto model of phase oscillators, a biologically-based model of coupled oscillatory systems. For a realistic setting of axonal conduction speed, we show that time-delayed network interaction leads to the emergence of slow neural activity fluctuations, whose patterns correlate significantly with the empirically measured FC. The best agreement of the simulated FC with the empirically measured FC is found for a set of parameters where subsets of nodes tend to synchronize although the network is not globally synchronized. Inside such clusters, the simulated BOLD signal between nodes is found to be correlated, instantiating the empirically observed RSNs. Between clusters, patterns of positive and negative correlations are observed, as described in experimental studies. These results are found to be robust with respect to a biologically plausible range of model parameters. In conclusion, our model suggests how resting-state neural activity can originate from the interplay between the local neural dynamics and the large-scale structure of the brain. Copyright © 2011 Elsevier Inc. All rights reserved.
Human Adolescent Phase Response Curves to Bright White Light.
Crowley, Stephanie J; Eastman, Charmane I
2017-08-01
Older adolescents are particularly vulnerable to circadian misalignment and sleep restriction, primarily due to early school start times. Light can shift the circadian system and could help attenuate circadian misalignment; however, a phase response curve (PRC) to determine the optimal time for receiving light and avoiding light is not available for adolescents. We constructed light PRCs for late pubertal to postpubertal adolescents aged 14 to 17 years. Participants completed 2 counterbalanced 5-day laboratory sessions after 8 or 9 days of scheduled sleep at home. Each session included phase assessments to measure the dim light melatonin onset (DLMO) before and after 3 days of free-running through an ultradian light-dark (wake-sleep) cycle (2 h dim [~20 lux] light, 2 h dark). In one session, intermittent bright white light (~5000 lux; four 20-min exposures) was alternated with 10 min of dim room light once per day for 3 consecutive days. The time of light varied among participants to cover the 24-h day. For each individual, the phase shift to bright light was corrected for the free-run derived from the other laboratory session with no bright light. One PRC showed phase shifts in response to light start time relative to the DLMO and another relative to home sleep. Phase delay shifts occurred around the hours corresponding to home bedtime. Phase advances occurred during the hours surrounding wake time and later in the afternoon. The transition from delays to advances occurred at the midpoint of home sleep. The adolescent PRCs presented here provide a valuable tool to time bright light in adolescents.
Chirp-enhanced fast light in semiconductor optical amplifiers.
Sedgwick, F G; Pesala, Bala; Uskov, Alexander V; Chang-Hasnain, C J
2007-12-24
We present a novel scheme to increase the THz-bandwidth fast light effect in semiconductor optical amplifiers and increase the number of advanced pulses. By introducing a linear chirp to the input pulses before the SOA and recompressing at the output with an opposite chirp, the advance-bandwidth product reached 3.5 at room temperature, 1.55 microm wavelength. This is the largest number reported, to the best of our knowledge, for a semiconductor slow/fast light device.
... anticholinergics. It works by slowing the movement of food through the stomach and intestines and decreasing the ... or do not go away: dry mouth increased sensitivity of your eyes to light dizziness nervousness difficulty ...
NASA Astrophysics Data System (ADS)
Horne, Keith D.; Agn Storm Team
2015-01-01
Two-dimensional velocity-delay maps of AGN broad emission line regions can be recovered by modelling observations of reverberating emission-line profiles on the assumption that the line profile variations are driven by changes in ionising radiation from a compact source near the black hole. The observable light travel time delay resolves spatial structure on iso-delay paraboloids, while the doppler shift resolves kinematic structure along the observer's line-of-sight. Velocity-delay maps will be presented and briefly discussed for the Lyman alpha, CIV and Hbeta line profiles based on the HST and ground-based spectrophotometric monitoring of NGC 5548 during the 2014 AGN STORM campaign.
Time delay induced different synchronization patterns in repulsively coupled chaotic oscillators
NASA Astrophysics Data System (ADS)
Yao, Chenggui; Yi, Ming; Shuai, Jianwei
2013-09-01
Time delayed coupling plays a crucial role in determining the system's dynamics. We here report that the time delay induces transition from the asynchronous state to the complete synchronization (CS) state in the repulsively coupled chaotic oscillators. In particular, by changing the coupling strength or time delay, various types of synchronous patterns, including CS, antiphase CS, antiphase synchronization (ANS), and phase synchronization, can be generated. In the transition regions between different synchronous patterns, bistable synchronous oscillators can be observed. Furthermore, we show that the time-delay-induced phase flip bifurcation is of key importance for the emergence of CS. All these findings may light on our understanding of neuronal synchronization and information processing in the brain.
Measurement of one-way velocity of light and light-year
NASA Astrophysics Data System (ADS)
Chen, Shao-Guang
For space science and astronomy the fundamentality of one-way velocity of light (OWVL) is selfevident. The measurement of OWVL (distance / interval) and the clock synchronization with light-signal transfer make a logical circulation. This means that OWVL could not be directly measured but only come indirectly from astronomical method (Romer's Io eclipse and Bradley's sidereal aberration). Furthermore, the light-year by definitional OWVL and the trigonometry distance with AU are also un-measurable. In this report two methods of clock synchronization to solve this problem were proposed: The arriving-time difference of longitudinal-transverse wave (Ts - Tp) or ordinary-extraordinary light (Te - To) is measured by single clock at one end of a dual-speed transmission-line, the signal transmission-delay (from sending-end time Tx to receiving-end time Tp or To) calculated with wave-speed ratio is: (Tp -Tx) = (Ts -Tp) / ((Vp / Vs) - 1) or: (To -Tx) = (Te - To) / ((Vo / Ve ) - 1), where (Vp / Vs) = (E / k) 1/2 is Yang's / shear elastic-modulus ratio obtained by comparing two strains at same stress, (Vo / Ve) = (ne / no) is extraordinary/ordinary light refractive-index ratio obtained by comparing two deflection-angles. Then, two clocks at transmission-line two ends can be synchronized directly to measure the one-way velocity of light and light-year, which work as one earthquakestation with single clock measures first-shake-time and the distance to epicenter. The readings Na and Nb of two counters Ca and Cb with distance L are transferred into a computer C by two leads with transmission-delay Tac and Tbc respectively. The computer progressing subtraction operation exports steady value: (Nb - Na) = f (Ta - Tb ) + f (Tac - Tbc ), where f is the frequency of light-wave always passing Ca and Cb, Ta and Tb are the count-start time of Ca and Cb respectively. From the transmission-delay possess the spatial translational and rotational invariability, the computer exports steady value: (Nb - Na)' = f (Ta - Tb ) - f ( Tac - Tbc) when two leads had been interchanged. Or: 2 f (Ta - Tb ) = (Nb - Na) + (Nb - Na)'. After Ca and Cb are successively closed by a count-stop pulse modulated into the light-wave, the immovable reading difference of two counters is f (Ta - Tb ) + N, N is the wave-number in length L. After delay Tac or Tbc the computer exports last steady value: (Nb - Na)" = f (Ta - Tb ) + N, Or : 2N = 2 (Nb - Na)" - (Nb - Na) - (Nb - Na)' . L / N is one-way wavelength l from Ca to Cb, simultaneously measuring the frequency f , l f is one-way velocity of light c + from Ca to Cb. To reverse the transmitting-direction of light the measuring result of l f is just one-way velocity of light c - from Cb to Ca. Leastways for 86 Kr light-wave c + = c - =c is valid. With classical Newtonian mechanics and ether wave optics, the one-way velocity of light can be measured in the Galileo coordinate system with isotropic length unit ——1889 international meter definition. Special relativity can entirely establish on the measuring results.
Samimi, Pooran; Alizadeh, Mehdi; Shirban, Farinaz; Davoodi, Amin; Khoroushi, Maryam
2016-01-01
Dual-cured composite resins are similar to self-cured composite resins in some of their clinical applications due to inadequate irradiation, lack of irradiation, or delayed irradiation. Therefore, incompatibility with self-etch adhesives (SEAs) should be taken into account with their use. On the other, the extent of dentin dehydration has a great role in the quality of adhesion of these resin materials to dentin. The aim of this study was to investigate the effect of dentin dehydration and composite resin polymerization mode on bond strength of two SEAs. A total of 120 dentinal specimens were prepared from extracted intact third molars. Half of the samples were dehydrated in ethanol with increasing concentrations. Then Clearfil SE Bond (CSEB) and Prompt L-Pop (PLP) adhesives were applied in the two groups. Cylindrical composite resin specimens were cured using three polymerization modes: (1) Immediate light-curing, (2) delayed light-curing after 20 min, and (3) self-curing. Bond strength was measured using universal testing machine at a crosshead speed of 1 mm/min. Data were analyzed with two-way ANOVA and Duncan post hoc tests. Statistical significance was defined at P < 0.05. There were no significant differences for CSEB subgroups with hydrated and dehydrated dentin samples between the three different curing modes (P > 0.05). PLP showed significant differences between subgroups with the lowest bond strength in hydrated dentin with delayed light-curing and self-cured mode of polymerization. Within the limitations of this study, a delay in composite resin light-curing or using chemically cured composite resin had a deleterious effect on dentin bond strength of single-step SEAs used in the study.
Samimi, Pooran; Alizadeh, Mehdi; Shirban, Farinaz; Davoodi, Amin; Khoroushi, Maryam
2016-01-01
Background: Dual-cured composite resins are similar to self-cured composite resins in some of their clinical applications due to inadequate irradiation, lack of irradiation, or delayed irradiation. Therefore, incompatibility with self-etch adhesives (SEAs) should be taken into account with their use. On the other, the extent of dentin dehydration has a great role in the quality of adhesion of these resin materials to dentin. The aim of this study was to investigate the effect of dentin dehydration and composite resin polymerization mode on bond strength of two SEAs. Materials and Methods: A total of 120 dentinal specimens were prepared from extracted intact third molars. Half of the samples were dehydrated in ethanol with increasing concentrations. Then Clearfil SE Bond (CSEB) and Prompt L-Pop (PLP) adhesives were applied in the two groups. Cylindrical composite resin specimens were cured using three polymerization modes: (1) Immediate light-curing, (2) delayed light-curing after 20 min, and (3) self-curing. Bond strength was measured using universal testing machine at a crosshead speed of 1 mm/min. Data were analyzed with two-way ANOVA and Duncan post hoc tests. Statistical significance was defined at P < 0.05. Results: There were no significant differences for CSEB subgroups with hydrated and dehydrated dentin samples between the three different curing modes (P > 0.05). PLP showed significant differences between subgroups with the lowest bond strength in hydrated dentin with delayed light-curing and self-cured mode of polymerization. Conclusion: Within the limitations of this study, a delay in composite resin light-curing or using chemically cured composite resin had a deleterious effect on dentin bond strength of single-step SEAs used in the study. PMID:27041894
STRONG LENS TIME DELAY CHALLENGE. II. RESULTS OF TDC1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, Kai; Treu, Tommaso; Marshall, Phil
2015-02-10
We present the results of the first strong lens time delay challenge. The motivation, experimental design, and entry level challenge are described in a companion paper. This paper presents the main challenge, TDC1, which consisted of analyzing thousands of simulated light curves blindly. The observational properties of the light curves cover the range in quality obtained for current targeted efforts (e.g., COSMOGRAIL) and expected from future synoptic surveys (e.g., LSST), and include simulated systematic errors. Seven teams participated in TDC1, submitting results from 78 different method variants. After describing each method, we compute and analyze basic statistics measuring accuracy (ormore » bias) A, goodness of fit χ{sup 2}, precision P, and success rate f. For some methods we identify outliers as an important issue. Other methods show that outliers can be controlled via visual inspection or conservative quality control. Several methods are competitive, i.e., give |A| < 0.03, P < 0.03, and χ{sup 2} < 1.5, with some of the methods already reaching sub-percent accuracy. The fraction of light curves yielding a time delay measurement is typically in the range f = 20%-40%. It depends strongly on the quality of the data: COSMOGRAIL-quality cadence and light curve lengths yield significantly higher f than does sparser sampling. Taking the results of TDC1 at face value, we estimate that LSST should provide around 400 robust time-delay measurements, each with P < 0.03 and |A| < 0.01, comparable to current lens modeling uncertainties. In terms of observing strategies, we find that A and f depend mostly on season length, while P depends mostly on cadence and campaign duration.« less
Lim, Heeseon; Kwon, Hyuksang; Kim, Sang Kyu; Kim, Jeong Won
2017-10-05
Light absorption in organic molecules on an inorganic substrate and subsequent electron transfer to the substrate create so-called hybrid charge transfer exciton (HCTE). The relaxation process of the HCTE states largely determines charge separation efficiency or optoelectronic device performance. Here, the study on energy and time-dispersive behavior of photoelectrons at the hybrid interface of copper phthalocyanine (CuPc)/p-GaAs(001) upon light excitation of GaAs reveals a clear pathway for HCTE relaxation and delayed triplet-state formation. According to the ground-state energy level alignment at the interface, CuPc/p-GaAs(001) shows initially fast hole injection from GaAs to CuPc. Thus, the electrons in GaAs and holes in CuPc form an unusual HCTE state manifold. Subsequent electron transfer from GaAs to CuPc generates the formation of the triplet state in CuPc with a few picoseconds delay. Such two-step charge transfer causes delayed triplet-state formation without singlet excitation and subsequent intersystem crossing within the CuPc molecules.
Xue, Weiqi; Sales, Salvador; Capmany, José; Mørk, Jesper
2009-04-01
We suggest and experimentally demonstrate a method for increasing the tunable rf phase shift of semiconductor waveguides while at the same time enabling control of the rf power. This method is based on the use of slow- and fast-light effects in a cascade of semiconductor optical amplifiers combined with the use of spectral filtering to enhance the role of refractive index dynamics. A continuously tunable phase shift of approximately 240 degrees at a microwave frequency of 19 GHz is demonstrated in a cascade of two semiconductor optical amplifiers, while maintaining an rf power change of less than 1.6 dB. The technique is scalable to more amplifiers and should allow realization of an rf phase shift of 360 degrees.
Berman, Gennady P [Los Alamos, NM; Bishop, Alan R [Los Alamos, NM; Nguyen, Dinh C [Los Alamos, NM; Chernobrod, Boris M [Santa Fe, NM; Gorshkov, Vacheslav N [Kiev, UA
2009-10-13
A high-speed (Gbps), free space optical communication system is based on spectral encoding of radiation from a wide band light source, such as a laser. By using partially coherent laser beams in combination with a relatively slow photosensor, scintillations can be suppressed by orders of magnitude for distances of more than 10 km. To suppress the intensity fluctuations due to atmospheric turbulence, a source with partial transverse coherence in combination with slow response time photodetector is used. Information is encoded in the spectral domain of a wideband optical source by modulation of spectral amplitudes. A non-coherent light source with wide spectrum (an LED, for example) may be used for high-speed communication over short (less than about a mile) distances.
The C4 Model Grass Setaria Is a Short Day Plant with Secondary Long Day Genetic Regulation
Doust, Andrew N.; Mauro-Herrera, Margarita; Hodge, John G.; Stromski, Jessica
2017-01-01
The effect of photoperiod (day:night ratio) on flowering time was investigated in the wild species, Setaria viridis, and in a set of recombinant inbred lines (RILs) derived from a cross between foxtail millet (S. italica) and its wild ancestor green foxtail (S. viridis). Photoperiods totaled 24 h, with three trials of 8:16, 12:12 and 16:8 light:dark hour regimes for the RIL population, and these plus 10:14 and 14:10 for the experiments with S. viridis alone. The response of S. viridis to light intensity as well as photoperiod was assessed by duplicating photoperiods at two light intensities (300 and 600 μmol.m-2.s-1). In general, day lengths longer than 12 h delayed flowering time, although flowering time was also delayed in shorter day-lengths relative to the 12 h trial, even when daily flux in high intensity conditions exceeded that of the low intensity 12 h trial. Cluster analysis showed that the effect of photoperiod on flowering time differed between sets of RILs, with some being almost photoperiod insensitive and others being delayed with respect to the population as a whole in either short (8 or 12 h light) or long (16 h light) photoperiods. QTL results reveal a similar picture, with several major QTL colocalizing between the 8 and 12 h light trials, but with a partially different set of QTL identified in the 16 h trial. Major candidate genes for these QTL include several members of the PEBP protein family that includes Flowering Locus T (FT) homologs such as OsHd3a, OsRFT1, and ZCN8/12. Thus, Setaria is a short day plant (flowering quickest in short day conditions) whose flowering is delayed by long day lengths in a manner consistent with the responses of most other members of the grass family. However, the QTL results suggest that flowering time under long day conditions uses additional genetic pathways to those used under short day conditions. PMID:28729868
The C4 Model Grass Setaria Is a Short Day Plant with Secondary Long Day Genetic Regulation.
Doust, Andrew N; Mauro-Herrera, Margarita; Hodge, John G; Stromski, Jessica
2017-01-01
The effect of photoperiod (day:night ratio) on flowering time was investigated in the wild species, Setaria viridis , and in a set of recombinant inbred lines (RILs) derived from a cross between foxtail millet ( S. italica ) and its wild ancestor green foxtail ( S. viridis ). Photoperiods totaled 24 h, with three trials of 8:16, 12:12 and 16:8 light:dark hour regimes for the RIL population, and these plus 10:14 and 14:10 for the experiments with S. viridis alone. The response of S. viridis to light intensity as well as photoperiod was assessed by duplicating photoperiods at two light intensities (300 and 600 μmol.m -2 .s -1 ). In general, day lengths longer than 12 h delayed flowering time, although flowering time was also delayed in shorter day-lengths relative to the 12 h trial, even when daily flux in high intensity conditions exceeded that of the low intensity 12 h trial. Cluster analysis showed that the effect of photoperiod on flowering time differed between sets of RILs, with some being almost photoperiod insensitive and others being delayed with respect to the population as a whole in either short (8 or 12 h light) or long (16 h light) photoperiods. QTL results reveal a similar picture, with several major QTL colocalizing between the 8 and 12 h light trials, but with a partially different set of QTL identified in the 16 h trial. Major candidate genes for these QTL include several members of the PEBP protein family that includes Flowering Locus T (FT) homologs such as OsHd3a, OsRFT1, and ZCN8/12. Thus, Setaria is a short day plant (flowering quickest in short day conditions) whose flowering is delayed by long day lengths in a manner consistent with the responses of most other members of the grass family. However, the QTL results suggest that flowering time under long day conditions uses additional genetic pathways to those used under short day conditions.
Choice between delayed food and immediate oxycodone in rats.
Secci, Maria E; Factor, Julie A; Schindler, Charles W; Panlilio, Leigh V
2016-12-01
The choice to seek immediate drug effects instead of more meaningful but delayed rewards is a defining feature of addiction. To develop a rodent model of this behavior, we allowed rats to choose between immediate intravenous delivery of the prescription opioid oxycodone (50 μg/kg) and delayed delivery of palatable food pellets. Rats preferred food at delays up to 30 s, but they chose oxycodone and food equally at 60-s delay and preferred oxycodone over food at 120-s delay. Comparison of food-drug choice, food-only, and drug-only conditions indicated that food availability decreased drug intake, but drug availability increased food intake. In the food-only condition, food was effective as a reinforcer even when delayed by 120 s. Pre-session feeding with chow slowed acquisition of food and drug self-administration, but did not affect choice. To establish procedures for testing potential anti-addiction medications, noncontingent pre-treatment with oxycodone or naltrexone (analogous to substitution and antagonist therapies, respectively) were tested on a baseline in which oxycodone was preferred over delayed food. Naltrexone pre-treatment decreased drug intake and increased food intake. Oxycodone pre-treatment decreased drug intake, but also produced extended periods with no food or drug responding. These findings show that the contingencies that induce preference for drugs over more meaningful but less immediate rewards in humans can be modeled in rodents, and they suggest that the model could be useful for assessing the therapeutic potential of treatments and exploring the underlying behavioral and neural mechanisms involved in addiction.
Choice between delayed food and immediate oxycodone in rats
Secci, Maria E.; Factor, Julie A.; Schindler, Charles W.; Panlilio, Leigh V.
2016-01-01
Rationale The choice to seek immediate drug effects instead of more meaningful but delayed rewards is a defining feature of addiction. Objectives To develop a rodent model of this behavior, we allowed rats to choose between immediate intravenous delivery of the prescription opioid oxycodone (50 μg/kg) and delayed delivery of palatable food pellets. Results Rats preferred food at delays up to 30 s, but they chose oxycodone and food equally at 60-s delay and preferred oxycodone over food at 120-s delay. Comparison of food-drug choice, food-only, and drug-only conditions indicated that food availability decreased drug intake, but drug availability increased food intake. In the food-only condition, food was effective as a reinforcer even when delayed by 120 s. Pre-session feeding with chow slowed acquisition of food and drug self-administration, but did not affect choice. To establish procedures for testing potential anti-addiction medications, noncontingent pretreatment with oxycodone or naltrexone (analogous to substitution and antagonist therapies, respectively) were tested on a baseline in which oxycodone was preferred over delayed food. Naltrexone pretreatment decreased drug intake and increased food intake. Oxycodone pretreatment decreased drug intake, but also produced extended periods with no food or drug responding. Conclusions These findings show that the contingencies that induce preference for drugs over more meaningful but less immediate rewards in humans can be modeled in rodents, and they suggest that the model could be useful for assessing the therapeutic potential of treatments and exploring the underlying behavioral and neural mechanisms involved in addiction. PMID:27678551
Breaking the Habit: The Peculiar 2016 Eruption of the Unique Recurrent Nova M31N 2008-12a
NASA Astrophysics Data System (ADS)
Henze, M.; Darnley, M. J.; Williams, S. C.; Kato, M.; Hachisu, I.; Anupama, G. C.; Arai, A.; Boyd, D.; Burke, D.; Ciardullo, R.; Chinetti, K.; Cook, L. M.; Cook, M. J.; Erdman, P.; Gao, X.; Harris, B.; Hartmann, D. H.; Hornoch, K.; Horst, J. Chuck; Hounsell, R.; Husar, D.; Itagaki, K.; Kabashima, F.; Kafka, S.; Kaur, A.; Kiyota, S.; Kojiguchi, N.; Kučáková, H.; Kuramoto, K.; Maehara, H.; Mantero, A.; Masci, F. J.; Matsumoto, K.; Naito, H.; Ness, J.-U.; Nishiyama, K.; Oksanen, A.; Osborne, J. P.; Page, K. L.; Paunzen, E.; Pavana, M.; Pickard, R.; Prieto-Arranz, J.; Rodríguez-Gil, P.; Sala, G.; Sano, Y.; Shafter, A. W.; Sugiura, Y.; Tan, H.; Tordai, T.; Vraštil, J.; Wagner, R. M.; Watanabe, F.; Williams, B. F.; Bode, M. F.; Bruno, A.; Buchheim, B.; Crawford, T.; Goff, B.; Hernanz, M.; Igarashi, A. S.; José, J.; Motta, M.; O’Brien, T. J.; Oswalt, T.; Poyner, G.; Ribeiro, V. A. R. M.; Sabo, R.; Shara, M. M.; Shears, J.; Starkey, D.; Starrfield, S.; Woodward, C. E.
2018-04-01
Since its discovery in 2008, the Andromeda galaxy nova M31N 2008-12a has been observed in eruption every single year. This unprecedented frequency indicates an extreme object, with a massive white dwarf and a high accretion rate, which is the most promising candidate for the single-degenerate progenitor of a Type Ia supernova known to date. The previous three eruptions of M31N 2008-12a have displayed remarkably homogeneous multiwavelength properties: (i) from a faint peak, the optical light curve declined rapidly by two magnitudes in less than two days, (ii) early spectra showed initial high velocities that slowed down significantly within days and displayed clear He/N lines throughout, and (iii) the supersoft X-ray source (SSS) phase of the nova began extremely early, six days after eruption, and only lasted for about two weeks. In contrast, the peculiar 2016 eruption was clearly different. Here we report (i) the considerable delay in the 2016 eruption date, (ii) the significantly shorter SSS phase, and (iii) the brighter optical peak magnitude (with a hitherto unobserved cusp shape). Early theoretical models suggest that these three different effects can be consistently understood as caused by a lower quiescence mass accretion rate. The corresponding higher ignition mass caused a brighter peak in the free–free emission model. The less massive accretion disk experienced greater disruption, consequently delaying the re-establishment of effective accretion. Without the early refueling, the SSS phase was shortened. Observing the next few eruptions will determine whether the properties of the 2016 outburst make it a genuine outlier in the evolution of M31N 2008-12a.
Delay-aware adaptive sleep mechanism for green wireless-optical broadband access networks
NASA Astrophysics Data System (ADS)
Wang, Ruyan; Liang, Alei; Wu, Dapeng; Wu, Dalei
2017-07-01
Wireless-Optical Broadband Access Network (WOBAN) is capacity-high, reliable, flexible, and ubiquitous, as it takes full advantage of the merits from both optical communication and wireless communication technologies. Similar to other access networks, the high energy consumption poses a great challenge for building up WOBANs. To shot this problem, we can make some load-light Optical Network Units (ONUs) sleep to reduce the energy consumption. Such operation, however, causes the increased packet delay. Jointly considering the energy consumption and transmission delay, we propose a delay-aware adaptive sleep mechanism. Specifically, we develop a new analytical method to evaluate the transmission delay and queuing delay over the optical part, instead of adopting M/M/1 queuing model. Meanwhile, we also analyze the access delay and queuing delay of the wireless part. Based on such developed delay models, we mathematically derive ONU's optimal sleep time. In addition, we provide numerous simulation results to show the effectiveness of the proposed mechanism.
Kesler, Anat; Leibovich, Gregory; Herman, Talia; Gruendlinger, Leor; Giladi, Nir; Hausdorff, Jeffrey M
2005-08-28
To study the effects of reduced lighting on the gait of older adults with a high level gait disorder (HLGD) and to compare their response to that of healthy elderly controls. 22 patients with a HLGD and 20 age-matched healthy controls were studied under usual lighting conditions (1000 lumens) and in near darkness (5 lumens). Gait speed and gait dynamics were measured under both conditions. Cognitive function, co-morbidities, depressive symptoms, and vision were also evaluated. Under usual lighting conditions, patients walked more slowly, with reduced swing times, and increased stride-to-stride variability, compared to controls. When walking under near darkness conditions, both groups slowed their gait. All other measures of gait were not affected by lighting in the controls. In contrast, patients further reduced their swing times and increased their stride-to-stride variability, both stride time variability and swing time variability. The unique response of the patients was not explained by vision, mental status, co-morbidities, or the values of walking under usual lighting conditions. Walking with reduced lighting does not affect the gait of healthy elderly subjects, except for a reduction in speed. On the other hand, the gait of older adults with a HLGD becomes more variable and unsteady when they walk in near darkness, despite adapting a slow and cautious gait. Further work is needed to identify the causes of the maladaptive response among patients with a HLGD and the potential connection between this behavior and the increased fall risk observed in these patients.
Slow dynamics in translation-invariant quantum lattice models
NASA Astrophysics Data System (ADS)
Michailidis, Alexios A.; Žnidarič, Marko; Medvedyeva, Mariya; Abanin, Dmitry A.; Prosen, Tomaž; Papić, Z.
2018-03-01
Many-body quantum systems typically display fast dynamics and ballistic spreading of information. Here we address the open problem of how slow the dynamics can be after a generic breaking of integrability by local interactions. We develop a method based on degenerate perturbation theory that reveals slow dynamical regimes and delocalization processes in general translation invariant models, along with accurate estimates of their delocalization time scales. Our results shed light on the fundamental questions of the robustness of quantum integrable systems and the possibility of many-body localization without disorder. As an example, we construct a large class of one-dimensional lattice models where, despite the absence of asymptotic localization, the transient dynamics is exceptionally slow, i.e., the dynamics is indistinguishable from that of many-body localized systems for the system sizes and time scales accessible in experiments and numerical simulations.
Parry, B L; Berga, S L; Mostofi, N; Klauber, M R; Resnick, A
1997-02-01
The aim of this study was to replicate and extend previous work in which the authors observed lower, shorter, and advanced nocturnal melatonin secretion patterns in premenstrually depressed patients compared to those in healthy control women. The authors also sought to test the hypothesis that the therapeutic effect of bright light in patients was associated with corrective effects on the phase, duration, and amplitude of melatonin rhythms. In 21 subjects with premenstrual dysphoric disorder (PMDD) and 11 normal control (NC) subjects, the authors measured the circadian profile of melatonin during follicular and luteal menstrual cycle phases and after 1 week of light therapy administered daily, in a randomized crossover design. During three separate luteal phases, the treatments were either (1) bright (> 2,500 lux) white morning (AM; 06:30 to 08:30 h), (2) bright white evening (PM; 19:00 to 21:00 h), or (3) dim (< 10 lux) red evening light (RED). In PMDD subjects, during the luteal phase compared to the follicular menstrual cycle phase, melatonin onset time was delayed, duration was compressed, and area under the curve, amplitude, and mean levels were decreased. In NC subjects, melatonin rhythms did not change significantly during the menstrual cycle. After AM light in PMDD subjects, onset and offset times were advanced and both duration and midpoint concentration were decreased as compared to RED light. After PM light in PMDD subjects, onset and offset times were delayed, midpoint concentration was increased, and duration was decreased as compared to RED light. By contrast, after light therapy in NC subjects, duration did not change; onset, offset, and midpoint concentration changed as they did in PMDD subjects. When the magnitude of advance and delay phase shifts in onset versus offset time with AM, PM, or RED light were compared, the authors found that in PMDD subjects light shifted offset time more than onset time and that AM light had a greater effect on shifting melatonin offset time (measured the following night in RED light), whereas PM light had a greater effect in shifting melatonin onset time. These findings replicate the authors' previous observation that nocturnal melatonin concentrations are decreased in women with PMDD and suggest specific effects of light therapy on melatonin circadian rhythms that are associated with mood changes in patient versus control groups. The differential changes in onset and offset times during the menstrual cycle, and in response to AM and PM bright light compared with RED light, support a two-oscillator (complex) model of melatonin regulation in humans.
The impact of constant light on the estrous cycle of the rat.
Campbell, C S; Schwartz, N B
1980-04-01
The initial effects of constant bright light on the events of the rat estrous cycle were monitored in order to examine the interdependence of the hormonal and behavioral rhythms which comprise the cycle. Females exposed to constant bright light for only one cycle either failed to ovulate or showed a delay in the hormonal and behavioral events of the cycle as well as in ovulation. Females exposed to constant light for two cycles 1) failed to ovulate, 2) showed an advancement, or 3) showed a delay in the hormonal events of the estrous cycle and ovulation. Vaginal cytology and the onset of locomotor activity did not maintain their normal temporal relationships with the other events of the estrous cycle in constant light. In spite of the absence of an external timing signal, the majority of hormonal rhythms maintained their normal phase relationships and showed little sign of internal desynchrony. Ovaries in many animals showed high rates of follicular atresia early in the cycle, suggesting that the effects of bright constant light are far more complex than can be attributed to a simple absence of an external timing signal.
Flexible pulse delay control up to picosecond for high-intensity twin electron bunches
Zhang, Zhen; Ding, Yuantao; Emma, Paul; ...
2015-09-10
Two closely spaced electron bunches have attracted strong interest due to their applications in two color X-ray free-electron lasers as well as witness bunch acceleration in plasmas and dielectric structures. In this paper, we propose a new scheme of delay system to vary the time delay up to several picoseconds while not affecting the bunch compression. Numerical simulations based on the Linac Coherent Light Source are performed to demonstrate the feasibility of this method.
The mensuration of delayed luminescence on ginseng
NASA Astrophysics Data System (ADS)
Xiang, Fenghua; Bai, Hua; Tang, Guoqing
2008-12-01
In this paper, the delayed luminescence of ginseng produced from two different areas was determined with the self built bioluminescence detecting system. And the attenuation curve of bioluminescence of the experimental samples were studied, before and after the samples extracted by 58% alcohol. We primarily gave out the parameters describing emitting characteristic. Using the method of optic induced bioluminescence, we also determined the weak luminescence emitting from the ginseng tuber, and find the intensity and decay time having obvious difference from skin and core, with these data we can distinguish the producing area and feature of the ginseng. In the experiment, the light-induce luminescence of the sample was menstruated, which has been infused by water and 58% alcohol; the difference between two kinds of samples which were infused and not infused has been delivered. In order to investigate the effect of excitation-light spectrum component to delayed luminescence of ginseng, a light filter witch allow a wavelength scope of 225nm~420nm pass through was installed between the light source and sample, keeping other work condition unchanged, the bioluminescence was also determined. For investigating the effect of extracting to emitting, the absorption spectrum of above samples ware studied, and the time-sequence of absorption spectrum was obtained. Based on the data obtained from our experiment, we analyzed the radiation mechanism of ginseng slice and tuber.
Melanopsin Regulates Both Sleep-Promoting and Arousal-Promoting Responses to Light
Tam, Shu K. E.; Hughes, Steven; Jagannath, Aarti; Hankins, Mark W.; Bannerman, David M.; Lightman, Stafford L.; Vyazovskiy, Vladyslav V.; Nolan, Patrick M.; Foster, Russell G.; Peirson, Stuart N.
2016-01-01
Light plays a critical role in the regulation of numerous aspects of physiology and behaviour, including the entrainment of circadian rhythms and the regulation of sleep. These responses involve melanopsin (OPN4)-expressing photosensitive retinal ganglion cells (pRGCs) in addition to rods and cones. Nocturnal light exposure in rodents has been shown to result in rapid sleep induction, in which melanopsin plays a key role. However, studies have also shown that light exposure can result in elevated corticosterone, a response that is not compatible with sleep. To investigate these contradictory findings and to dissect the relative contribution of pRGCs and rods/cones, we assessed the effects of light of different wavelengths on behaviourally defined sleep. Here, we show that blue light (470 nm) causes behavioural arousal, elevating corticosterone and delaying sleep onset. By contrast, green light (530 nm) produces rapid sleep induction. Compared to wildtype mice, these responses are altered in melanopsin-deficient mice (Opn4-/-), resulting in enhanced sleep in response to blue light but delayed sleep induction in response to green or white light. We go on to show that blue light evokes higher Fos induction in the SCN compared to the sleep-promoting ventrolateral preoptic area (VLPO), whereas green light produced greater responses in the VLPO. Collectively, our data demonstrates that nocturnal light exposure can have either an arousal- or sleep-promoting effect, and that these responses are melanopsin-mediated via different neural pathways with different spectral sensitivities. These findings raise important questions relating to how artificial light may alter behaviour in both the work and domestic setting. PMID:27276063
Melanopsin Regulates Both Sleep-Promoting and Arousal-Promoting Responses to Light.
Pilorz, Violetta; Tam, Shu K E; Hughes, Steven; Pothecary, Carina A; Jagannath, Aarti; Hankins, Mark W; Bannerman, David M; Lightman, Stafford L; Vyazovskiy, Vladyslav V; Nolan, Patrick M; Foster, Russell G; Peirson, Stuart N
2016-06-01
Light plays a critical role in the regulation of numerous aspects of physiology and behaviour, including the entrainment of circadian rhythms and the regulation of sleep. These responses involve melanopsin (OPN4)-expressing photosensitive retinal ganglion cells (pRGCs) in addition to rods and cones. Nocturnal light exposure in rodents has been shown to result in rapid sleep induction, in which melanopsin plays a key role. However, studies have also shown that light exposure can result in elevated corticosterone, a response that is not compatible with sleep. To investigate these contradictory findings and to dissect the relative contribution of pRGCs and rods/cones, we assessed the effects of light of different wavelengths on behaviourally defined sleep. Here, we show that blue light (470 nm) causes behavioural arousal, elevating corticosterone and delaying sleep onset. By contrast, green light (530 nm) produces rapid sleep induction. Compared to wildtype mice, these responses are altered in melanopsin-deficient mice (Opn4-/-), resulting in enhanced sleep in response to blue light but delayed sleep induction in response to green or white light. We go on to show that blue light evokes higher Fos induction in the SCN compared to the sleep-promoting ventrolateral preoptic area (VLPO), whereas green light produced greater responses in the VLPO. Collectively, our data demonstrates that nocturnal light exposure can have either an arousal- or sleep-promoting effect, and that these responses are melanopsin-mediated via different neural pathways with different spectral sensitivities. These findings raise important questions relating to how artificial light may alter behaviour in both the work and domestic setting.
Figueiro, Mariana G; Plitnick, Barbara; Rea, Mark S
2014-01-01
Circadian rhythm disturbances parallel the increased prevalence of sleep disorders in older adults. Light therapies that specifically target regulation of the circadian system in principle could be used to treat sleep disorders in this population. Current recommendations for light treatment require the patients to sit in front of a bright light box for at least 1 hour daily, perhaps limiting their willingness to comply. Light applied through closed eyelids during sleep might not only be efficacious for changing circadian phase but also lead to better compliance because patients would receive light treatment while sleeping. Reported here are the results of two studies investigating the impact of a train of 480 nm (blue) light pulses presented to the retina through closed eyelids on melatonin suppression (laboratory study) and on delaying circadian phase (field study). Both studies employed a sleep mask that provided narrowband blue light pulses of 2-second duration every 30 seconds from arrays of light-emitting diodes. The results of the laboratory study demonstrated that the blue light pulses significantly suppressed melatonin by an amount similar to that previously shown in the same protocol at half the frequency (ie, one 2-second pulse every minute for 1 hour). The results of the field study demonstrated that blue light pulses given early in the sleep episode significantly delayed circadian phase in older adults; these results are the first to demonstrate the efficacy and practicality of light treatment by a sleep mask aimed at adjusting circadian phase in a home setting.
The Development of Visible-Light Photoredox Catalysis in Flow.
Garlets, Zachary J; Nguyen, John D; Stephenson, Corey R J
2014-04-01
Visible-light photoredox catalysis has recently emerged as a viable alternative for radical reactions otherwise carried out with tin and boron reagents. It has been recognized that by merging photoredox catalysis with flow chemistry, slow reaction times, lower yields, and safety concerns may be obviated. While flow reactors have been successfully applied to reactions carried out with UV light, only recent developments have demonstrated the same potential of flow reactors for the improvement of visible-light-mediated reactions. This review examines the initial and continuing development of visible-light-mediated photoredox flow chemistry by exemplifying the benefits of flow chemistry compared with conventional batch techniques.
The Development of Visible-Light Photoredox Catalysis in Flow
Garlets, Zachary J.; Nguyen, John D.
2014-01-01
Visible-light photoredox catalysis has recently emerged as a viable alternative for radical reactions otherwise carried out with tin and boron reagents. It has been recognized that by merging photoredox catalysis with flow chemistry, slow reaction times, lower yields, and safety concerns may be obviated. While flow reactors have been successfully applied to reactions carried out with UV light, only recent developments have demonstrated the same potential of flow reactors for the improvement of visible-light-mediated reactions. This review examines the initial and continuing development of visible-light-mediated photoredox flow chemistry by exemplifying the benefits of flow chemistry compared with conventional batch techniques. PMID:25484447
History of Hubble Space Telescope (HST)
1969-01-01
This image of the Egg Nebula, also known as CRL-2688 and located roughly 3,000 light-years from us, was taken in red light with the Wide Field Planetary Camera 2 (WF/PC2) aboard the Hubble Space Telescope (HST). The image shows a pair of mysterious searchlight beams emerging from a hidden star, crisscrossed by numerous bright arcs. This image sheds new light on the poorly understood ejection of stellar matter that accompanies the slow death of Sun-like stars. The image is shown in false color.
Zamolodchikov, Daria
2012-01-01
Alzheimer disease is characterized by the presence of increased levels of the β-amyloid peptide (Aβ) in the brain parenchyma and cerebral blood vessels. This accumulated Aβ can bind to fibrin(ogen) and render fibrin clots more resistant to degradation. Here, we demonstrate that Aβ42 specifically binds to fibrin and induces a tighter fibrin network characterized by thinner fibers and increased resistance to lysis. However, Aβ42-induced structural changes cannot be the sole mechanism of delayed lysis because Aβ overlaid on normal preformed clots also binds to fibrin and delays lysis without altering clot structure. In this regard, we show that Aβ interferes with the binding of plasminogen to fibrin, which could impair plasmin generation and fibrin degradation. Indeed, plasmin generation by tissue plasminogen activator (tPA), but not streptokinase, is slowed in fibrin clots containing Aβ42, and clot lysis by plasmin, but not trypsin, is delayed. Notably, plasmin and tPA activities, as well as tPA-dependent generation of plasmin in solution, are not decreased in the presence of Aβ42. Our results indicate the existence of 2 mechanisms of Aβ42 involvement in delayed fibrinolysis: (1) through the induction of a tighter fibrin network composed of thinner fibers, and (2) through inhibition of plasmin(ogen)–fibrin binding. PMID:22238323
NASA Astrophysics Data System (ADS)
Yu, Yue; Zhang, Zhengdi; Han, Xiujing
2018-03-01
In this work, we aim to demonstrate the novel routes to periodic and chaotic bursting, i.e., the different bursting dynamics via delayed pitchfork bifurcations around stable attractors, in the classical controlled Lü system. First, by computing the corresponding characteristic polynomial, we determine where some critical values about bifurcation behaviors appear in the Lü system. Moreover, the transition mechanism among different stable attractors has been introduced including homoclinic-type connections or chaotic attractors. Secondly, taking advantage of the above analytical results, we carry out a study of the mechanism for bursting dynamics in the Lü system with slowly periodic variation of certain control parameter. A distinct delayed supercritical pitchfork bifurcation behavior can be discussed when the control item passes through bifurcation points periodically. This delayed dynamical behavior may terminate at different parameter areas, which leads to different spiking modes around different stable attractors (equilibriums, limit cycles, or chaotic attractors). In particular, the chaotic attractor may appear by Shilnikov connections or chaos boundary crisis, which leads to the occurrence of impressive chaotic bursting oscillations. Our findings enrich the study of bursting dynamics and deepen the understanding of some similar sorts of delayed bursting phenomena. Finally, some numerical simulations are included to illustrate the validity of our study.
RUSSO, JOHN M.; FLORIAN, PETER; SHEN, LE; GRAHAM, W. VALLEN; TRETIAKOVA, MARIA S.; GITTER, ALFRED H.; MRSNY, RANDALL J.; TURNER, JERROLD R.
2005-01-01
Background & Aims Small epithelial wounds heal by purse-string contraction of an actomyosin ring that is regulated by myosin light chain (MLC) kinase (MLCK) and rho kinase (ROCK). These studies aimed to define the roles of these kinases in purse-string wound closure. Methods Oligocellular and single-cell wounds were created in intestinal epithelial monolayers. Fluorescence imaging and electrophysiologic data were collected during wound closure. Human biopsies were studied immunohistochemically. Results Live-cell imaging of enhanced green fluorescent protein-β-actin defined rapid actin ring assembly within 2 minutes after wounding. This progressed to a circumferential ring within 8 minutes that subsequently contracted and closed the wound. We therefore divided this process into 2 phases: ring assembly and wound contraction. Activated rho and ROCK localized to the wound edge during ring assembly. Consistent with a primary role in the assembly phase, ROCK inhibition prevented actin ring assembly and wound closure. ROCK inhibition after ring assembly was complete had no effect. Recruitment and activation of MLCK occurred after ring assembly was complete and coincided with ring contraction. MLCK inhibition slowed and then stopped contraction but did not prevent ring assembly. MLCK inhibition also delayed barrier function recovery. Studies of human colonic biopsy specimens suggest that purse-string wound closure also occurs in vivo, because MLC phosphorylation was enhanced surrounding oligocellular wounds. Conclusions These results suggest complementary roles for these kinases in purse-string closure of experimental and in vivo oligocellular epithelial wounds; rho and ROCK are critical for actin ring assembly, while the activity of MLCK drives contraction. PMID:15825080
Time-resolved spectral investigations of laser light induced microplasma
NASA Astrophysics Data System (ADS)
Nánai, L.; Hevesi, I.
1992-01-01
The dynamical and spectral properties of an optical breakdown microplasma created by pulses of different lasers on surfaces of insulators (KCI), metals (Cu) and semiconductors (V 2O 5), have been investigated. Experiments were carried out in air and vacuum using different wavelengths (λ = 0.694μm, type OGM-20,λ = 1.06μm with a home-made laser based on neodymium glass crystal, and λ = 10.6μm, similarly home-made) and pulse durations (Q-switched and free-running regimes). To follow the integral, dynamical and spectral characteristics of the luminous spot of microplasma we have used fast cameras (SFR-2M, IMACON-HADLAND), a high speed spectral camera (AGAT-2) and a spectrograph (STE-1). It has been shown that the microplasma consists of two parts: fast front (peak) with τ≈100 ns and slow front (tail) with τ≈1μs durations. The detonation front speed is of the order of ≈10 5 cm s -1 and follows the temporal dependence of to t0.4. It depends on the composition of the surrounding gas and its pressure and could be connected with quick evaporation of the material investigated (peak) and optical breakdown of the ambient gaseous atmosphere (tail). From the delay in appearance of different characteristic spectral lines of the target material and its gaseous surrounding we have shown that the evolution of the microplasma involves evaporation and ionization of the atoms of the parent material followed by optical breakdown due to the incident and absorbed laser light, together with microplasma expansion.
Griefahn, Barbara; Künemund, Christa; Blaszkewicz, Meinolf; Lerchl, Alexander; Degen, Gisela H
2002-10-01
Electromagnetic spectra reduce melatonin production and delay the nadirs of rectal temperature and heart rate. Seven healthy men (16-22 yrs) completed 4 permuted sessions. The control session consisted of a 24-hours bedrest at < 30 lux, 18 degrees C, and < 50 dBA. In the experimental sessions, either light (1500 lux), magnetic field (16.7 Hz, 0.2 mT), or infrared radiation (65 degrees C) was applied from 5 pm to 1 am. Salivary melatonin level was determined hourly, rectal temperature and heart rate were continuously recorded. Melatonin synthesis was completely suppressed by light but resumed thereafter. The nadirs of rectal temperature and heart rate were delayed. The magnetic field had no effect. Infrared radiation elevated rectal temperature and heart rate. Only bright light affected the circadian rhythms of melatonin synthesis, rectal temperature, and heart rate, however, differently thus causing a dissociation, which might enhance the adverse effects of shiftwork in the long run.
How does speaking another language reduce the risk of dementia?
Fischer, Corinne E; Schweizer, Tom A
2014-05-01
Recently the question of whether or not bilingualism may protect against the development of Alzheimer's disease (AD) has become a topic of great interest. Previous studies suggest that being bilingual slows the decline in executive control associated with the aging process. Spurred by these positive findings in normal subjects, investigators have tried to determine if being bilingual may be associated with delayed onset of AD. A number of studies collectively suggest that being bilingual may lead to a delay in the diagnosis of AD by as much as 5 years, even when taking into account confounders. Although a recent landmark study provides physical evidence confirming this advantage in AD patients, further work needs to be done to clarify its' neuroanatomical basis.
NASA Astrophysics Data System (ADS)
Vermeeren, L.; Wéber, M.
2003-06-01
A set of ten Self-Powered Neutron Detectors with Co, Rh and Ag emitters has been irradiated in several channels of the BR2 research reactor at SCK•CEN aiming at a comparison of their performance as thermal neutron flux detectors under various conditions. To allow for a correct interpretation of their signals, all detector sensitivity contributions (prompt and delayed) were calculated using a dedicated Monte Carlo model. The various contributions were also measured separately; the agreement between calculated and experimental data, including data from activation dosimetry, was excellent. Detailed neutron flux profiles were obtained from the SPND data, after correction for the finite detector lengths and for the slow response of delayed SPNDs.
Espresso coffee foam delays cooling of the liquid phase.
Arii, Yasuhiro; Nishizawa, Kaho
2017-04-01
Espresso coffee foam, called crema, is known to be a marker of the quality of espresso coffee extraction. However, the role of foam in coffee temperature has not been quantitatively clarified. In this study, we used an automatic machine for espresso coffee extraction. We evaluated whether the foam prepared using the machine was suitable for foam analysis. After extraction, the percentage and consistency of the foam were measured using various techniques, and changes in the foam volume were tracked over time. Our extraction method, therefore, allowed consistent preparation of high-quality foam. We also quantitatively determined that the foam phase slowed cooling of the liquid phase after extraction. High-quality foam plays an important role in delaying the cooling of espresso coffee.
Peru action simmering despite privatization delays
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-08-07
After months of delays, the sale of Petroleos del Peru SA (Petroperu) was postponed earlier this year until after the elections, which saw Peru`s incumbent President Alberto Fujimori reelected. In June, Fujimori appointed Amado Yataco Minister of Energy and Mines. Yataco, also serving as president of the privatization commission Copri, said a decision on the sale of Petroperu would be made quickly, perhaps by July 28, ahead of this report`s presstime. The uncertain status of Petroperu has not, however, slowed activity in Peru`s petroleum sector. The paper first discusses privatization plans and Petroperu`s budget, then describes exploration and development activitiesmore » in the supergiant Camisea gas/condensate fields in the central southern jungle. Activities in several smaller fields are briefly described.« less
Home dim light melatonin onsets with measures of compliance in delayed sleep phase disorder.
Burgess, Helen J; Park, Margaret; Wyatt, James K; Fogg, Louis F
2016-06-01
The dim light melatonin onset (DLMO) assists with the diagnosis and treatment of circadian rhythm sleep disorders. Home DLMOs are attractive for cost savings and convenience, but can be confounded by home lighting and sample timing errors. We developed a home saliva collection kit with objective measures of light exposure and sample timing. We report on our first test of the kit in a clinical population. Thirty-two participants with delayed sleep phase disorder (DSPD; 17 women, aged 18-52 years) participated in two back-to-back home and laboratory phase assessments. Most participants (66%) received at least one 30-s epoch of light >50 lux during the home phase assessments, but for only 1.5% of the time. Most participants (56%) collected every saliva sample within 5 min of the scheduled time. Eighty-three per cent of home DLMOs were not affected by light or sampling errors. The home DLMOs occurred, on average, 10.2 min before the laboratory DLMOs, and were correlated highly with the laboratory DLMOs (r = 0.93, P < 0.001). These results indicate that home saliva sampling with objective measures of light exposure and sample timing, can assist in identifying accurate home DLMOs. © 2016 European Sleep Research Society.
Multigranular integrated services optical network
NASA Astrophysics Data System (ADS)
Yu, Oliver; Yin, Leping; Xu, Huan; Liao, Ming
2006-12-01
Based on all-optical switches without requiring fiber delay lines and optical-electrical-optical interfaces, the multigranular optical switching (MGOS) network integrates three transport services via unified core control to efficiently support bursty and stream traffic of subwavelength to multiwavelength bandwidth. Adaptive robust optical burst switching (AR-OBS) aggregates subwavelength burst traffic into asynchronous light-rate bursts, transported via slotted-time light paths established by fast two-way reservation with robust blocking recovery control. Multiwavelength optical switching (MW-OS) decomposes multiwavelength stream traffic into a group of timing-related light-rate streams, transported via a light-path group to meet end-to-end delay-variation requirements. Optical circuit switching (OCS) simply converts wavelength stream traffic from an electrical-rate into a light-rate stream. The MGOS network employs decoupled routing, wavelength, and time-slot assignment (RWTA) and novel group routing and wavelength assignment (GRWA) to select slotted-time light paths and light-path groups, respectively. The selected resources are reserved by the unified multigranular robust fast optical reservation protocol (MG-RFORP). Simulation results show that elastic traffic is efficiently supported via AR-OBS in terms of loss rate and wavelength utilization, while connection-oriented wavelength traffic is efficiently supported via wavelength-routed OCS in terms of connection blocking and wavelength utilization. The GRWA-tuning result for MW-OS is also shown.
NASA Astrophysics Data System (ADS)
Graur, Or; Zurek, David R.; Rest, Armin; Seitenzahl, Ivo R.; Shappee, Benjamin J.; Fisher, Robert; Guillochon, James; Shara, Michael M.; Riess, Adam G.
2018-06-01
The late-time light curves of Type Ia supernovae (SNe Ia), observed >900 days after explosion, present the possibility of a new diagnostic for SN Ia progenitor and explosion models. First, however, we must discover what physical process (or processes) leads to the slow-down of the light curve relative to a pure 56Co decay, as observed in SNe 2011fe, 2012cg, and 2014J. We present Hubble Space Telescope observations of SN 2015F, taken ≈600–1040 days past maximum light. Unlike those of the three other SNe Ia, the light curve of SN 2015F remains consistent with being powered solely by the radioactive decay of 56Co. We fit the light curves of these four SNe Ia in a consistent manner and measure possible correlations between the light-curve stretch—a proxy for the intrinsic luminosity of the SN—and the parameters of the physical model used in the fit. We propose a new, late-time Phillips-like correlation between the stretch of the SNe and the shape of their late-time light curves, which we parameterize as the difference between their pseudo-bolometric luminosities at 600 and 900 days: ΔL 900 = log(L 600/L 900). Our analysis is based on only four SNe, so a larger sample is required to test the validity of this correlation. If true, this model-independent correlation provides a new way to test which physical process lies behind the slow-down of SN Ia light curves >900 days after explosion, and, ultimately, fresh constraints on the various SN Ia progenitor and explosion models.
NASA Astrophysics Data System (ADS)
Starkey, David; Agn Storm Team
2015-01-01
Reverberation mapping is a proven method for obtaining black hole mass estimates and constraining the size of the BLR. We analyze multi-wavelength continuum light curves from the 7 month AGN STORM monitoring of NGC 5548 and use reverberation mapping to model the accretion disk time delays. The model fits the light curves at UV to IR wavelengths assuming reprocessing on a flat, steady-state blackbody accretion disk. We calculate the inclination-dependent transfer function and investigate to what extent our model can determine the disk inclination, black hole MMdot and power law index of the disc temperature-radius relation.
Setting the main circadian clock of a diurnal mammal by hypocaloric feeding
Mendoza, Jorge; Gourmelen, Sylviane; Dumont, Stephanie; Sage-Ciocca, Dominique; Pévet, Paul; Challet, Etienne
2012-01-01
Caloric restriction attenuates the onset of a number of pathologies related to ageing. In mammals, circadian rhythms, controlled by the hypothalamic suprachiasmatic (SCN) clock, are altered with ageing. Although light is the main synchronizer for the clock, a daily hypocaloric feeding (HF) may also modulate the SCN activity in nocturnal rodents. Here we report that a HF also affects behavioural, physiological and molecular circadian rhythms of the diurnal rodent Arvicanthis ansorgei. Under constant darkness HF, but not normocaloric feeding (NF), entrains circadian behaviour. Under a light–dark cycle, HF at midnight led to phase delays of the rhythms of locomotor activity and plasma corticosterone. Furthermore, Per2 and vasopressin gene oscillations in the SCN were phase delayed in HF Arvicanthis compared with animals fed ad libitum. Moreover, light-induced expression of Per genes in the SCN was modified in HF Arvicanthis, despite a non-significant effect on light-induced behavioural phase delays. Together, our data show that HF affects the circadian system of the diurnal rodent Arvicanthis ansorgei differentially from nocturnal rodents. The Arvicanthis model has relevance for the potential use of HF to manipulate circadian rhythms in diurnal species including humans. PMID:22570380
Visible-blind ultraviolet photodiode fabricated by UV oxidation of metallic zinc on p-Si
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Dongyuan; Uchida, Kazuo; Nozaki, Shinji, E-mail: nozaki@ee.uec.ac.jp
A UV photodiode fabricated by the UV oxidation of a metallic zinc thin film on p-Si has manifested unique photoresponse characteristics. The electron concentration found by the Hall measurement was 3 × 10{sup 16 }cm{sup −3}, and such a low electron concentration resulted in a low visible photoluminescence. UV illumination enhances the oxidation at low temperatures and decreases the concentration of the oxygen vacancies. The I-V characteristic showed a good rectification with a four-order magnitude difference in the forward and reverse currents at 2 V, and its linear and frequency independent C{sup −2}–V characteristic confirmed an abrupt pn junction. The photoresponse showed a visiblemore » blindness with a responsivity ratio of UV and visible light as high as 100. Such a visible-blind photoresponse was attributed to the optimum thickness of the SiO{sub 2} formed on the Si surface during the UV oxidation at 400 °C. A lower potential barrier to holes at the ZnO/SiO{sub 2} interface facilitates Fowler-Nordheim tunneling of the photo-generated holes during the UV illumination, while a higher potential barrier to electrons efficiently blocks transport of the photo-generated electrons to the ZnO during the visible light illumination. The presence of oxide resulted in a slow photoresponse to the turn-on and off of the UV light. A detailed analysis is presented to understand how the photo-generated carriers contribute step by step to the photocurrent. In addition to the slow photoresponse associated with the SiO{sub 2} interfacial layer, the decay of the photocurrent was found extremely slow after turn-off of the UV light. Such a slow decay of the photocurrent is referred to as a persistent photoconductivity, which is caused by metastable deep levels. It is hypothesized that Zn vacancies form such a deep level, and that the photo-generated electrons need to overcome a thermal-energy barrier for capture. The ZnO film by the UV oxidation at 400 °C was found to be rich in oxygen and deficient in zinc.« less
NASA Astrophysics Data System (ADS)
Sami, Mahmoud; Hassoup, Awad; Hosny, Ahmed; Mohamed, Gadelkarem A.
2013-12-01
The temporal variations of seismicity from the Abu Dabbab area, 25 km west of the Red Sea coast, are collected from the Egyptian national seismic network (ENSN), which has magnified the detection capability in that area to ML < 1 earthquakes. These data show a sequence of the micro earthquake swarm during 2003-2011. This area has experienced larger shocks up to M = 6 during the 20th century and its seismicity is concentrated in a narrow spatial volume. We analyze the digital waveform data of about 1000 seismograms, recorded by portable network of 10 vertical component seismographs that are employed in a temporary survey experiment in the Abu Dabbab area in 2004, and the results indicate: firstly, there are similar waveform seismograms, which are classified into three groups. In each group a master event is identified. Then, the arrival time delays of the P and S phases (Δtp and Δts, respectively) are measured between the master event and its slave events. Δtp and Δts range between -0.01 and 0.02 s, respectively. These values are used to relocate the studied events. Secondly, the slowness vector (Δs) in 3-dimensional pattern, which is estimated using the genetic algorithms, is found Δsx = 0.0153, Δsy = 0.00093 and Δsz = 0.2086 s/km in the three spatial coordinates (X, Y and Z), respectively. These analyses demonstrate the inhomogeneities within the upper crust of the study area. Also, Δs shows little dependence of lateral distances and reasonably high slowness along the depth extent, which is consistent with the seismic velocity structure variations.
2016-01-01
Kenya currently does not produce any hydrocarbons, although the country has the potential to become an oil producer most likely after 2020. Over the past few years, several commercial oil discoveries have been made in Kenya, but the country faces obstacles that have caused production delays. Negotiations over a joint export pipeline route with its neighbor Uganda is in flux, while sustained low oil prices have slowed down exploration drilling activity in Kenya.
ERIC Educational Resources Information Center
Kucker, Sarah C.; Samuelson, Larissa K.
2012-01-01
Recent research demonstrated that although 24-month-old infants do well on the initial pairing of a novel word and novel object in fast-mapping tasks, they are unable to retain the mapping after a 5 min delay. The current study examines the role of familiarity with the objects and words on infants' ability to bridge between the initial fast…