Sample records for slow light waveguide

  1. Slow-light enhanced subwavelength plasmonic waveguide refractive index sensors.

    PubMed

    Huang, Yin; Min, Changjun; Dastmalchi, Pouya; Veronis, Georgios

    2015-06-01

    We introduce slow-light enhanced subwavelength scale refractive index sensors which consist of a plasmonic metal-dielectric-metal (MDM) waveguide based slow-light system sandwiched between two conventional MDM waveguides. We first consider a MDM waveguide with small width structrue for comparison, and then consider two MDM waveguide based slow light systems: a MDM waveguide side-coupled to arrays of stub resonators system and a MDM waveguide side-coupled to arrays of double-stub resonators system. We find that, as the group velocity decreases, the sensitivity of the effective index of the waveguide mode to variations of the refractive index of the fluid filling the sensors as well as the sensitivities of the reflection and transmission coefficients of the waveguide mode increase. The sensing characteristics of the slow-light waveguide based sensor structures are systematically analyzed. We show that the slow-light enhanced sensors lead to not only 3.9 and 3.5 times enhancements in the refractive index sensitivity, and therefore in the minimum detectable refractive index change, but also to 2 and 3 times reductions in the required sensing length, respectively, compared to a sensor using a MDM waveguide with small width structure.

  2. Plasmonic slow light waveguide with hyperbolic metamaterials claddings

    NASA Astrophysics Data System (ADS)

    Liang, Shuhai; Jiang, Chuhao; Yang, Zhiqiang; Li, Dacheng; Zhang, Wending; Mei, Ting; Zhang, Dawei

    2018-06-01

    Plasmonic waveguides with an insulator core sandwiched between hyperbolic metamaterials (HMMs) claddings, i.e. HIH waveguide, are investigated for achieving wide slow-light band with adjustable working wavelength. The transfer matrix method and the finite-difference-time-domain simulation are employed to study waveguide dispersion characteristics and pulse propagation. By selecting proper silver filling ratios for HMMs, the hetero-HIH waveguide presents a slow-light band with a zero group velocity dispersion wavelength of 1.55 μm and is capable of buffering pulses with pulse width as short as ∼20 fs. This type of waveguides might be applicable for ultrafast slow-light application.

  3. High-performance slow light photonic crystal waveguides with topology optimized or circular-hole based material layouts

    NASA Astrophysics Data System (ADS)

    Wang, Fengwen; Jensen, Jakob S.; Sigmund, Ole

    2012-10-01

    Photonic crystal waveguides are optimized for modal confinement and loss related to slow light with high group index. A detailed comparison between optimized circular-hole based waveguides and optimized waveguides with free topology is performed. Design robustness with respect to manufacturing imperfections is enforced by considering different design realizations generated from under-, standard- and over-etching processes in the optimization procedure. A constraint ensures a certain modal confinement, and loss related to slow light with high group index is indirectly treated by penalizing field energy located in air regions. It is demonstrated that slow light with a group index up to ng = 278 can be achieved by topology optimized waveguides with promising modal confinement and restricted group-velocity-dispersion. All the topology optimized waveguides achieve a normalized group-index bandwidth of 0.48 or above. The comparisons between circular-hole based designs and topology optimized designs illustrate that the former can be efficient for dispersion engineering but that larger improvements are possible if irregular geometries are allowed.

  4. Direct slow-light excitation in photonic crystal waveguides forming ultra-compact splitters.

    PubMed

    Zhang, Min; Groothoff, Nathaniel; Krüger, Asger Christian; Shi, Peixing; Kristensen, Martin

    2011-04-11

    Based on a series of 1x2 beam splitters, novel direct excitation of slow-light from input- to output-region in photonic crystal waveguides is investigated theoretically and experimentally. The study shows that the slow-light excitation provides over 50 nm bandwidth for TE-polarized light splitting between two output ports, and co-exists together with self-imaging leading to ~20 nm extra bandwidth. The intensity of the direct excitation is qualitatively explained by the overlap integral of the magnetic fields between the ground input- and excited output-modes. The direct excitation of slow light is practically lossless compared with transmission in a W1 photonic crystal waveguides, which broadens the application-field for slow-light and further minimizes the size of a 1x2 splitter. © 2011 Optical Society of America

  5. Slowing down light using a dendritic cell cluster metasurface waveguide

    PubMed Central

    Fang, Z. H.; Chen, H.; Yang, F. S.; Luo, C. R.; Zhao, X. P.

    2016-01-01

    Slowing down or even stopping light is the first task to realising optical information transmission and storage. Theoretical studies have revealed that metamaterials can slow down or even stop light; however, the difficulty of preparing metamaterials that operate in visible light hinders progress in the research of slowing or stopping light. Metasurfaces provide a new opportunity to make progress in such research. In this paper, we propose a dendritic cell cluster metasurface consisting of dendritic structures. The simulation results show that dendritic structure can realise abnormal reflection and refraction effects. Single- and double-layer dendritic metasurfaces that respond in visible light were prepared by electrochemical deposition. Abnormal Goos-Hänchen (GH) shifts were experimentally obtained. The rainbow trapping effect was observed in a waveguide constructed using the dendritic metasurface sample. The incident white light was separated into seven colours ranging from blue to red light. The measured transmission energy in the waveguide showed that the energy escaping from the waveguide was zero at the resonant frequency of the sample under a certain amount of incident light. The proposed metasurface has a simple preparation process, functions in visible light, and can be readily extended to the infrared band and communication wavelengths. PMID:27886279

  6. Tunable slow light in graphene-based hyperbolic metamaterial waveguide operating in SCLU telecom bands.

    PubMed

    Tyszka-Zawadzka, Anna; Janaszek, Bartosz; Szczepański, Paweł

    2017-04-03

    The tunability of slow light in graphene-based hyperbolic metamaterial waveguide operating in SCLU telecom bands is investigated. For the first time it has been shown that proper design of a GHMM structure forming waveguide layer and the geometry of the waveguide itself allows stopped light to be obtained in an almost freely selected range of wavelengths within SCLU bands. In particular, the possibility of controlling light propagation in GHMM waveguides by external biasing has been presented. The change of external electric field enables the stop light of the selected wavelength as well as the control of a number of modes, which can be stopped, cut off or supported. Proposed GHMM waveguides could offer great opportunities in the field of integrated photonics that are compatible with CMOS technology, especially since such structures can be utilized as photonic memory cells, tunable optical buffers, delays, optical modulators etc.

  7. Broad self-trapped and slow light bands based on negative refraction and interference of magnetic coupled modes.

    PubMed

    Fang, Yun-Tuan; Ni, Zhi-Yao; Zhu, Na; Zhou, Jun

    2016-01-13

    We propose a new mechanism to achieve light localization and slow light. Through the study on the coupling of two magnetic surface modes, we find a special convex band that takes on a negative refraction effect. The negative refraction results in an energy flow concellation effect from two degenerated modes on the convex band. The energy flow concellation effect leads to forming of the self-trapped and slow light bands. In the self-trapped band light is localized around the source without reflection wall in the waveguide direction, whereas in the slow light band, light becomes the standing-waves and moving standing-waves at the center and the two sides of the waveguide, respectively.

  8. Slow light enhanced optical nonlinearity in a silicon photonic crystal coupled-resonator optical waveguide.

    PubMed

    Matsuda, Nobuyuki; Kato, Takumi; Harada, Ken-Ichi; Takesue, Hiroki; Kuramochi, Eiichi; Taniyama, Hideaki; Notomi, Masaya

    2011-10-10

    We demonstrate highly enhanced optical nonlinearity in a coupled-resonator optical waveguide (CROW) in a four-wave mixing experiment. Using a CROW consisting of 200 coupled resonators based on width-modulated photonic crystal nanocavities in a line defect, we obtained an effective nonlinear constant exceeding 10,000 /W/m, thanks to slow light propagation combined with a strong spatial confinement of light achieved by the wavelength-sized cavities.

  9. Controlling slow and fast light and dynamic pulse-splitting with tunable optical gain in a whispering-gallery-mode microcavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asano, M.; Ikuta, R.; Imoto, N.

    We report controllable manipulation of slow and fast light in a whispering-gallery-mode microtoroid resonator fabricated from Erbium (Er{sup 3+}) doped silica. We observe continuous transition of the coupling between the fiber-taper waveguide and the microresonator from undercoupling to critical coupling and then to overcoupling regimes by increasing the pump power even though the spatial distance between the resonator and the waveguide was kept fixed. This, in turn, enables switching from fast to slow light and vice versa just by increasing the optical gain. An enhancement of delay of two-fold over the passive silica resonator (no optical gain) was observed inmore » the slow light regime. Moreover, we show dynamic pulse splitting and its control in slow/fast light systems using optical gain.« less

  10. Slow-light transmission with high group index and large normalized delay bandwidth product through successive defect rods on intrinsic photonic crystal waveguide

    NASA Astrophysics Data System (ADS)

    Elshahat, Sayed; Khan, Karim; Yadav, Ashish; Bibbò, Luigi; Ouyang, Zhengbiao

    2018-07-01

    We proposed a strategy with successive cavities as energy reservoirs of electromagnetic energy and light-speed reducers introduced in the first and second rows of rods on the walls of an intrinsic photonic crystal waveguide (PCW) for slow-light transmission in the PCW concerning applications for optical communication, optical computation and optical signal processing. Subsequently, plane-wave expansion method (PWE) is used for studying slow-light properties and finite-difference time-domain (FDTD) method to demonstrate the slow-light propagating property of our proposed structure. We obtained group index as exceedingly large as 6123 with normalized delay bandwidth product (NDBP) as high as 0.48. We designed a facile but more generalized structure that may provide a vital theoretical basis for further enhancing the storage capacity properties of slow light with wideband and high NDBP.

  11. Enhanced photoresponsivity in graphene-silicon slow-light photonic crystal waveguides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Hao, E-mail: zhoufirst@scu.edu.cn, E-mail: tg2342@columbia.edu, E-mail: cheewei.wong@ucla.edu; Optical Nanostructures Laboratory, Columbia University, New York, New York 10027; Gu, Tingyi, E-mail: zhoufirst@scu.edu.cn, E-mail: tg2342@columbia.edu, E-mail: cheewei.wong@ucla.edu

    2016-03-14

    We demonstrate the enhanced fast photoresponsivity in graphene hybrid structures by combining the ultrafast dynamics of graphene with improved light-matter interactions in slow-light photonic crystal waveguides. With a 200 μm interaction length, a 0.8 mA/W photoresponsivity is achieved in a graphene-silicon Schottky-like photodetector, with an operating bandwidth in excess of 5 GHz and wavelength range at least from 1480 nm to 1580 nm. Fourfold enhancement of the photocurrent is observed in the slow light region, compared to the wavelength far from the photonic crystal bandedge, for a chip-scale broadband fast photodetector.

  12. Slow waves in microchannel metal waveguides and application to particle acceleration

    NASA Astrophysics Data System (ADS)

    Steinhauer, L. C.; Kimura, W. D.

    2003-06-01

    Conventional metal-wall waveguides support waveguide modes with phase velocities exceeding the speed of light. However, for infrared frequencies and guide dimensions of a fraction of a millimeter, one of the waveguide modes can have a phase velocity equal to or less than the speed of light. Such a metal microchannel then acts as a slow-wave structure. Furthermore, if it is a transverse magnetic mode, the electric field has a component along the direction of propagation. Therefore, a strong exchange of energy can occur between a beam of charged particles and this slow-waveguide mode. Moreover, the energy exchange can be sustained over a distance limited only by the natural damping of the wave. This makes the microchannel metal waveguide an attractive possibility for high-gradient electron laser acceleration because the wave can be directly energized by a long-wavelength laser. Indeed the frequency of CO2 lasers lies at a fortuitous wavelength that produces a strong laser-particle interaction in a channel of reasonable macroscopic size (e.g., ˜0.6 mm). The dispersion properties including phase velocity and damping for the slow wave are developed. The performance and other issues related to laser accelerator applications are discussed.

  13. Investigation of phase matching for third-harmonic generation in silicon slow light photonic crystal waveguides using Fourier optics.

    PubMed

    Monat, Christelle; Grillet, Christian; Corcoran, Bill; Moss, David J; Eggleton, Benjamin J; White, Thomas P; Krauss, Thomas F

    2010-03-29

    Using Fourier optics, we retrieve the wavevector dependence of the third-harmonic (green) light generated in a slow light silicon photonic crystal waveguide. We show that quasi-phase matching between the third-harmonic signal and the fundamental mode is provided in this geometry by coupling to the continuum of radiation modes above the light line. This process sustains third-harmonic generation with a relatively high efficiency and a substantial bandwidth limited only by the slow light window of the fundamental mode. The results give us insights into the physics of this nonlinear process in the presence of strong absorption and dispersion at visible wavelengths where bandstructure calculations are problematic. Since the characteristics (e.g. angular pattern) of the third-harmonic light primarily depend on the fundamental mode dispersion, they could be readily engineered.

  14. Unambiguous demonstration of soliton evolution in slow-light silicon photonic crystal waveguides with SFG-XFROG.

    PubMed

    Li, Xiujian; Liao, Jiali; Nie, Yongming; Marko, Matthew; Jia, Hui; Liu, Ju; Wang, Xiaochun; Wong, Chee Wei

    2015-04-20

    We demonstrate the temporal and spectral evolution of picosecond soliton in the slow light silicon photonic crystal waveguides (PhCWs) by sum frequency generation cross-correlation frequency resolved optical grating (SFG-XFROG) and nonlinear Schrödinger equation (NLSE) modeling. The reference pulses for the SFG-XFROG measurements are unambiguously pre-characterized by the second harmonic generation frequency resolved optical gating (SHG-FROG) assisted with the combination of NLSE simulations and optical spectrum analyzer (OSA) measurements. Regardless of the inevitable nonlinear two photon absorption, high order soliton compressions have been observed remarkably owing to the slow light enhanced nonlinear effects in the silicon PhCWs. Both the measurements and the further numerical analyses of the pulse dynamics indicate that, the free carrier dispersion (FCD) enhanced by the slow light effects is mainly responsible for the compression, the acceleration, and the spectral blue shift of the soliton.

  15. Flat-Band Slow Light in a Photonic Crystal Slab Waveguide by Vertical Geometry Adjustment and Selective Infiltration of Optofluidics

    NASA Astrophysics Data System (ADS)

    Mansouri-Birjandi, Mohammad Ali; Janfaza, Morteza; Tavousi, Alireza

    2017-11-01

    In this paper, a photonic crystal slab waveguide (PhCSW) for slow light applications is presented. To obtain widest possible flat-bands of slow light regions—regions with large group index ( n g), and very low group velocity dispersion (GVD)—two core parameters of PhCSW structure are investigated. The design procedure is based on vertical shifting of the first row of the air holes adjacent to the waveguide center and concurrent selective optofluidic infiltration of the second row. The criteria of < n_g > ± 10% variations is used for ease of definition and comparison of flat-band regions. By applying various geometry optimizations for the first row, our results suggest that a waveguide core of W 1.09 would provide a reasonable wide flat-band. Furthermore, infiltration of optofluidics in the second row alongside with geometry adjustments of the first row result in flexible control of 10 < n g < 32 and provide flat-band regions with large bandwidth (10 nm < Δ λ < 21.5 nm). Also, negligible GVD as low as β 2 = 10-24 (s2/m) is achieved. Numerical simulations are calculated by means of the three-dimensional plane wave expansion method.

  16. Light Stops at Exceptional Points

    NASA Astrophysics Data System (ADS)

    Goldzak, Tamar; Mailybaev, Alexei A.; Moiseyev, Nimrod

    2018-01-01

    Almost twenty years ago, light was slowed down to less than 10-7 of its vacuum speed in a cloud of ultracold atoms of sodium. Upon a sudden turn-off of the coupling laser, a slow light pulse can be imprinted on cold atoms such that it can be read out and converted into a photon again. In this process, the light is stopped by absorbing it and storing its shape within the atomic ensemble. Alternatively, the light can be stopped at the band edge in photonic-crystal waveguides, where the group speed vanishes. Here, we extend the phenomenon of stopped light to the new field of parity-time (P T ) symmetric systems. We show that zero group speed in P T symmetric optical waveguides can be achieved if the system is prepared at an exceptional point, where two optical modes coalesce. This effect can be tuned for optical pulses in a wide range of frequencies and bandwidths, as we demonstrate in a system of coupled waveguides with gain and loss.

  17. Slow-light, band-edge waveguides for tunable time delays.

    PubMed

    Povinelli, M; Johnson, Steven; Joannopoulos, J

    2005-09-05

    We propose the use of slow-light, band-edge waveguides for compact, integrated, tunable optical time delays. We show that slow group velocities at the photonic band edge give rise to large changes in time delay for small changes in refractive index, thereby shrinking device size. Figures of merit are introduced to quantify the sensitivity, as well as the accompanying signal degradation due to dispersion. It is shown that exact calculations of the figures of merit for a realistic, three-dimensional grating structure are well predicted by a simple quadratic-band model, simplifying device design. We present adiabatic taper designs that attain <0.1% reflection in short lengths of 10 to 20 times the grating period. We show further that cascading two gratings compensates for signal dispersion and gives rise to a constant tunable time delay across bandwidths greater than 100GHz. Given typical loss values for silicon-on-insulator waveguides, we estimate that gratings can be designed to exhibit tunable delays in the picosecond range using current fabrication technology.

  18. Competition and evolution of dielectric waveguide mode and plasmonic waveguide mode

    NASA Astrophysics Data System (ADS)

    Yuan, Sheng-Nan; Fang, Yun-Tuan

    2017-10-01

    In order to study the coupling and evolution law of the waveguide mode and two plasmonic surface modes, we construct a line defect waveguide based on hexagonal honeycomb plasmonic photonic crystal. Through adjusting the radius of the edge dielectric rods, the competition and evolution behaviors occur between dielectric waveguide mode and plasmonic waveguide mode. There are three status: only plasmonic waveguide modes occur for rA < 0.09a; only dielectric waveguide modes occur for rA > 0.25a; two kinds of modes coexist for 0.09a < rA < 0.25a. The plasmonic waveguide mode has advantages in achieving slow light.

  19. Low-loss adiabatically-tapered high-contrast gratings for slow-wave modulators on SOI

    NASA Astrophysics Data System (ADS)

    Sciancalepore, Corrado; Hassan, Karim; Ferrotti, Thomas; Harduin, Julie; Duprez, Hélène; Menezo, Sylvie; Ben Bakir, Badhise

    2015-02-01

    In this communication, we report about the design, fabrication, and testing of Silicon-based photonic integrated circuits (Si-PICs) including low-loss flat-band slow-light high-contrast-gratings (HCGs) waveguides at 1.31 μm. The light slowdown is achieved in 300-nm-thick silicon-on-insulator (SOI) rib waveguides by patterning adiabatically-tapered highcontrast gratings, capable of providing slow-light propagation with extremely low optical losses, back-scattering, and Fabry-Pérot noise. In detail, the one-dimensional (1-D) grating architecture is capable to provide band-edge group indices ng ~ 25, characterized by overall propagation losses equivalent to those of the index-like propagation regime (~ 1-2 dB/cm). Such photonic band-edge slow-light regime at low propagation losses is made possible by the adiabatic apodization of such 1-D HCGs, thus resulting in a win-win approach where light slow-down regime is reached without additional optical losses penalty. As well as that, a tailored apodization optimized via genetic algorithms allows the flattening of slow-light regime over the wavelength window of interest, therefore suiting well needs for group index stability for modulation purposes and non-linear effects generation. In conclusion, such architectures provide key features suitable for power-efficient high-speed modulators in silicon as well as an extremely low-loss building block for non-linear optics (NLO) which is now available in the Si photonics toolbox.

  20. Fabrication And Characterization Of Photonic Crystal Slow Light Waveguides And Cavities

    PubMed Central

    Reardon, Christopher Paul; Rey, Isabella H.; Welna, Karl; O'Faolain, Liam; Krauss, Thomas F.

    2012-01-01

    Slow light has been one of the hot topics in the photonics community in the past decade, generating great interest both from a fundamental point of view and for its considerable potential for practical applications. Slow light photonic crystal waveguides, in particular, have played a major part and have been successfully employed for delaying optical signals1-4 and the enhancement of both linear5-7 and nonlinear devices.8-11 Photonic crystal cavities achieve similar effects to that of slow light waveguides, but over a reduced band-width. These cavities offer high Q-factor/volume ratio, for the realization of optically12 and electrically13 pumped ultra-low threshold lasers and the enhancement of nonlinear effects.14-16 Furthermore, passive filters17 and modulators18-19 have been demonstrated, exhibiting ultra-narrow line-width, high free-spectral range and record values of low energy consumption. To attain these exciting results, a robust repeatable fabrication protocol must be developed. In this paper we take an in-depth look at our fabrication protocol which employs electron-beam lithography for the definition of photonic crystal patterns and uses wet and dry etching techniques. Our optimised fabrication recipe results in photonic crystals that do not suffer from vertical asymmetry and exhibit very good edge-wall roughness. We discuss the results of varying the etching parameters and the detrimental effects that they can have on a device, leading to a diagnostic route that can be taken to identify and eliminate similar issues. The key to evaluating slow light waveguides is the passive characterization of transmission and group index spectra. Various methods have been reported, most notably resolving the Fabry-Perot fringes of the transmission spectrum20-21 and interferometric techniques.22-25 Here, we describe a direct, broadband measurement technique combining spectral interferometry with Fourier transform analysis.26 Our method stands out for its simplicity and power, as we can characterise a bare photonic crystal with access waveguides, without need for on-chip interference components, and the setup only consists of a Mach-Zehnder interferometer, with no need for moving parts and delay scans. When characterising photonic crystal cavities, techniques involving internal sources21 or external waveguides directly coupled to the cavity27 impact on the performance of the cavity itself, thereby distorting the measurement. Here, we describe a novel and non-intrusive technique that makes use of a cross-polarised probe beam and is known as resonant scattering (RS), where the probe is coupled out-of plane into the cavity through an objective. The technique was first demonstrated by McCutcheon et al.28 and further developed by Galli et al.29 PMID:23222804

  1. Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides

    PubMed Central

    Yan, Siqi; Zhu, Xiaolong; Frandsen, Lars Hagedorn; Xiao, Sanshui; Mortensen, N. Asger; Dong, Jianji; Ding, Yunhong

    2017-01-01

    Slow light has been widely utilized to obtain enhanced nonlinearities, enhanced spontaneous emissions and increased phase shifts owing to its ability to promote light–matter interactions. By incorporating a graphene on a slow-light silicon photonic crystal waveguide, here we experimentally demonstrate an energy-efficient graphene microheater with a tuning efficiency of 1.07 nmmW−1 and power consumption per free spectral range of 3.99 mW. The rise and decay times (10–90%) are only 750 and 525 ns, which, to the best of our knowledge, are the fastest reported response times for microheaters in silicon photonics. The corresponding figure of merit of the device is 2.543 nW s, one order of magnitude better than results reported in previous studies. The influence of the length and shape of the graphene heater to the tuning efficiency is further investigated, providing valuable guidelines for enhancing the tuning efficiency of the graphene microheater. PMID:28181531

  2. Coupled resonator optical waveguide sensors: sensitivity and the role of slow light

    NASA Astrophysics Data System (ADS)

    Terrel, Matthew A.; Digonnet, Michel J. F.; Fan, Shanhui

    2009-05-01

    We compare the sensitivity of two configurations of coupled resonator optical waveguide (CROW) gyroscopes proposed by others to conventional optical gyroscopes. In both cases, we demonstrate that for equal device footprint and loss, neither of these CROW gyroscopes configurations is more sensitive than its conventional counterpart. In all cases, loss ultimately limits the maximum rotation sensitivity. The fact that light travels more slowly (i.e., with a greater group delay) in a CROW than in a fiber therefore has no effect on sensitivity. The only benefit slow light does have is that it reduces the device length requirement, or equivalently it increases the sensitivity per unit length. However, we show that this improvement is quantitatively the same as in an RFOG. These conclusions are not limited to these two CROW configurations or to rotation sensing, but applicable to any measurand that modifies the phase of the signal(s) traveling in the resonators.

  3. Slowing down the speed of light using an electromagnetically-induced-transparency mechanism in a modified reservoir

    NASA Astrophysics Data System (ADS)

    Liu, Ronggang; Liu, Tong; Wang, Yingying; Li, Yujie; Gai, Bingzheng

    2017-11-01

    We propose an effective method to achieve extremely slow light by using both the mechanism of electromagnetically induced transparency (EIT) and the localization of a coupled cavity waveguide (CCW). Based on quantum mechanics theory and the dispersion relation of a CCW, we derive a group-velocity formula that reveals both the effects of the EIT and CCW. Results show that ultralow light velocity at the order of several meters per second or even static light, could be obtained feasibly. In comparison with the EIT mechanism in a background of vacuum, this proposed method is more effective and realistic to achieve extremely slow light. And it exhibits potential values in the field of light storage.

  4. Active Enhancement of Slow Light Based on Plasmon-Induced Transparency with Gain Materials.

    PubMed

    Zhang, Zhaojian; Yang, Junbo; He, Xin; Han, Yunxin; Zhang, Jingjing; Huang, Jie; Chen, Dingbo; Xu, Siyu

    2018-06-03

    As a plasmonic analogue of electromagnetically induced transparency (EIT), plasmon-induced transparency (PIT) has drawn more attention due to its potential of realizing on-chip sensing, slow light and nonlinear effect enhancement. However, the performance of a plasmonic system is always limited by the metal ohmic loss. Here, we numerically report a PIT system with gain materials based on plasmonic metal-insulator-metal waveguide. The corresponding phenomenon can be theoretically analyzed by coupled mode theory (CMT). After filling gain material into a disk cavity, the system intrinsic loss can be compensated by external pump beam, and the PIT can be greatly fueled to achieve a dramatic enhancement of slow light performance. Finally, a double-channel enhanced slow light is introduced by adding a second gain disk cavity. This work paves way for a potential new high-performance slow light device, which can have significant applications for high-compact plasmonic circuits and optical communication.

  5. Two mechanisms of disorder-induced localization in photonic-crystal waveguides

    NASA Astrophysics Data System (ADS)

    García, P. D.; KiršanskÄ--, G.; Javadi, A.; Stobbe, S.; Lodahl, P.

    2017-10-01

    Unintentional but unavoidable fabrication imperfections in state-of-the-art photonic-crystal waveguides lead to the spontaneous formation of Anderson-localized modes thereby limiting slow-light propagation and its potential applications. On the other hand, disorder-induced cavities offer an approach to cavity-quantum electrodynamics and random lasing at the nanoscale. The key statistical parameter governing the disorder effects is the localization length, which together with the waveguide length determines the statistical transport of light through the waveguide. In a disordered photonic-crystal waveguide, the localization length is highly dispersive, and therefore, by controlling the underlying lattice parameters, it is possible to tune the localization of the mode. In the present work, we study the localization length in a disordered photonic-crystal waveguide using numerical simulations. We demonstrate two different localization regimes in the dispersion diagram where the localization length is linked to the density of states and the photon effective mass, respectively. The two different localization regimes are identified in experiments by recording the photoluminescence from quantum dots embedded in photonic-crystal waveguides.

  6. Slow light effect with high group index and wideband by saddle-like mode in PC-CROW

    NASA Astrophysics Data System (ADS)

    Wan, Yong; Jiang, Li-Jun; Xu, Sheng; Li, Meng-Xue; Liu, Meng-Nan; Jiang, Cheng-Yi; Yuan, Feng

    2018-04-01

    Slow light with high group index and wideband is achieved in photonic crystal coupled-resonator optical waveguides (PC-CROWs). According to the eye-shaped scatterers and various microcavities, saddle-like curves between the normalized frequency f and wave number k can be obtained by adjusting the parameters of the scatterers, parameters of the coupling microcavities, and positions of the scatterers. Slow light with decent flat band and group index can then be achieved by optimizing the parameters. Simulations prove that the maximal value of the group index is > 104, and the normalized delay bandwidth product within a new varying range of n g > 102 or n g > 103 can be a new and effective criterion of evaluation for the slow light in PC-CROWs.

  7. Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays.

    PubMed

    Yin, Xiang; Long, Chang; Li, Junhao; Zhu, Hua; Chen, Lin; Guan, Jianguo; Li, Xun

    2015-10-19

    Microwave absorbers have important applications in various areas including stealth, camouflage, and antenna. Here, we have designed an ultra-broadband light absorber by integrating two different-sized tapered hyperbolic metamaterial (HMM) waveguides, each of which has wide but different absorption bands due to broadband slow-light response, into a unit cell. Both the numerical and experimental results demonstrate that in such a design strategy, the low absorption bands between high absorption bands with a single-sized tapered HMM waveguide array can be effectively eliminated, resulting in a largely expanded absorption bandwidth ranging from 2.3 to 40 GHz. The presented ultra-broadband light absorber is also insensitive to polarization and robust against incident angle. Our results offer a further step in developing practical artificial electromagnetic absorbers, which will impact a broad range of applications at microwave frequencies.

  8. Fabrication of Free-Standing, Self-Aligned, High-Aspect-Ratio Synthetic Ommatidia.

    PubMed

    Jun, Brian M; Serra, Francesca; Xia, Yu; Kang, Hong Suk; Yang, Shu

    2016-11-16

    Free-standing, self-aligned, high-aspect-ratio (length to cross-section, up to 15.5) waveguides that mimic insects' ommatidia are fabricated. Self-aligned waveguides under the lenses are created after exposing photoresist SU-8 film through the negative polydimethylsiloxane (PDMS) lens array. Instead of drying from the developer, the waveguides are coated with poly(vinyl alcohol) and then immersed into a mixture of PDMS precursor and diethyl ether. The slow drying of diethyl ether, followed by curing and peeling off PDMS, allows for the fabrication of free-standing waveguides without collapse. We show that the synthetic ommatidia can confine light and propagate it all the way to the tips.

  9. Rainbow Trapping in Hyperbolic Metamaterial Waveguide

    PubMed Central

    Hu, Haifeng; Ji, Dengxin; Zeng, Xie; Liu, Kai; Gan, Qiaoqiang

    2013-01-01

    The recent reported trapped “rainbow” storage of light using metamaterials and plasmonic graded surface gratings has generated considerable interest for on-chip slow light. The potential for controlling the velocity of broadband light in guided photonic structures opens up tremendous opportunities to manipulate light for optical modulation, switching, communication and light-matter interactions. However, previously reported designs for rainbow trapping are generally constrained by inherent difficulties resulting in the limited experimental realization of this intriguing effect. Here we propose a hyperbolic metamaterial structure to realize a highly efficient rainbow trapping effect, which, importantly, is not limited by those severe theoretical constraints required in previously reported insulator-negative-index-insulator, insulator-metal-insulator and metal-insulator-metal waveguide tapers, and therefore representing a significant promise to realize the rainbow trapping structure practically. PMID:23409240

  10. Phase sensitive amplification in integrated waveguides (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Schroeder, Jochen B.; Zhang, Youngbin; Husko, Chad A.; LeFrancois, Simon; Eggleton, Benjamin J.

    2017-02-01

    Phase sensitive amplification (PSA) is an attractive technology for integrated all-optical signal processing, due to it's potential for noiseless amplification, phase regeneration and generation of squeezed light. In this talk I will review our results on implementing four-wave-mixing based PSA inside integrated photonic devices. In particular I will discuss PSA in chalcogenide ridge waveguides and silicon slow-light photonic crystals. We achieve PSA in both pump- and signal-degenerate schemes with maximum extinction ratios of 11 (silicon) and 18 (chalcogenide) dB. I will further discuss the influence of two-photon absorption and free carrier effects on the performance of silicon-based PSAs.

  11. The serpentine optical waveguide: engineering the dispersion relations and the stopped light points.

    PubMed

    Scheuer, Jacob; Weiss, Ori

    2011-06-06

    We present a study a new type of optical slow-light structure comprising a serpentine shaped waveguide were the loops are coupled. The dispersion relation, group velocity and GVD are studied analytically using a transfer matrix method and numerically using finite difference time domain simulations. The structure exhibits zero group velocity points at the ends of the Brillouin zone, but also within the zone. The position of mid-zone zero group velocity point can be tuned by modifying the coupling coefficient between adjacent loops. Closed-form analytic expressions for the dispersion relations, group velocity and the mid-zone zero v(g) points are found and presented.

  12. Nonlinear waves in subwavelength waveguide arrays: evanescent bands and the "phoenix soliton".

    PubMed

    Peleg, Or; Segev, Mordechai; Bartal, Guy; Christodoulides, Demetrios N; Moiseyev, Nimrod

    2009-04-24

    We formulate wave propagation in arrays of subwavelength waveguides with sharp index contrasts and demonstrate the collapse of bands into evanescent modes and lattice solitons with superluminal phase velocity. We find a self-reviving soliton ("phoenix soliton") comprised of coupled forward- and backward-propagating light, originating solely from evanescent bands. In the linear regime, all Bloch waves comprising this beam decay, whereas a proper nonlinearity assembles them into a propagating self-trapped beam. Finally, we simulate the dynamics of such a beam and observe breakup into temporal pulses, indicating a new kind of slow-light gap solitons, trapped in time and in one transverse dimension.

  13. Atom-field dressed states in slow-light waveguide QED

    NASA Astrophysics Data System (ADS)

    Calajó, Giuseppe; Ciccarello, Francesco; Chang, Darrick; Rabl, Peter

    2016-03-01

    We discuss the properties of atom-photon bound states in waveguide QED systems consisting of single or multiple atoms coupled strongly to a finite-bandwidth photonic channel. Such bound states are formed by an atom and a localized photonic excitation and represent the continuum analog of the familiar dressed states in single-mode cavity QED. Here we present a detailed analysis of the linear and nonlinear spectral features associated with single- and multiphoton dressed states and show how the formation of bound states affects the waveguide-mediated dipole-dipole interactions between separated atoms. Our results provide both a qualitative and quantitative description of the essential strong-coupling processes in waveguide QED systems, which are currently being developed in the optical and microwave regimes.

  14. Slowing of Bessel light beam group velocity

    NASA Astrophysics Data System (ADS)

    Alfano, Robert R.; Nolan, Daniel A.

    2016-02-01

    Bessel light beams experience diffraction-limited propagation. A different basic spatial property of a Bessel beam is reported and investigated. It is shown a Bessel beam is a natural waveguide causing its group velocity can be subluminal (slower than the speed of light) when the optical frequency ω approaches a critical frequency ωc. A free space dispersion relation for a Bessel beam, the dependence of its wave number on its angular frequency, is developed from which the Bessel beam's subluminal group velocity is derived. It is shown under reasonable laboratory conditions that a Bessel light beam has associated parameters that allow slowing near a critical frequency. The application of Bessel beams with 1 μm spot size to slow down 100 ps to 200 ps over 1 cm length for a natural optical buffer in free space is presented.

  15. Tunable Fano resonance in MDM stub waveguide coupled with a U-shaped cavity

    NASA Astrophysics Data System (ADS)

    Yi, Xingchun; Tian, Jinping; Yang, Rongcao

    2018-04-01

    A new compact metal-dielectric-metal waveguide system consisting of a stub coupled with a U-cavity is proposed to produce sharp and asymmetric Fano resonance. The transmission properties of the proposed structure are numerically studied by the finite element method and verified by the coupled mode theory. Simulation results reveal that the spectral profile can be easily tuned by adjusting the geometric parameters of the structure. One of the potential application of the proposed structure as a highly efficient plasmonic refractive index nanosensor was investigated with its sensitivity of more than 1000 nm/RIU and a figure of merit of up to 5500. Another application is integrated slow-light device whose group index can be greater than 6. In addition, multiple Fano resonances will occur in the broadband transmission spectrum by adding another U-cavity or (and) stub. The characteristics of the proposed structure are very promising for the highly performance filters, on-chip nanosensors, and slow-light devices.

  16. MWP phase shifters integrated in PbS-SU8 waveguides.

    PubMed

    Hervás, Javier; Suárez, Isaac; Pérez, Joaquín; Cantó, Pedro J Rodríguez; Abargues, Rafael; Martínez-Pastor, Juan P; Sales, Salvador; Capmany, José

    2015-06-01

    We present new kind of microwave phase shifters (MPS) based on dispersion of PbS colloidal quantum dots (QDs) in commercially available photoresist SU8 after a ligand exchange process. Ridge PbS-SU8 waveguides are implemented by integration of the nanocomposite in a silicon platform. When these waveguides are pumped at wavelengths below the band-gap of the PbS QDs, a phase shift in an optically conveyed (at 1550 nm) microwave signal is produced. The strong light confinement produced in the ridge waveguides allows an improvement of the phase shift as compared to the case of planar structures. Moreover, a novel ridge bilayer waveguide composed by a PbS-SU8 nanocomposite and a SU8 passive layer is proposed to decrease the propagation losses of the pump beam and in consequence to improve the microwave phase shift up to 36.5° at 25 GHz. Experimental results are reproduced by a theoretical model based on the slow light effect produced in a semiconductor waveguide due to the coherent population oscillations. The resulting device shows potential benefits respect to the current MPS technologies since it allows a fast tunability of the phase shift and a high level of integration due to its small size.

  17. Experimental Testing of a Metamaterial Slow Wave Structure for High-Power Microwave Generation

    NASA Astrophysics Data System (ADS)

    Shipman, K.; Prasad, S.; Andreev, D.; Fisher, D. M.; Reass, D. B.; Schamiloglu, E.; Gilmore, M.

    2017-10-01

    A high-power L band source has been developed using a metamaterial (MTM) to produce a double negative slow wave structure (SWS) for interaction with an electron beam. The beam is generated by a 700 kV, 6 kA short pulse (10 ns) accelerator. The design of the SWS consists of a cylindrical waveguide, loaded with alternating split-rings that are arrayed axially down the waveguide. The beam is guided down the center of the rings, where electrons interact with the MTM-SWS producing radiation. Power is extracted axially via a circular waveguide, and radiated by a horn antenna. Microwaves are characterized by an external detector placed in a waveguide. Mode characterization is performed using a neon bulb array. The bulbs are lit by the electric field, resulting in an excitation pattern that resembles the field pattern. This is imaged using an SLR camera. The MTM structure has electrically small features so breakdown is a concern. In addition to high speed cameras, a fiber-optic-fed, sub-ns photomultiplier tube array diagnostic has been developed and used to characterize breakdown light. Work supported by the Air Force Office of Scientific Research, MURI Grant FA9550-12-1-0489.

  18. Efficient transportation of nano-sized particles along slotted photonic crystal waveguide.

    PubMed

    Lin, Pin-Tso; Lee, Po-Tsung

    2012-01-30

    We design a slotted photonic crystal waveguide (S-PhCW) and numerically propose that it can efficiently transport polystyrene particle with diameter as small as 50 nm in a 100 nm slot. Excellent optical confinement and slow light effect provided by the photonic crystal structure greatly enhance the optical force exerted on the particle. The S-PhCW can thus transport the particle with optical propulsion force as strong as 5.3 pN/W, which is over 10 times stronger than that generated by the slotted strip waveguide (S-SW). In addition, the vertical optical attraction force induced in the S-PhCW is over 2 times stronger than that of the S-SW. Therefore, the S-PhCW transports particles not only efficiently but also stably. We anticipate this waveguide structure will be beneficial for the future lab-on-chip development.

  19. The role of group index engineering in series-connected photonic crystal microcavities for high density sensor microarrays

    PubMed Central

    Zou, Yi; Chakravarty, Swapnajit; Zhu, Liang; Chen, Ray T.

    2014-01-01

    We experimentally demonstrate an efficient and robust method for series connection of photonic crystal microcavities that are coupled to photonic crystal waveguides in the slow light transmission regime. We demonstrate that group index taper engineering provides excellent optical impedance matching between the input and output strip waveguides and the photonic crystal waveguide, a nearly flat transmission over the entire guided mode spectrum and clear multi-resonance peaks corresponding to individual microcavities that are connected in series. Series connected photonic crystal microcavities are further multiplexed in parallel using cascaded multimode interference power splitters to generate a high density silicon nanophotonic microarray comprising 64 photonic crystal microcavity sensors, all of which are interrogated simultaneously at the same instant of time. PMID:25316921

  20. Ultrafast modulators based on nonlinear photonic crystal waveguides

    NASA Astrophysics Data System (ADS)

    Liu, Zhifu; Li, Jianheng; Tu, Yongming; Ho, Seng-Tiong; Wessels, Bruce W.

    2011-03-01

    Nonlinear photonic crystal (PhC) waveguides are being developed for ultrafast modulators. To enable phase velocity matching we have investigated one- and two-dimensional structures. Photonic crystal (PhC) waveguides based on epitaxial barium titanate (BTO) thin film in a Si3N4/BTO/MgO multilayer structure were fabricated by electron beam lithography or focused ion beam (FIB) milling. For both one- and two-dimensional PhCs, simulation shows that sufficient refractive index contrast is achieved to form a stop band. For one-dimensional Bragg reflector, we measured its slow light properties and the group refractive index of optical wave. For a millimeter long waveguide a 27 nm wide stop band was obtained at 1550 nm. A slowing of the light was observed, the group refractive indices at the mid band gap and at the band edges were estimated to be between 8.0 and 12 for the transverse electric (TE) mode, and 6.9 and 13 for the transverse magnetic (TM) mode. For TE optical modes, the enhancement factor of EO coefficient ranges from 7 to 13, and for the TM mode, the factor ranges from 5.9 to 15. Measurements indicate that near velocity phase matching can be realized. Upon realizing the phase velocity matching condition, devices with a small foot print with bandwidths at 490 GHz can be attained. Two-dimensional PhC crystal with a hexagonal lattice was also investigated. The PhCs were fabricated from epitaxial BTO thin film multilayers using focused ion beam milling. The PhCs are based on BTO slab waveguide and air hole arrays defined within Si3N4 and BTO thin films. A refractive index contrast of 0.4 between the barium titanate thin film multilayers and the air holes enables strong light confinement. For the TE optical mode, the hexagonal photonic crystal lattice with a diameter of 155 nm and a lattice constant of 740 nm yields a photonic bandgap over the wavelength range from 1525 to 1575 nm. The transmission spectrum of the PhC waveguide exhibits stronger Fabry Perot resonance compared to that of conventional waveguide. Measured transmission spectra show a bandgap in the ΓM direction in the reciprocal lattice that is in agreement with the simulated results using the finite-difference time-domain (FDTD) method. Compared to polarization intensity EO modulator with a half-wave voltage length product of 4.7 V•mm. The PhC based EO modulator has a factor of 6.6 improvement in the figure of merit performance. The thin film PhC waveguide devices show considerable potential for ultra-wide bandwidth electro-optic modulators as well as tunable optical filters and switches.

  1. Thermo-optic characteristics and switching power limit of slow-light photonic crystal structures on a silicon-on-insulator platform.

    PubMed

    Chahal, Manjit; Celler, George K; Jaluria, Yogesh; Jiang, Wei

    2012-02-13

    Employing a semi-analytic approach, we study the influence of key structural and optical parameters on the thermo-optic characteristics of photonic crystal waveguide (PCW) structures on a silicon-on-insulator (SOI) platform. The power consumption and spatial temperature profile of such structures are given as explicit functions of various structural, thermal and optical parameters, offering physical insight not available in finite-element simulations. Agreement with finite-element simulations and experiments is demonstrated. Thermal enhancement of the air-bridge structure is analyzed. The practical limit of thermo-optic switching power in slow light PCWs is discussed, and the scaling with key parameters is analyzed. Optical switching with sub-milliwatt power is shown viable.

  2. Electro-optic phase matching in a Si photonic crystal slow light modulator using meander-line electrodes.

    PubMed

    Hinakura, Yosuke; Terada, Yosuke; Arai, Hiroyuki; Baba, Toshihiko

    2018-04-30

    We demonstrate a Si photonic crystal waveguide Mach-Zehnder modulator that incorporates meander-line electrodes to compensate for the phase mismatch between slow light and RF signals. We first employed commonized ground electrodes in the modulator to suppress undesired fluctuations in the electro-optic (EO) response due to coupled slot-line modes of RF signals. Then, we theoretically and experimentally investigated the effect of the phase mismatch on the EO response. We confirmed that meander-line electrodes improve the EO response, particularly in the absence of internal reflection of the RF signals. The cut-off frequency of this device can reach 27 GHz, which allows high-speed modulation up to 50 Gbps.

  3. Objectively discriminating the optical analogy of electromagnetically induced transparency from Autler-Townes splitting in a side coupled graphene-based waveguide system

    NASA Astrophysics Data System (ADS)

    Wei, Buzheng; Jian, Shuisheng

    2017-11-01

    A mid-infrared side coupled graphene nanotube waveguide system is proposed to investigate the origin discerning from electromagnetically induced transparency (EIT) to Autler-Townes splitting (ATS). The analytic transmission analysis seeks an evolution tendency of transmission spectrum from ATS to EIT, which is numerically verified by the simulation results. The origin of transparency is mainly attributed to ATS effect in the strong coupling regime while EIT is favored in the weak coupling condition. We plot the field distribution to help understand the underlying physics of the interference process. The high group index of 5000 indicates that a slow light effect is successfully observed and Fano resonance is presented by varying the Fermi energy of the dark mode. These ideas may provide potential views in filters, optical buffers, light storage and on chip metamaterials.

  4. Simulation of light propagation in the thin-film waveguide lens

    NASA Astrophysics Data System (ADS)

    Malykh, M. D.; Divakov, D. V.; Sevastianov, L. A.; Sevastianov, A. L.

    2018-04-01

    In this paper we investigate the solution of the problem of modeling the propagation of electromagnetic radiation in three-dimensional integrated optical structures, such as waveguide lenses. When propagating through three-dimensional waveguide structures the waveguide modes can be hybridized, so the mathematical model of their propagation must take into account the connection of TE- and TM-mode components. Therefore, an adequate consideration of hybridization of the waveguide modes is possible only in vector formulation of the problem. An example of three-dimensional structure that hybridizes waveguide modes is the Luneburg waveguide lens, which also has focusing properties. If the waveguide lens has a radius of the order of several tens of wavelengths, its variable thickness at distances of the order of several wavelengths is almost constant. Assuming in this case that the electromagnetic field also varies slowly in the direction perpendicular to the direction of propagation, one can introduce a small parameter characterizing this slow varying and decompose the solution in powers of the small parameter. In this approach, in the zeroth approximation, scalar diffraction problems are obtained, the solution of which is less resource-consuming than the solution of vector problems. The calculated first-order corrections of smallness describe the connection of TE- and TM-modes, so the solutions obtained are weakly-hybridized modes. The formulation of problems and methods for their numerical solution in this paper are based on the authors' research on waveguide diffraction on a lens in a scalar formulation.

  5. Theoretical investigation of intensity-dependent optical nonlinearity in graphene-aided D-microfiber

    NASA Astrophysics Data System (ADS)

    Shah, Manoj Kumar; Lu, Rongguo; Zhang, Yali; Ye, Shengwei; Zhang, Shangjian; Liu, Yong

    2018-01-01

    We theoretically investigate the intensity-dependent optical nonlinearity in graphene-aided D-microfiber, by tuning the chemical potential of graphene and varying radial distance and radii of the D-microfiber. Utilizing an interplay between graphene and the enhanced evanescent field of a guided mode in the waveguide of interest, the net utility of nonlinear coefficient is harnessed up to a very high value of 106 W-1m-1. Importantly, which is ∼ two orders of magnitude larger than in PMMA-graphene-PMMA waveguide. The highly dispersive nature of the waveguide, D ∼ 103 ps/nm-km, and large nonlinear figure-of-merit, FOMNL ∼ 1.29, have raised the possibilities of utilizing slow light structures to operate devices at few watts power level with microscale length. These studies have opened one window towards the next-generation all fiber-optic graphene nonlinear optical devices.

  6. Nanoscale light–matter interactions in atomic cladding waveguides

    PubMed Central

    Stern, Liron; Desiatov, Boris; Goykhman, Ilya; Levy, Uriel

    2013-01-01

    Alkali vapours, such as rubidium, are being used extensively in several important fields of research such as slow and stored light nonlinear optics quantum computation, atomic clocks and magnetometers. Recently, there is a growing effort towards miniaturizing traditional centimetre-size vapour cells. Owing to the significant reduction in device dimensions, light–matter interactions are greatly enhanced, enabling new functionalities due to the low power threshold needed for nonlinear interactions. Here, taking advantage of the mature platform of silicon photonics, we construct an efficient and flexible platform for tailored light–vapour interactions on a chip. Specifically, we demonstrate light–matter interactions in an atomic cladding waveguide, consisting of a silicon nitride nano-waveguide core with a rubidium vapour cladding. We observe the efficient interaction of the electromagnetic guided mode with the rubidium cladding and show that due to the high confinement of the optical mode, the rubidium absorption saturates at powers in the nanowatt regime. PMID:23462991

  7. Microwave phase shifter with controllable power response based on slow- and fast-light effects in semiconductor optical amplifiers.

    PubMed

    Xue, Weiqi; Sales, Salvador; Capmany, José; Mørk, Jesper

    2009-04-01

    We suggest and experimentally demonstrate a method for increasing the tunable rf phase shift of semiconductor waveguides while at the same time enabling control of the rf power. This method is based on the use of slow- and fast-light effects in a cascade of semiconductor optical amplifiers combined with the use of spectral filtering to enhance the role of refractive index dynamics. A continuously tunable phase shift of approximately 240 degrees at a microwave frequency of 19 GHz is demonstrated in a cascade of two semiconductor optical amplifiers, while maintaining an rf power change of less than 1.6 dB. The technique is scalable to more amplifiers and should allow realization of an rf phase shift of 360 degrees.

  8. Slow-wave propagation on monolithic microwave integrated circuits with layered and non-layered structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tzuang, C.K.C.

    1986-01-01

    Various MMIC (monolithic microwave integrated circuit) planar waveguides have shown possible existence of a slow-wave propagation. In many practical applications of these slow-wave circuits, the semiconductor devices have nonuniform material properties that may affect the slow-wave propagation. In the first part of the dissertation, the effects of the nonuniform material properties are studied by a finite-element method. In addition, the transient pulse excitations of these slow-wave circuits also have great theoretical and practical interests. In the second part, the time-domain analysis of a slow-wave coplanar waveguide is presented.

  9. Using COMSOL Multiphysics Software to Model Anisotropic Dielectric and Metamaterial Effects in Folded-Waveguide Traveling-Wave Tube Slow-Wave Circuits

    NASA Technical Reports Server (NTRS)

    Starinshak, David P.; Smith, Nathan D.; Wilson, Jeffrey D.

    2008-01-01

    The electromagnetic effects of conventional dielectrics, anisotropic dielectrics, and metamaterials were modeled in a terahertz-frequency folded-waveguide slow-wave circuit. Results of attempts to utilize these materials to increase efficiency are presented.

  10. The near-infrared waveguide properties of an LGS crystal formed by swift Kr8+ ion irradiation

    NASA Astrophysics Data System (ADS)

    Zhou, Yu-Fan; Liu, Peng; Liu, Tao; Zhang, Lian; Sun, Jian-Rong; Wang, Zhi-Guang; Wang, Xue-Lin

    2013-11-01

    In this work, we report on the optical properties in the near-infrared region of a LGS crystal planar waveguide formed by swift heavy ion irradiation. The planar optical waveguide in a LGS crystal was fabricated by 330 MeV Kr8+-ion implantation at a fluence of 1 × 1012 cm-2. The initial beam had an energy of 2.1 GeV and was slowed down by passing it through a 259 μm thick Al foil. The guided mode was measured using a prism coupler at a wavelength of 1539 nm. The near-field intensity distribution of the mode was recorded by a CCD camera using the end-face coupling method. The FD-BPM was used to simulate the guided mode profile. The lattice damage induced by SHI irradiation in the LGS crystal was studied using micro-Raman spectroscopy. The Raman spectra are consistent with the stopping power distributions of the Kr8+ ions simulated by SRIM and with the micro-photograph of the waveguide taken by a microscope using polarized light.

  11. Slow Light Semiconductor Laser

    DTIC Science & Technology

    2015-02-02

    semi- conductor lasers, demonstrated here with a spectral linewidth of 18 kHz. Our approach circumvents historical limitations of laser design and it...Oxford 380). To turn the passive resonator into a high-Q hybrid laser, we smooth the waveguide sidewalls to improve Qsc by growing 15 nm of dry thermal ...oxide (oxidation times calculated using the Massoud model). We strip the oxide with HF (Transene Buffer HF- Improved), and regrow 20 nm of dry oxide

  12. Flexible polymer waveguides for light-activated therapy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kim, Moonseok; Kwok, Sheldon J. J.; Lin, Harvey H.; Lee, Dong Hee; Yun, Seok Hyun

    2017-02-01

    Conventional light-activated therapies, such as photodynamic therapy (PDT), photochemical tissue bonding (PTB), collagen crosslinking (CXL), low-level light therapy (LLLT), and antimicrobial therapy utilize external light sources and light propagation through free space, limiting treatment to accessible and superficial areas of the body. Recent progress has been made in developing biocompatible polymer waveguides to enhance light delivery to deep tissues. To further expand clinical utility, waveguides should be flexible and tough enough to enable use in anatomically difficult-to-reach regions, while having the requisite optical properties to achieve uniform and efficient illumination of the target area. Here, we present a new class of flexible polymer waveguides optimized for uniform light extraction into tissues. Our slab waveguides comprise two designs: first, a flexible polydimethylsiloxane (PDMS) based elastomer for CXL, and second, a tough polyacrylamide and alginate hydrogel for large-area phototherapies. Our waveguides are optically transparent in the visible wavelengths (400-750 nm) and a multimode fiber is used to couple light into the waveguide. We characterized the light propagation through the waveguides and light extraction into tissue, and validated our results with optical simulation. By changing the thickness and scattering properties, uniform light extraction through the length of the waveguide could be achieved. We demonstrate proof-of-concept scleral photo-crosslinking of an ex vivo porcine eyeball for prevention of myopia.

  13. Fluorescent optical position sensor

    DOEpatents

    Weiss, Jonathan D.

    2005-11-15

    A fluorescent optical position sensor and method of operation. A small excitation source side-pumps a localized region of fluorescence at an unknown position along a fluorescent waveguide. As the fluorescent light travels down the waveguide, the intensity of fluorescent light decreases due to absorption. By measuring with one (or two) photodetectors the attenuated intensity of fluorescent light emitted from one (or both) ends of the waveguide, the position of the excitation source relative to the waveguide can be determined by comparing the measured light intensity to a calibrated response curve or mathematical model. Alternatively, excitation light can be pumped into an end of the waveguide, which generates an exponentially-decaying continuous source of fluorescent light along the length of the waveguide. The position of a photodetector oriented to view the side of the waveguide can be uniquely determined by measuring the intensity of the fluorescent light emitted radially at that location.

  14. Design and stray light analysis of ultra-thin geometrical waveguide

    NASA Astrophysics Data System (ADS)

    Wang, Qiwei; Cheng, Dewen; Hou, Qichao; Hu, Yuan; Wang, Yongtian

    2015-08-01

    Nowadays, the waveguide has the advantages of small thickness and light weight so that it attracts more and more attention in the field of near-eye display. However, as a major problem, stray lights generated in the waveguide seriously degrade the display quality. In this paper, a geometrical waveguide with a beam-splitting mirror array (BSMA) is designed by using the non-sequential ray-tracing software LightTools, and great efforts are paid to study the causes and solutions of the stray light. With mass calculation and optimization based on the criterion of stray light/useful light ratio, an optimum design with the least amount of stray lights is found. To further eliminate the stray light, a novel structure that couples the rays into the waveguide is designed. The optimized waveguide has a FOV of 36° in the pupil-expanding direction of the waveguide, with stray light energy reduced to 1% over the useful light, the exit pupil diameter is 11.6mm at an eye relief of 20mm and the thickness is 2.4mm.

  15. Slow wave structures using twisted waveguides for charged particle applications

    DOEpatents

    Kang, Yoon W.; Fathy, Aly E.; Wilson, Joshua L.

    2012-12-11

    A rapidly twisted electromagnetic accelerating structure includes a waveguide body having a central axis, one or more helical channels defined by the body and disposed around a substantially linear central axial channel, with central portions of the helical channels merging with the linear central axial channel. The structure propagates electromagnetic waves in the helical channels which support particle beam acceleration in the central axial channel at a phase velocity equal to or slower than the speed of light in free space. Since there is no variation in the shape of the transversal cross-section along the axis of the structure, inexpensive mechanical fabrication processes can be used to form the structure, such as extrusion, casting or injection molding. Also, because the field and frequency of the resonant mode depend on the whole structure rather than on dimensional tolerances of individual cells, no tuning of individual cells is needed. Accordingly, the overall operating frequency may be varied with a tuning/phase shifting device located outside the resonant waveguide structure.

  16. Design of Silicon Photonic Crystal Waveguides for High Gain Raman Amplification Using Two Symmetric Transvers-Electric-Like Slow-Light Modes

    NASA Astrophysics Data System (ADS)

    Hsiao, Yi-Hua; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2013-04-01

    We designed silicon photonic crystal (PhC) waveguides (WGs) for efficient silicon Raman amplifiers and lasers. We adopted narrow-width WGs to utilize two symmetric transvers-electric-like (TE-like) guided modes, which permit efficient external coupling for both the pump and Stokes waves. Modifying the size and shape of air holes surrounding the line-defect WG structures could tune the frequency difference between these two modes, at the Brillouin-zone edge, to match the Raman shift of silicon. Thus, small group velocities are also available both for pump and Stokes waves simultaneously, which results in a large enhancement of Raman gain. The enhancement factor of the Raman gain in the designed structure is more than 100 times that reported previously.

  17. Optical waveguides with memory effect using photochromic material for neural network

    NASA Astrophysics Data System (ADS)

    Tanimoto, Keisuke; Amemiya, Yoshiteru; Yokoyama, Shin

    2018-04-01

    An optical neural network using a waveguide with a memory effect, a photodiode, CMOS circuits and LEDs was proposed. To realize the neural network, optical waveguides with a memory effect were fabricated using a cladding layer containing the photochromic material “diarylethene”. The transmittance of green light was decreased by UV light irradiation and recovered by the passage of green light through the waveguide. It was confirmed that the transmittance versus total energy of the green light that passed through the waveguide well fit the universal exponential curve.

  18. Integration of a waveguide self-electrooptic effect device and a vertically coupled interconnect waveguide

    DOEpatents

    Vawter, G Allen [Corrales, NM

    2008-02-26

    A self-electrooptic effect device ("SEED") is integrated with waveguide interconnects through the use of vertical directional couplers. Light initially propagating in the interconnect waveguide is vertically coupled to the active waveguide layer of the SEED and, if the SEED is in the transparent state, the light is coupled back to the interconnect waveguide.

  19. Low-loss bloch wave guiding in open structures and highly compact efficient waveguide-crossing arrays

    DOEpatents

    Popovic, Milos

    2011-03-08

    Low-loss waveguide structures may comprise a multimode waveguide supporting a periodic light intensity pattern, and attachments disposed at the waveguide adjacent low-intensity regions of the light intensity pattern.

  20. Polarization-dependent coupling between a polarization-independent high-index-contrast subwavelength grating and waveguides

    NASA Astrophysics Data System (ADS)

    Katayama, Takeo; Ito, Jun; Kawaguchi, Hitoshi

    2016-07-01

    We investigated the optical coupling between a polarization-independent high-index-contrast subwavelength grating (HCG) and two orthogonal in-plane waveguides. We fabricated the HCG with waveguides on a silicon-on-insulator substrate and demonstrated that a waveguide with a strong output is switched by changing the polarization of light injected into the HCG. The light coupled more strongly to the waveguide in the direction perpendicular to the polarization of the incident light than to that in the parallel direction. If this waveguide-coupled HCG is incorporated into a polarization bistable vertical-cavity surface-emitting laser (VCSEL), the output waveguide can be switched by changing the lasing polarization of the VCSEL.

  1. Slow light effect analysis excited by plasmon-induced transparency in metal-dielectric-metal waveguide

    NASA Astrophysics Data System (ADS)

    Jin, Gui; Huang, Xiaoyi

    2018-02-01

    We propose and demonstrate a metal-dielectric-metal(MDM) waveguide side coupled with two stubs to realize plasmon induced transparency (PIT) effect. The dispersion relation of the structure has been plotted by solving the dispersion equation of MDM three layer structure, the transmission spectrum is investigated by coupled mode theory (CMT) and Finite Element Method (FEM) simulation, the CMT results can. The surface plasmon device can also be used as a EIT-like filter with a variable full width of half-maximum (FWHM) and highest transmission over 88%. The maximum group index ng is 42 with a group velocity of 0.023ܿ and transmission of 48%, The normalized delay-bandwidth product (NDBP) can be modulated through changing the gap width of resonators and waveguide bus, the highest is 0.641 at gap width 10 nm, and lowest is 0.246 at 30 nm. The dispersion of group velocity (GVD) changes drastically at narrow gap width and becomes more and more flat at broader gap width, this opens up an avenue for designing optical buffers, switches and modulators.

  2. Photo-induced reduction of graphene oxide coating on optical waveguide and consequent optical intermodulation

    PubMed Central

    Chong, W. Y.; Lim, W. H.; Yap, Y. K.; Lai, C. K.; De La Rue, R. M.; Ahmad, H.

    2016-01-01

    Increased absorption of transverse-magnetic (TM) - polarised light by a graphene-oxide (GO) coated polymer waveguide has been observed in the presence of transverse-electric (TE) - polarised light. The GO-coated waveguide exhibits very strong photo-absorption of TE-polarised light - and acts as a TM-pass waveguide polariser. The absorbed TE-polarised light causes a significant temperature increase in the GO film and induces thermal reduction of the GO, resulting in an increase in optical-frequency conductivity and consequently increased optical propagation loss. This behaviour in a GO-coated waveguide gives the action of an inverted optical switch/modulator. By varying the incident TE-polarised light power, a maximum modulation efficiency of 72% was measured, with application of an incident optical power level of 57 mW. The GO-coated waveguide was able to respond clearly to modulated TE-polarised light with a pulse duration of as little as 100 μs. In addition, no wavelength dependence was observed in the response of either the modulation (TE-polarised light) or the signal (TM-polarised light). PMID:27034015

  3. Design optimization of a compact photonic crystal microcavity based on slow light and dispersion engineering for the miniaturization of integrated mode-locked lasers

    NASA Astrophysics Data System (ADS)

    Kemiche, Malik; Lhuillier, Jérémy; Callard, Ségolène; Monat, Christelle

    2018-01-01

    We exploit slow light (high ng) modes in planar photonic crystals in order to design a compact cavity, which provides an attractive path towards the miniaturization of near-infrared integrated fast pulsed lasers. By applying dispersion engineering techniques, we can design structures with a low dispersion, as needed by mode-locking operation. Our basic InP SiO2 heterostructure is robust and well suited to integrated laser applications. We show that an optimized 30 μm long cavity design yields 9 frequency-equidistant modes with a FSR of 178 GHz within a 11.5 nm bandwidth, which could potentially sustain the generation of optical pulses shorter than 700 fs. In addition, the numerically calculated quality factors of these modes are all above 10,000, making them suitable for reaching laser operation. Thanks to the use of a high group index (28), this cavity design is almost one order of magnitude shorter than standard rib-waveguide based mode-locked lasers. The use of slow light modes in planar photonic crystal based cavities thus relaxes the usual constraints that tightly link the device size and the quality (peak power, repetition rate) of the pulsed laser signal.

  4. Fluorescent optical liquid level sensor

    DOEpatents

    Weiss, Jonathan D.

    2001-01-01

    A liquid level sensor comprising a transparent waveguide containing fluorescent material that is excited by light of a first wavelength and emits at a second, longer wavelength. The upper end of the waveguide is connected to a light source at the first wavelength through a beveled portion of the waveguide such that the input light is totally internally reflected within the waveguide above an air/liquid interface in a tank but is transmitted into the liquid below this interface. Light is emitted from the fluorescent material only in those portions of the waveguide that are above the air/liquid interface, to be collected at the upper end of the waveguide by a detector that is sensitive only to the second wavelength. As the interface moves down in the tank, the signal strength from the detector will increase.

  5. Optical keyboard

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veligdan, James T.; Feichtner, John D.; Phillips, Thomas E.

    2001-01-01

    An optical keyboard includes an optical panel having optical waveguides stacked together. First ends of the waveguides define an inlet face, and opposite ends thereof define a screen. A projector transmits a light beam outbound through the waveguides for display on the screen as a keyboard image. A light sensor is optically aligned with the inlet face for sensing an inbound light beam channeled through the waveguides from the screen upon covering one key of the keyboard image.

  6. Simultaneous enhancement of Chlorella vulgaris growth and lipid accumulation through the synergy effect between light and nitrate in a planar waveguide flat-plate photobioreactor.

    PubMed

    Liao, Qiang; Sun, Yahui; Huang, Yun; Xia, Ao; Fu, Qian; Zhu, Xun

    2017-11-01

    Interval between adjacent planar waveguides and light intensity emitted from waveguide surface were the primary two factors affecting light distribution characteristics in the planar waveguide flat-plate photobioreactor (PW-PBR). In this paper, the synergy effect between light and nitrate in the PW-PBR was realized to simultaneously enhance microalgae growth and lipid accumulation. Under an interval of 10mm between adjacent planar waveguides, 100% of microalgae cells in regions between adjacent waveguides could be illuminated. Chlorella vulgaris growth and lipid accumulation were synchronously elevated as light intensities emitted from planar waveguide surface increasing. With an identical initial nitrate concentration of 18mM, the maximum lipid content (41.66% in dry biomass) and lipid yield (2200.25mgL -1 ) were attained under 560μmolm -2 s -1 , which were 86.82% and 133.56% higher relative to those obtained under 160μmolm -2 s -1 , respectively. The PW-PBR provides a promising way for microalgae lipid production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Integrable microwave filter based on a photonic crystal delay line.

    PubMed

    Sancho, Juan; Bourderionnet, Jerome; Lloret, Juan; Combrié, Sylvain; Gasulla, Ivana; Xavier, Stephane; Sales, Salvador; Colman, Pierre; Lehoucq, Gaelle; Dolfi, Daniel; Capmany, José; De Rossi, Alfredo

    2012-01-01

    The availability of a tunable delay line with a chip-size footprint is a crucial step towards the full implementation of integrated microwave photonic signal processors. Achieving a large and tunable group delay on a millimetre-sized chip is not trivial. Slow light concepts are an appropriate solution, if propagation losses are kept acceptable. Here we use a low-loss 1.5 mm-long photonic crystal waveguide to demonstrate both notch and band-pass microwave filters that can be tuned over the 0-50-GHz spectral band. The waveguide is capable of generating a controllable delay with limited signal attenuation (total insertion loss below 10 dB when the delay is below 70 ps) and degradation. Owing to the very small footprint of the delay line, a fully integrated device is feasible, also featuring more complex and elaborate filter functions.

  8. Tunable plasmonic crystal

    DOEpatents

    Dyer, Gregory Conrad; Shaner, Eric A.; Reno, John L.; Aizin, Gregory

    2015-08-11

    A tunable plasmonic crystal comprises several periods in a two-dimensional electron or hole gas plasmonic medium that is both extremely subwavelength (.about..lamda./100) and tunable through the application of voltages to metal electrodes. Tuning of the plasmonic crystal band edges can be realized in materials such as semiconductors and graphene to actively control the plasmonic crystal dispersion in the terahertz and infrared spectral regions. The tunable plasmonic crystal provides a useful degree of freedom for applications in slow light devices, voltage-tunable waveguides, filters, ultra-sensitive direct and heterodyne THz detectors, and THz oscillators.

  9. An All-Dielectric Coaxial Waveguide.

    PubMed

    Ibanescu; Fink; Fan; Thomas; Joannopoulos

    2000-07-21

    An all-dielectric coaxial waveguide that can overcome problems of polarization rotation and pulse broadening in the transmission of optical light is presented here. It consists of a coaxial waveguiding region with a low index of refraction, bounded by two cylindrical, dielectric, multilayer, omnidirectional reflecting mirrors. The waveguide can be designed to support a single mode whose properties are very similar to the unique transverse electromagnetic mode of a traditional metallic coaxial cable. The new mode has radial symmetry and a point of zero dispersion. Moreover, because the light is not confined by total internal reflection, the waveguide can guide light around very sharp corners.

  10. Analysis of an optically controlled photonic switch.

    PubMed

    Attard, A E

    1999-05-20

    The principle that the coupling of light between two fiber waveguides can be controlled by the resonant interference of a third waveguide has been developed [Attard, Appl. Opt. 37, 2296-2302 (1998)]. Here significant details concerning the operation of a photonic switch are obtained, and a more complete analysis is presented. Multiple-resonant conditions are identified for slab and fiber control waveguides at large indices of refraction. Thus a selection of materials with an appropriate refractive index and a Kerr coefficient is rendered more easily. Furthermore it is shown that the light used to control the index of refraction in the control waveguide does not enter the output of the photonic switch but remains confined to the control waveguide, for either a slab or a multimode fiber control waveguide. Spatial fluctuations of the control light beam in the control waveguide do not affect the operation of the photonic switch. Tolerances have been determined for the spacing between the control waveguide and the photonic coupler and also for the index of refraction of the control waveguide.

  11. FIBER AND INTEGRATED OPTICS: Influence of diffraction-induced emission of light on resonant conversion of surface waves in diffraction-coupled optical waveguides

    NASA Astrophysics Data System (ADS)

    Kiselev, V. A.; Shaposhnikov, S. N.

    1989-09-01

    An investigation is reported of diffraction-induced emission of surface waves under conditions of resonant transfer of light between different regular and corrugated waveguides. It is shown that the part of the emitted light flux carried by surface waves along diffraction-coupled waveguides depends strongly on the ratio of the effective refractive indices of the guides. The dependences of the optical coupling length and of the corresponding emitted light flux on the distance between the waveguides and on the difference between their refractive indices are given.

  12. Arrays of strongly coupled atoms in a one-dimensional waveguide

    NASA Astrophysics Data System (ADS)

    Ruostekoski, Janne; Javanainen, Juha

    2017-09-01

    We study the cooperative optical coupling between regularly spaced atoms in a one-dimensional waveguide using decompositions to subradiant and super-radiant collective excitation eigenmodes, direct numerical solutions, and analytical transfer-matrix methods. We illustrate how the spectrum of transmitted light through the waveguide, including the emergence of narrow Fano resonances, can be understood by the resonance features of the eigenmodes. We describe a method based on super-radiant and subradiant modes to engineer the optical response of the waveguide and to store light. The stopping of light is obtained by transferring an atomic excitation to a subradiant collective mode with the zero radiative resonance linewidth by controlling the level shift of an atom in the waveguide. Moreover, we obtain an exact analytic solution for the transmitted light through the waveguide for the case of a regular lattice of atoms and provide a simple description of how the light transmission may present large resonance shifts when the lattice spacing is close, but not exactly equal, to half of the wavelength of the light. Experimental imperfections such as fluctuations of the positions of the atoms and loss of light from the waveguide are easily quantified in the numerical simulations, which produce the natural result that the optical response of the atomic array tends toward the response of a gas with random atomic positions.

  13. Light coupling for on-chip optical interconnects

    NASA Astrophysics Data System (ADS)

    Gao, Xumin; Yuan, Jialei; Yang, Yongchao; Li, Yuanhang; Cai, Wei; Li, Xin; Wang, Yongjin

    2017-12-01

    An on-chip optical interconnect of a light emitter, waveguide and photodetector based on p-n junction InGaN/GaN multiple quantum wells (MQWs) is fabricated to investigate the light coupling efficiency of suspended waveguides connecting the light emitter and photodetector. Optical characterizations indicate that the photocurrent of the photodetector is mainly induced by the emitted light that is transmitted through the waveguides. Suspended waveguides with and without air gaps are reported in this paper. A 1 mA current injection into the light emitter induces a photocurrent of 17.3 nA and 205.5 nA for the photodetector connected to the waveguides that with 10 μm air gaps and without air gaps, respectively. Finite-difference time-domain simulations are performed to analyze the gap effect on the coupling efficiency of the light transmission. Both the gap distance and the index variation of the gap materials are analyzed to verify the potential optical sensing functions of the on-chip optical interconnect. A possible strategy for increasing the light coupling efficiency is proven by simulations.

  14. Direct optical measurement of light coupling into planar waveguide by plasmonic nanoparticles.

    PubMed

    Pennanen, Antti M; Toppari, J Jussi

    2013-01-14

    Coupling of light into a thin layer of high refractive index material by plasmonic nanoparticles has been widely studied for application in photovoltaic devices, such as thin-film solar cells. In numerous studies this coupling has been investigated through measurement of e.g. quantum efficiency or photocurrent enhancement. Here we present a direct optical measurement of light coupling into a waveguide by plasmonic nanoparticles. We investigate the coupling efficiency into the guided modes within the waveguide by illuminating the surface of a sample, consisting of a glass slide coated with a high refractive index planar waveguide and plasmonic nanoparticles, while directly measuring the intensity of the light emitted out of the waveguide edge. These experiments were complemented by transmittance and reflectance measurements. We show that the light coupling is strongly affected by thin-film interference, localized surface plasmon resonances of the nanoparticles and the illumination direction (front or rear).

  15. FIBER AND INTEGRATED OPTICS: Noncollinear geometry for highly efficient excitation of a corrugated waveguide

    NASA Astrophysics Data System (ADS)

    Klimov, M. S.; Sychugov, V. A.; Tishchenko, A. V.

    1992-02-01

    An analysis is made of the process of light emission from a corrugated waveguide into air and into a substrate in a noncollinear geometry, i.e., when the direction along which the waveguide mode propagates does not coincide with the plane in which the emitted wave lies. Calculations show that when a TE mode is excited in a corrugated waveguide by a light beam with the TM polarization incident from air on the waveguide at a grazing angle, one can achieve a high waveguide excitation efficiency (~ 60%) if the waveguide mode propagates along the normal to the plane of incidence.

  16. Influence of pump-field scattering on nonclassical-light generation in a photonic-band-gap nonlinear planar waveguide

    NASA Astrophysics Data System (ADS)

    Peřina, Jan, Jr.; Sibilia, Concita; Tricca, Daniela; Bertolotti, Mario

    2005-04-01

    Optical parametric process occurring in a nonlinear planar waveguide can serve as a source of light with nonclassical properties. The properties of the generated fields are substantially modified by scattering of the nonlinearly interacting fields in a photonic-band-gap structure inside the waveguide. A general quantum model of linear operator amplitude corrections to the amplitude mean values and its numerical analysis provide conditions for efficient squeezed-light generation as well as generation of light with sub-Poissonian photon-number statistics. The destructive influence of phase mismatch of the nonlinear interaction can fully be compensated using a suitable photonic-band-gap structure inside the waveguide. Also an increase of the signal-to-noise ratio of the incident optical field can be reached in the waveguide.

  17. Nonlinear digital out-of-plane waveguide coupler based on nonlinear scattering of a single graphene layer

    NASA Astrophysics Data System (ADS)

    Asadi, Reza; Ouyang, Zhengbiao

    2018-03-01

    A new mechanism for out-of-plane coupling into a waveguide is presented and numerically studied based on nonlinear scattering of a single nano-scale Graphene layer inside the waveguide. In this mechanism, the refractive index nonlinearity of Graphene and nonhomogeneous light intensity distribution occurred due to the interference between the out-of-plane incident pump light and the waveguide mode provide a virtual grating inside the waveguide, coupling the out-of-plane pump light into the waveguide. It has been shown that the coupling efficiency has two distinct values with high contrast around a threshold pump intensity, providing suitable condition for digital optical applications. The structure operates at a resonance mode due to band edge effect, which enhances the nonlinearity and decreases the required threshold intensity.

  18. Design of an ultra-thin near-eye display with geometrical waveguide and freeform optics.

    PubMed

    Cheng, Dewen; Wang, Yongtian; Xu, Chen; Song, Weitao; Jin, Guofan

    2014-08-25

    Small thickness and light weight are two important requirements for a see-through near-eye display which are achieved in this paper by using two advanced technologies: geometrical waveguide and freeform optics. A major problem associated with the geometrical waveguide is the stray light which can severely degrade the display quality. The causes and solutions to this problem are thoroughly studied. A mathematical model of the waveguide is established and a non-sequential ray tracing algorithm is developed, which enable us to carefully examine the stray light of the planar waveguide and explore a global searching method to find an optimum design with the least amount of stray light. A projection optics using freeform surfaces on a wedge shaped prism is also designed. The near-eye display integrating the projection optics and the waveguide has a field of view of 28°, an exit pupil diameter of 9.6mm and an exit pupil distance of 20mm. In our final design, the proportion of the stray light energy over the image output energy of the waveguide is reduced to 2%, the modulation transfer function values across the entire field of the eyepiece are above 0.5 at 30 line pairs/mm (lps/mm). A proof-of-concept prototype of the proposed geometrical waveguide near-eye display is developed and demonstrated.

  19. Polarization Dependent Whispering Gallery Modes in Microspheres

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory (Inventor); Wrbanek, Susan Y. (Inventor)

    2016-01-01

    A tunable resonant system is provided and includes a microsphere that receives an incident portion of a light beam generated via a light source, the light beam having a fundamental mode, a waveguide medium that transmits the light beam from the light source to the microsphere, and a polarizer disposed in a path of the waveguide between the light source and the microsphere. The incident portion of the light beam creates a fundamental resonance inside the microsphere. A change in a normalized frequency of the wavelength creates a secondary mode in the waveguide and the secondary mode creates a secondary resonance inside the microsphere.

  20. Photo-induced micro-mechanical optical switch

    DOEpatents

    Rajic, Slobodan; Datskos, Panagiotis George; Egert, Charles M.

    2002-01-01

    An optical switch is formed by introducing light lengthwise to a microcantilever waveguide directed toward a second waveguide. The microcantilever is caused to bend by light emitted from a laser diode orthogonal to the microcantilever and at an energy above the band gap, which induces stress as a result of the generation of free carriers. The bending of the waveguide directs the carrier frequency light to a second receptor waveguide or to a non-responsive surface. The switch may be combined in an array to perform multiple switching functions rapidly and at low energy losses.

  1. FIBER AND INTEGRATED OPTICS: Propagation of radiation in a light-induced active waveguide

    NASA Astrophysics Data System (ADS)

    Afanas'ev, Anatolii A.; Samson, B. A.; Drits, V. V.; Yukhimenko, S. I.; Yakite, R. V.

    1990-10-01

    An investigation is reported of the properties of the normal modes of an active light-induced waveguide. It is shown that, in contrast to a dielectric waveguide, the presence of the active component may increase considerably the number of the normal modes and the angles of their scattering. In the case of an active light-induced waveguide in the form of a thin filament the normal modes exist and are amplified only in the case when the nonlinear correction to the refractive index is positive.

  2. InGaN directional coupler made with a one-step etching technique

    NASA Astrophysics Data System (ADS)

    Gao, Xumin; Yuan, Jialei; Yang, Yongchao; Zhang, Shuai; Shi, Zheng; Li, Xin; Wang, Yongjin

    2017-06-01

    We propose, fabricate and characterize an on-chip integration of light source, InGaN waveguide, directional coupler and photodiode, in which AlGaN layers are used as top and bottom optical claddings to form an InGaN waveguide for guiding the in-plane emitted light from the InGaN/GaN multiple-quantum-well light-emitting diode (MQW-LED). The difference in etch rate caused by different exposure windows leads to an etching depth discrepancy using the one-step etching technique, which forms the InGaN directional coupler with the overlapped underlying slab. Light propagation results directly confirm effective light coupling in the InGaN directional coupler, which is achieved through high-order guided modes. The InGaN waveguide couples the modulated light from the InGaN/GaN MQW-LED and transfers part of light to the coupled waveguide via the InGaN directional coupler. The in-plane InGaN/GaN MQW-photodiode absorbs the guided light by the coupled InGaN waveguide and induces the photocurrent. The on-chip InGaN photonic integration experimentally demonstrates an in-plane light communication with a data transmission of 50 Mbps.

  3. Metal-clad waveguide characterization for contact-based light transmission into tissue

    NASA Astrophysics Data System (ADS)

    Chininis, Jeffrey; Whiteside, Paul; Hunt, Heather K.

    2016-02-01

    As contemporary laser dermatology procedures, like tattoo removal and skin resurfacing, become more popular, the complications of their operation are also becoming more prevalent. Frequent incidences of over-exposure, ocular injury, and excessive thermal damage represent mounting concerns for those seeking such procedures; moreover, each of these problems is a direct consequence of the standard, free-space method of laser transmission predominantly used in clinical settings. Therefore, an alternative method of light transmission is needed to minimize these problems. Here, we demonstrate and characterize an alternative method that uses planar waveguides to deliver light into sample tissue via direct contact. To do this, slab substrates made from glass were clad in layers of titanium and silver, constraining the light within the waveguide along the waveguide's length. By creating active areas on the waveguide surface, the propagating light could then optically tunnel into the tissue sample, when the waveguide was brought into contact with the tissue. SEM and EDS were used to characterize the metal film thickness and deposition rates onto the glass substrates. Laser light from a Q-switched Nd:YAG source operating at 532nm was coupled into the waveguide and transmitted into samples of pig skin. The amount of light transmitted was measured using photoacoustics techniques, in conjunction with a photodiode and integrating sphere. Transmitting light into tissue in this manner effectively resolves or circumvents the complications caused by free-space propagation methods as it reduces the operating distance to 0, which prevents hazardous back-reflections and allows for the ready incorporation of contact cooling technologies.

  4. INTEGRATED AND FIBER OPTICS: Anomalous reflection of light from the surface of an amplifying corrugated waveguide

    NASA Astrophysics Data System (ADS)

    Avrutskiĭ, I. A.; Sychugov, V. A.

    1989-02-01

    The problem of reflection of light from the surface of an amplifying corrugated waveguide is solved. An increase in the waveguide gain increases considerably the reflection coefficient and reduces the spectral width of the reflection peak.

  5. Multisite silicon neural probes with integrated silicon nitride waveguides and gratings for optogenetic applications.

    PubMed

    Shim, Euijae; Chen, Yu; Masmanidis, Sotiris; Li, Mo

    2016-03-04

    Optimal optogenetic perturbation of brain circuit activity often requires light delivery in a precise spatial pattern that cannot be achieved with conventional optical fibers. We demonstrate an implantable silicon-based probe with a compact light delivery system, consisting of silicon nitride waveguides and grating couplers for out-of-plane light emission with high spatial resolution. 473 nm light is coupled into and guided in cm-long waveguide and emitted at the output grating coupler. Using the direct cut-back and out-scattering measurement techniques, the propagation optical loss of the waveguide is measured to be below 3 dB/cm. The grating couplers provide collimated light emission with sufficient irradiance for neural stimulation. Finally, a probe with multisite light delivery with three output grating emitters from a single laser input is demonstrated.

  6. Perspective: Photonic flatbands

    NASA Astrophysics Data System (ADS)

    Leykam, Daniel; Flach, Sergej

    2018-07-01

    Flatbands are receiving increasing theoretical and experimental attention in the field of photonics, in particular in the field of photonic lattices. Flatband photonic lattices consist of arrays of coupled waveguides or resonators where the peculiar lattice geometry results in at least one completely flat or dispersionless band in its photonic band structure. Although bearing a strong resemblance to structural slow light, this independent research direction is instead inspired by analogies with "frustrated" condensed matter systems. In this Perspective, we critically analyze the research carried out to date, discuss how this exotic physics may lead to novel photonic device applications, and chart promising future directions in theory and experiment.

  7. Robust flow of light in three-dimensional dielectric photonic crystals.

    PubMed

    Chen, Wen-Jie; Jiang, Shao-Ji; Dong, Jian-Wen

    2013-09-01

    Chiral defect waveguides and waveguide bend geometry were designed in diamond photonic crystal to mold the flow of light in three dimensions. Propagations of electromagnetic waves in chiral waveguides are robust against isotropic obstacles, which would suppress backscattering in waveguides or integrated devices. Finite-difference time-domain simulations demonstrate that high coupling efficiency through the bend corner is preserved in the polarization gap, as it provides an additional constraint on the polarization state of the backscattered wave. Transport robustness is also demonstrated by inserting two metallic slabs into the waveguide bend.

  8. Enhancement and inhibition of light tunneling mediated by resonant mode conversion.

    PubMed

    Kartashov, Yaroslav V; Vysloukh, Victor A; Torner, Lluis

    2014-02-15

    We show that the rate at which light tunnels between neighboring multimode waveguides can be drastically increased or reduced by the presence of small longitudinal periodic modulations of the waveguide properties that stimulate resonant conversion between the eigenmodes of each waveguide. Such a conversion, available only in multimode guiding structures, leads to periodic power transfer into higher-order modes, whose tails may considerably overlap with neighboring waveguides. As a result, the effective coupling constant for neighboring waveguides may change by several orders of magnitude upon small variations in the longitudinal modulation parameters.

  9. Glass light pipes for solar concentration

    NASA Astrophysics Data System (ADS)

    Madsen, C. K.; Dogan, Y.; Morrison, M.; Hu, C.; Atkins, R.

    2018-02-01

    Glass waveguides are fabricated using laser processing techniques that have low optical loss with >90% optical throughput. Advanced light pipes are demonstrated, including angled facets for turning mirrors used for lens-to-light pipe coupling, tapers that increase the concentration, and couplers for combining the outputs from multiple lens array elements. Because they are fabricated from glass, these light pipes can support large optical concentrations and propagate broadband solar over long distances with minimal loss and degradation compared to polymer waveguides. Applications include waveguiding solar concentrators using multi-junction PV cells, solar thermal applications and remoting solar energy, such as for daylighting. Ray trace simulations are used to estimate the surface smoothness required to achieve low loss. Optical measurements for fabricated light pipes are reported for use in waveguiding solar concentrator architectures.

  10. Simultaneous quasi-one-dimensional propagation and tuning of upconversion luminescence through waveguide effect

    PubMed Central

    Gao, Dangli; Tian, Dongping; Zhang, Xiangyu; Gao, Wei

    2016-01-01

    Luminescence-based waveguide is widely investigated as a promising alternative to conquer the difficulties of efficiently coupling light into a waveguide. But applications have been still limited due to employing blue or ultraviolet light as excitation source with the lower penetration depth leading to a weak guided light. Here, we show a quasi-one-dimensional propagation of luminescence and then resulting in a strong luminescence output from the top end of a single NaYF4:Yb3+/Er3+ microtube under near infrared light excitation. The mechanism of upconversion propagation, based on the optical waveguide effect accompanied with energy migration, is proposed. The efficiency of luminescence output is highly dependent on the concentration of dopant ions, excitation power, morphology, and crystallinity of tube as an indirect evidence of the existence of the optical actived waveguide effect. These findings provide the possibility for the construction of upconversion fiber laser. PMID:26926491

  11. Monolithic photonic integrated circuit with a GaN-based bent waveguide

    NASA Astrophysics Data System (ADS)

    Cai, Wei; Qin, Chuan; Zhang, Shuai; Yuan, Jialei; Zhang, Fenghua; Wang, Yongjin

    2018-06-01

    Integration of a transmitter, waveguide and receiver into a single chip can generate a multicomponent system with multiple functionalities. Here, we fabricate and characterize a GaN-based photonic integrated circuit (PIC) on a GaN-on-silicon platform. With removal of the silicon and back wafer thinning of the epitaxial film, ultrathin membrane-type devices and highly confined suspended GaN waveguides were formed. Two suspended-membrane InGaN/GaN multiple-quantum-well diodes (MQW-diodes) served as an MQW light-emitting diode (MQW-LED) to emit light and an MQW photodiode (MQW-PD) to sense light. The optical interconnects between the MQW-LED and MQW-PD were achieved using the GaN bent waveguide. The GaN-based PIC consisting of an MQW-LED, waveguides and an MQW-PD forms an in-plane light communication system with a data transmission rate of 70 Mbps.

  12. High voltage photo switch package module

    DOEpatents

    Sullivan, James S; Sanders, David M; Hawkins, Steven A; Sampayan, Stephen E

    2014-02-18

    A photo-conductive switch package module having a photo-conductive substrate or wafer with opposing electrode-interface surfaces, and at least one light-input surface. First metallic layers are formed on the electrode-interface surfaces, and one or more optical waveguides having input and output ends are bonded to the substrate so that the output end of each waveguide is bonded to a corresponding one of the light-input surfaces of the photo-conductive substrate. This forms a waveguide-substrate interface for coupling light into the photo-conductive wafer. A dielectric material such as epoxy is then used to encapsulate the photo-conductive substrate and optical waveguide so that only the metallic layers and the input end of the optical waveguide are exposed. Second metallic layers are then formed on the first metallic layers so that the waveguide-substrate interface is positioned under the second metallic layers.

  13. Photocatalytic oxidation of organic compounds via waveguide-supported titanium dioxide films

    NASA Astrophysics Data System (ADS)

    Miller, Lawrence W.

    A photochemical reactor based on titanium dioxide (TiO2)-coated silica optical fibers was constructed to explore the use of waveguide-supported TiO2 films for photocatalytic oxidation of organic compounds. The reactor was used for the photocatalytic oxidation of 4-chlorophenol in water. It was confirmed that TiO2 films could be securely attached to silica optical fibers. The 4-chlorophenol (100 mumol/L in water) was successfully oxidized on the TiO2 surface when UV light (310 nm--380 nm) was propagated through the fibers to the films. Rates of 4-chlorophenol oxidation and UV light flux to the fibers were measured. The quantum efficiency of 4-chlorophenol oxidation [defined as the change in 4-chlorophenol concentration divided by the UV light absorbed by the catalyst] was determined as a function of TiO2 catalyst film thickness and internal incident angle of propagating UV light. A maximum quantum efficiency of 2.8% was measured when TiO2 film thickness was ca. 80 nm and the maximum internal incident angle of propagating light was 84°. Quantum efficiency increased with increasing internal angle of incidence of propagating light and decreased with TiO2 film thickness. UV-Visible internal reflection spectroscopy was used to determine whether UV light propagated through TiO2-coated silica waveguides in an ATR mode. Propagation of UV light in an ATR mode was confirmed by the similarities between internal reflection spectra of phenolphthalein obtained with uncoated and TiO2-coated silica crystals. Planar silica waveguides coated with TiO2 were employed in a photocatalytic reactor for the oxidation of formic acid (833 mumol/L in water). It was shown that the quantum yield of formic acid oxidation [defined as the moles of formic acid oxidized divided by the moles of UV photons absorbed by the catalyst] on the waveguide-supported TiO2 surface is enhanced when UV light propagates through the waveguides in an ATR mode. A maximum quantum yield of 3.9% was found for formic acid oxidation on silica waveguides. The waveguides were coated with 150 nm of TiO2 and activated with UV light (lambdamax = 360 nm) propagating through the waveguides at an internal incident angle of 68°.

  14. GaN-based integrated photonics chip with suspended LED and waveguide

    NASA Astrophysics Data System (ADS)

    Li, Xin; Wang, Yongjin; Hane, Kazuhiro; Shi, Zheng; Yan, Jiang

    2018-05-01

    We propose a GaN-based integrated photonics chip with suspended LED and straight waveguide with different geometric parameters. The integrated photonics chip is prepared by double-side process. Light transmission performance of the integrated chip verse current is quantitatively analyzed by capturing light transmitted to waveguide tip and BPM (beam propagation method) simulation. Reduction of the waveguide width from 8 μm to 4 μm results in an over linear reduction of the light output power while a doubling of the length from 250 μm to 500 μm only results in under linear decrease of the output power. Free-space data transmission with 80 Mbps random binary sequence of the integrated chip is capable of achieving high speed data transmission via visible light. This study provides a potential approach for GaN-based integrated photonics chip as micro light source and passive optical device in VLC (visible light communication).

  15. Aqueous carrier waveguide in a flow cytometer

    DOEpatents

    Mariella, Jr., Raymond P.; van den Engh, Gerrit; Northrup, M. Allen

    1995-01-01

    The liquid of a flow cytometer itself acts as an optical waveguide, thus transmitting the light to an optical filter/detector combination. This alternative apparatus and method for detecting scattered light in a flow cytometer is provided by a device which views and detects the light trapped within the optical waveguide formed by the flow stream. A fiber optic or other light collecting device is positioned within the flow stream. This provides enormous advantages over the standard light collection technique which uses a microscope objective. The signal-to-noise ratio is greatly increased over that for right-angle-scattered light collected by a microscope objective, and the alignment requirements are simplified.

  16. Rectification of light refraction in curved waveguide arrays.

    PubMed

    Longhi, Stefano

    2009-02-15

    An "optical ratchet" for discretized light in photonic lattices, which enables observing rectification of light refraction at any input beam conditions, is theoretically presented, and a possible experimental implementation based on periodically curved zigzag waveguide arrays is proposed.

  17. Unidirectional ring lasers

    DOEpatents

    Hohimer, John P.; Craft, David C.

    1994-01-01

    Unidirectional ring lasers formed by integrating nonreciprocal optical elements into the resonant ring cavity. These optical elements either attenuate light traveling in a nonpreferred direction or amplify light traveling in a preferred direction. In one preferred embodiment the resonant cavity takes the form of a circle with an S-shaped crossover waveguide connected to two points on the interior of the cavity such that light traveling in a nonpreferred direction is diverted from the cavity into the crossover waveguide and reinjected out of the other end of the crossover waveguide into the cavity as light traveling in the preferred direction.

  18. Interactive optical panel

    DOEpatents

    Veligdan, J.T.

    1995-10-03

    An interactive optical panel assembly includes an optical panel having a plurality of ribbon optical waveguides stacked together with opposite ends thereof defining panel first and second faces. A light source provides an image beam to the panel first face for being channeled through the waveguides and emitted from the panel second face in the form of a viewable light image. A remote device produces a response beam over a discrete selection area of the panel second face for being channeled through at least one of the waveguides toward the panel first face. A light sensor is disposed across a plurality of the waveguides for detecting the response beam therein for providing interactive capability. 10 figs.

  19. Simultaneous light emission and detection of InGaN/GaN multiple quantum well diodes for in-plane visible light communication

    NASA Astrophysics Data System (ADS)

    Wang, Yongjin; Xu, Yin; Yang, Yongchao; Gao, Xumin; Zhu, Bingcheng; Cai, Wei; Yuan, Jialei; Zhang, Rong; Zhu, Hongbo

    2017-03-01

    This paper presents the design, fabrication, and experimental characterization of monolithically integrated p-n junction InGaN/GaN multiple quantum well diodes (MQWDs) and suspended waveguides. Suspended MQWDs can be used as transmitters and receivers simultaneously, and suspended waveguides are used for light coupling to create an in-plane visible light communication system. Compared to the waveguide with separation trench, the calculated total light efficiency is increased from 18% to 22% for the continuous waveguide. The MQWDs are characterized by their typical current-voltage performance, and the pulse excitation measurements confirm that the InGaN/GaN MQWDs can achieve the light emission and photodetection at the same time. The photocurrent measurements indicate that the photocurrent is modulated by a bias voltage and that the photons are being supplied from another transmitter. An experimental demonstration is presented showing that the proposed device works well for in-plane full-duplex communication using visible light.

  20. Pump dependence of the dynamics of quantum dot based waveguide absorbers

    NASA Astrophysics Data System (ADS)

    Viktorov, Evgeny A.; Erneux, Thomas; Piwonski, Tomasz; Pulka, Jaroslaw; Huyet, Guillaume; Houlihan, John

    2012-06-01

    The nonlinear two stage recovery of quantum dot based reverse-biased waveguide absorbers is investigated experimentally and analytically as a function of the initial ground state occupation probability of the dot. The latter is controlled experimentally by the pump pulse power. The slow stage of the recovery is exponential and its basic timescale is independent of pump power. The fast stage of the recovery is a logistic function which we analyze in detail. The relative strength of slow to fast components is highlighted and the importance of higher order absorption processes at the highest pump level is demonstrated.

  1. Synthetic Engineering of Spider Silk Fiber as Implantable Optical Waveguides for Low-Loss Light Guiding.

    PubMed

    Qiao, Xin; Qian, Zhigang; Li, Junjie; Sun, Hongji; Han, Yao; Xia, Xiaoxia; Zhou, Jin; Wang, Chunlan; Wang, Yan; Wang, Changyong

    2017-05-03

    A variety of devices used for biomedical engineering have been fabricated using protein polymer because of their excellent properties, such as strength, toughness, biocompatibility, and biodegradability. In this study, we fabricated an optical waveguide using genetically engineered spider silk protein. This method has two significant advantages: (1) recombinant spider silk optical waveguide exhibits excellent optical and biological properties and (2) biosynthesis of spider silk protein can overcome the limitation to the research on spider silk optical waveguide due to the low yield of natural spider silk. In detail, two kinds of protein-based optical waveguides made from recombinant spider silk protein and regenerative silkworm silk protein were successfully prepared. Results suggested that the recombinant spider silk optical waveguide showed a smoother surface and a higher refractive index when compared with regenerative silkworm silk protein. The optical loss of recombinant spider silk optical waveguide was 0.8 ± 0.1 dB/cm in air and 1.9 ± 0.3 dB/cm in mouse muscles, which were significantly lower than those of regenerative silkworm silk optical waveguide. Moreover, recombinant spider silk optical waveguide can meet the demand to guide and efficiently deliver light through biological tissue. In addition, recombinant spider silk optical waveguide showed low toxicity to cells in vitro and low-level inflammatory reaction with surrounding tissue in vivo. Therefore, recombinant spider silk optical waveguide is a promising implantable device to guide and deliver light with low loss.

  2. [Optical Design of Miniature Infrared Gratings Spectrometer Based on Planar Waveguide].

    PubMed

    Li, Yang-yu; Fang, Yong-hua; Li, Da-cheng; Liu, Yang

    2015-03-01

    In order to miniaturize an infrared spectrometer, we analyze the current optical design of miniature spectrometers and propose a method for designing a miniature infrared gratings spectrometer based on planar waveguide. Common miniature spectrometer uses miniature optical elements to reduce the size of system, which also shrinks the effective aperture. So the performance of spectrometer has dropped. Miniaturization principle of planar waveguide spectrometer is different from the principle of common miniature spectrometer. In planar waveguide spectrometer, the propagation of light is limited in a thin planar waveguide, which looks like the whole optical system is squashed flat. In the direction parallel to the planar waveguide, the light through the slit is collimated, dispersed and focused. And a spectral image is formed in the detector plane. This propagation of light is similar to the light in common miniature spectrometer. In the direction perpendicular to the planar waveguide, light is multiple reflected by the upper and lower surfaces of the planar waveguide and propagates in the waveguide. So the size of corresponding optical element could be very small in the vertical direction, which can reduce the size of the optical system. And the performance of the spectrometer is still good. The design method of the planar waveguide spectrometer can be separated into two parts, Czerny-Turner structure design and planar waveguide structure design. First, by using aberration theory an aberration-corrected (spherical aberration, coma, focal curve) Czerny-Turner structure is obtained. The operation wavelength range and spectral resolution are also fixed. Then, by using geometrical optics theory a planar waveguide structure is designed for reducing the system size and correcting the astigmatism. The planar waveguide structure includes a planar waveguide and two cylindrical lenses. Finally, they are modeled together in optical design software and are optimized as a whole. An infrared planar waveguide spectrometer is designed using this method. The operation wavelength range is 8 - 12 μm, the numerical aperture is 0.22, and the linear array detector contains 64 elements. By using Zemax software, the design is optimized and analyzed. The results indicate that the size of the optical system is 130 mm x 125 mm x 20 mm and the spectral resolution of spectrometer is 80 nm, which satisfy the requirements of design index. Thus it is this method that can be used for designing a miniature spectrometer without movable parts and sizes in the range of several cubic centimeters.

  3. Non-mechanical beam steering in the mid-wave infrared

    NASA Astrophysics Data System (ADS)

    Frantz, Jesse A.; Myers, Jason D.; Bekele, Robel Y.; Spillmann, Christopher M.; Naciri, Jawad; Kolacz, Jakub S.; Gotjen, Henry; Shaw, Leslie B.; Sanghera, Jasbinder S.; Sodergren, Bennett; Wang, Ying-Ju; Rommel, Scott D.; Anderson, Mike; Davis, Scott R.; Ziemkiewicz, Michael

    2017-05-01

    The mid-wave infrared (MWIR) portion of the electromagnetic spectrum is critically important for a variety of applications such as LIDAR and chemical sensing. Concerning the latter, the MWIR is often referred to as the "molecular fingerprint" region owing to the fact that many molecules display distinctive vibrational absorptions in this region, making it useful for gas detection. To date, steering MWIR radiation typically required the use of mechanical devices such as gimbals, which are bulky, slow, power-hungry, and subject to mechanical failure. We present the first non-mechanical beam steerer capable of continuous angular tuning in the MWIR. These devices, based on refractive, electro-optic waveguides, provide angular steering in two dimensions without relying on moving parts. Previous work has demonstrated non-mechanical beam steering (NMBS) in the short-wave infrared (SWIR) and near infrared (NIR) using a waveguide in which a portion of the propagating light is evanescently coupled to a liquid crystal (LC) layer in which the refractive index is voltage-tuned. We have extended this NMBS technology into the MWIR by employing chalcogenide glass waveguides and LC materials that exhibit high MWIR transparency. As a result, we have observed continuous, 2D MWIR steering for the first time with a magnitude of 2.74° in-plane and 0.3° out-of-plane.

  4. Aqueous carrier waveguide in a flow cytometer

    DOEpatents

    Mariella, R.P. Jr.; Engh, G. van den; Northrup, M.A.

    1995-12-12

    The liquid of a flow cytometer itself acts as an optical waveguide, thus transmitting the light to an optical filter/detector combination. This alternative apparatus and method for detecting scattered light in a flow cytometer is provided by a device which views and detects the light trapped within the optical waveguide formed by the flow stream. A fiber optic or other light collecting device is positioned within the flow stream. This provides enormous advantages over the standard light collection technique which uses a microscope objective. The signal-to-noise ratio is greatly increased over that for right-angle-scattered light collected by a microscope objective, and the alignment requirements are simplified. 6 figs.

  5. Low loss hollow-core waveguide on a silicon substrate

    NASA Astrophysics Data System (ADS)

    Yang, Weijian; Ferrara, James; Grutter, Karen; Yeh, Anthony; Chase, Chris; Yue, Yang; Willner, Alan E.; Wu, Ming C.; Chang-Hasnain, Connie J.

    2012-07-01

    Optical-fiber-based, hollow-core waveguides (HCWs) have opened up many new applications in laser surgery, gas sensors, and non-linear optics. Chip-scale HCWs are desirable because they are compact, light-weight and can be integrated with other devices into systems-on-a-chip. However, their progress has been hindered by the lack of a low loss waveguide architecture. Here, a completely new waveguiding concept is demonstrated using two planar, parallel, silicon-on-insulator wafers with high-contrast subwavelength gratings to reflect light in-between. We report a record low optical loss of 0.37 dB/cm for a 9-μm waveguide, mode-matched to a single mode fiber. Two-dimensional light confinement is experimentally realized without sidewalls in the HCWs, which is promising for ultrafast sensing response with nearly instantaneous flow of gases or fluids. This unique waveguide geometry establishes an entirely new scheme for low-cost chip-scale sensor arrays and lab-on-a-chip applications.

  6. INTEGRATED AND FIBER OPTICS: Unidirectional coupling of radiation out of a composite dielectric waveguide

    NASA Astrophysics Data System (ADS)

    Avrutskiĭ, I. A.; Sychugov, V. A.; Tishchenko, A. V.; Svakhin, A. S.

    1989-02-01

    An analysis is made of the emission of light from a composite system representing a thin film on the surface of a corrugated diffused waveguide. Expressions are obtained for the radiative light losses in this waveguide. There is no emission of light into the substrate for certain relationships between the amplitudes and phases of the corrugations at the interfaces between the film and the adjoining medium and between the film and the waveguide. Numerical estimates of the losses are obtained for a case of practical importance, which is a corrugated diffused waveguide in glass with a film of Nb2O5 on the surface. A report is given of an experiment in which a grating was formed for coupling radiation out of a composite Cs+-diffused waveguide coated by a film of Nb2O5, which was capable of preferential (80%) emission of radiation into air, and in the presence of an immersion liquid ensured practically unidirectional coupling out of radiation into air.

  7. Vertically-tapered optical waveguide and optical spot transformer formed therefrom

    DOEpatents

    Bakke, Thor; Sullivan, Charles T.

    2004-07-27

    An optical waveguide is disclosed in which a section of the waveguide core is vertically tapered during formation by spin coating by controlling the width of an underlying mesa structure. The optical waveguide can be formed from spin-coatable materials such as polymers, sol-gels and spin-on glasses. The vertically-tapered waveguide section can be used to provide a vertical expansion of an optical mode of light within the optical waveguide. A laterally-tapered section can be added adjacent to the vertically-tapered section to provide for a lateral expansion of the optical mode, thereby forming an optical spot-size transformer for efficient coupling of light between the optical waveguide and a single-mode optical fiber. Such a spot-size transformer can also be added to a III-V semiconductor device by post processing.

  8. Study on W-band sheet-beam traveling-wave tube based on flat-roofed sine waveguide

    NASA Astrophysics Data System (ADS)

    Fang, Shuanzhu; Xu, Jin; Jiang, Xuebing; Lei, Xia; Wu, Gangxiong; Li, Qian; Ding, Chong; Yu, Xiang; Wang, Wenxiang; Gong, Yubin; Wei, Yanyu

    2018-05-01

    A W-band sheet electron beam (SEB) traveling-wave tube (TWT) based on flat-roofed sine waveguide slow-wave structure (FRSWG-SWS) is proposed. The sine wave of the metal grating is replaced by a flat-roofed sine wave around the electron beam tunnel. The slow-wave characteristics including the dispersion properties and interaction impedance have been investigated by using the eigenmode solver in the 3-D electromagnetic simulation software Ansoft HFSS. Through calculations, the FRSWG SWS possesses the larger average interaction impedance than the conventional sine waveguide (SWG) SWS in the frequency range of 86-110 GHz. The beam-wave interaction was studied and particle-in-cell simulation results show that the SEB TWT can produce output power over 120 W within the bandwidth ranging from 90 to 100 GHz, and the maximum output power is 226 W at typical frequency 94 GHz, corresponding electron efficiency of 5.89%.

  9. Unidirectional ring lasers

    DOEpatents

    Hohimer, J.P.; Craft, D.C.

    1994-09-20

    Unidirectional ring lasers formed by integrating nonreciprocal optical elements into the resonant ring cavity is disclosed. These optical elements either attenuate light traveling in a nonpreferred direction or amplify light traveling in a preferred direction. In one preferred embodiment the resonant cavity takes the form of a circle with an S-shaped crossover waveguide connected to two points on the interior of the cavity such that light traveling in a nonpreferred direction is diverted from the cavity into the crossover waveguide and reinjected out of the other end of the crossover waveguide into the cavity as light traveling in the preferred direction. 21 figs.

  10. Extraction film for optical waveguide and method of producing same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarsa, Eric J.; Durkee, John W.

    2017-05-16

    An optical waveguide includes a waveguide body and a film disposed on a surface of the waveguide body. The film includes a base and a plurality of undercut light extraction elements disposed between the base and the surface.

  11. Integrated optical components in thin films of polymers

    NASA Technical Reports Server (NTRS)

    Sarkisov, Sergey; Abdeldayem, Hossin; Venkateswarlu, Putcha; Teague, Zedric

    1995-01-01

    The results will be reported on the study of integrated optical components based on nonlinear optical polymeric films. Polymers poly(methyl methacrylate) (PMMA) and polyimide (PI) doped with organic laser dyes 4-dicyanomethylene-2-methyl-6-p dimethylaminostyryl-4H pyran (DCM) and 1, 3, 5, 7, 8 - pentamethyl-2,6 -diethyl-pyrromethene -BF2-complex (Pyrommethene 567, PM-567) were selected as materials for light guiding films. Additionally, UV polymerized polydiacetylene (PDA) on glass substrate was used as a waveguide material. Optical waveguides were fabricated using spin coating of preoxidized silicon wafers (1.5 micrometer silicon oxide layer) with organic dye/polymer solution followed by soft baking. the modes in slab waveguides were studied using prism coupling techniques. Measured values of mode coupling angles in multimode waveguides were used to calculate film thickness and refractive index for different polarizations. Refractive index anisotropy was found in PDA waveguide. The optimal conditions of spin coating for single mode waveguide fabrication were estimated. Propagation losses were measured by collecting the light scattered from the trace of a propagating mode either by scanning photo detector or by CCD camera. Different types of light coupling techniques were used including end-dire coupling, prism and grating coupling. Mechanical printing technique was developed for coupling grating fabrication resulting in gratings with 4% diffraction efficiency. The gratings demonstrated good stability with diffraction efficiency relaxation rate 2.4 dB/hour at a temperature approximately 15-20 C below glass transition point. Dye doped waveguides were transversally pumped with frequency doubled Nd:YAG Q-switched laser producing intensive light emission with apparent 6 kW/sq cm pump threshold and spectrum narrowing near 617 nm peak in the case of DCM doped waveguide. PM-567 doped waveguide pumped with CW Ar(+) laser (514 nm wavelength) far below threshold (0.1 W/sq.cm pump power) demonstrated emission spectrum narrowing near 616 nm peak with 18% power conversion slope efficiency. In this case emission spectrum modification was caused by the enhanced light absorption along the direction of propagating waveguide modes. Changing length, thickness, and other morphlogical waveguide parameters one can modify emission spectrum in predictable direction. The results show that polymeric waveguides, especially based on high temperature polymers such as Pl, can be used to produce a varietiy of active and passive silicon compatible integrated optical components for aerospace applications.

  12. Polydimethylsiloxane-based optical waveguides for tetherless powering of floating microstimulators

    NASA Astrophysics Data System (ADS)

    Ersen, Ali; Sahin, Mesut

    2017-05-01

    Neural electrodes and associated electronics are powered either through percutaneous wires or transcutaneous powering schemes with energy harvesting devices implanted underneath the skin. For electrodes implanted in the spinal cord and the brain stem that experience large displacements, wireless powering may be an option to eliminate device failure by the breakage of wires and the tethering of forces on the electrodes. We tested the feasibility of using optically clear polydimethylsiloxane (PDMS) as a waveguide to collect the light in a subcutaneous location and deliver to deeper regions inside the body, thereby replacing brittle metal wires tethered to the electrodes with PDMS-based optical waveguides that can transmit energy without being attached to the targeted electrode. We determined the attenuation of light along the PDMS waveguides as 0.36±0.03 dB/cm and the transcutaneous light collection efficiency of cylindrical waveguides as 44%±11% by transmitting a laser beam through the thenar skin of human hands. We then implanted the waveguides in rats for a month to demonstrate the feasibility of optical transmission. The collection efficiency and longitudinal attenuation values reported here can help others design their own waveguides and make estimations of the waveguide cross-sectional area required to deliver sufficient power to a certain depth in tissue.

  13. Waveguide-based optical chemical sensor

    DOEpatents

    Grace, Karen M [Ranchos de Taos, NM; Swanson, Basil I [Los Alamos, NM; Honkanen, Seppo [Tucson, AZ

    2007-03-13

    The invention provides an apparatus and method for highly selective and sensitive chemical sensing. Two modes of laser light are transmitted through a waveguide, refracted by a thin film host reagent coating on the waveguide, and analyzed in a phase sensitive detector for changes in effective refractive index. Sensor specificity is based on the particular species selective thin films of host reagents which are attached to the surface of the planar optical waveguide. The thin film of host reagents refracts laser light at different refractive indices according to what species are forming inclusion complexes with the host reagents.

  14. Characterization of light-control-light system using graphene oxide coated optical waveguide

    NASA Astrophysics Data System (ADS)

    Ahmad, Harith; Soltani, Soroush; Faizal Ismail, Mohammad; Thambiratnam, Kavintheran; Yi, Chong Wu; Yasin, Moh

    2018-07-01

    An optical waveguide was coated with graphene oxide (GO) using the drop-casting technique to increase the interaction between the waveguide’s evanescent field and the GO layer. Subsequently, a 1550 nm tunable laser source and 980 nm pump laser is used to study the potential of the GO-film to control the flow of light through the waveguide by altering the state of the waveguide between transparent (ON) and opaque (OFF). The GO layer has a thickness of 0.40 µm and allows a 1550 nm signal with a peak power of  ‑7.0 dBm and average output power of 0 dBm to pass through at a maximum pump power of 60 mW. The waveguide has a responsivity of ~0.1 dB mW‑1, with the time to switch between the ON and OFF states being about 3 ms.

  15. Optical Analog to Electromagnetically Induced Transparency in Cascaded Ring-Resonator Systems.

    PubMed

    Wang, Yonghua; Zheng, Hua; Xue, Chenyang; Zhang, Wendong

    2016-07-25

    The analogue of electromagnetically induced transparency in optical methods has shown great potential in slow light and sensing applications. Here, we experimentally demonstrated a coupled resonator induced transparency system with three cascaded ring coupled resonators in a silicon chip. The structure was modeled by using the transfer matrix method. Influences of various parameters including coupling ratio of couplers, waveguide loss and additional loss of couplers on transmission characteristic and group index have been investigated theoretically and numerically in detail. The transmission character of the system was measured by the vertical grating coupling method. The enhanced quality factor reached 1.22 × 10⁵. In addition, we further test the temperature performance of the device. The results provide a new method for the manipulation of light in highly integrated optical circuits and sensing applications.

  16. Integrated optical XY coupler

    DOEpatents

    Vawter, G. Allen; Hadley, G. Ronald

    1997-01-01

    An integrated optical XY coupler having two converging input waveguide arms meeting in a central section and a central output waveguide arm and two diverging flanking output waveguide arms emanating from the central section. In-phase light from the input arms constructively interfers in the central section to produce a single mode output in the central output arm with the rest of the light being collected in the flanking output arms. Crosstalk between devices on a substrate is minimized by this collection of the out-of-phase light by the flanking output arms of the XY coupler.

  17. Integrated optical XY coupler

    DOEpatents

    Vawter, G.A.; Hadley, G.R.

    1997-05-06

    An integrated optical XY coupler having two converging input waveguide arms meeting in a central section and a central output waveguide arm and two diverging flanking output waveguide arms emanating from the central section. In-phase light from the input arms constructively interferes in the central section to produce a single mode output in the central output arm with the rest of the light being collected in the flanking output arms. Crosstalk between devices on a substrate is minimized by this collection of the out-of-phase light by the flanking output arms of the XY coupler. 9 figs.

  18. Use of a near-field optical probe to locally launch surface plasmon polaritons on plasmonic waveguides: a study by the finite difference time domain method.

    PubMed

    Hwang, B S; Kwon, M H; Kim, Jeongyong

    2004-08-01

    We used the finite difference time domain (FDTD) method to study the use of scanning near field optical microscopy (SNOM) to locally excite the nanometric plasmonic waveguides. In our calculation, the light is funneled through a SNOM probe with a sub-wavelength optical aperture and is irradiated on one end of two types of plasmonic waveguides made of 50 nm Au sphere arrays and Au nanowires. The incident light was well localized at one end of the waveguides and consequently propagated toward the other end, due to the excitation of surface plasmon polaritons. We found that the propagation length of the nanosphere array type waveguide varies from 100 to 130 nm depending on the light wavelength, the size of the probe aperture, and the launching heights. Our result shows that reducing the aperture size and using the light of the plasmon resonance wavelength of the nanosphere array could increase the propagation length and, thus, the efficiency of electromagnetic energy transportation through nanosphere arrays. 2004 Wiley-Liss, Inc.

  19. Enhanced external quantum efficiency in GaN-based vertical-type light-emitting diodes by localized surface plasmons

    PubMed Central

    Yao, Yung-Chi; Hwang, Jung-Min; Yang, Zu-Po; Haung, Jing-Yu; Lin, Chia-Ching; Shen, Wei-Chen; Chou, Chun-Yang; Wang, Mei-Tan; Huang, Chun-Ying; Chen, Ching-Yu; Tsai, Meng-Tsan; Lin, Tzu-Neng; Shen, Ji-Lin; Lee, Ya-Ju

    2016-01-01

    Enhancement of the external quantum efficiency of a GaN-based vertical-type light emitting diode (VLED) through the coupling of localized surface plasmon (LSP) resonance with the wave-guided mode light is studied. To achieve this experimentally, Ag nanoparticles (NPs), as the LSP resonant source, are drop-casted on the most top layer of waveguide channel, which is composed of hydrothermally synthesized ZnO nanorods capped on the top of GaN-based VLED. Enhanced light-output power and external quantum efficiency are observed, and the amount of enhancement remains steady with the increase of the injected currents. To understand the observations theoretically, the absorption spectra and the electric field distributions of the VLED with and without Ag NPs decorated on ZnO NRs are determined using the finite-difference time-domain (FDTD) method. The results prove that the observation of enhancement of the external quantum efficiency can be attributed to the creation of an extra escape channel for trapped light due to the coupling of the LSP with wave-guided mode light, by which the energy of wave-guided mode light can be transferred to the efficient light scattering center of the LSP. PMID:26935648

  20. Analysis of the bending radius of the cylindrical waveguide of polydimethylsiloxane for the purpose of lighting

    NASA Astrophysics Data System (ADS)

    Novak, M.; Jargus, J.; Fajkus, M.; Bednarek, L.; Vasinek, V.

    2017-10-01

    Polydimethylsiloxane (PDMS) can be used for its optical properties and its composition offers the possibility of use in the dangerous environments. Therefore authors of this article focused on more detailed working with this material. The authors describe the use of PDMS polymer for the light transmission over short distances (up to tens of centimeters). PDMS offers good prerequisites (mechanical properties) for the creating cylindrical lighting waveguide e.g. for the purpose of the automotive industry. The objective is to determine the maximum bending radius of the cylindrical waveguide of polydimethylsiloxane for different wavelengths of the visible spectrum and thus extend the knowledge for subsequent use in lighting. The created cylindrical waveguide consist of a core and a cladding. Cladding was formed by a PDMS having a lower refractive index in order to respect the condition of total reflection.

  1. On-chip photonic system using suspended p-n junction InGaN/GaN multiple quantum wells device and multiple waveguides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yongjin, E-mail: wangyj@njupt.edu.cn; Zhu, Guixia; Gao, Xumin

    We propose, fabricate, and characterize the on-chip integration of suspended p-n junction InGaN/GaN multiple quantum wells (MQWs) device and multiple waveguides on the same GaN-on-silicon platform. The integrated devices are fabricated via a wafer-level process and exhibit selectable functionalities for diverse applications. As the suspended p-n junction InGaN/GaN MQWs device operates under a light emitting diode (LED) mode, part of the light emission is confined and guided by the suspended waveguides. The in-plane propagation along the suspended waveguides is measured by a micro-transmittance setup. The on-chip data transmission is demonstrated for the proof-of-concept photonic integration. As the suspended p-n junctionmore » InGaN/GaN MQWs device operates under photodiode mode, the light is illuminated on the suspended waveguides with the aid of the micro-transmittance setup and, thus, coupled into the suspended waveguides. The guided light is finally sensed by the photodiode, and the induced photocurrent trace shows a distinct on/off switching performance. These experimental results indicate that the on-chip photonic integration is promising for the development of sophisticated integrated photonic circuits in the visible wavelength region.« less

  2. Compound semiconductor optical waveguide switch

    DOEpatents

    Spahn, Olga B.; Sullivan, Charles T.; Garcia, Ernest J.

    2003-06-10

    An optical waveguide switch is disclosed which is formed from III-V compound semiconductors and which has a moveable optical waveguide with a cantilevered portion that can be bent laterally by an integral electrostatic actuator to route an optical signal (i.e. light) between the moveable optical waveguide and one of a plurality of fixed optical waveguides. A plurality of optical waveguide switches can be formed on a common substrate and interconnected to form an optical switching network.

  3. Ink-jet printed fluorescent materials as light sources for planar optical waveguides on polymer foils

    NASA Astrophysics Data System (ADS)

    Bollgruen, Patrick; Gleissner, Uwe; Wolfer, Tim; Megnin, Christof; Mager, Dario; Overmeyer, Ludger; Korvink, Jan G.; Hanemann, Thomas

    2016-10-01

    Polymer-based optical sensor networks on foils (planar optronic systems) are a promising research field, but it can be challenging to supply them with light. We present a solvent-free, ink-jet printable material system with optically active substances to create planar light sources for these networks. The ink is based on a UV-curable monomer, the fluorescent agents are EuDBMPhen or 9,10-diphenylantracene, which fluoresce at 612 or 430 nm, respectively. We demonstrate the application as light source by printing a small area of fluorescent material on an optical waveguide fabricated by flexographic printing on PMMA foil, resulting in a simple polymer-optical device fabricated entirely by additive deposition techniques. When excited by a 405-nm laser of 10 mW, the emitted light couples into the waveguide and appears at the end of the waveguide. In comparison to conventional light sources, the intensity is weak but could be detected with a photodiode power sensor. In return, the concept has the advantage of being completely independent of any electrical elements or external cable connections.

  4. Stepped inlet optical panel

    DOEpatents

    Veligdan, James T.

    2001-01-01

    An optical panel includes stacked optical waveguides having stepped inlet facets collectively defining an inlet face for receiving image light, and having beveled outlet faces collectively defining a display screen for displaying the image light channeled through the waveguides by internal reflection.

  5. Coherent centres for light amplification in coupled waveguide arrays

    NASA Astrophysics Data System (ADS)

    Tripathi, Aditya; Kumar, Sunil

    2018-07-01

    In the study of optical lattices of waveguides, incorporation of nearest neighbour coupling and controllable nonlinearity can result in many interesting phenomena such as discrete diffraction, Anderson localization, diffusive transport, self-defocusing, discrete spatial solitons and discrete photonic resonances. The question of reflecting boundaries at the surfaces has been ignored most often. In the present study, we have shown through a simple one-dimensional waveguide array that light propagation gets completely modified along the length if effects from reflecting boundaries are also considered. We have shown only by considering the coupling on between neighbouring waveguides that there are periodic maximum power centres along the length of the excited waveguides which can be desirable for placing optical amplifiers in short or long distance communication and other applications.

  6. Interactive optical panel

    DOEpatents

    Veligdan, James T.

    1995-10-03

    An interactive optical panel assembly 34 includes an optical panel 10 having a plurality of ribbon optical waveguides 12 stacked together with opposite ends thereof defining panel first and second faces 16, 18. A light source 20 provides an image beam 22 to the panel first face 16 for being channeled through the waveguides 12 and emitted from the panel second face 18 in the form of a viewable light image 24a. A remote device 38 produces a response beam 40 over a discrete selection area 36 of the panel second face 18 for being channeled through at least one of the waveguides 12 toward the panel first face 16. A light sensor 42,50 is disposed across a plurality of the waveguides 12 for detecting the response beam 40 therein for providing interactive capability.

  7. Optical coupling of bare optoelectronic components and flexographically printed polymer waveguides in planar optronic systems

    NASA Astrophysics Data System (ADS)

    Wang, Yixiao; Wolfer, Tim; Lange, Alex; Overmeyer, Ludger

    2016-05-01

    Large scale, planar optronic systems allowing spatially distributed functionalities can be well used in diverse sensor networks, such as for monitoring the environment by measuring various physical quantities in medicine or aeronautics. In these systems, mechanically flexible and optically transparent polymeric foils, e.g. polymethyl methacrylate (PMMA) and polyethylene terephthalate (PET), are employed as carrier materials. A benefit of using these materials is their low cost. The optical interconnections from light sources to light transmission structures in planar optronic systems occupy a pivotal position for the sensing functions. As light sources, we employ the optoelectronic components, such as edgeemitting laser diodes, in form of bare chips, since their extremely small structures facilitate a high integration compactness and ensure sufficient system flexibility. Flexographically printed polymer optical waveguides are deployed as light guiding structures for short-distance communication in planar optronic systems. Printing processes are utilized for this generation of waveguides to achieve a cost-efficient large scale and high-throughput production. In order to attain a high-functional optronic system for sensing applications, one of the most essential prerequisites is the high coupling efficiency between the light sources and the waveguides. Therefore, in this work, we focus on the multimode polymer waveguide with a parabolic cross-section and investigate its optical coupling with the bare laser diode. We establish the geometrical model of the alignment based on the previous works on the optodic bonding of bare laser diodes and the fabrication process of polymer waveguides with consideration of various parameters, such as the beam profile of the laser diode, the employed polymer properties of the waveguides as well as the carrier substrates etc. Accordingly, the optical coupling of the bare laser diodes and the polymer waveguides was simulated. Additionally, we demonstrate optical links by adopting the aforementioned processes used for defining the simulation. We verify the feasibility of the developed processes for planar optronic systems by using an active alignment and conduct discussions for further improvements of optical alignment.

  8. Broadband infrared light emitting waveguides based on UV curable PbS quantum dot composites

    NASA Astrophysics Data System (ADS)

    Shen, Kai; Baig, Sarfaraz; Jiang, Guomin; Paik, Young-hun; Kim, Sung Jin; Wang, Michael R.

    2018-02-01

    We present herein the active PbS-photopolymer waveguide fabricated by vacuum assisted microfluidic (VAM) soft lithography technique. The PbS Quantum Dots (QDs) were synthesized using colloidal chemistry methods with tunable sizes and emission wavelengths, resulting in efficient light emission around 1000 nm center wavelength. The PbS QDs have demonstrated much better solubility in our newly synthesized UV curable polymer than SU-8 photoresist, verified by Photoluminescence (PL) testing. Through refractive index control, the PbS QDs-polymer core material and polymer cladding material can efficiently confine the infrared emitting light with a broad spectral bandwidth of 180 nm. Both single-mode and multi-mode light emitting waveguides have been realized.

  9. Nanoscale Plasmonic V-Groove Waveguides for the Interrogation of Single Fluorescent Bacterial Cells.

    PubMed

    Lotan, Oren; Bar-David, Jonathan; Smith, Cameron L C; Yagur-Kroll, Sharon; Belkin, Shimshon; Kristensen, Anders; Levy, Uriel

    2017-09-13

    We experimentally demonstrate the interrogation of an individual Escherichia coli cell using a nanoscale plasmonic V-groove waveguide. Several different configurations were studied. The first involved the excitation of the cell in a liquid environment because it flows on top of the waveguide nanocoupler, while the obtained fluorescence is coupled into the waveguide and collected at the other nanocoupler. The other two configurations involved the positioning of the bacterium within the nanoscale waveguide and its excitation in a dry environment either directly from the top or through waveguide modes. This is achieved by taking advantage of the waveguide properties not only for light guiding but also as a mechanical tool for trapping the bacteria within the V-grooves. The obtained results are supported by a set of numerical simulations, shedding more light on the mechanism of excitation. This demonstration paves the way for the construction of an efficient bioplasmonic chip for diverse cell-based sensing applications.

  10. Patterned synthesis of ZnO nanorod arrays for nanoplasmonic waveguide applications

    NASA Astrophysics Data System (ADS)

    Lamson, Thomas L.; Khan, Sahar; Wang, Zhifei; Zhang, Yun-Kai; Yu, Yong; Chen, Zhe-Sheng; Xu, Huizhong

    2018-03-01

    We report the patterned synthesis of ZnO nanorod arrays of diameters between 50 nm and 130 nm and various spacings. This was achieved by patterning hole arrays in a polymethyl methacrylate layer with electron beam lithography, followed by chemical synthesis of ZnO nanorods in the patterned holes using the hydrothermal method. The fabrication of ZnO nanorod waveguide arrays is also demonstrated by embedding the nanorods in a silver film using the electroplating process. Optical transmission measurement through the nanorod waveguide arrays is performed and strong resonant transmission of visible light is observed. We have found the resonance shifts to a longer wavelength with increasing nanorod diameter. Furthermore, the resonance wavelength is independent of the nanowaveguide array period, indicating the observed resonant transmission is the effect of a single ZnO nanorod waveguide. These nanorod waveguides may be used in single-molecule imaging and sensing as a result of the nanoscopic profile of the light transmitted through the nanorods and the controlled locations of these nanoscale light sources.

  11. Vertical waveguides integrated with silicon photodetectors: Towards high efficiency and low cross-talk image sensors

    NASA Astrophysics Data System (ADS)

    Tut, Turgut; Dan, Yaping; Duane, Peter; Yu, Young; Wober, Munib; Crozier, Kenneth B.

    2012-01-01

    We describe the experimental realization of vertical silicon nitride waveguides integrated with silicon photodetectors. The waveguides are embedded in a silicon dioxide layer. Scanning photocurrent microscopy is performed on a device containing a waveguide, and on a device containing the silicon dioxide layer, but without the waveguide. The results confirm the waveguide's ability to guide light onto the photodetector with high efficiency. We anticipate that the use of these structures in image sensors, with one waveguide per pixel, would greatly improve efficiency and significantly reduce inter-pixel crosstalk.

  12. Enhancement of Optical Nonlinearities in Composite Media and Structures via Local Fields and Electromagnetic Coupling Effects

    NASA Technical Reports Server (NTRS)

    Smith, David D.

    2002-01-01

    This talk will review the linear and nonlinear optical properties of metal nanoparticles and dielectric microparticles, with an emphasis on local field effects, and whispering gallery modes (WGMs), as well as the conjunction of these two effects for enhanced Raman. In particular, enhanced optical properties that result from electromagnetic coupling effects will be discussed in the context of Mie scattering from concentric spheres and bispheres. Predictions of mode splitting and photonic bandgaps in micro-spheres will be presented and will be shown to be analogous to effects that occur in coupled resonator optical waveguides (CROW). Slow and fast light in SCISSOR / CROW configurations will also be discussed.

  13. Highly efficient single-pass frequency doubling of a continuous-wave distributed feedback laser diode using a PPLN waveguide crystal at 488 nm.

    PubMed

    Jechow, Andreas; Schedel, Marco; Stry, Sandra; Sacher, Joachim; Menzel, Ralf

    2007-10-15

    A continuous-wave distributed feedback diode laser emitting at 976 nm was frequency doubled by the use of a periodically poled lithium niobate waveguide crystal with a channel size of 3 microm x 5 microm and an interaction length of 10 mm. A laser to waveguide coupling efficiency of 75% could be achieved resulting in 304 mW of incident infrared light inside the waveguide. Blue laser light emission of 159 mW at 488 nm has been generated, which equals to a conversion efficiency of 52%. The resulting wall plug efficiency was 7.4%.

  14. Dimension-sensitive optical responses of electromagnetically induced transparency vapor in a waveguide

    NASA Astrophysics Data System (ADS)

    Qi Shen, Jian; He, Sailing

    2006-12-01

    A three-level EIT (electromagnetically induced transparency) vapor is used to manipulate the transparency and absorption properties of the probe light in a waveguide. The most remarkable feature of the present scheme is such that the optical responses resulting from both electromagnetically induced transparency and large spontaneous emission enhancement are very sensitive to the frequency detunings of the probe light as well as to the small changes of the waveguide dimension. The potential applications of the dimension- and dispersion-sensitive EIT responses are discussed, and the sensitivity limits of some waveguide-based sensors, including electric absorption modulator, optical switch, wavelength sensor, and sensitive magnetometer, are analyzed.

  15. Fourier Transform-Plasmon Waveguide Spectroscopy: A Nondestructive Multifrequency Method for Simultaneously Determining Polymer Thickness and Apparent Index of Refraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bobbitt, Jonathan M; Weibel, Stephen C; Elshobaki, Moneim

    2014-12-16

    Fourier transform (FT)-plasmon waveguide resonance (PWR) spectroscopy measures light reflectivity at a waveguide interface as the incident frequency and angle are scanned. Under conditions of total internal reflection, the reflected light intensity is attenuated when the incident frequency and angle satisfy conditions for exciting surface plasmon modes in the metal as well as guided modes within the waveguide. Expanding upon the concept of two-frequency surface plasmon resonance developed by Peterlinz and Georgiadis [ Opt. Commun. 1996, 130, 260], the apparent index of refraction and the thickness of a waveguide can be measured precisely and simultaneously by FT-PWR with an averagemore » percent relative error of 0.4%. Measuring reflectivity for a range of frequencies extends the analysis to a wide variety of sample compositions and thicknesses since frequencies with the maximum attenuation can be selected to optimize the analysis. Additionally, the ability to measure reflectivity curves with both p- and s-polarized light provides anisotropic indices of refraction. FT-PWR is demonstrated using polystyrene waveguides of varying thickness, and the validity of FT-PWR measurements are verified by comparing the results to data from profilometry and atomic force microscopy (AFM).« less

  16. Fourier transform-plasmon waveguide spectroscopy: a nondestructive multifrequency method for simultaneously determining polymer thickness and apparent index of refraction.

    PubMed

    Bobbitt, Jonathan M; Weibel, Stephen C; Elshobaki, Moneim; Chaudhary, Sumit; Smith, Emily A

    2014-12-16

    Fourier transform (FT)-plasmon waveguide resonance (PWR) spectroscopy measures light reflectivity at a waveguide interface as the incident frequency and angle are scanned. Under conditions of total internal reflection, the reflected light intensity is attenuated when the incident frequency and angle satisfy conditions for exciting surface plasmon modes in the metal as well as guided modes within the waveguide. Expanding upon the concept of two-frequency surface plasmon resonance developed by Peterlinz and Georgiadis [Opt. Commun. 1996, 130, 260], the apparent index of refraction and the thickness of a waveguide can be measured precisely and simultaneously by FT-PWR with an average percent relative error of 0.4%. Measuring reflectivity for a range of frequencies extends the analysis to a wide variety of sample compositions and thicknesses since frequencies with the maximum attenuation can be selected to optimize the analysis. Additionally, the ability to measure reflectivity curves with both p- and s-polarized light provides anisotropic indices of refraction. FT-PWR is demonstrated using polystyrene waveguides of varying thickness, and the validity of FT-PWR measurements are verified by comparing the results to data from profilometry and atomic force microscopy (AFM).

  17. Hollow waveguide cavity ringdown spectroscopy

    NASA Technical Reports Server (NTRS)

    Dreyer, Chris (Inventor); Mungas, Greg S. (Inventor)

    2012-01-01

    Laser light is confined in a hollow waveguide between two highly reflective mirrors. This waveguide cavity is used to conduct Cavity Ringdown Absorption Spectroscopy of loss mechanisms in the cavity including absorption or scattering by gases, liquid, solids, and/or optical elements.

  18. OPTOELECTRONICS, FIBER OPTICS, AND OTHER ASPECTS OF QUANTUM ELECTRONICS: Influence of the Rayleigh backscattering on the mode composition of radiation in multimode graded-index waveguides with a quadratic refractive-index profile

    NASA Astrophysics Data System (ADS)

    Esayan, G. L.; Krivoshlykov, S. G.

    1989-08-01

    A method of coherent states is used to describe the process of Rayleigh scattering in a multimode graded-index waveguide with a quadratic refractive-index profile. Explicit expressions are obtained for the coefficients representing excitation of Gaussian-Hermite backscattering modes in two cases of practical importance: excitation of a waveguide by an extended noncoherent light source and selective excitation of different modes at the entry to a waveguide. An analysis is also made of the coefficients of coupling between forward and backward modes. Explicit expressions for the coefficients representing capture of backscattered radiation by a waveguide are obtained for two special cases of excitation (extended light source and zeroth mode).

  19. Perforated hollow-core optical waveguides for on-chip atomic spectroscopy and gas sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giraud-Carrier, M., E-mail: mgeecee@byu.edu; Hill, C.; Decker, T.

    2016-03-28

    A hollow-core waveguide structure for on-chip atomic spectroscopy is presented. The devices are based on Anti-Resonant Reflecting Optical Waveguides and may be used for a wide variety of applications which rely on the interaction of light with gases and vapors. The designs presented here feature short delivery paths of the atomic vapor into the hollow waveguide. They also have excellent environmental stability by incorporating buried solid-core waveguides to deliver light to the hollow cores. Completed chips were packaged with an Rb source and the F = 3 ≥ F′ = 2, 3, 4 transitions of the D2 line in {sup 85}Rb were monitored formore » optical absorption. Maximum absorption peak depths of 9% were measured.« less

  20. Method for ultrafast optical deflection enabling optical recording via serrated or graded light illumination

    DOEpatents

    Heebner, John E [Livermore, CA

    2009-09-08

    In one general embodiment, a method for deflecting an optical signal input into a waveguide is provided. In operation, an optical input signal is propagated through a waveguide. Additionally, an optical control signal is applied to a mask positioned relative to the waveguide such that the application of the optical control signal to the mask is used to influence the optical input signal propagating in the waveguide. Furthermore, the deflected optical input signal output from the waveguide is detected in parallel on an array of detectors. In another general embodiment, a beam deflecting structure is provided for deflecting an optical signal input into a waveguide, the structure comprising at least one wave guiding layer for guiding an optical input signal and at least one masking layer including a pattern configured to influence characteristics of a material of the guiding layer when an optical control signal is passed through the masking layer in a direction of the guiding layer. In another general embodiment, a system is provided including a waveguide, an attenuating mask positioned on the waveguide, and an optical control source positioned to propagate pulsed laser light towards the attenuating mask and the waveguide such that a pattern of the attenuating mask is applied to the waveguide and material properties of at least a portion of the waveguide are influenced.

  1. FDTD simulation of amorphous silicon waveguides for microphotonics applications

    NASA Astrophysics Data System (ADS)

    Fantoni, A.; Lourenço, P.; Pinho, P.; Vieira, M.,

    2017-05-01

    In this work we correlate the dimension of the waveguide with small variations of the refractive index of the material used for the waveguide core. We calculate the effective modal refractive index for different dimensions of the waveguide and with slightly variation of the refractive index of the core material. These results are used as an input for a set of Finite Difference Time Domain simulation, directed to study the characteristics of amorphous silicon waveguides embedded in a SiO2 cladding. The study considers simple linear waveguides with rectangular section for studying the modal attenuation expected at different wavelengths. Transmission efficiency is determined analyzing the decay of the light power along the waveguides. As far as near infrared wavelengths are considered, a-Si:H shows a behavior highly dependent on the light wavelength and its extinction coefficient rapidly increases as operating frequency goes into visible spectrum range. The simulation results show that amorphous silicon can be considered a good candidate for waveguide material core whenever the waveguide length is as short as a few centimeters. The maximum transmission length is highly affected by the a-Si:H defect density, the mid-gap density of states and by the waveguide section area. The simulation results address a minimum requirement of 300nm×400nm waveguide section in order to keep attenuation below 1 dB cm-1.

  2. The concept for realization of quantum-cascade lasers emitting at 7.5 μm wavelength

    NASA Astrophysics Data System (ADS)

    Novikov, I. I.; Babichev, A. V.; Bugrov, V. E.; Gladyshev, A. G.; Karachinsky, L. Ya; Kolodeznyi, E. S.; Kurochkin, A. S.; Savelyev, A. V.; Sokolovskii, G. S.; Egorov, A. Yu

    2017-11-01

    We consider the advantages and disadvantages of various designs of waveguide for heterostructures of quantum cascade lasers (QCL) in a spectral region of 7.5 μm. Based on a numerical calculation we make a comparison of light wave distribution in QCL waveguides with different designs. We demonstrate the benefits of practical QCL realization with an extended five-layered waveguide formed by introducing extra layers of InGaAs, which allows to modify the spatial distribution of the light wave and get the rectangular shape of the spatial distribution of light wave intensity in the laser active area.

  3. Optical set-reset latch

    DOEpatents

    Skogen, Erik J.

    2013-01-29

    An optical set-reset (SR) latch is formed from a first electroabsorption modulator (EAM), a second EAM and a waveguide photodetector (PD) which are arranged in an optical and electrical feedback loop which controls the transmission of light through the first EAM to latch the first EAM in a light-transmissive state in response to a Set light input. A second waveguide PD controls the transmission of light through the second EAM and is used to switch the first EAM to a light-absorptive state in response to a Reset light input provided to the second waveguide PD. The optical SR latch, which may be formed on a III-V compound semiconductor substrate (e.g. an InP or a GaAs substrate) as a photonic integrated circuit (PIC), stores a bit of optical information and has an optical output for the logic state of that bit of information.

  4. Effects of surface roughness and absorption on light propagation in graded-profile waveguides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danilenko, S S; Osovitskii, A N

    2011-06-30

    This paper examines the effects of surface roughness and absorption on laser light propagation in graded-profile waveguiding structures. We derive analytical expressions for the scattering and absorption coefficients of guided waves and analyse these coefficients in relation to parameters of the waveguiding structure and the roughness of its boundary. A new approach is proposed to measuring roughness parameters of precision dielectric surfaces. Experimental evidence is presented which supports the main conclusions of the theory. (integraled-optical waweguides)

  5. Electro-Optic Analog/Digital Converter.

    DTIC Science & Technology

    electro - optic material and a source of linearly polarized light is arranged to transmit its light energy along each of the optical waveguides. Electrodes are disposed contiguous to the optical waveguides for impressing electric fields thereacross. An input signal potential is applied to the electrodes to produce electric fields of intensity relative to each of the waveguides such that causes phase shift and resultant change of polarization which can be detected as representative of a binary ’one’ or binary ’zero’ for each of the channel optical

  6. UV waveguides light fabricated in fluoropolymer CYTOP by femtosecond laser direct writing.

    PubMed

    Hanada, Yasutaka; Sugioka, Koji; Midorikawa, Katsumi

    2010-01-18

    We have fabricated optical waveguides inside the UV-transparent polymer, CYTOP, by femtosecond laser direct writing for propagating UV light in biochip applications. Femtosecond laser irradiation is estimated to increase the refractive index of CYTOP by 1.7 x 10(-3) due to partial bond breaking in CYTOP. The waveguide in CYTOP has propagation losses of 0.49, 0.77, and 0.91 dB/cm at wavelengths of 632.8, 355, and 266 nm, respectively.

  7. Non-reciprocity and topology in optics: one-way road for light via surface magnon polariton.

    PubMed

    Ochiai, Tetsuyuki

    2015-02-01

    We show how non-reciprocity and topology are used to construct an optical one-way waveguide in the Voigt geometry. First, we present a traditional approach of the one-way waveguide of light using surface polaritons under a static magnetic field. Second, we explain a recent discovery of a topological approach using photonic crystals with the magneto-optical coupling. Third, we present a combination of the two approaches, toward a broadband one-way waveguide in the microwave range.

  8. Non-reciprocity and topology in optics: one-way road for light via surface magnon polariton

    PubMed Central

    Ochiai, Tetsuyuki

    2015-01-01

    We show how non-reciprocity and topology are used to construct an optical one-way waveguide in the Voigt geometry. First, we present a traditional approach of the one-way waveguide of light using surface polaritons under a static magnetic field. Second, we explain a recent discovery of a topological approach using photonic crystals with the magneto-optical coupling. Third, we present a combination of the two approaches, toward a broadband one-way waveguide in the microwave range. PMID:27877739

  9. Photonic Switching Devices Using Light Bullets

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M. (Inventor)

    1997-01-01

    The present invention is directed toward a unique ultra-fast, all-optical switching device or switch made with readily available, relatively inexpensive, highly nonlinear photonic glasses. These photonic glasses have a sufficiently negative group velocity dispersion and high nonlinear index of refraction to support stable light bullets. The light bullets counterpropagate through, and interact within the waveguide to selectively change each others' directions of propagation into predetermined channels. In one embodiment, the switch utilizes a rectangularly planar slab waveguide, and further includes two central channels and a plurality of lateral channels for guiding the light bullets into and out of the waveguide. One advantage presented by the present all-optical switching device lies in its practical use of light bullets, thus preventing the degeneration of the pulses due to dispersion and diffraction at the front and back of the pulses. Another feature of the switching device is the relative insensitivity of the collision process to the time difference in which the counter-propagating pulses enter the waveguide. since. contrary to conventional co-propagating spatial solitons, the relative phase of the colliding pulses does not affect the interaction of these pulses. Yet another feature of the present all-optical switching device is the selection of the light pulse parameters which enables the generation of light bullets in highly nonlinear glasses.

  10. Analysis of Helical Waveguide.

    DTIC Science & Technology

    1985-12-23

    tube Efficiency Helix structure Backward wave oscillation Gain 19. ABSTRACT (Continue on reverse if necessary and identofy by block number) The...4,vailabilitY CCdes -vai aidIorDist spec a ." iii "- -. .5- S.. . ANALYSIS OF HELICAL WAVEGUIDE I. INTRODUCTION High power (- 10 kW) and broadband ...sys- tems. The frequency range of interest is 60-100 GHz. In this frequency range, the conventional slow wave circuits such as klystrons and TWTs have

  11. Nonlinear optical coupler using a doped optical waveguide

    DOEpatents

    Pantell, Richard H.; Sadowski, Robert W.; Digonnet, Michel J. F.; Shaw, Herbert J.

    1994-01-01

    An optical mode coupling apparatus includes an Erbium-doped optical waveguide in which an optical signal at a signal wavelength propagates in a first spatial propagation mode and a second spatial propagation mode of the waveguide. The optical signal propagating in the waveguide has a beat length. The coupling apparatus includes a pump source of perturbational light signal at a perturbational wavelength that propagates in the waveguide in the first spatial propagation mode. The perturbational signal has a sufficient intensity distribution in the waveguide that it causes a perturbation of the effective refractive index of the first spatial propagation mode of the waveguide in accordance with the optical Kerr effect. The perturbation of the effective refractive index of the first spatial propagation mode of the optical waveguide causes a change in the differential phase delay in the optical signal propagating in the first and second spatial propagation modes. The change in the differential phase delay is detected as a change in the intensity distribution between two lobes of the optical intensity distribution pattern of an output signal. The perturbational light signal can be selectively enabled and disabled to selectively change the intensity distribution in the two lobes of the optical intensity distribution pattern.

  12. Modes in light wave propagating in semiconductor laser

    NASA Technical Reports Server (NTRS)

    Manko, Margarita A.

    1994-01-01

    The study of semiconductor laser based on an analogy of the Schrodinger equation and an equation describing light wave propagation in nonhomogeneous medium is developed. The active region of semiconductor laser is considered as optical waveguide confining the electromagnetic field in the cross-section (x,y) and allowing waveguide propagation along the laser resonator (z). The mode structure is investigated taking into account the transversal and what is the important part of the suggested consideration longitudinal nonhomogeneity of the optical waveguide. It is shown that the Gaussian modes in the case correspond to spatial squeezing and correlation. Spatially squeezed two-mode structure of nonhomogeneous optical waveguide is given explicitly. Distribution of light among the laser discrete modes is presented. Properties of the spatially squeezed two-mode field are described. The analog of Franck-Condon principle for finding the maxima of the distribution function and the analog of Ramsauer effect for control of spatial distribution of laser emission are discussed.

  13. Inscription of type I and depressed cladding waveguides in lithium niobate using a femtosecond laser.

    PubMed

    Bhardwaj, S; Mittholiya, K; Bhatnagar, A; Bernard, R; Dharmadhikari, J A; Mathur, D; Dharmadhikari, A K

    2017-07-10

    We describe two types of waveguides (type I and depressed cladding) inscribed in lithium niobate using a variable repetition rate (200 kHz-25 MHz), 270 fs duration fiber laser. The type I modification-based waveguides have propagation losses in the range from 1.2 to 10 dB/cm at 1550 nm, depending on experimental parameters. These waveguides are not permanent; they deteriorate over time. Such deterioration of waveguides can be slowed down from 30 days to 100 days by pre-annealing the samples and by writing at a 720 kHz laser repetition rate. The propagation losses measured at 1550 nm show significant improvement for pre-annealed samples. The depressed cladding-inscribed waveguides are permanent, but the propagation loss depends on the number of damage tracks. A track separation of ∼1  μm between adjacent damage tracks yields the lowest propagation loss of 0.5 dB/cm at 1550 nm for a 40 μm diameter waveguide. We observe multimode guidance for sizes in the range of 20-80 μm in these waveguide structures at 1550 nm. Their crystalline nature is found to remain intact, as inferred from second-harmonic generation within the waveguide region.

  14. Stacked waveguide reactors with gradient embedded scatterers for high-capacity water cleaning

    DOE PAGES

    Ahsan, Syed Saad; Gumus, Abdurrahman; Erickson, David

    2015-11-04

    We present a compact water-cleaning reactor with stacked layers of waveguides containing gradient patterns of optical scatterers that enable uniform light distribution and augmented water-cleaning rates. Previous photocatalytic reactors using immersion, external, or distributive lamps suffer from poor light distribution that impedes scalability. Here, we use an external UV-source to direct photons into stacked waveguide reactors where we scatter the photons uniformly over the length of the waveguide to thin films of TiO 2-catalysts. In conclusion, we also show 4.5 times improvement in activity over uniform scatterer designs, demonstrate a degradation of 67% of the organic dye, and characterize themore » degradation rate constant.« less

  15. Stacked waveguide reactors with gradient embedded scatterers for high-capacity water cleaning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahsan, Syed Saad; Gumus, Abdurrahman; Erickson, David

    We present a compact water-cleaning reactor with stacked layers of waveguides containing gradient patterns of optical scatterers that enable uniform light distribution and augmented water-cleaning rates. Previous photocatalytic reactors using immersion, external, or distributive lamps suffer from poor light distribution that impedes scalability. Here, we use an external UV-source to direct photons into stacked waveguide reactors where we scatter the photons uniformly over the length of the waveguide to thin films of TiO 2-catalysts. In conclusion, we also show 4.5 times improvement in activity over uniform scatterer designs, demonstrate a degradation of 67% of the organic dye, and characterize themore » degradation rate constant.« less

  16. Transverse-electric plasmonic modes of cylindrical graphene-based waveguide at near-infrared and visible frequencies

    PubMed Central

    Kuzmin, Dmitry A.; Bychkov, Igor V.; Shavrov, Vladimir G.; Kotov, Leonid N.

    2016-01-01

    Transverse-electric (TE) surface plasmons (SPs) are very unusual for plasmonics phenomenon. Graphene proposes a unique possibility to observe these plasmons. Due to transverse motion of carriers, TE SPs speed is usually close to bulk light one. In this work we discuss conditions of TE SPs propagation in cylindrical graphene-based waveguides. We found that the negativity of graphene conductivity’s imaginary part is not a sufficient condition. The structure supports TE SPs when the core radius of waveguide is larger than the critical value Rcr. Critical radius depends on the light frequency and the difference of permittivities inside and outside the waveguide. Minimum value of Rcr is comparable with the wavelength of volume wave and corresponds to interband carriers transition in graphene. We predict that use of multilayer graphene will lead to decrease of critical radius. TE SPs speed may differ more significantly from bulk light one in case of epsilon-near-zero core and shell of the waveguide. Results may open the door for practical applications of TE SPs in optics, including telecommunications. PMID:27225745

  17. Roughness measurements on coupling structures for optical interconnections integrated on a printed circuit board

    NASA Astrophysics Data System (ADS)

    Hendrickx, Nina; Van Erps, Jürgen; Suyal, Himanshu; Taghizadeh, Mohammad; Thienpont, Hugo; Van Daele, Peter

    2006-04-01

    In this paper, laser ablation (at UGent), deep proton writing (at VUB) and laser direct writing (at HWU) are presented as versatile technologies that can be used for the fabrication of coupling structures for optical interconnections integrated on a printed circuit board (PCB). The optical layer, a highly cross-linked acrylate based polymer, is applied on an FR4 substrate. Both laser ablation and laser direct writing are used for the definition of arrays of multimode optical waveguides, which guide the light in the plane of the optical layer. In order to couple light vertically in/out of the plane of the optical waveguides, coupling structures have to be integrated into the optical layer. Out-of-plane turning mirrors, that deflect the light beam over 90°, are used for this purpose. The surface roughness and angle of three mirror configurations are evaluated: a laser ablated one that is integrated into the optical waveguide, a laser direct written one that is also directly written onto the waveguide and a DPW insert that is plugged into a cavity into the waveguiding layer.

  18. Waveguide-excited fluorescence microarray

    NASA Astrophysics Data System (ADS)

    Sagarzazu, Gabriel; Bedu, Mélanie; Martinelli, Lucio; Ha, Khoi-Nguyen; Pelletier, Nicolas; Safarov, Viatcheslav I.; Weisbuch, Claude; Gacoin, Thierry; Benisty, Henri

    2008-04-01

    Signal-to-noise ratio is a crucial issue in microarray fluorescence read-out. Several strategies are proposed for its improvement. First, light collection in conventional microarrays scanners is quite limited. It was recently shown that almost full collection can be achieved in an integrated lens-free biosensor, with labelled species hybridizing practically on the surface of a sensitive silicon detector [L. Martinelli et al. Appl. Phys. Lett. 91, 083901 (2007)]. However, even with such an improvement, the ultimate goal of real-time measurements during hybridization is challenging: the detector is dazzled by the large fluorescence of labelled species in the solution. In the present paper we show that this unwanted signal can effectively be reduced if the excitation light is confined in a waveguide. Moreover, the concentration of excitation light in a waveguide results in a huge signal gain. In our experiment we realized a structure consisting of a high index sol-gel waveguide deposited on a low-index substrate. The fluorescent molecules deposited on the surface of the waveguide were excited by the evanescent part of a wave travelling in the guide. The comparison with free-space excitation schemes confirms a huge gain (by several orders of magnitude) in favour of waveguide-based excitation. An optical guide deposited onto an integrated biosensor thus combines both advantages of ideal light collection and enhanced surface localized excitation without compromising the imaging properties. Modelling predicts a negligible penalty from spatial cross-talk in practical applications. We believe that such a system would bring microarrays to hitherto unattained sensitivities.

  19. Intermode light diffusion in multimode optical waveguides with rough surfaces.

    PubMed

    Stepanov, S; Chaikina, E I; Leskova, T A; Méndez, E R

    2005-06-01

    A theoretical analysis of incoherent intermode light power diffusion in multimode dielectric waveguides with rough (corrugated) surfaces is presented. The correlation length a of the surface-profile variations is assumed to be sufficiently large (a less less than lambda/2pi) to permit light scattering into the outer space only from the modes close to the critical angles of propagation and yet sufficiently small (a less less than d, where d is the average width of the waveguide) to permit direct interaction between a given mode and a large number of neighboring ones. The cases of a one-dimensional (1D) slab waveguide and a two-dimensional cylindrical waveguide (optical fiber) are analyzed, and we find that in both cases the partial differential equations that govern the evolution of the angular light power profile propagating along the waveguide are 1D and of the diffusion type. However, whereas in the former case the effective conductivity coefficient proves to be linearly dependent on the transverse-mode wave number, in the latter one the linear dependence is for the effective diffusion coefficient. The theoretical predictions are in reasonable agreement with experimental results for the intermode power diffusion in multimode (700 x 700) optical fibers with etched surfaces. The characteristic length of dispersion of a narrow angular power profile evaluated from the correlation length and standard deviation of heights of the surface profile proved to be in good agreement with the experimentally observed changes in the output angular power profiles.

  20. Single-polarization hollow-core square photonic bandgap waveguide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eguchi, Masashi, E-mail: megu@ieee.org; Tsuji, Yasuhide, E-mail: y-tsuji@mmm.muroran-it.ac.jp

    Materials with a periodic structure have photonic bandgaps (PBGs), in which light can not be guided within certain wavelength ranges; thus light can be confined within a low-index region by the bandgap effect. In this paper, rectangular-shaped hollow waveguides having waveguide-walls (claddings) using the PBG have been discussed. The design principle for HE modes of hollow-core rectangular PBG waveguides with a Bragg cladding consisting of alternating high- and low-index layers, based on a 1D periodic multilayer approximation for the Bragg cladding, is established and then a novel single-polarization hollow-core square PBG waveguide using the bandgap difference between two polarized wavesmore » is proposed. Our results demonstrated that a single-polarization guiding can be achieved by using the square Bragg cladding structure with different layer thickness ratios in the mutually orthogonal directions and the transmission loss of the guided mode in a designed hollow-core square PBG waveguide is numerically estimated to be 0.04 dB/cm.« less

  1. Deterministic photon-emitter coupling in chiral photonic circuits.

    PubMed

    Söllner, Immo; Mahmoodian, Sahand; Hansen, Sofie Lindskov; Midolo, Leonardo; Javadi, Alisa; Kiršanskė, Gabija; Pregnolato, Tommaso; El-Ella, Haitham; Lee, Eun Hye; Song, Jin Dong; Stobbe, Søren; Lodahl, Peter

    2015-09-01

    Engineering photon emission and scattering is central to modern photonics applications ranging from light harvesting to quantum-information processing. To this end, nanophotonic waveguides are well suited as they confine photons to a one-dimensional geometry and thereby increase the light-matter interaction. In a regular waveguide, a quantum emitter interacts equally with photons in either of the two propagation directions. This symmetry is violated in nanophotonic structures in which non-transversal local electric-field components imply that photon emission and scattering may become directional. Here we show that the helicity of the optical transition of a quantum emitter determines the direction of single-photon emission in a specially engineered photonic-crystal waveguide. We observe single-photon emission into the waveguide with a directionality that exceeds 90% under conditions in which practically all the emitted photons are coupled to the waveguide. The chiral light-matter interaction enables deterministic and highly directional photon emission for experimentally achievable on-chip non-reciprocal photonic elements. These may serve as key building blocks for single-photon optical diodes, transistors and deterministic quantum gates. Furthermore, chiral photonic circuits allow the dissipative preparation of entangled states of multiple emitters for experimentally achievable parameters, may lead to novel topological photon states and could be applied for directional steering of light.

  2. Deterministic photon-emitter coupling in chiral photonic circuits

    NASA Astrophysics Data System (ADS)

    Söllner, Immo; Mahmoodian, Sahand; Hansen, Sofie Lindskov; Midolo, Leonardo; Javadi, Alisa; Kiršanskė, Gabija; Pregnolato, Tommaso; El-Ella, Haitham; Lee, Eun Hye; Song, Jin Dong; Stobbe, Søren; Lodahl, Peter

    2015-09-01

    Engineering photon emission and scattering is central to modern photonics applications ranging from light harvesting to quantum-information processing. To this end, nanophotonic waveguides are well suited as they confine photons to a one-dimensional geometry and thereby increase the light-matter interaction. In a regular waveguide, a quantum emitter interacts equally with photons in either of the two propagation directions. This symmetry is violated in nanophotonic structures in which non-transversal local electric-field components imply that photon emission and scattering may become directional. Here we show that the helicity of the optical transition of a quantum emitter determines the direction of single-photon emission in a specially engineered photonic-crystal waveguide. We observe single-photon emission into the waveguide with a directionality that exceeds 90% under conditions in which practically all the emitted photons are coupled to the waveguide. The chiral light-matter interaction enables deterministic and highly directional photon emission for experimentally achievable on-chip non-reciprocal photonic elements. These may serve as key building blocks for single-photon optical diodes, transistors and deterministic quantum gates. Furthermore, chiral photonic circuits allow the dissipative preparation of entangled states of multiple emitters for experimentally achievable parameters, may lead to novel topological photon states and could be applied for directional steering of light.

  3. Thin optical display panel

    DOEpatents

    Veligdan, James Thomas

    1997-01-01

    An optical display includes a plurality of optical waveguides each including a cladding bound core for guiding internal display light between first and second opposite ends by total internal reflection. The waveguides are stacked together to define a collective display thickness. Each of the cores includes a heterogeneous portion defining a light scattering site disposed longitudinally between the first and second ends. Adjacent ones of the sites are longitudinally offset from each other for forming a longitudinal internal image display over the display thickness upon scattering of internal display light thereagainst for generating a display image. In a preferred embodiment, the waveguides and scattering sites are transparent for transmitting therethrough an external image in superposition with the display image formed by scattering the internal light off the scattering sites for defining a heads up display.

  4. Capillary waveguide optrodes: an approach to optical sensing in medical diagnostics

    NASA Astrophysics Data System (ADS)

    Lippitsch, Max E.; Draxler, Sonja; Kieslinger, Dietmar; Lehmann, Hartmut; Weigl, Bernhard H.

    1996-07-01

    Glass capillaries with a chemically sensitive coating on the inner surface are used as optical sensors for medical diagnostics. A capillary simultaneously serves as a sample compartment, a sensor element, and an inhomogeneous optical waveguide. Various detection schemes based on absorption, fluorescence intensity, or fluorescence lifetime are described. In absorption-based capillary waveguide optrodes the absorption in the sensor layer is analyte dependent; hence light transmission along the inhomogeneous waveguiding structure formed by the capillary wall and the sensing layer is a function of the analyte concentration. Similarly, in fluorescence-based capillary optrodes the fluorescence intensity or the fluorescence lifetime of an indicator dye fixed in the sensing layer is analyte dependent; thus the specific property of fluorescent light excited in the sensing layer and thereafter guided along the inhomogeneous waveguiding structure is a function of the analyte concentration. Both schemes are experimentally demonstrated, one with carbon dioxide as the analyte and the other one with oxygen. The device combines optical sensors with the standard glass capillaries usually applied to gather blood drops from fingertips, to yield a versatile diagnostic instrument, integrating the sample compartment, the optical sensor, and the light-collecting optics into a single piece. This ensures enhanced sensor performance as well as improved handling compared with other sensors. waveguide, blood gases, medical diagnostics.

  5. Monolithically integrated solid state laser and waveguide using spin-on glass

    DOEpatents

    Ashby, C.I.H.; Hohimer, J.P.; Neal, D.R.; Vawter, G.A.

    1995-10-31

    A monolithically integrated photonic circuit is disclosed combining a semiconductor source of excitation light with an optically active waveguide formed on the substrate. The optically active waveguide is preferably formed of a spin-on glass to which are added optically active materials which can enable lasing action, optical amplification, optical loss, or frequency conversion in the waveguide, depending upon the added material. 4 figs.

  6. Integrated optical interrogation of micro-structures

    DOEpatents

    Evans, III, Boyd M.; Datskos, Panagiotis G.; Rajic, Slobodan

    2003-01-01

    The invention is an integrated optical sensing element for detecting and measuring changes in position or deflection. A deflectable member, such as a microcantilever, is configured to receive a light beam. A waveguide, such as an optical waveguide or an optical fiber, is positioned to redirect light towards the deflectable member. The waveguide can be incorporated into the deflectable member or disposed adjacent to the deflectable member. Means for measuring the extent of position change or deflection of the deflectable member by receiving the light beam from the deflectable member, such as a photodetector or interferometer, receives the reflected light beam from the deflectable member. Changes in the light beam are correlated to the changes in position or deflection of the deflectable member. A plurality of deflectable members can be arranged in a matrix or an array to provide one or two-dimensional imaging or sensing capabilities.

  7. Signature of phase singularities in diffusive regimes in disordered waveguide lattices: interplay and qualitative analysis

    NASA Astrophysics Data System (ADS)

    Ghosh, Somnath

    2018-05-01

    Co-existence and interplay between mesoscopic light dynamics with singular optics in spatially random but temporally coherent disordered waveguide lattices is reported. Two CW light beams of 1.55 micron operating wavelength are launched as inputs to 1D waveguide lattices with controllable weak disorder in refractive index profile. Direct observation of phase singularities in the speckle pattern along the length is numerically demonstrated. Quantitative analysis of onset of such singular behavior and diffusive wave propagation is analyzed for the first time.

  8. Nonclassical-light generation in a photonic-band-gap nonlinear planar waveguide

    NASA Astrophysics Data System (ADS)

    Peřina, Jan, Jr.; Sibilia, Concita; Tricca, Daniela; Bertolotti, Mario

    2004-10-01

    The optical parametric process occurring in a photonic-band-gap planar waveguide is studied from the point of view of nonclassical-light generation. The nonlinearly interacting optical fields are described by the generalized superposition of coherent signals and noise using the method of operator linear corrections to a classical strong solution. Scattered backward-propagating fields are taken into account. Squeezed light as well as light with sub-Poissonian statistics can be obtained in two-mode fields under the specified conditions.

  9. Femtosecond laser micromachining of waveguides in silicone-based hydrogel polymers.

    PubMed

    Ding, Li; Blackwell, Richard I; Künzler, Jay F; Knox, Wayne H

    2008-06-10

    By tightly focusing 27 fs laser pulses from a Ti:sapphire oscillator with 1.3 nJ pulse energy at 93 MHz repetition rate, we are able to fabricate optical waveguides inside hydrogel polymers containing approximately 36% water by weight. A tapered lensed fiber is used to couple laser light at a wavelength of 632.8 nm into these waveguides within a water environment. Strong waveguiding is observed due to large refractive index changes. A large waveguide propagation loss is found, and we show that this is caused by surface roughness which can be reduced by optimizing the waveguides.

  10. Combined raman and IR fiber-based sensor for gas detection

    DOEpatents

    Carter, Jerry C; Chan, James W; Trebes, James E; Angel, Stanley M; Mizaikoff, Boris

    2014-06-24

    A double-pass fiber-optic based spectroscopic gas sensor delivers Raman excitation light and infrared light to a hollow structure, such as a hollow fiber waveguide, that contains a gas sample of interest. A retro-reflector is placed at the end of this hollow structure to send the light back through the waveguide where the light is detected at the same end as the light source. This double pass retro reflector design increases the interaction path length of the light and the gas sample, and also reduces the form factor of the hollow structure.

  11. Mechanisms and Methods for Selective Wavelength Filtering

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret (Inventor); Brown, Thomas G. (Inventor); Gruhlke, Russell (Inventor)

    2007-01-01

    An optical filter includes a dielectric waveguide layer, supporting waveguide modes at specific wavelengths and receiving incident light, a corrugated film layer, composed of one of a metal and a semiconductor and positioned adjacent to a second surface of the waveguide layer and a sensor layer, wherein the sensor layer is capable of absorbing optical energy and generating a corresponding electrical signal. The metal film layer supports a plurality of plasmons, the plurality of plasmons producing a first field and is excited by a transverse mode of the waveguide modes at a wavelength interval. The first field penetrates the sensor layer and the sensor layer generates an electrical signal corresponding to an intensity of received incident light within the wavelength interval.

  12. Optical fiber having wave-guiding rings

    DOEpatents

    Messerly, Michael J [Danville, CA; Dawson, Jay W [Livermore, CA; Beach, Raymond J [Livermore, CA; Barty, Christopher P. J. [Hayward, CA

    2011-03-15

    A waveguide includes a cladding region that has a refractive index that is substantially uniform and surrounds a wave-guiding region that has an average index that is close to the index of the cladding. The wave-guiding region also contains a thin ring or series of rings that have an index or indices that differ significantly from the index of the cladding. The ring or rings enable the structure to guide light.

  13. Passive thermo-optic feedback for robust athermal photonic systems

    DOEpatents

    Rakich, Peter T.; Watts, Michael R.; Nielson, Gregory N.

    2015-06-23

    Thermal control devices, photonic systems and methods of stabilizing a temperature of a photonic system are provided. A thermal control device thermally coupled to a substrate includes a waveguide for receiving light, an absorption element optically coupled to the waveguide for converting the received light to heat and an optical filter. The optical filter is optically coupled to the waveguide and thermally coupled to the absorption element. An operating point of the optical filter is tuned responsive to the heat from the absorption element. When the operating point is less than a predetermined temperature, the received light is passed to the absorption element via the optical filter. When the operating point is greater than or equal to the predetermined temperature, the received light is transmitted out of the thermal control device via the optical filter, without being passed to the absorption element.

  14. Optical Waveguides Written in Silicon with Femtosecond Laser

    NASA Astrophysics Data System (ADS)

    Pavlov, Ihor; Tokel, Onur; Pavlova, Svitlana; Kadan, Viktor; Makey, Ghaith; Turnali, Ahmed; Ilday, Omer

    Silicon is one of the most widely used materials in modern technology, ranging from electronics and Si-photonics to microfluidic and sensor applications. Despite the long history of Si-based devices, and the strong demand for opto-electronical integration, 3D Si laser processing technology is still challenging. Recently, nanosecond-pulsed laser was used to fabricate embedded holographic elements in Si. However, until now, there was no demonstration of femtosecond-laser-written optical elements inside Si. In this paper, we present optical waveguides written deep inside Si with 1.5 um femtosecond laser. The laser beam, with 2 uJ pulse energy and 350 fs pulse duration focused inside Si sample, produces permanent modification of Si. By moving the lens along the beam direction we were able to produce optical waveguides up to 5 mm long. The diameter of the waveguide is measured to be 10 um. The waveguides were characterized with both optical shadowgraphy and far field imaging after CW light coupling. We observed nearly single mode propagation of light inside of the waveguide. The obtained difference of refractive index inside of the waveguide, is 2.5*10-4. TUBITAK Grant 113M930, TUBITAK Grant 114F256.

  15. The theory of an auto-resonant field emission cathode relativistic electron accelerator for high efficiency microwave to direct current power conversion

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    1990-01-01

    A novel method of microwave power conversion to direct current is discussed that relies on a modification of well known resonant linear relativistic electron accelerator techniques. An analysis is presented that shows how, by establishing a 'slow' electromagnetic field in a waveguide, electrons liberated from an array of field emission cathodes, are resonantly accelerated to several times their rest energy, thus establishing an electric current over a large potential difference. Such an approach is not limited to the relatively low frequencies that characterize the operation of rectennas, and can, with appropriate waveguide and slow wave structure design, be employed in the 300 to 600 GHz range where much smaller transmitting and receiving antennas are needed.

  16. A grating coupler with a trapezoidal hole array for perfectly vertical light coupling between optical fibers and waveguides

    NASA Astrophysics Data System (ADS)

    Mizutani, Akio; Eto, Yohei; Kikuta, Hisao

    2017-12-01

    A grating coupler with a trapezoidal hole array was designed and fabricated for perfectly vertical light coupling between a single-mode optical fiber and a silicon waveguide on a silicon-on-insulator (SOI) substrate. The grating coupler with an efficiency of 53% was computationally designed at a 1.1-µm-thick buried oxide (BOX) layer. The grating coupler and silicon waveguide were fabricated on the SOI substrate with a 3.0-µm-thick BOX layer by a single full-etch process. The measured coupling efficiency was 24% for TE-polarized light at 1528 nm wavelength, which was 0.69 times of the calculated coupling efficiency for the 3.0-µm-thick BOX layer.

  17. Plasmon-assisted optical vias for photonic ASICS

    DOEpatents

    Skogen, Erik J.; Vawter, Gregory A.; Tauke-Pedretti, Anna

    2017-03-21

    The present invention relates to optical vias to optically connect multilevel optical circuits. In one example, the optical via includes a surface plasmon polariton waveguide, and a first optical waveguide formed on a first substrate is coupled to a second optical waveguide formed on a second substrate by the surface plasmon polariton waveguide. In some embodiments, the first optical waveguide includes a transition region configured to convert light from an optical mode to a surface plasmon polariton mode or from a surface plasmon polariton mode to an optical mode.

  18. On-Chip Waveguide Coupling of a Layered Semiconductor Single-Photon Source.

    PubMed

    Tonndorf, Philipp; Del Pozo-Zamudio, Osvaldo; Gruhler, Nico; Kern, Johannes; Schmidt, Robert; Dmitriev, Alexander I; Bakhtinov, Anatoly P; Tartakovskii, Alexander I; Pernice, Wolfram; Michaelis de Vasconcellos, Steffen; Bratschitsch, Rudolf

    2017-09-13

    Fully integrated quantum technology based on photons is in the focus of current research, because of its immense potential concerning performance and scalability. Ideally, the single-photon sources, the processing units, and the photon detectors are all combined on a single chip. Impressive progress has been made for on-chip quantum circuits and on-chip single-photon detection. In contrast, nonclassical light is commonly coupled onto the photonic chip from the outside, because presently only few integrated single-photon sources exist. Here, we present waveguide-coupled single-photon emitters in the layered semiconductor gallium selenide as promising on-chip sources. GaSe crystals with a thickness below 100 nm are placed on Si 3 N 4 rib or slot waveguides, resulting in a modified mode structure efficient for light coupling. Using optical excitation from within the Si 3 N 4 waveguide, we find nonclassicality of generated photons routed on the photonic chip. Thus, our work provides an easy-to-implement and robust light source for integrated quantum technology.

  19. Integrated optical gyroscopes offering low cost, small size and vibration immunity

    NASA Astrophysics Data System (ADS)

    Monovoukas, Christos; Swiecki, Andrew; Maseeh, Fariborz

    2000-03-01

    IntelliSense has developed an integrated optic gyro technology that provides the sensitivity of fiber optic gyros while utilizing batch microfabrication techniques to achieve the low cost of mechanical MEMS gyros. The base technology consists of an optical resonating waveguide chip, sensor electronics and an optical bench. The sensing element is based on an integrated optic waveguide chip in which counter-propagating optical fields are used to sense rotation in the plane of the waveguide through the Sagnac effect. It is powered by a semiconductor laser light source, which is coupled into a waveguide and split into two waveguide arms. Both signals are probed through the out coupled light at each waveguide arm, and rate information is derived from the difference in phase between these two signals. Measuring angular rotation is important for proper operation of a variety of systems such as: missile guidance systems, satellites, energy exploration, camera stabilization, robotics positioning, platform stabilization and space craft guidance to mention a few. This technology overcomes the limitations that previous commercially available gyros for this purpose have had including limitations in size, sensitivity, durability, and premium price.

  20. Waveguides in Thin Film Polymeric Materials

    NASA Technical Reports Server (NTRS)

    Sakisov, Sergey; Abdeldayem, Hossin; Venkateswarlu, Putcha; Teague, Zedric

    1996-01-01

    Results on the fabrication of integrated optical components in polymeric materials using photo printing methods will be presented. Optical waveguides were fabricated by spin coating preoxidized silicon wafers with organic dye/polymer solution followed by soft baking. The waveguide modes were studied using prism coupling technique. Propagation losses were measured by collecting light scattered from the trace of a propagation mode by either scanning photodetector or CCD camera. We observed the formation of graded index waveguides in photosensitive polyimides after exposure of UV light from a mercury arc lamp. By using a theoretical model, an index profile was reconstructed which is in agreement with the profile reconstructed by the Wentzel-Kramers-Brillouin calculation technique using a modal spectrum of the waveguides. Proposed mechanism for the formation of the graded index includes photocrosslinking followed by UV curing accompanied with optical absorption increase. We also developed the prototype of a novel single-arm double-mode interferometric sensor based on our waveguides. It demonstrates high sensitivity to the chance of ambient temperature. The device can find possible applications in aeropropulsion control systems.

  1. All silicon waveguide spherical microcavity coupler device.

    PubMed

    Xifré-Pérez, E; Domenech, J D; Fenollosa, R; Muñoz, P; Capmany, J; Meseguer, F

    2011-02-14

    A coupler based on silicon spherical microcavities coupled to silicon waveguides for telecom wavelengths is presented. The light scattered by the microcavity is detected and analyzed as a function of the wavelength. The transmittance signal through the waveguide is strongly attenuated (up to 25 dB) at wavelengths corresponding to the Mie resonances of the microcavity. The coupling between the microcavity and the waveguide is experimentally demonstrated and theoretically modeled with the help of FDTD calculations.

  2. Novel, compact, and simple ND:YVO4 laser with 12 W of CW optical output power and good beam quality

    NASA Astrophysics Data System (ADS)

    Zimer, H.; Langer, B.; Wittrock, U.; Heine, F.; Hildebrandt, U.; Seel, S.; Lange, R.

    2017-11-01

    We present first, promising experiments with a novel, compact and simple Nd:YVO4 slab laser with 12 W of 1.06 μm optical output power and a beam quality factor M2 2.5. The laser is made of a diffusion-bonded YVO4/Nd:YVO4 composite crystal that exhibits two unique features. First, it ensures a one-dimensional heat removal from the laser crystal, which leads to a temperature profile without detrimental influence on the laser beam. Thus, the induced thermo-optical aberrations to the laser field are low, allowing power scaling with good beam quality. Second, the composite crystal itself acts as a waveguide for the 809 nm pump-light that is supplied from a diode laser bar. Pump-light shaping optics, e.g. fast- or slow-axis collimators can be omitted, reducing the complexity of the system. Pump-light redundancy can be easily achieved. Eventually, the investigated slab laser might be suitable for distortion-free high gain amplification of weak optical signals.

  3. Projecting light beams with 3D waveguide arrays

    NASA Astrophysics Data System (ADS)

    Crespi, Andrea; Bragheri, Francesca

    2017-01-01

    Free-space light beams with complex intensity patterns, or non-trivial phase structure, are demanded in diverse fields, ranging from classical and quantum optical communications, to manipulation and imaging of microparticles and cells. Static or dynamic spatial light modulators, acting on the phase or intensity of an incoming light wave, are the conventional choices to produce beams with such non-trivial characteristics. However, interfacing these devices with optical fibers or integrated optical circuits often requires difficult alignment or cumbersome optical setups. Here we explore theoretically and with numerical simulations the potentialities of directly using the output of engineered three-dimensional waveguide arrays, illuminated with linearly polarized light, to project light beams with peculiar structures. We investigate through a collection of illustrative configurations the far field distribution, showing the possibility to achieve orbital angular momentum, or to produce elaborate intensity or phase patterns with several singularity points. We also simulate the propagation of the projected beam, showing the possibility to concentrate light. We note that these devices should be at reach of current technology, thus perspectives are open for the generation of complex free-space optical beams from integrated waveguide circuits.

  4. Demonstration of submicron square-like silicon waveguide using optimized LOCOS process.

    PubMed

    Desiatov, Boris; Goykhman, Ilya; Levy, Uriel

    2010-08-30

    We demonstrate the design, fabrication and experimental characterization of a submicron-scale silicon waveguide that is fabricated by local oxidation of silicon. The use of local oxidation process allows defining the waveguide geometry and obtaining smooth sidewalls. The process can be tuned to precisely control the shape and the dimensions of the waveguide. The fabricated waveguides are measured using near field scanning optical microscope at 1550 nm wavelength. These measurements show mode width of 0.4 µm and effective refractive index of 2.54. Finally, we demonstrate the low loss characteristics of our waveguide by imaging the light scattering using an infrared camera.

  5. Multiwaveguide implantable probe for light delivery to sets of distributed brain targets.

    PubMed

    Zorzos, Anthony N; Boyden, Edward S; Fonstad, Clifton G

    2010-12-15

    Optical fibers are commonly inserted into living tissues such as the brain in order to deliver light to deep targets for neuroscientific and neuroengineering applications such as optogenetics, in which light is used to activate or silence neurons expressing specific photosensitive proteins. However, an optical fiber is limited to delivering light to a single target within the three-dimensional structure of the brain. We here demonstrate a multiwaveguide probe capable of independently delivering light to multiple targets along the probe axis, thus enabling versatile optical control of sets of distributed brain targets. The 1.45-cm-long probe is microfabricated in the form of a 360-μm-wide array of 12 parallel silicon oxynitride (SiON) multimode waveguides clad with SiO(2) and coated with aluminum; probes of custom dimensions are easily created as well. The waveguide array accepts light from a set of sources at the input end and guides the light down each waveguide to an aluminum corner mirror that efficiently deflects light away from the probe axis. Light losses at each stage are small (input coupling loss, 0.4 ± 0.3 dB; bend loss, negligible; propagation loss, 3.1 ± 1 dB/cm using the outscattering method and 3.2 ± 0.4 dB/cm using the cutback method; corner mirror loss, 1.5 ± 0.4 dB); a waveguide coupled, for example, to a 5 mW source will deliver over 1.5 mW to a target at a depth of 1 cm.

  6. Signature of phase singularities in diffusive regimes in disordered waveguide lattices: interplay and qualitative analysis.

    PubMed

    Ghosh, Somnath

    2018-05-10

    Coexistence and interplay between mesoscopic light dynamics with singular optics in spatially disordered waveguide lattices are reported. Two CW light beams of a 1.55 μm operating wavelength are launched as inputs to 1D waveguide lattices with controllable weak disorder in a complex refractive index profile. Direct observation of phase singularities in the speckle pattern along the length is numerically demonstrated. Quantitative analysis of the onset of such singular behavior and diffusive wave propagation is analyzed for the first time, to the best of our knowledge.

  7. Nonlocal response in plasmonic waveguiding with extreme light confinement

    NASA Astrophysics Data System (ADS)

    Toscano, Giuseppe; Raza, Søren; Yan, Wei; Jeppesen, Claus; Xiao, Sanshui; Wubs, Martijn; Jauho, Antti-Pekka; Bozhevolnyi, Sergey I.; Mortensen, N. Asger

    2013-07-01

    We present a novel wave equation for linearized plasmonic response, obtained by combining the coupled real-space differential equations for the electric field and current density. Nonlocal dynamics are fully accounted for, and the formulation is very well suited for numerical implementation, allowing us to study waveguides with subnanometer cross-sections exhibiting extreme light confinement. We show that groove and wedge waveguides have a fundamental lower limit in their mode confinement, only captured by the nonlocal theory. The limitation translates into an upper limit for the corresponding Purcell factors, and thus has important implications for quantum plasmonics.

  8. Squeezed-light generation in a nonlinear planar waveguide with a periodic corrugation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perina, Jan Jr.; Haderka, Ondrej; Sibilia, Concita

    Two-mode nonlinear interaction (second-harmonic and second-subharmonic generation) in a planar waveguide with a small periodic corrugation at the surface is studied. Scattering of the interacting fields on the corrugation leads to constructive interference that enhances the nonlinear process provided that all the interactions are phase matched. Conditions for the overall phase matching are found. Compared with a perfectly quasi-phase-matched waveguide, better values of squeezing as well as higher intensities are reached under these conditions. Procedure for finding optimum values of parameters for squeezed-light generation is described.

  9. Broadband photonic transport between waveguides by adiabatic elimination

    NASA Astrophysics Data System (ADS)

    Oukraou, Hassan; Coda, Virginie; Rangelov, Andon A.; Montemezzani, Germano

    2018-02-01

    We propose an adiabatic method for the robust transfer of light between the two outer waveguides in a three-waveguide directional coupler. Unlike the established technique inherited from stimulated Raman adiabatic passage (STIRAP), the method proposed here is symmetric with respect to an exchange of the left and right waveguides in the structure and permits the transfer in both directions. The technique uses the adiabatic elimination of the middle waveguide together with level crossing and adiabatic passage in an effective two-state system involving only the external waveguides. It requires a strong detuning between the outer and the middle waveguide and does not rely on the adiabatic transfer state (dark state) underlying the STIRAP process. The suggested technique is generalized to an array of N waveguides and verified by numerical beam propagation calculations.

  10. Waveguide bends from nanometric silica wires

    NASA Astrophysics Data System (ADS)

    Tong, Limin; Lou, Jingyi; Mazur, Eric

    2005-02-01

    We propose to use bent silica wires with nanometric diameters to guide light as optical waveguide bend. We bend silica wires with scanning tunneling microscope probes under an optical microscope, and wire bends with bending radius smaller than 5 μm are obtained. Light from a He-Ne laser is launched into and guided through the wire bends, measured bending loss of a single bend is on the order of 1 dB. Brief introductions to the optical wave guiding and elastic bending properties of silica wires are also provided. Comparing with waveguide bends based on photonic bandgap structures, the waveguide bends from silica nanometric wires show advantages of simple structure, small overall size, easy fabrication and wide useful spectral range, which make them potentially useful in the miniaturization of photonic devices.

  11. High precision AlGaAsSb ridge-waveguide etching by in situ reflectance monitored ICP-RIE

    NASA Astrophysics Data System (ADS)

    Tran, N. T.; Breivik, Magnus; Patra, S. K.; Fimland, Bjørn-Ove

    2014-05-01

    GaSb-based semiconductor diode lasers are promising candidates for light sources working in the mid-infrared wavelength region of 2-5 μm. Using edge emitting lasers with ridge-waveguide structure, light emission with good beam quality can be achieved. Fabrication of the ridge waveguide requires precise etch stop control for optimal laser performance. Simulation results are presented that show the effect of increased confinement in the waveguide when the etch depth is well-defined. In situ reflectance monitoring with a 675 nm-wavelength laser was used to determine the etch stop with high accuracy. Based on the simulations of laser reflectance from a proposed sample, the etching process can be controlled to provide an endpoint depth precision within +/- 10 nm.

  12. Edge-emitting ultraviolet n-ZnO:Al/i-ZnO/p-GaN heterojunction light-emitting diode with a rib waveguide.

    PubMed

    Liang, H K; Yu, S F; Yang, H Y

    2010-02-15

    An edge-emitting ultraviolet n-ZnO:Al/i-ZnO/p-GaN heterojunction light-emitting diode with a rib waveguide is fabricated by filtered cathodic vacuum arc technique at low deposition temperature (approximately 150 degrees C). Electroluminescence with emission peak at 387 nm is observed. Good correlation between electro- and photo- luminescence spectra suggests that the i-ZnO layer of the heterojunction supports radiative excitonic recombination. Furthermore, it is found that the emission intensity can be enhanced by approximately 5 times due to the presence of the rib waveguide. Only fundamental TE and TM polarizations are supported inside the rib waveguide and the intensity of TE polarization is approximately 2.2 time larger than that of TM polarization.

  13. Characterization of silver halide fiber optics and hollow silica waveguides for use in the construction of a mid-infrared attenuated total reflection fourier transform infrared (ATR FT-IR) spectroscopy probe.

    PubMed

    Damin, Craig A; Sommer, André J

    2013-11-01

    Advances in fiber optic materials have allowed for the construction of fibers and waveguides capable of transmitting infrared radiation. An investigation of the transmission characteristics associated with two commonly used types of infrared-transmitting fibers/waveguides for prospective use in a fiber/waveguide-coupled attenuated total internal reflection (ATR) probe was performed. Characterization of silver halide polycrystalline fiber optics and hollow silica waveguides was done on the basis of the transmission of infrared light using a conventional fiber optic coupling accessory and an infrared microscope. Using the fiber optic coupling accessory, the average percent transmission for three silver halide fibers was 18.1 ± 6.1% relative to a benchtop reflection accessory. The average transmission for two hollow waveguides (HWGs) using the coupling accessory was 8.0 ± 0.3%. (Uncertainties in the relative percent transmission represent the standard deviations.) Reduced transmission observed for the HWGs was attributed to the high numerical aperture of the coupling accessory. Characterization of the fibers/waveguides using a zinc selenide lens objective on an infrared microscope indicated 24.1 ± 7.2% of the initial light input into the silver halide fibers was transmitted. Percent transmission obtained for the HWGs was 98.7 ± 0.1%. Increased transmission using the HWGs resulted from the absence or minimization of insertion and scattering losses due to the hollow air core and a better-matched numerical aperture. The effect of bending on the transmission characteristics of the fibers/waveguides was also investigated. Significant deviations in the transmission of infrared light by the solid-core silver halide fibers were observed for various bending angles. Percent transmission greater than 98% was consistently observed for the HWGs at the bending angles. The combined benefits of high percent transmission, reproducible instrument responses, and increased bending tolerance indicated HWGs should be preferred in the construction of a fiber/waveguide-coupled ATR probe.

  14. Dark and bright blocker soliton interaction in defocusing waveguide arrays.

    PubMed

    Smirnov, Eugene; Rüter, Christian E; Stepić, Milutin; Shandarov, Vladimir; Kip, Detlef

    2006-11-13

    We experimentally demonstrate the interaction of an optical probe beam with both bright and dark blocker solitons formed with low optical light power in a saturable defocusing waveguide array in photorefractive lithium niobate. A phase insensitive interaction of the beams is achieved by means of counterpropagating light waves. Partial and full reflection (blocking) of the probe beam on the positive or negative light-induced defect is obtained, respectively, in good agreement with numerical simulations.

  15. 1 × 4 MMI visible light wavelength demultiplexer based on a GaN slot-waveguide structure

    NASA Astrophysics Data System (ADS)

    Shoresh, Tamir; Katanov, Nadav; Malka, Dror

    2018-07-01

    High transmission losses are the key problem that limits the performance of visible light communication systems, which work on wavelength division multiplexing (WDM) technology. To overcome this problem, we propose a novel design for a 1 × 4 optical demultiplexer based on the multimode interference in a slot-waveguide structure that operates at 547 nm, 559 nm, 566 nm, and 584 nm. Gallium nitride and silicon oxide were found to be excellent materials for the slot-waveguide structure. Simulation results showed that the proposed device can transmit four channels that work in the visible light range with a low transmission loss of 0.983-1.423 dB, crosstalk of 13.8-18.3 dB, and bandwidth of 1.8-3.2 nm. Thus, this device can be very useful in visible light networking systems, which work on the WDM technology.

  16. Photonic Switching Devices Using Light Bullets

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M. (Inventor)

    1999-01-01

    A unique ultra-fast, all-optical switching device or switch is made with readily available, relatively inexpensive, highly nonlinear optical materials. which includes highly nonlinear optical glasses, semiconductor crystals and/or multiple quantum well semiconductor materials. At the specified wavelengths. these optical materials have a sufficiently negative group velocity dispersion and high nonlinear index of refraction to support stable light bullets. The light bullets counter-propagate through, and interact within the waveguide to selectively change each others' directions of propagation into predetermined channels. In one embodiment, the switch utilizes a rectangularly planar slab waveguide. and further includes two central channels and a plurality of lateral channels for guiding the light bullets into and out of the waveguide. An advantage of the present all-optical switching device lies in its practical use of light bullets, thus preventing the degeneration of the pulses due to dispersion and diffraction at the front and back of the pulses. Another advantage of the switching device is the relative insensitivity of the collision process to the time difference in which the counter-propagating pulses enter the waveguide. since. contrary to conventional co-propagating spatial solitons, the relative phase of the colliding pulses does not affect the interaction of these pulses. Yet another feature of the present all-optical switching device is the selection of the light pulse parameters which enables the generation of light bullets in nonlinear optical materials. including highly nonlinear optical glasses and semiconductor materials such as semiconductor crystals and/or multiple quantum well semiconductor materials.

  17. Theoretical description and design of nanomaterial slab waveguides: application to compensation of optical diffraction.

    PubMed

    Kivijärvi, Ville; Nyman, Markus; Shevchenko, Andriy; Kaivola, Matti

    2018-04-02

    Planar optical waveguides made of designable spatially dispersive nanomaterials can offer new capabilities for nanophotonic components. As an example, a thin slab waveguide can be designed to compensate for optical diffraction and provide divergence-free propagation for strongly focused optical beams. Optical signals in such waveguides can be transferred in narrow channels formed by the light itself. We introduce here a theoretical method for characterization and design of nanostructured waveguides taking into account their inherent spatial dispersion and anisotropy. Using the method, we design a diffraction-compensating slab waveguide that contains only a single layer of silver nanorods. The waveguide shows low propagation loss and broadband diffraction compensation, potentially allowing transfer of optical information at a THz rate.

  18. Scanned Image Projection System Employing Intermediate Image Plane

    NASA Technical Reports Server (NTRS)

    DeJong, Christian Dean (Inventor); Hudman, Joshua M. (Inventor)

    2014-01-01

    In imaging system, a spatial light modulator is configured to produce images by scanning a plurality light beams. A first optical element is configured to cause the plurality of light beams to converge along an optical path defined between the first optical element and the spatial light modulator. A second optical element is disposed between the spatial light modulator and a waveguide. The first optical element and the spatial light modulator are arranged such that an image plane is created between the spatial light modulator and the second optical element. The second optical element is configured to collect the diverging light from the image plane and collimate it. The second optical element then delivers the collimated light to a pupil at an input of the waveguide.

  19. Optical pulling force and conveyor belt effect in resonator-waveguide system.

    PubMed

    Intaraprasonk, Varat; Fan, Shanhui

    2013-09-01

    We present the theoretical condition and actual numerical design that achieves an optical pulling force in resonator-waveguide systems, where the direction of the force on the resonator is in the opposite direction to the input light in the waveguide. We also show that this pulling force can occur in conjunction with the lateral optical equilibrium effect, such that the resonator is maintained at the fixed distance from the waveguide while experiencing the pulling force.

  20. Near-field collimation of light carrying orbital angular momentum with bull's-eye-assisted plasmonic coaxial waveguides.

    PubMed

    Pu, Mingbo; Ma, Xiaoliang; Zhao, Zeyu; Li, Xiong; Wang, Yanqin; Gao, Hui; Hu, Chenggang; Gao, Ping; Wang, Changtao; Luo, Xiangang

    2015-07-10

    The orbital angular momentum (OAM) of light, as an emerging hotspot in optics and photonics, introduces many degrees of freedom for applications ranging from optical communication and quantum processing to micromanipulation. To achieve a high degree of integration, optical circuits for OAM light are essential, which are, however, challenging in the optical regime owing to the lack of well-developed theory. Here we provide a scheme to guide and collimate the OAM beam at the micro- and nano-levels. The coaxial plasmonic slit was exploited as a naturally occurring waveguide for light carrying OAM. Concentric grooves etched on the output surface of the coaxial waveguide were utilized as a plasmonic metasurface to couple the OAM beam to free space with greatly increased beam directivity. Experimental results at λ = 532 nm validated the novel transportation and collimating effect of the OAM beam. Furthermore, dynamic tuning of the topological charges was demonstrated by using a liquid crystal spatial light modulator (SLM).

  1. Near-field collimation of light carrying orbital angular momentum with bull’s-eye-assisted plasmonic coaxial waveguides

    NASA Astrophysics Data System (ADS)

    Pu, Mingbo; Ma, Xiaoliang; Zhao, Zeyu; Li, Xiong; Wang, Yanqin; Gao, Hui; Hu, Chenggang; Gao, Ping; Wang, Changtao; Luo, Xiangang

    2015-07-01

    The orbital angular momentum (OAM) of light, as an emerging hotspot in optics and photonics, introduces many degrees of freedom for applications ranging from optical communication and quantum processing to micromanipulation. To achieve a high degree of integration, optical circuits for OAM light are essential, which are, however, challenging in the optical regime owing to the lack of well-developed theory. Here we provide a scheme to guide and collimate the OAM beam at the micro- and nano-levels. The coaxial plasmonic slit was exploited as a naturally occurring waveguide for light carrying OAM. Concentric grooves etched on the output surface of the coaxial waveguide were utilized as a plasmonic metasurface to couple the OAM beam to free space with greatly increased beam directivity. Experimental results at λ = 532 nm validated the novel transportation and collimating effect of the OAM beam. Furthermore, dynamic tuning of the topological charges was demonstrated by using a liquid crystal spatial light modulator (SLM).

  2. Near-field collimation of light carrying orbital angular momentum with bull’s-eye-assisted plasmonic coaxial waveguides

    PubMed Central

    Pu, Mingbo; Ma, Xiaoliang; Zhao, Zeyu; Li, Xiong; Wang, Yanqin; Gao, Hui; Hu, Chenggang; Gao, Ping; Wang, Changtao; Luo, Xiangang

    2015-01-01

    The orbital angular momentum (OAM) of light, as an emerging hotspot in optics and photonics, introduces many degrees of freedom for applications ranging from optical communication and quantum processing to micromanipulation. To achieve a high degree of integration, optical circuits for OAM light are essential, which are, however, challenging in the optical regime owing to the lack of well-developed theory. Here we provide a scheme to guide and collimate the OAM beam at the micro- and nano-levels. The coaxial plasmonic slit was exploited as a naturally occurring waveguide for light carrying OAM. Concentric grooves etched on the output surface of the coaxial waveguide were utilized as a plasmonic metasurface to couple the OAM beam to free space with greatly increased beam directivity. Experimental results at λ = 532 nm validated the novel transportation and collimating effect of the OAM beam. Furthermore, dynamic tuning of the topological charges was demonstrated by using a liquid crystal spatial light modulator (SLM). PMID:26159423

  3. Optical panel system including stackable waveguides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeSanto, Leonard; Veligdan, James T.

    An optical panel system including stackable waveguides is provided. The optical panel system displays a projected light image and comprises a plurality of planar optical waveguides in a stacked state. The optical panel system further comprises a support system that aligns and supports the waveguides in the stacked state. In one embodiment, the support system comprises at least one rod, wherein each waveguide contains at least one hole, and wherein each rod is positioned through a corresponding hole in each waveguide. In another embodiment, the support system comprises at least two opposing edge structures having the waveguides positioned therebetween, whereinmore » each opposing edge structure contains a mating surface, wherein opposite edges of each waveguide contain mating surfaces which are complementary to the mating surfaces of the opposing edge structures, and wherein each mating surface of the opposing edge structures engages a corresponding complementary mating surface of the opposite edges of each waveguide.« less

  4. An analog of photon-assisted tunneling in a periodically modulated waveguide array

    PubMed Central

    Li, Liping; Luo, Xiaobing; Yang, Xiaoxue; Wang, Mei; Lü, Xinyou; Wu, Ying

    2016-01-01

    We theoretically report an analog of photon-assisted tunneling (PAT) originated from dark Floquet state in a periodically driven lattice array without a static biased potential by studying a three-channel waveguide system in a non-high-frequency regime. This analog of PAT can be achieved by only periodically modulating the top waveguide and adjusting the distance between the bottom and its adjacent waveguide. It is numerically shown that the PAT resonances also exist in the five-channel waveguide system and probably exist in the waveguide arrays with other odd numbers of waveguides, but they will become weak as the number of waveguides increases. With origin different from traditional PAT, this type of PAT found in our work is closely linked to the existence of the zero-energy (dark) Floquet states. It is readily observable under currently accessible experimental conditions and may be useful for controlling light propagation in waveguide arrays. PMID:27767189

  5. Optical panel system including stackable waveguides

    DOEpatents

    DeSanto, Leonard; Veligdan, James T.

    2007-03-06

    An optical panel system including stackable waveguides is provided. The optical panel system displays a projected light image and comprises a plurality of planar optical waveguides in a stacked state. The optical panel system further comprises a support system that aligns and supports the waveguides in the stacked state. In one embodiment, the support system comprises at least one rod, wherein each waveguide contains at least one hole, and wherein each rod is positioned through a corresponding hole in each waveguide. In another embodiment, the support system comprises at least two opposing edge structures having the waveguides positioned therebetween, wherein each opposing edge structure contains a mating surface, wherein opposite edges of each waveguide contain mating surfaces which are complementary to the mating surfaces of the opposing edge structures, and wherein each mating surface of the opposing edge structures engages a corresponding complementary mating surface of the opposite edges of each waveguide.

  6. FIBER OPTICS. ACOUSTOOPTICS: High-frequency magnetooptics of fiber waveguides

    NASA Astrophysics Data System (ADS)

    Antonov, S. N.; Bulyuk, A. N.; Vetoshko, P. M.; Shkerdin, G. N.

    1990-07-01

    An investigation is made of the hf distributed magnetooptic interaction in fiber waveguides associated with the Faraday effect observed under the conditions of both spatial and temporal phase matching between the normal modes of the waveguide and an external magentic field. Analytic expressions are obtained for the main relationships governing modulation of the state of polarization of light in a long fiber waveguide at high and ultrahigh frequencies. An analysis is made of several variants of hf magnetooptic modulators. It is shown that in the specific case when a 10-m long quartz fiber waveguide wound to form a cylindrical coil is placed inside the cavity of a coaxial microwave resonator and the microwave control power is 10 W, the efficiency of modulation of light should be 50%. The main theoretical predictions were supported by the reported experiments. These experiments showed that at a frequency of 80 MHz the modulation efficiency was 1% when the control power was 0.5 W.

  7. Supersymmetric oscillator in optics

    NASA Technical Reports Server (NTRS)

    Chumakov, Sergey M.; Wolf, Kurt Bernardo

    1995-01-01

    We show that the supersymmetric structure (in the sense of supersymmetric quantum mechanics) appears in Helmholtz optics describing light propagation in waveguides. For the case of elliptical waveguides, with the accuracy of paraxial approximation it admits a simple physical interpretation. The supersymmetry connects light beams of different colors. The difference in light frequencies for the supersymmetric beams is determined by the transverse gradient of the refractive index. These beams have the save wavelength in the propagation direction and can form a stable interference pattern.

  8. Mechanical Kerr nonlinearities due to bipolar optical forces between deformable silicon waveguides.

    PubMed

    Ma, Jing; Povinelli, Michelle L

    2011-05-23

    We use an analytical method based on the perturbation of effective index at fixed frequency to calculate optical forces between silicon waveguides. We use the method to investigate the mechanical Kerr effect in a coupled-waveguide system with bipolar forces. We find that a positive mechanical Kerr coefficient results from either an attractive or repulsive force. An enhanced mechanical Kerr coefficient several orders of magnitude larger than the intrinsic Kerr coefficient is obtained in waveguides for which the optical mode approaches the air light line, given appropriate design of the waveguide dimensions.

  9. Soft lithography microlens fabrication and array for enhanced light extraction from organic light emitting diodes (OLEDs)

    DOEpatents

    Leung, Wai Y.; Park, Joong-Mok; Gan, Zhengqing; Constant, Kristen P.; Shinar, Joseph; Shinar, Ruth; ho, Kai-Ming

    2014-06-03

    Provided are microlens arrays for use on the substrate of OLEDs to extract more light that is trapped in waveguided modes inside the devices and methods of manufacturing same. Light extraction with microlens arrays is not limited to the light emitting area, but is also efficient in extracting light from the whole microlens patterned area where waveguiding occurs. Large microlens array, compared to the size of the light emitting area, extract more light and result in over 100% enhancement. Such a microlens array is not limited to (O)LEDs of specific emission, configuration, pixel size, or pixel shape. It is suitable for all colors, including white, for microcavity OLEDs, and OLEDs fabricated directly on the (modified) microlens array.

  10. Black optic display

    DOEpatents

    Veligdan, James T.

    1997-01-01

    An optical display includes a plurality of stacked optical waveguides having first and second opposite ends collectively defining an image input face and an image screen, respectively, with the screen being oblique to the input face. Each of the waveguides includes a transparent core bound by a cladding layer having a lower index of refraction for effecting internal reflection of image light transmitted into the input face to project an image on the screen, with each of the cladding layers including a cladding cap integrally joined thereto at the waveguide second ends. Each of the cores is beveled at the waveguide second end so that the cladding cap is viewable through the transparent core. Each of the cladding caps is black for absorbing external ambient light incident upon the screen for improving contrast of the image projected internally on the screen.

  11. Demonstration of slot-waveguide structures on silicon nitride / silicon oxide platform.

    PubMed

    Barrios, C A; Sánchez, B; Gylfason, K B; Griol, A; Sohlström, H; Holgado, M; Casquel, R

    2007-05-28

    We report on the first demonstration of guiding light in vertical slot-waveguides on silicon nitride/silicon oxide material system. Integrated ring resonators and Fabry-Perot cavities have been fabricated and characterized in order to determine optical features of the slot-waveguides. Group index behavior evidences guiding and confinement in the low-index slot region at O-band (1260-1370nm) telecommunication wavelengths. Propagation losses of <20 dB/cm have been measured for the transverse-electric mode of the slot-waveguides.

  12. Integrated display scanner

    DOEpatents

    Veligdan, James T.

    2004-12-21

    A display scanner includes an optical panel having a plurality of stacked optical waveguides. The waveguides define an inlet face at one end and a screen at an opposite end, with each waveguide having a core laminated between cladding. A projector projects a scan beam of light into the panel inlet face for transmission from the screen as a scan line to scan a barcode. A light sensor at the inlet face detects a return beam reflected from the barcode into the screen. A decoder decodes the return beam detected by the sensor for reading the barcode. In an exemplary embodiment, the optical panel also displays a visual image thereon.

  13. Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale.

    PubMed

    Wu, Marcelo; Han, Zhanghua; Van, Vien

    2010-05-24

    Subwavelength conductor-gap-silicon plasmonic waveguides along with compact S-bends and Y-splitters were theoretically investigated and experimentally demonstrated on a silicon-on-insulator platform. A thin SiO2 gap between the conductor layer and silicon core provides subwavelength confinement of light while a long propagation length of 40 microm was achieved. Coupling of light between the plasmonic and conventional silicon photonic waveguides was also demonstrated with a high efficiency of 80%. The compact sizes, low loss operation, efficient input/output coupling, combined with a CMOS-compatible fabrication process, make these conductor-gap-silicon plasmonic devices a promising platform for realizing densely-integrated plasmonic circuits.

  14. Hybrid fiber-rod laser

    DOEpatents

    Beach, Raymond J.; Dawson, Jay W.; Messerly, Michael J.; Barty, Christopher P. J.

    2012-12-18

    Single, or near single transverse mode waveguide definition is produced using a single homogeneous medium to transport both the pump excitation light and generated laser light. By properly configuring the pump deposition and resulting thermal power generation in the waveguide device, a thermal focusing power is established that supports perturbation-stable guided wave propagation of an appropriately configured single or near single transverse mode laser beam and/or laser pulse.

  15. Guided-Wave Optic Devices for Integrated Optic Information Processing.

    DTIC Science & Technology

    1984-08-08

    Modulation and switching of light waves in Yttrium iron garnet (YIG)- Gadolinium gallium garnet (GGG) waveguides using Farady rotation , and light...switch, an electrooptic analog-to-digital converter using a Fabry -Perot modula- tor array, and a noncollinear magnetooptic modulator using magnetostatic...data routing in electronic computer networks. ELECTROOPTIC ANALOG-TO-DIGITAL CONVERTER USING CHANNEL WAVEGUIDE FABRY -PEROT MODULATOR ARRAY One of the

  16. Waveguide detection of right-angle-scattered light in flow cytometry

    DOEpatents

    Mariella, Jr., Raymond P.

    2000-01-01

    A transparent flow cell is used as an index-guided optical waveguide. A detector for the flow cell but not the liquid stream detects the Right-Angle-Scattered (RAS) Light exiting from one end of the flow cell. The detector(s) could view the trapped RAS light from the flow cell either directly or through intermediate optical light guides. If the light exits one end of the flow cell, then the other end of the flow cell can be given a high-reflectivity coating to approximately double the amount of light collected. This system is more robust in its alignment than the traditional flow cytometry systems which use imaging optics, such as microscope objectives.

  17. Integrated optical isolators using magnetic surface plasmon (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Shimizu, Hiromasa; Kaihara, Terunori; Umetsu, Saori; Hosoda, Masashi

    2015-09-01

    Optical isolators are one of the essential components to protect semiconductor laser diodes (LDs) from backward reflected light in integrated optics. In order to realize optical isolators, nonreciprocal propagation of light is necessary, which can be realized by magnetic materials. Semiconductor optical isolators have been strongly desired on Si and III/V waveguides. We have developed semiconductor optical isolators based on nonreciprocal loss owing to transverse magneto-optic Kerr effect, where the ferromagnetic metals are deposited on semiconductor optical waveguides1). Use of surface plasmon polariton at the interface of ferromagnetic metal and insulator leads to stronger optical confinement and magneto-optic effect. It is possible to modulate the optical confinement by changing the magnetic field direction, thus optical isolator operation is proposed2, 3). We have investigated surface plasmons at the interfaces between ferrimagnetic garnet/gold film, and applications to waveguide optical isolators. We assumed waveguides composed of Au/Si(38.63nm)/Ce:YIG(1700nm)/Si(220nm)/Si , and calculated the coupling lengths between Au/Si(38.63nm)/Ce:YIG plasmonic waveguide and Ce:YIG/Si(220nm)/Si waveguide for transversely magnetized Ce:YIG with forward and backward directions. The coupling length was calculated to 232.1um for backward propagating light. On the other hand, the coupling was not complete, and the length was calculated to 175.5um. The optical isolation by using the nonreciprocal coupling and propagation loss was calculated to be 43.7dB when the length of plasmonic waveguide is 700um. 1) H. Shimizu et al., J. Lightwave Technol. 24, 38 (2006). 2) V. Zayets et al., Materials, 5, 857-871 (2012). 3) J. Montoya, et al, J. Appl. Phys. 106, 023108, (2009).

  18. Quantum light in novel systems

    NASA Astrophysics Data System (ADS)

    Rai, Amit

    2011-12-01

    In this thesis we have focused on the study of various systems which are presently widely studied in different areas of quantum optics and quantum information sciences. These, for example, include the coupled system of photonic waveguides which are known to be highly efficient in manipulating the flow of light. The Hamiltonian describing the evolution of field mode in coupled waveguides is effectively identical to the well-known tight binding Hamiltonian used in solid state physics. The advantage of waveguide system is the possibility to control various interactions by design and their low decoherence rate. The excellent stability offered by coupled waveguides has led to the observation of many key coherent effects such as quantum walk, Bloch oscillation, and discrete Talbot effect. For example, Bloch oscillations have been investigated in coupled waveguides using coherent beam of light. We wanted to inquire whether coherent phenomena such as Bloch oscillations can be possible with incoherent single photon sources. We discovered that Bloch oscillations are indeed possible with single photons provided we prepare single photons in a W state. Moreover, coupled waveguides also find applications in the field of quantum information processing. Since entanglement plays a prominent role in all these applications, it is important to understand the entanglement dynamics in these structures. We considered the case of squeezed input in one of the waveguide and showed that one can generate entanglement between the waveguide modes. We further continued our work on the entanglement generation in coupled waveguides by incorporating the effect of loss in the waveguide structure for the squeezed and photon number input states. We considered relevant experimental parameters and showed that waveguide structures are reasonably robust against the effect of loss. Another system which has attracted a great deal of interest is the optomechanical system. We consider an optomechanical system where an optical cavity mode is coupled to the square of the position of a mechanical oscillator. The optomechanical system can then be regarded as a quantum optical spring, i.e., a spring whose spring constant depends on the quantum state of another system. In particular, we consider the situation where the field inside the cavity is in a coherent state and the oscillator is prepared in its ground state. The quantized nature of the field produces new features in the optomechanical system.

  19. Lensing duct

    DOEpatents

    Beach, R.J.; Benett, W.J.

    1994-04-26

    A lensing duct to condense (intensify) light using a combination of front surface lensing and reflective waveguiding is described. The duct tapers down from a wide input side to a narrow output side, with the input side being lens-shaped and coated with an antireflective coating for more efficient transmission into the duct. The four side surfaces are uncoated, preventing light from escaping by total internal reflection as it travels along the duct (reflective waveguiding). The duct has various applications for intensifying light, such as in the coupling of diode array pump light to solid state lasing materials, and can be fabricated from inexpensive glass and plastic. 3 figures.

  20. Femtosecond writing of near-surface waveguides in lithium niobate for low-loss electro-optical modulators of broadband emission

    NASA Astrophysics Data System (ADS)

    Bukharin, Mikhail A.; Skryabin, Nikolay N.; Khudyakov, Dmitriy V.; Vartapetov, Sergey K.

    2016-05-01

    In the investigation we demonstrated technique of direct femtosecond laser writing of tracks with induced refractive index at record low depth under surface of lithium niobate (3-15 μm). It was shown that with the help of proposed technique one can be written claddings of near surface optical waveguides that plays a key role in fabrication of fast electro-optical modulators with low operating voltage. Fundamental problem resolved in the investigation consists in suppression of negative factors impeding femtosecond inscription of waveguides at low depths. To prevent optical breakdown of crystal surface we used high numerical aperture objectives for focusing of light. It was shown, that advanced heat accumulation regime of femtosecond inscription is inapplicable for writing of near-surface waveguides, and near the surface waveguides should be written in non-thermal regime in contrast to widespread femtosecond writing at depths of tens micrometers. Inscribed waveguides were examined for optical losses and polarization properties. It was experimentally shown, that femtosecond written near surface waveguides have such advantages over widely used proton exchanged and Ti-diffusion waveguides as lower optical losses (down to 0.3 dB/cm) and maintaining of all polarization states of propagation light, which is crucial for development of electro-optical modulators for broadband and ultrashort laser emission. Novelty of the results consists in technique of femtosecond inscription of waveguides at record low depths under the surface of crystals. As compared to previous investigations in the field (structures at depths near 50 um with buried electrodes), the obtained waveguides could be used with simple closely adjacent on-surface electrodes.

  1. A compact integrated device for spatially selective optogenetic neural stimulation based on the Utah Optrode Array

    NASA Astrophysics Data System (ADS)

    Scharf, Robert; Reiche, Christopher F.; McAlinden, Niall; Cheng, Yunzhou; Xie, Enyuan; Sharma, Rohit; Tathireddy, Prashant; Rieth, Loren; Mathieson, Keith; Blair, Steve

    2018-02-01

    Optogenetics is a powerful tool for neural control, but controlled light delivery beyond the superficial structures of the brain remains a challenge. For this, we have developed an optrode array, which can be used for optogenetic stimulation of the deep layers of the cortex. The device consists of a 10×10 array of penetrating optical waveguides, which are predefined using BOROFLOAT® wafer dicing. A wet etch step is then used to achieve the desired final optrode dimensions, followed by heat treatment to smoothen the edges and the surface. The major challenge that we have addressed is delivering light through individual waveguides in a controlled and efficient fashion. Simply coupling the waveguides in the optrode array to a separately-fabricated μLED array leads to low coupling efficiency and significant light scattering in the optrode backplane and crosstalk to adjacent optrodes due to the large mismatch between the μLED and waveguide numerical aperture and the working distance between them. We mitigate stray light by reducing the thickness of the glass backplane and adding a silicon interposer layer with optical vias connecting the μLEDs to the optrodes. The interposer additionally provides mechanical stability required by very thin backplanes, while restricting the unwanted spread of light. Initial testing of light output from the optrodes confirms intensity levels sufficient for optogenetic neural activation. These results pave the way for future work, which will focus on optimization of light coupling and adding recording electrodes to each optrode shank to create a bidirectional optoelectronic interface.

  2. Integrated Miniature Arrays of Optical Biomolecule Detectors

    NASA Technical Reports Server (NTRS)

    Iltchenko, Vladimir; Maleki, Lute; Lin, Ying; Le, Thanh

    2009-01-01

    Integrated miniature planar arrays of optical sensors for detecting specific biochemicals in extremely small quantities have been proposed. An array of this type would have an area of about 1 cm2. Each element of the array would include an optical microresonator that would have a high value of the resonance quality factor (Q . 107). The surface of each microresonator would be derivatized to make it bind molecules of a species of interest, and such binding would introduce a measurable change in the optical properties of the microresonator. Because each microresonator could be derivatized for detection of a specific biochemical different from those of the other microresonators, it would be possible to detect multiple specific biochemicals by simultaneous or sequential interrogation of all the elements in the array. Moreover, the derivatization would make it unnecessary to prepare samples by chemical tagging. Such interrogation would be effected by means of a grid of row and column polymer-based optical waveguides that would be integral parts of a chip on which the array would be fabricated. The row and column polymer-based optical waveguides would intersect at the elements of the array (see figure). At each intersection, the row and column waveguides would be optically coupled to one of the microresonators. The polymer-based waveguides would be connected via optical fibers to external light sources and photodetectors. One set of waveguides and fibers (e.g., the row waveguides and fibers) would couple light from the sources to the resonators; the other set of waveguides and fibers (e.g., the column waveguides and fibers) would couple light from the microresonators to the photodetectors. Each microresonator could be addressed individually by row and column for measurement of its optical transmission. Optionally, the chip could be fabricated so that each microresonator would lie inside a microwell, into which a microscopic liquid sample could be dispensed.

  3. Dry-film polymer waveguide for silicon photonics chip packaging.

    PubMed

    Hsu, Hsiang-Han; Nakagawa, Shigeru

    2014-09-22

    Polymer waveguide made by dry film process is demonstrated for silicon photonics chip packaging. With 8 μm × 11.5 μm core waveguide, little penalty is observed up to 25 Gbps before or after the light propagate through a 10-km long single-mode fiber (SMF). Coupling loss to SMF is 0.24 dB and 1.31 dB at the polymer waveguide input and output ends, respectively. Alignment tolerance for 0.5 dB loss increase is +/- 1.0 μm along both vertical and horizontal directions for the coupling from the polymer waveguide to SMF. The dry-film polymer waveguide demonstrates promising performance for silicon photonics chip packaging used in next generation optical multi-chip module.

  4. Active control of lateral leakage in thin-ridge SOI waveguide structures

    NASA Astrophysics Data System (ADS)

    Dalvand, Naser; Nguyen, Thach G.; Tummidi, Ravi S.; Koch, Thomas L.; Mitchell, Arnan

    2011-12-01

    We report on the design and simulation of a novel Silicon-On-Insulator waveguide structures which when excited with TM guided light, emit TE polarized radiation with controlled radiation characteristics[1]. The structures utilize parallel leaky waveguides of specific separations. The structures are simulated using a full-vector mode-matching approach which allows visualisation of the evolution of the propagating and radiating fields over the length of the waveguide structure. It is shown that radiation can be resonantly enhanced or suppressed in different directions depending on the choice of the phase of the excitation of the waveguide components. Steps toward practical demonstration are identified.

  5. Monolithic coupling of a SU8 waveguide to a silicon photodiode

    NASA Astrophysics Data System (ADS)

    Nathan, M.; Levy, O.; Goldfarb, I.; Ruzin, A.

    2003-12-01

    We present quantitative results of light coupling from SU8 waveguides into silicon p-n photodiodes in monolithically integrated structures. Multimode, 12 μm thick, and 20 μm wide SU8 waveguides were fabricated to overlap 40×180 μm2 photodiodes, with three different waveguide-photodiode overlap lengths. The attenuation due to leaky-mode coupling in the overlap area was then calculated from photocurrent measurements. The overlap attenuation ranged from a minimum of 2.2 dB per mm overlap length to a maximum of about 3 dB/mm, comparing favorably with reported nonpolymeric waveguide-Si photodiode attenuations.

  6. Guided-wave phase-matched second-harmonic generation in KTiOPO4 waveguide produced by swift heavy-ion irradiation

    NASA Astrophysics Data System (ADS)

    Cheng, Yazhou; Jia, Yuechen; Akhmadaliev, Shavkat; Zhou, Shengqiang; Chen, Feng

    2014-11-01

    We report on the guided-wave second-harmonic generation in a KTiOPO4 nonlinear optical waveguide fabricated by a 17 MeV O5+ ion irradiation at a fluence of 1.5×1015 ions/cm2. The waveguide guides light along both TE and TM polarizations, which is suitable for phase-matching frequency doubling. Second harmonics of green light at a wavelength of 532 nm have been generated through the KTiOPO4 waveguide platform under an optical pump of fundamental wave at 1064 nm in both continuous-wave and pulsed regimes, reaching optical conversion efficiencies of 5.36%/W and 11.5%, respectively. The propagation losses have been determined to be ˜3.1 and ˜5.7 dB/cm for the TE and TM polarizations at a wavelength of 632.8 nm, respectively.

  7. Fabrication of planar waveguide in KNSBN crystal by swift heavy ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Guan, Jing; Wang, Lei; Qin, Xifeng

    2013-11-01

    We report on the fabrication of the planar waveguides in the KNSBN crystal by using 17 MeV C5+ ions at a fluence of 2 × 1014 ions/cm2. After implantation, near surface regions of the crystal, there has a positive extraordinary refractive index (ne) change and the light inside the waveguides can propagate in a non-leaky manner. The two-dimensional modal profiles of the planar waveguides, measured by using the end-coupling arrangement, are in good agreement with the reconstructed modal distributions. The propagation loss for C5+ irradiated waveguide is ∼0.8 dB/cm at 633 nm and ∼0.72 dB/cm at 1064 nm. The waveguide gives good confinement of waveguide modes, which exhibits acceptable guiding qualities for potential applications in integrated optics.

  8. Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: fabrication, fluorescence imaging and laser performance.

    PubMed

    Liu, Hongliang; Jia, Yuechen; Vázquez de Aldana, Javier Rodríguez; Jaque, Daniel; Chen, Feng

    2012-08-13

    We report on the fabrication of depressed cladding waveguide lasers in Nd:YAG (neodymium doped yttrium aluminum garnet, Nd:Y3Al5O12) ceramics microstructured by femtosecond laser pulses. Full control over the confined light spatial distribution is demonstrated by the fabrication of high contrast waveguides with hexagonal, circular and trapezoidal configurations. The confocal fluorescence measurements of the waveguides reveal that the original luminescence features of Nd3+ ions are well-preserved in the waveguide regions. Under optical pump at 808 nm, cladding waveguides showed continuous wave efficient laser oscillation. The maximum output power obtained at 1064.5 nm is ~181 mW with a slope efficiency as high as 44%, which suggests that the fabricated Nd:YAG ceramic waveguides are promising candidates for efficient integrated laser sources.

  9. Ridge waveguide laser in Nd:LiNbO3 by Zn-diffusion and femtosecond-laser structuring

    NASA Astrophysics Data System (ADS)

    Martínez de Mendívil, Jon; del Hoyo, Jesús; Solís, Javier; Lifante, Ginés

    2016-12-01

    Ridge waveguide lasers have been fabricated on Nd3+ doped LiNbO3 crystals. The fs-laser writing technique was used to define ridge structures on a gradient-index planar waveguide fabricated by Zn-diffusion. This planar waveguide was formed in a z-cut LiNbO3 substrate homogeneously doped with a 0.23% of Nd3+ ions. To obtain lateral light confinement, the surface was then micromachined using a multiplexed femtosecond laser writing beam, forming the ridge structures. By butting two mirrors at the channel waveguide end-facets, forming a waveguide laser cavity, TM-polarized laser action at 1085 nm was achieved by end-fire TM-pumping at 815 nm. The waveguide laser shows a threshold of 31 mW, with a 7% of slope efficiency.

  10. Investigating nonlinear distortion in the photopolymer materials

    NASA Astrophysics Data System (ADS)

    Malallah, Ra'ed; Cassidy, Derek; Muniraj, Inbarasan; Zhao, Liang; Ryle, James P.; Sheridan, John T.

    2017-05-01

    Propagation and diffraction of a light beam through nonlinear materials are effectively compensated by the effect of selftrapping. The laser beam propagating through photo-sensitive polymer PVA/AA can generate a waveguide of higher refractive index in direction of the light propagation. In order to investigate this phenomenon occurring in light-sensitive photopolymer media, the behaviour of a single light beam focused on the front surface of photopolymer bulk is investigated. As part of this work the self-bending of parallel beams separated in spaces during self-writing waveguides are studied. It is shown that there is strong correlation between the intensity of the input beams and their separation distance and the resulting deformation of waveguide trajectory during channels formation. This self-channeling can be modelled numerically using a three-dimension model to describe what takes place inside the volume of a photopolymer media. Corresponding numerical simulations show good agreement with experimental observations, which confirm the validity of the numerical model that was used to simulate these experiments.

  11. Development of acousto-optic spatial light modulator unit for effective control of light beam intensity and diffraction angle in 3D holographic display applications

    NASA Astrophysics Data System (ADS)

    Kondalkar, Vijay V.; Ryu, Geonhee; Lee, Yongbeom; Lee, Keekeun

    2018-07-01

    An acousto-optic (AO) based holographic display unit was developed using surface acoustic wave (SAW) with different wavelength to modulate the diffraction angles, intensities, and phases of light. The new configurations were employed to control two beams simultaneously by using a single chirp inter-digital transducer (IDT), and a micro-lens array was integrated at the end of the waveguide layer to focus the diffracted light on to the screen. Two incident light beams were simultaneously modulated by using different refractive grating periods generated from chirp IDT. A diffraction angle of about 5° was obtained by using a SAW with a frequency of 430 MHz. The increase in the SAW input power enhances the diffraction efficiency of the light beam at the exit. The obtained maximum diffraction efficiency is ~70% at a frequency of 430 MHz. The sloped shape of the waveguide entrance and a tall rounded Ni poles help in coupling the incident light to the waveguide layer. The diffracted beam was collected through the lens, which increased the intensity of light in the viewing plane. COMSOL multi-physics and coupling of mode (COM) modeling were performed to predict the device performance and compared with the experimental results.

  12. Engineered surface scatterers in edge-lit slab waveguides to improve light delivery in algae cultivation.

    PubMed

    Ahsan, Syed Saad; Pereyra, Brandon; Jung, Erica E; Erickson, David

    2014-10-20

    Most existing photobioreactors do a poor job of distributing light uniformly due to shading effects. One method by which this could be improved is through the use of internal wave-guiding structures incorporating engineered light scattering schemes. By varying the density of these scatterers, one can control the spatial distribution of light inside the reactor enabling better uniformity of illumination. Here, we compare a number of light scattering schemes and evaluate their ability to enhance biomass accumulation. We demonstrate a design for a gradient distribution of surface scatterers with uniform lateral scattering intensity that is superior for algal biomass accumulation, resulting in a 40% increase in the growth rate.

  13. Method of making a scintillator waveguide

    DOEpatents

    Bliss, Mary; Craig, Richard A.; Reeder, Paul L.

    2000-01-01

    The present invention is an apparatus for detecting ionizing radiation, having: a waveguide having a first end and a second end, the waveguide formed of a scintillator material wherein the therapeutic ionizing radiation isotropically generates scintillation light signals within the waveguide. This apparatus provides a measure of radiation dose. The apparatus may be modified to permit making a measure of location of radiation dose. Specifically, the scintillation material is segmented into a plurality of segments; and a connecting cable for each of the plurality of segments is used for conducting scintillation signals to a scintillation detector.

  14. Scintillator Waveguide For Sensing Radiation

    DOEpatents

    Bliss, Mary; Craig, Richard A.; Reeder; Paul L.

    2003-04-22

    The present invention is an apparatus for detecting ionizing radiation, having: a waveguide having a first end and a second end, the waveguide formed of a scintillator material wherein the therapeutic ionizing radiation isotropically generates scintillation light signals within the waveguide. This apparatus provides a measure of radiation dose. The apparatus may be modified to permit making a measure of location of radiation dose. Specifically, the scintillation material is segmented into a plurality of segments; and a connecting cable for each of the plurality of segments is used for conducting scintillation signals to a scintillation detector.

  15. Voltage- and temperature- controlled LC:PDMS waveguide channels

    NASA Astrophysics Data System (ADS)

    Rutkowska, Katarzyna A.; Asquini, Rita; d'Alessandro, Antonio

    2017-08-01

    In this paper, we present our studies on electrical and thermal tuning of light propagation in waveguide channels, made for the scope from a polydimethylsiloxane (PDMS) substrate infiltrated with nematic liquid crystal (LC). We demonstrated, via numerical simulations, the changes of the waveguide optical parameters when solicited by temperature changes or electric fields. Moreover, the paper goes through the fabrication process of a waveguide channel sample and its characterization, as well as some preliminary experimental trials of sputtering indium tin oxide (ITO) and chromium layers on PDMS substrate to obtain flat electrodes.

  16. Sm 3+-doped polymer optical waveguide amplifiers

    NASA Astrophysics Data System (ADS)

    Huang, Lihui; Tsang, Kwokchu; Pun, Edwin Yue-Bun; Xu, Shiqing

    2010-04-01

    Trivalent samarium ion (Sm 3+) doped SU8 polymer materials were synthesized and characterized. Intense red emission at 645 nm was observed under UV laser light excitation. Spectroscopic investigations show that the doped materials are suitable for realizing planar optical waveguide amplifiers. About 100 μm wide multimode Sm 3+-doped SU8 channel waveguides were fabricated using a simple UV exposure process. At 250 mW, 351 nm UV pump power, a signal enhancement of ˜7.4 dB at 645 nm was obtained for a 15 mm long channel waveguide.

  17. 1×2 demultiplexer for a light waveguide communications system based on a holographic grating

    NASA Astrophysics Data System (ADS)

    Ren, Xuechang; Zhang, Xiangsu; Wang, Canhui; Liu, Shou

    2009-05-01

    2-channel multiplexer/demultiplexer (Muxer/Demuxer) is a key component for bidirectional data traffics applied for optical communication. Up to date various types of Muxer/Demuxer have been proposed and demonstrated. A grating coupler diffracts light into substrates or waveguides, along which light beam propagates by total internal reflection. In addition, one can exploit the dispersive and filtering characteristics of gratings, for dropping or separating one or several wavelengths from one another. When a laser beam containing two wavelengths is striking the surface of the grating with an incident angle within certain range, four diffracted beams will be generated. If two diffracted beams, corresponding to different wavelengths, meet the condition of total internal reflection, they will propagate inside the glass substrate (performs as a waveguide). While the third one cannot meet total reflection condition, and the last one should become the evanescent wave. Therefore it can separate two signals and couple signals to different waveguides. These functions are suited for WDM application and directional couplers. For convenience sake, the visible lights at 458nm and 633nm were used as the incident laser beams. To give a simple sample for 1×2 demultiplexing system, a holographic grating was recorded, with the period around 441nm which was chose discretionally within the certain range. The primary experimental results indicate that the two-wavelength signal can be separated and coupled into the respective waveguide as long as the grating is recorded and operated complying with the certain condition. The average insertion loss and crosstalk of the device were presented in this paper.

  18. Ponderomotive electron acceleration in a silicon-based nanoplasmonic waveguide.

    PubMed

    Sederberg, S; Elezzabi, A Y

    2014-10-17

    Ponderomotive electron acceleration is demonstrated in a semiconductor-loaded nanoplasmonic waveguide. Photogenerated free carriers are accelerated by the tightly confined nanoplasmonic fields and reach energies exceeding the threshold for impact ionization. Broadband (375 nm ≤ λ ≤ 650  nm) white light emission is observed from the nanoplasmonic waveguides. Exponential growth of visible light emission confirms the exponential growth of the electron population, demonstrating the presence of an optical-field-driven electron avalanche. Electron sweeping dynamics are visualized using pump-probe measurements, and a sweeping time of 1.98 ± 0.40 ps is measured. These findings offer a means to harness the potential of the emerging field of ultrafast nonlinear nanoplasmonics.

  19. Optical clock signal distribution and packaging optimization

    NASA Astrophysics Data System (ADS)

    Wu, Linghui

    Polymer-based waveguides for optoelectronic interconnects and packagings were fabricated by a fabrication process that is compatible with the Si CMOS packaging process. An optoelectronic interconnection layer (OIL) for the high-speed massive clock signal distribution for the Cray T-90 supercomputer board employing optical multimode channel waveguides in conjunction with surface-normal waveguide grating couplers and a 1-to-2 3 dB splitter was constructed. Equalized optical paths were realized using an optical H-tree structure having 48 optical fanouts. This device could be increased to 64 without introducing any additional complications. A 1-to-48 fanout H-tree structure using Ultradel 9000D series polyimide was fabricated. The propagation loss and splitting loss have been measured as 0.21 dB/cm and 0.4 dB/splitter at 850 nm. The power budget was discussed, and the H-tree waveguide fully satisfies the power budget requirement. A tapered waveguide coupler was employed to match the mode profile between the single-mode fiber and the multimode channel waveguides of the OIL. A thermo-optical based multimode switch was designed, fabricated, and tested. The finite difference method was used to simulate the thermal distribution in the polymer waveguide. Both stable and transient conditions have been calculated. The thermo-optical switch was fabricated and tested. The switching speed of 1 ms was experimentally confirmed, fitting well with the simulation results. Thermo-optic switching for randomly polarized light at wavelengths of 850 nm was experimental confirmed, as was a stable attenuation of 25 dB. The details of tapered waveguide fabrication were investigated. Compression-molded 3-D tapered waveguides were demonstrated for the first time. Not only the vertical depth variation but also the linear dimensions of the molded waveguides were well beyond the limits of what any other conventional waveguide fabrication method is capable of providing. Molded waveguides with vertical depths of 100 mum at one end and 5 mum at the other end and lengths of 1.0 cm were fabricated using a photolime gel polymer. A propagation loss of 0.5 dB/cm was achieved when light was coupled from the 5 mum x 5 mum end to the 100 mum x 100 mum end and that of 1.1 dB/cm was observed when light was coupled from the 100 mum x 100 mum end to the 5 mum x 5 mum. By confining the energy to the fundamental mode when coupling from the large end to the small end, low-loss packaging can be achieved bi-directionally. 3-D compression-molded polymeric waveguides present a promising solution to bridging the huge dynamic range of different optoelectronic device-depths varying from a few microns to several hundred microns.

  20. Hollow lensing duct

    DOEpatents

    Beach, Raymond J.; Honea, Eric C.; Bibeau, Camille; Mitchell, Scott; Lang, John; Maderas, Dennis; Speth, Joel; Payne, Stephen A.

    2000-01-01

    A hollow lensing duct to condense (intensify) light using a combination of focusing using a spherical or cylindrical lens followed by reflective waveguiding. The hollow duct tapers down from a wide input side to a narrow output side, with the input side consisting of a lens that may be coated with an antireflective coating for more efficient transmission into the duct. The inside surfaces of the hollow lens duct are appropriately coated to be reflective, preventing light from escaping by reflection as it travels along the duct (reflective waveguiding). The hollow duct has various applications for intensifying light, such as in the coupling of diode array pump light to solid state lasing materials.

  1. Low-cost integrated-optic fiber couplers

    NASA Astrophysics Data System (ADS)

    Sheem, Sang K.; Zhang, Feng; Choi, Jong-Ho; Lee, Yong-Woo; Low, Sarah; Lu, Shih-Yau

    1997-04-01

    In an effort to lower the cost of fiber optic couplers, integrated optic channel waveguide circuits are made of a UV-curable polymer using a molding technique, and then a novel fiber-to-channel connecting approach is employed in which UV light radiating from an optical fiber core cures the polymer in the channel, thus accomplishing a 'touchdown' of the core-extension waveguide onto the walls of the channel waveguide.

  2. Weak form implementation of the semi-analytical finite element (SAFE) method for a variety of elastodynamic waveguides

    NASA Astrophysics Data System (ADS)

    Hakoda, Christopher; Lissenden, Clifford; Rose, Joseph L.

    2018-04-01

    Dispersion curves are essential to any guided wave NDE project. The Semi-Analytical Finite Element (SAFE) method has significantly increased the ease by which these curves can be calculated. However, due to misconceptions regarding theory and fragmentation based on different finite-element software, the theory has stagnated, and adoption by researchers who are new to the field has been slow. This paper focuses on the relationship between the SAFE formulation and finite element theory, and the implementation of the SAFE method in a weak form for plates, pipes, layered waveguides/composites, curved waveguides, and arbitrary cross-sections is shown. The benefits of the weak form are briefly described, as is implementation in open-source and commercial finite element software.

  3. FIBRE AND INTEGRATED OPTICS. OPTICAL PROCESSING OF INFORMATION: Feasibility of using waveguide holograms in systems for the transfer of amplitude—phase information along fibre communication lines

    NASA Astrophysics Data System (ADS)

    Dianov, Evgenii M.; Zubov, Vladimir A.; Putilin, A. N.

    1995-02-01

    An analysis is made of a variant of a system for spatial—temporal transformation of spatially one-dimensional information for its transfer along a single-mode fibre waveguide. Information is coupled into a fibre by a waveguide hologram. This hologram forms a light-beam structure which matches the fibre-guided mode. A report is given of the use of ion-exchange planar glass waveguides as waveguide holograms. An amorphous chalcogenide semiconductor film or a photoresist was deposited by evaporation on such a planar waveguide. Reconstruction of the waveguide hologram made it possible to achieve a high read rate, up to 1011 pixels per second, when a short radiation pulse was used. Multisectioned injection semiconductor lasers, operating under Q-switching conditions, were used as the radiation sources.

  4. A Broadband Terahertz Waveguide T-Junction Variable Power Splitter.

    PubMed

    Reichel, Kimberly S; Mendis, Rajind; Mittleman, Daniel M

    2016-06-29

    In order for the promise of terahertz (THz) wireless communications to become a reality, many new devices need to be developed, such as those for routing THz waves. We demonstrate a power splitting router based on a parallel-plate waveguide (PPWG) T-junction excited by the TE1 waveguide mode. By integrating a small triangular septum into the waveguide plate, we are able to direct the THz light down either one of the two output channels with precise control over the ratio between waveguide outputs. We find good agreement between experiment and simulation in both amplitude and phase. We show that the ratio between waveguide outputs varies exponentially with septum translation offset and that nearly 100% transmission can be achieved. The splitter operates over almost the entire range in which the waveguide is single mode, providing a sensitive and broadband method for THz power splitting.

  5. A Broadband Terahertz Waveguide T-Junction Variable Power Splitter

    PubMed Central

    Reichel, Kimberly S.; Mendis, Rajind; Mittleman, Daniel M.

    2016-01-01

    In order for the promise of terahertz (THz) wireless communications to become a reality, many new devices need to be developed, such as those for routing THz waves. We demonstrate a power splitting router based on a parallel-plate waveguide (PPWG) T-junction excited by the TE1 waveguide mode. By integrating a small triangular septum into the waveguide plate, we are able to direct the THz light down either one of the two output channels with precise control over the ratio between waveguide outputs. We find good agreement between experiment and simulation in both amplitude and phase. We show that the ratio between waveguide outputs varies exponentially with septum translation offset and that nearly 100% transmission can be achieved. The splitter operates over almost the entire range in which the waveguide is single mode, providing a sensitive and broadband method for THz power splitting. PMID:27352772

  6. THz wavefront manipulation based on metal waveguides

    NASA Astrophysics Data System (ADS)

    Wu, Mengru; Lang, Tingting; Shen, Changyu; Shi, Guohua; Han, Zhanghua

    2018-07-01

    In this paper, two waveguiding structures for arbitrary wavefront manipulation in the terahertz spectral region were proposed, designed and characterized. The first structure consists of parallel stack copper plates forming an array of parallel-plate waveguides (PPWGs). The second structure is three-dimensional metal rectangular waveguides array. The phase delay of the input wave after passing through the waveguide array is mainly determined by the effective index of the waveguides. Therefore, the waveguide array can be engineered using different core width distribution to generate any desired light beam. Examples, working at the frequency of 0.3 THz show that good focusing phenomenon with different focus lengths and spot sizes were observed, as well as arbitrarily tilted propagation of incident plane waves. The structure introduces a new method to perform wavefront manipulation, and can be utilized in many important applications in terahertz imaging and communication systems.

  7. Optical waveguides in Nd:GdVO4 crystals fabricated by swift N3+ ion irradiation

    NASA Astrophysics Data System (ADS)

    Dong, Ningning; Yao, Yicun; Chen, Feng

    2012-12-01

    Optical planar waveguides have been manufactured in Nd:GdVO4 crystal by swift N3+ ions irradiation at fluence of 1.5 × 1014 ions/cm2. A typical "barrier"-style refractive index profile was formed and the light can be well confined in the waveguide region. The modal distribution of the guided modes obtained from numerical calculation has a good agreement with the experimental modal distribution. The measured photoluminescence spectra revealed that the fluorescence properties of the Nd3+ ions have been modified to some extent in the waveguide's volume. The propagation loss of the planar waveguide can decrease to lower than 1 dB/cm after adequate annealing.

  8. Waveguide effect under 'antiguiding' conditions in graded anisotropic media.

    PubMed

    Kozlov, A V; Mozhaev, V G; Zyryanova, A V

    2010-02-24

    A new wave confinement effect is predicted in graded crystals with a concave slowness surface under conditions of growth of the phase velocity with decreasing distance from the waveguide axis. This finding overturns the common notion about the guiding and 'antiguiding' profiles of wave velocity in inhomogeneous media. The waveguide effect found is elucidated by means of ray analysis and particular exact wave solutions. The exact solution obtained for localized flexural waves in thin plates of graded cubic and tetragonal crystals confirms the predicted effect. Since this solution is substantially different with respect to the existence conditions from all others yet reported, and it cannot be deduced from the previously known results, the predicted waves can be classified as a new type of waveguide mode in graded anisotropic media. Although the concrete calculations are given in the article for acoustic waves, its general predictions are expected to be valid for waves of various natures, including spin, plasma, and optical waves.

  9. Optically-controlled extinction ratio and Q-factor tunable silicon microring resonators based on optical forces

    NASA Astrophysics Data System (ADS)

    Long, Yun; Wang, Jian

    2014-06-01

    Tunability is a desirable property of microring resonators to facilitate superior performance. Using light to control light, we present an alternative simple approach to tuning the extinction ratio (ER) and Q-factor of silicon microring resonators based on optical forces. We design an opto-mechanical tunable silicon microring resonator consisting of an add-drop microring resonator and a control-light-carrying waveguide (``controlling'' waveguide). One of the two bus waveguides of the microring resonator is a deformable nanostring put in parallel with the ``controlling'' waveguide. The tuning mechanism relies on the optical force induced deflection of suspended nanostring, leading to the change of coupling coefficient of microring and resultant tuning of ER and Q-factor. Two possible geometries, i.e. double-clamped nanostring and cantilever nanostring, are studied in detail for comparison. The obtained results imply a favorable structure with the microring positioned at the end of the cantilever nanostring. It features a wide tuning range of ER from 5.6 to 39.9 dB and Q-factor from 309 to 639 as changing the control power from 0 to 1.4 mW.

  10. A nanowaveguide platform for collective atom-light interaction

    NASA Astrophysics Data System (ADS)

    Meng, Y.; Lee, J.; Dagenais, M.; Rolston, S. L.

    2015-08-01

    We propose a nanowaveguide platform for collective atom-light interaction through evanescent field coupling. We have developed a 1 cm-long silicon nitride nanowaveguide can use evanescent fields to trap and probe an ensemble of 87Rb atoms. The waveguide has a sub-micrometer square mode area and was designed with tapers for high fiber-to-waveguide coupling efficiencies at near-infrared wavelengths (750 nm to 1100 nm). Inverse tapers in the platform adiabatically transfer a weakly guided mode of fiber-coupled light into a strongly guided mode with an evanescent field to trap atoms and then back to a weakly guided mode at the other end of the waveguide. The coupling loss is -1 dB per facet (˜80% coupling efficiency) at 760 nm and 1064 nm, which is estimated by a propagation loss measurement with waveguides of different lengths. The proposed platform has good thermal conductance and can guide high optical powers for trapping atoms in ultra-high vacuum. As an intermediate step, we have observed thermal atom absorption of the evanescent component of a nanowaveguide and have demonstrated the U-wire mirror magneto-optical trap that can transfer atoms to the proximity of the surface.

  11. Integrated optic vector-matrix multiplier

    DOEpatents

    Watts, Michael R [Albuquerque, NM

    2011-09-27

    A vector-matrix multiplier is disclosed which uses N different wavelengths of light that are modulated with amplitudes representing elements of an N.times.1 vector and combined to form an input wavelength-division multiplexed (WDM) light stream. The input WDM light stream is split into N streamlets from which each wavelength of the light is individually coupled out and modulated for a second time using an input signal representing elements of an M.times.N matrix, and is then coupled into an output waveguide for each streamlet to form an output WDM light stream which is detected to generate a product of the vector and matrix. The vector-matrix multiplier can be formed as an integrated optical circuit using either waveguide amplitude modulators or ring resonator amplitude modulators.

  12. Direct observation of back energy transfer in blue phosphorescent materials for organic light emitting diodes by time-resolved optical waveguide spectroscopy.

    PubMed

    Hirayama, H; Sugawara, Y; Miyashita, Y; Mitsuishi, M; Miyashita, T

    2013-02-25

    We demonstrate a high-sensitive transient absorption technique for detection of excited states in an organic thin film by time-resolved optical waveguide spectroscopy. By using a laser beam as a probe light, we detect small change in the transient absorbance which is equivalent to 10 -7 absorbance unit in a conventional method. This technique was applied to organic thin films of blue phosphorescent materials for organic light emitting diodes. We directly observed the back energy transfer from emitting guest molecules to conductive host molecules.

  13. Observation of extraordinary optical activity in planar chiral photonic crystals.

    PubMed

    Konishi, Kuniaki; Bai, Benfeng; Meng, Xiangfeng; Karvinen, Petri; Turunen, Jari; Svirko, Yuri P; Kuwata-Gonokami, Makoto

    2008-05-12

    Control of light polarization is a key technology in modern photonics including application to optical manipulation of quantum information. The requisite is to obtain large rotation in isotropic media with small loss. We report on extraordinary optical activity in a planar dielectric on-waveguide photonic crystal structure, which has no in-plane birefringence and shows polarization rotation of more than 25 degrees for transmitted light. We demonstrate that in the planar chiral photonic crystal, the coupling of the normally incident light wave with low-loss waveguide and Fabry-Pérot resonance modes results in a dramatic enhancement of the optical activity.

  14. Thermal-structural modeling of polymer Bragg grating waveguides illuminated by a light emitting diode.

    PubMed

    Joon Kim, Kyoung; Bar-Cohen, Avram; Han, Bongtae

    2012-02-20

    This study reports both analytical and numerical thermal-structural models of polymer Bragg grating (PBG) waveguides illuminated by a light emitting diode (LED). A polymethyl methacrylate (PMMA) Bragg grating (BG) waveguide is chosen as an analysis vehicle to explore parametric effects of incident optical powers and substrate materials on the thermal-structural behavior of the BG. Analytical models are verified by comparing analytically predicted average excess temperatures, and thermally induced axial strains and stresses with numerical predictions. A parametric study demonstrates that the PMMA substrate induces more adverse effects, such as higher excess temperatures, complex axial temperature profiles, and greater and more complicated thermally induced strains in the BG compared with the Si substrate. © 2012 Optical Society of America

  15. Modeling optical transmissivity of graphene grate in on-chip silicon photonic device

    NASA Astrophysics Data System (ADS)

    Amiri, Iraj S.; Ariannejad, M. M.; Jalil, M. A.; Ali, J.; Yupapin, P.

    2018-06-01

    A three-dimensional (3-D) finite-difference-time-domain (FDTD) analysis was used to simulate a silicon photonic waveguide. We have calculated power and transmission of the graphene used as single or multilayers to study the light transmission behavior. A new technique has been developed to define the straight silicon waveguide integrated with grate graphene layer. The waveguide has a variable grate spacing to be filled by the graphene layer. The number of graphene atomic layers varies between 100 and 1000 (or 380 nm and 3800 nm), the transmitted power obtained varies as ∼30% and ∼80%. The ∼99%, blocking of the light was occurred in 10,000 (or 38,000 nm) atomic layers of the graphene grate.

  16. Geometrical optimization of the transmission and dispersion properties of arrayed waveguide gratings using two stigmatic point mountings.

    PubMed

    Muñoz, P; Pastor, D; Capmany, J; Martínez, A

    2003-09-22

    In this paper, the procedure to optimize flat-top Arrayed Waveguide Grating (AWG) devices in terms of transmission and dispersion properties is presented. The systematic procedure consists on the stigmatization and minimization of the Light Path Function (LPF) used in classic planar spectrograph theory. The resulting geometry arrangement for the Arrayed Waveguides (AW) and the Output Waveguides (OW) is not the classical Rowland mounting, but an arbitrary geometry arrangement. Simulation using previous published enhanced modeling show how this geometry reduces the passband ripple, asymmetry and dispersion, in a design example.

  17. Arrayed waveguide Sagnac interferometer.

    PubMed

    Capmany, José; Muñoz, Pascual; Sales, Salvador; Pastor, Daniel; Ortega, Beatriz; Martinez, Alfonso

    2003-02-01

    We present a novel device, an arrayed waveguide Sagnac interferometer, that combines the flexibility of arrayed waveguides and the wide application range of fiber or integrated optics Sagnac loops. We form the device by closing an array of wavelength-selective light paths provided by two arrayed waveguides with a single 2 x 2 coupler in a Sagnac configuration. The equations that describe the device's operation in general conditions are derived. A preliminary experimental demonstration is provided of a fiber prototype in passive operation that shows good agreement with the expected theoretical performance. Potential applications of the device in nonlinear operation are outlined and discussed.

  18. FIBER AND INTEGRATED OPTICS: Magnetooptic interaction in fiber waveguides

    NASA Astrophysics Data System (ADS)

    Antonov, S. N.; Bulyuk, A. N.; Gulyaev, Yurii V.

    1989-11-01

    Theoretical and experimental studies were made of the effects of a distributed magnetooptic interaction in fiber waveguides. Analytic solutions were obtained for relating light modulation at the exit of a waveguide to the parameters of its winding in the form of a coil and to an external magnetic field under conditions ensuring the exact spatial phase matching. It was confirmed experimentally that the interaction length of the order of several tens of meters was quite acceptable and could ensure a sensitivity of at least 10 - 4 Oe in the case of a quartz fiber waveguide.

  19. Coherent random lasing from liquid waveguide gain channels with biological scatters

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Feng, Guoying; Wang, Shutong; Yang, Chao; Yin, Jiajia; Zhou, Shouhuan

    2014-12-01

    A unidirectional coherent random laser based on liquid waveguide gain channels with biological scatters is demonstrated. The optical feedback of the random laser is provided by both light scattering and waveguide confinement. This waveguide-scattering-feedback scheme not only reduces the pump threshold but also makes the output of random laser directional. The threshold of our random laser is about 11 μJ. The emission spectra can be sensitively tuned by changing pump position due to the micro/nano-scale randomness of butterfly wings. It shows the potential applications of optofluidic random lasers for bio-chemical sensors on-chip.

  20. ATE-TM mode splitter on lithium niobate using Ti, Ni, and MgO diffusions

    NASA Astrophysics Data System (ADS)

    Wei, Pei-Kuen; Wang, Way-Seen

    1994-02-01

    A new TE-TM mode splitter with an asymmetric Y-junction structure fabricated by diffusing different materials into y-cut lithium niobate is presented. Randomly polarized light launched into a titanium indiffused waveguide is split into TE and TM modes by two different single-polarization waveguides. The ordinary-polarized waveguide is made by nickel indiffusion and the extraordinary-polarized waveguide by magnesium-oxide induced lithium outdiffusion. The measured extinction ratios are greater than 20 dB for both TE and TM modes. The devices operate over a wide wavelength range and have a large fabrication tolerance.

  1. Transparent organic light-emitting diodes with balanced white emission by minimizing waveguide and surface plasmonic loss.

    PubMed

    Zhang, Yi-Bo; Ou, Qing-Dong; Li, Yan-Qing; Chen, Jing-De; Zhao, Xin-Dong; Wei, Jian; Xie, Zhong-Zhi; Tang, Jian-Xin

    2017-07-10

    It is challenging in realizing high-performance transparent organic light-emitting diodes (OLEDs) with symmetrical light emission to both sides. Herein, an efficient transparent OLED with highly balanced white emission to both sides is demonstrated by integrating quasi-periodic nanostructures into the organic emitter and the metal-dielectric composite top electrode, which can simultaneously suppressing waveguide and surface plasmonic loss. The power efficiency and external quantum efficiency are raised to 83.5 lm W -1 and 38.8%, respectively, along with a bi-directional luminance ratio of 1.26. The proposed scheme provides a facile route for extending application scope of transparent OLEDs for future transparent displays and lightings.

  2. Wearable light management system for light stimulated healing of large area chronic wounds (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kallweit, David; Mayer, Jan; Fricke, Sören; Schnieper, Marc; Ferrini, Rolando

    2016-03-01

    Chronic wounds represent a significant burden to patients, health care professionals, and health care systems, affecting over 40 million patients and creating costs of approximately 40 billion € annually. We will present a medical device for photo-stimulated wound care based on a wearable large area flexible and disposable light management system consisting of a waveguide with incorporated micro- and nanometer scale optical structures for efficient light in-coupling, waveguiding and homogeneous illumination of large area wounds. The working principle of this innovative device is based on the therapeutic effects of visible light to facilitate the self-healing process of chronic wounds. On the one hand, light exposure in the red (656nm) induces growth of keratinocytes and fibroblasts in deeper layers of the skin. On the other hand, blue light (453nm) is known to have antibacterial effects predominately at the surface layers of the skin. In order to be compliant with medical requirements the system will consist of two elements: a disposable wound dressing with embedded flexible optical waveguides for the light management and illumination of the wound area, and a non-disposable compact module containing the light sources, a controller, a rechargeable battery, and a data transmission unit. In particular, we will report on the developed light management system. Finally, as a proof-of-concept, a demonstrator will be presented and its performances will be reported to demonstrate the potential of this innovative device.

  3. Laser illumination of multiple capillaries that form a waveguide

    DOEpatents

    Dhadwal, Harbans S.; Quesada, Mark A.; Studier, F. William

    1998-08-04

    A system and method are disclosed for efficient laser illumination of the interiors of multiple capillaries simultaneously, and collection of light emitted from them. Capillaries in a parallel array can form an optical waveguide wherein refraction at the cylindrical surfaces confines side-on illuminating light to the core of each successive capillary in the array. Methods are provided for determining conditions where capillaries will form a waveguide and for assessing and minimizing losses due to reflection. Light can be delivered to the arrayed capillaries through an integrated fiber optic transmitter or through a pair of such transmitters aligned coaxially at opposite sides of the array. Light emitted from materials within the capillaries can be carried to a detection system through optical fibers, each of which collects light from a single capillary, with little cross talk between the capillaries. The collection ends of the optical fibers can be in a parallel array with the same spacing as the capillary array, so that the collection fibers can all be aligned to the capillaries simultaneously. Applicability includes improving the efficiency of many analytical methods that use capillaries, including particularly high-throughput DNA sequencing and diagnostic methods based on capillary electrophoresis.

  4. Laser illumination of multiple capillaries that form a waveguide

    DOEpatents

    Dhadwal, H.S.; Quesada, M.A.; Studier, F.W.

    1998-08-04

    A system and method are disclosed for efficient laser illumination of the interiors of multiple capillaries simultaneously, and collection of light emitted from them. Capillaries in a parallel array can form an optical waveguide wherein refraction at the cylindrical surfaces confines side-on illuminating light to the core of each successive capillary in the array. Methods are provided for determining conditions where capillaries will form a waveguide and for assessing and minimizing losses due to reflection. Light can be delivered to the arrayed capillaries through an integrated fiber optic transmitter or through a pair of such transmitters aligned coaxially at opposite sides of the array. Light emitted from materials within the capillaries can be carried to a detection system through optical fibers, each of which collects light from a single capillary, with little cross talk between the capillaries. The collection ends of the optical fibers can be in a parallel array with the same spacing as the capillary array, so that the collection fibers can all be aligned to the capillaries simultaneously. Applicability includes improving the efficiency of many analytical methods that use capillaries, including particularly high-throughput DNA sequencing and diagnostic methods based on capillary electrophoresis. 35 figs.

  5. Bulk diamond optical waveguides fabricated by focused femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Hadden, J. P.; Sotillo, Belén.; Bharadwaj, Vibhav; Rampini, Stefano; Bosia, Federico; Picollo, Federico; Sakakura, Masaaki; Chiappini, Andrea; Fernandez, Toney T.; Osellame, Roberto; Miura, Kiyotaka; Ferrari, Maurizio; Ramponi, Roberta; Olivero, Paolo; Barclay, Paul E.; Eaton, Shane M.

    2017-02-01

    Diamond's nitrogen-vacancy (NV) centers show great promise in sensing applications and quantum computing due to their long electron spin coherence time and their ability to be located, manipulated and read out using light. The electrons of the NV center, largely localized at the vacancy site, combine to form a spin triplet, which can be polarized with 532- nm laser light, even at room temperature. The NV's states are isolated from environmental perturbations making their spin coherence comparable to trapped ions. An important breakthrough would be in connecting, using waveguides, multiple diamond NVs together optically. However, the inertness of diamond is a significant hurdle for the fabrication of integrated optics similar to those that revolutionized silicon photonics. In this work we show the possibility of buried waveguide fabrication in diamond, enabled by focused femtosecond high repetition rate laser pulses. We use μRaman spectroscopy to gain better insight into the structure and refractive index profile of the optical waveguides.

  6. Mid-infrared supercontinuum generation in As2S3-silica "nano-spike" step-index waveguide.

    PubMed

    Granzow, N; Schmidt, M A; Chang, W; Wang, L; Coulombier, Q; Troles, J; Toupin, P; Hartl, I; Lee, K F; Fermann, M E; Wondraczek, L; Russell, P St J

    2013-05-06

    Efficient generation of a broad-band mid-infrared supercontinuum spectrum is reported in an arsenic trisulphide waveguide embedded in silica. A chalcogenide "nano-spike", designed to transform the incident light adiabatically into the fundamental mode of a 2-mm-long uniform section 1 µm in diameter, is used to achieve high launch efficiencies. The nano-spike is fully encapsulated in a fused silica cladding, protecting it from the environment. Nano-spikes provide a convenient means of launching light into sub-wavelength scale waveguides. Ultrashort (65 fs, repetition rate 100 MHz) pulses at wavelength 2 µm, delivered from a Tm-doped fiber laser, are launched with an efficiency ~12% into the sub-wavelength chalcogenide waveguide. Soliton fission and dispersive wave generation along the uniform section result in spectral broadening out to almost 4 µm for launched energies of only 18 pJ. The spectrum generated will have immediate uses in metrology and infrared spectroscopy.

  7. Comparison of self-written waveguide techniques and bulk index matching for low-loss polymer waveguide interconnects

    NASA Astrophysics Data System (ADS)

    Burrell, Derek; Middlebrook, Christopher

    2016-03-01

    Polymer waveguides (PWGs) are used within photonic interconnects as inexpensive and versatile substitutes for traditional optical fibers. The PWGs are typically aligned to silica-based optical fibers for coupling. An epoxide elastomer is then applied and cured at the interface for index matching and rigid attachment. Self-written waveguides (SWWs) are proposed as an alternative to further reduce connection insertion loss (IL) and alleviate marginal misalignment issues. Elastomer material is deposited after the initial alignment, and SWWs are formed by injecting ultraviolet (UV) light into the fiber or waveguide. The coupled UV light cures a channel between the two differing structures. A suitable cladding layer can be applied after development. Such factors as longitudinal gap distance, UV cure time, input power level, polymer material selection and choice of solvent affect the resulting SWWs. Experimental data are compared between purely index-matched samples and those with SWWs at the fiber-PWG interface. It is shown that < 1 dB IL per connection can be achieved by either method and results indicate lowest potential losses associated with a fine-tuned self-writing process. Successfully fabricated SWWs reduce overall processing time and enable an effectively continuous low-loss rigid interconnect.

  8. Novel optical interconnect devices applying mask-transfer self-written method

    NASA Astrophysics Data System (ADS)

    Ishizawa, Nobuhiko; Matsuzawa, Yusuke; Tokiwa, Yu; Nakama, Kenichi; Mikami, Osamu

    2012-01-01

    The introduction of optical interconnect technology is expected to solve problems of conventional electric wiring. One of the promising technologies realizing optical interconnect is the self-written waveguide (SWW) technology with lightcurable resin. We have developed a new technology of the "Mask-Transfer Self-Written (MTSW)" method. This new method enables fabrication of arrayed M x N optical channels at one shot of UV-light. Using this technology, several new optical interconnect devices and connection technologies have been proposed and investigated. In this paper, first, we introduce MTSW method briefly. Next, we show plug-in alignment approach using optical waveguide plugs (OWP) and a micro-hole array (MHA) which are made of the light-curable resin. Easy and high efficiency plug-in alignment between fibers and an optoelectronic-printed wiring board (OE-PWB), between a fiber and a VCSEL, so on will be feasible. Then, we propose a new three-dimensional (3D) branch waveguide. By controlling the irradiating angle through the photomask aperture, it will be possible to fabricate 2-branch and 4-branch waveguides with a certain branch angle. The 3D branch waveguide will be very promising in the future optical interconnects and coupler devices of the multicore optical fiber.

  9. Planar optical waveguide based sandwich assay sensors and processes for the detection of biological targets including protein markers, pathogens and cellular debris

    DOEpatents

    Martinez, Jennifer S [Santa Fe, NM; Swanson, Basil I [Los Alamos, NM; Grace, Karen M [Los Alamos, NM; Grace, Wynne K [Los Alamos, NM; Shreve, Andrew P [Santa Fe, NM

    2009-06-02

    An assay element is described including recognition ligands bound to a film on a single mode planar optical waveguide, the film from the group of a membrane, a polymerized bilayer membrane, and a self-assembled monolayer containing polyethylene glycol or polypropylene glycol groups therein and an assay process for detecting the presence of a biological target is described including injecting a biological target-containing sample into a sensor cell including the assay element, with the recognition ligands adapted for binding to selected biological targets, maintaining the sample within the sensor cell for time sufficient for binding to occur between selected biological targets within the sample and the recognition ligands, injecting a solution including a reporter ligand into the sensor cell; and, interrogating the sample within the sensor cell with excitation light from the waveguide, the excitation light provided by an evanescent field of the single mode penetrating into the biological target-containing sample to a distance of less than about 200 nanometers from the waveguide thereby exciting the fluorescent-label in any bound reporter ligand within a distance of less than about 200 nanometers from the waveguide and resulting in a detectable signal.

  10. Planar optical waveguide based sandwich assay sensors and processes for the detection of biological targets including early detection of cancers

    DOEpatents

    Martinez, Jennifer S [Santa Fe, NM; Swanson, Basil I [Los Alamos, NM; Shively, John E [Arcadia, CA; Li, Lin [Monrovia, CA

    2009-06-02

    An assay element is described including recognition ligands adapted for binding to carcinoembryonic antigen (CEA) bound to a film on a single mode planar optical waveguide, the film from the group of a membrane, a polymerized bilayer membrane, and a self-assembled monolayer containing polyethylene glycol or polypropylene glycol groups therein and an assay process for detecting the presence of CEA is described including injecting a possible CEA-containing sample into a sensor cell including the assay element, maintaining the sample within the sensor cell for time sufficient for binding to occur between CEA present within the sample and the recognition ligands, injecting a solution including a reporter ligand into the sensor cell; and, interrogating the sample within the sensor cell with excitation light from the waveguide, the excitation light provided by an evanescent field of the single mode penetrating into the biological target-containing sample to a distance of less than about 200 nanometers from the waveguide thereby exciting any bound reporter ligand within a distance of less than about 200 nanometers from the waveguide and resulting in a detectable signal.

  11. Flexible integration of free-standing nanowires into silicon photonics.

    PubMed

    Chen, Bigeng; Wu, Hao; Xin, Chenguang; Dai, Daoxin; Tong, Limin

    2017-06-14

    Silicon photonics has been developed successfully with a top-down fabrication technique to enable large-scale photonic integrated circuits with high reproducibility, but is limited intrinsically by the material capability for active or nonlinear applications. On the other hand, free-standing nanowires synthesized via a bottom-up growth present great material diversity and structural uniformity, but precisely assembling free-standing nanowires for on-demand photonic functionality remains a great challenge. Here we report hybrid integration of free-standing nanowires into silicon photonics with high flexibility by coupling free-standing nanowires onto target silicon waveguides that are simultaneously used for precise positioning. Coupling efficiency between a free-standing nanowire and a silicon waveguide is up to ~97% in the telecommunication band. A hybrid nonlinear-free-standing nanowires-silicon waveguides Mach-Zehnder interferometer and a racetrack resonator for significantly enhanced optical modulation are experimentally demonstrated, as well as hybrid active-free-standing nanowires-silicon waveguides circuits for light generation. These results suggest an alternative approach to flexible multifunctional on-chip nanophotonic devices.Precisely assembling free-standing nanowires for on-demand photonic functionality remains a challenge. Here, Chen et al. integrate free-standing nanowires into silicon waveguides and show all-optical modulation and light generation on silicon photonic chips.

  12. Holographic Reflection Filters in Photorefractive LiNbO3 Channel Waveguides

    NASA Astrophysics Data System (ADS)

    Kip, Detlef; Hukriede, Joerg

    Permanent refractive-index gratings in waveguide devices are of considerable interest for optical communication systems that make use of the high spectral selectivity of holographic filters, e.g. dense wavelength division multiplexing (DWDM) or narrow-bandwidth mirrors for integrated waveguide lasers in LiNbO3. Other possible applications include grating couplers and optical sensors. In this contribution we investigate such holographic wavelength filters in Fe- and Cu-doped LiNbO3 channel waveguides. Permanent refractive-index gratings are generated by thermal fixing of holograms in the waveguides. The samples are fabricated by successive in-diffusion of Ti stripes and thin layers of either Fe or Cu. After high-temperature recording with green light, refractive-index changes up to δ, ~10^-4 for infrared light ( 1.55,m) are obtained, resulting in a reflection efficiency well above 99% for a 15 mm-long grating. Several gratings for different wavelengths can be superimposed in the same sample, which may enable the fabrication of more complex filters, laser mirrors or optical sensors. By changing the sample temperature the reflection wavelength can be tuned by thermal expansion of the grating, and wavelength filters can be switched on and off by applying moderate voltages using the electro-optic effect. Furthermore, we report on a new thermal fixing mechanism that does not need any additional development by homogeneous light illumination and therefore does not suffer from the non-vanishing dark conductivity of the material.

  13. Detection of avian influenza antigens in proximity fiber, droplet, and optical waveguide microfluidics

    NASA Astrophysics Data System (ADS)

    Yoon, Jeong-Yeol; Heinze, Brian C.; Gamboa, Jessica; You, David J.

    2009-05-01

    Virus antigens of avian influenza subtype H3N2 were detected on two different microfluidic platforms: microchannel and droplet. Latex immunoagglutination assays were performed using 920-nm highly carboxylated polystyrene beads that are conjugated with antibody to avian influenza virus. The bead suspension was merged with the solutions of avian influenza virus antigens in a Y-junction of a microchannel made by polydimethylsiloxane soft lithography. The resulting latex immunoagglutinations were measured with two optical fibers in proximity setup to detect 45° forward light scattering. Alternatively, 10 μL droplets of a bead suspension and an antigen solution were merged on a superhydrophobic surface (water contact angle = 155°), whose movement was guided by a metal wire, and 180° back light scattering is measured with a backscattering optical probe. Detection limits were 0.1 pg mL-1 for both microchannel with proximity fibers and droplet microfluidics, thanks to the use of micro-positioning stages to help generate reproducible optical signals. Additionally, optical waveguide was tested by constructing optical waveguide channels (filled with mineral oil) within a microfluidic device to detect the same light scattering. Detection limit was 0.1 ng mL-1 for an optical waveguide device, with a strong potential of improvement in the near future. The use of optical waveguide enabled smaller device setup, easier operation, smaller standard deviations and broader linear range of assay than proximity fiber microchannel and droplet microfluidics. Total assay time was less than 10 min.

  14. Fabrication of a miniaturized capillary waveguide integrated fiber-optic sensor for fluoride determination.

    PubMed

    Xiong, Yan; Wang, Chengjie; Tao, Tao; Duan, Ming; Tan, Jun; Wu, Jiayi; Wang, Dong

    2016-05-10

    Fluoride concentration is a key aspect of water quality and essential for human health. Too much or too little fluoride intake from water supplies is harmful to public health. In this study, a capillary waveguide integrated fiber-optic sensor was fabricated for fluoride measurement in water samples. The sensor was modularly designed with three parts, i.e., a light source, capillary flow cell and detector. When light propagated from a light emitting diode (LED) to the capillary waveguide cell through an excitation fiber, it interacted with the sensing reagent, and its intensity changed with different fluoride concentrations. Then, the light propagated to the detector through a detection fiber for absorption determination of fluoride according to Beer's law. This miniaturized sensor showed advantages of fast analysis (9.2 s) and small reagent demand (200 μL) per sample, and it also had a low detection limit (8 ppb) and high selectivity for fluoride determination. The sensor was applied to fluoride determination in different water samples. The results obtained were compared with those obtained by conventional spectrophotometry and ion chromatography, showing agreement and validating the sensor's potential application.

  15. Femtosecond-laser-written superficial cladding waveguides in Nd:CaF2 crystal

    NASA Astrophysics Data System (ADS)

    Li, Rang; Nie, Weijie; Lu, Qingming; Cheng, Chen; Shang, Zhen; Vázquez de Aldana, Javier R.; Chen, Feng

    2017-07-01

    We report on the superficial cladding waveguides fabricated by direct femtosecond laser writing in Nd: CaF2 crystal with three different groups of parameters. The lowest propagation loss of waveguides has been determined to be 0.7 dB/cm at wavelength of 632.8 nm along TE polarization. The near fundamental modal distributions have been imaged through the end-face coupling technique. The guidance of the waveguides is found to possess low sensitivity on polarization of the probe light. By using a confocal microscope system, the micro-photoluminescence mappings and micro-fluorescence spectra are also obtained, which indicates the photoluminescence features of the Nd3+ ions are well preserved in the waveguide cores after direct femtosecond laser writing.

  16. Fabrication of low loss waveguide using fundamental light of Yb-based femtosecond laser (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Imai, Ryo; Konishi, Kuniaki; Yumoto, Junji; Gonokami, Makoto K.

    2017-03-01

    Laser direct writing of optical devices and circuits is attracted attention because of its ability of three-dimensional fabrication without any mask[1]. Recently, Yb-fiber or solid-state laser has been commonly used for fabrication in addition to traditional Ti:S laser. However, it is reported that waveguide cannot be fabricated in fused silica by using the fundamental light from Yb-based femtosecond laser[2]. Some groups reported on waveguide fabrication by using second-harmonic beam of such lasers[3], but wavelength conversion using nonlinear process has drawbacks such as destabilization of laser power and beam deformation by walk off. In this study, we investigated fabrication of low-loss waveguide in fused silica by using the fundamental beam (1030nm) from an Yb solid-state femtosecond laser with a pulse duration of 250 fs. The NA of focusing objective lens was 0.42. The fabricated waveguide was made to have a circular cross-section by shaping laser beam with a slit[4]. We fixed repetition rate to 150 kHz, and identified appropriate scan speed and pulse energy for fabrication of low loss waveguide. Waveguide fabricated with appropriate condition had a propagation loss of 0.2 dB/cm, and this is the first report on optical waveguides in a fused silica fabricated by femto-second laser pulses at a wavelength of 1030nm. [1]K. M. Davis, et. al., Opt. Lett 21, 1729(1996) [2]J. Canning, et. al., Opt. Mater. Express 1, 998(2011) [3]L. Shah, et. al., Opt. Express 13, 1999(2005) [4]M. Ams, et. al., Opt. Express 13, 5676(2005)

  17. Generation of Bright Phase-matched Circularly-polarized Extreme Ultraviolet High Harmonics

    DTIC Science & Technology

    2014-12-08

    circularly-polarized laser pulses field-ionize a gas in a hollow - core waveguide. We use this new light source for magnetic circular dichroism...polarized with opposite helicity in a gas-filled hollow waveguide (see Supplementary Section 6 for details on the important features of this source...mJ/pulse) driving lasers are focused into a 150-µm-diameter, 2-cm-long gas-filled hollow waveguide using lenses with focal lengths of 50 cm and 75 cm

  18. Planar optical waveguides for optical panel having gradient refractive index core

    DOEpatents

    Veligdan, James T.

    2001-01-01

    An optical panel is disclosed. A plurality of stacked planar optical waveguides are used to guide light from an inlet face to an outlet face of an optical panel. Each of the optical waveguides comprises a planar sheet of core material having a central plane. The core material has an index of refraction which decreases as the distance from the central plane increases. The decrease in the index of refraction occurs gradually and continuously.

  19. Planar optical waveguides for optical panel having gradient refractive index core

    DOEpatents

    Veligdan, James T.

    2004-08-24

    An optical panel is disclosed. A plurality of stacked planar optical waveguides are used to guide light from an inlet face to an outlet face of an optical panel. Each of the optical waveguides comprises a planar sheet of core material having a central plane. The core material has an index of refraction which decreases as the distance from the central plane increases. The decrease in the index of refraction occurs gradually and continuously.

  20. A green-color portable waveguide eyewear display system

    NASA Astrophysics Data System (ADS)

    Xia, Lingbo; Xu, Ke; Wu, Zhengming; Hu, Yingtian; Li, Zhenzhen; Wang, Yongtian; Liu, Juan

    2013-08-01

    Waveguide display systems are widely used in various display fields, especially in head mounted display. Comparing with the traditional head mounted display system, this device dramatically reduce the size and mass. However, there are still several fatal problems such as high scatting, the cumbersome design and chromatic aberration that should be solved. We designed and fabricated a monochromatic portable eyewear display system consist of a comfortable eyewear device and waveguide system with two holographic gratings located on the substrate symmetrically. We record the gratings on the photopolymer medium with high efficiency and wavelength sensitivity. The light emitting from the micro-display is diffracted by the grating and trapped in the glass substrate by total internal reflection. The relationship between the diffraction efficiency and exposure value is studied and analyzed, and we fabricated the gratings with appropriate diffraction efficiency in a optimization condition. To avoid the disturbance of the stray light, we optimize the waveguide system numerically and perform the optical experiments. With this system, people can both see through the waveguide to obtain the information outside and catch the information from the micro display. After considering the human body engineering and industrial production, we design the structure in a compact and portable way. It has the advantage of small-type configuration and economic acceptable. It is believe that this kind of planar waveguide system is a potentially replaceable choice for the portable devices in future mobile communications.

  1. Self-bending of optical waveguides in a dry photosensitive medium

    NASA Astrophysics Data System (ADS)

    Malallah, Ra'ed; Wan, Min; Muniraj, Inbarasan; Cassidy, Derek; Sheridan, John T.

    2018-03-01

    Optical waveguide trajectories formed in an AA/PVA a photopolymer material photosensitive at 532 nm are examined. The transmission of light by this materials is discussed. The bending and arching of the waveguides which occur are investigated. The prediction of our model are shown to agree with the observed of trajectories. The largest index changes taking place at any time during the exposure, i.e. during SWW formation are found at the positions where the largest light intensity is present. Typically, such as maxima exist close to the input face at the location of the Primary Eye or at the location of the Secondary Eyes deeper with in the material. All photosensitive materials have a maximum saturation value of refractive index change that it is possible to induce, which is also discussed.

  2. Strong field localization in subwavelength metal-dielectric optical waveguides

    NASA Astrophysics Data System (ADS)

    Kozina, O. N.; Mel'Nikov, L. A.; Nefedov, I. S.

    2011-08-01

    Detailed calculations of eigenmodes of waveguiding structures made of silver and glass and containing coaxial cables with a nanoscale cross section of different configurations are conducted. In particular, the study focuses on optical coaxial waveguides with the core made in the form of a thin metallic cylinder filled with a dielectric. We show that these waveguides support relatively low-loss propagation of radiation that is strongly localized in the central region, has phase velocity approaching the speed of light and predominant electric-field orientation (dipole type). Optical characteristics of such waveguides are compared with those of coaxial-type waveguides containing a continuous central filament made of metal and with a multilayer structure. Using numeric modeling, we established that the proposed type of the waveguide enables the transmission of an optical image with relatively low losses with a submicron resolution over a distance considerably longer than its cross section. A typical propagation length in the waveguides based on silver and glass with the refractive index of about 1.5 at a wavelength of 500 nm is about 1700 nm.

  3. WGM-Resonator/Tapered-Waveguide White-Light Sensor Optics

    NASA Technical Reports Server (NTRS)

    Stekalov, Dmitry; Maleki, Lute; Matsko, Andrey; Savchenkov, Anatoliy; Iltchenko, Vladimir

    2007-01-01

    Theoretical and experimental investigations have demonstrated the feasibility of compact white-light sensor optics consisting of unitary combinations of (1) low-profile whispering-gallery-mode (WGM) resonators and (2) tapered rod optical waveguides. These sensors are highly wavelength-dispersive and are expected to be especially useful in biochemical applications for measuring absorption spectra of liquids. These sensor optics exploit the properties of a special class of non-diffracting light beams that are denoted Bessel beams because their amplitudes are proportional to Bessel functions of the radii from their central axes. High-order Bessel beams can have large values of angular momentum. In a sensor optic of this type, a low-profile WGM resonator that supports modes having large angular momenta is used to generate high-order Bessel beams. As used here, "low-profile" signifies that the WGM resonator is an integral part of the rod optical waveguide but has a radius slightly different from that of the adjacent part(s).

  4. The all-optical modulator in dielectric-loaded waveguide with graphene-silicon heterojunction structure

    NASA Astrophysics Data System (ADS)

    Sun, Feiying; Xia, Liangping; Nie, Changbin; Shen, Jun; Zou, Yixuan; Cheng, Guiyu; Wu, Hao; Zhang, Yong; Wei, Dongshan; Yin, Shaoyun; Du, Chunlei

    2018-04-01

    All-optical modulators based on graphene show great promise for on-chip optical interconnects. However, the modulation performance of all-optical modulators is usually based on the interaction between graphene and the fiber, limiting their potential in high integration. Based on this point, an all-optical modulator in a dielectric-loaded waveguide (DLW) with a graphene-silicon heterojunction structure (GSH) is proposed. The DLW raises the waveguide mode, which provides a strong light-graphene interaction. Sufficient tuning of the graphene Fermi energy beyond the Pauli blocking effect is obtained with the presented GSH structure. Under the modulation light with a wavelength of 532 nm and a power of 60 mW, a modulation efficiency of 0.0275 dB µm-1 is achieved for light with a communication wavelength of 1.55 µm in the experiment. This modulator has the advantage of having a compact footprint, which may make it a candidate for achieving a highly integrated all-optical modulator.

  5. Slab waveguide photobioreactors for microalgae based biofuel production.

    PubMed

    Jung, Erica Eunjung; Kalontarov, Michael; Doud, Devin F R; Ooms, Matthew D; Angenent, Largus T; Sinton, David; Erickson, David

    2012-10-07

    Microalgae are a promising feedstock for sustainable biofuel production. At present, however, there are a number of challenges that limit the economic viability of the process. Two of the major challenges are the non-uniform distribution of light in photobioreactors and the inefficiencies associated with traditional biomass processing. To address the latter limitation, a number of studies have demonstrated organisms that directly secrete fuels without requiring organism harvesting. In this paper, we demonstrate a novel optofluidic photobioreactor that can help address the light distribution challenge while being compatible with these chemical secreting organisms. Our approach is based on light delivery to surface bound photosynthetic organisms through the evanescent field of an optically excited slab waveguide. In addition to characterizing organism growth-rates in the system, we also show here, for the first time, that the photon usage efficiency of evanescent field illumination is comparable to the direct illumination used in traditional photobioreactors. We also show that the stackable nature of the slab waveguide approach could yield a 12-fold improvement in the volumetric productivity.

  6. High Efficiency Quantum Well Waveguide Solar Cells and Methods for Constructing the Same

    NASA Technical Reports Server (NTRS)

    Sood, Ashok K. (Inventor); Welser, Roger E. (Inventor)

    2014-01-01

    Photon absorption, and thus current generation, is hindered in conventional thin-film solar cell designs, including quantum well structures, by the limited path length of incident light passing vertically through the device. Optical scattering into lateral waveguide structures provides a physical mechanism to increase photocurrent generation through in-plane light trapping. However, the insertion of wells of high refractive index material with lower energy gap into the device structure often results in lower voltage operation, and hence lower photovoltaic power conversion efficiency. The voltage output of an InGaAs quantum well waveguide photovoltaic device can be increased by employing a III-V material structure with an extended wide band gap emitter heterojunction. Analysis of the light IV characteristics reveals that non-radiative recombination components of the underlying dark diode current have been reduced, exposing the limiting radiative recombination component and providing a pathway for realizing solar-electric conversion efficiency of 30% or more in single junction cells.

  7. Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes.

    PubMed

    Jia, Yuechen; Cheng, Chen; Vázquez de Aldana, Javier R; Castillo, Gabriel R; Rabes, Blanca del Rosal; Tan, Yang; Jaque, Daniel; Chen, Feng

    2014-08-07

    Miniature laser sources with on-demand beam features are desirable devices for a broad range of photonic applications. Lasing based on direct-pump of miniaturized waveguiding active structures offers a low-cost but intriguing solution for compact light-emitting devices. In this work, we demonstrate a novel family of three dimensional (3D) photonic microstructures monolithically integrated in a Nd:YAG laser crystal wafer. They are produced by the femtosecond laser writing, capable of simultaneous light waveguiding and beam manipulation. In these guiding systems, tailoring of laser modes by both passive/active beam splitting and ring-shaped transformation are achieved by an appropriate design of refractive index patterns. Integration of graphene thin-layer as saturable absorber in the 3D laser structures allows for efficient passive Q-switching of tailored laser radiations which may enable miniature waveguiding lasers for broader applications. Our results pave a way to construct complex integrated passive and active laser circuits in dielectric crystals by using femtosecond laser written monolithic photonic chips.

  8. Hexavalent chromium monitor

    DOEpatents

    Tao, Shiquan; Winstead, Christopher B.

    2005-04-12

    A monitor is provided for use in measuring the concentration of hexavalent chromium in a liquid, such as water. The monitor includes a sample cell, a light source, and a photodetector. The sample cell is in the form of a liquid-core waveguide, the sample cell defining an interior core and acting as a receiver for the liquid to be analyzed, the interior surface of the sample cell having a refractive index of less than 1.33. The light source is in communication with a first end of the sample cell for emitting radiation having a wavelength of about and between 350 to 390 nm into the interior core of the waveguide. The photodetector is in communication with a second end of the waveguide for measuring the absorption of the radiation emitted by the light source by the liquid in the sample cell. The monitor may also include a processor electronically coupled to the photodetector for receipt of an absorption signal to determine the concentration of hexavalent chromium in the liquid.

  9. Traveling-wave photodetector

    DOEpatents

    Hietala, V.M.; Vawter, G.A.

    1993-12-14

    The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size. 4 figures.

  10. Traveling-wave photodetector

    DOEpatents

    Hietala, Vincent M.; Vawter, Gregory A.

    1993-01-01

    The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size.

  11. Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation.

    PubMed

    Yang, Y; Liu, A Q; Chin, L K; Zhang, X M; Tsai, D P; Lin, C L; Lu, C; Wang, G P; Zheludev, N I

    2012-01-31

    Transformation optics represents a new paradigm for designing light-manipulating devices, such as cloaks and field concentrators, through the engineering of electromagnetic space using materials with spatially variable parameters. Here we analyse liquid flowing in an optofluidic waveguide as a new type of controllable transformation optics medium. We show that a laminar liquid flow in an optofluidic channel exhibits spatially variable dielectric properties that support novel wave-focussing and interference phenomena, which are distinctively different from the discrete diffraction observed in solid waveguide arrays. Our work provides new insight into the unique optical properties of optofluidic waveguides and their potential applications.

  12. Nanowires and nanoribbons as subwavelength optical waveguides and their use as components in photonic circuits and devices

    DOEpatents

    Yang, Peidong; Law, Matt; Sirbuly, Donald J.; Johnson, Justin C.; Saykally, Richard; Fan, Rong; Tao, Andrea

    2012-10-02

    Nanoribbons and nanowires having diameters less than the wavelength of light are used in the formation and operation of optical circuits and devices. Such nanostructures function as subwavelength optical waveguides which form a fundamental building block for optical integration. The extraordinary length, flexibility and strength of these structures enable their manipulation on surfaces, including the precise positioning and optical linking of nanoribbon/wire waveguides and other nanoribbon/wire elements to form optical networks and devices. In addition, such structures provide for waveguiding in liquids, enabling them to further be used in other applications such as optical probes and sensors.

  13. Vertically-coupled Whispering Gallery Mode Resonator Optical Waveguide, and Methods

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey B. (Inventor); Savchenkov, Anatolly A. (Inventor); Matleki, Lute (Inventor)

    2007-01-01

    A vertically-coupled whispering gallery mode (WGM) resonator optical waveguide, a method of reducing a group velocity of light, and a method of making a waveguide are provided. The vertically-coupled WGM waveguide comprises a cylindrical rod portion having a round cross-section and an outer surface. First and second ring-shaped resonators are formed on the outer surface of the cylindrical rod portion and are spaced from each other along a longitudinal direction of the cylindrical rod. The first and second ringshaped resonators are capable of being coupled to each other by way an evanescent field formed in an interior of the cylindrical rod portion.

  14. Flexible polymeric rib waveguide with self-align couplers system

    PubMed Central

    Huang, Cheng-Sheng; Wang, Wei-Chih

    2011-01-01

    The authors report a polymeric based rib waveguide with U shape self-align fiber couplers system using a simple micromolding process with SU8 as a molding material and polydimethysiloxane as a waveguide material. The material is used for its good optical transparency, low surface tension, biocompatibility, and durability. Furthermore, the material is highly formable. This unique fabrication molding technique provides a means of keeping the material and manufacturing costs to a minimum. The self-align fiber couplers system also proves a fast and simple means of light coupling. The flexible nature of the waveguide material makes this process ideal for a potential wearable optical sensor. PMID:22171151

  15. Near field optical probe for critical dimension measurements

    DOEpatents

    Stallard, Brian R.; Kaushik, Sumanth

    1999-01-01

    A resonant planar optical waveguide probe for measuring critical dimensions on an object in the range of 100 nm and below. The optical waveguide includes a central resonant cavity flanked by Bragg reflector layers with input and output means at either end. Light is supplied by a narrow bandwidth laser source. Light resonating in the cavity creates an evanescent electrical field. The object with the structures to be measured is translated past the resonant cavity. The refractive index contrasts presented by the structures perturb the field and cause variations in the intensity of the light in the cavity. The topography of the structures is determined from these variations.

  16. Integrated optical motor.

    PubMed

    Kelemen, Lóránd; Valkai, Sándor; Ormos, Pál

    2006-04-20

    A light-driven micrometer-sized mechanical motor is created by laser-light-induced two-photon photopolymerization. All necessary components of the engine are built upon a glass surface by an identical procedure and include the following: a rigid mechanical framework, a rotor freely rotating on an axis, and an integrated optical waveguide carrying the actuating light to the rotor. The resulting product is a most practical stand-alone system. The light introduced into the integrated optical waveguide input of the motor provides the driving force: neither optical tweezers or even a microscope are needed for the function. The power and efficiency of the motor are evaluated. The independent unit is expected to become an important component of more complex integrated lab-on-a-chip devices.

  17. Deepening Insights of Charge Transfer and Photophysics in a Novel Donor-Acceptor Cocrystal for Waveguide Couplers and Photonic Logic Computation.

    PubMed

    Zhu, Weigang; Zhu, Lingyun; Zou, Ye; Wu, Yishi; Zhen, Yonggang; Dong, Huanli; Fu, Hongbing; Wei, Zhixiang; Shi, Qiang; Hu, Wenping

    2016-07-01

    The charge transfer and photophysics in a new light-emitting cocrystal with ribbon-like morphology are revealed in-depth. These cocrystals can serve as an efficient 1D optical waveguide, and the cocrystal waveguide couplers fabricated by a probe-assisted crystal-moving technique exhibit interfacial white emission and can function as basic photonic logic gates, showing potential for future integrated photonics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Optical property modification of PMMA by ion-beam implantation

    NASA Astrophysics Data System (ADS)

    Hong, Wan; Woo, Hyung-Joo; Choi, Han-Woo; Kim, Young-Suk; Kim, Gi-dong

    2001-01-01

    Polymeric waveguides were fabricated by proton implantation on poly(methyl methacrylate) (PMMA). Depth profiles of the refractive indices of modified regions were obtained and were found to be in good agreement with the stopping power curve of protons in PMMA. It means that the waveguides are formed at the depths where the stopping power is the maximum value. Light losses for 635 nm wavelength were measured using planar waveguides to verify if the transmittance is enough for the application of the technique to optical devices.

  19. FIBER AND INTEGRATED OPTICS: Nonlinearity of a channel-waveguide phase modulator

    NASA Astrophysics Data System (ADS)

    Parygin, V. N.; Zhmakin, I. N.; Baglikov, V. B.

    1993-09-01

    The phase velocity of light in a channel waveguide using a LiNbO3 crystal is analyzed as a function of the voltage applied to the crystal. A refinement of the method of an effective refractive index is proposed. This refinement makes it possible to use the method near the cutoff for a waveguide mode. At voltages on the order of 10 V, the nonlinearity of the phase characteristic amounts to ~ 5 · 10- 4 of the linear phase shift.

  20. Generation of 3.6  μm radiation and telecom-band amplification by four-wave mixing in a silicon waveguide with normal group velocity dispersion.

    PubMed

    Kuyken, B; Verheyen, P; Tannouri, P; Liu, X; Van Campenhout, J; Baets, R; Green, W M J; Roelkens, G

    2014-03-15

    Mid-infrared light generation through four-wave mixing-based frequency down-conversion in a normal group velocity dispersion silicon waveguide is demonstrated. A telecom-wavelength signal is down-converted across more than 1.2 octaves using a pump at 2190 nm in a 1 cm-long waveguide. At the same time, a 13 dB on-chip parametric gain of the telecom signal is obtained.

  1. Low loss InGaAs/InP multiple quantum well waveguides

    NASA Astrophysics Data System (ADS)

    Koren, U.; Miller, B. I.; Koch, T. L.; Boyd, G. D.; Capik, R. J.

    1986-12-01

    Double heterostructure planar waveguides with an InGaAs/InP multiple quantum well (MQW) core and InP cladding layers were grown by atmospheric pressure metalorganic chemical vapor deposition. Ridge waveguides had a low propagation loss of 0.8 dB/cm for 1.52 micron input light. The indices of refraction for the guided TE and TM modes have been measured and the bulk dispersion curves of the MQW material for the 1.46-1.55 micron wavelength region were derived.

  2. Towards Fieldable Rapid Bioagent Detection: advanced Resonant Optical Waveguide and Biolayer Structures for Integrated Biosensing

    DTIC Science & Technology

    2007-11-01

    waveguide approach in which a right-angled gadolinium gallium garnet (GGG) glass prism of index 1.965 at 633 nm is used to couple light from a HeNe laser of...SPARROW sensor consists of two planar, single mode aluminum oxide waveguides separated vertically by a lower refractive index silicon dioxide layer...and high stability could be formed on aluminum oxide, the binding of an alkyl carboxylic acid, stearic acid (n-octadecanoic acid), was investigated

  3. Modal Filters for Infrared Interferometry

    NASA Technical Reports Server (NTRS)

    Ksendzov, Alexander; MacDonald, Daniel R.; Soibel, Alexander

    2009-01-01

    Modal filters in the approximately equal to 10-micrometer spectral range have been implemented as planar dielectric waveguides in infrared interferometric applications such as searching for Earth-like planets. When looking for a small, dim object ("Earth") in close proximity to a large, bright object ("Sun"), the interferometric technique uses beams from two telescopes combined with a 180 phase shift in order to cancel the light from a brighter object. The interferometer baseline can be adjusted so that, at the same time, the light from the dimmer object arrives at the combiner in phase. This light can be detected and its infrared (IR) optical spectra can be studied. The cancellation of light from the "Sun" to approximately equal to 10(exp 6) is required; this is not possible without special devices-modal filters- that equalize the wavefronts arriving from the two telescopes. Currently, modal filters in the approximately equal to 10-micrometer spectral range are implemented as single- mode fibers. Using semiconductor technology, single-mode waveguides for use as modal filters were fabricated. Two designs were implemented: one using an InGaAs waveguide layer matched to an InP substrate, and one using InAlAs matched to an InP substrate. Photon Design software was used to design the waveguides, with the main feature all designs being single-mode operation in the 10.5- to 17-micrometer spectral range. Preliminary results show that the filter's rejection ratio is 26 dB.

  4. Quasi-Phase-Matched Supercontinuum Generation in Photonic Waveguides

    NASA Astrophysics Data System (ADS)

    Hickstein, Daniel D.; Kerber, Grace C.; Carlson, David R.; Chang, Lin; Westly, Daron; Srinivasan, Kartik; Kowligy, Abijith; Bowers, John E.; Diddams, Scott A.; Papp, Scott B.

    2018-02-01

    Supercontinuum generation (SCG) in integrated photonic waveguides is a versatile source of broadband light, and the generated spectrum is largely determined by the phase-matching conditions. Here we show that quasi-phase-matching via periodic modulations of the waveguide structure provides a useful mechanism to control the evolution of ultrafast pulses during supercontinuum generation. We experimentally demonstrate a quasi-phase-matched supercontinuum to the TE20 and TE00 waveguide modes, which enhances the intensity of the SCG in specific spectral regions by as much as 20 dB. We utilize higher-order quasi-phase-matching (up to the 16th order) to enhance the intensity in numerous locations across the spectrum. Quasi-phase-matching adds a unique dimension to the design space for SCG waveguides, allowing the spectrum to be engineered for specific applications.

  5. Design of a GaP/Si composite waveguide for CW terahertz wave generation via difference frequency mixing.

    PubMed

    Saito, Kyosuke; Tanabe, Tadao; Oyama, Yutaka

    2014-06-10

    We design a GaP/Si composite waveguide to achieve efficient terahertz (THz) wave generation under collinear phase-matched difference frequency mixing (DFM) between near-infrared light sources. This waveguide structure provides a strong mode confinement of both near-infrared sources and THz wave, resulting in an efficient mode overlapping. The numerical results show that the waveguide can produce guided THz wave (5.93 THz) with a power conversion efficiency of 6.6×10(-4)  W(-1). This value is larger than previously obtained with the bulk GaP crystal: 0.5×10(-9)  W(-1) [J. Lightwave Technol.27, 3057 (2009)]. Our proposed composite waveguide can be achieved by bridging the telecom wavelength and THz frequency region.

  6. Photonic mesophases from cut rod rotators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stelson, Angela C.; Liddell Watson, Chekesha M., E-mail: cml66@cornell.edu; Avendano, Carlos

    2016-01-14

    The photonic band properties of random rotator mesophases are calculated using supercell methods applied to cut rods on a hexagonal lattice. Inspired by the thermodynamic mesophase for anisotropic building blocks, we vary the shape factor of cut fraction for the randomly oriented basis. We find large, stable bandgaps with high gap isotropy in the inverted and direct structures as a function of cut fraction, dielectric contrast, and filling fraction. Bandgap sizes up to 34.5% are maximized at high dielectric contrast for rods separated in a matrix. The bandgaps open at dielectric contrasts as low as 2.0 for the transverse magneticmore » polarization and 2.25 for the transverse electric polarization. Additionally, the type of scattering that promotes the bandgap is correlated with the effect of disorder on bandgap size. Slow light properties are investigated in waveguide geometry and slowdown factors up to 5 × 10{sup 4} are found.« less

  7. A deterministic guide for material and mode dependence of on-chip electro-optic modulator performance

    NASA Astrophysics Data System (ADS)

    Amin, Rubab; Suer, Can; Ma, Zhizhen; Sarpkaya, Ibrahim; Khurgin, Jacob B.; Agarwal, Ritesh; Sorger, Volker J.

    2017-10-01

    Electro-optic modulation is a key function in optical data communication and possible future optical computing engines. The performance of modulators intricately depends on the interaction between the actively modulated material and the propagating waveguide mode. While high-performing modulators were demonstrated before, the approaches were taken as ad-hoc. Here we show the first systematic investigation to incorporate a holistic analysis for high-performance and ultra-compact electro-optic modulators on-chip. We show that intricate interplay between active modulation material and optical mode plays a key role in the device operation. Based on physical tradeoffs such as index modulation, loss, optical confinement factors and slow-light effects, we find that bias-material-mode regions exist where high phase modulation and high loss (absorption) modulation is found. This work paves the way for a holistic design rule of electro-optic modulators for on-chip integration.

  8. Tunable far-infrared plasmonically induced transparency in graphene based nano-structures

    NASA Astrophysics Data System (ADS)

    Dolatabady, Alireza; Granpayeh, Nosrat

    2018-07-01

    In this paper, a structure is proposed to show the phenomenon of tunable far-infrared plasmonically induced transparency. The structure includes a nano-ribbon waveguide side-coupled to nano-stub resonators. The realized effect is due to the coupling between the consecutive nano-stub resonators spaced in properly designed distances, providing a constructive interference in the virtually created Fabry–Perot cavity. Due to the Fabry–Perot like cavity created between two consecutive nano-stubs, periodic values of nano-stubs separation can produce transparency windows. Increasing the number of nano-stubs would increase the number of transparency windows in different frequencies. The structure is theoretically investigated and numerically simulated by using the finite difference time domain method. Owing to the chemical potential dependency of graphene conductivity, the transparency windows can be actively tuned. The proposed component can be extensively utilized in nano-scale switching and slow-light systems.

  9. A description on plasma background effect in growth rate of THz waves in a metallic cylindrical waveguide, including a dielectric tube and two current sources

    NASA Astrophysics Data System (ADS)

    Hajijamali-Arani, Z.; Jazi, B.

    2018-04-01

    The propagation of slow waves in a dielectric tube surrounded by a long cylindrical metallic waveguide is investigated. The dielectric tube located in a background region of plasma under two different states A and B. In the A-state the dielectric tube hollow filled with the plasma and in the B-state the outer surface of dielectric tube has been covered by the plasma layer. There are two relativistic electron beams with opposite velocities injected in the waveguide as the energy sources. Using the fluid theory for the plasmas, the Cherenkov instability in the mentioned waveguide will be analyzed. The dispersion relations of E-mode waves for the states A, B have been obtained. The time growth rate of surface waves are compared with each other for two cases A and B. The effect of plasma region on time growth rate of the waves, will be investigated. In all cases it will be shown, while an electron beam is responsible for instability, another electron beam plays a stabilizing role.

  10. Color waveguide transparent screen using lens array holographic optical element

    NASA Astrophysics Data System (ADS)

    Liu, Siqi; Sun, Peng; Wang, Chang; Zheng, Zhenrong

    2017-11-01

    A color transparent screen was designed in this paper, a planar glass was used as a waveguide structure and the lens array holographic optical element (HOE) was used as a display unit. The lens array HOE was exposed by two coherent beams. One was the reference wave which directly illuminated on the holographic material and the other was modulated by the micro lens array. The lens array HOE can display the images with see-through abilities. Unlike the conventional lens array HOE, a planar glass was adopted as the waveguide in the experiment. The projecting light was totally internal-reflected in the planar glass to eliminate the undesired zero-order diffracted light. By using waveguide, it also brings advantage of compact structure. Colorful display can be realized in our system as the holographic materials were capable for multi-wavelength display. In this paper, a color transparent screen utilizing the lens array HOE and waveguide were designed. Experiment results showed a circular display area on the transparent screen. The diameter of the area is 20 mm and it achieved the pixel resolution of 100 μm. This simple and effective method could be an alternative in the augment reality (AR) applications, such as transparent phone and television.

  11. CMOS-compatible spot-size converter for optical fiber to sub-μm silicon waveguide coupling with low-loss low-wavelength dependence and high tolerance to misalignment

    NASA Astrophysics Data System (ADS)

    Picard, Marie-Josée.; Latrasse, Christine; Larouche, Carl; Painchaud, Yves; Poulin, Michel; Pelletier, François; Guy, Martin

    2016-03-01

    One of the biggest challenges of silicon photonics is the efficient coupling of light between the sub-micron SiP waveguides and a standard optical fiber (SMF-28). We recently proposed a novel approach based on a spot-size converter (SSC) that fulfills this need. The SSC integrates a tapered silicon waveguide and a superimposed structure made of a plurality of rods of high index material, disposed in an array-like configuration and embedded in a cladding of lower index material. This superimposed structure defines a waveguide designed to provide an efficient adiabatic transfer, through evanescent coupling, to a 220 nm thick Si waveguide tapered down to a narrow tip on one side, while providing a large mode overlap to the optical fiber on the other side. An initial demonstration was made using a SSC fabricated with post-processing steps. Great coupling to a SMF-28 fiber with a loss of 0.6 dB was obtained for TEpolarized light at 1550 nm with minimum wavelength dependence. In this paper, SSCs designed for operation at 1310 and 1550 nm for TE/TM polarizations and entirely fabricated in a CMOS fab are presented.

  12. Efficient Light Extraction from Organic Light-Emitting Diodes Using Plasmonic Scattering Layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rothberg, Lewis

    2012-11-30

    Our project addressed the DOE MYPP 2020 goal to improve light extraction from organic light-emitting diodes (OLEDs) to 75% (Core task 6.3). As noted in the 2010 MYPP, “the greatest opportunity for improvement is in the extraction of light from [OLED] panels”. There are many approaches to avoiding waveguiding limitations intrinsic to the planar OLED structure including use of textured substrates, microcavity designs and incorporating scattering layers into the device structure. We have chosen to pursue scattering layers since it addresses the largest source of loss which is waveguiding in the OLED itself. Scattering layers also have the potential tomore » be relatively robust to color, polarization and angular distributions. We note that this can be combined with textured or microlens decorated substrates to achieve additional enhancement.« less

  13. Efficient Second Harmonic Generation in 3D Nonlinear Optical-Lattice-Like Cladding Waveguide Splitters by Femtosecond Laser Inscription

    PubMed Central

    Nie, Weijie; Jia, Yuechen; Vázquez de Aldana, Javier R.; Chen, Feng

    2016-01-01

    Integrated photonic devices with beam splitting function are intriguing for a broad range of photonic applications. Through optical-lattice-like cladding waveguide structures fabricated by direct femtosecond laser writing, the light propagation can be engineered via the track-confined refractive index profiles, achieving tailored output beam distributions. In this work, we report on the fabrication of 3D laser-written optical-lattice-like structures in a nonlinear KTP crystal to implement 1 × 4 beam splitting. Second harmonic generation (SHG) of green light through these nonlinear waveguide beam splitter structures provides the capability for the compact visible laser emitting devices. With Type II phase matching of the fundamental wavelength (@ 1064 nm) to second harmonic waves (@ 532 nm), the frequency doubling has been achieved through this three-dimensional beam splitter. Under 1064-nm continuous-wave fundamental-wavelength pump beam, guided-wave SHG at 532 nm are measured with the maximum power of 0.65 mW and 0.48 mW for waveguide splitters (0.67 mW and 0.51 mW for corresponding straight channel waveguides), corresponding to a SH conversion efficiency of approximately ~14.3%/W and 13.9%/W (11.2%/W, 11.3%/W for corresponding straight channel waveguides), respectively. This work paves a way to fabricate compact integrated nonlinear photonic devices in a single chip with beam dividing functions. PMID:26924255

  14. Efficient Second Harmonic Generation in 3D Nonlinear Optical-Lattice-Like Cladding Waveguide Splitters by Femtosecond Laser Inscription.

    PubMed

    Nie, Weijie; Jia, Yuechen; Vázquez de Aldana, Javier R; Chen, Feng

    2016-02-29

    Integrated photonic devices with beam splitting function are intriguing for a broad range of photonic applications. Through optical-lattice-like cladding waveguide structures fabricated by direct femtosecond laser writing, the light propagation can be engineered via the track-confined refractive index profiles, achieving tailored output beam distributions. In this work, we report on the fabrication of 3D laser-written optical-lattice-like structures in a nonlinear KTP crystal to implement 1 × 4 beam splitting. Second harmonic generation (SHG) of green light through these nonlinear waveguide beam splitter structures provides the capability for the compact visible laser emitting devices. With Type II phase matching of the fundamental wavelength (@ 1064 nm) to second harmonic waves (@ 532 nm), the frequency doubling has been achieved through this three-dimensional beam splitter. Under 1064-nm continuous-wave fundamental-wavelength pump beam, guided-wave SHG at 532 nm are measured with the maximum power of 0.65 mW and 0.48 mW for waveguide splitters (0.67 mW and 0.51 mW for corresponding straight channel waveguides), corresponding to a SH conversion efficiency of approximately ~14.3%/W and 13.9%/W (11.2%/W, 11.3%/W for corresponding straight channel waveguides), respectively. This work paves a way to fabricate compact integrated nonlinear photonic devices in a single chip with beam dividing functions.

  15. Graphene-doped polymer nanofibers for low-threshold nonlinear optical waveguiding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Chao; Yu, Shao-Liang; Wang, Hong -Qing

    Graphene-doped polymer nanofibers are fabricated by taper drawing of solvated polyvinyl alcohol doped with liquid-phase exfoliated graphene flakes. Nanofibers drawn this way typically have diameters measured in hundreds of nanometers and lengths in tens of millimeters; they show excellent uniformity and surface smoothness for optical waveguiding. Owing to their tightly confined waveguiding behavior, light–matter interaction in these subwavelength-diameter nanofibers is significantly enhanced. Using approximately 1350-nm-wavelength femto-second pulses, we demonstrate saturable absorption behavior in these nanofibers with a saturation threshold down to 0.25 pJ pulse -1 (peak power ~1.3 W). Additionally, using 1064-nm-wavelength nanosecond pulses as switching light, we show all-opticalmore » modulation of a 1550-nm-wavelength signal light guided along a single nanofiber with a switching peak power of ~3.2 W.« less

  16. FIBER AND INTEGRATED OPTICS: Excitation of leaky modes in a system of coupled waveguides

    NASA Astrophysics Data System (ADS)

    Usievich, B. A.; Nurligareev, J. Kh; Sychugov, V. A.; Golant, K. M.

    2007-06-01

    A system of coupled single-mode waveguides with the number M of guided modes lower than the number N of single-mode waveguides is studied. Leaky modes in this system are investigated in detail. It is shown, in particular, that these modes can be excited by light incident on the side surface of the system when the reflection coefficient vanishes. It is found that the angular dependence of the coefficient of reflection from the side surface of the system can be used to refine the dispersion curve for leaky modes. It is shown that light incident at a grazing angle can propagate in the system in the direction considerably different from the propagation direction of a beam incident from a substrate, even in the case of a small difference in the refractive indices.

  17. Optical phased arrays with evanescently-coupled antennas

    DOEpatents

    Sun, Jie; Watts, Michael R; Yaacobi, Ami; Timurdogan, Erman

    2015-03-24

    An optical phased array formed of a large number of nanophotonic antenna elements can be used to project complex images into the far field. These nanophotonic phased arrays, including the nanophotonic antenna elements and waveguides, can be formed on a single chip of silicon using complementary metal-oxide-semiconductor (CMOS) processes. Directional couplers evanescently couple light from the waveguides to the nanophotonic antenna elements, which emit the light as beams with phases and amplitudes selected so that the emitted beams interfere in the far field to produce the desired pattern. In some cases, each antenna in the phased array may be optically coupled to a corresponding variable delay line, such as a thermo-optically tuned waveguide or a liquid-filled cell, which can be used to vary the phase of the antenna's output (and the resulting far-field interference pattern).

  18. Lightwave Circuits in Lithium Niobate through Hybrid Waveguides with Silicon Photonics

    PubMed Central

    Weigel, Peter O.; Savanier, Marc; DeRose, Christopher T.; Pomerene, Andrew T.; Starbuck, Andrew L.; Lentine, Anthony L.; Stenger, Vincent; Mookherjea, Shayan

    2016-01-01

    We demonstrate a photonic waveguide technology based on a two-material core, in which light is controllably and repeatedly transferred back and forth between sub-micron thickness crystalline layers of Si and LN bonded to one another, where the former is patterned and the latter is not. In this way, the foundry-based wafer-scale fabrication technology for silicon photonics can be leveraged to form lithium-niobate based integrated optical devices. Using two different guided modes and an adiabatic mode transition between them, we demonstrate a set of building blocks such as waveguides, bends, and couplers which can be used to route light underneath an unpatterned slab of LN, as well as outside the LN-bonded region, thus enabling complex and compact lightwave circuits in LN alongside Si photonics with fabrication ease and low cost. PMID:26927022

  19. Lightwave Circuits in Lithium Niobate through Hybrid Waveguides with Silicon Photonics.

    PubMed

    Weigel, Peter O; Savanier, Marc; DeRose, Christopher T; Pomerene, Andrew T; Starbuck, Andrew L; Lentine, Anthony L; Stenger, Vincent; Mookherjea, Shayan

    2016-03-01

    We demonstrate a photonic waveguide technology based on a two-material core, in which light is controllably and repeatedly transferred back and forth between sub-micron thickness crystalline layers of Si and LN bonded to one another, where the former is patterned and the latter is not. In this way, the foundry-based wafer-scale fabrication technology for silicon photonics can be leveraged to form lithium-niobate based integrated optical devices. Using two different guided modes and an adiabatic mode transition between them, we demonstrate a set of building blocks such as waveguides, bends, and couplers which can be used to route light underneath an unpatterned slab of LN, as well as outside the LN-bonded region, thus enabling complex and compact lightwave circuits in LN alongside Si photonics with fabrication ease and low cost.

  20. Fully suspended slot waveguide platform

    NASA Astrophysics Data System (ADS)

    Zhou, Wen; Cheng, Zhenzhou; Wu, Xinru; Sun, Xiankai; Tsang, Hon Ki

    2018-02-01

    A fully suspended slot waveguide (FSSWG) platform, including straight slot waveguides, 90° bends, high-Q racetrack resonators, and strip-to-slot mode converters, is demonstrated for broadband and low-loss operation in the mid-infrared spectral region. The proposed FSSWG platform has inherent merits of a broad spectral range of transparency which is limited only by the absorption of silicon, strong light-analyte interaction, good mechanical stability, and single lithography step fabrication process. By using asymmetric FSSWGs, the propagation loss, bending loss, and intrinsic optical Q factor are demonstrated to be 2.8 dB/cm, 0.15 dB/90°, and 12 600, respectively. The average conversion efficiency of a mode converter is 95.4% over a bandwidth of 170 nm and 97.0% at 2231 nm. The FSSWG platform would be promising for a long-range and cavity-enhanced light-analyte interaction.

  1. Graphene-doped polymer nanofibers for low-threshold nonlinear optical waveguiding

    DOE PAGES

    Meng, Chao; Yu, Shao-Liang; Wang, Hong -Qing; ...

    2015-11-06

    Graphene-doped polymer nanofibers are fabricated by taper drawing of solvated polyvinyl alcohol doped with liquid-phase exfoliated graphene flakes. Nanofibers drawn this way typically have diameters measured in hundreds of nanometers and lengths in tens of millimeters; they show excellent uniformity and surface smoothness for optical waveguiding. Owing to their tightly confined waveguiding behavior, light–matter interaction in these subwavelength-diameter nanofibers is significantly enhanced. Using approximately 1350-nm-wavelength femto-second pulses, we demonstrate saturable absorption behavior in these nanofibers with a saturation threshold down to 0.25 pJ pulse -1 (peak power ~1.3 W). Additionally, using 1064-nm-wavelength nanosecond pulses as switching light, we show all-opticalmore » modulation of a 1550-nm-wavelength signal light guided along a single nanofiber with a switching peak power of ~3.2 W.« less

  2. Brillouin-Mandelstam spectroscopy of standing spin waves in a ferrite waveguide

    NASA Astrophysics Data System (ADS)

    Balinskiy, Michael; Kargar, Fariborz; Chiang, Howard; Balandin, Alexander A.; Khitun, Alexander G.

    2018-05-01

    This article reports results of experimental investigation of the spin wave interference over large distances in the Y3Fe2(FeO4)3 waveguide using Brillouin-Mandelstam spectroscopy. Two coherent spin waves are excited by the micro-antennas fabricated at the edges of the waveguide. The amplitudes of the input spin waves are adjusted to provide approximately the same intensity in the central region of the waveguide. The relative phase between the excited spin waves is controlled by the phase shifter. The change of the local intensity distribution in the standing spin wave is monitored using Brillouin-Mandelstam light scattering spectroscopy. Experimental data demonstrate the oscillation of the scattered light intensity depending on the relative phase of the interfering spin waves. The oscillations of the intensity, tunable via the relative phase shift, are observed as far as 7.5 mm away from the spin-wave generating antennas at room temperature. The obtained results are important for developing techniques for remote control of spin currents, with potential applications in spin-based memory and logic devices.

  3. Off-axis spectral beam combining of Bragg reflection waveguide photonic crystal diode lasers

    NASA Astrophysics Data System (ADS)

    Sun, Fangyuan; Wang, Lijie; Zhao, Yufei; Hou, Guanyu; Shu, Shili; Zhang, Jun; Peng, Hangyu; Tian, Sicong; Tong, Cunzhu; Wang, Lijun

    2018-06-01

    The spectral beam combining (SBC) of Bragg reflection waveguide photonic crystal (BRW-PC) diode lasers was studied for the first time. An off-axis feedback system was constructed using a stripe mirror and a spatial filter to control beam quality in the external cavity. It was found that the BRW-PC diode lasers with a low divergence and a circular beam provided a simplified and cost-effective SBC. The off-axis feedback broke the beam quality limit of a single element, and an M 2 factor of 3.8 times lower than that of a single emitter in the slow axis was demonstrated.

  4. Excitation of terahertz radiation by an electron beam in a dielectric lined waveguide with rippled dielectric surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, Deepak; Uma, R.; Tripathi, V. K.

    A relativistic electron beam propagating through a dielectric lined waveguide, with ripple on the dielectric surface, excites a free electron laser type instability where ripple acts as a wiggler. The spatial modulation of permittivity in the ripple region couples a terahertz radiation mode to a driven mode of lower phase velocity, where the beam is in Cerenkov resonance with the slow mode. Both the modes grow at the expanse of beam energy. The terahertz frequency increases as the beam velocity increases. The growth rate of the instability goes as one third power of beam density.

  5. ZnO nanotube waveguide arrays on graphene films for local optical excitation on biological cells

    NASA Astrophysics Data System (ADS)

    Baek, Hyeonjun; Kwak, Hankyul; Song, Minho S.; Ha, Go Eun; Park, Jongwoo; Tchoe, Youngbin; Hyun, Jerome K.; Park, Hye Yoon; Cheong, Eunji; Yi, Gyu-Chul

    2017-04-01

    We report on scalable and position-controlled optical nanoprobe arrays using ZnO nanotube waveguides on graphene films for use in local optical excitation. For the waveguide fabrication, position-controlled and well-ordered ZnO nanotube arrays were grown on chemical vapor deposited graphene films with a submicron patterned mask layer and Au prepared between the interspace of nanotubes. Mammalian cells were cultured on the nanotube waveguide arrays and were locally excited by light illuminated through the nanotubes. Fluorescence and optogenetic signals could be excited through the optical nanoprobes. This method offers the ability to investigate cellular behavior with a high spatial resolution that surpasses the current limitation.

  6. Fabrication of 8×8 MMI optical coupler in BK7 by ion-exchange

    NASA Astrophysics Data System (ADS)

    Li, Xia; Li, Xi-Hua; Zhou, Qiang; Jiang, Xiao-Qing; Yang, Jian-Yi; Wang, Ming-Hua

    2005-01-01

    The planar waveguide optical couplers are of prime importance in optical communication and optical signal processing system. Comparing with the optical fiber coupler (OFC) which fabricated by fused biconical taper technology, the planar waveguide couplers are more compact size, lower loss, better uniformity, easier manufacture and integration. Multimode interference (MMI) couplers have many advantages, such as compact size, wavelength and polarization insensitivity, fabrication tolerances and low loss, etc., which concentrate more and more attention. Conventional MMI devices are based on the uniform index waveguides. When the number of input/output waveguides becomes larger, the intrinsic propagation constant error, which will cause bad uniformity of output power, can"t be neglected. In fact, most waveguide devices are graded-index. With the enhanced compatibility of MMI coupler, the performance can be improved at the same time. Prior study shows that graded-index MMI couplers reach the best performance under certain index contrast. Among many available materials, glass is chosen to be the substrate of the coupler, because of its good features, such as low loss, ease fabrication, cheap cost, and so on. In this paper, an 8×8 MMI optical coupler is designed based on the principle of graded-index MMI. The coupler is composed of a waveguide, which is designed to support a large number of modes, and several access (usually single-mode) waveguides, which are used to launch light into and recover light from that multimode waveguide. The total length of the device is less than 3.5 centimeter, including S-bends which lead the multiple images to the output of the device with the spacing D=250μm to make the device fiber compatible. In this paper, we describe an experimental realization of the 8×8 graded-index MMI optical coupler and the measurement of its performance with the testing laser of the wavelength of 1.55μm. The device is fabricated by ion-exchange on BK7 glass substrate. During the ion-exchange process, a melting mixture of AgNO3 : (KNO3 : NaNO3) (molar ratio, 0.001:1) is used at 350~380°C for different times (range from 8 to 18 hours) to fabricate the coupler. The experimental results show that the performance of the optical coupler is quite promising. For instance, while launching light from No.5 waveguide, the uniformity of the device is approximately 0.72dB. Optimization of design and fabrication is going on to improve the total performance of the optical coupler.

  7. Novel Waveguide Architectures for Light Sources in Silicon Photonics

    NASA Astrophysics Data System (ADS)

    Tummidi, Ravi Sekhar

    Of the many challenges which are threatening to derail the success trend set by Moore's Law, perhaps the most prominent one is the "Interconnect Bottleneck". The metallic interconnections which carry inter-chip and intra-chip signals are increasingly proving to be inadequate to carry the enormous amount of data due to band-width limitations, cross talk and increased latency. A silicon based optical interconnect is showing enormous promise to address this issue in a cost effective manner by leveraging the extremely matured CMOS fabrication infrastructure. An optical interconnect system consists of a low loss waveguide, modulator, photo detector and a light source. Of these the only component yet to be demonstrated in silicon is a CMOS compatible electrically pumped silicon based laser. The present work is our endeavor towards the goal of a practical light source in silicon. To this end we have focused our efforts on horizontal slot waveguide which consists of a nm thin low index silica layer sandwiched between two high index silicon layers. Such a structure provides an exceptionally high confinement for the TM-like mode in the thin silica slot. The shallow ridge profile of the waveguide allows in principle for lateral electrical access to the core of the waveguide for excitation of the slot embedded gain material like erbium or nano-crystal sensitized erbium using tunneling, polarization transfer or transport. Low losses in the proposed structure are paramount due to the low gain expectation (˜1dB/cm) from CMOS compatible gain media. This dissertation details the novel techniques conceived to mitigate the severe lateral radiation leakage loss of the TM-like mode in these waveguides and resonators using "Magic Widths" and "Magic Radii" designs. New fabrication techniques are discussed which were developed to achieve ultra-smooth waveguide surfaces to substantially reduce the scattering induced losses in the Silicon-on-Insulator (SOI) high index contrast system. This enabled us to achieve resonators with Qs of 1.6x106 for the TE-like mode in non-slot configurations and 3x105 for the TM-like mode in full slot configuration, the highest yet reported for this type of structure and close to our design requirements for a laser. Erbium was incorporated into the silica slot just 8.3 nm thick and photoluminescence was observed in full waveguide configuration. A simple phenomenological model based on spontaneous emission into a waveguide mode was developed, which predicted >10x Purcell enhancement of the luminescence decay in these slot waveguides even in the absence of a resonator, a result also yielded by a rigorous quantum electrodynamic analysis. These enhanced spontaneous emission rates were experimentally verified using time resolved photoluminescence decay and luminescence power measurements. The results so far indicate that these slot structures could be the enablers for very efficient LEDs due to the highly preferential characteristic of the spontaneous emission to go into the single guided mode. The future goal will be to harness this behavior for novel silicon photonic light sources.

  8. Near field optical probe for critical dimension measurements

    DOEpatents

    Stallard, B.R.; Kaushik, S.

    1999-05-18

    A resonant planar optical waveguide probe for measuring critical dimensions on an object in the range of 100 nm and below is disclosed. The optical waveguide includes a central resonant cavity flanked by Bragg reflector layers with input and output means at either end. Light is supplied by a narrow bandwidth laser source. Light resonating in the cavity creates an evanescent electrical field. The object with the structures to be measured is translated past the resonant cavity. The refractive index contrasts presented by the structures perturb the field and cause variations in the intensity of the light in the cavity. The topography of the structures is determined from these variations. 8 figs.

  9. OLED with improved light outcoupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forrest, Stephen; Sun, Yiru

    2016-11-29

    An OLED may include regions of a material having a refractive index less than that of the substrate, or of the organic region, allowing for emitted light in a waveguide mode to be extracted into air. These regions can be placed adjacent to the emissive regions of an OLED in a direction parallel to the electrodes. The substrate may also be given a nonstandard shape to further improve the conversion of waveguide mode and/or glass mode light to air mode. The outcoupling efficiency of such a device may be up to two to three times the efficiency of a standardmore » OLED. Methods for fabricating such a transparent or top-emitting OLED is also provided.« less

  10. Optical waveguides in magneto-optical glasses fabricated by proton implantation

    NASA Astrophysics Data System (ADS)

    Liu, Chun-Xiao; Li, Yu-Wen; Zheng, Rui-Lin; Fu, Li-Li; Zhang, Liao-Lin; Guo, Hai-Tao; Zhou, Zhi-Guang; Li, Wei-Nan; Lin, She-Bao; Wei, Wei

    2016-11-01

    Planar waveguides in magneto-optical glasses (Tb3+-doped aluminum borosilicate glasses) have been produced by a 550-keV proton implantation at a dose of 4.0×1016 ions/cm2 for the first time to our knowledge. After annealing at 260 °C for 1.0 h, the dark-mode spectra and near-field intensity distributions are measured by the prism-coupling and end-face coupling methods. The damage profile, refractive index distribution and light propagation mode of the planar waveguide are numerically calculated by SRIM 2010, RCM and FD-BPM, respectively. The effects of implantation on the structural and optical properties are investigated by Raman and absorption spectra. It suggests that the proton-implanted Tb3+-doped aluminum borosilicate glass waveguide is a good candidate for a waveguide isolator in optical fiber communication and all-optical communication.

  11. Hollow core waveguide as mid-infrared laser modal beam filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patimisco, P.; Giglio, M.; Spagnolo, V.

    2015-09-21

    A novel method for mid-IR laser beam mode cleaning employing hollow core waveguide as a modal filter element is reported. The influence of the input laser beam quality on fiber optical losses and output beam profile using a hollow core waveguide with 200 μm-bore size was investigated. Our results demonstrate that even when using a laser with a poor spatial profile, there will exist a minimum fiber length that allows transmission of only the Gaussian-like fundamental waveguide mode from the fiber, filtering out all the higher order modes. This essentially single mode output is preserved also when the waveguide is bentmore » to a radius of curvature of 7.5 cm, which demonstrates that laser mode filtering can be realized even if a curved light path is required.« less

  12. Design of a LiNbO(3) ribbon waveguide for efficient difference-frequency generation of terahertz wave in the collinear configuration.

    PubMed

    Takushima, Y; Shin, S Y; Chung, Y C

    2007-10-29

    We propose and investigate a ribbon waveguide for difference-frequency generation of terahertz (THz) wave from infrared light sources. The proposed ribbon waveguide is composed of a nonlinear optic crystal and has a thickness less than the wavelength of the THz wave to support the surface-wave mode in the THz region. By utilizing the waveguide dispersion of the surface-wave mode, the phase matching condition between infrared pump, idler and THz waves can be realized in the collinear configuration. Owing to the weak mode confinement of the THz wave, the absorption coefficient can also be reduced. We design the ribbon waveguide which uses LiNbO(3) crystal and discuss the phase-matching condition for DFG of THz wave. Highly efficient THz-wave generation is confirmed by numerical simulations.

  13. Barium Titanate Photonic Crystal Electro-Optic Modulators for Telecommunication and Data Network Applications

    NASA Astrophysics Data System (ADS)

    Girouard, Peter D.

    The microwave, optical, and electro-optic properties of epitaxial barium titanate thin films grown on (100) MgO substrates and photonic crystal electro-optic modulators fabricated on these films were investigated to demonstrate the applicability of these devices for telecommunication and data networks. The electrical and electro-optical properties were characterized up to modulation frequencies of 50 GHz, and the optical properties of photonic crystal waveguides were determined for wavelengths spanning the optical C band between 1500 and 1580 nm. Microwave scattering parameters were measured on coplanar stripline devices with electrode gap spacings between 5 and 12 mum on barium titanate films with thicknesses between 230 and 680 nm. The microwave index and device characteristic impedance were obtained from the measurements. Larger (lower) microwave indices (impedances) were obtained for devices with narrower electrode gap spacings and on thicker films. Thinner film devices have both lower index mismatch between the co-propagating microwave and optical signals and lower impedance mismatch to a 50O system, resulting in a larger predicted electro-optical 3 dB bandwidth. This was experimentally verified with electro-optical frequency response measurements. These observations were applied to demonstrate a record high 28 GHz electro-optic bandwidth measured for a BaTiO3 conventional ridge waveguide modulator having 1mm long electrodes and 12 mum gap spacing on a 260nm thick film. The half-wave voltage and electro-optic coefficients of barium titanate modulators were measured for films having thicknesses between 260 and 500 nm. The half-wave voltage was directly measured at low frequencies using a polarizer-sample-compensator-analyzer setup by over-driving waveguide integrated modulators beyond their linear response regime. Effective in-device electro-optic coefficients were obtained from the measured half-wave voltages. The effective electro-optic coefficients were found to increase with both applied electrical dc bias and with film thickness. A record low 0.39V ˙ cm (0.45V ˙ cm) voltage-length product was measured for barium titanate modulators operating at telecommunication wavelengths on a device with 5 ?m electrode gap spacing on a 500nm thick film modulated at a frequency of 100 Hz (1 MHz). This measured voltage-length product is more than a factor of 5 lower than that reported for state-of-the-art silicon conventional waveguide modulators. The electro-optical characterization of BaTiO3 films revealed a trade-off that exists for traveling wave BaTiO3 modulators: lower voltages are obtained in thicker film devices with narrow electrode gap spacing while larger bandwidths are obtained in thinner film devices with wider electrode gap spacing. These findings were supported by calculations of the film thickness dependent half-wave voltage and electro-optic bandwidth. In order to demonstrate modulators having simultaneously low voltage operation and high electro-optic bandwidth, photonic crystal waveguide modulators with large group index were investigated through theory and experiment. The theory for slow light phase delay in linear optical materials was extended for second order nonlinear optical materials. This theory was incorporated into a detailed model for predicting photonic crystal modulator performance in terms of voltage-length product and electro-optic bandwidth. Modeling shows that barium titanate photonic crystal modulators with sub-millimeter length, sub-volt operation, and greater than 40 GHz electro-optic bandwidth are achievable in a single device. Two types of photonic crystal waveguides (PC) on BaTiO3 films were designed, fabricated, and characterized: waveguides with hexagonal lattice symmetry and waveguides with hexagonal symmetry having a line defect oriented in the direction of light propagation. Excellent agreement was obtained between the simulated and measured transmission for hexagonal lattice PC waveguides. An extinction of 20 dB was measured across a 9.9 nm stop band edge, yielding a record large band edge sharpness of 2 dB/nm for all photonic crystal waveguides on ferroelectric films. A 12-fold enhancement of the electro-optic coefficient was measured via optical spectral analysis in a line defect BaTiO3 modulator, yielding an effective electro-optic coefficient of 900 pm/V in the photonic crystal region at a modulation frequency of 10 GHz. This enhancement was demonstrated over a 48 nm range, demonstrating the wideband operation of these devices.

  14. Brillouin scattering in planar waveguides. II. Experiments

    NASA Astrophysics Data System (ADS)

    Chiasera, A.; Montagna, M.; Moser, E.; Rossi, F.; Tosello, C.; Ferrari, M.; Zampedri, L.; Caponi, S.; Gonçalves, R. R.; Chaussedent, S.; Monteil, A.; Fioretto, D.; Battaglin, G.; Gonella, F.; Mazzoldi, P.; Righini, G. C.

    2003-10-01

    Silica-titania planar waveguides of different thicknesses and compositions have been produced by radio-frequency sputtering and dip coating on silica substrates. Waveguides were also produced by silver exchange on a soda-lime silicate glass substrate. Brillouin scattering of the samples has been studied by coupling the exciting laser beam with a prism to different transverse-electric (TE) modes of the waveguides, and collecting the scattered light from the front surface. In multimode waveguides, the spectra depend on the m mode of excitation. For waveguides with a step index profile, two main peaks due to longitudinal phonons are present, apart from the case of the TE0 excitation, where a single peak is observed. The energy separation between the two peaks increases with the mode index. In graded-index waveguides, m-1 peaks of comparable intensities are observed. The spectra are reproduced very well by a model which considers the space distribution of the exciting field in the mode, a simple space dependence of the elasto-optic coefficients, through the value of the refraction index, and neglects the refraction of phonons. A single-fit parameter, i.e., the longitudinal sound velocity, is used to calculate as many spectra as is the number of modes in the waveguide.

  15. Comparison of monomode KTiOPO4 waveguide formed by C3+ ion implantation and Rb+ ion exchange

    NASA Astrophysics Data System (ADS)

    Cui, Xiao-Jun; Wang, Liang-Ling

    2017-02-01

    In this work, we report on the formation and characterization of monomode KTiOPO4 waveguide at 1539 nm by 6.0 MeV C3+ ion implantation with the dose of 2×1015 ions/cm2 and Rb+-K+ ion exchange, respectively. The relative intensity of light as a function of effective refractive index of TM modes at 633 nm and 1539 nm for KTiOPO4 waveguide formed by two different methods were compared with the prism coupling technique. The refractive index (nz) profile for the ion implanted waveguide was reconstructed by reflectivity calculation method, and one for the ion exchanged waveguide was by inverse Wentzel-Kramers-Brillouin. The nuclear energy loss versus penetration depth of the C3+ ions implantation into KTiOPO4 was simulated using the Stopping Range of Ions in Matter software. The Rutherford Backscattering Spectrometry spectrum of KTiOPO4 waveguide was analyzed after ions exchanged. The results showed that monomode waveguide at 1539 nm can be formed by ion implantation and Rb+ -K+ ion exchange, respectively.

  16. Hybrid Dielectric-loaded Nanoridge Plasmonic Waveguide for Low-Loss Light Transmission at the Subwavelength Scale

    PubMed Central

    Zhang, Bin; Bian, Yusheng; Ren, Liqiang; Guo, Feng; Tang, Shi-Yang; Mao, Zhangming; Liu, Xiaomin; Sun, Jinju; Gong, Jianying; Guo, Xiasheng; Huang, Tony Jun

    2017-01-01

    The emerging development of the hybrid plasmonic waveguide has recently received significant attention owing to its remarkable capability of enabling subwavelength field confinement and great transmission distance. Here we report a guiding approach that integrates hybrid plasmon polariton with dielectric-loaded plasmonic waveguiding. By introducing a deep-subwavelength dielectric ridge between a dielectric slab and a metallic substrate, a hybrid dielectric-loaded nanoridge plasmonic waveguide is formed. The waveguide features lower propagation loss than its conventional hybrid waveguiding counterpart, while maintaining strong optical confinement at telecommunication wavelengths. Through systematic structural parameter tuning, we realize an efficient balance between confinement and attenuation of the fundamental hybrid mode, and we demonstrate the tolerance of its properties despite fabrication imperfections. Furthermore, we show that the waveguide concept can be extended to other metal/dielectric composites as well, including metal-insulator-metal and insulator-metal-insulator configurations. Our hybrid dielectric-loaded nanoridge plasmonic platform may serve as a fundamental building block for various functional photonic components and be used in applications such as sensing, nanofocusing, and nanolasing. PMID:28091583

  17. Photorefractive waveguides in oxide crystals: fabrication, properties, and applications

    NASA Astrophysics Data System (ADS)

    Kip, D.

    1998-08-01

    In several oxide crystals the refractive index can be changed by inhomogeneous illumination, and these photorefractive properties have allowed for a wide variety of applications in optical data storage and dynamic holography. The high light intensities that are inherent in waveguide geometries make it relatively easy to observe photorefractive effects in waveguide structures, too. On the one hand, these effects are feared as optical damage, as they can degrade the performance of integrated optical devices. On the other hand, optical wave mixing in photorefractive waveguides is of considerable interest for the development of nonlinear optical components. A review of the results of recent research on the fabrication, investigation, and applications of photorefractive waveguides is given. The formation and photorefractive properties of LiNbO3, LiTaO3, BaTiO3, KNbO3, SrxBa1-xNb2O6 (0.25hxА.75, SBN), and Bi12(Si,Ti,Ge)O20 (BSO, BTO, BGO) waveguides are discussed. Furthermore, the suitability of photorefractive waveguides for nonlinear optical components is demonstrated in some examples.

  18. Optical waveguide loop for planar trapping of blood cells and microspheres

    NASA Astrophysics Data System (ADS)

    Ahluwalia, Balpreet S.; Hellesø, Olav G.

    2013-09-01

    The evanescent field from a waveguide can be used to trap and propel a particle. An optical waveguide loop with an intentional gap at the center is used for planar transport and stable trapping of particles. The waveguide acts as a conveyor belt to trap and deliver spheres towards the gap. At the gap, the counter-diverging light fields hold the sphere at a fixed position. Numerical simulation based on the finite element method was performed in three dimensions using a computer cluster. The field distribution and optical forces for rib and strip waveguide designs are compared and discussed. The optical force on a single particle was computed for various positions of the particle in the gap. Simulation predicted stable trapping of particles in the gap. Depending on the gap separation (2-50 μm) a single or multiple spheres and red blood cells were trapped at the gap. Waveguides were made of tantalum pentaoxide material. The waveguides are only 180 nm thick and thus could be integrated with other functions on the chip.

  19. Fabrication and characterization of carbon/oxygen-implanted waveguides in Nd3+-doped phosphate glasses

    NASA Astrophysics Data System (ADS)

    Liu, Chun-Xiao; Xu, Jun; Fu, Li-Li; Zheng, Rui-Lin; Zhou, Zhi-Guang; Li, Wei-Nan; Guo, Hai-Tao; Lin, She-Bao; Wei, Wei

    2015-06-01

    Optical planar waveguides in Nd3+-doped phosphate glasses are fabricated by a 6.0-MeV carbon ion implantation with a dose of 6.0×1014 ions/cm2 and a 6.0-MeV oxygen ion implantation at a fluence of 6.0×1014 ions/cm2, respectively. The guided modes and the corresponding effective refractive indices were measured by a modal 2010 prism coupler. The refractive index profiles of the waveguides were analyzed based on the stopping and range of ions in matter and the RCM reflectivity calculation method. The near-field light intensity distributions were measured and simulated by an end-face coupling method and a finite-difference beam propagation method, respectively. The comparison of optical properties between the carbon-implanted waveguide and the oxygen-implanted waveguide was carried out. The microluminescence and Raman spectroscopy investigations reveal that fluorescent properties of Nd3+ ions and glass microstructure are well preserved in the waveguide region, which suggests that the carbon/oxygen-implanted waveguide is a good candidate for integrated photonic devices.

  20. Surface transport and stable trapping of particles and cells by an optical waveguide loop.

    PubMed

    Hellesø, Olav Gaute; Løvhaugen, Pål; Subramanian, Ananth Z; Wilkinson, James S; Ahluwalia, Balpreet Singh

    2012-09-21

    Waveguide trapping has emerged as a useful technique for parallel and planar transport of particles and biological cells and can be integrated with lab-on-a-chip applications. However, particles trapped on waveguides are continuously propelled forward along the surface of the waveguide. This limits the practical usability of the waveguide trapping technique with other functions (e.g. analysis, imaging) that require particles to be stationary during diagnosis. In this paper, an optical waveguide loop with an intentional gap at the centre is proposed to hold propelled particles and cells. The waveguide acts as a conveyor belt to transport and deliver the particles/cells towards the gap. At the gap, the diverging light fields hold the particles at a fixed position. The proposed waveguide design is numerically studied and experimentally implemented. The optical forces on the particle at the gap are calculated using the finite element method. Experimentally, the method is used to transport and trap micro-particles and red blood cells at the gap with varying separations. The waveguides are only 180 nm thick and thus could be integrated with other functions on the chip, e.g. microfluidics or optical detection, to make an on-chip system for single cell analysis and to study the interaction between cells.

  1. Planar polymer waveguides with a graded-index profile resulting from intermixing of methacrylates in closed microchannels

    NASA Astrophysics Data System (ADS)

    Missinne, Jeroen; Misseeuw, Lara; Liu, Xiang; Salter, Patrick S.; Van Steenberge, Geert; Adesanya, Kehinde; Van Vlierberghe, Sandra; Booth, Martin J.; Dubruel, Peter

    2018-02-01

    Graded-index waveguides are known to exhibit lower losses and considerably larger bandwidths compared to step-index waveguides. The present work reports on a new concept for realizing such waveguides on a planar substrate by capillary filling microchannels (cladding) with monomer solution (core). A graded-index profile is obtained by intermixing between the core and cladding material at the microchannel interface. To this end, various ratios of methyl methacrylate (MMA) and octafluoropentyl methacrylate (OFPMA) were evaluated as starting monomers and the results showed that the polymers P50:50 (50:50 MMA:OFPMA) and P0:100 (100% OFPMA) were suitable to be applied as waveguide core and cladding material respectively. Light guiding in the resulting P50:50/P0:100 waveguides was demonstrated and the refractive-index profile was quantified and compared with that of conventional step-index waveguides. The results for both cases were clearly different and a gradual refractive index transition between the core and cladding was found for the newly developed waveguides. Although the concept has been demonstrated in a research environment, it also has potential for upscaling by employing drop-on-demand dispensing of polymer waveguide material in pre-patterned microchannels, for example in a roll-to-roll environment.

  2. Photonic Crystal-Based High-Power Backward Wave Oscillator

    DOE PAGES

    Poole, Brian R.; Harris, John R.

    2017-12-01

    An electron beam traversing a slow wave structure can be used to either generate or amplify electromagnetic radiation through the interaction of the slow space charge wave on the beam with the slow wave structure modes. Here, a cylindrical waveguide with a periodic array of conducting loops is used for the slow wave structure. This paper considers operation as a backward wave oscillator. The dispersion properties of the structure are determined using a frequency-domain eigenmode solver. The interaction of the electron beam with the structure modes is investigated using a 2-D particle-in-cell (PIC) code. In conclusion, the operating frequency andmore » growth rate dependence on beam energy and beam current are investigated using the PIC code and compared with analytic and scaling estimates where possible.« less

  3. Photonic Crystal-Based High-Power Backward Wave Oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poole, Brian R.; Harris, John R.

    An electron beam traversing a slow wave structure can be used to either generate or amplify electromagnetic radiation through the interaction of the slow space charge wave on the beam with the slow wave structure modes. Here, a cylindrical waveguide with a periodic array of conducting loops is used for the slow wave structure. This paper considers operation as a backward wave oscillator. The dispersion properties of the structure are determined using a frequency-domain eigenmode solver. The interaction of the electron beam with the structure modes is investigated using a 2-D particle-in-cell (PIC) code. In conclusion, the operating frequency andmore » growth rate dependence on beam energy and beam current are investigated using the PIC code and compared with analytic and scaling estimates where possible.« less

  4. Waveguide structures in anisotropic nonlinear crystals

    NASA Astrophysics Data System (ADS)

    Li, Da; Hong, Pengda; Meissner, Helmuth E.

    2017-02-01

    We report on the design and manufacturing parameters of waveguiding structures of anisotropic nonlinear crystals that are employed for harmonic conversions, using Adhesive-Free Bonding (AFB®). This technology enables a full range of predetermined refractive index differences that are essential for the design of single mode or low-mode propagation with high efficiency in anisotropic nonlinear crystals which in turn results in compact frequency conversion systems. Examples of nonlinear optical waveguides include periodically bonded walk-off corrected nonlinear optical waveguides and periodically poled waveguide components, such as lithium triborate (LBO), beta barium borate (β-BBO), lithium niobate (LN), potassium titanyl phosphate (KTP), zinc germanium phosphide (ZGP) and silver selenogallate (AGSE). Simulation of planar LN waveguide shows that when the electric field vector E lies in the k-c plane, the power flow is directed precisely along the propagation direction, demonstrating waveguiding effect in the planar waveguide. Employment of anisotropic nonlinear optical waveguides, for example in combination with AFB® crystalline fiber waveguides (CFW), provides access to the design of a number of novel high power and high efficiency light sources spanning the range of wavelengths from deep ultraviolet (as short as 200 nm) to mid-infrared (as long as about 18 μm). To our knowledge, the technique is the only generally applicable one because most often there are no compatible cladding crystals available to nonlinear optical cores, especially not with an engineer-able refractive index difference and large mode area.

  5. Resonant photonic States in coupled heterostructure photonic crystal waveguides.

    PubMed

    Cox, Jd; Sabarinathan, J; Singh, Mr

    2010-02-09

    In this paper, we study the photonic resonance states and transmission spectra of coupled waveguides made from heterostructure photonic crystals. We consider photonic crystal waveguides made from three photonic crystals A, B and C, where the waveguide heterostructure is denoted as B/A/C/A/B. Due to the band structure engineering, light is confined within crystal A, which thus act as waveguides. Here, photonic crystal C is taken as a nonlinear photonic crystal, which has a band gap that may be modified by applying a pump laser. We have found that the number of bound states within the waveguides depends on the width and well depth of photonic crystal A. It has also been found that when both waveguides are far away from each other, the energies of bound photons in each of the waveguides are degenerate. However, when they are brought close to each other, the degeneracy of the bound states is removed due to the coupling between them, which causes these states to split into pairs. We have also investigated the effect of the pump field on photonic crystal C. We have shown that by applying a pump field, the system may be switched between a double waveguide to a single waveguide, which effectively turns on or off the coupling between degenerate states. This reveals interesting results that can be applied to develop new types of nanophotonic devices such as nano-switches and nano-transistors.

  6. Monolithically integrated self-rolled-up microtube-based vertical coupler for three-dimensional photonic integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Xin; Arbabi, Ehsan; Goddard, Lynford L.

    2015-07-20

    We demonstrate a self-rolled-up microtube-based vertical photonic coupler monolithically integrated on top of a ridge waveguide to achieve three-dimensional (3D) photonic integration. The fabrication process is fully compatible with standard planar silicon processing technology. Strong light coupling between the vertical coupler and the ridge waveguide was observed experimentally, which may provide an alternative route for 3D heterogeneous photonic integration. The highest extinction ratio observed in the transmission spectrum passing through the ridge waveguide was 23 dB.

  7. Optical NOR gate

    DOEpatents

    Skogen, Erik J [Albuquerque, NM; Tauke-Pedretti, Anna [Albuquerque, NM

    2011-09-06

    An optical NOR gate is formed from two pair of optical waveguide devices on a substrate, with each pair of the optical waveguide devices consisting of an electroabsorption modulator electrically connected in series with a waveguide photodetector. The optical NOR gate utilizes two digital optical inputs and a continuous light input to provide a NOR function digital optical output. The optical NOR gate can be formed from III-V compound semiconductor layers which are epitaxially deposited on a III-V compound semiconductor substrate, and operates at a wavelength in the range of 0.8-2.0 .mu.m.

  8. Sub-wavelength grating structure on the planar waveguide (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Qing-Song, Zhu; Sheng-Hui, Chen

    2016-10-01

    Making progress in recent years, with the technology of the grating, the grating period can be reduced to shrink the size of the light coupler on a waveguide. The working wavelength of the light coupler can be in the range from the near-infrared to visible. In this study , we used E-gun evaporation system with ion-beam-assisted deposition system to fabricate bottom cladding (SiO2), guiding layer (Ta2O5) and Distributed Bragg Reflector(DBR) of the waveguide on the silicon substrate. Electron-beam lithography is used to make sub-wavelength gratings and reflector grating on the planar waveguide which is a coupling device on the guiding layer. The best fabrication parameters were analyzed to deposit the film. The exposure and development times also influenced to fabricate the grating quality. The purpose is to reduce the device size and enhance coupling efficiency which maintain normal incidence of the light . We designed and developed the device using the Finite-Difference Time-Domain (FDTD) method. The grating period, depth, fill factor, film thickness, Distributed Bragg Reflector(DBR) numbers and reflector grating period have been discussed to enhance coupling efficiency and maintained normal incidence of the light. According to the simulation results, when the wavelength is 1300 nm, the coupling grating period is 720 nm and the Ta2O5 film is 460 nm with 360 nm of reflector grating period and 2 layers of Distributed Bragg Reflector, which had the optimum coupling efficiency and normal incidence angle. In the measurement, We successfully measured the TE wave coupling efficiency of the photoresist grating coupling device.

  9. Optical planar waveguides in photo-thermal-refractive glasses fabricated by single- or double-energy carbon ion implantation

    NASA Astrophysics Data System (ADS)

    Wang, Yue; Shen, Xiao-Liang; Zheng, Rui-Lin; Guo, Hai-Tao; Lv, Peng; Liu, Chun-Xiao

    2018-01-01

    Ion implantation has demonstrated to be an efficient and reliable technique for the fabrication of optical waveguides in a diversity of transparent materials. Photo-thermal-refractive glass (PTR) is considered to be durable and stable holographic recording medium. Optical planar waveguide structures in the PTR glasses were formed, for the first time to our knowledge, by the C3+-ion implantation with single-energy (6.0 MeV) and double-energy (5.5+6.0 MeV), respectively. The process of the carbon ion implantation was simulated by the stopping and range of ions in matter code. The morphologies of the waveguides were recorded by a microscope operating in transmission mode. The guided beam distributions of the waveguides were measured by the end-face coupling technique. Comparing with the single-energy implantation, the double-energy implantation improves the light confinement for the dark-mode spectrum. The guiding properties suggest that the carbon-implanted PTR glass waveguides have potential for the manufacture of photonic devices.

  10. An integrated optical oxygen sensor fabricated using rapid-prototyping techniques.

    PubMed

    Chang-Yen, David A; Gale, Bruce K

    2003-11-01

    This paper details the design and fabrication of an integrated optical biochemical sensor using a select oxygen-sensitive fluorescent dye, tris(2,2'-bipyridyl) dichlororuthenium(ii) hexahydrate, combined with polymeric waveguides that are fabricated on a glass substrate. The sensor uses evanescent interaction of light confined within the waveguide with the dye that is immobilized on an SU-8 waveguide surface. Adhesion of the dye to the integrated waveguide surface is accomplished using a unique process of spin-coating/electrostatic layer-by-layer formation. The SU-8 waveguide was chemically modified to allow the deposition process. Exposure of the dye molecules to the analyte and subsequent chemical interaction is achieved by directly coupling the fluid channel to the integrated waveguide. The completed sensor was linear in the dissolved oxygen across a wide range of interest and had a sensitivity of 0.6 ppm. A unique fabrication aspect of this sensor is the inherent simplicity of the design, and the resulting rapidity of fabrication, while maintaining a high degree of functionality and flexibility.

  11. Optical-Based Artificial Palpation Sensors for Lesion Characterization

    PubMed Central

    Lee, Jong-Ha; Kim, Yoon Nyun; Ku, Jeonghun; Park, Hee-Jun

    2013-01-01

    Palpation techniques are widely used in medical procedures to detect the presence of lumps or tumors in the soft breast tissues. Since these procedures are very subjective and depend on the skills of the physician, it is imperative to perform detailed a scientific study in order to develop more efficient medical sensors to measure and generate palpation parameters. In this research, we propose an optical-based, artificial palpation sensor for lesion characterization. This has been developed using a multilayer polydimethylsiloxane optical waveguide. Light was generated at the critical angle to reflect totally within the flexible and transparent waveguide. When a waveguide was compressed by an external force, its contact area would deform and cause the light to scatter. The scattered light was captured by a high-resolution camera and saved as an image format. To test the performance of the proposed system, we used a realistic tissue phantom with embedded hard inclusions. The experimental results show that the proposed sensor can detect inclusions and provide the relative value of size, depth, and Young's modulus of an inclusion. PMID:23966198

  12. Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes

    PubMed Central

    Jia, Yuechen; Cheng, Chen; Vázquez de Aldana, Javier R.; Castillo, Gabriel R.; Rabes, Blanca del Rosal; Tan, Yang; Jaque, Daniel; Chen, Feng

    2014-01-01

    Miniature laser sources with on-demand beam features are desirable devices for a broad range of photonic applications. Lasing based on direct-pump of miniaturized waveguiding active structures offers a low-cost but intriguing solution for compact light-emitting devices. In this work, we demonstrate a novel family of three dimensional (3D) photonic microstructures monolithically integrated in a Nd:YAG laser crystal wafer. They are produced by the femtosecond laser writing, capable of simultaneous light waveguiding and beam manipulation. In these guiding systems, tailoring of laser modes by both passive/active beam splitting and ring-shaped transformation are achieved by an appropriate design of refractive index patterns. Integration of graphene thin-layer as saturable absorber in the 3D laser structures allows for efficient passive Q-switching of tailored laser radiations which may enable miniature waveguiding lasers for broader applications. Our results pave a way to construct complex integrated passive and active laser circuits in dielectric crystals by using femtosecond laser written monolithic photonic chips. PMID:25100561

  13. Flip-chip light emitting diode with resonant optical microcavity

    DOEpatents

    Gee, James M.; Bogart, Katherine H.A.; Fischer, Arthur J.

    2005-11-29

    A flip-chip light emitting diode with enhanced efficiency. The device structure employs a microcavity structure in a flip-chip configuration. The microcavity enhances the light emission in vertical modes, which are readily extracted from the device. Most of the rest of the light is emitted into waveguided lateral modes. Flip-chip configuration is advantageous for light emitting diodes (LEDs) grown on dielectric substrates (e.g., gallium nitride LEDs grown on sapphire substrates) in general due to better thermal dissipation and lower series resistance. Flip-chip configuration is advantageous for microcavity LEDs in particular because (a) one of the reflectors is a high-reflectivity metal ohmic contact that is already part of the flip-chip configuration, and (b) current conduction is only required through a single distributed Bragg reflector. Some of the waveguided lateral modes can also be extracted with angled sidewalls used for the interdigitated contacts in the flip-chip configuration.

  14. Investigation on dispersion in the active optical waveguide resonator

    NASA Astrophysics Data System (ADS)

    Qiu, Zihan; Gao, Yining; Xie, Wei

    2018-03-01

    Introducing active gain in the optical waveguide resonator not only compensates the loss, but also can change the dispersion relationship in the ring resonator. It is demonstrated that the group delay time is negative when the resonator is in the undercoupled condition, which also means the resonator exhibits the fast light effect. Theoretical analysis indicates that fast light effect due to anomalous dispersion, would be manipulated by the gain coefficient controlled by the input pump light power and that fast light would enhance scale factor of the optical resonant gyroscope. Resonance optical gyroscope (ROG)'s scale factor for measuring rotation rate is enhanced by anomalous dispersion with superluminal light propagation. The sensitivity of ROG could be enhanced by anomalous dispersion by coupled resonators even considering the effect of anomalous dispersion and propagation gain on broadened linewidth, and this could result in at least two orders of magnitude enhancement in sensitivity.

  15. A four-port vertical-coupling optical interface based on two-dimensional grating coupler

    NASA Astrophysics Data System (ADS)

    Zhang, Zan; Zhang, Zanyun; Huang, Beiju; Cheng, Chuantong; Gao, Tianxi; Hu, Xiaochuan; Zhang, Lin; Chen, Hongda

    2016-10-01

    In this work, a fiber-to-chip optical interface with four output ports is proposed. External lights irradiate vertically from single mode fiber to the center of optical interface can be coupled into silicon photonic chips and split into four siliconon- insulator (SOI) waveguides. If the light is circular polarized, the power of light will be equally split into four ports. Meanwhile, all lights travel in the four channel will be converted into TE polarization. The optical interface is based on a two-dimensional grating coupler with carefully designed duty cycle and period. Simulation results show that the coupling efficiency of each port can reach 11.6% so that the total coupling efficiency of the interface is 46.4%. And Lights coupled into four waveguides are all converted into TE polarization. Further, the optical interface has a simple grating structure allowing for easy fabrication.

  16. On-Chip Photonic Circuits for Atom-Light Interaction in Quantum Information and Integrated Optical Spectrometer for Astrophotonics

    NASA Astrophysics Data System (ADS)

    Meng, Yang

    Photonic circuits are becoming very promising in many different applications, such as optical amplification, optical switching and wavelength division multiplexing optical networks, lab-on-chip in bioengineering, atom-light interaction in quantum information processing, wavelength selecting and filtering in astronomy, etc. Thanks to major developments in the nanofabrication technology, smaller but more powerful photonic circuits can be made to realize more complex applications. Here we propose two on-chip photonic circuits: one is for atom-light interaction in quantum information, and the other is for an optical spectrometer in astronomy. Part I. The atom-light interaction can be used for a number of quantum based application, such as quantum information processing and atomic sensing. These significant applications make atom-light interaction a strong candidate for next-generation quantum computers and ultraprecise magnetic or navigation sensors. People have proposed various types of atom-photon interaction, and enhancing the interaction by using a small mode area has also been demonstrated in several platforms such as a hollow-core fiber, a hollow-core waveguide, a tapered fiber, and a nanowaveguide. In our work, we propose a nanowaveguide platform for collective atom-light interaction through the evanescent optical field coupling. We have demonstrated a centimeter-long silicon nitride nanowaveguide that has a sub-micrometer mode area and high fiber-to-waveguide coupling efficiencies for near-infrared wavelengths, working as evanescent field atom trapping/probing of an ensemble of 87Rb atoms. Inverse tapers are made at both ends of the waveguide that adiabatically transfer the weakly guided fiber-coupled mode to a strongly guided mode with an evanescent field for a better fiber-waveguide coupling efficiency. The coupling efficiency improves from around 2% to around 80% for both wavelengths. Trapping atoms by nanowaveguide modes is challenging because the small mode area generates high heat flux at the waveguide in an ultra-high vacuum. This platform has good thermal conductance and could transfer high enough optical powers to trap atoms in an ultra-high vacuum compared to a standalone photonic crystal waveguide with no substrate or an evanescent field coupled with a nanofiber. We have experimentally measured the optical absorption of thermal 87Rb atoms through the guided waveguide mode. We have also demonstrated an atom-chip mirror MOT with the same dimension of the platform that can be transferred to the proximity of the surface by magnetic field controls. Part II. In astronomical applications, wavelength analysis is very important especially for the wavelength selecting and filtering. Here we focus on the wavelength range from 1microm to 1.7microm. There are many valuable applications that make this near infrared wavelength range so important. For example, the Lyman-alpha line of hydrogen is one of the very important emission lines of hydrogen for understanding the origin and creation of the universe. Since the universe has expanded for more than 10 billion years after the big bang, the Lyman-alpha line of hydrogen has redshifted from 121.5nm to the 1microm-to-1.7microm wavelength range according to Hubble's Law. In addition, analysis of this wavelength range can also help us understand many other cosmic phenomena such as quasars, Gamma-ray bursts, etc. Therefore, a good spectrometer is needed to achieve this. Here we present an echelle grating which is based on an on-chip spectrometer that covers the near infrared wavelength range from 1.45um to 1.7um. To begin with, we use optical waveguides as the input and output channels. We have successfully achieved a reliable fabrication process to make the on-chip echelle-grating spectrometer. We have also achieved high fiber-waveguide coupling efficiency (94% per facet at 1550nm) and low propagation loss (-0.975dB/cm at 1550nm) for the input and output waveguides. In addition, we have characterized the bending loss of the waveguide. Finally, we have successfully measured the output spectrum of the echelle grating we designed and found it to be in good agreement with our simulation.

  17. Deep-subwavelength waveguiding via inhomogeneous second-harmonic generation.

    PubMed

    Roppo, Vito; Vincenti, Maria Antonietta; de Ceglia, Domenico; Scalora, Michael

    2012-08-01

    We theoretically investigate second-harmonic generation in extremely narrow, subwavelength semiconductor and dielectric waveguides. We discuss a guiding mechanism characterized by the inhibition of diffraction and the suppression of cutoff limits in the context of a light trapping phenomenon that sets in under conditions of general phase and group velocity mismatch between the fundamental and the generated harmonic.

  18. High-aggregate-capacity visible light communication links using stacked multimode polymer waveguides and micro-pixelated LED arrays

    NASA Astrophysics Data System (ADS)

    Bamiedakis, N.; McKendry, J. J. D.; Xie, E.; Gu, E.; Dawson, M. D.; Penty, R. V.; White, I. H.

    2018-02-01

    In recent years, light emitting diodes (LEDs) have gained renewed interest for use in visible light communication links (VLC) owing to their potential use as both high-quality power-efficient illumination sources as well as low-cost optical transmitters in free-space and guided-wave links. Applications that can benefit from their use include optical wireless systems (LiFi and Internet of Things), in-home and automotive networks, optical USBs and short-reach low-cost optical interconnects. However, VLC links suffer from the limited LED bandwidth (typically 100 MHz). As a result, a combination of novel LED devices, advanced modulation formats and multiplexing methods are employed to overcome this limitation and achieve high-speed (>1 Gb/s) data transmission over such links. In this work, we present recent advances in the formation of high-aggregate-capacity low cost guided wave VLC links using stacked polymer multimode waveguides and matching micro-pixelated LED (μLED) arrays. μLEDs have been shown to exhibit larger bandwidths (>200 MHz) than conventional broad-area LEDs and can be formed in large array configurations, while multimode polymer waveguides enable the formation of low-cost optical links onto standard PCBs. Here, three- and four-layered stacks of multimode waveguides, as well as matching GaN μLED arrays, are fabricated in order to generate high-density yet low-cost optical interconnects. Different waveguide topologies are implemented and are investigated in terms of loss and crosstalk performance. The initial results presented herein demonstrate good intrinsic crosstalk performance and indicate the potential to achieve >= 0.5 Tb/s/mm2 aggregate interconnection capacity using this low-cost technology.

  19. Effect of structural evolution of ZnO/HfO2 nanocrystals on Eu2+/Eu3+ emission in glass-ceramic waveguides for photonic applications

    NASA Astrophysics Data System (ADS)

    Ghosh, Subhabrata; N, Shivakiran Bhaktha B.

    2018-06-01

    Eu-doped 70SiO2–23HfO2–7ZnO (mol%) glass-ceramic waveguides have been fabricated by sol-gel method as a function of heat-treatment temperatures for on-chip blue-light emitting source applications. Structural evolution of spherical ZnO and spherical as well as rod-like HfO2 nanocrystalline structures have been observed with heat-treatments at different temperatures. Initially, in the as-prepared samples at 900 ◦C, both, Eu2+ as well as Eu3+ ions are found to be present in the ternary matrix. With controlled heat-treatments of up to 1000 ◦C for 2 h, local environment of Eu-ions become more crystalline in nature and the reduction of Eu3+ to Eu2+ takes place in such ZnO/HfO2 crystalline environments. In these ternary glass-ceramic waveguides, heat-treated at higher temperatures, the blue-light emission characteristic, which is the signature of 4f 65d \\to 4f 7 energy level transition of Eu2+ ions is found to be greatly enhanced. The as-prepared glass-ceramic waveguides exhibit a propagation loss of 0.4 ± 0.2 dB cm‑1 at 632.8 nm. Though the propagation losses increase with the growth of nanocrystals, the added functionalities achieved in the optimally heat-treated Eu-doped 70SiO2–23HfO2–7ZnO (mol%) waveguides, make them a viable functional optical material for the fabrication of on-chip blue-light emitting sources for integrated optic applications.

  20. Effect of structural evolution of ZnO/HfO2 nanocrystals on Eu2+/Eu3+ emission in glass-ceramic waveguides for photonic applications.

    PubMed

    Ghosh, Subhabrata; Bhaktha B N, Shivakiran

    2018-06-01

    Eu-doped 70SiO 2 -23HfO 2 -7ZnO (mol%) glass-ceramic waveguides have been fabricated by sol-gel method as a function of heat-treatment temperatures for on-chip blue-light emitting source applications. Structural evolution of spherical ZnO and spherical as well as rod-like HfO 2 nanocrystalline structures have been observed with heat-treatments at different temperatures. Initially, in the as-prepared samples at 900 ◦ C, both, Eu 2+ as well as Eu 3+ ions are found to be present in the ternary matrix. With controlled heat-treatments of up to 1000 ◦ C for 2 h, local environment of Eu-ions become more crystalline in nature and the reduction of Eu 3+ to Eu 2+ takes place in such ZnO/HfO 2 crystalline environments. In these ternary glass-ceramic waveguides, heat-treated at higher temperatures, the blue-light emission characteristic, which is the signature of 4f 6 5d [Formula: see text] 4f 7 energy level transition of Eu 2+ ions is found to be greatly enhanced. The as-prepared glass-ceramic waveguides exhibit a propagation loss of 0.4 ± 0.2 dB cm -1 at 632.8 nm. Though the propagation losses increase with the growth of nanocrystals, the added functionalities achieved in the optimally heat-treated Eu-doped 70SiO 2 -23HfO 2 -7ZnO (mol%) waveguides, make them a viable functional optical material for the fabrication of on-chip blue-light emitting sources for integrated optic applications.

  1. Lightwave Circuits in Lithium Niobate through Hybrid Waveguides with Silicon Photonics

    DOE PAGES

    Weigel, Peter O.; Savanier, Marc; DeRose, Christopher T.; ...

    2016-03-01

    Here, we demonstrate a photonic waveguide technology based on a two-material core, in which light is controllably and repeatedly transferred back and forth between sub-micron thickness crystalline layers of Si and LN bonded to one another, where the former is patterned and the latter is not. In this way, the foundry-based wafer-scale fabrication technology for silicon photonics can be leveraged to form lithium-niobate based integrated optical devices. Using two different guided modes and an adiabatic mode transition between them, we demonstrate a set of building blocks such as waveguides, bends, and couplers which can be used to route light underneathmore » an unpatterned slab of LN, as well as outside the LN-bonded region, thus enabling complex and compact lightwave circuits in LN alongside Si photonics with fabrication ease and low cost.« less

  2. Generation of Bright, Spatially Coherent Soft X-Ray High Harmonics in a Hollow Waveguide Using Two-Color Synthesized Laser Pulses.

    PubMed

    Jin, Cheng; Stein, Gregory J; Hong, Kyung-Han; Lin, C D

    2015-07-24

    We investigate the efficient generation of low-divergence high-order harmonics driven by waveform-optimized laser pulses in a gas-filled hollow waveguide. The drive waveform is obtained by synthesizing two-color laser pulses, optimized such that highest harmonic yields are emitted from each atom. Optimization of the gas pressure and waveguide configuration has enabled us to produce bright and spatially coherent harmonics extending from the extreme ultraviolet to soft x rays. Our study on the interplay among waveguide mode, atomic dispersion, and plasma effect uncovers how dynamic phase matching is accomplished and how an optimized waveform is maintained when optimal waveguide parameters (radius and length) and gas pressure are identified. Our analysis should help laboratory development in the generation of high-flux bright coherent soft x rays as tabletop light sources for applications.

  3. Methods and apparatus for mid-infrared sensing

    DOEpatents

    Lin, Pao Tai; Cai, Yan; Agarwal, Anuradha Murthy; Kimerling, Lionel C.

    2015-06-02

    A chip-scale, air-clad semiconductor pedestal waveguide can be used as a mid-infrared (mid-IR) sensor capable of in situ monitoring of organic solvents and other analytes. The sensor uses evanescent coupling from a silicon or germanium waveguide, which is highly transparent in the mid-IR portion of the electromagnetic spectrum, to probe the absorption spectrum of fluid surrounding the waveguide. Launching a mid-IR beam into the waveguide exposed to a particular analyte causes attenuation of the evanescent wave's spectral components due to absorption by carbon, oxygen, hydrogen, and/or nitrogen bonds in the surrounding fluid. Detecting these changes at the waveguide's output provides an indication of the type and concentration of one or more compounds in the surrounding fluid. If desired, the sensor may be integrated onto a silicon substrate with a mid-IR light source and a mid-IR detector to form a chip-based spectrometer.

  4. All-laser-micromachining of ridge waveguides in LiNbO3 crystal for mid-infrared band applications.

    PubMed

    Li, Lingqi; Nie, Weijie; Li, Ziqi; Lu, Qingming; Romero, Carolina; Vázquez de Aldana, Javier R; Chen, Feng

    2017-08-01

    The femtosecond laser micromachining of transparent optical materials offers a powerful and feasible solution to fabricate versatile photonic components towards diverse applications. In this work, we report on a new design and fabrication of ridge waveguides in LiNbO 3 crystal operating at the mid-infrared (MIR) band by all-femtosecond-laser microfabrication. The ridges consist of laser-ablated sidewalls and laser-written bottom low-index cladding tracks, which are constructed for horizontal and longitudinal light confinement, respectively. The ridge waveguides are found to support good guidance at wavelength of 4 μm. By applying this configuration, Y-branch waveguiding structures (1 × 2 beam splitters) have been produced, which reach splitting ratios of ∼1:1 at 4 μm. This work paves a simple and feasible way to construct novel ridge waveguide devices in dielectrics through all-femtosecond-laser micro-processing.

  5. Short-wavelength InAlGaAs/AlGaAs quantum dot superluminescent diodes

    NASA Astrophysics Data System (ADS)

    Liang, De-Chun; An, Qi; Jin, Peng; Li, Xin-Kun; Wei, Heng; Wu, Ju; Wang, Zhan-Guo

    2011-10-01

    This paper reports the fabrication of J-shaped bent-waveguide superluminescent diodes utilizing an InAlGaAs/AlGaAs quantum dot active region. The emission spectrum of the device is centred at 884 nm with a full width at half maximum of 37 nm and an output power of 18 mW. By incorporating an Al composition into the quantum dot active region, short-wavelength superluminescent diode devices can be obtained. An intersection was found for the light power-injection current curves measured from the straight-waveguide facet and the bent-waveguide facet, respectively. The result is attributed to the conjunct effects of the gain and the additional loss of the bent waveguide. A numerical simulation is performed to verify the qualitative explanation. It is shown that bent waveguide loss is an important factor that affects the output power of J-shaped superluminescent diode devices.

  6. Optical waveguide circuit board with a surface-mounted optical receiver array

    NASA Astrophysics Data System (ADS)

    Thomson, J. E.; Levesque, Harold; Savov, Emil; Horwitz, Fred; Booth, Bruce L.; Marchegiano, Joseph E.

    1994-03-01

    A photonic circuit board is fabricated for potential application to interchip and interboard parallel optical links. The board comprises photolithographically patterned polymer optical waveguides on a conventional glass-epoxy electrical circuit board and a surface-mounted integrated circuit (IC) package that optically and electrically couples to an optoelectronic IC. The waveguide circuits include eight-channel arrays of straights, cross-throughs, curves, self- aligning interconnects to multi-fiber ribbon, and out-of-plane turning mirrors. A coherent, fused bundle of optical fibers couples light between 45-deg waveguide mirrors and a GaAs receiver array in the IC package. The fiber bundle is easily aligned to the mirrors and the receivers and is amenable to surface mounting and hermetic sealing. The waveguide-receiver- array board achieved error-free data rates up to 1.25 Gbits/s per channel, and modal noise was shown to be negligible.

  7. Applications of Silicon-on-Insulator Photonic Crystal Structures in Miniature Spectrometer Designs

    NASA Astrophysics Data System (ADS)

    Gao, Boshen

    Optical spectroscopy is one of the most important fundamental scientific techniques. It has been widely adopted in physics, chemistry, biology, medicine and many other research fields. However, the size and weight of a spectrometer as well as the difficulty to align and maintain it have long limited spectroscopy to be a laboratory-only procedure. With the recent advancement in semiconductor electronics and photonics, miniaturized spectrometers have been introduced to complete many tasks in daily life where mobility and portability are necessary. This thesis focuses on the study of several photonic crystal (PC) nano-structures potentially suitable for miniaturized on-chip spectrometer designs. Chapter 1 briefly introduces the concept of PCs and their band structures. By analyzing the band structure, the origin of the superprism effect is explained. Defect-based PC nano-cavities are also discussed, as well as a type of coupled cavity waveguides (CCW) composed of PC nano-cavities. Chapter 2 is devoted to the optimization of a flat-band superprism structure for spectroscopy application using numerical simulations. Chapter 3 reports a fabricated broad-band superprism and the experimental characterization of its wavelength resolving performance. In chapter 4, the idea of composing a miniature spectrometer based on a single tunable PC nano-cavity is proposed. The rest of this chapter discusses the experimental study of this design. Chapter 5 examines the slow-light performance of a CCW and discusses its potential application in slow-light interferometry. Chapter 6 serves as a conclusion of this thesis and proposes directions for possible future work to follow up.

  8. Structural and optical studies of porous silicon buried waveguides: Effects of oxidation and pore filling using DR1 dyes

    NASA Astrophysics Data System (ADS)

    Charrier, J.; Kloul, M.; Pirasteh, P.; Bardeau, J.-F.; Guendouz, M.; Bulou, A.; Haji, L.

    2007-11-01

    This paper deals with the structural and optical properties of buried waveguides manufactured from mesoporous silicon films (as-formed porous silicon layers, after oxidation, after filling with active DR1 dyes). It is shown that the oxidation process only induced a weak morphology transformation. The 2D profiles of cross-sections of the waveguides by micro-Raman mapping were done in order to check the oxidation rate and to probe the DR1 filling of the layers. This latter appeared homogeneous but surprisingly is greater in the weaker porosity layer. The light propagation through these different waveguides was observed and losses were measured and analyzed. The losses decreased after oxidation but they increased after filling.

  9. Shaping ultrafast laser inscribed optical waveguides using a deformable mirror.

    PubMed

    Thomson, R R; Bockelt, A S; Ramsay, E; Beecher, S; Greenaway, A H; Kar, A K; Reid, D T

    2008-08-18

    We use a two-dimensional deformable mirror to shape the spatial profile of an ultrafast laser beam that is then used to inscribe structures in a soda-lime silica glass slide. By doing so we demonstrate that it is possible to control the asymmetry of the cross section of ultrafast laser inscribed optical waveguides via the curvature of the deformable mirror. When tested using 1.55 mum light, the optimum waveguide exhibited coupling losses of approximately 0.2 dB/facet to Corning SMF-28 single mode fiber and propagation losses of approximately 1.5 dB.cm(-1). This technique promises the possibility of combining rapid processing speeds with the ability to vary the waveguide cross section along its length.

  10. Strong coupling of diffraction coupled plasmons and optical waveguide modes in gold stripe-dielectric nanostructures at telecom wavelengths.

    PubMed

    Thomas, Philip A; Auton, Gregory H; Kundys, Dmytro; Grigorenko, Alexander N; Kravets, Vasyl G

    2017-03-24

    We propose a hybrid plasmonic device consisting of a planar dielectric waveguide covering a gold nanostripe array fabricated on a gold film and investigate its guiding properties at telecom wavelengths. The fundamental modes of a hybrid device and their dependence on the key geometric parameters are studied. A communication length of 250 μm was achieved for both the TM and TE guided modes at telecom wavelengths. Due to the difference between the TM and TE light propagation associated with the diffractive plasmon excitation, our waveguides provide polarization separation. Our results suggest a practical way of fabricating metal-nanostripes-dielectric waveguides that can be used as essential elements in optoelectronic circuits.

  11. Strong coupling of diffraction coupled plasmons and optical waveguide modes in gold stripe-dielectric nanostructures at telecom wavelengths

    PubMed Central

    Thomas, Philip A.; Auton, Gregory H.; Kundys, Dmytro; Grigorenko, Alexander N.; Kravets, Vasyl G.

    2017-01-01

    We propose a hybrid plasmonic device consisting of a planar dielectric waveguide covering a gold nanostripe array fabricated on a gold film and investigate its guiding properties at telecom wavelengths. The fundamental modes of a hybrid device and their dependence on the key geometric parameters are studied. A communication length of 250 μm was achieved for both the TM and TE guided modes at telecom wavelengths. Due to the difference between the TM and TE light propagation associated with the diffractive plasmon excitation, our waveguides provide polarization separation. Our results suggest a practical way of fabricating metal-nanostripes-dielectric waveguides that can be used as essential elements in optoelectronic circuits. PMID:28338060

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, E.; Floether, F. F.; Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE

    Fundamental to integrated photonic quantum computing is an on-chip method for routing and modulating quantum light emission. We demonstrate a hybrid integration platform consisting of arbitrarily designed waveguide circuits and single-photon sources. InAs quantum dots (QD) embedded in GaAs are bonded to a SiON waveguide chip such that the QD emission is coupled to the waveguide mode. The waveguides are SiON core embedded in a SiO{sub 2} cladding. A tuneable Mach Zehnder interferometer (MZI) modulates the emission between two output ports and can act as a path-encoded qubit preparation device. The single-photon nature of the emission was verified using themore » on-chip MZI as a beamsplitter in a Hanbury Brown and Twiss measurement.« less

  13. System and method for ultrafast optical signal detecting via a synchronously coupled anamorphic light pulse encoded laterally

    DOEpatents

    Heebner, John E [Livermore, CA

    2010-08-03

    In one general embodiment, a method for ultrafast optical signal detecting is provided. In operation, a first optical input signal is propagated through a first wave guiding layer of a waveguide. Additionally, a second optical input signal is propagated through a second wave guiding layer of the waveguide. Furthermore, an optical control signal is applied to a top of the waveguide, the optical control signal being oriented diagonally relative to the top of the waveguide such that the application is used to influence at least a portion of the first optical input signal propagating through the first wave guiding layer of the waveguide. In addition, the first and the second optical input signals output from the waveguide are combined. Further, the combined optical signals output from the waveguide are detected. In another general embodiment, a system for ultrafast optical signal recording is provided comprising a waveguide including a plurality of wave guiding layers, an optical control source positioned to propagate an optical control signal towards the waveguide in a diagonal orientation relative to a top of the waveguide, at least one optical input source positioned to input an optical input signal into at least a first and a second wave guiding layer of the waveguide, and a detector for detecting at least one interference pattern output from the waveguide, where at least one of the interference patterns results from a combination of the optical input signals input into the first and the second wave guiding layer. Furthermore, propagation of the optical control signal is used to influence at least a portion of the optical input signal propagating through the first wave guiding layer of the waveguide.

  14. UV-LIGA microfabrication process for sub-terahertz waveguides utilizing multiple layered SU-8 photoresist

    NASA Astrophysics Data System (ADS)

    Malekabadi, Ali; Paoloni, Claudio

    2016-09-01

    A microfabrication process based on UV LIGA (German acronym of lithography, electroplating and molding) is proposed for the fabrication of relatively high aspect ratio sub-terahertz (100-1000 GHz) metal waveguides, to be used as a slow wave structure in sub-THz vacuum electron devices. The high accuracy and tight tolerances required to properly support frequencies in the sub-THz range can be only achieved by a stable process with full parameter control. The proposed process, based on SU-8 photoresist, has been developed to satisfy high planar surface requirements for metal sub-THz waveguides. It will be demonstrated that, for a given thickness, it is more effective to stack a number of layers of SU-8 with lower thickness rather than using a single thick layer obtained at lower spin rate. The multiple layer approach provides the planarity and the surface quality required for electroforming of ground planes or assembly surfaces and for assuring low ohmic losses of waveguides. A systematic procedure is provided to calculate soft and post-bake times to produce high homogeneity SU-8 multiple layer coating as a mold for very high quality metal waveguides. A double corrugated waveguide designed for 0.3 THz operating frequency, to be used in vacuum electronic devices, was fabricated as test structure. The proposed process based on UV LIGA will enable low cost production of high accuracy sub-THz 3D waveguides. This is fundamental for producing a new generation of affordable sub-THz vacuum electron devices, to fill the technological gap that still prevents a wide diffusion of numerous applications based on THz radiation.

  15. Low-to-high refractive index contrast transition (RICT) device for low loss polymer-based optical coupling

    NASA Astrophysics Data System (ADS)

    Calabretta, N.; Cooman, I. A.; Stabile, R.

    2018-04-01

    We propose for the first time a coupling device concept for passive low-loss optical coupling, which is compatible with the ‘generic’ indium phosphide (InP) multi-project-wafer manufacturing. A low-to-high vertical refractive index contrast transition InP waveguide is designed and tapered down to adiabatically couple light into a top polymer waveguide. The on-chip embedded polymer waveguide is engineered at the chip facets for offering refractive-index and spot-size-matching to silica fiber-arrays. Numerical analysis shows that coupling losses lower than 1.5 dB can be achieved for a TE-polarized light between the InP waveguide and the on-chip embedded polymer waveguide at 1550 nm wavelength. The performance is mainly limited by the difficulty to control single-mode operation. However, coupling losses lower than 1.9 dB can be achieved for a bandwidth as large as 200 nm. Moreover, the foreseen fabrication process steps are indicated, which are compatible with the ‘generic’ InP multi-project-wafer manufacturing. A fabrication error tolerance study is performed, indicating that fabrication errors occur only in 0.25 dB worst case excess losses, as long as high precision lithography is used. The obtained results are promising and may open the route to large port counts and cheap packaging of InP-based photonic integrated chips.

  16. Refractive waveguide non-mechanical beam steering (NMBS) in the MWIR

    NASA Astrophysics Data System (ADS)

    Myers, Jason D.; Frantz, Jesse A.; Spillmann, Christopher M.; Bekele, Robel Y.; Kolacz, Jakub; Gotjen, Henry; Naciri, Jawad; Shaw, Brandon; Sanghera, Jas S.

    2018-02-01

    Beam steering is a crucial technology for a number of applications, including chemical sensing/mapping and light detection and ranging (LIDAR). Traditional beam steering approaches rely on mechanical movement, such as the realignment of mirrors in gimbal mounts. The mechanical approach to steering has several drawbacks, including large size, weight and power usage (SWAP), and frequent mechanical failures. Recently, alternative non-mechanical approaches have been proposed and developed, but these technologies do not meet the demanding requirements for many beam steering applications. Here, we highlight the development efforts into a particular non-mechanical beam steering (NMBS) approach, refractive waveguides, for application in the MWIR. These waveguides are based on an Ulrich-coupled slab waveguide with a liquid crystal (LC) top cladding; by selectively applying an electric field across the liquid crystal through a prismatic electrode, steering is achieved by creating refraction at prismatic interfaces as light propagates through the device. For applications in the MWIR, we describe a versatile waveguide architecture based on chalcogenide glasses that have a wide range of refractive indices, transmission windows, and dispersion properties. We have further developed robust shadow-masking methods to taper the subcladding layers in the coupling region. We have demonstrated devices with >10° of steering in the MWIR and a number of advantageous properties for beam steering applications, including low-power operation, compact size, and fast point-to-point steering.

  17. Transforming guided waves with metamaterial waveguide cores

    NASA Astrophysics Data System (ADS)

    Viaene, S.; Ginis, V.; Danckaert, J.; Tassin, P.

    2016-04-01

    Metamaterials make use of subwavelength building blocks to enhance our control on the propagation of light. To determine the required material properties for a given functionality, i.e., a set of desired light flows inside a metamaterial device, metamaterial designs often rely on a geometrical design tool known as transformation optics. In recent years, applications in integrated photonics motivated several research groups to develop two-dimensional versions of transformation optics capable of routing surface waves along graphene-dielectric and metal-dielectric interfaces. Although guided electromagnetic waves are highly relevant to applications in integrated optics, no consistent transformation-optical framework has so far been developed for slab waveguides. Indeed, the conventional application of transformation optics to dielectric slab waveguides leads to bulky three-dimensional devices with metamaterial implementations both inside and outside of the waveguide's core. In this contribution, we develop a transformationoptical framework that still results in thin metamaterial waveguide devices consisting of a nonmagnetic metamaterial core of varying thickness [Phys. Rev. B 93.8, 085429 (2016)]. We numerically demonstrate the effectiveness and versatility of our equivalence relations with three crucial functionalities: a beam bender, a beam splitter and a conformal lens. Our devices perform well on a qualitative (comparison of fields) and quantitative (comparison of transmitted power) level compared to their bulky counterparts. As a result, the geometrical toolbox of transformation optics may lead to a plethora of integrated metamaterial devices to route guided waves along optical chips.

  18. Spin waves in micro-structured yttrium iron garnet nanometer-thick films

    DOE PAGES

    Jungfleisch, Matthias B.; Zhang, Wei; Jiang, Wanjun; ...

    2015-03-24

    Here, we investigated the spin-wave propagation in a micro-structured yttrium iron garnet waveguide of 40 nm thickness. Utilizing spatially-resolved Brillouin light scattering microscopy, an exponential decay of the spinwave amplitude of 10 μm was observed. This leads to an estimated Gilbert damping constant of α = (8.79 ± 0.73) x 10 $-$4, which is larger than damping values obtained through ferromagnetic resonance measurements in unstructured films. Furthermore, we compared the theoretically calculated spatial interference of waveguide modes to the spin-wave pattern observed experimentally by means of Brillouin light scattering spectroscopy.

  19. Time-reversing light pulses by adiabatic coupling modulation in coupled-resonator optical waveguides

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Martini, Rainer; Search, Christopher P.

    2012-12-01

    We introduce a mechanism to time reverse short optical pulses in coupled resonator optical waveguides (CROWs) by direct modulation of the coupling coefficients between microresonators. The coupling modulation is achieved using phase modulation of a Mach-Zehnder interferometer coupler. We demonstrate that by adiabatic modulation of the coupling between resonators we can time reverse or store light pulses with bandwidths up to a few hundred GHz. The large pulse bandwidths, small device footprint, robustness with respect to resonator losses, and easy tuning process of the coupling coefficients make this method more practical than previous proposals.

  20. Analytic few-photon scattering in waveguide QED

    NASA Astrophysics Data System (ADS)

    Hurst, David L.; Kok, Pieter

    2018-04-01

    We develop an approach to light-matter coupling in waveguide QED based upon scattering amplitudes evaluated via Dyson series. For optical states containing more than single photons, terms in this series become increasingly complex, and we provide a diagrammatic recipe for their evaluation, which is capable of yielding analytic results. Our method fully specifies a combined emitter-optical state that permits investigation of light-matter entanglement generation protocols. We use our expressions to study two-photon scattering from a Λ -system and find that the pole structure of the transition amplitude is dramatically altered as the two ground states are tuned from degeneracy.

  1. Conformable large-area position-sensitive photodetectors based on luminescence-collecting silicone waveguides

    NASA Astrophysics Data System (ADS)

    Bartu, Petr; Koeppe, Robert; Arnold, Nikita; Neulinger, Anton; Fallon, Lisa; Bauer, Siegfried

    2010-06-01

    Position sensitive detection schemes based on the lateral photoeffect rely on inorganic semiconductors. Such position sensitive devices (PSDs) are reliable and robust, but preparation with large active areas is expensive and use on curved substrates is impossible. Here we present a novel route for the fabrication of conformable PSDs which allows easy preparation on large areas, and use on curved surfaces. Our device is based on stretchable silicone waveguides with embedded fluorescent dyes, used in conjunction with small silicon photodiodes. Impinging laser light (e.g., from a laser pointer) is absorbed by the dye in the PSD and re-emitted as fluorescence light at a larger wavelength. Due to the isotropic emission from the fluorescent dye molecules, most of the re-emitted light is coupled into the planar silicone waveguide and directed to the edges of the device. Here the light signals are detected via embedded small silicon photodiodes arranged in a regular pattern. Using a mathematical algorithm derived by extensive using of models from global positioning system (GPS) systems and human activity monitoring, the position of light spots is easily calculated. Additionally, the device shows high durability against mechanical stress, when clamped in an uniaxial stretcher and mechanically loaded up to 15% strain. The ease of fabrication, conformability, and durability of the device suggests its use as interface devices and as sensor skin for future robots.

  2. A route to improved extraction efficiency of light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhu, H.; Shan, C. X.; Wang, L. K.; Yang, Y.; Zhang, J. Y.; Yao, B.; Shen, D. Z.; Fan, X. W.

    2010-01-01

    The electroluminescence from an n-MgZnO/i-ZnO/MgO/p-GaN asymmetric double heterojunction has been demonstrated. With the injection of electrons from n-MgZnO and holes from p-GaN, an intense ultraviolet emission coming from the ZnO active layer was observed. It is revealed that the emission intensity of the diode recorded from the MgZnO side is significantly larger than that from the MgO side because of the asymmetric waveguide structure formed by the lower refractive index of MgO than that of MgZnO. The asymmetric waveguide structure reported in this letter may promise a simple and effective route to light-emitting diodes with improved light-extraction efficiency.

  3. Single n-GaN microwire/p-Silicon thin film heterojunction light-emitting diode.

    PubMed

    Ahn, Jaehui; Mastro, Michael A; Klein, Paul B; Hite, Jennifer K; Feigelson, Boris; Eddy, Charles R; Kim, Jihyun

    2011-10-24

    The emission and waveguiding properties of individual GaN microwires as well as devices based on an n-GaN microwire/p-Si (100) junction were studied for relevance in optoelectronics and optical circuits. Pulsed photoluminescence of the GaN microwire excited in the transverse or longitudinal direction demonstrated gain. These n-type GaN microwires were positioned mechanically or by dielectrophoretic force onto pre-patterned electrodes on a p-type Si (100) substrate. Electroluminescence from this p-n point junction was characteristic of a heterostructure light-emitting diode. Additionally, waveguiding was observed along the length of the microwire for light originating from photoluminescence as well as from electroluminescence generated at the p-n junction. © 2011 Optical Society of America

  4. Active control of electromagnetic radiation through an enhanced thermo-optic effect

    PubMed Central

    Sheng, Chong; Liu, Hui; Zhu, Shining; Genov, Dentcho A.

    2015-01-01

    The control of electromagnetic radiation in transformation optical metamaterials brings the development of vast variety of optical devices. Of a particular importance is the possibility to control the propagation of light with light. In this work, we use a structured planar cavity to enhance the thermo-optic effect in a transformation optical waveguide. In the process, a control laser produces apparent inhomogeneous refractive index change inside the waveguides. The trajectory of a second probe laser beam is then continuously tuned in the experiment. The experimental results agree well with the developed theory. The reported method can provide a new approach toward development of transformation optical devices where active all-optical control of the impinging light can be achieved. PMID:25746689

  5. Fiber-Coupled Planar Light-Wave Circuit for Seed Laser Control in High Spectral Resolution Lidar Systems

    NASA Technical Reports Server (NTRS)

    Cook, Anthony; McNeil, Shirley; Switzer, Gregg; Battle, Philip

    2010-01-01

    Precise laser remote sensing of aerosol extinction and backscatter in the atmosphere requires a high-power, pulsed, frequency doubled Nd:YAG laser that is wavelength- stabilized to a narrow absorption line such as found in iodine vapor. One method for precise wavelength control is to injection seed the Nd:YAG laser with a low-power CW laser that is stabilized by frequency converting a fraction of the beam to 532 nm, and to actively frequency-lock it to an iodine vapor absorption line. While the feasibility of this approach has been demonstrated using bulk optics in NASA Langley s Airborne High Spectral Resolution Lidar (HSRL) program, an ideal, lower cost solution is to develop an all-waveguide, frequency-locked seed laser in a compact, robust package that will withstand the temperature, shock, and vibration levels associated with airborne and space-based remote sensing platforms. A key technology leading to this miniaturization is the integration of an efficient waveguide frequency doubling element, and a low-voltage phase modulation element into a single, monolithic, planar light-wave circuit (PLC). The PLC concept advances NASA's future lidar systems due to its compact, efficient and reliable design, thus enabling use on small aircraft and satellites. The immediate application for this technology is targeted for NASA Langley's HSRL system for aerosol and cloud characterization. This Phase I effort proposes the development of a potassium titanyl phosphate (KTP) waveguide phase modulator for future integration into a PLC. For this innovation, the proposed device is the integration of a waveguide-based frequency doubler and phase modulator in a single, fiber pigtail device that will be capable of efficient second harmonic generation of 1,064-nm light and subsequent phase modulation of the 532 nm light at 250 MHz, providing a properly spectrally formatted beam for HSRL s seed laser locking system. Fabrication of the integrated PLC chip for NASA Langley, planned for the Phase II effort, will require full integration and optimization of the waveguide components (SHG waveguide, splitters, and phase modulator) onto a single, monolithic device. The PLC will greatly reduce the size and weight, improve electrical- to-optical efficiency, and significantly reduce the cost of NASA Langley s current stabilized HSRL seed laser system built around a commercial off-the-shelf seed laser that is free-space coupled to a bulk doubler and bulk phase modulator.

  6. Designing metal hemispheres on silicon ultrathin film solar cells for plasmonic light trapping.

    PubMed

    Gao, Tongchuan; Stevens, Erica; Lee, Jung-kun; Leu, Paul W

    2014-08-15

    We systematically investigate the design of two-dimensional silver (Ag) hemisphere arrays on crystalline silicon (c-Si) ultrathin film solar cells for plasmonic light trapping. The absorption in ultrathin films is governed by the excitation of Fabry-Perot TEMm modes. We demonstrate that metal hemispheres can enhance absorption in the films by (1) coupling light to c-Si film waveguide modes and (2) exciting localized surface plasmon resonances (LSPRs). We show that hemisphere arrays allow light to couple to fundamental TEm and TMm waveguide modes in c-Si film as well as higher-order versions of these modes. The near-field light concentration of LSPRs also may increase absorption in the c-Si film, though these resonances are associated with significant parasitic absorption in the metal. We illustrate how Ag plasmonic hemispheres may be utilized for light trapping with 22% enhancement in short-circuit current density compared with that of a bare 100 nm thick c-Si ultrathin film solar cell.

  7. A 30 Mbps in-plane full-duplex light communication using a monolithic GaN photonic circuit

    NASA Astrophysics Data System (ADS)

    Gao, Xumin; Yuan, Jialei; Yang, Yongchao; Li, Yuanhang; Yuan, Wei; Zhu, Guixia; Zhu, Hongbo; Feng, Meixin; Sun, Qian; Liu, Yuhuai; Wang, Yongjin

    2017-07-01

    We propose, fabricate and characterize photonic integration of a InGaN/GaN multiple-quantum-well light-emitting diode (MQW-LED), waveguide, ring resonator and InGaN/GaN MQW-photodiode on a single chip, in which the photonic circuit is suspended by the support beams. Both experimental observations and simulation results illustrate the manipulation of in-plane light coupling and propagation by the waveguide and the ring resonator. The monolithic photonic circuit forms an in-plane data communication system using visible light. When the two suspended InGaN/GaN MQW-diodes simultaneously serve as the transmitter and the receiver, an in-plane full-duplex light communication is experimentally demonstrated with a transmission rate of 30 Mbps, and the superimposed signals are extracted using the self-interference cancellation method. The suspended photonic circuit creates new possibilities for exploring the in-plane full-duplex light communication and manufacturing complex GaN-based monolithic photonic integrations.

  8. Superconducting transmission line particle detector

    DOEpatents

    Gray, K.E.

    1988-07-28

    A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non- superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propagating in a superconducting transmission line are used to resolve N/sup 2/ ambiguity of charged particle events. 6 figs.

  9. Superconducting transmission line particle detector

    DOEpatents

    Gray, Kenneth E.

    1989-01-01

    A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non-superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propogating in a superconducting transmission line are used to resolve N.sup.2 ambiguity of charged particle events.

  10. Micromanipulation and microfabrication for optical microrobotics

    NASA Astrophysics Data System (ADS)

    Palima, Darwin; Bañas, Andrew Rafael; Vizsnyiczai, Gaszton; Kelemen, Lóránd; Aabo, Thomas; Ormos, Pál.; Glückstad, Jesper

    2012-10-01

    Robotics can use optics feedback in vision-based control of intelligent robotic guidance systems. With light's miniscule momentum, shrinking robots down to the microscale regime creates opportunities for exploiting optical forces and torques in microrobotic actuation and control. Indeed, the literature on optical trapping and micromanipulation attests to the possibilities for optical microrobotics. This work presents an optical microrobotics perspective on the optical microfabrication and micromanipulation work that we performed. We designed different three-dimensional microstructures and fabricated them by two-photon polymerization. These microstructures were then handled using our biophotonics workstation (BWS) for proof-of-principle demonstrations of optical actuation, akin to 6DOF actuation of robotic micromanipulators. Furthermore, we also show an example of dynamic behavior of the trapped microstructure that can be achieved when using static traps in the BWS. This can be generalized, in the future, towards a structural shaping optimization strategy for optimally controlling microstructures to complement approaches based on lightshaping. We also show that light channeled to microfabricated, free-standing waveguides can be used not only to redirect light for targeted delivery of optical energy but can also for targeted delivery of optical force, which can serve to further extend the manipulation arms in optical robotics. Moreover, light deflection with waveguide also creates a recoil force on the waveguide, which can be exploited for controlling the optical force.

  11. Electro-optical line cards with multimode polymer waveguides for chip-to-chip interconnects

    NASA Astrophysics Data System (ADS)

    Zhu, Long Xiu; Immonen, Marika; Wu, Jinhua; Yan, Hui Juan; Shi, Ruizhi; Chen, Peifeng; Rapala-Virtanen, Tarja

    2014-10-01

    In this paper, we report developments of electro-optical PCBs (EO-PCB) with low-loss (<0.05dB/cm) polymer waveguides. Our results shows successful fabrication of complex waveguide structures part of hybrid EO-PCBs utilizing production scale process on standard board panels. Test patterns include 90° bends of varying radii (40mm - 2mm), waveguide crossing with varied crossing angles (90°-20°), cascaded bends with varying radii, splitters and tapered waveguides. Full ranges of geometric configurations are required to meet practical optical routing functions and layouts. Moreover, we report results obtained to realize structures to integrate optical connectors with waveguides. Experimental results are shown for MT in-plane and 90° out-of-plane optical connectors realized with coupling loss < 2dB and < 2.5 dB, respectively. These connectors are crucial to realize efficient light coupling from/to TX/RX chip-to-waveguide and within waveguide-to-fiber connections in practical optical PCBs. Furthermore, we show results for fabricating electrical interconnect structures e.g. tracing layers, vias, plated vias top/bottom and through optical layers. Process compatibility with accepted practices and production scale up for high volumes are key concerns to meet the yield target and cost efficiency. Results include waveguide characterization, transmission loss, misalignment tolerance, and effect of lamination. Critical link metrics are reported.

  12. Backplane photonic interconnect modules with optical jumpers

    NASA Astrophysics Data System (ADS)

    Glebov, Alexei L.; Lee, Michael G.; Yokouchi, Kishio

    2005-03-01

    Prototypes of optical interconnect (OI) modules for backplane applications are presented. The transceivers attached to the linecards E/O convert the signals that are passed to and from the backplane by optical jumpers terminated with MTP-type connectors. The connectors plug into adaptors attached to the backplane and the microlens arrays mounted in the adaptors couple the light between the fibers and waveguides. Planar polymer channel waveguides with 30-50 μm cross-sections route the optical signals across the board with propagation losses as low as 0.05 dB/cm @ 850 nm. The 45¦-tapered integrated micromirrors reflect the light in and out of the waveguide plane with the loss of 0.8 dB per mirror. The connector displacement measurements indicate that the adaptor lateral assembly accuracy can be at least +/-10 μm for the excess loss not exceeding 1 dB. Insertion losses of the test modules with integrated waveguides, 45¦ mirrors, and pluggable optical jumper connectors are about 5 dB. Eye diagrams at 10.7 Gb/s have typical width and height of 70 ps and 400 mV, respectively, and jitter of about 20 ps.

  13. Enhanced cooperativity for quantum-nondemolition-measurement–induced spin squeezing of atoms coupled to a nanophotonic waveguide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Xiaodong; Jau, Yuan-Yu; Deutsch, Ivan H.

    We study the enhancement of cooperativity in the atom-light interface near a nanophotonic waveguide for application to QND measurement of atomic spins. Here the cooperativity per atom is determined by the ratio between the measurement strength and the decoherence rate. Counterintuitively, we find that by placing the atoms at an azimuthal position where the guided probe mode has the lowest intensity, we increase the cooperativity. This arises because the QND measurement strength depends on the interference between the probe and scattered light guided into an orthogonal polarization mode, while the decoherence rate depends on the local intensity of the probe.more » Thus, by proper choice of geometry, the ratio of good to bad scattering can be strongly enhanced for highly anisotropic modes. We apply this to study spin squeezing resulting from QND measurement of spin projection noise via the Faraday effect in two nanophotonic geometries, a cylindrical nano fiber and a square waveguide. We nd, with about 2500 atoms using realistic experimental parameters, ~ 6:3 dB and ~ 13 dB of squeezing can be achieved on the nano fiber and square waveguide, respectively.« less

  14. Enhanced cooperativity for quantum-nondemolition-measurement–induced spin squeezing of atoms coupled to a nanophotonic waveguide

    DOE PAGES

    Qi, Xiaodong; Jau, Yuan-Yu; Deutsch, Ivan H.

    2018-03-16

    We study the enhancement of cooperativity in the atom-light interface near a nanophotonic waveguide for application to QND measurement of atomic spins. Here the cooperativity per atom is determined by the ratio between the measurement strength and the decoherence rate. Counterintuitively, we find that by placing the atoms at an azimuthal position where the guided probe mode has the lowest intensity, we increase the cooperativity. This arises because the QND measurement strength depends on the interference between the probe and scattered light guided into an orthogonal polarization mode, while the decoherence rate depends on the local intensity of the probe.more » Thus, by proper choice of geometry, the ratio of good to bad scattering can be strongly enhanced for highly anisotropic modes. We apply this to study spin squeezing resulting from QND measurement of spin projection noise via the Faraday effect in two nanophotonic geometries, a cylindrical nano fiber and a square waveguide. We nd, with about 2500 atoms using realistic experimental parameters, ~ 6:3 dB and ~ 13 dB of squeezing can be achieved on the nano fiber and square waveguide, respectively.« less

  15. Enhanced cooperativity for quantum-nondemolition-measurement-induced spin squeezing of atoms coupled to a nanophotonic waveguide

    NASA Astrophysics Data System (ADS)

    Qi, Xiaodong; Jau, Yuan-Yu; Deutsch, Ivan H.

    2018-03-01

    We study the enhancement of cooperativity in the atom-light interface near a nanophotonic waveguide for application to quantum nondemolition (QND) measurement of atomic spins. Here the cooperativity per atom is determined by the ratio between the measurement strength and the decoherence rate. Counterintuitively, we find that by placing the atoms at an azimuthal position where the guided probe mode has the lowest intensity, we increase the cooperativity. This arises because the QND measurement strength depends on the interference between the probe and scattered light guided into an orthogonal polarization mode, while the decoherence rate depends on the local intensity of the probe. Thus, by proper choice of geometry, the ratio of good-to-bad scattering can be strongly enhanced for highly anisotropic modes. We apply this to study spin squeezing resulting from QND measurement of spin projection noise via the Faraday effect in two nanophotonic geometries, a cylindrical nanofiber and a square waveguide. We find that, with about 2500 atoms and using realistic experimental parameters, ˜6.3 and ˜13 dB of squeezing can be achieved on the nanofiber and square waveguide, respectively.

  16. Multi-dimensional spatial light communication made with on-chip InGaN photonic integration

    NASA Astrophysics Data System (ADS)

    Yang, Yongchao; Zhu, Bingcheng; Shi, Zheng; Wang, Jinyuan; Li, Xin; Gao, Xumin; Yuan, Jialei; Li, Yuanhang; Jiang, Yan; Wang, Yongjin

    2017-04-01

    Here, we propose, fabricate and characterize suspended photonic integration of InGaN multiple-quantum-well light-emitting diode (MQW-LED), waveguide and InGaN MQW-photodetector on a single chip. The unique light emission property of InGaN MQW-LED makes it feasible to establish multi-dimensional spatial data transmission using visible light. The in-plane light communication system is comprised of InGaN MQW-LED, waveguide and InGaN MQW-photodetector, and the out-of-plane data transmission is realized by detecting the free-space light emission via a commercial photodiode module. Moreover, a full-duplex light communication is experimentally demonstrated at a data transmission rate of 50 Mbps when both InGaN MQW-diodes operate under simultaneous light emission and detection mode. The in-plane superimposed signals are able to be extracted through the self-interference cancellation method, and the out-of-plane superimposed signals are in good agreement with the calculated signals according to the extracted transmitted signals. These results are promising for the development of on-chip InGaN photonic integration for diverse applications.

  17. Manipulation of a two-photon state in a χ(2)-modulated nonlinear waveguide array

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Xu, P.; Lu, L. L.; Zhu, S. N.

    2014-10-01

    We propose to engineer the quantum state in a high-dimensional Hilbert space by taking advantage of a χ(2)-modulated nonlinear waveguide array. By varying the pump condition and the waveguide array length, the momentum correlation between the signal and idler photons can be manipulated, exhibiting bunching, antibunching, and the evolution between these two states, which are characterized by the Schmidt number. We find the Schmidt number is dependent on a structure parameter, namely the ratio of the array length and the number of channels pumped. By designing the linear profile waveguide array, the degree of spatial entanglement shows a periodic relationship with the slope of linear profile, during which a high degree of position-bunching state is suggested. The two-photon self-focusing effect is disclosed when the χ(2) modulation in the waveguide array contains a parabolic profile, which can be designed for efficient coupling between a waveguide array and fibers. These results shed light on a feasible way to achieve desirable quantum state on a single waveguide chip by a compact engineering of χ(2) and also suggest a degree of freedom for quantum walk and other related applications.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Keyu; Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Shenzhen 518067; College of Electronic Science and Technology, Shenzhen University, Shenzhen 518067

    We present a versatile add-drop integrated photonic filter (ADF) consisting of nonreciprocal waveguides in which the propagation of light is restricted in one predetermined direction. With the bus and add/drop waveguides symmetrically coupled through a cavity, the four-port device allows each individual port to add and/or drop a signal of the same frequency. The scheme is general and we demonstrate the nonreciprocal ADF with magneto-optical photonic crystals. The filter is immune to waveguide defects, allowing straightforward implementation of multi-channel ADFs by cascading the four-port designs. The results should find applications in wavelength-division multiplexing and related integrated photonic techniques.

  19. Efficient high-power frequency doubling of distributed Bragg reflector tapered laser radiation in a periodically poled MgO-doped lithium niobate planar waveguide.

    PubMed

    Jedrzejczyk, Daniel; Güther, Reiner; Paschke, Katrin; Jeong, Woo-Jin; Lee, Han-Young; Erbert, Götz

    2011-02-01

    We report on efficient single-pass, high-power second-harmonic generation in a periodically poled MgO-doped LiNbO3 planar waveguide using a distributed Bragg reflector tapered diode laser as a pump source. A coupling efficiency into the planar waveguide of 73% was realized, and 1.07 W of visible laser light at 532 nm was generated. Corresponding optical and electro-optical conversion efficiencies of 26% and 8.4%, respectively, were achieved. Good agreement between the experimental data and the theoretical predictions was observed.

  20. Light-propagation management in coupled waveguide arrays: Quantitative experimental and theoretical assessment from band structures to functional patterns

    NASA Astrophysics Data System (ADS)

    Moison, Jean-Marie; Belabas, Nadia; Levenson, Juan Ariel; Minot, Christophe

    2012-09-01

    We assess the band structure of arrays of coupled optical waveguides both by ab initio calculations and by experiments, with an excellent quantitative agreement without any adjustable physical parameter. The band structures we obtain can deviate strongly from the expectations of the standard coupled mode theory approximation, but we describe them efficiently by a few parameters within an extended coupled mode theory. We also demonstrate that this description is in turn a firm and simple basis for accurate beam management in functional patterns of coupled waveguides, in full accordance with their design.

  1. Analysis of the incomplete Galerkin method for modelling of smoothly-irregular transition between planar waveguides

    NASA Astrophysics Data System (ADS)

    Divakov, D.; Sevastianov, L.; Nikolaev, N.

    2017-01-01

    The paper deals with a numerical solution of the problem of waveguide propagation of polarized light in smoothly-irregular transition between closed regular waveguides using the incomplete Galerkin method. This method consists in replacement of variables in the problem of reduction of the Helmholtz equation to the system of differential equations by the Kantorovich method and in formulation of the boundary conditions for the resulting system. The formulation of the boundary problem for the ODE system is realized in computer algebra system Maple. The stated boundary problem is solved using Maples libraries of numerical methods.

  2. Low-temperature fabrication and characterization of a symmetric hybrid organic–inorganic slab waveguide for evanescent light microscopy

    NASA Astrophysics Data System (ADS)

    Agnarsson, Björn; Mapar, Mokhtar; Sjöberg, Mattias; Alizadehheidari, Mohammadreza; Höök, Fredrik

    2018-06-01

    Organic and inorganic solid materials form the building blocks for most of today’s high-technological instruments and devices. However, challenges related to dissimilar material properties have hampered the synthesis of thin-film devices comprised of both organic and inorganic films. We here give a detailed description of a carefully optimized processing protocol used for the construction of a three-layered hybrid organic–inorganic waveguide-chip intended for combined scattering and fluorescence evanescent-wave microscopy in aqueous environments using conventional upright microscopes. An inorganic core layer (SiO2 or Si3N4), embedded symmetrically in an organic cladding layer (CYTOP), aids simple, yet efficient in-coupling of light, and since the organic cladding layer is refractive index matched to water, low stray-light (background) scattering of the propagating light is ensured. Another major advantage is that the inorganic core layer makes the chip compatible with multiple well-established surface functionalization schemes that allows for a broad range of applications, including detection of single lipid vesicles, metallic nanoparticles or cells in complex environments, either label-free—by direct detection of scattered light—or by use of fluorescence excitation and emission. Herein, focus is put on a detailed description of the fabrication of the waveguide-chip, together with a fundamental characterization of its optical properties and performance, particularly in comparison with conventional epi illumination. Quantitative analysis of images obtained from both fluorescence and scattering intensities from surface-immobilized polystyrene nanoparticles in suspensions of different concentrations, revealed enhanced signal-to-noise and signal-to-background ratios for the waveguide illumination compared to the epi-illumination.

  3. An efficient self-collimating photonic crystal coupling technique in the RF regime

    NASA Astrophysics Data System (ADS)

    Sabas, Jerico N.; Mirza, Iftekhar O.; Shi, Shouyuan; Prather, Dennis W.

    2010-02-01

    In this paper, we present both numerical and experimental results for the waveguiding of light using a low-index-contrast (LIC) self-collimating photonic crystal (SCPhC) in the RF frequency regime. This waveguiding structure utilizes the unique interactions of light with the periodic structure of the photonic crystal (PhC) to propagate a beam of light without divergence. This design also employs materials with a low index contrast (LIC), which reduces the electromagnetic signature of the PhC. This SCPhC was designed by extracting its dispersion contours and numerically simulating it using HFSS, a commercial 3-D, full-wave FEM software. In particular, we addressed the issue of coupling the PhC to a coaxial medium by designing an input/output (I/O) coupler consisting of a coaxial-to-waveguide transition, a rectangular waveguide and a tapered dielectric transition. We fabricated the SCPhC with a rigid polyurethane foam slab and Rexolite polystyrene rods using an automated CNC router to drill the periodic lattice in the slab. We also fabricated the dielectric segments of the I/O couplers with Rexolite slabs using an automated milling machine. Using these I/O couplers and SCPhC slab, we simulated and subsequently measured experimentally an insertion loss, for the entire system, of -3.3 dB through a 24" PhC slab, and a coupling loss of -0.95 dB at each coupler-PhC interface.

  4. Feasibility of Coupling Between a Single-Mode Elliptical-Core Fiber and a Single Mode Rib Waveguide Over Temperature. Ph.D. Thesis - Akron Univ., Aug. 1995

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret L.

    1995-01-01

    To determine the feasibility of coupling the output of an optical fiber to a rib waveguide in a temperature environment ranging from 20 C to 300 C, a theoretical calculation of the coupling efficiency between the two was investigated. This is a significant problem which needs to be addressed to determine whether an integrated optic device can function in a harsh temperature environment. Because the behavior of the integrated-optic device is polarization sensitive, a polarization-preserving optic fiber, via its elliptical core, was used to couple light with a known polarization into the device. To couple light energy efficiently from an optical fiber into a channel waveguide, the design of both components should provide for well-matched electric field profiles. The rib waveguide analyzed was the light input channel of an integrated-optic pressure sensor. Due to the complex geometry of the rib waveguide, there is no analytical solution to the wave equation for the guided modes. Approximation or numerical techniques must be utilized to determine the propagation constants and field patterns of the guide. In this study, three solution methods were used to determine the field profiles of both the fiber and guide: the effective-index method (EIM), Marcatili's approximation, and a Fourier method. These methods were utilized independently to calculate the electric field profile of a rib channel waveguide and elliptical fiber at two temperatures, 20 C and 300 C. These temperatures were chosen to represent a nominal and a high temperature that the device would experience. Using the electric field profile calculated from each method, the theoretical coupling efficiency between the single-mode optical fiber and rib waveguide was calculated using the overlap integral and results of the techniques compared. Initially, perfect alignment was assumed and the coupling efficiency calculated. Then, the coupling efficiency calculation was repeated for a range of transverse offsets at both temperatures. Results of the calculation indicate a high coupling efficiency can be achieved when the two components were properly aligned. The coupling efficiency was more sensitive to alignment offsets in the y direction than the x, due to the elliptical modal profile of both components. Changes in the coupling efficiency over temperature were found to be minimal.

  5. Amorphous silicon as high index photonic material

    NASA Astrophysics Data System (ADS)

    Lipka, T.; Harke, A.; Horn, O.; Amthor, J.; Müller, J.

    2009-05-01

    Silicon-on-Insulator (SOI) photonics has become an attractive research topic within the area of integrated optics. This paper aims to fabricate SOI-structures for optical communication applications with lower costs compared to standard fabrication processes as well as to provide a higher flexibility with respect to waveguide and substrate material choice. Amorphous silicon is deposited on thermal oxidized silicon wafers with plasma-enhanced chemical vapor deposition (PECVD). The material is optimized in terms of optical light transmission and refractive index. Different a-Si:H waveguides with low propagation losses are presented. The waveguides were processed with CMOS-compatible fabrication technologies and standard DUV-lithography enabling high volume production. To overcome the large mode-field diameter mismatch between incoupling fiber and sub-μm waveguides three dimensional, amorphous silicon tapers were fabricated with a KOH etched shadow mask for patterning. Using ellipsometric and Raman spectroscopic measurements the material properties as refractive index, layer thickness, crystallinity and material composition were analyzed. Rapid thermal annealing (RTA) experiments of amorphous thin films and rib waveguides were performed aiming to tune the refractive index of the deposited a-Si:H waveguide core layer after deposition.

  6. Nanoscale plasmonic waveguides for filtering and demultiplexing devices

    NASA Astrophysics Data System (ADS)

    Akjouj, A.; Noual, A.; Pennec, Y.; Bjafari-Rouhani, B.

    2010-05-01

    Numerical simulations, based on a FDTD (finite-difference-time-domain) method, of infrared light propagation for add/drop filtering in two-dimensional (2D) Ag-SiO2-Ag resonators are reported to design 2D Y-bent plasmonic waveguides with possible applications in telecommunication WDM (wavelength demultiplexing). First, we study optical transmission and reflection of a nanoscale SiO2 waveguide coupled to a nanocavity of the same insulator located either inside or on the side of a linear waveguide sandwiched between Ag. According to the inside or outside positioning of the nanocavity with respect to the waveguide, the transmission spectrum displays peaks or dips, respectively, which occur at the same central frequency. A fundamental study of the possible cavity modes in the near-infrared frequency band is also given. These filtering properties are then exploited to propose a nanoscale demultiplexer based on a Y-shaped plasmonic waveguide for separation of two different wavelengths, in selection or rejection, from an input broadband signal around 1550 nm. We detail coupling of the 2D add/drop Y connector to two cavities inserted on each of its branches.

  7. EML Array fabricated by SAG technique monolithically integrated with a buried ridge AWG multiplexer

    NASA Astrophysics Data System (ADS)

    Xu, Junjie; Liang, Song; Zhang, Zhike; An, Junming; Zhu, Hongliang; Wang, Wei

    2017-06-01

    We report the fabrication of a ten channel electroabsorption modulated DFB laser (EML) array. Different emission wavelengths of the laser array are obtained by selective area growth (SAG) technique, which is also used for the integration of electroabsorption modulators (EAM) with the lasers. An arrayed waveguide grating (AWG) combiner is integrated monolithically with the laser array by butt-joint regrowth (BJR) technique. A buried ridge waveguide structure is adopted for the AWG combiner. A self aligned fabrication procedure is adopted for the fabrication of the waveguide structure of the device to eliminate the misalignment between the laser active waveguide and the passive waveguide. A Ti thin film heater is integrated for each laser in the array. With the help of the heaters, ten laser emissions with 1.8 nm channel spacing are obtained. The integrated EAM has a larger than 11 dB static extinction ratios and larger than 8 GHz small signal modulation bandwidths. The light power collected in the output waveguide of the AWG is larger than -13 dBm for each wavelength.

  8. Ultra-wideband high-speed Mach-Zehnder switch based on hybrid plasmonic waveguides.

    PubMed

    Janjan, Babak; Fathi, Davood; Miri, Mehdi; Ghaffari-Miab, Mohsen

    2017-02-20

    In this paper, the distinctive dispersion characteristic of hybrid plasmonic waveguides is exploited for designing ultra-wideband directional couplers. It is shown that by using optimized geometrical dimensions for hybrid plasmonic waveguides, nearly wavelength-independent directional couplers can be achieved. These broadband directional couplers are then used to design Mach-Zehnder-interferometer-based switches. Our simulation results show the ultra-wide bandwidth of ∼260  nm for the proposed hybrid plasmonic-waveguide-based switch. Further investigation of the proposed Mach-Zehnder switch confirms that because of the strong light confinement in the hybrid plasmonic waveguide structure, the switching time, power consumption, and overall footprint of the device can be significantly improved compared to silicon-ridge-waveguide-based Mach-Zehnder switches. For the Mach-Zehnder switch designed by using the optimized directional coupler, the switching time is found to be less than one picosecond, while the power consumption, VπLπ figure of merit, and active length of the device are ∼61  fJ/bit, 85  V×μm, and 30 μm, respectively.

  9. Planar waveguide sensor of ammonia

    NASA Astrophysics Data System (ADS)

    Rogoziński, Roman; Tyszkiewicz, Cuma; Karasiński, Paweł; Izydorczyk, Weronika

    2015-12-01

    The paper presents the concept of forming ammonia sensor based on a planar waveguide structure. It is an amplitude sensor produced on the basis of the multimode waveguide. The technological base for this kind of structure is the ion exchange method and the sol-gel method. The planar multimode waveguide of channel type is produced in glass substrate (soda-lime glass of Menzel-Glaser company) by the selective Ag+↔Na+ ion exchange. On the surface of the glass substrate a porous (~40%) silica layer is produced by the sol-gel method. This layer is sensitized to the presence of ammonia in the surrounding atmosphere by impregnation with Bromocresol Purple (BCP) dye. Therefore it constitutes a sensor layer. Spectrophotometric tests carried out showed about 50% reduction of cross-transmission changes of such sensor layer for a wave λ=593 nm caused by the presence of 25% ammonia water vapor in its ambience. The radiation source used in this type of sensor structure is a light emitting diode LED. The gradient channel waveguide is designed for frontal connection (optical glue) with a standard multimode telecommunications waveguide 62.5/125μm.

  10. Optical waveguides in fluoride lead silicate glasses fabricated by carbon ion implantation

    NASA Astrophysics Data System (ADS)

    Shen, Xiao-liang; Wang, Yue; Zhu, Qi-feng; Lü, Peng; Li, Wei-nan; Liu, Chun-xiao

    2018-03-01

    The carbon ion implantation with energy of 4.0 MeV and a dose of 4.0×1014 ions/cm2 is employed for fabricating the optical waveguide in fluoride lead silicate glasses. The optical modes as well as the effective refractive indices are measured by the prism coupling method. The refractive index distribution in the fluoride lead silicate glass waveguide is simulated by the reflectivity calculation method (RCM). The light intensity profile and the energy losses are calculated by the finite-difference beam propagation method (FD-BPM) and the program of stopping and range of ions in matter (SRIM), respectively. The propagation properties indicate that the C2+ ion-implanted fluoride lead silicate glass waveguide is a candidate for fabricating optical devices.

  11. Large tuning of birefringence in two strip silicon waveguides via optomechanical motion.

    PubMed

    Ma, Jing; Povinelli, Michelle L

    2009-09-28

    We present an optomechanical method to tune phase and group birefringence in parallel silicon strip waveguides. We first calculate the deformation of suspended, parallel strip waveguides due to optical forces. We optimize the frequency and polarization of the pump light to obtain a 9 nm deformation for an optical power of 20 mW. Widely tunable phase and group birefringence can be achieved by varying the pump power, with maximum values of 0.026 and 0.13, respectively. The giant phase birefringence allows linear to circular polarization conversion within 30 microm for a pump power of 67 mW. The group birefringence gives a tunable differential group delay of 6fs between orthogonal polarizations. We also evaluate the tuning performance of waveguides with different cross sections.

  12. Micro-laser

    DOEpatents

    Hutchinson, Donald P.; Richards, Roger K.

    2003-07-22

    A micro-laser is disclosed which includes a waveguide, a first and a second subwavelength resonant grating in the waveguide, and at least one photonic band gap resonant structure (PBG) in the waveguide and at least one amplifying medium in the waveguide. PBG features are positioned between the first and second subwavelength resonant gratings and allow introduction of amplifying mediums into the highly resonant guided micro-laser microcavity. The micro-laser may be positioned on a die of a bulk substrate material with one or more electronic and optical devices and may be communicably connected to the same. A method for fabricating a micro-laser is disclosed. A method for tuning the micro-laser is also disclosed. The micro-laser may be used as an optical regenerator, or a light source for data transfer or for optical computing.

  13. Experimental method for testing diffraction properties of reflection waveguide holograms.

    PubMed

    Xie, Yi; Kang, Ming-Wu; Wang, Bao-Ping

    2014-07-01

    Waveguide holograms' diffraction properties include peak wavelength and diffraction efficiency, which play an important role in determining their display performance. Based on the record and reconstruction theory of reflection waveguide holograms, a novel experimental method for testing diffraction properties is introduced and analyzed in this paper, which uses a plano-convex lens optically contacted to the surface of the substrate plate of the waveguide hologram, so that the diffracted light beam can be easily detected. Then an experiment is implemented. The designed reconstruction wavelength of the test sample is 530 nm, and its diffraction efficiency is 100%. The experimental results are a peak wavelength of 527.7 nm and a diffraction efficiency of 94.1%. It is shown that the tested value corresponds well with the designed value.

  14. Multiqubit subradiant states in N -port waveguide devices: ɛ-and-μ-near-zero hubs and nonreciprocal circulators

    NASA Astrophysics Data System (ADS)

    Liberal, Iñigo; Engheta, Nader

    2018-02-01

    Quantum emitters interacting through a waveguide setup have been proposed as a promising platform for basic research on light-matter interactions and quantum information processing. We propose to augment waveguide setups with the use of multiport devices. Specifically, we demonstrate theoretically the possibility of exciting N -qubit subradiant, maximally entangled, states with the use of suitably designed N -port devices. Our general methodology is then applied based on two different devices: an epsilon-and-mu-near-zero waveguide hub and a nonreciprocal circulator. A sensitivity analysis is carried out to assess the robustness of the system against a number of nonidealities. These findings link and merge the designs of devices for quantum state engineering with classical communication network methodologies.

  15. Optical NAND gate

    DOEpatents

    Skogen, Erik J [Albuquerque, NM; Raring, James [Goleta, CA; Tauke-Pedretti, Anna [Albuquerque, NM

    2011-08-09

    An optical NAND gate is formed from two pair of optical waveguide devices on a substrate, with each pair of the optical waveguide devices consisting of an electroabsorption modulator and a photodetector. One pair of the optical waveguide devices is electrically connected in parallel to operate as an optical AND gate; and the other pair of the optical waveguide devices is connected in series to operate as an optical NOT gate (i.e. an optical inverter). The optical NAND gate utilizes two digital optical inputs and a continuous light input to provide a NAND function output. The optical NAND gate can be formed from III-V compound semiconductor layers which are epitaxially deposited on a III-V compound semiconductor substrate, and operates at a wavelength in the range of 0.8-2.0 .mu.m.

  16. Chiral spiral waveguides based on MMI crossings: theory and experiments

    NASA Astrophysics Data System (ADS)

    Cherchi, Matteo; Ylinen, Sami; Harjanne, Mikko; Kapulainen, Markku; Vehmas, Tapani; Aalto, Timo

    2016-03-01

    We introduce a novel type of chiral spiral waveguide where the usual waveguide crossings are replaced by 100:0 Multimode Interferometers (MMIs), i.e. 2x2 splitters that couple all the input light in the cross output port. Despite the topological equivalence with the standard configuration, we show how resorting to long MMIs has non-trivial advantages in terms of footprint and propagation length. An accurate analytic model is also introduced to show the impact of nonidealities on the spiral performances, including propagation loss and cross-talk. We have designed and fabricated three chiral spirals on our platform, based on 3 μm thick silicon strip waveguides with 0.13 dB/cm propagation loss, and 1.58 mm long MMIs. The fabricated spirals have 7, 13 and 49 loops respectively, corresponding to the effective lengths 6.6 cm, 12.5 cm and 47.9 cm. The proposed model is successfully applied to the experimental results, highlighting MMI extinction ratio of about 16.5 dB and MMI loss of about 0.08 dB, that are much worse compared to the simulated 50 dB extinction and 0.01 dB loss. This imposes an upper limit to the number of rounds, because light takes shortcuts through the bar MMI ports. Nevertheless, the novel chiral spiral waveguides outperform what is achievable in mainstream silicon photonics platforms based on submicron waveguides in terms of length and propagation losses, and they are promising candidates for the realization of integrated gyroscopes. They can be significantly further improved by replacing the MMIs with adiabatic 100:0 splitters, ensuring lower cross-talk and broader bandwidth.

  17. Low-cost fabrication of optical waveguides, interconnects and sensing structures on all-polymer-based thin foils

    NASA Astrophysics Data System (ADS)

    Rezem, Maher; Kelb, Christian; Günther, Axel; Rahlves, Maik; Reithmeier, Eduard; Roth, Bernhard

    2016-03-01

    Micro-optical sensors based on optical waveguides are widely used to measure temperature, force and strain but also to detect biological and chemical substances such as explosives or toxins. While optical micro-sensors based on silicon technology require complex and expensive process technologies, a new generation of sensors based completely on polymers offer advantages especially in terms of low-cost and fast production techniques. We have developed a process to integrate micro-optical components such as embedded waveguides and optical interconnects into polymer foils with a thickness well below one millimeter. To enable high throughput production, we employ hot embossing technology, which is capable of reel-to-reel fabrication with a surface roughness in the optical range. For the waveguide fabrication, we used the thermoplastic polymethylmethacrylate (PMMA) as cladding and several optical adhesives as core materials. The waveguides are characterized with respect to refractive indices and propagation losses. We achieved propagation losses are as low as 0.3 dB/cm. Furthermore, we demonstrate coupling structures and their fabrication especially suited to integrate various light sources such as vertical-cavity surface-emitting lasers (VCSEL) and organic light emitting diodes (OLED) into thin polymer foils. Also, we present a concept of an all-polymer and waveguide based deformation sensor based on intensity modulation, which can be fabricated by utilizing our process. For future application, we aim at a low-cost and high-throughput reel-to-reel production process enabling the fabrication of large sensor arrays or disposable single-use sensing structures, which will open optical sensing to a large variety of application fields ranging from medical diagnosis to automotive sensing.

  18. Polymer Waveguides for Quantum Information

    DTIC Science & Technology

    2005-01-01

    a single photon or a very small amount of light plays a critical role in establishing the quantum nature of the process. These materials offer...realizations of Mach-Zehnder interferometers for use in single- photon quantum communication systems. The Scope of the research for this grant: This...to the waveguide we make. We also intend to investigate the transmission of highly attenuated signals mimicking the single photon , which in turn

  19. Single-Mode Propagation in Optical Waveguides and Fibres: A Critical Review of its Treatment in Physics Textbooks

    ERIC Educational Resources Information Center

    Ruddock, Ivan S.

    2009-01-01

    The derivation and description of the modes in optical waveguides and fibres are reviewed. The version frequently found in undergraduate textbooks is shown to be incorrect and misleading due to the assumption of an axial ray of light corresponding to the lowest order mode. It is pointed out that even the lowest order must still be represented in…

  20. Tapered rib fiber coupler for semiconductor optical devices

    DOEpatents

    Vawter, Gregory A.; Smith, Robert Edward

    2001-01-01

    A monolithic tapered rib waveguide for transformation of the spot size of light between a semiconductor optical device and an optical fiber or from the fiber into the optical device. The tapered rib waveguide is integrated into the guiding rib atop a cutoff mesa type semiconductor device such as an expanded mode optical modulator or and expanded mode laser. The tapered rib acts to force the guided light down into the mesa structure of the semiconductor optical device instead of being bound to the interface between the bottom of the guiding rib and the top of the cutoff mesa. The single mode light leaving or entering the output face of the mesa structure then can couple to the optical fiber at coupling losses of 1.0 dB or less.

  1. Coherent virtual absorption for discretized light

    NASA Astrophysics Data System (ADS)

    Longhi, S.

    2018-05-01

    Coherent virtual absorption (CVA) is a recently-introduced phenomenon for which exponentially growing waves incident onto a conservative optical medium are neither reflected nor transmitted, at least transiently. CVA has been associated to complex zeros of the scattering matrix and can be regarded as the time reversal of the decay process of a quasi-mode sustained by the optical medium. Here we consider CVA for discretized light transport in coupled resonator optical waveguides or waveguide arrays and show that a distinct kind of CVA, which is not related to complex zero excitation of quasi-modes, can be observed. This result suggests that scattering matrix analysis can not fully capture CVA phenomena.

  2. Ultra-fast all-optical plasmon induced transparency in a metal–insulator–metal waveguide containing two Kerr nonlinear ring resonators

    NASA Astrophysics Data System (ADS)

    Nurmohammadi, Tofiq; Abbasian, Karim; Yadipour, Reza

    2018-05-01

    In this work, an ultra-fast all-optical plasmon induced transparency based on a metal–insulator–metal nanoplasmonic waveguide with two Kerr nonlinear ring resonators is studied. Two-dimensional simulations utilizing the finite-difference time-domain method are used to show an obvious optical bistability and significant switching mechanisms of the signal light by varying the pump-light intensity. The proposed all-optical switching based on plasmon induced transparency demonstrates femtosecond-scale feedback time (90 fs), meaning ultra-fast switching can be achieved. The presented all-optical switch may have potential significant applications in integrated optical circuits.

  3. Broadband Optical Active Waveguides Written by Femtosecond Laser Pulses in Lithium Fluoride

    NASA Astrophysics Data System (ADS)

    Ismael, Chiamenti; Francesca, Bonfigli; Anderson, S. L. Gomes; Rosa, Maria Montereali; Larissa, N. da Costa; Hypolito, J. Kalinowski

    2014-01-01

    Broadband waveguiding through light-emitting strips directly written in a blank lithium fluoride crystal with a femtosecond laser is reported. Light guiding was observed at several optical wavelengths, from blue, 458 nm, to near-infrared, at 1550 nm. Visible photoluminescence spectra of the optically active F2 and F3+ color centers produced by the fs laser writing process were measured. The wavelength-dependent refractive index increase was estimated to be in the order of 10-3-10-4 in the visible and near-infrared spectral intervals, which is consistent with the stable formation of point defects in LiF.

  4. Controlled laser delivery into biological tissue via thin-film optical tunneling and refraction

    NASA Astrophysics Data System (ADS)

    Whiteside, Paul J. D.; Goldschmidt, Benjamin S.; Curry, Randy; Viator, John A.

    2015-02-01

    Due to the often extreme energies employed, contemporary methods of laser delivery utilized in clinical dermatology allow for a dangerous amount of high-intensity laser light to reflect off a multitude of surfaces, including the patient's own skin. Such techniques consistently represent a clear and present threat to both patients and practitioners alike. The intention of this work was therefore to develop a technique that mitigates this problem by coupling the light directly into the tissue via physical contact with an optical waveguide. In this manner, planar waveguides cladded in silver with thin-film active areas were used to illuminate agar tissue phantoms with nanosecond-pulsed laser light at 532nm. The light then either refracted or optically tunneled through the active area, photoacoustically generating ultrasonic waves within the phantom, whose peak-to-peak intensity directly correlated to the internal reflection angle of the beam. Consequently, angular spectra for energy delivery were recorded for sub-wavelength silver and titanium films of variable thickness. Optimal energy delivery was achieved for internal reflection angles ranging from 43 to 50 degrees, depending on the active area and thin film geometries, with titanium films consistently delivering more energy across the entire angular spectrum due to their relatively high refractive index. The technique demonstrated herein therefore not only represents a viable method of energy delivery for biological tissue while minimizing the possibility for stray light, but also demonstrates the possibility for utilizing thin films of high refractive index metals to redirect light out of an optical waveguide.

  5. On-chip continuous-variable quantum entanglement

    NASA Astrophysics Data System (ADS)

    Masada, Genta; Furusawa, Akira

    2016-09-01

    Entanglement is an essential feature of quantum theory and the core of the majority of quantum information science and technologies. Quantum computing is one of the most important fruits of quantum entanglement and requires not only a bipartite entangled state but also more complicated multipartite entanglement. In previous experimental works to demonstrate various entanglement-based quantum information processing, light has been extensively used. Experiments utilizing such a complicated state need highly complex optical circuits to propagate optical beams and a high level of spatial interference between different light beams to generate quantum entanglement or to efficiently perform balanced homodyne measurement. Current experiments have been performed in conventional free-space optics with large numbers of optical components and a relatively large-sized optical setup. Therefore, they are limited in stability and scalability. Integrated photonics offer new tools and additional capabilities for manipulating light in quantum information technology. Owing to integrated waveguide circuits, it is possible to stabilize and miniaturize complex optical circuits and achieve high interference of light beams. The integrated circuits have been firstly developed for discrete-variable systems and then applied to continuous-variable systems. In this article, we review the currently developed scheme for generation and verification of continuous-variable quantum entanglement such as Einstein-Podolsky-Rosen beams using a photonic chip where waveguide circuits are integrated. This includes balanced homodyne measurement of a squeezed state of light. As a simple example, we also review an experiment for generating discrete-variable quantum entanglement using integrated waveguide circuits.

  6. A MoTe2 based light emitting diode and photodetector for silicon photonic integrated circuits

    NASA Astrophysics Data System (ADS)

    Bie, Ya-Qing; Heuck, M.; Grosso, G.; Furchi, M.; Cao, Y.; Zheng, J.; Navarro-Moratalla, E.; Zhou, L.; Taniguchi, T.; Watanabe, K.; Kong, J.; Englund, D.; Jarillo-Herrero, P.

    A key challenge in photonics today is to address the interconnects bottleneck in high-speed computing systems. Silicon photonics has emerged as a leading architecture, partly because many components such as waveguides, interferometers and modulators, could be integrated on silicon-based processors. However, light sources and photodetectors present continued challenges. Common approaches for light source include off-chip or wafer-bonded lasers based on III-V materials, but studies show advantages for directly modulated light sources. The most advanced photodetectors in silicon photonics are based on germanium growth which increases system cost. The emerging two dimensional transition metal dichalcogenides (TMDs) offer a path for optical interconnects components that can be integrated with the CMOS processing by back-end-of-the-line processing steps. Here we demonstrate a silicon waveguide-integrated light source and photodetector based on a p-n junction of bilayer MoTe2, a TMD semiconductor with infrared band gap. The state-of-the-art fabrication technology provides new opportunities for integrated optoelectronic systems.

  7. An on-chip polarization splitter based on the radiation loss in the bending hybrid plasmonic waveguide structure

    NASA Astrophysics Data System (ADS)

    Sun, Chengwei; Rong, Kexiu; Gan, Fengyuan; Chu, Saisai; Gong, Qihuang; Chen, Jianjun

    2017-09-01

    Polarization beam splitters (PBSs) are one of the key components in the integrated photonic circuits. To increase the integration density, various complex hybrid plasmonic structures have been numerically designed to shrink the footprints of the PBSs. Here, to decrease the complexity of the small hybrid structures and the difficulty of the hybrid micro-nano fabrications, the radiation losses are utilized to experimentally demonstrate an ultra-small, broadband, and efficient PBS in a simple bending hybrid plasmonic waveguide structure. The hybrid plasmonic waveguide comprising a dielectric strip on the metal surface supports both the transverse-magnetic (TM) and transverse-electric (TE) waveguide modes. Because of the different field confinements, the TE waveguide mode has larger radiation loss than the TM waveguide mode in the bending hybrid strip waveguide. Based on the different radiation losses, the two incident waveguide modes of orthogonal polarization states are efficiently split in the proposed structure with a footprint of only about 2.2 × 2.2 μm2 on chips. Since there is no resonance or interference in the splitting process, the operation bandwidth is as broad as Δλ = 70 nm. Moreover, the utilization of the strongly confined waveguide modes instead of the bulk free-space light (with the spot size of at least a few wavelengths) as the incident source considerably increases the coupling efficiency, resulting in a low insertion loss of <3 dB.

  8. Fabrication of raised and inverted SU8 polymer waveguides

    NASA Astrophysics Data System (ADS)

    Holland, Anthony S.; Mitchell, Arnan; Balkunje, Vishal S.; Austin, Mike W.; Raghunathan, Mukund K.

    2005-01-01

    Polymer films with high optical transmission have been investigated for making optical devices for several years. SU8 photoresist and optical adhesives have been investigated for use as thin films for optical devices, not what they were originally designed for. Optical adhesives are typically a one component thermoset polymer and are convenient to use for making thin film optical devices such as waveguides. They are prepared in minutes as thin films unlike SU8, which has to be carefully thermally cured over several hours for optimum results. However SU8 can be accurately patterned to form the geometry of structures required for single mode optical waveguides. SU8 in combination with the lower refractive index optical adhesive films such as UV15 from Master Bond are used to form single and multi mode waveguides. SU8 is photopatternable but we have also used dry etching of the SU8 layer or the other polymer layers e.g. UV15 to form the ribs, ridges or trenches required to guide single modes of light. Optical waveguides were also fabricated using only optical adhesives of different refractive indices. The resolution obtainable is poorer than with SU8 and hence multi mode waveguides are obtained. Loss measurements have been obtained for waveguides of different geometries and material combinations. The process for making polymer waveguides is demonstrated for making large multi mode waveguides and microfluidic channels by scaling the process up in size.

  9. Characterization of passive polymer optical waveguides

    NASA Astrophysics Data System (ADS)

    Joehnck, Matthias; Kalveram, Stefan; Lehmacher, Stefan; Pompe, Guido; Rudolph, Stefan; Neyer, Andreas; Hofstraat, Johannes W.

    1999-05-01

    The characterization of monomode passive polymer optical devices fabricated according to the POPCORN technology by methods originated from electron, ion and optical spectroscopy is summarized. Impacts of observed waveguide perturbations on the optical characteristics of the waveguide are evaluated. In the POPCORN approach optical components for telecommunication applications are fabricated by photo-curing of liquid halogenated (meth)acrylates which have been applied on moulded thermoplastic substrates. For tuning of waveguide material refractive indices with respect to the substrate refractive index frequently comonomer mixtures are used. The polymerization characteristics, especially the polymerization kinetics of individual monomers, determine the formation of copolymers. Therefore the unsaturation as function of UV-illumination time in the formation of halogenated homo- and copolymers has been examined. From different suitable copolymer system, after characterization of their glass transition temperatures, their curing behavior and their refractive indices as function of the monomer ratios, monomode waveguides applying PMMA substrates have been fabricated. To examine the materials composition also in the 6 X 6 micrometers 2 waveguides they have been visualized by transmission electron microscopy. With this method e.g. segregation phenomena could be observed in the waveguide cross section characterization as well. The optical losses in monomode waveguides caused by segregation and other materials induce defects like micro bubbles formed as a result of shrinkage have been quantized by return loss measurements. Defects causing scattering could be observed by convocal laser scanning microscopy and by conventional light microscopy.

  10. Infrared evanescent field sensing with quantum cascade lasers and planar silver halide waveguides.

    PubMed

    Charlton, Christy; Katzir, Abraham; Mizaikoff, Boris

    2005-07-15

    We demonstrate the first midinfrared evanescent field absorption measurements with an InGaAs/AlInAs/InP distributed feedback (DFB) quantum cascade laser (QCL) light source operated at room temperature coupled to a free-standing, thin-film, planar, silver halide waveguide. Two different analytes, each matched to the emission frequency of a QCL, were investigated to verify the potential of this technique. The emission of a 1650 cm(-1) QCL overlaps with the amide absorption band of urea, which was deposited from methanol solution, forming urea crystals at the waveguide surface after solvent evaporation. Solid urea was detected down to 80.7 microg of precipitate at the waveguide surface. The emission frequency of a 974 cm(-1) QCL overlaps with the CH3-C absorption feature of acetic anhydride. Solutions of acetic anhydride in acetonitrile have been detected down to a volume of 0.01 microL (10.8 microg) of acetic anhydride solution after deposition at the planar waveguide (PWG) surface. Free-standing, thin-film, planar, silver halide waveguides were produced by press-tapering heated, cylindrical, silver halide fiber segments to create waveguides with a thickness of 300-190 microm, a width of 3 mm, and a length of 35 mm. In addition, Fourier transform infrared (FT-IR) evanescent field absorption measurements with planar silver halide waveguides and transmission absorption QCL measurements verify the obtained results.

  11. Fusion of Renewable Ring Resonator Lasers and Ultrafast Laser Inscribed Photonic Waveguides

    PubMed Central

    Chandrahalim, Hengky; Rand, Stephen C.; Fan, Xudong

    2016-01-01

    We demonstrated the monolithic integration of reusable and wavelength reconfigurable ring resonator lasers and waveguides of arbitrary shapes to out-couple and guide laser emission on the same fused-silica chip. The ring resonator hosts were patterned by a single-mask standard lithography, whereas the waveguides were inscribed in the proximity of the ring resonator by using 3-dimensional femtosecond laser inscription technology. Reusability of the integrated ring resonator – waveguide system was examined by depositing, removing, and re-depositing dye-doped SU-8 solid polymer, SU-8 liquid polymer, and liquid solvent (toluene). The wavelength reconfigurability was validated by employing Rhodamine 6G (R6G) and 3,3′-Diethyloxacarbocyanine iodide (CY3) as exemplary gain media. In all above cases, the waveguide was able to couple out and guide the laser emission. This work opens a door to reconfigurable active and passive photonic devices for on-chip coherent light sources, optical signal processing, and the investigation of new optical phenomena. PMID:27600872

  12. Fusion of Renewable Ring Resonator Lasers and Ultrafast Laser Inscribed Photonic Waveguides.

    PubMed

    Chandrahalim, Hengky; Rand, Stephen C; Fan, Xudong

    2016-09-07

    We demonstrated the monolithic integration of reusable and wavelength reconfigurable ring resonator lasers and waveguides of arbitrary shapes to out-couple and guide laser emission on the same fused-silica chip. The ring resonator hosts were patterned by a single-mask standard lithography, whereas the waveguides were inscribed in the proximity of the ring resonator by using 3-dimensional femtosecond laser inscription technology. Reusability of the integrated ring resonator - waveguide system was examined by depositing, removing, and re-depositing dye-doped SU-8 solid polymer, SU-8 liquid polymer, and liquid solvent (toluene). The wavelength reconfigurability was validated by employing Rhodamine 6G (R6G) and 3,3'-Diethyloxacarbocyanine iodide (CY3) as exemplary gain media. In all above cases, the waveguide was able to couple out and guide the laser emission. This work opens a door to reconfigurable active and passive photonic devices for on-chip coherent light sources, optical signal processing, and the investigation of new optical phenomena.

  13. Low loss photonic components in high index bismuth borate glass by femtosecond laser direct writing.

    PubMed

    Yang, Weijia; Corbari, Costantino; Kazansky, Peter G; Sakaguchi, Koichi; Carvalho, Isabel C S

    2008-09-29

    Single mode, low loss waveguides were fabricated in high index bismuth borate glass by femtosecond laser direct writing. A specific set of writing parameters leading to waveguides perfectly mode matched to standard single-mode fibers at 1.55 microm with an overall insertion loss of approximately 1 dB and with propagation loss below 0.2 dB/cm was identified. Photonic components such as Y-splitters and directional couplers were also demonstrated. A close agreement between their performances and theoretical predictions based upon the characterization of the waveguide properties is shown. Finally, the nonlinear refractive index of the waveguides has been measured to be 6.6 x 10(-15) cm(2)/W by analyzing self-phase modulation of the propagating femtosecond laser pulse at the wavelength of 1.46 microm. Broadening of the transmitted light source as large as 500 nm was demonstrated through a waveguide with the length of 1.8 cm.

  14. Mid-infrared materials and devices on a Si platform for optical sensing

    PubMed Central

    Singh, Vivek; Lin, Pao Tai; Patel, Neil; Lin, Hongtao; Li, Lan; Zou, Yi; Deng, Fei; Ni, Chaoying; Hu, Juejun; Giammarco, James; Soliani, Anna Paola; Zdyrko, Bogdan; Luzinov, Igor; Novak, Spencer; Novak, Jackie; Wachtel, Peter; Danto, Sylvain; Musgraves, J David; Richardson, Kathleen; Kimerling, Lionel C; Agarwal, Anuradha M

    2014-01-01

    In this article, we review our recent work on mid-infrared (mid-IR) photonic materials and devices fabricated on silicon for on-chip sensing applications. Pedestal waveguides based on silicon are demonstrated as broadband mid-IR sensors. Our low-loss mid-IR directional couplers demonstrated in SiNx waveguides are useful in differential sensing applications. Photonic crystal cavities and microdisk resonators based on chalcogenide glasses for high sensitivity are also demonstrated as effective mid-IR sensors. Polymer-based functionalization layers, to enhance the sensitivity and selectivity of our sensor devices, are also presented. We discuss the design of mid-IR chalcogenide waveguides integrated with polycrystalline PbTe detectors on a monolithic silicon platform for optical sensing, wherein the use of a low-index spacer layer enables the evanescent coupling of mid-IR light from the waveguides to the detector. Finally, we show the successful fabrication processing of our first prototype mid-IR waveguide-integrated detectors. PMID:27877641

  15. [Research on symmetrical optical waveguide based surface plasmon resonance sensing with spectral interrogation].

    PubMed

    Zhang, Yi-long; Liu, Le; Guo, Jun; Zhang, Peng-fei; Guo, Ji-hua; Ma, Hui; He, Yong-hong

    2015-02-01

    Surface plasmon resonance (SPR) sensors with spectral interrogation can adopt fiber to transmit light signals, thus leaving the sensing part separated, which is very convenient for miniaturization, remote-sensing and on-site analysis. Symmetrical optical waveguide (SOW) SPR has the same refractive index of the-two buffer media layers adjacent to the metal film, resulting in longer propagation distance, deeper penetration depth and better performance compared to conventional SPR In the present paper, we developed a symmetrical optical, waveguide (SOW) SPR sensor with wavelength interrogation. In the system, MgF2-Au-MgF2 film was used as SOW module for glucose sensing, and a fiber based light source and detection was used in the spectral interrogation. In the experiment, a refractive index resolution of 2.8 x 10(-7) RIU in fluid protocol was acquired. This technique provides advantages of high resolution and could have potential use in compact design, on-site analysis and remote sensing.

  16. Advances in flexible optrode hardware for use in cybernetic insects

    NASA Astrophysics Data System (ADS)

    Register, Joseph; Callahan, Dennis M.; Segura, Carlos; LeBlanc, John; Lissandrello, Charles; Kumar, Parshant; Salthouse, Christopher; Wheeler, Jesse

    2017-08-01

    Optogenetic manipulation is widely used to selectively excite and silence neurons in laboratory experiments. Recent efforts to miniaturize the components of optogenetic systems have enabled experiments on freely moving animals, but further miniaturization is required for freely flying insects. In particular, miniaturization of high channel-count optical waveguides are needed for high-resolution interfaces. Thin flexible waveguide arrays are needed to bend light around tight turns to access small anatomical targets. We present the design of lightweight miniaturized optogentic hardware and supporting electronics for the untethered steering of dragonfly flight. The system is designed to enable autonomous flight and includes processing, guidance sensors, solar power, and light stimulators. The system will weigh less than 200mg and be worn by the dragonfly as a backpack. The flexible implant has been designed to provide stimuli around nerves through micron scale apertures of adjacent neural tissue without the use of heavy hardware. We address the challenges of lightweight optogenetics and the development of high contrast polymer waveguides for this purpose.

  17. Imaging exciton–polariton transport in MoSe2 waveguides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, F.; Luan, Y.; Scott, M. E.

    The exciton polariton (EP), a half-light and half-matter quasiparticle, is potentially an important element for future photonic and quantum technologies1-4. It provides both strong light-matter interactions and long-distance propagation that is necessary for applications associated with energy or information transfer. Recently, strongly-coupled cavity EPs at room temperature have been demonstrated in van der Waals (vdW) materials due to their strongly-bound excitons5-9. Here we report a nano-optical imaging study of waveguide EPs in MoSe2, a prototypical vdW semiconductor. The measured propagation length of the EPs is sensitive to the excitation photon energy and reaches over 12 μm. The polariton wavelength canmore » be conveniently altered from 600 nm down to 300 nm by controlling the waveguide thickness. Furthermore, we found an intriguing back-bending polariton dispersion close to the exciton resonance. The observed EPs in vdW semiconductors could be useful in future nanophotonic circuits operating in the near-infrared to visible spectral regions.« less

  18. Imaging exciton–polariton transport in MoSe2 waveguides

    DOE PAGES

    Hu, F.; Luan, Y.; Scott, M. E.; ...

    2017-05-08

    The exciton polariton (EP), a half-light and half-matter quasiparticle, is potentially an important element for future photonic and quantum technologies1-4. It provides both strong light-matter interactions and long-distance propagation that is necessary for applications associated with energy or information transfer. Recently, strongly-coupled cavity EPs at room temperature have been demonstrated in van der Waals (vdW) materials due to their strongly-bound excitons5-9. Here we report a nano-optical imaging study of waveguide EPs in MoSe2, a prototypical vdW semiconductor. The measured propagation length of the EPs is sensitive to the excitation photon energy and reaches over 12 μm. The polariton wavelength canmore » be conveniently altered from 600 nm down to 300 nm by controlling the waveguide thickness. Furthermore, we found an intriguing back-bending polariton dispersion close to the exciton resonance. The observed EPs in vdW semiconductors could be useful in future nanophotonic circuits operating in the near-infrared to visible spectral regions.« less

  19. Valley-controlled propagation of pseudospin states in bulk metacrystal waveguides

    NASA Astrophysics Data System (ADS)

    Chen, Xiao-Dong; Deng, Wei-Min; Lu, Jin-Cheng; Dong, Jian-Wen

    2018-05-01

    Light manipulations such as spin-direction locking propagation, robust transport, quantum teleportation, and reconfigurable electromagnetic pathways have been investigated at the boundaries of photonic systems. Recently by breaking Dirac cones in time-reversal-invariant photonic crystals, valley-pseudospin coupled edge states have been employed to realize selective propagation of light. Here, we realize the controllable propagation of pseudospin states in three-dimensional bulk metacrystal waveguides by valley degree of freedom. Reconfigurable photonic valley Hall effect is achieved for frequency-direction locking propagation in such a way that the propagation path can be tunable precisely by scanning the working frequency. A complete transition diagram is illustrated on the valley-dependent pseudospin states of Dirac-cone-absent photonic bands. A photonic blocker is proposed by cascading two inversion asymmetric metacrystal waveguides in which pseudospin-direction locking propagation exists. In addition, valley-dependent pseudospin bands are also discussed in a realistic metamaterials sample. These results show an alternative way toward molding the pseudospin flow in photonic systems.

  20. Nanophotonic Optical Isolator Controlled by the Internal State of Cold Atoms

    NASA Astrophysics Data System (ADS)

    Sayrin, Clément; Junge, Christian; Mitsch, Rudolf; Albrecht, Bernhard; O'Shea, Danny; Schneeweiss, Philipp; Volz, Jürgen; Rauschenbeutel, Arno

    2015-10-01

    The realization of nanophotonic optical isolators with high optical isolation even at ultralow light levels and low optical losses is an open problem. Here, we employ the link between the local polarization of strongly confined light and its direction of propagation to realize low-loss nonreciprocal transmission through a silica nanofiber at the single-photon level. The direction of the resulting optical isolator is controlled by the spin state of cold atoms. We perform our experiment in two qualitatively different regimes, i.e., with an ensemble of cold atoms where each atom is weakly coupled to the waveguide and with a single atom strongly coupled to the waveguide mode. In both cases, we observe simultaneously high isolation and high forward transmission. The isolator concept constitutes a nanoscale quantum optical analog of microwave ferrite resonance isolators, can be implemented with all kinds of optical waveguides and emitters, and might enable novel integrated optical devices for fiber-based classical and quantum networks.

  1. Femtosecond laser inscription of asymmetric directional couplers for in-fiber optical taps and fiber cladding photonics.

    PubMed

    Grenier, Jason R; Fernandes, Luís A; Herman, Peter R

    2015-06-29

    Precise alignment of femtosecond laser tracks in standard single mode optical fiber is shown to enable controllable optical tapping of the fiber core waveguide light with fiber cladding photonic circuits. Asymmetric directional couplers are presented with tunable coupling ratios up to 62% and bandwidths up to 300 nm at telecommunication wavelengths. Real-time fiber monitoring during laser writing permitted a means of controlling the coupler length to compensate for micron-scale alignment errors and to facilitate tailored design of coupling ratio, spectral bandwidth and polarization properties. Laser induced waveguide birefringence was harnessed for polarization dependent coupling that led to the formation of in-fiber polarization-selective taps with 32 dB extinction ratio. This technology enables the interconnection of light propagating in pre-existing waveguides with laser-formed devices, thereby opening a new practical direction for the three-dimensional integration of optical devices in the cladding of optical fibers and planar lightwave circuits.

  2. Giant amplification in degenerate band edge slow-wave structures interacting with an electron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Othman, Mohamed A. K.; Veysi, Mehdi; Capolino, Filippo

    2016-03-15

    We propose a new amplification regime based on a synchronous operation of four degenerate electromagnetic (EM) modes in a slow-wave structure and the electron beam, referred to as super synchronization. These four EM modes arise in a Fabry-Pérot cavity when degenerate band edge (DBE) condition is satisfied. The modes interact constructively with the electron beam resulting in superior amplification. In particular, much larger gains are achieved for smaller beam currents compared to conventional structures based on synchronization with only a single EM mode. We demonstrate giant gain scaling with respect to the length of the slow-wave structure compared to conventionalmore » Pierce type single mode traveling wave tube amplifiers. We construct a coupled transmission line model for a loaded waveguide slow-wave structure exhibiting a DBE, and investigate the phenomenon of giant gain via super synchronization using the Pierce model generalized to multimode interaction.« less

  3. Observation of soliton compression in silicon photonic crystals

    PubMed Central

    Blanco-Redondo, A.; Husko, C.; Eades, D.; Zhang, Y.; Li, J.; Krauss, T.F.; Eggleton, B.J.

    2014-01-01

    Solitons are nonlinear waves present in diverse physical systems including plasmas, water surfaces and optics. In silicon, the presence of two photon absorption and accompanying free carriers strongly perturb the canonical dynamics of optical solitons. Here we report the first experimental demonstration of soliton-effect pulse compression of picosecond pulses in silicon, despite two photon absorption and free carriers. Here we achieve compression of 3.7 ps pulses to 1.6 ps with <10 pJ energy. We demonstrate a ~1-ps free-carrier-induced pulse acceleration and show that picosecond input pulses are critical to these observations. These experiments are enabled by a dispersion-engineered slow-light photonic crystal waveguide and an ultra-sensitive frequency-resolved electrical gating technique to detect the ultralow energies in the nanostructured device. Strong agreement with a nonlinear Schrödinger model confirms the measurements. These results further our understanding of nonlinear waves in silicon and open the way to soliton-based functionalities in complementary metal-oxide-semiconductor-compatible platforms. PMID:24423977

  4. Buried anti resonant reflecting optical waveguide based on porous silicon material for an integrated Mach Zehnder structure

    NASA Astrophysics Data System (ADS)

    Hiraoui, M.; Guendouz, M.; Lorrain, N.; Haji, L.; Oueslati, M.

    2012-11-01

    A buried anti resonant reflecting optical waveguide for an integrated Mach Zehnder structure based on porous silicon material is achieved using a classical photolithography process. Three distinct porous silicon layers are then elaborated in a single step, by varying the porosity (thus the refractive index) and the thickness while respecting the anti-resonance conditions. Simulations and experimental results clearly show the antiresonant character of the buried waveguides. Significant variation of the reflectance and light propagation with different behavior depending on the polarization and the Mach Zehnder dimensions is obtained. Finally, we confirm the feasibility of this structure for sensing applications.

  5. Ultrasensitive spectroscopy based on photonic waveguides on Al2O3/SiO2 platform

    NASA Astrophysics Data System (ADS)

    Heidari, Elham; Xu, Xiaochuan; Tang, Naimei; Mokhtari-Koushyar, Farzad; Dalir, Hamed; Chen, Ray T.

    2018-02-01

    Here a photonic waveguide on Al2O3/SiO2 platform is proposed to cover the 240 320 nm wavelength-range, which is of paramount significance in protein and nuclei acid quantification. Our optical waveguide increases path-length and overlap integration for light-matter interaction with proteins. The proposed system detects one order less proteins concentration as low as 12.5 μg/ml compared with NanoDropTM that detects <125 μg/ml. Also, a linear absorbance change up to protein concentration of 7500 μg/ml is experimentally attained which is based on the Beer-Lambert-law.

  6. FIBER AND INTEGRATED OPTICS: Optical anisotropy induced in a round trip through single-mode optical waveguides and methods for suppression of this anisotropy

    NASA Astrophysics Data System (ADS)

    Gelikonov, V. M.; Leonov, V. I.; Novikov, M. A.

    1989-09-01

    An analysis is made of the characteristics of the transformation of the polarization of light in the course of a round trip in a single-mode fiber waveguide. The Poincaré equivalence theorems are generalized for a round trip through such fibers. An investigation is reported of round-trip anisotropic properties which can be used to compensate for a regular and an irregular anisotropy of a fiber waveguide. A description is given of a compensation system containing a Faraday cell and an experimental check of the theoretical conclusions is reported.

  7. Towards an integrated AlGaAs waveguide platform for phase and polarisation shaping

    NASA Astrophysics Data System (ADS)

    Maltese, G.; Halioua, Y.; Lemaître, A.; Gomez-Carbonell, C.; Karimi, E.; Banzer, P.; Ducci, S.

    2018-05-01

    We propose, design and fabricate an on-chip AlGaAs waveguide capable of generating a controlled phase delay of π/2 between the guided transverse electric and magnetic modes. These modes possess significantly strong longitudinal field components as a direct consequence of their strong lateral confinement in the waveguide. We demonstrate that the effect of the device on a linearly polarised input beam is the generation of a field, which is circularly polarised in its transverse components and carries a phase vortex in its longitudinal component. We believe that the discussed integrated platform enables the generation of light beams with tailored phase and polarisation distributions.

  8. High-power waveguide resonator second harmonic device with external conversion efficiency up to 75%

    NASA Astrophysics Data System (ADS)

    Stefszky, M.; Ricken, R.; Eigner, C.; Quiring, V.; Herrmann, H.; Silberhorn, C.

    2018-06-01

    We report on a highly efficient waveguide resonator device for the production of 775 nm light using a titanium indiffused LiNbO3 waveguide resonator. When scanning the resonance, the device produces up to 110 mW of second harmonic power with 140 mW incident on the device—an external conversion efficiency of 75%. The cavity length is also locked, using a Pound–Drever–Hall type locking scheme, involving feedback to either the cavity temperature or the laser frequency. With laser frequency feedback, a stable output power of approximately 28 mW from a 52 mW pump is seen over one hour.

  9. Superconducting transmission line particle detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, K.E.

    This paper describes a microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non-superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plusmore » the slow electromagnetic wave propogating in a superconducting transmission line are used to resolve N{sup 2} ambiguity of charged particle events.« less

  10. Index matching of TE and TM modes in organic multilayer waveguides

    NASA Astrophysics Data System (ADS)

    Thompson, Jonathan; Schmitzer, Heidrun; Wagner, Hans Peter

    We investigate transverse electric (TE) and magnetic (TM) mode propagation in organic multilayers consisting of aluminum quinoline (Alq3) and perylenetetracarboxylic dianhydride (PTCDA). In particular, we analyze two multilayer waveguides, Alq3-PTCDA-Alq3 and PTCDA-Alq3-PTCDA, engineered to give index matching according to modeling. The waveguides were grown on a glass substrate via organic molecular beam deposition. Fabry-Perot oscillations observed from reflection measurements were used to confirm the individual layer thicknesses. We were able to observe refractive index matching between TE0 and TE1, as well as TE2 and TE3 modes for the PTCDA-Alq3-PTCDA waveguide due to the light propagation through the top and bottom PTCDA layers, respectively. In addition, we were able to match TE1 and TM1, as well as TE3 and TM3 modes in the Alq3-PTCDA-Alq3 multilayer due to the birefringence of the PTCDA layer. Furthermore, we are able to create mode matching for a range of wavelengths due to the similar effective refractive index dispersion of different waveguide modes. The ability to phase match different waveguide modes opens a wide range of potential applications including polarization-insensitive propagation and mode switching by adding a thin magnetic metal film within the waveguide and applying an external magnetic field.

  11. Active phase correction of high resolution silicon photonic arrayed waveguide gratings

    DOE PAGES

    Gehl, M.; Trotter, D.; Starbuck, A.; ...

    2017-03-10

    Arrayed waveguide gratings provide flexible spectral filtering functionality for integrated photonic applications. Achieving narrow channel spacing requires long optical path lengths which can greatly increase the footprint of devices. High index contrast waveguides, such as those fabricated in silicon-on-insulator wafers, allow tight waveguide bends which can be used to create much more compact designs. Both the long optical path lengths and the high index contrast contribute to significant optical phase error as light propagates through the device. Thus, silicon photonic arrayed waveguide gratings require active or passive phase correction following fabrication. We present the design and fabrication of compact siliconmore » photonic arrayed waveguide gratings with channel spacings of 50, 10 and 1 GHz. The largest device, with 11 channels of 1 GHz spacing, has a footprint of only 1.1 cm 2. Using integrated thermo-optic phase shifters, the phase error is actively corrected. We present two methods of phase error correction and demonstrate state-of-the-art cross-talk performance for high index contrast arrayed waveguide gratings. As a demonstration of possible applications, we perform RF channelization with 1 GHz resolution. In addition, we generate unique spectral filters by applying non-zero phase offsets calculated by the Gerchberg Saxton algorithm.« less

  12. Active phase correction of high resolution silicon photonic arrayed waveguide gratings.

    PubMed

    Gehl, M; Trotter, D; Starbuck, A; Pomerene, A; Lentine, A L; DeRose, C

    2017-03-20

    Arrayed waveguide gratings provide flexible spectral filtering functionality for integrated photonic applications. Achieving narrow channel spacing requires long optical path lengths which can greatly increase the footprint of devices. High index contrast waveguides, such as those fabricated in silicon-on-insulator wafers, allow tight waveguide bends which can be used to create much more compact designs. Both the long optical path lengths and the high index contrast contribute to significant optical phase error as light propagates through the device. Therefore, silicon photonic arrayed waveguide gratings require active or passive phase correction following fabrication. Here we present the design and fabrication of compact silicon photonic arrayed waveguide gratings with channel spacings of 50, 10 and 1 GHz. The largest device, with 11 channels of 1 GHz spacing, has a footprint of only 1.1 cm2. Using integrated thermo-optic phase shifters, the phase error is actively corrected. We present two methods of phase error correction and demonstrate state-of-the-art cross-talk performance for high index contrast arrayed waveguide gratings. As a demonstration of possible applications, we perform RF channelization with 1 GHz resolution. Additionally, we generate unique spectral filters by applying non-zero phase offsets calculated by the Gerchberg Saxton algorithm.

  13. Ultrafast direct laser writing of cladding waveguides in the 0.8CaSiO3-0.2Ca3(PO4)2 eutectic glass doped with Nd3+ ions

    NASA Astrophysics Data System (ADS)

    Martínez de Mendívil, J.; Sola, D.; Vázquez de Aldana, J. R.; Lifante, G.; de Aza, A. H.; Pena, P.; Peña, J. I.

    2015-01-01

    We report on tubular cladding optical waveguides fabricated in Neodymium doped Wollastonite-Tricalcium Phosphate glass in the eutectic composition. The glass samples were prepared by melting the eutectic powder mixture in a Pt-Rh crucible at 1600 °C and pouring it in a preheated brass mould. Afterwards, the glass was annealed to relieve the inner stresses. Cladding waveguides were fabricated by focusing beneath the sample surface using a pulsed Ti:sapphire laser with a pulsewidth of 120 fs working at 1 kHz. The optical properties of these waveguides have been assessed in terms of near-field intensity distribution and transmitted power, and these results have been compared to previously reported waveguides with double-line configuration. Optical properties have also been studied as function of the temperature. Heat treatments up to 700 °C were carried out to diminish colour centre losses where waveguide's modes and transmitted power were compared in order to establish the annealing temperature at which the optimal optical properties were reached. Laser experiments are in progress to evaluate the ability of the waveguides for 1064 nm laser light generation under 800 nm optical pumping.

  14. Femtosecond laser-written double line waveguides in germanate and tellurite glasses

    NASA Astrophysics Data System (ADS)

    S. da Silva, Diego; Wetter, Niklaus U.; de Rossi, Wagner; Samad, Ricardo E.; Kassab, Luciana R. P.

    2018-02-01

    The authors report the fabrication and characterization of passive waveguides in GeO2-PbO and TeO2-ZnO glasses written with a femtosecond laser delivering pulses with 3μJ, 30μJ and 80fs at 4kHz repetition rate. Permanent refractive index change at the focus of the laser beam was obtained and waveguides were formed by two closely spaced laser written lines, where the light guiding occurs between them. The refractive index change at 632 nm is around 10-4 . The value of the propagation losses was around 2.0 dB/cm. The output mode profiles indicate multimodal guiding behavior. Raman measurements show structural modification of the glassy network. The results show that these materials are potential candidates for passive waveguides applications as low-loss optical components.

  15. Ridge waveguides in Nd:ABC3O7 disordered crystals produced by swift C5+ ion irradiation and precise diamond dicing: Broad band guidance and spectroscopic properties

    NASA Astrophysics Data System (ADS)

    Chen, Chen; Luan, Qingfang; He, Ruiyun; Cheng, Chen; Akhmadaliev, Shavkat; Zhou, Shengqiang; Yu, Haohai; Zhang, Huaijin; Chen, Feng

    2015-05-01

    Optical ridge waveguides have been manufactured in the crystals of Nd:SrLaGa3O7 and Nd:SrGdGa3O7 by combining techniques of swift carbon ion irradiation with precise diamond blade dicing. The guiding properties of the waveguides are investigated at broadband (at wavelength of 633 nm, 1064 nm, and 4 μm). After annealing treatment at 200 °C for 1 h, the propagation losses of ridge waveguides could be reduced to as low as 1 dB/cm. The confocal microfluorescence emission spectra confirm that the fluorescence properties of Nd3+ ions are almost unchanged after the ion irradiation processing, showing promising potentials as application of miniature light sources in integrated optics.

  16. Interferometric ring lasers and optical devices

    DOEpatents

    Hohimer, J.P.; Craft, D.C.

    1995-03-14

    Two ring diode lasers are optically coupled together to produce tunable, stable output through a Y-junction output coupler which may also be a laser diode or can be an active waveguide. These devices demonstrate a sharp peak in light output with an excellent side-mode-rejection ratio. The rings can also be made of passive or active waveguide material. With additional rings the device is a tunable optical multiplexer/demultiplexer. 11 figs.

  17. Interferometric ring lasers and optical devices

    DOEpatents

    Hohimer, John P.; Craft, David C.

    1995-01-01

    Two ring diode lasers are optically coupled together to produce tunable, stable output through a Y-junction output coupler which may also be a laser diode or can be an active waveguide. These devices demonstrate a sharp peak in light output with an excellent side-mode-rejection ratio. The rings can also be made of passive or active waveguide material. With additional rings the device is a tunable optical multiplexer/demultiplexer.

  18. Enhancing Optical Forces in InP-Based Waveguides.

    PubMed

    Aryaee Panah, Mohammad Esmail; Semenova, Elizaveta S; Lavrinenko, Andrei V

    2017-06-08

    Cantilever sensors are among the most important microelectromechanical systems (MEMS), which are usually actuated by electrostatic forces or piezoelectric elements. Although well-developed microfabrication technology has made silicon the prevailing material for MEMS, unique properties of other materials are overlooked in this context. Here we investigate optically induced forces exerted upon a semi-insulating InP waveguide suspended above a highly doped InP:Si substrate, in three different regimes: the epsilon-near-zero (ENZ), with excitation of surface plasmon polaritons (SPPs) and phonons excitation. An order of magnitude amplification of the force is observed when light is coupled to SPPs, and three orders of magnitude amplification is achieved in the phonon excitation regime. In the ENZ regime, the force is found to be repulsive and higher than that in a waveguide suspended above a dielectric substrate. Low losses in InP:Si result in a big propagation length. The induced deflection can be detected by measuring the phase change of the light when passing through the waveguide, which enables all-optical functioning, and paves the way towards integration and miniaturization of micro-cantilevers. In addition, tunability of the ENZ and the SPP excitation wavelength ranges, via adjusting the carrier concentration, provides an extra degree of freedom for designing MEMS devices.

  19. Propagation length enhancement of surface plasmon polaritons in gold nano-/micro-waveguides by the interference with photonic modes in the surrounding active dielectrics

    NASA Astrophysics Data System (ADS)

    Suárez, Isaac; Ferrando, Albert; Marques-Hueso, Jose; Díez, Antonio; Abargues, Rafael; Rodríguez-Cantó, Pedro J.; Martínez-Pastor, Juan P.

    2017-02-01

    In this work, the unique optical properties of surface plasmon polaritons (SPPs), i.e. subwavelength confinement or strong electric field concentration, are exploited to demonstrate the propagation of light signal at 600 nm along distances in the range from 17 to 150 μm for Au nanostripes 500 nm down to 100 nm wide (30 nm of height), respectively, both theoretically and experimentally. A low power laser is coupled into an optical fiber tip that is used to locally excite the photoluminescence of colloidal quantum dots (QDs) dispersed in their surroundings. Emitted light from these QDs is generating the SPPs that propagate along the metal waveguides. Then, the above-referred propagation lengths were directly extracted from this novel experimental technique by studying the intensity of light decoupled at the output edge of the waveguide. Furthermore, an enhancement of the propagation length up to 0.4 mm is measured for the 500-nm-wide metal nanostripe, for which this effect is maximum. For this purpose, a simultaneous excitation of the same QDs dispersed in poly(methyl methacrylate) waveguides integrated with the metal nanostructures is performed by end-fire coupling an excitation laser energy as low as 1 KW/cm2. The proposed mechanism to explain such enhancement is a non-linear interference effect between dielectric and plasmonic (super)modes propagating in the metal-dielectric structure, which can be apparently seen as an effective amplification or compensation effect of the gain material (QDs) over the SPPs, as previously reported in literature. The proposed system and the method to create propagating SPPs in metal waveguides can be of interest for the application field of sensors and optical communications at visible wavelengths, among other applications, using plasmonic interconnects to reduce the dimensions of photonic chips.

  20. Enhancing the sensitivity of slow light MZI biosensors through multi-hole defects

    NASA Astrophysics Data System (ADS)

    Qin, Kun; Zhao, Yiliang; Hu, Shuren; Weiss, Sharon M.

    2018-02-01

    We demonstrate enhanced detection sensitivity of a slow light Mach-Zehnder interferometer (MZI) sensor by incorporating multi-hole defects (MHDs). Slow light MZI biosensors with a one-dimensional photonic crystal in one arm have been previously shown to improve the performance of traditional MZI sensors based on the increased lightmatter interaction that takes place in the photonic crystal region of the structure. Introducing MHDs in the photonic crystal region increases the available surface area for molecular attachment and further increases the enhanced lightmatter interaction capability of slow light MZIs. The MHDs allow analyte to interact with a greater fraction of the guided wave in the MZI. For a slow light MHD MZI sensor with a 16 μm long sensing arm, a bulk sensitivity of 151,000 rad/RIU-cm is demonstrated experimentally, which is approximately two-fold higher than our previously reported slow light MZI sensors and thirteen-fold higher than traditional MZI biosensors with millimeter length sensing regions. For the label-free detection of nucleic acids, the slow light MZI with MHDs also exhibits a two-fold sensitivity improvement in experiment compared to the slow light MZI without MHDs. Because the detection sensitivity of slow light MHD MZIs scales with the length of the sensing arm, the tradeoff between detection limit and device size can be appropriately mitigated for different applications. All experimental results presented in this work are in good agreement with finite difference-time domain-calculations. Overall, the slow light MZI biosensors with MHDs are a promising platform for highly sensitive and multiplexed lab-on-chip systems.

  1. Overmoded subterahertz surface wave oscillator with pure TM{sub 01} mode output

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Guangqiang; Zeng, Peng; Wang, Dongyang

    2016-02-15

    Overmoded O-type Cerenkov generators using annular electron beams are facing the problem of multi-modes output due to the inevitable structural discontinuities. A simple but effective method to achieve the pure TM{sub 01} mode output is applied on the 0.14 THz overmoded surface wave oscillator (SWO) in this paper. In spite of still using an overmoded slow wave structure to ensure the easy fabrication, the followed smooth circular waveguide is shrinkingly tapered to the output waveguide with appropriate radius that it cuts off other higher modes except TM{sub 01} mode. Moreover, the modified device here has the same power capacity as themore » previous one according to the numerical analysis. By optimized lengths of the transition waveguide and tapered waveguide, particle-in-cell simulation results indicate that the subterahertz wave with output power increased 14.2% at the same frequency is obtained from the proposed SWO under the previous input conditions, and importantly, the output power is all carried by TM{sub 01} mode as expected. Further simulation results in the pulse regime confirm the feasibility of the optimized structure in the actual experiments. This simple and viable design is also applicable to overmoded devices in the lower frequency band of subterahertz wave.« less

  2. Picosecond pulsed micro-module emitting near 560 nm using a frequency doubled gain-switched DBR ridge waveguide semiconductor laser

    NASA Astrophysics Data System (ADS)

    Kaltenbach, André; Hofmann, Julian; Seidel, Dirk; Lauritsen, Kristian; Bugge, Frank; Fricke, Jörg; Paschke, Katrin; Erdmann, Rainer; Tränkle, Günther

    2017-02-01

    A miniaturized picosecond pulsed semiconductor laser source in the spectral range around 560nm is realized by integrating a frequency doubled distributed Bragg reflector ridge waveguide laser (DBR-RWL) into a micromodule. Such compact laser sources are suitable for mobile application, e.g. in microscopes. The picosecond optical pulses are generated by gain-switching which allows for arbitrary pulse repetition frequencies. For frequency conversion a periodically poled magnesium doped lithium niobate ridge waveguide crystal (PPLN) is used to provide high conversion efficiency with single-pass second harmonic generation (SHG). The coupling of the pulsed radiation into the PPLN crystal is realized by a GRIN-lens. Such types of lenses collect the divergent laser radiation and focus it into the crystal waveguide providing high coupling efficiency at a minimum of space compared to the usage of fast axis collimator(FAC)/slow axis collimator (SAC) lens combinations. The frequency doubled output pulses show a pulse width of about 60 ps FWHM and a spectral width around 0.06nm FWHM at a central wavelength of 557nm at 15Å. The pulse peak power could be determined to be more than 300mW at a repetition frequency of 40 MHz.

  3. Coupling control based on Adiabatic elimination for densely integrated nano-photonics

    NASA Astrophysics Data System (ADS)

    Mrejen, Michael; Suchowski, Haim; Hatakeyama, Taiki; Wu, Chihhui; Feng, Liang; O'Brien, Kevin; Wang, Yuan; Zhang, Xiang

    2015-03-01

    The ever growing need for energy-efficient and fast communications is driving the development of highly integrated photonic circuits where controlling light at the nanoscale becomes the most critical aspect of information transfer. Here we develop a unique scheme of adiabatic elimination (AE) modulation to actively control the coupling among waveguides for densely integrated photonics. Analogous to atomic systems, AE is achieved by applying a decomposition on a three waveguide coupler, where the two outer waveguides serve as an effective two-mode system with an effective coupling of Veff = [(V*13 + V*23V*12/Δβ12) (V13-V23V12/Δβ23) ]1/2,and the middle waveguide is the equivalent to the intermediate level `dark state'. We experimentally demonstrate the first all optical AE modulation and its ability to control the coupling between the two waveguides by manipulating the mode index of the decoupled middle one. In addition, we show that the strong modes interactions allowed at the nano-scale offer a unique configuration of zero-coupling between all the waveguides, a phenomena that paves the way for ultra-high density photonic integrated circuits where small footprint is of crucial importance.

  4. Production and characterization of femtosecond laser-written double line waveguides in heavy metal oxide glasses

    NASA Astrophysics Data System (ADS)

    da Silva, Diego Silvério; Wetter, Niklaus Ursus; de Rossi, Wagner; Kassab, Luciana Reyes Pires; Samad, Ricardo Elgul

    2018-01-01

    We report the fabrication and characterization of double line waveguides directly written in tellurite and germanate glasses using a femtosecond laser delivering 30 μJ, 80 fs pulses at 4 kHz repetition rate. The double line waveguides produced presented internal losses inferior to 2.0 dB/cm. The output mode profile and the M2 measurements indicate multimodal guiding behavior. A better beam quality for the GeO2 - PbO waveguide was observed when compared with TeO2 - ZnO glass. Raman spectroscopy of the waveguides showed structural modification of the glassy network and indicates that a negative refractive index modification occurs at the focus of the laser beam, therefore allowing for light guiding in between two closely spaced laser written lines. The refractive index change at 632 nm is around 10-4, and the structural changes in the laser focal region of the writing, evaluated by Raman spectroscopy, corroborated our findings that these materials are potential candidates for optical waveguides and passive components. To the best of our knowledge, the two double line configuration demonstrated in the present work was not reported before for germanate or tellurite glasses.

  5. Heuristic modelling of laser written mid-infrared LiNbO3 stressed-cladding waveguides.

    PubMed

    Nguyen, Huu-Dat; Ródenas, Airán; Vázquez de Aldana, Javier R; Martínez, Javier; Chen, Feng; Aguiló, Magdalena; Pujol, Maria Cinta; Díaz, Francesc

    2016-04-04

    Mid-infrared lithium niobate cladding waveguides have great potential in low-loss on-chip non-linear optical instruments such as mid-infrared spectrometers and frequency converters, but their three-dimensional femtosecond-laser fabrication is currently not well understood due to the complex interplay between achievable depressed index values and the stress-optic refractive index changes arising as a function of both laser fabrication parameters, and cladding arrangement. Moreover, both the stress-field anisotropy and the asymmetric shape of low-index tracks yield highly birefringent waveguides not useful for most applications where controlling and manipulating the polarization state of a light beam is crucial. To achieve true high performance devices a fundamental understanding on how these waveguides behave and how they can be ultimately optimized is required. In this work we employ a heuristic modelling approach based on the use of standard optical characterization data along with standard computational numerical methods to obtain a satisfactory approximate solution to the problem of designing realistic laser-written circuit building-blocks, such as straight waveguides, bends and evanescent splitters. We infer basic waveguide design parameters such as the complex index of refraction of laser-written tracks at 3.68 µm mid-infrared wavelengths, as well as the cross-sectional stress-optic index maps, obtaining an overall waveguide simulation that closely matches the measured mid-infrared waveguide properties in terms of anisotropy, mode field distributions and propagation losses. We then explore experimentally feasible waveguide designs in the search of a single-mode low-loss behaviour for both ordinary and extraordinary polarizations. We evaluate the overall losses of s-bend components unveiling the expected radiation bend losses of this type of waveguides, and finally showcase a prototype design of a low-loss evanescent splitter. Developing a realistic waveguide model with which robust waveguide designs can be developed will be key for exploiting the potential of the technology.

  6. Optimization of H2 thermal annealing process for the fabrication of ultra-low loss sub-micron silicon-on-insulator rib waveguides

    NASA Astrophysics Data System (ADS)

    Bellegarde, Cyril; Pargon, Erwine; Sciancalepore, Corrado; Petit-Etienne, Camille; Lemonnier, Olivier; Ribaud, Karen; Hartmann, Jean-Michel; Lyan, Philippe

    2018-02-01

    The superior confinement of light provided by the high refractive index contrast in Si/SiO2 waveguides allows the use of sub-micron photonic waveguides. However, when downscaling waveguides to sub-micron dimensions, propagation losses become dominated by sidewall roughness scattering. In a previous study, we have shown that hydrogen annealing after waveguide patterning yielded smooth silicon sidewalls. Our optimized silicon patterning process flow allowed us to reduce the sidewall roughness down to 0.25 nm (1σ) while maintaining rectangular Strip waveguides. As a result, record low optical losses of less than 1 dB/cm were measured at telecom wavelengths for waveguides with dimensions larger than 350 nm. With Rib waveguides, losses are expected to be even lower. However, in this case the Si reflow during the H2 anneal leads to the formation of a foot at the bottom of the structure and to a rounding of its top. A compromise is thus to be found between low losses and conservation of the rectangular shape of the Rib waveguide. This work proposes to investigate the impact of temperature and duration of the H2 anneal on the Rib profile, sidewalls roughness and optical performances. The impact of a Si/SiO2 interface is also studied. The introduction of H2 thermal annealing allows to obtain very low losses of 0.5 dB/cm at 1310 nm wavelength for waveguide dimensions of 300-400 nm, but it comes along an increase of the pattern bottom width of 41%, with a final bottom width of 502 nm.

  7. High-Performance Flexible Waveguiding Photovoltaics

    PubMed Central

    Chou, Chun-Hsien; Chuang, Jui-Kang; Chen, Fang-Chung

    2013-01-01

    The use of flat-plane solar concentrators is an effective approach toward collecting sunlight economically and without sun trackers. The optical concentrators are, however, usually made of rigid glass or plastics having limited flexibility, potentially restricting their applicability. In this communication, we describe flexible waveguiding photovoltaics (FWPVs) that exhibit high optical efficiencies and great mechanical flexibility. We constructed these FWPVs by integrating poly-Si solar cells, a soft polydimethylsiloxane (PDMS) waveguide, and a TiO2-doped backside reflector. Optical microstructures that increase the light harvesting ability of the FWPVs can be fabricated readily, through soft lithography, on the top surface of the PDMS waveguide. Our optimized structure displayed an optical efficiency of greater than 42% and a certified power conversion efficiency (PCE) of 5.57%, with a projected PCE as high as approximately 18%. This approach might open new avenues for the harvesting of solar energy at low cost with efficient, mechanically flexible photovoltaics. PMID:23873225

  8. Small slot waveguide rings for on-chip quantum optical circuits.

    PubMed

    Rotenberg, Nir; Türschmann, Pierre; Haakh, Harald R; Martin-Cano, Diego; Götzinger, Stephan; Sandoghdar, Vahid

    2017-03-06

    Nanophotonic interfaces between single emitters and light promise to enable new quantum optical technologies. Here, we use a combination of finite element simulations and analytic quantum theory to investigate the interaction of various quantum emitters with slot-waveguide rings. We predict that for rings with radii as small as 1.44 μm, with a Q-factor of 27,900, near-unity emitter-waveguide coupling efficiencies and emission enhancements on the order of 1300 can be achieved. By tuning the ring geometry or introducing losses, we show that realistic emitter-ring systems can be made to be either weakly or strongly coupled, so that we can observe Rabi oscillations in the decay dynamics even for micron-sized rings. Moreover, we demonstrate that slot waveguide rings can be used to directionally couple emission, again with near-unity efficiency. Our results pave the way for integrated solid-state quantum circuits involving various emitters.

  9. Wavelength-division multiplexed optical integrated circuit with vertical diffraction grating

    NASA Technical Reports Server (NTRS)

    Lang, Robert J. (Inventor); Forouhar, Siamak (Inventor)

    1994-01-01

    A semiconductor optical integrated circuit for wave division multiplexing has a semiconductor waveguide layer, a succession of diffraction grating points in the waveguide layer along a predetermined diffraction grating contour, a semiconductor diode array in the waveguide layer having plural optical ports facing the succession of diffraction grating points along a first direction, respective semiconductor diodes in the array corresponding to respective ones of a predetermined succession of wavelengths, an optical fiber having one end thereof terminated at the waveguide layer, the one end of the optical fiber facing the succession of diffraction grating points along a second direction, wherein the diffraction grating points are spatially distributed along the predetermined contour in such a manner that the succession of diffraction grating points diffracts light of respective ones of the succession of wavelengths between the one end of the optical fiber and corresponding ones of the optical ports.

  10. Localized parallel parametric generation of spin waves in a Ni{sub 81}Fe{sub 19} waveguide by spatial variation of the pumping field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brächer, T.; Graduate School Materials Science in Mainz, Gottlieb-Daimler-Strasse 47, D-67663 Kaiserslautern; Pirro, P.

    2014-03-03

    We present the experimental observation of localized parallel parametric generation of spin waves in a transversally in-plane magnetized Ni{sub 81}Fe{sub 19} magnonic waveguide. The localization is realized by combining the threshold character of parametric generation with a spatially confined enhancement of the amplifying microwave field. The latter is achieved by modulating the width of the microstrip transmission line which is used to provide the pumping field. By employing microfocussed Brillouin light scattering spectroscopy, we analyze the spatial distribution of the generated spin waves and compare it with numerical calculations of the field distribution along the Ni{sub 81}Fe{sub 19} waveguide. Thismore » provides a local spin-wave excitation in transversally in-plane magnetized waveguides for a wide wave-vector range which is not restricted by the size of the generation area.« less

  11. Nano-optical imaging of WS e 2 waveguide modes revealing light-exciton interactions

    DOE PAGES

    Fei, Z.; Scott, M. E.; Gosztola, D. J.; ...

    2016-08-01

    We report on a nano-optical imaging study of WSe 2 thin flakes with scanning near-field optical microscopy (NSOM). The NSOM technique allows us to visualize in real space various waveguide photon modes inside WSe 2. By tuning the excitation laser energy, we are able to map the entire dispersion of these waveguide modes both above and below the A exciton energy of WSe 2. We found that all the modes interact strongly with WSe 2 excitons. The outcome of the interaction is that the observed waveguide modes shift to higher momenta right below the A exciton energy. At higher energies,more » on the other hand, these modes are strongly damped due to adjacent B excitons or band-edge absorptions. Lastly, the mode-shifting phenomena are consistent with polariton formation in WSe 2.« less

  12. Optical lattice-like cladding waveguides by direct laser writing: fabrication, luminescence, and lasing.

    PubMed

    Nie, Weijie; He, Ruiyun; Cheng, Chen; Rocha, Uéslen; Rodríguez Vázquez de Aldana, Javier; Jaque, Daniel; Chen, Feng

    2016-05-15

    We report on the fabrication of optical lattice-like waveguide structures in an Nd:YAP laser crystal by using direct femtosecond laser writing. With periodically arrayed laser-induced tracks, the waveguiding cores can be located in either the regions between the neighbored tracks or the central zone surrounded by a number of tracks as outer cladding. The polarization of the femtosecond laser pulses for the inscription has been found to play a critical role in the anisotropic guiding behaviors of the structures. The confocal photoluminescence investigations reveal different stress-induced modifications of the structures inscribed by different polarization of the femtosecond laser beam, which are considered to be responsible for the refractive index changes of the structures. Under optical pump at 808 nm, efficient waveguide lasing at ∼1  μm wavelength has been realized from the optical lattice-like structure, which exhibits potential applications as novel miniature light sources.

  13. Robust light transport in non-Hermitian photonic lattices

    PubMed Central

    Longhi, Stefano; Gatti, Davide; Valle, Giuseppe Della

    2015-01-01

    Combating the effects of disorder on light transport in micro- and nano-integrated photonic devices is of major importance from both fundamental and applied viewpoints. In ordinary waveguides, imperfections and disorder cause unwanted back-reflections, which hinder large-scale optical integration. Topological photonic structures, a new class of optical systems inspired by quantum Hall effect and topological insulators, can realize robust transport via topologically-protected unidirectional edge modes. Such waveguides are realized by the introduction of synthetic gauge fields for photons in a two-dimensional structure, which break time reversal symmetry and enable one-way guiding at the edge of the medium. Here we suggest a different route toward robust transport of light in lower-dimensional (1D) photonic lattices, in which time reversal symmetry is broken because of the non-Hermitian nature of transport. While a forward propagating mode in the lattice is amplified, the corresponding backward propagating mode is damped, thus resulting in an asymmetric transport insensitive to disorder or imperfections in the structure. Non-Hermitian asymmetric transport can occur in tight-binding lattices with an imaginary gauge field via a non-Hermitian delocalization transition, and in periodically-driven superlattices. The possibility to observe non-Hermitian delocalization is suggested using an engineered coupled-resonator optical waveguide (CROW) structure. PMID:26314932

  14. Robust light transport in non-Hermitian photonic lattices.

    PubMed

    Longhi, Stefano; Gatti, Davide; Della Valle, Giuseppe

    2015-08-28

    Combating the effects of disorder on light transport in micro- and nano-integrated photonic devices is of major importance from both fundamental and applied viewpoints. In ordinary waveguides, imperfections and disorder cause unwanted back-reflections, which hinder large-scale optical integration. Topological photonic structures, a new class of optical systems inspired by quantum Hall effect and topological insulators, can realize robust transport via topologically-protected unidirectional edge modes. Such waveguides are realized by the introduction of synthetic gauge fields for photons in a two-dimensional structure, which break time reversal symmetry and enable one-way guiding at the edge of the medium. Here we suggest a different route toward robust transport of light in lower-dimensional (1D) photonic lattices, in which time reversal symmetry is broken because of the non-Hermitian nature of transport. While a forward propagating mode in the lattice is amplified, the corresponding backward propagating mode is damped, thus resulting in an asymmetric transport insensitive to disorder or imperfections in the structure. Non-Hermitian asymmetric transport can occur in tight-binding lattices with an imaginary gauge field via a non-Hermitian delocalization transition, and in periodically-driven superlattices. The possibility to observe non-Hermitian delocalization is suggested using an engineered coupled-resonator optical waveguide (CROW) structure.

  15. Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhaoyi; Kim, Myoung -Hwan; Wang, Cheng

    Here, research on two-dimensional designer optical structures, or metasurfaces, has mainly focused on controlling the wavefronts of light propagating in free space. Here, we show that gradient metasurface structures consisting of phased arrays of plasmonic or dielectric nanoantennas can be used to control guided waves via strong optical scattering at subwavelength intervals. Based on this design principle, we experimentally demonstrate waveguide mode converters, polarization rotators and waveguide devices supporting asymmetric optical power transmission. We also demonstrate all-dielectric on-chip polarization rotators based on phased arrays of Mie resonators with negligible insertion losses. Our gradient metasurfaces can enable small-footprint, broadband and low-lossmore » photonic integrated devices.« less

  16. Surface enhanced Raman scattering spectroscopic waveguide

    DOEpatents

    Lascola, Robert J; McWhorter, Christopher S; Murph, Simona H

    2015-04-14

    A waveguide for use with surface-enhanced Raman spectroscopy is provided that includes a base structure with an inner surface that defines a cavity and that has an axis. Multiple molecules of an analyte are capable of being located within the cavity at the same time. A base layer is located on the inner surface of the base structure. The base layer extends in an axial direction along an axial length of an excitation section. Nanoparticles are carried by the base layer and may be uniformly distributed along the entire axial length of the excitation section. A flow cell for introducing analyte and excitation light into the waveguide and a method of applying nanoparticles may also be provided.

  17. Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces

    DOE PAGES

    Li, Zhaoyi; Kim, Myoung -Hwan; Wang, Cheng; ...

    2017-04-17

    Here, research on two-dimensional designer optical structures, or metasurfaces, has mainly focused on controlling the wavefronts of light propagating in free space. Here, we show that gradient metasurface structures consisting of phased arrays of plasmonic or dielectric nanoantennas can be used to control guided waves via strong optical scattering at subwavelength intervals. Based on this design principle, we experimentally demonstrate waveguide mode converters, polarization rotators and waveguide devices supporting asymmetric optical power transmission. We also demonstrate all-dielectric on-chip polarization rotators based on phased arrays of Mie resonators with negligible insertion losses. Our gradient metasurfaces can enable small-footprint, broadband and low-lossmore » photonic integrated devices.« less

  18. Generation of sub-optical-cycle, carrier-envelope-phase--insensitive, extreme-uv pulses via nonlinear stabilization in a waveguide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandhu, Arvinder S.; Gagnon, Etienne; Paul, Ariel

    2006-12-15

    We present evidence for a new regime of high-harmonic generation in a waveguide where bright, sub-optical-cycle, quasimonochromatic, extreme ultraviolet (EUV) light is generated via a mechanism that is relatively insensitive to carrier-envelope phase fluctuations. The interplay between the transient plasma which determines the phase matching conditions and the instantaneous laser intensity which drives harmonic generation gives rise to a new nonlinear stabilization mechanism in the waveguide, localizing the phase-matched EUV emission to within sub-optical-cycle duration. The sub-optical-cycle EUV emission generated by this mechanism can also be selectively optimized in the spectral domain by simple tuning of parameters.

  19. Characterization of Anisotropic Leaky Mode Modulators for Holovideo

    PubMed Central

    Gneiting, Scott; Kimball, Jacob; Henrie, Andrew; McLaughlin, Stephen; DeGraw, Taylor; Smalley, Daniel

    2016-01-01

    Holovideo displays are based on light-bending spatial light modulators. One such spatial light modulator is the anisotropic leaky mode modulator. This modulator is particularly well suited for holographic video experimentation as it is relatively simple and inexpensive to fabricate1-3. Some additional advantages of leaky mode devices include: large aggregate bandwidth, polarization separation of signal light from noise, large angular deflection and frequency control of color1. In order to realize these advantages, it is necessary to be able to adequately characterize these devices as their operation is strongly dependent on waveguide and transducer parameters4. To characterize the modulators, the authors use a commercial prism coupler as well as a custom characterization apparatus to identify guided modes, calculate waveguide thickness and finally to map the device's frequency input and angular output of leaky mode modulators. This work gives a detailed description of the measurement and characterization of leaky mode modulators suitable for full-color holographic video. PMID:27023115

  20. Room-temperature subnanosecond waveguide lasers in Nd:YVO4 Q-switched by phase-change VO2: A comparison with 2D materials

    NASA Astrophysics Data System (ADS)

    Nie, Weijie; Li, Rang; Cheng, Chen; Chen, Yanxue; Lu, Qingming; Romero, Carolina; Vázquez de Aldana, Javier R.; Hao, Xiaotao; Chen, Feng

    2017-04-01

    We report on room-temperature subnanosecond waveguide laser operation at 1064 nm in a Nd:YVO4 crystal waveguide through Q-switching of phase-change nanomaterial vanadium dioxide (VO2). The unique feature of VO2 nanomaterial from the insulating to metallic phases offers low-saturation-intensity nonlinear absorptions of light for subnanosecond pulse generation. The low-loss waveguide is fabricated by using the femtosecond laser writing with depressed cladding geometry. Under optical pump at 808 nm, efficient pulsed laser has been achieved in the Nd:YVO4 waveguide, reaching minimum pulse duration of 690 ps and maximum output average power of 66.7 mW. To compare the Q-switched laser performances by VO2 saturable absorber with those based on two-dimensional materials, the 1064-nm laser pulses have been realized in the same waveguide platform with either graphene or transition metal dichalcogenide (in this work, WS2) coated mirror. The results on 2D material Q-switched waveguide lasers have shown that the shortest pulses are with 22-ns duration, whilst the maximum output average powers reach ~161.9 mW. This work shows the obvious difference on the lasing properties based on phase-change material and 2D materials, and suggests potential applications of VO2 as low-cost saturable absorber for subnanosecond laser generation.

  1. Comparison of fabrication methods for microstructured deep UV multimode waveguides based on fused silica

    NASA Astrophysics Data System (ADS)

    Elmlinger, Philipp; Schreivogel, Martin; Schmid, Marc; Kaiser, Myriam; Priester, Roman; Sonström, Patrick; Kneissl, Michael

    2016-04-01

    The suitability of materials for deep ultraviolet (DUV) waveguides concerning transmittance, fabrication, and coupling properties is investigated and a fused silica core/ambient air cladding waveguide system is presented. This high refractive index contrast system has far better coupling efficiency especially for divergent light sources like LEDs and also a significantly smaller critical bending radius compared to conventional waveguide systems, as simulated by ray-tracing simulations. For the fabrication of 300-ffm-thick multimode waveguides a hydrouoric (HF) acid based wet etch process is compared to selective laser etching (SLE). In order to fabricate thick waveguides out of 300-ffm-thick silica wafers by HF etching, two masking materials, LPCVD silicon nitride and LPCVD poly silicon, are investigated. Due to thermal stress, the silicon nitride deposited wafers show cracks and even break. Using poly silicon as a masking material, no cracks are observed and deep etching in 50 wt% HF acid up to 180 min is performed. While the masked and unmasked silica surface is almost unchanged in terms of roughness, notching defects occur at the remaining polysilicon edge leading to jagged sidewalls. Using SLE, waveguides with high contour accuracy are fabricated and the DUV guiding properties are successfully demonstrated with propagation losses between 0.6 and 0:8 dB=mm. These values are currently limited by sidewall scattering losses.

  2. Room-temperature subnanosecond waveguide lasers in Nd:YVO4 Q-switched by phase-change VO2: A comparison with 2D materials.

    PubMed

    Nie, Weijie; Li, Rang; Cheng, Chen; Chen, Yanxue; Lu, Qingming; Romero, Carolina; Vázquez de Aldana, Javier R; Hao, Xiaotao; Chen, Feng

    2017-04-06

    We report on room-temperature subnanosecond waveguide laser operation at 1064 nm in a Nd:YVO 4 crystal waveguide through Q-switching of phase-change nanomaterial vanadium dioxide (VO 2 ). The unique feature of VO 2 nanomaterial from the insulating to metallic phases offers low-saturation-intensity nonlinear absorptions of light for subnanosecond pulse generation. The low-loss waveguide is fabricated by using the femtosecond laser writing with depressed cladding geometry. Under optical pump at 808 nm, efficient pulsed laser has been achieved in the Nd:YVO 4 waveguide, reaching minimum pulse duration of 690 ps and maximum output average power of 66.7 mW. To compare the Q-switched laser performances by VO 2 saturable absorber with those based on two-dimensional materials, the 1064-nm laser pulses have been realized in the same waveguide platform with either graphene or transition metal dichalcogenide (in this work, WS 2 ) coated mirror. The results on 2D material Q-switched waveguide lasers have shown that the shortest pulses are with 22-ns duration, whilst the maximum output average powers reach ~161.9 mW. This work shows the obvious difference on the lasing properties based on phase-change material and 2D materials, and suggests potential applications of VO 2 as low-cost saturable absorber for subnanosecond laser generation.

  3. Ultrafast direct laser writing of cladding waveguides in the 0.8CaSiO{sub 3}-0.2Ca{sub 3}(PO{sub 4}){sub 2} eutectic glass doped with Nd{sup 3+} ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martínez de Mendívil, J., E-mail: jon.martinez@uam.es; Lifante, G.; Sola, D.

    2015-01-28

    We report on tubular cladding optical waveguides fabricated in Neodymium doped Wollastonite-Tricalcium Phosphate glass in the eutectic composition. The glass samples were prepared by melting the eutectic powder mixture in a Pt-Rh crucible at 1600 °C and pouring it in a preheated brass mould. Afterwards, the glass was annealed to relieve the inner stresses. Cladding waveguides were fabricated by focusing beneath the sample surface using a pulsed Ti:sapphire laser with a pulsewidth of 120 fs working at 1 kHz. The optical properties of these waveguides have been assessed in terms of near-field intensity distribution and transmitted power, and these results have been comparedmore » to previously reported waveguides with double-line configuration. Optical properties have also been studied as function of the temperature. Heat treatments up to 700 °C were carried out to diminish colour centre losses where waveguide's modes and transmitted power were compared in order to establish the annealing temperature at which the optimal optical properties were reached. Laser experiments are in progress to evaluate the ability of the waveguides for 1064 nm laser light generation under 800 nm optical pumping.« less

  4. Wideband nonlinear spectral broadening in ultra-short ultra - silicon rich nitride waveguides.

    PubMed

    Choi, Ju Won; Chen, George F R; Ng, D K T; Ooi, Kelvin J A; Tan, Dawn T H

    2016-06-08

    CMOS-compatible nonlinear optics platforms with high Kerr nonlinearity facilitate the generation of broadband spectra based on self-phase modulation. Our ultra - silicon rich nitride (USRN) platform is designed to have a large nonlinear refractive index and low nonlinear losses at 1.55 μm for the facilitation of wideband spectral broadening. We investigate the ultrafast spectral characteristics of USRN waveguides with 1-mm-length, which have high nonlinear parameters (γ ∼ 550 W(-1)/m) and anomalous dispersion at 1.55 μm wavelength of input light. USRN add-drop ring resonators broaden output spectra by a factor of 2 compared with the bandwidth of input fs laser with the highest quality factors of 11000 and 15000. Two - fold self phase modulation induced spectral broadening is observed using waveguides only 430 μm in length, whereas a quadrupling of the output bandwidth is observed with USRN waveguides with a 1-mm-length. A broadening factor of around 3 per 1 mm length is achieved in the USRN waveguides, a value which is comparatively larger than many other CMOS-compatible platforms.

  5. Natural Silk as a Photonics Component: a Study on Its Light Guiding and Nonlinear Optical Properties

    NASA Astrophysics Data System (ADS)

    Kujala, Sami; Mannila, Anna; Karvonen, Lasse; Kieu, Khanh; Sun, Zhipei

    2016-03-01

    Silk fibers are expected to become a pathway to biocompatible and bioresorbable waveguides, which could be used to deliver localized optical power for various applications, e.g., optical therapy or imaging inside living tissue. Here, for the first time, the linear and nonlinear optical properties of natural silk fibers have been studied. The waveguiding properties of silk fibroin of largely unprocessed Bombyx mori silkworm silk are assessed using two complementary methods, and found to be on the average 2.8 dB mm-1. The waveguide losses of degummed silk are to a large extent due to scattering from debris on fiber surface and helical twisting of the fiber. Nonlinear optical microscopy reveals both configurational defects such as torsional twisting, and strong symmetry breaking at the center of the fiber, which provides potential for various nonlinear applications. Our results show that nonregenerated B. mori silk can be used for delivering optical power over short distances, when the waveguide needs to be biocompatible and bioresorbable, such as embedding the waveguide inside living tissue.

  6. Atto-Joule, high-speed, low-loss plasmonic modulator based on adiabatic coupled waveguides

    NASA Astrophysics Data System (ADS)

    Dalir, Hamed; Mokhtari-Koushyar, Farzad; Zand, Iman; Heidari, Elham; Xu, Xiaochuan; Pan, Zeyu; Sun, Shuai; Amin, Rubab; Sorger, Volker J.; Chen, Ray T.

    2018-05-01

    In atomic multi-level systems, adiabatic elimination (AE) is a method used to minimize complicity of the system by eliminating irrelevant and strongly coupled levels by detuning them from one another. Such a three-level system, for instance, can be mapped onto physically in the form of a three-waveguide system. Actively detuning the coupling strength between the respective waveguide modes allows modulating light to propagate through the device, as proposed here. The outer waveguides act as an effective two-photonic-mode system similar to ground and excited states of a three-level atomic system, while the center waveguide is partially plasmonic. In AE regime, the amplitude of the middle waveguide oscillates much faster when compared to the outer waveguides leading to a vanishing field build up. As a result, the plasmonic intermediate waveguide becomes a "dark state," hence nearly zero decibel insertion loss is expected with modulation depth (extinction ratio) exceeding 25 dB. Here, the modulation mechanism relies on switching this waveguide system from a critical coupling regime to AE condition via electrostatically tuning the free-carrier concentration and hence the optical index of a thin indium thin oxide (ITO) layer resides in the plasmonic center waveguide. This alters the effective coupling length and the phase mismatching condition thus modulating in each of its outer waveguides. Our results also promise a power consumption as low as 49.74aJ/bit. Besides, we expected a modulation speed of 160 GHz reaching to millimeter wave range applications. Such anticipated performance is a direct result of both the unity-strong tunability of the plasmonic optical mode in conjunction with utilizing ultra-sensitive modal coupling between the critically coupled and the AE regimes. When taken together, this new class of modulators paves the way for next generation both for energy and speed conscience optical short-reach communication such as those found in interconnects.

  7. A Plasmonic based Ultracompact Polarization Beam Splitter on Silicon-on-Insulator Waveguides

    PubMed Central

    Tan, Qilong; Huang, Xuguang; Zhou, Wen; Yang, Kun

    2013-01-01

    An ultracompact polarization beam splitter (PBS) is designed on silicon-on-insulator (SOI) platform based on the localized surface plasmons (LSPs) excited by particular polarization light. The device uses nanoscale silver cylinders as the polarization selection between two silicon waveguides of a directional coupler. The transverse-magnetic (TM) polarization light excites localized surface plasmons and is coupled into the cross port of the directional coupler with a low insert loss, while the transverse-electric (TE) polarization light is under restriction. The PBS has a coupling layer with 50 nm width and 1.1 μm length supporting broadband operation. The simulation calculations show that 22.06dB and 23.06dB of extinction ratios for the TE and TM polarizations were obtained, together with insertion losses of 0.09dB and 0.40dB. PMID:23856635

  8. Steering and filtering white light with resonant waveguide gratings

    NASA Astrophysics Data System (ADS)

    Quaranta, Giorgio; Basset, Guillaume; Martin, Olivier J. F.; Gallinet, Benjamin

    2017-08-01

    A novel thin-film single-layer structure based on resonant waveguide gratings (RWGs) allows to engineer selective color filtering and steering of white light. The unit cell of the structure consists of two adjacent finite-length and cross-talking RWGs, where the former acts as in-coupler and the latter acts as out-coupler. The structure is made by only one nano-imprint lithography replication and one thin film layer deposition, making it fully compatible with up-scalable fabrication processes. We characterize a fabricated optical security element designed to work with the flash and the camera of a smartphone in off-axis light steering configuration, where the pattern is revealed only by placing the smartphone in the proper position. Widespread applications are foreseen in a variety of fields, such as multifocal or monochromatic lenses, solar cells, biosensors, security devices and seethrough optical combiners for near-eye displays.

  9. Co-integrating plasmonics with Si3N4 photonics towards a generic CMOS compatible PIC platform for high-sensitivity multi-channel biosensors: the H2020 PlasmoFab approach (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tsiokos, Dimitris M.; Dabos, George; Ketzaki, Dimitra; Weeber, Jean-Claude; Markey, Laurent; Dereux, Alain; Giesecke, Anna Lena; Porschatis, Caroline; Chmielak, Bartos; Wahlbrink, Thorsten; Rochracher, Karl; Pleros, Nikos

    2017-05-01

    Silicon photonics meet most fabrication requirements of standard CMOS process lines encompassing the photonics-electronics consolidation vision. Despite this remarkable progress, further miniaturization of PICs for common integration with electronics and for increasing PIC functional density is bounded by the inherent diffraction limit of light imposed by optical waveguides. Instead, Surface Plasmon Polariton (SPP) waveguides can guide light at sub-wavelength scales at the metal surface providing unique light-matter interaction properties, exploiting at the same time their metallic nature to naturally integrate with electronics in high-performance ASPICs. In this article, we demonstrate the main goals of the recently introduced H2020 project PlasmoFab towards addressing the ever increasing needs for low energy, small size and high performance mass manufactured PICs by developing a revolutionary yet CMOS-compatible fabrication platform for seamless co-integration of plasmonics with photonic and supporting electronic. We demonstrate recent advances on the hosting SiN photonic hosting platform reporting on low-loss passive SiN waveguide and Grating Coupler circuits for both the TM and TE polarization states. We also present experimental results of plasmonic gold thin-film and hybrid slot waveguide configurations that can allow for high-sensitivity sensing, providing also the ongoing activities towards replacing gold with Cu, Al or TiN metal in order to yield the same functionality over a CMOS metallic structure. Finally, the first experimental results on the co-integrated SiN+plasmonic platform are demonstrated, concluding to an initial theoretical performance analysis of the CMOS plasmo-photonic biosensor that has the potential to allow for sensitivities beyond 150000nm/RIU.

  10. Optical Power Source Derived from Engine Combustion Chambers

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J. (Inventor)

    1999-01-01

    An optical power source is disclosed that collects the spectra of the light emissions created in a combustion chamber to provide its optical output signals that serve the needs of optical networks. The light spectra is collected by a collection ring serving as an optical waveguide.

  11. Silicon-based highly-efficient fiber-to-waveguide coupler for high index contrast systems

    NASA Astrophysics Data System (ADS)

    Nguyen, Victor; Montalbo, Trisha; Manolatou, Christina; Agarwal, Anu; Hong, Ching-yin; Yasaitis, John; Kimerling, L. C.; Michel, Jurgen

    2006-02-01

    A coupler to efficiently transfer broadband light from a single-mode optical fiber to a single-mode high-index contrast waveguide has been fabricated on a silicon substrate. We utilized a novel coupling scheme, with a vertically asymmetric design consisting of a stepwise parabolic graded index profile combined with a horizontal taper, to simultaneously confine light in both directions. Coupling efficiency has been measured as a function of the device dimensions. The optimal coupling efficiency is achieved for structures whose length equals the focal distance of the graded index and whose input width is close to the mode field diameter of the fiber. The fabricated structure is compact, robust and highly efficient, with an insertion loss of 2.2dB at 1550nm. The coupler exhibits less than 1dB variation in coupling efficiency in the measured spectral range from 1520nmto1620nm. The lowest insertion loss of 1.9dB is measured at 1540nm. The coupler design offers highly efficient coupling for single mode waveguides of core indices up to 2.2.

  12. Robustness of Light-Transport Processes to Bending Deformations in Graded-Index Multimode Waveguides

    NASA Astrophysics Data System (ADS)

    Boonzajer Flaes, Dirk E.; Stopka, Jan; Turtaev, Sergey; de Boer, Johannes F.; Tyc, Tomáš; Čižmár, Tomáš

    2018-06-01

    Light transport through a multimode optical waveguide undergoes changes when subjected to bending deformations. We show that optical waveguides with a perfectly parabolic refractive index profile are almost immune to bending, conserving the structure of propagation-invariant modes. Moreover, we show that changes to the transmission matrix of parabolic-index fibers due to bending can be expressed with only two free parameters, regardless of how complex a particular deformation is. We provide detailed analysis of experimentally measured transmission matrices of a commercially available graded-index fiber as well as a gradient-index rod lens featuring a very faithful parabolic refractive index profile. Although parabolic-index fibers with a sufficiently precise refractive index profile are not within our reach, we show that imaging performance with standard commercially available graded-index fibers is significantly less influenced by bending deformations than step-index types under the same conditions. Our work thus predicts that the availability of ultraprecise parabolic-index fibers will make endoscopic applications with flexible probes feasible and free from extremely elaborate computational challenges.

  13. All-optical diode structure based on asymmetrical coupling by a micro-cavity and FP cavity at two sides of photonic crystal waveguide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Bin, E-mail: liubin-d@126.com; Liu, Yun-Feng; He, Xing-Dao

    2016-06-15

    A high efficiency all-optical diode based on photonic crystal (PC) waveguide has been proposed and numerically investigated by finite-difference time-domain (FDTD) method. The structure is asymmetrically coupled by a micro-cavity containing nonlinear Kerr medium and a FP cavity at sides of PC waveguide. Because of interference between two cavities, Fano peak and FP peak can both appear in transmission spectra and unidirectional transmission can be achieved. The working wavelength can set between two peaks and near to the Fano peak. For forward launch with suitable light intensity, nonlinear Kerr effect of micro-cavity can been excited. It will result in redmore » shift of Fano peak and achieving forward transmission. But for backward launch, a stronger incidence light is needed to the excite Kerr effect due to the design of asymmetric structure. This design has many advantages, including high maximum transmittance, high transmittance contrast ratio, low power threshold, short response time, and ease of integration.« less

  14. Photoinduced Electron Transfer in the Strong Coupling Regime: Waveguide-Plasmon Polaritons.

    PubMed

    Zeng, Peng; Cadusch, Jasper; Chakraborty, Debadi; Smith, Trevor A; Roberts, Ann; Sader, John E; Davis, Timothy J; Gómez, Daniel E

    2016-04-13

    Reversible exchange of photons between a material and an optical cavity can lead to the formation of hybrid light-matter states where material properties such as the work function [ Hutchison et al. Adv. Mater. 2013 , 25 , 2481 - 2485 ], chemical reactivity [ Hutchison et al. Angew. Chem., Int. Ed. 2012 , 51 , 1592 - 1596 ], ultrafast energy relaxation [ Salomon et al. Angew. Chem., Int. Ed. 2009 , 48 , 8748 - 8751 ; Gomez et al. J. Phys. Chem. B 2013 , 117 , 4340 - 4346 ], and electrical conductivity [ Orgiu et al. Nat. Mater. 2015 , 14 , 1123 - 1129 ] of matter differ significantly to those of the same material in the absence of strong interactions with the electromagnetic fields. Here we show that strong light-matter coupling between confined photons on a semiconductor waveguide and localized plasmon resonances on metal nanowires modifies the efficiency of the photoinduced charge-transfer rate of plasmonic derived (hot) electrons into accepting states in the semiconductor material. Ultrafast spectroscopy measurements reveal a strong correlation between the amplitude of the transient signals, attributed to electrons residing in the semiconductor and the hybridization of waveguide and plasmon excitations.

  15. Single-mode light source fabrication based on colloidal quantum dots

    NASA Astrophysics Data System (ADS)

    Xu, Jianfeng; Chen, Bing; Baig, Sarfaraz; Wang, Michael R.

    2009-02-01

    There are huge market demands for innovative, cheap and efficient light sources, including light emitting devices, such as LEDs and lasers. However, the light source development in the visible spectral range encounters significant difficulties these years. The available visible wavelength LEDs or lasers are few, large and expensive. The main challenge lies at the lack of efficient light media. Semiconductor nanocrystal quantum dots (QDs) have recently commanded considerable attention. As a result of quantum confinement effect, the emission color of these QDs covers the whole visible spectral range and can be modified dramatically by simply changing their size. Such spectral tunability, together with large photoluminescence quantum yield and photostability, make QDs attractive for potential applications in a variety of light emitting technologies. However, there are still several technical problems that hinder their application as light sources. One main issue is how to fabricate these QDs into a solid state device while still retaining their original optical emission properties. A vacuum assisted micro-fluidic fabrication of guided wave devices has demonstrated low waveguide propagation loss, lower crosstalk, and improved waveguide structures. We report herein the combination of the excellent emission properties of QDs and novel vacuum assisted micro-fluidic photonic structure fabrication technique to realize single-mode efficient light sources.

  16. Continuous, real time microwave plasma element sensor

    DOEpatents

    Woskov, Paul P.; Smatlak, Donna L.; Cohn, Daniel R.; Wittle, J. Kenneth; Titus, Charles H.; Surma, Jeffrey E.

    1995-01-01

    Microwave-induced plasma for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury.

  17. Coupling mid-infrared light from a photonic crystal waveguide to metallic transmission lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanco-Redondo, Andrea, E-mail: andrea.blanco@tecnalia.com, E-mail: r.hillenbrand@nanogune.eu; Dpto. Electronica y Telecom., E.T.S. Ingeniería Bilbao, UPV/EHU, Alda. Urquijo, 48103 Bilbao, Bizkaia; Sarriugarte, Paulo

    2014-01-06

    We propose and theoretically study a hybrid structure consisting of a photonic crystal waveguide (PhC-wg) and a two-wire metallic transmission line (TL), engineered for efficient transfer of mid-infrared (mid-IR) light between them. An efficiency of 32% is obtained for the coupling from the transverse magnetic (TM) photonic mode to the symmetric mode of the TL, with a predicted intensity enhancement factor of 53 at the transmission line surface. The strong coupling is explained by the small phase velocity mismatch and sufficient spatial overlapping between the modes. This hybrid structure could find applications in highly integrated mid-IR photonic-plasmonic devices for biologicalmore » and gas sensing, among others.« less

  18. Application of holographic elements in displays and planar illuminators

    NASA Astrophysics Data System (ADS)

    Putilin, Andrew; Gustomiasov, Igor

    2007-05-01

    Holographic Optical Elements (HOE's) on planar waveguides can be used to design the planar optics for backlit units, color selectors or filters, lenses for virtual reality displays. The several schemes for HOE recording are proposed to obtain planar stereo backlit unit and private eye displays light source. It is shown in the paper that the specific light transformation grating permits to construct efficient backlit units for display holograms and LCD. Several schemes of reflection/transmission backlit units and scattering films based on holographic optical elements are also proposed. The performance of the waveguide HOE can be optimized using the parameters of recording scheme and etching parameters. The schemes of HOE application are discussed and some experimental results are shown.

  19. Development of a TiO2/SiO2 waveguide-mode chip for an ultraviolet near-field fluorescence sensor.

    PubMed

    Kuroda, Chiaki; Nakai, Midori; Fujimaki, Makoto; Ohki, Yoshimichi

    2018-03-19

    Aimed at detecting fluorescent-labeled biological substances sensitively, a sensor that utilizes near-field light has attracted much attention. According to our calculations, a planar structure composed of two dielectric layers can enhance the electric field of UV near-field light effectively by inducing waveguide-mode (WM) resonance. The fluorescence intensity obtainable by a WM chip with an optimized structure is 5.5 times that obtainable by an optimized surface plasmon resonance chip. We confirmed the above by making a WM chip consisting of TiO 2 and SiO 2 layers on a silica glass substrate and by measuring the fluorescence intensity of a solution of quantum dots dropped on the chip.

  20. Development of a diamond waveguide sensor for sensitive protein analysis using IR quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Piron, P.; Vargas Catalan, E.; Haas, J.; Österlund, L.; Nikolajeff, F.; Andersson, P. O.; Bergström, J.; Mizaikoff, B.; Karlsson, M.

    2018-02-01

    Microfabricated diamond waveguides, between 5 and 20 μm thick, manufactured by chemical vapor deposition of diamond, followed by standard lithographic techniques and inductively coupled plasma etching of diamond, are used as bio-chemical sensors in the mid infrared domain: 5-11 μm. Infrared light, emitted from a broadly tunable quantum cascade laser with a wavelength resolution smaller than 20 nm, is coupled through the diamond waveguides for attenuated total reflection spectroscopy. The expected advantages of these waveguides are a high sensitivity due to the high number of internal reflections along the propagation direction, a high transmittance in the mid-IR domain, the bio-compatibility of diamond and the possibility of functionalizing the surface layer. The sensor will be used for analyzing different forms of proteins such as α-synuclein which is relevant in understanding the mechanism behind Parkinson's disease. The fabrication process of the waveguide, its characteristics and several geometries are introduced. The optical setup of the biosensor is described and our first measurements on two analytes to demonstrate the principle of the sensing method will be presented. Future use of this sensor includes the functionalization of the diamond waveguide sensor surface to be able to fish out alpha-synuclein from cerebrospinal fluid.

Top